
SAS® Event Stream
Processing Engine 2.1
Overview

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS® Event Stream Processing
Engine 2.1: Overview. Cary, NC: SAS Institute Inc.

SAS® Event Stream Processing Engine 2.1: Overview

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the
publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at
the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or
encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by
the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19,
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

September 2013

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest
potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit support.sas.com/
bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Using This Book . v
Recommended Reading . vii

Chapter 1 • Overview to SAS Event Stream Processing Engine . 1
Product Overview . 1
Conceptual Overview . 2
Implementing Engine Models . 4

Chapter 2 • Example: Running a Continuous Query . 7
Overview of the Example . 7
Processing the First Event . 9
Processing the Second Event . 9
Processing the Third Event . 10
Processing the Fourth Event . 11
Processing the Fifth Event . 12

Chapter 3 • Source Code to Implement the Example . 15
Overview . 15
Create Callback Functions . 16
Create the Engine . 17
Create a Project and Memory Depot . 18
Define a Continuous Query Object . 18
Build the Source and Filter Windows . 18
Register the Filter Expression and Add Connectivity Information . . . 19
Start the Project and Inject Data . 20
Build Input Data and Insert Events . 21
Clean Up and Shut Down Services . 23

Chapter 4 • Building and Running the Source Code . 25
How to Build and Run the Source Code . 25
Build Results . 26

Glossary . 29

iv Contents

Using This Book

Audience

This book provides an overview to the SAS Event Stream Processing Engine and
describes its basic functionality. It also provides a step-by-step example that you can
adapt for personal use. The intended audience is assumed to be new to the product and
possibly new to SAS.

v

vi

Recommended Reading

SAS Event Stream Processing Engine is supported by the following documents:

n SAS Event Stream Processing Engine 2.1: Overview provides an introduction to the
product and an illustrative example.

n SAS Event Stream Processing 2.1: User’s Guide describes the product and provides
technical details for writing event stream processing application programs.

n Navigate to $DFESP_HOME/doc/html for detailed class and method
documentation for the C++ Modeling, C, and Java™ client SAS Event Stream
Processing Engine APIs.

For a complete list of SAS books, go to support.sas.com/bookstore. If
you have questions about which titles you need, please contact a SAS
Book Sales Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

vii

mailto:sasbook@sas.com
http://support.sas.com/bookstore

viii Recommended Reading

1
Overview to SAS Event Stream
Processing Engine

Product Overview . 1

Conceptual Overview . 2

Implementing Engine Models . 4

Product Overview

The SAS Event Stream Processing Engine enables programmers to build applications
that can quickly process and analyze volumes of continuously flowing events.
Programmers can build applications with the C++ Modeling API or the XML Modeling
Layer that are included with the product. Event streams are published in applications
using the C or JAVA publish/subscribe APIs, connector classes, or adapter executables.

Event stream processing engines with dedicated thread pools can be embedded within
new or existing applications. The XML Modeling Layer can be used to feed event
stream processing engine definitions (called models) into an XML factory server.

Event stream processing applications typically perform real-time analytics on event
streams. These streams are continuously published into an event stream processing
engine. Typical use cases for event stream processing include but are not limited to the
following:

n sensor data monitoring and management

1

n capital markets trading systems

n fraud detection and prevention

n personalized marketing

n operational systems monitoring and management

n cyber security analytics

Event stream processing enables the user to analyze continuously flowing data over
long periods of time where low latency incremental results are important. Event stream
processing applications can analyze millions of events per second, with latencies in the
milliseconds.

Conceptual Overview

SAS Event Stream Processing Engine enables a programmer to write event stream
processing applications that continuously analyze events in motion. When designing an
application, programmers must answer the following questions:

n What is the model that tells the application how to behave?

n How are event streams (data) to be published into the application?

n What transformations must occur to those event streams?

n How are the transformed event streams to be consumed?

2 Chapter 1 / Overview to SAS Event Stream Processing Engine

A model is a user specification of how input event streams from publishers are
transformed into meaningful output event streams consumed by subscribers. The
following figure depicts the model hierarchy.

Figure 1.1 Instantiation of an Engine Model

Project

Continuous Query

Source Window

Derived Windows

Connectors

Adapters

Event
Stream

Publishers

Event
Stream

Subscribers

Connectors

Adapters

Publish/
Subscribe

API

Publish/
Subscribe

API

Engine Model

3

4

5

6

8

7

2

1

1 At the top of the hierarchy is the engine. Each model contains only one engine
instance with a unique name.

2 The engine contains one or more projects, each uniquely named. Projects contain
dedicated thread pools that are specified relative to size. Using a pool of threads in a
project enables the event stream processing engine to use multiple processor cores
for more efficient parallel processing.

3 A project contains one or more continuous queries. A continuous query is
represented by a directed graph, which is a set of connected nodes that follow a
direction down one or more parallel paths. Continuous queries contain data flows,
which are data transformations of incoming event streams.

4 Each query has a unique name and begins with one or more source windows.

5 Source windows are connected to one or more derived windows.

6 The publish/subscribe API can be used to subscribe to an event stream window
either from the same machine or from another machine on the network. Similarly,

Conceptual Overview 3

the publish/subscribe API can be used to publish event streams into a running event
stream processor project source window.

7 Connectors use the publish/subscribe API to publish or subscribe event streams to
and from an engine. Connectors bypass sockets for a lower-level inject call because
they are in process to the engine.

8 Adapters are stand-alone executable programs that can be networked. Adapters
also use the publish/subscribe API.

Implementing Engine Models

Event stream processing engines can be XML factory servers or can be embedded
within application processes using the C++ Modeling API. The application process that
contains the engine can be a server shell, or it can be a working application thread that
interacts with the engine threads. The XML factory server is an engine process that
accepts event stream processing definitions in one of two ways:

n in the form of a single, entire engine definition

n as create or destroy definitions within a project, which can be used to manipulate
new project instantiations in an XML factory server

Whether you implement multiple projects or multiple continuous queries depends on
your processing needs. Create multiple projects when you want more than one
threading model in an engine. You can use:

n a single-threaded model for a higher level of determinism

n a multi-threaded model for a higher level of parallelism

n a mixed threading model to manipulate both

Because continuous queries are a mechanism of modularity, the number of queries that
you implement depends on how compartmentalized your windows are. Within a
continuous query, you can instantiate and define as many windows as you need. Any
given window can flow data to one or more windows, but loop-back conditions are not

4 Chapter 1 / Overview to SAS Event Stream Processing Engine

permitted. Event streams must be published or injected into source windows through
the publish/subscribe API or through the continuous query inject method.

Within a continuous query, you can implement relational, rule-based, and procedural
operators on derived windows. The relational operators include the following SQL
primitives: join, copy, compute, aggregate, filter, and union. The rule-based operators
perform pattern matching and enable you to define temporal event patterns. The
procedural operators enable you to write event stream input handlers in C++ or DS2.

Input handlers written in DS2 can use features of the SAS Threaded Kernel library so
that you can run existing SAS models in a procedural window. You can do this only
when the existing model is additive in nature and can process one event at a time.

Various connectors and adapters are provided with SAS Event Stream Processing
Engine, but you can write your own connector or adapter using the publish/subscribe
API. Inside model definitions, you can define connector objects that can publish into
source windows or that can subscribe to any window type.

Implementing Engine Models 5

6 Chapter 1 / Overview to SAS Event Stream Processing Engine

2
Example: Running a Continuous Query

Overview of the Example . 7

Processing the First Event . 9

Processing the Second Event . 9

Processing the Third Event . 10

Processing the Fourth Event . 11

Processing the Fifth Event . 12

Overview of the Example

The following example passes events through a source window and then a single filter
window. Events must conform to a proscribed schema. The schema is a structured
string that defines and specifies the order of a set of variables in an event.

The following processing steps are demonstrated:

n running a simple continuous query on a published event stream

n performing a filtering computation

n determining specific events to produce in each step of processing

Here is the schema of the source window:

ID*: int32, symbol: string, quantity: int32, price: double

7

The filter window inherits this schema from the source window.

The schema consists of four fields:

Field Type

ID signed 32-bit integer

symbol literal constant

quantity signed 32-bit integer

price double precision floating-point

The ID field has the * designator to indicate that this field is part of the key for the
window. No other field has this designator, so the ID field completely forms the key.

Key fields are used to identify an event for operations such as Insert, Update, Delete, or
Upsert. Key fields must be unique for an event. You can think of the event stream as a
database and the key fields as lookup keys.

A filter expression quantity > 1000 specifies that events are to be passed through
the filter only when the Quantity field in the event exceeds the value of 1000.

Events that enter a source window must have an operation code (opcode). The opcode
can be Insert (I), Update (U), Delete (D), or Upsert (P).

Opcode Description

Insert (I) Adds event data to a window.

Update (U) Changes event data in a window.

Delete (D) Removes event data from a window.

Upsert (P) A merge function in which data for an event is updated, inserted,
or both.

8 Chapter 2 / Example: Running a Continuous Query

In the following sections, assume that an application feeds five events into the source
window. The lifecycle of events is traced through the continuous query. The application
is described in Chapter 4, “Building and Running the Source Code,” on page 25.

Processing the First Event

The first event is as follows:

e1: [i,n,10,IBM,2000,164.1]

1 The source window receives e1 as an Input event. It stores the event and passes it
into the filter window.

2 The filter window receives e1 as an Input event, as designated by the “i” in the first
field. The second field in this and all subsequent events designates “normal.”

3 The Quantity field has a value of 2000. Because the filter expression is quantity
> 1000, the filter window stores the input. Typically, the filter window would pass e1
forward. However, because the filter window has no dependent windows, there is no
additional data flow for the event.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

10 IBM 2000 164.1 10 IBM 2000 164.1

Processing the Second Event

The second event is as follows:

e2: [p,n,20,MS,1000,26.67]

Processing the Second Event 9

1 The source window receives e2 as an Upsert event. It checks whether the window
has a stored event with a key (ID) of 20.

2 An ID of 20 is not stored, so the source window creates a new event e2a: [I,
20, "MS", 1000, 26.67]. It stores this new event and passes it to the filter
window.

3 The filter window receives e2a as an Input event.

4 The value in the Quantity field of e2 equals 1000, which does not meet the
condition set by the filter expression in the schema. Thus, this event is not stored or
passed to any dependent windows.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

10 IBM 2000 164.1 10 IBM 2000 164.1

20 MS 1000 26.67

Processing the Third Event

The third event is as follows:

e3: [d,n,10, , , ,]

Note: For a Delete event, you need only specify key fields. Remember that in this
example, only the ID field is key.

1 The source window receives e3 as a Delete event.

2 The source window then looks up the event that is stored with the same key. The
Delete opcode removes the event from the source window.

10 Chapter 2 / Example: Running a Continuous Query

3 The source window passes the found record to the filter window with the Delete
opcode specified. In this case, the record that is passed to the filter window is as
follows:

e3a: [d,n,10,IBM,2000,164.1]

4 The filter window receives e3a as an Input event.

5 The value in the Quantity field of e3a equals 2000. This old event that was
previously stored makes it through the filter, so it is removed.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

20 MS 1000 26.67

Processing the Fourth Event

The fourth event is as follows:

e4: [u,n,20,MS,3000,26.99]

1 The source window receives e4 as an Update event.

2 The source window looks up the event stored with the same key and modifies it.

3 The source window constructs an update block that consists of the new record with
updated values marked as an update block followed by the old record that was
updated.

4 The block is marked as a Delete event. The new event Update block that is passed
to the filter window looks like this:

e4a: [ub,n,20,MS,3000,26.99] , [d,n,20,MS,1000,26.67]

Processing the Fourth Event 11

Note: Both the old and new records are supplied because derived windows often
require the current and previous state of an event. They need these states in order
to compute any incremental change caused by an Update.

5 The filter window receives e4a as an Input event.

6 The value in the Quantity field of e4a > 1000, but previously it was <= 1000. The
input did not pass the previous filter condition, but it passes now. Because the input
is not present in the filter window, the filter window generates an Insert event of the
following form:

e4b: [i,n,20,MS,3000,26.99]

7 The Insert event is stored. The filter window would pass e4b on. However, because
there are no dependent windows, this input does not pass. There is no further data
flow for this event.

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

20 MS 3000 26.99 20 MS 3000 26.99

Processing the Fifth Event

The fifth event is as follows:

e5: [i,n,30,ACL,2000,2.11]

1 The source window receives e5 as an Insert event, stores it, and passes e1 to the
filter window.

2 The filter window receives e5 as an Input event. Because the value in the Quantity
field > 1000, the filter window stores the input. Because the filter window has no
dependent windows, there is no further data flow.

12 Chapter 2 / Example: Running a Continuous Query

The window contents are now as follows:

Source Window Filter Window

ID Symbol Qty Price ID Symbol Qty Price

20 MS 3000 26.99 20 MS 3000 26.99

30 ACL 2000 2.11 30 ACL 2000 2.11

Processing the Fifth Event 13

14 Chapter 2 / Example: Running a Continuous Query

3
Source Code to Implement the
Example

Overview . 15

Create Callback Functions . 16

Create the Engine . 17

Create a Project and Memory Depot . 18

Define a Continuous Query Object . 18

Build the Source and Filter Windows . 18

Register the Filter Expression and Add
Connectivity Information . 19

Start the Project and Inject Data . 20

Build Input Data and Insert Events . 21

Clean Up and Shut Down Services . 23

Overview

The following code implements the example covered in Chapter 2, “Example: Running a
Continuous Query,” on page 7.

15

You can find this code in $DFESP HOME/src/filter_exp. Edit the associated
Makefile to remove the comments for architecture-specific build variables.

Create Callback Functions

Before you create the functions that process events, include header files provided with
the SAS Event Stream Processing Engine modeling and execution library (for example,
dfESPeventblock.h) . Then declare two callback functions, one for the source
window and the other for the filter window. You register these functions with the source
window and the filter window to print the events that these windows generate.

You can choose to define callback functions each window. In this example, one callback
function is registered with the source window and another function is registered for the
filter window. The callback for the source window receives the schema of the events
that it receives and a set of one or more events bundled into a dfESPeventblock
object. It also has an optional context pointer to share state across calls or to pass state
into calls. The callback function for the filter window is identical to that for the source
window. The callback functions are used to send a message to standard output.

// -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-
//
#include "dfESPeventblock.h"
#include "dfESPevent.h"
#include "dfESPeventdepot_mem.h"
#include "dfESPwindow_source.h"
#include "dfESPwindow_filter.h"
#include "dfESPcontquery.h"
#include "dfESPengine.h"
#include "dfESPproject.h"

using namespace std;

// Callback function for the source window.
//
void winSubscribe_source(dfESPschema *os, dfESPeventblockPtr ob,
void *context) {
 cerr << endl << "--
 ----------------------" << endl;
 cerr << "sourceWindow_01" << endl;

16 Chapter 3 / Source Code to Implement the Example

 // The dfESPeventblock has a dump() method that prints each
 // event that the event block contains.
 ob->dump(os);
}

// Identical callback function for the filter window.
//
void winSubscribe_filter(dfESPschema *os, dfESPeventblockPtr ob,
void *context) {
 cerr << endl << "---
 -----------------------" << endl;
 cerr << "filterWindow_01" << endl;
 ob->dump(os);
}

Create the Engine

Create the engine that sets up fundamental services such as licensing, logging, publish/
subscribe, and threading.

// Main program - closing bracket appears at the very end of the code block
int main(int argc, char *argv[]) {

// --------- BEGIN MODEL (CONTINUOUS QUERY DEFINITIONS) ---------
// @param argc the parameter count as passed into main.
// @param argv the paramter vector as passed into main. Currently
// the dfESP only looks for -t <textfile.name> to write its
// output and -b <badevent.name> to write any bad events (events
// that failed to be applied to a window index).
// @param id the user supplied name of the engine.
// @param pubsub pub/sub enabled or disabled and port pair,
// formed by calling static function dfESPengine::pubsubServer().
// @param logLevel the lower threshold for displayed log messages -
// default: dfESPLLTrace, @see dfESPLoggingLevel
// @param logConfigFile a logging facility configuration file
// - default: stdout.
// @param licKeyFile a FQPN to a license file –
// default: $DFESP_HOME/etc/license/esp.lic
// @return the dfESPengine instance.
//
dfESPengine *myEngine = dfESPengine::initialize(argc, argv,
 "engine", pubsub_DISABLE);

Create the Engine 17

!PÈ[Êfi}-Í¿O:â˚w³‘ÉvOé�øÐRÇ;ì€˘�ÒCÜyrâÔJ(5flÄ2O»| *p
 cerr <<"Error: dfESPengine::initialize() failed using all
 framework defaults\n";
 return 1;
}

Create a Project and Memory Depot

Ordinarily, engines contain one or more projects. Define the project.

// Define the project
dfESPproject *project_01 = myEngine->newProject("project_01");

Create a memory depot for the project so that it can handle the generation of primary
indices and event storage.

// Create a memory depot
dfESPeventdepot_mem* depot_01;
depot_01 =project_01->newEventdepot_mem("memDepot_01");

Define a Continuous Query Object

Typically, projects contain one or more continuous queries. Define a continuous query
object. This is the first-level container for source and derived windows. The object also
contains window-to-window connectivity information.

// Create a continuous query
dfESPcontquery *cq_01;
cq_01 = project_01->newContquery("contquery_01");

Build the Source and Filter Windows

Build the source window. Specify the following:

18 Chapter 3 / Source Code to Implement the Example

n the window name.

n the schema for events.

n the depot used to generate the index and to handle event storage.

n the type of primary index, which defines how event indexing occurs. In this case, the
primary index is a hash tree.

// Build the source window
dfESPwindow_source *sw_01;
sw_01 = cq_01->newWindow_source("sourceWindow_01", depot_01,
dfESPindextypes::pi_HASH,
dfESPstring("ID*:int64,symbol:string,price:money,quant:int32,
vwap:double,trade_date:date,tstamp:stamp"));

Next, build the filter window. Specify the object name, the depot used to generate the
index and to handle event storage, and the type of primary index. In this case, the
primary index is a hash tree. Unlike with the source window, you do not need to specify
the schema. The filter window uses the same schema as the window that provided input
to it.

// Build a filter window
dfESPwindow_filter *fw_01;
fw_01 = cq_01->newWindow_filter("filterWindow_01", depot_01,
 dfESPindextypes::pi_HASH);
fw_01->setFilter("quant>1000");

Register the Filter Expression and Add
Connectivity Information

Register the filter expression (quant>1000) for this window. Add the subscriber callback
to the source and filter windows. These functions are called whenever a window
produces output events. The events produced are both passed to these callback
functions, and also sent farther down the directed graph for additional processing. Here,
you format the events as CSV rows and dump them to your display. This enables you to
see what each window produces at each step of the computation.

sw_01->addSubscriberCallback(winSubscribe_source);

Register the Filter Expression and Add Connectivity Information 19

fw_01->addSubscriberCallback(winSubscribe_filter);

Add the connectivity information to the continuous query. In this case, connect
sw_01[slot 0] to fw_01.

cq_01->addEdge(sw_01, fw_01);

Start the Project and Inject Data

Define the project's thread pool size and start it. After you start the project, you do not
see anything happen because no data has yet been put into the continuous query.

project_01->setNumThreads(1);
myEngine->startProjects();

// --------- END MODEL (CONTINUOUS QUERY DEFINITION) ---------

At this point, the project is running in the background using the defined thread pool. Use
the main thread to inject data. In production applications, you might dedicate a thread
for each active source window input event stream to optimize performance.

cerr <<endl <<endl;

// Declare some scratch variables to build up and submit the input
// data.
//
dfESPptrVect<dfESPeventPtr> trans;
dfESPevent *p;
dfESPeventblockPtr ib;

//
// --------- BEGIN - DEFINE BLOCKS OF EVENTS AND INJECT into
// running PROJECT ---------
//

cout <<endl<<endl; // Logging uses cout as well, so just use white space
for events.

20 Chapter 3 / Source Code to Implement the Example

Build Input Data and Insert Events

Build a block of input data with three insert events. Typically, events are generated by
one or more publishing applications.

// dfESPevent() takes the event schema and the event character string
// where: the i is insert
// else {u|p|d} mean update, upsert and delete respectively.
// The n is normal.
// The rest are the field values for the event.
//

p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,44001,ibm,101.45,5000,100.565,2010-09-07 16:09:01,
 2010-09-07 16:09:01.123");
trans.push_back(p);

p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,50000,sunw,23.52,100,26.3956,2010-09-08 16:09:01,
 2010-09-08 16:09:01.123");
trans.push_back(p);

p = new dfESPevent(sw_01->getSchema(),
 (char *)"i,n,66666,orcl,120.54,2000,101.342,2010-09-09 16:09:01,
 2010-09-09 16:09:01.123");
trans.push_back(p);

ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
trans.free(); // this clears the vector and frees memory

Inject the event block into the graph. Typically, you use the Publish and Subscribe API
to subscribe to events published locally or on a networked computer system. The
following injectdata call is a way to bypass the API and can be useful for testing.

The injectdata call is asynchronous with respect to processing. It deposits the input
block into the queue of the source window, and then the thread pool takes over. Given
this, use quiesce() to stop the thread until all the injected events have been
processed through the entire continuous query.

project_01->injectData(cq_01, sw_01, ib);
project_01->quiesce(); // quiesce the graph of events

Build Input Data and Insert Events 21

// Build & inject another block of input events, this time with updates.
//
p = new dfESPevent(sw_01->getSchema(),
 (char *)"u,n,44001,ibm,100.23,3000,100.544,2010-09-09 16:09:01,
 2010-09-09 16:09:01.123");
trans.push_back(p);

p = new dfESPevent(sw_01->getSchema(),
 (char *)"u,n,50000,sunw,125.70,3333,122.3512,2010-09-07 16:09:01,
 2010-09-07 16:09:01.123");
trans.push_back(p);

p = new dfESPevent(sw_01->getSchema(),
 (char *)"u,n,66666,orcl,99.11,954, 97.4612,2010-09-10 16:09:01,
 2010-09-10 16:09:01.123");
trans.push_back(p);

ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
trans.free();
project_01->injectData(cq_01, sw_01, ib);
project_01->quiesce(); // quiesce the graph of events

Build and inject another block, this time with a single delete event.

p = new dfESPevent(sw_01->getSchema(),
 (char *)"d,n,66666,orcl,99.11,954, 97.4612,2010-09-10 16:09:01,
 2010-09-10 16:09:01.123");
trans.push_back(p);

ib = dfESPeventblock::newEventBlock(&trans, dfESPeventblock::ebt_TRANS);
trans.free();
project_01->injectData(cq_01, sw_01, ib);
project_01->quiesce(); // quiesce the graph of events

cout <<endl<<endl; // Logging uses cout as well, so just use white
space for events

//
// --------- END - DEFINE BLOCKS OF EVENTS AND INJECT into running
// PROJECT ---------

22 Chapter 3 / Source Code to Implement the Example

Clean Up and Shut Down Services

Finally, clean up and shut down services.

myEngine->stopProjects();
myEngine->shutdown();
return 0;
}

Clean Up and Shut Down Services 23

24 Chapter 3 / Source Code to Implement the Example

4
Building and Running the Source Code

How to Build and Run the Source Code . 25

Build Results . 26

How to Build and Run the Source Code

If the SAS Event Stream Processing Engine library is installed in /opt/dfESP, then
enter these settings:

export DFESP_HOME = /opt/dfESP
export LD_LIBRARY_PATH = $DFESP HOME/lib

A Perl script, $DFESP_HOME/bin/dfespenv, sets these environment variables.
However, you can also add these settings to your login shell or script.

Navigate to the example directory, which is $DFESP HOME/src/filter_exp. Use the
make command to build the example. In the Makefile for filter_exp, you find the
following comments for the GNU Compiler Collection (GCC) on Linux:

-- GCC on Linux
Uncomment the next three lines to use these settings.
CXX=g++
CXXFLAGS=-g -m64
LDFLAGS=-L$$DFESP_HOME/lib

25

Build Results

Building the code creates an executable file that you can run. What follows depicts the
results of running that executable.

sourceWindow_01

TID: 1
depth: 1
 event[0]: <I,N: 44001,ibm,101.45,5000,100.565000,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[1]: <I,N: 50000,sunw,23.52,100,26.395600,2010-09-08
 16:09:01,2010-09-08 16:09:01.123000>
 event[2]: <I,N: 66666,orcl,120.54,2000,101.342000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>

filterWindow_01

TID: 1
depth: 2
 event[0]: <I,N: 44001,ibm,101.45,5000,100.565000,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[1]: <I,N: 66666,orcl,120.54,2000,101.342000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>

sourceWindow_01

TID: 2
depth: 1
 event[0]: <UB,N: 44001,ibm,100.23,3000,100.544000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>
 event[1]: <D,N: 44001,ibm,101.45,5000,100.565000,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[2]: <UB,N: 50000,sunw,125.7,3333,122.351200,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[3]: <D,N: 50000,sunw,23.52,100,26.395600,2010-09-08
 16:09:01,2010-09-08 16:09:01.123000>
 event[4]: <UB,N: 66666,orcl,99.11,954,97.461200,2010-09-10
 16:09:01,2010-09-10 16:09:01.123000>
 event[5]: <D,N: 66666,orcl,120.54,2000,101.342000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>

26 Chapter 4 / Building and Running the Source Code

filterWindow_01

TID: 2
depth: 2
 event[0]: <UB,N: 44001,ibm,100.23,3000,100.544000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>
 event[1]: <D,N: 44001,ibm,101.45,5000,100.565000,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[2]: <I,N: 50000,sunw,125.7,3333,122.351200,2010-09-07
 16:09:01,2010-09-07 16:09:01.123000>
 event[3]: <D,N: 66666,orcl,120.54,2000,101.342000,2010-09-09
 16:09:01,2010-09-09 16:09:01.123000>

sourceWindow_01

TID: 3
depth: 1
 event[0]: <D,N: 66666,orcl,99.11,954,97.461200,2010-09-10
 16:09:01,2010-09-10 16:09:01.123000>

Build Results 27

28 Chapter 4 / Building and Running the Source Code

Glossary

complex event processing (CEP)
event processing that assumes an event cloud as input and therefore makes no
assumptions about the arrival order of events.

continuous query
a model of source, relational, pattern matching, and procedural windows. The
windows represent continuously executing query-generating updates to the query
result set as new events stream through.

Delete (D)
an opcode that removes event data from a window. Similar to an SQL DELETE
statement, which removes one or more records from a table.

derived windows
windows that display events that have been fed through other windows and that
perform computations or transformations on these incoming events. The current
derived window types are aggregate, compute, copy, filter, join, pattern matching,
procedure, and union.

directed graph
a set of nodes connected by edges, where the edges have a direction associated
with them.

engine
the top-level container in a model. There can be only one of these in a given model.
The engine manages the project resources.

29

event
a packet of data accessible as a collection of fields, with at least one of those fields
defined as the key.

event block
a grouping or package of events. It has a unique embedded transaction ID
generated as it is absorbed into a continuous query. It also has a unique ID that an
event stream publisher can assign to it.

event stream processing
a process that enables real-time decision making by continuously analyzing large
volumes of data as it is received. It is a subcategory of complex event stream
processing (CEP).

event stream processing application
a SAS-based event stream processing application embeds a SAS Event Stream
Processing Engine with its own dedicated thread pool (or pools) into its application
space. This is where the main application thread can do application-specific work
and the ESP processes the event streams by creating an instance of the model into
processing objects.

event streams
a continuous flow of events (or more precisely, event blocks).

factory server
a server for factory objects, which control the creation of other objects, access to
other objects, or both. A factory object has a method for every object that it can
create.

Insert (I)
an opcode that adds event data to a window. Similar to an SQL INSERT statement,
which adds one or more records to any single table.

memory depot
a repository for indexes and event data that is used by a project.

30 Chapter 4 / Building and Running the Source Code

model
a user specification of one or more data flows used to transform input event streams
into meaningful output event streams. A model is represented as a directed graph.

modeling API
a SAS C library that enables developers to write event stream processing models.

opcode
See “operation code”.

operation code
an instruction that specifies an action to be performed.

project
the second-level container in a model (managed by the parent engine container)
where the thread pool size is set and contains one or more continuous queries. You
can have multiple projects in an engine instance.

publish/subscribe API
a library that enables you to publish event streams into an event stream processor or
subscribe to event streams within the event stream processing model. The publish/
subscribe API also includes a C and JAVA event stream processing object support
library.

schema
a model of the overall structure of data to be processed in a window.

source window
a window that has no windows feeding into it and is the entry point for publishing
events into the continuous query.

stream
a sequence of data elements made available over time.

Build Results 31

thread pool
a set of threads that can be used to execute tasks, post work items, process
asynchronous I/O, wait on behalf of other threads, and process timers.

Update (U)
an opcode that changes event data in a window. Similar to an SQL UPDATE
statement, which changes the data of one or more records in a table.

Upsert (P)
an opcode that updates event data in a window if the key field already exists and
otherwise inserts event data. Similar to an SQL MERGE function in which data for a
record is updated, inserted, or both.

window
a processing node in an event stream processing model. Source and derived
windows form a continuous query.

32 Chapter 4 / Building and Running the Source Code

	Contents
	Using This Book
	Audience

	Recommended Reading
	Overview to SAS Event Stream Processing Engine
	Product Overview
	Conceptual Overview
	Implementing Engine Models

	Example: Running a Continuous Query
	Overview of the Example
	Processing the First Event
	Processing the Second Event
	Processing the Third Event
	Processing the Fourth Event
	Processing the Fifth Event

	Source Code to Implement the Example
	Overview
	Create Callback Functions
	Create the Engine
	Create a Project and Memory Depot
	Define a Continuous Query Object
	Build the Source and Filter Windows
	Register the Filter Expression and Add Connectivity Information
	Start the Project and Inject Data
	Build Input Data and Insert Events
	Clean Up and Shut Down Services

	Building and Running the Source Code
	How to Build and Run the Source Code
	Build Results

	Glossary

