
SAS® Event Stream
Processing Engine 2.1
User’s Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS® Event Stream Processing
Engine 2.1: User's Guide. Cary, NC: SAS Institute Inc.

SAS® Event Stream Processing Engine 2.1: User's Guide

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the
publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at
the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or
encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by
the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19,
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

September 2013

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest
potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit support.sas.com/
bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Using This Book . vii
What’s New in SAS Event Stream Processing Engine ix
Recommended Reading . xv

Chapter 1 • Overview to SAS Event Stream Processing Engine . 1
Product Overview . 1
Conceptual Overview . 2
Implementing Engine Models . 4
Understanding Continuous Queries . 5
Understanding Events . 7
Understanding Event Blocks . 8
Getting Started with SAS Event Stream Processing Engine 9
Writing an Application with SAS Event Stream Processing Engine . 10

Chapter 2 • Programming with the C++ Modeling API . 13
Using Expressions . 14
Overview to the C++ Modeling API . 16
Dictionary . 17

Chapter 3 • Using the XML Modeling Layer . 51
XML Modeling Layer . 52
Using the XML Factory Server . 56
Examples . 57

Chapter 4 • Creating Pattern Windows . 67
Overview of Pattern Windows . 67
State Definitions for Operator Trees . 70
Restrictions on Patterns . 73
Example: Simple Pattern Window . 75

Chapter 5 • Creating Aggregate Windows . 81
Overview to Aggregate Windows . 81

Flow of Operations . 82
Aggregate Functions . 83

Chapter 6 • Creating Procedural Windows . 85
Overview to Procedural Windows . 85
C++ Window Handlers . 86
DS2 Window Handlers . 89

Chapter 7 • Visualizing Event Streams . 95
Overview to Event Visualization . 95
Using Streamviewer . 95
Using SAS/GRAPH . 97

Chapter 8 • Using the Publish/Subscribe API . 99
Overview to the API . 99
Understanding Publish/Subscribe API Versioning 100
Using Callback Functions . 101
The API from the Engine’s Perspective . 102
The API from the Client’s Perspective . 103
Functions for the Publish/Subscribe API . 105
Using the Java Publish/Subscribe API . 117

Chapter 9 • Using Connectors and Adapters . 123
Using Connectors . 124
Using Adapters . 155

Chapter 10 • Enabling Guaranteed Delivery . 175
Overview to Guaranteed Delivery . 175
Guaranteed Delivery Success Scenario . 178
Guaranteed Delivery Failure Scenarios . 179
Additions to the Publish/Subscribe API for Guaranteed Delivery . . 180
Configuration File Contents . 180
Publish/Subscribe API Implementation of Guaranteed Delivery . . . 181

Chapter 11 • Implementing 1+N-Way Failover . 185
Overview to 1+N-Way Failover . 186

iv Contents

Topic Naming . 190
Failover Mechanisms . 191
Restoring Failed Active ESP State after Restart 195
Using ESP Persist/Restore . 196
Metadata Exchanges (Solace) . 197
Metadata Exchanges (Tervela) . 197
Required Software Components . 198
Required Client Configuration . 198
Required Appliance Configuration (Solace) 199
Required Appliance Configuration (Tervela) 200

Chapter 12 • Advanced Topics . 201
Logging Bad Events . 202
Measuring Time Granularity . 202
Using Joins and Understanding Join Constraints 203
Converting CSV Events to Binary . 204
Implementing Periodic (or Pulsed) Window Output 205
Splitting Generated Events across Output Slots 206
Marking Events as Partial-Update on Publish 208
Understanding Primary Indexes and Retention Policies 211
Using Stateless Pattern Windows . 214
Using Aggregation Functions . 215
Using an Aggregate Function to Add Statistics to an

Incoming Event . 218
Persist and Restore Model State . 220
Gathering and Saving Latency Measurements 221

Appendix 1 • Example: Implementation of the Trades Model . 227

Appendix 2 • Example: Subscriber and Publisher Applications . 231

Appendix 3 • Example: Using Blue Fusion Functions . 241

Appendix 4 • Setting Logging Level for Adapters . 245

Glossary . 247

Contents v

vi Contents

Using This Book

Audience

This document provides information for programmers to use the SAS Event Stream
Processing Engine. It assumes knowledge of object-oriented programming terminology
and a solid understanding of object-oriented programming principles. It also assumes a
working knowledge of the SQL programming language and of relational database
principles. Use this document with the application programming interface (API)
documentation that is shipped with the product.

vii

viii

Whatʼs New

What’s New in SAS Event Stream
Processing Engine

Overview

SAS Event Stream Processing Engine 2.1 provides the following new functionality:

n integration between DataFlux and SAS

n procedural window access to SAS analytics through DS2 scripting

n new adapters and connectors

n user-defined plug-in connectors

n new aggregate functions

n pre-allocated hash indexes

n 1+N-Way Failover

n Streamviewer metadata search

n engine state persist and recovery

n XML factory server project control

n Microsoft Windows 64–bit support for XML modeling

ix

n latency performance measurements support

SAS and DataFlux Integration

SAS has fully integrated its DataFlux suite of data quality, data integration, data
governance, and master data management solutions. These products help you build a
more integrated information management approach that goes beyond data
management and governance to support analytics and decision management.

Rather than being licensed separately, SAS DataFlux products are now being combined
into software offerings that include other SAS products as well. Changes in offerings
might affect your license renewals. Some DataFlux products are being rebranded and
enhanced as SAS products, such as SAS Event Stream Processing Engine.

The SAS Customer Support site now provides support and resources for both SAS and
SAS DataFlux products. The MyDataFlux portal is no longer supported. Some of these
revised resources are:

n SAS Downloads site to download SAS DataFlux products, data updates, and Quality
Knowledge Bases

n SAS Documentation site and SAS Install Center to find current documentation.

n SAS Administrative Services to manage your account, including how to contact
Contracts Support to obtain or renew a license

n SAS Support to submit questions or a request for technical support.

Procedural Window Access to SAS
Analytics through DS2 Scripting

You now can write a procedural window event stream handler in the DS2 language.
Declare the program as a character string and set it in the procedural windows context.

x What’s New in SAS Event Stream Processing Engine

http://support.sas.com/
http://support.sas.com/techsup/dwnload/
http://support.sas.com/documentation/
http://support.sas.com/documentation/installcenter/index.html
http://support.sas.com/adminservices/index.html
http://support.sas.com/techsup/

New input handlers can take advantage of the SAS Threaded Kernel library that is
embedded within the SAS Event Stream Processing Engine.

Using both the SAS Threaded Kernel library and DS2, you can essentially run existing
SAS models using the engine to process events. SAS models with additive functionality,
such as transaction scoring for fraud, can take advantage of this feature. It is important
that input handlers for event streams process one event at a time without having to re-
process events.

For more information, see “Overview of DS2 Window Handlers” on page 89. For more
information about DS2, see SAS DS2 Language Reference.

New Adapters and Connectors

New publish and subscribe adapters and connectors are provided to support the
following products:

n IBM WebSphere MQ

n Tervela Data Fabric

n Solace Systems High-Performance Messaging Appliances

n Tibco Rendezvous (Tibco RV)

n OSIsoft PI (for publish only)

n Syslogs (as an extension to the file and socket adapter and connector)

For more information, see Chapter 9, “Using Connectors and Adapters,” on page 123.

User-Defined Plug-in Connectors

Users can now write their own connectors and plug them into the SAS Event Stream
Processing Engine platform. This capability had been available for adapters, which are
stand-alone executables that use the publish and subscribe API. Connectors are C++

User-Defined Plug-in Connectors xi

classes that required additional plug-in support from the SAS Event Stream Processing
Engine platform for this capability to be provided.

For more information, see “User-Written Connectors” on page 152.

New Aggregate Functions

Two new aggregate functions are available in SAS Event Stream Processing Engine
2.1:

n ESP_aFirst() returns the first event field value published for a given group,
regardless of retention policy

n ESP_aGUID() generates globally unique identifiers

For more information, see “Aggregate Functions” on page 83.

Pre-allocated Hash Indexes

SAS Event Stream Processing Engine now provides the ability for windows and depots
to pre-allocate hash index size. This can be useful for latency performance
improvements, where growth in hash indices during runtime visibly impacts latency
measurements. Derived join indices and caches are also adjusted based on settings on
their input windows. For more information, see “Fully Stateful Indexes” on page 211.

1+N-way Failover

The SAS Event Stream Processing Engine now supports 1+N-Way Failover. This
means that in addition to the primary event stream processing (ESP) server, you can
configure one or more active failover ESP instances. This requires the use of a third-
party messaging fabric. Currently, both Solace Systems and Tervela are supported.

xii What’s New in SAS Event Stream Processing Engine

This feature provides seamless failover for publishing and subscribing clients when
primary event stream processing fails over to the next available recovery system. For
more information, see “Implementing 1+N-Way Failover” on page 186.

Streamviewer Metadata Search

The Streamviewer client provided with the event stream package for subscribing to and
viewing event streams has been extended to enable metadata searches to determine
what streams to view. Before, you needed to know the entire window URL in order to
subscribe to an event stream processing window. Now you can query various objects
available within an engine, starting with the projects and working down to windows to
determine the subscription of interest.

For more information, see “Using Streamviewer” on page 95.

Engine State Persist and Recovery

The SAS Event Stream Processing Engine now has the ability to persist to and recover
from event stream processing engine state files. These capabilities are made available
through the publish and subscribe APIs as well as through the C++ Modeling API.

The persist capability halts all input source queues. It then temporarily disables the
continuous query graphs and writes engine state out in a hierarchy of files down to the
window level. An engine must be restored in its entirety.

This feature can be useful for storing current state for an ESP engine before bringing it
down for maintenance. The engine’s previous state can be restored after it is brought
back on line. This feature is also useful for bringing a previously failed primary engine
back on line as a newly available failover engine. For more information, see “Persist and
Restore Model State” on page 220.

Engine State Persist and Recovery xiii

XML Factory Server Project Control

The XML factory server, dfESP_xml_server, now supports the ability to start, stop,
create, remove, inject, and query projects within a running event stream processing
engine. It also now supports limited queries, event injects, and short-lived projects. For
more information, see “Using the XML Factory Server” on page 56.

Microsoft Windows 64–Bit Support for
XML Modeling

The XML modeling factory server has now been made available on Microsoft Windows
64-bit platforms.

Latency Performance Measurements

Event stream processing latency measurements using the C++ Modeling API class are
now supported through dfESPlatencyController. Additional switches are available
to the file and socket adapter. This enables the injection of up to four timestamps with
microsecond granularity to measure ESP processing latencies.

xiv What’s New in SAS Event Stream Processing Engine

Recommended Reading

SAS Event Stream Processing Engine is supported by the following documents:

n SAS Event Steam Processing Engine 2.1: Overview provides an introduction to the
product and an illustrative example.

n SAS Event Stream Processing Engine 2.1: User’s Guide describes the product and
provides technical details for writing event stream processing applications.

n Navigate to $DFESP_HOME/doc/html for detailed class and method
documentation for the C++ modeling, C, and Java™ client publish/subscribe APIs.
Specifically, documentation about the following topics is provided:

o C++ Modeling API

o Connector API

o C Publish/Subscribe API

o C wrapper over Modeling API (to support publishers and subscribers to handle
event streams)

o Java Publish and Subscribe API and wrapper over Modeling API (to support
publishers and subscribers to handle event streams)

For a complete list of SAS books, go to support.sas.com/bookstore. If
you have questions about which titles you need, please contact a SAS
Book Sales Representative:

SAS Books

xv

SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

xvi Recommended Reading

mailto:sasbook@sas.com
http://support.sas.com/bookstore

1
Overview to SAS Event Stream
Processing Engine

Product Overview . 1

Conceptual Overview . 2

Implementing Engine Models . 4

Understanding Continuous Queries . 5

Understanding Events . 7

Understanding Event Blocks . 8

Getting Started with SAS Event Stream Processing Engine 9
Installing and Configuring SAS Event Stream

Processing Engine . 9
Using the SAS Event Stream Processing Engine 9

Writing an Application with SAS Event Stream
Processing Engine . 10

Product Overview

The SAS Event Stream Processing Engine enables programmers to build applications
that can quickly process and analyze volumes of continuously flowing events.
Programmers can build applications with the C++ Modeling API or the XML Modeling

1

Layer that are included with the product. Event streams are published in applications
using the C or JAVA publish/subscribe APIs, connector classes, or adapter executables.

Event stream processing engines with dedicated thread pools can be embedded within
new or existing applications. The XML Modeling Layer can be used to feed event
stream processing engine definitions (called models) into an XML factory server.

Event stream processing applications typically perform real-time analytics on event
streams. These streams are continuously published into an event stream processing
engine. Typical use cases for event stream processing include but are not limited to the
following:

n sensor data monitoring and management

n capital markets trading systems

n fraud detection and prevention

n personalized marketing

n operational systems monitoring and management

n cyber security analytics

Event stream processing enables the user to analyze continuously flowing data over
long periods of time where low latency incremental results are important. Event stream
processing applications can analyze millions of events per second, with latencies in the
milliseconds.

Conceptual Overview

SAS Event Stream Processing Engine enables a programmer to write event stream
processing applications that continuously analyze events in motion. When designing an
application, programmers must answer the following questions:

n What is the model that tells the application how to behave?

n How are event streams (data) to be published into the application?

n What transformations must occur to those event streams?

2 Chapter 1 / Overview to SAS Event Stream Processing Engine

n How are the transformed event streams to be consumed?

A model is a user specification of how input event streams from publishers are
transformed into meaningful output event streams consumed by subscribers. The
following figure depicts the model hierarchy.

Figure 1.1 Instantiation of an Engine Model

Project

Continuous Query

Source Window

Derived Windows

Connectors

Adapters

Event
Stream

Publishers

Event
Stream

Subscribers

Connectors

Adapters

Publish/
Subscribe

API

Publish/
Subscribe

API

Engine Model

3

4

5

6

8

7

2

1

1 At the top of the hierarchy is the engine. Each model contains only one engine
instance with a unique name.

2 The engine contains one or more projects, each uniquely named. Projects contain
dedicated thread pools that are specified relative to size. Using a pool of threads in a
project enables the event stream processing engine to use multiple processor cores
for more efficient parallel processing.

3 A project contains one or more continuous queries. A continuous query is
represented by a directed graph, which is a set of connected nodes that follow a
direction down one or more parallel paths. Continuous queries contain data flows,
which are data transformations of incoming event streams.

4 Each query has a unique name and begins with one or more source windows.

5 Source windows are connected to one or more derived windows.

Conceptual Overview 3

6 The publish/subscribe API can be used to subscribe to an event stream window
either from the same machine or from another machine on the network. Similarly,
the publish/subscribe API can be used to publish event streams into a running event
stream processor project source window.

7 Connectors use the publish/subscribe API to publish or subscribe event streams to
and from an engine. Connectors bypass sockets for a lower-level inject call because
they are in process to the engine.

8 Adapters are stand-alone executable programs that can be networked. Adapters
also use the publish/subscribe API.

Implementing Engine Models

Event stream processing engines can be XML factory servers or can be embedded
within application processes using the C++ Modeling API. The application process that
contains the engine can be a server shell, or it can be a working application thread that
interacts with the engine threads. The XML factory server is an engine process that
accepts event stream processing definitions in one of two ways:

n in the form of a single, entire engine definition

n as create or destroy definitions within a project, which can be used to manipulate
new project instantiations in an XML factory server

Whether you implement multiple projects or multiple continuous queries depends on
your processing needs. Create multiple projects when you want more than one
threading model in an engine. You can use:

n a single-threaded model for a higher level of determinism

n a multi-threaded model for a higher level of parallelism

n a mixed threading model to manipulate both

Because continuous queries are a mechanism of modularity, the number of queries that
you implement depends on how compartmentalized your windows are. Within a
continuous query, you can instantiate and define as many windows as you need. Any

4 Chapter 1 / Overview to SAS Event Stream Processing Engine

given window can flow data to one or more windows, but loop-back conditions are not
permitted. Event streams must be published or injected into source windows through
the publish/subscribe API or through the continuous query inject method.

Within a continuous query, you can implement relational, rule-based, and procedural
operators on derived windows. The relational operators include the following SQL
primitives: join, copy, compute, aggregate, filter, and union. The rule-based operators
perform pattern matching and enable you to define temporal event patterns. The
procedural operators enable you to write event stream input handlers in C++ or DS2.

Input handlers written in DS2 can use features of the SAS Threaded Kernel library so
that you can run existing SAS models in a procedural window. You can do this only
when the existing model is additive in nature and can process one event at a time.

Various connectors and adapters are provided with SAS Event Stream Processing
Engine, but you can write your own connector or adapter using the publish/subscribe
API. Inside model definitions, you can define connector objects that can publish into
source windows or that can subscribe to any window type.

Understanding Continuous Queries

Within a continuous query, windows can transform or analyze data, detect patterns, or
perform computations. For information about the programming objects available with the
SAS Event Stream Processing Engine that you use to implement windows, see Chapter
2, “Programming with the C++ Modeling API,” on page 13.

Understanding Continuous Queries 5

Consider the following continuous query.

Figure 1.2 Continuous Query Diagram

Trades
(Source)

Trades
Market Feed

Traders
Traders
(Source)

LargeTrades
(Filter)

AddTraderName
(Join)

TotalCost
(Compute)

BySecurity
(Aggregate)

In this continuous query, there are two source windows:

n the Trades window streams data about securities transactions from a trades market
feed

n the Traders window streams data about who performs those transactions

After the source windows get data, the following occurs:

1 The Trades source window flows into the LargeTrades derived window, which filters
out transactions that involve fewer than a defined number of shares.

2 LargeTrades and Traders flow into the join window named AddTraderName. This
window matches filtered transactions with their associated traders.

3 Events from AddTraderName flow into the compute window named TotalCost,
where the cost of the transaction is calculated.

4 Events are passed on to the aggregate window BySecurity, where they are placed
into aggregate groups.

For C++ source code that implements a model that includes this query, see Appendix 1,
“Example: Implementation of the Trades Model,” on page 227. For an example of the
model rendered in the esp_xml modeling language, see “Complete Example” on page
62.

Specifically, continuous query processing follows these steps:

6 Chapter 1 / Overview to SAS Event Stream Processing Engine

1 An event block (with or without atomic properties) containing one or more events is
injected into a source window.

2 The event block flows to any derived window directly connected to the source
window. If transactional properties are set, then the event block of one or more
events is handled atomically as it makes its way to each connected derived window.
That is, all events must be performed in their entirety. If any event in the event block
with transactional properties fails, then all of the events in that event block fail. Failed
events are logged. They are written to a bad records file for you to review, fix, and
republish when you enable this feature.

3 Derived windows transform events into zero or more new events based on the
properties of each derived window. After new events are computed by derived
windows, they flow farther down the model to the next level of connected derived
windows, where new events are potentially computed.

4 This process ends for each active path down the model for a given event block when
either of the following occurs:

n There are no more connected derived windows to which generated events can
be passed.

n A derived window along the path has produced zero resultant events for that
event block. Therefore, it has nothing to pass to the next set of connected
derived windows.

Understanding Events

An event is a packet of data that is accessible as a collection of fields. Each event must
have one or more fields designated as a primary key. Key fields enable the support of
operation codes (opcodes) to process data within windows. The opcodes supported by
SAS Event Stream Processing Engine consist of Delete, Insert, Update, and Upsert.

Understanding Events 7

Opcode Description

Delete (D) Removes event data from a window

Insert (I) Adds event data to a window

Update (U) Changes event data in a window

Upsert (P) Updates event data if the key field already exists. Otherwise, it adds
event data to a window.

When programming, if you do not know whether an event needs an update or insert
opcode, use Upsert. The source window where the event is injected determines
whether it is handled as an insert or an update. The source window then propagates the
correct event and opcode to the next set of connected windows in the model.

The SAS Event Stream Processing Engine has a publish/subscribe API. In-process
connectors and out-of-process adapters use this API to either publish event streams
into source windows or subscribe to any window's output event stream. This API is
available in Java or C.

Using connectors or adapters, you can publish or subscribe to events in many formats
and from various systems. Example formats include CSV, JSON, binary, and XML.
Example publishing and subscribing systems include databases, financial market feeds,
and memory buses. You can also write your own connectors or adapters that use the
publish/subscribe API.

When events are published into source windows, they are converted into binary code
with fast field pointers and control information. This binary conversion improves
throughput performance.

Understanding Event Blocks

Event blocks contain zero or more binary events, and publish/subcribe clients send and
receive event blocks to or from the SAS Event Stream Processing Engine. Because
publish/subscribe carries overhead, working with event blocks that contain multiple

8 Chapter 1 / Overview to SAS Event Stream Processing Engine

events helps throughput performance with minimal impact on latency. This assumes
that event blocks are relatively small, around 512 bytes in length or less per event block,
depending on the width of each event.

Event blocks can be transactional or normal.

Event Block Description

Transactional Is atomic. If one event in the event block fails (for example, deleting a
non-existing event), then all of the events in the event block fail.
Events that fail are logged and placed in a bad records file, which can
be processed further.

Normal Is not atomic. Events are packaged together for efficiency, but are
individually treated once they are injected into a source window.

Events persist in their event blocks as they work their way through an engine model.
This persistence enables event stream subscribers to correlate a group of subscribed
events back to a specific group of published events through the event block ID.

Getting Started with SAS Event Stream
Processing Engine

Installing and Configuring SAS Event Stream
Processing Engine

Instructions to install and configure SAS Event Stream Processing Engine are provided
in a ReadMe file available in your software depot.

Using the SAS Event Stream Processing
Engine

After you install and configure SAS Event Stream Processing Engine, you program
event stream processing applications to use it. Sample applications are available in the
src directory of the installation. Each subdirectory contains the sample application's

Getting Started with SAS Event Stream Processing Engine 9

source, a Makefile to build it, and in some cases sample data. Edit the Makefile to set
options appropriately for your compiler and operating system. Instructions provided in
the comments of each Makefile explain how to do this. A Readme file in the src
directory explains each example and how to run it.

A utility called dfespenv in the bin directory can be used to set the environment
variables that you need to run the compiled applications. Running dfespenv without any
arguments displays usage instructions. You can add the commands to set the
environment variables to your .profile or .login file when you want to make these
settings permanent.

You need a valid license file in order to run any applications using SAS Event Stream
Processing Engine. License files are ordinarily stored in etc/license. If you do not
have a license file, please contact your SAS representative.

Note: If you store the license file in a different location from etc/license, you need
to modify the sample applications and change the calls to
dfESPlibrary::Initialize. For more information, see the API documentation
available in $DFESP_HOME/doc/html.

Writing an Application with SAS Event
Stream Processing Engine

An engine model specifies how to process event streams published into an engine.
These models define data transformations, known as continuous queries, that are
performed on the events of one or more event streams. An event stream processing
application instantiates a model with one or more dedicated thread pools. These thread
pools are defined within projects.

Follow these steps to write an event stream processing application:

1 Create an engine model and instantiate it within an application or within an XML
factory server.

2 Publish one or more event streams into the engine using the publish/subscribe API
or by event injection.

10 Chapter 1 / Overview to SAS Event Stream Processing Engine

3 Subscribe to relevant window event streams within continuous queries using the
publish/subscribe API or by registering a callback function with the relevant window.

You can use the C++ Modeling API or the XML Modeling Layer to write an application.
For more information about the C++ key modeling objects to use to write an application,
see Chapter 2, “Programming with the C++ Modeling API,” on page 13.

The XML Modeling Layer uses a factory server to instantiate and execute event stream
process modeling objects that are defined in an XML file. This modeling layer does not
provide all the capabilities that the C++ Modeling API provides. However, it does
provide the essential modeling objects and connectors. For more information, see
Chapter 3, “Using the XML Modeling Layer,” on page 51.

You can publish and subscribe one of three ways:

n through the Java or C publish/subscribe API

n through the packaged connectors (in-process classes) or adapters (networked
executables) that use the publish/subscribe API

n using the in-process callbacks for subscribe or the inject data method of continuous
queries

For more information about the publish/subscribe API, see Chapter 8, “Using the
Publish/Subscribe API,” on page 99.

Connectors are C++ classes that are instantiated in the same process space as the
event stream processor. Connectors can be used from within C++ models as well as
XML models. For more information, see “Using Connectors” on page 124.

Adapters use the corresponding connector class to provide stand-alone executables
that use the publish/subscribe API. Therefore, they can be networked. For more
information, see “Using Adapters” on page 155.

Writing an Application with SAS Event Stream Processing Engine 11

12 Chapter 1 / Overview to SAS Event Stream Processing Engine

2
Programming with the C++ Modeling
API

Using Expressions . 14

Overview to the C++ Modeling API . 16

Dictionary . 17
dfESPengine . 17
dfESPproject . 18
dfESPeventdepot . 21
dfESPcontquery . 21
dfESPwindow_source . 22
dfESPwindow_filter . 24
dfESPwindow_copy . 27
dfESPwindow_compute . 29
dfESPwindow_union . 33
dfESPwindow_aggregate . 34
dfESPwindow_join . 35
dfESPwindow_pattern . 39
dfESPwindow_procedural . 40
dfESPdatavar . 41
dfESPschema . 43
dfESPevent . 44
dfESPeventblock . 46
dfESPpersist . 47

13

Using Expressions

Event stream processing applications can use expressions to define the following:

n filter conditions in filter windows

n non-key field calculations in compute, aggregate, and join windows

n matches to window patterns in events of interest

n window-output splitter-slot calculations (for example, use an expression to evaluate
where to send a generated event)

You can employ user-defined functions instead of expressions in all of these cases
except for pattern matching. With pattern matching, you must use expressions.

Writing and registering expressions with their respective windows can be easier than
writing the equivalent user-defined functions. Expressions run more slowly than
functions. For very low-latency applications, you can employ user-defined functions to
minimize the overhead of expression parsing and processing.

Use prototype expressions whenever possible. Based on results, optimize them as
necessary or exchange them for functions. Most applications use expressions instead of
functions, but you can use functions when faster performance is critical.

For information about how to specify DataFlux expressions, refer to the DataFlux
Expression Language: Reference Guide. The SAS Event Stream Processing Engine
uses a subset of the documented functionality, but this subset is robust for the needs of
event stream processing.

The SAS Event Stream Processing Engine API does not have a one-to-one mapping
between the data types that it supports and those supported by the DataFlux
Expression Engine Language. The following table shows the data type mappings.

14 Chapter 2 / Programming with the C++ Modeling API

Table 2.1 Expression Data Type Mappings Table

Notes and Restrictions
DataFlux
Expressions

Event Stream
Processing Engine
Expressions

None String (utf8) String (utf8)

Seconds granularity date (second
granularity)

date (second
granularity)

Constant milliseconds in dfExpressions not
supported

date (second
granularity)

timestamp
(microsecond
granularity)

64-bit conversion for dfExpressions Integer (64 bit) Int32 (32 bit)

64-bit, no conversion Integer (64 bit) Int64 (64 bit)

real 192-bit fixed point, double 64-bit float real (192 bit fixed
decimal)

double (64 bit IEEE)

192-bit fixed point, no conversion real (192 bit fixed
decimal)

money (192 bit fixed
decimal)

Event stream processing expressions support the use of the DataFlux Data
Management Platform quality functions (Blue Fusion Functions). The following functions
are fully documented in the DataFlux Expression Language: Reference Guide:

n bluefusion.case

n bluefusion.gender

n bluefusion.getlasterror

n bluefusion.identify

n bluefusion_initialize

n bluefusion.loadqkb

n bluefusion.matchcode

n bluefusion.matchscore

Using Expressions 15

n bluefusion.pattern

n bluefusion.standardize

To use these functions, you must separately order and download the SAS DataFlux
QKB (Quality Knowledge Base). After you do, set the environment variable
DFESP_QKB to the root path where they were installed. After that, you can include
these functions in any of your SAS event stream processing expressions. These
functions are typically used for cleaning up event fields in the non-key field calculation
expressions in a compute window.

For an example, see Appendix 3, “Example: Using Blue Fusion Functions,” on page
241.

Overview to the C++ Modeling API

The C++ Modeling API provides a set of classes with member functions. These
functions enable you to embed an engine with dedicated thread pools into an
applications process space. An application could simply define and start an engine,
which would make it an event stream processing server.

Alternatively, you could embed an engine into the process space of an existing or a new
application. In that case, the main application thread is focused on its own chores. It
interacts with the embedded engine as needed.

The following sections explain how to use the C++ key modeling objects. For
information about how to instantiate an engine model inside of an XML factory server
engine, see Chapter 3, “Using the XML Modeling Layer,” on page 51.

16 Chapter 2 / Programming with the C++ Modeling API

Dictionary

dfESPengine
specifies the top-level container or manager in a model. Engines typically contain one or more projects. Create
only one engine instance, which instantiates fundamental services such as licensing, logging, and expression
handling. An attempt to create a second engine instance returns the pointer to the first created engine instance.

Syntax
dfESPengine *engine_name;
engine_name= dfESPengine::initialize(argc, argv, “engine_name”,
pubsub_ENABLE(port#) | pubsub_DISABLE,
<loglevel>, <logConfigFile>);

Required Arguments

argc
argument count as passed into main

argv
argument vector as passed into main — accepts -t textfile.name to
write output and -bbadevent.name to write events that failed to be
applied to a window index

engine_name
user-supplied name of the engine

pubsub_ENABLE(port#) | pubsub_DISABLE
indicate whether to enable (on a user-specified port#) or disable
publish/subscribe

Optional Arguments

logLevel
the lower threshold for displayed log messages. The default value
is dfESPLLTrace.

dfESPengine 17

logConfigFile
a logging facility configuration file. The default is to configure
logging to go to standard output.

licKeyFile
a fully qualified pathname to a license file. The default is
$DFESP_HOME/etc/license/esp.lic.

Example
// Create the engine container.
dfESPengine *engine;
engine = dfESPengine::initialize(argc, argv, "engine", pubsub_DISABLE);

// Create the rest of the model and then start the projects.
// Creating the rest of the model is covered in the
// subsequent sections.
engine->startProjects();

// The project is running in the background and you can begin
// publishing event streams into the project for execution.

/* Now cleanup and shutdown gracefully */

// First, stop the projects.
engine->stopProjects();

// Next, shutdown the engine and its services (this frees all
// the modeling resources from the engine down through
// the windows).
engine->shutdown();

dfESPproject
specifies a container that holds one or more continuous queries and are backed by a thread pool of user-
defined size

Syntax
dfESPproject *projectname
= engine_name—>newProject(“project_label”);

18 Chapter 2 / Programming with the C++ Modeling API

Required Arguments

projectname
user-supplied name of the project

engine_name
user-supplied name of the engine as specified through
dfESPengine.

project_label
user-supplied description of the project

Details

A project can specify the level of determinism for incremental computations. The data
flow model is always computationally deterministic. Intermediate calculations can occur
at different times across different runs of a project when it is multi-threaded. Therefore,
when a project watches every incremental computation, the increments could vary
across runs even though the unification of the incremental computation is always the
same.

Note: Regardless of the determinism level specified or the number of threads used in
the SAS Event Stream Processing Engine model, each window always processes all
data in order. Therefore, data received by a window is never rearranged and processed
out of order.

The levels of determinism supported by a project are as follows:

n full concurrency (default) - data received by a window is processed as soon as it is
received and forwarded on to any dependent window. This is the highest performing
mode of computation. In this mode, a project can use any number of threads as
specified by the setNumberOfThreads(max thread) method.

n tagged token - implements single-transaction in, single-transaction out semantics at
each node of the model. In this mode, a window imposes a diamond patter, splitting
the output and then rejoining the split paths together. It merges outputs (per unique
transaction) from each path into a single transaction. A single transaction in the top
of the diamond produces a single output at the bottom.

dfESPproject 19

The newProject() method for the dfESPengine class takes a final parameter (true |
false) that indicates whether tagged token data flow should be enabled. If you do not
specify this final parameter, the value defaults to false.

n Thus, to specify full concurrency:

dfESPproject *project = engine->newProject("MyProject”);

or

dfESPproject *project = engine->newProject("MyProject”, false);

n And to specify tagged token:

dfESPproject *project = engine->newProject("MyProject”, true);

For easier debugging and full consistency in output for testing, run with tagged token
true. Set the number of threads in a project to 1. This is the slowest way to run a
project. Nonetheless, as long as you are using time-based retention policies, you can be
assured that the output is consistent from run to run.

Example

The following code fragment shows how to create a project, add a memory store, set
the thread pool size, and add continuous queries. It is run with a level of determinism of
full consistency.

// Create the project containers.
dfESPproject *project = engine->newProject("MyProject”);

// Create a memory depot for the project to handle the generation
// of primary indices and event storage;

dfESPeventdepot_mem* depot;
depot = project->newEventdepot_mem("memDepot_01");

project->setNumThreads(3); //set the thread pool size for project.

// After you have started the projects using the startProjects()
// method shown in the dfESPengine section above, then you
// can publish or use dfESPproject::injectData() to inject
// event blocks into the source windows. You can also use
// the dfESPproject::quiesce() method to block until all
// of the data in the continuous queries of the project are
// quiesced. You might also want to do this before stopping

20 Chapter 2 / Programming with the C++ Modeling API

// the projects.

project->quiesce();
project->stopProject();

dfESPeventdepot
creates a high-level factory object that builds and tracks primary indexes for all the windows in a project that
use it.

Syntax
dfESPeventdepot_mem* depot_name;
depot_name =projectname—>newEventdepot_mem(“depot_label”);

Required Arguments

depot_name
user-supplied name of the depot object

project_name
user-supplied name of the project as specified in dfESPproject

depot_label
user-supplied description of the depot object

Example

The only concrete implementation of the dfESPeventdepot class is a memory-based
storage and indexing mechanism encapsulated in the dfESPeventdepot class. When
writing models, you typically create a single instance of dfESPeventdepot for each
project and use it to manage the indexing of events for all windows of a project:

dfESPeventdepot_mem *edm = project->newEventdepot_mem("myDepot");

dfESPcontquery
specify a continuous query object. This is a container that holds a collection of windows and enables you to
specify the connectivity between windows.

dfESPcontquery 21

Syntax
dfESPcontquery *query_name
query_name = projectname—> newContQuery(“query_label”);

Required Arguments

query_name
user-supplied name of the query object

projectname
user-supplied name of the project, as specified in dfESPproject

query_label
user-supplied description of the query

Example

Suppose that there are two windows, swA and swB, that are joined to form window jwC.
Window jwC is aggregated into window awD. Build the continuous query as follows,
using the addEdge function:

dfESPcontquery *cq;
cq = project->newContquery("continuous query #1");

cq->addEdge(swA, jwC); // swA --> jwC
cq->addEdge(swB, jwC); // swB --> jwC
cq->addEdge(jwC, awD); // jwC --> awD

This fully specifies the continuous query with window connectivity, which is a directed
graph.

dfESPwindow_source
specifies a source window of a continuous query. All event streams must enter continuous queries by being
published or injected into a source window. Event streams cannot be published or injected into any other
window type.

22 Chapter 2 / Programming with the C++ Modeling API

Syntax
dfESPwindow_source *windowID;
windowID=contquery_name—> newWindow_Source
(“window_label”, depot_name, dfESPIndextypes::index,
schema);

Required Arguments

windowID
user-supplied identifier of the source window

contquery_name
user-supplied name of the continuous query object specified in
dfESPcontquery

window_label
user-supplied description of the window

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

schema
user-supplied name of the schema as specified by dfESPstring.

Example

Here is an example of how to specify a source window:

dfESPwindow_source *sw;
sw = cq->newWindow_source("mySourceWindow", edm,
 dfESPindextypes::pi_HASH, sch);

Before creating this source window, you could use dfESPstring to specify a schema.
For example

dfESPstring sch = dfESPstring("ID*:int32,symbol:string,price:double");

dfESPwindow_source 23

Alternatively, you could specify the dfESPstring definition directly into the
newWindow schema field when you define the window type.

You can set event state retention for source windows and copy windows only when the
window is not specified to be insert-only and when the window index is not set to
pi_EMPTY. All subsequent sibling windows are affected by retention management.
Events are deleted automatically by the engine when they exceed the window’s
retention policy.

Set the retention type on a window with the setRetentionParms() call. You can set
type by count or time, and as either jumping or sliding. For more information, see
“Retention Policies for Fully Stateful Indexes” on page 213.

dfESPwindow_filter
specifies a filter window, which is a computational window with a registered Boolean filter function or
expression.

Syntax
dfESPwindow_filter *windowID;
windowID=query_name—> newWindow_filter(“window_label”,
depot_name, dfESPIndextypes::index;
windowID->setFilter(filterFunction | filterExpression);

Required Arguments

windowID
user-supplied ID of the filter window

query_name
user-supplied name of the query object specified in
dfESPcontquery

window_label
user-supplied description of the window

24 Chapter 2 / Programming with the C++ Modeling API

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

filterFunction
user-supplied identifier of the filter function

filterExpression
user-supplied identifier of the filter expression

Details

The filter function or expression, which is set by the setFilter function, is called each
time that a new event block arrives in the filter window. The filter function or expression
uses the fields of the events that arrive to determine the Boolean result. If it evaluates to
true, then the event passes through the filter. Otherwise, the event does not pass into
the filter window.

There are two ways to specify the Boolean filter associated with a filter window:

n through a C function that returns a dfESPdatavar of type int32 (return value != 0
==> true; == 0 ==> false)

n by specifying an expression as a character string so that when it is evaluated it
returns true or false

Example

The following code shows how to register the Boolean filter through a function. In this
case, the function is named booleanScalarFunction.

// When quantity is >= 1000, let the event pass
//
//
dfESPdatavarPtr booleanScalarFunction(dfESPschema *is,
dfESPeventPtr ep, dfESPeventPtr oep) {

dfESPwindow_filter 25

 // Get the input argument out of the record.
 dfESPdatavar dv(dfESPdatavar::ESP_INT32);
 // Declare a dfESPdatavar that is an int32.
 ep->copyByIntID(2, dv); // extract field #2 into the datavar

 // Create a new dfESP datavar of int32 type to hold the
 // 0 or 1 that this Boolean function returns.
 //
 dfESPdatavarPtr prv = new dfESPdatavar(dfESPdatavar::ESP_INT32);

 // If field is null, filter always fails.
 //
 if (dv.isNull()) {
 prv->setI32(0); // the return value to 0
 } else {
 // Get the int32 value from the datavar and compare to 1000
 if (dv.getI32() < 1000) {
 prv->setI32(0); // set return value to 0
 } else {
 prv->setI32(1); // set return value to 1
 }
 }
 return prv; // return it.

Place the following code inside main():

dfESPwindow_filter *fw_01;
 fw_01 = cq->newWindow_filter("filterWindow_01", edm,
 dfESPindextypes::pi_RBTREE);
 fw_01->setFilter(booleanScalarFunction);
 // Register the filter UDF.

The setFilter function calls the filter function named booleanScalarFunction that you
had previously registered.

The following code shows how to register the Boolean filter for an expression.

 dfESPwindow_filter *fw_01;
 fw_01 = cq->newWindow_filter("filterWindow_01", edm,
 dfESPindextypes::pi_RBTREE);
 fw_01->setFilter("quant>=1000");
 // Register the filter expression.

For more information about user-supplied filter expressions, see the DataFlux
Expression Language: Reference Guide.

26 Chapter 2 / Programming with the C++ Modeling API

dfESPwindow_copy
makes a copy of the parent window. Making a copy can be useful to set new event state retention policies,
because setting new policies can be performed only by source and copy windows.

Syntax
dfESPwindow_copy *windowID;
windowID=contquery_name—> newWindow_copy
(“window_label”, depot_name,
dfESPIndextypes::index,schema);

Required Arguments

windowID
user-supplied identifier of the window to be copied

contquery_name
user-supplied name of the continuous query object specified in
dfESPcontquery

window_label
user-supplied description of the window

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

schema
user-supplied name of the schema as specified by dfESPstring.

dfESPwindow_copy 27

Details

You can set event state retention for copy windows only when the window is not
specified to be insert-only and when the window index is not set to pi_EMPTY. All
subsequent sibling windows are affected by retention management. Events are deleted
when they exceed the windows retention policy.

Set the retention type on a window with the setRetentionParms() call. You can set
type by count or time, and as either jumping or sliding. For more information, see
“Retention Policies for Fully Stateful Indexes” on page 213.

The following figure depicts the application of a retention type on three copy windows
that branch off the same source window. The time interval varies across the copy
windows, but they all use sliding retention.

Figure 2.1 Application of Sliding Retention with Varying Time Intervals to Copy Windows

Source Window
Copy Window
Sliding Retention
10 minutes

Copy Window
Sliding Retention
5 minutes

Copy Window
Sliding Retention
15 minutes

Example

Here is an example of how to specify a copy window:

dfESPwindow_copy *cw;
cw = cq->newWindow_copy("myCopyWindow", edm,
 dfESPindextypes::pi_HASH, sch);

Before creating this copy window, you use dfESPstring to specify a schema. For
example

dfESPstring sch = dfESPstring("ID*:int32,symbol:string,price:double");

28 Chapter 2 / Programming with the C++ Modeling API

You can set event state retention for copy windows only when the window is not
specified to be insert-only and when the window index is not set to pi_EMPTY. All
subsequent sibling windows are affected by retention management. Events are deleted
when they exceed the windows retention policy.

Set the retention type on a window with the setRetentionParms() call. You can set
type by count or time, and as either jumping or sliding. For more information, see
“Retention Policies for Fully Stateful Indexes” on page 213.

dfESPwindow_compute
defines a compute window, which gets the key fields of its schema from its parent input window. Non-key fields
are computed from the fields of the input event. Compute windows are projections of the input data using the
window’s non-key field computation functions or expressions.

Syntax
dfESPwindow_compute *windowID;
windowID=contquery_name—> newWindow_compute(“window_label”,
depot_name, dfESPIndextypes::index, schema);

Required Arguments

windowID
user-supplied identifier of the compute window

contquery_name
user-supplied name of the continuous query object specified in
dfESPcontquery

window_label
user-supplied description of the window

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

dfESPwindow_compute 29

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

schema
user-supplied name of the schema as specified by dfESPstring.

Example

Here is an example of a specification of a compute window:

dfESPwindow_source *cw;
cw = cq->newWindow_compute("myComputeWindow", edm,
 dfESPindextypes::pi_HASH, sch);

As with the source window, you use dfESPstring to specify a schema. For example

dfESPstring sch = dfESPstring("ID*:int32,symbol:string,price:double");

A compute window needs a field calculation method registered for each non-key field so
that it computes the field value based on incoming event field values. These field
calculation methods can be specified as either of the following:

n a collection of function pointers to C or C++ functions that return dfESPdatavar
values and are passed an event as input

n expressions that use the field names of the input event to compute the values for the
derived event fields

The following example creates a compute window using a collection of function
pointers. Assume that the input events have this schema:

"ID*:int32,symbol:string,quantity:int32,price:double"

The compute window then passes through the input symbol and price fields. Then it
adds a computed field (called cost) to the end of the event, which multiplies the price
with the quantity. A scalar function provides the input event and computes price *
quantity. Functions that take events as input and returns a scalar value as a
dfESPdatavar have a prototype of type dfESPscalar_func that is defined in the
header file api/dfESPfuncptr.h.

30 Chapter 2 / Programming with the C++ Modeling API

Here is the scalar function:

dfESPdatavar *priceBYquant(dfESPschema*is, dfESPevent *nep,
 dfESPevent *oep) {
 //
 // If you are getting an update, then nep is the updated
 // record, and oep is the old record.
 //
 // Create a null return value that is of type double.
 //
 dfESPdatavar *ret = new dfESPdatavar(dfESPdatavar::ESP_DOUBLE);
 // If you were called because a delete is being issued, you do not
 // compute anything new.
 //
 if (nep->getOpcode() == dfESPeventcodes::eo_DELETE)
 return ret;
 void *qPtr = nep->getPtrByIntIndex(2); // internal index of
 quant is 2
 void *pPtr = nep->getPtrByIntIndex(3); // internal index of
 price is 3
 if ((qPtr != NULL) && (pPtr != NULL)) {
 double price;
 memcpy((void *) &price, pPtr, sizeof(double));
 int32_t quant;
 memcpy((void *) &quant, qPtr, sizeof(int32_t));
 ret->setDouble(quant*price);
 }
 return ret;
}

When specifying the schema for a compute window, the specified key fields are
compared to the key fields of the input window. The data types must match. For
example, for all keys, the kth key of the input schema must have the same data type as
the kth key of the schema specified for the compute window.

Note: This check is not performed when the compute window is defined. This is
because the input window can be specified at that point. The check is performed much
later when the project that contains the continuous query that holds the compute
window is started. This occurs when the graph is scanned and all connectivity-related
checks are completed.

The following code defines the compute window and registers the non-key scalar
functions:

dfESPstring sch = dfESPstring

dfESPwindow_compute 31

 ("ID*:int32,symbol:string, price:double,cost:double");

dfESPwindow_compute *cw;
cw = cq->newWindow_compute("myComputeWindow", edm,
 dfESPindextypes::pi_HASH, sch);

// Register as many function pointers as there are non-key
// fields in the output schema. A null for non-key
// field j means copy non-key field j from the input
// event to non-key field j of the output event.
//
cw->addNonKeyFieldCalc((dfESPscalar_func)NULL); // pass
 through the symbol
cw->addNonKeyFieldCalc((dfESPscalar_func)NULL); // pass
 through the price value
cw->addNonKeyFieldCalc(priceBYquant); // compute
 cost = price * quantity

This leaves a fully formed compute window that uses field expression calculation
functions.

The following example creates a compute window using field calculation expressions
rather than a function.

Note: Defining the field calculation expressions is typically easier. Field expressions
can perform slower than calculation functions.

The example uses the same input schema and compute window schema with the
following exceptions:

1 You do not need to write field expression calculation functions.

2 You need to call addNonKeyFieldCalc()using expressions.

dfESPstring sch = dfESPstring
 ("ID*:int32,symbol:string,price:double,cost:double");

dfESPwindow_compute *cw;
cw = cq->newWindow_compute("myComputeWindow", edm,
 dfESPindextypes::pi_HASH, sch);

// Register as many field expressions as there are non-key
// fields in the output schema.
cw->addNonKeyFieldCalc("symbol”); // pass through the symbol
 value

32 Chapter 2 / Programming with the C++ Modeling API

cw->addNonKeyFieldCalc("price”); // pass through the price
 value
cw->addNonKeyFieldCalc("price*quantity”); // compute cost
 = price * quantity

Note: The field calculation expressions can contain references to field names from the
input event schema. They do not contain references to fields in the compute window
schema. This is why you can have similarly named fields across these schemas (for
example, symbol and price).

Note: Currently, you cannot specify both field calculation expressions and field
calculation functions within a given window.

For more information, see the DataFlux Expression Language: Reference Guide.

dfESPwindow_union
specifies a simple join that merges one or more streams together that have the same schema.

Syntax
dfESPwindow_union *ID
ID=contquery_name—> newWindow_union(“window_label”,
depot_name, dfESPIndextypes::index, true | false);

Required Arguments

ID
user-supplied identifier of the join

contquery_name
user-supplied name of the continuous query object specified in
dfESPcontquery

window_label
user-supplied description of the union window

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

dfESPwindow_union 33

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

true | false
the strict flag — true for strict union and false for loose unions

Example

Here is an example of how to create a union window:

dfESPwindow_union *uw;
uw = cq->newWindow_union("myUnionWindow", edm,
 dfESPindextypes::pi_HASH, true);

All input windows to a union window must have the same schema. The default value of
the strict flag is true, which means that the key merge from each window must
semantically merge cleanly. In that case, you cannot send an Insert event for the same
key using two separate input windows of the union window.

When the strict flag is set to false, it loosens the union criteria by replacing all incoming
Inserts with Upserts. All incoming Deletes are replaced with safe Deletes. In that case,
deletes of a non-existent key fail without generating an error.

dfESPwindow_aggregate
specifies an aggregation window. An aggregation window is similar to a compute window in that non-key fields
are computed. However, unlike compute windows, key fields are specified and not inherited from the input
window.

Syntax
dfESPwindow_aggregate *windowID;
windowID=contquery_name—> newWindow_aggregate(“window_label”,
depot_name, dfESPIndextypes::index, schema);

34 Chapter 2 / Programming with the C++ Modeling API

Required Arguments

windowID
user-supplied identifier of the aggregate window

contquery_name
user-supplied name of the continuous query object specified in
dfESPcontquery

window_label
user-supplied description of the window

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

schema
user-supplied name of the aggregate schema. Specify an
aggregate schema the same as you would for any other window
schema, except that key field(s) are the group-by mechanism.

See Also

Chapter 5, “Creating Aggregate Windows,” on page 81

dfESPwindow_join
specifies a join window, which takes two input windows and a join type.

Syntax
dfESPwindow_join *windowID;
windowID=contquery_name—> newWindow_join(“window_label”,
dfESPwindow_join::jointype, depot_name, dfESPIndextypes::index);

dfESPwindow_join 35

Required Arguments

windowID
user-supplied identifier of the join window

contquery_name
user-supplied name of the continuous query object specified in
dfESPcontquery

window_label
user-supplied description of the window

jointype
type of join to be applied

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

Details

A join window takes two input windows and a join type. For example,

n left outer window

n right outer window

n inner join

A join window takes a set of join constraints and a non-key field signature string. It also
takes one of the following for the calculation of the join non-key fields when new input
events arrive:

n a join selection string that is a one-to-one mapping of input fields to join fields

n field calculation expressions

n field calculation functions

36 Chapter 2 / Programming with the C++ Modeling API

A join window produces a single output stream of joined events. Because the SAS
Event Stream Processing Engine is based on primary keys and supports Inserts,
Updates, and Deletes, there are some restrictions placed on the types of joins that can
be used.

The left window is the first window added as a connecting edge to the join window. The
second window added as a connecting edge is the right window.

The following example shows the left outer join. The left window processes fact events
and the right window processes dimension events.

left input schema: "ID*:int32,symbol:string,price:double,quantity:int32,
 traderID:int32"

right input schema: "tID*:int32,name:string"

If sw_01 is the window identifier for the left input window and sw_02 is the window
identifier for the right input window, your code would look like this:

dfESPwindow_join *jw;
jw = cq->newWindow_join("myJoinWindow", dfESPwindow_join::jt_LEFTOUTER,
 edm, dfESPindextypes::pi_RBTREE);
jw-> setJoinConditions ("l_ID==r_tID");
jw->setJoinSelections("l_symbol,l_price,l_traderID,r_name");
jw->setFieldSignatures("sym:string,price:double,tID:int32,
 traderName:string");

Note the following:

n Join constraints take the following form. They specify what fields from the left and
right events are used to generate matches.

"l_fieldname=r_fieldname, ...,l_fieldname=r_fieldname"

n Join selection takes the following form. It specifies the list of non-key fields that are
included in the events generated by the join window.

"{l|r}_fieldname, ...{l|r}_fieldname"

n Field signatures take the following form. They specify the names and types of the
non-key fields of the output events. The types can be inferred from the fields
specified in the join selection. However, when using expressions or user-written
functions (in C++), the type specification cannot be inferred, so it is required:

"fieldname:fieldtype, ..., fieldname:fieldtype

dfESPwindow_join 37

When you use non-key field calculation expressions, your code looks like this:

dfESPwindow_join *jw;
jw = cq->newWindow_join("myJoinWindow", dfESPwindow_join::jt_LEFTOUTER,
 edm, dfESPindextypes::pi_RBTREE);
jw->setJoinConditions("l_ID==r_tID");
jw->addNonKeyFieldCalc("l_symbol");
jw->addNonKeyFieldCalc("l_price");
jw->addNonKeyFieldCalc("l_traderID");
jw->addNonKeyFieldCalc("r_name");
jw->setFieldSignatures("sym:string,price:double,tID:int32,
 traderName:string");

This shows one-to-one mapping of input fields to join non-key fields. You can use
calculation expressions and functions to generate the non-key join fields using arbitrarily
complex combinations of the input fields.

For allowed one-to-Many and Many-to one joins, a change to the FACT table allows
immediate lookup of the matching record in the dimension table through the primary
index. This is possible because all key values of the dimension table are mapped in the
join constraints. In fact, that is the definition of a dimension table. However, a change to
the dimension table does not include a single primary key for a matching record in the
FACT table. This illustrates the many-to-one nature of the join. In these cases the
default mechanism to find the set of matching records in the FACT table is to perform a
table scan and look for matches.

For small changes to the dimension table, this strategy is fine when no additional
secondary index maintenance takes place. Hence, the join processing can be
optimized. This is a common case. For example, the dimension table is a static lookup
table that can be pre-loaded, and all subsequent changes happen on the FACT table.

There are, however, cases where a large number of changes can be completed for the
dimension table. One example is a source window that feeds an aggregation to produce
statistics. It has the aggregation joined back to the original source window to augment
the original events with the statistics. In a case like this, the table scan to find the
matching records for a change to the dimension table occurs with each change to the
source window. This method is slow to invalidate the use case without further
optimizations.

To solve this performance issue, you can implement automatic secondary index
generation. Set the use secondary parameter to "true" when constructing a new

38 Chapter 2 / Programming with the C++ Modeling API

dfESPwindow_join instance. This causes a secondary index to be automatically
generated and maintained when the join type involves a dimension table. This
eliminates all table scans when changes are made to the dimension table, and thus it
performs much faster.

You encounter a slight performance penalty when running with secondary indexes
activated because the index needs to be maintained with every update to the FACT
table. However, this secondary index maintenance is insignificant compared with
elimination of table scans. With large tables, using secondary indexes often afford time
savings of two orders of magnitude.

To turn on secondary index maintenance as stated, specify true as the final argument to
the join constructor as follows:

jw = cq->newWindow_join("myJoinWindow", dfESPwindow_join::jt_LEFTOUTER,
 edm, dfESPindextypes::pi_RBTREE, true);

Suppose you are doing a left outer or right outer join. You not want to regenerate the
entire table if the lookup window (dimension window) changes. In this case, you can
specify “true” for the no-regenerate parameter. The no-regenerate parameter is an
optional final parameter to newWindow_join() call, and when not present, defaults to
false.

When the no-regenerate parameter is true, the join window runs in a highly optimized
mode, where it does not need to keep its own index for the fact table. This saves
memory, and also permits a change to the dimension side of the join to produce no
output from the join window.

See Also

“Using Joins and Understanding Join Constraints” on page 203

dfESPwindow_pattern
enables the detection of events of interest with a window pattern. A window pattern is an expression that
logically connects declared events of interest.

dfESPwindow_pattern 39

Syntax
dfESPwindow_pattern *windowpattern;
windowpattern=contquery_name—> newWindow_pattern(“label”,
depot_name, dfESPIndextypes::index, dfESPstring(schema));

Required Arguments

windowpattern
user-supplied name of the window pattern to detect

contquery_name
user-supplied name of the continuous query object specified in
dfESPcontquery

label
user-supplied description of the window pattern

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

schema
schema associated with the window feeding the pattern window

See Also

Chapter 4, “Creating Pattern Windows,” on page 67

dfESPwindow_procedural
enables the specification of an arbitrary number of input windows and input handler functions for each input
window.

40 Chapter 2 / Programming with the C++ Modeling API

Syntax
dfESPwindow_procedural *windowID;
name= query_name—> newWindow_procedural
(“label”, depot_name,
dfESPIndextypes::index, schema);

Required Arguments

windowID
user-supplied identifier of the procedural window

query_name
user-supplied name of the query object specified in
dfESPcontquery

label
user-supplied description

depot_name
user-supplied name of the depot as specified by
dfESPeventdepot

index
primary index. Six types of primary indexes are supported. For
more information, see “Understanding Primary Indexes and
Retention Policies” on page 211.

schema
schema defined by dfESPstring

See Also

Chapter 6, “Creating Procedural Windows,” on page 85

dfESPdatavar
represents a variable of any of the SAS Event Stream Processing Engine data types

dfESPdatavar 41

Syntax
dfESPdatavar *name = new dfESPdatavar(dfESPdatavar::data_type);

Required Arguments

name
user-supplied name of the variable

data_type
Can be one of the following values:

n ESP_INT32

n ESP_INT64

n ESP_DOUBLE (IEEE)

n ESP_UTF8STR

n ESP_DATETIME (second granularity)

n ESP_TIMESTAMP (microsecond granularity)

n ESP_MONEY (192-bit fixed decimal)

A dfESPdatavar of any of these types can be NULL. Two
dfESPdatavars that are each NULL are not considered equal if
the respective types do not match.

Example

Create an empty dfESPdatavar and then set the value as follows:

dfESPdatavar *dv = new dfESPdatavar(dfESPdatavar::ESP_INT32);
dv->setI32(13);

Get access to raw data in the dfESPdatavar using code like this:

void *p = dv->getRawdata(dfESPdatavar::ESP_INT32);

This returns a pointer to actual data, so in this int32 example, you can follow with code
like this:

int32_t x;
memcpy((void *)&x, p, sizeof(int32_t));

42 Chapter 2 / Programming with the C++ Modeling API

This copies the data out of the dfESPdatavar. You can also use the getI32 member
function (a get and set function exists for each data type) as follows:

int32_t x;
x = dv->getI32();

Many convenience functions are available and a complete list is available in the
modeling API documentation included with the installation.

dfESPschema
represent the name and types of fields, as well as the key structure of event data

Syntax
dfESPschema *name= new dfESPschema(schema);

Required Arguments

name
user-supplied name of the representation

schema
specifies the structure of fields of event data

Details

A dfESPschema never represents field data, only the structure of the fields. When a
dfESPschema object is created, it maintains the field names, fields types, and field key
designation in the original order the fields (called the external order) and in the packing
order (called the internal order) for the fields.

In external order, you specify the keys to be on any fields in the schema. In internal
order, the key fields are shifted left to be packed at the start of the schema. For
example, using a compact character representation where an "*" marks key fields, you
specify this:

"ID1*:int32,symbol:string,ID2*:int64,price:double"

This represents a valid schema in external order. If you use this to create a
dfESPschema object, then the object also maintains the following:

dfESPschema 43

"ID1*:int32, ID2*:int64,symbol:string,price:double"

This is the same schema in internal order. It also maintains the permutation vectors
required to transform the external form to the internal form and vice versa.

Creating a dfESPschema object is usually completed by passing the character
representation of the schema to the constructor in external order, for example:

dfESPschema *s = new
 dfESPschema("mySchema","ID1*:int32,symbol:string,ID2*:
 int64,price:double");

A variety of methods are available to get the names, types, and key information of the
fields in either external or internal order. There are also methods to serialize the schema
back to the compact string form from its internal representation.

dfESPevent
creates a packed binary representation of a set of field values.

Syntax
dfESPevent *name= new dfESPevent(schemaPtr, charEvent);

Required Arguments

name
user-supplied name of the event

schemaPtr
user-supplied schema pointer

charEvent
{i|u|p|d},{n|s},f1,f2,...,fn where

{i|u|p|d} means Insert, Update, Upsert, and Delete
respectively

{n|p} means normal event or partial-update event

f1, ..., fn are the n fields that make up the data portion of the
event

44 Chapter 2 / Programming with the C++ Modeling API

Details

Data in an dfESPevent object is stored in internal format (as described in the
dfESPschema object), so all key values are contiguous and packed at the front of the
event. The dfESPevent object maintains internal hash values based on the key with
which it was built. In addition, there are functions in the dfESPeventcomp namespace
for a quick comparison of dfESPevents created using the same underlying schema.

Both metadata and field data are associated with an event. The metadata consists of
the following:

n an opcode (indicating whether the event represents an Insert, Update, Delete, or
Upsert)

n a set of flags (indicating whether the event is a normal, partial-update, or a retention-
generated event from retention policy management)

n a set of microsecond timestamps that can be used for latency measurements

The dfESPevent class has member functions for both accessing and setting the
metadata associated with the event. For information about these functions, see the
detailed class and method documentation that is available at $DFESP_HOME/doc/
html.

The field data portion of an event is also accessible from the dfESPevent in the
following ways:

n Event field data can be copied out of an event into a dfESPdatavar using the
copyByIntID() or copyByExtID() methods.

n A dfESPdatavar can be set to point into the allocated memory of the dfESPevent
using the getByIntID() or getByExtID() methods.

n A pointer into the dfESPevent packed field data can be obtained through the
getPtrByIntIndex() method.

To assure the best performance, work with binary events whenever possible.

Additional aspects of the dfESPevent class include the ability to do the following:

n Write a compact serialized form of the event to a file using the fwrite() method.

dfESPevent 45

n Read in the serialized event into a memory buffer through the
getSerializeEvent() method.

n Create a new event by passing the serialized version of the event to the
dfESPevent constructor.

See also “Converting CSV Events to Binary” on page 204.

dfESPeventblock
creates a lightweight wrapper around a collection of events

Syntax
dfESPeventblock :: newEventBlock
(&name,
dfESPeventblock:: ebtTRANS | ebtNORMAL);

Required Argument

name
user-supplied pointer to a contained dfESPevent

Details

Generate a dfESPeventblock object by publishing clients. An event block is
maintained as it is passed between windows in an application, as well as to subscribing
clients. The dfESPeventblock object can report the number of items that it contains
and return a pointer to a contained dfESPevent when given an index.

Event blocks have a unique embedded transaction ID generated as they are absorbed
into a continuous query. They also have a unique ID that the publisher can assign to it.
In addition to the event block ID, the publisher can set a host and port field in event
blocks to establish where the event block is coming from. This meta information is used
by the guaranteed delivery feature to ensure that event blocks make their way from a
publisher.

Event blocks progress through the continuous queries and on to one or more
guaranteed subscribers. The event block meta information is carried with the event

46 Chapter 2 / Programming with the C++ Modeling API

block from the start of processing at a source window. The meta information progresses
through all stages of computation in derived windows and on to any subscribing clients.
You can use the publisher assigned ID, host, and port to tie an output
dfESPeventblock back to an input dfESPeventblock.

Create new dfESPeventblock objects with either transactional
(dfESPeventblock::ebt_TRANS) or normal (dfESPeventblock::ebt_NORMAL)
event semantics. Transaction semantics imply that each dfESPevent contained in the
block must be able to be applied to the index in a given window. Otherwise, none of the
events are applied to the index.

For example, suppose an dfESPeventblock has 100 events and the first event is a
delete event. Further suppose that the delete event fails to be applied because the
underlying event to be deleted is not present. In that case, the remaining 99 events are
ignored, logged, and written to a bad records file (optional). Normal semantics imply that
each event in a dfESPeventblock is treated as an individual event. Therefore, the
failure for one event to apply to an index causes only that event to not be incorporated
into the window.

A dfESPeventblock with more than one event, but without transactional properties
set, can be used to improve performance during the absorption of the event block into
the appropriate source window. You use this to trade off a little bit of latency for a large
gain in throughput. It is best to test the event block optimal size trade-off. For example,
placing 256 events into an event block gives both great latency and throughput. This
performance varies depending on the width of the events.

dfESPpersist
persists and restores an engine instance that has been shutdown. The instance is restored to the exact state
that it was in when it was persisted.

Syntax
dfESPpersist object(“directory”);

dfESPpersist 47

Required Arguments

object
user-supplied name of the object to be persisted and later restored.

directory
user-supplied name of the directory where the object is stored

Details

Persisting an Engine
Consider the following code:

// Assume that the engine is running and injecting data,

 // Declare a persist/restore object
 // "PERSIST" is the directory name where the persisted copy
 // is stored. This can be a relative or absolute path
 //
 { // persist object must reside in a scoped block because of a known
 // destructor issue
 bool success = dfESPpersist persist_restore("PERSIST");
 if (!success) {
 //
 // Handle any error -- the engine might not be persisted fully or
 // might be only partially persisted. The running engine is fine
 // and not compromised, but the persisted snapshot is not valid.
 //
 }
 } // end of scoped block
 // Tell the persist/restore object to create a persisted copy.
 //
 persist_restore.persist();

The directory specified to the dfESPpersist object is created if it does not exist. Any
data injected into the dfESPengine after the dfESPpersist::persist() call is not
part of the saved engine. For more information, see “Persist and Restore Model State”
on page 220.

Restoring an Engine
Restore state from a persisted copy of an engine by starting your event stream
processing application with the following command line option:—r persisted_path
where persisted_path can be a relative or absolute path.

48 Chapter 2 / Programming with the C++ Modeling API

When your application makes a dfESPengine::startProjects() call, the engine
is restored from the persisted state, and all projects are started.

You can also restore state programmatically:

// Construct the model but do not start it.
 //
 .
 .
 // Declare a persist/restore object
 // "PERSIST" is the directory name where the persisted copy
 // had been saved. This can be a relative or absolute path
 //
 dfESPpersist persist_restore("PERSIST");

 // Tell the persist/restore object to reload the persisted engine
 //
 bool sucess = persist_restore.restore();
 if (!success) {
 //
 // Handle any error -- the engine might not be restored fully
 // or it could be partially restored, or in a compromised state.
 //
 }
 dfESPengine::startProjects(); // Start all projects from restored state of engine.

dfESPpersist 49

50 Chapter 2 / Programming with the C++ Modeling API

3
Using the XML Modeling Layer

XML Modeling Layer . 52
Overview to the XML Modeling Layer . 52
High-Level Syntax of XML Models . 52
Window Template . 53
Window Where Nesting Defines Connectivity . 55

Using the XML Factory Server . 56
Overview to Using the XML Factory Server . 56
Starting the XML Factory Server . 56
Control Commands for the XML Factory Server 57

Examples . 57
Creating a Project . 57
Stopping a Project . 58
Removing a Project . 58
Events Publishing through the XML Factory Server 59
Combined Model-Event Processing for Short-lived Projects 59
Querying Engine Windows through the XML Factory Server 61
Querying the Engine Window Event Count . 62
Complete Example . 62

51

XML Modeling Layer

Overview to the XML Modeling Layer

The XML modeling layer is a higher level abstraction of the C++ Modeling API. This
modeling layer enables someone without a background in programming to build event
stream processor models. Although it provides the major modeling capabilities, it does
not map one-to-one to the C++ modeling methods. Only expressions for field
calculations, joins, filters, and so on, are supported.

Specifically, the following features that are available through the C++ Modeling API are
not available through the XML modeling layer:

n The ability to preset the size of an index. In the C++ Modeling API, you can do this
for all indices produced by a dfESPeventdepot or on a window-by-window basis
(passed as an argument when the window is created).

n using engine persist and restore

n DS2 methods on procedural windows

n the capability to turn on and off propagation of redundant updates for a window

High-Level Syntax of XML Models

Here is the high-level syntax of XML models, including the engine, project, and
continuous queries:

<engine>
łłÝxqÁ1×Õ�ÊàÉýOîd'�flÐr¤g@‡]K"<�LëÓ
 <project name='unique project name'
 [pubsub={'auto'|'manual'}]
 threads='10'>
 <window-templates>
 <window-template ...>
 </window-template>
 ...
 <!-- MORE WINDOW-TEMPLATE elements -->

52 Chapter 3 / Using the XML Modeling Layer

 </window-templates>

 <contqueries>
 <contquery name='name of contquery'>
 <window ...>
 <!-- ARBITRARY nesting of windows -->
 </window>
 ...

 <window ...>
 <!-- ARBITRARY nesting of windows -->
 </window>
 </contquery>
 ...
 <!-- MORE CONTQUERY elements -->
 </contqueries>
 </project>
 <!-- MORE PROJECT elements... -->

 </projects>
</engine>

Window Template

Here is the window-template element in detail:

<window-template name='name of window template'
 type={'source'|'filter'|'functional'|
 'aggregate'|'join'|'copy'|'compute'|'union'|
 'procedural'|'pattern'}
 [index={'empty','hash','rbtree'}] [trace={'true'|'false'}]>
 [<schema>
 <fields>
 <field name='name of field' type={'int32'|'int64'|
 'double'|'money'|'date'|'stamp'}[id='true']/>
 ...
 <field name='name of field' type={'int32'|'int64'|
 'double'|'money'|'date'|'stamp'}[id='true']/>
 </fields>
 </schema>]

 [<connectors>
 <connector class={'fs', 'db', 'smtp',
 data set, jms, mqueue}
 <properties>

XML Modeling Layer 53

 <property name='property name'>property
 value</property>
 ...
 <property name='property name'>property
 value</property>
 </properties>
 </connector>
 ...
 <!-- MORE CONNECTOR elements -->
 </connectors>]

 [<inputs>
 <input source='ref to another window-template name'>
 <functions>
 <function field='field name'>function body
 </function>
 ...
 <function field='field name'>function body
 </function>
 </functions>
 </input>
 ...
 <!-- MORE INPUT elements -->
 </inputs>]

 [<outputs>
 <field name='field name' type={'int32'|'int64'|
 'double'|'money'|'date'|'stamp'}
 [id='true']/>
 ...
 <field name='field name' type={'int32'|'int64'|
 'double'|'money'|'date'|'stamp'}
 [id='true']/>
 </outputs>]

 [<expression>expression body</expression>]

[<join type={'leftouter'|'rightouter'|'inner'}>
 <conditions>l_field==r_field,...,l_field=r_field
 </conditions>
 <left source='ref to another window-template name'>
 <outputs>
 <field name='field name' type={'int32'|
 'int64'|'double'|'money'|'date'|
 'stamp'}
 [id='true']/>
 ...
 <field name='field name' type={'int32'|

54 Chapter 3 / Using the XML Modeling Layer

 'int64'|'double'|'money'|'date'|
 'stamp'}
 [id='true']/>
 </outputs>
 </left>
 <right source='ref to another window-template name'>
 <outputs>
 <field name='field name' type={'int32'|
 'int64'|'double'|'money'|'date'|
 'stamp'}
 [id='true']/>
 ...
 <field name='field name' type={'int32'|
 'int64'|'double'|'money'|'date'|
 'stamp'}
 [id='true']/>
 </outputs>
 </right>
 </join>]

</window-template>

Window Where Nesting Defines Connectivity

Here is the window element in detail where nesting defines connectivity:

<window name='name of window' [pubsub='true']
 [trace={'true'|'false'}]>
 <window name='name of window' [pubsub='true']
 [trace={'true'|'false'}]>
 </window>
 ...
 <window name='name of window' [pubsub='true']
 [trace={'true'|'false'}]>
 </window>
</window

XML Modeling Layer 55

Using the XML Factory Server

Overview to Using the XML Factory Server

The XML factory server, dfesp_xml_server, is an executable that instantiates and
executes an engine model that contains zero or more projects. It supports server control
communication through a socket interface. The socket interface uses a server port
number that is defined when the server starts through the engine model or the
command line option.

Users or applications read and write XML using this socket to interact with a running
event stream processing engine on the XML factory server. You can use this interface
to start, stop, create, and remove projects. You can also use it to publish events and
query windows.

In order to interact with the XML factory server, you need a tool to read and write to the
server port defined in the engine model. Alternatively, you can specify the port as a
command line argument when you execute dfesp_xml_server. This factory server
control client needs to be written by event stream processor application developers.

Starting the XML Factory Server

There are two ways to start the server:

n Specify an <esp-server port=’...’/> element in the XML model configuration
file. This is different from the engine port that is used for publish/subscribe
operations. For example, suppose the XML model file contains these lines:

<engine port='9980' dateformat='%d/%b/%Y:%H:%M:%S'>
 <esp-server port='9990'/>
 ...
</engine>

In this case, port 9990 is used by the XML factory server. If the port is not specified
within <esp-server> ... </esp-server>, then it defaults to the engine
publish/subscribe port +1, which in this case would be 9981.

56 Chapter 3 / Using the XML Modeling Layer

Run the following command:$DFESP_HOME/bin/dfesp_xml_server-model
file://model_filename.

n Specify the -server port option on the command line without the quotation
marks. Again, if no argument is provided, the server port defaults to the engine
publish/subscribe port + 1.

Run the following command: $DFESP_HOME/bin/dfesp_xml_server-model
file://model_filename —server 33333.

Control Commands for the XML Factory
Server

You can execute the XML factory server with a complete engine mode definition file
using the file:// syntax shown previously. The engine model can contain zero or
more defined projects. In many cases the XML factory server is used to execute static
models, but it can also be used to execute more dynamic models. For static models, the
engine definition would contain one or more projects. The server socket interface would
not be used for creating and removing projects. For dynamic models, the engine
definition could contain zero or more projects. The server socket interface would be
used for creating or removing projects (or both) from the running engine.

Examples

Creating a Project

Here is an example of creating a project named “events”:

<project action=’load’ name='events' pubsub='auto'>
 <window-templates>
 <window-template name='event_t' type='source'>
 <schema>
 <fields>
 <field name='id' type='string' id='true'/>
 <field name='user' type='string'/>
 <field name='date' type='date'/>
 </fields>

Examples 57

 </schema/>
 </window-template>
 </window-templates>
 <contqueries>
 <contquery name='events'>
 <window name='events' window-template='event_t' trace='true'/>
 </contquery>
 </contqueries>
 </project>

The successful response from the XML factory server is as follows:

<response action='load' name='events' pubsub='auto' elapsed='2 ms'>
 <message>project load events succeeded</message>
 </response>

Stopping a Project

The following code stops the project named Events:

<project name='events' action='stop'/>

The successful response from the XML factory server is as follows:

<response action=stop name='events' elapsed='994 ms'>
 <message>project events stopped</message>
 </response>

Removing a Project

The following code removes the project named Events from the XML factory server
engine definition:

<project name='events' action='remove'/>

The successful response from the XML factory server is as follows:

<response action=remove name='events' elapsed='1005 ms'>
 <message>project removal succeeded</message>
 </response>

58 Chapter 3 / Using the XML Modeling Layer

Events Publishing through the XML Factory
Server

Inject events into a running event stream processing engine: The XML factory server
supports Insert, Update, Upsert, and Delete opcodes.

Here is an example of injecting two events into the project that was created in the
previous example:

<inject>
 <events project='events' contquery='events' window='events'>
 <event opcode='insert'>
 <value name='id'>10</value>
 <value name='user'>Eric</value>
 <value name='date'>1/aug/2013:09:00:00</value>
 </event>
 </events>
 </inject>

After events are successfully injected to the server, the XML factory server writes the
response in XML:

<response elapsed='0 ms'>
 <message>2 events injected into events:events:events</message>
</response>

Combined Model-Event Processing for Short-
lived Projects

Combined processing enables you to send over the model or project. Then you can
inject data as specified in event-stream element into the model, and get the result back
in the response from the XML factory server. The project lives for only the request. It is
removed after the request. The model configuration file is not required in this case.

Start the server as follows : dfesp_xml_server –server port

Here is the XML example to send to the XML server:

<stream>
 <project>
 <window-templates>
 <window-template name='event_t' type='source'>

Examples 59

 <schema>
 <fields>
 <field name='id' type='string' id='true'/>
 <field name='user' type='string'/>
 </fields>
 </schema>
 <window-template name='users_t' type='aggregate'>
 <schema>user*:string,numEvents:int64</schema>
<output>
 <field>ESP_aCount()</field>
 </output>
 </window-template>
 </window-templates>
 <contqueries>
 <contquery name='events'>
 <window name='events' window-template='event_t'>
 <window name='users' window-template='users_t'/>
 </window>
 </contquery>
 </contqueries>
 </project>
 <event-stream contquery='events' window='events'>
 <events>
 <event opcode='insert'>
 <value name='id'>10</value>
 <value name='user'>John</value>
 </event>
 <event opcode='insert'>
 <value name='id'>20</value>
 <value name='user'>Eric</value>
 </event>
 </events>
 </event-stream>
 <results>
 <window contquery='events' name='users'/>
 </results>
</stream>

The response from the XML server is as follows:

<response elapsed='1006ms'>
 <events name='users'>
 <columns>
 <column label='user' name='user' sqltype='12' type='varchar'/>
 <column label='numEvents' name='numEvents' numeric='true'
 sqltype='4' type='integer'/>
 </columns>
 <results>

60 Chapter 3 / Using the XML Modeling Layer

 <data>
 <value column='user'>Eric</value>
 <value column='numEvents'>1</value>
 </data>
 <data>
 <value column='user'>John</value>
 <value column='numEvents'>1</value>
 </data>
 </results>
 </events>
</response>

Querying Engine Windows through the XML
Factory Server

You can query a window through the XML factory server. The response from the XML
factory server contains the schema of the window and the data currently in the window.
Here is an example of a query:

<query project='events' contquery='events' window='events'/>

Here is the response to that query:

<response contquery='events' project='reference' window='events' elapsed='0 ms'>
 <window>
 <columns>
 <column label='id' name='id' sqltype='12' type='varchar'/>
 <column label='user' name='user' sqltype='12' type='varchar'/>
 <column label='date' name='date' sqltype='91' type='date'/>
 </columns>
 <results>
 <data>
 <value column='date'>01/Aug/2013:13:00:00</value>
 <value column='id'>20</value>
 <value column='user'>scott</value>
 </data>
 <data>
 <value column='date'>01/Aug/2013:12:00:00</value>
 <value column='id'>10</value>
 <value column='user'>scott</value>
 </data>
 </results>
 </window>
</response>

Examples 61

Querying the Engine Window Event Count

You can issue a query to ask the XML factory server to provide the number of events
that are in a window:

<count project='events' contquery='events' window='events'/>

The response would appear as follows:

<response contquery='events' project='events' window='events' elapsed='0 ms'>
 <count project='reference' contquery='events' window='events'>2</count>
</response>

Complete Example

Recall the continuous query described in “Understanding Continuous Queries” on page
5.

Figure 3.1 Continuous Query Diagram

Trades
(Source)

Trades
Market Feed

Traders
Traders
(Source)

LargeTrades
(Filter)

AddTraderName
(Join)

TotalCost
(Compute)

BySecurity
(Aggregate)

The following code renders the model containing that continuous query in the esp_xml
modeling language:

<engine port='55555' dateformat='%d/%b/%Y:%H:%M:%S' trace='false'>
 <projects>
 <project name='project_01' pubsub='auto' threads='10'>
 <window-templates>
 <window-template name='Trades_t' type='source'>
 <schema>
 <fields>
 <field name='tradeID' type='string'
 id='true'/>

62 Chapter 3 / Using the XML Modeling Layer

 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='stamp'/>
 </fields>
 </schema>
 </window-template>

 <window-template name='Traders_t' type='source'>
 <schema>
 <fields>
 <field name='ID' type='int64'
 id='true'/>
 <field name='name' type='string'/>
 </fields>
 </schema>
 </window-template>

 <window-template name='LargeTrades_t' type=
 'filter'><expression>quantity >=
 100</expression>
 </window-template>

 <window-template name='AddTraderName_t'
 type='join'>
 <join type="leftouter">
 <conditions>l_traderID==r_ID
 </conditions>
 <left source="Trades">
 <output>
 <field name='security'
 type='string'/>
 <field name='quantity'
 type='int32'/>
 <field name='price'
 type='double'/>
 <field name='traderID'
 type='int64'/>
 <field name='time'
 type='stamp'/>
 </output>
 </left>
 <right source='Traders'>
 <output>
 <field name='name'
 type='string' />

Examples 63

 </output>
 </right>
 </join>
 </window-template>

 <window-template name="TotalCost_t" type="compute">
 <schema>
 <!-- These are the non-key fields -->
 <fields>
 <field name='tradeID' type='string'
 id='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='totalCost' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='stamp'/>
 <field name='name' type='string'/>
 </fields>
 </schema>
 <!-- These are how the non-key fields are
 computed-->
 <output>
 <field name='security'>security</field>
 <field name='quantity'>quantity</field>
 <field name='price'>price</field>
 <field name='totalCost'>price*quantity
 </field>
 <field name='traderID'>traderID</field>
 <field name='time'>time</field>
 <field name='name'>name</field>
 </output>
 </window-template>

<window-template name='BySecurity_t'
 type='aggregate'>
 <schema>
 <fields>
 <field name='security' type='string'
 id='true'/>
 <field name='quantityTotal'
 type='double'/>
 <field name='costTotal'
 type='double'/>
 </fields>
 </schema>

64 Chapter 3 / Using the XML Modeling Layer

 <output>
 <field>ESP_aSum(quantity)</field>
 <field>ESP_aSum(totalCost)</field>
 </output>
 </window-template>

 </window-templates>

 <contqueries>
 <contquery name='cq_01'>

H−o¢ëÅÌîS�cOÀÓ�”¹˘!ÕÔl½ı˛x
eMãb�–ØŁ‚Øý²èÍS ™]¯
yóè,¨%?m'c)⁄¥˚,ë©ÐÛo�¯ò
 <window name='Traders' window-
 template='Traders_t' trace='true'>
 <window name="AddTraderName"
 window-template=
 'AddTraderName_t'
 trace='true'/>
 </window>
 <!-- Trades -> LargeTrades -> AddTraderName
 -> TotalCost ->
 BySecurity -->
 <window name='Trades' window-template=
 'Trades_t' trace='true'>
 <window name='LargeTrades' window-
 template='LargeTrades_t'
 trace='true'>
 <window name="AddTraderName"
 window-template='AddTraderName_t’
 trace='true'>
 <window name='TotalCost'
 window-template='TotalCost_t'
 trace='true'>
 <window name='BySecurity'
 window-template='BySecurity_t'
 trace='true'>
 </window>
 </window>
 </window>
 </window>
 </window>
 </contquery>
 </contqueries>
 </project>
 </projects>
 </engine>

Examples 65

66 Chapter 3 / Using the XML Modeling Layer

4
Creating Pattern Windows

Overview of Pattern Windows . 67

State Definitions for Operator Trees . 70

Restrictions on Patterns . 73

Example: Simple Pattern Window . 75

Overview of Pattern Windows

A pattern is an algebraic expression using the logical operators AND, OR, NOT, or FBY
(followed by) and expressions of interest. Expressions of interest are a WHERE-clause
expression that include fields from an incoming event stream.

Here is an example:

expression of interest e1: (a==10)
expression of interest e2: (b==5 and cost>100.00)
pattern: e1 fby e2
pattern tree view:
 fby
 / \
 / \
 e1 e2

Here is a more complex example:

expression of interest e1: (a==10 and op=="insert")
expression of interest e2: (b==5 and cost>100.00)
expression of interest e3: (volume>1000)

67

pattern: e3 and (e1 fby e2)
pattern tree view:
 and
 / \
 / \
 e3 fby
 / \
 / \
 e1 e2

When you create a pattern window, you declare a list of events of interest (EOVs) and
then connect those events into an expression that use the same logical operators. Many
patterns are temporal. For example, you can have a combination of EOVs that occurs or
does not occur within a specified period.

Time for events can be driven in real time or can be defined by a date-time or
timestamp field. This field appears in the schema that is associated with the window that
feeds the pattern window. In the latter case, you must ensure that incoming events are
in order with respect to the field-based date-time or timestamp.

You can define multiple patterns within a pattern window. Each pattern typically has
multiple events of interest, possibly from multiple windows or just one input window.

Specify EOVs by providing the following:

n a pointer for the window from where the event is coming

n a string name for the EOV

n a WHERE clause on the fields of the event, which can include a number of
unification variables (bindings)

Suppose that you have a single window that feeds a pattern window, and the
associated schema is as follows:

ID*:int32,symbol:string,price:double,buy:int32,tradeTime:date

Suppose further that you have two EOVs and that their relationship is temporal. You are
interested in one event followed by the other within some period of time. This is
depicted in the following code segment:

// Someone buys (or sells IBM) at price > 100.00
// followed within 5 seconds of selling (or buying) SUN at price
// > 25.00

68 Chapter 4 / Creating Pattern Windows

dfESPpatternUtils::patternNode *l,*r, *f;
l = p_01->addEvent(sw_01, "e1",
 "((symbol==\"IBM\") and (price > 100.00)
 and (b == buy))");
r = p_01->addEvent(sw_01, "e2",
 "((symbol==\"SUN\") and (price > 25.000)
 and (b == buy))");
f = p_01->fby_op(l, r, 5000000); // note 5,000,000 microseconds
 = 5 seconds

Here there are two EOVs, l and r. The beginning of the WHERE clauses is standard:
symbol==constant and price>constant. The last part of each WHERE clause is
where event unification occurs.

Because b is not a field in the incoming event, it is a free variable that is bound when an
event arrives. It matches the first portion of the WHERE clause for event l (for example,
an event for IBM with price > 100.00.) In this case, b is set to the value of the field buy
in the matched event. This value of b is then used in evaluating the WHERE clause for
subsequent events that are candidates for matching the second event of interest r. The
added unification clause and (b == buy) in each event of interest ensures that both
matching events have the same value for the field buy.

The FBY operator is sequential in nature. A single event cannot match on both sides.
The left side must be the first to match on an event, and then a subsequent event could
match on the right side.

The AND and OR operator are not sequential. Any incoming event can match EOVs on
either side of the operator and for the first matching EOV causes the variable bindings.
Take special care in this case, as this is rarely what you intend when you write a
pattern.

For example, suppose that the incoming schema is as defined previously and you
define the following pattern:

// Someone buys or sells IBM at price > 100.00 and also
// buys or sells IBM at a price > 102.00 within 5 seconds.
l = p_01->addEvent(sw_01, "e1",
 "((symbol==\"IBM\") and (price > 100.00)");
r = p_01->addEvent(sw_01, "e2", "((symbol==\"IBM\") and (price
 > 102.00)");
f = p_01->and_op(l, r, 5000000); // note 5,000,000 microseconds
 = 5 seconds

Overview of Pattern Windows 69

Now suppose an event comes into the window where symbol is "IBM" and price is
"102.1". Because this is an AND operator, no inherent sequencing is involved, and the
WHERE clause is satisfied for both sides of the "and" by the single input event. Thus,
the pattern becomes true, and event l is the same as event r. This is probably not what
you intended. Therefore, you can make slight changes to the pattern as follows:

// Someone buys (or sells IBM) at price > 100.00 and <= 102.00
// and also buys or selld IBS) at a price > 102.00 within 5 seconds.
l = p_01->addEvent(sw_01, "e1",
 "(symbol==\"IBM\") and (price > 100.00) and
 (price <= 102.00)");
r = p_01->addEvent(sw_01, "e2", "(symbol==\"IBM\") and (price
 > 102.00)");
f = p_01->and_op(l, r, 5000000); // note 5,000,000 microseconds
 = 5 seconds

After you make these changes, the price clauses in the two WHERE clauses
disambiguate the events so that a single event cannot match both sides. This requires
two unique events for the pattern match to occur.

State Definitions for Operator Trees

Operator trees can have one of the following states:

n initial - no events have been applied to the tree

n waiting - an event has been applied causing a state change, but the left (and right, if
applicable) arguments do not yet permit the tree to evaluate to TRUE or FALSE

n TRUE or FALSE - sufficient events have been applied for the tree to evaluate to a
logical Boolean value

The state value of an operator sub-tree can be FIXED or not-FIXED. When the state
value is FIXED, no further events should be applied to it. When the state value is not-
FIXED, the state value could change based on application of an event. New events
should be applied to the sub-tree.

When a pattern instance fails to emit a match and destroys itself, it folds. The instance
is freed and removed from the active pattern instance list. When the top-level tree in a

70 Chapter 4 / Creating Pattern Windows

pattern instance (the root node) becomes FALSE, the pattern folds. When it becomes
TRUE the pattern emits a match and destroys itself.

An operator tree (OPT) is a tree of operators and EOVs. Given that EO refers to an
event of interest or operator tree (EOV|OPT):

not EOV
becomes TRUE and FIXED or FALSE and FIXED on the application of a single
event. It becomes TRUE if the event is applied it does not satisfy the event of
interest, and FALSE if it does

not OPT
Boolean negation. This remains in the waiting state until OPT evaluates to TRUE or
FALSE. Then it performs the logical negation. It only becomes FIXED when OPT
becomes FIXED

notoccur EOV
becomes TRUE on application of an event that does not satisfy the EOV, but it is not
marked FIXED. This implies that it can have more events applied to it. As soon as it
sees an event that matches the EOV, it becomes FALSE and FIXED

notoccur OPT
this is not allowed

EO or EO
an event is always applied to all non-FIXED sub-trees. It becomes TRUE when one
of its two sub-trees become TRUE. It becomes FALSE when both of the sub-trees
becomes FASLE. It is FIXED when one of its sub-trees is TRUE and FIXED, or both
of its sub-trees are FALSE and not FIXED

EO and EO
an event is always applied to all non-FIXED sub-trees. It becomes TRUE when both
of its two sub-trees become TRUE. It becomes FALSE when one of the sub-trees
becomes FALSE. It is FIXED when one of its sub-trees is FALSE and FIXED or both
of its sub-trees are TRUE and FIXED

State Definitions for Operator Trees 71

EO followed by EO
attempts to complete the left hand side (LHS) with the minimal number of event
applications before applying events to the right hand side (RHS). The apply rule is
as follows:

n If the LHS is not TRUE or FALSE, apply event to the LHS until it become TRUE
or FALSE.

n If the LHS becomes FALSE, set the followed by state to FALSE and become
FIXED.

n If the LHS becomes TRUE, apply all further events to the RHS until the RHS
becomes TRUE or FALSE. If the RHS becomes FALSE, set the FBY state to
FALSE and FIXED, if it becomes TRUE set the FBY state toTRUE and FIXED.

This apply algorithm is driven to seek the minimal length sequence of events that
completes an FBY pattern.

For example, to detect a, ..., b, where ... can be any sequence:

(a fby b)

To detect a, ..., b: but there can be no c between a and b:

(a fby ((notoccur c) and b))

To detect a, X, b: when X cannot be c:

(a fby (not c)) fby (not (not b))

And to detect a, ..., b, ..., c, ..., d : but k does not occur anywhere in the sequence:

(((a fby b) fby (c fby d)) and (notoccur k))

To detect an FBY b with no occurrences of c in the sequence:

a fby (notoccur(c) and b)

To detect an FBY b directly, with nothing between a and b:

(not not a) fby (not not b)

To detect a ... b ... d, with no occurrences of c between a and b:

a fby (b fby ((notoccur c) and d))

And to detect a ... b ... d, with no occurrences of c anywhere:

72 Chapter 4 / Creating Pattern Windows

(notoccur c) and (a fby (b fby d))

Restrictions on Patterns

The following restrictions apply to patterns that you define in pattern windows:

n An event of interest should be used in only one position of the operator tree. For
example, the following code would return an error:

// Someone buys (or sells) IBM at price > 100.00
// followed within 5 seconds of selling (or buying)
// SUN at price > 25.00 or someone buys (or sells)
// SUN at price > 25.00 followed within 5 seconds
// of selling (or buying) IBM at price > 100.00
//
dfESPpatternUtils::patternNode *l,*r, *lp, *rp, *fp;
l = p_01->addEvent(sw_01, "e1",
 "((symbol==\"IBM\") and (price > 100.00)
 and (b == buy))");
r = p_01->addEvent(sw_01, "e2", "((symbol==\"SUN\") and
 (price > 25.000) and (b == buy))");
lp = p_01->fby_op(l, r, 5000000); // note microseconds
rp = p_01->fby_op(r, l, 5000000); // note microseconds
fp = p_01->or_op(lp, rp, 5000000);

To obtain the desired result, you need four events of interest as follows:

dfESPpatternUtils::patternNode *l0,*r0, *l1, *r1, *lp, *rp, *fp;
l0 = p_01->addEvent(sw_01, "e1", "((symbol==\"IBM\") and
 (price > 100.00) and (b == buy))");
r0 = p_01->addEvent(sw_01, "e2", "((symbol==\"SUN\") and
 (price > 25.000) and (b == buy))");
l1 = p_01->addEvent(sw_01, "e3", "((symbol==\"IBM\") and
 (price > 100.00) and (b == buy))");
r1 = p_01->addEvent(sw_01, "e4", "((symbol==\"SUN\") and
 (price > 25.000) and (b == buy))");
lp = p_01->fby_op(l0, r0, 5000000); // note microseconds
rp = p_01->fby_op(l1, r1, 5000000); // note microseconds
fp = p_01->or_op(lp, rp, 5000000);

n Pattern windows work only on Insert events.

Restrictions on Patterns 73

If there might be an input window generating updates or deletions, then you must
place a procedural window between the input window and the pattern window. The
procedural window then filters out or transforms non-insert data to insert data.

Patterns also generate only Inserts. The events that are generated by pattern
windows are indications that a pattern has successfully detected the sequence of
events that they were defined to detect. The schema of a pattern consists of a
monotonically increasing pattern HIT count in addition to the non-key fields that you
specify from events of interest in the pattern.

dfESPpattern::addOutputField() and dfESPpattern::addOutputExpression()

n When defining the WHERE clause expression for pattern events of interests, binding
variables must always be on the left side of the comparison (like bindvar ==
field) and cannot be manipulated.

For example, the following addEvent statement would be flagged as invalid:

e1 = consec->addEvent(readingsWstats, "e1",
 "((vmin < aveVMIN) and (rCNT==MeterReadingCnt) and (mID==meterID))");
e2 = consec->addEvent(readingsWstats, "e2",
 "((mID==meterID) and (rCNT+1==MeterReadingCnt) and (vmin < aveVMIN))");
op1 = consec->fby_op(e1, e2,2880000000l);

Consider the WHERE clause in e1. It is the first event of interest to match because
the operator between these events is a followed-by. It ensures that event field vmin
is less than field aveVMIN. When this is true, it binds the variable rCNT to the current
meter reading count and binds the variable mID to the meterID field.

Now consider e2. Ensure the following:

o the meterID is the same for both events

o the meter readings are consecutive based on the meterReadingCnt

o vmin for the second event is less than aveVMIN

The error in this expression is that it checked whether the meter readings were
consecutive by increasing the rCNT variable by 1 and comparing that against the
current meter reading. Variables cannot be manipulated. Instead, you confine
manipulation to the right side of the comparison to keep the variable clean.

74 Chapter 4 / Creating Pattern Windows

The following code shows the correct way to accomplish this check. You want to
make sure that meter readings are consecutive (given that you are decrementing the
meter reading field of the current event, rather than incrementing the variable).

e1 = consec->addEvent(readingsWstats, "e1",
 "((vmin < aveVMIN) and (rCNT==MeterReadingCnt) and (mID==meterID))");
e2 = consec->addEvent(readingsWstats, "e2",
 "((mID==meterID) and (rCNT==MeterReadingCnt-1) and (vmin < aveVMIN))");
op1 = consec->fby_op(e1, e2,2880000000l);

Example: Simple Pattern Window

Here is a complete example of a simple pattern window. For more examples, refer to
the packaged examples provided with the product.

#define MAXROW 1024
#include <iostream>

// Include class definitions for modeling objects.

#include "dfESPeventdepot_mem.h"
#include "dfESPwindow_source.h"
#include "dfESPwindow_pattern.h"
#include "dfESPevent.h"
#include "dfESPcontquery.h"
#include "dfESPengine.h"
#include "dfESPproject.h"

using namespace std;

// This is a simple callback function that can be registered for
// a windows new event updates.
// It receives the schema of the events it is passed, and a set of
// 1 or more events bundled into a dfESPeventblock object. It
// also has an optional context pointer for passing state
// into this cbf.

void winSubscribeFunction(dfESPschema *os, dfESPeventblockPtr ob,
 void *cntx) {
int count = ob->getSize(); // Get the size of the event block.
if (count>0) {
 char buff[MAXROW+1];
 for (int i=0; i < count; i++) {

Example: Simple Pattern Window 75

 ob->getData(i)->toStringCSV(os, (char *)buff, MAXROW);
 // Get the event as CSV.
 cout << buff << endl; // Print it
 if (ob->getData(i)->getOpcode() ==
 dfESPeventcodes::eo_UPDATEBLOCK)
 ++i; // skip the old record in the update block
 } //for
 } //if
}

int main(int argc, char *argv[]) {

// ------ BEGIN MODEL (CONTINUOUS QUERY DEFINITIONS) ------
// Create the single engine top level container which sets up
// dfESP fundamental services such as licensing, logging,
// pub/sub, and threading, ...
// Engines typically contain 1 or more project containers.
// @param argc the parameter count as passed into main.
// @param argv the paramter vector as passed into main.
// Currently the dfESP library only looks for
// -t <textfile.name> to to write its output and
// -b <badevent.name> to write any bad events
// (events that failed to be applied to a window index).
// @param id the user supplied name of the engine.
// @param pubsub pub/sub enabled/disabled and port pair,
// formed by calling static function
// dfESPengine::pubsubServer().
// @param logLevel the lower threshold for displayed log
// messages - default: dfESPLLTrace, @see
// dfESPLoggingLevel
// @param logConfigFile a log4SAS configuration file -
// default: log to stdout.
// @param licKeyFile a FQPN to a license file - default:
// $DFESP_HOME/etc/license/esp.lic
// @return the dfESPengine instance.

dfESPengine *myEngine = dfESPengine::initialize(argc, argv,
 "engine", pubsub_DISABLE);
if (myEngine == NULL) {
 cerr <<"Error: dfESPengine::initialize() failed using
 all framework defaults\n";
 return 1;
}

// Define the project, this is a container for one or more
// continuous queries.
dfESPproject *project_01 = myEngine->newProject("project_01");

76 Chapter 4 / Creating Pattern Windows

// Create a memory depot for the project to handle the
// generation of primary indices and event storage;

dfESPeventdepot_mem* depot_01;
depot_01 =project_01->newEventdepot_mem("memDepot_01");

// Define a continuous query object. This is the first level
// container for windows. It also contains the window
// to window connectivity information.
dfESPcontquery *cq_01;
cq_01 = project_01->newContquery("contquery_01");

// Build the source window. We specify the window name, the
// schema for events, the depot used to generate the
// index and handle event storage, and the type of
// primary index, in this case a red/black tree index.
dfESPwindow_source *sw_01;
sw_01 = cq_01->newWindow_source("sourceWindow_01", depot_01,
 dfESPindextypes::pi_RBTREE,
 dfESPstring("ID*:int32,symbol:string,price:double,
 buy:int32,tradeTime:date"));

dfESPwindow_pattern *pw_01;
pw_01 = cq_01->newWindow_pattern("patternWindow_01", depot_01,
 dfESPindextypes::pi_RBTREE,
 dfESPstring("ID*:int64,ID1:
 int32,ID2:int32"));

// Create a new pattern
dfESPpattern* p_01 = pw_01->newPattern();
{ dfESPpatternUtils::patternNode *e1,*e2, *o1;
 // Pattern of interest: someone buys IBM at price >
 // 100.00 followed within 5 second of buying
 // SUN at price > 25.00.
 e1 = p_01->addEvent(sw_01, "e1",
 "((symbol==\"IBM\") and (price >
 100.00) and (b == buy))");
 e2 = p_01->addEvent(sw_01, "e2",
 "((symbol==\"SUN\") and (price >
 25.000) and (b == buy))");
 o1 = p_01->fby_op(e1, e2, 5000000);
 // e1 fby e2 within 5 sec

 p_01->setPattern(o1); //set the pattern top of op tree

 // Setup the generated event for pattern matches.

Example: Simple Pattern Window 77

 p_01->addOutputField("ID", e1);
 p_01->addOutputField("ID", e2);
 p_01->addTimeField(sw_01, "tradeTime");
 //set tradeTime field for the temporal check
 }

// Add the subscriber callback to the pattern window.
pw_01->addSubscriberCallback(winSubscribeFunction);

// Add the connectivity information to the continuous query.
// This means sw_o1 --> pw_01
cq_01->addEdge(sw_01, pw_01);

// Define the project's thread pool size and start it.
// **Note** after we start the project here, we do not see
// anything happen, as no data has yet been put
// into the continuous query.
project_01->setNumThreads(2);
myEngine->startProjects(); //

// ------ END MODEL (CONTINUOUS QUERY DEFINITION) ------

// At this point the project is running in the background
// using the defined thread pool. We'll use the main
// thread that we are in to inject some data.
// Generate some test event data and inject it into the
// source window.

dfESPptrVect<dfESPeventPtr> trans;
dfESPevent *p;

p = new dfESPevent(sw_01->getSchema(),(char *)"i,n,1,IBM,
 101.45,0,2011-07-20 16:09:01");
trans.push_back(p);

dfESPeventblockPtr ib = dfESPeventblock::newEventBlock
 (&trans, dfESPeventblock::ebt_TRANS);
trans.free();
project_01->injectData(cq_01, sw_01, ib);
p = new dfESPevent(sw_01->getSchema(),(char *)"i,n,2,IBM,
 101.45,1,2011-07-20 16:09:02");
trans.push_back(p);
ib = dfESPeventblock::newEventBlock(&trans,
 dfESPeventblock:
 :ebt_TRANS);
trans.free();
project_01->injectData(cq_01, sw_01, ib);

78 Chapter 4 / Creating Pattern Windows

p = new dfESPevent(sw_01->getSchema(),(char *)"i,n,3,SUN,
 26.0,1,2011-07-20 16:09:04");
trans.push_back(p);
ib = dfESPeventblock::newEventBlock(&trans,
 dfESPeventblock:
 :ebt_TRANS);
trans.free();
project_01->injectData(cq_01, sw_01, ib);
p = new dfESPevent(sw_01->getSchema(),(char *)"i,n,4,SUN,
 26.5,0,2011-07-20 16:09:05");
trans.push_back(p);
ib = dfESPeventblock::newEventBlock(&trans,
 dfESPeventblock:
 :ebt_TRANS);
trans.free();

project_01->injectData(cq_01, sw_01, ib);
p = new dfESPevent(sw_01->getSchema(),(char *)"i,n,5,IBM,
 101.45,1,2011-07-20 16:09:08");
trans.push_back(p);
ib = dfESPeventblock::newEventBlock(&trans,
 dfESPeventblock:
 :ebt_TRANS);
trans.free();
project_01->injectData(cq_01, sw_01, ib);

project_01->quiesce(); // Wait until the system stops
// processing before shutting down.

// Now shutdown.
myEngine->stopProjects();
// Stop project before shutting
// down.
myEngine->shutdown();
return 0;
}

After you execute this code, you obtain these results:

I,N: 0,2,3
I,N: 1,1,4

Example: Simple Pattern Window 79

80 Chapter 4 / Creating Pattern Windows

5
Creating Aggregate Windows

Overview to Aggregate Windows . 81

Flow of Operations . 82

Aggregate Functions . 83

Overview to Aggregate Windows

Aggregate windows are similar to compute windows in that non-key fields are
computed. However, key fields are specified, and not inherited from the input window.
Key fields must correspond to existing fields in the input event. Incoming events are
placed into aggregate groups with each event in a group that has identical values for the
specified key fields.

For example, suppose that input events have a schema specified as the following:

"ID*:int32,symbol:string,quantity:int32,price:double"

Suppose that the aggregate window has a schema specified as the following:

"symbol*:string,totalQuant:int32,maxPrice:double"

When events arrive in the aggregate window, they are placed into aggregate groups
based on the value of the symbol field. The non-key fields, in this example
totalQuant and maxPrice, must have either aggregate field calculation functions
(written in C++) or expressions that are registered to the aggregate window. Either
expressions or functions must be used for all of the non-key fields. They cannot be

81

mixed. The functions or expressions are called with a group of events as one of their
arguments every time a new event comes in and modifies one or more groups.

These groups are internally maintained in the dfESPwindow_aggregate class as
dfESPgroupstate objects. Each group is collapsed every time that a new event is
added or removed from a group by running the specified aggregate functions or
expressions on all non-key fields. The purpose of the aggregate window is to produce
one aggregated event per group.

Flow of Operations

The flow of operations while processing an aggregate window is as follows:

1 An event, E arrives and the appropriate group is found, called G. This is done by
looking at the values in the incoming event that correspond to the key fields in the
aggregate window

2 The event E is merged into the group G. The key of the output event is formed from
the group-by fields of G.

3 Each non-key field of the output schema is computed by calling an aggregate
function with the group G as input. The aggregate function computes a scalar value
for the corresponding non-key field.

4 The correct output event is generated and output.

82 Chapter 5 / Creating Aggregate Windows

Aggregate Functions

The following aggregate functions are available for aggregate window field calculation
expressions:

Aggregate Function Returns

ESP_aCount() number of events in the group

ESP_aGUI() a unique identifier

ESP_aSum(fieldname) sum of the group

ESP_aMin(fieldname) minimum of the group

ESP_aMax(fieldname) maximum of the group

ESP_aAve(fieldname) average of the group

ESP_aWAvge(weight_fieldname,
payload_fieldname, fieldname)

weighted group average

ESP_aLast(fieldname) field from the last record that affected the
group

ESP_aLastNonDelete(fieldname) value of aLast() for non-delete

ESP_aLastOpcodes(opcode) the opcode of the last record to affect the
group

ESP_aCountOpcodes(opcode) count of the number of events matching
opcode for group

ESP_aFirst(fieldname) the first event added to the group

ESP_aStd(fieldname) standard deviation of the group

Aggregate Functions 83

You can implement a nonadditive Max() aggregate function using non-key field
calculation expressions as follows:

dfESPwindow_aggregate *aw_01;
 aw_01 = cq->newWindow_aggregate("aggregateWindow_01", edm,
 dfESPindextypes::pi_RBTREE,
 aggr_schema);
 aw_01->addNonKeyFieldCalc("ESP_aSum(quantity)"); // sum(quantity)
 aw_01->addNonKeyFieldCalc("ESP_aMax(quantity)”); // max(quantity)

Using aggregate field expressions is simpler than aggregate functions, but they perform
slower, and the number of functions is limited.

Note: In ESP_aSum, ESP_aMax, ESP_aMin, ESP_aAve, ESP_aStd, and ESP_aWAve,
null values in a field are ignored. Therefore, they do not contribute to the computation.

The functions ESP_aSum, ESP_aFirst, ESP_aWAve, ESP_aStd, ESP_aCount,
ESP_aLast, ESP_aFirst, ESP_aLastNonDelete, ESP_aLastOpCode,
ESP_aCountOpcodes are all additive. That is, they can be calculated from retained
state, and do not need to maintain a group state. This means that if these are the only
functions used in a dfESPwindow_aggrgate instance, special optimizations are made
and speed-ups of an order of magnitude in the aggregate window processing can occur.

The dfESPgroupstate class is used internally to maintain the groups in an
aggregation and an instance of the dfESPgroupstate is passed to aggregate
functions. The signature of an aggregate function is as follows:

 typedef dfESPdatavarPtr (*dfESPaggregate_func)(dfESPschema *is,
 dfESPeventPtr nep, dfESPeventPtr oep,
 dfESPgroupstate *gs);

It can be found in the api/dfESPfuncptr.h file.

The dfESPgroupstate object does not only act as a container for a set of events
belonging to the same group, but it also maintains a state vector of dfESPdatavars,
one state vector per non-key field, that can be used by aggregate functions to store a
field’s state. This enables quick incremental aggregate function updates when a new
group member arrives.

For more information, see “Using Aggregation Functions” on page 215.

84 Chapter 5 / Creating Aggregate Windows

6
Creating Procedural Windows

Overview to Procedural Windows . 85

C++ Window Handlers . 86

DS2 Window Handlers . 89
Overview of DS2 Window Handlers . 89
General Structure of a DS2 Input Handler . 89
Examples . 90
Event Stream Processor to DS2 Data Type

Mappings and Conversions . 92

Overview to Procedural Windows

You can write procedural windows in C++ or DS2 (DataStep 2). When an input event
arrives, the handler registered for the matching input window is called. The events
produced by this handler function are output.

85

Figure 6.1 Procedural Window with Input Handlers

Procedural Window

Input Window 1 Input Window 2 Input Window N

Input
Window 1
Handler
(C++ or DS2)

Input
Window 2
Handler
(C++ or DS2)

Input
Window N
Handler
(C++ or DS2)

In order for the state of the procedural window to be shared across handlers, an
instance-specific context object (such as dfESPpcontext) is passed to the handler
function. Each handler has full access to what is in the context object. The handler can
store data in this context for use by other handlers, or by itself during future invocations.

C++ Window Handlers

Here is an example of the signature of a procedural window handler written in C++.

typedef bool (*dfESPevent_func)(dfESPpcontext *pc,
 dfESPschema *is, dfESPeventPtr nep,
 dfESPeventPtr oep, dfESPschema *os,
 dfESPptrVect<dfESPeventPtr>&oe);

The procedural context is passed to the handler. The input schema, the new event, and
the old event (in the case of an update) are passed to the handler when it is called. The
final parameters are the schema of the output event (the structure of events that the

86 Chapter 6 / Creating Procedural Windows

procedural window produces) and a reference to a vector of output events. It is this
vector where the handler needs to push its computed events.

Only one input window is defined, so define only one handler function and call it when a
record arrives.

// This handler functions simple counts inserts, updates,
// and deletes.
// It generates events of the form "1,#inserts,#updates,
// #deletes"
//
bool opcodeCount(dfESPpcontext *mc, dfESPschema *is,
 dfESPeventPtr nep, dfESPeventPtr oep,
 dfESPschema *os, dfESPptrVect
 <dfESPeventPtr>& oe) {

 derivedContext *ctx = (derivedContext *)mc;
 // Update the counts in the past context.
 switch (nep->getOpcode()) {
 case dfESPeventcodes::eo_INSERT:
 ctx->numInserts++;
 break;
 case dfESPeventcodes::eo_UPDATEBLOCK:
 ctx->numUpdates++;
 break;
 case dfESPeventcodes::eo_DELETE:
 ctx->numDeletes++;
 break;
 }

 // Build a vector of datavars, one per item in our output
 // schema, which looks like: "ID*:int32,insertCount:
 // int32,updateCount:int32,deleteCount:int32"

dfESPptrVect<dfESPdatavarPtr> vect;
os->buildEventDatavarVect(vect);

// Set the fields of the record that we are going to produce.

vect[0]->setI32(1); // We have a key of only 1, we keep updating one record.
vect[1]->setI32(ctx->numInserts);
vect[2]->setI32(ctx->numUpdates);
vect[3]->setI32(ctx->numDeletes);

// Build the output Event, and push it to the list of output
// events.

C++ Window Handlers 87

dfESPeventPtr ev = new dfESPevent();
ev->buildEvent(os, vect, dfESPeventcodes::eo_UPSERT,
 dfESPeventcodes::ef_NORMAL);
oe.push_back(ev);

// Free space used in constructing output record.
vect.free();
return true;

The following example shows how this fits together in a procedural window:

dfESPproject *project_01;
project_01 = theEngine->newProject("project_01");

dfESPcontquery *cq_01;
cq_01 = project_01->newContquery("cq_01");

dfESPeventdepot_mem* depot;
depot = project_01->newEventdepot_mem("Depot_01");

dfESPstring source_sch = dfESPstring("ID*:int32,symbol:
 string,price:double");
dfESPstring procedural_sch = dfESPstring("ID*:int32,insertCount:
 int32,updateCount:int32,
 deleteCount:int32");

dfESPwindow_source *sw;
sw = cq_01->newWindow_source("source window", depot,
 dfESPindextypes::pi_HASH,
 source_sch);

dfESPwindow_procedural *pw;
pw = cq_01->newWindow_procedural("procedural window", depot,
 dfESPindextypes::pi_RBTREE,
 procedural_sch);

// Create our context, and register the input window and
// handler.
//
derivedContext *mc = new derivedContext();
mc->registerMethod(sw, opcodeCount);

pw->registerMethodContext(mc);

Now whenever the procedural window sees an event from the source window (sw), it
calls the handler opcodeCount with the context mc, and produces an output event.

88 Chapter 6 / Creating Procedural Windows

DS2 Window Handlers

Overview of DS2 Window Handlers

When you write a procedural window handler in the DataStep 2 programming language
(DS2), the program is declared as a character string and set in the procedural windows
context.

Here is a simple example:

char *DS2_program_01 =
 "ds2_options cdump;"
 "data esp.out;"
 " dcl double cost;"
 " method run();"
 " set esp.in;"
 " cost = price * quant;"
 " end;"
 "enddata;"

The window handler is then added to the procedural window's context, before the
context is registered with the procedural window proper.

dfESPpcontext *pc_01 = new dfESPpcontext; // declare the new context
pc_01->registerMethod_ds2(sw_01, DS2_program_01); // register the DS2 handler in the context
pw_01->registerMethodContext(pc_01); //register the context with the procedureal window

All fields of the input window are seen as variables in DS2 programs, so can be used in
calculations. The variable _opcode is also available and takes on the integer values 1
(Insert), 2 (Update), or 3(Delete). The variables exported from the DS2 program are all
the input variables plus any global variables declared in the DS2 program. This set of
variables is then filtered by the schema field names of the procedural window to form
the output event.

General Structure of a DS2 Input Handler

DS2 input handlers use the following boilerplate definition:

ds2_options cdump;

DS2 Window Handlers 89

 data esp.out;
 global_variable_declaration; /* global variable block */
 method run();
 set esp.in;
 computations; /* computational statements */
 end;
enddata;

Examples

Here is a procedural window with one input window that computes some new fields:

input schema:
 "ID*:int32,symbol:string,size:int32,price:double"

 output (procedural schema):
 "ID*:int32,symbol:string,size:int32,price:double,cost:double"

 ds2_options cdump;
 data esp.out;
 dcl double cost;
 method run();
 set esp.in;
 cost = price * size; /* compute the total cost */
 end;
 enddata;

Here is a procedural window with one input window that does no computation, but
remaps the key structure, and omits some of the input fields:

input schema:
 "ID*:int32,symbol:string,size:int32,price:double,traderID:int32"

 output (procedural schema):
 "kID*:int64,symbol:string,cost:double"

 ds2_options cdump;
 data esp.out;
 dcl double cost;
 dcl bigint kID;
 method run();
 set esp.in;
 kID = 1000000000*traderID; /* put traderID in digits 10,11, ...*/
 kID = kID + ID; /* put ID in digits 0,1, ... 9 */
 cost = price * size; /* compute the total cost */
 end;

90 Chapter 6 / Creating Procedural Windows

 enddata;

Note: This DS2 code produces the following output: {ID, symbol, size, price, traderID,
cost, kID}, which when filtered through the output schema is as follows: {kID, symbol,
cost}

Here is a procedural window with one input window augments an input event with a
letter grade based on a numeric grade in the input:

input schema:
 "studentID*:int32,testNumber*:int32,testScore:double"

 output (procedural schema):
 "studentID*:int32,testNumber*:int32,testScore:double,testGrade:string"

 ds2_options cdump;
 data esp.out;
 dcl char(1) testGrade;
 method run();
 set esp.in;
 testGrade = select
 when (testScore >= 90) 'A'
 when (testScore >= 80) 'B'
 when (testScore >= 70) 'C'
 when (testScore >= 60) 'D'
 when (testScore >= 0) 'F'
 end;
 enddata;

Here is a procedural window with one input window that augments an input event with
the timestamp of when it was processed by the DS2 Handler:

input schema:
 "ID*:int32,symbol:string,size:int32,price:double"

 output (procedural schema):
 "ID*:int32,symbol:string,cost:double,processedStamp:stamp"

 ds2_options cdump;
 data esp.out;
 method run();
 set esp.in;
 processedStamp = to_timestamp(datetime());
 end;
 enddata;

DS2 Window Handlers 91

Here is a procedural window with one input window that filters out events that have an
even ID. It produces two identical events (with different keys) for those events that have
an odd ID:

input schema:
 "ID*:int32,symbol:string,size:int32,price:double"

 output (procedural schema):
 "ID*:int32,symbol:string,size:int32,price:double"

 ds2_options cdump;
 data esp.out;
 method run();
 set esp.in;
 if MOD(ID, 2) = 0 then return;
 output;
 ID = ID + 1;
 output;
 end;
 enddata;

Given this input:

1,ibm,1000,100.1
 2,nec,2000,29.7
 3,ibm,2000,100.7
 4,apl,1000,300.2

The following output is produced:
1,ibm,1000,100.1
 2,ibm,1000,100.1
 3,ibm,2000,100.7
 4,ibm,2000,100.7

Event Stream Processor to DS2 Data Type
Mappings and Conversions

The following mapping of event stream processor to DS2 data types is supported:

Event Stream Processor Data
Type DS2 Data Type

ESP_INT32 TKTS_INTEGER

92 Chapter 6 / Creating Procedural Windows

Event Stream Processor Data
Type DS2 Data Type

ESP_INT64 TKTS_BIGINT

ESP_DOUBLE TKTS_DOUBLE

ESP_TIMESTAMP/DATETIME TKTS_TIMESTAMP/DATE/TIME

ESP_UTF8STR TKTS_VARCHAR/CHAR

The ESP_MONEY data type is not supported.

Here is a conversion matrix. If a data type does not appear in the matrix (for example,
NVarchar), conversion is not supported for it.

From/To Integer BigInt Double Date Time Timestamp Char Varchar

int32 x

int64 x

double x

datetime x x x

timestamp x x x

utf8str x x

DS2 Window Handlers 93

94 Chapter 6 / Creating Procedural Windows

7
Visualizing Event Streams

Overview to Event Visualization . 95

Using Streamviewer . 95

Using SAS/GRAPH . 97

Overview to Event Visualization

The Streamviewer tool provided with SAS Event Stream Processing Engine enables
you to subscribe to engine’s event streams. You can use this tool, which is named
dfesp_streamviewer on most platforms, to query an engine’s objects and containers
down to the window level. You can subscribe to any window's event stream. You can
find Streamviewer in the $DFESP_HOME/src directory.

In the Microsoft Windows distribution of SAS Event Stream Processing Engine, an
example shows how you can integrate the product with SAS/GRAPH for event stream
visualization. You can find this example in the $DFESP_HOME\bin\graph_realtime
directory. In order to use it, you must separately purchase SAS/GRAPH.

Using Streamviewer

Streamviewer subscribes to any window event stream and displays it. It can subscribe
to event streams from a single engine or from different engines on separate machines.

95

If the total number of events is bound, then you can view changes to values as they are
updated. Otherwise, you see events scrolling through the viewer. You can set color
thresholds based on any event field, which can be useful for alert counts.

Streamviewer is written in Java and it uses the publish/subscribe API. You can run it on
a different system from the SAS Event Stream Processing Engine application as long as
the system is on the same network.

Execute Streamviewer using the following command on UNIX and Linux:

$DFESP_HOME/bin/dfesp_streamviewer -u URL_to_ESP_server
-Y window_height -X window_width
-x x_coordinate_of_window -y y_coordinate_of_window
-d millisecond_delay_before_subscribing -h usage

Execute Streamviewer using the following command on Windows:

%DFESP_HOME%\bin\dfesp_streamviewer URL_to_ESP_server
-height h —width w
—initialX x -initialY y
-delay d

Note: /?, -?, -h, -H, /h, and /H all produce help.

After you start Streamviewer, there are two options under File  New Window
Subscribe and Exit. You can choose New Window Subscribe any number of times.
Each time you initiate the window subscribe option, a dialog box appears. In this dialog
box, you can enter the host and port. Then Streamviewer queries the model for
available projects, queries, and windows.

Dialog boxes then prompt you to enter the following:

n project name

n continuous query name

n window name

n optional rules file

n a toggle to select the initial snapshot before the continuous deltas and updates

96 Chapter 7 / Visualizing Event Streams

If you subscribe to a system that is running events, then you want the snapshot that is
the current state of the event stream. You can use a rules file for color thresholds based
on a field expression.

Here is an example set of rules that are used with the broker_surv example provided
in the installation:

frpbuyalerts,GREATERTHANEQUALTO,3,255:0:0
frpbuyalerts,LESSTHAN,3,255:255:0
frpbuyalerts,EQUALTO,0,0:255:0
frpsellalerts,GREATERTHANEQUALTO,3,255:0:0
frpsellalerts,LESSTHAN,3,255:255:0
frpsellalerts,EQUALTO,0,0:255:0
markopenalerts,GREATERTHANEQUALTO,3,255:0:0
markopenalerts,LESSTHAN,3,255:255:0
markopenalerts,EQUALTO,0,0:255:0
markclosealerts,GREATERTHANEQUALTO,3,255:0:0
markclosealerts,LESSTHAN,3,255:255:0
markclosealerts,EQUALTO,0,0:255:0
restrictedsalealerts,GREATERTHANEQUALTO,3,255:0:0
restrictedsalealerts,LESSTHAN,3,255:255:0
restrictedsalealerts,EQUALTO,0,0:255:0
totalalerts,GREATERTHANEQUALTO,5,255:0:0
totalalerts,LESSTHAN,5,255:255:0
totalalerts,LESSTHANEQUALTO,3,0:255:0

Each rule includes a field name, condition, field value, red value, blue value, and green
value. If the field meets the condition, then that field is colored as specified (for
example, 0-255 for each color component) in the color codes. Initially, each subscribe
session has a tab. Use the Open this tab in a new window button to make it a separate
window. You can also return to the main window using File  Dock in Parent . Finally,
you can also run Streamviewer with parameters so that you can call it from a script
without the Subscribe Initialize dialog box.

For information about these parameters, execute Streamviewer with the –h parameter.

Using SAS/GRAPH

SAS/GRAPH can be used to build both simple and complex combinations of graphs.
You can integrate this tool with the SAS Event Stream Processing Engine using the

Using SAS/GRAPH 97

publish/subscribe API. The Microsoft ActiveX control library included in SAS/GRAPH
9.3 or later is supported on Microsoft Windows.

Microsoft Windows (32-bit or 64-bit) contains a graph_realtime example that shows how
to integrate SAS/GRAPH with the SAS Event Stream Processing Engine publish/
subscribe API to subscribe to a SAS Event Stream Processing Engine and visualize
events in graphs. This example uses a plot graph to continuously display total trades on
the X-axis and throughput rate on the Y-axis based on the streaming events.

98 Chapter 7 / Visualizing Event Streams

8
Using the Publish/Subscribe API

Overview to the API . 99

Understanding Publish/Subscribe API Versioning 100

Using Callback Functions . 101

The API from the Engine’s Perspective . 102

The API from the Client’s Perspective . 103

Functions for the Publish/Subscribe API . 105

Using the Java Publish/Subscribe API . 117
Overview to the Java Publish/Subscribe API . 117
Using High Level Publish/Subscribe Methods . 119
Using User-supplied Callback Functions . 120

Overview to the API

The SAS Event Stream Processing Engine provides publish/subscribe application
programming interfaces (APIs) for C and Java. Use thepublish/subscribe API to do the
following:

n publish event streams into a running event stream processor project source window

n subscribe to an event stream window, either from the same machine or from another
machine on the network

99

The publish/subscribe API is currently supported on all supported hardware and
operating system types as well as Microsoft 32-bit Windows® (which is publish/
subscribe or client only). This level of support enables cross-platform usage. For
example, you can subscribe to event streams in an SAS Event Stream Processing
Engine running on Solaris SPARC. Those streams can be visually displayed on a
Windows desktop, perhaps using SAS/GRAPH.

You can also subscribe to an event stream so that it in can be loaded into a database
for persistence. More likely you would use the event stream processor database
adapter or connector. Connectors are in process classes that publish and subscribe.
Adapters are stand-alone executables that publish and subscribe. Both use the publish/
subscribe API.

Note: The publish/subscribe API provides cross-platform connectivity and Endianness
compatibility between the SAS Event Stream Processing Engine application and other
networked applications, clients, and data feeds. The SAS Event Stream Processing
Engine publish/subscribe API is IPv4 compliant.

For examples of a subscriber and a publisher application, see Appendix 2, “Example:
Subscriber and Publisher Applications,” on page 231.

Understanding Publish/Subscribe API
Versioning

Publish/subscribe API versioning enables the server side of the client connection
request to check the following information about the clients:

n protocol version

n command version (which is the release number)

It checks this information to determine whether it matches the server or is forward
compatible with the server. Versioning was added to enable the SAS Event Stream
Processing Engine to support forward compatibility for older publish/subscribe clients
whenever feasible. When the server is initialized, the version number is logged using
the following message:

100 Chapter 8 / Using the Publish/Subscribe API

dfESPengine version %s completed initialization

When a publish/subscribe client successfully connects, the following message is
logged:

Client negotiation successful, client version: %d, server version: %d,
continuous query: %s, window: %s, total active clients = %d

On the other hand, when the client connection is incompatible, the following message is
logged:

version mismatch; server is %d, client is %d

When the client version is unknown during the connection request (that is, a release
earlier than 1.2), then the following message is logged:

Client version %d is unknown, and can be incompatible

You can read this log to determine the version number for the server and client.
However, the success messages (like the server message from server initialize) are
written using level information. Therefore, you see these only if you are logging
messages (including informational and higher).

Using Callback Functions

In addition to the publish/subscribe API, an SAS Event Stream Processing Engine
application written using the C++ Modeling API can register a callback function with a
window. This is done so that the application thread subscribes to that window while
bypassing the publish/subscribe API. This is done by defining the call back function as
described here:

void winSubscribe_function(dfESPschema *os, dfESPeventblockPtr ob,
 void *ctx) {

// do something with the eventblock

}

Then you can register the callback function with the SAS Event Stream Processing
Engine window of interest as follows:

windowPtr->addSubscriberCallback(winSubscribe_function);

Using Callback Functions 101

Similarly, an SAS Event Stream Processing Engine application can bypass the publish/
subscribe API and publish events into SAS Event Stream Processing Engine source
windows using the project injectData() member function as follows:

projectPtr->injectData(contQueryPtr, sourceWindowptr, eventBlock);

Note: A demonstration of how to use injectData() and
addSubscriberCallback() are in the Application Building section.

These methods give the SAS Event Stream Processing Engine application low-level
access to publishing and subscribing. The publish/subscribe API enables other
applications and clients to publish and subscribe to an SAS Event Stream Processing
Engine application either on the same machine or from a system on the network. When
using subscriber clients, the SAS Event Stream Processing Engine project windows
need to be enabled for subscription.

The API from the Engine’s Perspective

To enable publish/subscribe for the engine instance using the C++ Modeling API, you
must provide a port number to the pubsub_ENABLE() parameter in the
dfESPengine::initialize() call as follows:

dfESPengine *engine;
engine = dfESPengine::initialize(argc, argv, "engine",
pubsub_ENABLE(33335));

if (engine == NULL) {
 cerr <<"Error: dfESPengine::initialize() failed\n";
 return 1;
}

Clients can use that port number (in this example 33335) to establish publish/subscribe
connections. If publish/subscribe is not required, then you would use pubsub_DISABLE
for that parameter.

To initialize publish/subscribe capabilities for a project, project->setPubSub() is called
before calling engine->startProjects(). For example:

project->setPubSub(dfESPproject::ps_AUTO);
engine->startProjects();

102 Chapter 8 / Using the Publish/Subscribe API

This example opens a server listener socket on port 33335 to allow client subscribers
and publishers to connect to the SAS Event Stream Processing Engine application or
server for publish/subscribe services. Once the connection request is made for publish/
subscribe by a client (as described below), an ephemeral port is returned, which the
publish/subscribe API uses for this connection. In cases where you need to override
ephemeral ports for a specific port (for security purposes), then that can be done by
providing project->setPubSub with a second parameter, which is the preferred port
to be used for the actual connections to this project. For example:

project->setPubSub(dfESPproject::ps_AUTO, 33444);

The first parameter of project->setPubSub() applies only to subscription services
and it specifies how windows in the project are enabled to support client subscriptions.
Specifying ps_AUTO enables clients to subscribe to all window output event streams in
the project. Alternatively, windows can be enabled manually by specifying ps_MANUAL.
For non-trivial projects, the specific windows of interest should be enabled manually
because automatically enabling all windows has a noticeable impact on overall
performance. You can also specify ps_NONE, which disables subscribing for all
windows.

If ps_MANUAL was used in project->setPubSub() to specify manual enablement of
window subscribes, then enableWindowSubs() is subsequently used for each
desired window to enable the subscribe as follows:

project->enableWindowSubs(dfESPwindow *w);

If, however, you specified ps_AUTO or ps_NONE in setPubSub(), then subsequent
calls to enableWindowSubs() are ignored and generate a warning.

Note: Clients can publish an event stream into any source window (and only source
windows) in a project that is currently running. All source windows are enabled for
publishing by default.

The API from the Client’s Perspective

Clients that want to subscribe from or publish to the SAS Event Stream Processing
Engine window event streams using the C API need to first initialize services on the

The API from the Client’s Perspective 103

client (using C_dfESPpubsubInit()). Next, start a subscription using
C_dfESPsubscriberStart() and publisher using C_dfESPpublisherStart(),
and then connect to the SAS Event Stream Processing Engine application or server
using C_dfESPpubsubConnect().

Clients that implement a publisher can then call C_dfESPpublisherInject() as
needed to publish event blocks into the SAS Event Stream Processing Engine source
window specified in the URL passed to C_dfESPpublisherStart().

The specifics of the client publish/subscribe API are as follows.

Your client application must include the header file C_dfESPpubsubApi.h to provide
publisher and subscriber services. In addition to the API calls, this file also defines the
signatures of the user-supplied callback functions, of which there are currently two: the
subscribed event block handler and the publish/subscribe failure handler.

The subscribed event block handler is used only by subscriber clients. It is called when
a new event block from the SAS Event Stream Processing Engine application or server
arrives. After processing the event block, the client is responsible for freeing it by calling
C_dfESPeventblock_destroy(). The signature of this user-defined callback is as
follows, where "eb" is the event block just read, "schema" is the schema of the event for
client processing, and ctx is an optional context object containing call state:

typedef void (*C_dfESPsubscriberCB_func)(C_dfESPeventblock eb,
 C_dfESPschema schema, void *ctx);

The second callback function, C_dfESPpubsubErrorCB_func(), is optional for both
subscriber and publisher clients. If supplied (that is, no NULL), it is called for every
occurrence of an abnormal event within the client services, such as an unsolicited
disconnect. This enables the client to handle and possibly recover from publish/
subscribe services errors. The signature for this callback function is below, where the
following is true:

n failure is either pubsubFail_APIFAIL, pubsubFail_THREADFAIL, or
pubsubFail_SERVERDISCONNECT

n code provides the specific code of the failure

n ctx is an optional context object containing call state

typedef void (*C_dfESPpubsubErrorCB_func)(C_dfESPpubsubFailures

104 Chapter 8 / Using the Publish/Subscribe API

 failure, C_dfESPpubsubFailureCodes code);

The C_dfESPpubsubFailures and C_dfESPpubsubFailureCodes enums are
defined in C_dfESPpubsubFailures.h.

A publisher client uses the C_dfESPpublisherInject() API function to publish
event blocks into a source window in the SAS Event Stream Processing Engine
application or server. The event block is injected into the source window running in the
continuous query and project specified in the URL passed to
C_dfESPpublisherStart(). A client can publish events to multiple windows in a
project by calling C_dfESPpublisherStart() once for each window and then
passing the appropriate client object to C_dfESPpublisherInject() as needed.

Finally, a client can query the SAS Event Stream Processing Engine application or
server at any time to discover currently running windows, continuous queries, and
projects in various granularities. This information is returned to the client in the form of a
list of strings that represent names, which might subsequently be used to build URL
strings to pass to C_dfESPsubscriberStart() or C_dfESPpublisherStart().
See the function description for a list of supported queries.

Functions for the Publish/Subscribe API

The functions provided for client publish/subscribe in the publish/subscribe API are as
follows. You can use them for simple connections or for more robust and complex
connections with multiple connections or recovery handling by the client.

int C_dfESPpubsubInit(C_dfESPLoggingLevel level, const char *logConfigPath)

Parameters level
the logging level

logConfigPath
the full pathname to the log configuration file

Functions for the Publish/Subscribe API 105

int C_dfESPpubsubInit(C_dfESPLoggingLevel level, const char *logConfigPath)

Return values 1
success

0
failure — an error is logged to the SAS Event Stream Processing
Engine log

Note: This function initializes SAS Event Stream Processing Engine client publisher and
subscriber services, and must be called (only once) before making any other client calls, with
the exception of C_dfESPpubsubSetPubsubLib().

clientObjPtr C_dfESPpublisherStart(char *serverURL, C_dfESPpubsubErrorCB_func
errorCallbackFunction, void *ctx)

Parameters serverURL
string representing the destination host, port, project, continuous query,
and window

serverURL format
"dfESP://host:port/project/contquery/window"

errorCallbackFunction
either NULL or a user-defined function pointer for handling client service
failures

ctx
optional context pointer for passing state into this call

Return value a pointer to a client object that is passed to all API functions described
below or NULL if there was a failure (error logged to the SAS Event
Stream Processing Engine log).

Note: This function validates and retains the connection parameters for a specific publisher
client connection.

clientObjPtr C_dfESPGDpublisherStart()

Parameters Same parameters and return value as C_dfESPpublisherStart().
Additional required parameter: an acknowledged or not acknowledged
callback function pointer. Additional required parameter: filename of this
publisher’s guaranteed delivery configuration file.

106 Chapter 8 / Using the Publish/Subscribe API

clientObjPtr C_dfESPsubscriberStart(char *serverURL, C_dfESPsubscriberCB_func
callbackFunction, C_dfESPpubsubErrorCB_ func errorCallbackFunction, void *ctx)

Parameters serverURL
string representing the destination host, port, project, continuous query,
and window in the SAS Event Stream Processing Engine. Also
specifies the client snapshot requirement - if "true" the client receives
the current snapshot state of the window prior to any incremental
updates.

serverURL format
"dfESP://host:port/project/contquery/window?
snapshot=true |false"

callbackFunction
a pointer to a user-defined function for handling received event blocks.
This function must call C_dfESPeventblock_destroy() to free
the event block.

errorCallbackFunction
either NULL or a user-defined function pointer for handling subscription
service failures

ctx
optional context pointer for parsing state into this call

Return value a pointer to a client object that is passed to all API functions described
below, or NULL if there was a failure (error logged to the SAS Event
Stream Processing Engine log).

Note: This function validates and retains the connection parameters for a specific subscriber
client connection.

clientObjPtr C_dfESPGDsubscriberStart()

Parameters Same parameters and return value as C_dfESPsubscriberStart().
Additional required parameter: filename of this subscriber’s guaranteed
delivery configuration file.

Functions for the Publish/Subscribe API 107

int C_dfESPpubsubConnect(clientObjPtr client)

Parameter client
pointer to a client object returned by
C_dfESPsubscriberStart() or
C_dfESPpublisherStart() or
C_dfESPGDsubscriberStart() or
C_dfESPGDpublisherStart()

Return values 1
success

0
failure — error logged to the SAS Event Stream Processing Engine log

Note: This function attempts to establish a connection with the SAS Event Stream
Processing Engine application or server.

int C_dfESPpubsubDisconnect(clientObjPtr client, int block)

Parameters client
pointer to a client object returned by
C_dfESPsubscriberStart() or
C_dfESPpublisherStart() or
C_dfESPGDsubscriberStart() or
C_dfESPGDpublisherStart()

block
set to 1 to wait for all queued events to be processed, else 0

Return values 1
success

0
failure — error logged to the SAS Event Stream Processing Engine log

Note: This function closes the connection associated with the passed client object.

108 Chapter 8 / Using the Publish/Subscribe API

int C_dfESPpubsubStop(clientObjPtr client, int block)

Parameters client
pointer to a client object returned by
C_dfESPsubscriberStart() or
C_dfESPpublisherStart() or
C_dfESPGDsubscriberStart() or
C_dfESPGDpublisherStart()

block
set to 1 to wait for all queued events to be processed, else 0

Return values 1
success

0
failure — error logged to the SAS Event Stream Processing Engine log

Note: This function stops the client session and removes the passed client object.

int C_dfESPpublisherInject(clientObjPtr client, C_dfESPeventblock eventBlock)

Parameters client
pointer to a client object returned by
C_dfESPpublisherStart()or
C_dfESPGDsubscriberStart()

eventBlock
the event block to inject into the SAS Event Stream Processing Engine.
The block is injected into the source window, continuous query, and
project associated with the passed client object.

Return values 1
success

0
failure — error logged to the SAS Event Stream Processing Engine log

Note: This function implements the client publisher function by publishing events into the
SAS Event Stream Processing Engine. Event blocks can be built using other additional
functions provided in the event stream processor objects C API.

Functions for the Publish/Subscribe API 109

C_dfESPstringV C_dfESPpubsubQueryMeta(char *queryURL)

Parameters queryURL
string representing the query to be posted to the SAS Event Stream
Processing Engine.

Return
value

a vector of strings representing the list of names comprising the response to the
query, or NULL if there was a failure (error logged to the SAS Event Stream
Processing Engine log). The end of the list is denoted by an empty string. The
caller is responsible for freeing the vector by calling
C_dfESPstringV_free().

Note: This function implements a general event stream processor metadata query
mechanism to allow a client to discover projects, continuous queries, windows, window
schema, and window edges currently running in the SAS Event Stream Processing Engine. It
has no dependencies or interaction with any other activity performed by the client. It opens an
independent socket to send the query and closes the socket upon receiving the query reply.

Supported formats of queryURL are as follows:

"dfESP://host:port?get=projects" returns names of
currently running
projects

“dfESP://host:port?get=projects_pubsubonly” returns names of
currently running
projects with publish/
subscribe enabled

"dfESP://host:port?get=queries" returns names of
continuous queries
in currently running
projects

"dfESP://host:port?get=queries_pubsubonly" returns names of
continuous queries
containing publish/
subscribe enabled
windows in currently
running projects

110 Chapter 8 / Using the Publish/Subscribe API

"dfESP://host:port?get=windows" returns names of
windows in currently
running projects

"dfESP://host:port?get=windows_pubsubonly" returns names of
publish/subscribe
enabled windows in
currently running
projects

"dfESP://host:port/project?get=windows" returns names of
windows in the
specified project, if
running

"dfESP://host:port/project?
get=windows_pubsubonly"

returns names of
publish/subscribe-
enabled windows in
the specified project,
if running

"dfESP://host:port/project?get=queries" returns names of
continuous queries
in the specified
project, if running

"dfESP://host:port/project?
get=queries_pubsubonly"

returns names of
continuous queries
containing publish/
subscribe-enabled
windows in the
specified project, if
running

dfESP://host:port/project/contquery?get=windows" returns names of
windows in the
specified continuous
query and project, if
running

Functions for the Publish/Subscribe API 111

dfESP://host:port/project/contquery?
get=windows_pubsubonly"

returns names of
publish/subscribe-
enabled windows in
the specified
continuous query
and project, if
running

dfESP://host:port/project/contquery/window?
get=schema"

returns a single
string that is the
serialized version of
the window schema

dfESP://host:port/project/contquery/window?
get=edges"

returns the names of
all the window’s
edges

C_dfESPstringV C_dfESPpubsubGetModel(char *queryURL)

Parameters queryURL
string representing the query to be posted to the SAS Event Stream
Processing Engine.
Supported formats of queryURL are as follows:
n "dfESP://host:port" – returns names of all windows in the

model and their edges
n "dfESP://host:port/project" – returns names of all

windows in the project and their edges
n "dfESP://host:port/project/contquery" – returns

names of all windows in the continuous query and their edges

Return value A vector of strings representing the response to the query, or NULL if there
was a failure (error logged to the Event Stream Processing Engine log).
The format of each string is “project/query/window: edge1, edge2, ...”. The
end of the list is denoted by an empty string. The caller is responsible for
freeing the vector by calling C_dfESPstringV_free().

Note: This function allows a client to discover a SAS Event Stream Processing Engine model
by returning the complete set of windows in the model or project or continuous query, along
with the window’s edges. It has no dependencies or interaction with any other activity
performed by the client. It opens an independent socket to send the query and closes the
socket upon receiving the query reply.

112 Chapter 8 / Using the Publish/Subscribe API

void C_dfESPpubsubShutdown()

Shutdown publish/subscribe services

int C_dfESPpubsubPersistModel(char *hostportURL, const char *persistPath)

Parameters hostportURL
string in the form “dfESP://host:port”

persistpath
the absolute or relative pathname for the persist file on the target platform

Return
value

1
success

0
failure — error logged to the SAS Event Stream Processing Engine log

Note: This function instructs the engine at the hostportURL to persist its current state to disk.
It has no dependencies or interaction with any other activity performed by the client. It opens
an independent socket to send the request and closes the socket upon receiving the request
return code.

Functions for the Publish/Subscribe API 113

int C_dfESPpubsubSetPubsubLib(C_dfESPpsLib psLib)

Parameters psLib
enum representing the client/server transport
Supported values:
n ESP_PSLIB_NATIVE (default)
n ESP_PSLIB_SOLACE — In this mode a client configuration file

named solace.cfg must be present in the current directory to provide
appliance connectivity parameters. For C and C++ clients, the text
file format is as follows:

solace
{
SESSION_HOST = "10.37.150.244:55555"
SESSION_USERNAME = "pub1"
SESSION_PASSWORD = "pub1"
SESSION_VPN_NAME = "SAS"
SESSION_RECONNECT_RETRIES = "3"
SESSION_REAPPLY_SUBSCRIPTIONS = true
SESSION_TOPIC_DISPATCH = true
}
sas
{
buspersistence = false
queuename = "myqueue"
}

For Java clients, the text file format is as follows:

{
 solace =
 {
 session = ("host", "10.37.150.244:55555",
 "username", "sub1", "password",
 "sub1", "vpn_name", "SAS");
 context = ("CONTEXT_TIME_RES_MS", "50",
 "CONTEXT_CREATE_THREAD", "1");
 }
 sas=
 {
 buspersistence = false;
 queuename = "myqueue";
 }
 }

n ESP_PSLIB_TERVELA — In this mode a client configuration file
named client.config must be present in the current directory to
provide appliance connectivity parameters. The text file format is as
follows:

USERNAME esp
PASSWORD esp
PRIMARY_TMX 10.37.8.175
LOGIN_TIMEOUT 45000
GD_CONTEXT_NAME tvaIF
GD_MAX_OUT 10000

114 Chapter 8 / Using the Publish/Subscribe API

int C_dfESPpubsubSetPubsubLib(C_dfESPpsLib psLib)

Return value 1
success

0
failure

Note: This function call is optional, but if called it must be called before calling
C_dfESPpubsubInit(). It modifies the transport used between the client and the SAS
Event Stream Processing engine from the default peer-to-peer TCP/IP based socket
connection that uses the ESP publish/subscribe protocol. Instead, you can specify
ESP_PSLIB_SOLACE or ESP_PSLIB_TERVELA to indicate that the client’s TCP/IP peer is a
Solace or Tervela appliance, respectively. This mode requires that the SAS Event Stream
Processing engine runs a Solace or Tervela connector to provide the corresponding inverse
client to the appliance. The topic names used by the appliance are coordinated by the publish/
subscribe client and connector to correctly route event blocks through the appliance.
Note: Solace functionality is not available on HP Itanium, AIX, and 32–bit Microsoft Windows
platforms.
Note: Tervela functionality is not available on HP Itanium, AIX, SPARC, and 32–bit Microsoft
Windows platforms.
Note: When using the Solace or Tervela transports, the following publish/subscribe API
functions are not supported:

C_dfESPpubsubGetModel()
C_dfESPGDpublisherStart()
C_dfESPGDpublisherGetID()
C_dfESPGDsubscriberStart()
C_dfESPGDsubscriberAck()
C_dfESPpubsubSetBufferSize()

C_dfESPGDsubscriberAck()

Parameters Triggers an acknowledged.
n Parameter 1: client object pointer.
n Parameter 2: event block pointer. The event block must not be freed

before this function returns.

Return value n 1 = success
n 0 = failure

Functions for the Publish/Subscribe API 115

C_dfESPGDpublisherCB_func()

Parameters Signature of the new publisher callback function passed to
C_dfESPGDpublisherStart()
n Parameter 1: READY or ACK or NACK (acknowledged or not

acknowledged).
n Parameter 2: 64-bit event block ID
n Parameter 3: the user context pointer passed to
C_dfESPGDpublisherStart()

Return value Void

C_dfESPGDpublisherGetID()

Return value 64-bit event block ID. Might be called by a publisher to obtain sequentially
unique IDs to be written to event blocks before injecting them to a
guaranteed delivery-enabled publish client.

int C_dfESPpubsubSetBufferSize(clientObjPtr client, int32_t mbytes)

Parameters client
pointer to a client object returned by
C_dfESPsubscriberStart() ,C_dfESPpublisherStart()
, C_dfESPGDsubscriberStart(), or
C_dfESPGDpublisherStart()

mbytes
the read and write buffer size, in units of 1MB

Return value 1
success

0
failure

Note: This function call is optional, but if called it must be called after
C_dfESPsubscriberStart(), C_dfESPpublisherStart(),
C_dfESPGDsubscriberStart(), or C_dfESPGDpublisherStart() and before
C_dfESPpubsubConnect(). It modifies the size of the buffers used for socket Read and
Write operations. By default this size is 16MB

116 Chapter 8 / Using the Publish/Subscribe API

A C library provides a set of functions to enable SAS Event Stream Processing Engine
client developers to analyze and manipulate the event stream processing objects from
the SAS Event Stream Processing Engine application or server. These functions are a
set of C wrappers around a small subset of the methods provided in the C++ Modeling
API. With these wrappers, client developers can use C rather than C++. Examples of
these objects are events, event blocks, and schemas. A small sampling of these calls
follows. For the full set of calls, see the API reference documentation available at
$DFESP HOME/doc/html.

To get the size of
an event block:

C_ESP_int32_t eventCnt = C_dfESPeventblock_getSize(eb);

To extract an event
from an event
block:

C_dfESPevent ev = C_dfESPeventblock_getEvent(eb, eventIndx);

To create an object
(a string
representation of
schema in this
case):

C_ESP_utf8str_t schemaCSV = C_dfESPschema_serialize(schema);

To free an object (a
vector of strings in
this case):

C_dfESPstringV_free(metaVector);

Using the Java Publish/Subscribe API

Overview to the Java Publish/Subscribe API

The SAS Event Stream Processing Engine and its C publish/subscribe API use the SAS
logging library, whereas the Java publish/subscribe API uses the Java logging APIs in
the java.util.logging package. Please refer to that package for log levels and
specifics about Java logging.

Using the Java Publish/Subscribe API 117

The Java publish/subscribe API is provided in two packages. These packages define
the following public interfaces:

n sas.com.dfESP.api.pubsub

o sas.com.dfESP.api.pubsub.clientHandler

o sas.com.dfESP.api.pubsub.clientCallbacks

n sas.com.dfESP.api.server

o sas.com.dfESP.api.server.datavar

o sas.com.dfESP.api.server.event

o sas.com.dfESP.api.server.eventblock

o sas.com.dfESP.api.server.library

o sas.com.dfESP.api.server.schema

A client can query the Event Stream Processor application or server at any time to
discover currently running windows, continuous queries, and projects in various
granularities. This information is returned to the client in the form of a list of strings that
represent names. This list can be used to build URL strings to pass to
subscriberStart() or publisherStart().

The Java publish/subscribe API provides the same ability as the C++ API to substitute a
Solace or Tervela transport, but it is invoked in a different way. Instead of calling an API
function to modify the transport, simply specify dfx-esp-tervela-api.jar or dfx-
esp-solace-api.jar in the class path, in front of dfx-esp-api.jar.

You can find details about these interface methods and their parameters in several
places:

n The parameters and usage for the Java publish/subscribe API are the same for the
equivalent calls for the C publish/subscribe API.

n The API references available at $DFESP_HOME/doc/html.

n The interface references available at $DFESP_HOME/doc/html.

n The reference implementations for each of the interface references.

118 Chapter 8 / Using the Publish/Subscribe API

Using High Level Publish/Subscribe Methods

The following high-level publish/subscribe methods are defined in the following interface
reference: sas.com.dfESP.api.pubsub.clientHandler. Navigate to
$DFESP_HOME/doc/html to access the documentation.

Method Description

boolean init(Level level) Initialize publish/subscribe services

dfESPclient publisherStart(String serverURL,
clientCallbacks userCallbacks, Object ctx)

Start a publisher

dfESPclient subscriberStart(String serverURL,
clientCallbacks userCallbacks, Object ctx)

Start a subscriber

boolean connect(dfESPclient client) Connect to the Event Stream
Processor application or server

boolean publisherInject((dfESPclient client,
dfESPeventblock eventblock)

Publish event blocks

ArrayList< String > queryMeta (String queryURL) Query model metadata

ArrayList< String > getModel(String queryURL) Query model windows and their
edges

boolean disconnect (dfESPclient client, boolean block) Disconnect from the event stream
processor

boolean stop (dfESPclient client, boolean block) Stop a subscriber or publisher

void shutdown () Shutdown publish/subscribe
services

boolean setBufferSize(dfESPclient client, int mbytes) Change the default socket read and
write buffer size

dfESPclient GDsubscriberStart (String serverURL,
clientCallbacks userCallbacks, Object ctx, String
configFile)

Start a guaranteed delivery
subscriber

Using the Java Publish/Subscribe API 119

Method Description

dfESPclient GDpublisherStart (String serverURL,
clientCallbacks userCallbacks, Object ctx, String
configFile)

Start a guaranteed delivery
publisher

long GDpublisherGetID() Get a sequentially unique ID to write
to an event block to be published
using guaranteed delivery

boolean GDsubscriberAck(dfESPclient client,
dfESPeventblock eventblock)

Trigger a guaranteed delivery
acknowledgment

boolean persistModel(String hostportURL, String
persistPath)

Instruct a running engine to persist
its current state to disk

Using User-supplied Callback Functions

The sas.com.dfESP.api.pubsub.clientCallbacks interface reference defines the
signatures of the user-supplied callback functions. There currently are three functions:

n the subscribed event block handler

n the publish/subscribe failure handler

n the guaranteed delivery ACK-NACK handler

The subscribed event block handler is used only by subscriber clients. It is called when
a new event block from the application or server arrives. After processing the event
block, the client is responsible for freeing it by calling eventblock_destroy(). The
signature of this user-defined callback is as follows where "eventBlock" is the event
block just read, "schema" is the schema of the event for client processing, and “ctx” is
an optional context pointer for maintaining call state:

void sas.com.dfESP.api.pubsub.clientCallbacks.dfESPsubscriberCB_func
 (dfESPeventblock eventBlock, dfESPschema schema, Object ctx)

The second callback function for publish/subscribe client error handling is optional for
both subscriber and publisher clients. If supplied (that is, not NULL), it is called for every
occurrence of an abnormal event within the client services, such as an unsolicited

120 Chapter 8 / Using the Publish/Subscribe API

disconnect. This enables the client to gracefully handle and possibly recover from
publish/subscribe services errors. The signature for this callback function is below
where

n failure is either pubsubFail_APIFAIL, pubsubFail_THREADFAIL, or
pubsubFail_SERVERDISCONNECT.

n code provides the specific code of the failure.

n ctx is an optional context pointer to a state data structure.

void sas.com.dfESP.api.pubsub.clientCallbacks.dfESPpubsubErrorCB_func
 (clientFailures failure, clientFailureCodes code, Object ctx)

clientFailures and client FailureCodes are defined in interface references
sas.com.dfESP.api.pubsub.clientFailures and
sas.com.dfESP.pubsub.clientFailureCodes.

The guaranteed delivery ACK-NACK handler is invoked to provide the status of a
specific event block, or to notify the publisher that all subscribers are connected and
publishing can begin. The signature for this callback function is as follows:

void sas.com.dfESP.api.pubsub.clientCallbacks.dfESPGDpublisherCB_func
 (clientGDStatus eventBlockStatus, long eventBlockID, Object ctx)

where

n eventBlockStatus is either ESP_GD_READY, ESP_GD_ACK, or
ESP_GD_NACK

n eventBlockID is the ID written to the event block prior to publishing

n ctx is an optional context pointer to a state data structure

Using the Java Publish/Subscribe API 121

122 Chapter 8 / Using the Publish/Subscribe API

9
Using Connectors and Adapters

Using Connectors . 124
Overview to Connectors . 124
Activating Optional Plug-ins . 126
Using File and Socket Connectors . 127
File and Socket Connector Publisher Blocking Rules 129
XML File and Socket Connector Data Format . 129
JSON File and Socket Connector Data Format 130
Syslog File and Socket Connector Notes . 131
Using Database Connectors . 131
Subscriber Event Stream Processor to SQL

Data Type Mappings . 134
Publisher SQL to Event Stream Processor Data

Type Mappings . 135
SMTP Subscribe Connector . 136
IBM WebSphere MQ Connector . 137
Tervela Data Fabric Connector . 140
Solace Systems Connector . 145
Tibco Rendezvous (RV) Connector . 149
User-Written Connectors . 152
Integrating a User-Written Connector . 155

Using Adapters . 155
Overview to Adapters . 155
File and Socket Adapter . 156
Database Adapter . 158
SMTP Subscriber Adapter . 160

123

Event Stream Processor to Event Stream
Processing Engine Adapter . 161

SAS Data Set Subscriber Adapter . 161
Java Message Service (JMS) Adapter . 163
IBM WebSphere MQ Adapter . 165
Tervela Data Fabric Adapter . 167
Solace Systems Adapter . 169
Tibco Rendezvous (RV) Adapter . 171
PI Publisher Adapter . 173

Using Connectors

Overview to Connectors

Connectors are available in libraries located at $DFESP_HOME/plugins_directory.
They use the publish/subscribe API to do one of the following:

n publish event streams into source windows. Publish operations do the following:

o read event data from the specified source

o inject those events into a specific source window of a running event stream
processor

n subscribe to window event streams. Subscribe operations write output events from a
window of a running event stream processor to the specified target.

Connectors do not simultaneously publish and subscribe.

All connector classes are derived from a base connector class that is included in a
connector library. The library includes a connector manager that is responsible for
loading connectors during initialization. This library is located in $DFESP_HOME/lib/
libdfxesp_connectors-Maj.Min, where Maj.Min indicates the release number
for the distribution.

Connector examples are available in $DFESP_HOME/src. The sample_connector
directory includes source code for a user-defined connector derived from the

124 Chapter 9 / Using Connectors and Adapters

dfESPconnector base class. It also includes sample code that invokes a sample
connector. For more information about how to write a connector and getting it loaded by
the connector manager, see “User-Written Connectors” on page 152.

The remaining connector examples implement application code that invokes existing
connectors. These connectors are loaded by the connector manager at initialization.
Those examples are as follows:

n db_connector_publisher

n db_connector_subscriber

n json_connector_publisher

n json_connector_subscriber

n socket_connector_publisher

n socket_connector_subscriber

n xml_connector_publisher

n xml_connector_subscriber

To obtain a new instance of a connector, call the dfESPwindow::getConnector()
method. Pass the connector name as the first parameter:

dfESPConnector *subConn =

static_cast<dfESPCConnector *>(window->getConnector("sampleConnector", true));

The packaged connector names are as follows:

n "fs"

n "db"

n "smtp"

n “mq”

n “tva”

n “sol”

n “tibrv”

Using Connectors 125

n “pi”

Pass an autoStart Boolean as the second parameter. If this Boolean is set to false,
the connector can be started later by calling the
dfESPwindow::startConnectors() method or the dfESPconnector::start()
method.

After a connector instance is obtained, any of its base class public methods can be
called. This includes setParameter(), which can be called multiple times to set
required and optional parameters. Parameters must be set before the connector is
started.

The type parameter is required and is common to all connectors. It must be set to pub
or sub.

Additional connector configuration parameters are required depending on the connector
type, and are described later in this section.

Connectors can be stopped at any time by either calling the
dfESPwindow::stopConnectors() method or the dfESPconnector::stop()
method.

Activating Optional Plug-ins

The $DFESP_HOME/lib/plugins directory contains the complete set of plug-in
objects supported by SAS Event Stream Processing engine. Plug-ins that contain "_cpi"
in their filename are connectors.

The Connectors.Excluded file in the $DFESP_HOME/lib directory contains a list of
connectors. When the connector manager starts, SAS Event Stream Processing loads
all connectors found in the /plugins directory, except those that are listed in
connectors.excluded. By default, connectors.excluded specifies connectors that require
third-party libraries that are not shipped with SAS Event Stream Processing Engine.
This prevents those connectors from being automatically loaded and generating errors
due to missing dependencies.

You can edit connectors.excluded as needed. The complete list of valid names for
connectors.excluded is as follows:

126 Chapter 9 / Using Connectors and Adapters

n “ db”

n “fs”

n “smtp”

n “mq”

n “tibrv”

n “sol”

n “tva”

n “pi”

Using File and Socket Connectors

File and socket connectors support both publish and subscribe operations on files or
socket connections that stream the following data types:

n binary

n csv

n xml

n json

n syslog (only supports publish operations)

The file or socket nature of the connector is specified by the form of the configured
fsname. A name in the form of host: port is a socket connector. Otherwise, it is a file
connector.

When the connector implements a socket connection, it might act as a client or server,
regardless of whether it is a publisher or subscriber. When you specify both host and
port in the fsname, the connector implements the client. The configured host and port
specify the network peer implementing the server side of the connection. However,
when host is blank (that is, when fsname is in the form of “: port”), the connection is
reversed. The connector implements the server and the network peer is the client.

Using Connectors 127

Use the following parameters when you specify file and socket connectors.

Table 9.1 Required Parameters for File and Socket Connectors

Parameter Description

type Specifies whether to publish or subscribe

fstype binary/csv/xml/json/syslog

fsname Specifies the input file for publishers, output file for subscribers, or
socket connection in the form of host: port . Leave host blank to
implement a server instead of a client.

Table 9.2 Optional Parameters for Subscriber File and Socket Connectors

Parameter Description

snapshot Disables the sending of snapshot data. The default value is
enabled.

collapse Converts UPDATE_BLOCK events to UPDATE events in order to
make subscriber output publishable. The default value is disabled.

periodicity Specifies the interval at which the subscriber output file is closed
and a new output file opened. When configured, all output
filenames have a timestamp appended for when that file was
opened. This parameter does not apply to socket connectors.

maxfilesize Specifies the maximum size in bytes of the subscriber output file.
When reached, a new output file is opened. When configured, all
output filenames have a timestamp appended. This parameter
does not apply to socket connectors.

Table 9.3 Optional Parameters for Publisher File and Socket Connectors

Parameter Description

blocksize Specifies the number of events to include in a published even
block. The default value is 1.

128 Chapter 9 / Using Connectors and Adapters

Parameter Description

transactional Sets the event block type to transactional. The default value is
normal.

growinginputfile Enables reading from a growing input file by publishers. The
default value is disabled. When enabled, the publisher reads
indefinitely from the input file until the connector is stopped or the
server drops the connection. This parameter does not apply to
socket connectors.

rate Controls the rate at which event blocks are injected. Specified in
events per seconds.

maxevents Specifies the maximum number of events to publish.

prebuffer Controls whether event blocks are buffered to an event block
vector before doing any injects. The default value is false. Not
valid with growinginputfile or for a socket connector

File and Socket Connector Publisher
Blocking Rules

Input data used by a file and socket connector publisher can contain optional
transaction delimiters. If present, a pair of these delimiters defines a block of contained
events, and the publisher ignores any configured value for the blocksize parameter. If
transaction delimiters are not present in input data, event blocks have a size equal to
the blocksize parameter. If the blocksize parameter is not configured, the default
blocksize is 1. The file and socket connector subscriber always includes transaction
delimiters in the output file.

XML File and Socket Connector Data Format

The XML file and socket connector subscriber writes the following header to the XML
output XML:

<?xml version="1.0" encoding="utf-8"?>

The same header is support by the XML file and socket publisher.

Using Connectors 129

The following tags are valid:

n “project”

n “contquery”

n “window”

n “transaction”

n “event”

n “opcode”

In addition, any tags corresponding to event data field names are valid when contained
within an event. All of these tags are required except "transaction". For more
information, see “File and Socket Connector Publisher Blocking Rules” on page 129.

Event data field tags can also contain a corresponding Boolean attribute named "key",
which identifies a field as a key field. If not present, its default value is "false".

Key fields must match key fields in the window schema, and must be present with
value=”true” in all events in XML input data.

Valid data for the "opcode" tag in input data includes the following: "i ", "u", "p", "d", and
"s", for Insert, Update, Upsert, Delete, and Safedelete respectively. The subscriber
writes only Insert, Update, and Delete opcodes to the output data.

The “opcode” tag can contain a “flags” attribute, where its only valid value is “p”. This
identifies the event as a partial update record.

Non-key fields in the event are not required in input data, and have value = NULL (or
partial-update) if missing, or if the field contains no data. The subscriber always writes
all event data fields.

JSON File and Socket Connector Data
Format

For allowed fields, the JSON format mirrors the XML tags format and hierarchy, except
attributes in XML data (such as "key" and "flags"). These are represented in JSON as
additional fields enclosed in the parent field.

130 Chapter 9 / Using Connectors and Adapters

All of the rules described in the XML data format apply to JSON as well.

In addition, JSON input data can contain events inside an array, if the complete array is
contained within a single parent transaction or window. This is optional and is only a
syntactical convenience. The subscriber does not write event arrays to the output data.

Syslog File and Socket Connector Notes

The syslog file and socket connector is supported only for publisher operations. It
collects syslog events, converts them into ESP event blocks, and injects them into one
or more source windows in a running ESP model.

The input syslog events are read from a file or named pipe written by the syslog
daemon. Syslog events filtered out by the daemon are not seen by the connector. When
reading from a named pipe, the following conditions must be met:

n The connector must be running in the same process space as the daemon.

n The pipe must exist.

n The daemon must be configured to write to the named pipe.

You can specify the growinginputfile parameter to read data from the file or
named pipe as it is written.

The connector reads text data one line at a time, where the expected format is as
follows:

month day hours : minutes : seconds hostname process : message

From each line, the connector extracts date, hostname, process, and message. The
resulting event requires the following schema:

ID*:int32_udate:date_hostname:string.process:string.message:string

The connector reports an error when the schema of the target window does not match.

Using Database Connectors

A database connector that supports both publish and subscribe operations is available.
It uses the DataDirect ODBC driver. Currently, it is certified for Oracle, MySQL, and
DB2. It requires that database connectivity be available through a system Data Source

Using Connectors 131

Name (DSN). This DSN and the associated database user credentials are required
configuration parameters for the connector.

For SAS Event Stream Processing Engine installations not on Microsoft Windows, the
DataDirect drivers are located in $DFESP_HOME/lib. The DSN required for your
specific database connection is configured in an odbc.ini file that is pointed to by the
ODBC_INI environment variable. A default odbc.ini.template file is available in
$DFESP_HOME/etc. Alternatively, two useful tools to configure and verify the
DataDirect drivers and your database connection are available in $DFESP_HOME/bin:

n dfdbconf - Use this interactive ODBC Configuration Tool to add an ODBC DSN.
Run $DFESP_HOME/bin/dfdbconf. Select a driver from the list of available
drivers and set the appropriate parameters for that driver. The new DSN is added to
the odbc.ini file.

n dfdbview - This interactive tool enables the user to manually connect to the
database and perform operations using SQL commands.

For Windows ESP installations, ensure that the optional ODBC component is installed
during installation. Then you can configure a DSN using the Windows ODBC Data
Source Administrator. This application is located in the Windows Control Panel under
Administrative Tools. Beginning in Windows 8, the icon is named ODBC Data
Sources. On 64-bit operating systems, there are 32-bit and 64-bit versions.

Perform the following steps to create a DSN in a Windows environment:

1 Enter odbc in the Windows search window. The default ODBC Data Source
Administrator is displayed.

2 Select the System DSN tab and click Add.

3 Select the appropriate driver from the list and click Finish.

4 Enter your information in the Driver Setup dialog box.

5 Click OK when finished.

This DSN is supplied as a parameter to the database connector.

132 Chapter 9 / Using Connectors and Adapters

The connector publisher obtains result sets from the database using a single SQL
statement configured by the user. Additional result sets can be obtained by stopping
and restarting the connector. The connector subscriber writes window output events to
the database table configured by the user.

Use the following parameters with database connectors

Table 9.4 Required Parameters for Subscriber Database Connectors

Parameter Description

type Specifies to subscribe.

connectstring Specifies the database DSN and user credentials in the format
"DSN= dsn;uid=userid;pwd=password;"

tablename Specifies the target table name.

Table 9.5 Required Parameters for Publisher Database Connectors

Parameter Description

type Specifies to publish.

connectstring Specifies the database DSN and user credentials in the format
"DSN=dsn;uid=userid;pwd=password;"

selectstatement Specifies the SQL statement executed on the source database.

Table 9.6 Optional Parameters for Subscriber Database Connectors

Parameter Description

snapshot Disables the sending of snapshot data. The default value is
enabled.

Using Connectors 133

Table 9.7 Optional Parameters for Publisher Database Connectors

Parameter Description

blocksize Specifies the number of events to include in a published event
block. The default value is 1.

transactional Sets the event block type to transactional. The default value is
normal.

The number of columns in the source or target database table and their data types must
be compatible with the schema of the involved event stream processor window.

Subscriber Event Stream Processor to SQL
Data Type Mappings

For databases that have been certified to date, the event stream processor to SQL data
type mappings are as follows.

Subscriber Event
Stream Processor
Data Type SQL Data Type

ESP_UTF8STR SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR,
SQL_WCHAR, SQL_WVARCHAR, SQL_WLONGVARCHAR,
SQL_BINARY, SQL_VARBINARY, SQL_LONGVARBINARY,
SQL_GUID

ESP_INT32 SQL_INTEGER, SQL_BIGINT, SQL_DECIMAL, SQL_BIT,
SQL_TINYINT, SQL_SMALLINT

ESP_INT64 SQL_BIGINT, SQL_DECIMAL, SQL_BIT, SQL_TINYINT,
SQL_SMALLINT

ESP_DOUBLE SQL_DOUBLE, SQL_FLOAT, SQL_REAL, SQL_NUMERIC,
SQL_DECIMAL

SP_MONEY SQL_DOUBLE (converted to ESP_DOUBLE), SQL_FLOAT,
SQL_REAL, SQL_NUMERIC (converted to SQL_NUMERIC),
SQL_DECIMAL (converted to SQL_NUMERIC)

134 Chapter 9 / Using Connectors and Adapters

Subscriber Event
Stream Processor
Data Type SQL Data Type

ESP_DATETIME SQL_TYPE_DATE (only sets year/month/day), SQL_TYPE_TIME
(only sets/hours/minutes/seconds), SQL_TYPE_TIMESTAMP
(sets fractional seconds = 0)

ESP_TIMESTAMP SQL_TYPE_TIMESTAMP

The following SQL mappings are not supported: SQL_BINARY, SQL_VARBINARY,
SQL_LONGVARBINARY, SQL_BIT, SQL_TINYINT, SQL_SMALLINT

Publisher SQL to Event Stream Processor
Data Type Mappings

The SQL to event stream processor data type mappings are as follows:

Publisher SQL Data Type Event Stream Processor Data Types

SQL_CHAR ESP_UTF8STR

SQL_VARCHAR ESP_UTF8STR

SQL_LONGVARCHAR ESP_UTF8STR

SQL_WCHAR ESP_UTF8STR

SQL_WVARCHAR ESP_UTF8STR

SQL_WLONGVARCHAR ESP_UTF8STR

SQL_BIT ESP_INT32, ESP_INT64

SQL_TINYINT ESP_INT32, ESP_INT64

SQL_SMALLINT ESP_INT32, ESP_INT64

SQL_INTEGER ESP_INT32, ESP_INT64

Using Connectors 135

Publisher SQL Data Type Event Stream Processor Data Types

SQL_BIGINT ESP_INT64

SQL_DOUBLE ESP_DOUBLE, ESP_MONEY (upcast from
ESP_DOUBLE)

SQL_FLOAT ESP_DOUBLE, ESP_MONEY (upcast from
ESP_DOUBLE)

SQL_REAL ESP_DOUBLE

SQL_TYPE_DATE ESP_DATETIME (sets only year/month/day)

SQL_TYPE_TIME ESP_DATETIME (sets only hours/minutes/seconds)

SQL_TYPE_TIMESTAMP ESP_TIMESTAMP, ESP_DATETIME

SQL_DECIMAL ESP_INT32 (only if scale = 0, and precision must be <=
10), ESP_INT64 (only if scale = 0, and precision must be
<= 20), ESP_DOUBLE

SQL_NUMERIC ESP_DOUBLE, ESP_MONEY (converted from
SQL_NUMERIC)

SQL_BINARY ESP_UTF8STR

SQL_VARBINARY ESP_UTF8STR

SQL_LONGVARBINARY ESP_UTF8STR

SMTP Subscribe Connector

A Simple Mail Transfer Protocol (SMTP) subscribe connector can be used to e-mail
window event blocks or single events, such as alerts or items of interest. This connector
is subscribe-only. The connection to the SMTP server uses port 25. No user
authentication is performed, and the protocol runs unencrypted.

The e-mail sender and receiver addresses are required information for the connector.
The e-mail subject line contains a standard event stream processor URL in the form

136 Chapter 9 / Using Connectors and Adapters

"dfESP://host:port/project/contquery/window", followed by a list of the key
fields in the event. The e-mail body contains data for one or more events encoded in
CSV format.

The parameters for the SMTP connector are as follows:

Table 9.8 Required Parameters for the SMTP Connector

Parameter Description

type Specifies whether to publish or subscribe.

smtpserver Specifies the SMTP server host name or IP address.

sourceaddress Specifies the e-mail address to be used in the “from” field of the e-
mail.

destaddress Specifies the e-mail address to which to send the e-mail message.

Table 9.9 Optional Parameters for SMTP Connectors

Parameter Description

snapshot Disables the sending snapshot data. The default value is enabled.

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

emailperevent Specifies true or false. The default is false. If false, each e-mail
body contains a full event block. If true, each mail body contains a
single event.

IBM WebSphere MQ Connector

The IBM WebSphere MQ connector (MQ) supports the IBM WebSphere Message
Queue Interface for publish and subscribe operations. The subscriber receives event
blocks and publishes them to an MQ queue. The publisher is an MQ subscriber, which
injects received event blocks into source windows.

Using Connectors 137

The IBM WebSphere MQ Client run-time libraries must be installed on the platform that
hosts the running instance of the connector. The run-time environment must define the
path to those libraries (for example, specifying LD_LIBRARY_PATHon Linux platforms).

The connector operates as an MQ client. It requires that you define the environment
variable MQSERVER to specify the connector’s MQ connection parameters. This variable
specifies the server’s channel, transport type, and host name. For more information, see
your WebSphere documentation.

The topic string used by an MQ connector is a required connector parameter. In
addition, an MQ subscriber requires a parameter that defines the message format used
to publish events to MQ. The format options are csv or binary. An MQ publisher can
consume any message type that is produced by an MQ subscriber.

An MQ publisher requires two additional parameters that are related to durable
subscriptions. The publisher always subscribes to an MQ topic using a durable
subscription. This means that the publisher can re-establish a former subscription and
receive messages that had been published to the related topic while the publisher was
disconnected.

These parameters are as follows:

n subscription name, which is user supplied and uniquely identifies the subscription

n subscription queue, which is the MQ queue that is opened for input by the publisher

The MQ persistence setting of messages written to MQ by an MQ subscriber is always
equal to the persistence setting of the MQ queue.

Use the following parameters for MQ connectors.

Table 9.10 Required Parameters for Subscriber MQ Connectors

Parameter Description

type Specifies to subscribe.

mqtopic Specifies the MQ topic name.

mqtype Specifies binary or CSV.

138 Chapter 9 / Using Connectors and Adapters

Table 9.11 Required Parameters for Publisher MQ Connectors

Parameter Description

type Specifies to publish.

mqtopic Specifies the MQ topic name.

mqsubname Specifies the MQ subscription name.

mqsubqueue Specifies the MQ queue.

Table 9.12 Optional Parameters for Subscriber MQ Connectors

Parameter Description

snapshot Disables the sending of snapshot data. The default value is
enabled.

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

queuemanager Specifies the MQ queue manager.

Table 9.13 Optional Parameters for Publisher MQ Connectors

Parameter Description

blocksize Specifies the number of events to include in a published event
block. The default value is 1.

transactional Sets the event block type to transactional. The default value is
normal.

queuemanager Specifies the MQ queue manager.

Using Connectors 139

Tervela Data Fabric Connector

The Tervela Data Fabric connector communicates with a software or hardware-based
Tervela Data Fabric for publish and subscribe operations.

A Tervela subscriber connector receives events blocks and publishes to the following
Tervela topic:
“SAS.ENGINES.enginename.projectname.queryname.windowname.OUT.”

A Tervela publisher connector reads event blocks from the following Tervela topic:
“SAS.ENGINES.enginename.projectname.queryname.windowname.IN” and injects
them into source windows.

As a result of the bus connectivity provided by the Tervela Data Fabric connector, the
SAS Event Stream Processing engine does not need to manage individual publish/
subscribe connections. A high capacity of concurrent publish/subscribe connections to a
single ESP engine is achieved.

Note: Tervela functionality is not available on HP Itanium, AIX, SPARC, or 32–bit
Microsoft Windows platforms.

The platform that hosts the running instance of the connector must have the Tervela
run-time libraries installed. The run-time environment must define the path to those
libraries (specify LD_LIBRARY_PATH on Linux platforms, for example).

The Tervela Data Fabric Connector has the following characteristics:

n It works with binary event blocks. No other event block formats are supported.

n It operates as a Tervela client. All Tervela Data Fabric connectivity parameters are
required as connector configuration parameters.

Before using Tervela Data Fabric connectors, you must configure the following items on
the Tervela TPM Provisioning and Management System:

n a client user name and password to match the connector’s tvauserid and
tvapassword configuration parameters

n the inbound and outbound topic strings and associated schema

140 Chapter 9 / Using Connectors and Adapters

n publish or subscribe entitlement rights associated with a client user name

When the connector starts, it publishes a message to topic SAS.META.tvaclientname
(where tvaclientname is a connector configuration parameter). This message contains
the following information:

n The mapping of the ESP engine name to a host:port field potentially used by an ESP
publish/subscribe client. The host:port string is the required urlhostport
connector configuration parameter, and is substituted by the engine name in topic
strings used on the fabric.

n The project, query, and window names of the window associated with the connector,
as well as the serialized schema of the window.

All messaging performed by the Tervela connector uses the Tervela Guaranteed
Delivery mode. Messages are persisted to a Tervela TPE appliance. When a publisher
connector connects to the fabric, it receives messages already published to the
subscribed topic over a recent time period. By default, the publisher connector sets this
time period to eight hours. This enables a publisher to catch up with a day’s worth of
messages. Using this mode requires regular purging of persisted data by an
administrator when there are no other automated mechanism to age out persisted
messages.

Tervela subscriber connectors support a hot failover mode. The active/standby status of
the connector is coordinated with the fabric so that a standby connector becomes active
when the active connector fails. Several conditions must be met to guarantee
successful switchovers:

n The engine names of the ESP engines running the involved connectors must all be
identical. This set of ESP engines is called the failover group.

n All involved connectors must be active on the same set of topics.

n All involved subscriber connectors must be configured with the same
tvaclientname.

n All involved connectors must initiate message flow at the same time, and with the
TPE purged of all messages on related topics. This is required because message
IDs must be synchronized across all connectors.

Using Connectors 141

n Message IDs that are set by the injector of event blocks into the model must be
sequential and synchronized with IDs used by other standby connectors. When the
injector is a Tervela publisher connector, that connector sets the message ID on all
injected event blocks, beginning with ID = 1.

When a new subscriber connector becomes active, outbound message flow remains
synchronized due to buffering of messages by standby connectors and coordination of
the resumed flow with the fabric. The size of this message buffer is a required
parameter for subscriber connectors.

Tervela connector configuration parameters named “tva…” are passed unmodified to
the Tervela API by the connector. See your Tervela documentation for more information
about these parameters.

Use the following parameters with Tervela connectors:

Table 9.14 Required Parameters for Subscriber Tervela Connectors

Parameter Description

type Specifies to subscribe.

tvauserid Specifies a user name defined in the Tervela TPM. The TPM must
have publish-topic entitlement rights associated with this user
name.

tvapassword Specifies the password associated with tvauserid.

tvaprimarytmx Specifies the host name or IP address of the primary TMX.

tvatopic Specifies the topic name for the topic to which to subscribed. This
topic must be configured on the TPM for the GD service and
tvauserid must be assigned the Guaranteed Delivery
subscribe rights for this Topic in the TPM.

tvaclientname Specifies the client name associated with the Tervela Guaranteed
Delivery context. If hot failover is enabled, this name must match
the tvaclientname of other subscriber connectors in the
failover group. Otherwise, the name must be unique among all
instances of Tervela connectors.

142 Chapter 9 / Using Connectors and Adapters

Parameter Description

tvamaxoutstand Specifies the maximum number of unacknowledged messages
that can be published to the Tervela fabric (effectively the size of
the publication cache). Should be twice the expected transmit rate.

numbufferedmsgs Specifies the maximum number of messages buffered by a
standby subscriber connector. When exceeded, the oldest
message is discarded. If the connector goes active the buffer is
flushed, and buffered messages are sent to the fabric as required
to maintain message ID sequence.

hotfailover Enables hot failover mode

urlhostport Specifies the “host/port” string sent in the metadata message
published by the connector on topic SAS.META.tvaclientname
when it starts.

Table 9.15 Required Parameters for Publisher Tervela Connectors

Parameter Description

type Specifies to publish.

tvauserid Specifies a user name defined in the Tervela TPM. The TPM must
have subscribe-topic entitlement rights associated with this user
name.

tvapassword Specifies the password associated with tvauserid.

tvaprimarytmx Specifies the host name or IP address of the primary TMX.

tvatopic Specifies the topic name for the topic to which to publish. This
topic must be configured on the TPM for the GD service.

tvaclientname Specifies the client name associated with the Tervela Guaranteed
Delivery context. Must be unique among all instances of Tervela
connectors.

Using Connectors 143

Parameter Description

tvasubname Specifies the name assigned to the Guaranteed Delivery
subscription being created. The combination of this name and
tvaclientname are used by the fabric to replay the last
subscription state. If a subscription state is found, it is used to
resume the subscription from its previous state. If not, the
subscription is started new, starting with a replay of messages
received in the past eight hours.

urlhostport Specifies the “host:port” string sent in the metadata message
published by the connector on topic SAS.META.tvaclientname
when it starts.

Table 9.16 Optional Parameters for Subscriber Tervela Connectors

Parameter Description

snapshot Disables the sending of snapshot data. The default value is
enabled.

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

tvasecondarytmx Specifies the host name or IP address of the secondary TMX.
Required if logging in to a fault-tolerant pair.

tvalogfile Causes the connector to log to the specified file instead of to
syslog (on Linux or Solaris) or Tervela.log (on Windows)

tvapubbwlimit Specifies the maximum bandwidth, in Mbps, of data published to
the fabric. The default value is 100 Mbps.

tvapubrate Specifies the rate at which data messages will be published to the
fabric, in Kbps. The default value is 30,000 messages per second.

tvapubmsgexp Specifies the maximum amount of time, in seconds, that published
messages will be kept in the cache in the Tervela API. This cache
is used as part of the channel egress reliability window (if
retransmission is required). The default value is 1 second.

144 Chapter 9 / Using Connectors and Adapters

Table 9.17 Optional Parameters for Publisher Tervela Connectors

Parameter Description

tvasecondarytmx Specifies the host name or IP address of the secondary TMX.
Required when logging in to a fault-tolerant pair.

tvalogfile Causes the connector to log to the specified file instead of to
syslog (on Linux or Solaris) or Tervela.log (on Windows)

Solace Systems Connector

The Solace Systems connector communicates with a hardware-based Solace fabric for
publish and subscribe operations.

A Solace subscriber connector receives event blocks and publishes them to this Solace
topic:

"host:port/projectname/queryname/windowname/O

A Solace publisher connector reads event blocks from the following Solace topic

"host:port/projectname/queryname/windowname/I

, which injects them into source windows

As a result of the bus connectivity provided by the connector, the SAS Event Stream
Processing engine does not need to manage individual publish/subscribe connections.
A high capacity of concurrent publish/subscribe connections to a single ESP engine is
achieved.

Note: Solace functionality is not available on HP Itanium, AIX, or 32–bit Microsoft
Windows platforms.

The Solace run-time libraries must be installed on the platform that hosts the running
instance of the connector. The run-time environment must define the path to those
libraries (for example, specifying LD_LIBRARY_PATH on Linux platforms).

The Solace Systems connector has the following characteristics:

n It works with binary event blocks. No other event block formats are supported.

Using Connectors 145

n It operates as a Solace client. All Solace connectivity parameters are required as
connector configuration parameters.

You must configure the following items on the Solace appliance to which the connector
connects:

n a client user name and password to match the connector’s soluserid and
solpassword configuration parameters

n a message VPN to match the connector’s solvpn configuration parameter

n On the message VPN, you must enable “Publish Subscription Event Messages”.

n On the message VPN, you must enable “Client Commands” under “SEMP over
Message Bus”.

n On the message VPN, you must configure a nonzero “Maximum Spool Usage”.

n When hot failover is enabled on subscriber connectors, you must create a single
exclusive queue named “active_esp” in the message VPN. The subscriber connector
that successfully binds to this queue becomes the active connector.

n When buspersistence is enabled, you must enable “Publish Client Event Messages”
on the message VPN.

n When buspersistence is enabled, you must create exclusive queues for all
subscribing clients. The queue name must be equal to the topic name with ”/
buspersistenceque” appended, where buspersistenceque is the queue configured on
the publisher connector (for “/I” topics), or the queue configured on the client
subscriber (for “/O” topics). Add the corresponding topic to each configured queue.

When the connector starts, it subscribes to topic “urlhostport/M” (where urlhostport is a
connector configuration parameter). This enables the connector to receive metadata
requests from clients that publish or subscribe to a window in an ESP engine associated
with that host:port combination. Metadata responses consist of some combination of the
project, query, and window names of the window associated with the connector, as well
as the serialized schema of the window.

Solace subscriber connectors support a hot failover mode. The active/standby status of
the connector is coordinated with the fabric so that a standby connector becomes active

146 Chapter 9 / Using Connectors and Adapters

when the active connector fails. Several conditions must be met to guarantee
successful switchovers:

n All involved connectors must be active on the same set of topics.

n All involved connectors must initiate message flow at the same time. This is required
because message IDs must be synchronized across all connectors.

When a new subscriber connector becomes active, outbound message flow remains
synchronized due to buffering of messages by standby connectors and coordination of
the resumed flow with the fabric. The size of this message buffer is a required
parameter for subscriber connectors.

Solace connectors can be configured to use a persistent mode of messaging instead of
the default direct messaging mode. (See the description of the buspersistence
configuration parameter.) This mode might require regular purging of persisted data by
an administrator, if there are no other automated mechanism to age out persisted
messages. The persistent mode reduces the maximum throughput of the fabric, but it
enables a publisher connector to connect to the fabric after other connectors have
already processed data. The fabric updates the connector with persisted messages and
synchronizes window states with the other engines in a hot failover group.

Solace subscriber connectors subscribe to a special topic that enables them to be
notified when a Solace client subscribes to the connector’s topic. When the connector is
configured with snapshot enabled, it sends a custom snapshot of the window contents
to that client. This enables late subscribers to catch up upon connecting.

Solace connector configuration parameters named “sol…” are passed unmodified to the
Solace API by the connector. See your Solace documentation for more information
about these parameters.

Use the following parameters with Solace Systems connectors

Table 9.18 Required Parameters for Subscriber Solace Connectors

Parameter Description

type Specifies to subscribe.

Using Connectors 147

Parameter Description

soluserid Specifies the user name required to authenticate the connector’s
session with the appliance.

solpassword Specifies the password associated with soluserid.

solhostport Specifies the appliance to connect to, in the form “host:port”.

solvpn Specifies the appliance message VPN to assign the client to which
the session connects.

soltopic Specifies the Solace destination topic to which to publish.

urlhostport Specifies the host:port field in the metadata topic subscribed to on
start-up to field metadata requests.

numbufferedmsgs Specifies the maximum number of messages buffered by a
standby subscriber connector. If exceeded, the oldest message is
discarded. If the connector goes active the buffer is flushed, and
buffered messages are sent to the fabric as required to maintain
message ID sequence.

hotfailover Enables hot failover mode.

Table 9.19 Required Parameters for Publisher Solace Connectors

Parameter Description

type Specifies to publish.

soluserid Specifies the user name required to authenticate the connector’s
session with the appliance.

solpassword Specifies the password associated with soluserid.

solhostport Specifies the appliance to connect to, in the form “host:port”.

solvpn Specifies the appliance message VPN to assign the client to
which the session connects.

148 Chapter 9 / Using Connectors and Adapters

Parameter Description

soltopic Specifies the Solace topic to which to subscribe.

urlhostport Specifies the host:port field in the metadata topic subscribed to on
start-up to field metadata requests.

Table 9.20 Optional Parameters for Subscriber Solace Connectors

Parameter Description

snapshot Disables the sending of snapshot data. The default is enabled.

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

buspersistence Sets the Solace message delivery mode to Guaranteed
Messaging. The default value is Direct Messaging.

Table 9.21 Optional Parameters for Publisher Solace Connectors

Parameter Description

buspersistence Creates the Guaranteed message flow to bind to the topic
endpoint provisioned on the appliance that the published
Guaranteed messages are delivered and spooled to. By
default this flow is disabled, because it is not required to
receive messages published using Direct Messaging.

buspersistencequeue Specifies the name appended to the topic name to create
the full endpoint topic name.

Tibco Rendezvous (RV) Connector

A Tibco Rendezvous (RV) connector supports the Tibco RV API for publish and
subscribe operations through a Tibco RV daemon. The subscriber receives event
blocks and publishes them to a Tibco RV subject. The publisher is a Tibco RV
subscriber, which injects received event blocks into source windows.

Using Connectors 149

The platform that hosts the running instance of the connector must have the Tibco RV
run-time libraries installed. The run-time environment must define the path to those
libraries (for example, specifying LD_LIBRARY_PATH on Linux platforms).

The system path must point to the Tibco/RV/bin directory so that the connector can
run the RVD daemon.

The subject name used by a Tibco RV connector is a required connector parameter. A
Tibco RV subscriber also requires a parameter that defines the message format used to
publish events to Tibco RV. The format options are CSV or binary. A Tibco RV publisher
can consume any message type produced by a Tibco RV subscriber.

By default, the Tibco RV connector assumes that a Tibco RV daemon is running on the
same platform as the connector. Alternatively, you can specify the connector
tibrvdaemon configuration parameter to use a remote daemon.

Similarly, you can specify the optional tibrvservice and tibrvnetwork parameters
to control the Rendezvous service and network interface used by the connector. For
more information, see your Tibco RV documentation.

The Tibco RV connector relies on the default multicast protocols for message delivery.
The reliability interval for messages sent to and from the Tibco RV daemon is inherited
from the value in use by the daemon.

Use the following parameters with Tibco RV connectors:

Table 9.22 Required Parameters for Subscriber Tibco RV Connectors

Parameter Description

type Specifies to subscribe.

tibrvsubject Specifies the Tibco RV subject name.

tibrvtype Specifies binary or CSV.

150 Chapter 9 / Using Connectors and Adapters

Table 9.23 Required Parameters for Publisher Tibco RV Connectors

Parameter Description

type Specifies to publish.

tibrvsubject Specifies the Tibco RV subject name.

Table 9.24 Optional Parameters for Subscriber Tibco RV Connectors

Parameter Description

snapshot Disables the sending of snapshot data. The default value is
enabled.

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable. The default value is disabled.

tibrvservice Specifies the Rendezvous service used by the Tibco RV transport
created by the connector. The default service name is
“rendezvous”.

tibrvnetwork Specifies the network interface used by the Tibco RV transport
created by the connector. The default network depends on the
type of daemon used by the connector.

tibrvdaemon Specifies the Rendezvous daemon used by the connector. The
default is the default socket created by the local daemon.

Table 9.25 Optional Parameters for Publisher Tibco RV Connectors

Parameter Description

blocksize Specifies the number of events to include in a published event
block. The default value is 1.

transactional Sets the event block type to transactional. The default value is
normal.

Using Connectors 151

Parameter Description

tibrvservice Specifies the Rendezvous service used by the Tibco RV transport
created by the connector. The default service name is
“rendezvous”.

tibrvnetwork Specifies the network interface used by the Tibco RV transport
created by the connector. The default network depends on the
type of daemon used by the connector.

tibrvdaemon Specifies the Rendezvous daemon used by the connector. The
default is the default socket created by the local daemon.

User-Written Connectors

When you write your own connector, the connector class must inherit from base class
dfESPconnector.

Connector configuration is maintained in a set of key or value pairs where all keys and
values are text strings. A connector can obtain the value of a configuration item at any
time by calling getParameter() and passing the key string. An invalid request returns
an empty string.

A connector can implement a subscriber that receives events generated by a window,
or a publisher that injects events into a window. However, a single instance of a
connector cannot publish and subscribe simultaneously.

A subscriber connector receives events by using a callback method defined in the
connector class that is invoked in a thread owned by the engine. A publisher connector
typically creates a dedicated thread to read events from the source. It then injects those
events into a source window, leaving the main connector thread for subsequent calls
made into the connector.

152 Chapter 9 / Using Connectors and Adapters

A connector must define these static data structures:

Static Data Structure Description

dfESPconnectorInfo Specifies the connector name, publish/
subscribe type, initialization function pointer,
and configuration data pointers.

subRequiredConfig Specifies an array of
dfESPconnectorParmInfo_t entries
listing required configuration parameters for a
subscriber.

sizeofSubRequiredConfig Specifies the number of entries in
subRequiredConfig.

pubRequiredConfig Specifies an array of
dfESPconnectorParmInfo_t entries
listing required configuration parameters for a
publisher.

sizeofPubRequiredConfig Specifies the number of entries in
pubRequiredConfig.

subOptionalConfig Specifies an array of
dfESPconnectorParmInfo_t entries
listing optional configuration parameters for a
subscriber.

sizeofSubOptionalConfig Specifies the number of entries in
subOptionalConfig.

pubOptionalConfig Specifies an array of
dfESPconnectorParmInfo_t entries
listing optional configuration parameters for a
publisher.

sizeofPubOptionalConfig Specifies the number of entries in
pubOptionalConfig.

Using Connectors 153

A connector must define these static methods:

Static Method Description

dfESPconnector *initialize(dfESPengine *engine,
dfESPpsLib_t psLib)

Returns an instance of the
connector.

dfESPconnectorInfo *getConnectorInfo() Returns the
dfESPconnectorInfo
structure.

You can invoke these static methods before you create an instance of the connector.

A connector must also define these virtual methods:

Virtual Method Description

start() Starts the connector. Must call base class
method checkConfig() to validate
connector configuration before starting. Must
also call base class method start(). Must
set variable _started = true upon
success.

stop() Stops the connector. Must call base class
method stop(). Must leave the connector in a
state whereby start() can be subsequently
called to restart the connector.

getState() Returns the current state of the connector.

callbackFunction() Specifies the method invoked by the engine to
pass event blocks generated by the window to
which it is connected.

errorCallbackFunction() Specifies the method invoked by the engine to
report errors detected by the engine. Must call
user callback function errorCallback, if
nonzero.

154 Chapter 9 / Using Connectors and Adapters

Finally, a derived connector can implement up to ten user-defined methods that can be
called from an application. Because connectors are plug-ins loaded at run time, a user
application cannot directly invoke class methods. It is not linked against the connector.

The base connector class defines virtual methods userFunction_01 through
userFunction_10, and a derived connector then implements those methods as
needed. For example:

 void * myConnector::userFunction_01(void *myData) {

An application would invoke the method as follows:

 myRC = myConnector->userFunction_01((void *)myData);

Integrating a User-Written Connector

All connectors are managed by a global connector manager. The default connectors
shipped with SAS Event Stream Processing Engine are automatically loaded by the
connector manager during product initialization. User-written connectors built as
libraries and placed in $DFESP_HOME/lib/plugins are also loaded during
initialization, with the exception of those listed in $DFESP_HOME/etc/
connectors.excluded.

After initialization, the connector is available for use by any event stream processor
window defined in an application. As with any connector, an instance of it can be
obtained by calling the window getConnector() method and passing its user-defined
method. You can configure the connector using setParameter() before starting the
project.

Using Adapters

Overview to Adapters

Adapters are stand-alone executable files that use the publish/subscribe API to do the
following:

n publish event streams into an engine

Using Adapters 155

n subscribe to event streams from engine windows

Unlike connectors, which are built into the SAS Event Stream Processing Engine,
adapters can be networked. Many adapters are executable versions of connectors.
Thus, the required and optional parameters of most adapters directly map to the
parameters of the corresponding connector.

You can find adapters in the following directory:

$DFESP_HOME/bin

File and Socket Adapter

The File and Socket adapter supports publish and subscribe operations on files or
socket connections that stream the following data types:

n dfESP binary

n CSV

n XML

n JSON

n syslog

Subscriber use:

dfesp_fs_adapter -k sub - h url -t binary | csv | xml | json
<-c period> <-s maxfilesize> <-d dateformat>
<-r rate> <-a aggrsize> <-n>
<-g gdconfig> <-l native | solace | tervela>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile>

Publisher use:

dfesp_fs_adapter-k pub -h url -f fsname
-t binary | csv | xml | json | syslog <-b blocksize> <-d dateformat>
<-r rate> <-m > <-e> <-i> <-p> <-n> <-g gdconfig>
<-l native | solace | tervela> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile>

156 Chapter 9 / Using Connectors and Adapters

Parameter Definition

-k Specify “sub” for subscriber use and “pub” for publisher use

—h url Specify the dfESP publish and subscribe standard URL in the form
dfESP://host:port/project/continuousquery/
window

Append the following for subscribers: ?snapshot=true |
false. Append the following for subscribers if needed: ?
collapse=true | false

—f fsname Specify the subscriber output file, publisher input file, or socket
“host:port". Leave host blank to implement a server.

-t binary | csv | xml |
json | syslog

Specify the file system type. The syslog value is valid only for
publishers.

—c period Specify output file time (in seconds). The active file is closed and a
new active file opened with the timestamp appended to the filename

-s maxfilesize Specify the output file volume (in bytes). The active file is closed and
a new active file opened with the timestamp appended to the
filename.

—d dateformat Specify the date format. The default value = %Y-%m-%d %H:%M:
%S

-r rate Specify the requested transmit rate in events per second.

—a aggrsize Specify, in latency mode, statistics for aggregation block size.

—n Specify latency mode.

-g gdconfig Specify the guaranteed delivery configuration file.

—l native | solace |
tervela

Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the required
client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

Using Adapters 157

Parameter Definition

—j trace | debug | info |
warn | error | fatal | off

Set the logging level for the adapter. This is the same range of
logging levels that you can set in the C_dfESPpubsubInit()
publish/subscribe API call and in the engine initialize() call.

-b blocksize Set the block size. The default value = 1.

—m maxevents Specify the maximum number of events to publish.

-e Specify that events are transactional.

-i Read from growing file.

-p Buffer all event blocks before publishing them.

—y logconfigfile Specify the log configuration file.

If you specify Solace or Tervela transports instead of the default native transport, refer
to the description of the C++ C_dfESPpubsubSetPubsubLib() API call for more
information about the required client configuration files.

Database Adapter

The Database Adapter supports publish and subscribe operations on databases using
DataDirect drivers. The adapter is certified for Oracle, DB2, and MySQL platforms.
However, drivers exist for many other databases and appliances. This adapter requires
that database connectivity be available by using a Data Source Name (DSN) configured
in the odbc.ini file. The file is pointed to by the ODBCINI environment variable.

Subscriber usage:

dfesp_db_adapter -k sub -h url -d DSNname -u userid
-x pwd -t tablename <-g gdconfig> <-l native | solace | tervela>
<-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile>

Publisher usage:

158 Chapter 9 / Using Connectors and Adapters

dfesp_db_adapter -k pub —h host -d DSNname
-u userid -x pwd -s selectstatement
<-b blocksize> <-e> <-g gdconfig> <-l native | solace | tervela>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile>

Parameter Definition

-k Specify “sub” for subscriber use and “pub” for publisher use

—h url Specify the dfESP publish and subscribe standard URL in the form
"dfESP://host:port/project/continuousquery/
window. Append ?snapshot=true |false".

—d DSNname Specify the data source name from the odbc.ini file.

—u userid Specify the database user ID.

—x pwd Specify the database user password.

-t tablename Specify the subscriber target database table.

—s selectstatement Specify the publisher source database SQL statement.

-b blocksize Specify the block size. The default value = 1.

—l native | solace |
tervela

Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the required
client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug | info |
warn | error | fatal | off

Set the logging level for the adapter. This is the same range of
logging levels that you can set in the C_dfESPpubsubInit()
publish/subscribe API call and in the engine initialize() call.

-e Specify that events are transactional.

—g gdconfig Specify the guaranteed delivery configuration file.

—y logconfigfile Specify the log configuration file.

Using Adapters 159

If you specify Solace or Tervela transports instead of the default native transport, refer
to the description of the C++ C_dfESPpubsubSetPubsubLib() API call for more
information about the required client configuration files.

SMTP Subscriber Adapter

The SMTP Subscriber Adapter subscribes to only SAS Event Stream Processing
Engine windows. Source window publish is not supported. This adapter forwards
subscribed event blocks or single events as e-mail messages to a configured SMTP
server, with the event data in the message body encoded in CSV format.

Subscriber use:

dfesp_smtp_adapter-h url-m smtpserver -u sourceaddress
-d destaddress <-p> <-g gdconfig> <-l native | solace | tervela >
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile>

Parameter Definition

-h url Specify the publish and subscribe standard URL in the form
"dfESP://host:port/project/contquery/window.
You can append ?snapshot=true |false and ?
collapse=true | false for subscribers

-p Specify that each e-mail contains a single event instead of a
complete event block containing one or more events.

-g Specify the guaranteed delivery configuration file.

—l native | solace |
tervela

Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the required
client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug | info |
warn | error | fatal | off

Set the logging level for the adapter. This is the same range of
logging levels that you can set in the C_dfESPpubsubInit()
publish/subscribe API call and in the engine initialize() call.

-y logconfigfile Specify the log configuration file.

160 Chapter 9 / Using Connectors and Adapters

Event Stream Processor to Event Stream
Processing Engine Adapter

The event stream processor to SAS Event Stream Processing Engine adapter enables
you to subscribe to a window and publish what it passes into another source window.
This can occur within a single event stream processor. More likely it occurs across two
event stream processors, possibly on different machines on the network. Currently, no
corresponding event stream processor to SAS Event Stream Processing Engine
connector is provided.

Usage:

dfesp_esp_adapter -s url –p url

Parameter Definition

-s url Specify the subscribe standard URL in the form "dfESP://
host:port/project/contquery/window?
snapshot=true |false>?collapse=true | false"

-p url Specify the publish standard URL in the form dfESP://
host:port/project/contquery/window

The eventblock size and transactional nature is inherited from the subscribed
window.

SAS Data Set Subscriber Adapter

The SAS Data Set Subscriber Adapter supports subscribe, but it does not support
publish. It captures subscribed event blocks and writes them to an output SAS data set
file on the file system where the adapter is running. This adapter has no corresponding
connector.

Using Adapters 161

The adapter consists of two entities:

n dfesp_dataset.sas: This SAS script takes event data in CSV format and writes it
to the SAS data set. It receives CSV data by executing subscribe_client and
intercepting console output.

n subscribe_client: This subscriber client handles the connection to the event
stream processor. It outputs event data to the console in a format and sequence
required by dfesp_dataset.sas.

The dfesp_dataset.sas script requires an installed SAS system and a SAS spawner
running on the host-port endpoint specified in dfesp_dataset.sas. To determine
whether the SAS spawner is running, execute the following command:

netstat -tulpn | fgrep <port>

To start the SAS spawner, add unxspawn on port/tcp to your /etc/services file.
Then execute the following command from your /SASFoundation/x.y/
utilities/bin directory:

./sastcpd -service unxspawn -sascmd your_SAS_user_directory/signon &

To set the spawner host-port used by dfesp_dataset.sas, find the let tsk statement
and modify it as follows:

%let tsk&c=host port;

To set the user credentials, find the let tcpsec statement and modify it as follows:

%let tcpsec=userid.password;

You need to configure SAS environment variables that are required to run the
subscriber client. Edit the .cfg file in your /SASFoundation directory and add these
two statements:

-SET DFESP_HOME the home directory of your Event Stream Processing installation
-SET LD_LIBRARY_PATH the paths to your Event Stream Processing libraries

You can copy these settings directly from the environment variables already set for your
installation.

Before running the dfesp_dataset.sas script, make sure your environment path
includes the following:

162 Chapter 9 / Using Connectors and Adapters

n the path to your SAS installation (usually /SASFoundation/x.y)

n the path to the subscribe_client executable

To run dfesp_dataset.sas, execute the following command from the script's
directory:

sas dfesp_dataset.sas -sysparm outputpath url"

where

n outputpath specifies where the SAS output data set and the SAS log file are written.
The data set filename consists of the subscribed window name appended with a
timestamp.

n url specifies where the engine is running and a window to subscribe to. Specify a
standard event stream processing style URL in the following form:

dfESP://host:port/project/contquery/window

You can provide multiple URLs. Each URL can specify a different subscribed window. In
that case, a separate output data set is written for each specified URL.

Java Message Service (JMS) Adapter

The Java Message Service (JMS) adapter resides in dfx-esp-jms-adapter.jar,
which bundles the Java publisher and subscriber SAS Event Stream Processing Engine
clients. Both clients are JMS clients. The subscriber client receives SAS Event Stream
Processing Engine event blocks and is a JMS message producer. The publisher client
is a JMS message consumer and injects event blocks into source windows of an SAS
Event Stream Processing Engine.

The JMS topic string used by an event stream processor JMS client is passed as a
required parameter to the adapter.

The subscriber client requires a command line parameter that defines the type of JMS
message used to contain SAS Event Stream Processing Engine events. The publisher
client consumes any message type produced by the subscriber client.

The client target platform must have connectivity to a running JMS_broker (or JMS
server). The environment variable DFESP_JMS_JARS must specify the location of the

Using Adapters 163

JMS broker JAR files. The clients also require a jndi.properties file, which you
must specify through the DFESP_JMS_PROPERTIES environment variable. This
properties file specifies the connection factory needed to contact the broker and create
JMS connections.

A sample jndi.properties file is included in the etc directory of the SAS Event Stream
Processing Engine installation. Do not modify the connectionFactoryNames
property, because the client classes look for that name.

Subscriber use on UNIX and Linux:

$DFESP_HOME/bin/dfesp_jms_subscriber -u url -j jmstopic
-m BytesMessage | TextMessage | MapMessage <-d dateformat>
<- g gdconfigfile><-l native | solace | tervela>
<-o severe | warning | info>

Subscriber use on Windows:

$DFESP_HOME\bin\dfesp_jms_subscriber urljmstopic
BytesMessage | TextMessage | MapMessage <dateformat> <gdconfigfile >
<native | solace | tervela>< severe | warning | info>

Parameter Definition

— u url Specify the publish and subscribe standard URL in the form
dfESP://host:port/project/contquery/window

—j jmstopic Specify the JMS topic name.

— d dateformat Specify the format of ESP_datetime_t and ESP_timestamp_t fields in
events. The default is "yyyy-MM-dd HH:mm:ss.SSS".

—l native | solace |
tervela

Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the required
client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

- g gdconfigfile Specify the guaranteed delivery configuration file for the client.

-o severe | warning |
info

Specify the application logging level.

164 Chapter 9 / Using Connectors and Adapters

Publisher use on UNIX and Linux:

$DFESP_HOME/bin/dfesp_jms_publisher -u url -j jmstopic
-b blocksize <-t> <-d dateformat>
<- g gdconfigfile> <-l native | solace | tervela> <-o severe | warning | info>

Publisher use on Windows:

$DFESP_HOME\bin\dfesp_jms_publisher url jmstopic
blocksize <transactional> <dateformat>
<gdconfigfile><native | solace | tervela >< severe | warning | info>

Parameter Definition

—u url Specify the publish and subscribe standard URL in the form
"dfESP://host:port/project/contquery/window"

—j jmstopic Specify the JMS topic name.

—b blocksize Specify the number of events per event block.

-t Specify that event blocks are transactional. The default is normal.

— d dateformat Specify the format of ESP_datetime_t and ESP_timestamp_t fields
in events. The default is "yyyy-MM-dd HH:mm:ss.SSS".

- g gdconfigfile Specify the guaranteed delivery configuration file for the client.

—l native | solace |
tervela

Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the required
client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

-o severe | warning |
info

Specify the application logging level.

IBM WebSphere MQ Adapter

The MQ Adapter supports publish and subscribe operations on IBM WebSphere
Message Queue systems. To use this adapter, you must install IBM WebSphere MQ

Using Adapters 165

Client run-time libraries and define the environment variable MQSERVER to specify the
adapter’s MQ connection parameters.

Subscriber usage:

dfesp_mq_adapter -k sub -h url —f mqtopic
<-q mqqueuemanager> <d dateformat> <-g gdconfig>
<-l native | solace | tervela>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile>

Publisher usage:

dfesp_mq_adapter -k pub -h url —f mqtopic
—n mqsubname —s mqsubqueue <-q mqqueuemanager>
<-b blocksize> <-d dateformat> <-e> <-g gdconfig>
<-l native | solace | tervela>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile>

Table 9.26 Parameter Definitions

Parameter Definition

-k Specify “sub” for subscriber use and “pub” for publisher use

-h url Specify the publish and subscribe standard URL in the form
“dfESP://host:port/project/contquery/window”.
Append ?snapshot=true | false and ?collapse=true
| false for subscribers if needed.

-f mqtopic Specify the MQ topic name.

-n mqsubname Specify the MQ subscription name.

-s mqsubqueue Specify the MQ queue name.

-q mqqueuemanager Specify the MQ queue manager name.

-b blocksize Specify the blocksize. The default value = 1.

-d dateformat Specify the date format. The default value = %Y-%m-%d %H:%M:
%S

166 Chapter 9 / Using Connectors and Adapters

Parameter Definition

-e Specify that events are transactional.

—g gdconfig Specify the guaranteed delivery configuration file.

—l native | solace |
tervela

Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the required
client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug | info |
warn | error | fatal | off

Set the logging level for the adapter. This is the same range of
logging levels that you can set in the C_dfESPpubsubInit()
publish/subscribe API call and in the engine initialize() call.

—y logconfigfile Specify the log configuration file.

Tervela Data Fabric Adapter

The Tervela adapter supports publish and subscribe operations on a hardware-based or
software-based Tervela fabric. You must install the Tervela run-time libraries to use the
adapter.

Subscriber usage:

dfesp_tva_adapter -k sub -h url —u tvauserid
—p tvapassword —t tvaprimarytmx —f tvatopic
—c tvaclientname -m tvamaxoutstand —b numbufferedmsgs
-o urlhostport <-s tvasecondarytmx> <-l tvalogfile>
<-w tvapubbwlimit> <-r tvapubrate><-e tvapubmsgexp>
<-g gdconfig> <-l native | solace | tervela>
<-j trace | debug | info | warn | error | fatal | off> <-y logconfigfile>

Publisher usage:

Using Adapters 167

dfesp_tva_adapter -k pub -h url —u tvauserid
—p tvapassword —t tvaprimarytmx —f tvatopic
—c tvaclientname -n tvasubname
-o urlhostport <-s tvasecondarytmx> <-l tvalogfile>
<-g gdconfig> <-l native | solace | tervela>
<-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile>

Table 9.27 Parameter Definitions

Parameter Definition

-k Specify “sub” for subscriber use and “pub” for publisher use

-h url Specify the publish and subscribe standard URL in the form
"dfESP://host:port/project/contquery/
window”. Append ?snapshot=true | false and ?
collapse=true | false for subscribers if needed.

-u tvauserid Specify the Tervela user name.

-p tvapassword Specify the Tervela password.

-t tvaprimarytmx Specify the Tervela primary TMX.

-f tvatopic Specify the Tervela topic.

-c tvaclientname Specify the Tervela client name.

-m tvamaxoutstand Specify the Tervela maximum number of unacknowledged
messages.

-b numbufferedmsgs Specify the maximum number of messages buffered by a
standby subscriber connector.

-o urlhostport Specify the host:port string sent in connector metadata
message

—s tvasecondarytmx Specify the Tervela secondary TMX.

—itvalogfile Specify the Tervela log file. The default is syslog.

168 Chapter 9 / Using Connectors and Adapters

Parameter Definition

—w tvapubbwlimit Specify the Tervela maximum bandwidth of published data
(Mbps). The default value is 100.

-r tvapubrate Specify the Tervela publish rate (Kbps). The default value is 30.

—e tvapubmsgexp Tervela maximum time to cache published messages
(seconds); the default value is 1

—g gdconfig Specify the guaranteed delivery configuration file.

—l native | solace | tervela Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the
required client configuration files specified in the description of
the C++ C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug | info |
warn | error | fatal | off

Set the logging level for the adapter. This is the same range of
logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call and in
the engine initialize() call.

—y logconfigfile Specify the log configuration file.

Solace Systems Adapter

The Solace adapter supports publish and subscribe operations on a hardware-based
Solace fabric. You must install the Solace run-time libraries to use the adapter.

Subscriber usage:

dfesp_sol_adapter -k sub -h url -u soluserid
—p solpassword —v solvpn —t soltopic
—o urlhostport -n numbufferedmsgs <-b > <-g gdconfig>
<-l native | solace | tervela> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile>

Publisher usage:

Using Adapters 169

dfesp_sol_adapter -k pub -h url -u soluserid
—p solpassword —v solvpn —t soltopic
—o urlhostport <-b > <-q buspersistencequeue><-g gdconfig>
<-l native | solace | tervela> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile>

Table 9.28 Parameter Definitions

Parameter Definition

-k Specify “sub” for subscriber use and “pub” for publisher use

-h url Specify the publish and subscribe standard URL in the form
"dfESP://host:port/project/contquery/
window”. Append "?snapshot= true | false" and "?
collapse= true | false” for subscribers if needed.

-u soluserid Specify the Solace user name.

-p solpassword Specify the Solace password.

-s solhostport Specify the Solace host:port.

-v solvpn Specify the Solace VPN name.

-t soltopic Specify the Solace topic.

-o urlhostport Specify the host:port field in the metadata topic subscribed to by
the connector.

—n numbufferedmsgs Specify the maximum number of messages buffered by a
standby subscriber connector.

—g gdconfig Specify the guaranteed delivery configuration file.

—l native | solace | tervela Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the
required client configuration files specified in the description of
the C++ C_dfESPpubsubSetPubsubLib() API call.

170 Chapter 9 / Using Connectors and Adapters

Parameter Definition

—j trace | debug | info |
warn | error | fatal | off

Set the logging level for the adapter. This is the same range of
logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call and in
the engine initialize() call.

—y logconfigfile Specify the log configuration file.

-b Use Solace Guaranteed Messaging. By default, Solace Direct
Messaging is used.

—q buspersistencequeue Specify the queue name used by Solace Guaranteed
Messaging publisher.

Tibco Rendezvous (RV) Adapter

The Tibco RV adapter supports publish and subscribe operations using a Tibco RV
daemon. You must install the Tibco RV run-time libraries to use the adapter.

Subscriber usage:

dfesp_tibrv_adapter -k sub -h url -f tibrvsubject —t tibrvtype
-s tibrvservice<-n tibrvnetwork> <-m tibrvdaemon>
<-d dateformat> <-g gdconfig>
<-l native | solace | tervela> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile>

Publisher usage:

dfesp_tibrv_adapter -k pub -h url -f tibrvsubject —t tibrvtype
-s tibrvservice<-n tibrvnetwork> <-m tibrvdaemon><-b blocksize>
<-d dateformat> <-e><-g gdconfig>
<-l native | solace | tervela> <-j trace | debug | info | warn | error | fatal | off>
<-y logconfigfile>

Using Adapters 171

Table 9.29 Parameter Definitions

Parameter Definition

-k Specify “sub” for subscriber use and “pub” for publisher use.

-h url Specify the publish and subscribe standard URL in the form
"dfESP://host:port/project/contquery/
window”. Append "?snapshot= true | false " and
"?collapse= true | false” for subscribers if needed.

-f tibrvsubject Specify the Tibco RV subject.

-t tibrvtype Specify “binary” or “CSV”.

-s tibrvservice Specify the Tibco RV service.

-n tibrvnetwork Specify the Tibco RV network.

-m tibrvdaemon Specify the Tibco RV daemon.

-b blocksize Specify the block size. The default value is 1.

—d dateformat Specify the date format. The default is %Y-%m-%d %H:%M:
%S.

—e Specify that events are transactional.

—g gdconfig Specify the guaranteed delivery configuration file.

—l native | solace | tervela Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the
required client configuration files specified in the description of
the C++ C_dfESPpubsubSetPubsubLib() API call.

—j trace | debug | info |
warn | error | fatal | off

Set the logging level for the adapter. This is the same range of
logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call and in
the engine initialize() call.

—y logconfigfile Specify the log configuration file.

172 Chapter 9 / Using Connectors and Adapters

PI Publisher Adapter

The PI Adapter supports publish operations from a PI server, where it injects a PI event
stream identified by a PI tag into a source window. To use the adapter, you must install
the PI run-time libraries.

The target source window must have the following schema:

"ID*:int32,timestamp:date,value:PItype"

Here, PItype is an ESP type that matches the expected PI value type for the configured
tag.

Valid mappings are as follows:

Event Stream Processor Data Type PI Adapter Data Type

ESP_DOUBLE Float16, Float32, Float64

ESP_INT32 Int16, Int32

ESP_UTF8STR String

ESP_DATETIME Timestamp

Not supported Digital, Blob

Publisher usage:

dfesp_pi_adapter -h url -u piuserid -s pihost -t pitag
< -b blocksize><-e> <-g gdconfig>
<-l native | solace | tervela> <-j trace | debug | info | warn | error | fatal>
<-y logconfigfile>

Parameter Definition

-h url Specify the publish/subscribe standard URL in the form
dfESP://host:port/project/contquery/window .

Using Adapters 173

Parameter Definition

-u piuserid Specify the PI user name.

—spihost Specify the PI host.

—t pitag Specify the PI tag.

-b blocksize Specify the block size. The default value is 1.

—e Specify that events are transactional.

—g gdconfig Specify the guaranteed delivery configuration file.

—l native | solace | tervela Specify the transport type. If you specify solace or tervela
transports instead of the default native transport, use the
required client configuration files specified in the description of
the C++ C_dfESPpubsubSetPubsubLib() API call.

-j trace | debug | info | warn
| error | fatal | off

Set the logging level for the adapter. This is the same range of
logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call and in
the engine initialize() call.

—y logconfigfile Specify the log configuration file.

174 Chapter 9 / Using Connectors and Adapters

10
Enabling Guaranteed Delivery

Overview to Guaranteed Delivery . 175

Guaranteed Delivery Success Scenario . 178

Guaranteed Delivery Failure Scenarios . 179

Additions to the Publish/Subscribe API for
Guaranteed Delivery . 180

Configuration File Contents . 180

Publish/Subscribe API Implementation of
Guaranteed Delivery . 181

Overview to Guaranteed Delivery

Both the Java and C publish and subscribe (pub/sub) APIs support guaranteed delivery
between a single publisher and multiple subscribers. Guaranteed delivery assumes a
model where each event block that is published into a source window generates exactly
one event block in a subscribed window. This one block in, one block out principle must
hold for all published event blocks. The guaranteed delivery acknowledgment
mechanism has no visibility into the event processing performed by the model.

When a publish or subscribe connection is started, a client is established to perform
various publish/subscribe activities. When a publish connection is started, the number of
guaranteed subscribers required to acknowledge delivery of its event blocks is
specified. The time-out value used to generate negative acknowledgments upon non-

175

receipt from all expected subscribers is also specified. Every event block injected by the
publisher contains a unique 64-bit ID set by the publisher. This ID is passed back to the
publisher from the publish client with every acknowledgment and negative
acknowledgment in a publisher user-defined callback function. The function is
registered when the publish client is started.

When a subscribe connection is started, the subscribe client is passed a set of
guaranteed delivery publishers as a list of host and port entries. The client then
establishes an acknowledged connection to each publisher on the list. The subscriber
calls a new publish/subscribe API function to trigger an acknowledgment.

Event blocks contain new host, port, and ID fields. All event blocks are uniquely
identified by the combination of these fields, which enables subscribers to identify
duplicate (that is, resent) event blocks.

Display 10.1 Guaranteed Delivery Data Flow Diagram

Event Stream Processing
Engine Pub/Sub API

ACK/NACK with ID

Event Block printer

ACK with Event Block printer

Event Block printer

ACK with Event Block printer

Event Block printer

ACK/NACK with ID

Event Block with ID,
host, and port

Event Block with ID,
host, and port

Event Block with ID,
host, and port

ACK with ID sent to host and port

ACK with ID sent to host and port

Event Stream Processing Engine Subsystem

ACK with ID sent to host and port

Event Block printer

Pub client

Pub client

ESP Engine Sub client

Sub client

Event Stream Processing
Engine Pub/Sub API

Note:

176 Chapter 10 / Enabling Guaranteed Delivery

Please note the following:

n Publishers and subscribers that do not use the guaranteed-delivery-enabled API
functions are implicitly guaranteed delivery disabled.

n Guaranteed delivery subscribers can be mixed with non-guaranteed delivery
subscribers.

n A guaranteed delivery-enabled publisher might wait to begin publishing until a
READY callback has been received. This indicates that its configured number of
subscribers have all established their acknowledged connections back to the
publisher.

n Event blocks received by a guaranteed-delivery-enabled subscriber as a result of
a snapshot generated by the SAS Event Stream Processing Engine are not
acknowledged.

n It is expected under certain conditions that subscribers will receive duplicate
event blocks. These conditions include the following:

o A publisher begins publishing before all related subscribers have started. Any
started subscriber can receive duplicate event blocks until the number of started
subscribers reaches the number of required acknowledgments passed by the
publisher.

o A guaranteed delivery-enabled subscriber disconnects while the publisher is
publishing. This triggers the same scenario described previously.

o A slow subscriber causes event blocks to time-out, which triggers a not
acknowledged to the publisher. In this case all subscribers related to the
publisher receives any resent event blocks, including those that have already
called C_dfESPGDsubscriberAck() for those blocks.

n If a guaranteed delivery-enabled subscriber fails to establish its acknowledged
connection, it retries at a configurable rate up to a configurable maximum number
of retries.

n Suppose that a guaranteed delivery-enabled publisher injects an event block that
contains an ID, and that the ID is present in the publish client’s not
acknowledged-ID list. In that case, the inject call is rejected by the publish client.

Overview to Guaranteed Delivery 177

The ID is cleared from the list when the publish client passes it to the
acknowledged/not acknowledged callback function of the new publisher.

Guaranteed Delivery Success Scenario

In the context of guaranteed delivery, the publisher and subscriber are customer
applications that are the endpoints in the data flow. The subscribe and publish clients
are event stream processing code that implements the publish/subscribe API calls
made by the publisher and subscriber.

The flow of a guaranteed delivery success scenario is as follows:

1 The publisher passes an event block to the publish client, where the ID field in the
event block has been set by the publisher. The publish client fills in the host-port
field, adds the ID to its unacknowledged ID list, and injects it to the SAS Event
Stream Processing Engine.

2 The event block is processed by the SAS Event Stream Processing Engine and the
resulting Inserts, Updates, or Deletes on subscribe windows are forwarded to all
subscribe clients.

3 A guaranteed delivery-enabled subscribe client receives an event block and passes
it to the subscriber by using the standard subscriber callback.

4 Upon completion of all processing, the subscribers call a new API function with the
event block pointer to trigger an acknowledgment.

5 The subscribe client sends the event block ID on the guaranteed delivery
acknowledged connection that matches the host or port in the event block,
completely bypassing the SAS Event Stream Processing Engine.

6 Upon receipt of the acknowledgment, the publish client increments the number of
acknowledgments received for this event block. If that number has reached the
threshold passed to the publish client at start-up, the publish client invokes the new

178 Chapter 10 / Enabling Guaranteed Delivery

guaranteed delivery callback with parameters acknowledged and ID. It removes the
ID from the list of unacknowledged IDs.

Guaranteed Delivery Failure Scenarios

There are three failure scenarios for guaranteed delivery flows:

Scenario Description

Event Block Time-out n An event block-specific timer expires on a guaranteed-delivery-
enabled publish client, and the number of acknowledgments
received for this event block is below the required threshold.

n The publish client invokes the new guaranteed delivery
callback with parameters NACK and ID. No further
retransmission or other attempted recovery by the SAS Event
Stream Processing Engine publish client or subscribe client is
undertaken for this event block. The publisher most likely
backs out this event block and resends.

n The publish client removes the ID from the list of
unacknowledged IDs.

Invalid Guaranteed
Delivery Acknowledged
Connect Attempt

n A guaranteed-delivery-enabled publish client receives a
connect attempt on its guaranteed delivery acknowledged
server but the number of required client connections has
already been met.

n The publish client refuses the connection and logs an error
message.

n For any subsequent event blocks received by the guaranteed
delivery-enabled subscribe client, an error message is logged.

Invalid Event Block ID n A guaranteed-delivery-enabled publisher injects an event block
that contains an ID already present in the publish client’s
unacknowledged ID list.

n The inject call is rejected by the publish client and an error
message is logged.

Guaranteed Delivery Failure Scenarios 179

Additions to the Publish/Subscribe API
for Guaranteed Delivery

The publish/subscribe API provides the following methods to implement guaranteed
delivery sessions:

n C_dfESPGDpublisherStart()

n C_dfESPGDsubscriberStart()

n C_dfESPGDsubscriberAck()

n C_dfESPGDpublisherCB_func()

n C_dfESPGDpublisherGetID()

For more information, see “Functions for the Publish/Subscribe API” on page 105. For
publish/subscribe operations that do not have a guaranteed delivery version of the
function, call the standard publish/subscribe API function.

Configuration File Contents

The publish client and subscribe client reads a configuration file at start-up to get
customer-specific configuration information for guaranteed delivery. The format of both
of these files is as follows.

Guaranteed Delivery-enabled Publisher Configuration File Contents

Local port number for guaranteed delivery acknowledged connection server.

Time-out value for generating not acknowledged, in seconds.

Number of received acknowledgments required within time-out period to generate
acknowledged instead of not acknowledged.

180 Chapter 10 / Enabling Guaranteed Delivery

Guaranteed Delivery-enabled Publisher Configuration File Contents

File format: GDpub_port=<port> GDpub_timeout=<timeout>
GDpub_numSubs=<number of subscribers generating
acknowledged>

Guaranteed Delivery-enabled Subscriber Configuration File Contents

List of guaranteed delivery-enabled publisher host or port entries. Each entry contains a
host:port pair corresponding to a guaranteed delivery-enabled publisher from which the
subscriber wishes to receive guaranteed delivery event blocks.

Acknowledged connection retry interval, in seconds.

Acknowledged connection maximum number of retry attempts.

File Format: GDsub_pub=<host:port> … … GDsub_retryInt=<interval>
GDsub_maxretries=<max>

Publish/Subscribe API Implementation
of Guaranteed Delivery

Here is an implementation of the C publish/subscribe API for publishing. The Java
implementation is similar.

/**
* Type enumeration for Guaranteed Delivery event block status.
*/
typedef enum {
ESP_GD_READY,
ESP_GD_ACK,
ESP_GD_NACK
} C_dfESPGDStatus;
/**
* The publisher client callback function to be called for notification of
* Guaranteed Delivery (GD) event block status.

Publish/Subscribe API Implementation of Guaranteed Delivery 181

* @param eventBlockStatus
* ESP_GD_READY: required number of subscriber ACK connections are established
* ESP_GD_ACK: ACKs have been received from all required subscribers
* for this event block ID
* ESP_GD_NACK: an event block has timed out and insufficient ACKS have been received
* for the event block ID
* @param eventBlockID the event block ID (0 if status is ESP_GD_READY)
* @param ctx the user context pointer passed to C_dfESPGDpublisherStart()
*/
typedef void (*C_dfESPGDpublisherCB_func)
 (C_dfESPGDStatus eventBlockStatus, int64_t eventBlockID, void *ctx);

* The guaranteed delivery version of C_dfESPpublisherStart().
* @param serverURL string with format = "dfESP://<hostname>:<port>/
 <project name>/<continuous query name>/<window name>"
* @param errorCallbackFunction function pointer to user-defined error
 catching function, NULL for no error callback.
* @param ctx a user-defined context pointer.
* @param configFile the guaranteed delivery configuration file for this
* publisher
* @param gdCallbackFunction function pointer to user-defined guaranteed
 delivery callback function
* @return pointer to the created object, NULL if failure.
*/
DFESPPS_API clientObjPtr C_dfESPGDpublisherStart(char *serverURL,
C_dfESPpubsubErrorCB_func errorCallbackFunction,
void *ctx, char *configFile,
C_dfESPGDpublisherCB_func gdCallbackFunction);
/**
* Return sequentially unique IDs to a guaranteed-delivery-enabled publisher
* to be written to event blocks before injecting them to a guaranteed
fi+‹Gf�`Í£àåÈéoš�.�3ß�4à%@f-¶æwÍ#qnł˝CÅS¦\t−_w’}ë�–‘ú�k)EZ<0È'Î†~ÞàÁÈ_œ
* @return event ID
*/
DFESPPS_API C_ESP_int64_t C_dfESPGDpublisherGetID();

Here is a C publish/subscribe implementation for subscribing. The Java implementation
is similar.

/**
* The guaranteed delivery version of C_dfESPsubscriberStart().
* @param serverURL string with format = "dfESP://<hostname>:<port>/
 <project name>/<continuous query name>/<window name>
 ?snapshot={true|false}[?collapse={true|false}]"
* @param callbackFunction function pointer to user-defined subscriber
 callback function
* @param errorCallbackFunction function pointer to user-defined error

182 Chapter 10 / Enabling Guaranteed Delivery

 catching function, NULL for no error callback
* @param ctx a user defined context pointer
* @param configFile the GD configuration file for this subscriber
* @return pointer to the created object, NULL if failure
*/
DFESPPS_API clientObjPtr C_dfESPGDsubscriberStart(char *serverURL,
C_dfESPsubscriberCB_func callbackFunction,
C_dfESPpubsubErrorCB_func errorCallbackFunction,
void *ctx, char *configFile);
/**
* Trigger a guaranteed delivery acknowledgement of an event block.
* @param eventBlock the event block pointer
* @return int 1 = success, 0 = failure
*/
DFESPPS_API int C_dfESPGDsubscriberAck(clientObjPtr client,
 C_dfESPeventblock) ;

Publish/Subscribe API Implementation of Guaranteed Delivery 183

184 Chapter 10 / Enabling Guaranteed Delivery

11
Implementing 1+N-Way Failover

Overview to 1+N-Way Failover . 186

Topic Naming . 190
Overview to Topic Naming . 190
Solace . 190
Tervela . 191

Failover Mechanisms . 191
Overview to Failover Mechanisms . 191
Determining ESP Active/Standby State (Solace) 191
Determining ESP Active/Standby State (Tervela) 193
New ESP Active Actions on Failover (Solace) . 194

Restoring Failed Active ESP State after Restart 195

Using ESP Persist/Restore . 196

Metadata Exchanges (Solace) . 197

Metadata Exchanges (Tervela) . 197

Required Software Components . 198

Required Client Configuration . 198

Required Appliance Configuration (Solace) . 199

Required Appliance Configuration (Tervela) . 200

185

Overview to 1+N-Way Failover

SAS Event Stream Processing Engine can use third-party messaging appliances to
provide 1+N-Way Failover. Event stream processing publishers and subscribers work
with packages of events called event blocks when they interface with the engine. When
traversing a messaging appliance, event blocks are mapped one-to-one to appliance
messages. Each payload message contains exactly one event block. These event
blocks contain binary event stream processing data. A payload appliance message
encapsulates the event block and transports it unmodified.

The sections that follow use the terms “message” and “event block” interchangeably.
They also use the terms messaging appliance, appliance, message fabric, and
message bus interchangeably. The term active/standby identifies the state of any event
stream processors in a 1+N cluster of event stream processors. The term primary/
secondary identifies the state of an appliance with respect to another appliance in a
redundant pair. The terms 1+N, failover, cluster, and combinations of these terms are
used interchangeably.

The following diagram shows how SAS Event Stream Processing engine integrates with
third-party messaging appliances to provide failover. It shows two separate messaging
appliances, one between publishers and engines (ESPs) and a second between ESPs
and subscribers. In actual deployments, these do not have to be separate appliances.
Regardless of whether publishers and subscribers use the same or different appliances,

186 Chapter 11 / Implementing 1+N-Way Failover

there are two messaging appliances for each virtual messaging appliance — a primary
and secondary for messaging appliance failover.

Figure 11.1 Engine Integration with Third-Party Messaging Appliances

Publisher Publisher

Subscriber Subscriber

Messaging
Appliance

Messaging
Appliance

ESP2
(standby)

ESP3
(standby)

ESP1
(active)

In this diagram, ESP1 is the active engine (on start-up at least). ESP2 and ESP3 are
standbys that are receiving published event blocks. They do not send processed event
blocks to the subscriber messaging appliance. This distinction is depicted with dotted
arrows. The event stream processing messaging appliance connector for subscribe
services is connected to the fabric. It does not actually sending event blocks to the
fabric until one of them becomes the active on failover.

All ESPs in a 1+N failover cluster must implement the same model, because they are
redundant. It is especially important that all ESPs in the cluster use the same engine

Overview to 1+N-Way Failover 187

name. This is because the engine name is used to coordinate the topic names on which
messages are exchanged through the fabric.

Publishers and subscribers can continue to use the ESP API even when they are
subscribing or publishing through the messaging appliance for failover.

The following transport options are supported so that failover can be introduced to an
existing implementation without reengineering the subscribers and publishers:

n native

n Tervela

n Solace

However, when you use the messaging appliance for publish/subscribe, the event
stream processing API uses the messaging appliance API to communicate with the
messaging appliance. It does not establish a direct TCP connection to the event stream
processing publish/subscribe server.

Engines implement Tervela or Solace connectors to communicate with the messaging
appliance. Like client publishers and subscribers, they are effectively subscribers and
publishers. They subscribe to the messaging appliance for messages from the
publishers. They publish to the message appliance so that it can publish messages to
the subscribers.

These fabrics support using direct (that is, non-persistent) or persistent messaging
modes. For this application, the Tervela connector requires that Tervela fabrics use
persistent messaging for all publish/subscribe communication between publishers,
ESPs, and subscribers. Solace fabrics can use either direct or persistent messaging.
Enabling persistent messaging on the appliance implies the following:

n The message bus guarantees delivery of messages to and from its clients using its
proprietary acknowledgment mechanisms. Duplicate message detection, lost
message detection, retransmissions, and lost ACK handling are handled by the
messaging bus.

n Upon re-connection of any client and its re-subscription to an existing topic, the
message bus replays all the messages that it has persisted for that topic. The
number of messages or time span that this covers is appliance-configuration
dependent.

188 Chapter 11 / Implementing 1+N-Way Failover

n At the start of the day, the appliance should be purged of all messages on related
topics. Message IDs must be synchronized across all connectors.

The ESPs are deployed in a 1+N redundant manner. This means the following:

n All the ESPs in the 1+N cluster receive messages from the publishers.

n Only the active ESP in the 1+N cluster publishes messages to the subscribers.

n One or more backup ESPs in a 1+N cluster might be located in a remote data
center, and connected over the WAN.

For simplicity, the reference architecture diagram illustrates one cluster of 1+N
redundant ESPs. However, there can be multiple clusters of ESPs, each subscribing
and publishing on a different set of topics. A single publisher can send messages to
multiple clusters of ESPs. A single subscriber can receive messages from multiple
ESPs.

The message bus provides a mechanism to signal to an ESP that it is the active ESP in
the cluster. The message bus provides a way for an ESP, when notified that it is active,
to determine the last message published by the previously active ESP. The newly active
ESP can resume publishing at the appropriate point in the message stream.

Sequence numbering of messages is managed by the ESP’s appliance connectors for
the following purposes:

n detecting duplicates

n detecting gaps

n determining where to resume sending from after an ESP fail-over

An ESP that is brought online resynchronizes with the day’s published data and the
active ESP. The process occurs after a failure or when a new ESP is added to a 1+N
cluster.

ESPs are deployed in 1+N redundancy clusters. All ESPs in the cluster subscribe to the
same topics on the message bus, and hence receive exactly the same data. However,
only one of the ESPs in the cluster is deemed the active ESP at any time. Only the
active ESP publishes data to the downstream subscribers.

Note: Solace functionality is not available on HP Itanium or AIX platforms.

Overview to 1+N-Way Failover 189

Note: Tervela functionality is not available on HP Itanium, AIX, or SPARC platforms.

Topic Naming

Overview to Topic Naming

Topic names are mapped directly to engine (ESP) windows that send or receive event
blocks through the fabric. Because all ESPs in a 1+N cluster implement the same
model, they also use an identical set of topics on the fabric. However, to isolate publish
flows from subscribe flows to the same window, all topic names are appended with an
“in” or “out” designator. This enables clients and ESP appliance connectors to use
appliance subscriptions and publications, where event blocks can flow only in one
direction.

Current client applications continue to use the standard ESP URL format, which
includes a host:port section. No publish/subscribe server exists, so host:port is not
interpreted literally. It is overloaded to indicate the target 1+N cluster of ESPs. All of
these ESPs have the same engine name, so a direct mapping between host:port and
engine name is established to associate a set of clients with a specific 1+N ESP cluster.

You create this mapping by configuring each ESP appliance connector with a
“urlhostport” parameter that contains the host:port section of the URL passed by the
client to the publish/subscribe API. This parameter must be identical for all appliance
connectors in the same 1+N failover cluster.

Solace

The topic name format used on Solace appliances is as follows: host:port/
project/contquery/window/direction, where direction takes the value “I” or
“O”. Because all this information is present in a client URL, it is easy for clients to
determine the correct appliance topic. ESP appliance connectors use their configured
“urlhostport” parameter to derive the “host:port” section of the topic name, and the rest
of the information is known by the connector.

190 Chapter 11 / Implementing 1+N-Way Failover

Tervela

The topic name format used on Tervela appliances is as follows:
“SAS.ENGINES.engine.project.contquery.window.direction”, where
direction takes the value “IN” or “OUT”. ESP appliance connectors know this
information, so it is easy for them to determine the correct appliance topic.

Clients must be able to map the “host:port” section of the received URL to the engine
section of the topic name. This mapping is obtained by the client by subscribing to a
special topic named SAS.META.host:port.. The ESP appliance connectors use their
configured “urlhostport” parameter to build this topic name,. They publish a metadata
message to the topic that includes the “host:port” to engine mapping. Only after
receiving this message can clients send or receive event block data. ESP appliance
connectors automatically send this message when the ESP model is started.

Failover Mechanisms

Overview to Failover Mechanisms

If the active engine (ESP) in a failover cluster fails, the standby ESP appliance
connectors are notified. Then one of them becomes the new active ESP. The fabric tells
the new active connector the ID of the last message that it received on the window-
specific “out” topic. The new active connector begins sending data on that “out” topic
with ID + 1.

When appliance connectors are inactive, they buffer outbound messages (up to a
configurable maximum) so that they can find messages starting with ID+1 in the buffer if
necessary.

Determining ESP Active/Standby State
(Solace)

For Solace appliances, an exclusive messaging queue is shared amongst all the
engines (ESPs) in the 1+N cluster. The queue is used to signal active state. No data is

Failover Mechanisms 191

published to this queue. It is used as a semaphore to determine which ESP is the active
at any point in time.

Figure 11.2 Determining Active State

Publisher

ESP
(Active)

ESP
(Standby)

Exclusive
Queue

Message
Fabric

ESP
(Standby)

ESP active/standby status is coordinated among the engines using the following
mechanism:

1 When an ESP subscriber appliance connector starts, it tries, as a queue consumer,
to bind to the exclusive queue that has been created for the ESP cluster.

2 If the connector is the first to bind to the queue, it receives a “Flow Active” indication
from the messaging appliance API. This signals to the connector that it is now the
active ESP.

3 As other connectors bind to the queue, they receive a “Flow Inactive” indication. This
indicates that they are standby ESPs, and should not be publishing data onto the
message bus.

192 Chapter 11 / Implementing 1+N-Way Failover

4 If the active ESP fails or disconnects from the appliance, one of the standby
connectors receives a “Flow Active” indication from the messaging appliance API.
Originally, this is the second standby connector to connect to the appliance. This
indicates that it is now the active ESP in the cluster.

Determining ESP Active/Standby State
(Tervela)

When using the Tervela Data Fabric, ESP active/standby status is signaled to the ESPs
using the following mechanism:

1 When an ESP subscriber appliance connector starts, it attempts to create a “well-
known” Tervela inbox. It uses the engine name for the inbox name, which makes it
specific to the failover cluster. If successful, that connector takes ownership of a
system-wide Tervela GD context, and becomes active. If the inbox already exists,
another connector is already active. The connector becomes standby and does not
publish data onto the message bus.

2 When a connector becomes standby, it also connects to the inbox, and sends an
empty message to it.

3 The active connector receives an empty message from all standby connectors. It
assigns the first responder the role of the active standby connector by responding to
the empty message. The active connector maintains a map of all standby
connectors and their status.

4 If the active connector receives notification of an inbox disconnect by a standby
connector, it notifies another standby connector to become the active standby, using
the same mechanism.

5 If the active ESP fails, the inbox also fails. At this point the fabric sends a
TVA_ERR_INBOX_COMM_LOST message sent to the connected standby connectors.

6 When the active standby connector receives a TVA_ERR_INBOX_COMM_LOST
message, it becomes the active ESP in the failover cluster. It then creates a new
inbox as described in step 1.

Failover Mechanisms 193

7 When another standby connector receives a TVA_ERR_COMM_LOST message, it
retains standby status. It also finds the new inbox, connects to it, and send an empty
message to it.

New ESP Active Actions on Failover (Solace)

The newly active engine (ESP) determines, from the message bus, the last message
published by the previously active ESP for the relevant window. To assist in this
process, guaranteed messaging Last Value Queues (LVQs) are used.

LVQs are subscribed to the same “out” topics that are used by the appliance
connectors. An LVQ has the unique characteristic that it maintains a queue depth of one
message, which contains the last message published on the topic to which it
subscribed. When the ESP can publish messages as “direct” or “guaranteed”, those
messages can always be received by a guaranteed messaging queue that has
subscribed to the message topic. Thus, the LVQ always contains the last message that
an ESP in the cluster published onto the message bus.

When an ESP receives a “Flow Active” indication, it binds to the LVQ as a browser. It
then retrieves the last message published from the queue, saves its message ID,
disconnects from the LVQ, and starts publishing starting with message ID = the saved
message ID + 1. The connector can obtain this message and subsequent messages

194 Chapter 11 / Implementing 1+N-Way Failover

from the queue that it maintained while it was inactive. It can ignore newly received
messages until the one with ID = saved message ID + 1 is received.

Figure 11.3 Last Value Queues

ESP

Subscriber Subscriber

Last
Value
Queue

Message
Fabric

Subscriber

Restoring Failed Active ESP State after
Restart

When a failed active is manually brought back online, it is made available as a standby
when another ESP in the cluster is currently active. If the appliance is operating in
“direct” mode, persisted messages on the topic do not replay. This standby ESP
remains out-of-sync with other ESPs in the failover cluster that have already had event
blocks injected into that window. When the appliance is in “persistence” or “guaranteed”
mode, it replays as much data as it has persisted on the “in” topic when a client

Restoring Failed Active ESP State after Restart 195

reconnects. The amount of data that is persisted depends on appliance configuration
and disk resources. In many cases, the data persisted might not be enough to cover up
one day of messages.

Using ESP Persist/Restore

To guarantee that a rebooted engine (ESP) can be fully synchronized with other running
ESPs in a failover cluster, use the ESP persist/restore feature with an appliance in
“guaranteed” mode. This requires that ESP state is periodically persisted by any single
ESP in the failover cluster. A persist can be triggered by the model itself, but in a
failover cluster this generates redundant persist data.

Alternatively, a client can use the publish/subscribe API to trigger a persist by an ESP
engine. The URL provided by the client specifies host:port, which maps to a specific
ESP failover cluster. The messaging mechanism guarantees that only one ESP in the
cluster receives the message and executes the persist. On Solace appliances, this is
achieved by setting Deliver-To-One on the persist message to the metadata topic. On
the Tervela Data Fabric this is achieved by sending the persist message to an inbox
owned by only one ESP in the failover cluster.

The persist data is always written to disk. The target path for the persist data is
specified in the client persist API method. Any client that requests persists of an ESP in
a specific failover cluster should specify the same path. This path can point to shared
disk, so successive persists do not have to be executed by the same ESP in the failover
cluster.

The other requirement is that the model must execute a restore on boot so that a
rebooted standby ESP can synchronize its state using the last persisted snapshot. On
start-up, appliance connectors always get the message ID of the last event block that
was restored. If the restore failed or was not requested, the connector gets 0. This
message ID is compared to those of all messages received through replay by a
persistence-enabled appliance. Any duplicate messages are ignored.

196 Chapter 11 / Implementing 1+N-Way Failover

Metadata Exchanges (Solace)

The Solace publish/subscribe API handles the C_dfESPpubsubQueryMeta() and
C_dfESPpubsubPersistModel() methods as follows:

n The appliance connectors listen for metadata requests on a special topic named
"urlhostport/M".

n The client sends formatted messages on this topic in request/reply fashion.

n The request messages are always sent using Deliver-To-One to ensure that no
more than one ESP in the failover cluster handles the message.

n The response is sent back to the originator, and contains the same information
provided by the native publish/subscribe API.

Metadata Exchanges (Tervela)

The Tervela publish/subscribe API handles the C_dfESPpubsubQueryMeta() method
as follows:

n On start-up, appliance connectors publish complete metadata information about
special topic "SAS.META.host:port". This information includes the “urlhostport” to
engine mapping needed by the clients.

n On start-up, clients subscribe to this topic and save the received metadata and
engine mapping. To process a subsequent C_dfESPpubsubQueryMeta() request,
the client copies the requested information from the saved response(s).

The Tervela publish/subscribe API handles the C_dfESPpubsubPersistModel()
method as follows.

n Using the same global inbox scheme described previously, the appliance connectors
create a single cluster-wide inbox named “engine_meta”.

Metadata Exchanges (Tervela) 197

n The client derives the inbox name using the received “urlhostport” - engine mapping,
and sends formatted messages to this inbox in request/reply fashion.

n The response is sent back to the originator, and contains the same information
provided by the native publish/subscribe API.

Required Software Components

Note the following requirements when you implement 1+N-way failover:

n The ESP model must implement the required Solace or Tervela publish and
subscribe connectors. The subscribe connectors must have “hotfailover” configured
to enable 1+N-way failover.

n Client publisher and subscriber applications must use the Solace or Tervela publish/
subscribe API provided with SAS Event Stream Processing Engine. For C or C++
applications, the Solace or Tervela transport option is requested by calling
C_dfESPpubsubSetPubsubLib() before calling C_dfESPpubsubInit(). For
Java applications, the Solace or Tervela transport option is invoked by inserting dfx-
esp-solace-api.jar or dfx-esp-tervela-api.jar into the classpath in front of dfx-esp-
api.jar.

n The platforms hosting running instances of the connectors and clients must have the
Solace or Tervela run-time libraries installed. This is because the Event Stream
Processing Engine does not ship any appliance standard API libraries. The run-time
environment must define the path to those libraries (using LD_LIBRARY_PATH on
linux platforms, for example).

Required Client Configuration

A Solace client application requires a client configuration file named solace.cfg in the
current directory to provide appliance connectivity parameters. A Tervela client
application requires a client configuration file named client.config in the current directory

198 Chapter 11 / Implementing 1+N-Way Failover

to provide appliance connectivity parameters. See documentation of
C_dfESPpubsubSetPubsubLib() publish/subscribe API function for details about the
contents of these configuration files.

Required Appliance Configuration
(Solace)

A Solace appliance used in this 1+N Way Failover topology requires this configuration
at a minimum:

n A client user name and password to match the connector’s soluserid and
solpassword configuration parameters.

n A message VPN to match the connector’s solvpn configuration parameter.

n On the message VPN, enable “Publish Subscription Event Messages”.

n On the message VPN, enable “Client Commands” under “SEMP over Message
Bus”.

n On the message VPN, configure a nonzero “Maximum Spool Usage”.

n If hot failover is enabled on subscriber connectors, create a single exclusive queue
named “active_esp” in the message VPN. The subscriber connector that
successfully binds to this queue becomes the active connector.

n If buspersistence is enabled, enable “Publish Client Event Messages” on the
message VPN.

n If buspersistence is enabled, create exclusive queues for all clients subscribing to
the Solace topics described below. The queue name must be equal to the topic
name with “/buspersistencequeue appended. The buspersistencequeue is the queue
configured on the publisher connector (for “/I” topics), or the queue configured on the
client subscriber (for “/O” topics). Add the corresponding topic to each configured
queue.

n For high throughput deployments, modify the client profile to increase Queue
Maximum Depth and Priority Queue Minimum Burst as needed.

Required Appliance Configuration (Solace) 199

Required Appliance Configuration
(Tervela)

A Tervela appliance used in this 1+N Way Failover topology requires this configuration
at a minimum:

n A client user name and password to match the connector’s tvauserid and
tvapassword configuration parameters.

n The inbound and outbound topic strings and associated schema. (See topic string
formats described previously.)

n Publish or subscribe entitlement rights associated with a client user name described
previously.

200 Chapter 11 / Implementing 1+N-Way Failover

12
Advanced Topics

Logging Bad Events . 202

Measuring Time Granularity . 202

Using Joins and Understanding Join Constraints 203

Converting CSV Events to Binary . 204

Implementing Periodic (or Pulsed) Window Output 205

Splitting Generated Events across Output Slots 206
Overview . 206
Splitter Functions . 207
Splitter Expressions . 208

Marking Events as Partial-Update on Publish . 208
Overview . 208
Publishing Partial Events into a Source Window 209
Examples . 210

Understanding Primary Indexes and Retention Policies 211
Overview . 211
Fully Stateful Indexes . 211
Retention Policies for Fully Stateful Indexes . 213
Non-Stateful Index . 213

Using Stateless Pattern Windows . 214

Using Aggregation Functions . 215

201

Using an Aggregate Function to Add Statistics
to an Incoming Event . 218

Persist and Restore Model State . 220

Gathering and Saving Latency Measurements 221

Logging Bad Events

When you start an event stream processing application with -b <filename>, the
application writes the events that are not processed because of computational failures
to a log file. When you do not specify this option, the same data is output to stderr. It
is recommended to create bad event logs so that they can be monitored for new
insertions.

An application can use the dfESPengine::logBadEvent() member function from a
procedural window to log events that it determines are invalid. For example, you can
use the function to allow models to perform data quality checks and log events that do
not pass. There are two common reasons to reject an event in a source window:

n The event contains a null value in one of the key fields.

n The opcode that is specified conflicts with the existing window index (for example,
two Inserts of the same key, or a Delete of a non-existing key).

Measuring Time Granularity

Several methods in the C++ Modeling API measure time intervals in microseconds. The
following intervals are measured in milliseconds

n time-out period for patterns

n retention period in time-based retention

n pulse intervals for periodic window output

202 Chapter 12 / Advanced Topics

Most non-real-time operating systems have an interrupt granularity of approximately 10
milliseconds. Thus, specifying time intervals smaller than 10 milliseconds can lead to
unpredictable results.

Note: In practice, the smallest value for these intervals should be 100 milliseconds.
Larger values give more predictable results.

Using Joins and Understanding Join
Constraints

The following table specifies where each Join type is permitted. The following standard
notation is used: 1-1 for one-to-one, M-1 for many-to-one, and 1-M for one-to-many.

Öł'}-ÕËèŸÐ‰D¼±Ú"�¬Š��� Left Outer Right Outer Inner

1-1 Allowed Allowed Allowed

M-1 Allowed Not Allowed Allowed

1-M Not Allowed Allowed Allowed

Note: Many-to-many (M-M) joins are strictly prohibited.

Classify left and right windows as dimension or fact windows as follows:

n dimension window - all keys of the window are represented in the join constraints.

n fact window - all keys of the window are not represented in the join constraints.

The following table specifies how keys of the Join window are computed given the type
of window on the left and the right sides of the join. It also specifies the permitted Join
types for that condition:

Using Joins and Understanding Join Constraints 203

Õ‹Ü^¦3˜ÆriÍÚgÈX=BF®‰Ùµ Left Side Right Side Join Constraints Permitted Join Types

1-1 Dimension Dimension All keys on left
and right
participate in the
constraint set.

n For Left Outer, choose
Keys of Left window.

n For Right Outer, choose
Keys from Right window.

n For Inner, choose Keys
from Left window
(although keys of Right
window would also work).

M-1 Fact Dimension All keys on right
and not all keys
on left participate
in the constraint
set.

n For Left Outer, choose
keys of Left window (Right
window is lookup table).

n Right Outer is not Allowed.
n For Inner, choose keys

from Left window.

1-M Dimension Fact All keys on the
left and not all
keys on the right
participate in the
constraint set.

n Left Outer is not allowed.
n For Right Outer, choose

keys of Right window (Left
windows is lookup table).

n For Inner, choose keys
from Right window.

M-M Fact Fact Neither side has
all keys
participating in
the constraint set.

Not allowed

Converting CSV Events to Binary

You can convert a file of CSV events into a file of binary events. This file can be read
into a project and played back at higher rates than the CSV file.

CSV conversion is very CPU intensive. Convert events offline a single time to avoid the
performance penalties of converting CSV events during each playback. In actual
production applications, the data frequently arrives in some type of binary form and

204 Chapter 12 / Advanced Topics

needs only reshuffling to be used in the SAS Event Stream Processing Engine.
Otherwise, the data comes as text that needs to be converted to binary events.

For CSV conversion to binary, see the example application "csv2bin" under the src
directory of the SAS Event Stream Processing Engine installation. The README file in
src explains how to use this example to convert CSV files to event stream processor
binary files. The source file shows you how to actually do the conversion in C++ using
methods of the C++ Modeling API.

The following code example reads in binary events from stdin and injects the events
into a running project. Note that only events for one window can exist in a given file. For
example, all the events must be for the same source window. It also groups the data
into blocks of 64 input events to reduce overhead, without introducing too much
additional latency.

dfESPfileUtils::setBinaryMode(stdin);
// For windows it is essential that we read binary
// data in BINARY mode.
 //
 dfESPfileUtils::setBinaryMode(stdin);
 // Trade event blocks are in binary form and
 // are coming using stdin.
 while (true) { // more trades exist
 // Create event block.
 ib = dfESPeventblock::newEventBlock(stdin,
 trades->getSchema());
 if (feof(stdin))
 break;
 sub_project->injectData(subscribeServer,
 trades, ib);
}
sub_project->quiesce(); // Wait for all input events to be processed.

Implementing Periodic (or Pulsed)
Window Output

In most cases, the SAS Event Stream Processing EngineAPI is fully event driven.
Windows continuously produce output as soon as they transform input. There are times
when you might want a window to hold data and then output a canonical batch of

Implementing Periodic (or Pulsed) Window Output 205

updates. In this case, operations to common key values are collapsed into one
operation.

Here are two cases where batched output might be useful:

n Visualization clients might want to get updates once a second, given that they
cannot visualize changes any faster than this. When the event data is pulsed, the
clients take advantage of the reduction of event data to visualize through the
collapse around common key values.

n A window following the pulsed window is interested in comparing the deltas between
periodic snapshots from that window.

Use the following call to add output pulsing to a window:

dfESPwindow::setPulseInterval(size_t us);

Note: Periodicity is specified in microseconds. However, given the clock resolution of
most non-real-time operating systems, the minimum value that you should specify for a
pulse period is 100 milliseconds.

Splitting Generated Events across
Output Slots

Overview

All window types can register a splitter function or expression to determine what output
slot should be used for a given event. This enables you to split generated events across
a set of output slots. This determines where the subsequent set of windows goes.

Most windows send all generated events out of output slot 0 to zero of more
downstream windows. For this reason, it is not standard for most models. Using splitter
functions can be more efficient than using filter windows off the output slot, especially if
you are doing an alpha-split across a set of trades or similar task.

206 Chapter 12 / Advanced Topics

Splitter Functions

Here is a prototype for a splitter function.

size_t splitterFunction(dfESPschema *outputSchema, dfESPeventPtr nev,
 dfESPeventPtr oev);

This splitter function receives the schema of the events supplied, the new and old event
(only non-null for update block), and it returns a slot number.

Here is how you use the splitter for the source window (sw_01) to split events across
three copy windows: cw_01, cw_02, cw_03.

sw_01->setSplitter(splitterFunction);
cq_01->addEdge(sw_01, 0, cw_01);
cq_01->addEdge(sw_01, 1, cw_02);
cq_01->addEdge(sw_01, -1, cw_03);

The dfESPwindow::setSplitter() member function is used to set the user-
defined splitter function for the source window. The dfESPcontquery::addEdge()
member function is used to connect the copy windows to different output slots of the
source window.

When adding an edge between windows in a continuous query, specify the slot number
of the parent window where the receiving window receives its input events. If the slot
number is -1, it receives all the data produced by the parent window regardless of the
splitter function.

If no splitter function is registered with the parent window, the slots specified are
ignored, and each child window receives all events produced by the parent window.

Note: Do not write a splitter function that randomly distributes incoming records. Also,
do not write a splitter function that relies on a field in the event that might change. The
change might cause the updated event to generate a different slot value than what was
produced prior to the update. This can cause an Insert to follow one path and a
subsequent Update to follow a different path. This generates inconsistent results, and
creates indices in the window that are not valid.

Splitting Generated Events across Output Slots 207

Splitter Expressions

When you define splitter expressions, you do not need to write the function to determine
and return the desired slot number. Instead, the registered expression does this using
the splitter expression engine. Applying expressions to the previous example would look
as follows, assuming that you split on the field name "splitField", which is an integer:

sw_01->setSplitter("splitField%2");
cq_01->addEdge(sw_01, 0, cw_01);
cq_01->addEdge(sw_01, 1, cw_02);
cq_01->addEdge(sw_01, -1, cw_03);

Here, the dfESPwindow::setSplitter() member function is used to set the splitter
expression for the source window. Using splitter expressions rather than functions can
lead to slower performance because of the overhead of expression parsing and
handling. Most of the time you should not notice differences in performance.

Marking Events as Partial-Update on
Publish

Overview

In most cases, events are published into an event stream processing engine with all
fields available. Some of the field values might be null. Events with Delete opcodes
require only the key fields to be non-null.

There are times when only the key fields and the fields being updated are desired or
available for event Updates. This is typical for financial feeds. For example, a broker
might want to update the price or quantity of an outstanding order. You can update
selected fields by marking the event as partial-update (rather than normal).

When you mark events as partial-update, you provide values only for the key fields and
for fields that are being updated. In this case, the fields that are not updated are marked
as data type dfESPdatavar::ESP_LOOKUP. This marking tells the SAS Event Stream
Processing Engine to match key fields of an event retained in the system with the
current event and not to update the current event’s fields.

208 Chapter 12 / Advanced Topics

In order for a published event to be tagged as a partial-update, the event must contain
all non-null key fields that match an existing event in the source window. You apply the
partial event Update in the source window.

When you use transactional event blocks to publish multiple events atomically, it is
invalid to include the Insert of the original event with unique key fields. It is also invalid
to include an Update to that same event (identified by the key fields) in the same
publishing block. This is because transactional event blocks are treated atomically. All
operations in that block are checked against an existing window state before the
transactional block is applied as a whole.

Publishing Partial Events into a Source
Window

Consider these three points when you publish partial events into a source window.

n In order to construct the partial event, you must represent all the fields in the event.
Specify either the field type and value or a placeholder field that indicates that the
field value and type are missing. In this way, the existing field value for this key field
combination remains for the updated event. These field values and types can be
provided as datavars to build the event. Alternatively, they can be provided as a
comma-separated value (CSV) string.

If you use CSV strings, then use '^U' (such as, control-U, decimal value 21) to
specify that the field is a placeholder field and should not be updated. On the other
hand, if you use datavars to represent individual fields, then those fully specified
fields should be valid. Enter them as datavars with values (non-null or null).
Specify the placeholder fields as empty datavars of type
dfESPdatavar::ESP_LOOKUP.

n No matter what form you use to represent the field values and types, the
representation should be included in a call for the partial update to be published. In
addition to the fields, use a flag to indicate whether the record is a normal or partial
update. If you specify partial update, then the event must be an Update or an Upsert
that is resolved to an Update. Using partial-update fields makes sense only in the
context of updating an existing or retained source window event. This is why the
opcode for the event must resolve to Update. If it does not resolve to Update, an
event merge error is generated.

Marking Events as Partial-Update on Publish 209

If you use an event constructor to generate this binary event from a CSV string, then
the beginning of that CSV string contains "u,p" to show that this is a partial-update.
If instead, you use event->buildEvent() to create this partial update event, then
you need to specify the event flag parameter as
dfESPeventcodes::ef_PARTIALUPDATE and the event opcode parameter as
dfESPeventcodes::eo_UPDATE.

n One or more events are pushed onto a vector and then that vector is used to create
the event block. The event block is then published into a source window. For
performance reasons, each event block usually contains more than a single event.
When you create the event block you must specify the type of event block as
transactional or atomic using dfESPeventblock::ebt_TRANS or as normal using
dfESPeventblock::ebt_NORMAL.

Do not use transactional blocks with partial updates. Such usage treats all events in
the event block as atomic. If the original Insert for the event is in the same event
block as a partial Update, then it fails. The events in the event block are resolved
against the window index before the event block is applied atomically. Use normal
event blocks when you perform partial Updates.

Examples

Here are some sample code fragments for the variations on the three points described
in the previous section.

Create a partial Update datavar and push it onto the datavar vector.

// Create an empty partial-update datavar.
dfESPdatavar* dvp = new dfESPdatavar(dfESPdatavar::ESP_LOOKUP);
// Push partial-update datavar onto the vector in the appropriate
// location.
// Other partial-update datavars might also be allocated and pushed to the
// vector of datavars as required.
dvVECT.push_back(dvp); // this would be done for each field in the update
 event

Create a partial Update using partial-update and normal datavars pushed onto that
vector.

// Using the datavar vector partially defined above and schema,
// create event.

210 Chapter 12 / Advanced Topics

dfESPeventPtr eventPtr = new dfESPevent();
eventPtr->buildEvent(schemaPtr, dvVECT, dfESPeventcodes::eo_UPDATE,
dfESPeventcodes::ef_PARTIALUPDATE);

Define a partial update event using CSV fields where '^U' values represent partial-
update fields. Here you are explicitly showing '^U'. However, in actual text, you might
see the character representation of Ctrl-U because individual editors show control
characters in different ways.

Here, the event is an Update (due to 'u'), which is partial-update (due to 'p'), key value is
44001, "ibm" is the instrument that did not change. The instrument is included in the
field. The price is 100.23, which might have changed, and 3000 is the quantity which
might have changed, so the last three of the fields are not updated.

p = new dfESPevent(schema_01,
(char *)"u,p,44001,ibm,100.23,3000,^U,^U,^U");

Understanding Primary Indexes and
Retention Policies

Overview

Each window type has a primary index that is built upon creation of the window
instance. The index is used to store events and enable rapid event lookup and retrieval.
The dfESPeventdepot_mem object used to store windows supports six types of
primary indices: five are stateful, and one is not.

Fully Stateful Indexes

The following index types are fully stateful:

Index Type Description

pi_RBTREE Specifies red/black tree, logarithmic Insert, Deletes are O(log(n)) —
provides smooth latencies.

Understanding Primary Indexes and Retention Policies 211

Index Type Description

pi_HASH Specifies a typical open hash algorithm. In general this index
provides faster results than pi_RBTREE. Unless properly sized,
using this index might lead to latency spikes.

pi_CL_HASH Specifies a closed hash. This index provides faster results than
pi_HASH.

pi_FW_HASH Specifies a forward hash. This index creates a smaller memory
footprint than other hash indexes, but might yield poorer delete
performance.

pi_LN_HASH Specifies a linked hash. This index performs slightly more slowly
than other hash index and uses more memory than pi_CL_HASH.

For information about the closed hash, forward hash, and linked hash variants, see
“Miscellaneous Container Templates” at http://www.medownloads.com/
download-Miscellaneous-Container-Templates-147179.htm.

Events are absorbed, merged into the window’s index, and a canonical version of the
change to the index is passed to all output windows. Any window that uses a fully
stateful index has a size equal to the cardinality of the unique set of keys, unless a time
or size-based retention policy is enforced.

When no retention policy is specified, a window that uses one of the fully stateful indices
acts like a database table or materialized view. At any point, it contains the canonical
version of the event log. Because common events are reference-counted across
windows in a project, you should be careful that all retained events do not exceed
physical memory.

Use the Update and Delete opcodes for published events (as is the case with capital
market orders that have a lifecycle such as create, modify, and close order). However,
for events that are Insert-only, you must use window retention policies to keep the event
set bound below the amount of available physical memory.

212 Chapter 12 / Advanced Topics

Retention Policies for Fully Stateful Indexes

Source or copy windows using a fully stateful index can have one of several types of
retention policies specified. To specify a retention policy, use the
setRetentionParms() call on the window. This call takes two parameters, the
retention type and the retention parameter.

Retention type can be one of the following options:

Retention Type Description

ret_NONE This is the default. It is the same as if
setRetentionParms was not called.

ret_BYTIME_SLIDING Specifies to purge continuously from the window
when an event age reaches the limit as specified in
the retention parameter.

ret_BYTIME_JUMPING Specifies that when the amount of time since the last
purge is equal to the time specified by the retention
parameter, purge the entire set of window events.
Then start the next time cycle.

ret_BYCOUNT_SLIDING Specifies to purge continuously from the window
when the event set size reaches the limit as specified
by the retention parameter.

ret_BYCOUNT_JUMPING Specifies that when the window event set size
reaches the limit specified by the retention parameter,
purge the entire window event set and start.

When events are deleted from a window because of a user-specified retention policy,
the Delete or Update of that event generates a run-time error.

Non-Stateful Index

The non-stateful index is a source window that can be set to use the index type
pi_EMPTY. It acts as a pass-through for all incoming events.

Understanding Primary Indexes and Retention Policies 213

The following restrictions apply to source windows that use the empty index type.

n No restrictions apply if the source window is set to "Insert only.". For more
information, see the setInsertOnly call in “dfESPwindow_source” on page 22.

n If the source window is not Insert-only, then it must be followed by a copy window
with a stateful index. This restriction enables the copy window to resolve Updates,
Upserts, and Deletes that require a previous window state. Otherwise, the Updates,
Upserts, and Deletes are not properly handled and passed to subsequent derived
windows farther down the model. As a result, the window cannot compute
incremental changes correctly.

Using empty indices and retention enables you to specify multiple retention policies
from common event streams coming in through a source window. The source window is
used as an absorption point and pass-through to the copy windows, as shown in the
following figure.

Figure 12.1 Copy Windows

Source Window
Copy Window
Sliding Retention
10 minutes

Copy Window
Sliding Retention
5 minutes

Copy Window
Sliding Retention
15 minutes

Using Stateless Pattern Windows

Pattern windows are Insert-only with respect to both their input windows and the output
that they produce. The output of a pattern window is a monotonically increasing integer

214 Chapter 12 / Advanced Topics

ID that represents the number of patterns found in the pattern window. The ID is
followed by an arbitrary number of non-key fields assembled from the fields of the
events of interest for the pattern. Because both the input and output of a pattern window
are unbounded and Insert only, they are natural candidates for stateless windows (that
is, windows with index type pi_EMPTY).

Pattern windows are automatically marked as Insert-only, and they reject records that
are not Inserts. Thus, no problems are encountered when you use an index type of
pi_EMPTY with pattern windows. If a source window feeds the pattern window, it needs
to be explicitly told that it is Insert only, using the dfESPwindow::setInsertOnly()
call. This causes the source window to reject non-Insert data and allow an index type of
pi_EMPTY to be used.

Stateless windows are efficient with respect to memory use. More than one billion
events have been run through pattern detection scenarios such as this with only modest
memory use (less than 500MB total memory).

Source Window [insert only, pi_EMPTY index] --> PatternWindow[insert only,
 pi_EMPTY index]

Using Aggregation Functions

Consider the aggregate function Sum(). Even though it is always possible to iterate
over the group and compute a new Sum() when a new group changes, it is faster to
maintain the Sum() in a dfESPdatavar in the dfESPgroupstate object and
increment (modify) or decrement the object by the incoming value, provided that the
new event is an insert, update, or delete. The function then adjusts this field state so
that it is up-to-date and can be used again when another change to the group occurs.

Functions that compute themselves based on previous field state and a new field value
are called additive aggregation functions. Some functions cannot be made additive, like
the function Max(). Given a mix of inserts, updates, and deletes, the Max() function
must iterate over the group when an update or delete is received to correctly compute
the aggregate value.

Using Aggregation Functions 215

Using a few helper functions that operate on numeric dfESPdatavars (found in the
dfESPdatavar_numerics.hheader file), the code to implement an additive Sum()
aggregate function is:

dfESPdatavarPtr Sum(dfESPschema *is, dfESPeventPtr ep, dfESPeventPtr oep, dfESPgroupstate *gs)
 {
 const int index = 2; // quantity
 dfESPptrVect<dfESPdatavarPtr> &state = gs->getStateVector();

 dfESPdatavar *rdv = NULL; // return value
 dfESPdatavar *iNdv = NULL; // input value (new record)
 dfESPdatavar *iOdv = NULL; // input value (old record)
 dfESPdatavar *sdv = NULL; // current state (the old sum for the group)

 // Get the new value out of the input record (insert or delete).

 iNdv = new dfESPdatavar(is->getTypeIO(index)); // create a new datavar
 ep->copyByIntID(index, iNdv); // load input value (new record)

 // Get the old value out of the input record (update).

 if (oep) {
 iOdv = new dfESPdatavar(is->getTypeIO(index)); // create a new datavar
 oep->copyByIntID(index, iOdv); // load input value(old record)
 }

 // If the state has never been set, set it to 0.0.

 if (state.empty()) { // initialize state to 0.0
 dfESPdatavarPtr dv = new dfESPdatavar(is->getTypeIO(index));
 dv->setDouble(0.0);
 state.push_back(dv);
 }

 // Get the previous state.
 sdv = state[0]; // There is one state variable for summation, the old sum.

 // Create a new datavar to store the returned result.
 rdv = new dfESPdatavar(is->getTypeIO(index));

 // For a delete r = STATE - INCOMING VALUE.
 if (ep->getOpcode() == dfESPeventcodes::eo_DELETE) {
 dfESPdatavarNumerics::dv_subtract(rdv, sdv, iNdv);
 }

 // For an insert r = STATE + INCOMING VALUE.
 if (ep->getOpcode() == dfESPeventcodes::eo_INSERT) {

216 Chapter 12 / Advanced Topics

 dfESPdatavarNumerics::dv_add(rdv, sdv, iNdv);
 }

 // For an UPDATE block, if there is no OLD value, it is an insert, if
 // If there is an old value, then:
 // r = STATE - OLD INCOMING VALUE + NEW INCOMING VALUE
 if (ep->getOpcode() == dfESPeventcodes::eo_UPDATEBLOCK) {
 if (oep == NULL) { // treat just like an insert.
 dfESPdatavarNumerics::dv_add(rdv, sdv, iNdv);
 } else {
 dfESPdatavarNumerics::dv_subtract(rdv, sdv, iOdv);
 dfESPdatavarNumerics::dv_add(rdv, sdv, iNdv);
 }
 }

 dfESPdatavarNumerics::dv_assign(sdv, rdv); // sdv = rdv
 delete iNdv;
 if (iOdv)
 delete iOdv;
 return rdv;
 }

An additive aggregation function can be complex for two reasons. First, they must look
at the current state (for example, the last computed state). Second, they must evaluate
the type of incoming event to make proper adjustments. The code to implement the
nonadditive Max() aggregate function is as follows:

// This is an example of a non-additive aggregation function.
// It loops over all events in the group to compute the maximum.

dfESPdatavarPtr maximumAggr(dfESPschema *is, dfESPeventPtr ep,
 dfESPeventPtr oep, dfESPgroupstate *gs) {
 const int index = 3; // the price.
 dfESPdatavar *rdv, *dv; // dv will be our return value.
 rdv = new dfESPdatavar(dfESPdatavar::ESP_DOUBLE); // return value
 dv = new dfESPdatavar(dfESPdatavar::ESP_DOUBLE); // scratch value
 dfESPeventPtr gEv = gs->getFirst();

 while (gEv) {
 // Get the input argument out of the record.
 gEv->copyByIntID(index, dv); // get Event value into dv;
 // Is the return value NULL? (It has not been set.)
 if (rdv->isNull()) {
 if (!dv->isNull())
 rdv->setDouble(dv->getDouble());
 } else {
 // Check for a new max

Using Aggregation Functions 217

 if (!dv->isNull()) {
 if (dv->getDouble() > rdv->getDouble()) // do we have a new max?
 rdv->setDouble(dv->getDouble());
 }
 }
 gEv = gs->getNext();
 }
 delete dv;
 return rdv;
 }

After you specify aggregate functions, implementing dfESPwindow_aggregate is
straightforward:

dfESPstring aggr_schema =
 dfESPstring
 ("symbol*:string,totalQuant:int32,maxPrice:double");
dfESPwindow_aggregate *aw_01;
aw_01 = cq->newWindow_aggregate("aggregateWindow01", edm,
 dfESPindextypes::pi_RBTREE, aggr_schema);
aw_01->addNonKeyFieldCalc(summationAggr, true);
// Add the summation function.
aw_01->addNonKeyFieldCalc(maximumAggr, false);

The final parameter of the addNonKeyFieldCalc method indicates whether the
function being registered is additive. If all the aggregations functions unused in an
aggregate window are additive, special optimizations are made. These optimizations
yield significant performance advantages. In this optimized state, all of the events that
make up an aggregation group are not stored or indexed. The aggregate functions are
all additive and do not need to look at an aggregation group.

Using an Aggregate Function to Add
Statistics to an Incoming Event

You can use the ESP_aLast(fieldName) aggregate function to add aggregate
statistics directly to an incoming event by passing the incoming event fields through the
aggregate window. Alternatively, you can add aggregate statistics by adding a join
window after the aggregate window. Adding a join window in this way joins the
aggregate calculations or event to the same event that feeds into the aggregate
window. That might not produce optimal results.

218 Chapter 12 / Advanced Topics

For example, suppose that this is the incoming event schema:

"ID*:int64,symbol:string,time:datetime,price:double"

Suppose that with this incoming event schema, you want to add an aggregate statistic:

"ID*:int64,symbol:string,time:datetime,price:double,ave_price:double"

There, the average is calculated over the group with the same “symbol.”

Alternatively, you can define a single aggregate stream, with the following schema:

"ID:int64,symbol*:string,time:datetime,price:double,ave_price:double"

Note: The group-by is the key of the aggregation, which is "symbol".

Next, use dfESPwindow_aggregate::addNonKeyFieldCalc(expression) to
register the following aggregation functions for each non-key field of this window, which
in this case are “ID,” “time,” “price,” and “ave_price”:

awPtr->addNonKeyFieldCalc("ESP_aLast(ID)”);
awPtr->addNonKeyFieldCalc("ESP_aLast(time)”);
awPtr->addNonKeyFieldCalc("ESP_aLast(price)”);
awPtr->addNonKeyFieldCalc("ESP_aAve(price)”);

Suppose that the following events come into the aggregate window:

insert: 1, "ibm", 09/13/2001T10:48:00, 100.00
insert: 2, "orc", 09/13/2001T10:48:01, 127.00
insert: 3, "ibm", 09/13/2001T10:48:02, 102.00
insert: 4, "orc", 09/13/2001T10:48:03, 125.00
insert: 5, "orc", 09/13/2001T10:48:04, 126.00

The aggregate stream produces the following:

insert: 1, "ibm", 09/13/2001T10:48:00, 100.00, 100.00
insert: 2, "orc", 09/13/2001T10:48:01, 127.00, 127.00
update: 3, "ibm", 09/13/2001T10:48:00, 102.00, 101.00
update: 4, "orc", 09/13/2001T10:48:01, 125.00, 126.00
update: 5, "orc", 09/13/2001T10:48:01, 126.00, 126.00

By using aLast(fieldname) and then adding the aggregate fields of interest, you can
avoid the subsequent join window. This makes the modeling cleaner.

Using an Aggregate Function to Add Statistics to an Incoming Event 219

Persist and Restore Model State

SAS Event Stream Processing Engine includes a dfESPpersist class. An instance of
this class enables you to persist the complete model state to a file system. It also
enables you to restore a model from a persist directory that had been created by a
previous persist operation.

To create a persist object, provide a pathname to the class constructor:
dfESPpersist(char *baseDir);

The baseDir parameter can point to any valid directory, including disks shared among
multiple running event stream processors. Then call either of these two public methods:

bool persist();
bool restore(bool dumpOnly=false);
// dumpOnly = true means do not restore, just walk and print info

The persist() method can be called at any time. Be aware that it is expensive. Event
block injection for all projects is suspended, all projects are quiesced, persist data is
gathered and written to disk, and all projects are restored to normal running state.

The restore() method should be invoked only before any projects have been started.
If the persist directory contains no persist data, the restore() call does nothing.

The persist operation is also supported by the C and Java publish/subscribe APIs.
These API functions require a host:port parameter to indicate the target event stream
processing engine.

The C publish/subscribe API method is as follows: int
C_dfESPpubsubPersistModel(char *hostportURL, const char
*persistPath)

The Java publish/subscribe API method is as follows: boolean
persistModel(String hostportURL, String persistPath)

One application of the persist and restore feature is saving state across event stream
processor system maintenance. In this case, the model includes a call to the

220 Chapter 12 / Advanced Topics

restore() function described previously before starting any projects. To perform
maintenance at a later time on the running engine:

1 Pause all publish clients in a coordinated fashion.

2 Make one client execute the publish/subscribe persist API call described previously.

3 Bring the system down, perform maintenance, and bring the system back up.

4 Restart the event stream processor model, which executes the restore() function
and restores all windows to the states that were persisted in step 2.

5 Resume any publishing clients that were paused in step 1.

Gathering and Saving Latency
Measurements

The dfESPlatencyController class supports gathering and saving latency
measurements on an event stream processing model. Latencies are calculated by
storing 64-bit microsecond granularity timestamps inside events that flow through
windows enabled for latency measurements.

In addition, latency statistics are calculated over fixed-size aggregations of latency
measurements. These measurements include average, minimum, maximum, and
standard deviation. The aggregation size is a configurable parameter. You can use an
instance of the latency controller to measure latencies between any source window and
some downstream window that an injected event flows through.

The latency controller enables you to specify an input file of event blocks. The rate at
which those events are injected into the source window. It buffers the complete input file
in memory before injecting to ensure that disk reads do not skew the requested inject
rate.

Specify an output text file that contains the measurement data. Each line of this text file
contains statistics that pertain to latencies gathered over a bucket of events. The

Gathering and Saving Latency Measurements 221

number of events in the bucket is the configured aggregation size. Lines contain
statistics for the next bucket of events to flow through the model, and so on.

Each line of the output text file consists of three tab-separated columns. From left to
right, these columns contain the following:

n the maximum latency in the bucket

n the minimum latency in the bucket

n the average latency in the bucket

You can configure the aggregation size to any value less than the total number of
events. A workable value is something large enough to get meaningful averages, yet
small enough to get several samples at different times during the run.

If publish/subscribe clients are involved, you can also modify publisher/subscriber code
or use the file/socket adapter to include network latencies as well.

To measure latencies inside the model only:

1 Include "int/dfESPlatencyController.h" in your model, and add an instance
of the dfESPlatencyController object to your main().

2 Call the following methods on your dfESPlatencyController object to configure
it:

Method Description

void set_playbackRate(int32_t r) Sets the requested inject
rate.

void set_bucketSize(int32_t bs) Sets the bucketSize
parameter previously
described.

void set_maxEvents(int32_t me) Sets the maximum number
of events to inject.

void set_oFile(char *ofile) Sets the name of the output
file containing latency
statistics.

222 Chapter 12 / Advanced Topics

Method Description

void set_iFile(char *ifile) Sets the name of the input
file containing binary event
block data.

3 Add a subscriber callback to the window where you would like the events to be
timestamped with an ending timestamp. Inside the callback add a call to this method
on your dfESPlatencyController object: void
record_output_events(dfESPeventblock *ob). This adds the ending
timestamp to all events in the event block.

4 After starting projects call these methods on your dfESPlatencyController
object:

Method Description

void set_injectPoint(dfESPwindow_source
*s)

Sets the source window in
which you want events time
stamped with a beginning
timestamp.

void read_and_buffer() Reads the input event
blocks from the configured
input file and buffers them.

void playback_at_rate() Time stamps input events
and injects them into the
model at the configured
rate, up to the configured
number of events.

5 Quiesce the model and call this method on your
dfESPlatencyControllerobject: void generate_stats(). This writes the
latency statistics to the configured output file.

To measure model and network latencies by modifying your publish/subscribe clients:

Gathering and Saving Latency Measurements 223

1 In the model, call the dfESPengine setLatencyMode() function before starting
any projects.

2 In your publisher client application, immediately before calling
C_dfESPpublisherInject(), call C_dfESPlibrary_getMicroTS() to get a
current timestamp. Loop through all events in the event block and for each one call
C_dfESPevent_setMeta(event, 0, timestamp) to write the timestamp to the
event. This records the publish/subscribe inject timestamp to meta location 0.

3 The model inject and subscriber callback timestamps are recorded to meta locations
2 and 3 in all events automatically because latency mode is enabled in the engine.

4 Add code to the inject loop to implement a fixed inject rate. See the latency publish/
subscribe client example for sample rate limiting code.

5 In your subscriber client application, include "int/dfESPlatencyController.h”
and add an instance of the dfESPlatencyController object.

6 Configure the latency controller bucketSize and playbackRate parameters as
described previously.

7 Pass your latency controller object as the context to
C_dfESPsubscriberStart() so that your subscriber callback has access to the
latency controller.

8 Make the subscriber callback pass the latency controller to
C_dfESPlatencyController_recordExtraOutputEvents(), along with the
event block. This records the publish/subscribe callback timestamp to meta location
4.

9 When the subscriber client application has received all events, you can generate
statistics for latencies between any pair of the four timestamps recorded in each
event. First call C_dfESPlatencyController_setOFile() to set the output file.
Then write the statistics to the file by calling
C_dfESPlatencyController_generateStats() and passing the latency
controller and the two timestamps of interest. The list of possible timestamp pairs
and their time spans are as follows:

224 Chapter 12 / Advanced Topics

n (0, 2) – from inject by the publisher client to inject by the model

n (0, 3) – from inject by the publisher client to subscriber callback by the model

n (0, 4) – from inject by the publisher client to callback by the subscriber client (full
path)

n (2, 3) – from inject by the model to subscriber callback by the model

n (2, 4) – from inject by the model to callback by the subscriber client

n (3, 4) – from subscriber callback by the model to callback by the subscriber client

10 To generate further statistics for other pairs of timestamps, reset the output file and
call C_dfESPlatencyController_generateStats() again.

To measure model and network latencies by using the file/socket adapter, run the
publisher and subscriber adapters as normal but with these additional switches:

Publisher

—r rate Specifies the requested transmit rate in events per second.

-m maxevents Specifies the maximum number of events to publish.

-p Specifies to buffer all events prior to publishing.

-n Enables latency mode.

Subscriber

-r rate Specifies the requested transmit rate in events per second.

-a aggrsize Specifies the aggregation bucket size.

-n Enables latency mode.

The subscriber adapter gathers all four timestamps described earlier for the windows
specified in the respective publisher and subscriber adapter URLs. At the end of the
run, it writes the statistics data to files in the current directory. These files are named

Gathering and Saving Latency Measurements 225

"latency_transmit rate_high timestamp_low timestamp", where the high and
low timestamps correspond to the timestamp pairs listed earlier.

226 Chapter 12 / Advanced Topics

Appendix 1
Example: Implementation of the
Trades Model

The following C++ program implements a model containing the continuous query
described in “Understanding Continuous Queries” on page 5. The program follows
these steps.

1 Include needed header files from the SAS Event Stream Processing Engine library
so that you can use the appropriate objects to define elements of the model.

2 After the main declaration, define objects for the engine, the project, the event depot,
and the continuous query.

3 Set the date format for the engine.

4 Define the Trades and Traders source windows.

5 Define the LargeTrades filter window.

6 Define the AddTraderName join window. Specify the join conditions.

7 Define the TotalCost compute window.

8 Define the AddSecurity aggregate window.

9 Set the number of threads for the engine. Run the project. Shut down the engine.

#include "dfESPengine.h"
#include "dfESPeventdepot_mem.h"
#include "dfESPwindow_source.h"

227

#include "dfESPwindow_aggregate.h"
#include "dfESPwindow_filter.h"
#include "dfESPwindow_join.h"
#include "dfESPwindow_compute.h"
#include "dfESPcontquery.h"
#include "dfESPproject.h"

int main(int argc, char *argv[]) {

 dfESPengine *theEngine
 = dfESPengine::initialize(argc, argv, "theEngine", pubsub_DISABLE);
 dfESPproject *project_01
 = theEngine->newProject("project_01");
 dfESPeventdepot_mem *mem_01
 = project_01->newEventdepot_mem("mem_01");
 dfESPcontquery *cq_01
 = project_01->newContquery("cq_01");

 theEngine->set_dateFormat((char *)"%d/%b/%Y:%H:%M:%S");

 dfESPwindow_source *Trades
 = cq_01->newWindow_source("Trades", mem_01, dfESPindextypes::pi_HASH,
 dfESPstring("tradeID*:string,security:string,quantity:int32,price:double,
 traderID:int64,time:stamp"));

 dfESPwindow_source *Traders
 = cq_01->newWindow_source("Traders", mem_01,
 dfESPindextypes::pi_HASH,
 dfESPstring("ID*:int64,name:string"));

 dfESPwindow_filter *LargeTrades
 = cq_01->newWindow_filter("LargeTrades", mem_01,
 dfESPindextypes::pi_RBTREE);
 LargeTrades->setFilter("quantity>=100");

 dfESPwindow_join *AddTraderName
 = cq_01->newWindow_join("AddTraderName", dfESPwindow_join::jt_LEFTOUTER,
 mem_01, dfESPindextypes::pi_RBTREE);
 AddTraderName->setJoinConditions("l_traderID==r_ID");
 AddTraderName->setJoinSelections("l_security,l_quantity,l_price,l_traderID,l_time,r_name");
 AddTraderName->setFieldSignatures("security:string,quantity:int32,price:double,traderID:int64,
 time:stamp,name:string");

 dfESPwindow_compute *TotalCost
 = cq_01->newWindow_compute("TotalCost", mem_01,
 dfESPindextypes::pi_RBTREE,
 dfESPstring("tradeID*:string,security:string,quantity:int32,price:double,totalCost:double,

228 Appendix 1 / Example: Implementation of the Trades Model

 traderID:int64,time:stamp,name:string"));
 TotalCost->addNonKeyFieldCalc("security");
 TotalCost->addNonKeyFieldCalc("quantity");
 TotalCost->addNonKeyFieldCalc("price");
 TotalCost->addNonKeyFieldCalc("price*quantity");
 TotalCost->addNonKeyFieldCalc("traderID");
 TotalCost->addNonKeyFieldCalc("time");
 TotalCost->addNonKeyFieldCalc("name");

 dfESPwindow_aggregate *BySecurity
 = cq_01->newWindow_aggregate("BySecurity", mem_01, dfESPindextypes::pi_RBTREE,
 dfESPstring("security*:string,quantityTotal:double,
 costTotal:double"));
 BySecurity->addNonKeyFieldCalc("ESP_aSum(quantity)");
 BySecurity->addNonKeyFieldCalc("ESP_aSum(totalCost)");

 cq_01->addEdge(Trades, 0, LargeTrades);
 cq_01->addEdge(LargeTrades, 0, AddTraderName);
 cq_01->addEdge(Traders, 0, AddTraderName);
 cq_01->addEdge(AddTraderName, 0, TotalCost);
 cq_01->addEdge(TotalCost, 0, BySecurity);

 project_01->setNumThreads(1);
 theEngine->startProjects();

 dfESPengine::shutdown();

 return 0;
}

Example: Trades Model 229

230 Appendix 1 / Example: Implementation of the Trades Model

Appendix 2
Example: Subscriber and Publisher
Applications

Subscriber Application

This example can also be found in the release installation under $DFESP_HOME/src.

/* Standard C include statements */
#include <stdlib.h>
#include <string.h>
/* The following include file is needed for all subscribing code. */
#include "C_dfESPpubsubApi.h"

/* The following include files are specific to the ESP objects being used here. */
#include "C_dfESPevent.h"
#include "C_dfESPstringV.h"

/* Flag indicating whether to keep main in a non-busy wait
 while the subscribeFunction runs.
*/
typedef struct {
 unsigned short nonBusyWait;
} callback_ctx;

/* Define a subscribe function that gets called when new events
are published from the server via the pub/sub API. This function gets an
eventblock and the schema of the event for processing.
For this example, write the event as CSV to stdout.
*/
void subscribeFunction(C_dfESPeventblock eb, C_dfESPschema schema, void *ctx) {
 C_dfESPevent ev;
 C_ESP_int32_t eventCnt = C_dfESPeventblock_getSize(eb);
 C_ESP_int32_t eventIndx;

231

 C_ESP_utf8str_t eventCSV;
 callback_ctx *context = (callback_ctx *)ctx;

 for (eventIndx=0; eventIndx < eventCnt; eventIndx++) {
 /* Get the event out of the event block. */
 ev = C_dfESPeventblock_getEvent(eb, eventIndx);

 /* Convert from binary to CSV using the schema & print to stdout. */
 eventCSV = C_dfESPevent_toStringCSV_noBuff(ev, schema, 1);
 if (!eventCSV) {
 fputs("C_dfESPevent_toStringCSV() failed\n", stderr);
 C_dfESPeventblock_destroy(eb);
 context->nonBusyWait = 0; /* Release the busy wait which ends the program. */
 return;
 }

 printf("%s\n", eventCSV);

 free(eventCSV);

 if (C_dfESPevent_getOpcode(ev) == eo_UPDATEBLOCK)
 ++eventIndx; /* skip the old record in the update block */
 }

 /* Flush stdout */
 fflush(stdout);

 /* Free the event block and its contained events.
 This must be done by the subscribe callback function, else major memory leak.
 */
 C_dfESPeventblock_destroy(eb);
}

/* Optionally define a callback function for subscription failures given
you might want to try to reconnect/recover. Here, just print
some error information and release the non-busy wait set below so the
main in program can end.
*/
void subFailureFunction(C_dfESPpubsubFailures failure,
 C_dfESPpubsubFailureCodes code, void *ctx)
 {
 callback_ctx *context = (callback_ctx *)ctx;

 /* Don't output anything for normal server disconnect */
 if (failure != pubsubFail_SERVERDISCONNECT) {
 char *failMsg = C_dfESPdecodePubSubFailure(failure);
 char *codeMsg = C_dfESPdecodePubSubFailureCode(code);

232 Appendix 2 / Example: Subscriber and Publisher Applications

 fputs("Client subscription error: ", stderr);
 fputs(failMsg, stderr);
 fputs(codeMsg, stderr);
 fputs("\n", stderr);
 }

 /* Release the busy wait, which ends the program. */
 context->nonBusyWait = 0;
}

/* This is a subscribe client example for using the ESP pub/sub API. You could test this
against the subscribeServer example provided in the ESP server distributions
This is a generic subscribe tool to subscribe to any window's events for any
instance of an ESP application, which could also be a server.
*/
int main(int argc, char* argv[]) {
 short schemaOnly = 0;
 int len;
 char *url;
 int i;
 C_dfESPstringV schemaVector;
 clientObjPtr sub;
 callback_ctx cbContext;
 cbContext.nonBusyWait = 1;

 /* Check command line arguments. */
 if ((argc < 2) || (argc > 3)) {
 fputs("\nUsage: subscribe_client <url>, where schema is for schema only and <url>
 is of the form:
 dfESP://<host>:<port>/<project>/<continuousquery>/<window>?snapshot=<true/false>
 ?[collapse=true]\n\n", stderr);
return -1;
 }

 /* Determine whether you want the schema & events or just the schema. */
 if (argc == 3) {
 if (strcmp(argv[2], "schema") == 0)
 schemaOnly = 1;
 else {
 fputs("The 2nd argument is invalid, it should be schema\n", stderr);
 return -1;
 }
 }

 /* Initialize subscribing capabilities. This is the first pub/sub API call that must
 be made, and it only needs to be called once. The first parameter is the log level,
 so turn logging off. The second parameter provides the ability to provide a log

Example: Subscriber and Publisher Applications 233

 config filepath to configure how logging works, NULL uses the defaults, but this
 does not matter given it's getting turned off.
 */
 if (C_dfESPpubsubInit(ll_Off, NULL) != 1) {
 fputs("C_dfESPpubsubInit() failed\n", stderr);
 return -1;
 }

 /* Get the schema and write it to stdout. The URL is as follows:
 dfESP://hostname:port/project_name/continuous_query_name/window_name?get=schema
 Remove the snapshot extension from the passed url and substitute "?get=schema".
 */
 len = strlen(argv[1]);
 url = malloc(len + strlen("?get=schema") + 1);
 if (url == NULL) {
 fputs("malloc() failed\n", stderr);
 return -1;
 }
 strcpy(url, argv[1]);
 for (i = 0; i < len; i++) {
 if (url[i] == '?')
 break;
 }
 strcpy(&url[i], "?get=schema");
 schemaVector = C_dfESPpubsubQueryMeta(url);
 if (schemaVector == NULL) {
 fputs("Schema query (", stderr);
 fputs(url, stderr);
 fputs(") failed\n", stderr);
 free(url);
 return -1;
 }
 free(url);
 printf("%s\n", C_dfESPstringV_get(schemaVector, 0));
 fflush(stdout); /* Flush stdout */
 C_dfESPstringV_free(schemaVector); /* free up schema vector & elements, else memory leak */
 if (schemaOnly)
 return 0; /* Only return the schema, no events. */

 /* Start this subscribe session. This validates subscribe connection parameters,
 but does not make the actual connection.
 The parameters for this call are URL, user defined subscriber callback function, and
 an optional user defined subscribe services error callback function.
 The URL is dfESP://hostname:port/project_name/continous_query_name/window_name
 When a new window event arrives, the callback function is invoked to process it.
 */

234 Appendix 2 / Example: Subscriber and Publisher Applications

 sub = C_dfESPsubscriberStart(argv[1], subscribeFunction, subFailureFunction, &cbContext);
 if (sub == NULL) {
 fputs("C_dfESPsubscriberStart(", stderr);
 fputs(argv[1], stderr);
 fputs(", C_dfESPsubscriberCB_func, C_dfESPpubsubErrorCB_func) failed\n", stderr);
 return -1;
 }

 /* Now make the actual connection to the ESP application or server. */
 if (C_dfESPpubsubConnect(sub) != 1) {
 fputs("C_dfESPpubsubConnect() failed\n", stderr);
 C_dfESPpubsubStop(sub, 0);
 return -1;
 }

 /* Create a mostly non-busy wait loop. */
 while (cbContext.nonBusyWait) {
 C_dfESPlibrary_gSleep(1);
 }

 /* Stop pubsub, but block (i.e., true) to ensure that all queued events are first processed. */
 C_dfESPpubsubStop(sub, 1);

 return 0;
}

Publisher Application

This example can also be found in the release distribution under $DFESP_HOME/src.

/* This include file is needed for all publishing code. */
#include "C_dfESPpubsubApi.h"

/* These include files are specific to the ESP objects being used here. */
#include "C_dfESPlibrary.h"
#include "C_dfESPstringV.h"
#include "C_dfESPschema.h"

/* std includes */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Optionally you can define a callback function for publisher failures given

Example: Subscriber and Publisher Applications 235

you might want to try to reconnect/recover, but in this example just print
some error information. The cbf has an optional context pointer for sharing state
across calls or passing state into calls.

*/
void clientFailureFunction(C_dfESPpubsubFailures failure,
 C_dfESPpubsubFailureCodes code,void *ctx) {
 char *failMsg;
 char *codeMsg;

 /* Don't output anything for client busy */
 if ((failure == pubsubFail_APIFAIL) &&
 (code == pubsubCode_CLIENTEVENTSQUEUED)) {
 return;
 }
 failMsg = C_dfESPdecodePubSubFailure(failure);
 codeMsg = C_dfESPdecodePubSubFailureCode(code);
 fputs("Client services error: ", stderr);
 fputs(failMsg, stderr);
 fputs(codeMsg, stderr);
 fputs("\n", stderr);
}

/* This is a publisher client example for using the ESP pub/sub API. The events that
are published to the server are read from a file, so this application needs a binary
event file supplied to it. One could test this against the subscribeServer example
provided in the ESP server distributions. If doing so, simply use the same event input
file already provided for subscribeServer, which ensures that the events published by
this client are valid for a window in the subscribeServer example. This also requires
that the continuous query and window command line parameters are "subscribeServer"
and "tradesWindow" respectively. Finally, to isolate events to those published by this
client, simply run the server without providing the event input file.
*/
int main(int argc, char* argv[]) {
 clientObjPtr pub;
 C_dfESPstringV schemaVector;
 C_dfESPeventblock ib;
 C_dfESPschema schema;
 char *url;
 int len;
 int rc;

 /* Check command line arguments. */
 if (argc != 2) {
 fputs("\nUsage: publish_client <url> <file.bin, where <url> is of the form:
 dfESP://<host>:<port>/<project>/<continuousquery>/<window>\n\n", stderr);
return -1;

236 Appendix 2 / Example: Subscriber and Publisher Applications

 }

 /* Initialize publishing capabilities. This is the first pub/sub API call that must
 be made, and it only needs to be called once. The first parameter is the log level,
 so we are turning logging off for this example. The second parameter provides
 the ability to provide a log config filepath to configure how logging works, NULL
 will use the defaults, but for us this does not matter given we're turning it off.
 */
 if (C_dfESPpubsubInit(ll_Off, NULL) != 1) {
 fputs("C_dfESPpubsubInit() failed\n", stderr);
 return -1;
 }

 /* Get the window schema string. The URL for this is as follows:
 dfESP://hostname:port/project_name/continous_query_name/window_name?get=schema
 */
 len = strlen(argv[1]);
 url = malloc(len + strlen("?get=schema") + 1);
 if (url == NULL) {
 fputs("malloc() failed\n", stderr);
 return -1;
 }
 strcpy(url, argv[1]);
 strcat(url, "?get=schema");
 schemaVector = C_dfESPpubsubQueryMeta(url);
 if (schemaVector == NULL) {
 fputs("Schema query (", stderr);
 fputs(url, stderr);
 fputs(") failed\n", stderr);
 free(url);
 return -1;
 }
 free(url);

 /* Use the schema string to create the schema object needed to pass
 to C_dfESPeventblock_newEventBlock2() below */
 schema = C_dfESPschema_create1("window_schema", C_dfESPstringV_get(schemaVector, 0));
 if (!schema) {
 fputs("C_dfESPschema_create1() failed for schema ", stderr);
 fputs(C_dfESPstringV_get(schemaVector, 0), stderr);
 fputs("\n", stderr);
 C_dfESPstringV_free(schemaVector);
 return -1;
 }

 /* Free up the vector, else memory leak */
 C_dfESPstringV_free(schemaVector);

Example: Subscriber and Publisher Applications 237

 /* Start this publish session. This validates publish connection parameters,
 but does not make the actual connection.
 The parameter for this call is the following URL which was provided as an argument:
 dfESP://hostname:port/project_name/continous_query_name/window_name
 */
 pub = C_dfESPpublisherStart(argv[1], clientFailureFunction, NULL);
 if (pub == NULL) {
 fputs("C_dfESPpublisherStart(", stderr);
 fputs(url, stderr);
 fputs(", C_dfESPpubsubErrorCB_func) failed\n", stderr);
 C_dfESPschema_delete(schema);
 return -1;
 }

 /* Now make the actual connection to the ESP application or server. */
 rc = C_dfESPpubsubConnect(pub);
 if (rc != 1) {
 fputs("C_dfESPpubsubConnect() failed\n", stderr);
 C_dfESPpubsubStop(pub, 0);
 C_dfESPschema_delete(schema);
 return -1;
 }

 /* ******** NOW INJECT TRADE EVENTS INTO THE RUNNING PROJECT ********/

 /* Trade event blocks are in binary form and are coming via stdin. */

 // for windows it is essential that we read binary data in in BINARY mode.
 //
 C_dfESPlibrary_setBinaryMode(stdin);

 while (1) { /* more trades exist */
 /* Create event block. */
 ib = C_dfESPeventblock_newEventBlock2(stdin, schema);

 if (feof(stdin))
 break;

 rc = C_dfESPpublisherInject(pub, ib);
 C_dfESPeventblock_destroy(ib);
 if (rc != 1) {
 fputs("C_dfESPpublisherInject() failed\n", stderr);
 C_dfESPschema_delete(schema);
 C_dfESPpubsubStop(pub, 0);
 return -1;
 }

238 Appendix 2 / Example: Subscriber and Publisher Applications

 }

 /* Delete the schema object */
 C_dfESPschema_delete(schema);

 /* Stop pubsub, but block (i.e., true) to ensure that all queued events
 are first processed. */
 C_dfESPpubsubStop(pub, 1);

 return 0;
}

Example: Subscriber and Publisher Applications 239

240 Appendix 2 / Example: Subscriber and Publisher Applications

Appendix 3
Example: Using Blue Fusion Functions

The following example creates a compute window that uses the Blue Fusion
standardize function. The function normalizes the City field that is created for events in
that window.

This example provides a general demonstration of how to use Blue Fusion functions in
SAS Event Stream Processing Engine expressions. To use these functions, you must
have installed the SAS DataFlux Quality Knowledge Base product.

// -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-

#include "dfESPengine.h" // this also includes deESPlogUtils.h
#include "dfESPstring.h"
#include "dfESPevent.h"
#include "dfESPwindow_source.h"
#include "dfESPwindow_compute.h"
#include "dfESPeventdepot_mem.h"
#include "dfESPcontquery.h"
#include "dfESPeventblock.h"
#include "dfESPproject.h"

#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <cstdio>
#include <iostream>
#define SYMBOL_INDX 1
#define PRICE_INDX 2

// The compute window contains a field expression using a data quality function
// in the Blue Fusion library. It standarizes the city name.
//
// In order to run this example you need to download the DataFlux Quality

241

// Knowledge Base and set the environment variable DFESP_QKB to the root node
// of that install.

using namespace std;
void winSubscribe_compute(dfESPschema *os, dfESPeventblockPtr ob, void *ctx) {
 dfESPengine::oStream() << endl;
 << "---" << endl;
dfESPengine::oStream() << "computeWindow" << endl;
ob->dump(os);
}
int main(int argc, char *argv[]) {

 // Call Initialize without overriding the framework defaults.
 dfESPengine *myEngine = dfESPengine::initialize(argc, argv, "myEngine", pubsub_DISABLE);
 if (!myEngine) {
 cerr <<"Error: dfESPengine::initialize failed using all framework defaults\n";
 return 1; }

 dfESPproject *project;
 project = myEngine->newProject("project");

 dfESPcontquery *contQuery;
 contQuery = project->newContquery("contquery");

 // Build the memory depot, source window schema, source window, copy window,
 // and continous query objects.
 dfESPeventdepot_mem* depot;
 depot = project->newEventdepot_mem("memDepot");

 dfESPwindow_source *sw;
 sw = contQuery->newWindow_source("sourceWindow", depot, dfESPindextypes::pi_HASH,
 dfESPstring("name:string,ID*:int32,city:string"));
 dfESPschema *sw_schema = sw->getSchema();

 dfESPwindow_compute *cw;
 cw = contQuery->newWindow_compute("computeWindow", depot, dfESPindextypes::pi_HASH,
 dfESPstring("ID*:int32,name:string,oldCity:string,newCity:string"));

 // Register the non-key field calculation expressions.
 // They must be added in the same non-key field order as the schema.
 cw->addNonKeyFieldCalc("name"); // pass name through unchanged
 cw->addNonKeyFieldCalc("city"); // pass city through unchanged

 // Run city through the blue fusion standardize function.
 char newCity[1024] = "bluefusion bf\r\n";
 strcat(newCity, "String result\r\n");
 strcat(newCity, "bf = bluefusion_initialize()\r\n");

242 Appendix 3 / Example: Using Blue Fusion Functions

 strcat(newCity, "if (isnull(bf)) then\r\n");
 strcat(newCity, " print(bf.getlasterror())\r\n");
 strcat(newCity, "if (bf.loadqkb(\"ENUSA\") == 0) then\r\n");
 strcat(newCity, " print(bf.getlasterror())\r\n");
 strcat(newCity, "if (bf.standardize(\"City\",city,result) == 0) then\r\n");
 strcat(newCity, " print(bf.getlasterror())\r\n");
 strcat(newCity, "return result");
 cw->addNonKeyFieldCalc(newCity);

 // Add the subscriber callbacks to all the windows
 cw->addSubscriberCallback(winSubscribe_compute);

 // Add window connectivity
 contQuery->addEdge(sw, 0, cw);

 // create and start the project
 project->setNumThreads(2);

 myEngine->startProjects();

 // declare some variables to build up the input data.
 dfESPptrVect<dfESPeventPtr> trans;
 dfESPevent *p;

 // Insert multiple events
 p = new dfESPevent(sw_schema,(char *)"i,n,Jerry, 1111, apex");
 trans.push_back(p);
 p = new dfESPevent(sw_schema,(char *)"i,n,Scott, 1112, caryy");
 trans.push_back(p);
 p = new dfESPevent(sw_schema,(char *)"i,n,someone, 1113, rallleigh");
 trans.push_back(p);
 dfESPeventblockPtr ib = dfESPeventblock::newEventBlock(&trans,dfESPeventblock::ebt_TRANS);
 project->injectData(contQuery, sw, ib);

 // Inject the event block into the graph
 trans.free();
 project->quiesce();
 dfESPengine::shutdown();
 return 0;
}

Using the Blue Fusion Standardize Function 243

244 Appendix 3 / Example: Using Blue Fusion Functions

Appendix 4
Setting Logging Level for Adapters

Logging levels for adapters use the same range of levels that you can set for the
C_dfESPpubsubInit() publish/subscribe API call and in the engine initialize()
call.

Table A4.1 Logging Level for the Adapter

Logging Level Parameter Setting Description Written To

TRACE dfESPLLTrace Provide the most
detailed information.

Logs

DEBUG dfESPLLDebug Provide detailed
information about the
flow through the
system.

Logs

INFO dfESPLLInfo Report on run-time
events of interest.

Immediately visible on the
console

ERROR dfESPLLError Report on other run-
time errors or
unexpected conditions.

Immediately visible on the
console

WARN dfESPLLWarn Indicates use of
deprecated APIs, poor
use of an API, or other
run-time situations that
are undesirable.

Immediately visible on the
console

245

Logging Level Parameter Setting Description Written To

FATAL dfESPLLFatal Report severe errors
that cause premature
termination.

Immediately visible on the
console

OFF dfESPLLOff Logging is turned off. NA

246 Appendix 4 / Setting Logging Level for Adapters

Glossary

complex event processing (CEP)
event processing that assumes an event cloud as input and therefore makes no
assumptions about the arrival order of events.

continuous query
a model of source, relational, pattern matching, and procedural windows. The
windows represent continuously executing query-generating updates to the query
result set as new events stream through.

Delete (D)
an opcode that removes event data from a window. Similar to an SQL DELETE
statement, which removes one or more records from a table.

derived windows
windows that display events that have been fed through other windows and that
perform computations or transformations on these incoming events. The current
derived window types are aggregate, compute, copy, filter, join, pattern matching,
procedure, and union.

directed graph
a set of nodes connected by edges, where the edges have a direction associated
with them.

engine
the top-level container in a model. There can be only one of these in a given model.
The engine manages the project resources.

247

event
a packet of data accessible as a collection of fields, with at least one of those fields
defined as the key.

event block
a grouping or package of events. It has a unique embedded transaction ID
generated as it is absorbed into a continuous query. It also has a unique ID that an
event stream publisher can assign to it.

event stream processing
a process that enables real-time decision making by continuously analyzing large
volumes of data as it is received. It is a subcategory of complex event stream
processing (CEP).

event stream processing application
a SAS-based event stream processing application embeds a SAS Event Stream
Processing Engine with its own dedicated thread pool (or pools) into its application
space. This is where the main application thread can do application-specific work
and the ESP processes the event streams by creating an instance of the model into
processing objects.

event streams
a continuous flow of events (or more precisely, event blocks).

factory server
a server for factory objects, which control the creation of other objects, access to
other objects, or both. A factory object has a method for every object that it can
create.

Insert (I)
an opcode that adds event data to a window. Similar to an SQL INSERT statement,
which adds one or more records to any single table.

memory depot
a repository for indexes and event data that is used by a project.

248 Appendix 4 / Setting Logging Level for Adapters

model
a user specification of one or more data flows used to transform input event streams
into meaningful output event streams. A model is represented as a directed graph.

modeling API
a SAS C library that enables developers to write event stream processing models.

opcode
See “operation code”.

operation code
an instruction that specifies an action to be performed.

project
the second-level container in a model (managed by the parent engine container)
where the thread pool size is set and contains one or more continuous queries. You
can have multiple projects in an engine instance.

publish/subscribe API
a library that enables you to publish event streams into an event stream processor or
subscribe to event streams within the event stream processing model. The publish/
subscribe API also includes a C and JAVA event stream processing object support
library.

schema
a model of the overall structure of data to be processed in a window.

source window
a window that has no windows feeding into it and is the entry point for publishing
events into the continuous query.

stream
a sequence of data elements made available over time.

Setting Logging Level for Adapters 249

thread pool
a set of threads that can be used to execute tasks, post work items, process
asynchronous I/O, wait on behalf of other threads, and process timers.

Update (U)
an opcode that changes event data in a window. Similar to an SQL UPDATE
statement, which changes the data of one or more records in a table.

Upsert (P)
an opcode that updates event data in a window if the key field already exists and
otherwise inserts event data. Similar to an SQL MERGE function in which data for a
record is updated, inserted, or both.

window
a processing node in an event stream processing model. Source and derived
windows form a continuous query.

250 Appendix 4 / Setting Logging Level for Adapters

	Contents
	Using This Book
	Audience

	What’s New in SAS Event Stream Processing Engine
	Overview
	SAS and DataFlux Integration
	Procedural Window Access to SAS Analytics through DS2 Scripting
	New Adapters and Connectors
	User-Defined Plug-in Connectors
	New Aggregate Functions
	Pre-allocated Hash Indexes
	1+N-way Failover
	Streamviewer Metadata Search
	Engine State Persist and Recovery
	 XML Factory Server Project Control
	Microsoft Windows 64–Bit Support for XML Modeling
	Latency Performance Measurements

	Recommended Reading
	Overview to SAS Event Stream Processing Engine
	Product Overview
	Conceptual Overview
	Implementing Engine Models
	Understanding Continuous Queries
	Understanding Events
	Understanding Event Blocks
	Getting Started with SAS Event Stream Processing Engine
	Installing and Configuring SAS Event Stream Processing Engine
	Using the SAS Event Stream Processing Engine

	Writing an Application with SAS Event Stream Processing Engine

	Programming with the C++ Modeling API
	Using Expressions
	Overview to the C++ Modeling API
	Dictionary
	dfESPengine
	dfESPproject
	dfESPeventdepot
	dfESPcontquery
	dfESPwindow_source
	dfESPwindow_filter
	dfESPwindow_copy
	dfESPwindow_compute
	dfESPwindow_union
	dfESPwindow_aggregate
	dfESPwindow_join
	dfESPwindow_pattern
	dfESPwindow_procedural
	dfESPdatavar
	dfESPschema
	dfESPevent
	dfESPeventblock
	dfESPpersist

	Using the XML Modeling Layer
	XML Modeling Layer
	Overview to the XML Modeling Layer
	High-Level Syntax of XML Models
	Window Template
	Window Where Nesting Defines Connectivity

	Using the XML Factory Server
	Overview to Using the XML Factory Server
	Starting the XML Factory Server
	Control Commands for the XML Factory Server

	Examples
	Creating a Project
	Stopping a Project
	Removing a Project
	Events Publishing through the XML Factory Server
	Combined Model-Event Processing for Short-lived Projects
	Querying Engine Windows through the XML Factory Server
	Querying the Engine Window Event Count
	Complete Example

	Creating Pattern Windows
	Overview of Pattern Windows
	State Definitions for Operator Trees
	Restrictions on Patterns
	Example: Simple Pattern Window

	Creating Aggregate Windows
	Overview to Aggregate Windows
	Flow of Operations
	Aggregate Functions

	Creating Procedural Windows
	Overview to Procedural Windows
	C++ Window Handlers
	DS2 Window Handlers
	Overview of DS2 Window Handlers
	General Structure of a DS2 Input Handler
	Examples
	Event Stream Processor to DS2 Data Type Mappings and Conversions

	Visualizing Event Streams
	Overview to Event Visualization
	Using Streamviewer
	Using SAS/GRAPH

	Using the Publish/Subscribe API
	Overview to the API
	Understanding Publish/Subscribe API Versioning
	Using Callback Functions
	The API from the Engine’s Perspective
	The API from the Client’s Perspective
	Functions for the Publish/Subscribe API
	Using the Java Publish/Subscribe API
	Overview to the Java Publish/Subscribe API
	Using High Level Publish/Subscribe Methods
	Using User-supplied Callback Functions

	Using Connectors and Adapters
	Using Connectors
	Overview to Connectors
	Activating Optional Plug-ins
	Using File and Socket Connectors
	File and Socket Connector Publisher Blocking Rules
	XML File and Socket Connector Data Format
	JSON File and Socket Connector Data Format
	Syslog File and Socket Connector Notes
	Using Database Connectors
	Subscriber Event Stream Processor to SQL Data Type Mappings
	Publisher SQL to Event Stream Processor Data Type Mappings
	SMTP Subscribe Connector
	IBM WebSphere MQ Connector
	Tervela Data Fabric Connector
	Solace Systems Connector
	Tibco Rendezvous (RV) Connector
	User-Written Connectors
	Integrating a User-Written Connector

	Using Adapters
	Overview to Adapters
	File and Socket Adapter
	Database Adapter
	SMTP Subscriber Adapter
	Event Stream Processor to Event Stream Processing Engine Adapter
	SAS Data Set Subscriber Adapter
	Java Message Service (JMS) Adapter
	IBM WebSphere MQ Adapter
	Tervela Data Fabric Adapter
	Solace Systems Adapter
	Tibco Rendezvous (RV) Adapter
	PI Publisher Adapter

	Enabling Guaranteed Delivery
	Overview to Guaranteed Delivery
	Guaranteed Delivery Success Scenario
	Guaranteed Delivery Failure Scenarios
	Additions to the Publish/Subscribe API for Guaranteed Delivery
	Configuration File Contents
	Publish/Subscribe API Implementation of Guaranteed Delivery

	Implementing 1+N-Way Failover
	Overview to 1+N-Way Failover
	Topic Naming
	Overview to Topic Naming
	Solace
	Tervela

	Failover Mechanisms
	Overview to Failover Mechanisms
	Determining ESP Active/Standby State (Solace)
	Determining ESP Active/Standby State (Tervela)
	New ESP Active Actions on Failover (Solace)

	Restoring Failed Active ESP State after Restart
	Using ESP Persist/Restore
	Metadata Exchanges (Solace)
	Metadata Exchanges (Tervela)
	Required Software Components
	Required Client Configuration
	Required Appliance Configuration (Solace)
	Required Appliance Configuration (Tervela)

	Advanced Topics
	Logging Bad Events
	Measuring Time Granularity
	Using Joins and Understanding Join Constraints
	Converting CSV Events to Binary
	Implementing Periodic (or Pulsed) Window Output
	Splitting Generated Events across Output Slots
	Overview
	Splitter Functions
	Splitter Expressions

	Marking Events as Partial-Update on Publish
	Overview
	Publishing Partial Events into a Source Window
	Examples

	Understanding Primary Indexes and Retention Policies
	Overview
	Fully Stateful Indexes
	Retention Policies for Fully Stateful Indexes
	Non-Stateful Index

	Using Stateless Pattern Windows
	Using Aggregation Functions
	Using an Aggregate Function to Add Statistics to an Incoming
Event
	Persist and Restore Model State
	Gathering and Saving Latency Measurements

	Example: Implementation of the Trades Model
	Example: Subscriber and Publisher Applications
	Example: Using Blue Fusion Functions
	Setting Logging Level for Adapters
	Glossary

