SAS/C® Debugger User’s Guide and Reference,
Release 7.00

The Power to Know.,

JSaS ‘ SAS Publishing

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/C® Debugger User’s Guide and Reference, Release 7.00, Cary, NC: SAS Institute Inc.,
2001.

SAS/C® Debugger User’s Guide and Reference, Release 7.00
Copyright © 2001 by SAS Institute Inc., Cary, NC, USA. All rights reserved.
1-58025-704-6

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions as set forth in FAR 52.227-19 Commercial
Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st Printing, April 2001

SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, CD-ROM, hard copy books, and Web-based training, visit the SAS Publishing
Web site at www.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

IBM and all other International Business Machines Corporation product or service names
are registered trademarks or trademarks of International Business Machines Corporation
in the USA and other countries.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

Contents

PART I

PARTZ

Introduction to the SAS/C Debugger 1
Chapter 1 A An QOverview of the SAS/C Debugger 3

Introduction 3
Quick Start to Using the Debugger 6

Chapter 2 A The Windowing Interface 11
Introduction 12

Using the Help Window 16

Using the Primary Windows 19

Controlling the Windowing Interface 24

Looking at Terminal /O 31

Looking at Variables, Memory, and Registers 33
Pop-Up and Message Windows: Error Processing 35
Factors Affecting Your Full-Screen Session 36
Restoring Control and Exiting the Debugger 37

Configuring and Using the Debugger 39
Chapter 3 A Debugger PROFILEs, Configuration Files, and EXECs

Introduction 41

Setting Up a Debugger PROFILE 42

Setting Up a Configuration File 46

Executing EXECs or CLISTs from the Debugger 49

Chapter 4 A Compiler Options 57
Introduction 57

debug Option 57

dbhook Option 59

dbgmacro Option 59

japan Option 59

sname Option 60

Chapter 5 A Running the Debugger under TSO 61
Data Sets Needed by the Debugger 61

General Instructions 62

KANJI Terminal Support under TSO 63

Chapter 6 A Running the Debugger under 0S/390 Batch 65
Data Sets Needed by the Debugger 65
General Instructions 66

M

PARTS

PART4

Chapter 7 A Running the Debugger under CMS 69
General Instructions 69

KANJI Terminal Support under CMS 71

Saving Line-Mode Output 71

Chapter 8 A Using the Debugger from a Remote System 73
General Instructions 73
Using Remote Debugger User Exits 86

Chapter 9 A Using the Debugger in a Cross-Development Environment
Introduction 91

Using the SAS/C Debugger in a Cross-Development Environment 92
Using the Debugger’s set Command 93

Debugger Performance Considerations 95

Using the Debugger in Your Environment 97

Chapter 10 A Using the Debugger 99
Performing Basic Debugger Actions 100
Performing Advanced Debugger Actions 106

Chapter 11 A Debugging C++ Programs 115

Introduction 115

Specifying C++ Function Names 115

Specifying Expressions 119

Searching for Data Objects 121

Debugging Initialization and Termination Functions 121
Setting Breakpoints in Dynamically Loaded C++ Modules 122
C++ Debugging Example 122

Reference 127

Chapter 12 A Using Debugger Commands 129
Introduction 130

Command Formats Used with the Debugger 130
Requesting Breakpoints and Actions 133

Arguments in the Debugger Formats 134

Specifying Identifiers Outside the Current Function 147
ANSI Differences 148

Windowing Interface and Command Execution 148

Chapter 13 A Window Directory 153
List of Windows 153

Browse Window 154

Command Window 156

Config Window 157

91

Dump Window 162
Find Window 164
Help Window 164
Keys Window 166
Log Window 167
Message Window 169
Popup Window 170
Print Window 171
Register Window 172
Source Window 173
Status Window 177
Termin Window 179
Termout Window 181
Watch Window 184

Chapter 14 A Command Directory
Introduction 188
List of Commands 188

% 189

? 191

abort 191
assign 192
attn 195
auto 196
break 199
browse 200
catch 201
config 202
continue 204
copy 205
dbinput 208
dblog 209
define 210
disable 212
drop 213
dump 215
enable 216
escape 218

exec (TSO) 219
exec (CMS) 221

exit 222
go 222

goto 223
help 224

ignore 226

187

vi

PARTS

install 228

keys 230

list 231

log 234

monitor 235

on 239

print 241

query 244
resume 246
return 248
rsystem 249
runto 251

scope 252

set 254

step 260

storage 261
system (CMS) 267
system (TSO) 268

trace 269
transfer 271
undef 275
watch 276
whatis 277
where 279

window 280

Appendices 295

Appendix 1 A Error Handling 297
Introduction 297

Invalid Commands 297

Valid Commands 297

Debugger Internal Errors 298

Appendix 2 A Character Set Defaults for Special Characters

Appendix 3 A Debugger I/0 Exit Routines 301
Introduction 301

Dummy Debugger Exit Routines (0S/390 Only) 302
Sample Debugger Exit Routines 302

Appendix 4 A Installing and Administering the NFS Client
Introduction 309

SAS/C NFS Client Overview 310

Installation Considerations 312

NFS Security Administration 312

299

309

Developing Standardized File-System Configurations
Diagnosing Problems 315

Recommended Reading 317

NFS Administrator Commands 317

Appendix 5 A Using the NFS Client 321
Introduction 321

Logging on to the NFS Network 321
Accessing Remote File Systems 322
Mounting and Unmounting Manually 326
Manipulating Files and Directories 326
NFS User Commands 327

Index 331

315

vii

viii

PARTZ

Introduction to the SAS/C Debugger

Chapter L. An Overview of the SAS/C Debugger 3

Chapter2.......... The Windowing Interface 11

CHAPTER

An Overview of the SAS/C
Debugger

Introduction 3
Methods of Running the Debugger 3
Full-Screen Mode 3
Line Mode 4
Batch Mode 4
Capabilities of the SAS/C Debugger 4
Understanding Full-Screen Mode 5
Basic 3270 Concepts 5
Quick Start to Using the Debugger 6
Quick Start to Using the Debugger under CMS 6
CMS Quick-Start Procedure 6
Quick Start to Using the Debugger under TSO 1
Preparing Your Source and Debugger Data Sets 1
TSO Quick-Start Procedure 1
Notes for Users with SAS/C Debugger Experience 9
Invoking the Debugger 9
Switching to Line Mode 9
Using the Windowing Interface to Enter Line-Mode Commands 9

Introduction

This chapter introduces the methods of running the SAS/C Debugger, summarizes its
capabilities, and provides a quick start to using the debugger under the CMS and OS/
390 operating environments.

Methods of Running the Debugger

The SAS/C Debugger helps you find run-time errors, or bugs, in programs that have
been compiled by the SAS/C Compiler. This process is commonly referred to as
debugging. The debugger has been designed to help you determine the location of errors
in your programs and the reasons why the errors are occurring.

There are two interactive methods of running the SAS/C Debugger under both CMS
and OS/390: full-screen mode and line mode. If you are running under OS/390, you can
also run the debugger noninteractively in batch mode.

Full-Screen Mode

In full-screen mode, the SAS/C Debugger must be used with an IBM 3270 type of
terminal display system or an emulator. Today, most people work on a Windows

4

Capabilities of the SAS/C Debugger A Chapter 1

operating environment that uses 3270 emulator software. If your terminal supports
full-screen applications, the SAS/C Debugger runs in full-screen mode by default. In
full-screen mode, the debugger provides an interactive windowing interface that enables
you to view information and operate through a series of windows. Each window has a
distinct function and displays logically related data. You will probably find that
full-screen mode offers the most efficient interface.

Line Mode

You can override the default and run the debugger interactively in line mode. In line
mode, you issue debugger commands at the cdebug: prompt, and the screen displays
information in response. The SAS/C Debugger supports all commands from previous
releases as well as several new features for Release 7.00. You can switch to line mode
after invoking the debugger, as described in “Switching to Line Mode” on page 9.

Batch Mode

The 0S/390 data set can be routed to any system output device that is available at
your site, including a direct access storage device or your terminal. The details of batch
mode are presented in Chapter 5, “Running the Debugger under TSO,” on page 61 and
in Chapter 6, “Running the Debugger under OS/390 Batch,” on page 65.

Capabilities of the SAS/C Debugger

Regardless of the method you use to run the debugger, you will find that it has many
capabilities that will enhance your productivity. With the SAS/C Debugger, you can

o start execution of your SAS/C program.
O trace program flow.

O request breakpoints that are used to interrupt an executing program. For details
see Chapter 12, “Using Debugger Commands,” on page 129.

O reexecute or bypass code, resuming execution after a specified location.

O single step through your program. You can either step into called functions or step
over function calls.

0 perform a variety of actions to access and modify expressions, including structures,
unions, arrays, and classes. For details see Chapter 12, “Using Debugger
Commands,” on page 129.

O change the command scope in order to perform actions on any expression in any
function in the calling sequence.

watch expressions in order to check for arbitrary changes in value.

write customized debugger commands in the form of a CLIST or REXX EXEC.
produce a storage analysis report.

display the type information of an expression.

obtain a traceback of active functions.

generate a SIGINT signal in order to test program signal handling.

resume execution after you correct the cause of a program check.

disable debugger commands, reenable them, and drop them.

perform an operating environment command.

escape to your operating environment’s debugger.

O 0o ooo o oo o o

specify characteristics of debugger output.

An Overview of the SAS/C Debugger /A Understanding Full-Screen Mode 5

list program source.
abort execution.
execute an EXEC or a CLIST language command.

execute a PROFILE upon entry to the debugger.

o O o o o

add your own custom debugger input and output routines for specialized
debugging needs.

O

write debugger macros.

O install user-defined commands.

Understanding Full-Screen Mode

The SAS/C Debugger must be used with an IBM 3270 type of terminal display
system or emulator. An IBM mainframe environment handles screen display differently
from a UNIX or Windows environment. If you are new to IBM mainframes, be aware of
some of the differences, because they affect the way you interact with the SAS/C
Debugger. A basic understanding of 3270 concepts helps you to understand why the
debugger reacts in a manner that may seem unfamiliar to you. These differences are
explained in the following section.

Basic 3270 Concepts

Typically, under the UNIX or Windows environments, input characters are available
to an application program immediately as they are typed. In fact, the terminal may be
equipped with keys that allow characters to be deleted from or inserted into a string of
characters that is input to an application program. The application program processes
all characters as they are input until a complete field is assembled.

Instead of single-character, unbuffered input and output as is used under the
Windows or UNIX environments, the IBM 3270 terminal environment maps each
character on the display to a storage area in the device. This storage area is known as
the character buffer. The applications program, in this case the SAS/C Debugger, uses
commands to send or receive data from this buffer. The data that is transferred
between a terminal and an application is referred to as the data stream. An IBM 3270
data stream includes commands and control characters that specify the processing of
the data in the character buffer. Most often, the buffered data are grouped into fields
and formatted by using display attribute codes.

An application program can then display information by constructing a data stream
and sending it to the device. Input is obtained by reading the buffered data and
decoding the data stream that is returned. As a result, in IBM data stream
programming, output to the terminal is the result of a command; input to an application
program occurs only when the ENTER key or a program function key is pressed.

Once a data stream is constructed, an application program in an IBM mainframe
environment must ask the operating environment to transmit it to the terminal.

Note: The ability to display attributes such as color or reverse video may be limited
by the capabilities of your terminal. A

Table 1.1 on page 6 summarizes some important differences between the IBM 3270
full-screen communication and other environments. Be aware of these differences when
you use the SAS/C Debugger. For additional information about the IBM 3270 data
stream and full-screen programming, see the SAS/C Full-Screen Support Library User’s
Guide.

6 Quick Start to Using the Debugger A Chapter 1

Table 1.1 Differences in Handling Characters

IBM 3270 Other Environments

buffered input single character, unbuffered input

character available after ENTER or function character available every keystroke
key

character cannot be deleted after ENTER or character can be deleted from assembled character
function key string

Quick Start to Using the Debugger

This section explains the steps necessary to compile, link, and run programs with the
SAS/C Debugger under CMS and 0S/390. Part 3 of this book, “Using the Debugger in
Your Environment,” also describes these steps, but it includes more detailed information
about using compiler options, allocating data sets that are needed by the debugger,
saving a debugger session, setting up a debugger profile, and so on. The quick start
procedures that are contained in this section are helpful to a new SAS/C Debugger user.
If you are an experienced CMS or OS/390 user, familiar with previous releases of the
debugger, see “Notes for Users with SAS/C Debugger Experience” on page 9.

Quick Start to Using the Debugger under CMS

This CMS quick-start procedure provides the essential information that you need in
order to start using the debugger under CMS. Detailed information about compiling
and linking your programs is provided in the SAS/C Compiler and Library User’s
Guide, Third Edition. Also, once you are comfortable with running the debugger, you
can find more advanced information in Chapter 7, “Running the Debugger under CMS,”
on page 69.

CMS Quick-Start Procedure

These are the steps to using the debugger under CMS:
1 LC370 program-name (DEBUG:

This step compiles the source file for program-name with the compiler debug
option. The name of the program is program-name C. The compiler output is
placed in a file calledprogram-name TEXT. The debugger symbol table file is
placed inprogram-name DB. (The compiler outputs the debugger symbol table file,
which the debugger uses at run time.)

2 COOL program-name (GENMOD program-name

This step creates a load module of your program. The output is placed in
program-name MODULE. COOL is not always required. If you do not need to use
COQL, you can issue the following commands:

LOAD program-name
GENMOD program-name

See the SAS/C Compiler and Library User’s Guide for information about the
circumstances that require the use of COOL.

An Overview of the SAS/C Debugger /A Quick Start to Using the Debugger under TS0 7

3 program-name =DEBUG
This step runs your program. The =debug option invokes the debugger.

Note: Even though you compile with the debug option, you must invoke the
debugger at run time also. A

Quick Start to Using the Debugger under TSO

If you are running under OS/390, then probably you want to use the debugger
interactively under TSO. This section contains the basic information required to run the
debugger under TSO.

Note: The SAS/C Debugger can be run in a batch job under OS/390. This procedure
is explained in Chapter 5, “Running the Debugger under TSO,” on page 61, and in
Chapter 6, “Running the Debugger under OS/390 Batch,” on page 65. A

Preparing Your Source and Debugger Data Sets

Before you can compile, link, and debug a program, you must create two data sets,
one to hold your source code and one to hold the debugger symbol table file that is
created when you compile with the debug option. The attributes of the data set that
holds your source code are not critical; however, the debugger file does require specific
attributes for record format and blocksize. For the debugger symbol table file, allocate a
partitioned data set (PDS) with RECFM=U and BLKSIZE=4080. For the purpose of
this quick-start procedure, use the data set names userid.pdsname.C and
userid.pdsname. DBGLIB, as recommended in “T'SO Quick-Start Procedure” on page 7.

Note: The object and load data sets, userid.pdsname.OBJ and
userid.pdsname.LOAD, are automatically created when your program is compiled and
are linked if they do not exist already. o

TSO Quick-Start Procedure

This procedure provides the essential information that you need in order to start
using the debugger. Detailed information about compiling and linking your programs is
provided in the SAS/C Compiler and Library User’s Guide. Also, once you are
accustomed to running the debugger, you can find more advanced information in
Chapter 5, “Running the Debugger under TSO,” on page 61.

When your source and debugger data sets are ready, you can compile, link, and run
under T'SO by using the following steps:

1 LC370 pdsname (program-name) DEBUG
For example, the following command compiles a member named HELLO that is
contained in the PDS userid. MYWORK.C:

LC370 MYWORK(HELLO) DEB

The object code output from the compiler is placed in the PDS
userid. MYWORK.OBJ(HELLO). Another output (which contains special tables
that are used while running the debugger) is placed in the PDS
userid. MYWORK.DBGLIB. The member name is the section name (SName).* The

* During compilation, the compiler creates names for various data objects in the compilation. In general, these names are
based on the section name. The section name, in turn, can be specified by the sname compiler option. If no section name is
specified, the compiler assigns one as described in the chapter about compiler options in the SAS/C Compiler and Library
User’s Guide.

8

Quick Start to Using the Debugger under TS0 A Chapter 1

debugger uses the section name in order to locate the member that contains
debugging information for the compilation. For more information, see
“SECTION-NAME and FUNCTION-NAME Arguments” on page 134.

2 COOL pdsname (program-name)

The following command directs the linker to use the object code in
userid. MYWORK.OBJ in order to create a load module of your program:

COOL MYWORK (HELLO)

The output from the linker is placed in the partitioned data set
userid. MYWORK.LOAD(HELLO). See the SAS/C Compiler and Library User’s
Guide for more information.

3 ALLOC DA(pdsname.DBGLIB) F(DBGLIB) SHR
The following ALLOCATE statement allocates userid. MYWORK.DBGLIB:

ALLOC DA(MYWORK.DBGLIB) F(DBGLIB) SHR

4 CALL pdsname (program-name)=DEBUG’
The following command runs the program in userid. MYWORK.LOADHELLO):

CALL MYWORK(HELLO) '=DEBUG’

The '=debug’ option invokes the debugger. The debugger prompts you for the
debugger data set name if you omit step 3.

Naming your data sets Name your partitioned data sets (PDSs) as follows:
source data set userid.pdsname.C

object data set userid.pdsname.OBJ

load data set userid.pdsname LOAD
debugger data userid.pdsname. DBGLIB
set

where userid is your TSO user prefix. pdsname can be any name, but it must be the
same for all four data sets, as in the following:

userid. MYWORK.C

userid. MYWORK.OBJ
userid. MYWORK.LOAD
userid. MYWORK.DBGLIB

The LC370 and COOL CLISTs assume these naming conventions. If you follow the
naming conventions, you do not have to override data set names.

If you do not format the names of the data sets as shown above, then you must fully
qualify all of your data set names. For example, suppose you name a partitioned data
set userid. MYWORK.SOURCE, using its members to contain your source code. Then, to
compile a member that is named PROGRAM, the command is

LC370 'userid.MYWORK.SOURCE (PROGRAM) ' DEBUG
OBJECT(, , , userid.MYWORK.OBJ (PROGRAM)’’")
DBGLIB(, , , userid.MYWORK.DBGLIB (PROGRAM)’’")

As you can see, this compile step is much more complicated than the compile step
(step 1) given earlier in this section.

The same thing happens with the COOL CLIST. For example, if your object module
data set is userid. MYWORK.OBJECT, then the command is

COOL 'userid.MYWORK.OBJECT (PROGRAM) '
LOAD(, , , userid.MYWORK.LOAD (PROGRAM)'’")

An Overview of the SAS/C Debugger / Notes for Users with SAS/C Debugger Experience 9

Notes for Users with SAS/C Debugger Experience

The full-screen windowing interface provides a useful addition to your productivity
tools. These notes enable you to run the new release while using your existing
knowledge of the debugger.

Invoking the Debugger

As with previous releases of the software, you invoke the SAS/C Debugger by adding
the =debug option to the command that runs your program.

Switching to Line Mode

As previously mentioned, full-screen mode is usually the default method of running
the debugger. After invoking the debugger, you can use the window off command to
switch from full-screen mode to line mode. Issue this command from the command
window, which is located at the bottom of the screen and is indicated by the cdebug:
prompt.

Once you enter line mode, you can issue all of the debugger commands that you used
with previous releases of the SAS/C Debugger.

Using the Windowing Interface to Enter Line-Mode Commands

Instead of switching to line mode, you may prefer to issue your commands from the
command window while in full-screen mode. This gives you the advantage of viewing
your source code in the Source window and your previously entered commands in the
Log window. Commands that you issue from the cdebug: prompt in the Command
window use the same syntax as line-mode commands do. Another major advantage to
this approach is that you begin to familiarize yourself with the windowing interface.

10 Notes for Users with SAS/C Debugger Experience A Chapter 1

CHAPTER

The Windowing Interface

Introduction 12
Some Window Basics 12
Multiple Windows Can Be Displayed 12
Windows Can Be Moved and Resized 13
Windows Can QOuverlap 14
Windows Have Logical Cursors 14
Types of Windows 14
Using the Help Window 16
Help Key 16
Hypertext Cards and Links 17
Navigation Links 17
Links within the Text of a Card 17
Links to Pop-Up Windows 18
Using the Primary Windows 19
Using the Command Window 19
Using the Log Window 20
Using the Status Window 20
Transferring Control to the Debugger 21
Run Scope and Command Scope 21
Using the Source Window 22
Moving Around in the Source Window 23
Controlling the Windowing Interface 24
Opening and Closing Windows 24
Moving, Resizing, and Zooming Windows 25
Moving a Window 25
Resizing a Window 25
Zooming a Window 25
Directing Commands to a Window 26
Changing the Window Configuration 26
Using PF Keys 21
Default PF Key Commands 28
Using the Keys Command 29
Using the Keys Window 29
Customizing the Keyboard 31
Switching Between Full-Screen Mode and Line Mode
Looking at Terminal I/0O 31
Using the Termout Window 31
Using the Termin Window 32
Looking at Variables, Memory, and Registers 33
Using the Print Window 33
Using the Watch Window 33

31

11

12

Introduction A Chapter 2

Using the Dump Window 34
Using the Register Window 34

Pop-Up and Message Windows: Error Processing 35
Pop-Up Windows 35
Using Message Windows 36

Factors Affecting Your Full-Screen Session 36
Window and PF Key Priorities 36
Number of Open Windows 37

Restoring Control and Exiting the Debugger 37
Attention Key 37
Exiting the Debugger 38

Introduction

This chapter provides an introduction to the windowing interface that you use to
control the SAS/C Debugger during full-screen mode. In full-screen mode you can use
the Command window or PF keys to issue commands that control your debugging
session. As a result of these commands, the SAS/C Debugger displays information
about your program and the session. The windowing interface is composed of windows
in which you can send commands and other information to the debugger.

Some Window Basics

The windowing interface consists of a series of windows through which you issue
commands to perform a variety of tasks. Each window consists of an optional border
and one or more fields. The border defines the location and display area for the window
on the terminal screen. The fields are areas inside the window that are used to view
and type information. The field can be extended beyond the window borders. That is,
the field can contain information that is not currently visible within the borders. You
scroll the window horizontally or vertically to view this information.

Multiple Windows Can Be Displayed

You can have several windows displayed simultaneously, which enables you to issue a
command in one window and view its results in a second window. For example, Display
2.1 on page 13 shows the Status, Source, Termout (terminal output), Log, Print, and
Command windows. The functions of these and other windows that are not shown in
this example are explained in “Types of Windows” on page 14.

The Windowing Interface /A Some Window Basics 13

Display 2.1 Displaying Several Windows Simultaneously

J— — -
Help: PFl--Step Termout
/ /}::ms

:wdent2b Intercept:Y Log:N Display:I Pause:Y Scale:
Module: COMP2 ----+----1---—4% 2 t————3-———+ 4 t———-5--—-+

91 1 a

92 1 is

93 vo 1 test

94 { 1 this

95

96 if

97

98 el

99

100

101

102 }

Log
>print head->totcnt, head->word$%s
wi move <>

Print

Expr: head->word

Address: 0p01d9fbd0 Format: $%s
head->word : this

Cdebug:

Some windows display all of the information that is associated with their function at
one time. For example, the Status window consists of one line of status information, as
shown in Display 2.1 on page 13; therefore, all of the information that is associated
with the Status window is displayed simultaneously.

Other windows, such as the Source and Termout windows in this example, might
display only a portion of the information that is associated with their function at one
time. You may have to scroll through a field to view information that is hidden.

Windows Gan Be Moved and Resized

A window’s size affects how much information can be displayed at one time. Most
windows can be resized, moved, opened, closed, and zoomed. (When you zoom a window,
it either fills the entire display or shows the maximum information available for that
window.) For example, Display 2.2 on page 14 shows the initial position of the Termout
window. In the example shown in Display 2.1 on page 13, the Print window has been
moved, and the Termout window has been moved and resized. Both of these windows
filled the top half of the display when they were originally displayed. See “Controlling
the Windowing Interface” on page 24 for complete descriptions of how to open, close,
move, resize, and zoom windows.

14 Types of Windows A Chapter 2

Display 2.2 Initial Position of the Termout Window

[—
Termout
Intercept: ¥ Log: N Display: I Pause: ¥ Scale: ¥

————+ 1-—-+ 2 + 3 + g———+ F-——+ B + 7————+
1 a
1 is
1 test
1 this

Log
2print head->totcnt, head->word %s
wi move <>

Cdebug:

Windows Can Overlap

When several windows are displayed, you can choose to have them overlap each other.
This allows you to display the maximum size for the window in which you are working,
while keeping the other windows readily available. Depending on the size and position
of the overlapped windows, parts of them may be visible, or they may be completely
hidden. In Display 2.2 on page 14, the Termout window overlaps the Source window.

The debugger uses a stack to keep track of open windows. You can move through this
stack of windows in either direction, or you can jump directly to a specific window in the
stack. The current window is called the top window because it is on top of the stack. It
overlays any other windows that happen to be located on the same portion of the display.

Windows Have Logical Cursors

Each window has a logical cursor that is associated with it. Although you cannot see
the logical cursor, the debugger uses it to keep track of your location in a window. The
current window displays a physical cursor that can be seen at the location of the logical
cursor. Furthermore, the position of the logical cursor is used for certain operations
(such as scrolling by cursor amount), which may cause the logical cursor to move.

Types of Windows

The windowing interface is composed of 15 different types of windows. (You can open
multiple instances of some of these window types.) Reference information for each
window is provided in Chapter 13, “Window Directory,” on page 153. The following list
provides a summary of their functions:

Browse window
is used to browse text files and to display output from the browse command.

Command window
is used to issue debugger commands.

The Windowing Interface /A Types of Windows 15

Config window
displays current configuration information such as default window locations,
colors, and display attributes. This window can also be used to change window
attributes and location.

Dump window
displays a dump of memory in character and hexadecimal format.

Find window
is used to enter a search string for the windows find command.

Help window
provides context-sensitive help information. You can enter the help system from
any location on the display by pressing the PF1 key. (By default, the PF1 key is
used to access the help system. The Keys window is used to change the help key
assignment.)

Keys window
displays current PF key settings. This window can also be used to redefine a PF
key.

Log window
displays a log of the debugger commands that you enter during your session, as
well as other useful information.

Message window
displays a message in response to invalid input. You can close this window by
pressing the ENTER key.

Pop-up window
request for information in response to invalid input. The Pop-up window displays
the invalid input, and you must either provide a valid value or delete the invalid
value before you can continue.

Print window
displays the value of an expression.

Register window
displays the contents of general purpose and floating-point registers and the
current instruction address in hexadecimal format.

Source window
displays source code, highlighting the current position in the code. You can also
enter prefix-area commands from the Source window to control your debugging
session. Prefix area commands are described in “Source Window” on page 173.

Status window
displays status information for your debugging session.

Termin window
is used to type terminal input that your program requests.

Termout window
displays terminal output from your program.

Watch window
is used to monitor the changing value of an expression. As with the Print window,
the expression can be of either the scalar or the aggregate type.

The four primary windows (Status, Source, Log, and Command) are always open.
With the exception of the Message or Pop-up windows, you can use the window open
command to take a quick look at the other windows that are listed in the previous

16 Using the Help Window A Chapter 2

section. To open a window, type the following command, where name is the name of the
window:

window open name

To close the window, move the cursor into the window and press PF15, which
executes the window close command.

Using the Help Window

The Help window is used to access the debugger’s hypertext help system. You can
use the following formats of the help command to open the Help window:

help
displays the help system index when you enter it in the Command window.

help <>
provides context-sensitive help based on the cursor position. This command is
normally assigned to the PF1 key; however, you can also enter it from the
Command window. (The help key assignment is shown in the Status window.)

helpWINDOW-NAME | COMMAND-NAME | TOPIC
allows direct access to information about a particular window, command, or topic.
For example, help print opens the Help window and displays help information
about the print command.

Note: The pair of angle brackets <> is used as a placeholder to specify the name of
the window in which the cursor is currently located. When you press the PF key, the
name of your current window is substituted for <> and the command is executed. For
example, pressing the PF1 key when the cursor is in the Log window issues the
following command:

window help <>

Since the cursor is in the Log window, log is substituted for the <> placeholder symbol
when the command is executed. See “Using Placeholders in Window Subcommands” on
page 150 for additional information about the <> placeholder. 2

Help Key

The left side of the Status window identifies the PF key assigned to the help <>
command. Normally, the PF1 key is assigned to this command. If no key is assigned,
the Status window displays HELP:HELP, which indicates that you must issue the help
command from the Command window in order to access the help system.

Pressing the help key opens the Help window, which then displays context-sensitive
help information based on the current location of the cursor. For example, Display 2.3
on page 17 shows the Help window that is displayed by pressing the PF1 key while the
cursor is located in the Command window.

The Windowing Interface /A Hypertext Cards and Links

Display 2.3 Help Window, Command Window Card

Help
NEXT PREY BTRK INDEX HELP

COHHAHD WIMDOW - Issues debugger Commands
DESCRIPTION

can be input in the Command window after the Cdebug: prompt and
they are submitted to the debugger by pressing the ENTER key.

Freviouslg entered commands are maintained in a circular
list. Commands are recal led bg issuing the window scroll <> up
(PF19) or window scroll <> down (PF28) commands from the
Command window.

DEBUGGER USER"S GUIDE
Chapter 1, "Introduction to the SAS/C Debugger”
Chapter 2, “The Windowing Interface”
Chapter 11, “"Window Directory”

SEE_ALSO
Commands: command directory
Hindows: Log

keys list 1

PFB1 help <>

keys list 4

PFB4 window close <>

keys list S

PFBS window resize <>
Cdebug: !

The Command window is used to enter Debugger commands . Commands

17

Hypertext Cards and Links

The Help window displays information in hypertext format on hypertext cards. For

example, Display 2.3 on page 17 shows the card for the Command window. These cards
are displayed one at a time. You move between cards by a networks of links. A link has
special display attributes that distinguish it from the surrounding text in a card. When
you are running the debugger, links are displayed in either green or bold, depending on

the characteristics of your terminal. You select a link by moving the cursor onto the

link and pressing the ENTER key.

Navigation Links

Five navigation links always appear in the upper-left corner of the Help window. The
navigation links are labeled NEXT, PREV, BTRK, INDEX, and HELP. As described in “Help

Window” on page 164, these links are used to move rapidly through the help system
following a predefined path or to move back through the cards you have selected.

Links within the Text of a Card

Most cards also display links that are embedded in the text of the card. For example,

the Command window card shown in Display 2.3 on page 17 contains a link called
debugger commands on the first line of the description. Selecting this link causes the
COMMAND DIRECTORY card, shown in Display 2.4 on page 18, to be displayed. The

COMMAND DIRECTORY card contains additional links to cards that describe each of

the debugger commands. By selecting the help link, you can access the card shown in

Display 2.5 on page 18.

18 Hypertext Cards and Links A Chapter 2

Display 2.4 Help Window, COMMAND DIRECTORY Card

Help
NEXT PREV BTRK INDEX HELP
COHMAND DIRECTORY

% ? abort assign attn auto
break config continue copy dhinput dhlog
define disabhle drop dump enahle escape
EXEC exit go goto help ignore
instal | keys list monitor on print
query resume return rsystem runto scope
step storage system trace transfer undef

keys list 1

PFAl help <>

keys list 4

PFB4 window close <>

keys list 5 .

PFBS window resize <>

Cdebug:

Display 2.5 Help Window, Help Command Card

Help
NEXT PREY BTRK INDEX HELP
HELP - Access debugger Online Help
ABBREVIATION
hielp}

FORMAT
help [DEBUGGER-CHD-NAHE / WINDOW-NAME / TOPIC]

(examples)

DESCRIPTION
The help command invokes the help system. The opticnal
arguments, DEBUGGER-CHD-NAME, WINDOW-NAHE, and TOPIC, are
used to access specific cards in the help system. Context
sensitive helﬂ is provided by the help <> command, which is
assigned to the PF1 key by default.

DEBUGGER USER’S GUIDE

Chapter 1, “Introduction to the SAS/C Debugger”
Chapter 2, “The Windowing Interface”

Chapter 12, “Command Directory”

SEE ALSO
Windous: Help

PFB5S window resize <>

Cdebug: i

Links to Pop-Up Windows

Some links are associated to pop-up windows. Selecting such a link causes a pop-up
window to be displayed inside the Help window. For example, selecting the link named
examples on the help card shown in Display 2.5 on page 18 causes the pop-up window
shown in Display 2.6 on page 19 to be displayed. After you read a pop-up window, press
the ENTER key to close the pop-up window and return to the card from which it was
selected.

The Windowing Interface /A Using the Command Window 19

Display 2.6 Help Window, Pop-Up Window

Help

HELP COMHAND
Format 1: help [DEBUGGER-CHD-HAME/WINDOW-NAHE/TOPIC]
DESCRIPTION
The heIE command can be used to access the help system index or
it can be used with one of the optional arguments to access
information about a specific command, window, or topic.
EXAMPLES

help
opens the Help window and displays the IMDEX.

help break
opens the Help window and displays the card for the break
command.

help config window
opens the Help window and displays the card for the
Configuration window.

help directing commands

PFBS window resize <>

Edebua:

Using the Primary Windows

The SAS/C Debugger gives you maximum control over your debugging session. It
also provides you with a wealth of information about the program you are debugging.
The key to harnessing this capability is the windowing interface.

The Command, Log, Status, and Source windows are your primary interface to the
SAS/C Debugger when it is running in full-screen mode.

Using the Command Window

The SAC/C Debugger offers a powerful set of commands that are used to control your
debugging session. When the debugger is running in full-screen mode, you submit these
commands either from the command window or by pressing a PF key.

Note: The Keys window is used to assign debugger commands to PF keys. For a
quick look at the default command assignments, see “Using PF Keys” on page 27. A

The Command window, shown in Display 2.7 on page 20, is used to submit debugger
commands. The method is similar to the way that you submit commands in a line-mode
session. You can issue any line-mode commands after the cdebug: prompt and then
submit the command to the debugger by pressing the ENTER key. As the debugger
executes the command, it may display output or messages about the execution in the
Log window or in one of the other windows that are described in “Types of Windows” on
page 14.

20 Using the Log Window A Chapter 2

Display 2.7 The Command Window

| Cdebug: | |

T

command entry field

Cdebug: prompt

If a command is too long for the Command window to display, you can type the
command into the Log window, using a backslash for continuation.

The debugger maintains a circular list of the commands that you issue.. However,
issuing a command more than once in succession results in only one copy of the
command being maintained in the list. You can cycle through the list by using the
window scroll up and window scroll down commands, which are assigned to the
PF19 and PF20 keys by default. To issue a previously issued command, press the
ENTER key when the command is displayed. The previously entered commands are
accessed in first-in, first-out order. As the list fills up, the oldest commands are deleted.
Use the window clear command to clear the list.

Using the Log Window

As shown in Display 2.8 on page 20, the Log window contains a log of commands that
are issued during the current session. It also displays output from certain commands
and some error messages. Commands that are echoed in the Log window are those
commands that are issued either in the Command window or in the Log window. The
window scroll up and window scroll down commands provide the capability to view
previous commands and their output. The PF19 and PF20 keys are dedicated by
default to vertically scrolling the window that contains the cursor.

Display 2.8 The Log Window

Log

inword : 1 (AxPPBEABAA1)

where

Calling trace: . .
Shame Function name Primary line
COHP1 READIN 64

COHP1 HAIN 24
window close log

LSCD282 This WINDOW cannot be OPEHed/CLOSEd.

print c, wordlen

c : 64 (BxPDBDBBB4B)

wordlen : 4 (AxPPBEABAAY)

Using the Status Window

During a debugging session, control passes back and forth between your program and
the debugger. See Display 2.9 on page 21. The Status window provides information
about the current status of your debugging session, including your current location in
the code. This information consists of the following:

0 the number of the PF key that is assigned to function as the help key.

O the reason for transferring control to the debugger (whether it was the result of a
break, step, continue, monitor, attention, or a similar event).

The Windowing Interface /\ Using the Status Window 21

O the location in your code at which the debugger was entered: the function name,
and either the line number stopped at or an identification of the side of a function
call or return that the execution stopped on. This location is also called the run
scope.

Display 2.9 The Status Window

| Help: PF1 --Step-- ------------ ENTER---84-------nnn mmmoooeccmecmmemm |

\—*/
run scope (location)

reason for entry
help key assignment

Transferring Control to the Debugger

The point in your code at which control can be passed from your program to the
debugger is called a hook. Whenever control is passed to the debugger, the Status
window displays the location of the hook and the reason that control was transferred.
For example, in the Status window shown in Display 2.10 on page 21, a step command
that was issued at the entry hook of the getname function caused control to be
transferred to the debugger.

Run Scope and Command Scope

The location in your program at which execution stops determines the run scope. The
debugger usually uses this location to resolve any references to variables. The debugger
recognizes expressions that are visible to your programs at the point where execution
stops without any additional actions on your part. However, if you want to view the
value of expressions that are not visible at the point in your code indicated by your run
scope, you must change the scope to a new location. This new scope, which you control,
is called the command scope. Display 2.10 on page 21 shows a Status window that
displays both a run scope and a command scope.

Display 2.10 Status Window, Showing Run Scope and Command Scope

run scope
—

| Help: PF1 --Step-- --------- ENTER---84--------oooe mommma- READIN---66------- |

N ———
command scope

There are two ways in which you can change the command scope. The scope
command, which is described in Chapter 14, “Command Directory,” on page 187,
provides the greatest control. However, if you have more than one function in your
calling sequence, you can move the cursor into the Status window and use the PF19 or
PF20 keys to change command scope. The window scroll <> up or window scroll
<> down commands are assigned to these keys by default. The PF19 key causes the
command scope to move up in the calling sequence, and the PF20 key causes the run
scope to move down in the calling sequence.

22 Using the Source Window A Chapter 2

Using the Source Window

The Source window displays your source code and highlights the line on which the
debugger has stopped, as shown in Display 2.11 on page 22. The top border, which is
always present, contains the name of the source file.* The first line of the window
provides information that always displays the following:

Module
identifies the compilation that is currently displayed in the source window

Line
is the line number of the first line of source code that is displayed in the visible
portion of the Source window text area.

Display 2.11 The Source Window

Module: field

source filename

Line: field

,/cms:wd ng2b c *

Module: COMP2 Line: 10 €———
10 /* Determine if a word to be inserted in the word */
11 /* list is already in the list. If the word is in the */
12 /* list, increment count. If the word is not in */
13 /* the list, find the position in the list where it */
14 /* should be inserted. */
15 /* */
16 void insertw(char *wordarry) /* readin passes wordstrg */
17

B 18
19 int found=FALSE, test;
20

BI 21 curr=head;

A 22 /* curr is now pointing to the start of the list */
23

— I
—_—
text area

source code line numbers
prefix area

The remaining portion of the Source window contains text and line number areas
that are used to view source code. The left side of each line number field is a prefix
area. The prefix area displays the location of requests that have been assigned to a
specific line in your code.

The SAS/C Debugger uses a request system that keeps track of the breakpoint and
action requests that you specify with debugger commands. These requests, which tell
the debugger to interrupt program execution at a hook, are assigned to one line or a
range of lines in your source code. As shown in Display 2.11 on page 22, the prefix area

* The form of the source filename displayed in the Source window is operating-environment specific. Display 2.11 on page 22
illustrates a CMS source filename.

The Windowing Interface A Using the Source Window 23

includes an indication of the commands that have been requested, such as break,
ignore, on, and trace. The prefix area can also be used to issue prefix-area commands
that are used to either make or control debugger requests. Prefix-area commands are
explained under “Source Window” on page 173.

The code that is displayed in the Source window changes as debugger commands are
executed. When you issue step, go, continue, or any other command that causes
additional lines of your program to run, the highlighted line advances through the text
field of the Source window. If the cursor is in the text field, it stays in step with the
highlighted line as your program runs. Leaving the cursor on any of the other areas
disables this tracking behavior.

Note: The print command is assigned to the PF16 key by default. If you move the
cursor to a variable that is located within the run scope and you issue the print
command with a PF key, then the log window displays the value of the variable. The
tracking behavior of the cursor within the Source window is particularly useful with
this technique. A

Moving Around in the Source Window

To view your source code, you can either scroll through the window or jump directly
to a specific line. After viewing a portion of your source code, you can use the list
command to return to your current line.

Scrolling By scrolling through the text field of the Source window, you can view
any line of your source code. The following window scroll commands are assigned to
PF keys by default:

PF7 window scroll source up
PF8 window scroll source down
PF 19 window scroll <> up

PF 20 window scroll <> down

PF 22 window scroll <> left

PF 23 window scroll <> right

The <> symbol is used as a placeholder to specify the window in which the cursor is
currently located. When you press the PF key, the name of your current window is
substituted for <>, and the command is executed. See “Placeholders in Commands” on
page 150 and “window” on page 280 for additional information about the <> placeholder.

You must position the cursor in the Source window before you use the PF19, PF20,
PF22, or PF23 keys. However, the PF7 and PF8 keys have been assigned window
scroll commands that cause the Source window to be scrolled regardless of the
position of the physical cursor. These two keys are useful when your cursor is located in
the Command window and you want to scroll the source code without moving the cursor
into the Source window. See Chapter 14, “Command Directory,” on page 187 for
additional information about the window scroll command.

As you scroll through your source code, the line number and text areas scroll
together. Although the text field can be scrolled either horizontally or vertically, the line
number area can be scrolled only vertically. Thus, the line number is always visible,
even if you scroll to the far right side of the text area.

Scroll amount By default, the position of the cursor in a window controls the
amount that is scrolled up and down. You can override the default scroll value during a
session by issuing a window scroll command or specifying a new value in the Config
window. Valid values are cursor, half, page, and max.

The initial scroll amount, which has a default value of cursor, can also be set by a
window scroll command in the configuration file. A scroll amount of max cannot be

24 Controlling the Windowing Interface A Chapter 2

specified in the configuration file. The configuration file is used to customize the
attributes of the windowing interface. See “Setting Up a Configuration File” on page 46
for more information.

Jumping to a line Scrolling is a simple and fast way to move through displayed
lines. However, it is not an effective way to reach parts of your code that are located far
from your current position. Another way to view a part of the displayed module is to
type the line number at the Line: prompt of the Source window. Sources from a
different module in the calling sequence can be viewed by typing the module name after
the Module: prompt. If either the module name or line number is invalid, a window
pops up so that you can correct the invalid input.

Note: You can use the 1list command to produce the same effect during a
full-screen session. See Chapter 14, “Command Directory,” on page 187 for information
about the 1ist command. 2o

Returning to the highlighted line After viewing source code from different modules,
or viewing a different area of the current source file, you can quickly return to the
highlighted line by issuing the 1ist command with no parameters in the Command
window.

Controlling the Windowing Interface

During a debugging session, you can control the windowing interface by
O opening, closing, moving, resizing, and zooming windows

O directing output to dedicated windows

o0 changing PF key definitions.

Opening and Closing Windows

Most windows can be opened with the window open command and closed with the
window close command. You cannot use these commands to open and close the four
primary windows, Message windows, or Pop-up windows.

To be more precise, open and close are actually subcommands of the window
command. The window command is used to issue a number of subcommands, all of
which control the windowing interface. Most of these subcommands can be issued from
either the Command window or a configuration file. Refer to “Setting Up a
Configuration File” on page 46 for more information about using a configuration file to
customize the windowing interface. Also see Chapter 14, “Command Directory,” on page
187 for more information about the window command and its subcommands.

The general form for using the window command to open a window is as follows:

window open WINDOW-NAME
window close WINDOW-NAME

In either case, WINDOW-NAME identifies the window to be opened and can be any
of the following:

The Windowing Interface /A Moving, Resizing, and Zooming Windows 25

Browse Config Dump
Help Keys Print
Register Termin Termout
Watch

Moving, Resizing, and Zooming Windows

With the exception of Message and Pop-up windows, all windows can be moved with
the window move command, resized with the window resize command, and zoomed
with the window zoom command. These commands can be executed from the Command
window; however, the easiest way to accomplish these tasks is to use PF keys. By
default, the following commands are assigned to PF keys:

PF2 window move <>
PF14 window resize <>
PF13 window zoom <>

Moving a Window

To move a window, perform the following steps:

1 Place the cursor in the window you want to move. The cursor can be placed
anywhere inside the window or on the border.

2 Press the PF2 key. MOVE is displayed in the lower-right border of the window to
indicate that a move is pending.

3 Use the arrow keys to move the cursor to the desired location for the window. The
window does not follow the cursor until the next step.

4 Press the ENTER key. The window moves to the desired location.

Resizing a Window

To resize a window, perform the following steps:

1 Place the cursor on the border of the window you want to resize. The cursor can be
placed anywhere inside the window, but resizing is much easier if you place it on
one of the borders.

2 Press the PF14 key. RESIZE is displayed in the lower-right border of the window
to indicate that a resize is pending.

3 Use the arrow keys to move the cursor to the desired location for the window
border. The border does not follow the cursor until the next step.

4 Press the ENTER key. The border moves to the desired location.

Zooming a Window
When you zoom a window, it fills the entire display area. Other windows are hidden
behind the zoomed window. To zoom a window, perform the following steps:
1 Place the cursor in the window you want to zoom. The cursor can be placed
anywhere inside the window or on the border.
2 Press the PF13 key. The window zooms out to fill the entire display area or to its
maximum size, whichever is smaller.

26

Directing Commands to a Window A Chapter 2

3 Press the PF13 key a second time to restore the original display.

Directing Commands to a Window

Usually any output that is generated by debugger commands is displayed in the Log
window. For example, you can use the print command to display the value of a
variable, and, unless you specify otherwise, the value of that variable is displayed in
the Log window. However, certain commands, such as the print command, can be
directed to a dedicated window.

The print command can be directed to the Print window, the dump command to the
Dump window, and the keys command to the Keys window by using the following
command prefixes:

redirect opens a new Print, Dump, or Keys window and directs output to it.
command (>) Only the Keys window can be opened.

redirect directs output to a previously opened Print, Dump, or Keys window.
command (>>) If the window has not been opened, this prefix command opens a

new window exactly as the > prefix does.

Note: The > and >> symbols are prefixed to either the print, dump, or keys
command. The syntax for the command does not change. A

For example, either of the following commands directs a variable named my_variable
to the Print window:
> print my_variable
>> print my_variable

The first command opens a new Print window, and the second command reuses an
open Print window.

You can open several Print or Dump windows with the > command prefix; however,
only one Keys window can be opened. Both the > and >> command prefixes have the
same effect on the keys command if a Keys window is already opened: the existing
window is reused.

Anytime a dedicated window is either opened or reused, it automatically becomes the
top window. That is, the physical cursor is placed inside the window, which is then
placed on top of the stack of windows that are currently open.

Changing the Window Configuration

The size, position, and display attributes of debugger windows can be controlled with
the Config window. You can open the Config window with the window open config
command and change the display characteristics for any window at any point in your
debug session. These changes can be saved to your configuration file if you want to
make them permanent. The Config window allows you to customize the following
parameters that affect the configuration of the debugger:

AUTOPOP
can be set for each window. If a window is set to autopop, it automatically becomes
the top window whenever output is sent to it.

BORDER
specifies whether border characters are in hexadecimal or character format. The
same characters are used for all windows with borders.

COLORING
specifies the color, attributes, and intensity for each area in each window. There is
a field in the Config window that contains a description of the target area. The

The Windowing Interface /A Using PF Keys 27

field is colored in the same way as the target area. Changes in color, attributes, or
intensity are immediately reflected in this field and in the target area.

CONFIGURATION
specifies the configuration (size, position, and presence of borders) of each window.

CONTEXT
contains parameters that control the number of context lines in the Source
window. These parameters take effect the next time the Source window is updated.

MEMORY
specifies the memory that is allocated to the buffers of the Command, Log and
Source windows. However, the memory that is used by this debugging session is
not dynamically reallocated: if you save the configuration with the changed
setting, the changed memory values are used the next time you run the debugger.

SCROLL AMOUNT
specifies the default scroll amount.

TRACE LOG
turns on and off the trace status of the Log window.

Certain types of windows, such as the Print window, allow you to open several
windows of that type simultaneously. However, other types of windows, such as the Log
window, allow only one instance at a time. You cannot have two Log windows open
simultaneously.

For windows that allow only one instance, changing configuration parameters results
in that window being closed and reopened. If the change results in borders being added,
the reopen fails if the resources required to display the window exceed the capabilities
of the debugger. This can happen when a large number of windows are open. See
“Number of Open Windows” on page 37 for a discussion of this limitation. However,
failure to reopen one of the four basic windows is severe enough for the debugger to
reopen the window without a border.

For windows that allow several instances to be displayed simultaneously, such as the
Print window, changing configuration parameters has no effect on windows of that type
that are already open. New instances of that type of window are displayed using the
new parameters.

You can use the config window to change the size or position of a window. However,
information in the window may move, or the moved or resized window may appear on
top of the Config window. Therefore, using PF keys is the preferred way to move or
resize windows.

To save your current configuration to a file, specify the file name and type in Y after
the save: prompt on the first line of the Config window. “window” on page 280 has
complete details on the various customization parameters that are saved when the
current configuration is written to a file. Those that may be set in the Config window
are only a subset of those that are saved.

Using PF Keys

PF keys offer the fastest and easiest way to issue some of the debugger commands in
a full-screen session.* The default PF key command assignments are adequate for most
debugging tasks; however, you can reassign debugger commands to PF keys by using
either the keys command or the Keys window.

* Debugger PF key command assignments are used only in full-screen mode. If you switch to a line-mode session, the PF keys
are not used.

28

Using PF Keys A Chapter 2

Default PF Key Commands

The debugger maintains two sets of tables for key assignments, the current set and
the default set. On start-up, both sets of tables are identical to the command
assignments that are shown in Table 2.1 on page 28.

Table 2.1 Default PF Key Commands

Key Command Action

PF1 help open Help Window

PF2 window move < > move current window

PF3 exit exit debugger

PF4 > dump < > str dump memory contents pointed to by
expression under cursor

PF5 /x*/ none (may be used in a future release)

PF6 /x*x/ none (may be used in a future release)

PF7 window scroll source up scroll Source window up

PF8 window scroll source down scroll Source window down

PF9 window next jump to next window in stack

PF10 continue resume execution and break at next
line-number hook without stepping into
functions

PF11 step resume execution and break at next
hook

PF12 go resume execution

PF13 window zoom < > zoom current window

PF14 window resize < > resize current window

PF15 window close < > close current window

PF16 print < > display value of variable under cursor

PF17 window find <> find in the current window

PF18 /*%/ none (may be used in a future release)

PF19 window scroll < > up scroll current window up

PF20 window scroll < > down scroll current window down

PF21 window previous jump to previous window

PF22 window scroll < > left scroll current window left

PF23 window scroll < > right scroll current window right

PF24 window top command jump to Command window

You can use a configuration file to modify the command assignments to both sets of
tables. After the configuration file is executed, both sets of tables are identical and
contain the default assignments you have specified. See “Setting Up a Configuration
File” on page 46 for more information.

You can also change the command assignment for a PF key outside the configuration

file (sometime after starting your debugging session). These changes affect only your

The Windowing Interface /A Using PF Keys 29

current session unless you choose to save the new configuration with the config save
command.

Using the Keys Command

Any of the following keys commands can be used to list or modify PF key
assignments. You can issue these commands either in the configuration file or from the
Command window.

keys
is an alias for keys list *.

keys listn
lists the key definition for PFN from the current set of tables.

keys list *
lists all key definitions from the current set of tables.

keys defaultn
gives PFN the default definition. The debugger copies the definition from the
default set of tables to the current set of tables.

keys default *
gives all keys their default definitions. The debugger copies the definitions from
the default set of tables to the current set of tables.

keys define n “text”
in the configuration file, changes the definition for PFN, both in the default set of
tables and in the current set of tables. Outside of the configuration file, this
changes the definition only in the current set of tables. The changed definition is
specified by text, which may not exceed 80 characters.

Using the Keys Window

You can also use the Keys window to display and change current PF key
assignments. Open the Keys window either by issuing a window open keys command
or by redirecting any of the keys commands to a window. This is done by prefixing the
command with a > or a >>. (See “Directing Commands to a Window” on page 26.)

The Keys window, shown in Display 2.12 on page 30, comprises four fields: a
protected field that identifies the keys, and three unprotected fields. The Help Key field
is used to assign a key to the help <> command, and the key definition field is used to
assign debugger commands to the other keys. The 1sPF field is used only when running
the debugger under ISPF, as described in Appendix 4, “Debugger ISPF Interface.”

30 Using PF Keys A Chapter 2

Display 2.12 The Keys Window

Ispf field
N is the default value, causing the PF key
to be handled by the debugger.

Help Key fild, used to assign
a PF key to the help < > command

v

Keys

Ispf? Help Key: 1
PF1 N help <>
PF2 N window move <>
PF3 N exit
PF4 N >dump <> str
PF5 N window resize <>
PF6 N /*x/
PF7 N window scroll source up
PF8 N window scroll source down
PF9 N window next
PF10 N continue
PF1l N step
PF12 N go
PF13 N window zoom <>
PF14 N window resize <>
PF15 N window close <>
PF1l6 N print <>
PF17 N window find <>
PF18 N /**/
PF19 N window scroll <> up
PF20 N window scroll <> down
PF21 N window previous
PF22 N window scroll <> left
PF23 N window scroll <> right
PF24 N window top command
A N— —

S

Key definition field, used to

assign commands

The field that contains the help < >
assignment is protected. All other key
definition fields are unprotected.

PF key numbers (protected field)

If the height of the window is smaller than that needed to display all of the PF key
definitions, you can view information that is not visible by scrolling vertically using the
the window scroll up and window scroll down commands. The PF19 and PF20
keys are assigned to these commands by default. You can also use the window zoom
command, the effect of which is shown in Display 2.12 on page 30.

PF key definitions can be changed by typing over the current definition. Blanking
out (erasing) the field gives the default definition. (When erasing a field, make sure
that the field has been scrolled all the way to the left.) Each key definition can be up to
80 characters long. The definition field may be scrolled horizontally, using the window
scroll left and window scroll right commands.

The Windowing Interface /A Using the Termout Window 31

Customizing the Keybhoard

You can easily customize a keyboard by creating a configuration file that contains
keys define n “text” commands. However, note that customized PF key definitions
work only in full-screen mode. Refer to “Setting Up a Configuration File” on page 46 for
more information about using a configuration file.

Switching Between Full-Screen Mode and Line Mode

At any time during a debugging session, you can switch between full-screen mode
and line mode using the window off and window on commands.

window off
terminates the windowing interface and continues the debugging session in line
mode, preserving the states of the Log and Command window buffers.

window on
starts up the windowing interface. If full-screen mode was used earlier in this
invocation of the debugger, the configuration last used determines the setup, and
the contents of the Log and Command window buffers reappear unchanged.
However, if this is the first time that full-screen mode is used, your default initial
configuration is used. See “Setting Up a Configuration File” on page 46 for more
information.

Looking at Terminal 1/0

Most programs involve some input or output to the terminal. The SAS/C Debugger
provides two windows that are specifically designed to enable efficient terminal I/O
debugging. Terminal output from functions such as printf can be displayed in the
Termout window, and terminal input from functions such as gets can be entered from
the Termin window.

Using the Termout Window

As shown in Display 2.13 on page 32, there are three areas in the Termout window:
a status and prompt line, an optional scale or ruler line, and the output field.

32 Using the Termin Window A Chapter 2

Display 2.13 The Termout Window

flashing More... prompt

Tyrmout
More... Intercept: Y Log: N Display: I Pause: Y Scale: Y

N e e e L e LR L LRy EET T
Enter your first name.
Hello, Doug.

scale

output field

Use the window open command to open the Termout window, as previously described
in “Opening and Closing Windows” on page 24. However, in full-screen mode the
debugger usually intercepts program output and displays it in the Termout window
automatically. Switching to line mode turns the intercept off, and switching back to
full-screen mode restores the previous status of the intercept.

Using the Termin Window

As shown in Display 2.14 on page 32, there are three areas in the Termin window: a
status and prompt line, an optional scale or ruler line, and the input field, which
includes the input prompt.

Display 2.14 The Termin Window

flashing Read... prompt

TWrmin
Read... Intercept: Y Log: N EOF: N Scale: Y

B N et SR L LR Ry e PR R R
pidivé:

—

input field

terminal input, entered by user

input prompt

The Windowing Interface /A Using the Watch Window 33

By default, the debugger intercepts program input requests, opens the Termin
window, and prompts you for input. Switching to line mode turns the intercept off, and
returning to full-screen mode restores the previous status of the intercept.

Looking at Variables, Memory, and Registers

Much of the power of a debugger comes from its enabling you to examine the values
assigned to variables, dump the contents of memory, and look at registers. For example,
as you step through a program you can examine the contents of an array to see whether
it is initialized as you intended.

The SAS/C Debugger includes four windows that are especially useful when you need
to take a closer look at your program and the values that it is manipulating. This
section explains how to use the Print, Watch, Dump, and Register windows.

Using the Print Window

The Print window can be used to display the value of an expression. To use the Print
window, you direct the output of the print command to the Print window as previously
described in “Directing Commands to a Window” on page 26. For example, in Display
2.15 on page 33 the string pointed to by an expression named ptrl was displayed by
issuing the following command:

> print ptrl %s

Use the command prefix > to redirect output from the print command to a new
Print window. You can use >> to redirect output to an existing Print window.

Also notice that you can specify format when directing the print command to the
Print window. In the previous command, %s specifies that ptrl should be formatted as
a string. You can use any of the format specifiers that are valid with the sprintf
function. See “print” on page 241 for more information about using format specifiers
with the print command.

Display 2.15 The Print Window

Print

Expr: ptrl

Address: BpBchB9898 Format: %s
ptrl: this

Using the Watch Window

The Watch window is used to track the value of an expression or an area of memory
during your debugging session. It acts like an automatic print or dump command,
displaying the expression or area of memory each time control is transferred to the
debugger. As shown in Display 2.16 on page 34, you can specify several watches, each
of which is displayed in the Watch window.

34

Using the Dump Window A Chapter 2

Display 2.16 The Watch Window

Watch

Expr:

N: Format:
ptrl : BpBch9fa3s
new->word : BpBch9fa3s

The watch command can be used to specify a watch; however, the easiest way to
specify a watch is to open the Watch window and then set your watches by using the
Expr:, N:, and Format: fields. You can use a prefix field in order to drop watches.
These fields are described in “Watch Window” on page 184.

Using the Dump Window

The Dump window is used inorder to display a dump of memory in both character
and hexadecimal format. This window is useful when you need to examine a region of
memory for possible address space conflicts. For example, it can help you determine
why a portion of an array is being overwritten. It can also help isolate the cause of
“garbage” information in your data structures.

Output from the dump command is directed to the Dump window in much the same
way as output from the print command is directed to the Print window. The > and >>
command prefixes are used with the dump command to direct the output from a memory
dump to either a new or existing Dump window, as described earlier in “Directing
Commands to a Window” on page 26. For example, the following command dumps 80
bytes of memory that is pointed to by an expression named str:

> dump str 80
The output from this dump command is directed to a Dump window as illustrated by

Display 2.17 on page 34.

Display 2.17 The Dump Window

Dump

Expr: str

Address: BpB1f9aald Str: H H: 1 Rel: ¥

+B8080868 a3 *t X

As shown in Display 2.17 on page 34, the relative address is displayed on the left
side of the Dump window, a hexadecimal representation of the contents of memory is
displayed in the middle, and an EBCDIC character representation is displayed on the
right side.

Using the Register Window

The Register window, shown in Display 2.18 on page 35, enables you to view the
contents of the 16 general-purpose registers and the 4 floating-point registers. It also
displays the current instruction address and the address mode.

Display 2.18 The Register Window

The Windowing Interface /A Pop-Up Windows 35

Register

$r@: ©8x@l138816c %rl: BxB818BBG66E6
$rd: ©x01888788 $r5: Bx018868578
$r8: OxBBeaBld4 $r9: BOxBBeaB208

$rl2: Bx8BechBB8 $rl13: BxBBeaB218

Current instruction address ($iad):

$r2: 6x@l881aBl $r3:
$r6: BxB1f9abde Sr7:
$rl@: BxB1885f48 Srll:
$rld: BxB18BBE14 Srl15:
Bx18086649 Amode: 31

AxBE08aAAS
AxB1f9aalb
BxBBeh5hAB
BxB1f9aalB

$f0: 60 DOPDRE DPOADABE

(0.0P0POPNANDRBNOAOE+00)

§f2: PP DPPPED BAAARAEE (O.AEEAAAAPBEARARRE+EA)
§f4: B0 (a. +80)
$f5: BB (8. +00

The window open register command must be used to open the Register window.
Issuing this command when the Register window is open updates the window. Pressing
ENTER when the cursor is in the Register window also updates it.

Pop-Up and Message Windows: Error Processing

In general, Pop-up windows are used to correct invalid window input, and Message
windows are used to display error messages that are associated with invalid commands.
This section describes how the Pop-up and Message windows are used in error
processing. See Appendix 1, “Error Handling,” on page 297 for general information

about error conditions.

Pop-Up Windows

If invalid input is specified in certain areas of certain windows, an alarm sounds, and
a Pop-up window opens automatically. For example, Display 2.19 on page 35 shows a
Pop-up window that is displayed when an invalid input of Z is typed in the Intercept
field of the Termout window. The message in the Pop-up window describes the invalid
input. To close the window, you must type either a valid value or a blank. See “Popup
Window” on page 170 for more information.

Display 2.19 A Pop-Up Window

Termout
Intercept: |

+

Log: H Display: I Pause:

Y Scale: V¥

_— 142

enter your first name.

Invalid

Log
Set system breakpoint at BBechb8d to

Cdebug:

Enter value:

B 4———- p —

/n value.

activate the ESCAPE command.

36 Using Message Windows A Chapter 2

Using Message Windows

If invalid input is specified in the input area of any window other than the Command
or Log windows, the debugger opens a Message window automatically to display an
error message. For an example see Display 2.20 on page 36. After viewing the message,
you can press ENTER or any PF key to close the window. Pressing a PF key that
contains an invalid command also causes the debugger to open a Message window that
contains an error message. See “Message Window” on page 169 for more information.

Display 2.20 A Message Window

Watch
Expr: str
H: 18 Format: %s

75 /X If position is BEFORE, set prev->next to new; */
76 /X set new->next to curr:

77

78 if (position==BEFORE) {

LSCD128 A format cannot be specified for “dump” style watches.

Log

Set system breakpoint at BBecbb84 to activate the ESCAPE command.
ru enter e

ru 78

window open watch

Cdebug:

Factors Affecting Your Full-Screen Session

You should be aware of the following two factors that affect your full-screen session:

0 The debugger uses a priority sequence to process simultaneous input from
windows and PF keys.

0 There is a limit to the number of windows that you can display at one time. This
number varies, depending on the type of windows that you display.

Window and PF Key Priorities

When input is specified in more than one window, the debugger processes windows
according to a sequence determined by window priorities. Generally, a window of a
higher priority is processed before a window of a lower priority. The debugger sets
priorities that cannot be changed. The following list of windows is in order from highest
to lowest priority:

1 Keys

2 Watch

3 Termout

4 Termin

The Windowing Interface /A Attention Key 37

5 Status

6 Source

7 Log

8 Command
9 Config

10 Register
11 Dump

12 Print

13 Watch

PF keys have a lower priority than any of the windows. Consequently, if input is
specified in a window and a PF key pressed, the window input is processed first and
then the PF key command is processed.

The only exception to these priorities occurs when there is text after the cdebug:
prompt in the Command window and a PF key is pressed while the cursor is inside the
Command window. In this case, the text is completely ignored and the PF key is
processed. This enables command scrolling in the Command window: you can use the
PF19 and PF20 keys to scroll through or recall previously issued commands. (The PF19
and PF20 keys are assigned the window scroll < > up and window scroll < >
down commands by default.)

Number of Open Windows

There is a limit to the number of windows that the debugger can display at one time.
The limit depends on the type of windows that are being displayed and the display
attributes of those windows. To avoid reaching the debugger’s display limit, close
windows that are no longer necessary. By default, the PF15 key is assigned to the
window close < > command.

You must be especially careful with the Print and Dump windows. Directing output
to these windows with the > command prefix causes a new window to be opened. It is
possible to open a large number of these windows at one time, each of which overlays
the previous window. When either the print or dump command is used in conjunction
with the on command, it is easy to open a large number of windows.

Restoring Control and Exiting the Debugger

This section explains how to restore control to the debugger when, for example, a
program that you are running is not responding, or is “hung” in an infinite loop. It also
explains how to exit the debugger.

Attention Key

The attention key can be used to restore control to the debugger when a problem is
encountered during a debugging session. Pressing the attention key has various
consequences,which depend on

o which debugger command you have issued
O the type of problem that you are debugging (an infinite loop, for example)

0 whether you are running the SAS/C Debugger with your operating environment
debugger.

38 Exiting the Debugger A Chapter 2

Under TSO, for example, the most general case is that user control is returned when
you press the attention key. Under CMS, pressing the attention key toggles CP and
CMS.

Exiting the Debugger

The exit command is used to exit the debugger. It is assigned to the PF3 key by
default, or it can be issued from the Command window. See Chapter 14, “Command
Directory,” on page 187 for complete details of the exit command.

PART

Configuring and Using the Debugger

Chapter 3. Debugger PROFILEs, Configuration Files, and EXECs 41
Chapter4.......... Compiler Options 57

Chapter 8. Running the Debugger under TS0 61

Chapter 6. Running the Debugger under 0S/390 Batch 65

Chapter 7. Running the Debugger under CMS 69

Chapter 8. Using the Debugger from a Remote System 73

39

Chapter 9. Using the Debugger in a Cross-Development Environment 971

40

4

CHAPTER

Debugger PROFILEs,
Configuration Files, and EXECs

Introduction M
Setting Up a Debugger PROFILE 42
Setting Up a PROFILE under CMS 43
Setting Up a PROFILE under TSO 43
Using a PROFILE to Select Full-Screen or Line Mode 45
Return Codes for Invalid Commands for the PROFILE 45
Setting Up a Configuration File 46
Specifying a Configuration File 46
Specifying a Configuration File from a PROFILE 46
Associating a Configuration File with a Program 47
Creating Your Own Default Configuration File 47
Creating Configuration Files 47
Valid Commands in the Configuration File 48
Saving Your Configuration 48
Executing EXECs or CLISTs from the Debugger 49
Command Considerations 49
Commands That Continue Execution 49
Echoing EXEC or CLIST Lines 50
exec Command 50
dbinput Command 50
dblog Command 50
Return Codes 50
Example REXX EXEC Application 52
BTREE 52
DUMPTREE 54
Running the Example 55
Concepts Demonstrated 55

Introduction

The SAS/C Debugger uses your PROFILE and a configuration file to execute
debugger commands and determine your initial configuration upon entry to the
debugger. This chapter explains how to do the following:

0 set up a PROFILE containing debugger commands that are issued at initial entry
to your program

O set up and specify a configuration file that controls your initial debugger
configuration

O issue the exec command from your PROFILE to execute a CLIST or an EXEC
when the debugger is invoked

42

Setting Up a Debugger PROFILE A Chapter 3

O use the exececho keyword with the auto command in order to echo lines from an
EXEC or CLIST

O use the dbinput command in order to input data from the terminal to an EXEC or
CLIST

0 use the dblog command in order to output information from an EXEC or CLIST to
the Log window or session log.

Setting Up a Debugger PROFILE

The debugger PROFILE is a debugger feature that enables you to create an EXEC or
a CLIST that contains a set of debugger commands. This PROFILE executes at initial
entry to the program that is being run under the debugger. If you usually issue a
certain set of commands when you first begin to debug a program, then using a
debugger PROFILE saves time.

Note: You cannot use a PROFILE with debugger sessions in 0OS/390 batch. A

A PROFILE can contain any of the debugger commands in the following list (in
addition to standard CLIST or EXEC commands that you need):

abort install
auto on

break query
config file set

define system
disable trace

drop undef
enable window off
exec % (TSO only)
help user-installed commands
ignore

Note: The config file command is used to specify your configuration file as
described in “Setting Up a Configuration File” on page 46. Additional details about
using the exec command in a PROFILE are provided in “Executing EXECs or CLISTs
from the Debugger” on page 49. 2

When you start your program under the debugger (by specifying '=d’), your
PROFILE executes automatically. Next, the debugger passes control to the terminal on
entry to main (or, if the indep option is used, to the first function that is called in your
program) and sends the cdebug: prompt.

When your PROFILE executes, no function is active (including main). For this
reason, commands such as 1list and continue, which require a function to be active,
do not work in a PROFILE. Similarly, the assign, copy, and dump commands, which
require a variable or object to be visible, do not work because none have been defined on
entry to the debugger. If the PROFILE contains a user-installed command or an exec

Debugger PROFILEs, Configuration Files, and EXECs A Setting Up a PROFILE under TSO 43

(or 2) command, the same commands can be used in the called EXEC or CLIST as in
the PROFILE itself.

Setting Up a PROFILE under CMS

Write an EXEC named PROFILE CDEBUG that contains all the debugger
commands to issue when the debugger starts to run. You pass the filename of the
program as the only parameter.

PROFILE CDEBUG can be written in REXX or EXEC2. Example Code 3.1 on page
43 illustrates a debugger PROFILE CDEBUG under CMS.

Example Code 3.1 Debugger PROFILE CDEBUG (CMS)

/* Sample DEBUGGER PROFILE CDEBUG */
/* */
config file myconfig @

arg filename

say '****x%x Start of Debugger PROFILE’' @
say 'Running file’ filename

if filename = ’'WORDCOUN’ then do @
"exec wordcoun’
else do @

‘on main return break’

"exec gencmds’

end
'break main *’ @
‘query’ @

say '****%%!/ rc ‘actions active’' @
say '****** End of Debugger PROFILE’
exit

The numbers in the previous example correspond to the following items:

1
2
3

The configuration file named MYCONFIG is specified.
Two SAY statements output a banner and the source filename.

The EXEC checks that the filename is WORDCOUN. If it is, the debugger
command exec wordcoun is executed. WORDCOUN is the name of an EXEC that
contains CMS commands.

If the filename is not WORDCOUN, the debugger performs an on command to
break on return to main; then, the debugger performs another exec command by
using the CMS EXEC GENCMDS.

A breakpoint is requested at every hook in main.
The query command is issued.

The REXX rec variable displays the number of debugger actions in effect as
returned by query.

Setting Up a PROFILE under TSO
To set up a PROFILE under TSO, do the following:

1

Write a CLIST or REXX EXEC that contains the debugger commands in the order
that you want to issue them. If you are using a REXX EXEC, the following
address command must be issued from the EXEC before any debugger commands
are issued:

44 Setting Up a PROFILE under TSO A Chapter 3

address ’'CDEBUG’
2 Put the PROFILE in a sequential data set that is named
first_level qualifier.CDEBUG.CLIST

If your TSO profile specifies NOPREFIX, then your userid is used as the
first_level_qualifier; otherwise, if a PREFIX is specified, that prefix is used as the
first_level_qualifier.

If you want to put your PROFILE in another data set, you can also use the
DDname DBGPROF to specify a PROFILE. If DBGPROF is allocated to the CLIST
or EXEC, the debugger uses DBGPROF to find the PROFILE.

The PROFILE is any valid CLIST data set (as described by IBM publication
0S/390 TSO/E CLISTs, SC28-1973-02). Not the following two general
restrictions for a CLIST that is used in your PROFILE:

o0 You cannot use the ATTN CLIST command in a PROFILE.

o0 You cannot call a program that uses the debugger from a CLIST and share a

GLOBAL with the PROFILE or with any other CLIST that is called by the
debugger via exec.

The first line of the CLIST should be the following:

PROC 1 pgmname

where you subsitute the program name for pgmname. This variable is
determined by the following guidelines:
o If you are running your program by using a TSO command processor, the
command name is the program name. For example, in the following cases,
myprog is the command name and, therefore, it is also the program name:

alloc f(cplib) da(library.name) shr
myprog =d

or

alloc f(cplib) da(library.name) shr
c myprog =d

Note that the command name (from the command line for a program),
called as a command processor, takes precedence over the compilation section
name.

o If you are executing your program by using the TSO CALL command and if
the main function has been compiled with the sname option, the section name
is the program name, as in the following:

call library.name(myprog) '=d’
If no section name is defined for main, but you have a declaration in
your program for _pgmnm, that is the program name.

0 If none of these situations fit-that is, you are not executing your program
with a command processor, no section name is assigned to main, and _pgmnm
is not defined-then the program name is UNKNOWN. See the SAS/C
Compiler and Library User’s Guide, Third Edition for more information about
how the pgmnm variable can be used.

The following example is a debugger PROFILE for TSO.
Example Code 3.2 Debugger PROFILE CLIST (TSO)

PROC 1 PGMNAME
/* Example DEBUGGER PROFILE CLIST (TSO) */

Debugger PROFILEs, Configuration Files, and EXECs A Return Codes for Invalid Commands for the PROFILE 45

CONTROL NOCAPS @
CONFIG FILE 'USERID.MY.CONFIGS(CONFIGL)" 9
WRITE ***#*%%* START OF DEBUGGER PROFILE *****% e
WRITE running program &PGMNAME
IF &PGMNAME NE UNKNOWN THEN DO o
IF &PGMNAME = WRDCNT THEN DO e
$wrdent
END
ELSE IF &PGMNAME = LINCNT THEN DO 6
%$lincnt
END
ELSE DO @
on main return break
$gencmds
END
break main * ' @
query @
WRITE ****%%* &LASTCC actions active @
END
WRITE ***#*+*%* END OF DEBUGGER PROFILE *****%

The numbers in the previous example correspond to the following items:

1 Uppercase is turned off.

2 The configuration file that is named USERID.MY.CONFIG(CONFIG1) is specified.
3 Two WRITE statements output a banner and the program name.
4

The CLIST checks to determine whether the program name that is passed through
PGMNAME is known. (If it is not, execution of the CLIST ends.)

5 If the program name that is passed through PGMNAME is wrdent, the debugger
executes the wrdent CLIST.

6 If the program name is linent, the debugger executes the 1inent CLIST.

7 Otherwise, the debugger requests a breakpoint on return from main, and executes
the gencmds CLIST.

8 A breakpoint is requested at every hook in main.
9 The query command is issued.
10 The number of breakpoints and actions in effect is output.

Using a PROFILE to Select Full-Screen or Line Mode

The debugger opens, by default, in full-screen mode. By specifying a window off
command in the PROFILE, you can start the SAS/C Debugger in line mode. This is the
only window subcommand that can be issued in the PROFILE; other window
subcommands can be issued from a configuration file, as described in the next section.

Note: You can also alternate between full-screen mode and line mode as described in
“Switching Between Full-Screen Mode and Line Mode” on page 31. 2

Return Godes for Invalid Commands for the PROFILE

See “Setting Up a Debugger PROFILE” on page 42, for a list of commands that are
valid for use in a debugger PROFILE. If you pass an invalid command to the debugger
when you enter the debugger, you receive a return code of —3.

46 Setting Up a Configuration File A Chapter 3

Note: Since the PROFILE is a special-purpose CLIST or EXEC, return codes for
debugger commands that are valid in a PROFILE are the same as those that are
discussed in “Return Codes” on page 50. A

Setting Up a Configuration File

The configuration file controls the initial configuration of the PF keys and windows
when you invoke the debugger. It is processed after your PROFILE, and you can specify
a user-defined configuration file in a number of ways as described in “Specifying a
Configuration File” on page 46. If no configuration file is specified, the debugger uses a
default initial configuration that is supplied with the SAS/C Debugger.

The commands that are valid in a configuration file and the methods of saving
configurations are described in “Creating Configuration Files” on page 47.

Specifying a Configuration File
You can specify a user-defined configuration file in the following ways:

1 Issue a config file command in your PROFILE. See “Specifying a Configuration
File from a PROFILE” on page 46.

2 Associate a configuration file with your program. See “Associating a Configuration
File with a Program” on page 47.

3 Create a user-specific default configuration file. See “Creating Your Own Default
Configuration File” on page 47.

If more than one user-defined configuration file exists, the order of precedence for
determining which file to use is as listed above.

Specifying a Configuration File from a PROFILE

The format of the config command that is used in your PROFILE to specify a
user-defined configuration file depends on your operating environment. See “config” on
page 202 for a complete description of the config command.

Under CMS You use the following format of the config command to specify a
configuration file in your PROFILE:

config file filename

See the code sample in “Setting Up a PROFILE under CMS” on page 43 for an
example of this format. filename can be any valid CMS filename.

Under OS/390 You use the following format of the config command to specify a
configuration file in your PROFILE:

config file filename (member)

See the code sample in “Setting Up a PROFILE under TSO” on page 43 for an
example of the first form of this format. In the first form, filename can be any 0S/390
data set name. The second form is used to specify the member name of a file that is
stored in a partitioned data set named userid. CDEBUG.CONFIG.

Debugger PROFILEs, Configuration Files, and EXECs A Creating Configuration Files 47

Associating a Configuration File with a Program

You can create configuration files that are selected for processing by the debugger
according to a name that is generated during compilation of your program. The method
of creating and specifying these configuration files depends on your operating
environment.

Under CMS Create a configuration file that contains the desired configuration
information. The file must have a valid CMS filename, a filetype of DBCONFIG, and a
filemode of *, as in the following example:

program-name DBCONFIG *

When you compile the program, specify program-name with the sname option. Refer
to the SAS/C Compiler and Library User’s Guide, Third Edition for information about
using the sname compiler option to specify a program name under CMS.

Under OS/390 Create a partitioned data set that is named
userid CDEBUG.CONFIG. You can add members to this PDS that are selected by
member name when you compile your program. For example, you can create a
configuration file that is named userid. CDEBUG.CONFIG(myconfig), which is
associated with your compilation by the sname option when you compile a program in
userid.source.C(mycode). See the SAS/C Compiler and Library User’s Guide, Fourth
Edition for information about using the sname compiler option to specify a program
name under 0S/390.

Creating Your Own Default Configuration File

You can create a user-defined configuration file that sets your default initial
configuration. This configuration is used only if you do not specify a configuration file in
your PROFILE or as described in “Associating a Configuration File with a Program” on
page 47.

User-specific configuration files are created in the same manner as described for
program-specific configuration files. The only difference is the name of the file. You
must name your user-specific configuration file UNKNOWN. Under CMS it is created
with the following filename, filetype, and filemode:

UNKNOWN DBCONFIG *
Under 0S/390, it is created as the following PDS member:
"first_level qualifier.CDEBUG.CONFIG(UNKNOWN) '

If your TSO profile specifies NOPREFIX, then your userid is the first_level_qualifier,
otherwise, if a PREFIX is specified, then that prefix is the first_level_qualifier.

Creating Configuration Files

A configuration file can be created in the following ways:
0 Use a text editor to type commands into the file

O Modify your configuration with the Keys and Configuration windows and then
save the configuration with the config save command.

The second method offers the easier way of creating a new configuration file.

Note: When you use the config save command to save a configuration, the
existing configuration file is replaced by the new one. 2

48 Creating Configuration Files A Chapter 3

Valid Commands in the Configuration File

The configuration file may contain only keys define commands and a certain subset
of window commands. Invalid commands or errors in your configuration file usually
cause the debugger to display messages. Under CMS, errors in your configuration file
cause the debugger to pause with a MORE prompt.

PF key customization Any of the PF keys may be customized by issuing appropriate
keys define commands, as described in “Using PF Keys” on page 27. You can type
these commands directly into a configuration file by using a text editor, or you can use
the config save command after modifying PF key assignments with the Keys window.
See “Saving Your Configuration” on page 48.

Window customization In the configuration file, window commands have several
purposes, some of which are the following:

O to specify the size, location, presence of borders, and color of windows
O to specify characters that are used for window borders
O to determine which windows are present.

The following subcommands of the window command are valid in the configuration
file:

autopop
automatically pops up (makes unobscured) any window of the type that is specified
when the file is updated.

border
specifies the characters to be used to form the borders of windows with borders.

color
customizes the color, attributes, and intensity of the border and the different areas
in the named window.

config
customizes the configuration (size, position, and presence of borders) of the named
window. The subcommand does not open a window.

context
controls the amount of context information around the highlighted line in the
Source window.

intercepts
specifies the status of the input and the output intercepts and the processing of
intercepted I/0.

memory
specifies the amount of memory to be allocated for various window buffers.

open
causes the named window to be present in the initial configuration.

scroll
sets the scroll amount displayed in the Status window.

trace
controls the production of trace lines in the Log window.

Note: The autopop, color, config, context, open, and trace commands take a
window name as a parameter. A

Saving Your Configuration

The effect of specifying window commands outside the configuration file is discussed
in “Windowing Interface and Command Execution” on page 148. Certain commands

Debugger PROFILEs, Configuration Files, and EXECs A Command Considerations 49

have the effect of changing the configuration (window colors, window position and size,
number of windows, scroll amount, and so on) of the debugger. Similarly, keys define
commands that are issued during execution (see “Using PF Keys” on page 27) may also
change the configuration. The debugger enables you to save this configuration by
issuing the config file and config save commands. For example, the following
command displays the name of the current configuration file in the Log window:

config file
Then, when you issue the following command, your configuration is saved to that file:
config save

You can save your configuration to a file other than the current configuration file by
issuing the config save command with a FILENAME argument. For example, under
CMS, the following command saves the configuration to a configuration file that is
named configl:

config save configl

This command also changes the current configuration file to configl.
Both the config file and config save commands are described in Chapter 14,
“Command Directory,” on page 187.

Executing EXECs or CLISTs from the Debugger

See “Setting Up a Debugger PROFILE” on page 42 for information about the use of
the debugger PROFILE, a feature of the debugger in which a CLIST or an EXEC is
passed automatically to the debugger for execution when the debugger is invoked.

The exec command enables you to pass any valid EXEC or CLIST to the debugger at
any point during your debugging session.

Under TSO, you can use both CLISTs and REXX EXECs. In a REXX EXEC, you
must issue the following command so that subcommands are directed to the debugger
rather than to TSO:

address 'CDEBUG’

There is no restriction against mixing CLISTs and REXX EXECs. A program of
either type can call one of the other type. While a REXX EXEC is active, attention
interrupts are trapped by the EXEC and not by the debugger. See “exec (T'SO)” on page
219 for additional information about executing CLISTs and EXECs under TSO.

Under CMS, the EXEC must be written in REXX or EXEC2 and have filetype
CDEBUG. See “exec (T'SO)” on page 219 for additional information about executing
EXECs under CMS.

Command Considerations

For both TSO and CMS, no restrictions exist about which commands can be used in
an EXEC or CLIST. However, there are consequences to the use of certain commands.
In addition, there are some rules about exec, used alone or used as part of an on
command.

Commands That Continue Execution

If a CLIST or EXEC contains a command that requires the debugger to continue
execution (abort, continue, exit, go, goto, resume, runto, and step), the command

50

Return Codes A Chapter 3

is executed and the EXEC or CLIST is ended. Other commands in the CLIST/EXEC
that follow the command are not executed.

Echoing EXEC or CLIST Lines

The exececho keyword can be used with the auto command to echo each line of a
CLIST or EXEC before the line is parsed and executed by the debugger. In a full-screen
session the line is echoed to the Log window, and in line mode it is echoed to the session
log.

The default setting for this command is noexececho. You can verify the setting with
the query command.

The auto keyword of the transfer command also supports exececho. See “transfer”
on page 271 for additional information.

exec Command

You cannot use another debugger command on the same line following exec or %
commands. (The $ command is used only under OS/390.)

dbinput Command

The dbinput command can be called from a CLIST or EXEC in order to input
information from the terminal. In a full-screen session, input is made with the Termin
window, and in a line-mode session it is made from the line prompt.

dblog Command

The dblog command can be called from a CLIST or EXEC in order to output
information to the terminal. In a full-screen session output is sent to the Log window,
and in line mode it is displayed in the session log.

Return Codes

You can design a CLIST or EXEC to test the value of a global variable that contains
the previous condition code that is passed back from the debugger. Table 3.1 on page 50
lists global variables that can be checked for condition code values.

Table 3.1 Global Variables That Contain Condition Code Values

Command Language Global Variable
CLIST &LASTCC

EXEC rc

EXEC2 &RC

SAS/C Debugger commands set the return codes that are listed in Table 3.2 on page
51. The column labeled “Successful” shows the return code passed back to a CLIST if
the debugger command is executed. The column labeled “Unsuccessful” shows the code
that is passed if the debugger command is not executed.

Debugger PROFILEs, Configuration Files, and EXECs A Return Codes

Table 3.2 Return Codes Set by Debugger Commands

51

Command Successful Unsuccessful
abort not applicable not applicable
assign 0 1
attn 0 1
auto 0 1
break number of the action from the query 0%
list
catch 0 1
config 0 1
continue not applicable not applicable
copy 0 1
dbinput 0 1
dblog 0 1
define 0 1
disable a nonzero number 0
drop a nonzero number 0
dump 0 1
enable a nonzero number Y
escape none none
exec (TSO) code set by the CLIST called code from exec command
exec (CMS) code returned from the EXEC -3
exit not applicable not applicable
go not applicable not applicable
goto not applicable not applicable
help 0 code from system help
ignore request number from query 0¥
install 0 1
keys 0 1
list number of last line listed 0
monitor 0 1
on request number 0
print 0 1
query number of last request satisfying the 0
arguments of the query command
resume not applicable not applicable
return 0 1
runto not applicable not applicable

52 Example REXX EXEC Application A Chapter 3
Command Successful Unsuccessful
scope 0 1
set 0 1
step not applicable not applicable
storage 0 1
system 0 return code from system
trace number of action from query list 0*
transfer 0 1
undef 0 1
watch 0 1
whatis 0 1
where 0 1
window 0 1
0

2
°

?

not applicable

code from CLIST

not applicable

In Table 3.2 on page 51 * indicates the request number is returned, even if there is
unrecognized text after a valid command.

Example REXX EXEC Application

The following source listings demonstrate how to use a REXX EXEC when a program

is running under control of the SAS/C Debugger.

The first listing, “BTREE” on page 52, is a program that generates a binary tree.
When it is run under the control of the debugger, it opens up a Termin window in which
you can type several data lines. The program inserts the lines in a binary tree and then
performs an in-order traversal, printing the data lines in sorted order.

Note:

Since the input is stdin, you could type some lines in a file and redirect

stdin to the file. However, typing the lines from the Termin window is simpler. A

The second listing, “DUMPTREE” on page 54, is a REXX EXEC that can be used to
display the nodes of the binary tree that is created by BTREE.

BTREE

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

typedef struct TREENODE ({
size_t length;

char *value;
struct TREENODE *left, *right;
} TreeNode;

static TreeNode *alloc_TreeNode(size t,

const char *);

static void insert TreeNode(TreeNode *, size_t, const char *);

static void print_Tree(TreeNode *);

Debugger PROFILEs, Configuration Files, and EXECs /A Example REXX EXEC Application 53

void main(void)
{
TreeNode *tree = NULL;
char io_buffer[258];

fgets(io_buffer, 256, stdin);
while (!feof(stdin) && !ferror(stdin)) {
size_t length = strlen(io_buffer) - 1;

if (io_buffer[length] != '\ n’) {
printf("String \ "%.40s \ " is too long.\ n", io_buffer);
exit(8);
}

if (tree == NULL)

tree = alloc_TreeNode(length, io_buffer);
else

insert TreeNode(tree, length, io_buffer);
fgets(io_buffer, 256, stdin);
}

if (ferror(stdin)) {
puts("Error reading input file.");
exit(8);
}

print_Tree(tree);
exit(0);
}

static void insert_ TreeNode(TreeNode *root, size t length,
const char *string)

{

int cmp;

cmp = memcmp(string, root->value, min(length, root->length));
if (cmp == 0)
cmp = length - root->length;

if (cmp > 0) {
if (root->left != NULL)
insert_TreeNode(root->left, length, string);
else
root->left = alloc_TreeNode(length, string);

}
else if (cmp < 0) {
if (root->right != NULL)
insert TreeNode(root->right, length, string);
else
root->right = alloc_TreeNode(length, string);
}
else

return;

54 Example REXX EXEC Application A Chapter 3

static void print_Tree(TreeNode *root)

{
if (root->right != NULL)
print_Tree(root->right);

printf("%.*s\ n", root->length, root->value);

if (root->left != NULL)
print_Tree(root->left);

}

static TreeNode *alloc_TreeNode(size t length, const char *string)

{

TreeNode *new;

char *val;

new = malloc(sizeof(TreeNode));

if (new == NULL || (val = malloc(length)) == NULL) {
puts("Can’t allocate a new node");
exit(8);
}

memcpy(val, string, length);
new->length = length;
new->value = val;

new->left = new->right = NULL;

return new;

}

DUMPTREE

/ REXX */'

trace ?r /* Use "trace o to turn off tracing */
address ’'CDEBUG’

parse arg root

if root = ’’ then do
'DBLOG DUMPTREE Error: root name not specified.’
exit 4
end

signal on error

'TRANSFER ROOT_TYPE TYPEOF' root
"TRANSFER ROOT_PTR VALUE' root
call dump root_ptr, root_type

exit 0

error:
'DBLOG DUMPTREE Error: debugger command at line’ sigl ‘failed.’
exit 4

Debugger PROFILEs, Configuration Files, and EXECs /A Example REXX EXEC Application 55

dump: procedure
parse arg root ptr, root_ type

'TRANSFER RIGHT PTR VALUE (('root_type’)’'root ptr’)->right’
if right ptr — = '0p00000000’ then
call dump right ptr, root_type

'TRANSFER LENGTH VALUE (('root_type’)’'root ptr’)->length’
'TRANSFER STRING STR (('root_type’)’'root_ ptr’)->value,’ length
'DBLOG DUMPTREE:’ string

'TRANSFER LEFT PTR VALUE (('root_type’)’'root ptr’)->left’
if left ptr — = '0p00000000’ then

call dump left ptr, root_type
return

Running the Example

You can run this example REXX EXEC application under either CMS or TSO by
performing the following steps:

1 Invoke BTREE under control of the debugger.

2 Use the break command to set a breakpoint at the entry to the print_Tree
function.

Issue a go command in order to start program execution.
Type several data lines in the Termin window.

Type a ¥ in the EOF: field of the Termin window in order to signal the end of the
file.

6 When execution stops at the print_Tree breakpoint, use the exec or $ command
to execute the DUMPTREE EXEC.

7 Single-step through the EXEC, examining the nodes of your binary tree.
When you finish examining your binary tree, type EXIT to return to the debugger.

Concepts Demonstrated

The example REXX EXEC application demonstrates how to use a recursive
debugging EXEC in order to debug a recursive program. It shows that you can use an
EXEC to create specialized debugger commands. In addition, it provides some good
examples of the transfer command.

56 Example REXX EXEC Application A Chapter 3

57

CHAPTER

Compiler Options

Introduction 57

debug Option 57
debug under TSO and OS/390 batch 58
debug under CMS 58

dbhook Option 59

dbgmacro Option 59

Jjapan Option 59
Compile Time 59
Debug Time 59

sname Option 60
sname under TSO or OS/390 Batch 60
sname under CMS 60

Introduction

Table 4.1 on page 57 summarizes compiler options that you use when you run
programs under the SAS/C Debugger. All of the listed options are implemented in the
0S/390 batch, TSO, and CMS environments.

Table 4.1 Compiler Options Useful for Debugging

Option Default Negation1

debug nodebug !

dbgmacro nodbgmacro !

dbhook nodbhook !

japan nojapan !

sname see description +

1 ! means that the option can be negated. To negate an option, precede it with no. + means that the option

cannot be negated.

debug Option

To use the full functionality of the debugger with your program, you must specify a
compiler option that generates hooks in the object code. Hooks are used in order to
transfer control to the debugger. Normally, you generate hooks by specifying the debug

58

debug under TSO and 0S/390 batch A Chapter 4

option at compilation. You can use the dbhook option to generate hooks when you are
compiling with the optimize option. Without these hooks, there are only three times in
which the debugger can gain control in a function that is compiled without debug:

o0 when a signal is raised
O at calls to or returns from the function
O when the function calls another function or returns from another function.

Library functions are not compiled with debug. Calls to some library functions
cannot be trapped.

When you use the debug option, a debugger symbol table file is produced during
compilation. See “Invoking the Debugger under TSO” on page 62 for information about
debugging under T'SO, “Invoking the Debugger under OS/390 Batch” on page 66 for
information about debugging under OS/390 batch, and “Invoking the Debugger under
CMS” on page 70 for information about debugging under CMS.

debug under TSO and 0S/390 batch

The following describes what happens at compile time and debug time when you use
the debug option under TSO and OS/390 batch.

Compile time In the compile step, the debugger symbol table file is output to a
member of a partitioned data set with the DDname SYSDBLIB, where the member
name is the same as the section name that is used by the compiler. See the discussion
of sname in “sname Option” on page 60. The data set that is allocated to SYSDBLIB
should have a record format U and a block size of 4,080 bytes.

Debug time When you run a program with the debugger under TSO or 0S/390
batch, allocate the debugger symbol table file to the DDname DBGLIB. If DBGLIB is
not allocated, then you cannot access source code or variable names. If DBGLIB is not
allocated when the debugger begins execution, the debugger prompts you for it. Then
you type the partitioned data set name of the debugger symbol table file, using
standard TSO naming conventions.

If a symbol file table does not exist for your compilation, you receive the following
message:

LSCD224 no debug file - your-section-name name not compiled with debug (-d)

Note that use of the debug option suppresses code optimizations and increases the
size of the object code for your program. Also, you cannot use the optimize option
when you use debug. After you have debugged your program, recompile it (without
specifying debug) for the following reasons:

0 Hooks that are inserted in your program by the debug option take up space.
O Loss of register variables and the need for extra stores make your program slower.
0O Suppression of optimizations makes the object code longer and slower.

debug under CMS

The symbol table file is output to a file with the same filename as the source file and
a filetype of DB.

Note: If no file is available with filetype DB when the program executes under the
debugger, you receive the following message:

LSCD224 no debug file -
your-section-name name not compiled with debug (-d)

A

Compiler Options A Debug Time 59

dbhook Option

The dbhook option generates hooks in the object code that is generated by the
compiler. When you compile a module with the debug option, the dbhook option is
implied. dbhook can be used with the optimize option in order to enable debugging of
optimized object code. The default is nodbhook.

When you are using the debugger with optimized object code that has been compiled
with the dbhook option, the source code is not displayed in the Source window and you
cannot access variables. Therefore, the print command, and other commands that are
normally used with variables, are not used when you are debugging optimized code.
However, you can issue commands such as step, goto, and runto in order to control
the execution of your program. Also, source code line numbers are displayed in the
Source window, providing an indication of your location in the code. Also, you have the
capability of viewing register values in the Register window.

The debugging of optimized code is most effective when it is used in conjunction with
the Object Module Disassembler (OMD) or your system’s debugger. The OMD is
described in the SAS/C Compiler and Library User’s Guide.

dbgmacro Option

This option causes the definitions of macros in the source file to be saved in the
debugger symbol table. Only definitions of macros that contain the NO parameter are
saved. You cannot take advantage of the debugger’s handling of program macros unless
you use this option.

japan Option

The following sections describe how the japan option affects both the symbol table
that is produced at compile time and the debugger operation at run time.

Compile Time

If japan is used, the compiler stores all identifiers in lowercase characters in the
symbol tables.

Debug Time

When you debug a module that has been compiled with the japan option, debugger
input and output is affected as follows.

Input to the debugger Commands can be issued in upper- or lowercase characters,
as can command keywords such as calls, entry, str, and so on. When a section that
is compiled with japan is debugged, the debugger converts all identifiers to lowercase
automatically before looking them up in the symbol table. Types such as struct, union,
enum, unsigned, long, int, short, char, and so on, also can be specified in uppercase.

Output from the debugger Modules that have been compiled with the japan option
can be displayed on either standard terminals or on KANJI terminals. KANJI
terminals support only uppercase English alphabet characters. In order to display
output on KANJI terminals, you must set the _UPPER environment variable to YES as

60 sname Option A Chapter 4

described in “KANJI Terminal Support under CMS” on page 71 or “KANJI Terminal
Support under TSO” on page 63.

sname Option

sname name defines the section name as name, where name can be up to seven
characters in length. sname has system-dependent aspects, as described below. The
compiler assigns the section name as follows:

0 The section name is the name that you specify with the sname option.

0 In the absence of a specific compile-time sname option, the section name is the
name of the first external function in the module, truncated to seven characters.

O If no name is provided through the sname option and there is no external function
in the module, the section name is the name of the first external variable in the
function.

O If no name is provided through the sname option, if no external function is in the
module, and if no external variable is in the module (that is, the module contains
only static data or functions), then the section name is @ISOL@.

sname under TS0 or 0S/390 Batch

The specification is
sname (name)

where name defines the section name.

The debugger uses the section name in order to locate the member in DBGLIB that
contains debugging information for that section. DBGLIB is discussed in Chapter 5,
“Running the Debugger under TSO,” on page 61, and Chapter 6, “Running the
Debugger under OS/390 Batch,” on page 65, along with the instructions for running the
compiler under each operating environment.

sname under CMS
The specification is
sname name

CMS uses the source filename as the debugger filename, but the section name is
distinct and independent of the source filename. The sname option enables you to use a
nondefault SECTION-NAME argument in debugger commands.

61

CHAPTER

Running the Debugger under TS0

Data Sets Needed by the Debugger 61
General Instructions 62

Compiling Your Source Files 62

Linking Your Programs 62

Invoking the Debugger under TSO 62
KANJI Terminal Support under TSO 63

Data Sets Needed hy the Debugger

When you run the debugger under TSO, you must allocate a data set for the
debugger symbol table file. This partitioned data set, which is created when you
compile with the debug option, contains a member for each compilation. The data set
member contains debugging information for that compilation, including the name of the
source for the compilation.

For this file, create a partitioned data set, unformatted (U), with a block size of 4080.
This data set is then associated with the DDname SYSDBLIB at compile time and the
DDname DBGLIB at run time. See “Quick Start to Using the Debugger under TSO” on
page 7 for more details on these DDnames.

When you run the debugger, it looks for the source at the same location as at compile
time (the compile-time data set). If you move your source between compile time and run
time, you must indicate the new location. You can allocate the DDname DBGSRC in
order to define a partitioned data set (PDS) as the location of the source file or files.

The debugger follows these steps in order to find the source file:

1 If the DDname DBGSRC is not defined, the debugger assumes that the source file
is in the compile-time data set.

2 If DBGSRC is defined, the debugger checks whether the source file is allocated to
a member of a partitioned data set (PDS). If it is, the debugger ignores the
member name but uses the PDS as the location of the source file.

3 The debugger checks whether the source file was a PDS member at compile time.
If it was, the debugger looks for a member with the same name. Otherwise, the
debugger looks for a member with the sname name.

4 If the source file is not found by this search, the debugger looks for it in the
compile-time data set.

The debugger also uses a data set that contains information that is displayed by the
help. If the debugger is properly installed, you do not have to allocate this data set in
order to to access the debugger help system.

In addition, the debugger uses a temporary data set in order to maintain symbol
tables. Do not be concerned about this data set unless the debugger runs out of space in

62

General Instructions A Chapter 5

it. If this happens, you receive an abend (B37, D37, or E37) system completion code at
run time. Then you must allocate more space to the file.

One way to allocate more disk space to the debugger work file in TSO or 0S/390
batch is to allocate a temporary file of sufficient size to the DDname SYSTMPDB. If
this DD statement is defined, the debugger uses this file as its work file rather than
allocating its own. The normal space allocation for the debugger work file is 50 tracks,
unless this was changed at your site when the SAS/C Debugger was installed. Contact
your SAS Installation Representative for more information.

General Instructions

This section provides specific instructions for running the SAS/C Debugger under
TSO. See“Quick Start to Using the Debugger under TSO” on page 7 for more general
information.

Compiling Your Source Files

Compile each source file that you want to debug with the debug compiler option. Use
the LLC370 CLIST in order to compile your program. If you use the recommended
naming conventions for your source data set and debugger data set (userid.pdsname.C
and userid.pdsname.DBGLIB) and you do not fully qualify your source data set when
you invoke the CLIST, the CLIST automatically associates your debugger file with the
DDname SYSDBLIB. Otherwise, you are first prompted for the name of your debugger
data set, and then the CLIST associates it with the DDname SYSDBLIB.

Linking Your Programs

Use the CLK370 CLISTin order to link your programs. For detailed instructions, see
the SAS/C Compiler and Library User’s Guide.

Linking C++ template programs requires the SYSDBLIB DD statement as well. The
default option format for SYSDBLIB is dbglib(ddn:sysdblib), and the default
filename format is ddn:sysdblib (sname).

Invoking the Debugger under TSO

Allocate data sets that are needed at run time, and call the debugger.

1 Issue a TSO ALLOCATE command for the debugger symbol file table. This is the
same data set name that is defined as DDname SYSDBLIB in the compile step.
When you invoke the debugger, this data set should have a DDname of DBGLIB.
If you do not allocate DBGLIB before you invoke the debugger, the debugger
prompts you for it. Note that if you compile with the sname option, the member
name in DBGLIB is the section name that you specify. Otherwise, the member
name is the default section name.

2 If you have moved your source in the time since you compiled the program,
associate the DDname DBGSRC with the data set that contains the source.

3 Invoke the debugger by using one of the following routines:

O Issue the TSO CALL command and pass the parameter =d with the following
command:

Running the Debugger under TSO A KANJI Terminal Support under TSO 63

call dsname '=d’

The dsname names the load module and must follow standard TSO
naming conventions.

If you need to examine portions of your program by using TSO TEST,
invoke the SAS/C Debugger under TSO TEST. Here is a sample command
that uses the same data set as the previous example:

test dsname '=d’

Note that you need to pass the option =d to TEST. Once the debugger has
been invoked, you can escape to TSO TEST by pressing the attention key
(PA1).

0 If your site has installed the SAS/C TSO command processor support, you can
call your program under TSO as a command processor with the following
commands:

program-name =d <arguments>
or
c program-name =d <arguments>

You can also use TEST with a command processor by issuing the following
command:

test dsname cp
Then TEST prompts you with ENTER COMMAND FOR CP, and you type
program-name =d <arguments>

In these examples of calling a program as a command processor, arguments
are run-time options, redirections, or values to be passed to the program.

As previously described, once the debugger has been invoked, you can
escape to TSO TEST by pressing the attention key (PA1).

4 In a line-mode session, you can save TSO output. The TSO Session Manager
enables you to copy output from your screen (TSOOUT) to a sequential data set or
a partitioned data set member using the TSO SMCOPY (Session Manager Copy)
command. For example, to copy debugger output to a member OUT5 of a
partitioned data set, type the following:

smc fs(tsoout) tds(’'userid.group.type (out5)’) asis

where TSOOUT is the TSO output stream (that is, your terminal screen), and
userid.group.type identifies a partitioned data set. OUT5 is the data set member.

For details about the SMCOPY command, see the IBM publication OS/390
V2R9.0 SC28-1969 TSO Command Reference.

KANJI Terminal Support under TSO

The SAS/C Debugger provides support for KANJI terminals or terminals that
support only uppercase English alphabet characters. If you are using the debugger with
a KANJI terminal, your program most likely was compiled with the japan option. The
japan option is described in Chapter 4, “Compiler Options,” on page 57.

At debug time you must also set the _UPPER environment variable to YES or Y
before debugging a module on a KANJI terminal. Under TSO this is accomplished with

64

KANJI Terminal Support under TSO A Chapter 5

the putenv command, which is supplied with the SAS/C Library. Issue either of the
following commands in order to set the _UPPER environment variable:

PUTENV _UPPER=YES
or
PUTENV _UPPER=YES PERM

The first putenv command sets the environment variable value for the remainder of the
current session. The second one sets it permanently so that it is in effect for the
remainder of the current session and for all future sessions.

It is possible that your site may not have installed the putenv command in a
standard system library. For a full description of the putenv command and information
about environment variables under TSO, see theSAS/C Compiler and Library User’s
Guide and the SAS/C Library Reference, Volume 1.

65

CHAPTER

Running the Debugger under 0S/
390 Batch

Data Sets Needed by the Debugger 65
General Instructions 66
Compiling Your Source Files 66
Linking Your Programs 66
Invoking the Debugger under OS/390 Batch 66

Data Sets Needed hy the Debugger

When you run the debugger under OS/390 batch, you must allocate a data set for the
debugger symbol table file. This partitioned data set, which is created as a result of
compiling with the debug option, contains a member for each compilation. The data set
member contains debugging information for that compilation, including the name of the
source for the compilation.

For this file, create a partitioned data set, unformatted (U), with a block size of 4080.
This data set is then associated with the DDname SYSDBLIB at compile time and the
DDname DBGLIB at run time. See “Quick Start to Using the Debugger under TSO” on
page 7 for more details on these DDnames.

When you run the debugger, it looks for the source at the same location as at compile
time (the compile-time data set). If you move your source between compile time and run
time, you must indicate the new location. You can allocate the DDname DBGSRC in
order to define a partitioned data set (PDS) as the location of the source file or files.

The debugger goes through the following steps in order to find the source file:

1 If the DDname DBGSRC is not defined, the debugger assumes that the source file
is in the compile-time data set.

2 If DBGSRC is defined, the debugger checks whether the source file is allocated to
a member of a PDS. If it is, the debugger ignores the member name but uses the
PDS as the location of the source file.

3 The debugger checks whether the source file was a PDS member at compile time.
If it was, the debugger looks for a member with the same name. Otherwise, the
debugger looks for a member with the sname name.

4 If the source file is not found by this search, the debugger looks for it in the
compile-time data set.

The debugger also uses a data set that contains information that is displayed by the
hypertext help system. If the debugger is properly installed, you do not have to allocate
this data set in order to access the debugger help system.

In addition the debugger uses a temporary data set in order to maintain symbol
tables. Do not be concerned about this data set unless the debugger runs out of space in
it. If this happens, you receive an abend (B37, D37, or E37) at run time. Then you
must allocate more space to the file.

66

General Instructions A Chapter 6

One way to allocate more disk space to the debugger work file in TSO or OS/390
batch is to allocate a temporary file of sufficient size to the DDname SYSTMPDB. If
this DD statement is defined, the debugger uses this file as its work file rather than
allocating its own. The normal space allocation for the debugger work file is 50 tracks,
unless this was changed at your site when the SAS/C Debugger was installed. Contact
your SAS Software Representative for C Compiler products for more information.

General Instructions

This section provides specific instructions for running the SAS/C Debugger under
0S/390 batch. See “Quick Start to Using the Debugger” on page 6 for more general
information.

Compiling Your Source Files

Use one of the JCL cataloged procedures that are provided with the SAS/C Compiler,
or write your own JCL to compile your program. If you use one of the cataloged
procedures, override the SYSDBLIB card with one of your own that specifies your
debugger data set name. If you write your own JCL, include a SYSDBLIB card for your
debugger data set name.

If you compile with the sname option, the member name in the symbol table file is
the section name that you specify. Otherwise, the member name is the default section
name. See the SAS/C Compiler and Library User’s Guide for more information about
the compiler.

Linking Your Programs

Use one of the JCL cataloged procedures that are provided with the SAS/C Compiler,
or write your own JCL in order to link your program. See the SAS/C Compiler and
Library User’s Guide

Invoking the Debugger under 0S/390 Batch

Allocate the data sets that are needed at run time, and call the debugger. When you
invoke the debugger, you need DD statements for DBGIN (the debugger input file),
DBGLIB (the debugger symbol table file), and DBGLOG (the debugger output file).
DBGLOG is provided automatically if you use one of the LLC370 cataloged procedures.
Also, if you moved your source between compile time and run time, then allocate
DDname DBGSRC to the partitioned data set (or data set concatenation) that contains
your source code library. Use JCL such as that shown in Example Code 6.1 on page 66
for running the SAS/C Debugger.

Example Code 6.1 Sample JCL for Running the Debugger under 0S/390 Batch

//JOBNAME JOB jobcard information

/] * e e
//* RUN A PROGRAM, USING THE DEBUGGER

]] * e e
// EXEC PGM=membermono ,PARM=’=D’

//STEPLIB DD DISP=SHR,DSN=your.load.library
// DD DISP=SHR,DSN=your.site.LINKLIB

Running the Debugger under OS/390 Batch /A Invoking the Debugger under 0S/390 Batch 67

//SYSTERM DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//DBGLOG DD SYSOUT=*

//DBGSRC DD DISP=SHR,DSN=your.source.library
//DBGLIB DD DISP=SHR,DSN=your.debugger.library
//DBGIN DD *

break main *

on main e print argc

go;go;go

print argc

exit

/*

In Example Code 6.1 on page 66, DBGSRC and DBGLIB are defined. Debugger
commands are provided in the JCL. Also, you can put debugger commands in a data
set, and you can allocate the data set to DBGIN, as in the following:

//DBGIN DD DISP=SHR,DSN=your.debugger.commands

The debugger writes 0S/390 batch output to DBGLOG.
Example Code 6.2 on page 67 shows JCL for compiling, linking, and running a
program under the debugger. The example uses the LC370CLG procedure.

Example Code 6.2 Sample JCL for Compiling, Linking, and Running the Debugger by Using LC370CLG

//JOBNAME JOB jobcard information

] * e
//* COMPILE, LINK, AND RUN A PROGRAM WITH DEBUGGER OPTION

] * e
//STEP1 EXEC LC370CLG,PARM.C='DEBUG’,PARM.GO='=D"'
//C.SYSIN DD DISP=SHR,DSN=your.source.library(member)
//GO.DBGIN DD DISP=SHR,DSN=your.debugger.input

/*

68 Invoking the Debugger under 08/390 Batich A Chapter 6

69

CHAPTER

Running the Debugger under
CMS

General Instructions 69

Compiling Your Source Files 69

Linking Your Programs 10

Invoking the Debugger under CMS 10
KANJI Terminal Support under CMS 11
Saving Line-Mode Output 11

General Instructions

This chapter provides specific instructions for running the SAS/C Debugger under
CMS. See also “Quick Start to Using the Debugger” on page 6 for more general
information.

Compiling Your Source Files

Compile each program module that you want to debug with the debug compiler
option.

Use the LC370 EXEC to compile your program under CMS. The LC370 EXEC is
invoked with one of the following commands:

LC370 filename <.filetype<.filemode>> <(options<)> >
This format uses a CMS fileid to specify the input source file. You must specify
filename; however, filetype and filemode are optional. The default value for the
filetype argument is C. If you specify filetype, you must join it to filename with a
period (.). If you do not specify filemode, all accessed disks are searched. If you use
filemode, you must join it to filetype with a period.

LC370 ddn:ddname <(member)> <(options<)> >
With the ddn: format, the source file is specified by a DDname that has been
defined with a CMS FILEDEF command. If member is used, it refers to a member
of an OS/390 partitioned data set (PDS).

LC370 sf:filename<filetype <dirname> <(options<)> >
The sf: format specifies a Shared File System (SFS) fileid. Like the first format,
filename is used to specify the source file, and filetype defaults to C. The SFS
directory name is specified by dirname, which defaults to a period and selects your
home directory. If you choose to specify a dirname, it can be associated with a
filemode, in which case the sf: format functions exactly like the first format
shown above. It is also possible to assign a logical name, NAMEDEF, to a
dirname. NAMEDEFSs can be used interchangeably with dirnames.

70

Linking Your Programs A Chapter 7

When you compile a program with debug, a debugger symbol table file is produced.
This file outputs to a file with the same filename as the source file and a filetype of DB.
The compiler writes its output files (LISTING, TEXT, and debugger symbol table) to
different places depending on the command that you issue in order to invoke the LC370
EXEC.

o If a CMS file id or a DDname is used to specify the input source file, the compiler
writes the output files to the input file’s minidisk if possible. If you have read-only
access to the input file’s minidisk, the output files are written to your A disk.

o If an SFS file id is used to specify the input source file, the compiler writes the
output files to the input file’s directory, if possible. If you have read-only access to
the input file’s directory, the output files are written to your home directory.

When using an SFS fileid, you must set the _DB environment variable before
you invoke the debugger. The _DB environment variable contains a directory list,
and the debugger searches it for the debugger table file. Instructions for setting
the _DB variable are provided in “Invoking the Debugger under CMS” on page 70.

You can compile your program with the sname option as well as the debug option.
The sname option is useful if you plan to specify the SECTION-NAME argument in
debugger commands and do not want to determine the default section name. “debug
Option” on page 57 and “sname Option” on page 60 describe the debug and sname
options. See the SAS/C Compiler and Library User’s Guide for additional information.

Linking Your Programs

If it is necessary, link your programs and run COOL by using the COOL EXEC. See
the SAS/C Compiler and Library User’s Guide for more information.

Invoking the Debugger under CMS
Invoke the debugger by using the following command:

program-name =d <parameters>

program-name is the filename of the MODULE that you want to debug, and
parameters are any optional values, such as redirections, run-time options, or values
that you want to pass to the program (for example, argv, argel[]).

If you are running the debugger with a VM release that supports the CMS Shared
File System (VM/SP Release 6 and later), you can use an environment variable in order
to specify a list of directories that you want to search for the debugger symbol table file.
Specify the _DB environment variable with the GLOBALV command as follows:

GLOBALV SELECT LC370 SETL _DB directory-list

directory-list is the list of directories that you want to search. You may specify either
a dirname or a NAMEDEF when listing a directory that you want to search. The
debugger searches the directories that are specified by _DB in the order in which you
list them, until it finds the debugger symbol table file. For example, the following
command instructs the debugger to search the .C.PROJ1 directory first and then the
.C.PROJ2 directory:

GLOBALV SELECT LC370 SETL _DB .C.PROJ1 .C.PROJ2

Keep in mind that the time and date stamps for the object file and the symbol table
file must match; otherwise, the debugger does not accept the symbol table. Thus, old
symbol tables for newly compiled source files (even if the source file has not changed)

Running the Debugger under CMS A Saving Line-Mode Output A

are not accepted by the debugger. If you recompile a source file that you plan to debug,
you must recompile the file with debug in order to create a new symbol table file that
corresponds to the new object file.

KANJI Terminal Support under CMS

The SAS/C Debugger supports KANJI terminals or terminals that support only
uppercase English alphabet characters. When you are using the debugger with a
KANJI terminal, your program most likely was compiled with the japan option. The
japan option is described in Chapter 4, “Compiler Options,” on page 57.

At debug time you must also set the _UPPER environment variable to YES or Y
before debugging a module on a KANJI terminal. Under CMS this is accomplished with
one of the following GLOBALV commands:

GLOBALV SELECT CENV SET _UPPER YES
or
GLOBALV SELECT CENV SETP _UPPER YES

The first GLOBALV command sets the environment variable value for the remainder of
the current session, and the second one sets it permanently so that it is in effect for the
remainder of the current session and all future sessions.

Both commands set the environment variable _UPPER in group CENYV to a value of
YES. In the first GLOBALV command, _UPPER is a STORAGE class variable, and in
the second command it is a LASTING class variable. See the SAS/C Library Reference,
Volume 1 for more information about the putenv function as well as STORAGE and
LASTING class variables.

Saving Line-Mode Output

In a line-mode session, you can save CMS debugger output (written to a line-mode
terminal) by issuing CP commands as follows:

1 Before you invoke the debugger, issue the CP SPOOL command.
CP SPOOL CONSOLE START * CLASS A

2 Invoke the debugger as described in “Invoking the Debugger under CMS” on page
70.

3 When you have finished debugging your program, issue two more CP commands.

CP SPOOL CONSOLE STOP
CP SPOOL CONSOLE CLOSE

The debugger output is sent to your virtual reader. You can access it when you want
it.

Note: You can use the debugger system command in order to issue CP commands
that save your debugger session. A

72 Saving Line-Mode Output A Chapter 7

73

CHAPTER

Using the Debugger from a
Remote System

General Instructions 713

How the Remote Debugger Works 14
Architecture 74
Start-Up Methods 15
Other Start-Up Methods 76

Debugger Environment Variables 76
Environment Variable Descriptions 76
Setting Environment Variables 17

Using the SASCDBG Debugger Interface 18
Process Invocation 18
Program I/0 Handling 19
sascdbg Syntax 19
sascdbg Arguments 80
Pathname Resolution under UNIX System Services 82
Restrictions 82

Debugging CICS Applications 83

Start-Up Scenarios 84
TSO Independent Start-Up (TCP/IP) 85
TSO Independent Start-Up (APPC) 85
CMS Independent Start-Up 85
0S/390 Batch Independent Start-Up 85
TSO automatic start-up 86
UNIX System Services Shell Automatic Start-Up 86

Using Remote Debugger User Exits 86

Calling Sequence 86

Installation Requirements 87

Dummy Exit Routines 81

Assembly Language Implementation 87

C Implementation 88

Return Codes 89

General Instructions

The remote debugger allows you to run the debugger display in one process and the
program that is being debugged in another. The processes can be run on the same
system or on different systems.

Under TSO and CMS, the remote debugger takes the form of a REXX EXEC that is
named SASCDBG. Under the 0S/390 UNIX System Services shell, it takes the form of
an executable that is named SASCDBG.

The remote debugger is intended for use in the following situations:

74

How the Remote Debugger Works A Chapter 8

0 when you want to debug a Customer Information Control System (CICS)
application

0O when you want to debug a UNIX System Services application

0 when you want to run the debugger and application on different terminals or
systems

0O when you need to debug a full-screen program

0 when you need to debug a multitasking application.

We recommend using the local debugger for most other debugging tasks. For
example, when debugging an application under TSO that is not a UNIX System
Services application, the local debugger is considerably more efficient, since it is not
subject to context-switching or communication delays.

How the Remote Debugger Works

The remote debugger is similar to the local debugger in its appearance and
operation. The main difference is in the program architecture and start-up procedure.

When you are running the remote debugger under TSO or CMS, the remote debugger
provides the same full-screen debugging capabilities as the local debugger. When you
are running the remote debugger in the UNIX System Services shell or under 0S/390
batch, the remote debugger is limited to line-mode operation only.

If you are familiar with the local debugger, you should have no problem using the
remote debugger, once you understand the environment and start-up procedures that
are described here.

Architecture

The SAS/C Debugger client/server architecture allows debugging of remote
applications. There are two components in a remote debugging session:

0 the debugger display and program control logic
O the program being debugged and an interface to the debugger (ITD).

The debugger display, along with the program control logic, act as the server. It
provides the debugger services, under user control, to the client program. Each debugger
component runs in a separate process. Depending on your operating environment, this
may mean a different address space, task, virtual machine, or UNIX System Services
process. In addition, the client program may be running on a physically different host.

As shown in Figure 8.1 on page 75, the debugger processes communicate with each
other through a communications layer, which can use either the TCP/IP or APPC
communications access method.

Using the Debugger from a Remote System /A How the Remote Debugger Works 75

Figure 8.1 Remote Debugger Architecture

CICS/ POSIX Application (or TSO/ CMS/ MVS Batch) TSO/ CMS Debugger
Program ITD Debugger display and
program control logic

S S

E|R R E

1 RIE Epl1 R

program| T ¥ | M | Comm Comm g’[| T V| sasc
D 1|0 D Layer 41, Layer bl D I |Debugger

c|T TCP/P T C

E|E or E E

S APPC S

For maximum productivity, typically the debugger display component is run in a
full-screen session under TSO or CMS. You can run the client program in any
environment that supports the SAS/C library. CICS and UNIX System Services
processes are the most typical environments. You can also run the client program in
environments such as TSO, CMS, 0S/390 APPC address spaces, or OS/390 batch.

Start-Up Methods

From the user’s point of view, the most significant difference between the local
debugger and remote debugger is the start-up procedure. To use the local debugger, you
compile your program in debug mode and include the =debug run-time option when you
run the executable. The remote debugger has two start-up methods:

O independent start-up

O automatic start-up.

With the independent start-up method, you start the debugger display process first,
by using the SASCDBG debugger interface. When the process starts, the terminal
displays the communications access method and other information that is needed by the
client program in order to connect to the debugger display. For example, under TSO,
you might see the following message after starting the remote debugger display:

SASCDBG DBCOMM (TCPIP)

SAS/C Remote Debugger can be reached via:
_DB_COMM=TCPIP connect to _DB HOST=10.1.1.1
(0s/390), at _DB_PORT=13227

Then, in a separate step, you start the program to be debugged in the normal way for
your environment, and you specify the =debug run-time option on the command line.
You can specify the connection information with environment variables before starting
the program, or you can issue the equivalent command-line options. For example, you
might call a TSO load module in the following manner:

CALL ABC.LOAD(MYPGM) ’'=D = DB_COMM=TCPIP
=_DB_HOST=0S5/390 = DB_PORT=13227"’

With the automatic start-up method, you start both processes in a single step by
including the program name in the SASCDBG command line. For example, in the
UNIX System Services shell, you might start the remote debugger with the following
command:

76

Debugger Environment Variables A Chapter 8

sascdbg -tcpip mypgm

For more information about environment variables, See “Debugger Environment
Variables” on page 76. For a complete description of SASCDBG syntax, see “Using the
SASCDBG Debugger Interface” on page 78.

CICS applications are a special case. Since CICS does not support a command line,
you must use the remote debugger’s CICS front-end transaction in order to set the
environment variables and to launch the program that is being debugged. “Debugging
CICS Applications” on page 83 describes this procedure.

Other Start-Up Methods

For applications that have unique start-up requirements or where automatic start-up
is unsupported (for example, OS/390 batch), you can supply your own program
invocation exit for starting the program that is being debugged. A program invocation
exit can be written in C or assembly language and must conform to the specifications
that are described in “Using Remote Debugger User Exits” on page 86.

Debugger Environment Variables

The SAS/C Debugger inspects one or more environment variables in order to
determine the debugger operating mode: local or remote. In a remote debugging
session, both debugger processes inspect these variables in order to determine the
communications access method and the information that is needed to in order to
establish communication between the debugger processes. The following sections
describe these environment variables and how to set them.

Environment Variable Descriptions

_bB_coMM=TCPIP | TCPIP_xxx | APPC | NONE | LOCAL
determines the debugger operating mode—Ilocal or remote—and the
communications access method for remote operation. Specifying TCPIP,
TCPIP_xxx, or APPC selects remote operation and specifies whether to use TCP/IP
or APPC as the communication method between the debugger processes. When
TCPIP_xxx is specified, it selects the TCP/IP implementation that is specified by
the setsockimp (‘ ‘xxx‘*) function call. The default value is NONE, which starts
a local debugging session. LOCAL and NONE are synonyms.

_DB_HOST=ip_addr | hostname
specifies the dotted decimal IP address or host name of the machine where the
remote debugger display process will be run or is running (TCP/IP only). During
independent start-up, this value is displayed at the terminal and is used by the
client program in order to to connect to the debugger display.

Note: The host name is translated to an IP address by a gethostbyname
function call. A

_DB_PORT=port_number
specifies the TCP/IP port number of the debugger display and control process
(TCP/IP only). During independent start-up, this value is displayed at the terminal
and is used by the client program in order to connect to the debugger display.

_DB_LU=lu_name
specifies the name of the SNA Network Logical Unit (LU) where the debugger
display process will run or is running (APPC only). The LU name consists of 1-8

Using the Debugger from a Remote System /. Debugger Environment Variables 77

nonblank uppercase letters or numbers (A-Z, 0-9). During independent start-up,
the LU name is displayed at the terminal and is used by the client program in
order to request an APPC connection to the debugger display. The default value is
8 blanks, which indicates the system base LU.

Note: The default value may or may not work, depending on the APPC
definitions for your system. A

_DB_TP=i{p_name
specifies the Transaction Program (TP) name of the debugger display process
(APPC only). This name is registered with the APPC LU and consists of 1-64
uppercase or lowercase alphabetic characters, numbers, or special characters,
except $, #, and @. During independent start-up, the TP name is displayed at the
terminal and is used by the client program in order to request an APPC
connection to the debugger display. The default value is SASCDBG.

_DB_MODE=mode_table | ISTINCLM
specifies the APPC logon mode table (APPC only). This table establishes the VTAM
session parameters for the LU partners. This variable is specified only when you
are debugging a CICS application or when you are running the client program on
a physically different system. You can obtain the mode table specification from the
VTAM APPL definition for the LU. You can also use the mode table ISTINCLM,
which is a default system-supplied mode table for VTAM. You must specify the
ISTINCLM table explicitly; DB_MODE does not default to this value.

_DB_TIMEOUT=n
specifies the timeout value, in seconds, for interprocess communications. A process
is considered nonresponsive if it fails to acknowledge a request within the specified
period. When this occures, a message is displayed at the terminal.

Setting Environment Variables

You can set the debugger environment variables at three different levels, depending
on the system:
0o CMS and TSO support environment variables with permanent, external, and
program scopes.
o CICS supports external and program scopes.
o 0S/390 batch supports program scope only.

There is no equivalent to variable scopes in the UNIX System Services shell.
However, UNIX System Services environment variables are similar to external scope
variables, because they remain defined for the duration of the shell and can be
inherited from the shell. For details about environment variable scopes, See the SAS/C
Library Reference, Volume 1.

Under TSO, you can use the SAS/C PUTENV command in order to set an
environment variable with the specified scope. Under CMS, you must use the CMS
GLOBALYV command. Under the UNIX System Services shell, use the export command.

For example, the following commands set the DB_CcOMM environment variable to
TCPIP. For TSO and CMS, the variable is defined with an external scope and remains
defined for the life of the session.

TSO environment:
PUTENV _DB_COMM=TCPIP EXTERNAL
CMS environment:

GLOBALV SELECT CENVSETS _DB COMM TCPIP

78

Using the SASCDBG Debugger Interface A Chapter 8

UNIX System Services Shell
export _DB_COMM=TCPIP

For details about the PUTENV command, see the SAS/C Compiler and Library
User’s Guide. For details about the GLOBALV command, see the IBM publication
SC24-5776 VM/ESA V2R4.0 CMS Command Reference.

Optionally, you can set the environment variables on the command line during
independent start-up of the program that is being debugged. This is equivalent to
setting the environment variables with a program scope. For example, under CMS, the
following command starts MYPGM in debug mode and sets the _DB_coMM environment
variable to TCPIP:

MYPGM =d = _DB_COMM=TCPIP

Under 0S/390 batch, you must set the environment variables in an EXEC PARM
string. There is a 100-character limit on EXEC PARM strings. If this limit presents a
problem, you can use another method for setting the environment variables. For
example, you could use argument redirection in order to obtain the environment
variables from a file. For details about argument redirection, see the SAS/C Compiler
and Library User’s Guide.

Because CICS does not enable you to specify program-scope variables on the
command line, you should use the remote debugger’s CICS front-end transaction in
order to set the environment variables for the remote debugging session. See
“Debugging CICS Applications” on page 83 for details.

Using the SASCDBG Debugger Interface

The SASCDBG debugger interface has three forms: TSO, CMS , and UNIX System
Services shell. In addition, for TSO and UNIX System Services, there is a form for the
independent start-up method and a form for the automatic start-up method. The
start-up method depends on the presence or absence of a program name. CMS supports
the independent start-up method only. The independent start-up method does not
require the program name when you run the SASCDBG debugger interface.

Process Invocation

When you start the remote debugger under TSO or the UNIX System Services shell,
you can specify the method that invokes the program that is being debugged. Your
choices are

o FORK
o OEATTACH
o ATTACH

The FORK method is similar to a UNIX fork. It is the standard method in the UNIX
System Services environment for creating a child process with its own address space.
Typically, you will use the FORK method when debugging a UNIX System Services
application under TSO.

The OEATTACH method provides an alternative for debugging UNIX System
Services applications under TSO or the UNIX System Services shell. File handling,
signal handling, and so forth, is like UNIX System Services but the address space is the
same as the debugger. Typically, you will use the OEATTACH method for improved
performance over FORK.

The ATTACH method starts the debugger processes by using the assembler ATTACH
macro. You can use the ATTACH method for debugging applications under TSO that
are not UNIX System Services applications. However, we do not recommend using this

Using the Debugger from a Remote System /A Using the SASCDBG Debugger Interface 79

method, because the local debugger is considerably more efficient than the remote
debugger in this environment.

Program 1/0 Handling

When debugging a UNIX System Services application under TSO by using the FORK
or OEATTACH method, a UNIX System Services terminal (tty) is not defined for the
program. Instead, the debugger intercepts program I/O to the standard UNIX System
Services file descriptors 0, 1, and 2, and processes it according to the specifications in
the Termin and Termout windows (if the debugger is running in full-screen mode). Any
attempt by the program to open /dev/tty fails. If you invoke the program with
OEATTACH, the program can open the file /ddn:* in order to access the TSO terminal.

You can disable program I/O intercepts with the SASCDBG DBTERM parameter.
This causes the program output to the UNIX System Services file descriptors to be
discarded. In addition, file 0 input requests receive an immediate end-of-file indicator.
For more information about DBTERM, see “sascdbg Arguments” on page 80.

sascdhg Syntax

This section describes the syntax for the SASCDBG debugger interface. The syntax
is different in each environment, but the arguments have the same meaning.

Note: You can abbreviate command keywords to four or fewer characters in most
cases: PARMS and RESTART can be abbreviated to a single character; DBCOMM,
DBPORT, and DBINVK can be abbreviated to three characters; DEBUG can be
abbreviated to two characters; and DBTERM can be abbreviated to four characters.
YES and NO values can be abbreviated to one character. All intermediate abbreviations
are accepted. DBLU and DBTP cannot be abbreviated a

TSO forms:

SASCDBG pgm_name
[PARMS(pgm_args...)]
[DBCOMM(TCPIP | TCPIP_ xxx) |
[DBPORT(port_num) |
[RESTART(YES | NO) |
[DBTERM(YES | NO) |
[DBINVK(FORK | OEATTACH | ATTACH) |
[DEBUGK(YES | NO) |

SASCDBG
[DBCOMM(TCPIP | TCPIP_ xxx | APPC)]
[DBPORT(port_num) |
[RESTART(YES | NO) |
[DBLU(lu_name)]
[DBTP(p_name) |

CMS form:

SASCDBG (TCPIP | TCPIP_ xxx
[PORT=port_num]
[RESTART])

80 Using the SASCDBG Debugger Interface A Chapter 8

UNIX System Services Shell forms:

sascdbg
[-tepip | -tepip_ xxx |
[-port=port_num]
[nod]
[-fork | -oeattach]
pgm_name [pgm_args... |

sascdbg
[-tepip | -tepip_ xxx |
[-port= port_num]

sascdhg Arguments
No arguments except pgm_name and pgm_args are case sensitive.

FORK
requests program invocation with a FORK function call and then an EXEC of the
program to be debugged in the child process of the FORK. This is the default
program invocation method when you debug a UNIX System Services application
under T'SO or the UNIX System Services shell.

OEATTACH
requests program invocation with an OEATTACH function call for improved
performance over the FORK method when you debug a UNIX System Services
application under TSO or the UNIX System Services shell.

ATTACH
requests program invocation with the 0S/390 ATTACH macro. You can use this
option to debug applications under TSO that are not UNIX System Services
applications. However, because the local debugger does not have to communicate
over a network to debug and is therefore more efficient, using the local debugger
instead of the ATTACH option is recommended.

DEBUG
determines whether the =debug run-time option is added during program
invocation; the default is YES. Normally, the =debug option must be passed by
SASCDBG in order to cause the client program to invoke the debugger interface.
However, if the program uses the nlibopt external variable in order to suppress
run-time option handling, =debug is interpreted as a program argument. If your
program sets nlibopt, it must initialize the library external variable options
to specify _DEBUG in order to allow the program to be debugged. For more
information about the nlibopt and _options variables, see the SAS/C Compiler
and Library User’s Guide.

NOD
suppresses insertion of the =debug run-time option during program invocation.
-nod is the equivalent of DEBUG(NO) for the UNIX System Services.

DBTERM
determines whether the debugger intercepts terminal I/O when you are debugging
a UNIX System Services application under TSO by using the FORK or
OEATTACH method; the default is YES.

Note: This option has no effect when you debug a program that is not a UNIX
System Services program. Terminal I/O is controlled by the initial configuration
file settings and the I/O window intercept settings of the debugger’s terminal. A

Using the Debugger from a Remote System /A Using the SASCDBG Debugger Interface 81

TCPIP

TCPIP_xxx

APPC
determines the communication method between the debugger processes, either
TCP/IP or APPC. For SAS/C Releases prior to Release 7.00, when TCPIP is
specified, the debugger uses your site’s default TCP/IP implementation of
nonintegrated sockets. For SAS/C Release Release 7.00, when TCPIP is specified,
the debugger uses your site’s default TCP/IP implementation of integrated sockets.
When TCPIP_xxx is specified, the debugger uses the TCP/IP implementation that
is specified by the setsockimp (‘ ‘xxx‘ ‘) function call. For example, TCPIP_OE
requests UNIX System Services integrated sockets. You can specify any TCP/IP
implementation that is installed and available on your system. For more
information, see the description of the setsockimp function in SAS/C Library
Reference, Volume 2.

Specifying the communications access method on the command line sets the
program scope _DB_COMM environment variable. If this variable is already defined
with an external or permanent scope, the command line specification takes
precedence. If you do not specify the communications access method, the
_DB_COMM environment variable is used.

RESTART

determines whether the debugger display process is restarted after program
termination or loss of communication with the client program (TSO and CMS
only). The default is NO. Use this option with the independent start-up method in
the event that you need to restart the debugger processes, for example, when you
debug a pseudo-conversational CICS transaction. See “Debugging CICS
Applications” on page 83 for details. Also see the port_num option.

If you specify the RESTART option, you must use attention (PAl) on TSO or the
HX command on CMS in order to terminate SASCDBG. Otherwise, it continues to
try to reconnect with the client program.

Note: This option does not preserve breakpoints or other debugger session
parameters. It recreates the debugger’s entire C environment and reloads the
debugger load modules. A

port_num

specifies the TCP/IP port number that is used by the remote debugger (TCP/IP
communications access method only). If the debugger cannot use the specified port,
for example, because it is in use by another process, it displays a warning message
and allows the system to assign a port number. Port numbers can be in the range
of 0—65535. If port_num is 0, the system assigns a port number from 1 to 65535.

If the operating environment supports external scope environment variables,
the debugger saves the port number from the current session in an external scope
_DB_PORT variable. (See the note below for information about environments that
do not support external scope variables.) By default, the debugger tries to reuse
the port in the DB_PORT variable if you do not set port_num explicitly. This
behavior is especially useful when you specify the RESTART option, for example,
when debugging a pseudo-conversational CICS transaction. This allows the client
program to automatically reestablish communication with the debugger on
subsequent invocations.

The system always assigns the port number if this is the first debugging session
since logging in, if the DB _PORT environment variable is cleared, or if the
debugger is unable to reuse the previous port number.

Note: Environments such as 0OS/390 batch and the UNIX System Services
shell do not support external class environment variables. In these environments,

82 Using the SASCDBG Debugger Interface A Chapter 8

the debugger uses the specified port_num for the current debugging session, but
does not retain it for future sessions. A

lu_name

specifies the name of the APPC Logical Unit (LU) where the debugger display is
run (APPC communications access method only). The LU name consists of 1-8
nonblank uppercase letters or numbers (A-Z, 0-9). During independent start-up,
the LU name is displayed at the terminal and is used by the client program in
order to request an APPC connection to the debugger display. The default value is
8 blanks, which indicates the system base LU.

Note: The default value may or may not work, depending on the APPC
definitions for your system. A

tp_name

specifies the name of the APPC Transaction Program (TP) that is registered with
the APPC LU (APPC communications access method only). The TP name consists
of 1-64 upper- or lowercase alphabetic characters, numbers, or special characters,
except $, #, and @. During independent start-up, the TP name is displayed at the
terminal and is used by the client program in order to request an APPC
connection to the debugger display. The default value is SASCDBG.

pgsm_name

specifies the name of the program that is debugged. This program automatically
connects with the remote debugger display. Under T'SO, specify the program name
as the first argument. Under the UNIX System Services shell, specify the program
name last. For details about how the debugger locates programs in the UNIX
System Services hierarchical file system (HFS), see “Pathname Resolution under
UNIX System Services” on page 82.

pgm_args

specifies one or more run-time arguments that are passed to the program that is
debugged. The remote debugger adds the =debug run-time option automatically
unless you specify -nod (UNIX System Services) or DEBUG (NO) (TSO/CMS).

Pathname Resolution under UNIX System Services

When you are debugging a UNIX System Services program, pgm_name takes the form
of a pathname in the UNIX System Services hierarchical file system. If pgm_name does
not begin with a / (slash), the debugger searches for the program in the following way:

1

If you run the debugger display in the UNIX System Services shell, it first checks
your current working directory.

2 Otherwise, it checks your home directory.

3 Finally, it checks the directories on your search path, as defined in the PATH

environment variable.

If pgm_name begins with a / (an absolute pathname), the debugger looks for the
program at the specified pathname.

Restrictions

The remote debugger has the following restrictions on its use and operation:

0 When debugging a UNIX System Services program under TSO, you must use the

TCP/IP communications access method if you launch the program with ATTACH
or OEATTACH.

0 Under CMS and UNIX System Services, the debugger display component supports

only the TCP/IP communications access method.

Using the Debugger from a Remote System /A Dehbugging CICS Applications 83

0 When using the ATTACH method of program invocation, the debugger
environment variables are appended to the program run-time arguments in the
form of =name=value. This may cause problems for programs that are compiled
with the nlibopts variable, because the environment variables are interpreted
as program arguments and are not set as environment variables.

Debugging CICS Applications

CICS does not support a command line. When you start a CICS program, you specify
only the program’s transaction name; you cannot specify run-time options, environment
variables, or command parameters. Since the remote debugger uses environment
variables to exchange information with the client program, you must use the remote
debugger’s CICS front-end transaction to set these variables and launch the program
that is debugged.

To use the remote debugger with a CICS application, follow these steps:

1 Start the remote debugger on the system where you do your development, for
example:

SASCDBG DBCOMM (TCPIP)

SAS/C Remote Debugger can be reached via:
_DB_COMM=TCPIP connect to _DB HOST=10.1.1.1
(0s/390), at _DB PORT=13227

2 On your CICS system, start the remote debugger’s front-end transaction. The
transaction name, as distributed with the SAS/C product, is DBUG. Its format is

DBUG trans_name

Where trans_name is the 4-character transaction name that is associated with the
program to be debugged. For example:

DBUG ctim

Note: Your CICS systems administrator can change the name of the DBUG
transaction, if desired. Check with your administrator if you have any questions
about the name of the transaction at your site. /A

Figure 8.2 on page 84 shows the screen that is displayed by the DBUG transaction. You
can tab from field to field and specify values for the debugger environment variables.
You can also specify run-time options; the =debug option is specified by default.

84

Start-Up Scenarios A Chapter 8

Figure 8.2 DBUG Transaction Screen

S&5/C Debugger Front End
Transaction ID: _ Program name: __
run time arguments ===> =debug
Debugger Enviromment Variables
_db_comm ===> {commanication access method: TCPIF | APEC)

TCP/IP only variables

_db_host ===> [dotted decimal IP address)
_dh port ===> [port number of debugger display process)

APPC only variables

_db Iu ===> (SNA LU name where debugger is running)
_db_tp ===» (Transaction Program name of the debugger)
_db_mode === (logon mode table name)

Once you type the appropriate values, press the ENTER key to in order start your
application. The DBUG transaction verifies that the named transaction exists, that the
specified program name is associated with the transaction, and that the program can be
loaded into memory. If any of these checks fail, the DBUG transaction displays an error
message and exits. Otherwise, it starts the application, and it produces the remote
debugger display with your application’s source code in the Source window.

If you specify the wrong value for any debugger environment variable (for example,
the wrong TCP/IP port number), the application exits with an ABEND 1219 error
message. You can rerun the DBUG transaction and correct the value without restarting
the debugger. The DBUG transaction saves the latest value of each field in an external
scope environment variable. You see this value when the transaction screen reappears.
Replace the value with a new one and press ENTER when you are finished.

If you debug a pseudo-conversational CICS application, you start the remote debugger
with the RESTART parameter under TSO or CMS. The RESTART parameter causes
the debugger to restart with the same connection parameters. If you use the TCP/IP
communications access method, do not set the DBPORT parameter to 0, since this forces
the system to select a new port number when the debugger is restarted. If this occurs,
the CICS application terminates with an ABEND 1219 error message. Otherwise, your
pseudo-conversational program reestablishes communication with the debugger
automatically, and you can continue to debug your program without interruption.

If the debugger cannot reuse the previous TCP/IP port, for example, because it is in
use by another process, it displays its normal connection message, and the CICS
application terminates with an ABEND 1219 error message.

Note: CICS applications cannot communicate with the remote debugger over TCP/
IP until you start TCP/IP for your CICS region. For IBM TCP/IP, if the start-up
transaction has not been executed, your CICS application terminates with an ABEND
AEY9 error message. The CICS administrator can start IBM TCP/IP with the IBM
CSKE transaction. Other TCP/IP vendors may have different start-up requirements
and procedures. A

Start-Up Scenarios

The following examples show how you can start the remote debugger in different
environments.

Using the Debugger from a Remote System /A Start-Up Scenarios 85

TS0 Independent Start-Up (TCP/IP)

TSO session 1:
SASCDBG DBCOMM (TCPIP)

TSO session 2:
CALL XYZ.LOAD(MYPGM) ‘=D = DB_COMM=TCPIP
=_DB_HOST=0S5/390 =_DB_PORT=1234°'

Start the remote debugger by using the TCP/IP communications access method.
Then, by using the information that is displayed at debugger start-up, call the program
load module MYPGM in debug mode. On the command line, specify the environment
variables for the communications access method.

TS0 Independent Start-Up (APPC)

TSO session 1:
SASCDBG DBCOMM (APPC) DBLU(C02SESS) DBTP (SASCDBG)

TSO session 2:
CALL XYZ.LOAD(MYPGM) ’=D = DB COMM=APPC
= DB _LU=C02SESS = DB _TP=SASCDBG’

Start the remote debugger by using the APPC communications access method. On
the command line, specify the Logical Unit name and Transaction Program name (this
is required if the corresponding environment variables are undefined). Then call the
program load module MYPGM in debug mode. On the command line, specify the APPC
communications access method environment variables.

Note: The DB_TP environment variable defaults to SASCDBG and is shown in this
example for illustration only. A

CMS Independent Start-Up

CMS session 1:
SASCDBG (TCPIP

CMS session 2:
MYPGM =D =DB_COMM=TCPIP = DB HOST=VM = DB PORT=1234

Start the remote debugger by using the TCP/IP communications access method.
Then, by using the information displayed at debugger start-up, run MYPGM in debug
mode. On the command line, specify the environment variables for the communications
access method.

0S/390 Batch Independent Start-Up

TSO session:
SASCDBG DBCOMM (TCPIP)

0S/390 batch JCL:
//STEP1 EXEC PGM=MYPGM,
// PARM='=D = DB_COMM=TCPIP =_DB_HOST=0S/390= DB_PORT=1234‘'
//STEPLIB DD DSN=pgm.load,DISP=SHR
//CTRANS DD DSN=SASC.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A

Start the remote debugger by using the TCP/IP communications access method.
Then submit a batch job that runs MYPGM in debug mode. In a PARM string, specify
the values of the environment variables for the communications access method.

86

Using Remote Debugger User Exits A Chapter 8

TS0 automatic start-up

SASCDBG mypgm DBCOMM(TCPIP) DBINVK (FORK)

Start the remote debugger by using the TCP/IP communications access method.
Debug the UNIX System Services program MYPGM by using the FORK method.

Note: The program name is case sensitive and is the first argument in the command
line. A

UNIX System Services Shell Automatic Start-Up

sascdbg -tcpip -fork /devel/r6/mypgm

Start the remote debugger by using the TCP/IP communications access method.
Debug the program /dev/r6/mypgm by using the FORK method.

Note: The FORK method is the default for invoking a program under the UNIX
System Services shell and is included in this example for illustration only. A

Using Remote Debugger User Exits

The remote debugger supports the use of program invocation exits for starting
applications with unique start-up requirements or where automatic start-up is
unsupported, such as CMS, CICS, or OS/390 batch. A program invocation exit can be
written in C or assembly language. It can perform any processing that is necessary in
order to start the program that is being debugged. For example, you might use a
program invocation exit to

O build and submit JCL
O initiate a CICS transaction
o AUTOLOG a CMS session.

The program invocation exit can use the full SAS/C library and any other operating
environment services that are available to normal (unauthorized) SAS/C environments.

Calling Sequence

The remote debugger calls the program invocation exit just before it would normally
wait for a TCP/IP or APPC connection request from the program to be debugged. When
the exit finishes its processing and returns, the debugger waits for the connection
request from the remote program until it continues to initialize.

The program invocation exit is called once per remote debugger session. It is not
called at all when the debugger is running in local mode (for example, when the
_DB_COMM environment variable equals LOCAL or NONE).

The remote debugger supports the input and output exits L§UDBIN and
L$UDBOUT that are described in Appendix 3, “Debugger I/O Exit Routines,” on page
301. The program invocation exit is independent of the I/O exits. The L§UDBOUT
output exit is called for initialization before the program invocation exit is called. The
program invocation exit and debugger output exit can exchange information by using
the CRAB user words. This allows the output exit to clean up resources that are
allocated by the invocation exit during the output exit termination call.

Using the Debugger from a Remote System /A Assembly Language Implementation 87

Installation Requirements

The program invocation exit takes the form of a separate load module that is named
L$UDBNVK. Under CMS, this load module must be placed in the LCUSER LOADLIB,
which is created by the user. Under OS/390, it may be placed in the transient library
data set sasc. LINKLIB, or in a separate library that is concatenated ahead of the
transient library to an appropriate DDname (STEPLIB or CTRANS).

Dummy Exit Routines

As installed under OS/390, the SAS/C run-time library contains a dummy
L$UDBNVK exit routine in sasc.LINKLIB. This routine does nothing; it only returns
control to the caller. You can replace this load module with your own exit or delete it. If
you delete the dummy exit, your operating environment might produce error messages
when the remote debugger is invoked (for example, OS/390 message CSV003I), but the
debugger starts up normally.

Note: There is no dummy exit for CMS. a

Assembly Language Implementation

The program invocation exit is invoked under standard IBM linkage conventions.
Any registers that are used by the routine should be saved (the standard save area that
is addressed by register 13 can be used for this) and restored on exit. Write the exit so
that it can be issued in AMODE 31; however, it always starts in the same addressing
mode as the remote debugger’s first load module.

When the program invocation exit receives control, register 1 points to the following
parameter block.

Table 8.1 Program Exit Parameter Block

Offset Description

0 Address of the null-terminated string for the _DB_COMM environment variable
value. This value indicates the debugger communications access method and is
("APPC", "TCPIP",) or the "TCPIP_xxx" variant.

4 Address of the null-terminated string for the _DB_HOST (TCP/IP) or _DB_LU
(APPC) environment variable value.

8 Address of the null-terminated string for the DB_PORT (TCP/IP) or _DB_TP
(APPC) environment variable value.

12 Address of the area that is mapped by C struct RDBG_RUNOPTS or assembler
RDBGOPTS DSECT.

16 Address of the value from CRABUSR1 (CRAB user word 1).

20 Address of the value from CRABUSR2 (CRAB user word 2).

24 Address of the value from CRABUSR3 (CRAB user word 3).

28 Address of the value from CRABTUSR (CRAB user word 4).

Offset 12 addresses the area that is mapped by the RDBGOPTS DSECT, as shown in
Example Code 8.1 on page 88. This DSECT is created from the run-time options that

88 C Implementation A Chapter 8

are specified when SASCDBG is invoked. This DSECT provides access to the name of
the program to be debugged, its run-time arguments, and the program invocation
method (FORK, OEATTACH, ATTACH, manual).

Example Code 8.1 RDBGOPTS DSECT Mapping

SPACE 3
RDBGOPTS DSECT
RDBBPNAM DS A Address of program name to be invoked
RDBGARGS DS A Address of runtime arguments passed to program
*
DS XL2 --Reserved
RDBGOPTF DS XL1 Option flag
RDBGSUPD EQU X'01l”’ Suppress automatic =D runtime arg insertion
RDBGDBTN EQU Xr02' Intercept UNIX System Services Terminal I/O
*
RDBGINVM DS XL1 Request invocation method for program
RDBGMANU EQU X'00’ Manual invocation
RDBGFORK EQU X’'01 Via UNIX System Services fork and exec services
RDBGOEAT EQU X'02' Via UNIX System Services/TSO OEATTACH service
RDBGATTA EQU X'03’ Via 0S/390 ATTACH
*
DS 0D

RDBGOLEN EQU *-RDBGOPTS Length of DSECT

Offsets 16, 20, 24, and 28 address CRAB user words 1-4, respectively. The CRAB
user words are the remote debugger’s CRAB, since the program that is being debugged
has not yet received control. You can modify the CRAB user words by replacing the
values in the parameter block. When the program invocation exit returns, the new
values are copied into the debugger’s CRAB.

You can also modify other information in the RDBGOPTS DSECT to affect later
debugger invocation processing.

The program invocation exit must return one of the values that are described in
“Return Codes” on page 89. These return codes are used by exit routines that are
written in both assembly language and C.

C Implementation

You can implement the program invocation exit as a C function by using the
following syntax:

#include <rdbgnvk.h>
int _dynamn (char *rdbg comm method,
char *rdbg_host 1u,
char *rdbg port_tp,
struct RDBG_RUNOPTS *rdbg_runopts,
void *crabusrl_copy,
void *crabusr2_copy,
void *crabusr3_copy,
void *crabtusr_copy)

/* exit code */

All arguments are input arguments and are passed by the remote debugger when it
calls the exit. The arguments correspond to the information in Table 8.1 on page 87.

The RDBGOPTS DSECT maps the C struct RDBG RUNOPTS. This structure is created

Using the Debugger from a Remote System /A Return Codes

89

from the run-time options that are specified when SASCDBG is invoked. This structure

provides access to the name of the program that is debugged, its run-time arguments,

and the program invocation method (FORK, OEATTACH, ATTACH, manual).

You can modify the information in the struct RDBG_RUNOPTS to affect later
debugger invocation processing. You can also modify the copies of the CRAB user
words. When the program invocation exit returns, the new values are copied into the

debugger’s CRAB.

The header file {<rdbgnvk.h>}, shown in Example Code 8.2 on page 89, is stored in

sasc. MACLIBC. The header file defines the prototype for the program invocation exit

and the RDBG_RUNOPTS structure. It also defines the return code constants

RDBG_CONTINUE_RC, RDBG_SUPRESS_MSG_RC, RDBG_SUPRESS_DBGINVOKE_RC, and
RDBG_FAIL RC. The program invocation exit must return one of these values, as

described in “Return Codes” on page 89.

Example Code 8.2 Remote Debugger Header File

#ifndef _RDBGNVK
#define _RDBGNVK
/*

* This header file defines the prototypes and options struct passed

* to the LSUDBNVK remote debugger user exit which can be used to

* start the application to be debugged by the remote debugger.

*/

/* Prototype for exit function */

int 1$udbnvk(char
char
void
void

*rdbg_comm method, char *rdbg_host lu,
*rdbg_port_tp, struct RDBG_RUNOPTS *rdbg_runopts,
*crabusrl, void *crabusr2, void *crabusr3,
*crabtusr);

/* Define return codes for l1l$Sudbnvk */
#define RDBG_CONTINUE_RC 0

#define RDBG_SUPRESS_MSG_RC 4

#define RDBG_SUPRESS_DBGINVOKE_RC 8
#define RDBG_FAIL RC 12

/* Define options

struct passed to 1l$udbnvk exit */

struct RDBG_RUNOPTS

{

char *pgm name;
char **pgm args;
char optresv[2];
char optflag;

/* Name of program to be invoked
/* Runtime arguments to be passed to program

#define RDBG_SUPPRESS D 1 /* Suppress auto. =D option insertion
#define RDBG_DBTERM NO 2 /* Turn off Posix Terminal I/O Intercepts
char invoke method; /* Requested invocation method for program
#define RDBG_MANUAL 0

#define RDBG_FORK

1

#define RDBG_OEATTACH 2
#define RDBG_ATTACH 3

r

#endif

*/
*/

*/
*/
*/

Return Codes

The program invocation exit must return one of the following values:

90 Return Codes A Chapter 8

Table 8.2 Return Codes

Value Meaning

0 Continue with debugger normal processing and program invocation, as defined by RDBGOPTS
DSECT or C struct RDBG_RUNOPTS. If the program invocation method is manual, issue a
message that contains process connection information.

4 Continue with debugger normal processing and program invocation, as defined by RDBGOPTS
DSECT or C struct RDBG_RUNOPTS, but suppress the process connection information
message.

8 Continue with debugger normal processing, but suppress debugger program invocation

processing and the connection information message.

12 Terminate debugger connection processing and remote debugger initialization, and issue a
failure message.

Typically, return codes 0 and 12 are used as the standard for success and failure
status. Return codes 4 and 8 are intended for special purposes. For example, the exit
might return the value 4 after starting a program under OS/390 batch. It might return
the value 8 if your site uses a custom program invocation method.

91

CHAPTER

Using the Debugger in a
Cross-Development Environment

Introduction 91
Using the SAS/C Debugger in a Cross-Development Environment 92
Using the Debugger’s set Command 93
Locating the Debugger File 93
Locating Source Files 94
Locating Include Files 95
Debugger Performance Considerations 95

Introduction

The SAS/C Debugger enables you to debug programs in a cross-development
environment. To debug a load module that was compiled with the SAS/C or C++
cross-platform compiler, you run the program with the =debug run-time option, just like
any other SAS/C or C++ load module.

The debugger provides access to information from several different types of files that
may be resident on either the UNIX or Windows host or the target mainframe, including

O system-include files
user-include files
source files

o
o
O alternate source files
o

debugger files

In a cross-development environment, the files that are used by the debugger, with
the exception of the load module file, may reside on the host workstation. In order for
the debugger to access files that reside on the workstation, a distributed file system
must establish a client/server relationship between the target mainframe and the host
workstation. The Network File System (NFS) is the distributed file system that is used
in the SAS/C cross-development environment. For more information, see Appendix 4,
“Installing and Administering the NFS Client,” on page 309. Using NFS and running
on the mainframe under OS/390 or CMS, the debugger has direct access to the source,
include, and debugger files that reside on the host workstation.

If the debugger’s default file-searching mechanism does not meet your needs, you can
change or augment the search mechanism with the debugger’s set search command.
The set search command is used to specify filename templates. Filename templates
are used to specify the identity and location of the source, include, or debugger files that
are associated with the load module that is being debugged. Multiple filename
templates can be defined for each type of file. As a result, the debugger can search for a
file by more than one name or in multiple locations. Each template is saved in a search
list, and each search list is associated with a specific type of file.

Using the SAS/C Debugger in a Cross-Development Environment A Chapter 9

Filename templates are character strings that are similar to the patterns in a printf
statement. Each filename template may contain conversion specifiers and characters. A
conversion specifier is a character or a string that is preceded by a percent character.
The conversion specifier is either replaced by its associated string or specifies the
format of the conversion specifier that follows it. The resulting string is used as the
name of the file to be opened. If a file with the resulting name cannot be opened, the
next filename template in the search list is processed until either a file is opened or
there are no more filename templates in the search list for that type of file.

This powerful technique enables you to direct the debugger to files that have moved
or even changed names or file systems. This chapter explains how to use the set
search and set cache commands in order to define filename templates and to
establish search lists.

Figure 9.1 on page 92 illustrates the relationship between the files that are used by
the SAS/C Debugger in a cross-development environment.

Figure 9.1 Debugging in a Cross-Development Environment

HOST (NFS Server)

s u Al N

ystem ser ternate ’ .
Include Include Slc:)illjége Source | (?:?Ijggt X
Files Files Files AN L

~I_ -
_________ 1
NFS | (file server) FTP ! (file transfer)

Load
r ______
SAS/C Debugge Module
1
1
________________ U |
! 1 1 1 1
/—I—\ /—7—\ /—7—\ /—7—\ /—7—\
’ \\ ’ \\ ’ \\ ,AI \\ ’ \\
/ System ¢ User ’ Alternate /
' Source ! ' Debugger!
! Include : 1 Include | ! Fiies ! | Source | | Filgg i
‘. Files ,» Y Files ,* ‘{ L,/ M Files ,» Y L

~So_- ~So_- ~So_- ~So_- S__ -

TARGET (MAINFRAME-NFS Client)

Using the SAS/C Debugger in a Cross-Development Environment

To debug a program in the cross-development environment, perform the following
steps:

1 Compile the program on the host workstation. Specify the -Kdebug option to
specify generation of a debugger file.
2 Create a load module for your program that resides on the target mainframe.

3 Use the NFSLOGIN command in order to access the NFS server network from the
mainframe. See “Logging on to the NFS Network” on page 321 for more
information.

4 Mount the workstation’s file system from your mainframe client by using one of
the methods described in “Accessing Remote File Systems” on page 322.

Using the Debugger in a Cross-Development Environment /A Locating the Debugger File 93

5 Invoke the debugger. Specify set search commands in the debugger PROFILE in
order to specify search lists for the source, include, and debugger files.

Note: The debugger uses standard fopen calls in order to access these files. If
you encounter difficulty when accessing files, the problem may be caused by your
remote file mount and an improper match between the mount point and the
templates in the debugger’s search lists. For assistance in solving such a problem,
enable special tracing by specifying the _SASC_NFS_VERBOSE environment
variable. For more information see Appendix 4, “Installing and Administering the
NFS Client,” on page 309 A

If you do not use the set search command in order to specify search lists, the
debugger resorts to its default search mechanism and uses the filenames that are
contained in the object and debugger files in order to locate files. By default, the
debugger uses the path: filename style prefix with workstation filenames. The path:
prefix is described in Appendix 4, “Installing and Administering the NFS Client,” on
page 309.

Using the Debugger’s set Command

The SAS/C Debugger’s set command provides two subcommands: set search and
set cache. The set search command specifies a search list that consists of one or
more filename templates. Each filename template specifies a location that is used by
the debugger to search for source, include, or debugger files that are associated with the
load module that is being debugged. The debugger traverses the search list, looking for
the file that is specified by each filename template.

The set cache command is used in cross-development environments that support a
distributed file system, primarily to improve the debugger’s performance when
accessing debugger files. The benefit is especially noticeable when debugger files are
large. This command uses a filename template that specifies the primary location to
save files and search for files. In a typical cross-debugging session, this location would
be on the mainframe.

Note: Frequently, file access problems are caused by an improper mount to the
remote file system. If you encounter difficulty with either the set search or the set
cache subcommands, see “Accessing Remote File Systems” on page 322. A

Locating the Debugger File

When load modules are generated from objects that are compiled by the SAS/C
compiler, the load modules contain filename information for the debugger file. The
format of this filename information depends on the host that performs the compilation
and the file system in which the debugger file is created. When debugging a program
that was compiled by the SAS/C Cross-Platform Compiler, the debugger looks for the
debugger file in the following locations, in the order listed:

1 any cache location, as specified by the set cache command

2 any location in the debug search list, as specified by the set search debug
command

3 the original filename that was used by the compiler to open the file when it was
created

4 the filename that was used by the compiler to open the file when it was created
with the SAS/C filename style prefix path:.

94

Locating Source Files A Chapter 9

The debugger first checks to see if a cache location has been specified. The set
cache command uses a filename template in order to specify a location for the debugger
file. For example, the following form of the set cache command could be used to
specify a cache location in the CMS file system:

"SET CACHE DEBUG = "%sname dbg370"’

If the debugger file is found in the cache location, that file is opened. If the debugger
file is not found in the cache location or the module has been recompiled since the
debugger file in the cache location was last copied, the debugger continues to search for
the file by performing the remaining steps in the search order. If the debugger file is
found, it is then copied to the specified cache location and the new cache file is used.

If no cache location was specified or a debugger file is not found in the cache location,
the debugger attempts to find the debugger file by using any filename templates that
are defined in the debug search list. Under OS/390, the debugger’s default search list
for debugger files is equivalent to the following command:

set search debug = "//ddn:DBGLIB(%sname)"

Note: You can create an empty debug search list with a set search debug
command of the form: set search debug = "". A

Under CMS, no default templates are defined for the debug search list, so you can
define one or more templates. The following form of the set search command can be
used in order to specify a new search list for the debugger file:

"SET SEARCH DEBUG = "cms: %$sname db *"'

If the debugger file is not found by using the debug search list, then the debugger
attempts to open a file with the name that the compiler used when it created the file.

Finally, the debugger attempts to open a file with the name that the compiler used
when it created the file, together with the SAS/C filename style prefix path:.

Locating Source Files

The debugger file contains filename information for the source and alternate source
files that are used to compile your program. The debugger looks for the source file in
the following locations in the order listed:

1 any location in the source search list, as specified by the set search source
command

2 the original filename that the compiler used to open the file when it was created

3 the filename that the compiler used to open the file when it was created with the
SAS/C filename style prefix path:

Under 0S/390, the debugger’s default search list for source files is equivalent to the
following command:

set search source = "//ddn:DBGSRC(%sname)"

If a file is not found by using one of the templates in the source search list, the
debugger attempts to open a file with the name that the compiler used for the file.
Finally, the debugger attempts to open a file with the name that the compiler used
when it created the file, together with the SAS/C filename style prefix path:.

The source search list is not checked for source files that have been altered by a
#line preprocessor statement that specify a filename. Instead, the separate altsource
search list is used. See Table 14.7 on page 255 for more information on altsource.

Using the Debugger in a Cross-Development Environment /A Debugger Performance Considerations 95

You can use the following forms of the set search command in order to specify a
new source search list:

set search source = "templatel" "template2"...

set search altsource = "templatel" "template2"...

Locating Include Files

The debugger file also contains filename information for the system-include and
user-include files that are used to compile your program. The different types of include
files each have a separate search list. The debugger looks for an include file in the
following locations, in the order listed:

1 Any location in the associated search list, as specified by the set search
systeminclude command or the set search userinclude command.

2 The original filename that the compiler used to open the file when it was created.
3 The filename that the compiler used to open the file when it was created, together
with the SAS/C filename style prefix path:.

You can use the following forms of the set search command in order to specify a
new search list:

set search systeminclude =

"templatel" "template2"...

set search userinclude =
"templatel" "template2"...

Debugger Performance Considerations

A distributed file system makes it possible to develop your applications in a
cross-development environment. In a distributed file system, programs can read or write
files directly in a file system on a remote machine. The Network File System (NFS)
client support that is provided by the SAS/C Connectivity Support Library enables the
SAS/C Debugger to access files that do not reside on the mainframe at all. Additional
information can be found in Appendix 5, “Using the NFS Client,” on page 321.

The main performance issue to consider when you debug in a cross-development
environment is time. A debugger that runs on the mainframe can use a considerable
amount of time to access files that reside on the host workstation. In general, you can
improve performance by reducing the number of workstation files that are accessed by
the debugger.

One method of improving debugger performance is to use the set search command
in order to direct the debugger to mainframe files. For example, when you develop in a
cross-development environment, it is likely that identical copies of the system-include
files reside on both the host workstation and the target mainframe. Use the set
search systeminclude command in order to direct the debugger to the system-include
files that are located on the target mainframe.

Another way to improve performance is to specify a debugger Source Window buffer
that is large enough to hold the entire source file. This allows the debugger to keep the
entire source file in mainframe memory for the time that the compilation is being
debugged. Switching compilations causes the file to be flushed. As a guideline, the
amount of memory that is needed to hold one source line is equal to the length of the
line, after stripping trailing blanks, plus three bytes. For more information about

96 Debugger Performance Considerations A Chapter 9

debugger window buffers, see “Config Window” on page 157. For information about the
window memory command, see “window” on page 280.

It may be advantageous to use a file transfer mechanism, such as FTP, to copy some
of the source, include, and debugger files to the target mainframe. For example, your
system may not have a distributed file system, or your situation may require you to
minimize network traffic. In addition, if you are debugging an application that is
composed of many source files and you are only actively developing the code in one or
two of those files, the performance of the debugger improves if the inactive source files
reside on the target mainframe as well as the host workstation.

Similarly, you may use the set cache command in order to establish a cache
location for your debugger file.

PART3

Using the Debugger in Your Environment

Chapter 10. Using the Debugger 99

Chapter 11...... ... Debugging C++ Programs 115

97

98

99

CHAPTER

10

Using the Debugger

Performing Basic Debugger Actions 100
Running Your Program 100
Stepping Through Your Program 100
Stepping into Functions, Calls, and Returns 100
Stepping over Functions 100
Stopping in Your Program 100
Setting Breakpoints 100
Setting Temporary Breakpoints 101
Changing Program Execution 102
Arguments 102
Issuing resume with No Arguments 103
Issuing resume Followed by a Line Number 103
Issuing resume with a Function Name 103
Issuing resume with a Function Name and a Line Number 103
Displaying, Disabling, Dropping, and Ignoring Breakpoints Requests 104
Displaying Variables and Data 105
Modifying Variables and Data 106
Exiting Your Program 106
Performing Advanced Debugger Actions 106
Displaying a Traceback 106
Viewing and Searching Source Code 107
Using the list Command 107
Using the window find Subcommand 107
Changing Scope 107
Stopping Execution When a Value Changes 108
Arguments and Option Used with the monitor Command 108
Performing One or More Debugger Commands at Various Locations 109
The CMD-LIST Argument 109
How the on Command Works 109
Setting Different Debugger Modes 110
Viewing Memory 110
Defining Macros 111
Executing Operating Environment Commands 112
Under CMS 112
Under TSO 112
Displaying Storage Analysis 112
Halting Your Running Program 113

100

Performing Basic Debugger Actions A Chapter 10

Performing Basic Debugger Actions

Running Your Program

The go command starts (or resumes) program execution under the debugger. The
program then executes until the next requested breakpoint or action. PF12 is the
default PF key assignment for the go command. See “go” on page 222 for details.

Stepping Through Your Program

Stepping into Functions, Calls, and Returns

The step command resumes execution and breaks execution again when a hook is
reached. step stops for all hooks, including source lines, function calls, and returns, in
the context of both the called and the calling function. The format of the step command
is

step [INTEGER]

The optional INTEGER is a nonnegative decimal integer. Use the INTEGER
argument to specify the number of times that you want the step command to be
performed. The step command is usually used without an optional INTEGER
argument. This is the most common form of the step command and it causes the
debugger to continue execution to the next hook. In other words, it is used to single
step through your program. PF11 is the default PF key assignment for the step
command. See “step” on page 260 for more details.

Stepping over Functions

When you issue a continue command, it steps over function calls. The format of the
continue command is

continue [INTEGER]

The optional INTEGER is a nonnegative decimal integer. Use the INTEGER
argument to specify the number of times that you want the continue command to be
performed. When a continue command is issued at a function call, the function is not
stepped into. Execution proceeds to the next line hook in the current function, provided
that there are no other breakpoints requested before the next hook. PF10 is the default
PF key assignment for the continue command. See “continue” on page 204 for more
details.

Stopping in Your Program

Setting Breakpoints

The break command requests breakpoints at hooks in your program. A common
format of the break command is

break HOOK-TYPE

Values for the HOOK-TYPE argument are explained in Chapter 12, “Using Debugger
Commands,” on page 129. The HOOK-TYPE argument can be one of several possible
formats. Another format of the break command is

Using the Debugger /\ Stopping in Your Program 101

break FUNCTION-NAME entry

This format sets a breakpoint at entry to the function that is specified by the
FUNCTION-NAME argument. See “break” on page 199 for a complete discussion of all
the formats for the break command.

break *
breaks at every line-number hook in a source file that is compiled with debug.

break entry
breaks on entry to all functions.

break calls
breaks at each call to a function and at each return from a function.

break funcl entry when (parm ==5)
breaks on entry to the funcl function when the value of parml is 5.

break 66
breaks at line 66 of the current function.

The prefix-area command B breaks on line 66 in Display 10.1 on page 101 and is
entered from the prefix area of the line number field. This command can be issued only
between the lines that contain the opening and closing braces of a function.

See Table 13.1 on page 175 for a comprehensive listing of the prefix-area commands.

Display 10.1 Prefix-Area Command B Example

B —
HEIPIPFL —RUNTO- ——————————m READIN---E3
//cms:wdent2a c X
Hodule: COHP1 Line: 57

57 wordstrg[wordlen]=tolower(c);
58 /% convert characters to |owercase %/
529 vord|len++;
[=13] i
61 1
B2 /X if inword, insert in list X/
B3 else if (inword == TRUE) {
B4 wordstrglwordlen] ="\8";
E5 wordlen=8;
B B6 insertw{wordstrg);
B7 inword=FALSE;
B8 }
B9 i
78 /X print wordlist X/

Log
Set system breakpoint at BBebeb84 to activate the ESCAPE command.
runto readin B3

Cdebug: [

Setting Temporary Breakpoints

The runto command places a temporary breakpoint at a hook in your program. One
format of the runto command is

runto HOOK-TYPE [when (EXPRESSION)]

The hook is identified by the HOOK-TYPE argument. One commonly used
HOOK-TYPE is a line number. The when(EXPRESSION) argument causes a break at
the specified breakpoint whenever the expression is true.

The runto command can be thought of as a shorthand method of issuing a break
command followed by a go command. Use the break and go commands if you want to

102

Changing Program Execution A Chapter 10

stop at a hook several times. In contrast, if you want to stop a hook only once, use
runto. The runto command works particularly well if you know that the hook is hit
several times. The reason is that you do not have to drop the temporary breakpoint
that is set by the runto command. However, if your program might be interrupted
before it stops for the temporary breakpoint, do not use the runto command. The
reason is that the temporary breakpoint is dropped at the interruption.

Breakpoints that are set by the runto command are temporary and are removed the
first time the program execution stops. This occurs even if execution stops at another
breakpoint before reaching the breakpoint that is specified in the runto command.
Issuing a runto command causes the program to run until it hits the breakpoint that is
specified, unless execution stops before reaching the breakpoint. See “runto” on page
251 for more details. The following are examples of the runto command:

runto main 52
sets a temporary breakpoint at line 52 of the main function and then resumes

execution.

runto 75 count 5
sets a temporary breakpoint at line 75 of the current function the fifth time the
line-number hook at that line is reached and then resumes execution.

Changing Program Execution

The resume command is an alias for the goto command. It enables you to resume
program execution after you correct the cause of an error condition. Also, it can be used
to go to any accessible line number or return hook and resume execution from there.
The resume command can be used for the following types of error conditions:

o an OC4 or OC5 abend, which are identified by the signal SIGSEGV. SIGSEGV is the
illegal memory access signal.

0 computational or floating-point errors, which are identified by the SIGFPE class of
signals: SIGIDIV, SIGFPDIV, SIGFPOFL, and SIGFPUFL.

O a call to the function abort which is identified by the signal SIGABRT.
O a user or system ABEND, identified by the signal SIGABRT or SIGABND.

O a catch of a thrown C++ exception.

See the SAS/C Library Reference, Volume 1 for a discussion of the characteristics of
signals.

When you receive a signal or exception of one of these types, you can examine the
value of variables. If you issue a resume command, it causes the debugger to discard
the signal or exception and resume execution. The location where execution resumes
depends on the arguments that you use with the resume command, when you issue the
command, and where execution in the program stopped. You cannot resume a library
function or a function that is compiled with nodebug. One format of the resume
command is

resume [FUNCTION-NAME][LINENO]

Arguments

FUNCTION-NAME is the name of a function. LINENO is a source line number. To
illustrate what happens when you issue a resume command with different arguments,
consider the following hypothetical case:

Using the Debugger /A Changing Program Execution 103

math_a()
{
stmtl; /* lines of code */
stmt2;
p=0;
27 if (a == b) *p = d; /* This line causes a SIGSEGV signal */
59 strncpy(p, "XYz",4); /* Call strcmp, passing p--which is */
/* bad, and a string "XYZ". This line */
/* would cause a SIGSEGV signal to */
/* occur in the library strncpy */
/* function */

Issuing resume with No Arguments

Suppose a SIGSEGV occurs at line 27. Depending on how math_a is supposed to work,
several different errors could be the reason for the SIGSEGV. Perhaps p should not have
been set to 0, or perhaps a and b should have been equal. If the problem is that p
should not have been 0, you can use assign to give p a correct value and then use
resume to try the assignment again. Execution starts at the last hook that was
encountered before the code that caused the error condition. So, when the first SIGSEGV
is encountered at line 27, resume moves back to the closing parenthesis of if (a ==
b) and retries the rest of the line.

Issuing resume Followed by a Line Number

Execution is resumed at the first hook in the source line that is identified by
LINENO in the abending function. The command resume 27 retries line 27 from the
beginning of the if statement.

Suppose p is 0, and a and b are not supposed to be equal. You could use assign to
change the value of a or b, and use resume 27 to reexecute the if statement, thereby
avoiding the bad assignment to *p.

Issuing resume with a Function Name

Suppose that a SIGSEGV occurs at line 59 in strncpy. resume FUNCTION-NAME
resumes execution at the last hook that was executed before the error in the active
function (specified by FUNCTION-NAME). In this example, you cannot resume
strncpy because strncpy is a library routine. Therefore, resume math_a restarts
execution at the last hook in math_a before the call to strncpy.

Issuing resume with a Function Name and a Line Number

When used with a function name and a line number (for example, resume math_a
27) the resume command restarts execution at the first hook in the specified line of the
named function.

104

Displaying, Disabling, Dropping, and Ignoring Breakpoints Requests A Chapter 10

Use resume with a LINENO argument for an error that occurs in a function call that
takes several lines. resume with no arguments only reexecutes the last line of the call,
you must issue a resume command with the first line in order to reexecute the entire
statement. This is important if you correct the problem by changing a parameter in a
line of the call other than the last: for example, if math_a contains the lines

15 longsub(a,b[i],c,
16 d,e,f);

If you have a failure in longsub that is due to a problem with b, and if you change
[i] and then issue resume math_a, the same old b[i] values are still passed to
longsub because b[i] is not reexecuted. You have to issue resume math_a 15 to
correct it.

If you issue a go, step, or continue command after the debugger gets control due to
a signal, the signal is handled normally, as follows:

o If the program has a handler, the handler is called.

o If the program does not have a handler, the program abends. If you cannot fix a
problem that caused an abend, you may want to type go. This lets you get a
dump, for instance.

Also, if you issue the go, step, or command after the debugger has caught
a C++ exception (issued a catch command), the C++ exception is handled as follows:

O The call chain for the program is searched for an exception handler which is
specified by a catch clause that handles the exception.

o If an exception is thrown for which there is no corresponding handler, the program
will be terminated via the terminate function, which calls the abort function.

See “resume” on page 246 for more details on the resume command.

Displaying, Disabling, Dropping, and Ignoring Breakpoints Requests

The query command generates a query list, which is a numbered list of break,
catch, trace, ignore, on, and monitor command requests that are currently in effect.
When issued with no arguments, the query command produces the numbered list of all
requests. See “query” on page 244 for more details on the query command.

The disable command disables requests. Requests are identified by the request
number as displayed by the query command. One format for the disable command is

disable ACTION-RANGE

ACTION-RANGE is either a single request or a range of request numbers from the
query list. To disable a single request, supply the number of the request as the
argument ACTION-RANGE. To disable a range of requests, give the range, separated
by a colon, as the argument ACTION-RANGE. For example, disable 2:5 disables
request numbers 2, 3, 4, and 5.

Once you have disabled a request, the request is not honored until you enable it
again. See “enable” on page 216 for more information. Disabled requests are marked
with an asterisk next to the request number in the query list. See “disable” on page 212
for more details on the disable command.

The drop command drops one or more requests. Requests are identified by request
number as displayed by the query command. The number that is associated with a
dropped command is not reused. Example formats of the drop command are

drop ACTION-RANGE

drop all

Using the Debugger /A Displaying Variables and Data 105

The first format of the drop command allows you to drop requests from the query list
by number. The ACTION-RANGE argument specifies either a single request number or
a range of request numbers. The second form of the drop command allows you to drop
all request for the entire program. See “drop” on page 213 for details about the drop
command.

The ignore command instructs the debugger to ignore requests that are currently in
effect. One format of the ignore command is

ignore HOOK-TYPE

Values for the HOOK-TYPE argument are explained in “HOOK-TYPE Argument” on
page 135. As discussed in that section, this can be one of several possible formats. One
commonly used format is

FUNCTION-NAME line-numl:line-num2

This means to ignore requests at source line range in the specified function
(FUNCTION-NAME).

The ignore command is helpful if you want to ignore requests only at a specific line
number or line number range. In other words, you can leave a request in effect except
for a line range. You can drop the ignore command using drop. See “ignore” on page
226 for a description of all the formats for the ignore command.

Displaying Variables and Data

The print command prints the value of various program elements. The print
command, when used with the single argument EXPRESSION, displays the expression
that is specified in the argument and the value of the expression. The value is displayed
according to its type as declared in the source code. This format of the command is

print EXPRESSION

“EXPRESSION Argument” on page 138 discusses the types of expressions that can
be used with the print command and option formats.

The print command enables you to determine the contents of a scalar or aggregate,
inspect function return values, print function parameters, and look at other program
elements and objects. PF16 is the default PF key assignment for the print command.
See “print” on page 241 for details on all the formats that you can use. The whatis
command displays the type information that is associated with its argument. One
format of the whatis command is

whatis EXPRESSION

EXPRESSION is a valid expression or macro. See “EXPRESSION Argument” on
page 138 for more information. Used with this argument, whatis displays the type and
length of the expression. To display information about macro names, you must compile
with dbgmacro. The auto command keyword cmacros does not need to be set.

For example, assume the following declaration for the whatis EXPRESSION:

struct ABC {
int x;
double d;
} new_struct;

whatis new_struct::x
displays:
int x

See “whatis” on page 277 for more details.

106

Modifying Variables and Data A Chapter 10

Modifying Variables and Data

The assign command is similar to the assignment statement that operates on
scalars. One format of the assign command is

assign SCALAR-TYPE-EXPRESSION = VALUE

The assign command assigns the value that is specified by the VALUE argument to
the object identified by SCALAR-TYPE-EXPRESSION. As described in
“SCALAR-TYPE-EXPRESSION Argument” on page 143, SCALAR-TYPE-EXPRESSION
is an expression whose type is arithmetic, pointer, or bit-field. VALUE is an expression
whose type is one of the following:

O constant

address

expression of scalar type
enumeration constant

O o oo

array name.

You can assign a value to any scalar expression that is visible at the point where you
issue the assign command. For example, after compiling with the dbgmacro option,
the following declaration and #define statement assigns 18 to avalue

#define A MIN 9
int avalue;
assign avalue = 9 + A MIN

See “assign” on page 192 for a description of all formats for the assign command.

Exiting Your Program

The exit command immediately terminates program execution under the debugger,
after closing all program and debugger files. PF3 is the default PF key assignment for
the exit command. See “exit” on page 222 for details.

Performing Advanced Debugger Actions

Displaying a Traceback

The where command produces a calling trace or traceback that shows (among other
information) the functions that are active at the point in the program from which the
where command was issued. One format of the where command is

where

The where command enables you to see the calling sequence for active functions. Use
the where command in order to determine the sequence of functions that are active or
whether you are executing in the appropriate section.

Because source lines are accessed only for active compilation names and because
variables are accessed only for active functions, use the where command to display the
list of active functions. This allows you to determine what variables can be accessed.
For example, suppose that you want to view lines of code (via the 1ist command) for a
function called readin. You could issue the following command:

Using the Debugger /\ Changing Scope 107

list readin*

However, the command does not display the readin function in the Source window if
readin is not currently in the calling sequence identified by your command scope. You
can only access variables in functions and sections that are listed in the traceback (that
is, active functions). An external variable is accessed from any function whose context
contains a declaration for it. See “where” on page 279 for more details on the where
command.

Viewing and Searching Source Code

Using the list Command

The 1ist command lists source lines in a program that is executing under the
debugger. In a full-screen session, the 1ist command is used to move around in the
Source window. For example, to move to a specific line, use the format

list LINENO
Then, to move back to your current position in your source code use the format
list

See “list” on page 231 for more details.

Using the window find Subcommand

The window find subcommand is used to search for strings and is supported in the
following windows:

O Browse

o Log

O Source.

The following format is used with the window find subcommand:
window find WINDOW-NAME

The WINDOW-NAME argument can be any of the following:

o <>

O browse

o log

O source.

If the <> WINDOW-NAME argument is used, the position of the cursor determines

the window to which the command is applied. See “Find Window” on page 164 for more
details on the window find subcommand.

Changing Scope

The scope command is used to change the command scope. In order to understand
the concept of command scope, you must first understand the concept of run scope. Run
scope is the term used to describe the location in your program at which the debugger
has stopped. Normally, the debugger uses the context of this location to resolve variable
references. In other words, the debugger uses the value of a variable as it appears at
the location in your code where you stopped.

108

Stopping Execution When a Value Changes A Chapter 10

Command scope identifies a second location in your source code that can be used to
resolve variable references. Normally, command scope is the same as run scope;

however, it can be changed with the scope command. Certain commands use command

scope in order to resolve variable references and to supply default function and section
names. As described in “Run Scope and Command Scope” on page 21, both command
and run scope are displayed in the Status window. Some formats of the scope
command are as follows:

scope FUNCTION-NAME
changes the command scope to the function that is named by the

FUNCTION-NAME argument. This argument must name a function in the calling

sequence. If multiple instances of the function are identified by
FUNCTION-NAME, the command scope is set to the most recent.

scope + INTEGER
changes the command scope to a function that is farther up in the calling
sequence. The INTEGER argument specifies the number of functions up in the
calling sequence to change the command scope.

scope - INTEGER
changes the command scope to a function that is farther down in the calling
sequence. The INTEGER argument specifies the number of functions down in the
calling sequence to change the command scope.

scope
sets the command scope back to run scope.

See “scope” on page 252 for details on the scope command.

Stopping Execution When a Value Changes

The monitor command causes the debugger to test for changes in the object that is
addressed by the expression at each hook. If the value changes, the program is
interrupted. This request is called a monitor. When the monitor command is used to
test for changes in a value, the debugger is monitoring the object. A change in value is
said to trigger the monitor. One format of the command is

monitor EXPRESSION [LENGTH] [print]

Arguments and Option Used with the monitor Command
The arguments and option for this form of the monitor command are as follows:

EXPRESSION
identifies the object (such as a variable) to be monitored.

LENGTH
shows the number of bytes to be monitored. The number of bytes can be larger or
smaller than the actual length of the object in bytes.

print
prints the value of the object when the monitor is triggered. (The abbreviation is
p.) With the print option, the debugger displays the new value of the object. If
the object is no more than 256 bytes in length, the debugger also displays the old
value. The values are formatted appropriately for the type of the object. If the
object is an aggregate and less than 256 bytes, then only those fields that change
are displayed.

Arguments can follow the EXPRESSION in any order. See “monitor” on page 235 for
more details on the monitor command.

Using the Debugger /A Performing One or More Debugger Commands at Various Locations 109

Performing One or More Debugger Commands at Various Locations

The on command enables you to perform one or more debugger commands at a
specific location in your program. You can issue a list of commands {CMD-LIST} to be
performed at locations that are specified with the HOOK-TYPE argument when a
certain condition is met (EXPRESSION). Values for the HOOK-TYPE argument are
described in “HOOK-TYPE Argument” on page 135. Use the following format for the on
command.

on HOOK-TYPE [when (EXPRESSION)] {CMD-LIST}

The CMD-LIST Argument

The CMD-LIST argument contains one or more debugger commands and command
arguments, separated by semicolons, as in the following example:

on stats c¢ {break; print lengthsum, totcnt}

Issuing this command interrupts program execution at calls from stats and at returns
to stats, and prints the value of lengthsum and totcnt.

The CMD-LIST is enclosed by braces. The CMD-LIST argument may contain nested
on commands, as in this example:

on lookup e when (strcmp(arg, "testid") == 0) {
on lookup * {dump var str; break;}print}

In this example, on entry to lookup, the following occurs: If the argument to lookup
is TESTID, the debugger defines an action for each line of 1lookup and prints the value
of arguments to lookup. The action, for each line at lookup, is requested to dump the
value of var and interrupt execution. You can use this action in order to track down an
error that occurs only on calls to lookup with a particular argument, without having to
look at calls with other arguments.

This example also illustrates how you can issue commands that are part of the
CMD-LIST argument on different lines. Type an open brace at the end of the first line,
followed by the list of commands on subsequent lines, and finally the close brace.

Note: If you put commands on separate lines, the end of a line can be the command
separator. You do not need a semicolon. You can also enter commands with long
CMD-LIST arguments in the Log window by using the \ continuation character. You
cannot use the continuation character in the Command window. 2

How the on Command Works

When you enter text for an on command, the command text goes into the command
buffer for only a moment. Then the debugger processes the CMD-LIST argument and
stores it as text in an internal debugger data structure. No parsing is done to the on
command’s CMD-LIST at the time it is entered. When the hook that you specify is
reached, the CMD-LIST is reinserted into the command buffer, this time parsed and
ready for execution. If, at the time you enter an on command, there is already another
debugger command in the buffer, the on CMD-LIST arguments are placed before the
other command (or commands). You can think of an implied go command as being
placed after the on command.

For example, suppose you want to break at line 15 in your program and dump two
variables, p and g. Issue the following on command:

on main 15 {dump &p; dump &g}

110

Setting Different Debugger Modes A Chapter 10

The command is put in the command buffer momentarily and then is put (as text
only) into some internal data structure. Now you reach line 14 and type the following
commands:

go; print z; print w;
The debugger executes the go command and reaches line 15. As this point, the

command buffer is

go; print z; print w;

1

Your on command and an implied go command are inserted into the buffer after go,
where the arrow is pointing above, and execution continues. The buffer now looks like

go; dump &p; dump &g; implied go; print z; print w;
T

The debugger executes the inserted commands and then executes the added go. This
means that the two print commands are not executed at line 15. In fact, they are not
executed until the next breakpoint. See “on” on page 239 for more details about the on
command.

Setting Different Debugger Modes

The auto command lets you set keywords that define several characteristics of
output produced by the debugger. The format of the auto command is

auto KEYWORD KEYWORD . . .

For example, the cmacro keyword allows substitution of program macros in
expressions. In order to use the cmacro keyword command you must compile your
program with the dbgmacro option. Suppose you had the following line in your program:

#define MAXLEN 15

Then at the command line you would type:
Cdebug: auto cmacro

And to print the value of MAXLEN you would type:
Cdebug: print MAXLEN

which prints a value of 15 to the Log window.
See “auto” on page 196 for a detailed discussion of these keywords and other auto
command keywords.

Viewing Memory

The dump command dumps the contents of storage that is pointed to by an
EXPRESSION. Formats of the dump command include the following:

dump EXPRESSION

dump EXPRESSION str

The EXPRESSION argument is either a pointer, an address, or an array. An absolute
address must be specified with a leading Op, for example, 0p00001234. For the first
format of the dump command, the number of bytes dumped is determined as follows:

Using the Debugger /A Defining Macros 11

Table 10.1 Dump Command: number of Bytes Dumped

Argument Type Number of Bytes Dumped
Pointer The size of the pointed to object
Address of a scalar or aggregate The size of the scalar or aggregate
Array The size of one item of the array
Absolute address One (treated as a pointer to char)

The second form of the command dumps the contents of storage that is pointed to by
the EXPRESSION until the null terminator, \0, is encountered.

For all formats, the output of the dump command shows the contents of the
EXPRESSION argument in characters and in hexadecimal format, and shows the
address of the argument as a hexadecimal number.

In the following example, because str is specified, the entire string test is dumped:

Cdebug: dump wordstrg str

wordstrg

0002b1d0 a385a2a3 *test *

In the next example, inword is an int, so 4 bytes are dumped (int type has a size of 4
bytes):

Cdebug: dump &inword

&inword

0002blcc 00000001 *.... *

See “dump” on page 215 for more details on the dump command.

Defining Macros

The define command enables you to use the debugger commands as macros. Once
you have defined a macro, you can invoke it by using the macro name, prefixed with #.
One format for the define command is

define DMACRO "REPLACEMENT TEXT"

The DMACRO argument is any valid identifier. The REPLACEMENT TEXT
argument is the debugger command that is substituted for the macro when you invoke
the macro. The REPLACEMENT TEXT argument can contain double quotation marks,
but you must escape the quotation marks with a backslash. Drop debugger macro
definitions with the undef command when you no longer need them. See “undef” on
page 275 for a discussion of the undef command.

Do not confuse C macros with debugger macros. C macros are defined in your
program via the C preprocessor #define statement. Debugger macros define a
shorthand version for commands that you plan to use often in a debugger session. In the
following example, the define command defines a macro dmp as dump wordarry str:

Executing Operating Environment Commands A Chapter 10

Cdebug: define dmp "dump wordarry str"

See “define” on page 210 for more details on the define command.

Executing Operating Environment Commands

The system command sends an operating environment command to the operating
environment. The system command is equivalent to calling the system function from
within your C program by using the TSO: or CMS: prefix. The format of the system
command is

system OPERATING-SYSTEM-COMMAND

Under CMS

The system command uses full command resolution as if the command were entered
in response to the CMS prompt. See Chapter 14, “Command Directory,” on page 187, for
more information on the system under CMS.

Under TSO

The OPERATING-SYSTEM-COMMAND is either a native TSO command or a CLIST
or REXX EXEC that contains TSO commands.

Displaying Storage Analysis

The storage command prints an analysis of the program’s use of both heap and
stack storage. This analysis can be useful for locating a memory overlay. To display a
report of both heap and stack storage, type

Cdebug: storage

The following output is an example of a report:

At SUB1 (PGM1) entry --—----

SIZE: FREE/USED SIZE: FREE/USED SIZE: FREE/USED SIZE: FREE/USED
24: 0/116 32: 0/118 40: 0/18 48: 0/69
56: 0/10 64: 0/7 72: 0/59 80: 0/10
88: 0/9 96: 0/4 104: 0/3 120: 0/2
144: 0/5 152: 0/1 160: 0/1 280: 0/1
512: 1/0 792: 1/0 1152: 1/0 1472: 1/1

1792: 0/2 8192: 0/1

No corruptions found in heap.

SIZE NUMBER SIZE NUMBER SIZE NUMBER SIZE NUMBER SIZE NUMBER

152: 1 168: 1 208: 1 248: 1 256: 1
296: 2 672: 1
Total unused space in stack (bytes): 1768
No corruptions found in stack.

Using the Debugger /\ Halting Your Running Program 113

Halting Your Running Program

The attn command generates a SIGINT interrupt signal in programs that execute
under the debugger. When the SIGINT signal occurs, it sends a message to the
debugger output. The format of the attn command is

attn

You generate the SIGINT signal under TSO by pressing the attention (PA1) key, and
under CMS by using the immediate command IC. However, when you are using the
debugger, pressing the attention key under TSO, IC under CMS, or CTRL+C under
UNIX System Services gives control back to the debugger. To actually send a SIGINT
signal to the executing program under the debugger, you must use the attn command.

Note: When using the debugger in full-screen mode under CMS, you might not be
able to issue an immediate command. Another method of interrupting the debugger
under CMS is to press the attention key to give control to the VM control program CP,
and then issue the CP command EXTERNAL DB. This sends an external interrupt of
the debugger, which interprets it as an attention. A

See “attn” on page 195 for more details on the attn command. See the discussion of
signal handling in the SAS/C Library Reference, Volume 1 for details on the
characteristics of signals.

114 Halting Your Running Program A Chapter 10

115

CHAPTER

11

Debugging G++ Programs

Introduction 115
Specifying C++ Function Names 115
Multitoken Function Names 116
Overloaded Function Names 116
File-Scope and Member Functions 117
Constructors and Destructors 117
Functions in a Mix of C and C++ Code 118
Translator-Generated Functions 118
Specifying Expressions 119
Operators 119
Casts 119
Data Types 119
assign Command 120
dump Command and Dump Window 120
monitor Command 120
return Command 121
transfer Command 121
whatis Command 121
Expression Evaluation 121
Searching for Data Objects 121
Debugging Initialization and Termination Functions 121
Bypassing Initialization Functions 122
Setting Breakpoints in Dynamically Loaded C++ Modules 122
C++ Debugging Example 122
Example Source Code 123
Sample Debugger Session 124

Introduction

For the most part, debugging C++ programs is the same as debugging C programs.
There are only a few differences, which are the focus of this chapter. This chapter does
not attempt to teach you how to set up and use the basic features of the debugger.

Specifying C++ Function Names

One of the unique features of the SAS/C C++ Development System is that the
debugger accepts and understands C++ function names, including multitoken and

116

Multitoken Function Names A Chapter 11

overloaded function names. This section describes how to specify C++ function names in
debugger commands.

If you are specifying a nonoverloaded, single-token function name in a debugger
command, you do not have to do anything differently from when you are specifying a C
function name. For example, you could issue the following command:

break funcl entry

There are additional rules, however, for specifying multitoken C++ function names
and overloaded function names in debugger commands. This section also explains how
to specify member function names and file-scope function names.

The rules for specifying constructor and destructor function names are unique to
these types of functions and are covered separately. See “Functions in a Mix of C and
C++ Code” on page 118 for information on how the debugger handles function names
when you mix C and C++ code. Also, see “Translator-Generated Functions” on page 118
for information on how the debugger handles translator-generated functions (such as
assignment operators and copy constructors).

Multitoken Function Names

Multitoken function names are function names that are not only a C++ identifier, but
that contain other items such as the scope operator (::) or two-word function names
such as operator and conversion functions. Here are some examples of multitoken C++
function names:

O ABC::ABC

O myfunc::~myfunc

O operator int *

O ABC::operator >=
When you specify a multitoken C++ function name in a debugger command, the
function name must be enclosed in double quotes. Here is an example of the break

command and a multitoken function name. This command specifies to break at the
entry to member function funcl in class ABC:

break "ABC::funcl" entry

Spaces around tokens that are not identifiers are optional.

Overloaded Function Names

One of the things that sets C++ apart from C is that C++ supports overloaded
functions. However, overloaded functions present a challenge for the debugger because
the debugger has to determine which function you want to access.

When you specify an overloaded function name in a debugger command, you are
presented with a numbered list of C++ function names with arguments. Determine
which number represents the function you want to access, and reissue the debugger
command by appending a parenthesized number after the function name. For example,
suppose you have the following three constructors declared in class myclass, in this
order:

myclass(char);
myclass(short);
myclass(long);

If you issue a break "myclass::myclass" entry command, the debugger shows you
the following list:

Debugging C++ Programs /A Constructors and Destructors 117

1 myclass::myclass(char)
2 myclass::myclass(short)
3 myclass::myclass(long)

You can place a breakpoint on entry to the constructor that takes a short integer by
specifying the following break command:

break "myclass::myclass"(2) entry

As long as you do not relink your program, the subscript numbers for overloaded
functions remain the same. For example, you can define a debugger macro or alias
using the subscripts and use it throughout your debugging session.

Instead of choosing a particular number, you can specify that the command apply to
all instances of the function by using 0 as the parenthesized number. For example, the
following command sets breakpoints on entry to any myfunc function in class
myclass, regardless of the argument type:

break "myclass::myfunc"(0) entry

However, a subscript of 0 is valid only at entry hooks, return hooks, call hooks, or *
(that is, all line hooks). The only commands that permit a subscript of 0 are break,
trace, ignore, runto, and on.

See “Interpreting C++ Demangled Names” in the SAS/C C++ Development System
User’s Guide for more information on interpreting the overloaded function names.

File-Scope and Member Functions

The debugger uses the scope operator (::) to determine if you want to access either
a filescope or a member function.

If you have declared both a filescope myfunc and a member function myfunc in class
ABC, use the scope operator to tell the debugger which function you mean when you
issue debugger commands as follows:

"::myfunc"
refers to a file-scope function of name myfunc.

"ABC: :myfunc"
refers to a member function of name myfunc in class ABC.

If you have only a file-scope function named myfunc, or only one member function
named myfunc (but not both a file-scope function and a member function), you can omit
the scope operator and specify only the function name in the debugger command.

Note: If the debugger is stopped in a member function when you issue a debugger
command that includes only the function name (and no scope operator), the command
works as though the debugger were not stopped in a member function. That is, the
debugger does not automatically prefix the function name with the class name of the
class whose member function you are stopped in. This is slightly different from the
behavior for data objects, in which the class name is automatically prefixed. See
“Searching for Data Objects” on page 121. A

Constructors and Destructors

When you specify a constructor or destructor in a debugger command, it must be in
one of the following two forms:

"class-name: :class-name"
indicates a constructor.

118

Functions in a Mix of C and C++ Code A Chapter 11

"class-name: :~class-name "
indicates a destructor.

Here is an example of setting a breakpoint on entry to the destructor for class ABC:

break "ABC::~ABC" entry

Functions in a Mix of C and C++ Code

If your load module contains at least one C++ compilation, your load module also
contains a list of all function names that are visible to C++ compilations. If you issue a
debugger command that refers to a function name that is not in this list, the debugger
issues a warning message and assumes the function is a C function.

For example, suppose you have the following construct, in which a() is a C++
function and b () and c¢() are C functions:

a() calls b() calls c()

There is a function prototype for b () in the compilation containing a(). Because b()
is visible to a C++ compilation, it is contained in the debugger’s list of visible function
names. Because no function prototype for c() is visible in any C++ compilation, c () is
not contained in the list of function names that are visible to the debugger. If you use
c() in a debugger command (such as in a break command), the debugger issues a
message that it cannot resolve the function name by using the debugger file. The
debugger assumes that c() is a C function.

Note: If you see the warning message about unresolved function names yet you
know that your program consists of only C++ functions, check the spelling of function
names in your debugger commands. A

Translator-Generated Functions

The translator creates a number of functions automatically. These functions are
required by the C++ language and follow the usual C++ rules. The functions that the
translator may create include constructors, copy constructors, assignment operators,
and destructors. The translator creates such a function when there is not a user-defined
version of the function. The list of overloaded constructors that is displayed by the
debugger when you issue a debugger command may include a translator-generated
constructor as well as the user-defined constructors.

The following list shows the declarations for translator-generated functions:

class::class ()
is the default constructor for class class. This constructor is called whenever an
object of type class is defined without an explicit initializer.

class::class(const|volatile class&)
is the default copy constructor for class class. A default copy constructor is
created for any class, struct, or union that does not have a user-defined copy
constructor. The copy constructor is called to initialize an object of type class
with another object of the same class. The presence of const or volatile depends
on the characteristics of the class.

class& class::operator=(const|volatile class&)
is the default assignment operator. This operator is called when an object of type
class has an object assigned to it. The presence of const or volatile depends on
the characteristics of the class.

class::~class()
is the default destructor. This destructor is called when an object of type class
goes out of scope.

Debugging C++ Programs A Data Types 119

You may occasionally step into one of these translator-generated functions as you
debug your code. When this happens, the Source window displays the source text at the
class definition and the Status window displays the function name.

Specifying Expressions

The debugger supports the use of operators, types, and casts that are specific to C++.
This section delineates these items and explains how expressions are evaluated for C++
programs in the debugger. Note that only standard C++ operators are supported in
expressions. That is, user-defined overloaded operators cannot be used. This includes
the use of complex and I/O stream operators. For example, you cannot specify print
(a+b) where a and b are complex.

Operators
The following operators are supported in debugger expressions:

:: (unary scope)
indicates the scope operator (identifies the object or function as file-scope).

:: (binary scope)
indicates the scope operator (identifies the object or function as a member of a
class).
—_>%
indicates a member-pointer.
o x
indicates a member-pointer.

Only one level of :: is supported after a . or -> operator. For example, the following is
not valid syntax in a debugger command:

p->A::BB::C

Casts

In addition to the syntax for casts supported for C in the debugger, the keyword
class is supported as in

(class TAG*)ADD

Casts to reference types are not supported. If the two classes that you are referencing
are related (that is, one is derived from the other), the debugger performs the cast and
issues a message that indicates address translation may have occurred.

Data Types

All debugger commands that support expressions support the following C++ data
types:

O pointers to base or derived classes

0O member-pointers

120

Data Types A Chapter 11

O references
O classes.

The following sections detail any special considerations for using debugger commands
with C++ data types. Static members of class objects do not participate in any assign,
copy, dump, monitor, print, return, or watch commands that handle objects of type
class. For example, because all classes share the same static data, if you copy a class
with the copy command, you do not modify static members.

A member-pointer is not considered a pointer in the C or C++ sense. Therefore, it is
invalid to specify an expression of type member-pointer in a command (such as dump)
that takes an address for an operand.

assign Command

The assign command can be used to assign a pointer to an object of a derived class
to a pointer to the base class. When multiple inheritance is used, this can cause the
values of the derived pointer and the base pointer as printed by the print command to
differ. This can also occur for assignments that involve member-pointers.

An assignment to a reference assigns to the referenced object.

An assignment to a class object is permitted using an initializer list or a class object
only if the class does not have base classes and if no user-defined constructors need be
invoked to initialize the class object.

dump Command and Dump Window

The dump command and the Dump window support all the data types that were
listed earlier in this section. The dump command takes an address as an argument and,
by default, dumps memory corresponding to the size of the object. A member-pointer
can be one of two sizes, depending on whether it is a data pointer or a function pointer:

data pointers are 4 bytes long.
function are 12 bytes long.
pointers

A member-pointer is not considered to yield an address type. Therefore, the following
command is not valid:

dump member-pointer
The following command dumps the referenced object:

dump reference-object

monitor Gommand

You cannot monitor an object through a reference variable. You can monitor only the
reference variable itself. If you set a monitor on a class object that contains a reference,
only the storage allocated for the class object (which includes the storage allocated to
the reference variable) is monitored. The referenced object is not monitored.

For objects of derived classes, the base objects are also monitored. Because the entire
storage of an object is monitored, it is possible for the monitor to be triggered without
any change in the printed value. That is, for some data types (such as function
member-pointers), some parts of the value may not be reflected in the value produced
by the print command. The debugger attempts to detect corruption of control data and
hidden pointers to virtual base classes (that is, members of a class other than those
members you have explicitly created). If your program is erroneously overwriting
memory, it could overwrite some of these control data or hidden pointers. Even though
this corruption does not affect the value that is printed, the monitor is triggered.

Debugging C++ Programs /A Debugging Initialization and Termination Functions 121

return Command

For a function that returns a reference, the return command returns a reference. A
function may return a class using an initializer list or a class object only if the class
does not have base classes and if no user-defined constructors are needed to initialize
the class.

transfer Command

For a reference type object, use the C++ notation for references (such as class
myobjects&) in the typeof keyword of the transfer command.

whatis Command

The whatis command uses the C++ notation for references (such as myobjects&) in
its output.

For classes, whatis displays the following information, in addition to the usual C
information:

O base classes
O access attributes

o all non-C member types that can occur as class members (classes, enums,
typedefs, and functions, including function prototypes).

Expression Evaluation

Normal C++ rules are followed in expression evaluation, with the following
exception. If a static member is dereferenced using the member selection operator (
->) or the selection operator (.), the expression to the left of the -> or . operator is
evaluated by the debugger.

Searching for Data Objects

Normal C++ scoping rules apply to most searches in the debugger. When you are
stopped at a line of code in a member function, you do not have to specify this -> to
access class members. If your source code is structured so that classes are nested
within classes, the debugger also searches any lexically enclosing scopes. The debugger
applies normal C++ rules for ambiguity resolution.

You can access static members by using the class-name: :member-name syntax.

Debugging Initialization and Termination Functions

A typical C++ program contains initialization functions in each compilation at
program startup. These functions are called at program startup to initialize static and
extern data defined in that compilation. If you want to debug one of these initialization
functions, you can set a breakpoint on _ _init (i.e., break _ _init entry). You will
then be presented with a numbered list of initialization functions, one for each
compilation using the sname for that compilation. See the discussion of the sname
option in Chapter 3, “Translator Options,” of theSAS/C C++ Development System User’s
Guide for more information. Select the initialization function that you want to debug.

122

Bypassing Initialization Functions A Chapter 11

See the section “Overloaded Function Names” on page 116 for information on how to
select an overloaded function from the list.

Similarly, you can use _ _term for a numbered list of termination functions. By
default, the first function name shown in the Status window is one of these
initialization functions. While the debugger is stopped in one of these functions, you
can debug the initialization of static and extern variables. As you step through the
initialization functions, each function is, in turn, shown in the Status window. Note
that the initialization and termination functions are not shown in the Source window,
as they do not exist in user C++ code.

Bypassing Initialization Functions

If you do not want to debug your program’s initialization functions, you can bypass
them in one of the following ways:

O set breakpoints in functions that are of interest and issue a go command

O put a Break main entry command in your debugger profile and issue a go
command (this causes debugging to begin at the main function)

O issue a Runto main entry command from the command line (this causes your
program to advance to main).

Setting Breakpoints in Dynamically Loaded C++ Modules

The debugger keeps track of load modules that contain C++ code as they are loaded
and unloaded. When you specify a function in a debugger command, the debugger first
looks for the function in the current load module. If it fails to find it there, the
debugger searches the list of modules that have been loaded. If you want to set a
breakpoint in a module that has not yet been loaded, you can set a breakpoint on entry
to _dynamn. Then, when you reach this breakpoint, set the desired breakpoint in the
module. Note, however, that _dynamn is called only after constructors for static and
extern objects in the loaded module have been run.

C++ Debugging Example

This section provides an example of running the debugger with a C++ program.
Some of the features the example illustrates include

O the need to enclose most C++ function names in double quotes.

o0 how to specify overloaded C++ function names using a subscript.

o0 how to specify all overloaded functions at once using a subscript of 0.
m

how to set breakpoints in special C++ functions, such as constructors and
destructors. (Specifically, this example shows that user-defined constructors and
destructors can be debugged even when they are driven by the C++ new and
delete operators.)

0 how to debug C++ class member functions.

The important thing to remember is that debugging C++ programs with the SAS/C
Debugger is virtually the same as debugging C programs. The debugger looks and feels
the same, and in general the commands are the same. When you have completed this
example debugger session, you should be ready to debug your own C++ programs.

Debugging C++ Programs A Example Source Code 123

Note: This example requires you to allocate the DDname DBGSLIB to the location
of your standard header files. See the SAS/C Library Reference, Volume 1 for more
information about the DBGSLIB DDname. A

Example Source Code

Here is the source code for the example. The program declares class X, which
includes one data object, two constructors, one member function, and a destructor. The
member function multiplies the data object by 2. The destructor checks the value of the
data object and prints an error message if the data object is not between 7 and 10. The
main function uses the constructors to create several instances of class X, calls the
member function four times (once for each instance of class X), and then deletes the
instances of class X.

#include <iostream.h>
class X
{
public: int i;
// first X constructor
X(int ia)
{
i = ia;
}i
// second X constructor
X(int ib, int jb)
{
i = ib + jb;
}i
// X member function myfunc()
void myfunc()

{

i *= 2;
Yi
// X destructor
~X()
{
int id;
id =1 / 2;
if (id < 7 || id > 10)
printf ("Error - Out of range\n");
}i
}i
int main()
{
X *x1 = new X(7);
X *x2 = new X(6,2);
X *x3 = new X(9);
X *x4 = new X(9,1);

x1->myfunc();
x2->myfunc();
x3->myfunc();
x4->myfunc();
delete x1;
delete x2;

124

Sample Debugger Session A Chapter 11

delete x3;
delete x4;
return 0;

Sample Debugger Session

In this example debugger session, you use the break, go, query, drop, and on
debugger commands to complete the program. The numbered steps that follow tell you
what to type in and show the results of your commands in the various debugger
windows.

You first need to translate, link, and run the sample program. Be sure to specify the
debug option when you translate.

When you run your program, the debugger stops on a line of code in iostream.init
function, as described in “Debugging Initialization and Termination Functions” on page
121.

Issue the following debugger commands in sequence. Debugger commands are issued
after the cdebug: prompt located in the Command window at the bottom of the screen.

1 break "X::X"(0) entry
This command sets breakpoints at entry to all constructors for Xx. The subscript

of 0 is necessary because the constructors are overloaded functions. Because the
function name has a multitoken name, double quotes are necessary.

2 break main 37

go
These two commands first set a breakpoint at line 37 of the main function and
tell the debugger to advance to the first breakpoint. The debugger stops on line 37

of main.
3 go
The program proceeds until it enters the first constructor.
4 go
Yet another go causes the debugger to stop at the entry to the next constructor.
5 query
This command requests the Log window to show all actions and monitors in
effect. Two breakpoints are shown; of special interest is the first breakpoint, which

shows the subscript of 0, indicating a breakpoint is in effect for all instances of the
overloaded constructor, X.

6 drop 1
break "X::X" (1) return
break "X::X"(2) return
on myfunc entry print i
on myfunc return print i
b "X::~X" return
query

The drop command drops breakpoint #1 (it is no longer necessary). Next, set

breakpoints on the return of both versions of the overloaded constructor, using the
subscripts 1 and 2. The two on commands tell the debugger to print the value of
the X member function i on the entry to and return from the myfunc member
function. The next command sets a breakpoint on the return of the destructor (b
is an abbreviation for break). Finally, the query command shows all the actions

Debugging C++ Programs /A Sample Debugger Session 125

and monitors that are in effect. Of special interest are the third and fourth
breakpoints. These breakpoints show the prototypes for the first and second
constructors (the first takes a single int; the second takes two ints).
7 go
This go command causes the debugger to proceed until it reaches the return
from the second constructor.
8 go
Another go causes the debugger to proceed until it reaches the return from the
first constructor.
9 go
This go command causes the debugger to stop again at the return from the
second constructor.
go
After this go command, the Log window shows the output from eight print
commands (4 from the entry to myfunc and 4 from the return from myfunc). The
values printed are 7, 14, 8, 16, 9, 18, 10, and 20. Also, notice that the debugger
stops at the return from the destructor.
10 go
go
go
At each of these go commands, the debugger stops at the return from the
destructor.
11 break "X::Y¥" entry

This command illustrates the warning message that is issued by the debugger
when it cannot find a function in the debugger’s list of visible functions. Because
X::Y is not a valid function name for this program, a warning message appears in
the Log window.

See “Functions in a Mix of C and C++ Code” on page 118 for more information
about when you may see this warning message.
12 go
After this last go command, the execution completes, and the debugger
terminates.

126 Sample Debugger Session A Chapter 11

127

PART

Reference
Chapter 12. Using Debugger Commands 129
Chapter 13. Window Directory 153

Chapter 14. Command Directory 187

128

CHAPTER

12

Using Debugger Commands

Introduction 130
Command Formats Used with the Debugger 130

Formats 130

Guidelines 131
Characters 131
Constant Pointer Specification 131
Syntax Errors 131
Multiple Commands on One Line 131
Command Continuation 131
Identical Requests 132
Abbreviations 132

Command Symbols 132

Requesting Breakpoints and Actions 133

Conditional Breakpoints and Actions 133
Reviewing Requests 134

Arguments in the Debugger Formats 134

SECTION-NAME and FUNCTION-NAME Arguments 134
HOOK-TYPE Argument 135
What Is a Hook? 135
Specifying Hooks with the HOOK-TYPE Argument 136
Examples of Specifying Hooks 137
EXPRESSION Argument 138
Operators Supported in Expressions 139
Functions That Can Be Used in Expressions 140
Casts 140
Structure and Union Members 140
Macros 141
Debugger Variables 141
Summary of Types of Expressions 142
Output Formats 143
SCALAR-TYPE-EXPRESSION Argument 143
AGGREGATE-TYPE-EXPRESSION Argument 143
VALUE Argument 143
COUNT Argument 144
PTYPE Argument 144
Example 1 145
Example 2 145
Example 3 146
Example 4 146
Example 5 146
%FMT Argument 147

129

130

Introduction A Chapter 12

Specifying Identifiers Outside the Current Function 147
ANSI Differences 148
Windowing Interface and Command Execution 148
Window Operations and Window Subcommands 148
Methods of Issuing Commands 149
Placeholders in Commands 150
Using Placeholders in Window Subcommands 150
Placeholders in Commands That Take Expressions 150
Extracting Expressions 150

Introduction

This chapter provides background information you need to use SAS/C Debugger
commands effectively. These commands provide information about what is happening at
various points in an executing program and enable you to tell the debugger which parts
of the program you want to work on.

The way that you issue debugger commands depends on the method that you use to
run the debugger. In full-screen mode you use the Command window, Log window, and
PF keys; in a line-mode session you use the command line; and in a batch session,
debugger commands are part of your JCL job stream.

Command Formats Used with the Debugger

This section explains how formats are used to describe debugger command syntax. It
also provides guidelines and constraints that are useful when you invoke the debugger,
and a description of the various symbols used in commands.

Formats

Some commands consist of a single word, for example, exit. Others, such as print,
can be issued as one word or with one or more arguments. Some command arguments
can be nested. Given the possible length and complexity of the commands that are
issued to the debugger, syntax descriptions do not show the complete syntax of the
command in a single string. Rather, for commands that take many arguments, a
separate prototype, or format, is created for each possible configuration of arguments.

For example, the syntax of the print command can appear in the following three

formats:

Format 1: print

Format 2: print EXPRESSION

Format 3: print EXPRESSION [(PTYPE)I[%FMT]

[COUNTI[EXPRESSION[(PTYPE)] [%FMT][COUNT]]

The following list gives typographical and syntax conventions:
0 The name of the command is print, as indicated by the lowercase, bold type.

o0 Four different types of arguments can be used in several different combinations
with the print command (EXPRESSION, PTYPE, %FMT, and COUNT).

Using Debugger Commands /A Guidelines 131

Arguments are indicated by uppercase letters. These arguments are described in
“Arguments in the Debugger Formats” on page 134.

o Several optional arguments can be used with the third format, as indicated by the
square brackets.

0 The PTYPE argument must be enclosed in parentheses. The parentheses are part
of the command syntax, as described in “Command Symbols” on page 132.

Chapter 14, “Command Directory,” on page 187 shows the entire syntax of a
command by presenting a series of formats that illustrate combinations of arguments,
from simple to complex.

Guidelines

Chapter 14, “Command Directory,” on page 187 is a detailed reference for all
commands and command formats. It illustrates the syntax of debugger commands. The
following guidelines apply to all command formats.

Characters

You can use upper- or lowercase characters for debugger commands and keywords.
Check with your SAS Installation Representative for SAS/C products to determine if
special characters such as braces or brackets have been assigned alternate
representations at your location. See Appendix 2, “Character Set Defaults for Special
Characters,” on page 299 for more information.

Constant Pointer Specification
Type constant pointers with a leading 0p, such as 0p0001b123.

Syntax Errors

When you type a command incorrectly (depending on the command and the
arguments that you enter with it), the debugger may reject the command, attempt to
execute the command, or enable you to reissue the command. Appendix 1, “Error
Handling,” on page 297 describes some of these possibilities and the messages that you
receive.

Multiple Commands on One Line

You can issue more than one command on a single line. If you do, however, you must
separate the commands with semicolons.

If you issue several commands on one line and any one of them has a syntax error,
that command and all subsequent commands on the line are rejected. You receive a
message, and the debugger prints all the rejected commands.

Command Continuation

In full-screen mode you can use the Log window to type exceptionally long
commands. (Debugger commands can be issued from any location inside the border of
the Log window.) With the exception of the on command, there is no way to continue a
long command in the Command window. You can use a backslash (\) to continue
commands across lines. You can split a command and its arguments across lines,
provided that the backslash is the last character on the line being continued. The
backslash (\) can also be used to continue commands across lines when you are running
the debugger in line mode.

132

Command Symbols A Chapter 12

Note: You cannot use the backslash (\) character to continue commands in the
Command window. Long CMD-LST arguments to the on command can be continued in
the Command window, provided that you type the initial brace before you press the
ENTER key. The CMD-LST is continued until the closing brace is entered. Commands
in the CMD-LST cannot be split between lines. A

Identical Requests

For the break, trace, and ignore commands, identical requests are uses of the
command that apply to the same line range and have the same WHEN clause if there is
a WHEN clause. For the on command, identical requests apply to the same line range,
have the same WHEN clause (if there is one), and have the same text in the command
list. For the monitor command, identical requests monitor the same program element
in the same environment.

When you type a request that is identical to an existing request (as defined above),
the debugger does not honor the second request, but sends a message. If the existing
request is disabled when the identical request is made, the identical request is dropped,
and the existing request is silently enabled.

Abbreviations

You can use abbreviations for commands and arguments. The accepted short form (or
forms) for each command is listed in Chapter 14, “Command Directory,” on page 187.

Many keywords can also be abbreviated in debugger commands. The following are a
few examples:

a{ll}
cfalls}
e{ntry}
r{eturn}
s{tr}

The characters that precede the braces are the acceptable abbreviations. You can
type the abbreviation plus any characters within the braces.

Command Symbols

The command symbols that are described in this section can be typed as part of
certain debugger commands. Do not confuse command symbols with similar symbols
that are used to describe syntax. The following command symbols have special
meanings in the debugger syntax:

; The semicolon separates multiple commands on a single line.

, The comma separates arguments in commands, such as the drop
and print commands.

{} Curly brackets surround commands in an on command.

) Parenthesis surround some arguments (such as a section name) in
certain commands.

The colon is used in the following two contexts:

o It indicates a line number range. The first line in the range is
on one side of the colon; the last line is on the other side, for
example, 100:120.

Using Debugger Commands A Conditional Breakpoints and Actions 133

0 It indicates a variable in a function that is different from the
function that you are in when the colon is preceded by a
function name and followed by an identifier in expressions.

% The percent sign indicates a print output format that is similar to
the format specifier string of the printf function, when % is used in
the print command and followed by a printf format specification.
See “print” on page 241 for more information.

\ The backslash is used as an escape symbol. It is used in the print
command to escape the modulus operator (%) so that the debugger
does not interpret % as a format marker, and in the copy and
whatis commands with certain arguments it is used. Also, in line
mode or when you are issuing commands from the Log window, you
can use the backslash to continue a debugger command to a new
line if it is the last character on the line.

* The asterisk requests breakpoints or actions at hooks. See Table 2.1
on page 28 for more information.

- The minus sign indicates a relative direction toward the beginning of
your source code. This symbol is used with the 1ist command, and
it has a different effect in line mode than it has in full-screen mode.

+ The plus sign indicates a relative direction toward the end of your
source code. This symbol is used with the 1ist command, and it has
a different effect in line mode than it has in full-screen mode.

Notice that the last three symbols (*, —, and +) are also valid operators in expressions
that are used in debugger commands. The way that you use the symbol determines if it
is interpreted as a command symbol or an operator. The debugger accepts the operators
and symbols that are listed in Table 12.2 on page 139. It also accepts any special
characters that are defined for your site. See Appendix 2, “Character Set Defaults for
Special Characters,” on page 299. You also can use the concatenation operator (| |) for
brackets []and angle brackets (< >) for { }.

Requesting Breakpoints and Actions

Commands such as break, trace, and on request actions or breakpoints. Both
breakpoints and actions cause an interruption in program execution at a hook.
However, after a breakpoint you must restart program execution; by contrast, after an
action, execution continues automatically. When you request a breakpoint with break,
for example, you can then issue additional debugger commands (such as print, to print
the value of a variable) and then restart execution by using the go command.

Conditional Breakpoints and Actions

In addition to the argument that specifies where execution should be interrupted, the
break, on, and trace commands can be used conditionally. In this way, breakpoints or
actions are requested when a special condition is met. The WHEN clause is used to
issue one of these commands conditionally. See “break” on page 199, “on” on page 239,
and “trace” on page 269 for descriptions of the WHEN clause and how it is used.

134

Reviewing Requests A Chapter 12

Reviewing Requests

Once you have requested several breakpoints, actions, and monitors, you may need to
review a list of requests in effect. The query command lists the requests. Use the drop
command to drop requests that you no longer need, or use the ignore command to
ignore requests temporarily at certain locations. Also, with the disable command, you
can deactivate certain requests temporarily. Then you can use the enable command to
reactivate them.

Arguments in the Debugger Formats

There are several argument types that are common to many commands. You should
become familiar with these arguments in order to effectively use the commands that are
described in Chapter 14, “Command Directory,” on page 187. The following common
arguments are explained here:

o SECTION-NAME and FUNCTION-NAME
HOOK-TYPE

EXPRESSION
SCALAR-TYPE-EXPRESSION
AGGREGATE-TYPE-EXPRESSION
VALUE

COUNT

PTYPE

%FMT

O O o oo oo o

Arguments that can be used only with one command are explained with that
command in Chapter 14, “Command Directory,” on page 187.

SECTION-NAME and FUNCTION-NAME Arguments

Request breakpoints or actions in specific functions or program sections by using the
FUNCTION-NAME or SECTION-NAME arguments.

SECTION-NAME (which must be enclosed in parentheses) is the section name for
each source file as specified with the sname compiler option (or default). For example,
the following drop command uses a SECTION-NAME argument to drop all requests for
the comp23 compilation:

drop (comp23) all
Section names cannot exceed seven characters in length.

Note: The terms section name and compilation are used interchangeably in this
book. A

FUNCTION-NAME is the name of a function. For example, the following break
command sets a breakpoint on line 17 of the main function:

break main 17

If extended name support is selected with the auto extname command, function
names can be as long as 225 characters; otherwise, function names are limited to 8
characters.

Using Debugger Commands /A HOOK-TYPE Argument 135

If you omit a function name or section name, the debugger responds differently,
depending on where you are in the program and on which argument you use:

0 For *, calls, entry, and return (see Table 12.1 on page 136), if you do not specify a
section name or function name, a breakpoint (or action) is requested at

o all lines in the program (¥)

O calls by all functions (calls)

O entries to all functions (entry)

O returns from all functions (return).

For example, because the following command does not specify a function name,
breakpoint requests are issued for all entries to functions:

break entry

However, this command issues one breakpoint request for the entry to function
suba:

break suba entry

o If you specify a line number or line-number range by itself, the breakpoints or
actions are requested only in the current function. The following two examples
give identical results only if you are already in the function suba:

break suba 3:6
break 3:6

Breakpoints will be requested at lines 3 through 6 in suba only.

HOOK-TYPE Argument

The HOOK-TYPE argument specifies places (or hooks) in a program in whichyou
want execution to be interrupted.

What Is a Hook?

A hook is a location in a program where control of execution can be transferred to the
debugger. If control is transferred from the executing program to the debugger, it
happens before the code that is on that line is executed. Note, however, that certain
lines of code, such as IF and FOR statements, have more than one hook.

Hooks are created at each source line in a SAS/C program at compile time (when the
program is compiled with the debug option). In addition to these line hooks, the
debugger also enables you to gain control at function calls, function entries, and
function returns.

No hooks are generated for blank lines or for lines that contain only comments.
Certain hooks are generated for code that is included via a #include file.

Rules for hook generation Here are some rules for hook generation:

o If there are multiple simple statements on a line (no transfer of control or function
call), one hook is generated before the first statement.

o If there are statements on the line that can cause a transfer of control based on a
condition, then a second hook is generated after the condition test. The following
is an example of such a statement:

if (a == b) i = 2;

One hook is generated before the IF statement and a second before the
assignment. If the condition evaluates to be true, the second hook is executed also.
If the condition evaluates to be false, the second hook is not executed.

136 HOOK-TYPE Argument A Chapter 12

0 A FOR statement generates up to three hooks. If the statement begins a line,
there is one hook before the statement. Hooks are always generated before the
test and increment portions.

You can use hooks that are generated in a FOR statement by coding a FOR
statement in the following manner:

1 for (i = 0;

2 i< 10;

3 i++)
4

}
In this example, the debugger stops at line 1 as it falls into the loop. Then, the
debugger stops at line 2 before performing the test. After executing the body of the

FOR statement, the debugger stops at line 3 (i is examined before it is
incremented) and then at line 2.

o If braces appear by themselves on a line, hooks are generated at the braces. You
can use this feature, for example, to to set a breakpoint on teh ending brace of an
if-then-else series, which then enables you to perform some other action, such as
examining variables.

Function calls Hook generation for function calls differs, depending on whether the
function call spans lines. If the entire function call fits on a line, a function call is no
different from most simple statements. A hook is produced on the line, as long as there
is no other hook on that line (because another statement preceded the function call on
the same line).

If a function call spans lines, one hook is always generated on the line in which the
parenthesis occurs that closes the function call. On the other lines, hooks are generated
only if code is generated. (Because a certain amount of optimization is performed even
when the debug option is used, you cannot always determine which statements cause
machine code to be generated.)

Specifying Hooks with the HOOK-TYPE Argument

As mentioned in the previous section, you can specify places (hooks) in a program in
which you want to interrupt execution. You do this with the HOOK-TYPE argument.
Table 12.1 on page 136 shows values that you use for the HOOK-TYPE argument.

Table 12.1 Values for the HOOK-TYPE Argument

Specifier Location!

* at every line-hook in every function or section
(compiled with debug).

line-num at a source line number /ine-num in the current
function. (line-num is an integer.)

line-numl:line-num2 at all source lines between line-numlI and
line-num2, inclusive in the current function.
(line-num1 and line-num?2 are integers.)

Using Debugger Commands

A HOOK-TYPE Argument

137

Specifier Location!
c{alls} at all calls by function, and at all returns to the
functions. The context in both cases is that of
the calling function.
e{ntry} at entry to all functions. The context is that of
the called function.
Automatic variables of the called function are
not yet allocated and, therefore, cannot be
examined. The values of formal parameters,
however, can be examined.
r{eturn} at all returns from the called functions. The
context is that of the returning function.
FUNCTION-NAME/ at every hook in the specified function or section
(SECTION-NAME) * (compiled with the debug option).
FUNCTION-NAME/ at a source line number in the specified function
(SECTION-NAME) line-num or section. ([ine-num is an integer).
FUNCTION-NAME/ at all source lines between line-numl and

(SECTION-NAME) line-num1:line-num?2

FUNCTION-NAME/
(SECTION-NAME) c{alls}

FUNCTION-NAME/
(SECTION-NAME) e{ntry}

FUNCTION-NAME/
(SECTION-NAME) r{eturn}

line-num?2, inclusive in the current function or
section. (line-numl and line-num?2 are integers.)

at calls from the specified function, or at calls
from all functions in the specified section. For
each call, the debugger breaks twice: when the
specified function calls and on return to the
specified function. In both cases, the calling
function determines the context.

at entry to a called function or to all called
functions in a section.

Automatic variables of the called function are
not yet allocated and, therefore, cannot be
examined. The values of formal parameters,
however, can be determined.

at return from a called function or from all
called functions in a section. The context is that
of the returning function or functions.

1 Some source lines, such as lines that contain a FOR statement, may actually contain more than one hook,

as described in the previous section.

Examples of Specifying Hooks

The following examples of the break command illustrate the use of the HOOK-TYPE

argument:

break *

sets breakpoints at all line hooks; that is, at all program lines with executable code.

break 25

sets a breakpoint at line 25 of the function that you are in.

break 18:22

sets breakpoints at lines 18 through 22 of the function that you are in.

break calls

sets breakpoints at calls from all functions.

138

EXPRESSION Argument A Chapter 12

break entry
sets breakpoints at entry to all functions.

break return
sets breakpoints at return from all functions.

break suba *
sets breakpoints at all line hooks in the function called suba.

break main 15
sets a breakpoint at line 15 of the function named main.

break main 101:135
sets a breakpoint at each line in the function main between line 101 and line 135,
inclusive.

break (subl) *
sets a breakpoint at every line in the compilation called subl.

break checkup c
sets breakpoints at calls from the function checkup. The context is that of
checkup. For each call, there is a breakpoint at the call from checkup at the
return to checkup.

EXPRESSION Argument

The EXPRESSION argument is used with several commands, including assign,
copy, dump, monitor, print, transfer, watch, and whatis. In addition, this argument
can be used as part of a WHEN clause to express a condition in commands, such as
break, trace, and on.

The EXPRESSION argument can be certain valid C and C ++ expressions. An
expression is a sequence of operators and operands that

O specifies computation of a value

O designates an object or a function

O produces side effects

o performs a combination of the above.

In other words, an expression is a construction consisting of one or more operators
and operands, ranging from the simple to the complex. Variable names, function calls,
constants, literals, array names and references, and structure references are all
considered expressions. The SAS/C Debugger supports expressions such as the
following examples:

i

i+ 3

i * (a + b)

!strcmp(s, d)

((struct xyz *) 0pl2345678)->a.b
arr[i] .xyz->b

strlen(s) == strlen(d)

p == &x && q != &y

The expression’s order of evaluation follows the operator’s rules of precedence and
associativity. Table 12.2 on page 139 provides a list of the operators that are supported
in expressions and operator precedence.

You make an integral constant unsigned by specifying the U suffix. Similarly, use the
L suffix to make an integral constant long, using L either alone, or combined with u.

Using Debugger Commands /A Operators Supported in Expressions 139

Some restrictions exist on what you can substitute for the EXPRESSION argument
with certain debugger commands. For example, what you substitute for EXPRESSION
with the dump command must evaluate to a pointer, address, or array. Also, the
resulting size for some commands (such as dump) depends on the type of EXPRESSION.
For example, with the dump command, if the EXPRESSION is a pointer, then the size of
the pointed-to object is dumped; if it is an array, the result is the size of one item of the
array, and so on.

Constant pointers in an expression must be typed with leading Op. A value such as
0p12345678 behaves the same as ((char *)0x12345678) in expressions. 0p12345678
is a short form for ((char *) 0x12345678).

Operators Supported in Expressions

Table 12.2 on page 139 lists the operators that you can use in expressions. They are
grouped in order of highest to lowest precedence. The associativity is indicated by R-L
(right-to-left) or L-R (left-to-right).

Tahle 12.2 Operators Supported in Expressions

Operators Meaning Associativity
[1] array element L-R
) function call L-R
structure/union member reference L-R
-> structure/union member pointer L-R
sizeof size of an object R-L
(type-name) cast (type conversion) R-L
~ bitwise negation R-L
! logical negation R-L
- unary minus R-L
+ unary plus R-L
& address of R-L
* pointer R-L
* multiplication R-L
/ division L-R
% modulus L-R
- subtraction L-R
+ addition L-R
<< left shift L-R
>> right shift L-R
< less than L-R
> greater than L-R

<= less than or equal to L-R

140 Functions That Can Be Used in Expressions A Chapter 12

Operators Meaning Associativity

>= greater than or equal to L-R

== equal to L-R

1= not equal to L-R

- bitwise exclusive OR L-R

| bitwise OR LR

&& logical AND L-R

|| logical OR L-R
scope resolution L-R

For more information about these C operators, see a C language manual.

Functions That Can Be Used in Expressions

You can use the following functions in expressions:
O memcmp
O strcmp
O strlen

Casts

A cast is an operator (unary) that converts the value of its operand to a specified
type. For commands that take expressions and for the WHEN clause, you can cast an
expression or object identifier to a different type by explicitly specifying the type within
parentheses. The debugger accepts the following casts:

(TAG *)

(struct TAG *)

(union TAG %)

(enum TAG *)

(basic-arithmetic-data-type *).

Zero or more * can be specified, as long as the result is semantically valid. In many
cases, the TAG format for arguments is useful with these commands. Specifying an
argument that is an address, such as * (struct tag*) address enables you to refer to
storage that starts at any absolute address (ADDRESS) with the mapping of a structure,
union, or enumeration of the type named by TAG. For example, the following refers to
storage starting at the address in 0p23456789 with the mapping of struct listall:

*(struct listall *) 0p23456789

Note: The struct, union, or enum keywords can be dropped from the cast if no
ambiguity is introduced. A

Structure and Union Members

You can access a member of a structure by specifying the pointer and the structure
member name. For example, suppose ptag is declared to be a pointer to a structure
named TAGO that has a member named mem0. You can access mem0 as follows:

Using Debugger Commands /. Debugger Variables M4

ptag->mem0

You can also access memory, using the mapping of a different structure, by casting
the pointer to the appropriate pointer type. For example, ((struct TAGl *)ptab) is a
pointer to structure TAG1. You can access meml as follows:

((struct TAGl *) ptab)->meml

If you are working with absolute addresses, you can specify an absolute address with
a cast to obtain a pointer to a structure. ((struct TAG2 *)0p00123456) is a pointer
to structure TAG2. A member mem2 of the structure can be accessed as follows:

((struct TAG2 *)0p00123456)->mem2

Macros

Expressions can contain macros that are defined (with a #DEFINE statement) in
your program. Macros can be specified in any arithmetic expression. At the time of
expression evaluation, the debugger replaces any macros in the expression with their
replacement text. The maximum length of the replacement text that is supported by
the debugger is 1,536 characters. If the replacement text is another macro, further
substitution takes place. The debugger is capable of processing only macros without
arguments.

The debugger is sensitive to the case of the macro and distinguishes between upper-
and lowercase macro names.

To access macros in your program from the debugger, you must compile your program
with the dbgmacro option. See Chapter 4, “Compiler Options,” on page 57. In addition,
except for the debugger whatis command, in order to do macro substitution in an
expression, you must set the debugger keyword cmacros. This keyword is set with the
auto command. By default, cmacros is not set.

The whatis command is used to display the replacement text of a macro. With
whatis, macro replacement is always done, regardless of the setting of the cmacros
keyword. If you set the cmacros keyword, however, you also can use the print
command to display the replacement text for a macro.

Debugger Variables

Debugger variables are used to represent the value that is contained in one of the 16
general purpose registers, one of the 4 floating-point registers, or the current
instruction address. You can use debugger variables in any command that supports
expressions; however, they cannot be modified. Table 12.3 on page 141 lists the
debugger variables along with the type that is assumed by the debugger.

Table 12.3 Debugger Variables

Variable Name Description Type

$r0 to $r15 General purpose registers 0 char *
through 15

$RO to $R15 Aliases for $r0 to $r15

$10, $12, $f4, $f6 Floating-point registers 0, 2, 4, double

or 6

142

Summary of Types of Expressions A Chapter 12

Variable Name Description Type
$F0, $F2, $F4, $F6 Aliases for $f0, $f2, $f4, and $f6
$iad Current instruction address char *

($iad is not case sensitive.)

If the debugger is stopped at the calls or entry hook of a function call, the debugger
variables contain the caller’s values. However, if the debugger is stopped at the return
hook, they contain the callee’s values.

If your program returns an integral or pointer value, $r15 contains the return value.
$f0 contains the return value if the program returns a floating-point value. In either
case, the return address in the calling function is provided by $r14.

Summary of Types of Expressions

Table 12.4 on page 142 shows the types of expressions that you can use in the print
command and other commands. See also the individual commands in Chapter 14,
“Command Directory,” on page 187 for any restrictions that exist in substitutions for
the EXPRESSION argument.

Table 12.4 Types of Expressions That Can Be Used in print and Other Commands

Type Description

1 arithmetic For example, a variable (v) is declared:
long v; unsigned long v;
long long v; unsigned long long v;
int v; unsigned int v;
short v; unsigned short v;
char v; unsigned char v;
double v; enum TAG v;
float v;

2 pointer For example, a variable (v) is declared as a pointer to
any type (T):
T *v;

3 structure, union or class A variable (v) is declared:
struct {...} v;
union {...} v;
class {...} v;

struct TAG v;
union TAG v;
class TAG v;

4 array A variable (v) is an array of any type (T) declared:
T v[CONSTANT];

(CONSTANT is a decimal integer).

5 address The value (v) is specified to the debugger as an
absolute address (any integer constant) or is a
variable name preceded by the & operator (&v)
(function names are excluded).

6 enum constant The value (v) is an enumeration constant.

Using Debugger Commands /A VALUE Argument 143

Type Description

7 bitfield A variable (v) is a bitfield, for example:
unsigned v : BITS;

(where BITS is a decimal integer).

8 function If v is a function, then *V is a function pointer.

Output Formats

When you issue the print command with only a single argument (EXPRESSION),
the value of the expression that you specify is formatted according to its type (defined in
Table 12.4 on page 142). The output formats are described in Chapter 14, “Command
Directory,” on page 187.

Note: The format that is natural for the value’s type is always used.

SCALAR-TYPE-EXPRESSION Argument

SCALAR-TYPE-EXPRESSION is an expression whose type is arithmetic, pointer, or
bitfield. For example, the following assign command assigns the address of
int_variable to a pointer name int_ptr.

assign int ptr = &int_variable

In this example, int_ptr is a SCALAR-TYPE-EXPRESSION argument and
int_variable is a VALUE argument. See “VALUE Argument” on page 143 for more
information.

AGGREGATE-TYPE-EXPRESSION Argument

AGGREGATE-TYPE-EXPRESSION is an expression of type structure or union. (It
cannot be an array.) For example, the following assign command assigns values from a
value list to a structure named numbers:

assign numbers = {1,2,3}

In this example, numbers is an AGGREGATE-TYPE-EXPRESSION argument, and
{1,2,3} is a VALUE-LIST argument.

VALUE Argument

VALUE is an expression whose type is one of the following:
constant
address

m|
m|
O expression of scalar type
O enumeration constant

m|

array name.

You can assign a value to any scalar expression that is visible at the point at which
you issue the assign command. To refer to an identifier in an active function that is
different from the function that you are in, precede the identifier by the function name
and a colon. As discussed in “Specifying Identifiers Outside the Current Function” on
page 147, the general form of this argument is FUNCTION-NAME:IDENTIFIER.

144

COUNT Argument A Chapter 12

COUNT Argument

With the print command, COUNT is an integer constant that specifies the number
of items to be printed. For example, if records is a structure, the following print
command prints the first five elements of the structure in the format of the element.

print records 5

You can also use the COUNT argument with the dump command to specify the
number of bytes to dump. For example, if ptr is a pointer, the following dump command
will dump the first ten bytes of storage beginning at the location pointed to by ptr.

dump ptr 10

PTYPE Argument

A PTYPE argument can be one of the following:

0 a native C type

O a structure, union, or enum type

O a type created with a typedef

O a pointer to any of the above.

PTYPE can be specified for an EXPRESSION argument that belongs to type 1, 2, or

3 in Table 12.4 on page 142. You cannot use a PTYPE argument with the other types.
Native C types include

char signed char unsigned char

int signed int unsigned int

long signed long unsigned long

long long signed long long unsigned long long
short signed short unsigned short
double

float

When you specify a PTYPE, the EXPRESSION argument acquires the type indicated
by PTYPE and is displayed using the rules for that type. If you do not specify a PTYPE,
the default is the type that is associated with the expression in the program. For
dereferenced absolute addresses, the default is char.

Note: One caution is necessary about structure types and typedefs. If you have a
structure in your program and a typedef with the same type identifier, then using the
identifier by itself (with no struct identifier) refers to the typedef, not the structure.
For example, with a structure type of buf and a typedef of buf, the following command
prints the storage that is referenced by newvar with the PTYPE of the typedef buf:

print newvar (buf)

Use struct to obtain the PTYPE of the structure buf, as in the following example:

print newvar (struct buf)

If you specify only a type identifier, the debugger searches for a typedef first. If the
identifier is not found in the list of typedefs, the debugger searches the list of
structures, unions, and enumerations next.

To find a description of a type, the debugger follows the normal C-scoping rules that
are applicable to the place at which execution is halted. As with expressions and

Using Debugger Commands /A Example 2 145

identifiers, you specify a PTYPE as a type that is defined within the scope of a function,
FUNCTION-NAME, using the following syntax:

FUNCTION-NAME:TYPE

FUNCTION-NAME is any function in the calling sequence. TYPE is a struct,
union, or enum type identifier, or a type that is defined with a typedef. For example,
the following command prints the value of x using the type xyz:

print x (subl:XYZ)

XYZ is a type within the scope of subl.

The following are more examples of the PTYPE argument. Some examples are
acceptable; others (marked with a ¢) are unacceptable. Each example includes a
declaration and a list of print commands and results.

Example 1

Declaration:

int arr[5] ; /* assume arr begins at 0pl5880 */

Command Result
p arr arr : 0p00015880
- p arr (int) LSCD148 Array variable cannot be displayed using a TYPE/cast.
- p arr (XXX) LSCD148 Array variable cannot be displayed using a TYPE/cast.
Example 2

Declaration:

struct XXX int a; short b,c; ;

typedef int INTARR[2]

int x,y,z; /* assume x begins at 0pl0000 */
/* assume x=10; y=20; 2z=30; */

Command Result

P x x : 10 (0x0000000a)

- p x (INTARR) LSCD148 Casting to an array type (INTARR) is not
allowed.

P x (int *) x : 0p0000000a

- p x (union XXX) LSCD148 Invalid TYPE/cast “XXX” specified.

146 Example 3 A Chapter 12

Example 3
Declaration:

struct XXX {int a,b;} x={1,2};
struct YYY {int c,d,e,f;} y=3{,4,5,6};

Command Result
p x.a x.a : 1 (0x00000001)
p x.a x.b : 2 (0x00000002)
P x (int *) x : 0p00000001
P v (XXX) &y : 0p00015880
y.a : 3 (0x00000003)
y.b : 4 (0x00000004)

Example 4
Declaration:

struct Z2zz ({
int a;
double di1;
Yi
struct ZZ7 yyy;
struct ZZ7Z *xp = &yyy;
/* assume xp—a = 5 and xp—dl=3.24} */

Command Result

P *xp &(*xp) : 0p00015880
(*xp) .a : 5 (0x00000005)
(*xp) .dl: 3.24

P Xp— xp—a : 5 (0x00 000005)

Example 5
Declaration:

enum fruit apple, orange, pear, peach;
enum fruit f1, £2;
int i =1, j = 5;
f1
f2 = pear;

apple;

Using Debugger Commands /A Specifying Identifiers Qutside the Current Function 147

Command Result

p fl £1:0 (apple)

p f2 f2:2 (pear)

p i (enum fruit) i:1 (orange)

- p j (enum fruit) j:5 (constant not in list for enum type fruit) -
p peach peach:3 (enum constant)

%FMT Argument

The %FMT argument is any of the format specifiers that you can use with the
sprintf function. They include the following:

c single character

d decimal signed integer

eorE exponential floating point

f fixed-decimal floating point

gor G f format or e format

11 long long

o octal integer

s character string

u decimal unsigned integer

x hexadecimal integer (lowercase)
X hexadecimal integer (uppercase)

The format specifier must result in the item being formatted in 256 characters or
fewer. Also, if the EXPRESSION argument in the print command contains a modulus
operator %, you must escape the modulus with a backslash \; otherwise, the debugger
interprets the modulus as a format specifier. The only exception to this rule is modulus
operators that are inside parenthesized expressions.

Specifying Identifiers Outside the Current Function

For arguments of the types that are used in a WHEN clause or those accepted by
commands that take expressions, you can specify a variable or a tag in a function in the
calling sequence that is different from the current function.

To specify a function that is different from the function that you are in, use the
following argument format:

FUNCTION-NAME:IDENTIFIER
FUNCTION-NAME is the name of a function in the calling sequence. The function

must be active. (Use the where command [placeholder] to determine if a function is in
the active calling sequence.)

148

ANSI Differences A Chapter 12

For example, suppose your program has three functions: subl, sub2, and sub3. subl
calls sub2, and sub2 calls sub3. A variable named check is declared in sub2 as auto
int check. Assuming that check is visible at the point that sub2 called sub3, you can
print the value of check from sub3 using the following command:

print sub2:check

The colon is part of the syntax.
To print the sum of two variables in different functions, a in suba and b in subb , use
the following command:

print suba:a + subb:b

Note: You can also specify identifiers outside your current function by changing
command scope. The scope command is used to change command scope. See “Using
the Status Window” on page 20 for a discussion of command scope and Chapter 14,
“Command Directory,” on page 187 for information about the scope command. A

ANSI Differences

The SAS/C Debugger treats expressions differently from the ANSI Standard in the
following ways:

pointer subtraction
pl—p2 is permitted even if pl and p2 point to types that are not compatible,
provided that objects pointed to have the same sizes.

relational/equality operators
pl operator p2 is permitted, even if p1 and p2 point to types that are not
compatible. p operator i is permitted, where p is of pointer type and i is of
integral type and is positive.

sizeof expression
expression is actually evaluated in the sizeof calculation.

Windowing Interface and Command Execution

This section describes window subcommands, how to issue commands, and how
placeholders are used in debugger commands.

Window Operations and Window Subcommands

This section explains window commands that are issued outside the PROFILE and
configuration files. See Chapter 3, “Debugger PROFILEs, Configuration Files, and
EXECs,” on page 41 for information about the window command in a PROFILE or
configuration file.

The window command is used to perform a variety of window functions: clearing
windows, closing windows, moving windows, opening windows, resizing windows,
scrolling windows, and so on. Each of these functions is performed by a subcommand of
the window command. For example, to use the scroll source up subcommand, you
type window scroll source up; scroll is a subcommand of the window command.

Using Debugger Commands /A Methods of Issuing Commands 149

On completing its execution of most window-oriented commands, the debugger does
not move the cursor out of the window. Therefore, the following commands, which are
issued when the debugger is running, are useful when they are assigned to PF keys:

Table 12.5 Useful Commands to Assign to PF Keys

Command Description

autopop automatically pops (unobscures) the window when updated.

border specifies the characters used to form window borders.

clear® clears the named window.

close® closes the named window.

color® changes the color, attributes, and intensity of various areas in a
window.

context® controls the amount of context information around the highlighted

line in the Source window.
move* moves the named window.

next positions the top window at the bottom of the stack. The window
below the window just moved becomes the top window.

off switches the debugger to line mode.

on switches the debugger to full-screen mode.

open* opens the named window.

previous positions the bottom window at the top of the stack and makes it the

top window.
resize® resizes (grows or shrinks) the window.

scroll* scrolls windows (up and down, and left and right), as well as changes
the scroll amount.

top* positions the named window at the top of the stack. The physical
cursor appears in this window at the place of the logical cursor. The
window becomes the top window.

trace}* controls the production of trace lines in the Log window.
zoom* zooms the named window. If already zoomed, the window is
unzoomed.

* These subcommands take a window name as a parameter.

The usual abbreviation conventions, which apply to all debugger commands, also
apply to these subcommands. A complete description of each subcommand is provided
in Chapter 14, “Command Directory,” on page 187.

Methods of Issuing Commands

Commands can be issued by typing them in the Command window and pressing the
ENTER key. However, this can be quite cumbersome for frequently used commands, for
example, scroll up, scroll down, and close.

Window commands, like most other commands, can be assigned to PF keys. See
“Using PF Keys” on page 27 for details about default PF key assignments and how they
may be modified.

150

Placeholders in Commands A Chapter 12

Placeholders in Commands

Many commands, including window subcommands and commands that take
expressions as arguments, can be assigned to PF keys using a placeholder to indicate
the position at which an argument is to be inserted. If a command contains a
placeholder, then the position of the cursor is used to determine the value of the
argument that is inserted in place of the placeholder.

Using Placeholders in Window Subcommands

Several of the window subcommands take WINDOW-NAME as a command
argument. If you want to use the cursor to point to the window, a placeholder (syntax
< >) is used in these subcommands instead of the window name.

The following example illustrates the use of placeholders with window subcommands.
Most windows can be scrolled back using the following command:

window scroll WINDOW-NAME up

You could assign this command to a PF key as a text string, substituting the name of
a window for WINDOW-NAME. Whenever you press the assigned PF key, the window
would be scrolled up. However, you can also assign the following command to a PF key:

window scroll < > up

Pressing the PF key that is assigned to this command causes the window that the
cursor is in to scroll up.

Placeholders in Commands That Take Expressions

You can also use placeholders with commands that take expressions, thus simplifying
the execution of frequently used expression-handling commands. One or more
placeholders, < >, can be specified in a command that is assigned to a PF key. When
you issue this command by pressing the PF key, you can use the cursor to point to the
expression that replaces all occurrences of the placeholder in the command.

For example, the print command can be submitted, like any other command, in the
Command window. However, as print is one of the most commonly used commands to
display expressions, you can assign print < > to a PF key. Moving the cursor to an
expression and pressing that PF key would cause the debugger to replace the
placeholder with the expression, and issue the print command.

Similarly, in an application that performs much text-string manipulation, you may
frequently issue a dump expression str command. You can assign dump < > strtoa
PF key. Moving the cursor to an expression and pressing that PF key would cause the
debugger to replace the placeholder with the expression, and dump the string.

Expression extraction Expressions occupying contiguous characters on one line in a
window can be substituted for a placeholder in a command that is assigned to a PF key.
The process of extracting an expression for substitution in a command is referred to as
expression extraction. If the area of the window that contains the expression is
unprotected, you can modify the expression before extraction.

The debugger uses an algorithm to identify the portion of the expression that
replaces the placeholder. The rules for determining the extracted expression are
described in the following section.

Extracting Expressions

The debugger uses an algorithm to extract expressions from the surrounding text.
The debugger first does a preliminary backward scan until it encounters one of the

Using Debugger Commands /A Extracting Expressions 151

following characters: a left parenthesis, a right parenthesis, a left bracket, or a
character that is valid in an identifier. For debugger purposes, $ is also considered to be
a character that is valid in an identifier. (If the debugger is already on such a character,
this preliminary scan is not needed.) If the backward scan cannot find one of these
characters, there is no expression to be extracted. Processing then depends on the
character that is encountered:

o If the character is a left parenthesis, the debugger scans forward through all text
until it sees a matching right parenthesis that is considered part of the expression.
Both parentheses are also included in the expression.

o If the character is a right parenthesis, the debugger scans backward through all
text until it sees a matching left parenthesis that is considered part of the
expression. Both parentheses are also included in the expression.

o If the character is not a parenthesis, it must be a left bracket or a character that
is valid in an identifier. This position is marked as the tentative end.

Note: If this character that is valid in an identifier is not part of an identifier,
results may be unpredictable. A

A backward scan now begins, either from the character in question (if it is valid
in an identifier) or from the character that is before the character in question (if
on a left bracket). The debugger scans over characters that are valid in identifiers,
dot operators, and arrow operators. White space terminates the scan. If it
encounters any right brackets in the backward scan, all text (including white
space) up to the corresponding left bracket is automatically included, and the scan
then resumes. Any right parenthesis that immediately precedes a dot or arrow has
the result that all text up to the corresponding left parenthesis is automatically
included. The position at which the scan terminates marks the start of the
expression to be extracted.

A forward scan is done next from the tentative end to obtain the actual end of
the expression to be extracted. If the tentative end was a left bracket, the forward
scan ends at the corresponding right bracket; otherwise, the rest of the identifier is
scanned.

Table 12.6 on page 152 illustrates how the expression to be extracted depends on
cursor position. When you read the table, assume the cursor is at the position shown in
the expression in the first column. The third column shows the extracted text. The
examples illustrate what would happen if the cursor were in one of several positions. In
those cases, the cursor appears somewhere within the range indicated by the text
shown in the second column of Table 12.6 on page 152.

152 Extracting Expressions A Chapter 12

Table 12.6 Placeholder Expression Extraction

Window Text Cursor Position! Extracted Text
pntr[str.ind] [5]->meml.mem2 mem2 pntr[str.ind] [5]->meml.mem2
pntr[str.ind] [5]-> meml.mem2 meml pntr[str.ind] [5]->meml.
pntr[str.ind][5]->meml.mem2 5]-> 5

pntr[str.ind] [5]->meml.mem2 [pntr[str.ind][5]
pntr[str. ind][5]->meml.mem2 ind] str.ind

pntr[str.ind][5]->meml.mem2 str. str

pntr [str.ind][5]->meml.mem2 [pntr[str.ind]
pntr[str.ind] [5]->meml.mem2 pntr pntr

(atb-c)) (at+b-c)

(at+b-c) ((at+b-c)

zb=5)—> aa.bb aa. (pt+5)->aa

(*p). aa.bb aa. (*p) .aa

1 Al of the ranges listed in the Cursor Position column include a leading blank space except for mem2 and pntr. Placing
your cursor in the leading blank returns the extracted text the same as placing your cursor within the rest of the range.

As shown by Table 12.6 on page 152, arbitrary expressions may be extracted by
surrounding them with parentheses.

When the cursor is moved under the expression that is to replace the placeholder,
and one of the methods described in “Methods of Issuing Commands” on page 149 is
used to execute the command, the debugger extracts the expression and substitutes it
for the placeholder in the command being issued.

The algorithm used by the debugger to extract expressions does not handle numeric
constants; positioning the cursor on numeric constants may lead to unpredictable
results. However, numeric constants can be specified as part of an expression enclosed
in parentheses.

153

CHAPTER

13

Window Directory

List of Windows 153

Browse Window 154
Opening a Browse Window 154
Filename Syntax 155
Moving Around the Text File 155
Order of Processing 155

Command Window 156

Config Window 157

Dump Window 162

Find Window 164

Help Window 164

Keys Window 166

Log Window 167

Message Window 169

Popup Window 170

Print Window 1171

Register Window 172

Source Window 173

Status Window 171

Termin Window 179

Termout Window 181

Watch Window 184

List of Windows

This chapter describes the following windows that compose the windowing interface
for the SAS/C Debugger:

Browse browses text files and displays the output of the browse command.
Command issues debugger commands.

Config displays or changes window configuration settings.

Dump dumps memory contents.

Find searches for strings.

Help provides debugger help information.

Keys displays or changes PF key settings.

Log displays the session log.

Message displays debugger messages that do not request information.

154 Browse Window A Chapter 13

Popup requests additional information.

Print displays the value of an expression.

Register displays register contents.

Source displays source code.

Status displays status information.

Termin accepts operater input for terminal input requests.
Termout displays terminal output.

Watch displays changing values of expressions.

A summary of each of these windows is provided in the following sections. See
Chapter 2, “The Windowing Interface,” on page 11 for additional information about
using windows.

Browse Window

The Browse window, shown in Figure 13.1 on page 154, is used to browse text files
and to display the output of the browse command.

Figure 13.1 Browse window

I
HelpiPFL —Step— HAIN-—-Entry

T T T e et

H Hodule: HATN line: 1
H 1 #include <stdia h»
2

H 3 void getnamelcher #). prinamelchar #): H

H 4 H

; =

H [H

H 7 char sl B0 H
]

9 getnawe (str):
10 prinawelstr):

The Browse window has the following characteristics:
0 The window border is optional.

0 The top line contains the name of the displayed file and the next line contains the
number of the top-most line that is displayed in the window.

0 The lower portion of the window contains two areas that display the line number
of the file that is displayed and the text of the file.

0 The text area is 252 characters wide, only a portion of which is visible at one time.

0 The maximum text file line length that is supported in full-screen mode is 252.

O The amount of memory that is used for browse buffers is controlled through the
window memory command or the Config window. If the amount of memory for

buffers is changed, any Browse windows that are opened after the change will
have the new value.

Opening a Browse Window
The following command opens a Browse window:

window open browse

Window Directory /\ Order of Processing 155

As many as six Browse windows can be open simultaneously.
You can also use the browse command to open up a Browse window. See the section
“browse” on page 200 for more information.

Filename Syntax

If an explicit style precedes the filename that is specified in the File: field of the
Browse window, the debugger uses the style that is specified. If not, the debugger
assumes a tso: style filename under OS/390 and a cms: style filename under CMS. See
SAS/C Library Reference, Volume 1 for more information about filename specifications.

Moving Around the Text File

Scrolling vertically by using the window scroll up and window scroll down
commands moves the data in both the line-number and the text areas of the Browse
window. Scrolling horizontally by using the window scroll left or window scroll
right commands moves only the text and not the line numbers.

Scrolling is a simple and fast way to move to lines that are close to the lines that are
currently displayed. A faster way to move to distant parts of a text file is to type the
line number in the Line: field of the Browse window.

You can see a different text file in the Browse window by typing its filename in the
File: field.

If you type either an invalid filename in the File: field or an invalid line number in
the Line: field, a pop-up window opens that enables you to correct the invalid input.

The window find command is also supported in the Browse window.

Order of Processing

If you specify input in more than one field of the Browse window, the data is
processed in the following order:

1 File: field

2 Line: field.

156 Command Window A Chapter 13

Command Window

Display 13.1 Command Window

— —
Help:PF1 --Step—- ———-————- HAIN-—Entry

//cms:wdcntBa c X
Module: COMP1 Line: 12
1

2

13 wordl ist *head;

14

15 £k - MAIN X/
16 /% Open input file and call readin Xf
17 K Xf
%g void main()

g? FILE Xinput; /¥ input file %/

22 if ((input=fopen(”"WORDCHT INPUT",”r")) != HNULL)

23 /¥ open input file %/

24 readin(input);

25 else §

Log
Set system breakpoint at BBechh84 to activate the ESCAPE command.

Cdebug: I

DESCRIPTION

The Command window issues debugger commands. It is one of the four primary
windows. The other primary windows are Status, Source, and Log. In Display 13.1
on page 156 the Command window is identified by the cdebug: prompt on the
bottom line. Normally the Command window is displayed as shown, without a
border and on the bottom line of the display. Like all the primary windows, the
Command window is always open, even when it is obscured by an overlying
window. Therefore, for purposes of the window command, it is a class 1 window.
See “window” on page 280.

Issuing commands The Command window has two fields: a protected field
that is used to display the cdebug: prompt and a nonprotected command entry
field. Debugger commands are typed into the command entry field, which starts
immediately to the right of the cdebug: prompt. You issue the command when
you press the ENTER key. If a command is too long for the window, you can type
it into the Log window by using a backslash for continuation.

Recalling commands As you issue commands, they are maintained by the
debugger in a circular list. However, issuing the same command more than one
time in succession results in only one copy of the command being maintained in
the list. You can cycle through the list by using the window scroll < > up
(PF19) and window scroll < > down (PF20) commands. You can recall
previously issued commands by pressing the ENTER key. You can change recalled
commands by typing over them before they are issued.

The previously issued commands are accessed in the order they were issued; as
the list fills up, the oldest commands are deleted. You can use the window clear
command to clear this list. The number of commands maintained in the circular
list depends on the amount of memory that is allocated for the Command window.
(The amount of memory that is allocated for window buffers cannot be changed
during a session.) Each command requires one byte of storage for each character

Window Directory /A Config Window 157

in the command plus three bytes for overhead information. You can specify the
amount of memory that is used for this list with the window memory command.

ADDITIONAL DISCUSSION
“Using the Command Window” on page 19

SEE ALSO
The window command for the following:
0 “Log Window” on page 167
0 “Source Window” on page 173
O “Status Window” on page 177

Config Window
The following displays show the Config window. After you open the window, use the
window scroll < > up (PF19) and window scroll < > down (PF20) commands to

display the entire Config window.

Display 13.2 Config Window, View 1

Config
Save: H Config file:
Border characters char(hex) char(hex)
Top left r ac Top right hc
Horz border - bf Vert border] fa
Bottom left - ab Bottom right bb
Scroll amount: cursor
Source window context: Border: 2 Jump: 18
Hemory al located to buffers: Browse: 8168 Command: 18868
Log: 128688 Source: 126688

Log Window Trace On: H

Window configuration and autopop status:
Hindow name Row Col Height Width Border Autopop
18 58 N

Brouwse B8 38 Yy
Command 31 8 1 88 N
Config B 8 32 38 ¥ N
Dump a a 16 8a Yy N
Find 14 11 q 58 ¥ N
Help a a 16 8a Y N
Keys a a 14 8a hs N
Log 18 a 13 8a ¥ N
Hessage 13 a 3 8a ¥ N
Popup 14 B 4 18 Y N
Print a a 16 8a Yy N
Register B a 11 75 ¥ N
Source 1] 17 88 hs N
Status a a 1 8a N N
B Termin B 8 5 868 Y Y

158 Config Window A Chapter 13

Display 13.3 Config Window, View 2

Config |
B Termin a8 5] 5 g8 ¥ Y
Termout a a 16 8a hs Y
Watch a a 18 8a ¥ Y
Window coloring: . .
_Area Color Attribute Intensity
Browse window horder cyan reverse high
various prompts yel low none high
browse parameters red none low
line number and text areas cyan none low
Command window border red reverse high
Cdebug: prompt yel low none high
command line input area cyan none low
Confi? window horder magenta reverse high
titles & protected text yel low none high
unprotected text red none low
Dump window border cyan reverse high
various prompts yel low none high
dump parameters red none low
hex and character dump cyan none low
Find window horder cyan reverse high
prompts yellow none high
input areas red none low
Help window horder magenta reverse high
Display 13.4 Config Window, View 3
Config_
Keys window border magenta reverse high
ey names o yellow none high
ISPF? & Key definitions red none low
Log window border hlue reverse high
Ehugger output red none | ow
echoed commands cyan none high
echoed terminal input white none low
echoed terminal output yel low none low
Hessage window border red reverse high
message cyan none low
Popup window horder red reverse high
message cyan none high
prompt yel low none low
input area red blink low
Print window horder cyan reverse high
various prompts yel low none high
print parameters red none low
value of expression cyan none low
Register window border cyan reverse high
register names and values yel low none low
Source window horder green reverse high
various prompts. yel low none high
module name & |ine number red none low
line number and text areas cyan none low

Window Directory /A Config Window 159

Display 13.5 Config Window, View 4

Config
Source window border green reverse high
various prompts yel low none high
module name & line number red none low
| ine number and text areas cyan none low
line stopped at cyan reverse high
Status window border red reverse high
help information magenta reverse high
reason for break cyan none high
run scope cyan none high
command scope cyan none low
Termin window horder cyan rEVErse high
various prompts yellow none high
various settings red none low
“Read...”/"Cont...” status magenta hlink high
input area white none low
Termout window border cyan reverse high
various prompts yellow none high
various settings red none low
“Hore...” status magenta hlink high
output area white none low
Watch window border cyan reverse high
various prompts yellow none high
watch parameters red none low
drop prefix area white blink high
watch name and value cyan none low
DESCRIPTION

The Config window customizes the configuration of the windowing interface. You
can also use the window command to customize these features; however, the Config
window provides a more intuitive and easier method of making configuration
changes.

Display 13.2 on page 157 shows the portion of the Config window that is visible
when you first open the window. You can perform various functions by using the
Config window.

Saving a configuration The top line of the window indicates your current
configuration file and can be used to save the configuration. You can type any
valid configuration filename following the config file: prompt and then save the
configuration to that file by typing a Y at the save: prompt.

Changing border characters The Config window contains six fields that are
used to select border characters: Top left, Top right, Horz border, Vert
border, Bottom left, and Bottom right. These fields are shown with their
default characters in Display 13.2 on page 157. You can change any of the border
characters by typing in a new character or its hexadecimal value according to the
EBCDIC code sequence.

All windows with borders use the same border characters. See Selecting
window, size, position, and borders for details.

Setting scroll amount The Scroll amount: field can be used to specify the
scroll distance. Valid values for this field are as follows:

cursor
scrolls to the position of the cursor

half
scrolls one half page.

max
scrolls to the maximum amount. (Max is a temporary setting that can be used for
the duration of your current session. You cannot specify window scroll amount
max in a configuration file.)

160

Config Window A Chapter 13

page
scrolls one page.

The size of a page is determined by the size of the window that you are scrolling. By
default, Scroll amount: is set to cursor.

Setting Source window context The Source window always attempts to keep a
number of lines of contextual information to surround the current (highlighted) line in
that window. The Config window is used to control the number of contextual lines the
debugger attempts to maintain and the number of lines the debugger is allowed to jump
without centering the current line in the Source window.

The fields that are used to control Source window context are shown in Display 13.2
on page 157. The Border: field is used to enter the minimum number of lines that you
would like to have displayed above and below the current line. If possible, the debugger
maintains this minimum amount of contextual information within the Source window.

The Jump: field specifies the number of lines that can be jumped before the current
line is centered in the Source window. Centering occurs whenever the next line to be
executed is at least the number of lines that are specified away from the current line.

Allocating memory for window buffers The Command, Log, and Source windows
each require buffer areas in memory. You specify the amount of memory to be allocated
by typing the number of bytes at the Command:, Log:, or Source: prompts as shown in
Display 13.2 on page 157. Default and minimum allocation sizes are provided in Table
14.15 on page 291.

Selecting Log window trace line As shown in the Log Window Trace On: field of
Display 13.2 on page 157, trace lines are not displayed in the Log window by default.
However, typing a ¥ in this field selects trace lines. If they are active, trace lines are
displayed in the following cases:

0 each time the debugger gives you control

O at the n — 1 hooks at which the debugger does not give you control, and in the
step n or continue n case

0O when an on command is executed, provided that auto id is active

O when a monitor request occurs.

Selecting window size, position, and borders The Window configuration and
autopop status: fields, shown in Display 13.2 on page 157, are used to select window
size, position, and borders for each of the 15 windows. Each window has the following
fields:

Window name
identifies the window.

Row
controls the starting row from the top of the window. Rows start with 0 and are
numbered from the top to the bottom of the display.

Col
controls the starting column from the left side of the window. Columns start with
0 and are numbered from the left to right sides of the display.

Height
controls window height.

width
controls window width.

Border
determines whether the window is displayed with or without a border.

Window Directory /\ GConfig Window 161

Autopop
selects autopop status. If the status is set to ¥, the window automatically becomes
the top window whenever output is sent to the window and it is at least partially
obscured by another window.

Changing window size, position, or border settings during a session has different
effects depending on the type of window that is changed. The Dump and Print windows
(class 4 windows, as described in “window” on page 280) that are already opened are
not changed; however, any new appearances of these windows reflect the new settings.

All of the other windows (window classes 1 through 3 that are described in “window”
on page 280) are automatically closed and reopened whenever window size, position, or
border settings are changed. If a window is zoomed, it is zoomed when it is reopened.

Displaying borders requires additional display overhead on the part of the debugger
and could result in exceeding the display limitations. These limitations are described in
“Number of Open Windows” on page 37. If you add borders to the following (class 2 and
3) windows and the display limitations are exceeded, then the reopen will fail:

o Config
Help
Keys
Message
Popup
Register
Termin
Watch

O O oo oo d

The following (class 1) windows are always reopened, even if the display limitations
are exceeded:

o Command
o Log

O Source

O Status

However, if the display limitations are exceeded, these class 1 windows are opened
without borders.

You should not use the configuration settings to temporarily move or resize a window.
It is more effective to use the PF2 and PF14 keys, which have been assigned to the
window move < > and window resize < > commands respectively. Using the Config
window can result in moving the information in the window, or in placing the moved or
resized window on top of the Config window.

Selecting window color, attribute, and intensity Each of the 15 windows comprises
a number of areas with display characteristics that can be controlled by the Config
window. The number of areas varies from one to five depending on the window. Display
13.2 on page 157 through Display 13.5 on page 159 show the areas that can be
controlled for each of the 15 windows.

For each window area, you can set the following window coloring characteristics:

Color
selects area color.

Attribute
selects the display attribute for the area.

Intensity
selects either high or low intensity.

162 Dump Window A Chapter 13

Each of these selections is limited by the capabilities of your terminal. When a
selection is made, the characteristic is displayed in the area field of the Config window,
enabling you to easily review the display characteristics of the entire window while the

Config window is displayed.

ADDITIONAL DISCUSSION
“Changing the Window Configuration” on page 26

SEE ALSO

The config and window commands for “Keys Window” on page 166.

Dump Window

Display 13.6 Dump Window

Dump

Expr: new->word

Address: BpBl1f7BbeB Str: ¥ N: 42 Rel: ¥

+08006606 9489agac 89958748 dbdhdbdB 93899592 ¥missing ... linkX
+000ABA 1A 484hdbdbh 94A8381a3 85879699 ag4@4hbdb ¥ ... category ..X
+080882d 4bh489781 a388484dbh 4bdb X. path ... X

DESCRIPTION

The Dump window displays a dump of memory in both character and hexadecimal
format. Output is directed from the dump command to the Dump window in much
the same way as output from the print command is directed to the Print window.
The redirect (> and >>) command prefixes are used with the dump command to
direct the output from a memory dump to either a new or existing Dump window.
See “Directing Commands to a Window” on page 26 for information about the >

and >> command prefixes.
The Dump window provides the following information:

0 The left side of the dump area provides the address of the first byte in each
line. This address will be either absolute or relative. Type your preference at
the Rel: field in the second line of the window. If you select relative
addressing, the offset from the first byte dumped is displayed at the
beginning of each line. The absolute address of the first byte in a dump is

always displayed following the Address:field.

0 The middle portion of the dump area provides a hexadecimal representation
of the contents of memory. Each byte is represented by two hexadecimal
characters. A total of either 8 or 16 bytes is represented on each line

depending on the width of the Dump window.

O The right side of the dump area shows the printable EBCDIC characters that

are contained in the dump.

Unprotected fields Any time a Dump window is displayed, you can use the
following unprotected fields to alter the contents of the dump field:

Expr:

can be any expression within your current run scope that points to a memory
location. This location identifies the first byte in the dump.

Window Directory /A Dump Window 163

Address:
can be any valid hexadecimal address that is specified in 0p format. This
address corresponds to the first byte of the dump.

Str:
can be either ¥ (yes) to indicate a string type dump or N (no) to dump
characters that are not in a string. If Y is selected, the number of bytes that
are typed at the N: prompt is ignored. After a request to dump a string has
been processed, the value of N: is updated to reflect the number of bytes that
are in the string.

can be any number of bytes to be dumped starting with the byte that is
specified by the Address: field. str: should be set to N (no) when you are
dumping a known number of bytes.

Rel:
can be either a Y (yes) to select relative addressing or N (no) to select absolute
addressing. The address area on the left side of the Dump window changes to
reflect the type of addressing that is selected. If the area that follows the
prompt is erased or blank, the type of dump is determined by the dumpabs
setting of the auto command.

Issue a window scroll command or press the ENTER key without modifying any of
these fields to refresh the display in the Dump window.

Typing invalid input in one or more of these fields causes the dump to fail; the
Message window pops up with the reason for the failure, the dump area is blank, and
the invalid input remains in the input fields.

The Expr: and Address: fields work together. If input is typed at both prompts, the
expression that is typed at the Expr: prompt takes precedence and the address that is
typed at the Address: prompt is ignored. However, if Expr: is not modified, and a new
address is provided that follows the Address: prompt, the address is also displayed
following the Expr: prompt when you press the ENTER key.

Window size The first time a Dump window is requested, the window height is
based on the number of bytes being dumped. The window is opened with as many rows
as needed to display the number of bytes specified, provided the height does not exceed
the maximum for this window. The maximum is the height specified for the Dump
window in a configuration file, or half the terminal height by default.

The width that is used is not dependent on the number of bytes that are dumped; it
is always the Dump window width that is specified in your configuration file, or the
terminal width by default. However, window width does determine the number of bytes
that are dumped on each line. This number is always a power of two.

When a Dump window is reused, it is not automatically resized; however, it can be
resized after the dump.

If you dump a large number of bytes, the dimensions may permit only a portion of
the memory that is being dumped to be visible, but you can view the rest by scrolling
the window.

ADDITIONAL DISCUSSION
0 “Using the Dump Window” on page 34

0 “Directing Commands to a Window” on page 26

SEE ALSO
The dump and print commands for “Print Window” on page 171.

164 Find Window A

Chapter 13

Find Window

Figure 13.2 Find Window

+—4tearchinpg the Source window---——-—--—"-------—""-———+

H Qceurvence (first/nextprevious? s B Cose Sencitdve: WO

+——

DESCRIPTION

The find window searches for strings. When you issue the window find command,
the Find window, illustrated in Figure 13.2 on page 164, is opened. If you have not
changed your PF key assignments, you can also use PF17, which is assigned to the
window find < > command, to open the Find window. Once the Find window is
open, you can type the string to be searched for and the occurrence that you want:
f (first), n (next), or p (previous). The search is started when you press the
ENTER key or any PF key

If n or p is specified in the Occurrence: field, the search begins from the
current position of the logical cursor. If this is the first time that the window find
command is being executed in this window, or if the command was last executed in
a different window, occurrence defaults to P for the Log window and n for the
Source and Browse windows.

The search string may contain embedded blanks. By default, searches are not
case sensitive.

In the current implementation, subsequent occurrences may be found by twice
pressing the PF key that is assigned to the window find < > command (PF17 by
default). Pressing the key the first time opens the Find window with the search
string that was used the last time, and an appropriate occurrence parameter.
Pressing the key the second time causes the debugger to accept the contents of the
window and begin searching.

To abort a search after the Find window has been opened, erase the text of the
string.

Help Window

Display 13.7 Help Window

Help

NEXT PREY BTRK INDEX HELP
INDEX
Using Help Hindows
Window Directory

Commands Opening and Closing Wind
Command Directory Hoving Windows
Prefix-Area Commands Resizing Windous
Directing Commands to Windows Scrolling Windows
Formats and command syntax 2ooming HWindows

PF Keys Initial Configuration
Default Assignments Configuration Files
Changln? Assignments PROFILE
Using Placeholders

Error Handling

Window Directory /A Help Window 165

DESCRIPTION
The Help window is used to access the debugger’s help system. You can use the
window open command to open the Help window; however, the help command
provides the most efficient method of opening the window. By default, the help
< > command is assigned to the PF1 key, which provides context-sensitive help
that is based on cursor position.

Hypertext help system The help system is composed of a series of cards that
are displayed in the Help window and linked together by logical concepts. You can
move between cards by selecting the link that connects your current card with
another card to which it is logically related. To select a link and move to another
card, move the cursor to the link and press the ENTER key.

The initial card displayed in the Help window depends on which method you
used to access the help system. The first method, issuing the help command from
the Command window, displays the help system INDEX as shown above. Other
methods of accessing the help system result in different initial cards. For example,
pressing the PF1 key while the cursor is in the Command window displays the
card for the Command window as the initial card in the Help window.

Using hypertext links Regardless of the method that you use to access the
help system, the initial card displayed in the Help window always contains a
series of five navigation links that are displayed on the top line. Navigation links
are used to rapidly move through the help system following a predefined path or to
backtrack through the cards you have previously displayed. The function of these
navigation links is as follows:

NEXT
causes the next card in a predefined series of cards to be displayed.

PREV
causes the previous card in a predefined series of cards to be displayed.

BTRK
enables you to backtrack and review cards that you have already viewed.

INDEX
takes you to the help system INDEX card.

HELP
takes you to the first card in this series of cards providing information about
the help system.

ADDITIONAL DISCUSSION
“Using the Help Window” on page 16

SEE ALSO
“help” on page 224

166 Keys Window A Chapter 13

Keys Window

Display 13.8 Keys Window

Keys
Ispf? Help Key: 1
PF1 N help <>
PF2 N window move <>
PF3 N exit
PF4 H >dump <> str
PF3S N X%/
PFB N /x%/
PF7 H window scroll source up
PF8 N window scroll source down
PF9 N window next
PF18 N continue
PF1l N step
PFl12 N go
PF13 N window zoom <>
PF14 N window resize <>
PF15 N window close <>
PF16 H print <>
PF17 N window find <>
PF18 N /X%/
PF19 H window scroll <> up
PFE8 N window scroll <> douwn
PF2l N window previous
PFE2 N window scroll <> left
PF23 n window scroll <> right

window top command

Cdebug: I

DESCRIPTION
The Keys window is used to control PF key assignments. As shown in Display 13.8
on page 166 , the window displays the debugger commands that are to each of the
24 PF keys. (Your terminal may not have all 24 keys.) The following fields are
used to change default PF key assignments:

Help Key:
is used to assign the help key. By default, this field contains a 1, which assigns the
help < > command to the PF1 key. To specify another PF key as the help key,
type the PF key number in this field. The PF key that is assigned as the help key
is always displayed in the left field of the Status window.

Typing a 0 in the Help Key field, or leaving it blank, indicates that you do not
want a PF key assigned to the help < > command. This gives the PF key its
default assignment and unprotects the field so that you can type a new debugger
command.

key name area
is a protected area that identifies each of the 24 PF keys. Some terminals may not
have all 24 keys. See your terminal documentation for more information.

Ispf?
is located between the key name and the key definition fields. The 1sp£? field is
used to specify that a particular PF key be handled by ISPF instead of the
debugger. When set to ¥, the key is handled by ISPF; N is the default, causing the
key to be handled by the debugger.
To select ¥, use the ISPF interface to invoke the debugger.

key definition area
is used to assign a debugger command to a PF key. Each PF key has a key
definition field that contains the debugger command assignment for that key. For

Window Directory /A Log Window 167

example, the key definition field for the PF2 key shows the window move < >
command. Command assignments are made by typing over the default command.
The only exception is the key definition field for the help key, which is assigned to
PF1 by default. Before you can change the command that is assigned to the PF1
key, you must use the Help Key: field to select another help key. To return a PF
key to its default assignment, erase the key definition field and press ENTER.

Any debugger command that is valid in full-screen mode may be assigned to a PF
key. The symbols in the key definition field indicate that no debugger command has
been assigned. The placeholder symbols, < >, are used to indicate that the name of the
window in which the cursor is located is to be inserted at that point in the command.

ADDITIONAL DISCUSSION

o “Using PF Keys” on page 27
o “Placeholders in Commands” on page 150

SEE ALSO
“keys” on page 230

Log Window

Display 13.9 Log Window

Help:PF1 --Step-- ———-——————-—— ENTER---E7

//cmsiudent2h c X

Hodule: COHP2 Line: B5
B5
=15 new={wordlist *¥)malloc(sizeof(wordlist)+d48);
67 new->totcnt=1;
B8 new—>uord-(char X)mal loc(strlen(wordarry)+1);
B9 strocpy{new->word,wordarry);
78 str = new->word;
71 /% allocate space for “new” entry and X/
72 /X initialize "new” data hy setting count to 1 X/
73 /¥ and copying wordarry into new->word */
74
75 /X If position is BEFORE, set prev->next to new; X/
76 /X set new->next to curr: X/
77
78 if (position==BEFORE) {

Log

step

runto enter entry

step 5

Cdehug: !
DESCRIPTION

The Log window displays the session log information. It is one of the four primary
windows. The other primary windows are Status, Source, and Command. In

168

Log Window A Chapter 13

Display 13.9 on page 167 the Log window is identified by its name in the
upper-left border.

Like all the primary windows, the Log window is always open, even when it is
obscured by an overlying window. Therefore, for purposes of the window command,
it is a class 1 window. See “window” on page 280.

Viewing information in the Log window The Log window displays a log of
your debugger session. Commands that are issued from the Command window, or
the Log window itself, are displayed in the Log window. It is also used to display
the output from commands such as print and dump and some error messages. The
window scroll up and window scroll down commands can be used to view log
lines that are not currently visible in the window. (By default, the PF19 and PF20
keys are dedicated to window scroll up andwindow scroll down, respectively.)

The length of each log line, with one exception, is determined by the auto
linesize option. Long lines can be viewed by scrolling the window left and right
using the window scroll left and window scroll right commands. (The
PF22 and PF23 keys are dedicated, by default, to window scroll left and
window scroll right, respectively.) The exception is output from the dump
command, which is tailored to the size of the Log window.

Clearing the Log window and changing buffer size The window clear and
window memory commands can also be used to clear the Log window and specify
the amount of memory to be used for the session log. Like commands that are
issued in the Command window, log lines are maintained in a first in, first out
buffer. As the buffer fills up the older lines are deleted. You can increase the size
of this buffer by using the window memory command in your configuration file,
which increases the size of your session log. The amount of memory allocated for
window buffers cannot be changed during a session.

Issuing debugger commands from the Log window You can also issue
commands from the Log window by typing over a portion of a previously typed
command that is displayed in the Log window and pressing the ENTER key. It is
also possible to issue several commands at a time by separating commands with
semicolons. Long commands can be continued at any point with a backslash (\);
the next line that has been typed over is the continuation line.

By default, window trace lines do not appear in the Log window.

ADDITIONAL DISCUSSION

“Using the Log Window” on page 20

SEE ALSO

The window command for the following:
0 “Command Window” on page 156
0 “Source Window” on page 173
0 “Status Window” on page 177

Window Directory /A Message Window 169

Message Window

Display 13.10 Message Window

Dump
Expr: BpBBpaBana
Address: BpBEEEBEEEE Str: H H: B Rel: ¥

LSCD288 Zero / HMultiple windows of this name are present - use <> to point.

Log

go

Automatic scalars in context:

drop 1

window open popup

LSCD282 This WINDOW cannot be OPENed/CLOSEd.
window close dump

LSCD288 2Zero / Hultiple windows of this name are present - use <> to point.
window open dump

keys define S "window close dump”

window open dump

window open dump

Cdebug:

DESCRIPTION

The Message window displays error messages. If an invalid command is specified
in either the Command or Log window, descriptive error messages are sent to the
Log window. Error messages that are associated with all other windows are
displayed in a Message window that is similar to the one shown above. The
Message window is automatically opened by the debugger. After viewing the
message, you can press ENTER or any PF key to close the window. Pressing a PF
key that contains an invalid command also results in the display of a Message
window that contains an error message.

The Message window is used to display error messages that do not accept input
as opposed to the Popup window, which is used to request correction of invalid
input.

ADDITIONAL DISCUSSION
“Factors Affecting Your Full-Screen Session” on page 36

SEE ALSO
“Popup Window” on page 170

170

Popup Window A Chapter 13

Popup Window

Display 13.11 Popup Window

Help:Prl -Break- -—————-——-——n MALN-—-28
/fcms:pidivd c X
Hodule: HAIN Line: 1

LSCD213 Line 11 is not in any function - the request is ignored.

Log

Cdehug: !

1 finclude <lcsignal.h>

2 #include <stdlib.h>

3 #include <stdio.h>

5 /* This program computes pi/d using a slowly converging X
B /¥ infinite series for atan(1.8). The SIGINT signal can he *
7 /X generated to terminate summation or print an indication X
8 /* of progress so far. X
9 /X X
18 int iter; /¥ number of iterations X/

11 double sum = B.8; /X pi/fd value X

DESCRIPTION

The Popup window requests additional information. If invalid input is specified in
certain areas of certain windows, an alarm sounds, and a Popup window is
automatically opened. For example, the Popup window shown in Display 13.11 on
page 170 was displayed when an invalid prefix command was entered on line 11 of
the Source window. The Popup window contains an error message, a prompt, and
the old (invalid) text. At this point all other windows stop responding and the
debugger will accept input only in the Popup window. You should either correct
the error by typing in a valid value, or clear the field to restore the old value; then
press ENTER or any PF key.

If input is specified in multiple windows, the debugger processes input in
priority order. If the action taken for a particular window involves using a Popup
window to correct invalid input, then any pending input in windows of a lower
priority is processed after the error situation is corrected.

ADDITIONAL DISCUSSION

“Window and PF Key Priorities” on page 36

SEE ALSO

“Message Window” on page 169

Window Directory /A Print Window 17

Print Window

Display 13.12 Print Window

Print
Expr: Xnew
Address: BpB1f3f9eB Format:
struct worddata
word: BpBl1f3fbed
totcht : 1 (BxBDBBBREEA1)
r}uax't: Bpfcfocfefc

DESCRIPTION
The Print window displays the value of an expression. The > and >> command
prefixes are used with the print command to direct output from the command to
either a new or an existing Print window. See “Directing Commands to a Window”
on page 26 for information about the > and >> command prefixes. When you are
directing the print command to the Print window, EXPRESSION and %FMT are
the only arguments that can be used.

As shown in Display 13.12 on page 171, the top two lines of the Print window

contain three fields:

Expr:
identifies the expression that is displayed.

Address:
shows the address of the object that is represented by the expression. This
address may not be valid if the expression contains more that one variable.
The Address: field is protected and cannot be used to specify the address of
an expression to be displayed.

Format:
is the format that is used to display the value of the expression. Leaving the
format area blank causes the debugger to use the default format.

Once a Print window has been opened, you can specify a new Expr: or Format: value
by typing that value following the appropriate prompt and pressing the ENTER key.

The top two lines are followed by the value area, which contains one or more lines.
The value area is always 200 characters wide, which usually enables you to display the
entire value. Long lines in the value area can be viewed by scrolling the window left
and right. Note that value area width cannot be changed and that it is independent of
the window width, which you can change.

If the expression is of scalar type, and a new window is used to display its value, the
value area is only one line high. If an existing window is used, no adjustment to the
height is made when the value is displayed; however, you are free to adjust the size of
the Print window or scroll the value area once it has been displayed.

If the expression is of aggregate (structure, union, or array) type and a new window
is used to display its value, the height of the value area is determined by your default
configuration. A structure is shown in the Print window in Display 13.12 on page 171.
If an existing window is used, no adjustment to the height or width is made when the
expression is displayed. If the value area is not sufficient to display all the members of
the structure, union, or array, you can vertically scroll through the value area.

ADDITIONAL DISCUSSION
0 “Using the Print Window” on page 33
0 “Directing Commands to a Window” on page 26

172

Register Window A Chapter 13

SEE ALSO

The print command for the following:

0 “Dump Window” on page 162
o “Watch Window” on page 184

Register Window

Display 13.13 Register Window

Register

$r@: BxB188016c
$rdq: ©BxB1880788
$r8: BxB1f9f9ed
$ril2: BxBBebeBBB

Current instruction address ($iad):

$rl: Bx518B086cd
$r5: BxA18BAS78
$r9: BxBBea’72B8
$rl13: BxB0ea’721B

Sr2: BxB1801aB1
$r6: HxB0B0B00A
$rlB: BxB1BAST40
$rld: BxB1BBBE14
Bx18BB6ce o

5f@: oe . Be)
$f2: 0@ DPPAPAP DPPPPABE (0.PAPNAABNRABDRABDRe+00)
5f4: B\ (8. Be)
$f6: BB (8. [l4]

94 /X

gg ¥oid printlst{wordlist *head)

97

98 if (head == HNULL)

99 return;

Log

window open register

Cdehug:

Amode:

5r3:
5r7:
S5ril:
5rils:

31

BxBBBBEBAS
BxB81f9f3en
BxBBehlbBs
BxB81f9fbeB

x/

DESCRIPTION
The Register window enables you to take a close look at the way your program

uses the machine. You can view the following information:

O the contents of the 16 general purpose registers (debugger variables $r0

through $r15) in hexadecimal format

O the contents of the 4 floating-point registers (debugger variables $f0 through

$16) in both hexadecimal and floating-point format

O the address of the current instruction (debugger variable $iad) in

hexadecimal format

O the address mode.

The only way to open the Register window is with the window open register
command. Issuing a window open register command when the Register window
is already open causes it to be updated. Pressing ENTER also updates it.

Each of the registers and the current instruction address is associated with a
debugger variable. These variables are assigned values that are based on the
contents of the register. For example, using the Register window as shown above,
you can determine that debugger variable $r0 has a value of 0x0180016c, which
was derived from the contents of general purpose register 0. Debugger variables
can be used as arguments to commands, such as the print and dump commands,

that support expressions.

Window Directory A Source Window 173

ADDITIONAL DISCUSSION

“Using the Register Window” on page 34

Source Window

Display 13.14 Source Window

Lo

B —
Help:PF1 -Runto- =--——--——-—- READIN---E3
//cms:wdent2a c X
Hodule: COHP1 Line: 57

g
Set system breakpoint at BBebeb84 to activate the ESCAPE command.
runto readin B3

Cdebug: [

57 wordstrg[wordlen]=tolower(c);
58 /% convert characters to |owercase %/
529 vord|len++;

[=13] i

61 1

B2 /X if inword, insert in list X/
B3 else if (inword == TRUE) {

B4 wordstrglwordlen] ="\8";

E5 wordlen=8;

B6 insertw{wordstrg);

B7 inword=FALSE;

B8 }

B9 i

78 /X print wordlist X/

DESCRIPTION

The Source window displays source code. It is one of the four primary windows.
The other primary windows are Status, Log, and Command. By default, the
Source window is displayed below the Status window and above the Log window.
Like all the primary windows, the Source window is always open, even when it is
obscured by an overlying window.

Source filename The top border of the Source window, which is always
present, contains the name of the source file. The format of the source filename is
operating-environment specific. The Source window that is shown in Display 13.14
on page 173 was captured under CMS. If you are running under TSO, your source
filenames follow TSO file-naming conventions.

Information displayed in the Source window The first line of the Source
window contains the following fields:

Module:
identifies the compilation that is displayed in the Source window. Large
programs can be broken down into several modules that are compiled
separately to facilitate the debugging of manageably sized pieces of code. You
can use the sname compiler option to specify a section name that is used as
the module name.

Line:
displays the line number of the first line of source code that is displayed in
the visible portion of the Source window text area. The line number changes
as you scroll through your source code.

174 Source Window A Chapter 13

The remaining portion of the Source window contains two unprotected areas that are
used to view your source code and issue prefix commands.

line number and prefix area
is displayed on the left side of the window. This area displays line numbers that
correspond to the line numbers from your source code file. You can use this area to
type and display prefix-area commands. For example, in the Source window that
is shown in Display 13.14 on page 173, one B (break) prefix command is displayed
on line 66.

text area
is located to the right of the line numbers. The text area is used to display source
code from the source file that is identified in the top border of the window.

Run scope The highlighted line in the text area shows where your program has
stopped. This location in your code determines the run scope, which is displayed in the
Status window. For example, in the display that is shown in Display 13.14 on page 173,
line 63 is highlighted. This line is located in the READIN function, as indicated by the
run scope field that is in the Source window.

Scrolling through the Source window The window scroll command is used to
scroll through the Source window. In addition to the PF19, PF20, PF22, and PF23 keys
that are used to scroll through most windows, there are two additional PF keys that are
dedicated to scrolling in the Source window. By default, PF7 is assigned the window
scroll source up command and PF8 is assigned the window scroll source down
command.

In order to use the PF19, PF20, PF22, or PF23 keys to scroll in the Source window,
you must first move the cursor into the Source window. The PF7 and PF8 keys can be
used to scroll the Source window when the cursor is located in any window.

When the Source window is scrolled vertically, both the line number and text area
are scrolled. However, when the window is scrolled horizontally, only the text area is
scrolled.

Jumping to a line The Module: and Line: fields can be used to jump directly to a
specific location in your source code. This makes it possible to avoid scrolling over a
large number of lines to view source code that is located far from your current position.
To jump directly to a specific location in your code, type the module name and line
number following the appropriate prompts on the first line of the window and press
ENTER. If either the module name or line number is invalid, a Popup window is
displayed that enables you to correct your mistake.

Amount of code displayed in the Source window Two factors affect the amount of
code that is displayed in the Source window: the visible portion of the window
determines how much code is shown at any one time, and the amount of memory that is
allocated for source buffers determines the total size of the window (visible plus
scrollable portions of the window).

The minimum width of the Source window is 32 columns and the maximum is the
width of your terminal; however, the text area that is contained within the window is
considerably wider. The text area is always 252 characters wide; only a portion of the
text area is visible at one time.

Source buffers are used to hold the information that is displayed in the Source
window text area. You can use the window memory command in your configuration file
to control the amount of memory that is used for source buffers. Note that the amount
of memory that is allocated for window buffers cannot be changed during a session.
Increasing source buffer size increases the amount of source code that is held in
memory, which, in turn, speeds up display of source code in the Source window. See
“window” on page 280 for more information about the window command.

Window Directory A Source Window 175

Context information in the source text area The debugger displays lines before and
after the highlighted line so that the line is displayed in context. The debugger tries to
minimize the vertical movement of the source code. Either the window context
source command or the Config window can be used to control the number of lines of
context information that are shown around the highlighted line.

The window context source command also enables you to specify how many lines
in your source code can be jumped without centering the highlighted line in the text
area. If the next line to be executed is at least as many lines as you have specified
above the top or past the bottom of the window, the next line will be centered when it is
highlighted. The window context source command is explained in “window” on page
280.

The Border: and Jump: fields in the Config window can also be used to control the
Source window context. See “Config Window” on page 157 for details.

Prefix-area commands Commands that can be issued from the prefix area of the
line number field are listed in Table 13.1 on page 175. These commands can be typed
only between the lines that contain the opening and closing braces of a function. Only
one command can be typed at any time on a line, though there can be more than one
command in effect for that line.

Table 13.1 Prefix-Area Commands

Prefix-Area

Command Command Name Action

b break break on this line

d disable disable the request in this line

e enable enable the request in this line

g goto and resume go to (resume execution at) this line

q query display all requests that apply to this line

r runto run to this line: install a temporary breakpoint
and continue execution

t trace trace this line

If you enter an invalid prefix-area command, a window appears that enables you to
correct the invalid input. Any attempt to issue a valid prefix-area command outside the
opening and closing braces of a function causes the debugger to display an error
message in a Message window.

Detailed reference information for each of the prefix-area commands is provided in
Chapter 14, “Command Directory,” on page 187.

Enabling and disabling breakpoints and action requests You can use the e
(enable) and d (disable) prefix-area commands to enable and disable breakpoint and
action requests, provided that only one request is assigned to that line.

The debugger’s request system keeps track of your breakpoint and action requests by
using a request number. The number is assigned when the request is made. However,
the Source window is line-number oriented; therefore, the e and d prefix-area
commands can be used only when exactly one request applies specifically to that line.
The examples that follow illustrate this.

Suppose that you have issued the following commands to request breakpoints:

176 Source Window A Chapter 13

break main 24
assigns a breakpoint to line 24 in the main function.

break main 20:30
assigns breakpoints to lines 20 through 30 in the main function.

break main *
assigns breakpoints to every line in the main function.

Each of these commands applies to line 24, but only the first applies specifically to
that line. Hence, the debugger will successfully process an e or d command for main 24.

Note: The query command can be used to display requests by request number. A
disabled request is indicated by an asterisk (*) after the request number. A

For the next example, assume that smain is the section name of the compilation that
contains main. Issue the following commands:

break main 23
assigns a breakpoint to line 23 of the main function.

on main 23 print x
uses the on command to assign a print command to line 23 in the main function.

trace (smain) 23
assigns a trace command to line 23 of the smain compilation.

All three requests apply specifically to line 23. Therefore, the debugger will not
process any e or d commands in line 23; instead, a suitable message will be issued. In
this situation you can use the drop, disable, and enable commands with the query
command from the Command window to modify your breakpoint and action requests for
line 23.

Specifying an entry or return suffix Except for the g (goto) command, any of the
prefix-area commands can take an e or r suffix. The e suffix specifies that the
command applies to the entry hook of the function within whose scope the command is
issued. Conversely, the r suffix specifies that the command applies to the return hook of
the function. For example, the following prefix-area commands can be specified:

be Break on entry to this function.
rr Run to the return hook of this function.
dr Disable the request that applies to the return hook of this function.

Visual indication of break, ignore, on, and trace commands The debugger visually
indicates the presence of break, ignore, on, and trace commands that are in effect for
requests that apply to the following:

O a specific line in a function

O a specific line in a module (compilation)

O a specific range of lines in a function

O a specific range of lines in a module (compilation).

Indication consists of one or more of the following characters that appear in the

prefix area:

B break
I ignore
(o) on

T trace

Window Directory A Status Window 177

However, no visual indication is given for commands on function entry, return, or call
hooks or commands that are specified with the * (all line hooks) parameter.

Input in multiple areas of the Source window If input is specified in more than one
area of the Source window, the data is processed in the following order: first the
prefix-area commands, then the module-name change, and finally the line-number
change.

Extended name support The symbol tables that are used by the debugger to
determine the function that was operated on have a 255-character limit. If a module
has been compiled with the extname compiler option, the debugger attempts to use the
extended name. When a prefix-area command is used to install a request, the debugger
temporarily sets the auto extname option during the request installation process to
match the setting that was used when the module was compiled. For example, if the
module was compiled with the auto extname option in effect, a breakpoint that was
installed by a b in the prefix area uses extended names. When the request is installed,
the setting of the auto extname option is restored to its previous setting. See “auto” on
page 196 for additional information.

ADDITIONAL DISCUSSION
“Using the Source Window” on page 22
SEE ALSO
0 “Command Window” on page 156
0 “Log Window” on page 167
O “Status Window” on page 177

Status Window

Display 13.15 Status Window

S
Help PF1 --Step—- --——————- RERDIN---Calls
fems:wdent2a c X
Hodule CoHP1 Line:
head-(uordllst ¥ymal loc(sizeof(wordlist));

45 head->next=NULL;
48 /X allocate a block of memory of size wordlist X/
q7 /¥ return a pointer to the block */
48 /X assign the pointer to head (head of the wordlist) */
49 /X set head->next to NULL (no items in the list) */
=15]
51 /% read in characters from input file X/
52 whlle((c-f?etc(f)) 1= EOF)
53 phabetic character test */
54 if (isalpha(c))
55 inword=TRUE;
56 if (uordlen < MAXLEN) {
57 wordstrg[wordlen]=tolower(c);

Log

runto readin 44

step

list 44

Cdebug:
DESCRIPTION

The Status window displays status information. It is one of the four primary
windows. The other primary windows are Source, Log, and Command. By default,

178

Status Window A Chapter 13

the Status window is displayed on the top line without a border. Like all the other
primary windows, the Command window is always open, even when it is obscured
by an overlaid window.

The Status window displays information about the current status of your
debugging session. This information is displayed in the following fields:

Help:
identifies the PF key that is assigned as the help key. Pressing the help key
opens the Help window to display cards from the help system. You can use
the Keys window to change the help key assignment.

reason for entering the debugger
is displayed in the second field from the left. In the above display, Step is
displayed because control was transferred from the executing program to the
debugger as the result of a debugger step command.

run scope
is displayed in the third field from the left. In Display 13.15 on page 177 the
run scope is located at the entry hook for the READIN function. This is also
shown by the highlighted line in the Source window. Run scope is the
location in your code at which control was transferred to the debugger. Run
scope is identified by function name and either line number, or, in the case of
function calls, the side of the call on which the run scope is located: calls,
entry, or return.

command scope
is displayed in the fourth field from the left. In Display 13.15 on page 177 the
command scope is located in line 24 of the main function. Certain commands,
such as break, goto, and runto, use command scope to determine default
function and section names. Command scope is identified in the same
manner as run scope.

Changing command scope The scope command can be used to change
command scope. However, if you have more than one function in your calling
sequence, you can move the cursor into the Status window and use the PF19 or
PF20 keys to change command scope. The window scroll < > up or window
scroll < > down commands are assigned to these keys by default. The PF19 key
causes the run scope to move up in the calling sequence, and the PF20 key causes
the run scope to move down in the calling sequence.

ADDITIONAL DISCUSSION

“Using the Status Window” on page 20

SEE ALSO

The scope command for the following:
o “Keys Window” on page 166
0 “Source Window” on page 173

Window Directory /A Termin Window 179

Termin Window

Display 13.16 Termin Window

Termin
Exec... Intercept: ¥ Log: H EOF: H Scale: Y
———te———] —————— P
Linked list traversing EXEC. Enter name of structure:
91 £X PRIMTLST X/
] /X print the linked list using recursion X/
93 /% output: total count and word */
94 fX */
= void printlst{wordlist ead
96
97
98 if (head == NULL)
8939 return;
168 else {
181 printf(“%3d %s\n",head->totcnt, head->word);
182 printlst(head->next);
Log
Cdebug:
DESCRIPTION

The Termin window is used to type terminal input requested by a program, CLIST,
or EXEC. By default, the debugger intercepts program input requests, opens the
Termin window, and prompts you for input. As shown in Display 13.16 on page
179, there are three areas in the Termin window: a status and prompt line, an
optional scale or ruler line, and the input field.

Status and prompt line The Termin window is controlled by the following
fields located in the status and prompt line:

Read..., Exec..., Or Cont... prompt

flashes to indicate that input is required. This prompt displays Read... or
Exec... when the window is first opened. Read. .. displays to indicate that
the input is requested by a program, and Exec. .. displays to indicate that
input is requested by a CLIST or an EXEC. If you continue input, as
described later in Entering terminal input, this prompt changes to cont...,
indicating that additional input is required.

Intercept:

controls the input intercept. By default, Intercept is set to ¥ (yes), which
causes the Termin window to automatically intercept terminal input
requests. Typing N (no) in this field turns off the input intercept.

Returning to line mode also turns off the intercept. Returning to
full-screen mode automatically restores the previous status of the intercept.

180

Termin Window A Chapter 13

Log:
determines whether input that is typed into the Termin window is copied to
the Log window. By default, Log is set to N (no). Typing ¥ (yes) in this field
sends a copy of the input to the Log.
Note: The Config window can be used to select a unique color for terminal
input that is copied to the Log window.

EOF:
is normally set to N (no) but can be temporarily set to ¥ (yes) to signal an
end-of-file condition when the Termin window is prompting you for input. If
you intend to continue a line, specify ¥ only on the last display.
The EOF: prompt is also used to return a condition code to a CLIST or
EXEC. See Using the Termin window with the dbinput command later in this
section.

Scale:
displays a scale, or column ruler, on the second line of the Termin window. By
default, this field is set to ¥ (yes), displaying the scale. If this field is set to N
(no), the scale is not displayed and the window shrinks by one line. Setting it
back to ¥ causes the window to grow by one line and the scale to be
redisplayed.

Typing Terminal input Terminal input is typed into the input field following the :
prompt, which is located directly under the scale prompt. If there is not sufficient space
in the input field, you can resize the Termin window horizontally or you can continue
input using the backslash (\) as the continuation character. If input is continued in this
manner, the flashing Read... or Exec... prompt is replaced by a flashing cont. ..
prompt. Another \ character can be used to repeat the process. You can type up to 255
characters. If more than 255 characters are entered, the debugger truncates to 255.

terminal input prompt If the prompt is terminated with a \ n, then the \ n
appears at the end of the prompt area as two separate characters, a \ and an n. Input
prompts greater than 64 characters long are truncated. If a \ and an n had been the
64th and 65th characters, then the prompt would have been truncated after 63
characters.

Restrictions while input is pending You can move between windows and examine
variables while either the flashing Read... or Cont... prompt is displayed in the
Termin window; however, you cannot issue any command that continues execution.
Satisfying the input request by typing input at the Termin window is the only way to
return control to the program and automatically continue execution. Also, you cannot
close the Termin window while the Read. .., Exec..., or Cont... prompt is displayed.

Turning off the Intercept prompt If it is not possible to open the Termin window,
the debugger turns off the intercept. This can occur when you have too many windows
open at the same time. You can change the default setting of the Intercept:, or any
other prompt, by making the selections you want in the Termin window and saving the
changes to your configuration file. Changes are saved with the config save command.
See “Setting Up a Configuration File” on page 46 for more information.

Resizing the Termin window You can resize the Termin window horizontally to
enable additional information to be input on a line as described earlier. However, you
cannot resize the window vertically.

Using the Termin window with the dbinput command In full-screen mode, the
Termin window is used to type input required by a dbinput command. In this case the
: prompt is changed to display the prompt string that is specified by the STRING
argument of the dbinput command. For example, Display 13.17 on page 181 shows the
Termin window as it would be displayed if the intercept were caused by the following
dbinput command:

dbinput EXEC VAR ‘‘Is a mapping of struct worddata desired? (y for yes):’'’

Window Directory /A Termout Window 181

In this case, input entered in the Termin window is assigned the CLIST or EXEC
variable named EXEC_VAR.

Display 13.17 Display 11.17 Termin Window Prompt String

Termin
Exec... Intercept: ¥ Log: N EOF: N Scale: ¥

———tememe e] P
Is a mapping of struct worddata desired? (y for yes): I

When you are using the Termin window in conjunction with the dbinput command,
the EOF: prompt is used to return a condition code to the CLIST or EXEC that contains
the dbinput command. Setting the EOF: prompt to ¥ causes a condition code of —13 to
be returned to an EXEC or +13 to a CLIST. It also causes the stack to be flushed if the
return code is being passed to a CLIST.

When too many windows are opened, the debugger might not be able to open the
Termin window. If the Termin window cannot be opened, a prompt is displayed, and
you can still type the input that is required by the dbinput command called from a
CLIST or EXEC. Once input is typed, you can continue your debugging session.

ADDITIONAL DISCUSSION
“Looking at Terminal I/O” on page 31

SEE ALSO
The dbinput command for the “Termout Window” on page 181

Termout Window

Display 13.18 Termout Window

Termout :
Intercept: ¥ Log: H Display: I Pause: ¥ Scale: ¥
o WY EEE R 6

+ +

Log

drop all

on enter entry fbreak; print}
go

parameters:

wordarry: BpBBeaB8ldd
position: B (AxPOBBBREAA)

drop all

runto printlst entry

go
L5CD191 The debugger file for this compilation is not available - cannot i
LSCD191 source.

Cdebug: !

182

Termout Window A Chapter 13

DESCRIPTION
The Termout window displays output that is directed to the terminal by your
program. By default, the debugger intercepts output from functions such as
printf, opens the Termout window, and displays the terminal output in the
window. As shown in Display 13.18 on page 181, there are three areas in the
Termout window: a status and prompt line, an optional scale or ruler line, and an
output area.

Status and prompt line The Termout window is controlled by the following

fields that are located in the status and prompt line:

More... prompt
flashes to indicate that more information is waiting to be displayed in the Termout
window. (See Pause: below)

Intercept:
controls the output intercept. By default, Intercept: is set to Y (yes), which
causes the Termout window to automatically intercept terminal output. Typing N
(no) in this field stops the output intercept.

Log:
determines whether intercepted output is copied to the Log window. By default,
Log: is set to N (no). Typing ¥ (yes) in this field sends a copy of the output to the
Log.

Note: The Config window can be used to select a unique color for terminal
output that is copied to the Log window. A

Display:
can be set to one of the following values:

Y (yes)
displays intercepted output in the Termout window. The output appears the
next time that control is transferred to the debugger.

N (no)
does not display intercepted output in Termout window.

I (intercept)
displays intercepted output immediately. I is the default setting for the
Display: field.
Regardless of whether Y or I is in effect, the debugger does not display
intercepted output until there is a complete line, since line length is determined by
the usable window area. A \ n in the output also completes a line.

Pause:
pauses the debugger if the output area is full and the debugger needs to output
another line. By default, this field is set to ¥ (yes), which enables the pause
feature; setting the field to N (no) disables the feature.

If the debugger is paused, you are notified of this state by the appearance of a
flashing More. .. prompt on the first line of the Termout window. Pressing the
ENTER key when the cursor is inside the Termout window causes the display to
be cleared and the new line is displayed.

While the debugger is paused, you can move between windows and examine
variables; however, you cannot issue any command that continues execution. Also,
you cannot close the Termout window while the debugger is in the paused state.
Pressing the ENTER key in the Termout window is the only way to cause the
debugger to return control to the program to automatically continue execution. If
you are intercepting output in the Termout window with pause in effect, then if
there is any output that you have not seen at program completion time, the
debugger stops to let you view it.

Window Directory /A Termout Window 183

Scale:
displays a scale, or column ruler, on the second line of the Termout window. By
default, this field is set to Y (yes), displaying the scale. If set to N (no), the scale is
not displayed and that area becomes an additional line that is available for output.
Changing the setting while output is displayed has the following effects:

o If the setting is changed from ¥ to N, the output is not moved. However, after
the field is full, the debugger uses the scale line to display output.

o If the setting is changed from N to ¥, the scale appears on the first line of the
output field, overwriting any output that appears on that line.

Intercepting output When the appropriate settings are in effect (Intercept: ¥,
Display: Y or I), the Termout window is automatically opened whenever there is a
complete line of output to be displayed. However, if it is not possible to open the
window, the debugger stops the intercept.

If you do not want to intercept terminal output, change the default prompt settings
by making the selections that you want in the Termout window and save the changes to
your configuration file. Changes are saved with the config save command. See
“Setting Up a Configuration File” on page 46 for more information.

Clearing the Termout window The output area is cleared each time the window is
opened. The window clear command also clears the output area.

Resizing the Termout window Resizing the window to a smaller width can cause
data to be truncated on the right. Resizing to a larger size does not cause the truncated
data to reappear. Furthermore, resizing the window to a smaller size can cause the
output area to be cleared. If the resized window has fewer lines in the output area than
are currently displayed, the output is cleared.

ADDITIONAL DISCUSSION
“Looking at Terminal I/O” on page 31

SEE ALSO
“Termin Window” on page 179

184 Watch Window A Chapter 13

Watch Window

Display 13.19 Watch Window

B —
Help:PF1 -Runto- -—-——————— READIN---59
/fcms:udcnt2a c X
Module: COMP1 Line: 53
53 /% alphabetic character test */
949 if (isalpha{c))
55 inword=TRUE;
56 if (wordlen < HMAXLEN) {
57 wordstrglwordlen]=tolower(c);
58 /% corvert characters fo louercase %/
59 wordlen++;
=]
Bl }
B2 /X if inword, insert in list X/
B3 else if (inword == TRUE) {
=) wordstrglwordlen] ="3\8";
65 wordlen=0;
B6 insertw(wordstry);
Watch
Expr:
N: Format:
[= . 137 (©6xPBDBEBES)
c %c H|
wordlen : B (BxBABBBB06)
wordstrglwordlen] » 707 (BxB9)
Cdehug:
DESCRIPTION

The Watch window tracks values of expressions or areas of memory. It acts as an
automatic print or dump command, displaying the expression or area of memory
each time control is transferred to the debugger. As shown in Display 13.19 on
page 184, the Watch window contains several fields that are used to control the
window, as well as two areas that are used to display the expressions or areas of
memory being watched.

Selecting a watch You can select as many as 40 expressions or areas of
memory to be watched. The watches are completely independent of each other and
the debugger does not check for duplicates. Each watch is updated as the value of
the expression or the contents of the memory location change. The following fields
are used to select an expression or area of memory to be watched:

Expr:
specifies an expression to be watched. Any expression that is valid as an
argument to the print or dump command can be issued, provided that it can
be evaluated at the time that the watch is entered. When the ENTER key is
pressed, the expression is displayed in the watch name field, and its value is
displayed in the expression value area.

specifies the number of bytes to be watched. The maximum value for this
field is 64, which dumps 64 bytes of memory starting at the address that is
indicated by the expression in the Expr: field. The N: field be used can only
when you are typing an expression that points to an area of memory.

Format:
specifies a display format to be used to format the value that is displayed in
the expression value area. You can specify a format when you are watching

Window Directory /A Watch Window 185

the value of an expression; however, you cannot use a format when you are
watching an area of memory.

Display area After a watch is selected, it is displayed in the following areas:

prefix area
drops a watch from the Watch window. The prefix area is one column wide and is
located immediately before the watch name area. By typing a d in the prefix area
and pressing ENTER you can drop any of the watches that are displayed in the
window.

watch name area
describes the expression to be watched. In the Watch window in Display 13.19 on
page 184, the expression c is displayed in the first two watch name areas. The first
watch for c uses the default format, the second watch for c is formatted by %c.

If an expression that you are watching belongs to a function that is different
from that of the command scope, the expression that is displayed in the watch
name area is prefixed with the name of the function to which it belongs. For
example, if you were to step through the program that is shown in the Watch
window in Display 13.19 on page 184, each of the expressions that are being
watched would be prefixed with MAIN: in the event that you stepped into another
function. The reason for this is that the command scope would no longer be the
same as the scope of the expressions that are being watched.

If the expression that you are watching is longer than the width of the watch
name area, the expression is clipped on the right. Resizing the window by
increasing its width displays more of the expression.

expression value area
displays the value of the expression that you are watching. As shown by the
Watch window that is illustrated in Display 13.19 on page 184, the format of the
information that is displayed in the expression value area depends on the type of
expression and how it was typed. Conversion specifiers that were typed in the
Format: field affect the format of information that is in the same way as they do
when they are used with the print command. Typing a number in the N: field
causes the information to be formatted in a manner similar to the output from the
dump command.

For print style watches, if no format is specified, scalars are displayed by using
the same default format as would be used if the expression were displayed by the
print command.

Unions, structures, and arrays are displayed as a list of values separated by
commas and enclosed by braces. If a format is specified, it is used to display the
value of all items of the aggregate; if no format is specified, $d is used for signed
integral items, %u is used for unsigned integral items, %g for floating-point items,
and 0p%08x for pointers. If there is not sufficient space in the expression value
area, the list is ended with an ellipsis (...).

Single-dimensional character arrays are formatted in dump style if no format is
specified; a maximum of 64 bytes can be displayed using this format. If a format is
specified for a single-dimensional character array, the information that is contained
in memory is displayed in a list that is similar to that used for other arrays.

For dump style watches, the address is displayed and it is followed by the
contents of memory. A hexadecimal and character representation of the
information in memory is displayed in a format similar to the output from the
dump command.

The prefix, watch name, and expression value areas can be scrolled up or down. You
can also scroll right and left through the expression value area.

186

Watch Window A Chapter 13

Calling sequence You can watch an expression that is anywhere within the calling
sequence for your program. However, when you set the watch it must be located inside
your command scope. You cannot use the FUNCTION-NAME:IDENTIFIER format to
specify an expression that is outside the command scope; you must change your
command scope before you type the watch. This format is described in “Specifying
Identifiers Outside the Current Function” on page 147. The scope command can be
used to change your command scope to any function that is in your calling sequence.

Thus, each watch has a function that is associated with it. The scope of this function
is set each time the debugger evaluates the watch expression, which occurs each time
that control is transferred from your program to the debugger. Watches that are based
on variables of the extern or static storage class can always be evaluated; watches
that are based on an automatic variable or parameter can be evaluated only if the
function is in the calling sequence. As soon as the function ends, the automatic variable
or parameter-based watch is deactivated; the next time the function is typed, the watch
is reactivated. This also applies to watches that are based on automatic variables or
parameters in a recursive function. Since the watch is reactivated only if inactive,
recursive invocations of the function do not set additional watches.

Syntactically invalid input If an invalid input is detected at the time a watch is
set, a Popup window is automatically opened and you can correct the mistake. The
error does not affect the debugging session in any way.

ADDITIONAL DISCUSSION
“Using the Watch Window” on page 33

SEE ALSO
The dump, print, and watch commands for the following:
0 “Dump Window” on page 162
o “Print Window” on page 171

CHAPTER

14

Introduction 188
List of Commands
% 189

2 191
abort 191
assign 192
attn 195
auto 196
break 199
browse 200
catch 201
config 202
continue 204
copy 205
dbinput 208
dblog 209
define 210
disable 212
drop 213
dump 215
enable 216
escape 218
exec (TSO) 219
exec (CMS) 221
exit 222
go 222
goto 223
help 224
ignore 226
install 228
keys 230
list 231

log 234
monitor 235
on 239
print 241
query 244
resume 246
return 248
rsystem 249
runto 251

188

Command Directory

187

Introduction A Chapter 14

scope 252
set 254
step 260

storage 261
system (CMS) 267
system (TSO) 268
trace 269
transfer 211
undef 2715

watch 276
whatis 277
where 279
window 280

Introduction

This chapter provides complete reference information for all of the debugger
commands. You should also refer to Chapter 12, “Using Debugger Commands,” on page
129 for additional details on the syntax and arguments used in the command formats.

The context-sensitive help system is also designed to provide online help for any of
the debugger commands. See “help” on page 224 and “Using the Help Window” on page
16 for information on how to access the help system.

List of Commands

This chapter describes the following debugger commands:

?
ab{ort}
a{ssign}
at{tn}
au{to}
b{reak}

browse

catch
conf{ig}

c, con{tinue}

co{py}
dbi {nput}
dbl{og}

de{fine}

execute a CLIST or an EXEC (0S/390 only).
list debugger commands.

abort program execution.

assign a value to an expression.

generate a SIGINT signal.

set debugger modes.

request a breakpoint.

browse the area of the source file where the name being browsed is
declared.

request to catch all exceptions.
assign/identify the configuration file and save current configuration.

continue execution to next line-number hook without stepping into
functions.

copy one or more items to a new location.
called from a CLIST or EXEC for information input.
called from a CLIST or EXEC to output information.

define a debugger macro.

di{sable}
dr{op}
du{mp}
en{able}
es {cape}
exe{c}
exi{t}
g{o}
got{o}
h{elp}
i{gnore}
in{stall}
k{eys}
1{ist}
m{onitor}
o{n}
p{rint}
g{uery}
res {ume}
ret{urn}
ru{nto}
sc{ope}
se{t}
s{tep}
sto{rage}
sy{stem}
t{race}
tran{sfer}
u{ndef}
wa{tch}
wha{tis}
w{here}

wi{ndow}

Command Directory A

disable requests.

drop requests.

dump memory contents.

enable requests.

transfer control to the operating system debugger.
execute an EXEC or a CLIST.

terminate program execution.

start/restart program execution under the debugger.
alias for resume.

access debugger online help.

ignore breakpoint or action requests, or signals.
assign or list user-defined commands.

assign or list PF key commands.

output a source line listing.

check for changes made to an object.

perform one or more commands at specified locations.
print the value of an expression.

display breakpoint/action requests.

resume program execution.

return immediately from a function.

resume execution and request a temporary breakpoint.
change command scope.

control file access.

restart execution and break at next hook.

display storage analysis.

execute a CMS command or a TSO command.

trace program flow.

transfer debugger/program values to CLIST/EXEC variables.

undefine a debugger macro.

assign expressions to the Watch window.
display type information.

produce a traceback.

perform window management functions.

%

189

%

Execute a CLIST or an EXEC (0S/390 only)

190 % A Chapter 14

ABBREVIATION
none

FORMAT
$ CLIST-NAME | EXEC-NAME [ARGUMENTS]

DESCRIPTION
The % command executes a CLIST or a REXX EXEC specified by the
CLIST-NAME or EXEC-NAME argument. CLIST-NAME or EXEC-NAME is the
name of a member in a partitioned data set containing command procedures
(CLISTs) or a REXX EXEC. For CLISTs this data set must be allocated to the
DDname SYSPROC. EXECs can be allocated to either SYSPROC or SYSEXEC.
When you use the 3 command, the TSO EXEC command is issued and SYSEXEC
and SYSPROC are searched. SYSEXEC can contain only EXECs; however,
SYSPROC can contain either EXECs or CLISTs.

The CLIST specified by CLIST-NAME can contain CLIST statements or SAS/C
Debugger commands or both. Similarly, the REXX EXEC specified by
EXEC-NAME can contain REXX statements or SAS/C Debugger commands or
both.

ARGUMENTS are any arguments that you need to pass to the CLIST or EXEC.
You cannot use another debugger command on the same line following the %
command. The rest of the line following the $ command is passed to the CLIST or

EXEC as arguments. However, a command can precede % on the same line.

Similarly, no other debugger command can be issued on the same line after a %
command that is used as an argument to the on command. Any command on the
same line after the % is ignored.

See the IBM publication 0S/390 V2R9.0 TSO/E Command Reference SC28-1969
for a discussion of CLISTs. See the IBM publication OS/390 V2R9.0 TSO/E REXX
User’s Guide SC28-1974 for information about REXX EXECs.

ADDITIONAL DISCUSSION
Chapter 3, “Debugger PROFILEs, Configuration Files, and EXECs,” on page 41

SYSTEM DEPENDENCIES
The % command is valid for OS/390 only.

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The % command is not affected by changes in scope.

RETURN CODES SET
Successful: code set by CLIST or EXEC called
Unsuccessful: parsing error, 1; otherwise, execopn () code

SEE ALSO
“escape” on page 218

Command Directory /A abort

191

List Debugger Commands

ABBREVIATION
none

FORMAT

?

DESCRIPTION

The ? command outputs a list of valid names of debugger commands and their

abbreviations.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no
configuration file no

Source window prefix none

SCOPE

The ? command is not affected by changes in scope.

RETURN CODES SET
not applicable

SEE ALSO
“help” on page 224

abort

Abort Program Execution

ABBREVIATION
ab{ort}

FORMAT

abort

DESCRIPTION

The abort command abnormally ends execution and exits both from the program

and the SAS/C Debugger. The program terminates with user ABEND 1220. You

receive a traceback from the point in your program where execution stopped.
The abort command has the same effect (except for the ABEND code) as calling

the abort function within your program. When you issue an abort command,
output buffers are not flushed as files are closed. Therefore, output data can be

lost.

192 assign A Chapter 14

SYSTEM DEPENDENCIES
The specific message that you receive from the operating system depends on the
operating system and the context. For example, here is a CMS message:

DMSABM155T USER ABEND 1220 CALLED FROM address
Here is an example of a TSO message:
CDEBUG ENDED DUE TO ERROR

COMMAND CAN BE ISSUED FROM

PROFILE yes
configuration file no
Source window prefix none
SCOPE

The abort command is not affected by changes in scope.

RETURN CODES SET
not applicable
SEE ALSO
O “exit” on page 222
O “where” on page 279

assign

Assign a Value to an Expression

ABBREVIATION

a{ssign}

FORMATS
Format 1: assign SCALAR-TYPE-EXPRESSION = VALUE

Format 2: assign AGGREGATE-TYPE-EXPRESSION = 1 {VALUE-LIST} |
AGGREGATE-TYPE-EXPRESSION

DESCRIPTION
The assign command assigns the value (or values) specified by VALUE,
VALUE-LIST, or AGGREGATE-TYPE-EXPRESSION to the expression identified
by SCALAR-TYPE-EXPRESSION or AGGREGATE-TYPE-EXPRESSION. In both
formats, the equal sign is required.
Format 1: Format 1 assigns a value, specified by VALUE, to the arithmetic,
pointer, or bit-field object identified by SCALAR-TYPE-EXPRESSION. The

Command Directory /A assign 193

SCALAR-TYPE- EXPRESSION argument is an expression whose type is
arithmetic, pointer, or bit-field.
VALUE is an expression whose type is one of the following:

constant

an expression of scalar type

]
]

O address
O enumeration constant
]

array name.

See Table 12.3 on page 141 for details on argument types that are used with the
assign command. If the VALUE argument and the SCALAR argument have
different types, a conversion is made according to the SAS/C Compiler’s rules for
conversions.

You can assign a value to any expression of scalar type visible at the point
where you issue the assign command.

Format 2: Format 2 assigns the source values on the right side of the
assignment operator (=), specified by VALUE-LIST or
AGGREGATE-TYPE-EXPRESSION, to a target aggregate identified by
AGGREGATE-TYPE-EXPRESSION on the left side of the assignment operator.

The AGGREGATE-TYPE-EXPRESSION arguments can be an expression of
type structure or union, provided that both source and target are declared with the
same tag in the same compilation. (AGGREGATE-TYPE-EXPRESSION cannot be
an array; use the copy command with arrays.)

The VALUE-LIST argument can also be used to assign values to the target
AGGREGATE-TYPE-EXPRESSION. Any of the items in a VALUE-LIST can be a
structure or union. If a union is specified, VALUE-LIST must contain exactly one
item that is assigned to the first member of the union. For example, in the
following statement, 5 is assigned to the first member of some_union:

assign some union = { 5 }

To assign a value (for example, 9) to the second member of some union, use
assign as follows:

assign some union.member2 = 9

The AGGREGATE-TYPE-EXPRESSION argument can be a structure with
members that are aggregates.

The VALUE-LIST argument contains any or all of the following items, enclosed
by braces:

0 one or more VALUE arguments (as described under Format 1) separated by
commas:

194

assign A Chapter 14

{VALUE, VALUE, VALUE, . . .}

O one or more NULL-INITIALIZERs. A NULL-INITIALIZER is an empty pair
of braces: {}.

O one or more VALUE-LISTs (this means that a VALUE-LIST can contain
nested VALUE-LISTSs).

Rules for assigning VALUE-LISTs to aggregate objects:
O An aggregate must be assigned values via a VALUE-LIST.

0 The order of the elements in a VALUE-LIST must correspond to the order of
members in the aggregate.

o If an aggregate has more members than there are elements in the
VALUE-LIST to be assigned to it, no assignment is made to the extra
members.

o If a VALUE-LIST has more elements than there are members in the
aggregate to which it is assigned, the extra elements in the VALUE-LIST are
ignored. (In this case, you receive a message.)

o If the VALUE-LIST contains a NULL-INITIALIZER, the corresponding
member of the aggregate is not modified.

One of the elements of the aggregate can be an aggregate, in which case, the
rules above apply (recursively) to that element. Therefore, if a member of a
structure is a structure, the debugger expects to find a VALUE-LIST nested in
another VALUE-LIST. For example, consider the following structure:

struct a {
int b;
struct ccc d;
long e;
+i
The structure needs a VALUE-LIST, as follows, with the values to be assigned
to struct ccc din the inside set of braces:

{b-value, {d-value, d-value, d-value, . . .}, e-value}

EXAMPLES
The assign examples in this section are based on the following declarations and
#define statement:

#define B_MAX 9
int ival;

char *p;
struct XXX int a; short b,c;d;

The semantics in the examples are the same as for the assignment statement.
In other words, assign i=5 does the same as i=5; in C.

assign ival = 3+B_MAX
assigns 12 to ival.
assign p = &ival
assigns the address of ival to a pointer object (scalar).

assign ival = 20
assigns a constant to an arithmetic object (scalar).

assign d = {1,2}
assigns values from a value list to a structure d (d.a=1,d.b=2) .

Command Directory A attn 195

assign d = {1,ival, 3}
assigns values from a value list to a structure d (d.a=1,d.b=20,d.c=3).

assign d = {d.b}
assigns d.b (a short) to the first element of structure d (d.a =20).

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The assign command uses command scope to resolve references to all identifiers.

RETURN CODES SET
Successful: 0

Unsuccessful: 1

SEE ALSO

O “copy” on page 205

O “return” on page 248
O “scope” on page 252
o

“transfer” on page 271

attn

Generate a SIGINT Signal

ABBREVIATION
at{tn}

FORMAT
attn

DESCRIPTION
The attn command generates a SIGINT signal in programs executing under the
debugger. A message is sent to the terminal to confirm that the signal is raised.
See the discussion of signals in Chapter 17, “Signal-Handling Functions,” in the
SAS/C Library Reference, Volume 1.

SYSTEM DEPENDENCIES
A SIGINT signal is an interruption from the terminal normally generated under
TSO when you press the attention key or under CMS when you issue the
command IC. However, the attention key (under TSO) or the 1¢ command (under
CMS) gives control of execution back to the debugger. Thus, the attn command is
a way of sending a SIGINT signal to an executing program.

196 auto A Chapter 14

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The attn command is not affected by changes in scope.
RETURN CODES SET
Successful: 0
Unsuccessful: 1

auto

Set Debugger Modes

ABBREVIATION
au{to}

FORMAT
auto KEYWORD KEYWORD . . .

DESCRIPTION
The auto command is used to specify several characteristics of output produced by
the debugger. The auto KEYWORDs are as follows:

c{macros}/noc{macros}

Default: nocmacros
When the debugger evaluates expressions in commands, macros defined in your
program and used in those expressions can be substituted with their text. To do
macro substitution in expressions, you must first set the cmacros keyword. You
must also have compiled your program with the dbgmacros option (Chapter 4,
“Compiler Options,” on page 57). This keyword affects all debugger commands
that use expressions except the whatis command.

c{xx}/moc(xx}

Default: nocxx
If you issue an auto cxx command, the debugger automatically saves the current
status of auto command’s extname keyword and turns on auto extname. When
auto cxx is turned off, the most recently saved value of extname is restored. auto
extname cannot be turned off while auto cxx is on. The query command displays
the state of the cxx keyword. The transfer command supports the exx keyword.
If all auto command settings are transferred, cxx appears between extname and
linesize. The minimum lengths you can specify for the emacros and
nocmancros keywords of the autos command are now two and four, respectively.

d{umpabs}/nod{umpabs}

Default: nodumpabs
The dumpabs keyword controls the method of addressing used in output from the
dump command. Relative addressing is the default, which is selected by the
nodumpabs keyword. Absolute addressing is selected by the dumpabs keyword.

Command Directory A auto 197

The method of displaying addresses is affected regardless of whether the dump
command output is displayed in the Log window or directed to the Dump window.

{e}cho/{noe}cho

Default: noecho
The echo keyword echoes debugger commands (except for break and trace used
with no arguments) in an on command’s list. The echo keyword is used following
the auto command in an on command’s CMD-LIST. Subsequent commands in the
CMD-LIST are then echoed. Similarly, the noecho keyword is used to turn off
echoing of subsequent commands in a CMD-LIST.

ex{ececho}/noex{ececho}

Default: noexececho
The exececho keyword echoes each line of the EXEC or TSO CLIST, supplied to
the debugger by the subcomm interface (used by the debugger to communicate
with the EXEC or CLIST) before the debugger parses and executes the line. This
echoing behavior occurs both in line mode and full-screen mode. In line mode, the
line goes through the normal ouput interface; in full-screen mode, it appears in the
Log window.

ext{name}/noext{name}
Default: noextname
The extname keyword selects extended name support. If selected, function names
used with commands such as break, on, and trace can be as long as 255
mixed-case characters. This enables the debugger to use extended names that are
contained in the debugger symbol table associated with modules that have been
compiled with the extname compiler option. Refer to the SAS/C Compiler and
Library User’s Guide for additional information about extended name support.
The default setting, noextname, limits function names to eight characters. Also,
with the default setting, function names that are eight characters or less in length
and do not contain any uppercase characters are converted to all uppercase when
they are issued as part of a debugger command.
Changing this keyword during a session only affects requests that are installed
after the change is made. Previously issued requests are not affected. The output
from the query command shows the function names as installed.

i{d}/noi{d}

Default: id
These keywords determine whether a line is produced for on commands. The noid
keyword suppresses both a trace and a source line. For id, the type of line that
you receive depends on whether you also specified 1ist or nolist. The nolist
keyword produces a trace line; 1ist (the default) produces a source line. However,
because the on command generates an output line before executing its CMD-LIST,
id or noid in the CMD-LIST does not affect the format of the current output line,
but it is in effect the next time a breakpoint is hit.

lin{esize} nnn

Default: 75
The linesize keyword sets the line size of debugger output to the value specified
by nnn. By default, the debugger displays, at most, 75 characters on each output
line. nnn must specify between 40 and 251 characters (TSO) or between 40 and
130 characters (CMS, 0S/390 batch), inclusive. Nonsource lines greater than the
linesize value are wrapped. For source lines, see the wrap keyword.

lis{t}/nol{ist}

Default: list
In line mode, the 1ist or nolist keywords determine the type of identifying line
that the debugger outputs, either when the user gains control due to a break,

198

auto A Chapter 14

step, continue, or on command or as the result of executing a trace or on
command. (The 1ist and nolist keywords are ignored in full-screen mode.) The
list keyword produces a listing line; the nolist keyword produces a trace line.

The 1ist or nolist keywords can be used with the auto command in the
CMD-LIST of an on command. However, because the on command generates an
output line before executing its CMD-LIST, 1ist/nolist in the CMD-LIST does
not affect the format of the current output line, but it is in effect the next time a
breakpoint is hit.

If the CMD-LIST contains the trace command, the format of the output line
may be changed, depending on whether a line was generated when the on
command took effect and the line’s format.

n{ullptr}/non{ullptr}

Default: nonullptr
The nullptr keyword enables you to dereference null pointers. These keywords
affect expressions that are used in debugger commands.

w{rap}/now{rap}
Default: wrap
In line mode, the wrap and nowrap keywords only affect the way the debugger
displays output source lines. The wrap keyword wraps an output source line
greater in length than specified by the 1inesize keyword to the next line. The
nowrap keyword truncates the line at the line length specified by the linesize
keyword or at the default line length of 75.
If you specify conflicting keywords referring to the same option (such as auto
noid id), the last keyword of the pair goes into effect (in this case, id).
The query command can be used to check the settings of the auto command
keywords.

EXAMPLES

auto linesize 100
displays 100 characters on each debugger output line.

auto echo
turns on echoing of debugger commands.

auto cmacros nullptr
substitutes macros in expressions; allows dereferencing of null pointers.

SYSTEM DEPENDENCIES
See the discussion of the 1linesize keyword earlier in this section.

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The auto command is not affected by changes in scope.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

Command Directory /A hreak 199

SEE ALSO
O “query” on page 244
O “transfer” on page 271

break

Request a Breakpoint

ABBREVIATION
b{reak}

FORMATS
Format 1: break
Format 2: break HOOK-TYPE [when (EXPRESSION)] 1 [count 7]

DESCRIPTION
The break command requests breakpoints at line-number hooks in a program.

Format 1: The break command is used without arguments only within an on
command because you specify the location of breakpoints as part of the on
command syntax.

Format 2: See Chapter 12, “Using Debugger Commands,” on page 129 for the
details of the HOOK-TYPE argument, which is used to specify line-number hooks
as breakpoints.

A when clause is used to request breakpoints conditionally; that is, a breakpoint
is requested at every line-number hook only if the when clause is true when the
line-number hook is reached.

The argument count n is optional. If count n is specified, the first n—1 times the
line-number hook is reached, the count is decremented. The nth time it is hit, the
command is executed. After the nth time, the command is executed every time the
line-number hook is hit.

If a when clause is present, a hit is counted only if the when expression is true.

A query command, issued before the count drops to 1, displays the current
value of count. The keyword count can be abbreviated to cou{nt}.

Identical requests: If a break request is made that is identical to an existing
one, the identical request is not installed. This is true whether the request to be
installed is within an on command or typed in at the command line.

If an identical request is issued and the original request is disabled, the
identical request is discarded and the original request is automatically enabled
without an indication.

If count n is used, the count is ignored in identical requests. If an identical
request with a different count is entered, the count field of a query command is
updated with the new count, and a message is produced.

EXAMPLES

break *
breaks at every line-number hook in a source file compiled with debug.

break entry
breaks on entry to all functions.

break calls
breaks at each call to a function and at each return from a function. (In the
case of function calls, program execution is interrupted twice for each
function called: on calls from functions and on return to the calling function.)

200 browse

A Chapter 14

break main 45 count 10
breaks at line 45 of the main function the tenth time the line-number hook at
that line is reached. After that, it breaks every time line 45 is reached.

break 53
breaks at line 53 of the current function.

break (comp23) entry
breaks on entry to any of the functions in the comp23 section.

break funcl entry when (parml ==5)
breaks on entry to the funcl function when the value of parml is 5.

break func 23:46
breaks at lines 23 through 46 of the func function.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix b
SCOPE

The break command uses command scope to resolve references to all identifiers,
function names, and section names.
RETURN CODES SET

O Successful: 1 number of the action from the list produced by the query
command.

0 Unsuccessful: 0

SEE ALSO

0 “disable” on page 212

O “drop” on page 213
“enable” on page 216
“goto” on page 223
“ignore” on page 226
“on” on page 239
“query” on page 244
“runto” on page 251

O O0Oooood

“trace” on page 269

browse

Request to browse a source file
ABBREVIATION

bro{wse}

FORMAT
browse [struct | union | class | enum] name

Command Directory /A catch 201

DESCRIPTION
The browse command is used to browse the area of the source file where the name
being browsed is declared. The format of the browse command is as follows:

browse [struct|union|class|enum| NAME

The NAME argument is a single identifier name, not an expression.

The class keyword is valid only if auto cxx is in effect. The cxx keyword is set
automatically whenever the debugger detects C++ translated source code.

If the optional struct, union, class, or enum keyword is not specified, the
debugger performs a search in the following order:

1 the list of preprocessor symbols, if present

2 the list of identifiers, typedefs, and enumeration constants

3 the list of struct, union, enum, or class tag names.

If one of these optional keywords is specified, only the list of tag names is
searched.

Normal C scope rules apply to all searches; command scope is used. If a
declaration for the name is found, a Browse window is opened on the file and
positioned to the line containing the declaration.

The browse command may be preceded with a > or >> command prefix: a >
opens a new Browse window; a >> or no prefix reuses the most recently used
Browse window or opens one if none is open.

Note: The only way to issue the browse command is through the Command
window (or a PF key). You cannot issue the browse command in the Browse
window. A

EXAMPLES

browse i
browse the source file where i is declared.

browse struct s
browse the source file where structure s is declared.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source command prefix no
SCOPE

The browse command uses command scope to resolve the name.

RETURN CODES SET
O Successful: 0
0 Unsuccessful:1

catch

Request to catch all exceptions

202 config A Chapter 14

ABBREVIATION
ca{tch}

FORMAT

catch

DESCRIPTION
The catch command catches all exceptions thrown in your program. When an
exception is caught by the debugger, a message window is opened and will indicate
the type of exception that was caught. The source will be updated to the location
that had thrown the exception.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source command prefix none
SCOPE

The catch command is not affected by changes in scope.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO

0 “disable” on page 212
“drop” on page 213
“enable” on page 216
“query” on page 244

O o o g

“resume” on page 246

config

Assign or Identify the Configuration File and Save the Current Configuration

ABBREVIATION
conf{ig}

FORMATS
Format 1: config file
Format 2: config file FILENAME |(MEMBER)
Format 3: config save [FILENAME | MEMBER)]

DESCRIPTION
The config command can be used to assign a configuration file, display the name
of the current configuration file, or save the current configuration. The
FILENAME argument is used to specify the configuration file; under CMS it is a

Command Directory /A config 203

filename and under OS/390 it is an OS/390 data set name. Under OS/390 you can
specify MEMBER instead of FILENAME. MEMBER specifies a member name in a
data set named userid. CDEBUG.CONFIG.

Format 1: This format is valid during a debug session; it cannot be used in the
PROFILE. The file keyword displays the name of the current configuration file.

Format 2: This format is valid only in the PROFILE; it cannot be used during a
debug session. The FILENAME argument is used to assign a current
configuration file to your debug session, which sets the initial configuration of your
windows and PF keys. If running under OS/390, the MEMBER argument can be
used instead of the FILENAME argument.

Format 3: This format is used only during a debug session; it is not valid in a
PROFILE. The save keyword is used with the config command to save your
session configuration to a configuration file. If issued without the FILENAME or
MEMBER argument, this command saves the configuration to the current
configuration file. You can use the FILENAME argument, or the MEMBER
argument if running under 0S/390, to specify a file other than the current
configuration file. This new file then becomes your current configuration file.

The following information is saved to your current configuration file:

o key definitions in use

autopop status of windows

border characters used for windows, if different from the default characters
configurations of windows

colors of windows

context amounts of the Source window

intercept status of the Termin window

open status of optionally open windows

memory allocated to various window buffers

scroll amount that appears in the Status window

O o o o o o o o o d

trace status of the Log window.
EXAMPLES

config file
displays the name of the current configuration file. (This cannot be used in a
PROFILE.)

config file myconfig
assigns myconfig to be the current configuration file, assuming that myconfig
is a valid CMS configuration filename. (This is only valid in a PROFILE.)

config file 'userid.config.files(myconfig)
assigns userid.config.files(myconfig) to be the current configuration file,
assuming that the member myconfig is a valid configuration file under OS/
390. (This is only valid in a PROFILE.)

config file (myconfig)
assigns userid. CDEBUG.CONFIG(myconfig) to be the current configuration
file, assuming that the member myconfig is a valid configuration file under
0S/390. (This is only valid in a PROFILE.)

config save
saves the configuration of your session to your current configuration file.
(This is not valid in a PROFILE.)

204 continue A Chapter 14

config save myconfig
saves your session configuration to myconfig, assuming that myconfig is a
valid CMS configuration filename. The current configuration file becomes
myconfig. (This is not valid in a PROFILE.)

config save
config.files(myconfig) saves your session configuration to the data set
userid.config.files(myconfig), assuming that the member myconfig is a valid
configuration file under OS/390. The current configuration file becomes
userid.config.files (myconfig). (This is not valid in a PROFILE.)

ADDITIONAL DISCUSSION AND EXAMPLES
“Setting Up a Configuration File” on page 46

SYSTEM DEPENDENCIES
The name of the file used as the FILENAME argument depends on the operating
system. See DESCRIPTION.

Under 0S/390, you can specify the MEMBER argument instead of the
FILENAME argument. MEMBER must refer to a member in a partitioned data
set named userid. CDEBUG.CONFIG.

Under CMS, the config file command cannot be followed by another debugger
command on the same line. That is, the arguments to the config file command
are assumed to extend to the end of the line, including any semicolons on the line.

COMMAND CAN BE ISSUED FROM

PROFILE yes (format 2 only)
configuration file no
Source window prefix none

SCOPE

The config command is not affected by changes in scope.

RETURN CODES SET
Successful: 0

Unsuccessful: 1

continue

Continue Execution to Next Line-Number Hook without Stepping into Functions

ABBREVIATION

c, con{tinue}

FORMAT
continue [INTEGER]

DESCRIPTION

The continue command resumes execution of a program and breaks at the next
line-number hook in the context of the current function. However, a continue

Command Directory /A copy 205

command issued at a function return is identical to a step command. The
debugger breaks at the epilog, first at the callee’s side and then at the caller’s side.

The continue command can be thought of as a step over command because,
when at a line hook, it steps over function calls. If a function is recursive, either
directly or indirectly, continue does not break in a recursive invocation.

INTEGER is a nonnegative integer. INTEGER can be 0.) Use the INTEGER
argument to specify the number of times you want the continue command to be
performed.

The continue command does not suppress breakpoints requested by other
commands (for example, break). However, the occurrence of such breakpoints
does not interfere with the eventual interruption of execution as requested by
continue. (At such a breakpoint, enter go.)

If you issue continue with an INTEGER argument, and the debugger breaks
before the continue command is completed, you can issue it again with a different
value for INTEGER to change the number of times continue is performed.
Suppose that the last continue issued is continue 7, and you reach a breakpoint
after continue is performed four times. If you decide you want continue to be
performed only once more, issue continue 1 at the breakpoint. (The three
pending continue commands are replaced with one continue.) continue 0
discards the three pending continue commands and causes execution to resume.
The go command causes the three pending continue commands to be executed.

EXAMPLES

continue
resumes execution and breaks at the next line-number hook without stepping
into functions.

continue 10
resumes execution and breaks at the tenth line-number hook without
stepping into functions.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The continue command is not affected by changes in scope.

RETURN CODES SET
not applicable
SEE ALSO
O “go” on page 222
O “step” on page 260

copy

Copy One or More Items to a New Location

206

copy A Chapter 14

ABBREVIATION

co{py}
FORMATS

Format 1: copy DESTINATION, "STRING"

Format 2: copy DESTINATION, "STRING", BYTES

Format 3: copy DESTINATION, [(CTYPE1 | CTYPE2)] SOURCE

[,COUNT]

Format 4: copy DESTINATION, SOURCE, str

Format 5: copy DESTINATION, [(CTYPE2)] {LIST}
DESCRIPTION

The copy command copies items from one location to another. The copy command
is used to copy a string, address, array, pointer, or one or more expressions to a
location. STRING is a string literal, set off by double quotation marks.
DESTINATION is a pointer, address, or array name. In the following format
discussions, SOURCE and DESTINATION are expressions.

Format 1: Format 1, similar to the strepy function, copies a string literal
specified by the STRING argument to the location specified by the DESTINATION
expression. A comma must follow the DESTINATION argument.

Format 2: Format 2, similar to the memcpy function, copies a string literal. The
string literal to be copied is specified in the STRING argument (set off by double
quotes). BYTES is an integer that indicates the number of bytes to be copied to
the location specified by the DESTINATION expression.

Format 3: Format 3 copies the item or items specified by the SOURCE
expression to the DESTINATION expression. DESTINATION and SOURCE can
be pointers, addresses, or arrays. COUNT, an integer, is the number of items to be
copied. If COUNT is omitted, the number of items defaults to 1. Each item is the
size specified by either CTYPE1 or CTYPE2.

CTYPE1
is a structure/union tag or a type defined with a typedef function.
CTYPE2
is one of the following arithmetic types:
long signed long unsigned long double
int signed int unsigned int float
short signed short unsigned short enum
char signed char unsigned char

If you use a left parenthesis following the DESTINATION argument, the
debugger assumes that you are beginning a CTYPE1 or CTYPEZ2 specification.
The result of using Format 3 is analogous to the following:

memcpy (DESTINATION, SOURCE, ((sizeof (CTYPEl or CTYPE2)) * COUNT)

Note that if you omit the CTYPE1 or CTYPEZ2 argument, the sizes of the
expressions that SOURCE and DESTINATION point to must be the same. If the

Command Directory /A copy 207

sizes are not the same, you receive a message, and the copy command is not
performed.

CTYPE1 overrides the declared types of both the DESTINATION and SOURCE
arguments. If the SOURCE or DESTINATION argument does not have a specific
type, the type defaults to char. For absolute addresses, the default type is char
and the size of the pointed-to expression is 1.

Format 4: Format 4 copies the contents of a memory location pointed to by
SOURCE to the location specified by the DESTINATION expression until the null
terminator \ 0 is encountered in the SOURCE expression. The keyword str
specifies a string copy that is similar to strepy. SOURCE is a pointer, address, or
array. The string delimiter \ 0 is the last byte copied.

If the SOURCE argument begins with a left parenthesis, the parenthesis must
be escaped with a backslash (\). If you do not escape the parenthesis, the
parenthesis is assumed to begin a CTYPEx. Here is an example:

copy a+5, \ (b+2)

Format 5: Format 5 converts the items specified by LIST to CTYPE2 format
and stores the values at the destination specified by the DESTINATION
expression. LIST is one or more expressions. (If you use more than one, separate
them with commas.)

DESTINATION is a pointer, address, or array name. CTYPEZ2 is any of the
arithmetic types, as listed for Format 4. If you do not specify CTYPE2, the type of
the object pointed to by the DESTINATION expression is the default.

EXAMPLES
The copy command examples are based on the following declarations:

char *cp, *s, *d;
struct XYZ {int a; double b;} xyz, xarr[5] , yarr[5] ;
int intarr([5] ;

copy cp, ‘‘abcd’’
copies the string abed to the location pointed to by cp.

copy cp, ‘‘abecd’’, 4
copies 4 bytes (abed) into the location pointed to by cp (the null terminator
\ 0 is not copied).

copy xarr, yarr, 5
copies the five elements of the array yarr into the array xarr.

copy &xyz, &xarr[2]
copies xarr[2] into xyz.

copy d, s, 10
copies 10 bytes from the location pointed to by s to the location pointed to by
d.

copy d, s, str
copies the string pointed to by s into d.

copy intarr (int) {10,20,30,40,50}
copies the values 10, 20, 30, 40, 50 as integers into the array intarr.

SYSTEM DEPENDENCIES
none

208 dbinput A Chapter 14

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The copy command uses command scope to resolve references to all identifiers.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
O “assign” on page 192
O “return” on page 248
O “scope” on page 252

dbinput

Called from a CLIST or EXEC for Information Input

ABBREVIATION
dbi {nput}

FORMAT
dbinput VARIABLE-NAME [“STRING”]

DESCRIPTION
The dbinput command can be called from a CLIST or an EXEC to input
information into a CLIST or EXEC variable. This command, which can only be
used in a CLIST or EXEC, causes the debugger to prompt for input using the
prompt string specified with the STRING argument. STRING is a group of
characters set off by double quotation marks. The command undergoes normal
CLIST or EXEC processing, that is, symbolic substitution occurs. Text input is

assigned to the CLIST or EXEC variable name specified in the command. Both the
VARIABLE-NAME and STRING arguments are limited to 64 characters in length.

In line mode, the debugger reads the input from the terminal at the prompt
specified by the STRING argument.

In full-screen mode, the Termin window is used. Instead of displaying a Read...

prompt, the Termin window will display Exec... in the upper-left border. The

characters specified by the STRING argument are displayed as the input prompt.

Setting the EOF field to Y results in the condition code being set to —13. The
Intercept: field has no effect on the dbinput command. The functions of other
Termin window fields are unchanged by the dbinput command. If it is not
possible to open the Termin window, the debugger will accept input from the
terminal, in a similar manner to a line mode session.

EXAMPLES

dbinput xyz
reads terminal input into the EXEC or CLIST variable xyz.

Command Directory /A dblog 209

dbinput xyz ‘' ‘Please Enter Y or N:'’
displays the prompt string and reads terminal input into the variable xyz. In
full-screen mode the prompt string is displayed in the Termin window. See
“Termin Window” on page 179 for information about the Termin window.

SYSTEM DEPENDENCIES
The dbinput command is used to input a value to a CLIST or EXEC under TSO
and an EXEC under CMS.

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The dbinput command is not affected by changes in scope.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
“dblog” on page 209

Called from a CLIST or EXEC to Output Information

ABBREVIATION
dbl{og}

FORMAT
dblog [STRING]

DESCRIPTION

The dblog command can be called from a CLIST or EXEC to output information
to the debugger. STRING is a string of characters that is not surrounded by
quotation marks. If dblog is used in your CLIST or EXEC, it outputs the string of
characters specified by the STRING argument. If used without the STRING
argument, the output is a blank line. In line mode, output is sent to the session
log displayed on the terminal; in full-screen mode, it is sent to the Log window. If
sent to the Log window, it is displayed in the color specified for debugger
commands (controlled by the Config window).

The dblog command cannot be followed by another debugger command on the
same line. That is, the arguments to the dblog command are assumed to extend
to the end of the line, including any semicolons on the line.

EXAMPLES

dblog
outputs a blank line to the Log window.

210 define A Chapter 14

dblog This is an output string.
displays the string “This is an output string.” in the Log window.

SYSTEM DEPENDENCIES
The dblog command is used to output information from a CLIST or EXEC under
TSO and from an EXEC under CMS.

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The dblog command is not affected by changes in scope.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
“dbinput” on page 208

define

Define a Debugger Macro

ABBREVIATION
de{fine}

FORMATS
Format 1: define DMACRO REPLACEMENT TEXT
Format 2: define DMACRO

Format 3: define *

DESCRIPTION
The define command defines debugger macros, which you should not confuse with
macros that are defined in a program with the preprocessor #define statement.
Debugger macros are a way of defining a shorthand version for commands or

Command Directory /A define 211

portions of a command that you plan to use often in a debugger session. SAS/C
Debugger macros are invoked by prefixing the macro name with #.

Format 1: Format 1 defines a debugger macro (DMACRO) that can be any valid
identifier. The REPLACEMENT TEXT, to be used when invoked, is also specified.

Format 2: Format 2 lists the replacement text for DMACRO.

Format 3: Format 3 lists all debugger macros that you have defined. Format 2
and Format 3 are helpful if you need to view your macro definitions.

Macro definitions can be dropped using the undef command. A macro can be
redefined by issuing another define for the same macro, but with new substitution
text. You do not need to use the undef command on a macro before redefining it.

Debugger macros cannot appear in the following commands:

o %
config
exec
help
system

transfer

O 0o o o o o

user-installed commands.
EXAMPLES

define pt print ptr --> token
defines pt to be a debugger macro so that typing # pt at the Cdebug prompt
is equivalent to typing print --> token.

Note: You also can type # pt.shrt to obtain print ptr -->
token.shrt or # pt.lng to obtain print ptr --> token.lng. A
define pt
displays the text that pt replaces.
define *

displays all the debugger macros that you defined.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The define command is not affected by changes in scope.
RETURN CODES SET
Successful: 0

Unsuccessful: 1

SEE ALSO
“undef” on page 275

212 disable A Chapter 14

disable

Disable Requests

ABBREVIATION
di{sable}

FORMATS
Format 1: disable ACTION-RANGE
Format 2: disable ACTION-RANGE, ACTION-RANGE, . . .
Format 3: disable FUNCTION-NAME | (SECTION-NAME) all
Format 4: disable all
Format 5: disable last

DESCRIPTION

The disable command disables requests. Requests are identified by request
number as displayed by the query command. The ACTION-RANGE argument is
either ACTION (a single request) or ACTION:ACTION (a request range).

Format 1: Format 1 disables one request or one request range specified by
ACTION-RANGE.

Format 2: Format 2 disables several single requests and/or request ranges.

Format 3: Format 3 disables all requests for a section (SECTION-NAME) or
function (FUNCTION-NAME).

To use this form of disable, specify the function name or, in parentheses, the
section name followed by the keyword all.

Format 4: This format disables all requests for the entire program.

Format 5: This format disables the last request on the list.

After you disable a request, the request is not honored until you enable it again.
(See “enable” on page 216.) Disabled requests are marked with an asterisk in the
query list next to the request number. (If you try to disable a request that is
already disabled, you receive a message.)

In contrast to drop, which permanently removes requests from the query list,
disable only makes the command ineffective until you reenable it.

Identical requests: If you issue a request, disable it, and then issue an identical
request, the identical request is discarded and the original request is
automatically enabled.

EXAMPLES

disable 3
disables request number 3 in the query list.

disable 3:6
disables request numbers 3 through 6 in the query list.

disable 4, 9:13, 7
disables request number 4, request numbers 9 through 13, and request
number 7 in the query list.

disable funcl all
disables all requests for the funcl function.

disable (comp23) all
disables all requests for the comp23 section name (compilation).

Command Directory /A drop

disable all
disables all requests for the program.

disable last
disables the last request on the list.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix d
SCOPE

The disable command is not affected by changes in scope.

RETURN CODES SET
Successful: a nonzero number

Unsuccessful: 0

SEE ALSO
0 “dump” on page 215
O “enable” on page 216
O “ignore” on page 226
o

“query” on page 244

213

Drop Request

ABBREVIATION
dr{op}

FORMATS
Format 1: drop ACTION-RANGE
Format 2: drop ACTION-RANGE, ACTION-RANGE, . . .
Format 3: drop FUNCTION-NAME | (SECTION-NAME) a1l
Format 4: drop all
Format 5: drop last

DESCRIPTION

The drop command drops one or more requests from the list displayed by the

query command. Requests are identified in the query list by request number. The
numbers associated with dropped requests are not reused. The ACTION-RANGE

214

drop A Chapter 14

argument is either ACTION (a single request) or ACTION:ACTION (a range of
requests).

Format 1: Format 1 drops a single request or request range from the list
displayed by the query command.

Format 2: Format 2 drops several single requests and request ranges, which are
separated by commas.

Format 3: Format 3 drops all requests for a function (FUNCTION-NAME) or a
section (SECTION-NAME) from the query list.

To use this form of drop, specify the function name or, in parentheses, the
section name followed by the word all.

Format 4: This format drops all requests for the entire program.

Format 5: This format drops the last request on the list displayed by the query
command.

EXAMPLES

drop 3
drops request number 3 from the query list.

drop 3:6
drops request numbers 3 through 6 from the query list.
drop 4, 9:13, 7
drops request numbers 4, 9 through 13, and 7 from the query list.

drop funcl all
drops all the requests for the funcl function.

drop (comp23) all
drops all the requests for the comp23 compilation.

drop all
drops all the requests for the entire program.

drop last
drops the last request on the query list.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The drop command is not affected by changes in scope.

RETURN CODES SET
Successful: a nonzero number
Unsuccessful: 0

SEE ALSO
0 “disable” on page 212
O “enable” on page 216
O “ignore” on page 226
O “query” on page 244

Command Directory /A dump 215

Dump Memory Contents

ABBREVIATION
du{mp}

FORMATS
Format 1: dump EXPRESSION relative/absolute
Format 2: dump EXPRESSION COUNT relative/absolute
Format 3: dump EXPRESSION relative/absolute str

DESCRIPTION
The dump command dumps the contents of storage pointed to by EXPRESSION.
Note that for the dump command, EXPRESSION is either a pointer, an address, or
an array.
Format 1: Format 1 dumps the contents of storage pointed to by the argument
EXPRESSION with the number of bytes dumped determined as shown in Table
14.1 on page 215.

Table 14.1 Dump Command: Number of Bytes Dumped

Argument Type Number of Bytes Dumped
pointer the size of the pointed-to expression
address of a scalar or aggregate the size of one item of the array
array the size of one item of the array
absolute address 1 (treated as a pointer to char)

Format 2: Format 2 dumps the contents of storage pointed to by EXPRESSION
up to the number of bytes specified by COUNT. COUNT is an integer that specifies
the number of bytes to be dumped.

Format 3: Format 3 dumps the contents of storage associated with
EXPRESSION until the null terminator \ 0 is encountered.

For all formats, the output of the dump command shows the contents of the
EXPRESSION argument in characters and in hexadecimal format and shows the
address of the argument as a hexadecimal number. The keyword relative or
absolute selects the type of addressing used to display the address. The default is
to display relative addresses.

The output of the dump command is affected by the width of the output area. In
line mode, the linesize specified by the auto command will affect the width of the
output. In full-screen mode, the width of the window in which the dump is
displayed affects the width of the output. (Output from the dump command can be
displayed in either the Log or Dump window.)

EXAMPLES
The dump command examples are based on the following declarations:

char *s;
struct INT2 {int a, b} int2;

216 enable A Chapter 14

dump s
dumps one character of storage pointed to by s.

dump &int2
dumps the 8 bytes (size of structure int2) of structure int2.

dump s 10
dumps 10 bytes of storage beginning at the location pointed to by s.

dump 0p00234567 20
dumps 20 bytes of storage beginning at the absolute address 0p00234567.

dump s str
dumps the string pointed to by s.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The dump command uses command scope to resolve references to all identifiers.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
O “monitor” on page 235
O “print” on page 241

3

O “watch” on page 276

Enable Requests

ABBREVIATION
en{able}

FORMATS
Format 1: enable ACTION-RANGE
Format 2: enable ACTION-RANGE, ACTION-RANGE, . . .
Format 3: enable FUNCTION-NAME/(SECTION-NAME) al1
Format 4: enable all

Format 5: enable last

Command Directory /A enahble 217

DESCRIPTION
The enable command reenables commands that were disabled previously. (See
“disable” on page 212.) Requests are identified by request number as displayed by
the query command. The ACTION-RANGE argument is either ACTION (a single
request) or ACTION:ACTION (a range of requests).

Format 1: Format 1 enables one request or one request range specified by
ACTION-RANGE.

Format 2: Format 2 enables several single requests or request ranges or both,
which are separated by commas.

Format 3: Format 3 enables all requests for a section (SECTION-NAME) or
function (FUNCTION-NAME). To use this form of enable, specify the function
name or, in parentheses, the section name, followed by the word all.

Format 4: Format 4 enables all requests (for the entire program). If you specify
only the all keyword, all disabled requests (for the entire program) are enabled.

Format 5: Format 5 enables the last request on the list.

Identical requests: If you issue a request, disable it, and then issue an
identical request, the identical request is discarded and the original request is
automatically enabled without an indication.

EXAMPLES

enable 3
enables request number 3 in the query list that was disabled previously.

enable 3:6
enables request numbers 3 through 6 in the query list.

enable 4, 9:13, 7
enables request numbers 4, 9 through 13, and 7 in the query list.

enable funcl all
enables all the previously disabled requests for the funcl function.

enable (comp23) all
enables all the previously disabled requests for the compilation comp23.

enable all
enables all previously disabled requests for the entire program.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix e
SCOPE

The enable command is not affected by changes in scope.

RETURN CODES SET
Successful: a nonzero number

Unsuccessful: 0

218 escape A Chapter 14

SEE ALSO

O “disable” on page 212
O “ignore” on page 226
O “query” on page 244

escape

Transfer Control to the Operating System Debugger

ABBREVIATION

es {cape}

FORMAT

escape

DESCRIPTION

The escape command transfers control from the SAS/C Debugger to TEST under
TSO or to CP under CMS and lets you return to the program executing under the
SAS/C Debugger at the place where you left it. You enter TEST or CP in the
context of the program being debugged. You need to perform the following steps
before you can use escape:

1 When you enter the debugger, press the attention key to transfer control to
CP or TSO TEST.

2 Using commands for your operating system, request the breakpoint specified
on entry to the SAS/C Debugger. This breakpoint is stated in the header you
see when you call the SAS/C Debugger.

3 After you request this breakpoint (using commands for your operating
system), reenter the SAS/C Debugger (also using commands for your
operating system).

When you issue the escape command while executing your program under the
SAS/C Debugger, you escape to TSO TEST or CP. The screen is refreshed after
completion of execution of the escape command.

If you do not request the breakpoint for escape according to the instructions
and try to use escape, nothing happens. The debugger cannot check whether you
requested the breakpoint.

In addition, you do not need to request the breakpoint immediately on entry to
the debugger. You can note the address and use it later to request the breakpoint
when you want to use escape.

SYSTEM DEPENDENCIES

TSO: To use escape, you must run the SAS/C Debugger under TSO TEST.

1 Invoke the SAS/C Debugger using TSO TEST. (See Chapter 5, “Running the
Debugger under TSO,” on page 61.) If you mistakenly invoke the debugger
using the TSO CALL command, you cannot run your program under TEST.

2 Issue the TEST command GO to begin SAS/C Debugger execution. Read the
ESCAPE message.

3 Press the attention key to return to TEST under TSO.

4 Request the breakpoint using the TEST command AT.

5 Issue the TEST command GO to return to the SAS/C Debugger. See the IBM
publication OS/390 V2R9.0 TSO/E Command Reference SC28-1969 for more
information about TSO TEST commands.

CMS: When you are running the SAS/C Debugger under CMS, use the

debugger command system to issue a PER command to request a breakpoint.

Command Directory /A exec (TS0) 219

(Under VM/XA, the TRACE command is used instead of PER.) For example, if the
breakpoint that you want to request is at 00D174, the following command requests
the breakpoint:

system CP PER I R D174

Then, you can use escape to leave the SAS/C Debugger, examine your program
under CP PER, and return to the SAS/C Debugger via the CP command BEGIN.
See the IBM publication CP Command and Utility Reference SC24-5773 for more
information about CP.

Register values: TSO and CMS: When you use escape to give control to
TEST or PER, the register contents are the same as when the program transfers
control to the debugger.

o0 For a normal line-number hook, register 1 points to the next instruction to be
executed.

o For a return hook, register 14 contains the return address and register 15
contains the return value, if any, for integer and pointer type returns.
Floating-point register 0 contains double return values.

0 When control passes to the debugger due to a program check, register 1
addresses a copy of the EPIE generated by the system for the program check,
which includes the register contents and PSW.

Modifying register contents while escaped under TEST or PER may not work
and could potentially cause 0CX or other undesired effects. See “return” on page
248 for information about setting RETURN values.

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The escape command is not affected by changes in scope.

RETURN CODES SET

none

SEE ALSO

“system (CMS)” on page 267

exec (TSO)

Execute a CLIST or EXEC under TSO

ABBREVIATION

exe{c}

FORMAT

exec CLIST-NAME | EXEC-NAME ARGUMENTS’] [1ist | nolist] [prompt |

noprompt]

220

exec (TS0) A Chapter 14

DESCRIPTION

The exec command executes a CLIST or a REXX EXEC specified by the
CLIST-NAME or EXEC-NAME argument. CLIST-NAME or EXEC-NAME is the
name of a member in a partitioned data set containing command procedures
(CLISTs) or a REXX EXEC.

The data set can contain either CLIST or REXX statements and control
variables as well as SAS/C Debugger commands. Debugger commands are passed
back to the debugger and performed. TSO commands cannot be executed directly
from a CLIST. However, they can be executed using the system debugger
command.

If you execute a REXX EXEC from the debugger, you can issue either TSO
commands or debugger commands with the REXX ADDRESS. ADDRESS
CDEBUG is used to issue debugger commands and ADDRESS TSO is used to
issue TSO commands.

You can specify values for ARGUMENTS to be passed to your CLIST or EXEC,
and you can specify the list, nolist, prompt, or noprompt keyword. See the IBM
publication 0OS/390 V2R9.0 TSO/E Command Reference SC28-1969 for a discussion
of the TSO EXEC command and the list, nolist, prompt, and noprompt keywords.

The data set name must follow TSO naming conventions for data sets
containing CLISTs or EXECs in a TSO EXEC command. According to these
conventions, if the final qualifier of the CLIST is not “clist,” the fully qualified data
set name must be specified inside single quotation marks. Line numbers (if they
exist) in the data set must follow these rules:

fixed block data set
In each record, the line number is the last eight characters.

variable blocked data set
In each record, the line number is the first eight characters.

See the IBM publication TSO/E Command Reference SC28-1969 for a discussion
of CLISTs. See the IBM publication 0S/390 V2R9.0 TSO/E REXX User’s Guide
SC28-1974 for information about REXX EXECs.

You cannot use another debugger command on the same line following exec. If
another debugger command occurs on the same line after exec, the debugger
ignores it with a warning.

Similarly, no other debugger command can be issued on the same line as exec
when it is used as an argument to on (but you can use another command following
exec on a separate line). Any command following exec on the same line is ignored.

If a CLIST or EXEC contains a debugger go, step, continue, exit, abort, or
resume command, the command is executed and the CLIST or EXEC is ended.
Any debugger commands in the CLIST or EXEC following one of these commands
are not performed. In an EXEC, any commands after one of these commands are
rejected with a return code of —10.

ADDITIONAL DISCUSSION AND EXAMPLES

See Table 3.2 on page 51.

SYSTEM DEPENDENCIES

The exec command followed by a CLIST argument is only valid for TSO. See the
CMS version of exec.

Command Directory A exec (CMS) 221

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The exec command is not affected by changes in scope.
RETURN CODES SET
Successful: code set by the CLIST called

Unsuccessful: parsing error, — 1; otherwise, execopn () code

exec (CMS)

Execute an EXEC under CMS

ABBREVIATION

exe{c}

FORMAT
exec EXEC-NAME [ARGUMENTS]

DESCRIPTION
The exec command executes the EXEC specified by the argument EXEC-NAME.
This file must have file type CDEBUG. The EXEC is executed with a default
subcommand environment of CDEBUG. See the IBM publication VM/ESA V2R4.0
REXX/VM Reference SC24-5770 for a detailed explanation of subcommand
environments.

You cannot use another debugger command on the same line following exec. If
another debugger command occurs on the same line as exec, the debugger ignores
it with a warning. Similarly, no other debugger command can be issued on the
same line after exec when it is used as an argument to on. You can use another
command following exec on a separate line.

ADDITIONAL DISCUSSION AND EXAMPLES
See Table 3.2 on page 51.

SYSTEM DEPENDENCIES
The exec command followed by an EXEC argument is valid only for CMS. See the
TSO version of exec.

COMMAND CAN BE ISSUED FROM

PROFILE yes
configuration file no

Source window prefix none

222 exit A Chapter 14
SCOPE
The exec command is not affected by changes in scope.
RETURN CODES SET
Successful: code returned from the EXEC
Unsuccessful: parsing error, — 1; otherwise, execopn () code
exit

Terminate Program Execution

ABBREVIATION
exi{t}

FORMATS
Format 1: exit
Format 2: exit nodrop

DESCRIPTION
Format 1: Format 1 immediately terminates program execution under the
debugger, closing both program files and debugger files. Control returns to the
operating system. The exit command is equivalent to calling the exit function
from within a program.

Format 2: Format 2 uses the nodrop keyword in the debugger exit command
to retain breakpoints in functions registered with the atexit compiler function.
Normally, the exit command drops any outstanding breakpoints before
terminating the program. If the program registers a function via the atexit
function, any breakpoints in that function are dropped. When the nodrop keyword
is used, however, outstanding breakpoints are not dropped automatically.

SYSTEM DEPENDENCIES
none

SCOPE

The exit command uses command scope to resolve references to all identifiers.
COMMAND CAN BE ISSUED FROM

PROFILE no
configuration no
Source window prefix none

RETURN CODES SET
not applicable

SEE ALSO
“abort” on page 191

Start/Resume Program Execution under the Debugger

Command Directory A goto 223

ABBREVIATION
g{o}

FORMAT
go

DESCRIPTION
The go command starts (or resumes) execution of a program under the SAS/C
Debugger. The program executes until the first breakpoint or action that is
requested is reached or until an incomplete step or continue completes. Then,
the go command can be reissued to resume execution.

Note: If you do issue go as the first command, the debugger regains control if
one of the signals trapped by the debugger is raised or if attention/IC is used. See
“resume” on page 246 for a list of these signals. A

You can use the go command to debug a program that fails. For example,
suppose that your program fails with an 0C4. To run the program, issue a go
command. When the 0C4 signal occurs and the debugger regains control, you can
look at variables.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The go command is not affected by changes in scope.

RETURN CODES SET
not applicable
SEE ALSO
O “continue” on page 204
“goto” on page 223
“resume” on page 246
“runto” on page 251

O o o g

“step” on page 260

goto

Alias for resume Command; Resume Program Execution at a Specified Location

ABBREVIATION
got{o}

FORMATS

Format 1: goto

224 help A Chapter 14

Format 2: goto LINENO

Format 3: goto FUNCTION-NAME

Format 4: goto FUNCTION-NAME LINENO
DESCRIPTION

All formats of the goto command allow you to resume execution at a specified
location. Thus, you can reexecute or bypass portions of your program.

The goto command is an alias for the resume command. See “resume” on page
246 for a complete description.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix g
SCOPE

The goto command uses command scope to supply default function names.

RETURN CODES SET
not applicable

SEE ALSO
“resume” on page 246

Access Debugger Online Help

ABBREVIATION
h{elp}

FORMAT
help [DEBUGGER-CMD-NAME | WINDOW-NAME | TOPIC]

DESCRIPTION
The help command invokes the help system. The optional arguments,
DEBUGGER-CMD-NAME, WINDOW-NAME, and TOPIC, are used to access
information debugger commands, windows, and topics such as how to set up a
configuration file. Context-sensitive help is provided by the help < > command,
which is assigned to the PF1 key by default. The key currently assigned to this
command is displayed on the left side of the Status window.

Enter the help command with no arguments to access an index of the help
system. The index is used to select help on topics such as prefix-area commands
and debugger windows.

The DEBUGGER-CMD-NAME argument is used to specify the command you
want help with. DEBUGGER-CMD-NAME can be any debugger command or its
abbreviation.

The WINDOW-NAME argument can be used to access help for a specific
window. The WINDOW-NAME argument must be one of the following:

Command Directory /A help

Browse Command Config
Dump Find Help
Keys Log Message
Popup Print Register
Source Status Termin
Termout Watch

The TOPIC argument is used to access a specific topic in the help system. Here
are some of the topics that are covered:

O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

assigning PF keys

closing windows

configuration file

directing command output
executing EXECs

formats

issuing CMS CP commands
issuing operating system commands
issuing TSO TEST commands
moving windows

opening windows

prefix-area commands
PROFILE

resizing windows

> command prefix

>> command prefix

< > placeholder.

225

Any of these topics can be entered as a TOPIC argument to the help command.
For example, entering the following command will access help on closing windows:

help closing windows

The debugger converts all TOPIC arguments to uppercase before searching the
help system for the topic. The search routine used by the help system to find
information about your topic is not case sensitive; therefore, the TOPIC argument
can be any combination of uppercase and lowercase characters.

The help command cannot be followed by another debugger command on the

same line. That is, the arguments to the help command are assumed to extend to
the end of the line, including any semicolons on the line.

EXAMPLES

help

opens the Help window and displays the INDEX.

help break

opens the Help window and displays the card for the break command.

226 ignore A Chapter 14

help config window
opens the Help window and displays the card for the Configuration window.

help prefix-area commands
uses the TOPIC argument to display information about prefix-area
commands.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The help command is not affected by changes in scope.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

ignore

Ignore Breakpoint or Action Requests, or Signals

ABBREVIATION

i{gnore}
FORMATS
Format 1: ignore HOOK-TYPE
Format 2: ignore signal
Format 3: ignore SIGNAL-NAME signal

DESCRIPTION
The ignore command lets you temporarily suppress action and breakpoint
requests that you may want to reinstate later. It also lets you ignore signals.

Note: It is better to drop a request than to ignore it because run-time overhead
may be associated with ignored requests, but not with dropped ones. A

Format 1: Format 1 lets you ignore breakpoint or action requests at specified
hooks. See Chapter 12, “Using Debugger Commands,” on page 129 for details on
the HOOK-TYPE argument, an argument that allows you to specify hooks.

Format 2: Format 2 causes the debugger to ignore all signals.

Format 3: Format 3 causes the specific signal named in SIGNAL-NAME to be
ignored when SIGNAL-NAME is used with the signal keyword. SIGNAL-NAME is
the name of a signal. Tracing of the signal is turned off. See Chapter 17,
“Signal-Handling Functions,” in the SAS/C Library Reference, Volume 1, for a list
of signal names.

Ignoring signals: Format 2 and Format 3 allow you to ignore signals.
Whenever a signal occurs, it is traced automatically, and the return from signal

Command Directory /\ ignore 221

handling is traced also. The ignore command provides a way to turn off this
trace. If you choose to ignore a signal, the debugger does not trap or trace the
signal, and you cannot recover or resume execution afterward. You must
remember this point when you use ignore with the signal keyword.

Dropping ignore: You can drop the ignore command (using the drop
command) if you want the breakpoint requests and actions to be in effect again or
if you do not want to ignore signals.

Identical requests: If an ignore request is made that is identical to an
existing one, the identical request is not installed. This is true whether the
request to be installed is within an on command or typed in at the command line.

If an identical request is issued and the original request is disabled, the
identical request is discarded and the original request is automatically enabled
without an indication.

EXAMPLES

ignore *
ignores all breakpoint and action requests at every line-hook for every source
file.

ignore entry
ignores requests at all function entries.

ignore main 45
ignores any requests at line 45 in the main function.

ignore 53
ignores any requests at line 53 of the current function.

ignore (comp23) entry
ignores any requests made at entry to the comp23 compilation.

ignore funcl entry
ignores any requests made at entry to the funcl function.

ignore func 23:46
ignores any requests at lines 23 through 46 in the func function.

ignore signal
ignores all signals.

ignore SIGSEGV signal
ignores the signal named SIGSEGV.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix i
SCOPE

The ignore command uses command scope to supply default function names and
section names.

228 install

A Chapter 14

RETURN CODES SET
Successful: request number from query
Unsuccessful : 0

SEE ALSO
O “disable” on page 212
O “drop” on page 213
O “enable” on page 216
O “query” on page 244

install

Assign or List User-Defined Commands

ABBREVIATION
in{stall}

FORMATS
Format 1: install COMMAND-NAME as EXEC-NAME 2 [LENGTH]
Format 2: install COMMAND-NAME drop
Format 3: install *

DESCRIPTION
The install command enables you to define commands, thus, tailoring the
debugger to meet your specific need or to emulate the commands of other
debuggers. Your commands execute a CLIST or EXEC, which actually contains the
code for your user-defined command. No checking for the existence of the CLIST
or EXEC is made at the time the install command is issued.

Format 1: This format of the install command is used to define a command.
When defining a command, the COMMAND-NAME argument indicates the name
of your command and the EXEC-NAME argument is the name of a CLIST or
EXEC that is executed when your new command is invoked.

The LENGTH argument is used to specify a short form for your command. If
specified, LENGTH is the minimum number of characters in COMMAND-NAME
that can be used as a short form of the command. For example, if you installed a
command name start, specifying 2 as the LENGTH argument, your command
could be invoked by entering the characters st, sta, star, or start.

Format 2: This format is used to remove a command from the debugger’s list of
user-defined commands.

Format 3: This format lists all user-defined commands. The
COMMAND-NAME, EXEC-NAME, and LENGTH are displayed.

User-defined commands are placed in a list that is searched before the
debugger’s command list. If you attempt to use the install command to define a
command that creates a conflict with an existing user-defined command, a
message is displayed and the definition is not made.

It is possible for user-defined commands to have the same name or short form
as debugger commands. If you create a user-defined command with the same
name as a debugger command, you can invoke the native debugger command by
prefixing the command with the debugger escape character, a backslash (\).

User-defined commands can invoke other user-defined commands; however, the
debugger makes no attempt to identify user-created loops.

When you invoke a user-defined command, you can pass arguments to your
CLIST or EXEC by typing them on the same line following your command. For

Command Directory /A install 229

example, suppose that you have defined a command that invokes a CLIST named
MYCOMMAND that takes two arguments, ARG1 and ARG2. This user-defined
command can be issued from the command line or the Command window as
follows:

mycommand argl arg2

As is the case with the exec and $ commands, no other commands can follow a
user command on the same line. However, a command can precede the
user-defined command. Similarly, no other debugger command can be issued on
the same line as the user-defined command when it is used as an argument to the
on command (but you can use another command following the user-defined
command on a separate line). Any commands following the user-defined command
on the same line are treated as arguments to the user-defined command.

EXAMPLES

install mycommand as myexec 2
defines a command named mycommand that will invoke a CLIST or EXEC
named MYEXEC. The 2 establishes my as the short form for this command.

install mycommand drop
removes, or drops, mycommand from the debugger’s list of user-defined
commands.

install *
displays a list of all user-defined commands.

SYSTEM DEPENDENCIES
TSO: Your user-defined command invokes a CLIST or REXX EXEC as previously
described for the $ command. When you invoke your user-defined command, it is
executed in the same manner as it would be if you had invoked the CLIST or
EXEC with the $ command. All restrictions that apply to CLISTs and EXECs
executed by the $ command also apply to CLISTs and EXECs executed by
user-defined commands.

cMS: The user-defined command executes the EXEC specified by the argument
EXEC-NAME. This file must have filetype CDEBUG. The EXEC is executed with
a default subcommand environment of CDEBUG. See the IBM publication
VM/ESA V2R4.0 REXX/VM Reference SC24-5770 for a detailed explanation of
subcommand environments.

When you invoke your user-defined command, it is executed in the same
manner as it would be if you had invoked the EXEC with the exec command. All
restrictions that apply to EXECs executed by the exec command also apply to
EXECs executed by user-defined commands.

COMMAND CAN BE ISSUED FROM

%
%

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The install command is not affected by changes in scope.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

230 keys A Chapter 14

SEE ALSO

O “%” on page 189
o “exec (T'SO)” on page 219

keys

Assign or List PF Key Commands

ABBREVIATION
k{eys}
FORMATS
Format 1: keys [list N]
Format 2: keys define N “STRING”
Format 3: keys default N
Format 4: keys help N
Format 5: keys ispf N on|off
DESCRIPTION

PF keys can be used to issue debugger commands in full-screen mode. The keys
command is used to list or modify PF key assignments. You can issue the keys
command from the command line, the command window, or a configuration file;
however, it is not valid in a PROFILE.

Format 1: This format lists the PF key assignments. Issuing the command
without any arguments will display all PF key assignments. If issued with the
optional list keyword, the keys command will display the command assigned to
the PF key specified by the N argument. Using an asterisk (¥) as the N argument
also displays all PF key assignments.

Format 2: In the configuration file, this format changes the definition of the PF
key indicated by the N argument to the command specified by the STRING
argument. This becomes the session’s initial assignment for that PF key, which is
copied to a table used by the debugger.

When used outside the configuration file, during a debug session, this format
does not change the initial PF key; therefore, you can use format 3 to restore your
default PF key assignments.

Format 3: This format sets the PF key indicated by the N argument to its
default command assignment. Using an asterisk (*) for the N argument gives all
PF keys their initial assignments for the session. When used in a configuration
file, this command must be before any keys define commands (format 2).

Format 4: This format sets the PF key indicated by the N argument to the help
< > command. N can be any number from 0 to 24. The key assigned to the
help < > command is referred to as the help key. If you do not want to have a
help key, a 0 is used as the N argument.

If format 4 of the keys command is used to reassign the help key during a
session, the default command assignment is restored to the old help key. By
default, PF1 is assigned the help < > command.

If present in the configuration file, the keys help command must be before the
keys define command.

Format 5: This format is used to specify PF keys that are to be handled by
ISPF. The N argument is used to select the PF key. Use an asterisk (*) for the N
argument to indicate all PF keys. The keyword on is used to assign a PF key to

Command Directory A list 231

ISPF and the keyword off causes the debugger to handle the key. This setting is
shown in the Keys window. By default all keys are handled by the debugger. The
help key cannot be assigned to ISPF.

EXAMPLES

keys
displays all PF key assignments.

keys list 2
displays the assignment for the PF2 key.

keys list *
displays all PF key assignments.

keys define 7 ‘‘break entry’’
assigns the break entry command to the PF7 key.

keys default 7
restores the PF7 key to the initial assignment for the session.

keys default *
restores all PF keys to their initial assignments for the session.

ADDITIONAL DISCUSSION AND EXAMPLES
See “Using PF Keys” on page 27 and “Setting Up a Configuration File” on page 46.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no
configuration file yes (Keys define command only)
Source window prefix none

SCOPE

The keys command is not affected by changes in scope.
RETURN CODES SET

Successful: 0
Unsuccessful: 1

SEE ALSO
“config” on page 202

list

Output a Source Line Listing in Line Mode
Move to a Source Line in Full-Screen Mode

ABBREVIATION
1{ist}

232

list

A Chapter 14

FORMATS
Format 1: list
Format 2: list LINENO[:+INTEGER]
Format 3: list +INTEGER[:+INTEGER]
Format 4: list -INTEGERI[:[-]INTEGER]
Format 5: list -INTEGER[:+INTEGER]
Format 6: list [FUNCTION-NAME | (SECTION-NAME)] *
Format 7: list [FUNCTION-NAME | (SECTION-NAME)]
LINENO[:LINENO]
DESCRIPTION

The 1ist command lists source lines in a program executing under the debugger.

Format 1: In full-screen mode, this format of the 1ist command can be used to
return the debugger to the current line in the command scope. In full-screen
mode, source code is displayed in the Source window and the current line is
highlighted. The Status window displays the command scope as described in
“Using the Status Window” on page 20.

In line mode, issuing the 1ist command with no arguments displays the
current line in the command scope.

On entry to a function, the current line is the function header line. (Part 2,
“Configuring and Using the Debugger,” discusses how the debugger finds the
source file or files under the different operating systems.)

Format 2: In full-screen mode, the optional :+INTEGER is meaningless; the
number of lines displayed in the Source window is determined by the Source
window height. However, this format can be used to move to a specific line in the
module that is currently displayed in the Source window; although, it is much
easier to move to a line by specifying the module and line number in the Module:
and Line: fields of the Source window. See “Source Window” on page 173 for
information about the Module: and Line: fields.

In line mode, this format lists the source line, specified by LINENO, and as
many lines after it as you specify in the INTEGER argument. LINENO is a source
line number (an integer constant). INTEGER is an integer constant that indicates
a number of lines.

Formats 3, 4, and 5: These formats are known as the relative formats. In
full-screen mode, 1ist +INTEGER scrolls the Source window down and 1ist —
INTEGER scrolls the Source window up the number of lines specified by the
INTEGER argument. As explained in format 2, the optional :+INTEGER
argument is ignored.

In line mode, each time a range of lines is displayed (a single line can also be
thought of as a range of lines), the debugger remembers two lines: LS is the start
of the range, and LE is the end of the range. Stopping at a new location resets
both LS and LE to the line number of the new location. The relative formats then
function as shown in Table 14.2 on page 232.

Table 14.2 Results of Using the list Command Relative Formats

Command Result

list +N11 displays LE through LE+N1

list +N1:+N2 displays LE +N1 through LE+N2

Command Directory A list 233

Command Result

list -N displays LS-N1 through LS
list -N1:-N2 displays LS-N1 through LS-N2
list -N1:-N2 displays LS-N1 through LS-N2
list -N1:+N2 displays LS-N1 through LE+N2

1 N1 and N2 are INTEGER arguments.

The first time you issue one of the relative formats of the 1ist command from a
location where you are stopped, both LS and LE are equal to your current line
number. However, LS and LE can be incremented or decremented as a result of
issuing a 1list command. Subsequent list commands result in a range of lines
being displayed based on the current value of LS and LE.

Format 6: In line mode, this format lists all lines in the source file or, optionally,
all lines in a named section or function. SECTION-NAME is a section name for
your program as specified with the sname compiler option or the default.
FUNCTION-NAME is the name of a function. You can specify any function name
or section name in the calling sequence.

In full-screen mode, this format can be used to move to the first line in the
section or function specified by the SECTION-NAME or FUNCTION-NAME
argument.

Format 7: In line mode, this format lists the source line in the section or
function indicated by the LINENO argument. To list several lines, specify the line
number of the first line that you want to list, a colon, and the line number of the
last line that you want to list. You can specify any function name or section name
in the calling sequence.

In full-screen mode, format 7 can be used to move to the line number, specified
by the LINENO argument, in the section or function specified by the
SECTION-NAME or FUNCTION-NAME argument.

For both line mode and full-screen mode, the section or function that is specified
in formats 6 and 7 must be in the calling sequence.

The previous description of the 1ist command during a line mode session
assumes that the debugger is running with auto list set. (You can check the
setting with the query command; auto list is the default.) For specialized
debugging, you can set auto nolist. In this situation, you should either specify
the section or function name as described for formats 6 and 7, or use the 1ist
command without arguments to orient the debugger before using any of the
formats that require an INTEGER argument.

EXAMPLES
Table 14.3 on page 237 provides examples of formats 3, 4, and 5. The following are
line mode examples of some of the other formats:

list
lists the current source line, which is where execution was interrupted last.

list funcl *
lists all the source lines in the funcil function.

list (comp23) 200:220
lists source lines 200 through 220 of the comp23 compilation.

SYSTEM DEPENDENCIES
The location of the program source file is system-dependent. See Chapter 5,
“Running the Debugger under TSO,” on page 61; Chapter 6, “Running the
Debugger under OS/390 Batch,” on page 65; Chapter 7, “Running the Debugger

234 log A Chapter 14

under CMS,” on page 69; Chapter 8, “Using the Debugger from a Remote System,”
on page 73; and Chapter 9, “Using the Debugger in a Cross-Development
Environment,” on page 91 for information about source file locations under
different operating systems.

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The 1ist command uses command scope to supply default function names and
section names.

RETURN CODES SET
Successful: number of last line listed
Unsuccessful: 0

The log command can be used to log the contents of the Log window to a data set.

ABBREVIATION
Lo{g}

FORMATS
Format 1: log file [FILENAME]
Format 2: log append FILENAME
Format 3: log start|stop | capture

DESCRIPTION

Format 1:
The file keyword specifies the file to which logged output is to be written.
The log command writes over the file. If the log file command is issued
without any arguments, the name of the current log file is displayed.
The FILENAME argument is specified as a tso: style filename under
0S/390, and a ems: style filename under CMS. Do not, however, specify the
tso: or cms: prefix in the command; it is assumed.

Format 2:
The append keyword specifies the file to which logged output is appended.

Format 3:
Logging of the contents is started by issuing a log start command. Logging
is turned off by issuing a log stop command. The log stop command does

Command Directory /A monitor 235

not close the file; it flushes the file to disk. Logging may be resumed at
anytime by another log start command.
Issuing a subsequent log file filename or log append filename
command closes the current log file and opens the file specified for logging.
The log capture command is used to log everything in the debugger’s Log
window buffers since the last log stop. Some log output may be lost if the
Log window buffer is not large enough.
Issuing the 1log command with either a file or an append keyword and a
FILENAME argument specifies the file to be used for logging. However, it does not
start the logging process.

EXAMPLES

log file debugger.log
use the tso data set debugger.log specification for log output.

log file debugger log a
use the cms file debugger log a specification for log output

log file
display the current log file name specification.

log append debugger.log
append output logging to the tso data set debugger. log

log start
start the logging process

log stop
stop the logging process

SYSTEM DEPENDENCIES
The filename argument is specified as a tso: style filename under 0OS/390, and a
cms: filename under CMS. However, do not specify the tso: or cms: prefix in the
command. It is assumed.

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source command prefix no
SCOPE

The log command is not affected by changes in scope.

RETURN CODES SET
O Successful: 0
0 Unsuccessful: 1

monitor

Check for Changes Made to an Object

ABBREVIATION

m{onitor}

236

monitor A Chapter 14

FORMATS
Format 1: monitor EXPRESSION [LENGTH | CTYPE)] [in
FUNCTION-NAME] [print] [where]
Format 2: monitor EXPRESSION [LENGTH | (CTYPE)] [in
(SECTION-NAME)] [print] [where]
Format 3: monitor EXPRESSION [LENGTH | (CTYPE)]
[Library] [print] [where]
DESCRIPTION

The monitor command causes the debugger to test for changes in the value of the
monitored object at every line-number hook. If the value changes, the program is
interrupted.

The request itself is called a monitor. When the monitor command is used to
request the debugger to check for changes in the value of an object, the debugger
is said to be monitoring the object. A change in the value of the monitored object
causes the monitor to be triggered.

EXPRESSION identifies the object (such as a variable) to be monitored.

The following options can be specified in any order:

LENGTH
is the number of bytes to be monitored. It does not need to be the same as
the length of the object.

(CTYPE)
is either a structure | union tag or a type defined with a typedef, or an
arithmetic type. If neither LENGTH nor CTYPE is specified, the length used
is the length corresponding to the type of the object.

in FUNCTION-NAME
specifies that the debugger monitor the object only when the named function
is executing. You cannot use this argument with the in (SECTION-NAME)
option or with library.

in (SECTION-NAME)
specifies that the debugger monitor the object only when functions in the
named section are executing. You cannot use this argument with the in
FUNCTION-NAME option or with library.

library
specifies that the debugger also monitor the object during calls to C library
functions. If you do not use this keyword, the object is not monitored during
these calls. Use library only if you suspect that an object is being modified
inadvertently by a library function. You cannot use this keyword with the
in (FUNCTION-NAME) or in (SECTION-NAME) options.

print
causes the debugger to issue a print command when the monitor is
triggered. If print is used, the debugger prints the new value of the object. If
the object is no more than 256 bytes in length, the debugger also prints the
old value. The values are formatted appropriately for the type of the object.
If the object is an aggregate and less than 256 bytes in length, only those
fields that have changed are displayed.

Command Directory /A monitor 237

where
causes the debugger to issue a where command when the monitor is
triggered. The traceback is produced only once, even if more than one
monitor is triggered at the same line-number hook.

Monitor requests are maintained in the same way as breakpoints. Each monitor
is associated with a number that can be displayed by the query command.
Monitor requests can be disabled, enabled, or dropped like breakpoints.

If the object is identified by the form arr[index_expression], where the index
expression is not constant, then the current value of the index expression is used
to determine the location of the object to be monitored. This means that the
monitored location does not change if the value of the index expression changes.

The debugger distinguishes monitor requests by the class and type of the object.
In this context, an object can have one of three classes: auto, static, or address.

A simple identifier has class auto if it is an automatic variable or a parameter.
The identifier has class static if it is a static or extern variable. Expressions
used to represent portions of an array or structure (for example,
arr[index_expression], *(arr + index expression), where arr is an array,
or str.meml, where str is a structure) have the same class as the array or
structure. Expressions that involve some form of indirection (for example,

*(p+5), p-->a, where p is a pointer or *0p address) have class address.

The class affects the way the query command displays the monitor request.
With one exception, query displays auto and static monitor requests symbolically
(that is, the identifier or expression used in the monitor command) and class
address monitor requests by hexadecimal address. The exception is monitor
requests for an element of an array, when the element is distinguished by an
expression. In this case, query displays the monitor request using the value of the
expression at the time the monitor command is issued. This emphasizes that a
fixed element of the array is being monitored.

The class also affects the scope of the monitor. If the class is auto, the monitor
is enabled only while the function is executing. If the function is recursive, then a
separate monitor is used for the current and any future occurrences of the function.
Thus, a single monitor request can monitor multiple occurrences of the expression.
However, only one request number is associated with the request. Therefore, it is
not possible to drop, disable, or enable individual occurrences. Similarly, it is not
possible to display or modify any occurrence of the object except the current one.

If a static object is in a subsidiary load module, and the load module is unloaded
via the unloadm function, the debugger automatically drops the monitor and
issues a message to that effect. Similarly, if a monitored object of class address is
in storage that was allocated via the malloc function, and the storage is freed by
free, the debugger drops the monitor and issues a message.

The debugger distinguishes monitor requests by the type of the object. Table
14.3 on page 237 shows how the debugger treats monitor requests for objects by

type.

Table 14.3 Types of Objects for the monitor Command

Type Notes

1 arithmetic The object is monitored. LENGTH is not usually
specified because the length can be determined by the
C type. If LENGTH is used, the debugger monitors the
number of bytes specified starting at &EXPRESSION.

2 pointer This is the same as type 1, arithmetic.

238

monitor

A Chapter 14

Type Notes

3 structure or union This is the same as type 1, arithmetic.

4 array This is the same as type 5, address.

5 address An address cannot be monitored. Storage at an

address, however, can be monitored. For example,
monitor *0pl12345678 20 monitors 20 bytes of
storage, starting at the address 0p12345678.

6 enum constant An enum constant cannot be monitored.

7 bitfield All bytes that contain the bitfield are monitored.
However, the debugger does not interrupt the program
unless the bits in the bitfield are changed.

8 function A function cannot be monitored.

Identical requests: If a monitor request is made that is identical to an
existing one, the identical request is not installed. This is true whether the
request to be installed is within an on command or typed in at the command line.

If an identical request is issued and the original request is disabled, the
identical request is discarded and the original request is automatically enabled
without an indication.

EXAMPLES
The following examples illustrate the monitor command, given the following
declarations:

int loopcnt;
struct ABC *p;
int arr[10] ;
char buf[100] ;

monitor loopcnt print
monitors the loopent variable. If the monitor is triggered, both the old and
new values are printed.

monitor *p library
monitors the structure pointed to by p. The value of p when the monitor is
installed is used to determine the address being monitored. The debugger
checks for changes to the structure, even while library functions are
executing.

monitor *p 20 in (sectl)
monitors 20 bytes, starting at the location pointed to by p when any function
in sectl is executing. The value of p when the monitor is installed is used to
determine the address being monitored.

monitor *arr where
monitors the first element of arr. If the monitor is triggered, the debugger
produces a traceback.

monitor *buf 8 in funcl
monitors the first 8 bytes of buf, only when funcl is executing.

SYSTEM DEPENDENCIES
none

Command Directory /A on 239

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The monitor command uses command scope to resolve references to all identifiers.

RETURN CODES SET
Unsuccessful: 1
Successful: 0

SEE ALSO
O “disable” on page 212
O “drop” on page 213
O “enable” on page 216
O “query” on page 244

Perform One or More Commands at Specified Locations

ABBREVIATION
o{n}

FORMAT
on HOOK-TYPE [when (EXPRESSION)] [count N] CMD | {CMD-LIST}

DESCRIPTION
The on command enables you to perform one or more debugger commands at
various locations in your program.

In other words, you can issue a single debugger command (CMD) or a list of
debugger commands ({CMD-LIST}) for the HOOK-TYPE argument. Chapter 3
explains the values you can use for the HOOK-TYPE argument, which is an
argument that enables you to specify hook locations. The other arguments are
explained here:

when
You can optionally use a when clause to give commands conditionally at
hooks.

count N

The count N argument is optional. If count N is specified, the first N — 1
times the hook is reached, the count is decremented. The Nth time it is hit,
the command is executed. After the Nth time, the command is executed every
time the hook is hit.

If a when clause is present, a hit is counted only if the when expression is
true.

A query command, issued before the count drops to 1, displays the current
value of count. The word count can be abbreviated to cou{nt}.

240

on A Chapter 14

CMD
CMD can contain any debugger command and its arguments. Abbreviations
are accepted for the command also. (Note that on commands can be nested,
as described in the next section.)

CMD-LIST
The CMD-LIST argument contains one or more of the commands and
arguments separated by semicolons or new lines. CMD-LIST can contain
nested on commands. CMD-LIST is enclosed by braces.

Commands that are part of the CMD-LIST argument can be entered on
different lines. Use an open brace at the end of the first line, followed by the
list of commands, and then a close brace. Note that if you put commands on
separate lines, then the end of a line can be the command separator. You do
not need a semicolon.

The following is a list of other points you need to know about the
CMD-LIST arguments:

0 When the exec command is used in a CMD-LIST, no other debugger
command can occur on the same line following exec.

o If CMD-LIST contains the break command, then control over the restart
of execution is turned over to you only after all the other commands in
the list are performed.

0 The debugger does not check the syntax of your CMD-LIST arguments
until it is time to execute them. If you make a syntax mistake, it is not
detected until the debugger tries to execute the command.

o If a command name is syntactically incorrect, the debugger flushes
the buffer for that command and any command after it. They are
not executed. The debugger tells you about the commands that it
did not execute and turns control over to you.

0 If you enter a command name that is syntactically correct, but the
argument is invalid, the debugger does not flush the buffer.
Instead, the debugger executes valid commands and tells you about
the invalid argument via an error message.

o If you make a mistake in the when clause of an on command, no
commands from the CMD-LIST are executed. If any other on
commands apply to this hook, they are not executed. The debugger
turns control over to the user.

O When used as part of a CMD-LIST, the escape command behaves
like any other command in CMD-LIST. It is executed in order.

EXAMPLES

on entry print
prints the parameters on entry to all functions.

on main 45 print i, pxyz -->a
prints i and pxyz -->a at line 45 of the main function.

on 53 {print i; dump s str}
prints i and dumps the string pointed to by s at line 53 of the current
function.

on (comp23) entry print
prints the parameters on entry to the functions in the comp23 compilation.

on funcl entry {where; print parml, parm2};
issues a where command and prints parml and parm2 on entry to the funcl
function.

Command Directory /A print 241

SYSTEM DEPENDENCIES
Although the on command has no system dependencies, the behavior of commands
used with on can have system dependencies. For example, the behavior of the
escape, system, and exec commands used as CMD arguments or as part of
CMD-LIST is system-dependent. See “escape” on page 218, “exec (CMS)” on page
221, “on” on page 239, and “system (CMS)” on page 267 for details.

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The on command uses command scope to supply default identifiers, function
names, and section names.

RETURN CODES SET
Successful: request number

Unsuccessful: 0

SEE ALSO

O “auto” on page 196
“break” on page 199
“disable” on page 212
“drop” on page 213
“enable” on page 216
“ignore” on page 226

o o o o o o

“trace” on page 269

Print the Value of an Expression

ABBREVIATION
p{rint}
FORMATS
Format 1: print
Format 2: print EXPRESSION
Format 3: print EXPRESSION [%FMT] [COUNT] [, EXPRESSION

[%FMT][COUNT]]

242 print A Chapter 14

DESCRIPTION
The print command prints the value of various program elements. The specific
elements printed depend on the format of the print command that you use.
Format 1: With Format 1, what is printed depends on where execution is
interrupted when you issue print, as shown in Table 14.4 on page 242.
The left column in the table describes different places in a program where
execution can be interrupted. The right column gives the output of Format 1 for
each location.

Table 14.4 Output from the print Command with No Arguments

Where Execution Stopped What Is Printed

calls from a function (calling function context) the parameters as viewed by the called
function

entry to a called function (called function the parameters as viewed by the called

context) function

normal return to a function (calling or called the return value

function context)

longjmp from a function (The context is that of the value of the argument to longjmp
the function you are jumping from.)

line-number hook all automatic scalars of the function in
scope

Format 2: This format of the print command displays the value of the
expression identifier. The value is displayed according to its type, as declared in
the source code. If the EXPRESSION contains a modulus (%) operator, see Format
3.

When you issue Format 2 of the print command, the value of EXPRESSION is
printed according to its type shown in Table 14.5 on page 242.

Table 14.5 Output Format for Values of Expressions Using the print Command

Type Print Output Format

1 arithmetic char type: the hexadecimal value is always printed. If
printable, the value is printed as is. If not printable and if the
value is an escape character, the escape sequence is shown. If
the value is not an escape character, only the hexadecimal value
is shown.

Types other than char: the value is printed in decimal and
hexadecimal format. £loat and double types are printed in
the most appropriate form, as determined by the rules for the g
format used by the printf, sprintf, and fprintf functions.

enum variable: The value is printed in decimal. The
enumeration constant symbol is printed in parentheses
following the value.

2 pointer The value is printed as eight hexadecimal digits with leading Op.

Command Directory /A print 243

Type Print Output Format

3 structurer, All members are printed according to their declared type: types
union, or class 1, 2, or 7. (Arrays, structures, classes, and unions contained in

the structure are fully expanded to show the values of their
members.) The address of a structure or union is printed also.

4 array The address of the array is printed as eight hexadecimal digits
with leading Op.

5 The address is An address cannot be monitored. Storage at an address,
printed as eight however, can be monitored. For example, monitor
hexadecimal *0p12345678 20 monitors 20 bytes of storage, starting at the
digits with address 0p12345678.
leading Op.

6 enum constant The value of the constant is printed in decimal digits.

7 bitfield The value of a bitfield is printed in both binary and decimal
formats. If the number of bits in the bitfield is a multiple of
eight, then the value of the bitfield is also printed in
hexadecimal format.

8 function A function cannot be printed. However, indirection through a

function pointer is supported and prints the function name,
section name, and, if located in a different load module, the load
module name.

Format 3: Format 3 prints the value of the expression (or expressions) identified
by EXPRESSION. COUNT specifies the number of values to be printed. If the
EXPRESSION argument contains a modulus (%) operator, you must escape the
operator with a backslash (\); otherwise, the debugger interprets the modulus
operator as a format specifier.

The %FMT argument can be any of the format specifiers that you use with the
sprintf function. These are

c
d

o

0O v m

n

single character

decimal signed integer

or E exponential floating point

fixed decimal floating point

or G f format or e format

octal integer

character string

decimal unsigned integer

hexadecimal integer (lowercase)

hexadecimal integer (uppercase)

The print command supports any % format specification that results in the item
being formatted in 256 or fewer bytes. If the %FMT argument is not specified, the
debugger uses a format determined by the type of the expression (as in Format 2).

COUNT is an integer that specifies the number of items to be printed. If not
specified, COUNT defaults to 1.

If more than one EXPRESSION is specified, any (or all) of the %FM and
COUNT arguments can be used for each value to be printed. Each EXPRESSION

244 query A Chapter 14

argument and its list of associated %FMT and COUNT arguments (if any) are
separated by a comma from the next EXPRESSION argument and its list of
%FMT and COUNT arguments.

EXAMPLES
The debugger print command examples are based on the following declarations:

int i; double d;

struct XYZ {int a; double b; } xyz;
struct INT2 {int a,b;} int2;

struct XYZ * pxyz;

int arr[10] ;

print i
displays the value of i.
print i, d
displays the values of i and d.
print i + d
displays the value of i plus d.
print xyz.a
displays the value of xyz.a.
print pxyz -->b
displays pxyz--> b.
print arr[i]
displays the ith element of the arr array.
print *(arr+i) + int2.a
displays the value of the sum of the ith element of arr plus the value of
member a in struct int2.
print *arr 5
displays first 5 elements in arr.
print ::xyz
allows the file scope variable to be accessed in any command that supports
expressions by using the C++ unary operator ::.

SYSTEM DEPENDENCIES
none

SCOPE
The print command uses command scope to resolve references to all identifiers.
RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
0 “dump” on page 215
O “monitor” on page 235
O “watch” on page 276

query

Display Breakpoint/Action Requests

Command Directory A quety 245

ABBREVIATION
q{uery}
FORMATS
Format 1: query
Format 2: query FUNCTION-NAME | (SECTION-NAME)
Format 3: query FUNCTION-NAME | (SECTION-NAME) LINENO
Format 4: query FUNCTION-NAME | (SECTION-NAME)
LINENO:LINENO
Format 5: query FUNCTION-NAME | (SECTION-NAME) calls/
entry/return
DESCRIPTION

The query command shows you a query list (a numbered list of the break, trace,
ignore, monitor, and on requests currently in effect), as well as a summary of the
auto options.

Format 1: The query command issued with no arguments produces the
numbered list of all requests. The list also shows the current setting of the auto
command options in effect: echo |noecho, id | noid, list | nolist, nullptr | nonullptr,
wrap | nowrap, cmacros | nocmacros, and linesize.

Format 2: The query command used with a section name (SECTION-NAME) or
a function name (FUNCTION-NAME) produces only a list of actions in effect for
the function or section without a summary of auto options.

Format 3: Format 3 enables you to issue a query command for requests in
effect at a particular source line (LINENO) of a particular function or section. You
must use either a function name or section name with the LINENO argument.

Format 4: Format 4 produces a query list for a particular section
(SECTION-NAME) or function (FUNCTION-NAME) of all requests within a line
number range (LINENO:LINENO). LINENO is a source line number. The list can
include requests that begin or end outside the specified range. For example, if you
specify a range of 25:28 for a particular function, query displays a list of all
requests that involve that range, such as a request beginning on line 20 but
ending on line 26.

Format 5: Format 5 produces a query list of requests in effect for a particular
function or section as follows:

O at calls by a function and returns to the function
O upon entry into a function
O at return from a function.

EXAMPLES

query
displays the current settings of the auto command plus a list of all the
actions and monitors in effect for the entire program.

query funcl
displays the actions and monitors in effect for the funcl function.

query (comp23)
displays the actions and monitors in effect for the comp23 compilation.

246 resume A Chapter 14

query funcl e
displays the actions and monitors in effect upon entry into the funcl function.

query funcl 10:50
displays the actions and monitors in effect for lines 10 through 50 of the

funcl function.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix q
SCOPE

The query command is not affected by changes in scope.

RETURN CODES SET:
Successful: 2, number of last request satisfying the 2 arguments of the query
command

Unsuccessful: 0

SEE ALSO
O “auto” on page 196
0 “disable” on page 212
O “drop” on page 213
O “enable” on page 216

resume

Resume Program Execution

ABBREVIATION

res {ume}
FORMATS

Format 1: resume

Format 2: resume LINENO

Format 3: resume FUNCTION-NAME

Format 4: resume FUNCTION-NAME LINENO
DESCRIPTION

The resume command enables you to resume execution of a program running
under the debugger at any line-number hook in any active function in the calling
sequence. The resume command, or its alias goto, can be issued when stopped at

Command Directory /A resume 247

any line or return hook. While you cannot issue a resume command when stopped
at an entry hook, you may be able to step to the first line hook at the opening
brace and then issue resume.

You cannot use resume after using the attn command, but you may be able to
issue resume after a subsequent break, step, or continue command returns
control to you.

The resume command can also be used to attempt recovery from the following
types of error conditions:

0 an 0C4 or 0C5 (identified by the signal SIGSEGV)

O computational floating-point errors identified by the SIGFPE class of signals:
SIGIDIV, SIGFPDIV, SIGFPOFL, and SIGFPUFL

O a call to the function abort, identified by the SIGABRT signal

O catch of a thrown exception.

When you receive one of the signals listed above with a program running under
the SAS/C Debugger, you can examine the values of variables, make changes to
variables, and so on. Then, issuing resume causes the debugger to discard the
signal and resume execution.

The location in your program where execution resumes depends on the format of
the resume command that you used and where execution of the program stopped.
Note that while you cannot resume a library function or a function compiled with
the nodebug option, you can resume a function that called one of these two types
of functions. However, the calling function must be compiled with debug.

Because the effect of the resume command is similar to inserting a one-time
goto or longjump in the program, when bypassing code, you must ensure that
variables contain proper values for resumption of execution at the target hook.

Format 1: This format restarts execution at the last line-number hook
encountered before the location stopped.

Format 2: This format resumes execution at the first line-number hook
encountered in the source line identified by LINENO in the current function.

Format 3: This format resumes execution at the last line-number hook executed
in an active function identified by FUNCTION-NAME.

Format 4: This format resumes execution at the first line-number hook in the
specified line (LINENO) of the function named by FUNCTION-NAME. The
function must be active.

EXAMPLES

resume
resumes execution at the last line-number hook executed.

resume 23
resumes execution at the first line-number hook encountered in line 23 in the
function where it is currently stopped.

resume prevfunc
resumes execution at the last line-number hook executed in the function
prevfunc.

resume prevfunc 34
resumes execution at the first line-number hook in line 34 of the function
prevfunc.

SYSTEM DEPENDENCIES
none

248 return A Chapter 14

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix g
SCOPE

The resume command is affected by changes in scope.

RETURN CODES SET

not applicable

SEE ALSO

O “goto” on page 223

O “return” on page 248

return

Return Immediately from a Function

ABBREVIATION

ret{urn}

FORMATS

Format 1: return
Format 2: return [SCALAR-TYPE-EXPRESSION]

Format 3: return AGGREGATE-TYPE-EXPRESSION |
{VALUE-LIST}

DESCRIPTION

The return command performs an immediate return from a function without
executing any further code in the function. Return values are supplied by the
arguments.

The return command can be issued from any hook. However, additional
debugger requests that are in effect at the normal return from the function, are
processed only if the return command is issued from a line hook.

Format 1: This format is used for functions that return void or int. In the case
of functions that return integers, the value in register 15 is returned.

Format 2: This format is used for functions that return a nonbitfield scalar.
Except for functions that return an integer, you must always supply the
SCALAR-TYPE-EXPRESSION argument if the function returns a scalar. See
“SCALAR-TYPE-EXPRESSION Argument” on page 143 for additional information.

Format 3: This format is used for functions that return an
AGGREGATE-TYPE-EXPRESSION. An aggregate expression has a type of

Command Directory /A rsystem 249

structure or union. See “AGGREGATE-TYPE-EXPRESSION Argument” on page
143 for additional information.

The VALUE-LIST argument is used to supply a list of values that is returned to
the calling function’s structure or union. The VALUE-LIST argument contains any
or all of the following items, enclosed by braces:

0 one or more VALUE arguments separated by commas:

{VALUE, VALUE, VALUE, . . .}
o0 one or more NULL-INITIALIZERS. A NULL-INITIALIZER is an empty pair
of braces: {}.
O one or more VALUE-LISTs. This means that a VALUE-LIST can contain
nested VALUE-LISTs.

The values supplied with a return command are assigned to the receiving
structure or union in the same manner as they are with the assign command. See
Rules for assigning VALUE-LISTs to aggregate objects in “assign” on page 192.

EXAMPLES

return
returns from a calling function that returns either a void or an integer. If
the return type is integer, the value in register 15 is returned.

return ptr
returns the pointer ptr to the calling function.

return my struc
returns the structure my_struc to the calling function.

return {1,2,'A’}
returns a VALUE-LIST argument of {1,2, A’} to the calling function.

SYSTEM DEPENDENCIES
none

SCOPE
The return command is not affected by changes in scope.

COMMAND CAN BE ISSUED FROM

PROFILE no
configuration file no
Source window prefix none

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
O “goto” on page 223
O “resume” on page 246

rsystem

Execute an Operating System Command on a Remote System

250 rsystem A Chapter 14

Note: The SAS/C Debugger’s rsystem command is intended for use with the remote
debugger. It is similar to the system command described in this chapter, but it allows
you to execute an operating system command in the environment of the program being
debugged. A

ABBREVIATION

rs{ystem}

FORMAT
rsystem OPERATING-SYSTEM-COMMAND

DESCRIPTION

The rsystem command is intended for use with the remote debugger. It sends the
command specified in the argument OPERATING-SYSTEM-COMMAND to the
environment of the program being debugged. For example, you might use this
command to execute a CMS command from TSO when debugging a CMS program
from TSO.

The rsystem command cannot be followed by another debugger command on
the same line. That is, the arguments to the rsystem command are assumed to
extend to the end of the line, including any semicolons on the line.

EXAMPLES

rsystem alloc fi(iforgot)
da(to.allocate.this.dataset) shr
executes the TSO ALLOCATE command.

rsystem access 391 Q

executes the CMS ACCESS command.

SYSTEM DEPENDENCIES
See “system (CMS)” on page 267 for more information about the system command.
Command output, if any, generally appears in the remote program’s session or log.
The rsystem command cannot be used when the remote program is executing
under UNIX System Services or CICS.

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The rsystem command is not affected by changes in scope.

RETURN CODES SET

Successful: return code from operating system

Unsuccessful: -101 or less;

-103 means command not found,;

Command Directory A runto 251

-104 means syntax error;

-110 means the command is not supported in the target
environment

SEE ALSO
“system (CMS)” on page 267

runto

Resume Execution and Request a Temporary Breakpoint

ABBREVIATION

ru{nto}

FORMAT
runto HOOK-TYPE [when(EXPRESSION)] [count N]

DESCRIPTION
The runto command places a temporary, or one-shot, breakpoint at the location
specified by the HOOK-TYPE argument. (See “HOOK-TYPE Argument” on page
135.)

A when clause is used to request runto breakpoints conditionally; that is, a
breakpoint is requested at the specified hook only if the when clause is true when
the hook is reached.

The argument count N is optional. If count N is specified, the first N — 1 times
the hook is reached, the count is decremented. The Nth time it is hit, the debugger
breaks.

If a when clause is present, a hit is counted only if the when expression is true.

A breakpoint set with a runto command remains installed only until execution
is stopped and the debugger returns control to you. In other words, it is temporary
and only good for one attempt. The breakpoint is removed the first time the
debugger stops, whether it stops for the breakpoint set with the runto command
or for some other reason.

The result of issuing a runto command is that in most cases the program
executes until the temporary breakpoint is hit; however, if some other event occurs
that gives you control before the breakpoint is hit, the debugger gives you control
and the debugger removes the breakpoint.

Examples of other events that may stop program execution before the runto
breakpoint is hit are

O

another breakpoint

step or continue command completion
monitor requests

communications signals

ATTN key signal.

O o o o

If you receive control because of a runto breakpoint being hit, the Status
window displays Runto as the reason for entry into the debugger.

252 scope A Chapter 14

EXAMPLES

runto main 52
sets a temporary breakpoint at line 52 of the main function and resumes
execution.

runto funcl return
sets a temporary breakpoint on the return from function funcl and resumes
execution.

runto stats 15 when(i==10)
sets a temporary breakpoint at line 15 of the stats function when the value
of i is 10 and resumes execution.

runto 75
sets a temporary breakpoint at line 75 of the current function and resumes
execution.

runto 75 count 5
sets a temporary breakpoint at line 75 of the current function the fifth time
the line-number hook at that line is reached and resumes execution.

ADDITIONAL DISCUSSION AND EXAMPLES
See Chapter 11, “Setting Temporary Breakpoints” on page 101

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix r
SCOPE

The runto command uses command scope to supply default identifiers, function
names, and section names.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
O “break” on page 199
O “go” on page 222
O “goto” on page 223

scope

Change Command Scope

ABBREVIATION

sc{ope}

Command Directory /\ scope 253

FORMATS
Format 1: scope FUNCTION-NAME
Format 2: scope +INTEGER
Format 3: scope -INTEGER
Format 4: scope

DESCRIPTION

The scope command is used to change command scope. Normally, command scope
is identical to run scope, which is the term used to described the location where
the debugger stops when you are given control. In full-screen mode, the code
displayed in the Source window is that around the line where execution stopped.
The line where execution stopped is highlighted and its location is displayed as
run scope in the Status window.

Commands that manipulate expressions refer to the identifiers (variables,
structures, and so on) that are visible as you need to look at source code or
examine variables in a facility. This process allows you to specify a command scope
that is different from the run scope.

Format 1: This format changes the command scope to the function named by
the FUNCTION-NAME argument. This argument must name a function in the
calling sequence, If there are multiple instances of the function identified by
FUNCTION-NAME, command scope is set to the most recent.

Format 2: This format changes command scope to that of a function that is
farther up in the calling sequence. The INTEGER argument specifies the number
of functions up in the calling sequence to change the command scope.

Format 3: This format changes command scope to that of a function that is
farther down in the calling sequence. The INTEGER argument specifies the
number of functions down in the calling sequence to change the command scope.

Format 4: This format sets command scope back to run scope.

The following commands use command scope to resolve references to all
identifiers:

assign

copy

dump

monitor

print

transfer (in an expression context)
watch

OO0oOoooooag

whatis.

The following commands use command scope to supply default function or section
names:

break
goto Or resume
ignore

on

runto

O oO0oooad

trace.

254 set A Chapter 14

The transfer command in a nonexpression context and all other commands
use run scope if a scope is needed for resolution.

In either line mode or full-screen mode, you can use the where command to see
where you are in the calling sequence. If command scope is different from run
scope, it is indicated by an asterisk next to the line number in the calling trace list
displayed by the where command. Run scope is always the first location in the
calling trace list.

EXAMPLES

scope stats
changes command scope to the stats function.

scope — 1
changes command scope to the function that is one position up in the calling
sequence: the caller. For example, if function a called function b, and your
command scope is in function b, then command scope is changed to function a
by this command.

scope + 1
changes command scope to the function that is one position down in the
calling sequence: the callee. For example, if function a has already called
function b, and you have changed your command scope to function a, then
command scope is changed back to function b by this command.

scope
When using the INTEGER argument with the scope command, command
scope is used to determine to which function in the calling sequence to move.

ADDITIONAL DISCUSSION AND EXAMPLES
See “Using the Status Window” on page 20.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The scope command is used to change command scope.
RETURN CODES SET

Successful: 0
Unsuccessful: 1

SEE ALSO
“where” on page 279

set

Control file access

Command Directory /A set 255

ABBREVIATION
se{t}

FORMAT
set SUBCOMMAND SUBCOMMAND-ARGUMENTS

DESCRIPTION

The SAS/C Debugger’s set command is best used in the debugger PROFILE to
specify search lists for source, include, and debugger files, as well as a cache
location for your debugger file. However, the set command may also be issued on
the command line. The following reference section describes both the set search
subcommand and the set cache subcommand

The set command has two subcommands: search and cache. The set search
subcommand is used to control the search templates that are used to access
debugger and source files, and the set cache subcommand is used to specify a
cache location for debugger files. The set cache subcommand also uses a
template to specify this location.

The set search and set cache subcommands are described in the following
paragraphs.

search SUBCOMMAND
The search subcommand is used to establish a search list, control tracing, and
add or remove templates from a search list. The search subcommand has the
following forms:

Table 14.6 search Subcommand Formats

Format Example

1 set search FILE-TAG =|+|- “templatel" ["template2” ...]
2 set search FILE-TAG =

3 set search FILE-TAG |* 2

4 set search FILE-TAG |+ trace on|trace off

The FILE-TAG argument specifies the type of file that a template applies to and
can be any of the following:

Table 14.7 FILE-TAG Values

Type of file Description

debug specifies that the template is for debugger files.

source specifies that the template is for source files.

altsource specifies that the template is for alternate source files. (An

alternate source file refers to source code altered by a #line
preprocessor statement that specifies a filename.)

256 set A Chapter 14

Type of file Description
systeminclude specifies that the template is for system include files.
userinclude specifies that the template is for user include files.

Format 1: This format of the set command specifies a search list for the type of
files designated by FILE-TAG. Each search list consists of one or more templates
that are used by the debugger to locate debugger or source file types.

The =|+|- argument is used as follows:

Table 14.8 set Command Operations

Argument Description

= sets the search list equal to the specified templates.
+ appends the specified templates to the search list.

- removes all occurrences of the specified templates from the search list.

The template arguments define the search list. Each template argument uses
one or more of the following conversion specifiers to define a template used by the
debugger to generate filenames:

Table 14.9 template Arguments

Value Description

slower or %1 causes the replacement text for the conversion specifier following
the $lower to be converted to lowercase. The character after the
%lower or %1 must be the start of another conversion specifier.

Supper or %u causes the replacement text for the conversion specifier following
the $upper to be converted to uppercase. The character after the
$upper or 3u must be the start of another conversion specifier.

Ssname Or %S is replaced by the section name of the program being debugged.
(The section name must have been specified when the program
was compiled.) The section name is always uppercase. If a
lowercase version is required, prefix the $sname or %s specification
with $lower.

$member or %m specifies the member name of a partitioned data set.

s fullname is replaced by the entire filename stored in the object or debugger
files. The format of the filename is implementation dependent, and
this conversion specifier should not be used unless you have
complete knowledge of the filename stored in the object or
debugger files. This conversion specifier is most useful for
alternate source files, where it will be replaced by the complete
filename that appears in the #line statement.

%leafname or %1f is replaced by the portion of the filename stored in the object or
debugger files after the last slash, if present. If there is no slash, it
is the entire filename stored in the object or debugger files.

Command Directory A set 257

Value Description

$basename or %b is replaced by the portion of $1leafname that is before the last dot.
If there is not a dot in $1leafname, then $basename is the same
as $leafname.

%extension or %e is replaced by the portion of $1leafname that is after the last dot.
If there is not a dot in $leafname, then $extension is set to a
null string.

is replaced by the member name of the original source file if it was
a member of PDS.

o0
8

You can include a percent character (%) in a template by specifying two percent
characters successively ($%).

The filenames generated by the application of the conversion specifiers in the
template are passed to the fopen function, which opens the appropriate file for the
debugger to access. If these files are located on a remote host, the SAS/C
Connectivity Support Library is used to establish an NFS connection between the
local and remote host.

For example, to use the SAS/C Connectivity Support Library to access files on a
UNIX workstation, the following template could be specified:

"path:dbgfiledir/%leafname"

If $1leafname consists of a base and an extension, a functionally equivalent
template could be specified as follows:

"path:dbgfiledir/%basename.%extension"

A similar template could be specified to access files on 0S/390. For example, the
following template would access a PDS member that matches $basename:

"dsn:userid.proj4.h(%basename)"

Format 2: The second form of the set search subcommand is used to remove
all of the search templates associated with a FILE-TAG. It specifies a null search
list.

Format 3: The question mark (?) character is used to display the search list
associated with a FILE-TAG. An asterisk (*) can be used as a wildcard character
in place of a specific FILE-TAG argument. Specifying set search * ? will
display the search lists for all debugger and source files, including the cache
location, if it was specified with a set cache subcommand.

Format 4: The final form of the set search subcommand is used to turn
tracing on or off. When tracing is turned on, the debugger displays a message each
time it attempts to open a file, possibly using a filename generated by a template.
The message displays the name of the file the debugger was looking for and
whether or not the search was successful.

An asterisk (*) can be used as a wildcard character in place of a specific
FILE-TAG argument. If an asterisk is specified for the FILE-TAG, tracing will be
affected (either turned on or turned off) for debug, source, altsource,
systeminclude, and userinclude files.

258

set A Chapter 14

Search Lists

This release of the SAS/C Debugger allows you to create search lists for specifying
the identity and location of files used by the debugger. Search lists are created
with the debugger’s set search subcommand and set cache subcommand.

You can use search lists in any environment where you can run the SAS/C

Debugger. However, they are particularly useful in the following situations:

o0 when you develop applications in a cross-development environment, where
compilations occur on a UNIX workstation using the SAS/C Cross-Platform
Compiler

0 when you compile in batch or TSO and debug in the UNIX System Services
shell.

For details on using search lists in a cross-development environment, see SAS/C
Cross-Platform Compiler and C++ Development System: Usage and Reference,
First Edition.

Input file selection and specification

The SAS/C Debugger provides access to information from several different types of
files, including

O debugger files
O source files
alternate source files

o o

system include files
user include files.

O

When the default search procedure for a file does not meet your needs, it is
possible to change this behavior by using the debugger’s set search subcommand.
The set searchsub command is used to specify filename templates. Filename
templates are used to specify the identity and location of the source, include, or
debugger files associated with the load module being debugged. Multiple filename
templates can be defined for each type of file. So, when necessary, the debugger can
search for a file by more than one name or in multiple locations. Each template is
saved in a search list, and each search list is associated with a specific type of file.

Filename templates are character strings, which are patterned after the format
argument of the printf function. Each filename template can contain conversion
specifiers and characters. A conversion specifier is a character or a string preceded
by the percent (%) character. The conversion specifier is either replaced by its
associated string or it specifies the format of the conversion specifier that follows
it. The resulting string is used as the name of the file to be opened. If this fails,
the next filename template is processed until either a file is opened or no more
filename templates are in the search list for that type of file.

This is a very powerful technique that allows you to direct the debugger to files
that have moved or even changed names or file systems.

Note: If you run the debugger under the UNIX System Services shell, the
filename string is interpreted as an 0OS/390 filename, not as a POSIX filename. If
you want to specify searching for a file in the UNIX System Services hierarchical
file system, you must begin the filename with the hfs: filename style prefix. A

Reattempting a set search

If a set search subcommand is issued, followed by a 1ist command, the
debugger attempts to load any files that were not previously found, using the
modified set search templates. For example, if an attempt to load a source file
fails because the source files have been moved to the data set
SASC.APPL.SOURCE, issuing the command

Command Directory /A set 259

set search source+"dsn:sasc.appl.source(%basename)"

followed by a 1ist command causes the debugger to reattempt the search for the
source.

The set search issued does not have to correlate directly to the failed search.
For example, a common problem encountered when debugging, is to forget to
allocate the DBGLIB data set definition. When the debugger fails to locate the
debugger file, a command such as

system alloc fi(dglib) dsn(appl.dbglib)shr

could be issued to allocate the Data Definition (DD) statement. A “dummy” set
search subcommand could then be issued. For example, the following command is
followed by a 1ist command that will cause the search to be reattempted:

set search altsource+""

cache SUBCOMMAND
The set cache subcommand is used to specify a cache location for the debugger
file. (In a cross-development environment, the original debugger file may be located
on the host workstation, and the cache location will be on the target mainframe.)
A cache location is specified to provide faster access to debugging information.
The format for the set cache subcommand is as follows:

Format: set cache debug = “template”

Notice that debug is the only valid type of file for the set cache subcommand.

The template argument was described in the previous section and is used to
specify the cache location. When debugging a program, the debugger first looks for
the debugger file in the cache location. If the debugger finds a current version of
the debugger file in the cache location, then the debugger uses the file. If a
debugger file is not found in the cache location, or if the debugger file in the cache
location is not current, then the current debugger file is copied to the cache
location. However, if the cache file is not a valid debugger file, it will not be
overwritten by the debugger.

EXAMPLES

set search userinclude = "path:/usr/c/headers/%leafname"
specifies a search list for user include files. When the debugger looks for
source code that was included from a user include file located on a host
workstation, this template is used to generate a filename and open the file on
the workstation.

set search source = "hfs:/home/cxx/src/%leafname"
specifies a search list for source files in the OS/390 UNIX System Services
hierarchical file system (HFS). The hfs: filename style prefix instructs the
debugger to look for the file in the HF'S file system and open the file if it is
found.

set search userinclude + "dsn:userid.c.headers(%basename)"
specifies a template that is appended to the search list for user include files
that was established in the previous example. This template generates an
0S/390 dsn: style filename that is searched if the user include file is not
found on the workstation.

260

step A Chapter 14

set search userinclude trace on
turns tracing on for user include files. Whenever the debugger searches for a
user include file, a message will be displayed telling you the name of the file
searched for and if the search was successful or not.

set search userinclude ?
displays the search template list used to generate filenames for user include
file searches.

set search userinclude =
resets the search template list for user include files to null.

set cache debug = "dsn:userid.cache.db(%sname)"
specifies an OS/390 data set used to cache the debugger file on the target
mainframe.

set cache debug = "cms:%sname dbg370"
specifies the location of a CMS file used to cache the debugger file on a target
mainframe.

SYSTEM DEPENDENCIES
The filenames that are generated by the search templates are dependent upon the
names the compiler used to open the files originally, which are operating system
dependent.

COMMAND CAN BE ISSUED FROM

debugger start-up file yes

command line yes

configuration file no

Source window prefix none
SCOPE

The set command is not affected by changes in scope.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

step

Restart Execution and Break at the Next Hook

ABBREVIATION
s{tep}
FORMAT
step [INTEGER]

DESCRIPTION
The step command resumes program execution and breaks at the next hook,
which may be any of the following:

Command Directory /A storage 261

line-number hook
Some source lines, such as for statements, can have multiple hooks.

call to a function
The break occurs in the context of the calling function.

return to a function
The break occurs in the context of the calling function.

entry to a called function
The break occurs in the context of the called function.

return from a called function
The break occurs in the context of the called function.

INTEGER is a nonnegative integer (including 0). Use the INTEGER argument
to specify the number of times you want the step command to be performed.

If you have issued step with an INTEGER argument and the debugger breaks
before the step command is completed, you can issue it again with a different
value of INTEGER to change the number of times step is performed. Suppose
that the last step you issue is step 4, and then you reach a breakpoint after one
step is performed. If you decide you only want the step to be performed once more,
you can issue step 1 at the breakpoint. (The three pending steps are replaced by
one step. The step command issued with 0 discards the three remaining steps.)
However, if you want the three pending steps to be completed, you can issue a go
command.

EXAMPLES

step
resumes program execution until the next hook is reached.

step 20
performs the step command 20 times.

SYSTEM DEPENDENCIES
none

SCOPE
The step command is not affected by changes in scope.

RETURN CODES SET
not applicable
SEE ALSO
O “continue” on page 204
O “go” on page 222
O “resume” on page 246

storage

Display Storage Analysis

ABBREVIATION

sto{rage}

FORMAT
storage [heap | stack] [check | report] [file |term] [narrow | wide]

262

storage A Chapter 14

DESCRIPTION
The storage command prints an analysis of the program’s use of both heap and

stack

storage. Heap storage is storage allocated by the malloc and calloc

functions. Once allocated, this type of storage remains allocated until it is freed.
Stack storage is storage used for automatic variables and register save areas. This
storage is allocated when a function is entered and is freed when the function

retur

ns.

The storage command is executed by the same subsystem as that used when
the run-time =storage option is used.

The keywords can be specified in any order. If conflicting options are entered,
the last (rightmost) option is used.

heap

specifies that the analysis is to be limited to heap storage only.

free

specifies that free heap blocks are to be checked. All chains and blocks in free
heap storage are inspected for correctness and consistency. If an error is
detected, the block will be dumped.

stack

specifies that the analysis is to be limited to stack storage only. If neither
heap nor stack is used, the analysis includes both.

check

specifies that the storage is to be checked; that is, the control blocks that
describe the storage allocated are to be inspected for correctness and
consistency. This type of analysis is similar to that performed by the library
when heap storage is freed or when the program terminates. If check is used,
storage attempts to predict storage-related user abends and to indicate the
problem area.

report

specifies that the debugger is to produce a storage use report. If neither
check nor report is used, the analysis includes both. Note that a report is not
generated until the storage is checked for consistency.

file

specifies that the analysis is to be written to a file. Under OS/390 batch, the
analysis is written to the data set allocated to the DDname DBGSTG. Under
TSO, the debugger attempts to use DBGSTG. If the DD statement for the
name DBGSTG is not defined, the output is written to 'DSN:
userid.pgmnameDBGSTG’. If NOPREFIX is specified in your TSO profile,
"DSN: prefix.pgmname. DBGSTG’ or a TSO prefix is specified. In either case,
pgmname is the name of the program. If the program name cannot be
determined, the debugger uses UNKNOWN as the pgmname. Under CMS it
is written to the A-disk, using the program name as the filename and a
filetype of DGBSTG.

The output of subsequent storage commands is appended to the output of
the first. Each part of the analysis is identified by a header similar to the
first line of a traceback.

term

specifies that the analysis is to be displayed on the terminal. Under CMS and
TSO, term is the default. Under OS/390 batch, it is written to DBGLOG.
User-installed debugger I/O exits have no effect on the output of the storage
command.

narrow

specifies that the output is to be limited to 80 columns.

Command Directory /\ storage 263

wide
specifies that the output is to be displayed in 132-column format. If neither
narrow nor wide is used, the debugger chooses a format based on the choice
of term or file. The term output defaults to narrow, and file output defaults to
wide.

Interpreting the Reports: The following paragraphs explain how heap and
stack allocation is performed by the run-time library. This information is
necessary to understand the reports generated by the storage command. The
following explanation is not exhaustive, but it gives enough information for you to
understand and use the output from the storage command.

Heap storage: Heap storage is allocated by the malloc and calloc
functions. Both functions interface to a routine called the heap manager to
allocate storage. The heap manager creates control information for the allocated
storage block and formats the storage block so that overlays (that is, information
written outside the boundaries of the storage block) can be detected. When an
overlay is detected (either when the storage is freed or when the program
terminates), the heap manager issues a user ABEND. This alerts the programmer
to storage overlays.

The heap manager can adjust the size of the allocated storage block in order to
reduce fragmentation. Suppose the program allocates a 10-byte block using the
following function call:

p = malloc(10);

The heap manager rounds the request size (10 bytes) to the next multiple of 8,
which is 16 bytes. Then it adds 16 bytes of control information to the request, in
the form of an 8-byte block header and an 8-byte block trailer.

If the request size is larger than 288 bytes, the heap manager adds the size of
the header and trailer information to the request size and then rounds the sum to
the next higher multiple of 64. For example, the following request results in a
320-byte (5 * 64) storage block:

p = malloc(300);

Validation: The most common storage overlay is caused by writing into the
storage either immediately preceding or immediately following the boundaries of
the storage block. For example, a program may allocate a 100-byte I/O buffer and
then read 110 bytes of data into it. The heap storage manager formats the storage
block so that this type of error is detected easily. Part of the control information is
the word HEAP in the 4 bytes immediately preceding and following the original
16-byte block. The block looks like the following:

XXXxXHEAPZ22222222222222ZZHEAPXXXX

In the original 16-byte block, x is a byte of control information and z is a byte.

If the program has written over either of the HEAP markers when the storage
block is freed, the heap manager detects that the storage was overlaid.

Similarly, when a storage block is freed, the heap manager changes the HEAP
markers to FREE, as shown in the following:

264

storage A Chapter 14

XXXXFREEZ2222222222222Z2FREEXXXX

These markers remain in place until the block is reallocated or the program
terminates; at which time, if either marker is changed, the heap storage manager
detects the overlay.

The heap manager also ensures the validity of its own internal control blocks
and performs other consistency checks to determine if a storage overlay occurred.

If the check option is used, the storage command performs the same
consistency checks as the heap manager. Instead of issuing a user ABEND,
storage displays a formatted dump of the block in question. The programmer can
use this information to trace the error that caused the overlay.

Reporting usage: In order to reduce storage fragmentation, the heap
manager keeps track of freed storage blocks. When the program allocates another
block, the heap manager checks for a freed block of the same or larger size. If one
exists, the heap manager reallocates it instead of allocating a new storage block. If
the report keyword is used, the storage command counts the number of allocated
and freed storage blocks to produce a report on heap storage usage by the program.

Stack storage: Stack storage is storage that is allocated automatically for
auto variables, register save areas, and other temporary use by a function.
Normally, stack storage is allocated from the stack when a function is called and is
returned to the stack when the function returns. However, if the stack overflows
(that is, runs out of available storage), the stack manager is called to allocate
another block of storage for the stack.

Each stack storage block is called a tract. Just as the heap manager formats
heap storage blocks, the stack manager formats tracts. The start of the tract is
marked with the word AST and the end with the word EAST. The stack manager
also maintains control information about the stack, including information on the
current size of the stack and the stack top.

The part of the stack that is allocated for each function is called a DSA
(dynamic save area). Part of the DSA is a register save area. These save areas are
chained to each other.

Validation: As the stack manager operates, the tract markers, save area
chains, and the stack control information are checked for consistency. If an overlay
is detected for example, caused by storing outside the boundaries of an auto array
the stack manager issues a user ABEND.

If the check option is used, the storage command performs these same checks.
If an overlay is detected, the storage command produces a dump of the overlaid
storage. Because most validation by the stack manager is delayed until program
termination, it is difficult to determine which function in the program is causing
the problem. The storage command is used to localize the bug.

Reporting usage: If the report option is used, the storage command
produces a report showing how many DSAs are in use. Usually this corresponds to
the number of functions in the calling sequence. The report also shows how much
of the stack is unused.

Coprocess stacks: If the program uses the coprocessing functions, storage
checks and reports on each coprocess’s stack separately.

EXAMPLES

The following line-mode example shows the output produced by the storage
command in an uncorrupted situation.

CDEBUG:
storage

Command Directory /\ storage 265

At SUB1 (PGM1) entry --—---

SIZE: FREE/USED SIZE: FREE/USED SIZE: FREE/USED SIZE: FREE/USED
24: 0/116 32: 0/118 40: 0/18 48: 0/69
56: 0/10 64: 0/7 72: 0/59 80: 0/10
88: 0/9 96: 0/4 104: 0/3 120: 0/2
144: 0/5 152: 0/1 160: 0/1 280: 0/1
512: 1/0 792: 1/0 1152: 1/0 1472: 1/1

1792: 0/2 8192: 0/1

No corruptions found in heap.
SIZE NUMBER SIZE NUMBER SIZE NUMBER SIZE NUMBER SIZE NUMBER

152: 1 168: 1 208: 1 248: 1 256: 1
296: 2 672: 1
Total unused space in stack (bytes): 1768
No corruptions found in stack.

In this example, neither heap nor stack is specified, so storage produces a
report for both. Also, because neither check nor report is specified, storage both
checks the storage and produces a report on its use. Because no output option
(term or file) is specified, the report is displayed on the terminal in the narrow
format.

Line 1 shows the current function name and section name.

At SUB1(PGM1) entry = -—---—-

The current hook is entry to the function.

Lines 2 through 8 show the heap storage usage report. Each of the six lines
following the subtitle is divided into four columns. There is an entry for each size
of allocated storage block. For example, the following entry in line 3, column 1
shows that there are 116 allocated blocks of size 24 and no freed blocks:

24: 0/116

Similarly, the following entry in line 7, column 1 shows that there is one free
block of size 512 and no allocated blocks:

512: 1/0

Note that the block size shown in the entry is the size known to the heap
manager. This size includes the 16 bytes of header and trailer information, plus
rounding. For example, the 10-byte allocation discussed earlier in Heap storage is
shown as an entry for 32-byte blocks.

The large number of 24- and 32-byte blocks (representing allocations of 1 to 8
bytes and 9 to 16 bytes, respectively) indicates that this program can benefit from
memory pooling via pool and its related functions.

The last part of the heap report, line 9, indicates that storage detected no
overlays in heap storage.

No corruptions found in heap.

The stack report consists of two lines (12 and 13) of output divided into five
columns. Each entry in the report shows the number of DSAs allocated by size.
For example, the following entry shows that two 296-byte DSAs are in use:

266 storage A Chapter 14

296: 2

Line 14 of the report shows the amount of unused stack space, 1768 bytes.
Again, storage reports that no overlays are detected in the stack.

The next example shows the output from storage when a heap storage block is
overlaid.

CDEBUG: }

storage check heap

At SUB1 (PGM1) 2 00005A
LSCD622 Block (size: 00000078 (120)) at address 00007F20 has been
overwritten.

Header Address: 00007F20 Trailer Address: 00007F90
00007F20 00000078 CB8C5C1D7 FCFCFCFC FCFCFCFC *....HEAP........ *
00007F30 FCFCFCFC FCFCFCFC FCFCFCFC FCFCFCFC *...veeeeeeecceenn *
00007F50 FCFCFCFC FCFCFCFC FCFCFCFC FCFCEFCFC *...ceeeeeeeeeeenn *
00007F60 TO 00007F90 SAME AS ABOVE ...cieveeecacanns
00007F90 C7C5C1D7 00008310 00000078 FFFFFFFF *GEAP..C...vuvenn *

Because the check keyword is specified, storage does not produce a report. (In
fact, because heap storage is corrupted, no usage report is created.) The heap
keyword limits the analysis to heap storage. Again, the output is displayed on the
terminal in 80-column format.

In this example, a 104-byte storage block is allocated, starting at 0x7f28. The
heap manager adds header and trailer information at 0x7f20 and 0x7{90,
respectively, resulting in a 120-byte storage allocation. This information is
summarized in message LSCD622:

LSCD622 Block (size: 00000078 (120)) at address 00007F20 has been overwritten.
Header Address: 00007F20 Trailer Address: 00007F90

The program has not yet changed the contents of the storage block at all. It
manages, though, to overwrite the byte immediately following the end of the block,
at 0x7f90, with the letter G. Because this changes a heap storage marker from
HEAP to GEAP, storage detects the change and produces a dump.

In this example, storage is uncertain about the exact location of the overlay.
Either the program overlays the HEAP marker in the trailer information or the
length of the block is overwritten (in which case GEAP can be user data).
Therefore, storage dumped the first 32 bytes of the storage block, including the
header information, and then dumped 32 bytes surrounding the probable end of
the block.

The next example shows the output produced by storage when it detects a
stack overlay.

CDEBUG:

storage check stack

At SUB1 (PGM1) 2 00005A
LSCD612 Auto storage control block has been overwritten at 00005FB5.

Command Directory /\ system (CMS) 267

00005F98 00000FEO 00005FA8 00000000 40ClEZ2E3 Feveaan "Yy.... AST*
00005FA8 0000C6E8 00000000 00000000=>00000000 LY 3 A *

In this example, storage analysis is limited to stack storage by use of the
stack option.

The overlay is not obvious in this example. Note, however, that storage adds a
=> at the location (0x5fb0) where it detects the overlay. The storage command
puts this mark in the dump when it can show the location of the overlay exactly.

Assuming that an earlier storage check shows no corruption, it is likely that
one of the functions in the current calling sequence caused the overlay. (The where
command can be used to produce a traceback.) From this information, it should be
easy to check these functions to determine if one is storing a word of 0x00’s
outside the boundaries of its stack storage.

SYSTEM DEPENDENCIES
The name of the file that is used when the file keyword is used depends on the
operating system. (See DESCRIPTION.)

Under 0S/390, the debugger tries to open DBGSTG only once, the first time
storage is used. If it is not defined, all subsequent storage output is written to
"DSN: userid.pgmname. DBGSTG’ if NOPREFIX is specified in your TSO profile, or
'DSN: prefix.pgmname. DBGSTG’ if a TSO prefix is specified. That is, you cannot
use the system command to allocate a data set to DBGSTG after the storage
command is used.

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The storage command is not affected by changes in scope.

RETURN CODES SET
Successful: 0

Unsuccessful: 1

system (CMS)

Execute a CMS Command

ABBREVIATION
sy{stem}

FORMAT
system OPERATING-SYSTEM-COMMAND

DESCRIPTION
The system command sends the CMS command specified in the argument
OPERATING-SYSTEM-COMMAND to the operating system. Using the debugger

268 system (TS0) A Chapter 14

system command is equivalent to calling the system function from within a
program.

The system command cannot be followed by another debugger command on the
same line. That is, the arguments to the system command are assumed to extend
to the end of the line, including any semicolons on the line. The screen is
refreshed after completion of execution of the system command.

EXAMPLE

system filelist
invokes the CMS FILELIST command.

SYSTEM DEPENDENCIES
See the discussion of this command for TSO if you are running the debugger under
TSO.

Note: Some CMS commands, such as HELP and XEDIT, can cause storage
allocated by the GETMAIN macro to be freed. If the program being debugged
allocates storage by means of GETMAIN, do not invoke these commands. C
programs do not use GETMAIN to allocate storage, so you can safely invoke these
commands if your program is written entirely in C. A

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The system command is not affected by changes in scope.

RETURN CODES SET:
Successful: 0
Unsuccessful: return code from system

SEE ALSO
“exec (CMS)” on page 221 (CMS version)

system (TSO0)

Execute a TSO Command

ABBREVIATION
sy{stem}

FORMAT
system OPERATING-SYSTEM-COMMAND

DESCRIPTION
The system command sends the TSO command specified in the argument
OPERATING-SYSTEM-COMMAND to the operating system. The
OPERATING-SYSTEM-COMMAND argument can be a single command or a
CLIST containing TSO commands. Note that in contrast to the exec command, if

Command Directory /A trace 269

the CLIST contains SAS/C Debugger commands, they are not passed to the
debugger. Using the debugger system command is equivalent to calling the
system function from within a program.

The system command cannot be followed by another debugger command on the
same line. That is, the arguments to the system command are assumed to extend
to the end of the line, including any semicolons on the line.

EXAMPLE

system listalc status.
invokes the TSO command listalc status

SYSTEM DEPENDENCIES
See the discussion of this command for CMS if you are running the debugger
under CMS.

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The system command is not affected by changes in scope.
RETURN CODES SET
Successful: 0

Unsuccessful: return code from system

SEE ALSO
“exec (TSO)” on page 219

trace

Trace Program Flow

ABBREVIATION

t{race}

FORMATS

Format 1: trace

Format 2: trace HOOK-TYPE [when (EXPRESSION)] [count N

270

trace A Chapter 14

DESCRIPTION

The trace command traces program flow at specified hooks.

Format 1: Format 1 is used without arguments only within an on command
because you specify the hooks as part of the on command syntax.

Format 2: Format 2 of the trace command traces program flow at the hooks
you request with the HOOK-TYPE argument. See Chapter 12, “Using Debugger
Commands,” on page 129 for details about the HOOK-TYPE argument.

When a hook is reached, program execution proceeds automatically after the
trace. You cannot enter other debugger commands.

You determine the type of line that the trace command writes by using the
auto command. The default is a source line that contains, in addition to a listing
of the source code, the line number and the location of the line (the section name
and function name where the line is located).

The arguments: A when clause can be used to trace conditionally, that is, to
trace a line when a hook is reached if the when clause is true.

The argument count N is optional. If count N is specified, the first N-1 times the
hook is reached, the count is decremented. The Nth time it is hit, the command is
executed. After the Nth time, the command is executed every time the hook is hit.

If a when clause is present, a hit is counted only if the when expression is true.

A query command, issued before the count drops to 1, displays the current
value of count. The word count can be abbreviated to cou{nt}.

Identical requests: If a trace request is made that is identical to an existing
one, the identical request is not installed. This is true whether the request to be
installed is within an on command or typed in at the command line.

If an identical request is issued and the original request is disabled, the
identical request is discarded and the original request is automatically enabled.

If count N is used, the count is ignored in identical requests. If an identical
request with a different count is entered, the count field of a query is updated
with the new count, and a message is produced.

EXAMPLES

trace *
traces program flow at all line-number hooks in all functions.

trace entry
traces program flow at entry to all functions.

trace main 45
traces program flow at line 45 in the main function.

trace 53
traces program flow at line 53 of the current function.

trace (comp23) entry
traces program flow upon entry into the comp23 compilation.

trace funcl entry
traces program flow at entry to the funcl function.

trace func 23:46
traces program flow at lines 23 through 46 in the func function.

SYSTEM DEPENDENCIES

none

Command Directory /A transfer 2M

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix t
SCOPE

The trace command uses command scope to supply default identifiers, function
names, and section names.

RETURN CODES SET
Successful: number of the action from the list produced by query
Unsuccessful: 0

SEE ALSO

O “break” on page 199
“disable” on page 212
“drop” on page 213
“enable” on page 216
“ignore” on page 226
“monitor” on page 235

O 0O o o o d

“on” on page 239

transfer

Transfer Debugger/Program Values to CLIST/EXEC Variables

ABBREVIATION
tran{sfer}
FORMATS
Format 1: transfer VAR-NAME [FMT-SPEC] auto
[KEYWORD]
Format 2: transfer VAR-NAME [FMT-SPEC]
ENVIRONMENT [- N]
Format 3: transfer VAR-NAME [FMT-SPEC] value
EXPRESSION
Format 4: transfer VAR-NAME str EXPRESSION [,N]
Format 5: transfer VAR-NAME dump EXPRESSION [,N]
Format 6: transfer VAR-NAME type of EXPRESSION
Format 7: transfer VAR-NAME cause

Format 8: transfer VAR-NAME scope

272

transfer A Chapter 14

DESCRIPTION

The transfer command enables you to assign different character strings
containing debugger information or program values to CLIST/EXEC variables.
The transfer command facilitates communication between the debugger and
CLISTs and EXECs. Note that transfer is issued to the debugger by a CLIST or
EXEC, not from the Command window.

In all the formats above, VAR-NAME is any valid CLIST or EXEC variable
name. VAR-NAME is limited to 64 characters. FMT-SPEC is a valid format, which
means any valid printf specification, provided it begins with a %.

Format 1: Format 1 transfers one or more settings of the auto option.
FMT-SPEC is specified only for the linesize keyword. If no keyword is specified, all
auto settings are transferred in a string formatted as follows (where b=blank):

Columns String

1-6 bbecho/moecho

7 blank

8-11 bbid/noid

12 blank

13-18 bblist/nolist

19 blank

20-28 bbnullptr/monullptr

29 blank

30-35 bbwrap/nowrap

36 blank

37-45 bbcmacro/nocmacro

46 blank

47-55 bbdumpabs/nodumpabs
56 blank

57-66 bbexececho/noexececho
67 blank

68-76 bbextname/noextname
77 blank

78-82 bbexx/nocxx

83 blank

84-95 LINESIZE:nnn

Individual settings are transferred by specifying the keyword.

Format 2: Format 2 transfers various ENVIRONMENT settings. The —N option
is used to call ENVIRONMENT settings that are earlier in the calling sequence.
For example, —1 can be used to transfer the value of a setting that is one function

Command Directory /A transfer 273

earlier in the calling sequence. The ENVIRONMENT settings that can be
specified as arguments to the transfer command, include the following:

O the current address or any address (using the —N option) in the calling
sequence. This version of Format 2 is

transfer VAR-NAME [FMT-SPEC] address [-N]

The formatted string contains the appropriate offset in hexadecimal format
with a leading 0p, for example, 0p00123456. At the return line-number hook,
on the jumper’s side of the longjmp function, an address is not available, and
n/a is returned.

O the current section name (sname) or any section name (using the — N option)
in the calling sequence. This version of Format 2 is

transfer VAR-NAME sname [-N]

O the current function name (fname) or any function name (using the —N
option) in the calling sequence. This version of Format 2 is

transfer VAR-NAME fname [-N]

This is similar to using sname. However, the string may contain leading
blanks.

O the current line number or any line number (using the —N option). This
version of Format 2 is

transfer VAR-NAME [FMT-SPEC] lineno [-N]

The formatted string contains the appropriate decimal line number at a
line-number hook, for example, 234. At the prologue and epilogue hooks,
calls, entry, or return is returned.

O the current offset or any offset (using the —N option). This version of Format
2 is
transfer VAR-NAME [FMT-SPEC]offset [-N]

The formatted string contains the specified offset in hex with a leading 0p,
for example, 0p0002BE. At the return hook, an offset is not available, and n/a
is returned.

Format 3: Format 3 assigns the value of an expression to a CLIST/EXEC
variable. EXPRESSION is any valid scalar expression supported by the print
command, and FMT-SPEC is any valid format specification supported by the
print command.

If an FMT-SPEC is given, the string assigned to VAR-NAME is similar to that
created for the print command, but without the expression : prefix. Strings can
be transferred by specifying %s printf format specification, but using the str
keyword may be more natural. (See Format 4, which is described next.)

If no FMT-SPEC is given, the default output is as follows:

Type 1

defaults to arithmetic.

short and long the decimal value using the %d format for signed and %u
for unsigned.

char printable: x form escape character: \ n form otherwise: \
xnn
float and double %.6E and %.15E, respectively.
Type 2

defaults to pointer. Eight hexadecimal digits are prefixed with a 0p.

274

transfer A Chapter 14

Type 3

structure or union types are not allowed. Only scalar types are allowed.

Type 4
defaults to array. The address of the array is output using the format of Type

2.

Type 5
defaults to address. The address is output using the format of Type 2.

Type 6
defaults to enum. The enum constant is printed. If there is no enum constant
corresponding to the value, the value in decimal is printed.

Type 7
defaults to bitfield. The %d or %u format is printed, depending on whether
the bitfield is signed or unsigned.

Format 4: EXPRESSION is any valid expression accepted by the dump
command, which is any address type expression. If the optional, N is not specified,
a null-terminated string is copied to VAR-NAME. Otherwise, N bytes, followed by
a null byte, are copied. The following examples illustrate this format. Assume
a=abcdef.

transfer xyz str a (xyz gets the string “abedef ”)
transfer xyz str a,3 (xyz gets the string “abc”)

Format 5: EXPRESSION is any valid expression accepted by the dump
command, which is any address type expression. If the optional, N is not specified,
the hex representation of a null-terminated string is copied to VAR-NAME.
Otherwise, the hex representation of N bytes is copied. Again assuming
a=abcdef", the following examples illustrate this format:

transfer xyz dump a (xyz gets the string & “818283848586”)
transfer xyz dump a,3 (xyz gets the string “818283”)

Format 6: Format 6 assigns the type of an expression to a CLIST/EXEC
variable. The string assigned to VAR-NAME is a string that describes the
expression in C terms. Assume i, cp, and sp are declared as follows:

int i;
char * cp;
struct SSS * sp;

Then, this format is illustrated as follows:

transfer xyz typeof i(xyz gets the string "int")
transfer xyz typeof cp(xyz gets the string "char *")

Command Directory /A undef 275

transfer xyz typeof sp (xyz gets the string "struct SSS *")}

Format 7: Format 7 uses the VAR-NAME argument to assign the reason the
debugger has control to a CLIST/EXEC variable. VAR-NAME is assigned one of
the following strings:

NNNN REASON FNAME (SNAME) LINE-SPEC

NNNN monitor MON-DET

0000 signal SIGNAL-NAME

0000 attn

NNNN is the request number in the query list, and it is right-justified with as
few digits as needed. The REASON argument is either break, step, or continue.
FNAME and SNAME are the function name and compilation of the routine that
was stopped in. LINE-SPEC is a line number (in decimal) or calls/entry/return.

MON-DET is what appears for that monitor if you do a query.

If more than one of the above causes is present, the following hierarchy (in order
of most important to least important) is used to output the more important cause:

TERMIN

TERMOUT

SIGNAL

ATTN

MONITOR

BREAK (also generated for on commands)

RUNTO

CONT

STEP

Format 8: This format uses the scope keyword to transfer the traceback level
from the debugger to a CLIST or EXEC variable specified by the VAR-NAME
argument. The output from the command is a string containing the traceback

level and starting with a minus sign. For example, if the traceback level is five,
the output of the command is —5.

EXAMPLES

The EXEC named DUMPTREE, in “Example REXX EXEC Application” on page
52, contains several transfer commands that demonstrate how you can transfer
debugger variable values to CLIST or EXEC variables.

SYSTEM DEPENDENCIES

none

SCOPE

In an expression context, the transfer command uses command scope to resolve
references to all identifiers.

RETURN CODES SET

O Successful: 0
0 Unsuccessful: 1

undef

Undefine a Debugger Macro

ABBREVIATION

u{ndef}

276 watch A Chapter 14

FORMATS
Format 1: undef MACRO-NAME
Format 2: undef *
DESCRIPTION

The undef command drops debugger macro definitions, which are defined with the
define command. After undef removes the definition, any further attempts to use
the macro name produce a diagnostic message.

Format 1: Format 1 removes a single definition specified by MACRO-NAME.

Format 2: Format 2 removes all debugger macro definitions.

A debugger macro can be redefined by issuing another define command for the
same macro, but with new substitution text. You do not need to use the undef
command on a macro before redefining it.

EXAMPLES

undef macl
undefines the debugger macro macl previously defined with the define
command.

undef *
undefines all debugger macros.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE yes

configuration file no

Source window prefix none
SCOPE

The undef command is not affected by changes in scope.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
“define” on page 210

watch

Assign Expressions to the Watch Window

ABBREVIATION
wa{tch}

FORMATS
Format 1: watch EXPRESSION [%FMT]

Command Directory /A whatis 211

Format 2: watch EXPRESSION COUNT

DESCRIPTION
The watch command is used to assign expressions to the Watch window, which is
used to track the value of expressions or areas of storage. The window is not
automatically opened.

Format 1: This format is used to assign an expression to the Watch window
where its value will be displayed in a manner similar to the print command. The
EXPRESSION and %FMT arguments are the same as those specified for the
print command.

Format 2: This format is used to assign an area of storage to the Watch window
where its contents will be displayed in a manner similar to the dump command. As
with the dump command, the EXPRESSION argument must specify an address
type. The COUNT argument is an integer that specifies the number of bytes to be
watched.

EXAMPLES

watch i
assigns the variable i to the Watch window where it is displayed in the
default format.

watch i %x
assigns the variable i to the Watch window where it is displayed in
hexadecimal format.

watch ptr 6
displays 6 bytes of memory starting at the address pointed to by ptr.

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The watch command uses command scope to resolve references to all identifiers.

RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
0 “dump” on page 215
O “monitor” on page 235
O “print” on page 241

whatis

Display Type Information

2718

whatis A Chapter 14

ABBREVIATION

wha{tis}

FORMATS

Format 1: whatis EXPRESSION
Format 2: whatis (TAG)

DESCRIPTION

The whatis command prints the type information associated with the argument.

Format 1: Format 1 prints the type information for the EXPRESSION
identifier. The type information includes the type and the length of the expression.
EXPRESSION can be any valid expression or a macro. Unlike the other debugger
commands that support EXPRESSIONS, the whatis command always substitutes
the replacement text of a macro, regardless of the setting of the auto cmacros
keyword.

Format 2: Format 2 prints the type information for a structure, union, or enum
tag or type defined with a typedef. The type information includes the definition of
the structure, union, enum or typedef, and the length of the expression.

As Format 2 shows, if the operand of the whatis begins with a left parenthesis,
the debugger assumes that a TAG follows. An expression can begin with a left
parenthesis if it is escaped. To escape, precede the expression with a backslash.

EXAMPLES

Assume the following declarations when reading Table 14.10 on page 278:

struct XYZ {
int arr[10] [5] ;
double d;
char *buf;

} my_struct;
struct XYZ *xptr;
int numx;

The whatis command can be used to examine the types of class members by using
the C++ binary operator :: . For example:

whatis my_ struct::member_ name

Table 14.10 Examples and Results Using the whatis Command

Example Printed Result

whatis numx auto at 0pl2345678 (4 bytes)
int

whatis \ (numx) auto at 0pl2345678 (4 bytes)
int

whatis &numx int *

whatis (XYZ) struct XYZ {(212 bytes)
int arr[10][5];
double d;

char *buf;

}i

Command Directory /A where 279

Example Printed Result

whatis xptr auto at 0pl2345678
(pointer to 212--byte object)
struct XYZ *

whatis my_ struct::d double d

SYSTEM DEPENDENCIES
none

COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The whatis command uses command scope to resolve references to all identifiers.

RETURN CODES SET
Successful: 0

Unsuccessful: 1

where

Produce a Traceback

ABBREVIATION

w{here}

FORMATS
Format 1: where
Format 2: where full

DESCRIPTION
Format 1: Format 1 produces a traceback showing functions active at the point in
a program where the where command is issued. You can use the where command
to determine the sequence of functions that are active or whether you are
executing in the appropriate section. If command scope is different from run scope,
the command scope is marked by an asterisk in the traceback produced by the
where command.

Because source lines and variables are accessed only for active functions,
another use of where is to display a list of active functions to determine what
variables can be accessed. (An external variable, of course, can be accessed from
any function whose context contains a declaration for it.)

Format 2: Format 2 causes the debugger to print address and offset information
in the traceback as well.

280 window A Chapter 14

EXAMPLES
The following examples show tracebacks that were produced during a line-mode
session. If you are using extended names, your traceback will look different. See
“auto” on page 196 for more information about extended names.

CDEBUG:
where

Calling trace:

Function Line Context
READIN(MAIN) 50
MAIN(MAIN) 29+
CDEBUG:
where full

Calling trace:

Function Line Offset Address Context
READIN (MAIN) 50 00007E 000470F2
MAIN(MAIN) 29% 000086 0004700E
SYSTEM DEPENDENCIES

none
COMMAND CAN BE ISSUED FROM

PROFILE no

configuration file no

Source window prefix none
SCOPE

The where command is not affected by changes in scope.
RETURN CODES SET
Successful: 0
Unsuccessful: 1

SEE ALSO
“scope” on page 252

window

Perform Window Management Functions

ABBREVIATION

wi{ndow}

FORMAT
window SUBCOMMAND [WINDOW-FIND] [WINDOW-NAME]
[SUBCOMMAND-PARAMETERS]

Command Directory /A window 281

DESCRIPTION
The window command is used to perform a wide variety of window management
functions. Furthermore, it may be issued three ways in line mode and five ways in
full-screen mode:

O in line mode
o from a PROFILE
O from a configuration file
0 from the command prompt

O in full-screen mode
o from a PROFILE
0 from a configuration file
0 from the Command window
O from the Log window
o with a PF key.

The window command is always issued with a SUBCOMMAND argument, and
sometimes with parameters to the subcommand, SUBCOMMAND-PARAMETERS.
The subcommands that are available to you depend on how you issue the command.
Table 14.11 on page 281 lists the subcommands and where they are valid.

Table 14.11 window Subcommands

Configuration Command Line
Subcommand PROFILE File Window Mode
autopop no yes yes no
border no yes yes no
clear no no yes no
close no no yes no
color no yes yes no
config no yes no no
context no yes yes no
find no no yes no
memory no yes no no
move no no yes no
next no no yes no
off yes no yes no
on no yes yes no
open no yes yes no
previous no no yes no
resize no no yes no

scroll no yes1 yes no

282

window A Chapter 14

Configuration Command Line
Subcommand PROFILE File Window Mode
top no no yes no
trace no yes yes no
zoom no no yes no

1 Format 2 of the scroll subcommand cannot be specified in the configuration file.

Each of these subcommands is described in detail later in this section.

WINDOW-NAME argument
Some of these subcommands must be used with a WINDOW-NAME argument,
which is used to specify the window to which the command applies. If
WINDOW-NAME is required, it must be one of the following:

Command
Config
Dump
Keys
Log
Message
Popup
Print
Register
Source
Status
Termin
Termout
Watch

< >.

O 0o 0o o0 oo oo o oo oo o d

< > is used as a placeholder to specify the window the cursor is in. As < > is
used interactively, it may not be specified in window commands present in the
configuration file. Any further restrictions are mentioned in the discussions of the
various subcommands.

The windows that can be specified with the WINDOW-NAME argument fall into
four classes:

In Class 1 these windows are always present:

o Command
o Log

o Source
O Status.

In Class 2 these windows are under debugger control for error correction or
reporting:

O Message

o Popup.

Command Directory /A window 283

In Class 3 you control the presence of these windows; there can be one instance
only of each:

o Config
Keys
Register
Termin
Termout
Watch.

O o o o o

In Class 4 you control the presence of these windows; there can be multiple
instances of each:

o Dump
O Print.

In window subcommands that permit a Class 4 name, the name can be specified
only if it unambiguously identifies the window. For example, if there are two
Dump windows open, the following command is ambiguous:

window close dump

However, the same command would not be ambiguous if only one Dump window
was open.

To close a Dump window in the situation where two or more Dump windows are
open, you can position the cursor in the window and press the PF15 key, which is
assigned the following window command by default:

window close < >

Or, you could type this command in the Command window and then move the
cursor into the window before issuing it with the ENTER key.

WINDOW SUBCOMMANDS
Each of the window subcommands is discussed in detail in the following
paragraphs.

autopop
The autopop subcommand is used to select the autopop status for a window. (This
can also be accomplished with the Config window.) Autopop status is either on or
off. If the autopop status is set to on, the window is automatically made the top
window; that is, the window is popped to the top and the cursor is placed inside
the window whenever output is sent to the window, provided the window is at
least partially obscured. If the window is completely unobscured, autopop does not
cause the window to become the top window. If specified for windows for which
there can be multiple instances, the attribute applies to all instances.

The format of the autopop subcommand is as follows:

autopop WINDOW-NAME on | off

The WINDOW-NAME argument specifies the window that is to have its
autopop status set, and the on/off argument sets the status. For example, the
following command will set the autopop status of the Dump window to on:

window autopop dump on

In a configuration file, the WINDOW-NAME argument can be any class of
window; however, when issued during a session from the Command window or a

284 window A Chapter 14

PF key, WINDOW-NAME must be Class 1 or 3, or the <> placeholder. If the
autopop status of a Class 4 window is changed during your session, the new status
applies only to the specific window to which the command was applied. The
autopop status in the Config window must be used to change the status for any
future instances of this type of window.

By default, autopop is off for all windows except the following:

O Termin
O Termout
o Watch.

border
This subcommand specifies the characters to be used to form the borders of
windows with borders. The format of the border subcommand is as follows:

border “STRING”

The six characters used to make up the border are specified as the STRING
argument in the form of a string literal. For example, the following STRING
argument specifies the characters "++++|-":

window border “++++|-”

The first four characters are used for the four corners (top left, top right, bottom
right, and bottom left). The fifth is used for the vertical borders, and the last for
the horizontal borders. If this command is not present, or if a null-string is
present, the debugger uses suitable default characters. Border color is controlled
by the first C-A-I-TRIPLET in the window color command associated with that
window. (See the color subcommand later in this section.)

clear
The clear subcommand clears the Command, Log, or Termout windows. The
format of the clear subcommand is as follows:

clear WINDOW-NAME

This command cannot be issued from a configuration file and WINDOW-NAME
must be either Command, Log, or Termout. For example, during a session you can
issue the following command to clear the Log window:

window clear log

close
The close subcommand can be used to close any Class 3 or 4 window. This
subcommand is not valid in a configuration file and can only be used during a
full-screen session. The format of the close subcommand is as follows:

close WINDOW-NAME
For example, to close the Register window, you can issue the following command:
window close register

If this command is used to close a Class 4 window (Dump or Print), there must
be only one active instance of the window. Or you must use the <> placeholder
character in the command and specify the desired window to close by positioning
the cursor within its borders. For example, if you have two Print windows open,
you can enter the following command in the Command window, and then, before
you press the ENTER key, position the cursor in the Print window you want to
close.

Command Directory /A window 285

window close < >

When you press the ENTER key, the command is issued and the Print window
is closed.

color
This subcommand is used to set the color, attribute, and intensity of the named
window. The Configuration window is normally used to control these settings;
however, the color subcommand can also be entered from the Command window
or typed directly into a configuration file. The format of the color subcommand is
as follows:

color WINDOW-NAME C-A-I-TRIPLET C-A-I-TRIPLET . . .

The WINDOW-NAME argument can be any valid window name. The
C-A-I-TRIPLET arguments are used to specify the color, attributes, and intensity
of each area of a window, including the border, which is customizable. One
C-A-I-TRIPLET is required for each area of the window.

The first position of the C-A-I-TRIPLET triplet specifies the color of the area
and can be any of the following:

O white
blue
magenta
red
yellow
green

cyan

O 0o o o o o o

none.

The second position of the C-A-I-TRIPLET specifies the display attribute for the
area and can be any of the following:

o blink

O reverse (for reverse video)
O underscore
o

none.

The third position of the C-A-I-TRIPLET specifies the intensity of the area and
can be either of the following:

o low
o high.

C-A-I-TRIPLETS are specified using the first letter of each component. For
example, “r b 1” specifies a red, blink, low triplet. You can also use a colon to
specify that a characteristic in the C-A-I-TRIPLET not be changed. For example, “
r h” specifies current color, reverse video, and high intensity.

Specifying colors, attributes, or intensities on terminals that do not have the
support causes the setting to be ignored.

Table 14.12 on page 286 shows how many triplets are required for each window
and what they are used for.

286

window A Chapter 14

Table 14.12 C-A-I-TRIPLET Arguments by Window

Number of

Window Triplets Areas Affected Protected?
Command 3 Command window border yes
Cdebug: prompt yes
command line input area no
Config 3 Config window border yes
titles and protected text yes
unprotected text no
Dump 4 Dump window border yes
various prompts yes
dump parameters no
hex and character dump yes
Help 1 Help window border yes
Keys 3 Keys window border yes
key names yes
ISPF? and key definitions no
Log 5 Log window border yes
debugger output no
echoed commands no
echoed terminal input no
echoed terminal output no
Message 2 Message window border yes
message yes
Popup 4 Popup window border yes
message yes
prompt yes
input area no
Print 4 Print window border yes
various prompts yes
print parameters no
value of expression printed yes
Register 2 Register window border yes
register names and values yes
Source 5 Source window border yes
various prompts yes
module name and line number no
line number and text areas no
line stopped at no

Command Directory /A window 287

Number of

Window Triplets Areas Affected Protected?
Status 5 Status window border yes
help information yes
reason for break yes
run scope yes
command scope yes
Termin 5 Termin window border yes
various prompts yes
various settings no
“Read...”/“Cont...” prompt yes
input area no
Termout 5 Termout window border yes
various prompts yes
various settings no
“More...” prompt yes
output area yes
Watch 5 Watch window border yes
various prompts yes
watch parameters no
drop prefix area no
watch name and value yes

When using the color subcommand, you must provide the number of
C-A-I-TRIPLET arguments shown in the second column of Table 14.12 on page 286.
For example, the Keys window requires three C-A-I-TRIPLET arguments to set the
characteristics of the border, key name pad, and key definition text pad as follows:

window color keysmrlynlrnl

When issued from the Command window or the config file, this command sets
the following Keys window characteristics:

border
magenta, reverse video, low intensity

key name pad
yellow, none, low intensity

key definition pad
red, none, low intensity

In this example, both the border and key name pad are protected fields, which
means that they do not accept user input. However, for the Keys window, the key
definition text pad is not protected and does allow input.

config
This subcommand is used to configure, establish the initial size and position of,
the named window. The Config window is normally used to control these settings;
however, the config subcommand can also be typed directly into a configuration
file. The format of the config subcommand is as follows:

288

window A Chapter 14

config WINDOW-NAME position ROW-POS COL-POS size HEIGHT WIDTH
border | noborder

The WINDOW-NAME argument can be any valid window name. The ROW-POS
and COL-POS arguments, which must follow the position keyword, are used to
specify the position of the upper-left corner of the window. Window size is
controlled by the HEIGHT and WIDTH arguments, which also must follow the
appropriate keyword, size. The border or noborder keyword is used to turn the
window border either on or off.

For window position arguments, the top left corner of the screen is considered to
be the origin (0,0). ROW-POS and COL-POS are integers representing the row
and column position of the top left corner of the window. HEIGHT and WIDTH,
which are also integers, represent the size of the window in terms of rows and
columns. Borders, if any, must be included in the size.

Any of ROW-POS, COL-POS, HEIGHT, or WIDTH arguments can be allowed to
assume a default value for the window if you specify a colon instead of an integer.
If the values specified cause the window to be placed outside the screen (exceed
screen dimensions), the position and size is adjusted accordingly. If either the
ROW-POS or HEIGHT argument is specified as an integer, it is not advisable to
specify a colon for the other argument. The default assumed by the debugger may
cause ROW-POS or HEIGHT to be forcibly adjusted to meet screen dimensions.
However, WIDTH and COL-POS defaults will not be affected. Similarly, it is not
advisable to specify only one of the COL-POS and WIDTH arguments and use the
default for the other.

If the configuration is saved, actual values are written out even if defaults were
specified (with a colon) in the original window config command. The only
exceptions are certain parameters of the following windows:

Dump window
Window height is specified at configuration time.

Print window
Window height is specified at configuration time.

Message window

The default colon symbol appears for ROW-POS and COL-POS if they were
not specified.

The HEIGHT argument is ignored. If a ROW-POS argument is specified,
the window appears on that row; otherwise, it is centered vertically. If a
COL-POS argument is specified, the window appears on that column,;
otherwise, it appears centered horizontally. The height is based on the
amount of text in the message.

Popup window
The default colon symbol appears for COL-POS if it was not specified.

The HEIGHT and WIDTH arguments are ignored. If a ROW-POS
argument is specified, the window appears on that row; otherwise one of the
rows in the middle of the screen is used. If a COL-POS argument is specified,
the window appears on that column; otherwise it is centered vertically.

all other windows
Various name-dependent restrictions imposed for the height and width of a
window are shown in Table 14.13 on page 289 (terminal height in rows = H,
terminal width in columns = W). The maximum height and the maximum
width of these windows is screen height and screen width.

Table 14.13

Command Directory /A window 289

Window Size Defaults and Restrictions

Min. Def. Max. Min. Def. Max. Def.
Window Height Height Height Width Width! Width Border
Command 1 1 1 24 W w no
Config 3 H 104 12 w 84 yes
Dump 5 H/2 H 51 w w yes
Help 4 H/2 H 20 w w yes
Keys 3 14 27 12 80 94 yes
Log 3 .45X(th- H 10 w w yes
2)

Print 5 H/2 H 49 W W yes
Register 3 11 112 8 75 75 yes
Source 4 rest’ H 32 W W yes
Status 1 1 1 10 W Y no
Termin 5 5 54 30 W W yes
Termout 5 H/2 H 20 W w yes
Watch 5 H/3 H 20 w W yes

1 If the terminal width is greater than the maximum width, then the default width is the maximum width.
2 This assumes default border.

3 rest = terminal-height - (command-window-height + log-window-height + status-window-height)

4 This assumes default border and scale.

If there is no window config command for a particular window in the
configuration file, or if the command contains a syntax error, default parameters
are used.

context

This subcommand controls the amount of context information provided by source
lines around the highlighted line in the Source window. The format of the context
subcommand is as follows:

context source N M

Except when near the top or near the bottom of a file, the debugger maintains a
minimum of N source lines around (above and below) the highlighted line. If the
window height is less than 2¥N+1, it is not physically possible to do this; in such
cases the debugger maintains as much context as possible. N can take any value
between 0 and 254. To specify the default value, which is 2, use a colon.

The M argument determines when the highlighted line is centered to maximize
context information. If the next line to be highlighted is at least M lines above the
top or M lines past the bottom of the window, it is centered. M can take any value
between 0 and Ox7fffffff. To specify the default value, which is 10, use a colon.

find

The window find subcommand is used to search for strings and is supported in
the following windows:

O Browse
o Log
O Source.

290 window A Chapter 14

The following format is used with the window find subcommand:
window find WINDOW-NAME

The WINDOW-NAME argument can be any of the following:

o <>

O browse

o log

O source.

If the <> WINDOW-NAME argument is used, the position of the cursor
determines the window to which the command is applied. If a window name is
specified as the window-name argument, the position of the logical cursor is used
to determine the starting point of the search, if the search is cursor dependent.

intercepts
This subcommand specifies the status of the input and the output intercepts and
the processing of intercepted input or output. The format of the intercepts
subcommand is as follows:

intercepts “STRING”

The STRING argument is eight characters long; each position controls one
intercept. Table 14.14 on page 290 lists the meaning of each position and the valid
values for each character.

Table 14.14 intercepts Subcommand STRING Argument

Position Significance Value Meaning Default

1 input intercept y input intercepted y

not intercepted

2 input logging y input logged n
not logged
3 input scale y scale present y

not present

4 output intercept y output intercepted y

not intercepted

5 output logging y output logged n
not logged
6 output display n do not display i
y display
i display immediately
7 output pause y pause when screen is full y

do not pause

8 output scale y scale present y

not present

memory
This subcommand allocates memory for the buffers of the Command, Log, and
Source windows. The format of the memory subcommand is as follows:

Command Directory /A window 291

memory MEMBRW MEMCMD MEMLOG MEMSRC

The MEMBRW argument specifies the memory allocated to the Browse window,
MEMCMD for the Command window, MEMLOG for the Log window, and
MEMSRC for the Source window. Table 14.15 on page 291 lists the default and
minimum memory sizes in bytes for each of these windows (H=terminal height).

Table 14.15 MEMCMD Argument Values

Window Minimum Memory Default Memory

Browse 255 * H max (255 * H, 6000)

Command 360 1000

Log 1000 12000

Source 255 * H max (255 * H, 12000)
move

This subcommand is used to move windows during a session. The format of the
move subcommand is as follows:

move WINDOW-NAME

The WINDOW-NAME argument must be < >. Place the cursor on the window
to be moved and execute the command. This puts the debugger in move mode;
MOVE appears at the bottom right corner of the window being moved. Move the
cursor in the new location for the window, and then press any PF key or ENTER
to terminate move mode, reposition the window, and resume normal operation.

next

As explained in “Some Window Basics” on page 12, the debugger uses a stack to
keep track of open windows. You can move through this stack of windows in either
direction. The next subcommand moves the top window to the bottom of the
stack. Thus, the next window below the window just moved becomes the top
window. The format of the next subcommand is as follows:

next

See previous subcommand for comparison.

off

This subcommand is used to terminate full-screen mode. The format of the of £
subcommand is as follows:

off

It has no effect if the debugger is in line mode. When this command is
processed, all other unprocessed input is discarded with the exception of other
commands on the same line as the window off command; these are processed in
line mode. (See the on subcommand.)

on

This subcommand switches to full-screen mode. The format of the on subcommand
is as follows:

on

The configuration used is determined by the configuration last in effect (default
configuration, if entering full-screen mode for the first time), modified by any

292 window A Chapter 14

config subcommands. If you are re-entering full-screen mode, the state of the
following windows will be the same as when the off subcommand was specified:

o Log

o Command.

Only class 1 type windows will reappear.

The on subcommand has no effect if you are already in full-screen mode.

Any other command specified on the same line as the window on command in
line mode is ignored.

open
This subcommand opens the named window using the parameters in effect for it.
The format for the open subcommand is as follows:

open WINDOW-NAME

WINDOW-NAME can be any Class 3 or 4 window. If it is a Class 3 window, it is
automatically made the top window. Window classes are discussed earlier in this
section.

previous
As explained in “Some Window Basics” on page 12, the debugger uses a stack to
keep track of open windows. You can move through this stack of windows in either
direction. The previous subcommand positions the bottom window at the top of
the stack and makes it the top window. The format of the previous subcommand
is as follows:

previous
See next subcommand for comparison.

resize
This subcommand is used to resize a window during a full-screen session. The
format of the resize subcommand is as follows:

resize WINDOW-NAME

The WINDOW-NAME argument must be < >. Place the cursor on the window
to be moved and execute the command. This puts the debugger in resize mode;
RESIZE appears at the bottom right corner of the window being moved. Move the
cursor appropriately, and then press any PF key or ENTER to terminate resize
mode, reposition the window, and resume normal operation.

The debugger uses an algorithm to determine the new size for the window. The
window is divided into equal, or nearly equal, quarters. To expand or contract the
window, window edges closest to the original cursor point are moved so that they
are the same distance from the terminating cursor point as they were from the
original cursor point. If the original cursor point is equidistant from either the
right or left edge, or the top or bottom edge, then the edge closest to the
terminating point is chosen. However, if the terminating point is still equidistant,
then growth or shrinkage occurs in only one dimension.

scroll
The scroll subcommand has two formats:

Format 1: scroll amount SCROLL-AMOUNT
Format 2: scroll WINDOW-NAME up/down/right/left

Command Directory /A window 293

Format 1 is used to set the scroll amount, and Format 2 is used to scroll a
window. Format 2 cannot be used in a configuration file.
Valid values for the SCROLL-AMOUNT argument are

O cursor
o half
O max
O page (screen is supported as a synonym for page)

All amounts except for max can be set in a configuration file. However, you can
specify any of the values, including max, in the Config window and then issue the
appropriate window scroll command using any of the methods described. The
debugger scrolls by max.

Format 2 scrolls the window named by the WINDOW-NAME argument. The
amount scrolled is determined by the scroll amount in the Status window. The
following windows may be scrolled up and down:

o Command
Config
Dump
Keys

Log

Print
Register

O o o o o o d

Source.

The following windows may be scrolled left and right:
Config

Keys

Log

Print

Register

Source

Status.

O O o o o o o

Format 2 of the scroll subcommand can also be used to change command
scope. By issuing a window scroll < > up or a window scroll status up
command, the command scope can be moved up in the calling sequence. Similarly,
the down keyword causes command scope to be moved down in the calling
sequence. See “Using the Status Window” on page 20 more information.

The WINDOW-NAME argument can be any of these windows or the < >
placeholder.

The logical cursor moves with the text being scrolled; cursor movement is
naturally limited by window boundaries. The amount scrolled is determined by
the scroll amount specified in the Status window. If the scroll amount is cursor,
the position of the logical cursor is used to determine the scroll amount.

top
This subcommand positions the named window at the top of the stack. The format
of the command is as follows:

294 window A Chapter 14

top WINDOW-NAME

The WINDOW-NAME argument can be any valid window name or < >. The
physical cursor appears in this window at the place of the logical cursor when it
becomes the top window. (See also the next and previous subcommands.)

trace
This subcommand controls the production of trace lines in the Log window. The
format of the trace subcommand is as follows:

trace log on | off

The window trace log subcommand is off by default. If turned on, trace lines
are produced in the following cases (similar to when the debugger produces a trace
or list line in line mode):

0 each time the debugger gives you control

O at the n — 1 hooks at which the debugger does not give you control, in the
step n or continue n case

0O when an on is executed provided auto id is on

O when a monitor request occurs.

”»

This subcommand also controls the production of the “context of ...” message at
prologue and epilogue hooks, which appears only when the debugger gives you
control.

The window trace subcommand has no control over trace lines produced by the
trace command; such lines are produced irrespective of the setting of this
command.

zoom
This subcommand zooms the named window to fill the screen; if already zoomed, it
unzooms the window. The format of the zoom subcommand is as follows:

zoom WINDOW-NAME

PART

Appendices

Appendix 1. Error Handling 297

Appendix 2. Character Set Defaults for Special Characters 299
Appendix 3. Debugger 1/0 Exit Routines 301

Appendix 4. Installing and Administering the NFS Client 309

Appendix 8. Using the NFS Client 321

295

296

297

APPENDIX

Error Handling

Introduction 297

Invalid Commands 297

Valid Commands 297
Debugger Internal Errors 298

Introduction

The SAS/C Debugger writes messages when it encounters syntax or specification
errors and other conditions, such as an invalid debugger file. Some error messages are
displayed in the Log window; however, as described in “Pop-Up and Message Windows:
Error Processing” on page 35, messages are also displayed in the Popup and Message
windows.

For syntax and specification errors, depending on whether the issued command is an
argument to an on command (either a value of CMD or part of CMD-LIST), the
debugger takes various actions that include writing a message to identify the error.

Invalid Commands

If the command name is not recognized, the debugger writes the message Invalid
command name, and the invalid command is rejected. Type a question mark (?) for a list
of valid command names.

If you use an incorrect abbreviation for a command, the same message occurs. In
both cases, you need to reenter the command and any argument values.

Note that the debugger does not check the syntax of the command list of an on
command or a when clause until it executes the command. If you make a syntax error
in the command arguments to the on command or in a when clause, the debugger does
not write an error message until it tries to execute the command.

Valid Commands

If the command name is recognized by the debugger but the number of argument
values is not correct or if the values of the arguments are not valid, then the debugger
writes a message that identifies the problem.

In some cases, the debugger performs the command and discards the invalid
argument or arguments. For example, if you type where xxx, unless xxx is the keyword

298

Debugger Internal Errors A Appendix 1

full, the debugger outputs a traceback, discards xxx, and writes a message such as
“Input discarded: xxx.”

In other cases, both the valid command and invalid arguments are discarded, and the
debugger writes one or more messages.

Debugger Internal Errors

Debugger internal errors are of two types: recoverable and nonrecoverable. If the
debugger detects a nonrecoverable error, it displays the following message:

Debugger unrecoverable internal error: <symbol>

where symbol is an identifying symbol for the error. Then the debugger calls the abort
function in order to produce a traceback and terminate. If the debugger detects a
recoverable error, it displays the following message:

LSCD998: Debugger recoverable internal error: <symbol>

This message is followed by a traceback. Again, symbol is an identifying symbol for the
error. The debugger does not terminate, but the debugger command that produced this
message may not have been executed. These messages are often a result of the
debugger’s storage being overwritten by the program being debugged. However, if you
think that the problem is with the debugger, contact your SAS Installation
Representative for C Compiler products. In the problem description, include both the
value of symbol and the traceback information.

299

APPENDIX

Character Set Defaults for
Special Characters

Because C accepts several special characters on input that may not be available on
all terminals and printers, alternate representations for these characters can be
customized by each compiler site at installation time. If alternate representations are
customized for your site, then they are used by the SAS/C Debugger, as well as the
compiler and object module disassembler (OMD).

The special characters are braces, brackets, the circumflex, the tilde, the backslash,
the vertical bar, the pound sign, and the exclamation point. Determine if your site has
customized values for these characters and what the values are. Otherwise, the default
representations listed in Table A2.1 on page 299 are in effect.

Keep in mind that these alternate representations for characters apply only to
debugger commands. Also, note that you can subsitute (| |) for [land (< >) for { }.

Note: The columns labeled “Primary” and “Alternate” in Table A2.1 on page 299
contain the primary and alternate debugger input representations for the special
characters. 2

Table A2.1 Default Representations for Special Characters

Character Primary Alternate
left brace Ocx0 0x8b
{ {
right brace 0xd0 0x9b
} }
left bracket Oxad Oxad
[[
right bracket Oxbd Oxbd
]]
circumflex (exclusive or) 0x5f 0x71 1
- A
tilde Oxal Oxal
backslash 0xe0 Oxbe
\ #

vertical bar (inclusive or) Ox4f 0Ox6a

300

Debugger Internal Errors A Appendix 2

Character Primary Alternate
pound sign 0x7b 0x7b

#
exclamation point Oxba Oxba

1 The caret (») is usually associated with this value.

301

APPENDIX

Debugger 1/0 Exit Routines

Introduction 301
Using Debugger Exit Routines 301
Invoking Debugger Exit Routines 302
Dummy Debugger Exit Routines (OS/390 Only) 302
Sample Debugger Exit Routines 302
Initialization Call: Output Exit Routines 302
Attention Handling 303
Initialization Call: Input Exit Routines 304
Normal Call: Output Exit Routines 304
Normal Call: Input Exit Routines 305
Termination Call: Output Exit Routines 306
Termination Call: Input Exit Routines 306

Introduction

You can provide exit routines to handle debugger line mode input or output. These
exits enable you to use the debugger under circumstances where using its standard
terminal input implementation, output implementation, or both is not appropriate or
sufficient. These debugger I/O exits must be written in assembler language. Further,
they cannot cause the C environment of either the debugger or the program being
debugged to be reentered. If they do, the results are unpredictable. Therefore, exit
routines must not invoke any C functions.

Note: The interface to debugger exit routines might change in a future release of
the SAS/C Compiler. If the interface does change, you might have to modify some or all
of your exit routines. However, any future interface will support at least the
functionality that is described in the following sections. A

Also note that I/O exit routines cannot be used in full-screen mode. You must switch
to line mode by issuing a window off command before invoking an I/O exit routine.

Using Debugger Exit Routines

Debugger exit routines provide flexibility to the debugging environment. Output
from the debugger can be modified, for example, to produce a different prompt for each
0S/390 subtask that is being debugged, thus suffixing the standard prompt (which does
not go through the output exit because it is produced by the PROMPT=string amparm).
Input and output can be routed to a different virtual machine. An assembler subroutine
can pass debugger commands from the program to the debugger via the exit routines,
thus providing the functionality of embedding debugger commands in source code.

302

Invoking Debugger Exit Routines A Appendix 3

Invoking Debugger Exit Routines

Each debugger exit routine is a separate load module. The names are L§UDBIN and
L$UDBOUT. Under CMS, place these modules in the LSCUSER LOADLIB that you
create. Under OS/390, place these modules in SASC.LINKLIB. At debugger
initialization time, the debugger looks for each of these load modules. If neither is
present, then no further processing is done for that exit routine, and debugger execution
proceeds without using that exit routine. Thus, each routine can be used independently.
If you do use both routines, they can communicate as described in the following sections.

Each routine is invoked by using standard IBM linkage conventions. Any registers
that are used by the routine should be saved (the standard save area that is addressed
by register 13 can be used for this) and restored on exit, except as otherwise described
below. On entry, register 1 addresses a parameter block. The first parameter in this
block is always a call type flag. Other parameters can differ for different call types and
these are described in more detail in “Sample Debugger Exit Routines” on page 302.
The call type flag can have the values 4 (initialization), 0 (input or output call), or 8
(termination).

The debugger output exit routine can be called to handle attention interrupts that
are detected by the debugger. The output exit provides a method for generating
simulated attention interrupts. At initialization, the output exit routine can request
that the debugger ignore all attention interrupts except those that are generated by the
exit routine.

The output exit routine (L§UDBOUT) is invoked first. If you want the two exit
routines to communicate, LSUDBOUT is responsible for setting up that communication.

Dummy Debugger Exit Routines (0S/390 Only)

As installed under OS/390, the SAS/C run-time library contains dummy debugger
exit routines. These routines do nothing. Your installation can replace these load
modules with your own exit routines or delete them. If they are deleted, your operating
environment might produce messages when the debugger is invoked (for example, OS/
390 message CSV003I), but the debugger will function normally.

Sample Debugger Exit Routines

The installation tape also contains sample debugger exit routines. These are in the
sample source libraries LSU MACLIB (CMS) and SASC.SOURCE (0S/390), with
member names LSUDBIN and L$UDBOUT. These samples can provide useful
information for writing your own exit routines.

Initialization Call: Output Exit Routines

When the output exit routine receives control for initialization, register 1 points to
the following parameter block:

0 a fullword with the value 4 (= initialization)
4 the address of an 8-byte area
8 the address of a flag byte

Debugger I/0 Exit Routines A Initialization Call: Output Exit Routines 303

12 the value from the program’s CRAB user word 1 (CRABUSR1)
16 the value from the program’s CRAB user word 2 (CRABUSR2)
20 the value from the program’s CRAB user word 3 (CRABUSR3)
24 the value from the program’s CRAB user word 4 (CRABTUSR).

Word 2 addresses an 8-byte area. The first 4 bytes of this area contain the address of
a debugger subroutine that is called asynchronously to present an attention interrupt.
This subroutine is called the attention simulation routine. The second 4 bytes contain a
value that must be passed to the attention simulation routine when a simulated
attention is to be generated. See “Attention Handling” on page 303.

Word 3 addresses a flag byte. On entry, this byte is 0. If the output exit sets this byte
to a nonzero value, then the debugger recognizes only the attention interrupts that are
generated by a call to the attention simulation routine.

The values from the CRAB user words are probably 0 because the debugged program
has not yet received control . However, the values may not always be 0.

After initialization, the output exit routine returns four values. These values must be
returned in registers 15, 0, 1, and 2. The values are the new values for the CRAB user
words. The CRAB user words are used to communicate between the output exit routine
and the input exit routine. For example, you may return the address of a
communication area for CRABUSR1. Values for CRAB user words that you do not plan
to use must be returned unchanged. Do this by loading the appropriate registers from
the input parameter block. This indicates that the output does not need to use the word
or words and allows some other part of the system to use them. The returned values
from registers 15, 0, 1, and 2 are placed in the CRAB user words of the program being
debugged.

If the debugger is used in batch mode, the debug log file always opens even if the
output exit routine is present, which may suppress all output to the log file. An OPEN
failure terminates debugger activity. Therefore, under OS/390 in batch mode, you
should provide a JCL statement for DBGLOG, even if the output exit suppresses all
output to it. You can use a DUMMY DD statement.

Attention Handling

When the attention simulation routine is called, the following values must be in the
general registers:

R1 contains the value that is passed in the second 4 bytes of the area
addressed by word 2 of the initialization call parameter list.

R13 contains the address of a 72-byte save area.

R14 contains the return address for the simulated attention routine.

R15 contains the address of the simulated attention routine. The

simulated attention routine returns a status code in R15:

0 indicates that the debugger accepted the
interrupt for processing.

4 indicates that the debugger ignored the interrupt.

The output exit routine receives control when an attention prompt is needed. The
attention prompt is usually issued by the debugger when an attention interrupt is
pending, and then the user issues a second attention interrupt. In the usual case (that
is, when the I/O exits are not used), the debugger prompts the user to decide whether to
continue execution or to abort the program. When the I/O exits are in use, the output
exit routine must decide how to handle the second interrupt.

304

Initialization Call: Input Exit Routines A Appendix 3

When the output exit routine receives control for an attention prompt call, register 1
points to the following parameter block:

0 a fullword with the value 12 (= attention prompt)

4 0

8 0

12 the value from the program’s CRAB user word 1 (CRABUSR1)
16 the value from the program’s CRAB user word 2 (CRABUSR2)
20 the value from the program’s CRAB user word 3 (CRABUSR3)
24 the value from the program’s CRAB user word 4 (CRABTUSR).

The exit returns one of the following return codes:

0 indicates that the debugger should issue the prompt and wait for a
response, which is then acted upon normally.

4 indicates that the debugger should ignore this attention. This code
should be returned either if the exit routine handles the interrupt or
if the attention should be completely ignored.

8 indicates that the debugger should abort the program.

Note that the output exit routine receives an attention prompt call in response to a
simulated attention. An output exit routine that supports simulated attentions should
be prepared to handle this situation.

Initialization Call: Input Exit Routines

The input exit routine receives control for initialization after the output exit
initialization call. The output exit routine may be (and probably is) called multiple
times before the input exit routine is invoked.

When the input exit routine receives control for initialization, register 1 points to the
following parameter block:

0 a fullword with the value 4 (= initialization)

4 the value from the program’s CRAB user word 1 (CRABUSR1)
8 the value from the program’s CRAB user word 2 (CRABUSR2)
12 the value from the program’s CRAB user word 3 (CRABUSR3)
16 the value from the program’s CRAB user word 4 (CRABTUSR).

The values from the CRAB user words are those that are set by output exit
initialization, those that are set by an assembler routine in the program itself that is
invoked before any debugger input is wanted, or they may be 0 if no output exit routine
is present. However, the values may not always be 0 in the last case.

After initialization, the input exit routine returns 0 in register 15 to indicate
successful initialization. If a nonzero value returns, the debugger assumes that the
input exit routine is not to be invoked again, even for termination.

Note that if the input exit routine does its own terminal I/O, it must also generate
any necessary prompt. The cdebug: prompt is only generated when the input exit
routine is not used.

Normal Call: Output Exit Routines

When the output exit routine receives control for a normal call, register 1 points to
the following parameter block:

Debugger I/0 Exit Routines A Normal Call: Input Exit Routines 305

a fullword with the value 0 (normal call)
the address of the current debugger output line

the length (strlen) of the current output line

12 the value from the program’s CRAB user word 1 (CRABUSR1)
16 the value from the program’s CRAB user word 2 (CRABUSR2)
20 the value from the program’s CRAB user word 3 (CRABUSR3)
24 the value from the program’s CRAB user word 4 (CRABTUSR).

The output exit routine can choose how to use the current output line. Thus, it may
write it to a file, send it to another user ID, save it for later access by the C program
proper, discard it, or do any combination of these things. Note that if it does save the
current output line for later access by another program, the output exit routine must
copy the actual message text and not just save the pointer to it. This is because the
storage that contains the message may have been reused or it may be inaccessible when
the C program receives control again.

In addition to its own use of the line, the output exit routine controls the debugger’s
use of the line. It has the following three choices:

o Tell the debugger to write the original line to its standard output file.
o Tell the debugger to write a modified line.
o Tell the debugger to write no line at all.

The output exit routine indicates its choice by the values that it returns in register
15 and register 0.

The return value in register 15 is the address of the output line to be written or 0 (C
NULL) when no line is to be written. If the original line is to be written, register 15
should be set to the second input parameter. (Recall that the first parameter is call
type.) If a new or modified line is to be written, register 15 should be set to its address.
Any nonaddress bits in register 15 must be set to 0. The instruction LA 15,0(,15)
accomplishes this. Note that if the output exit routine decides to edit the original line,
it must copy the line to a work area. The original line may be a constant string in
read-only storage. Attempting to modify the original line directly has unpredictable
consequences. Any new or modified line must be delimited by the C string delimiter of
hex 00. Also note that the original line may not be null terminated. The length of the
output line should always be obtained from the parameter list. Finally, note that the
maximum length of a new line is 255 bytes. Longer lines are truncated at this length.

In addition to the value it returns in register 15, the output exit routine must always
return a second value in register 0. This second value is for the convenience of
assembler callers, which otherwise need a translate table or loop to determine the
length of a new or modified line. C callers can use strlen. This value must be the
length of the output line (excluding the delimiter) or 0 when no line is to be written. If
the original line is to be written, register 0 is set to the third input parameter. If a new
or modified line is to be written, register 0 is set to its length.

Note that the output exit routine is not called for terminal output that is caused by
the operation of a CMS EXEC or TSO CLIST that is invoked via the debugger EXEC
interface (for instance, REXX SAY statements).

Normal Call: Input Exit Routines

When the input exit routine receives control for a normal call, register 1 points to the
following parameter block:

0 a fullword with the value 0 (normal call)

306

Termination Call: Output Exit Routines A Appendix 3

the value from the program’s CRAB user word 1 (CRABUSR1)

8 the value from the program’s CRAB user word 2 (CRABUSRZ2)
12 the value from the program’s CRAB user word 3 (CRABUSR3)
16 the value from the program’s CRAB user word 4 (CRABTUSR).

Whenever it is called for a normal call, the input exit routine should either provide a
command line or tell the debugger to read a command line from its standard input file
(usually your terminal).

To tell the debugger to read a command line from its standard input file, the input
exit routine returns values of 0 in both register 15 and register 0. If the input exit
routine provides a command, it must set register 15 to the address of the command.
Any nonaddress bits that are in register 15 must be set to 0; the instruction LA
15,0(,15) accomplishes this. The command must end with a C new-line character (hex
15), followed by the standard C string delimiter (hex 00). If the command includes
characters that a user cannot type from the terminal (except for the new-line character
and delimiter described above), the results are unpredictable. Register 0 must be set to
the length of the command, including the new-line character but excluding the string
delimiter.

Any debugger commands can be provided. They are treated as if they were read from
the standard debugger input file.

Note that the input exit routine is not called for terminal input caused by the
operation of a CMS EXEC or TSO CLIST invoked via the debugger EXEC interface (for
instance, CLIST READ statements).

Termination Call: Output Exit Routines

When the output exit receives control for termination, register 1 points to the
following parameter block:

0 a fullword with the value 8 (= termination)

4 0

8 0

12 the value from the program’s CRAB user word 1 (CRABUSR1)
16 the value from the program’s CRAB user word 2 (CRABUSR2)
20 the value from the program’s CRAB user word 3 (CRABUSRS3)
24 the value from the program’s CRAB user word 4 (CRABTUSR).

The output exit routine should perform any necessary cleanup at this time and set a
return code of 0 to indicate successful termination. If problems are encountered, recall
that an abend can terminate the debugger and the user program. A message, followed
by return code 0, may be preferable.

The input and output exit routines can be terminated in either order. Termination
can occur because of termination of the user program or termination of the debugger. If
the debugger or the program that is being debugged terminates abnormally, no
termination calls are made to the exit routines. However, remember that a program
check in the user program is usually trapped by the debugger and does not cause
termination of your program.

Termination Call: Input Exit Routines

When the input exit routine receives control for termination, register 1 points to the
following parameter block:

Debugger I/ 0 Exit Routines /A Termination Call: Input Exit Routines 307

a fullword with the value 8 (= termination)

4 the value from the program’s CRAB user word 1 (CRABUSR1)
8 the value from the program’s CRAB user word 2 (CRABUSR2)
12 the value from the program’s CRAB user word 3 (CRABUSR3)
16 the value from the program’s CRAB user word 4 (CRABTUSR).

The input exit routine should do any necessary cleanup at this time and set a return
code of 0 to indicate successful termination. If problems are encountered, recall that an
abend can terminate the debugger and the user program. A message, followed by
return code 0, may be preferable.

The input and output exit routines can be terminated in either order. Termination
can occur because of termination of the user program or termination of the debugger.

308 Termination Call: Input Exit Routines A Appendix 3

309

APPENDIX

Installing and Administering the
NFS Client

Introduction 309
Distributed File Systems 309
NFS Design 310
SAS/C NFS Client Overview 310
Accessing Files 311
Mounting Directories 311
File Security 311
Installation Considerations 312
NFS Security Administration 312
UID/GID Acquisition 313
RACF Definitions for NFS Clients 314
Configuring a Default Login Server 315
Developing Standardized File-System Configurations 315
Diagnosing Problems 315
Recommended Reading 317
NFS Administrator Commands 317
SHOWMNT 317
RPCINFO 318

Introduction

In a cross-development environment, the Network File System (NFS) client support
that is provided by the SAS/C Connectivity Support Library (CSL) enables the SAS/C
Debugger to communicate with the host workstation. This appendix provides the basic
information that is necessary to administer this NFS support. Additional information is
contained in Appendix 5, “Using the NFS Client,” on page 321.

As an administrator for the SAS/C CSL NFS client, you install the software,
establish access controls for remote file security, and diagnose problems. You may also
develop file-system mount configurations. This support is provided in a distributed file
systems environment that uses the Sun NFS protocol for network communication
between computer systems.

Distributed File Systems

As networking protocols and applications have become more sophisticated, file
sharing among computers has evolved from simple file transfer to the construction of
distributed file systems. In a distributed file system, programs and users can access
(open, read, write, and so forth) file systems from a remote machine directly, as if they
were attached to the local system.

310 NFS Design A Appendix 4

Although numerous designs for distributed file systems have been implemented
experimentally, only a few have achieved commercial success. Of these, the Sun
Microsystems Network File System (NFS) protocol is by far the most widely used.
Although not as full-featured as some other file systems (most notably the Andrew File
System) in areas such as file caching and integrated security administration, its design
has made it easy to implement on a wide variety of systems. NFS software is currently
available for almost every computer and operating environment.

NFS Design

NFS is implemented by using a protocol that is composed of Sun Remote Procedure
Call (RPC) function calls. As with most RPC applications, the protocol supports a dialog
among servers and clients. The NFS servers are the machines that provide remote
access to their file systems. NFS clients are programs that access the files on another
system. The use of RPC applications enhance interoperability among diverse machines.

The NF'S protocol views all file systems as conforming to the hierarchical directory
organization that has been popularized by the UNIX operating environments. That file
system was subsequently codified by the IEEE POSIX standard. The NFS protocol not
only allows reading and writing of files, but it also supports manipulation of directories.

Each NFS client system builds and maintains its own file system view. This view
results from a hierarchical combination of its own file systems and the file systems of
servers that it accesses. At any given directory of this view, the client system may
attach a new subtree of directories from an NFS server. This process of attaching a new
subtree of directories is called mounting a remote file system. The directory to which the
remote file system is mounted is called the mount point.

An important effect of mounting a remote file system is that the files in the
mount-point directory are no longer visible to the client. The newly mounted files in the
remote file system are visible instead.

Another important principle is that NFS mounts that are made by a server, when
that server acts as a client to another system, are not visible to its clients. The clients
see only the files that are physically located on the server.

For users of OS/390 and CMS, perhaps the most important aspect of the NFS design
is its orientation as a network service instead of as the file system component of a
distributed operating environment. This orientation is critical in enabling the use of
NF'S on operating environments that are dissimilar to the UNIX environments in which
NFS was originally implemented. The primary requirements for an operating
environment to participate in NFS are the ability to interpret a hierarchical file system
structure and the ability to share UNIX format user identification numbers. Other
similarities to UNIX are not required. The SAS/C CSL NFS implementation is able to
effect support for directories and UNIX user identification on 0OS/390 and CMS.

SAS/C NFS Client Overview

When you are working in a distributed environment without file sharing, the barrier
between systems can become problematic. Files that are needed on one system often
reside on another. The solution of transferring the entire file, using File Transfer
Protocol (FTP) for example, is practical if the file is small and seldom changes, but
becomes much more laborious when this is not the case.

Traditionally, programs running under OS/390 and CMS have had little or no access
to files that are located on PCs, workstations, and other nonmainframe computers. The
SAS/C CSL NFS client support changes this situation. For example, in the

Installing and Administering the NFS Client A File Security 311

cross-development environment you can run the SAS/C Debugger on the mainframe
while your source and debugger files reside on a workstation.

Accessing Files

The SAS/C CSL NFS client transient libraries enable a new filename style prefix,
path:, in SAS/C filenames. In the same way that an 0OS/390 program can use the dsn:
prefix to open a file by data set name, the program can now open an NFS file with the
path: prefix. Thus, files that are accessed by using NFS are placed in a separate name
space from traditional OS/390 or CMS files. This separation is due to differences in file
system organizations, such as directories versus partitioned data sets, rather than the
fact that one group is local and the other is remote.

Mounting Directories

SAS/C CSL functions and configuration files are available to mount directories in
the mainframe environment. As multiple mounts are established from one or more
remote machines, the CSL NFS client library maintains a unified hierarchical view of
the resultant directory structure. With the CSL NFS client, mounts are the
responsibility of the individual user, not of a system administrator.

For example, a configuration file with the following line can be used if the user wants
to access a UNIX root directory / on a machine that is named acct.langdev.abc.com.

acct.langdev.abc.com:/ / nfs

This indicates that the root of the acct.langdev.abc.com machine should be
mounted as the root directory on the mainframe, thus enabling a debugger user to
specify set search commands relative to the mount point. See “Using the Debugger’s
set Command” on page 93 for information about the SAS/C Debugger’s set search
command.

To continue the example, suppose the user now invokes the debugger on the
mainframe and issues the following set search command:

set search userinclude =
"path:/usr/name/project/headers/%leafname"

The debugger now looks for user include files in the /usr/name/project/headers
directory on the remote workstation that is named acct.langdev.abc.com.

In a more complicated setup, many different UNIX workstation file systems can be
mounted together. The overall organization is the responsibility of the mainframe user,
and the pathname for a particular file will often differ from what would be used on any
of the systems individually.

File Security

The CSL NFS client enforces security controls that prevent unauthorized access to
files on the server. Before the user can access an NFS file, the user identification must
be authorized by the local Resource Access Control Facility (RACF) compatible security
system, if one is available, and by a login server that is running on a UNIX system. If a
local security system is available, this login process can be invoked automatically by the
CSL library. If not, the user must supply a UNIX (or other NFS server operating
environment) username and password.

In either case, the NF'S client software maintains the standard UNIX or POSIX User
Identification (UID) and Group Identification (GID) numbers for the duration of the

312 Installation Considerations A Appendix 4

user’s session. The NF'S client software controls access to remote files that are based on
the user identification and the file’s permissions.

Installation Considerations

The NFS client software depends on the SAS/C transient library, the SAS/C CSL
transient library, and the TCP/IP software that are provided by your TCP/IP vendor.
These must all be installed properly for the NFS client software to function correctly.
See SAS/C Library Reference, Volume 2 for additional information.

The NFS client commands must be accessible to users. Under CMS, this involves
accessing the disk. Under 0S/390, the commands can be found if the commands are
placed in linklist or LPALIB, or if they are in a data set that is allocated to the
DDname CPLIB (provided that the optional SAS/C TSO command support is installed).
Alternatively, OS/390 sites with REXX support can use REXX EXECs that invoke the
commands. This avoids any need to install the SAS/C TSO command support.

In addition to mainframe installation considerations, you must coordinate NFS usage
with the administrators of the NFS servers. They must grant the mainframe access in
their configuration files. Additionally, they must install a login server for mainframe
users to contact.

SAS/C CSL comes with distribution kits (in UNIX tar format) for two login servers.
The first is the standard PCNFSD version 2 server from Sun Microsystems. The second
is the CSL’s sascuidd server, which is used for login without a password. If the NFS
network is already running a PCNFSD version 1 server, it can be used instead of the
PCNFSD version 2 server. The distribution kits include README and Makefile files to
explain the process of building the programs under your login server operating
environment.

PCNFSD may be difficult to port to some systems, particularly systems that are not
UNIX systems. There are a number of alternative approaches to solve this problem. If
there is a secure UNIX system available in the network that is already running
PCNFSD, then that system can be used. If no such system is available, sites with
mainframe security systems can rely exclusively on sascuidd (which is much easier to
port). sascuidd runs on any POSIX system that also supports RPC applications. It is
also possible to use an abbreviated version of PCNFSD. Only the authorization and null
procedures are needed for CSL NFS. The other proceedures (mostly related to printing)
are not needed.

Whatever server is installed and used, it must be running whenever mainframe
users might need access to NFS files.

NFS Security Administration

The installation of NF'S client software on any system should be a security concern
for administrators of NFS servers. The availability of client software might enable file
access by users for whom the access was not previously possible.

All security on NFS servers is administered via UNIX (or POSIX) UIDs and GIDs.
The UID is a number that represents a user. The GID represents a group of users. The
NF'S design ensures that all participating machines share the same UID and GID
assignments. OS/390 users are identified by a security system such as RACF or ACF2.
CMS users are identified by entries in a CP directory. UNIX UIDs and GIDs are not
normally associated with mainframe users.

Administrators of NFS servers can usually control, on a file system basis, which
client machines can access files via NFS. When security is a concern, the ability of the

Installing and Administering the NFS Client A UID/GID Acquisition 313

client machine to allow only authorized UID and GID associations is the most
important factor. The CSL NFS client software derives its UID and GID associations
from a combination of mainframe security system and UNIX servers. The exact source
authorization depends on site configuration.

Because of differences between UNIX and mainframe operating environments, and
because of a lack of reserved port controls in current mainframe TCP/IP
implementations, the CSL NFS client software is generally less secure (in authorizing
UID and GID associations) than most UNIX NFS client implementations. Methods of
access are briefly described in the SAS/C CSL Installation Instructions. Note that it is
server file security that is of concern. An NFS client implementation can pose no
additional security threat to files on the client (in this case the mainframe) unless it
gives unauthorized access to files that contain passwords. Note also that most UNIX
NFS servers allow controls for which file systems can be accessed, thus limiting
exposure to unauthorized UID associations.

Because it can use authorizations that are provided by a mainframe security system,
CSL NFS client software is generally more secure than NFS client implementations on
PC operating environments.

UID/GID Acquisition

The SAS/C CSL NFS client software will always retrieve the UNIX UID and GID
information from a UNIX server. The retrieval of the UID information is based on a
UNIX username. The association of UNIX username to UID/GID is always performed
by a UNIX server.

One of two methods is used to associate a UNIX username with a mainframe user. If
there is a (RACF-compatible) security system installed, profiles can be established to
associate mainframe users with UNIX usernames. For a user whose mainframe login
ID is the same as the UNIX username, a single profile can be used. There is
considerable flexibility in this arrangement. For example, the association between
mainframe userids and UNIX usernames need not be one-to-one. When this method is
used, the sascuidd login server is used to provide UID information for that username.
No UNIX password is required.

A second method is for the mainframe user to supply the desired username and
password to the UNIX login server PCNFSD (version 2 if available, otherwise version
1), which authorizes the username (based on the password) and supplies UID
information in one step.

The first method is preferred because it makes login easier and removes the
requirement that UNIX passwords be present on the mainframe.

For TSO or CMS users, the UID information is stored in environment variables. The
UID is stored in NFS_UID. The primary GID is stored in NFS_GID. The list of
supplementary GIDs (sascuidd and PCNFSD V2 only) is stored in NFS_GIDLIST.
NFS_LOGINDATE is set to the date of the login.

The environment variable NFS_LOGINKEY receives an encrypted value that is used
by subsequent NF'S calls to determine that these environment variables have not been
tampered with.

NFS logins must be reissued each time the user logs in to TSO or CMS.
Authorization is also lost after about 48 hours, even if the user does not log off. This
prevents users from retaining their authorization indefinitely, even after they have had
their UNIX authorizations removed.

At most 16 additional GIDs are allowed. This is the maximum supported by the
PCNFSD protocol. A user who can login as UID 0 (root) will probably not be given full
authority by the NFS server system. Most NFS servers remap UID 0 to a UID value of
(unsigned short) -2.

314

RACF Definitions for NFS Clients A Appendix 4

SAS/C NFS client capabilities cannot be used until a successful login has occurred.
Successive calls to NFSLOGIN can be made in order to access a different server or to
use a different login ID. If a security system is present to allow login without a
password, the actual login may be performed automatically when an NFS operation is
requested. No corresponding logout is required.

When a mainframe security system is present, it can also control which login server
a user is allowed to access. This prevents users from rerouting their login authorization
request to a less trusted machine. It also reduces the risk of a user sending a UNIX
password to a Trojan horse program that is running on an unauthorized system.

Use of a mainframe security system requires the definition of a generalized resource
named LSNUID. The mainframe security administrator can then supply profiles that
give mainframe users access to particular login servers and equate mainframe userids
with UNIX usernames. The next section describes this in detail.

RACF Definitions for NFS Clients

The SAS/C CSL NFS Client mainframe security system interface is based on profiles
that are defined for a generalized resource named LSNUID. Using this resource, you
grant specific mainframe users access to specific UNIX userids and login servers in the
same way that DATASET profiles enable you to grant users access to mainframe files.

Until this resource is defined and activated, the NFS client code behaves as it does
when no security system is installed.

Here is a description of the macro parameters that are needed to define LSNUID (in
a RACF environment).

ICHERDCE CLASS=LSNUID
ID=nn
MAXLNTH=39
FIRST=ANY
OTHER=ANY
POSIT= (prevented when RACF unavailable,
auditing if you want it,
statistics if you want them,
generic profile checking on,
generic command processing on
global access checking off)
ICHRFRTB CLASS=LSNUID
ACTION=RACF

In RACF, once this resource is defined, it must also be activated via the command
SETROPTS CLASSACT (LSNUID)

The NFS client libraries make authorization inquiries about the following profile
names (all requests are for read permission):

LOCAL _ userid
Users who are permitted to this profile are authorized to use their mainframe
userid (lowercased) as the UNIX username without specifying a UNIX password.

USER_name
Users who are permitted to this profile are authorized to use the string name
(lowercased) as their UNIX username without specifying a UNIX password. For
example, if a mainframe user is permitted to the profile USER_BILL, then he is
allowed to assume the UNIX username of bill.

Installing and Administering the NFS Client /A Diagnosing Problems 315

pPddd.ddd.ddd.ddd
This specifies the network address (dotted decimal) of a PCNFSD server that the
user can access to obtain a UID and GID. Requiring permission for access to
servers prevents users from setting up unauthorized versions of PCNFSD on a less
trusted machine and then directing their login queries to it. For example, if
mainframe user BILL is permitted to P149.133.175.68, he can use the server at
that IP address when logging in. Leading zeros are not allowed in these names.
That is, the previous profile could not have been for P149.133.175.068.

sddd.ddd.ddd.ddd
This is similar to the above, but permits access to a sascuidd server.

Configuring a Default Login Server

In most cases, it is better for users to reach a default login server. Having a correct
default reduces user effort and confusion. But most important, the correct default must
be set if the NFS client library is to perform logins automatically.

You can control the login server in three ways. One way is to set the
NFSLOGIN_SERVER environment variable in the user’s PROFILE EXEC or TSO
startup CLIST. Another way is to apply the default login server configuration zap that is
supplied in the installation instructions. The best method is to accept the default name
nfsloginhost and to configure your nameserver or /etc/hosts format file accordingly.

Developing Standardized File-System Configurations

You may want to set up the file system configuration for users. If so, you can create a
system-wide fstab file to perform their mounts. The search rules for the fstab file
include a provision for a system-wide name. Users who do not set up f£stab files of
their own use the system-wide file. If you want users to save file system context
between programs, you can define the ETC_MNTTAB environment variable in the
PROFILE EXEC or TSO startup CLIST.

Diagnosing Problems

The first step in identifying problems is to look carefully at the diagnostics that are
produced by the debugger at the point where the failure occurred. Depending on
whether the messages are generated by the debugger or by the library, the messages
may be printed in the log window, or they may be printed in line mode after erasing the
debugger screen.

Many user problems are caused by incorrect installation of system software. These
problems can often be diagnosed by understanding what is missing. Sometimes a
configuration file is missing. Other times an environment variable definition is needed,
or a REXX EXEC is not placed where it will be accessed.

In other cases, problems are caused by network and server failures. For server
problems and failures on remote systems, the RPCINFO and SHOWMNT commands
are useful. Both SHOWMNT and RPCINFO are compatible with the equivalent
commands under UNIX.

If you are having problems during the NFS login or the remote mounting process, set
the _SASC_NFS_VERBOSE evironment variable to 1. This produces additional
diagnostic information during the NFS login process and the remote directory mount
process.

316

Diagnosing Problems A Appendix 4

Beginning with SAS/C Release 7.00 the SAS/C CSL NFS client library function
NFSLOGIN has been changed to allow communication with NFS login servers that use
port 2049 as well as one of the reserved ports. Port 2049 has been registered by Sun
Microsystems for use by NFS.

The NFSLOGIN function was also enhanced to allow the installation to specify a
specific port to be used for communication with the NFS login server. After
customization, the NFSLOGIN function will communicate with the NFS login server
that uses the specified port. No other port will be accepted.

Note: See the installation instructions for information on customizing the desired
port. A

To provide more diagnostic information, the NFS login process and the mount remote
directory process have been enhanced to display informative messages about the
activity of each process. To enable the display of these messages, define the
environment variable _SASC_NFS_VERBOSE. When _SASC_NFS_VERBOSE is
defined as 1, the informative message will be produced.

Output similar to the following will be produced by the NFSLOGIN function when
the NFSLOGIN command is executed:

nfslogin solgnu
nfslogin -s nfsloginhost.mysite -u myuserid -p mypassword
NFSLOGIN - NFSLOGINHOST IP ADDRESS: 10.23.149.16

NFSLOGIN - RACF Resource : P10.23.149.16
NFSLOGIN - RACF access to Resource: allowed
NFSLOGIN - NFSLOGIN Server : PCNFSD

NFSLOGIN - Username : myuserid
NFSLOGIN - PCNFSD Program Number : 150001

NFSLOGIN - Port returned : 924

NFSLOGIN - Port checking : reserved or 2049
NFSLOGIN - PCNFSD Version H)

NFSLOGIN - NFS_LOGINKEY : f75cf6f3f66ff4f45cfl1f0.........
NFSLOGIN - NFS_LOGINDATE: 12/3/1999

NFSLOGIN - NFS_UID s 2447
NFSLOGIN - NFS_GID : 105

NFSLOGIN - NFS_GID_LIST :

NFSLOGIN - GID LIST item 0 value: 44

Login succeeded.

Output similar to the following is produced by the 1s command during the mount
process:

1s

MOUNT - mount - ftstab used : //DDN:ETCFSTAB

MOUNT - mount - device :

MOUNT - >>>>krups.unx:/vol/vol0/u/userid

MOUNT - mount - mountpoint :/

MOUNT - Host (krups.unx), MOUNTPROG(100005), MOUNTVERS(1)
MOUNT - mount: successful

MOUNT - mount - device :

MOUNT - >>>>krups.unx:/vol/vol0/u/sasctg/playpen_700_mvs
MOUNT - mount - mountpoint :/unix mount pointl

MOUNT - Host (krups.unx), MOUNTPROG(100005), MOUNTVERS(1)
MOUNT - mount: successful

MOUNT - mount - device :

MOUNT - >>>>d5412.us:c:/C++_Samples

MOUNT - mount - mountpoint :/pc_mount pointl

Installing and Administering the NFS Client /A SHOWMNT 317

MOUNT - Host(d5412.us), MOUNTPROG(100005), MOUNTVERS (1)
MOUNT - mount: successful

MOUNT - mount - device :

MOUNT - >>>>krups.unx:/vol/vol0/u/sasctg/

MOUNT - mount - mountpoint :/unix mount point2

MOUNT - Host (krups.unx), MOUNTPROG(100005), MOUNTVERS(1)
MOUNT - mount: successful

Typically, NFS login servers use a reserved port (<=1023) or port 2049 for
communication with a client. If your NFS login server uses some other port you may
specify the correct port by using the zap provided in Usage Note 1900. The RPCINFO
command can be used to determine which port is being used by the NF'S login server.

For true network problems, SNMP or other network diagnostic facilities are most
useful.

Recommended Reading

Many of the concepts and topics discussed in the following book may also help you
administer mainframe NFS client software: Stern, H. (1991), Managing NFS and NIS,
Sebastopol, CA: O’Reilly & Associates, Inc.

NFS Administrator Commands

In addition to the commands described in Appendix 5, “Using the NFS Client,” on
page 321, as an NFS administrator you should be familiar with the SHOWMNT and
RPCINFO commands as they are described in the following section.

SHOWMNT

queries an NFS server for file system information
SYNOPSIS
SHOWMNT [-e] [-d] [-a] [host]

DESCRIPTION

The SHOWMNT command queries an NFS server for information about file
systems that may be mounted by NFS.

host is the hostname of the NF'S server. If you omit this parameter, SHOWMNT
returns information about the NF'S server on the local machine (if one is installed).

SHOWMNT handles two basic types of lists. The first is an exports list. The
exports list tells you which file systems can be mounted. The second is a list
describing which mounts have actually taken place. The form of the second list
depends on the -d and -a options. The -e option requests the exports list. This
includes information about which hosts are authorized to mount the listed file
systems. This information may either be everyone, or a list of group names that
represent a set of hosts. If it is authorized, a host may mount any of the listed file
systems.

You can use the following command when you are trying to determine the name
of a file system to mount:

SHOWMNT -e

318

RPCINFO A Appendix 4

Note: You can often mount subdirectories of the listed file systems. Whether
you can do this depends on whether the subdirectory is in the same physical file
system on the server. Contact the server administrator or examine server
configuration files to determine this. A

If the -e option is used in conjunction with other options, this exports list will
be printed first, followed by the list describing actual mounts.

If you don’t specify any options, SHOWMNT prints the list of actual mounts,
showing only the names of the hosts that have a mount. The list is sorted by host
name.

If you specify the -d option, SHOWMNT prints the list of actual mounts,
showing only the names of directories that have been mounted. The list is sorted
by directory name.

The -a option gives the most verbose format for the list of actual mounts. It
indicates that the list should be printed as host:directory pairs. If you do not use
the -d option, SHOWMNT sorts the list by host. If you do use the -d option,
SHOWMNT sorts the list by directory.

INVOCATION SYNTAX

The syntax is generally identical to that shown above. Under 0S/390, system
administration considerations may require use of the TSO CALL command or
other techniques.

EXAMPLES

showmnt -e byrd.unx
Show mountable file systems on the byrd.unx NFS server.
showmnt byrd.unx

Show the list of other hosts that have mounted the NFS file system from byrd.unx.

RPCINFO

queries the Portmapper

SYNOPSIS

0 Format 1: RPCINFO -p [host]

0 Format 2: RPCINFO [-n port] -u host program [version]
O Format 3: RPCINFO [-n port] -t host program [version]
o0 Format 4: RPCINFO -b program version

DESCRIPTION

The RPCINFO command queries the portmapper on the designated host to
determine the status of programs that are available as RPC servers. It can list all
programs that are known to the portmapper, and it can test the program itself (as
opposed to asking only the portmapper) for availability. To test for program
availability, RPCINFO calls the null proceedure (procedure 0) of the program and
waits for a response.

The -p option of RPCINFO is used to query the portmapper on the specific host
for a list of all registered programs.

The -u and -t options test the programs themselves for availability. Use -u for
UDP based services and -t for TCP based services. You can also use -n to specify

Installing and Administering the NFS Client A RPCINFO 319

a TCP or UDP port in the rare case that you want to query a program at a port
different from the one known to the portmapper.

The -b option checks all hosts that can be reached with a broadcast from your
local machine. This variant is often of limited utility because the set of hosts
queried is dependent on the physical configuration of your network.

INVOCATION SYNTAX
The syntax is generally identical to that shown in the SYNOPSIS. On 0S/390,
system administration considerations may require use of the TSO CALL command
or other techniques.

EXAMPLES

rpcinfo -p byrd.unx
Show all RPC servers that are registered on the host named byrd.unx.

rpcinfo -u byrd.unx nfs

Check the status of the NF'S server on the host byrd.unx.

rpcinfo -u byrd.unx 100005
Check the status of the NFS mount server (program number 100005) on
byrd.unx.

320 RPCINFO A Appendix 4

321

APPENDIX

Using the NFS Client

Introduction 321
Logging on to the NFS Network 321
Accessing Remote File Systems 322
Saving File-System Context 323
Setting Up an fstab Configuration File 323
Mount Options 325
Mounting and Unmounting Manually 326
Manipulating Files and Directories 326
NFS User Commands 327
NFSLOGIN 321
MOUNT 328
UMOUNT 329

Introduction

In a cross-development environment, the Network File System (NFS) client support
provided by the SAS/C Connectivity Support Library enables the SAS/C Debugger to
communicate with the host workstation. This appendix provides the basic information
that is necessary to use this NF'S support. Additional information is contained in
Appendix 4, “Installing and Administering the NFS Client,” on page 309.

The NFS client feature provides flexibility in configuring NFS for each user. The
degree of effort that is required to set up your configuration depends on the amount of
support that is given by the system administration staff at your site.

For example, minimal user effort is required when the system administrators provide
a centralized mount-configuration file and when they set up security-system definitions
to enable automatic login. In this situation, users can begin specifying NFS filenames
to application programs immediately. On the other hand, some sites may leave
mounting files to the individual user. Lack of a Resource Access Control Facility
(RACF) compatible security system might require that users issue an NFSLOGIN
command at the beginning of each session. Even at sites where a centralized
configuration has been set up, individual users with specialized access requirements
may still develop their own configurations.

Logging on to the NFS Network

NFS servers use a UNIX, or POSIX, file-permission system. This system gives each
user a user identification number (UID), a group identification number (GID), and
possibly several additional supplementary GIDs. Each file is assigned ownership by

322

Accessing Remote File Systems A Appendix 5

UID and by GID. Permissions for the file are set based on whether the user who wants
access is the owner (has the same UID as the file), is in the file’s group (has a GID that
matches the GID of the file), or is some other user. For each of these three categories
(owner, group, and other) read, write, and execute permissions can be assigned.

To access files that use NFS, your session on 0S/390 or CMS must acquire UID and
GID numbers that correspond to some user on the NFS server network. You acquire
these numbers by contacting a login server on the NFS network to ask permission to
access files according to a username that is known to that server. In many cases,
contact with the NFS login server can be automatic the first time that you access an
NFS file. In other cases, you must issue the NFSLOGIN command to effect the login.

The function of the login server is to check your identification and grant you access to
the network. Once you are logged on, the login server functions as an NFS server and
provides access to the files that are located on the machine on which it resides. At this
point you may also use the network to access files that are controlled by other NFS
servers on other machines.

If you have a RACF-compatible security system running on your mainframe and your
site administration has given you access to your NFS login server username, then the
security system suffices and no password is required. Note that the login server
username is not necessarily the same as your 0S/390 or CMS userid. If you do not have
a security system, then you will need to type your password during the login process.

In summary, the login process can involve three pieces of information:

O host name of the login server. For example, the host name of a workstation
running UNIX that acts as an NFS server.

O login server username. For example, your username on UNIX.
O login server password for that username.

The requirement for a password depends on whether a mainframe security system
can provide authentication for login server usernames. If the NFS client software can
determine the other two pieces of information, either by default or by environment
variables, then automatic login is possible. Otherwise, the NFSLOGIN command must
be used.

For example, if your NFS network is composed of UNIX machines, your UNIX
username is comkzz, and your login server is a UNIX machine called byrd.unx, then
the CSL NFS client software must contact byrd.unx and provide comkzz as the user
name. If your OS/390 username is also COMKZZ (the same except that it is uppercase),
the mainframe security administrator has authorized you to use the comkzz username
for NFS, and if byrd.unx has been configured as the default login server at your site,
then the NFS client library will log you in automatically the first time you try to use
NFS.

If, on the other hand, your site does not have RACF, a password is required. In this
case, you need to issue the NFSLOGIN command to type your password. See
“NFSLOGIN” on page 327 for details.

After the login processing has succeeded, your session receives a UID and one or
more GIDs. These control your subsequent accesses to NF'S files.

Accessing Remote File Systems

Logging on establishes UID and GID information. The next step is to mount the
remote file systems that you want to access.

Because the SAS/C CSL NFS client feature runs totally within your user address
space under 0S/390, or on a virtual machine under CMS, you must mount remote file
systems before accessing NF'S files. A number of facilities are provided to make this
process as transparent as possible. Mounts can occur in three ways:

Using the NFS Client /\ Setting Up an fstab Configuration File 323

0 The configuration file, £stab, specifies a mount that occurs at session or program
startup.

o You issue the MOUNT command.
O An application program performs a mount as part of its own processing logic.
At sites with standardized configurations, a series of mounts may be provided

automatically. In this case, you do not need to do additional work unless you want a
different configuration.

Saving File-System Context

Assuming that you are doing the configuration yourself, one of the first things to
decide is the duration of your mounts. That is, do you want mounts and directory
changes from one program to be preserved for the next program that is run? Mounts
and directory changes form a file system context that may be restricted to the execution
of a particular program or may be shared serially by programs under TSO or CMS.

The serial sharing of file system context is accomplished by using the mnttab file.
Not sharing context can be easier. When only a few file systems are mounted, reissuing
the mounts in each program can be faster than reading and writing the mnttab file.
NFS mounts are very fast and involve minimal processing on the server.

Unfortunately, processing the mnttab file at program startup and shutdown adds
noticeable delays to otherwise fast commands and programs. The NFS sample
programs cd, pwd, and 1s illustrate this. Overall NFS performance is much better
when a single program does many operations. Sharing is required, however, if working
directory changes are to be preserved from one program to the next. You should always
save the file-system context when you are working with the SAS/C Debugger in a
cross-development environment.

You specify serial sharing of file system context by setting the ETC_MNTTAB
environment variable to the name of a file to contain the context. For example, under
TSO, you might use the value TSO:ETC.MNTTAB. This creates a file
tsoprefix ETC.MNTTAB. Under TSO you set the value by using the PUTENV
command. Allocating a DDname of ETCMNTTB has the same effect under 0OS/390
batch and may be more convenient. Under CMS, you can set the value by using
GLOBALYV commands with the CENV group. See SAS/C Compiler and Library User’s
Guide and SAS/C Library Reference, Volume 1 for more information about using
environment variables with the SAS/C Compiler.

You do not need to create the mnttab file yourself. The NF'S client library will create
it automatically. It will also be deleted each time you log on to the NFS server. Note
that, unlike the conceptually similar UNIX /etc/mnttab file, this file has a binary
format. It also contains information, notably the current working directory, that is held
by the kernel in UNIX.

Finally, the mnttab file cannot be shared simultaneously by many programs. If you
are managing multiple programs that use NFS concurrently, either set up multiple
mnttab files or set them up not to save context at all.

To avoid serial sharing, do not set the environment variable. In this case, the
MOUNT command and the sample cd command appear to have no effect, because the
changes that they request are not saved when they end. When not sharing file system
context, you invoke all your mounts with the £stab configuration file.

Setting Up an fstab Configuration File

When NFS starts with no mnttab file available, either because there is no serial
sharing of file system context or because NFS has not yet been used, the NFS client

324

Setting Up an fstab Configuration File A Appendix 5

library searches for an fstab configuration file that specifies which initial mounts to
perform. The fstab file removes the need to issue mount commands manually each
time NFS is used.

The fstab configuration file format is identical to that used in most UNIX systems.
It should have a series of lines that specify mount points that use the following format:

server : directory mount-point type options

Fields are separated by white space, and any fields that follow the options parameter
are ignored. You can also include comments in the £stab configuration file. The pound
(#) character that appears at the beginning of a line or that is preceded by white space
indicates that the rest of the line is a comment.

For NFS file systems, the device is specified as a server name that is followed by a
colon (:), which is followed by the name of the directory to mount. This name must be a
physical file on the server.

Note: It must not be a name that was created by NFS client features of the server.
This is a common source of confusion. Users of the NFS server are often accustomed to
specifying directory names that are not physical directories on their system. As
discussed earlier, the design of NFS does not cause these names to be propagated
automatically to NFS clients of that server. A

The mount-point parameter must be a pathname in the directory hierarchy that is
being created on the mainframe. In order for the first directory to be mounted, the
mount point must be a slash (/), which indicates the root directory. Following NFS
conventions, later mount points must be actual directories in a file system that have
already been mounted. The directories that are being mounted then obscure the
contents of the directory that they are mounted on.

The type parameter must be nfs. As in UNIX, the table definition is generalized to
accommodate multiple types of file systems; however, at present only NFS file systems
are supported.

Mount options, which are described in “Mount Options” on page 325, generally are
not needed.

Output A5.1 on page 324 shows a typical £stab configuration file:

Output A5.1 Example fstab configuration file

My NFS setup
byrd.unx:/local/u/bill / nfs #No mount options

server.unx:/tools /tools nfs ro # Mount tools read-only
elgar.langdev:c:/ /lang nfs # Mount from 0S/2

This example assumes that the /local/u/bill directory on byrd.unx contains
subdirectories that are called tools and lang. Presumably these are empty directories
that were set up to serve as mount points for the second and third mounts. If they are
not empty, any contents that they have are obscured to the mainframe user by the
second and third mounts. Instead of seeing the contents of the local directories, the
corresponding directory trees from the /tools directory on server.unx and the c:/
directory on elgar.langdev are seen by the mainframe user at those locations.

The fstab data set is located in the following manner:

1 If there is an environment variable that is named ETC_FSTAB, its value is used.
Note that the default style is ddn:. Remember to include the style at the
beginning of the name if you want a different one, such as in tso:etc. fstab.

2 Under 0S/390, if there is a DDname of ETCFSTAB, it will be used.

3 The next data set in the sequence depends on the operating environment that you
are working under.

Using the NFS Client /A Mount Options

0 Under TSO, tsoprefix. ETC.FSTAB is used.

0 Under 0OS/390 (other than TSO), if the userid can be determined,
userid ETC.FSTAB is used.

O Under CMS, ETC FSTAB is used.

4 If you are working under OS/390, zappedprefix. ETC.FSTAB is used. The
zappedprefix defaults to NFS if it is not zapped, and it can be overridden by the
NFS_PREFIX environment variable.

The fstab data set cannot itself be accessed with the path: prefix. See “Accessing

Files” on page 311 for information about the path: prefix.

325

Mount Options

Mount options control the operation of mounting the file system, as well as the file
system’s characteristics for subsequent use. The options must be separated by commas,
with no intervening spaces. They can be specified in either uppercase or lowercase.
Mount options are not usually needed; the defaults are generally adequate.

Table A5.1 on page 325 contains the options that you can specify.

Table A5.1 Mount Options

Option Description

RW Indicates that the file system is read/write. This is the default setting.

RO Indicates that the file system is read-only.

DELTAMIN Indicates the time adjustment in minutes to be applied to time stamps on the
given file system. This can be useful when file systems are set to operate in
different time zones. This value can be either positive or negative.

RETRY=n Number of retries for mount failures. The default is 1. The parameter affects
only mount attempts. It does not affect other operations such as read and
write. (See RETRANS for other operations.)

RWSIZE=nnK Reads and writes buffer size. The default is 4K. The maximum allowed is
1024K.

TIMEO=n Controls the timeout interval in tenths of a second used between
retransmission attempts. The actual timeout interval begins at n tenths of a
second and is doubled for each retransmission. The default TIMEO value is 7.
(See also RETRANS.)

RETRANS=n Specifies the number of NFS retransmissions. The default is 4. The timeout
is multiplied by 2 for each successive retransmission.

SOFT Specifies that a transmission attempt should be abandoned after a complete
set of retransmissions fails. This is the default.

HARD Specifies that a transmission attempt should not be abandoned after a
complete set of retransmissions fails. If HARD is specified, the retransmission
process is started over again after each set of transmissions is completed.

TEXT Performs ASCII or EBCDIC translation on all files. An ASCII-to-EBCDIC

translation is performed when the file is read from the server, and an
EBCDIC-to-ASCII translation is performed when the file is written to the
server.

326

Mounting and Unmounting Manually A Appendix 5

Option Description
BINARY Always leaves data in untranslated, binary form.
XLATE Gives the name of a loadable translate table to be used for ASCII and

EBCDIC translation in this file system. This translation affects data that are
read and written. By default, NFS data are translated using the IBM code
page 1047 standard. The table is built in much the same manner as SAS/C
CSL RPC translate tables. (See the description of the xdr_string function
in SAS Technical Report C-113, SAS/C Connectivity Support Library, Release
1.00.) The only difference is that you may choose any load module name and
then specify it here. If you have created an LSNAEXDR table for RPC, you
may specify it to get the same translations for NFS data as for RPC strings.
The XLATE option does not affect pathnames, which are controlled by the
RPC L$NAEXDR translate table if present. If the translate table is not
present, use the code page 1047 standard.

The TEXT and BINARY mount options enable you to override the defaults, which are
determined by the debugger when it accesses a file on the workstation. However, we
recommend using them only in unusual situations. When using the SAS/C Debugger,
the settings defined by the debugger are generally appropriate.

Mounting and Unmounting Manually

When you are saving your file system context between programs, you can manipulate
your file system organization by using the MOUNT and UMOUNT commands. These
commands are described later in this appendix.

Manipulating Files and Directories

Once you are logged on and have the remote file systems mounted into the directory
structure that you want, you can begin to access files. In many cases you can do this
through SAS/C programs that are not aware of NF'S by specifying path: where you
previously specified a local filename. This will work if the particular program that you
are using enabled you to specify the style prefix. For example, CMS programs that
enable you to access CMS Shared File System files by using the sf: prefix enable you
to access NFS file by using the path: prefix. If the program uses the correct setting for
text or binary processing when it opens files, text files will be translated from ASCII to
EBCDIC automatically. If it does not, you can use the TEXT and BINARY mount
options to override the program’s decision.

Existing SAS/C programs can also remove, rename, and check accessibility of NFS
files.

If you are not saving file system context (or if you are but have not run a program to
change the initial directory), you must use the full pathname (from the mainframe
point of view) in order to access a file.

Programs that were developed by using SAS/C CSL can access and manipulate the
remote file systems more completely. They can create, delete, and list directories. They
can work with hard and symbolic links. They can change or check the current working
directory, and they can retrieve and change UNIX or POSIX file-status information.

The SAS/C CSL product contains many sample programs that can also be used as
simple utilities. For example, the 1s command lists the files in a directory. The ncp

Using the NFS Client A NFSLOGIN 327

command can copy files between mainframe file systems and NFS file systems (and can
be much quicker than using FTP). These sample programs do not have the full features
of their UNIX equivalents, but they are useful.

The following examples are distributed with the CSL run-time transients that are
provided with the SAS/C Cross-Platform Compiler:

Table A5.2 Sample Programs

Example Description

cd Changes the directory (requires an ETC_MNTTAB setting)
1s Lists a directory (no wildcards)

ncp Copies files between mainframe and NFS file systems

pwd Prints the working directory

NFS User Commands

The following commands are used primarily by users who are running NFS client
applications:

Table A5.3 NFS User Commands

Command Description

NFSLOGIN Authorizes TSO or CMS users to access files via NFS

MOUNT Mounts remote NF'S file systems into the NFS client file system
structure

UMOUNT Removes a previously established mount

The format that is used to invoke the NFSLOGIN, MOUNT, and UMOUNT
commands is generally identical to that shown in the following reference information.
Under 0S/390, system administration considerations may require use of the TSO CALL
command or other techniques. See your system administrator for details. See
“NFSLOGIN” on page 327, “UMOUNT” on page 329, and “MOUNT” on page 328 for
information.

NFSLOGIN

Authorizes TSO or CMS users to access files via NFS

SYNOPSIS
Format 1: NFSLOGIN [-s server] [-u username] [-p password] [-n]
Format 2: NFSLOGIN -£

DESCRIPTION
The NFSLOGIN command authorizes TSO or CMS users to access files via NFS.
In some cases the NF'S client software can determine the correct server and
username without your specifying them. If a RACF-compatible security system is
installed, the site can define particular mainframe users as having access to
specified UNIX userids without requiring a password. If no password is required,

328

MOUNT A Appendix 5

and if the other values are correct by default, you do not need to use this command.
The login will occur automatically when you access the first NFS file or directory.

The NFSLOGIN command is provided for sites and situations where either a
password is needed or the default server or username values must be overridden.

See “Logging on to the NFS Network” on page 321 for discussion of NFS login
considerations. Also see “NFS Security Administration” on page 312 for more
information.

The -£ option requests a full-screen display. This display has fields for
specifying the same information that can be specified on the command line. The
full-screen option provides nondisplay password entry.

The server parameter is the host name of the login server that you want to
contact. This may differ from the servers on which files are being accessed. The
specified host must be running the appropriate login server software. See
Appendix 4, “Installing and Administering the NFS Client,” on page 309 for
details. You can usually omit this option because the site can set up a default host
server at installation time. Note also that, when a security system is installed, the
mainframe security administrator controls your access to login servers. Using an
unauthorized server causes a RACF violation.

For username, specify your username on the NFS login server. This is often
different from your OS/390 or CMS login ID. You do not need to specify a username
if the USER environment variable is set to the desired name, or if your login
server username is the same as your mainframe userid but converted to lowercase.

If you do not have a RACF-compatible security system, or if you want to login
as a username that is not associated with your RACF profile, use the -p option or
the password field to specify your password on the login server. The mainframe
security system (if present) can also control whether a password will be allowed on
your NFS login.

Note that the -p option requires a value. The -n option is required for the
special case in which the UNIX (or other login server operating environment)
system account has a null password. The -p and -n options are mutually
exclusive. Not specifying either -p or -n indicates that the user expects the
mainframe security system to authorize access to the login server username. The
full-screen display also allows for the special case of a null password.

If the login attempt fails, NFSLOGIN prints a message that describes the
reason. Otherwise it prints a message that indicates success. The login fails if the
login server is not running on the NFS network.

Note that you need not log out from the login server; your UID and GID
permissions expire after you log off TSO or CMS. If you want to access files under a
different username, you can issue the NFSLOGIN command again. A login expires
after two days. See “Diagnosing Problems” on page 315 for more information.

EXAMPLES

nfslogin -f
Invokes the full-screen login panel.
nfslogin -u bbritten -p ocean

Logs in to the default login server with username bbritten and password
ocean.

MOUNT

Mounts remote NF'S file systems into the NFS client file system structure.

Using the NFS Client A UMOUNT 329

SYNOPSIS
Format 1: MOUNT server :directory mount-point [options]

DESCRIPTION
The MOUNT command is one method of mounting remote NFS file systems into
the NF'S client file system structure on the mainframe. This command is useful
only when you have configured your session to save file system context. Otherwise,
the MOUNT command has no effect when it completes.

The server parameter specifies the name of the NFS server on which the files
are physically located. The directory is the name of the directory for the directory
tree that you want to mount. It must be a physical filename on that server (it
cannot be created by the server’s NFS client software).

The mount-point parameter specifies the name of the mainframe NFS client
directory on which the remote file system is to be mounted. For the first mount,
this must be a slash (/). For subsequent mounts, it must be a valid pathname in
the directory structure that was established by existing mounts.

The options string is not required. It specifies mount options for the file system.
See “Mount Options” on page 325. The string of options must be separated by
commas, with no intervening spaces.

You cannot mount a file system on a directory that is already being used as a
mount point. You must first unmount the existing file system with the UMOUNT
command.

Be aware that mounts made by this command are preceded by mounts from any
fstab file.

EXAMPLES
These examples assume that there is no £stab file and that file system context is
being saved.

mount byrd.unx:/local/u/bill /

Mounts bill’s home directory on byrd.unx as the root directory on the
mainframe.

mount server.unx:/tools /tools ro

Adds the /tools directory from server.unx as a subdirectory and treats it as
read-only.

UMOUNT

Removes a previously established mount

SYNOPSIS
Format 1: UMOUNT mount-point

330

UMOUNT A Appendix 5

DESCRIPTION

The UMOUNT command removes a previously established mount. This command
is useful only when you have configured your session to save file system context.
Otherwise, the MOUNT command has no effect when it completes.

The mount-point parameter specifies a mainframe pathname to a directory from
which a remote file system will be unmounted. The directory must have been used
in a previous mount operation.

You cannot unmount the root directory. If you want to mount a different root
directory, delete the mnttab file and then mount the new root directory. The
NFSLOGIN command also deletes the mnttab file.

You cannot unmount a file system that has other directories mounted over it, or
a file system that contains your current directory. Attempting to do so results in
the following message:

UMOUNT failed: file or record in use.

EXAMPLE

This example assumes that file system context is being saved.
umount /tools

Removes the file system that was previously mounted at /tools. If the file
system mounted at / had any files in its tools subdirectory, these now become
visible.

Index 331

Index

Numbers temporary 101, 251 Command window 156
breakpoints, setting submitting commands from 19, 156
3270 terminals 5 break command 100, 199 commands
C++ programs 122 NFS user 327
on command 109, 239 NSF administrator 317
A browse command 200 user-defined 228
Browse window 154 commands, debugger
abbreviations 132 browsing source code abbreviations 132
abort command 191 See source code, browsing abort 191
aborting program execution 191 assign 120, 192
action requests attn 113, 195
See requests c auto 110, 196
actions, conditional 133 break, syntax 199
AGGREGATE-TYPE-EXPRESSION argu- C-A-I-Triplet arguments 285 break, visual indicator 176
ment 143 cache location, specifying 93, 254 browse 200
angle brackets (), as curly brackets 133 cache subcommand 254 case sensitivity 131
ANSI Standard for expressions 148 calls, stepping through 100 catch 202
APPC argument 81 case sensitivity combining 131
assign command 120 debugger commands 131 command symbols 132
C++ programs 120 macros 141 config 202
syntax 192 casts 140 constant pointers 131
asterisk (*) C++ programs 119 continue 204
as wildcard 257 catch command 202 continuing 131
command symbol 133 catching exceptions 202 copy 205
ATTACH argument 78, 80 CICS applications, debugging 83 dbinput 208
attention handling, I/O exit routines 303 clear subcommand 284 dblog 209
attention handling, I/O exit subroutines 303 CLISTs 49 define 111, 210
attention key 37 See also EXECs disable 212
attention-key interrupt, generating 195 See also PROFILEs drop 213
attn command 113, 195 CMD-LIST argument 109 dump 110, 120, 215
auto command 110, 196 CMS 49, 221 echoing 197
autopop subcommand = 283 dbinput command in 50 enable 216
dblog command in 50 escape 218
echoing 50, 197 exec, CMS 221
B 0S/390 189 exec, TSO 219
prompting for input 208 executing from Command window 19, 149
batch mode 4 return codes 50 executing from line mode 9, 14
border subcommand 284 transferring debugger values to 271 exit, exiting the debugger 38, 106
branching 102, 223 TSO 49, 219 exit, syntax 222
break command close subcommand 284 formats 130
syntax 199 cmacro keyword 196 go 222
visual indicator 176 CMD-LIST argument 109 goto 223
breakpoint requests colon (:), command symbol 132 help 224
See requests color, windows 285 identical requests 132
breakpoints 100 color subcommand 285 ignore, syntax 226
See also hooks comma (,) command symbol 132 ignore, visual indicator 176
conditional 133 command scope install 228
displaying 244 changing 107 keys 230
enabling/disabling 175 displaying 21, 177 list 107, 231

ignoring 226 command symbols 132 listing 191
g

332 Index

log 234

monitor 108, 235

monitor, debugging C++ code 120

on, setting on conditions 109

on, suppressing output from 197

on, syntax 239

on, visual indicator 176

percent sign (%) 189

placeholders 150

print 241

query 244

question mark (?) 191

resume 102, 246

return, debugging C++ code 121

return, syntax 248

rsystem 249

runto 251

scope 107, 252

set 254

step 260

storage 112, 261

syntax conventions 130

syntax errors 131

syntax errors, detecting/correcting 186, 297

syntax errors, in PROFILEs 45

system, CMS 112, 267

system, TSO 112, 268

trace, syntax 269

trace, visual indicator 176

transfer, debugging C++ code 121

transfer, example 52

transfer, syntax 271

undef 275

watch 276

whatis, debugging C++ code 121

whatis, syntax 277

where 279

window 280
commands, executing from a file

See CLISTs

See EXECs

See PROFILEs
commands, operating system

executing remotely 249

executing under CMS 112, 267

executing under TSO 112, 268
compiler options 57

dbgmacro 59

dbhook 59

debug, generating hooks 57

debug, under CMS 58

debug, under OS/390 58

debug, under TSO 58

japan 59

sname 60
concatenation operator (|

ets 133

config command 202
config subcommand 287
Config window 157
configuration, saving 202
configuration files 47

assigning 202

associating with programs 47

creating 47

default 47

displaying name of 202

), as square brack-

saving 48

setting up 46

specifying 46

valid commands 48
constant pointers 131
constructors, C++ programs 117
context lines, specifying 175
context subcommand 175, 289
continue command 204
continuing after breaks

See resuming after breaks
copy command 205
copying items 205
COUNT argument 144
curly brackets ({ }), command symbol 132
cxx keyword 196

D

data

displaying 105

modifying 106
data types, C++ programs 119
_DB_COMM= variable 76
dbgmacro option 59
dbhook option 59
_DB_HOST= variable 76
dbinput command

in CLISTS/EXECs 50

syntax 208
dblog command

in CLISTS/EXECs 50

syntax 209
_DB_LU= variable 76
_DB_MODE-= variable 77
_DB_PORT= variable 76
DBTERM argument 80
_DB_TIMEOUT= variable 77
_DB_TP= variable 77
DEBUG argument 80
debug option

generating hooks 57

under CMS 58

under OS/390 58

under TSO 58
debugger

See SAS/C debugger
debugger file, locating 93
debugger symbol table files 7
debugging C++ programs 115

breakpoints, setting 122

example 122

initialization functions, bypassing 121

memory dumps 120

scoping rules 121

termination functions, bypassing 121
debugging C++ programs, expressions 119

assign command 120

casts 119

data types 119

evaluating 121

monitoring 120

operators 119

pointers, assigning 120
debugging C++ programs, functions 115

constructors 117

destructors 117
file-scope 117
member 117
mixed with C code 118
multitoken 116
overloaded 116
returning a reference 121
specifying 115
translator-generated 118
debugging CICS applications 83
debugging programs
See also breakpoints
See also hooks
See also monitoring
aborting 191
branching 102, 223
exiting 106
on conditions, specifying 109, 239
recursive programs, example 52
starting 222, 223
stepping through 100
variables and data, displaying 105
variables and data, modifying 106
debugging remote applications
See SAS/C debugger, on remote systems
debugging sessions
command scope, changing 107
command scope, displaying 21
displaying status of 15
example, C++ code 122
run scope, displaying 21
terminal input 15
terminal output 15
define command 111, 210
destructors, C++ programs 117
directories, mounting 311
disable command 212
drop command 213
dummy exit routines 87, 302
dump command 110, 120, 215
Dump window 162
dumping memory 120
dumpabs keyword 196
dumping memory 120
See also Dump window
See also dump command
addressing method, choosing 196
C++ programs 120
setting limits on 144

E

echo keyword 197
echoing CLISTs/EXECs 50, 197
enable command 216
ending program execution 191
environment variables
descriptions of 76
setting 77
error handling
See also Message window
See also Pop-up window
debugger internal errors 298
syntax errors 131, 186, 297
error messages
See Message window

See Pop-up window
escape command 218
exceptions, catching 202
exec command, CMS
combining with other commands 50
syntax 221
exec command, TSO
combining with other commands 50
syntax 219
execho keyword 197
EXECs 49
See also CLISTs
See also PROFILEs
dbinput command in 50
dblog command in 50
echoing 50, 197
example, REXX EXEC 52
prompting for input 208
return codes 50
transferring debugger values to 271
EXECs, executing
CMS 49, 221
0S/390 189
TSO 49, 219
exit command 222
exiting SAS/C debugger 38, 106
syntax 222
exit routines
See 1/0 exit routines
exiting the debugger
attention key 37
attn command 113, 195
exit command 38, 106, 222
EXPRESSION argument 138

expressions
AGGREGATE-TYPE-EXPRESSION argu-
ment 143

ANSI Standard 148
assigning values to 192
extracting from text 150
functions supported 140
macro substitution, enabling 196
operators supported 139
placeholders 150
SCALAR-TYPE-EXPRESSION argu-
ment 143
type information, displaying 277
types of 142
VALUE argument 143
expressions, C++
See debugging C++ programs, expressions
expressions, printing
See Print window
See monitor command
See print command
expressions, watching
See monitoring
extended name support 197
extname keyword 197

F

file access
NFS (Network File System) 311
remote files 322

file-scope, C++ programs 117

file-search mechanism 91
file security 311

file-system configurations, standardizing 315

file-system context, saving 323
file system information, querying 317
finding strings

See list command

See search subcommand

See window find subcommand
%FMT argument 147
FORK argument 78, 80
fstab configuration file 323
full-screen mode 3

invoking from PROFILEs 45

on 3270 terminals 5

PF key priorities 36

switching to/from 31, 291

window priorities 36
FUNCTION-NAME arguments 134
functions

calling sequence, displaying 106

extended name support 197

monitoring 279

outside current function 147

returning from 248

stepping over 100

stepping through 100

supported in expressions 140
functions, C++

See debugging C++ programs, functions

G

go command 222
goto command 223

H

help command 224
Help window 164
hypertext cards 17
hypertext links 17, 164
links to pop-up windows 18
navigation links 17
opening with help command 16, 224

PF keys 16
HOOK-TYPE arguments 135
hooks 21

dbhook option 59

debug option 57

examples 137

HOOK-TYPE arguments 135
hypertext cards 17
hypertext links 17, 164

1/O exit routines 301
attention handling 303
dummy routines 302
initialization call, input 304
initialization call, output 302
invoking 302

Index 333

normal call, input 305
normal call, output 304
termination call, input 306
termination call, output 306
I/0 handling, SASCDBG debugging inter-
face 79
IBM 3270 terminals 5
id keyword 197
identical requests 132
ignore command
syntax 226
visual indicator 176
include files, locating 95
initialization calls
input 304
output 302
initialization functions, bypassing 121
input, terminal
See Termin window
install command 228
interrupting terminal operation 195

J

japan option 59

K

KANIJI support
japan option 59
under CMS 71
under TSO 63
keyboard, customizing 31
keys command 230
Keys window 166
assigning/listing PF key assignments 29

L

line mode 4
entering commands 9
invoking from PROFILEs 45
switching to/from 9, 31
line-mode output, saving 71
line size 197
linesize keyword 197
linking programs
CMS 70
0S/390 66
TSO 62
list command 107, 231
list keyword 197
log command 234
Log window 167
logging debugging sessions
dblog command 209
log command 234
Log window 20
logging on to the network 321, 327
logical cursors 14
login server, configuring default 315

334 Index

M

macro substitution, enabling 196
macros
case sensitivity 141
defining 111, 210
in expressions 141
limitations 211
saving in debugger symbol table 59
undefining 275
member functions, C++ programs 117
memory, monitoring 33
memory dump
See dumping memory
memory subcommand 290
Message window 169
error messages 36
messages
See Message window
See Pop-up window
minus sign (-), command symbol 133
mnttab file 323
modes, setting 110, 196
monitor command 235
debugging C++ code 120
monitoring value changes 108
syntax 235
monitoring 235
See also Watch window
See also monitor command
C++ programs 120
expressions 15, 33, 276
functions 279
memory 33
program execution 235, 269
value changes 108
MOUNT command 328
mount duration 323
mount options 325
mounting
directories 311
file systems 328
manually 326
move subcommand 291
multitoken functions, C++ programs 116

N

navigation links 17

Network File System
See NFS (Network File System)

next subcommand 291

NFS (Network File System) 309
administrator commands 317
default login server, configuring 315
design of 310
directories, accessing 326
directories, mounting 311
file access 311, 326
file access, remote files 322
file security 311
file-system context, saving 323
file system information, querying 317
fstab configuration file 323
installing 312
logging on to the network 321, 327

MOUNT command 328
mount duration 323
mount options 325
mounting directories 311
mounting file systems 328
mounting/unmounting manually 326
NFSLOGIN command 327
problem diagnosis 315
RACEF definitions 314
recommended reading 317
RPC servers, querying 318
RPCINFO command 318
security administration 312
SHOWMNT command 317
standard file-system configurations 315
UID/GID acquisition 313
UMOUNT command 329
unmounting file systems 329
user commands 327

NFSLOGIN command 327

nocmacro keyword 196

nocxx keyword 196

NOD argument 80

nodumpabs keyword 196

noecho keyword 197

noexecho keyword 197

noextname keyword 197

noid keyword 197

nolist keyword 197

nonullptr keyword 198

normal calls
input 305
output 304

nowrap keyword 198

null pointers, dereferencing 198

nullptr keyword 198

(o)

OEATTACH argument 78, 80
off subcommand 291
on command
suppressing output from 197
syntax 239
visual indicator 176
on conditions, specifying 109, 239
on subcommand 291
online help
See Help window
See help command
open subcommand 292
operators
C++ programs 119
supported in expressions 139
options, compiler
See compiler options
output
See SAS/C debugger, output
overloaded functions, C++ programs 116

P

parentheses (), command symbol 132
pathname resolution, UNIX System Services 82

percent sign (%)
command symbol 133
in templates 257, 258
percent sign (%) command
combining with other commands 50
syntax 189

performance, cross-development environment

PF keys, assigning/listing
See also configuration files
assigned to help system 16
commands for 148
default assignments 28
full-screen priorities 36
keys command 29, 230
Keys window 29
placeholders 150
plus sign (+), command symbol 133
pointers, assigning 120
Pop-up window 170
error messages 35

pound sign (#), as comment indicator 324

previous subcommand 292
print command 241
Print window 171
printing expressions 33
printing
See also Print window
See also monitor command
See also print command
setting limits on 144
PROFILEs 42, 43
See also CLISTs
See also EXECs
CMS 43
full-screen mode, selecting 45
invalid commands 45
line mode, selecting 45
return codes 45
TSO 43
valid commands 42
program execution, monitoring
See monitoring
programs, stepping through
See stepping through programs
programs, stopping at specified points
See breakpoints
See hooks
PTYPE argument 144

Q

query command 244
question mark (?), displaying search lists
question mark (?) command 191

R

RACEF definitions 314
references, returning

C++ programs 121
Register window 172

displaying registers 34
requests 104

disabling 104, 212

257

displaying 104, 244
dropping 104, 213
enabling 216
ignoring 104, 226
reviewing 134
resize subcommand 292
RESTART argument 81
resume command 102, 246
resuming after breaks 102
continue command 204
go command 222
goto command 223
resume command 102, 246
runto command 251
return codes
from CLISTs 50
SAS/C debugger, on remote systems 89
return command
debugging C++ code 121
syntax 248
returns, stepping through 100
RPC servers, querying 318
RPCINFO command 318
rsystem command 249
run scope, displaying 21, 177
running programs 100
runto command 251

S

SAS/C debugger 4
escaping to operating system debugger 218
listing source lines 231
quick start, CMS 6
quick start, TSO 7
starting with =debug option 9
terminating 222
transferring values to CLISTs/EXECs 271
SAS/C debugger, CMS
KANIJI support 71
line-mode output, saving 71
linking programs 70
quick start 6
source files, compiling 69
starting 70
SAS/C debugger, in a cross-development environ-
ment 91
cache location, specifying 93
debugger file, locating 93
debugging procedure 92
file-search mechanism 91
include files, locating 95
performance considerations 95
search list, specifying 93
set command 93
source files, locating 94
SAS/C debugger, on remote systems 73, 74
See also SASCDBG debugger interface
architecture 74
assembly language implementation 87
C language implementation 88
calling sequence 86
debugging CICS applications 83
dummy exit routines 87, 302
environment variables, descriptions of 76
environment variables, setting 77

installation requirements 87
return codes 89
startup 75
startup scenarios 84
user exits 86

SAS/C debugger, OS/390
linking programs 66
required data sets 65
source files, compiling 66
starting 66

SAS/C debugger, output 143
See also Print window
See also Termout window
See also monitor command
See also print command
formats 143
line size 197
output type, specifying 197
wrapping lines 198

SAS/C debugger, passing control to
See hooks

SAS/C debugger, TSO
linking programs 62
quick start 7
required data sets 61
source files, compiling 62
source files, locating 61
starting 62

SASCDBG debugger interface 78
See also SAS/C debugger, on remote systems
arguments 80
ATTACH argument 78, 80
FORK argument 78, 80
I/O handling 79
OEATTACH argument 78, 80
pathname resolution, UNIX System Ser-

vices 82
restrictions 82
starting 78
syntax 79

SCALAR-TYPE-EXPRESSION argument 143
scope, changing 107, 252
scope command 107, 252
scoping rules, C++ programs 121
scroll subcommand 292
scrolling windows 292
search lists
specifying 93
template arguments 256
search subcommand 254
searching source code
See list command
See search subcommand
See window find subcommand
SECTION-NAME arguments 134
section names, defining 60
security administration, NFS 312
semicolon (;), command symbol 132
set command
cross-development environment 93
syntax 254
SHOWMNT command 317
SIGINT signal, generating 195
signals
generating 195
ignoring 226
sname option 60

Index 335

source code, browsing 14

See also Source window

browse command 200

Browse window 14

context lines, specifying 175, 289

displaying 15

jumping to a line 24

list command 107, 231

returning to highlighted line 24

scrolling 23

search templates 254
source code, searching

See list command

See search subcommand

See window find subcommand
source files

locating 61, 94

preparing 7
source files, compiling

CMS 69

0S/390 66

TSO 62
Source window 173

browsing source code 22

navigating 23
special characters 299
sprintf function, format specifiers 147
starting program execution 222, 223
starting SAS/C debugger

on remote systems 75, 84

quick start, CMS 6

quick start, TSO 7

under CMS 70

under OS/390 66

under TSO 62

with =debug option 9
starting SASCDBG debugger interface 78
Status window 177

debugging sessions, displaying status of 20
step command 260
stepping through programs 100, 260
storage analysis

displaying 112

heap storage 262

interpreting reports 263

stack storage 262

storage command 261
storage command 112, 261
structure members, accessing 140
syntax errors 131

detecting/correcting 186, 297

in PROFILEs 45
system command, CMS 112, 267
system command, TSO 112, 268

T

TCPIP argument 81
Termin window 179

terminal input 32
terminal input

See Termin window
terminal output

See Termout window
termination calls

input 306

336 Index

output 306
termination functions, bypassing 121
Termout window 181

terminal output 31
top subcommand 293
trace command

syntax 269

visual indicator 176
trace lines, enabling 294
trace subcommand 294
tracebacks 106, 279
transfer command

debugging C++ code 121

example 52

syntax 271

U

UID/GID acquisition 313
UMOUNT command 329

undef command 275

union members, accessing 140
unmounting file systems 329
user exits, on remote systems 86

\'

VALUE argument 143

variables 141
displaying 105
modifying 106

w

watch command 276
Watch window 184
watching expressions
See monitoring
whatis command
debugging C++ code 121
syntax 277
where command 279
window command 280
window find subcommand 289
window management 280
window subcommands 148
windows
automatically on top 283
borders 284
clearing 284
closing 24, 284
color 285
configuration, displaying 15

configuring 15, 26, 287
directing commands to 26
displaying multiple 12
finding strings 289
full-screen priorities 36
logical cursors 14
memory allocation 290
moving 12, 25, 291
moving to top of stack 293
navigating a stack of 291, 292
open, maximum number 37
opening 24, 292
overlapping 14
resizing 12, 25, 292
scrolling 292
zooming 25, 294

wrap keyword 198

wrapping lines 198

yA

zoom subcommand 294

zooming windows 25, 294

Your Turn

If you have comments or suggestions about SAS/C® Debugger User’s Guide and
Reference, Release 7.00, please send them to us on a photocopy of this page, or send us
electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing

SAS Campus Drive

Cary, NC 27513

email: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive

Cary, NC 27513

email: suggest@sas.com

Welcome * Bienvenue * Willkommen * Yohkoso * Bienvenido

SAS Publishing Is Easy to Reach

Visit our Web page located at www.sas.com/pubs

You will find product and service details, including

» sample chapters
» tables of contents
» author biographies

* book reviews

Learn about

* regional user-group conferences
e trade-show sites and dates

* authoring opportunities

* custom textbooks

Explore all the services that SAS Publishing has to offer!

Your Listserv Subscription Automatically Brings the News to You

Do you want to be among the first to learn about the latest books and services available from SAS Publishing?
Subscribe to our listserv newdocnews-l and, once each month, you will automatically receive a description of the
newest books and which environments or operating systems and SAS® release(s) each book addresses.

To subscribe,

1. Send an e-mail message to listserv@vm.sas.com.
Leave the “Subject” line blank.

3. Use the following text for your message:
subscribe NEWDOCNEWS-L your-first-name your-last-name
For example: subscribe NEWDOCNEWS-L John Doe

Create Customized Textbooks Quickly, Easily, and Affordably

SelecText® offers instructors at U.S. colleges and universities a way to create custom textbooks for courses that
teach students how to use SAS software.

For more information, see our Web page at www.sas.com/selectext, or contact our SelecText coordinators by
sending e-mail to selectext@sas.com.

You're Invited to Publish with SAS Institute’s User Publishing Program

If you enjoy writing about SAS software and how to use it, the User Publishing Program at SAS Institute

offers a variety of publishing options. We are actively recruiting authors to publish books, articles, and sample
code. Do you find the idea of writing a book or an article by yourself a little intimidating? Consider writing with
a co-author. Keep in mind that you will receive complete editorial and publishing support, access to our users,
technical advice and assistance, and competitive royalties. Please contact us for an author packet. E-mail us at
sasbbu@sas.com or call 919-531-7447. See the SAS Publishing Web page at www.sas.com/pubs for complete
information.

Book Discount Offered at SAS Public Training Courses!

When you attend one of our SAS Public Training Courses at any of our regional Training Centers in the U.S., you
will receive a 20% discount on book orders that you place during the course.Take advantage of this offer at the
next course you attend!

SAS Institute Inc. E-mail: sasbook@sas.com

SAS Campus Drive Web page: www.sas.com/pubs

Cary, NC 27513-2414 To order books, call Fulfillment Services at 800-727-3228*
Fax 919-677-4444 For other SAS business, call 919-677-8000*

* Note: Customers outside the U.S. should contact their local SAS office.

The Power to Know.. JsaS® ‘ SAS Publishing

