
SAS/C® Cross-Platform Compiler and C++
Development System User’s Guide, Release 7.00

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/C Cross-Platform Compiler and C++ Development System User’s Guide, Release
7.00, Cary, NC: SAS Institute Inc., 2001.

SAS/C Cross-Platform Compiler and C++ Development System User’s Guide,
Release 7.00
Copyright © 2001 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–730–5
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, April 2001
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, CD-ROM, hard copy books, and Web-based training, visit the SAS Publishing
Web site at www.sas.com/pubs or call 1-800-727–3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
IBM® and all other International Business Machines Corporation product or service
names are registered trademarks or trademarks of International Business Machines
Corporation in the USA and other countries.
Oracle® and all other Oracle Corporation product or service names are registered
trademarks or trademarks of Oracle Corporation in the USA and other countries.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

P A R T 1 Usage Guide 1

Chapter 1 4 Overview of the SAS/C Cross-Platform Compiler and C++ Development
System 3
Introduction 3

Why Use the SAS/C Cross-Platform Compiler and C++Development System 4

System Requirements 5

SAS/C Cross-Platform Architecture 6

Executable Files 7

Installation Considerations 8

Relationship to the Mainframe SAS/C C and C++ Development Systems 9

Debugging Considerations 9

Chapter 2 4 Using the SAS/C Cross-Platform Compiler and C++ Development
System 11
Invoking the SAS/C and C++ Cross Platform Compiler 12

CICS Command Preprocessor 12

Compiling C Programs under UNIX 13

Compiling C++ Programs under UNIX 14

Compiling C and C++ Programs under a DOS Shell 16

Linking C and C++ Programs 17

Files 19

Windows Environment Configuration File 26

Using SAS/C C and C++ under a DOS Shell 27

Customizing Microsoft Visual C++ Integrated Development Environment Menus 30

Using the SAS/C and C++ Cross-Platform Compiler under the Microsoft Visual C++
IDE 32

Using SAS/C C and C++ under the Microsoft Visual C++ IDE 34

ar370 Archives 36

Chapter 3 4 Compiling C and C++ Programs 39
Introduction 39

Syntax 39

Cross-Platform Compiler Defaults 41

Option Summary 41

Option Descriptions 47

External Compiler Variables 62

Language Extensions 63

Chapter 4 4 Using the SAS/C CICS Command Preprocessor 65
Introduction 65

Using the ccp Command 65

iv

Option Descriptions 66

Chapter 5 4 Using the Global Optimizer and the Object Module Disassembler 69
Introduction 69

The Global Optimizer 69

The Object Module Disassembler 71

Chapter 6 4 Prelinking C and C++ Programs 73
Introduction 73

The cool Prelinker 73

Syntax 74

Specifying cool Options at Compilation 74

Specifying Control Statements 75

Marking and Detecting Previously Processed cool Objects 75

Prelinker Defaults 75

Option Summary 76

Option Descriptions 78

Chapter 7 4 ar370 Archive Utility 85
Introduction 85

Using the ar370 Utility 86

Chapter 8 4 Conversion of Existing Programs 89
Introduction 89

Utility Programs 90

Chapter 9 4 Cross-Debugging 93
Introduction 93

Using the SAS/C Debugger in a Cross-Development Environment 95

Using the Debugger’s set Command 95

Debugger Performance Considerations 97

set Command Reference 98

P A R T 2 Appendices 105

Appendix 1 4 Installing and Administering the NFS Client 107
Introduction 107

SAS/C NFS Client Overview 109

Installation Considerations 110

NFS Security Administration 111

Developing Standardized File-System Configurations 113

Diagnosing Problems 113

Recommended Reading 114

NFS Administrator Commands 114

Appendix 2 4 Using the NFS Client 117
Introduction 117

v

Logging on to the NFS Network 118

Accessing Remote File Systems 119

Mounting and Unmounting Manually 122

Manipulating Files and Directories 122

NFS User Commands 123

Appendix 3 4 ar2updte and updte2ar Utilities 127
Introduction 127

ar2updte Utility 127

updte2ar Utility 131

Appendix 4 4 Redistributing SAS/C Product Files 135
Introduction 135

Limited Distribution Library 136

SAS/C Redistribution Packages 136

Appendix 5 4 Compatibility Notes 145
Changes for Release 6.50 145

Changes for Release 6.00 145

Index 149

vi

1

P A R T1

Usage Guide

Chapter 1.Overview of the SAS/C Cross-Platform Compiler and C++
Development System 3

Chapter 2.Using the SAS/C Cross-Platform Compiler and C++
Development System 11

Chapter 3.Compiling C and C++ Programs 39

Chapter 4.Using the SAS/C CICS Command Preprocessor 65

Chapter 5.Using the Global Optimizer and the Object Module
Disassembler 69

Chapter 6.Prelinking C and C++ Programs 73

Chapter 7.ar370 Archive Utility 85

Chapter 8.Conversion of Existing Programs 89

Chapter 9.Cross-Debugging 93

2

3

C H A P T E R

1 Overview of the SAS/C
Cross-Platform Compiler and
C++ Development System

Introduction 3
Why Use the SAS/C Cross-Platform Compiler and C++Development System 4

System Requirements 5

Workstation (Host) 5

Mainframe (Target) 5

File Transfer 5
SAS/C Cross-Platform Architecture 6

Executable Files 7

Executable Files Description 7

Library and Header Files 8

Input and Output Files 8

Installation Considerations 8
man Pages 8

Relationship to the Mainframe SAS/C C and C++ Development Systems 9

Debugging Considerations 9

Introduction
The SAS/C Cross-Platform Compiler and the SAS/C Cross-Platform C++

Development System* runs on a workstation and produces prelinked output files that
can be transferred to an IBM® System/370

TM

mainframe. On the IBM System/370
mainframe, the files can be linked to produce an executable load module.

Like the SAS/C Compiler, the SAS/C Cross-Platform Compiler and C++ Development
System is a portable implementation of the high-level C and C++ languages. It provides
the same function under the UNIX, Windows 95, and Windows NT** operating systems
as the SAS/C C and C++ Development System does under the OS/390 or CMS operating
systems. This includes the following:

� All SAS/C C and C++ preprocessor capabilities.

� All SAS/C C and C++ code generation capabilities, including optimization and
other features.

� All of the prelinking functions provided by the SAS/C COOL utility, including
extended names processing.

Note: Starting with Release 6.00, COOL replaced CLINK as the default SAS/C
prelinker on OS/390 and CMS systems. Similarly, the program cool replaced

* For future references, SAS/C C and C++ is synonymous with SAS/C Cross-Platform Compiler and SAS/C Cross-Platform C++
Development System.

** For future references, Windows is synonymous with Windows 95 and Windows NT.

4 Why Use the SAS/C Cross-Platform Compiler and C++Development System 4 Chapter 1

clink as the default prelinker for the SAS/C Cross-Platform Compiler and C++
Development System. For details on this and other changes in Release 6.50, see
Appendix 5, “Compatibility Notes,” on page 145. 4

� An object module disassembler that can be used to generate an object module
disassembly listing file.

� The capability of producing object modules suitable for debugging with the SAS/C
Debugger.

� Support for the SAS/C CICS preprocessor.
� Support for portable ar370 archive libraries.

Figure 1.1 on page 4 illustrates the application development process using the SAS/C
Cross-Platform Compiler and C++ Development System.

Figure 1.1 Application Development Process

HOST

TARGET (MAINFRAME)

SAS/C
Cross-Platform
Development

Systems

Prelinked
Object
Module

Source
Code

Prelinked
Object
Module

Load
ModuleLinkage Editor

Why Use the SAS/C Cross-Platform Compiler and C++Development
System

There are several benefits to using the SAS/C Cross-Platform Compiler and C++
Development System to generate code for the mainframe.

Reduced mainframe load
By moving compilations off of the mainframe, mainframe CPU cycles are
preserved for other users. This can amount to a significant reduction in
mainframe requirements, directly translating into a cost savings.

Improved source management
Developers may take advantage of improved source management tools, as well as
hierarchical file systems.

Improved build management
Developers may take advantage of improved build management tools, such as
make utilities.

Overview of the SAS/C Cross-Platform Compiler and C++ Development System 4 File Transfer 5

Improved compilation turnaround
In a heavy development environment, developers often find that performing
compilations locally can result in a better turnaround time.

System Requirements

Before using the SAS/C Cross-Platform Compiler and C++ Development System, you
must consider the system requirements of both the host workstation that runs the
cross-platform development system and the target mainframe that runs the
applications developed with the cross-platform development system.

Workstation (Host)

The host workstation provides the development platform used to run the
cross-platform development system. Release 6.50 of the SAS/C Cross-Platform Compiler
and C++ Development System runs under a UNIX operating system on a Sun-4, a
Sun-5, an RS/6000, or under LINUX. It also runs under a DOS shell or the Microsoft
Visual C++ Integrated Development Environment (IDE) on a Windows workstation
running Windows 95 or Windows NT. Future releases of the cross-platform development
system may support additional platforms or other operating systems.

Mainframe (Target)

The intended target for applications developed with the cross-platform development
system is an IBM System/370 mainframe running either OS/390 or CMS. Your
applications can be redistributed in accordance with the restrictions described in
Appendix 4, “Redistributing SAS/C Product Files,” on page 135.

File Transfer

In addition to the host and target system requirements, you must also consider the
file transfer system that will be used to move your prelinked output files from the host
to the target. One of the most effective methods of transferring files between systems is
file transfer protocol (FTP).

FTP uses the Transmission Control Protocol/Internet Protocol (TCP/IP) as the
network mechanism for communicating between the host and target machines. Both
FTP and TCP/IP are available at most mainframe sites. However, if this method of file
transfer is not available at your site, you can use any file transfer method that enables
you to transfer binary files between your workstation and the mainframe. The
prelinked output file is already in binary form and does not require conversion from
text to binary. Also, if you copy object files from the workstation to the mainframe, be
sure the destination data set has a logical record length of 80 (LRECL=80) and a fixed
record format (RECFM=F or FB).

Note: The SAS/C Connectivity Support Library (CSL) provides the capability of
using Network File System (NFS) to copy files between the workstation and the
mainframe using example utilities that are provided with the CSL product. See
“Manipulating Files and Directories” on page 122 for additional information. 4

6 SAS/C Cross-Platform Architecture 4 Chapter 1

SAS/C Cross-Platform Architecture
Figure 1.2 on page 6 illustrates the architecture of SAS/C cross-platform software by

showing the executable files that compose the SAS/C Compiler and C++ Development
System and its relationship to library, header, input, and output files. It also illustrates
the relationship of the compiler to the host workstation and target mainframe.

Figure 1.2 Application Development Process

HOST

Header Files

INCLUDE/
.h files

Input Files

prog.c
prog.ccp
prog.cpp
prog.cxx
prog.C
prog.o
prog.i
prog.a

SAS/C
Cross-Platform
Development

Systems

EXECUTABLE/
sascc370
sasCC370
ccp
cxx
lc1
go
lc2
omd
clink
cool

LIBDIR/
libc.a

LIBDIR/
libcxx.a

SAS/C
Resident
Libraries

Output Files

a.out
prog.o
prog.i
prog.omd
prog.dbg370
prog.lst

TARGET (MAINFRAME)

Output File

Load
Module

Linkage
Editor

LOADLIB

SAS/C

Library
Transient

Input File

Object
Module

File Transfer

Overview of the SAS/C Cross-Platform Compiler and C++ Development System 4 Executable Files Description 7

Executable Files
The SAS/C Cross-Platform system is composed of the executable files shown in Table

1.1 on page 7.

Table 1.1 Names of Executable Files

Functional Name Filename

CICS command preprocessor ccp

C compiler driver sascc370

C++ driver sasCC370

C++ translator cxx

parser lc1

code generator lc2

global optimizer go

object module dissembler omd

ar370 archive manager ar370

prelinker (default) cool

prelinker clink

Note: There are several additional executable files for the utility programs provided
with the SAS/C Cross-Platform Compiler. 4

Executable Files Description
Like most compilers, the SAS/C Cross-Platform Compiler and C++ Development

System performs the compilation in a series of phases.
The compiler drivers, sascc370 and sasCC370, control the compilation, invoking the

other executable files and passing them options during the various phases.
The CICS command preprocessor recognizes CICS commands embedded in your C

and C++ source. The preprocessor translates these commands into appropriate function
calls for communication with CICS.

The global optimizer, prelinker, and object module disassembler are enabled by
compiler options and, like the parser and code generator, their execution is controlled
by the compiler driver.

The global optimizer, go, performs advanced optimizations such as merging common
subexpressions and eliminating code that is never executed, constant propagation, and
strength reduction. The global optimizer also allocates registers, placing the most
highly used variables for each section of code in registers. This eliminates any need for
you to select and specify register variables.

The object module disassembler, omd, is a useful debugging tool that provides a copy
of the assembler code generated for a C or C++ program. In addition to running the
object module disassembler at compile time, it can also be invoked independent of the
driver.

The prelinker, cool, is an object code preprocessor that merges CSECTs based on
references to external variables. It provides the same functionality as the SAS/C COOL
utility on the mainframe.

8 Library and Header Files 4 Chapter 1

The C++ translator, cxx; parser, lc1; and code generator, lc2, are called by the
compiler and C++ drivers to perform the actual compilation of the source code.
Together, they handle the parsing, semantics analysis, instruction selection, and code
emission phases of compilation.

The ar370 archive utility is used to generate groups of files that are combined into a
single archive file.

See Chapter 5, “Using the Global Optimizer and the Object Module Disassembler,” on
page 69 for more information about go and omd.

Library and Header Files
The SAS/C Cross-Platform Compiler and C++ Development System requires that the

resident portions of the SAS/C and C++ libraries be located on the host workstation.
The standard C and C++ header files must also be located on the host workstation.
Optionally, you can specify additional header files as described in Chapter 2, “Using the
SAS/C Cross-Platform Compiler and C++ Development System,” on page 11. The
transient portion of the SAS/C and C++ Libraries is located on the target mainframe.

Input and Output Files
Input to the SAS/C Cross-Platform Compiler and C++ Development System is

provided as C source code, C++ source code, or previously compiled object files. The
output is either in the form of unlinked or prelinked object files. Output files for the
object module disassembler and the debugger may also be generated. The input and
output files are described in greater detail in Chapter 2, “Using the SAS/C
Cross-Platform Compiler and C++ Development System,” on page 11.

Installation Considerations
The location of the executable files that compose the SAS/C cross-platform software is

site-specific, and you should contact your on-site SAS/C Installation Representative if
you are not sure where these files are located on your workstation.

man Pages
The unformatted man pages listed in Table 1.2 on page 8 are supplied with the SAS/C

Cross-Platform Compiler and should be located in the man1 subdirectory.
To use these man pages, you must add install_location to your MANPATH environment

variable and install_location/host/hostname/bin to your PATH environment variable.
The install_location and hostname are specific to your site.

Table 1.2 Available man Pages

man Page Provides Information for ...

ar370 ar370 archive utility

atoe ASCII-to-EBCDIC translation utility

ccp CICS command preprocessor

Overview of the SAS/C Cross-Platform Compiler and C++ Development System 4 Debugging Considerations 9

man Page Provides Information for ...

cool cool prelinker

clink clink prelinker

dset display license information

etoa EBCDIC-to–ASCII translation utility

mf2unix mainframe-to-UNIX C source code translation utility

objdump SAS/C 370 object file dump utility

omd describes the object module disassembler

sascc370 sascc370 C compiler driver

sasCC370 sasCC370 C++ driver

spatch SAS/C binary patching application

unix2mf UNIX-to-mainframe C source code translation utility

update SAS/C update utility

zap SAS/C zap, used with license information

Relationship to the Mainframe SAS/C C and C++ Development Systems
The SAS/C Cross-Platform Compiler and C++ Development System is a direct

descendent of the mainframe system. Your mainframe C and C++ source code can be
compiled by either product without modification.

Because of different maintenance structures, the SAS/C Cross-Platform Compiler and
C++ Development System and the mainframe SAS/C C and C++ Development System
do not always produce identical object code. However, the performance of applications
compiled with either compiler will be essentially identical.

Debugging Considerations
To take complete advantage of a cross-development environment, it is preferable to

retain the source code on the host workstation. This avoids the added burden of
maintaining two copies of the source on two platforms.

You can use the SAS/C Debugger running on the mainframe to debug source code
located on your workstation. The SAS/C Debugger has the ability to access source code
and debugging information located on the workstation. The debugger uses the SAS/C
CSL run-time transients that are provided with the SAS/C Cross-Platform Compiler to
establish client/server connectivity between the workstation and the mainframe. This
capability is described in Chapter 9, “Cross-Debugging,” on page 93, Appendix 1,
“Installing and Administering the NFS Client,” on page 107, and Appendix 2, “Using
the NFS Client,” on page 117. SAS/C CSL provides many additional features, which are
described in SAS Technical Report C-113, SAS/C Connectivity Support Library, Release
1.00.

10 Debugging Considerations 4 Chapter 1

11

C H A P T E R

2 Using the SAS/C Cross-Platform
Compiler and C++ Development
System

Invoking the SAS/C and C++ Cross Platform Compiler 12
On a UNIX System 12

On a Windows System 12

CICS Command Preprocessor 12

Compiling C Programs under UNIX 13

Using sascc370 13
Examples 13

Compiling C++ Programs under UNIX 14

Using sasCC370 14

Examples 15

Compiling C and C++ Programs under a DOS Shell 16

Using sascc370 16
Examples 16

Linking C and C++ Programs 17

Using cool 18

Examples 18

Using COOL on the Mainframe 19
Files 19

Library Files 20

Resident Library Routines 20

Transient Library Routines 20

All-resident Library Routines 20
SPE Library Routines 20

Header Files 20

Adding Directories to the Search Path under UNIX 22

Adding Directories to the Search Path under a Windows Environment 22

Input Files 22

sascc370 Input Files 22
sasCC370 Input Files 23

Output Files 23

Output Filename Generation 24

Using -o with a Single Source File 25

Using -o with Multiple Source Files 25
Windows Environment Configuration File 26

Using SAS/C C and C++ under a DOS Shell 27

Compiling C and C++ Source Code 27

Prelinking Object Code 28

Building Source Code 28
Customizing Microsoft Visual C++ Integrated Development Environment Menus 30

Importing a Layout File 31

Adding SAS/C Compiler Options and Help Files to a Pull-Down Menu 31

12 Invoking the SAS/C and C++ Cross Platform Compiler 4 Chapter 2

Using the SAS/C and C++ Cross-Platform Compiler under the Microsoft Visual C++ IDE 32
Configuring Compile and Prelink Options 32

Adding and Deleting Compiler and Project Options 33

Compiling and Prelinking Object Code 34

Using SAS/C C and C++ under the Microsoft Visual C++ IDE 34

Configuring Compile and Prelink Options 34
Compiling and Prelinking Object Code 35

ar370 Archives 36

Invoking the SAS/C and C++ Cross Platform Compiler

On a UNIX System
The SAS/C C and C++ cross-platform compiler is invoked in a manner similar to

other compilers commonly used on UNIX platforms. The syntax for the commands used
to invoke the compiler consists of the filename of the driver, followed by a list of options,
and the filenames of the source code. This method of invoking the cross-platform
compiler enables you to specify options using a syntax that is very comfortable to UNIX
users, providing easy integration with UNIX build facilities. This method of compiling
C and C++ programs is described in the section “Compiling C Programs under UNIX”
on page 13 and “Compiling C++ Programs under UNIX” on page 14.

On a Windows System
The SAS/C C and C++ cross-platform compiler can be invoked either under the

Microsoft-DOS shell or within the Microsoft Visual C++ IDE. The syntax for the
commands used to invoke the compiler consists of the driver name, followed by a list of
options, and the filenames of the source code. This method of invoking the
cross-platform compiler enables you to specify options using a syntax that is familiar to
PC users, providing easy integration with PC build facilities such as batch files or an
integrated development environment.

The methods for compiling C and C++ programs in a DOS shell are described in
“Using SAS/C C and C++ under a DOS Shell” on page 27 and in the Microsoft
Developer Studio are described in “Using SAS/C C and C++ under the Microsoft Visual
C++ IDE” on page 34.

CICS Command Preprocessor

The SAS/C CICS Command Preprocessor enables you to develop application
programs to run under CICS. This application-programming interface enables you to
request CICS services by placing CICS commands anywhere within your C or C++
source code. The SAS/C CICS preprocessor translates these commands into appropriate
function calls for communication with CICS.

Once the preprocessor has translated the CICS commands within your C or C++
program, you then compile and link-edit your program as you would any SAS/C
program. When you run your SAS/C program, the function calls inserted by the
preprocessor invoke the services requested by calling the appropriate CICS control
program using the CICS EXEC Interface program.

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Using sascc370 13

Compiling C Programs under UNIX
This section explains how to invoke the SAS/C Cross-Platform Compiler with the

sascc370 command.

Using sascc370
The sascc370 compiler driver controls the compilation of your C source code. Invoke

the compiler driver with the following command:

sascc370 [options] [filename1 [filename2...]]

If specified, the options argument can be one or more of the compiler options
described in Chapter 3, “Compiling C and C++ Programs,” on page 39 or the cool
options described in Chapter 6, “Prelinking C and C++ Programs,” on page 73. You can
also view a partial listing of these options online by issuing the sascc370 command
without any arguments. Some of the compiler options are particular to the sascc370
driver, and others will alter the compilation in some manner. As mentioned in Chapter
1, “Overview of the SAS/C Cross-Platform Compiler and C++ Development System,” on
page 3, the compiler driver processes these options during the phases of compilation,
passing them to the appropriate executable file as necessary.

If you do not specify any compiler options, the cross-platform compiler will generate
prelinked, non-reentrant object code by default. Prelinking is accomplished by cool,
which is normally invoked by the compiler driver.

It should also be noted that the cross-platform compiler generates object code
targeted for an OS/390 environment by default. If you are compiling programs that you
intend to run under CMS, you should specify either the -Tcms370 or the -Tpcms370
compiler option. See Chapter 3, “Compiling C and C++ Programs,” on page 39 for more
information about these options.

The filename arguments specify a list of input files that are to be compiled or
prelinked. Files with a .c, .C, .cpp, or .cxx extension will be compiled (filenames that
end with .C, .cpp, or .cxx are assumed to be C++ input files); files with a .o extension
will be prelinked. See “Files” on page 19 for more information about the files used by
the cross-platform compiler.

Note: The -Kextname option, which enables the use of extended filenames, is on
automatically when you use sascc370. To disable the use of extended names, you must
specify -Knoextname. 4

Examples
The following examples are command line invocations of the cross-platform compiler

using sascc370:

sascc370 alpha.c
Compiles the file alpha.c, generating the prelinked output file a.out. Notice that
a.out is the default filename for prelinked output.

Normally, the prelinked output is copied to the mainframe for final linking.
However, you can also copy the object files to the mainframe and use COOL to
generate a load module. See “Linking C and C++ Programs” on page 17 for
additional information.

sascc370 -c alpha.c
Compiles the file alpha.c, generating the object file alpha.o. The -c compiler
option specifies that the object should not be prelinked.

14 Compiling C++ Programs under UNIX 4 Chapter 2

sascc370 -o beta alpha.c
Compiles the file alpha.c, generating the prelinked output file beta. The -o
option is used to specify the name of the prelinked output file. Notice that beta is
generated instead of the default a.out.

sascc370 -o beta alpha.c gamma.cxx
Compiles the file alpha.c as a C source file and the file gamma.cxx as a C++
source file, generating the prelinked output file beta and the object file alpha.o
and gamma.o. The -o option is used to specify the name of the prelinked output
file. Notice that beta is generated instead of the default a.out.

sascc370 -Kextname alpha.c
Compiles alpha.c, which may contain external C identifiers of lengths greater
than 8 characters. The -Kextname compiler option specifies extended names.

sascc370 -o gamma alpha.c beta.c
Compiles the files alpha.c and beta.c. The object files are then prelinked by
cool, combining the output into the gamma file. The gamma file would then need to
be copied to the mainframe for final linking.

sascc370 alpha.o beta.c
Compiles beta.c, which is then prelinked with alpha.o and the C libraries to
produce the prelinked output file a.out.

sascc370 -Krent -Tcms370 alpha.c beta.c
Compiles the files alpha.c and beta.c, generating reentrant code targeted for a
CMS system running under VM/ESA or VM/XA. The -Krent option specifies that
reentrant modification of external variables is allowed, and the -Tcms370 option
specifies that the cross-platform compiler preprocessor should use predefined CMS
symbols and link with the CMS libraries.

sascc370 -Tpcms370 -Tallres notrans.c
Compiles notrans.c, using the all-resident library to generate an all-resident
program targeted for a CMS system running in System/370 mode (pre-bimodal).

sascc370 -Tspe sysprog.c
Compiles sysprog.c, using the SPE library to generate a program targeted for the
C Systems Programming Environment under OS/390.

Compiling C++ Programs under UNIX
This section explains how to invoke the SAS/C Cross-Platform C++ Compiler directly

with the sasCC370 command.

Using sasCC370
The sasCC370 compiler driver controls the compilation of your C++ source code.

Invoke the compiler driver with the following command:

sasCC370 [options] [filename1 [filename2...]]

If specified, the options argument can be one or more of the compiler options
described in Chapter 3, “Compiling C and C++ Programs,” on page 39, or the cool
options described in Chapter 6, “Prelinking C and C++ Programs,” on page 73. (You can
also view a partial listing of these options online by issuing the sasCC370 command
without any arguments.) Some of the compiler options are particular to the sasCC370

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Using sasCC370 15

driver, and others will alter the compilation in some manner. As mentioned in Chapter
1, “Overview of the SAS/C Cross-Platform Compiler and C++ Development System,” on
page 3, the compiler driver processes these options during the phases of compilation,
passing them to the appropriate executable file as necessary.

If you do not specify any compiler options, the C++ development system will generate
prelinked, non-reentrant object code by default. Prelinking is accomplished by cool,
which is normally invoked by the compiler driver.

Note: The C++ development system generates object code targeted for an OS/390
environment by default. If you are compiling programs that you intend to run under
CMS, you should specify either the -Tcms370 or the -Tpcms370 compiler option. See
Chapter 3, “Compiling C and C++ Programs,” on page 39 for more information about
these options. 4

The filename arguments specify a list of input files that are to be compiled or
prelinked. Files with a .cxx, .cpp, .C, or .c extension will be considered to be C++
input and compiled as such. Files with a .o extension will be prelinked. See “Files” on
page 19 for more information about the files used by the cross-platform compiler.

It should also be noted that the -Kextname option, which enables the use of extended
names, is on automatically when you use sasCC370; extended names processing cannot
be disabled for C++ compilations.

The sasCC370 command is functionally equivalent to the sascc370 command with
the -cxx option.

Examples
The following examples are command line invocations of the cross-platform compiler

using sasCC370:

sasCC370 alpha.cxx
Translates and compiles the file alpha.cxx, generating the prelinked output file
a.out. Notice that a.out is the default filename for prelinked output.

Normally, the prelinked output is copied to the mainframe for final linking.
However, you can also copy the object files to the mainframe and use COOL to
generate a load module. See “Linking C and C++ Programs” on page 17 for more
information about prelinking and linking.

sasCC370 -c alpha.cxx
Translates and compiles the file alpha.cxx. The -c compiler option specifies that
the object should not be prelinked; therefore, the output file a.out is not generated.

sasCC370 -o beta alpha.cxx
Translates and compiles the file alpha.cxx, generating the prelinked output file
beta. The -o option is used to specify the name of the prelinked output file.
Notice that beta is generated instead of the default a.out.

sasCC370 -o gamma alpha.cxx beta.cxx
Translates and compiles the files alpha.cxx and beta.cxx. The object files are
then prelinked by cool, combining the output into the gamma file. The gamma file
would then need to be copied to the mainframe for final linking.

sasCC370 alpha.o beta.cxx
Translates and compiles beta.cxx, which is then prelinked with alpha.o and the
C++ and C libraries to produce the prelinked output file a.out.

sasCC370 -Krent -Tcms370 alpha.cxx beta.cxx
Translates and compiles the files alpha.cxx and beta.cxx, generating reentrant
code targeted for a CMS system running under VM/ESA or VM/XA. The -Krent
option specifies that reentrant modification of external variables is allowed, and

16 Compiling C and C++ Programs under a DOS Shell 4 Chapter 2

the -Tcms370 option specifies that the cross-platform compiler preprocessor should
use predefined CMS symbols and link with the CMS libraries.

Compiling C and C++ Programs under a DOS Shell
This section explains how to invoke the SAS/C Cross-Platform C and C++ Compiler

directly with the sascc370 command.
Under UNIX, you use the sascc370 compiler driver to compile C object code and the

sasCC370 compiler driver to compile C++ object code. Under Microsoft-DOS, however,
you use the sascc370 compiler driver to compile both C and C++ object code.

Using sascc370
The sascc370 compiler driver controls the compilation of your C or C++ object code.

Invoke the compiler driver with the following command:

sascc370 [options] [filename1 [filename2...]]

If specified, the options argument can be one or more of the compiler options
described in Chapter 3, “Compiling C and C++ Programs,” on page 39, or the cool
options described in Chapter 6, “Prelinking C and C++ Programs,” on page 73. You can
also view a partial listing of these options online by issuing the sascc370 command
without any arguments. Some of the compiler options (for example, -v)are particular
to the sascc370 driver, and others will alter the compilation phases in some manner.
The compiler driver processes these options during the phases of compilation, passing
them to the appropriate executable file as necessary.

If you do not specify any compiler options, the cross-platform compiler will generate
prelinked, non-reentrant object code by default. Prelinking is accomplished by cool,
which is normally invoked by the compiler driver.

Note: The cross-platform compiler generates object code targeted for an OS/390
environment by default. If you are compiling programs that you intend to run on
another operating system, you should specify the -Txxx option. For example, if you are
compiling programs you intend to run under CMS, specify either the -Tcms370 or the
-Tpcms370 compiler option. See Table 3.1 on page 42 for more information about these
options. 4

The filename arguments specify a list of input files that are to be compiled or
prelinked. Files with a .cxx, .cpp, or .c extension are considered to be C++ input and
are compiled as such. Files with a .o extension are prelinked. See “Files” on page 19
for more information about the files used by the cross-platform compiler.

The sascc370 compiler driver examines the filename extension to determine
whether the file contains source code (.cxx, .cpp , or .c) or compiled objects (.o, .obj,
or .a). The driver then takes actions based on the compiler options and the types of
input files specified on the command line.

Examples
The following examples are command line invocations of the cross-platform compiler

using sascc370:

sascc370 alpha.c
Compiles the file alpha.c, generating the prelinked output file a.out. Notice that
a.out is the default filename for prelinked output. Normally, the prelinked output
is copied to the mainframe for final linking.

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Linking C and C++ Programs 17

sascc370 -c alpha.c
Compiles the file alpha.c, generating the prelinked output file a.out. The -c
compiler option specifies that the object should not be prelinked.

sascc370 -o beta alpha.c
Compiles the file alpha.c, generating the prelinked output file beta. The -o
option is used to specify the name of the prelinked output file. Notice that beta is
generated instead of the default a.out.

sascc370 -o beta alpha.cxx
Translates and compiles the file alpha.cxx, generating the prelinked output file
beta. The -o option is used to specify the name of the prelinked output file.
Notice that beta is generated instead of the default a.out.

sascc370 -o beta alpha.c gamma.cxx
Compiles the source file alpha.c as a C source file and gamma.cxx as a C++
source file, generating the object files alpha.o and gamma.o. The object files are
then prelinked by cool, combining the output into the beta file. The -o option is
used to specify the name of the prelinked output file. Notice that beta is
generated instead of the default a.out.

sascc370 -Kextname -Krent alpha.c
Compiles alpha.c, which may contain external C identifiers of lengths greater
than 8 characters. The -Kextname compiler option specifies extended names. The
-Krent option specifies that reentrant modification of external variables is
allowed. The prelinked output file will be named a.out.

Linking C and C++ Programs
Linking in the cross-platform environment usually involves prelinking on the host

system and then copying the prelinked file to the target system, either OS/390 or CMS,
where the final linking occurs. Prelinking is performed by cool, which is normally
called when you compile your source code. Final linking of the prelinked output on the
mainframe can be accomplished with the IBM linkage editor or CMS LOAD and GENMOD
commands.

Although prelinking is performed by default when you call the cross-platform
compiler, you can suppress prelinking by specifying the -c compiler option. Note,
however, that prelinking is required, either on the workstation or on the mainframe, if
any of the following conditions are true:

� More than one compilation initializes an _ _rent variable. There are four ways a
variable is assigned the _ _rent attribute:

1 The variable is external and the compiler option -Krent or -Krentext is
used.

2 The variable is static and the compiler option -Krent is used.

3 The variable is external and the name begins with an underscore.
4 The variable is declared _ _rent.

� The -Kextname option is specified for more than one compilation.

� The -Tcms370 or -Tpcms370 options are specified and the cumulative length of the
pseudoregisters exceeds the maximum size allowed by the CMS loader.

� At least one C++ function is used.
� The SAS/C all-resident library was used.
� Some of the object modules are stored in an ar370 archive.

18 Using cool 4 Chapter 2

If you do not call the prelinker during compilation, you can perform the prelinking in
one of the following ways:

� Call cool directly
� Copy the object files to the mainframe and use COOL to perform the prelinking.

This section discusses each of these methods of prelinking.

Using cool
The prelinker, cool, is an executable file that can be called directly. The following is

the syntax for invoking cool:

cool [options] [filename1 [filename2 ...]]

The options argument specifies any of the prelinker options described in Chapter 6,
“Prelinking C and C++ Programs,” on page 73. You must use the -o option to specify an
output file when you invoke cool. If you enter the cool command without specifying
the -o option, an error message is displayed along with a partial listing of the options
accepted by cool.

The filename arguments specify a list of input files that are to be prelinked. You
must specify the complete name of the file; cool does not assume a .o extension.

The SAS/C C library objects are located in the ar370 archive /libdir/libc.a. The
libdir depends on where the product was installed and which target you are compiling
for. The SAS/C C++ objects are located in the ar370 archive /libdir/libcxx.a. In order
to resolve references to SAS/C C and C++ library functions, these ar370 archives must
be included in the cool command. If you are prelinking a C++ program, you must
specify /libdir/libcxx.a before specifying /libdir/libc.a.

Examples
The following examples are command line invocations of cool:

cool -o prog alpha.o beta.o /libdir/libc.a
Prelink the object files alpha.o and beta.o to produce the prelinked output file
prog.

libc.a must be included in order to resolve references to SAS/C C library
functions. The directory specification, libdir, for this library is target and
site-specific. If you are not sure where it is located at your site, compile a program
with the -v (verbose) option to see the default command line used by the
sascc370 or sasCC370 compiler driver to invoke cool.

cool -o prog myojb.o /libdir/libcxx.a /libdir/libc.a
In this example, a C++ object file, myojb.o, is being prelinked, generating the
prelinked output file prog.

Note: If you are using cool to prelink a C++ program, you must specify /libdir/
libcxx.a before specifying /libdir/libc.a. The SAS/C C++ library functions must
be resolved before SAS/C C library functions. The directory specification, libdir, for
this library is site-specific. If you are not sure where it is located at your site,
compile a program with the -v (verbose) option to see the default command line
used by the sascc370 or sasCC370 compiler driver to invoke cool. 4

cool -o prog interface.o io_handler.o /libdir/libares.a
In this example, the all-resident library, libares.a, is specified. Specialized
applications, such as all-resident or SPE applications, must be linked with special
library routines. See “Library Files” on page 20 and the SAS/C Compiler and
Library User’s Guide for more information.

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Files 19

cool -o prog -w binary_tree.o /libdir/libc.a
Prelink the object file binary_tree.o, generating the prelinked output file prog.
The -w option specifies that warning messages should be suppressed.

Using COOL on the Mainframe
The other method of prelinking your object files is to copy them to the mainframe

where they can be linked with the COOL object code utility. The SAS/C Compiler and
Library User’s Guide describes the COOL CLIST and the COOL EXEC, which can be used
to invoke COOL on the mainframe.

Note: You can use the UNIX cat command or the DOS copy /b command to
combine multiple object files into a single file on the workstation, copy that file to the
mainframe, and then run COOL on the mainframe on the copied file. This is often easier
than copying each file individually. 4

Also note that if you use extended names or the -Aprem option, you should not
prelink both on the workstation and on the mainframe.

Files

As described in “Executable Files” on page 7, the cross-platform compiler actually
consists of executable files. The sascc370 and sasCC370 compiler drivers are
responsible for processing the options you specify on the command line and controlling
the compilation of C and C++ programs. The other executable files are the translator,
parser, global optimizer, code generator, prelinker, and the object module disassembler.
The location of these files is site-specific.

The cross-platform compiler also supplies and uses additional files that are located in
other directories. These files are described in Table 2.1 on page 19.

Table 2.1 Additional Files Required

Files Location

Library The resident portion of the SAS/C C and C++ libraries is located in the ar370
archives found in the lib directory. Since the transient portion of the SAS/C C
and C++ libraries contains routines that must be loaded during program
execution, the transient portion must be located on the mainframe with your
executable load module. Different ar370 archives are provided for different
mainframe target environments.

Header The standard SAS/C C and C++ header files are located in an include directory.
Additional directory locations for include files can be specified.

Input Your source code, compiled objects, or ar370 archive input files can be located in
any directory you choose.

Output Your compiled or prelinked output can be directed to files in any directory you
choose.

The next four sections of this chapter provide additional information about the
library, include, input, and output files used by the cross-platform compiler.

20 Library Files 4 Chapter 2

Library Files
The SAS/C C and C++ libraries contain both resident and transient routines. (They

also provide all-resident and SPE routines that can be used in specialized applications.)
Resident routines are incorporated into your program before it is executed. Transient
routines are dynamically loaded during program execution.

Resident Library Routines
The resident libraries, libc.a for C and libcxx.a for C++, contain routines that are

prelinked with your application. Because these routines are added to your program
during prelinking, resident library routines are not dynamically loaded during program
execution. The resident library is specific to your target: OS/390, CMS (VM/ESA Mode),
or CMS (System/370 mode).

Transient Library Routines
The transient library is a collection of system-dependent routines that are loaded as

needed by a program during execution. For example, before the program’s main function
is entered, the command line must be parsed and the argv vector created. Because the
command line parsing routine is only needed once, during program start-up, the
program initialization routine dynamically loads it from the transient library and
unloads it (freeing the memory it required as well) when it is no longer needed.

All-resident Library Routines
In most programming situations, the dynamic loading and unloading of routines from

the transient library makes the best use of available resources. User storage is not
occupied by unused code, and when the support routines are installed in shared
memory, many users can access a single copy of the routine. Also, the load module is
much smaller because it contains only a small percentage of the required code.

However, in certain specialized applications and environments, it may be desirable to
force the program load module to contain a private copy of all the required support
routines. These programs can be characterized as all-resident programs because no
transient library routines are used. In order to create an all-resident program, your
program must include routines from the all-resident library.

The -Tallres compiler option is used to specify an all-resident program. You can
also invoke cool directly, specifying the location of the all-resident library, libdir/
libares.a, as an argument to cool.

SPE Library Routines
The SAS/C SPE library, libspe.a, provides resident routines that support the C

Systems Programming Environment (SPE). The -Tspe compiler option can be used to
specify an SPE program. You can invoke cool directly, specifying the location of the
SPE library as an argument to cool.

Header Files
C and C++ source files take advantage of preprocessor support for including auxiliary

source in a compilation by using the #include mechanism. The cross-platform compiler

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Header Files 21

C and C++ preprocessors interpret #include statements that cause auxiliary files to be
included as part of the source being compiled.

Auxiliary source files that are not provided as part of the SAS/C C and C++ libraries
are considered to be user header files, and are typically enclosed in double quotes. For
example

#include "error_messages.h"

Auxiliary files that are provided with the SAS/C C and C++ libraries are called
library header files or system header files, and are typically enclosed in angle brackets.
For example

#include <stdio.h>

The library header files are installed with the product in the include subdirectory
on UNIX and in the installdir\include subdirectory on Windows 95 and Windows
NT. This location is called the system directory on all three platforms.

When the SAS/C C and C++ preprocessors encounter a #include statement, the
auxiliary file to be included must be located. The compilers search for the named file in
a way that is typical of UNIX compilers. To modify the search order, use the
-Knousearch option. The following describes the search performed by the preprocessor.

� If the filename in the #include statement is a complete pathname, beginning
from the root directory (/), then no other searching is performed. If the C or C++
system is unable to read the named file, an error is produced.

� If the file was enclosed in double quotes and the -Knousearch option was not
specified, the search proceeds as follows. Look in:

1 The directory of the source file containing the #include statement.

2 Any directories specified by the -I compiler option. This search is done in the
order that the -I options appear on the command line.

3 The system directory.

� If the file was enclosed in angle brackets and the -Knousearch option was not
specified, the search proceeds as follows. Look in:

1 Any directories specified by the -I compiler option. This search is done in the
order that the -I options appear on the command line.

2 The system directory.

� If the file was enclosed in double quotes and the -Knousearch option was
specified, the SAS/C C preprocessors take the following steps to locate the named
file. Look in:

1 The current working directory.

2 Any directories specified by the -I compiler option. This search is done in the
order that the -I options appear on the command line.

3 The directory of the source file containing the #include statement.

4 The system directory.

� If the file was enclosed in angle brackets and the -Knousearch option was
specified, the SAS/C C preprocessors take the following steps to locate the named
file. Look in:

1 The current working directory.

2 The system directory.

The search order described in this section is traditional with UNIX C compilers, and
therefore meshes well with many of the programming tools commonly used under the
UNIX operating system, such as make.

22 Input Files 4 Chapter 2

Adding Directories to the Search Path under UNIX
The -I compiler option in the SAS/C Cross-Platform Compiler enables you to specify

additional directories that are searched before the standard include-file search list. For
example, the following command causes the cross-platform compiler to search the /u/
userid/branch_bank/headers directory for header files:

sascc370 -I/u/userid/branch_bank/headers
debits.c credits.c

In this example, debits.c or credits.c could contain the statement

#include "transactions.h"

which would be located in the /u/userid/branch_bank/headers directory. The -I
option works the same for sasCC370.

Adding Directories to the Search Path under a Windows Environment
When the SAS/C C and C++ preprocessors encounter a #include statement, the

auxiliary file to be included must be located. The compiler searches the
SASCINCLUDE environment variable, which was automatically defined at installation.
You have two options for adding additional user directories to the search path.
Depending on your desired search order, you can either prefix or append the
SASCINCLUDE environment variable in your installdir\host\wnt\bin\sascc.cfg
configuration file. Or, you can use the -I compiler option in the SAS/C Cross-Platform
Compiler to enable you to specify additional directories that are searched before the
standard include–file search list. For example, either of the following solutions causes
the cross-platform compiler to first search the c:\user\branch_bank\headers
directory, then the system directory, for header files:

sascc370 -Ic:\user\branch_bank\headers
debits.c credits.c

Or, you could change the sascc.cfg file to explicitly prefix the user header file
directory to the INCLUDE statement:

INCLUDE=c:\user\branch_bank\headers;
%SASCINCLUDE%

In these two examples, debits.c and credits.c could contain the statement:

#include "transactions.h"

which would be located in the c:\user\branch_bank\headers directory.

Input Files
Under a Windows environment, the sascc370 compiler driver accepts C source, C++

source, and previously compiled objects. Under UNIX the the sascc370 compiler driver
accepts C source and previously compiled objects, and the sasCC370 compiler driver
accepts C++ source and previously compiled objects. However, the sascc370 compiler
driver can accept C++ source under UNIX if you specify -cxx on the sascc370
command line.

sascc370 Input Files
The sascc370 compiler driver accepts the following input files.

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Output Files 23

Table 2.2 sascc370 Input Files

Input Files Description

C Source Files uncompiled C source code, identified by a .c filename extension.

C++ Source Files uncompiled C++ source code, identified by .cpp, .cxx, or .C.

Compiled Object Files contain previously compiled object code. Identified by a .o
filename extension.

Archive Libraries ar370 archive files. Identified by a .a filename extension.

The sascc370 compiler driver examines the filename extension to determine
whether the file contains source code (.c) or compiled objects (.o or .a). The driver
then takes action based on the compiler options and the types of input files specified on
the command line. For a .c file, the following actions are taken:

1 Invoke the cross-platform compiler to produce a .o object file.

2 Invoke cool with the system ar370 archive, libc.a, and the .o object file to
produce a prelinked object file.

The output files produced by this sequence are described in “Output Files” on page 23.

sasCC370 Input Files
The sasCC370 compiler driver accepts the following input files.

Table 2.3 sasCC370 Input Files

Input Files Description

C++ Source Files uncompiled C++ source code, identified by a .cpp, .cxx, .C, or .c
filename extension.

Compiled Object Files contain previously compiled object code. Identified by a .o filename
extension.

Archive Libraries ar370 archive files. Identified by a .a filename extension.

The sasCC370 compiler driver examines the filename extension to determine
whether the file contains source code (.cpp, .cxx, .C, or .c) or compiled objects (.o or
.a). The driver then takes action based on the compiler options and the types of input
files specified on the command line. For a .c file, the following actions are taken:

1 Invoke the cross-platform compiler to produce a .o object file.

2 Invoke cool with the system ar370 archive, libc.a, and the .o object file to
produce a prelinked object file.

The output files produced by this sequence are described in “Output Files” on page 23.

Output Files
Depending on how they are invoked, the sascc370 and sasCC370 compiler drivers

produce any of the following output file types:

24 Output Files 4 Chapter 2

Table 2.4 sascc370 Output Files

Output Files Contents

Object Files unlinked object code and are identified by a .o filename extension.

Prelinked Output Files object code that has been prelinked by cool. By default, the prelinked
output is written to a.out. The -o compiler option is used to direct the
output to another file.

Preprocessed Source
Files

source code that has been preprocessed and are identified by a .i
extension. Preprocessed source code has all the macros and #include
files expanded. These files are generated by invoking the sascc370
compiler driver with the -P option.

Debugger Files information used by the SAS/C Debugger and are identified by a
.dbg370 filename extension. These files are produced if the -g compiler
option is specified.

OMD Output Files output from the Object Module Disassembler. These files are identified
by a .omd filename extension. See Chapter 5, “Using the Global
Optimizer and the Object Module Disassembler,” on page 69 for more
information.

Listing Files output listings and are identified by a .lst filename extension. The
-Klisting compiler option is used to specify a particular listing file.

The prelinked object file can be copied to the mainframe, where it is then submitted
to the linkage editor, which accomplishes the final linking and generates an executable
module. Note that your output files will be targeted for an OS/390 environment by
default. Use either the -Tcms370 or the -Tpcms370 compiler options to generate output
files that are compatible with the CMS environment. Use the -Tcics compiler option to
generate output files that are compatible with the CICS environment.

The .dbg370 debugger files are required to debug your program with the SAS/C
Debugger. See Chapter 9, “Cross-Debugging,” on page 93 for more information about
using the SAS/C Debugger in the cross-platform development environment.

Output Filename Generation
Unless you use the -o compiler option to specify an output filename, the base

filename of the source file will be used to generate the base filenames of the output
object and listing files. For example, suppose you invoked the cross-platform compiler
with the following command:

sascc370 -Kilist students.c

In this example, the -Kilist option specifies that a header file listing should be
generated. The students.c file contains uncompiled source code that includes a header
file that will be printed to the output listing. The following output files are produced:

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Output Files 25

Table 2.5 Example Output Files

File Description

a.out prelinked output file

students.lst listing file containing the source code for the included header file.

students.o compiled file containing object code.

Using -o with a Single Source File

If file students.c is compiled with the -o option, the output object and listing
filenames are formed with the specified base name. For example, suppose the
cross-platform compiler is invoked as follows:

sascc370 -o roster -Kilist students.c

In this case, the following output files are generated:

Table 2.6 Example Output Files

File Description

roster prelinked output file

students.lst listing file containing the source code for the included header file.

students.o compiled file containing object code.

Notice that the a.out file is not generated in this case; instead, the prelinked object
is written to the file specified with -o.

Using -o with Multiple Source Files

With multiple input files, the base name of each source file is used to generate the
base of the .o and .lst filenames associated with the source file. For example,

sascc370 -o acct_bal -Kilist debit.c credit.c

In this case, the following output files are generated:

Table 2.7 Example Output Files

File Description

acct_bal prelinked output file

debit.lst listing file containing the source code for the header file included by
debit.c.

credit.lst listing file containing the source code for the header file included by
credit.c.

26 Windows Environment Configuration File 4 Chapter 2

File Description

credit.o compiled file containing object code.

debit.o compiled file containing object code.

Windows Environment Configuration File

A configuration file named sascc.cfg was created when you installed the SAS/C C
and C++ driver on your PC. This file contains important location information used by
the sascc370 driver. If you move the software after the initial installation, or if you
need to permanently define additional #include search paths, you need to modify
sascc.cfg.

Following is an example sascc.cfg data file:

#
PATH points to the <installation dir>
INCLUDE points to <installation dir>\include
#
The Environment variables SASCDEV and SASCINCLUDE
are generated at the time of installation of the
SAS/C and C++ Cross-Platform product. Only change
these two variables if you alter the location of
the installation on your PC.
#
Use the ’set’ command in an MS-DOS shell to change
the Environment variables, or concatenate
explicit pathname qualifiers to the following
PATH and INCLUDE variables.
#
PATH=%SASCDEV%
INCLUDE=%SASCINCLUDE%

sascc.cfg is found in the installdir\host\wnt\bin directory. The sascc370
compiler driver uses the SASCDEV and SASCINCLUDE environment variables to
determine the installation directory, and thus determine the locations of the
components listed in Table 2.8 on page 26.

Table 2.8 Component Paths

Component Location

Executables PATH\host\wnt\bin

Standard library directory PATH\lib

System include files INCLUDE

The SASCDEV and SASCINCLUDE environment variables were automatically set
during the install process. PATH and INCLUDE direct the sascc370 driver to the

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Compiling C and C++ Source Code 27

appropriate installation directory and the location of the system header files. The PATH
and INCLUDE identifiers in the sascc.cfg configuration file are independent of the
Windows PATH and INCLUDE environment variables set in the Windows operating
system.

Using SAS/C C and C++ under a DOS Shell
The following sections provide examples of different DOS shell batch files used to

generate compiled object code and prelinked output for final execution on the
mainframe. See “Using SAS/C C and C++ under the Microsoft Visual C++ IDE” on page
34 for a description of similar objectives under Microsoft Visual C++ IDE.

Compiling C and C++ Source Code
The following sample compile batch file will accept as input a .c file and compile the

code to produce only an object deck (-c), allowing reentrant modification of static and
external data (-Krent), and defining a section name as the source code filename
(-Ksname). (Note the section name must be seven characters or less.) The -v option
specifies that both the driver messages and the command lines that execute each phase
of the cross-platform compiler are echoed to the %LOG% file. If the source file is not in
the current working directory, the quoted, qualified pathname should be entered as the
second command-line argument.

@echo off
set NAME=%1
set PATHNAME=
if NOT ’%2’==’’ set PATHNAME=%2\
set SOURCE=%PATHNAME%%NAME%.c
set OBJECT=%NAME%.o
set LOG=%NAME%.clg
set C_OPTS=-c -v -Krent -Ksname=%NAME%
erase %LOG%
erase %OBJECT%
sascc370 %C_OPTS% %SOURCE% -o %OBJECT% > %LOG%
echo Done with %NAME%.

Following is the correct syntax to invoke this sample compile.bat file:

compile sourcename [pathname]

For example, to compile the file D:\Program Files\sasc\samples\c\ftoc.c and
produce ftoc.o in the current working directory, enter the following command:

compile ftoc "d:\Program Files\sasc\samples\c"

where ftoc on the command line is the source code filename without the .c
extension.

At installation, the PATH environment variable is prefixed to include the location of
the sascc370 driver (installdir\host\wnt\bin), so the driver name in these batch
files should not require an explicit pathname.

28 Prelinking Object Code 4 Chapter 2

Prelinking Object Code
The following sample prelink batch file accepts as input the previously compiled

object code filename (without the .o extension) and produces prelinked output from
cool. The -v option specifies that any driver messages, and the command lines that
execute cool, are echoed to the %LOG% file. If the object file is not in the current
working directory, the quoted, qualified pathname should be entered as the second
command-line argument.

@echo off
set NAME=%1
set PATHNAME=
if NOT ’%2’==’’ set PATHNAME=%2\
set OBJECT=%PATHNAME%%NAME%.o
set OUTPUT=%NAME%
set LOG=%NAME%.llg
set L_OPTS=-v
erase %LOG%
erase %OUTPUT%
sascc370 %L_OPTS% %OBJECT% -o %OUTPUT% > %LOG%
echo Done with %NAME%.

Following is the correct syntax to invoke this sample link.bat file:

link objectname [pathname]

For example, to prelink the object file ftoc.o and generate ftoc, enter the following
command:

link ftoc

where ftoc on the command line is the object code filename without the .o extension.

Building Source Code
Alternatively, to compile and prelink source code in one step, you could execute the

following batch file. The sascc370 driver executes the SAS/C C and C++
Cross-Platform compiler, which produces prelinked output generated by cool. In the
following example, the compiler options specify reentrant code, extended names
processing (-Kextname), a section name, run-time type identification (-Krtti), and
instantiation of class templates (-Kautoinst). A quoted include pathname is added for
user-defined header files. The command line that executes each phase of the
cross-platform compiler is displayed in the %LOG% file.

@echo off
set NAME=%1
set PATHNAME=
if NOT ’%2’==’’ set PATHNAME=%2\
set OUTPUT=%NAME%
set LOG=%NAME%.log
set BLD_OPTS=-v -Krent -Kextname -Ksname=%NAME%

-Krtti -Kautoinst
set INCL= -I"d:\Program Files\sasc\samples\h"
erase %LOG%

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Building Source Code 29

erase %OUTPUT%
sascc370 %BLD_OPTS% %INCL% %SOURCE% -o %OUTPUT% > %LOG%
echo Done with %NAME%.

Following is the correct syntax to invoke this sample build.bat file:

build sourcename [pathname]

For example, to compile and prelink the file

d:\Program Files\sasc\samples\cxx\tsttmpl.cxx

enter the following command:

build.bat tsttmpl "d:\Program Files\sasc\samples\cxx"

where tsttmpl on the command line is the C++ source code filename without the .cxx
extension. This method produces two files. In this example, the compiler generates the
object file tsttmpl.o and the prelinker produces the prelinked output file tsttmpl.

The output tsttmpl.log file should look something like the example in Output 2.1
on page 29:

30 Customizing Microsoft Visual C++ Integrated Development Environment Menus 4 Chapter 2

Output 2.1 Example log file

SAS/C Compiler Driver V6.50.01

Copyright (C) 1998 SAS Institute Inc.

set INCLUDE370=’d:\Program Files\SASC\Include’

"d:\Program Files\SASC\host\wnt\bin\cxx" -Adigraph1 -Adigraph2

-DCROSS370=l -XA -Hu ’-r’ ’-Arrti’ "-Id:\Program Files\Sasc\Samples\h"

’-MC:\TEMP\sascca00344.1.ai’ ’-mtsttmpl’

"d:\program files\sasc\samples\cxx\tsttmpl.cxx"

"C:\TEMP\sascca00344.1.c"

"d:\Program Files\SASC\host\wnt\bin\lc1" -dCROSS370=1 -cd -hu -n! ’-r’

’-n!’ "-id:\Program Files\Sasc\Samples\h" -cxx -d__CXX_PRIMARY__=1

-q011=1 ’-ststtmpl’ -xc

"-oC:\TEMP\sascca00344.1.q" "C:\TEMP\sascca00344.1.c

SAS/C Release 6.50.01 (Target 370 Cross Compiler)

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

*** No errors; No warnings; No user suppressed warnings

"d:\Program Files\SASC\host\wnt\bin\lc2" "-oC:\TEMP\sascca00344.1.o"

"C:\TEMP\sascca00344.1.q"

SAS/C Compiler (Phase 2) 6.50.01

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

"d:\Program Files\SASC\host\wnt\bin\lc1" -dCROSS370=1 -cd -hu -n! ’-r’

’-n!’ "-id:\Program Files\Sasc\Samples\h" -cxx -d__CXX_SECONDARY_0__=1

-q011=2 ’-q012=@%TEMPL’ -xc "-oC:\TEMP\sascca00344.1.q"

"C:\TEMP\sascca00344.1.c"

SAS/C Release 6.50.01 (Target 370 Cross Compiler)

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

*** No errors; No warnings; No user suppressed warnings

"d:\Program Files\SASC\host\wnt\bin\lc2" "-oC:\TEMP\sascca00344.2.o"

"C:\TEMP\sascca00344.1.q"

SAS/C Compiler (Phase 2) 6.50.01

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

"d:\Program Files\SASC\host\wnt\bin\lc1" -dCROSS370=1 -cd -hu -n! ’-r’

’-n!’ "-id:\Program Files\Sasc\Samples\h" -cxx -d__CXX_SECONDARY_1__=1

-q011=3 ’-q012=@%TEMPL’ -xc "-oC:\TEMP\sascca00344.1.q"

"C:\TEMP\sascca00344.1.c"

SAS/C Release 6.50.01 (Target 370 Cross Compiler)

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

*** No errors; No warnings; No user suppressed warnings

"d:\Program Files\SASC\host\wnt\bin\lc2" "-oC:\TEMP\sascca00344.3.o"

"C:\TEMP\sascca00344.1.q"

SAS/C Compiler (Phase 2) 6.50.01

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

"d:\Program Files\SASC\host\wnt\bin\sheller" -c -o tsttmpl.o

"@C:\TEMP\sascca00344.1.shell"

"d:\Program Files\SASC\host\wnt\bin\cool" -o "tsttmpl"

-L"d:\Program Files\SASC" tsttmpl.o

"d:\Program Files\SASC"\lib\libcxx.a

"d:\Program Files\SASC"\lib\mvs\libc.a

SAS/C (R) C Object code Pre-Linker Release 6.50.01

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

cool: Note 1010: Pre-Linking completed with return code = 0

Customizing Microsoft Visual C++ Integrated Development Environment
Menus

The following information applies only to Version 5.0 and later of the Microsoft
Visual C++ Integrated Development Environment (IDE).

If you selected the option to integrate SAS/C into the Microsoft Visual C++ IDE, two
additional menu items, Compiler Options and SAS/C Help Files, appear on the

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Adding SAS/C Compiler Options and Help Files to a

Pull-Down Menu 31

Tools pull-down menu in the Microsoft Visual C++ IDE after you install SAS/C on your
PC. You can permanently move these items to a more intuitive area of the menu bar in
the Microsoft Visual C++ IDE by importing one of the following files into your Registry:

layout50.reg
if you are using Microsoft Visual C++ IDE, Version 5

layout60.reg
if you are using Microsoft Visual C++ IDE, Version 6

Importing a Layout File
The following procedure describes how to use the Windows Start button on the

taskbar to import the layoutnn.reg file for the version of the Microsoft Visual C++ IDE
you are using:

1 Select Run from the Start button pop-up menu.
2 Type regedit in the Open text box.
3 Select Registry.
4 Select Import Registry File....
5 Select the installdir\host\wnt\bin directory in the Import Registry File.
6 Select the layoutnn.reg file for the version of the Microsoft Visual C++ IDE you are

using.
7 Click Open.

Adding SAS/C Compiler Options and Help Files to a Pull-Down Menu
The following two procedures describe how to add the SAS/C Compiler Options and

the SAS/C Help Files dialogs to the pull-down menus of the Microsoft IDE. When you
launch a new session of the Microsoft IDE, a new pull-down menu item named SAS/C
will appear. The SAS/C menu item enables access to the Compiler Options and the
SAS/C Help Files dialogs. You can use either procedure.

� Use the following procedure if you prefer to leave the Compiler Options item in
the Tools pull-down menu and copy the SAS/C Help Files item to the Help
pull-down menu:

1 Select Customize from the Tools pull-down menu.
2 Select the Commands tab.
3 Select Tools from the Category list.
4 Select and drag user-defined tool 8 over the Help pull-down menu.
5 Drop the tool 8 item onto the most convenient area of the Help pull-down

menu.
6 Close the Customize dialog box.

� Use the following procedure if you prefer to create a new pull-down menu on the
toolbar titled SAS/C and copy the Compiler Options and SAS/C Help Files
items to this menu:

1 Select Customize from the Tools pull-down menu.
2 Select the Commands tab.
3 Select new menu from the Category list.
4 Drag and drop the the new menu item from the Command list box to an

empty spot on the toolbar docking area.

32 Using the SAS/C and C++ Cross-Platform Compiler under the Microsoft Visual C++ IDE 4 Chapter 2

5 Right-click on the new menu item.
6 Select Button Appearance... to open a dialog box that enables the Button

Text Update.
7 Enter SAS/C in the appropriate text box.
8 Select a Category for adding menu items, for example, Tools.
9 Select tool 7 in the Command list box.
10 Drag and drop tool 7 on the new menu, Custom Menu #.
11 Select tool 8 in the Command list box.
12 Drag and drop tool 8 on the new menu, Custom Menu #.
13 Close the Customize dialog box.
14 Open Customize from the Tools pull-down menu again.
15 Select Menus from the Category list.
16 Select the new menu, Custom Menu # from the Command list box.
17 Drag and drop Custom Menu # on the Menu bar.

Now you can delete the Menu item from the toolbar.

Using the SAS/C and C++ Cross-Platform Compiler under the Microsoft
Visual C++ IDE

If you prefer to use the Microsoft Developer Studio, you can use the SAS/C and C++
Cross-Platform Compiler within the Microsoft Visual C++ Integrated Development
Environment. To ensure that the SAS/C and C++ Cross-Platform Compiler is invoked
in the Microsoft Developer Studio, follow these steps:

1 Select the Tools menu from the Microsoft Developer Studio toolbar.
2 Select Compiler Options.
3 Select SAS/C and C++ Cross-Platform Compiler.
4 Select OK.

When you select the SAS/C and C++ Cross-Platform Compiler from the Microsoft
Developer Studio Tools menu, it becomes the default compiler whenever you restart
Microsoft Visual C++. The item for the SAS/C and C++ Cross-Platform Compiler on the
Compiler Options menu is the default selection, but it does not reflect the current
compiler selection set up in the Registry.

To compile and prelink source code using the SAS/C and C++ Cross-Platform
Compiler, you first need to configure the compile and prelink options in the Win32
Release settings for your project. Although some menu differences exist between
Version 4.2 and later versions of Microsoft Visual C++, these operations apply to
Version 4.2 and later versions. The following examples are taken from Microsoft Visual
C++ 5.0, but the SAS/C++ Cross-Platform Compiler is compatible with Version 4.2 and
later of Microsoft Visual C++.

Configuring Compile and Prelink Options
The following example uses a project named ftoc. Use the following procedure to

configure the compile and prelink options for the ftoc project in Microsoft Visual C++:

1 Select the Build menu.

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Adding and Deleting Compiler and Project

Options 33

2 Select Set Active Configuration.
3 Select the ftoc-Win32 Release project configuration.
4 Select the Project menu.
5 Select the Settings option.
6 Select the C/C++ tab.
7 Remove all the Microsoft Visual C++ compiler options except for the following: /ML.

The SAS/C and C Cross-Platform Compiler ignores the /ML option. Also, the
Microsoft Visual C++ compiler options in Table 2.9 on page 33 are interpreted as valid
SAS/C Cross-Platform Compiler options.

Table 2.9 Recognized Microsoft Visual C++ Compiler Options

Microsoft Option Description

/Fdfilename Renames program database file

/nologo Suppresses display of sign-on banner

/Dname[=def] Defines constants and macros

/c Compiles without linking

/Zi Generates complete debugging information

/O Executes Global Optimizer

/O1 Executes Global Optimizer

/O2 Executes Global Optimizer

/Idirectory Searches a directory for include files

In the Project Options field, you can add any of the SAS/C and C++
Cross-Platform Compiler options that are listed in the compiler options list in the SAS/
C Cross-Platform Compiler and C++ Development System: Usage and Reference. For
example, to specify verbose commands, automatic instantiation of class templates,
run-time type identification, and re-entrant code generation, add the -v, -Kautoinst,
-Krtti, and -Krent options for sascc370.

Delete all the project options under the Project Settings Link tab except for
/incremental:no, /pdb:"/ftoc.pdb", and /machine:IX86. The sascc370 driver
ignores these three options. Specify the name of the prelinked output file in the Output
file name field. Add any sascc370 driver options for prelinking, such as -v, to the
Project Options field. The Project Options field should appear as
/incremental:no /pdb:"/ftoc.pdb" /machine:IX86 /out:"ftoc" -v.

Adding and Deleting Compiler and Project Options
You can use the Project Options window to add any SAS/C and C++ Cross-Platform

Compiler options. Similarly, you can use the Project Settings Link tab to delete all the
Project Options except /incremental:no/pdb:’’/ftoc.pdb’’/machine:IX86. These
options are enforced by the Microsoft Visual C++ IDE, but they are ignored by the SAS/
C and C++ Cross-Platform Compiler.

If source-level settings are required for a project, you can use the following procedure
to set options for each source file in the Settings For text box in the Project Settings
dialog box:

34 Compiling and Prelinking Object Code 4 Chapter 2

1 Select the C/C++ tab.
2 Select Category.
3 Select General from the drop-down menu and enter your preprocessor definitions.
4 Select Category again.
5 Select Preprocessor and enter any additional include directories.
6 Select the Undefined symbols text box, and enter any sascc370 options for the

compiler that are to be allocated to the selected source file.

Note: These driver options are not defined by the Microsoft Visual C++ IDE,
and are applicable only to sascc370. A /U will prefix any options entered in this
area when you view it in the Source File Options text box. The sascc370 driver
ignores the /U, and it passes any associated options to the appropriate phases of
compilation.

To compile and pre-link source code, select Build ftoc from the Build
pull-down menu. 4

Compiling and Prelinking Object Code
To compile and prelink the source code, select the Build ftoc item from the Build

menu. The SAS/C and C++ Cross-Platform Compiler generates a compiled object file,
ftoc.obj, and a prelinked output file, ftoc.exe. Any execution messages or error
diagnostics are displayed in the Output view.

Using SAS/C C and C++ under the Microsoft Visual C++ IDE
If you prefer to use the Microsoft Developer Studio, you can use SAS/C C and C++

within the Microsoft Visual C++ Integrated Development Environment. To ensure the
SAS/C and C++ compiler is invoked in the Microsoft Developer Studio,

1 Select the Tools menu from the Microsoft Developer Studio toolbar.
2 Select Compiler Options.
3 Select Cross-Platform SAS.
4 Select OK.

When you select the SAS/C and C++ compiler from the Microsoft Developer Studio
Tools menu, it becomes the default compiler whenever you restart Microsoft Visual C++.
The selection button for the SAS/C and C++ compiler on the Compiler Options menu
will not be highlighted, but the SAS/C and C++ compiler is the default compiler. If you
later change the compiler selection from the SAS/C and C++ compiler to the Microsoft
compiler, the Microsoft compiler becomes the default compiler.

To compile and prelink source code using the SAS/C and C++ compiler, you first need
to configure the compile and prelink options in the Win32 Release settings for your
project. Although some menu differences exist between Microsoft Visual C++ Version
4.2 and Version 5.0, these operations apply to both versions. The following examples
are taken from Microsoft Visual C++ 5.0, but the SAS/C C and C++ compiler is
compatible with Versions 4.2 and 5.0 of Microsoft Visual C++.

Configuring Compile and Prelink Options
The following example uses a project named ftoc. Use the following procedure to

configure the compile and prelink options for the ftoc project in Microsoft Visual C++:

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 Compiling and Prelinking Object Code 35

1 Select the Build menu.
2 Select Set Active Configuration.
3 Select the ftoc-Win32 Release project configuration.
4 Select the Project menu.
5 Select the Settings option.
6 Select the C/C++ tab.
7 Remove all the Microsoft Visual C++ compiler options except for the following: /ML

/FO"Release/".

The SAS/C C and C++ compiler ignores the /ML and /FO"Release/" options. Also,
the Microsoft Visual C++ compiler options in Table 2.10 on page 35 are interpreted as
valid SAS/C cross-platform compiler options.

Table 2.10 Recognized Microsoft Visual C++ Compiler Options

Microsoft Option Description

/Fdfilename Renames program database file

/nologo Suppresses display of sign-on banner

/Dname[=def] Defines constants and macros

/c Compiles without linking

/Zi Generates complete debugging information

/O Executes Global Optimizer

/O1 Executes Global Optimizer

/O2 Executes Global Optimizer

/Uname Eliminates initial name definition

/Idirectory Searches a directory for include files

In the Project Options field, you can add any of the SAS/C C and C++ compiler
options that are listed in Chapter 3, “Compiling C and C++ Programs,” on page 39. For
example, to specify verbose commands, automatic instantiation of class templates,
run-time type identification, and reentrant code generation, add the -v, -Kautoinst,
-Krtti, and -Krent options for sascc370.

Delete all the project options under the Project Settings Link tab except for /
incremental:no, /pdb:"Release/ftoc.pdb", and /machine:IX86. The sascc370
driver ignores these three options. Specify the names of the input object modules in the
Object/library modules field. Specify the name of the prelinked output file in the
Output file name field. In this example, although the input object filename, ftoc.o,
is located in directory D:\Program Files\DevStudio\MyProjects\temperature, the
Object/library modules field does not contain the fully qualified object file
pathname. Add any sascc370 driver options for prelinking, such as -v, to the Project
Options field. The Project Options field should appear as ftoc.o /incremental:no
/pdb:"Release/ftoc.pdb" /machine:IX86 /out:"ftoc" -v.

Compiling and Prelinking Object Code
To compile and prelink the source code, select the Build ftoc item from the Build

menu. SAS/C C and C++ generate a compiled object file, ftoc.o, and a prelinked

36 ar370 Archives 4 Chapter 2

output file, ftoc. Any execution messages or error diagnostics are displayed in the
Output view. For this example, when building ftoc.cxx, the output window should
contain something like the output in Output 2.2 on page 36:

Output 2.2 Example output window contents

- - - - - - - - - - Configuration: ftoc - Win32 Release - - - - - - - - - -

Compiling...

SAS/C Compiler Driver V6.50.01

Copyright (C) 1998 SAS Institute Inc.

set INCLUDE370=’d:\Program Files\SASC\Include’

"d:\Program Files\SASC\host\wnt\bin\cxx" -Adigraph1 -Adigraph2

-DCROSS370=l -XA -Hu ’-r’ ’-Arrti’ ’-MC:\TEMP\sascca00319.1.ai’

’mftoc’ "D:\Program Files\Dev\Studio\MyProjects\temperature\ftoc.cxx"

"C:\TEMP\sascca00319.1.c"

sascc370: Invalid ’/FoRelease’ ignored

SAS/C C++ 6.50.01 (Mar 2 1998)

Copyright (C) 1998 SAS Institute Inc.

"d:\Program Files\SASC\host\wnt\bin\lc1" -dCROSS370=1 -cd -hu -n! ’-r’

-cxx -d__CXX_PRIMARY__=1 -q011=1 ’-sftoc’ -xc

"-oC:\TEMP\sascca00344.1.q" "C:\TEMP\sascca00319.1.c"

SAS/C Release 6.50.01 (Target 370 Cross Compiler)

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

*** No errors; No warnings; No user suppressed warnings

"d:\Program Files\SASC\host\wnt\bin\lc2" "-oC:\TEMP\sascca00319.1.o"

"C:\TEMP\sascca00319.1.q"

SAS/C Compiler (Phase 2) Release 6.50.01

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

"d:\Program Files\SASC\host\wnt\bin\sheller" -c -o ftoc.o

@C:\TEMP\sascca00319.1.shell

You have selected the SAS C/C++ Cross Platform Compiler

Linking...

SAS/C Compiler Driver 6.50.01

Copyright (c) 1998 SAS Institute Inc.

set INCLUDE370=’d:\Program Files\SASC\Include’

"d:\Program Files\SASC\host\wnt\bin\cool" -o "ftoc"

-L"d:\Program Files\SASC" ftoc.o "d:\Program Files\SASC"\lib\libcxx.a

"d:\Program Files\SASC"\lib\mvs\libc.a

SAS/C (R) C Object code Pre-Linker Release 6.50.01

Copyright (c) 1998 by SAS Institute Inc. All Rights Reserved.

cool: Note 1010: Pre-Linking completed with return code = 0

You have selected the SAS C/C++ Cross Platform Linker

ftoc - 0 error(s) 0 warning(s)

ar370 Archives

An ar370 archive library is a collection of object files, similar to a partitioned data set
under OS/390 or a TXTLIB under CMS. The advantage of ar370 archives is that they
combine several files into one file, and they maintain a list of definitions of variables
and functions. The items in the list are not limited in length, which allows references to
long symbols to be resolved during linking. Furthermore, collecting many objects
together in one ar370 archive can provide a single file for managing these objects.

Note: External references to variables are resolved by extracting files that define
the reference from the ar370 archive. This is similar to the autocall process under OS/
390 or CMS; however, there is an important distinction. On OS/390 and CMS, a
reference is resolved by examining the names of the members of the partitioned data
set or TXTLIB. Under UNIX, cool determines which file contains a defining instance of
a reference by examining the ar370 generated symbol table, which is part of the ar370

Using the SAS/C Cross-Platform Compiler and C++ Development System 4 ar370 Archives 37

archive. Thus, references are resolved following a mechanism that is more common to
UNIX implementations.

The ar370 utility used to create and manage ar370 archives is described in Chapter
7, “ar370 Archive Utility,” on page 85. 4

38 ar370 Archives 4 Chapter 2

39

C H A P T E R

3
Compiling C and C++ Programs

Introduction 39
Syntax 39

Specifying Phase of Compilation of C and C++ Programs 40

Examples 41

Cross-Platform Compiler Defaults 41

Option Summary 41
Option Descriptions 47

External Compiler Variables 62

Language Extensions 63

Compiler Comment Support 63

Extended @ Operator Capability 63

Character and String Qualifiers 64

Introduction
The SAS/C C and C++ cross-platform compiler accepts a number of options that

allow you to alter the way code is generated, the appearance of listing files, and other
aspects of compilation. This chapter explains what options are available and how to
specify them.

Since the global optimizer and object module disassembler (OMD) are often executed
as part of compilation, the options accepted by the global optimizer and OMD are also
discussed in this chapter. The global optimizer and OMD are also discussed in Chapter
5, “Using the Global Optimizer and the Object Module Disassembler,” on page 69.

Note: Several compiler options have new names in this release. For backward
compatibility with previous releases, you can also use the old names. For details, see
Appendix 4, “Redistributing SAS/C Product Files,” on page 135. 4

Syntax
As described in Chapter 2, “Using the SAS/C Cross-Platform Compiler and C++

Development System,” on page 11, the basic syntax for invoking the sascc370 compiler
driver to compile your C object code is as follows:

sascc370 [options] [filename1 [filename2...]]

The basic syntax for invoking the sasCC370 compiler driver to compile your C++
object code is as follows:

sasCC370 [options] [filename1 [filename2...]]

40 Specifying Phase of Compilation of C and C++ Programs 4 Chapter 3

The options argument for sascc370 and sasCC370 can be one or more of the driver
options described in the section “Option Descriptions” on page 47. You can also specify
cool options when you invoke the compiler driver, which are described in Chapter 6,
“Prelinking C and C++ Programs,” on page 73, and CICS preprocessor options, which are
described in Chapter 4, “Using the SAS/C CICS Command Preprocessor,” on page 65.

Specifying Phase of Compilation of C and C++ Programs
The SAS/C compile process is divided into several phases. Calls to each phase are

normally controlled by a front-end command processor. These front-end processors
accept what are referred to as long-form options. When invoking the various phases,
the front-end processors convert the options applicable to each phase to a form referred
to as short-form options. Each phase only accepts the short-form versions of its options.

Note: Though short-form options may resemble the OpenEditon shell options, they
are often different. 4

Note: For more information on long-form and short-form compiler options, see the
chapter about compiling C programs in the SAS/C Compiler and Library User’s Guide. 4

The compilation of a C or C++ program with the cross-platform compiler occurs in
the following phases:

1 CICS pre-processing
2 C++ parsing

3 C parsing
4 Optimization

5 Code generation
6 Prelinking

Some of the options passed to the sascc370 or sasCC370 compiler driver apply only
to one of these phases. To indicate the particular phase of compilation, you must use
the following syntax when specifying these options:

-Wphase,option

Note: There is no space after the comma between the phase and the option
specifications. 4

The phase can be any one of the following:
� -W followed by the letter P specifies that the option should be passed to the CICS

command pre-processor.

� -W followed by the letter C specifies that the option should be passed to the C++
translation phase of the compilation.

� -W followed by the number 1 specifies that the option should be passed to the C
parser phase of the compilation.

� -W followed by the letter g specifies that the option should be passed to the global
optimizer.

� -W followed by the number 2 specifies that the option should be passed to the code
generation phase of the compilation.

� -W followed by the letter l specifies that the option should be passed to the
prelinker.

Compiling C and C++ Programs 4 Option Summary 41

Note: This book uses italics to help you distinguish between the letter l and the
number 1. 4

Examples
The following examples illustrate how the compilation phase is specified:

-Wg,-a
The -Wg specification indicates that the -a option should be passed to the global
optimization phase of the compilation. The -a option specifies that the global
optimizer should assume worst-case aliasing.

Note: All of the global optimizer options described in this chapter can also be
passed to the compiler driver without specifying the compilation phase. For
example, to pass the -a option directly, specify -Oa. 4

-WP,-d
The -WP specification indicates that the -d option should be passed to the CICS
command preprocessor. The -d option is described in Chapter 4, “Using the SAS/C
CICS Command Preprocessor,” on page 65.

Cross-Platform Compiler Defaults
The SAS/C Cross-Platform Compiler has several options that are specified by default.

Most options that begin with -K have both a positive and negative form. Most of these
default to their negative form if unspecified, but a few default to their positive form.

For example, if you do not specify the -Kat option, the compiler will not allow the
use of the call-by-reference operator @; specifying -Knoat has the same effect. Options
such as -Knoextname behave the opposite way. By default, the compiler processes
extended names (-Kextname). To disable this feature, you must specify the
-Knoextname option. Table 3.1 on page 42 lists the default for each compiler option
with a positive and negative form.

All other compiler options default to their negative form if unspecified. For example,
if you do not specify the -g option, the compiler does not generate a .dbg370 debugging
information file.

If you do not specify any compiler options, the cross-compiler generates prelinked,
non-reentrant object code, by default. Note that there is no compiler option to specify
prelinking; the -c option is provided to turn prelinking off. Use the -Krent or
-Krentext options to enable reentrant modification of external data.

Option Summary
The cross-platform compiler options are summarized in Table 3.1 on page 42. A more

detailed description of each option is provided in the section “Option Descriptions” on
page 47.

The option specifications are listed in the first column of the table. The second
column indicates whether the option can be negated. An exclamation point (!) means
that the option can be negated. A plus sign (+) means that the option cannot be
negated. Only options that begin with -K can be negated. All other options cannot be
negated. To negate a -K option, precede the option name with no. For example, to
negate the -Kasciiout option, specify -Knoasciiout. The third column lists the
default for each option that can be negated.

42 Option Summary 4 Chapter 3

Table 3.1 Compiler Options

Option Negation Default Description

-c + Suppress prelinking.

-cf + For C compilations: Require function prototypes in
scope.

-cxx + Specifies to sascc370 that .c files should be
interpreted as C++ programs. The C++ library will be
included in all linking.

-Dsym[=val] + Defines the symbol sym as having the value specified by
value during the preprocessing phase.

-g + Generate debuggable code and produce a .dbg370
debugging information file. (See -Kdebug.)

-Gfn + Specify the maximum number of floating-point registers
(n= 0 through 2).

Note: -Gfn and -Kfreg are synonyms. 4

-Gvn + Specify the maximum number of registers that the
optimizer can assign to register variables (n= 0 through
6).

Note: -Gvnand -Kgreg are synonyms. 4

-Ipathname + Append pathname to the list of directories searched for
include files.

-Kalias ! -Knoalias Specifies that the global optimizer should assume
worst-case aliasing.

Note: -Oa and -Kalias are synonyms. 4

-Karmode ! -Knoarmode Specifies that code that uses the ESA access registers
may be generated.

-Kasciiout ! -
Knoasciiout

Character string constants are output as ASCII values.

-Kat ! -Knoat Allow the use of the call-by-reference operator @.

-Kautoinst ! -
Knoautoinst

Controls automatic implicit instantiation of template
functions and static data members of template classes.

-Kbitfield=n + For C compilations: allows for fields that are not int.
Sets the allocation unit size for int to be n.

For C++ compilations: sets the allocation unit size for
int to be n. C++ always allows non-int bitfields.

-Kbytealign ! -
Knobytealign

Align all data on byte boundaries.

-Kcomnest ! -Knocomnest For C compilations: Allow nested comments.

-Kcomplexity=n + Specify the maximum complexity that a function can
have and remain eligible for default inlining.

Note: -Oic and -Kcomplexity are
synonyms. 4

Compiling C and C++ Programs 4 Option Summary 43

Option Negation Default Description

-Kdbgmacro ! -
Knodbgmacro

Specify that macro names should be saved in the
debugger file.

-Kdbgobj ! -Knodbgobj Causes the compiler to place the debugging information
in the output object file.

-Kdbhook ! -Knodbhook Generate debugger hooks.

-Kdebug
[=dbg370-

filename]

! -Knodebug Generate debuggable code and produce a .dbg370
debugging information file. Optionally, specify the name
of the debugging information file.

Note: -Kdebug and -g are similar. -Kdebug
allows a filename argument. 4

-Kdepth=n + Specify the maximum depth of functions to be inlined.

Note: -Oid and -Kdepth are synonyms. 4

-Kdigraph ! see description Enables the translation of the International Standard
Organization (ISO) digraphs and/or the SAS/C digraph
extension scd.

-Kdollars ! -Knodollars Allow the use of the $ character in identifiers, except as
the first character.

-Kexcept ! -Knoexcept Enables exception handling for C++ code.

-Kexclude ! -Knoexclude For C compilations: Omit listing lines that are excluded
by preprocessor statements from the formatted source
listing.

-Kfreg=n + Specify the maximum number of floating-point registers
(n=0 through 2).

Note: -Gfn and -Kfreg are synonyms. 4

-Kgreg=n + Specify the maximum number of registers that the
optimizer can assign to register variables (n=0 through
6).

Note: -Gvn and -Kgreg are synonyms. 4

-Khlist ! -Knohlist For C compilations: Print standard header files in the
formatted source listing.

-Kigline ! -Knoigline Ignore #line statements in the input file.

-Kilist ! -Knoilist For C compilations: Print the source referenced by the
#include statement in the formatted source listing.

-Kindep ! -Knoindep Generate code that can be called before the run-time
library framework is initialized or code that can be used
for interlanguage communication.

-Kjapan ! -Knojapan Translates keywords and identifiers that are in
uppercase to lowercase before they are processed by the
compiler.

-Klisting
[=list-filename]

! -Knolisting For C compilations: Generate a listing file and,
optionally, specify the listing file name.

-Kloop ! -Knoloop Specify that the global optimizer should perform loop
optimizations. (See -Ol.)

44 Option Summary 4 Chapter 3

Option Negation Default Description

-Kmaclist ! -Knomaclist For C compilations: Print macro expansions in the
formatted source listing.

-Knarrow ! -Knonarrow For C compilations: Make the listing more narrow.

-Knodbgcmprs ! -Kdbgcmprs Do not compress debugging information file.

-Knoextname ! -Kextname Disable the use of extended names.

-Knohmulti ! -Khmulti For C compilations: Specifies that system include files
will only be included once.

-Knoimulti ! -Kimulti For C compilations: Specifies that local include files will
only be included once.

-Knoinline ! -Kinline Disable all inlining during the optimization phase. (See
Oin.)

-Knoinlocal ! -Kinlocal Disable inlining of single-call, static functions during
the optimization phase. (See -Oil.)

-Knolineno ! -Klineno Disable identification of source lines in run-time
messages emitted by the SAS/C Library.

-Knostringdup ! -Kstringdup Create a single copy of identical string constants.

-Knousearch ! -Kusearch Specify #include file search rules that are not typical
of UNIX.

-Komd[=omd-filename] ! -Knoomd Invoke the object module disassembler and, optionally,
specify the .omd listing file name.

Note: -Komd and -S are similar. -Komd
allows a filename argument. 4

-Koptimize ! -
Knooptimize

Execute the global optimizer phase of the compiler.

Note: -O and -Koptimize are synonyms. 4

-Koverload ! -
Knooverload

For C++ compilations: Turn on recognition of the
overload C++ keyword.

-Kpagesize=nn + For C compilations: Specify the number of lines per
page for source and cross-reference listings.

-Kpflocal ! -Knopflocal Assume that all functions are _ _local unless
_ _remote was explicitly specified in the declaration.

-Kposix ! -Knoposix Create a POSIX-compliant program.

-Kppix ! -Knoppix For C compilations: Allow nonstandard token-pasting.

-Krdepth=n + Specifies the maximum level of recursion to be inlined.

Note: -Oir and -Krdepth are synonyms. 4

-Kredef ! -Knoredef Allow redefinition and stacking of #define names.

-Krefdef ! -Knorefdef Force the use of the strict reference-definition model for
external linkage of _ _rent identifiers.

-Krent ! -Knorent Support reentrant modification of static and external
data.

-Krentext ! -Knorentext Support reentrant modification of external data.

Compiling C and C++ Programs 4 Option Summary 45

Option Negation Default Description

-Krtti ! -Knortti Enables the generation of information required for RTTI
on class objects that have virtual functions.

-Ksingleret ! -
Knosingleret

Forces the code generator to generate a single return
sequence at the end of each function.

-Ksmpxivec ! -
Knosmpxivec

Generate a CSECT with a unique name of the form
sname@. in place of @EXTVEC# (for SMP support).

-Ksname=sname + Define sname as the SNAME for a compilation.

-Ksource ! -Knosource For C compilations: Output a formatted source listing of
the program to the listing file.

-Ksrcis=
source-filename

+ Override the name of the source file in the debugging
information (.dbg370) file.

-Kstrict ! -Knostrict For C compilations: Enable an extra set of warning
messages for questionable or nonportable code.

-Ktmplfunc ! -Ktmplfunc Controls whether a nontemplate function declaration
that has the same type as a template specialization
refers to the template specialization. When
-Knotmplfunc is specified, template specializations
may also be referred to by nontemplate declarations.
-Knotmplfunc provides compatibility with older code.
-Ktmplfunc is the default for compatibility with the
ISO C++ Standard.

-Ktrigraphs ! -
Knotrigraphs

For C compilations: Enable translation of ANSI
standard trigraphs.

-Kundef ! -Knoundef Undefine predefined macros.

Note: -U and -Kundef are synonyms. 4

-Kuse_clink ! -
Knouse_clink

Use the clink program instead of cool to prelink the
object file.

-Kvstring ! -Knovstring Generate character string literals with a 2-byte length
prefix.

-Kxref ! -Knoxref For C compilations: Produce a cross-reference listing.

-Kzapmin=n + Specify the minimum size of the patch area, in bytes.

-Kzapspace=n + Change the size, n, of the patch area generated by the
compiler.

-mrc + Use mainframe return code values instead of
UNIX-style values.

-O + Execute the global optimizer phase of the compiler.

Note: -O and -Koptimize are synonyms. 4

-Oa + Specifies that the global optimizer should assume
worst-case aliasing.

Note: -Oa and -Kalias are synonyms. 4

46 Option Summary 4 Chapter 3

Option Negation Default Description

-Oic=n + Specify the maximum complexity that a function can
have and remain eligible for default inlining.

Note: -Oic and -Kcomplexity are
synonyms. 4

-Oid=n + Specify the maximum depth of functions to be inlined.

Note: -Oid and -Kdepth are synonyms. 4

-Oil + Enables inlining of single-call, static functions during
the optimization phase. Note: -Oil and -Kinlocal are
synonyms.

-Oin + Enables inlining of small static and external functions
during the optimization phase. (Functions defined with
the _ _inline keyword are inlined by default.)

Note: -Oin and -Kinline are synonyms. 4

-Oir=n + Specifies the maximum level of recursion to be inlined.

Note: -Oir and -Krdepth are synonyms. 4

-Ol + Specify that the global optimizer should perform loop
optimizations.

Note: -Ol and -Kloop are synonyms. 4

-o filename + Specifies the output filename.

-P + Only run the preprocessor on any .c files, generating .i
files.

-Qpathname + Specify an alternative pathname to be searched for the
cross-platform compiler executable file

-S + Invoke the object module disassembler after a successful
compilation. (See -Komd.)

-Tallres + Specify that all-resident library routines should be used
to build an all-resident program.

Note: The -Tspe option is not allowed in
combination with the -Tallres option. 4

-Tcics370 + Specify that CICS is the target.

-Tcicsvse + Specify that CICS running under the VSE operating
system is the target.

Note: The -Tspe option is not allowed in
combination with the -Tcicsvse option. 4

-Tcms370 + Specify CMS running under VM/ESA or VM/XA as the
target host operating system.

-Tpcms370 + Specify CMS running in System/370 mode (pre-bimodal)
as the target host operating system.

Compiling C and C++ Programs 4 Option Descriptions 47

Option Negation Default Description

-Tspe + Specify that the SAS/C SPE library routines should be
used to build an SPE program.

Note: The -Tallres and -Tcicsvse options
are not allowed in combination with the -Tspe
option. 4

-temp=directory + Specify a different temporary directory for the compiler
to use.

-U + Undefine predefined macros.

Note: -U and -Kundef are synonyms. 4

-v + Specify verbose mode.

-w~n + Cause warning message n to be treated as an error
condition.

-w+n + Specify that warning number n should not be
suppressed.

-wn + Suppress warning message number n.

Option Descriptions
This section provides a more detailed description of each of the options that were

summarized in Table 3.1 on page 42. Unless otherwise specified, the options apply to
both C and C++ source files.

-c
suppresses prelinking. By default, sascc370 and sasCC370 will invoke the
prelinker after the compilation is complete. The -c option can be used to suppress
this default action.

-cf
requires that all functions and function pointers have a prototype in scope. If the
-cf option is used and a function or function pointer is declared or defined that
does not have a prototype, the compiler issues a warning message.

Note: The -cf option is equivalent to the SAS/C Compiler reqproto option for
C compilations only. 4

-cxx
specifies to sascc370 that .c files should be interpreted as C++ source files. Also,
the C++ library will be used in all linking. This causes sascc370 to be
functionally equivalent to sasCC370.

-Dsym[=val]
defines a symbol, sym, and assigns an optional value, val.

The -D option is equivalent to the SAS/C Compiler define option.

-g
allows the use of the debugger to trace the execution of statements at run time.
(The compiler produces debugging information that is written to the .dbg370 file.)
For programs not compiled with -g, only calls can be traced.

Note: If you use -g, the -l option, which enables the identification of source
lines in run-time messages, is implied. Also note that the -g option causes the

48 Option Descriptions 4 Chapter 3

compiler to suppress all optimizations as well as store and fetch variables to or
from memory more often. 4

The -g option is equivalent to the SAS/C Compiler and C++ Development
Systems debug option. (See -Kdebug.)

-Gfn
specifies the maximum number, n, of floating point registers that the optimizer can
assign to register variables in a function. The n argument can have a value of 0
through 2, inclusive (the default is 2). The -Gf option is used only with
optimization (specified by the -O option).

The -Gf option is equivalent to the SAS/C Compiler freg option. (See -Kfreg.)

-Gvn
specifies the maximum number, n, of registers that the optimizer can assign to
register variables in a function. -Gv is used with -O only. The n argument is 0 to
6, inclusive (the default is 6).

The -Gv option is equivalent to the SAS/C Compiler greg option. (See -Kgreg.)

-Ipathname
appends the specified pathname to the lists of directories searched for include files.
See “Header Files” on page 20 for more information about the search path used by
the cross-platform compiler.

-Kalias
is a synonym for the -Oa option.

-Karmode
specifies that code that uses the ESA access register may be generated. This option
is required to compile code that uses far pointers. See the section on far pointer
support in the SAS/C Compiler and Library User’s Guidefor more information on
the armode option, which is the host system version of the -Karmode option.

-Kasciiout
causes character string constants to be output as ASCII values. By default,
character string constants are output as EBCDIC values.

The -Kasciiout option is equivalent to the SAS/C Compiler asciiout option.

-Kat
allows the use of the call-by-reference operator @.

The -Kat option is equivalent to the SAS/C Compiler and C++ Development
Systems at option.

-Kautoinst
The -Kautoinst option controls automatic implicit instantiation of template
functions and static data members of template classes. The compiler organizes the
output object module so that COOL can arrange for only one copy of each template
item to be included in the final program. In order to correctly perform the
instantiation, the -Kautoinst option must be enabled on a compilation unit that
contains both a use of the item and its corresponding template identifier. (See the
SAS/C C++ Development System User’s Guide, Second Edition, Release 6.50 for
information about templates and automatic instantiation.)

Note: COOL must be used if this option is specified. 4

-Kbitfield=n
specifies the size of the allocation unit for int bitfields. This option requires that
you specify a value, n. The values can be either 1, 2, or 4, which specifies that the
allocation unit be a char, short, or long, respectively.

Compiling C and C++ Programs 4 Option Descriptions 49

Note: For C source files, this option allows non-int bitfields. For C++ source
files, non-int bitfields are always allowed. Refer to SAS/C Compiler and Library
User’s Guide, Fourth Edition for more details. 4

The -Kbitfield option is equivalent to the SAS/C Compiler and C++
Development Systems bitfield option.

-Kbytealign
aligns all data on byte boundaries. Most data items, including all those in
structures, are generated with only character alignment.

Because formal parameters are aligned according to normal IBM System/370
conventions, even with the -Kbytealign option, you can call functions compiled
with byte alignment from functions that are not compiled with byte alignment,
and vice versa.

If functions compiled with and without byte alignment are to share the same
structures, you must ensure that such structures have exactly the same layout.
The layout is not exactly the same if any structure element does not fall on its
usual boundary. For example, an int member’s offset from the start of the
structure is not divisible by 4. You can force such alignment by adding
unreferenced elements of appropriate length between elements as necessary. If a
shared structure does contain elements with unusual alignment, you must compile
all functions that reference the structure using byte alignment.

The -Kbytealign option is equivalent to the SAS/C Compiler and C++
Development Systems bytealign option.

-Kcomnest
allows nested comments.

The -Kcomnest option is equivalent to the SAS/C Compiler comnest option. For
C compilations only.

-Kcomplexity=n
is a synonym for the -Oic option.

-Kdbgmacro
specifies that definitions of macro names should be saved in the .dbg370 debugger
file.

Note: This substantially increases the size of the file. 4
The -Kdbgmacro option is equivalent to the SAS/C Compiler dbgmacro option.

-Kdbgobj
causes the compiler to place the debugging information in the output object file,
instead of a separate debugger file. If the debugging information is not placed in
the object file, you cannot debug the automatically instantiated objects.

If automatic instantiation is specified with the -Kautoinst option, -Kdbgobj is
enabled automatically.

By default, the -Kdbgobj option is off. The short form for the option is -xc. See
the SAS/C C++ Development System User’s Guide, Second Edition, Release 6.50
for information about templates and automatic instantiation.

Note: COOL must be used if this option is specified. 4

-Kdbhook
generates hooks in the object code. When you compile a module with the -g
option, the -Kdbhook option is implied. -Kdbhook can be used with the -O option
to enable debugging of optimized object code.

The -Kdbhook option is equivalent to the SAS/C Compiler dbhook option.

50 Option Descriptions 4 Chapter 3

-Kdebug[=dbg370-filename]
generates debuggable code and produces a .dbg370 debugging information file.
Optionally, you can specify the name of the debugging information file with the
-Kdebug=dbg370-filename option.

The -Kdebug option is similar to the -g option. When you specify
-Kdebug=dbg370-filename, -g is assumed.

-Kdepth=n
is a synonym for the -Oid option.

-Kdigraph
Digraph options enable the translation of the International Standard

Organization (ISO) digraphs and the SAS/C digraph extensions.
A digraph is a two character representation for a character that may not be

available in all environments. The different options allow you to enable subsets of
the full digraph support offered collectively by ISO and SAS/C. Table 3.2 on page
50 gives a brief description of the new digraph compiler options.

Table 3.2 Digraph Descriptions

Digraph

No. Description

0 Turn off all digraph support

1 Turn on New ISO digraph support

2 Turn on SAS/C Bracket digraph support - ’(|’ or ’|)’

3 Turn on all SAS/C digraphs.

Table 3.3 on page 50 provides the default values and an example of how to
negate the options in each of the different environments.

Table 3.3 Digraph Default and Negated Forms

Environment
Default

Options
Negated

Options

IBM 370 (Long Form) DI(1),

DI(3)

NODI(1),

NODI(3)

IBM 370 and Cross (Short
Form)

-cgd1,

-cgd3

!cgd1,

!cgd3

Cross Compiler and IBM 370
UNIX System Services

-Kdigraph1,

-Kdigraph3

!Kdigraph1,

!Kdigraph3

Table 3.4 on page 51 lists several of the ISO digraph sequences from the C++
ANSI draft. Basically, the alternative sequence of characters is an alternative
spelling for the primary sequence. Similar to SAS/C digraphs, substitute
sequences are not replaced in either string constants or character constants.

Compiling C and C++ Programs 4 Option Descriptions 51

Table 3.4 ISO digraph Alternative Tokens

Rel 6.50 Tokens

Primary Alternate

{ <%

} %>

[<:

] :>

%:

%:%:

Note: See the chapter about special character support in the SAS/C Compiler
and Library User’s Guide for more information on digraphs. 4

-Kdollars
allows the use of the $ character in identifiers, except as the first character.

The -Kdollars option is equivalent to the SAS/C Compiler dollars option.

-Kexcept
Enables code generation for exception handling in the C++ translator. This option
is not enabled by default because it can add additional overhead to the generated
code. If exception handling is required then it is recommended that all C++
compilation units be compiled with the -Kexcept option. Otherwise unpredictable
effects may occur if an exception is thrown.

-Kexclude
omits listing lines from the formatted source that are excluded by #if, #ifdef,
and so on. For example, in the following sequence

#ifdef MAX_LINE
printf("Line overflow n");

#endif

the -Kexclude option omits the printf statement from the formatted source
listing if MAX_LINE is not currently defined with the #define command.

The -Kexclude option is equivalent to the SAS/C Compiler exclude option.

-Kfreg=n
is a synonym for the -Gf option.

-Kgreg=n
is a synonym for the -Gv option.

-Khlist
prints system header files in the formatted source listing. These are files that are
included using the following syntax:

#include <filename.h>

The -Khlist option is equivalent to the SAS/C Compiler hlist option. See also
-Kilist.

-Kigline
causes the compiler to ignore any #line statements in the input file.

The -Kigline option is equivalent to the SAS/C Compiler igline option.

52 Option Descriptions 4 Chapter 3

-Kilist
prints user header files in the formatted source listing. These are files that are
included using the following syntax:

#include "filename.h"

The -Kilist option is equivalent to the SAS/C Compiler ilist option. See also
-Khlist.

-Kindep
generates code that can be called before the framework is initialized or code that
can be used for interlanguage communication.

The -Kindep option is equivalent to the SAS/C Compiler indep option. The
SAS/C Compiler and Library User’s Guide, Fourth Edition covers the indep option
in detail.

-Kjapan
translates keywords and identifiers that are in uppercase to lowercase before they
are processed by the compiler. Prints messages in uppercase. This option is
intended to be used with terminals or printers that support only uppercase
(Roman) characters.

-Klisting[=list-filename]
produces a listing file for all phases of the compilation and, optionally, directs the
listing to the specified file. If you do not specify a file name, the base file name of
the source file will be used to construct the listing file name. See the cool
prelinker option -h for information about how messages are handled when a
listing is produced.

-Kloop
specifies that the global optimizer should perform loop optimizations. This option
can only be used with the -O option.

The -Kloop option is equivalent to the SAS/C Compiler loop option. The -Kloop
option and the -Ol option are synonyms. Refer to the SAS/C Compiler and Library
User’s Guide for more information about loop optimization.

Note: The behavior of the mainframe SAS/C Compiler is different from the
SAS/C Cross-Platform Compiler. Loop optimization is the default on the
mainframe. 4

-Kmaclist
prints macro expansions. Source code lines containing macros are printed before
macro expansion.

The -Kmaclist option is equivalent to the SAS/C Compiler maclist or mlist
option.

-Knarrow
compresses the width of the listing to make it fit better on small screens.

-Knodbgcmprs
disables compression of the .dbg370 debugging information file. By default, this
information is compressed to save disk space and reduce network traffic while
debugging.

The -Knodbgcmprs option is only meaningful when used with the -g option.

-Knoextname
disables the use of extended names. By default, external names that are longer
than 8 characters will be accepted by the compiler, unless you specify the
-Knoextname option. -Knoextname applies only to C compilations; extended
names processing cannot be disabled for C++.

Compiling C and C++ Programs 4 Option Descriptions 53

Note: When prelinking object modules produced by the compiler using
-Kextname, cool checks for and prohibits the linking of two object modules with
the same section name, by default. (See -Ksname option.) If cool detects an object
module that has the same section name as a previously processed object module, it
will issue an error message and exit.

Also note that you cannot use cool more than once on any object file that was
previously compiled with the -Kextname option. Because cool resolves external
references with extended names into their final form, it will not accept references
that have been previously resolved. 4

The -Knoextname option is equivalent to the SAS/C Compiler noextname
option. For more information on extended names, refer to the SAS/C Compiler and
Library User’s Guide, Fourth Edition.

Note: In this release, -Kextname is the default. This differs from previous
releases where you had to specify -Kextname explicitly to enable the use of
extended function and identifier names. 4

-Knohmulti
disables the reinclusion of system header files; these files will only be included
once. (System header files are specified within angle brackets.) If -Knohmulti is
specified, the cross-platform compiler will only include code from a header file once
in a compilation. By default, the cross-platform compiler includes a copy of the
header file code every time a #include <filename> statement is encountered, even
if the file has already been included.

Note: The -Knohmulti option is equivalent to the SAS/C Compiler nohmulti
option for C compilations only. 4

-Knoimulti
disables the reinclusion of user header files; these files will only be included once.
(User header files are specified within double quotes.) If -Knoimulti is specified,
the cross-platform compiler will only include code from a header file once in a
compilation. By default, the cross-platform compiler includes a copy of the header
file code every time a #include "filename" statement is encountered, even if the
file has already been included.

Note: The -Knoimulti option is equivalent to the SAS/C Compiler noimulti
option. (Notice that the behavior of the mainframe SAS/C Compiler is different
than that of the SAS/C Cross-Platform Compiler. Reinclusion of header files is
disabled by default on the mainframe.) For C compilations only. 4

-Knoinline
disables all inlining of functions during the optimization phase. If this option is
not specified, functions specified as inline will be inlined by default. (Also see the
-Oin option.)

The -Knoinline option is equivalent to the SAS/C Compiler noinline option.

-Knoinlocal
disables inlining of single-call, static (local) functions. These functions are not
inlined by default during the optimization phase. (Also see the -Oil option.)

The -Knoinlocal option is equivalent to the SAS/C Compiler noinlocal option.

-Knolineno
disables identification of source lines in run-time messages. When -Knolineno is
specified, module size is decreased because the generation of line number and
offset tables is not required.

The -Knolineno option is equivalent to the SAS/C Compiler nolineno option.

54 Option Descriptions 4 Chapter 3

-Knostringdup
creates a single copy of identical string constants.

The -Knostringdup option is equivalent to the SAS/C Compiler nostringdup
option.

-Knousearch
specifies include-file search rules that are not typical of UNIX compilers.
-Kusearch is the default. See “Header Files” on page 20 for additional information.

-Komd[=omd-filename]
invokes the object module disassembler (OMD) after successful compilation and,
optionally, directs the .omd listing to the specified file. If you do not specify a file
name, the compiler derives the listing file name from the basename of the input
file with a .omd suffix. Also see the -S option.

-Koptimize
is a synonym for the -O option.

-Koverload
turns on recognition of the overload C++ keyword. If you specify this option, the
translator recognizes overload as a reserved word; otherwise, it is treated as an
identifier. For additional information, see the SAS/C Development System User’s
Guide, Volume 1: Introduction, Compiler, Editor. For C++ compilations only.

-Kpagesize=nn
defines the number of lines per page for source and cross-reference listings. The
default is 60 lines per page.

Note: The -Kpagesize=nn option is similar to the SAS/C Compiler pagesize
option for C compilations only. 4

-Kpflocal
assumes that all functions are _ _local unless _ _remote was explicitly specified
in the declaration. By default, the compiler treats all function pointers as
_ _remote unless they are explicitly declared with the _ _local keyword.

The -Kpflocal option is equivalent to the SAS/C Compiler pflocal option.

-Kposix
instructs the compiler to create a POSIX-compliant program by setting
compile-time and run-time defaults for maximum POSIX compatibility. The
-Kposix option has the following effects on compilation:

� The SAS/C feature test macro _SASC_POSIX_SOURCE is automatically defined.
� The compiler option -Krefdef is assumed.
� The special POSIX symbols environ and tzname are automatically treated

as _ _rent unless declared as _ _norent.

Additionally, if any compilation in a program’s main load module is compiled
with the -Kposix option, it has the following effects on the execution of the
program:

� The fopen function assumes at run-time that all filenames are HFS
filenames unless prefixed by "//".

� The system function assumes at run-time that the command string is a shell
command unless prefixed by "//".

� The tmpfile and tmpnam functions refer to HFS files in the /tmp directory.

Note: You should not use the -Kposix option when compiling functions that
can be used by both POSIX and non-POSIX applications. 4

The -Kposix option is equivalent to the SAS/C Compiler posix option. See the
SAS/C Compiler and Library User’s Guide, Fourth Edition for more information.

Compiling C and C++ Programs 4 Option Descriptions 55

-Kppix
allows nonstandard use of the preprocessor.

If the -Kppix option is in effect, the preprocessor allows token-pasting by
treating a comment in macro replacement text as having zero characters. The
ANSI Standard defines the ## operator to perform token-pasting.

This option also specifies that the preprocessor should replace macro arguments
in string literals. Equivalent functionality can be gained for portability by using
the ANSI Standard # operator.

Note: The -Kppix option is equivalent to the SAS/C Compiler ppix option for
C compilations only. 4

-Krdepth=n
is a synonym for the -Oir option.

-Kredef
allows redefinition and stacking of #define names.

The -Kredef option is equivalent to the SAS/C Compiler redef option.

-Krefdef
forces the use of the strict reference-definition model for external linkage of
_ _rent identifiers. The -Krefdef option causes the compiler to generate code
that forces the use of the strict reference-definition model for reentrant external
variables. If the strict reference-definition model is not used, the compiler uses the
common model. This option is meaningful primarily when used with the -Krent or
-Krentext options. (Strict reference-definition is always used for _ _norent
identifiers.)

Because of the fact that a reference is also a definition in the common model, it
is also recommended that you use the -Krefdef option when linking with ar370
archives, to cause proper resolution of variable definitions.

The -Krefdef option is equivalent to the SAS/C Compiler and C++
Development Systems refdef option.

-Krent
allows reentrant modification of static and external data.

The -Krent option is equivalent to the SAS/C Compiler and C++ Development
Systems rent option.

-Krentext
allows reentrant modification of external data.

The -Krentext option is equivalent to the SAS/C Compiler and C++
Development Systems rentext option.

-Krtti
enables the generation of information for RTTI on class objects that have virtual
functions. By default, this option is not enabled because it increases the number of
virtual function tables and the size of the information used to implement virtual
function calls.

If your program uses the dynamic_cast or typeid() operators, the -Krtti
option must be specified for each compilation unit to assure the class objects have
the information required for dynamic type identification.

-Ksingleret
forces the cross-platform compiler to generate a single return sequence at the end
of each function. By default, the cross-platform compiler generates a return
sequence at the location of each return statement within a function. The main
advantage of the -Ksingleret option is that it causes a single return from
functions that have multiple return statements. The code to execute the single

56 Option Descriptions 4 Chapter 3

return from the function is emitted at the end of the function, with return
statements within the function causing a branch to that single return location.

-Ksmpxivec
generates a CSECT that is used in place of @EXTERN#. The CSECT generated by
the -Ksmpxivec option has a unique name of the following form:

sname@.

The sname@. vector provides an alternate mechanism for reentrant
initialization of static and extern data that is used with System Modification
Program (SMP) update methods, which are described in Programmer’s Report:
SMP Packaging for SAS/C Based Products.

The -Ksmpxivec option is equivalent to the SAS/C Compiler smpxivec option.
For this option to be effective, you must have the SMP libraries.

Note: The -Asmpxivec cool option must be used in conjunction with the
-Ksmpxivec compiler option. The -Asmpxivec cool option builds a vector named
@EXTVEC# that references the sname@. CSECT generated by the -Ksmpxivec
compiler option. For example, the following command could be used to invoke the
sascc370 compiler driver:

sascc370 -Ksmpxivec -Asmpxivec filename.c

4

In this case, the -Asmpxivec option is passed to the prelinker. See Chapter 6,
“Prelinking C and C++ Programs,” on page 73 for information about the
-Asmpxivec cool option.

-Ksname=sname
defines the section name. The sname argument can be up to seven characters in
length.

The section name is assigned by the compiler using the first applicable rule in
the following list:

� The section name is the name specified by the user with the -Ksname option.

� If you are using sasCC370 or sascc370 with the -cxx option, the section
name is the first 7 characters of the basename of the input file name,
neglecting any suffix.

� In the absence of a specific compile-time -Ksname option, the section name is
the name of the first external function in the module, truncated to seven
characters.

� If no name is provided with the -Ksname option and there is no external
function in the module, the section name is the name of the first external
variable in the function.

� If no name is provided with the -Ksname option, there is no external function
in the module, and there is no external variable in the module (that is, the
module contains only static data or functions, or both), then the section name
is the name @ISOL@.

The -Ksname option is equivalent to the SAS/C Compiler and C++ Development
Systems sname option.

-Ksource
outputs a formatted source listing of the program to the listing file.

The -Ksource option only controls the source listing; the cross-reference listing
is requested with the -Kxref option.

The -Ksource option is similar to the SAS/C Compiler source option.

Compiling C and C++ Programs 4 Option Descriptions 57

-Ksrcis=source-filename
specifies the name of the source file in the debugging file. This option is
meaningful only when used with the -g option or -Kdebug option.

-Kstrict
enables an extra set of warning messages for questionable or nonportable code.
See SAS/C Software Diagnostic Messages for more information.

Note: The -Kstrict option is equivalent to the SAS/C Compiler strict option
for C compilations only. 4

-Ktmplfunc
Controls whether a nontemplate function declaration that has the same type as a
template specialization refers to the template specialization. When -Knotmplfunc
is specified, template specializations may also be referred to by nontemplate
declarations. -Knotmplfunc provides compatibility with older code. -Ktmplfunc is
the default for compatibility with the ISO C++ Standard.

-Ktrigraphs
enables translation of ANSI standard trigraphs.

Note: The -Ktrigraphs option is equivalent to the SAS/C Compiler
trigraphs option for C compilations only. 4

-Kundef
is a synonym for the -U option.

-Kuse_clink
uses the program clink as the object code preprocessor. By default, the SAS/C C
and C++ cross-compiler uses the cool program to prelink the object file. For more
information about clink, see Appendix 5, “Compatibility Notes,” on page 145.

-Kvstring
generates character string literals with a 2-byte length prefix. This option is used
primarily in conjunction with the interlanguage communication feature.

The -Kvstring option is equivalent to the SAS/C Compiler vstring option. For
more information on the vstring option, see the chapter about communication
with other languages, in the SAS/C Compiler Interlanguage Communication
Feature User’s Guide.

-Kxref
produces a cross-reference listing.

The -Kxref option is equivalent to the SAS/C Compiler xref option.

-Kzapmin=n
specifies the minimum size of the patch area, in bytes. n refers to the number of
bytes in the patch area. The default is 24 bytes.

The -Kzapmin option is equivalent to the SAS/C Compiler and C++
Development Systems zapmin option. For more information about the patch area,
refer to the SAS/C Compiler and Library User’s Guide .

-Kzapspace=fn
alters the size of the compiler-generated patch area. The size of the patch area can
be increased or its generation suppressed. The default is 1.

The -Kzapspace option accepts an integer value between 0 and 22, inclusive,
that specifies the factor by which the default patch area size is to be multiplied. If
the factor is 0, then no patch area is generated. For example, if the default patch
area is 48 bytes and the -Kzapspace option specifies a factor of 3, then the patch

58 Option Descriptions 4 Chapter 3

area actually generated is 144 bytes long. In no case does the compiler generate
more than 512 bytes of patch area.

The -Kzapspace option is equivalent to the SAS/C Compiler zapspace option.
For more information about the patch area, refer to the SAS/C Compiler and
Library User’s Guide.

-mrc
causes the cross-platform compiler to generate mainframe return codes when
syntax and semantic errors are detected during compilation. The mainframe
return codes generated when the -mrc option is in effect are summarized in Table
3.5 on page 58.

Table 3.5 Mainframe Return Codes

Code Definition

0 No errors or warnings found: object code is generated.

4 Warning: object code is generated and it will probably execute correctly.

8 Serious error: object code is generated but it may not execute correctly.

12 Serious error: no object code is generated and pass two of the compiler is not
executed.

16 Fatal error: Compilation stops.

By default, the cross-platform compiler’s return codes are similar to the return
codes of a native UNIX compiler. In this case, a return code greater than 0 is an
error. This behavior is consistent with what is expected by UNIX tools, such as
make.

-O
executes the global optimizer phase of the compiler, which optimizes the flow of
control and data through an entire function.

Global optimization includes a wide variety of optimizations, such as:
� Assigning variables to registers.

� Eliminating variable assignments that are never used.
� Moving invariant calculations out of loops.
� Replacing variables with constants whenever possible.

� Eliminating recalculation of values that have been computed previously.
� Eliminating code that is never executed.

� Changing multiplications to addition.
� Moving redundant expressions to a single, common location.

The cross-platform compiler accepts the following options to modify the
operation of the global optimizer: -Gfn, -Gvn, -Oa, -Oic=n, -Oid=n, -Oil, Oin,
-Oir=n, and -Ol.

The -O option is equivalent to the SAS/C Compiler optimize option. See
Chapter 5, “Using the Global Optimizer and the Object Module Disassembler,” on
page 69 for more information about the optimize option and the global optimizer.
(See -Koptimize.)

-Oa
disables type-based aliasing assumptions. If -Oa is used, the global optimizer uses
worst-case aliasing. Use of this option can significantly reduce the amount of

Compiling C and C++ Programs 4 Option Descriptions 59

optimization that can be performed. This option can only be used with the -O
option.

The -Oa option is equivalent to the SAS/C Compiler alias option. (See
-Kalias.)

-Oic=n
specifies the maximum complexity that a function can have and remain eligible for
default inlining. The range of n is 0 to 20; with 0 specifying that only very small
functions should be inlined, and 20 specifying that relatively large functions should
be inlined. The -Oic option is set to 0 by default. This option is used with the -Oin
option, which enables the default inlining of small static and extern functions.

The -Oic option is equivalent to the SAS/C Compiler complexity option. (See
-Kcomplexity.)

-Oid=n
defines the maximum depth of function calls to be inlined. The range of n is 0 to 6,
and the default value is 3. This option can only be used with the -O option.

The -Oid option is equivalent to the SAS/C Compiler depth option. (See
-Kdepth.)

-Oil
inlines single-call, static functions. This option can only be used with the -O
option.

The -Oil option is equivalent to the SAS/C Compiler inlocal option. (See
-Kinlocal.)

-Oin
enables inlining of small static and extern functions, in addition to the inlining
of functions defined with _ _inline keyword. The complexity of the functions that
are inlined, other than those that are defined with the _ _inline keyword, is
controlled by the -Oic option. The -Oic option must be specified for some
non-zero n to enable the inlining of small functions. The -Oin and -Oic options
can only be used with the -O option.

The -Oin option is similar to the SAS/C Compiler inline option. (Even if -Oin
is not specified, functions defined with the _ _inline keyword will be inlined.)
(See -Kinline.)

-Oir=n
defines the maximum level of recursive function calls to be inlined. The range of n
is 0 to 6, and the default is 0. This option can only be used with the -O option.

The -Oir option is equivalent to the SAS/C Compiler rdepth option. (See
-Krdepth.)

-Ol
specifies that the global optimizer should perform loop optimizations. This option
can only be used with the -O option.

The -Ol option is equivalent to the SAS/C Compiler loop option. (Notice that
the behavior of the mainframe SAS/C Compiler is different than that of the SAS/C
Cross-Platform Compiler. Loop optimization is the default on the mainframe.)
Refer to the SAS/C Compiler and Library User’s Guide for more information about
loop optimization. (See -Kloop.)

-o filename
specifies the name of the output file. If the -c option is used, filename specifies the
name of the output object file. Otherwise, filename specifies the name of the
prelinked file. If the -o option is not specified, output is written to the a.out file
by default.

The -o option is similar to the SAS/C compiler object option. Refer to the SAS/
C Compiler and Library User’s Guide, Fourth Edition for more information.

60 Option Descriptions 4 Chapter 3

-P
creates a file containing preprocessed source code for this compilation.
Preprocessed source code has all macros and #include files expanded. If the -P
option is used, all syntax checking (except in preprocessor directives) is
suppressed, no listing file is produced, and no object code is generated.

If -o is specified together with -P, the preprocessed source code is written to the
file specified by -o. If -o is not specified, the preprocessed source code is written to
a file with a .i extension. The name of the default output file is derived from the
basename of the source file.

The -P option is equivalent to the SAS/C Compiler pponly option.

-Qpathname
specifies an alternative pathname to be searched for the cross-platform compiler
executable files. The location of the executable files that compose the SAS/C
Cross-Platform Compiler (sascc370, lc1, lc2, cool, go, and omd) is defined when
the SAS/C Cross-Platform Compiler is installed. This location is host specific, and
is usually in the host/host-type/bin subdirectory.

-S
invokes the object module disassembler (OMD) after successful compilation.
OMD-only options and selected compilation options are passed to the OMD, as
explained in the SAS/C Compiler and Library User’s Guide.

The -S option is equivalent to the SAS/C Compiler omd option. (See -Komd.)

-Tallres
specifies use of the all-resident library, libares.a, which is prefixed to the resident
library, libc.a. The -Tallres option should be specified when developing an
all-resident application. Refer to the SAS/C Compiler and Library User’s Guide for
more information about all-resident programs.

Note: The -Tallres option must be combined with either the -Tcms370 or the
-Tpcms370 option to generate an all-resident application targeted for CMS. 4

Note: The -Tspe option is not allowed in combination with the -Tallres
option. 4

-Tcics370
specifies that CICS is the target. The -Tcics370 option causes the driver to specify
the CICS libraries during linking and add the -m option to the cool command.

Note: When you use cool to link a CICS application, you will receive warnings
about unresolved references to the following: DFHEI1, DFHEAI, and DFHAI0. These
warning messages are expected. The output object file from cool must
subsequently be moved to the target mainframe and linked with the CICS
Execution Interface stubs. 4

Note: If specifying the -Tcics370 option causes the sascc370 driver to also
issue -m to cool, then using the sascc370 driver option -Aclet is redundant. 4

-Tcicsvse
specifies that CICS running under the VSE operating system is the target. The
-Tcicsvse option causes the driver to specify the CICS VSE libraries during
linking and add the -p option (remove pseudoregisters) and the -m option to the
cool command.

Note: The -Tspe option is not allowed in combination with the -Tcicsvse
option.

Note: When you use cool to link a CICS application, you will receive warnings
about unresolved references to the following: DFHEI1, DFHEAI, and DFHAI0. These

Compiling C and C++ Programs 4 Option Descriptions 61

warning messages are expected. The output object file from cool must
subsequently be moved to the target mainframe and linked with the CICS
Execution Interface stubs. 4

Note: If specifying the -Tcics370 option causes the sascc370 driver to also
issue -m to cool, then using the sascc370 driver option -Aclet is redundant. 4

4

-Tcms370
specifies CMS running under VM/ESA or VM/XA as the target host operating
system. The -Tcms370 option should be specified when your application is
targeted for CMS under VM/XA, VM/ESA, or VM/SP release 6.

Under VM/XA or VM/ESA, programs can run either in 24-bit addressing mode,
or in 31-bit addressing mode.

Note: The cross-platform compiler generates code that is targeted for OS/390
by default. 4

-Tpcms370
specifies CMS supporting System/370 mode (pre-bimodal) as the target host
operating system. The -Tpcms370 option should be specified when your CMS
application will run under VM/SP release 5 or earlier. 370 mode does not support
31-bit addressing.

-Tspe
specifies use of the SAS/C SPE library, libspe.a, which replaces the resident
library, libc.a. The -Tspe option should be specified when developing an SPE
application. Refer to the SAS/C Compiler and Library User’s Guide, Fourth Edition
for more information about systems programming with the SAS/C Compiler.

Note: The -Tspe option must be combined with either the -Tcms370 or the
-Tpcms370 option to generate an SPE application targeted for CMS.

Note: The -Tallres and -Tcicsvse options are not allowed in combination
with the -Tspe option. 4

4

-temp=directory
specifies an alternative directory used to store temporary files.

-U
undefines predefined macros.

Predefined macros are defined as follows:

#define DEBUG 1
#define NDEBUG 1
#define I370 1
#define OSVS 1
#define CMS 1

The definition of the DEBUG or the NDEBUG macro depends on whether you
have specified the -g option. The OSVS and CMS macro definitions depend on the
-Tcms370 and -Tpcms370 options. The OSVS macro is defined if neither the
-Tcms370 nor the -Tpcms370 option is specified. If either of these options is
specified, the CMS macro is defined.

The -U option is equivalent to the SAS/C Compiler undef option. (See -Kundef.)

-v
specifies verbose mode. In verbose mode, the command line that executes each
phase of the cross-platform compiler is displayed.

62 External Compiler Variables 4 Chapter 3

-w~n
treats a warning condition as an error condition. The warning condition is
identified by its associated message number n. Conditions whose numbers have
been specified are treated as errors, and cause an error return code from the
compiler. By default, a non-zero value greater than 1 is returned. If the -mrc
option is also specified, a return code of 12 will be generated for a warning
condition instead of a return code of 4.

Any number of warning conditions can be specified by entering additional -w~
options. See also the -w option.

The -w~ option is similar to the SAS/C Compiler enforce option.

-w+n
specifies that a warning, whose number is specified as n, is not to be suppressed.

Any number of warning conditions can be specified by entering additional -w+
options. See also the -w option.

The -w+ option is similar to the SAS/C Compiler mention option.

-wn
ignores a warning condition. Each warning condition is identified by its associated
message number n. Conditions whose numbers have been specified are suppressed.
No message is generated, and the compiler return code is unchanged. For more
information about related messages, see SAS/C Software Diagnostic Messages.

Any number of warning conditions can be specified by entering additional -w
options. If both -w and -w~ specify the same message number, the warning is
enforced.

The -w option is similar to the SAS/C Compiler suppress option.
The -w option will be passed by the driver to the appropriate phase of the

compilation process, C or C++ phase. To optionally specify a compiler phase, use
the syntax as described in “Specifying Phase of the Compilation of C and C++
Programs” in Chapter 3, “Compiling C and C++ Programs,” in the SAS/C
Cross-Platform Compiler and C++ Development System: Usage and Reference.
The format of the command is as follows:

-WC,-wSnnn
-W1,-ynnn

where:

-WC,-wSnnn
Suppresses C++ warning and error messages, and nnn represents the
message number that is to be suppressed.

-W1,-ynnn
Suppresses C warning and error messages, and nnn represents the message
number that is to be suppressed.

External Compiler Variables
Older versions of OS/390 were limited to running with 24-bit addresses, giving a

maximum virtual address space of 16 megabytes. With the release of MVS/XA the
addresses were increased to 31 bits giving a virtual address space maximum of 2
gigabytes. Certain portions of OS/390 (notably certain I/O subsystems) were not
modified to accept 31-bit addresses, therefore programs wishing to utilize these services
were forced to get storage below the 16M line to use as parameters when calling these
functions. Prior versions of SAS/C allocated all stack memory from the area below the
line to avoid the problems involved in calling old OS/390 services with 31-bit addresses.

Compiling C and C++ Programs 4 Extended @ Operator Capability 63

In SAS/C Release 6.50, defining the external integer variable _stkabv in the source
program (example: extern int _stkabv = 1;) will indicate to the library to allocate
stack space above the 16M line.

Note: Setting the variable at run time will have no effect; it must be initialized to 1
as shown. 4

However, some SAS/C library functions require their stack space be allocated below
the line due to their use of auto storage for parameter lists and control blocks which
still have a below-the-line requirement. These library routines have been identified,
and either modified to remove the requirement, or changed to request that their own
allocation of stack space be located below the 16M line. Release 6.50 includes a compiler
option and a CENTRY macro parameter to allow user code to request that its stack space
be allocated below the line even if the _stkabv variable is defined as non-zero.

A new option allows the library to release stack space that is no longer needed. To
free stack space, define the external integer variable _stkrels (example: extern int
_stkrels = 1;). This tells the library that, on return from a function, if an entire
stack segment becomes unused, the segment should be returned to the operating
system. This option is useful in long running programs that contain code paths that can
occasionally become deeply nested, or in multi-tasking applications. Use of _stkrels
and _stkabv guarantee that no stack space is allocated below the line if none is
required by an executing routine.

Language Extensions

This section introduces the extensions to the ISO/ANSI C language implemented in
Release 6.50 of the SAS/C Compiler. Library extensions are described in SAS/C Library
Reference, Volume 1, SAS/C Library Reference, Volume 2, and SAS/C Compiler and
Library User’s Guide.

Note: Use of these extensions is likely to render a program nonportable. 4

Compiler Comment Support
The SAS/C Compiler now supports C++ style line comments. A line comment starts

with two forward slashes and goes to the end of the line. An example of the new
comment extension is:

// This is a comment line

Note: This support is turned off if the -Kstrict compiler option is used. 4

Extended @ Operator Capability
Compiler support for the at sign (@) has been extended. When the compiler option

-KAT is specified, @ is treated as a new operator. The @ operator can be used only in an
argument to a function call. (The result of using it in any other context is undefined.)
The @ operator has the same syntax as &. In situations where & can be used, @ has the
same meaning as &.

In addition, @ can be used on non-lvalues such as constants and expressions. In these
cases, the value of @expr is the address of a temporary storage area to which the value
of expr is copied.

64 Character and String Qualifiers 4 Chapter 3

One special case for the @ operator is when its argument is an array name or a string
literal. In this case, @array is different from &array. While @array addresses a
pointer addressing the array, &array still addresses the array.

The compiler continues to process the @ operator as in earlier releases when the @ is
in the context of a function call. Use of @ is nonportable. Its use should be restricted to
programs that call non-C routines using call–by-reference.

Character and String Qualifiers
Release 6.50 introduces A and E qualifiers for character and string constants. The

new qualifiers cause the string to be either ASCII or EBCDIC.
A string literal prefixed with A is parsed and stored by the compiler as an ASCII

string. An example of its usage is:

A"this is an ASCII string"

A string literal prefixed with E is parsed and stored by the compiler as an EBCDIC
string. An example of its usage is:

E"this is an EBCDIC string"

65

C H A P T E R

4
Using the SAS/C CICS Command
Preprocessor

Introduction 65
Using the ccp Command 65

Invoking ccp Directly 65

Using sascc370 or sasCC370 to Invoke ccp Automatically 66

Linking CICS Preprocessed Files 66

Option Descriptions 66

Introduction
This chapter describes how to use the ccp command to request CICS services by

placing CICS commands anywhere within your C or C++ source code. The ccp
command translates the CICS commands into appropriate function calls for
communication with CICS. By default, the name of the output file will be generated
from the input name, with a .c suffix, unless the -o option is used.

Once the preprocessor has translated the CICS commands within your C or C++
program, you then compile and link-edit your program as you would any SAS/C
program. When you run your SAS/C program, the function calls inserted by the
preprocessor invoke the services requested by calling the appropriate CICS control
program using the CICS EXEC Interface program.

Using the ccp Command
The SAS/C CICS Command Preprocessor can be invoked either directly or by the

sascc370 or sasCC370 compiler driver.

Invoking ccp Directly
The following syntax is used to invoke ccp directly:

ccp [options] in_file.ccp

The options that may be used are described in “Option Descriptions” on page 66.
The in_file.ccp specifies the name of the input file. By default, the name of the output

file will be the input filename with a .c suffix, unless the -o option is used.

66 Using sascc370 or sasCC370 to Invoke ccp Automatically 4 Chapter 4

Using sascc370 or sasCC370 to Invoke ccp Automatically
If your source file suffix is .ccp, the compiler driver uses the ccp command to

translate any CICS commands. The ccp command is invoked and the output is
compiled, with either the C or C++ compiler. For example, the following command could
be entered to compile the file named myfile.ccp:

sascc370 -Tcics370 -Krent myfile.ccp

In this case, myfile.ccp is preprocessed for CICS commands. The resulting file is
compiled with the C compiler and linked with the CICS target libraries to produce
a.out.

sasCC370 -Tcicsvse -Krent myfile.ccp

In this case, myfile.ccp is preprocessed for CICS commands. The resulting file is
compiled with the C++ compiler and linked with the CICS VSE library to produce
a.out.

To pass options to the CICS preprocessor during compilation with sascc370 or
sasCC370, specify the compilation phase prefix, -WP, followed by the CICS option. For
example, this command compiles myfile.cpp and passes the CICS -d option to the
CICS preprocessor:

sascc370 -Tcics370 -WP,-d myfile.ccp

The options that may be used are described in the section “Option Descriptions” on
page 66.

Linking CICS Preprocessed Files
You must use the -Tcics370 or -Tcicsvse options on the compiler driver to cause

cool to use the CICS or CICS VSE target libraries. However, if you are using the CICS
external call interface (-x option), you should link with the standard resident library,
STDOBJ, instead of the CICS libraries.

Note: When you use cool to link a CICS application, you will receive warnings
about unresolved references to the following: DFHEI1, DFHEAI, and DFHAI0. These
warning messages are expected. The output object file from cool must subsequently be
moved to the target mainframe and linked with the CICS Execution Interface stubs. 4

Note: For CICS, use of the -Aclet option is not necessary when you use
-Tcicsxxx. However, use of one of the compiler options -Krent or -Krentext is
necessary for CICS programs. See the section on compiling SAS/C programs for CICS
under MVS/TSO in the SAS/C CICS User’s Guide for more information. 4

Option Descriptions
This section provides a description of each of the options recognized by the ccp

command.

Note: To negate most of these options, precede the option with ! instead of -. For
example, to disable -c, use !c. 4

-a N,M
adds sequence numbers to the output file. N specifies the first sequence number
and M the incrementing value. If both N and M are 0, then the output file is not

Using the SAS/C CICS Command Preprocessor 4 Option Descriptions 67

sequenced. The default for both M and N is 0. The -a N,M option is equivalent to
the mainframe CICS preprocessor OUTSEQ option.

Note: Since the cross-platform compiler does not support sequence numbers,
you cannot use the -a option if you intend to compile the preprocessor output on
UNIX. 4

-b
enabled by default, causes the CICS preprocessor to produce code for the
Execution Diagnostic Facility (EDF). The -b option is equivalent to the mainframe
CICS preprocessor DEBUG option.

-c
enabled by default, indicates the preprocessor should translate EXEC CICS
commands. The -c option is equivalent to the mainframe CICS preprocessor CICS
option.

-d
causes the CICS preprocessor to process EXEC DLI commands. The -d option is
equivalent to the mainframe CICS preprocessor DLI option.

-e
allows interception of all commands by the EDF. The -e option is equivalent to the
mainframe CICS preprocessor EDF option.

-f x
emits message only of level x and above, x may be: I (notes), W (warnings), E
(errors) or S (severe errors). The default is -f I. The -f x option is equivalent to
the mainframe CICS preprocessor FLAG option.

-g
shows C code generated for commands in the source listing. The -g option is
equivalent to the mainframe CICS preprocessor EXPAND option.

-i
lists the CICS preprocessor options in effect on the listing file. The -i option is
equivalent to the mainframe CICS preprocessor OPTIONS option.

-j
results in uppercased C keywords (VOID, INT, and so on) in the command
translation. This is intended for use with the compiler’s japan option. The -j
option is equivalent to the mainframe CICS preprocessor JAPAN option.

-l filename
produces a CICS preprocessor listing named filename. The -l filename option is
equivalent to the mainframe CICS preprocessor PRINT option.

-m
indicates that the BMS maps were generated specifically for C language programs,
which is supported in CICS/ESA 3.3 and later. The preprocessor generates
different default values for the FROM option of the SEND MAP command and the
TO option of the RECEIVE MAP command depending on the presence (or absence)
of this option. If the TO and FROM options are always explicitly coded, this option
has no effect. The -m option is equivalent to the mainframe CICS preprocessor
CBMSMAPS option.

-n
handles nested comments. The -n option is equivalent to the mainframe CICS
preprocessor COMNEST option.

-o filename
writes the preprocessed output to the named file. This option cannot be negated.

68 Option Descriptions 4 Chapter 4

-p
generates a prototype for ccp_exec_cics for each call to the EXEC command
interface function. This is enabled by default. The -p option is equivalent to the
mainframe CICS preprocessor PROTO option.

-r N
specifies the LRECL of the CICS preprocessor output file. N may be in the range
40 to 255, inclusive. The default is 255. The -r N option is equivalent to the
mainframe CICS preprocessor OUTLRECL option.

-x
enables the CICS external call interface. This option allows a non-CICS program
that is running on OS/390 to call a CICS program that is running in a CICS
region. The non-CICS program can be translated, compiled, and prelinked under
UNIX, but the final link-editing must take place on MVS. For example, this
command prepares a program that uses the CICS external call interface for final
link-editing on MVS:

sascc370 -WP,-x -WP,-m -Krent -Aclet myfile.cpp

Since the object shipped from UNIX is prelinked, you should specify the
mainframe COOL option NOCOOL to run only the linkage-editor.

The -x option is equivalent to the mainframe CICS preprocessor EXCI option.
For details on the CICS external call interface, see the SAS/C CICS User’s Guide,
Second Edition.

Note: When using the CICS external call interface, the program must be
linked with the standard resident library, STDOBJ, and not the CICS library. 4

-z
defines the number of lines per page in the listing file. The default is 60. The -z
option is equivalent to the mainframe CICS preprocessor PAGESIZE option.

69

C H A P T E R

5
Using the Global Optimizer and
the Object Module Disassembler

Introduction 69
The Global Optimizer 69

Global Optimization Compiler Options 70

Global Optimization and the Debugger 70

The Object Module Disassembler 71

Using omd 71
Invoking omd directly 71

Using sascc370 or sasCC370 to invoke omd 71

Introduction
The global optimizer makes optimizations that improve the performance of your

application in terms of execution time and program size, and the object module
disassembler provides a copy of the assembler code generated for a C or C++ program.
Both of these topics are covered in some detail in the SAS/C Compiler and Library
User’s Guide. This chapter provides a brief overview and information essential to
effectively use these features with the SAS/C Cross-Platform Compiler.

The Global Optimizer
The global optimization phase optimizes the flow of control and data through an

entire function. A wide variety of optimizations are performed, including the following:
� Values that are not used are eliminated.
� Calculations that do not change are moved outside loops.
� Variables whose only definition is constant are replaced by constants.
� Recalculations of previously calculated values are eliminated
� Code that can never be executed is eliminated.
� Multiplication operations within a loop are changed to addition operations.
� Expressions that are computed along all paths from a point in the code, are moved

to a single, common location.

Each of these topics is treated in detail in the SAS/C Compiler and Library User’s
Guide.

70 Global Optimization Compiler Options 4 Chapter 5

Global Optimization Compiler Options
The -O compiler option is used to enable global optimization. The following options

alter the behavior of the global optimizer.

Table 5.1 Global Optimizer Options

Option Description

-Gfn or -Kfreg=n specifies the maximum number of floating-point
registers (n= 0 through 2).

-Gvn or -Kgreg=n specifies the maximum number of registers the optimizer
can assign to register variables (n= 0 through 6).

-Oa or -Kalias specifies that the global optimizer should assume
worst-case aliasing.

-Oic=n or -Kcomplexity=n specifies the maximum complexity that a function can
have and remain eligible for default inlining.

-Oid=n or -Kdepth=n specifies the maximum depth of functions to be inlined.

-Oil or -Kinlocal inlines single-call, static functions.

-Oin or -Kinline enables inlining during the optimization phase.

-Oir=n or -Krdepth=n specifies the maximum level of recursion to be inlined.

-Ol or -Kloop specifies that loop optimizations should be performed.

Each of these options is described in Chapter 3, “Compiling C and C++ Programs,” on
page 39.

Global Optimization and the Debugger
The cross-platform compiler does not optimize programs when the -g option is used.

To use all the capabilities of the SAS/C Debugger, there must be an accurate
correspondence between object code and source line numbers, and optimizations can
alter this correspondence. Also, the -g option causes the compiler to suppress allocation
of variables to registers, so the resulting code is not completely optimal.

You can, however, use the -Kdbhook option along with the -O option to generate
optimized object code that can be used with the debugger. The -Kdbhook option
generates hooks in the object code that enable the debugger to gain control of an
executing program.

When using the debugger with optimized object code that has been compiled with the
-Kdbhook option, the source code is not displayed in the debugger’s Source window and
you cannot access variables. Therefore, the debugger’s print command, and other
commands, which are normally used with variables, are not used when debugging
optimized code. However, source code line numbers are displayed in the Source window,
providing an indication of your location in the code. You also have the capability of
viewing register values in the debugger’s Register window, and you can use commands
such as step, goto, and runto to control the execution of your program. However, due
to optimizations that affect register contents, the goto command may fail when
debugging optimized code.

See Chapter 9, “Cross-Debugging,” on page 93 for more information about using the
SAS/C Debugger with the SAS/C Cross-Platform Compiler.

Using the Global Optimizer and the Object Module Disassembler 4 Using omd 71

The Object Module Disassembler
The object module disassembler, omd, is a useful debugging tool that provides a copy

of the assembler code generated for a C or C++ program. If the object module is created
with a line number-offset table (that is, if the compiler option -l is in effect), then the
source code is merged with the assembler instructions.

Using omd
The object module disassembler can be invoked either directly or by the sascc370 or

sasCC370 compiler driver.

Invoking omd directly
The following syntax is used to invoke omd directly:

omd [-v] object-filename source-filename

The object-filename argument specifies the name of a compiled object file, and the
source-filename argument specifies the name of the source file used to compile the
object. The -v option is specified to generate a verbose listing.

The output from the object module disassembler is directed to standard output when
omd is invoked directly. A copy of the source code is merged with the disassembler
listing to enable you to associate the assembler instructions with the source. If you
specify the -v option, the listing will include a relocation dictionary, a line
number-offset table, and an extended name mapping table.

Using sascc370 or sasCC370 to invoke omd
The -S option is used to invoke omd from the compiler driver. For example, the

following command could be entered to compile the file named myfile.c and generate a
.omd listing file:

sascc370 -S myfile.c

or

sasCC370 -S myfile.cxx

In these cases, the object module disassembler listing would be written to
myfile.omd.

72 Using omd 4 Chapter 5

73

C H A P T E R

6
Prelinking C and C++ Programs

Introduction 73
The cool Prelinker 73

Syntax 74

Specifying cool Options at Compilation 74

Specifying Control Statements 75

Marking and Detecting Previously Processed cool Objects 75
Prelinker Defaults 75

Option Summary 76

Option Descriptions 78

Introduction
This chapter describes how to use the cool utility program to prelink C and C++

programs you have compiled. The first section contains a general discussion of cool.
The following sections describe the syntax for invoking cool and each of the options
that you can specify.

The cool Prelinker
The cool utility program is an object code preprocessor that assists in the

link-editing of C and C++ programs. cool merges initialization CSECTs for static and
external variables; the IBM linkage editor does not have this capability. When the
-Krent or -Krentext compiler option is used to allow reentrant modification of data,
the compiler creates a separate CSECT to contain the external variable initialization
data for each compilation. Data to be used for the initialization of external variables
are read during program start-up and copied to dynamically allocated memory. This
copy process is necessary to support reentrant execution. (If no external variables are
initialized in a compilation, then the CSECT is not created. When the -Krent option is
used, this applies to static as well as external variables.)

If more than one compilation initializes external variables, then all of the
initialization CSECTs must be merged before the program can be linked. If they are not
combined, the linkage editor ignores all but the first compilation’s data since they all
have the same CSECT name. Therefore, some initializations would be skipped during
execution, with unpredictable results.

The cool utility merges this initialization data by combining all of the object code for
a given program in a manner similar to the CMS loader or OS/390 linkage editor. If
any of the object files contain an initialization CSECT, cool retains the initialization
data and then deletes the CSECT from the object file. When all of the object files are

74 Syntax 4 Chapter 6

processed, cool produces a single object file containing one copy of the initialization
CSECT, followed by the preprocessed object files.

The cool utility also checks for external variables with multiple initial values during
the merge. cool issues a warning for external variables with multiple initial values.

When the use of extended names is specified by the -Kextname compiler option, cool
performs additional preprocessing. Under the -Kextname option, the compiler creates
special data objects in the object file that contains the original C or C++ identifiers and
their associated short forms. The cool utility reads these data objects and then creates
unique external symbols in the output object file, thus enabling the linkage editor or
loader to properly link the output object file by using these unique external symbols.

Note the following:

� You cannot use cool more than once on any object file that was previously
compiled with the -Kextname option or prelinked with the -p option.

� When processing extended name object files, cool requires that each input object
file have a unique section name.

� The cool utility also resolves external references with defining modules in ar370
archives.

Syntax

As described in Chapter 2, “Using the SAS/C Cross-Platform Compiler and C++
Development System,” on page 11, the basic syntax for invoking the cool prelinker is
as follows:

cool [options] [filename1 [filename2...]]

The options argument can be one or more of the cool options listed in “Option
Summary” on page 76 and described in “Option Descriptions” on page 78. Some
functions requested on the mainframe using COOL control statements, such as GATHER
and INSERT, are specified to cool on the workstation using options.

Note: You must use the -o option to specify an output file when you invoke cool
directly. 4

Specifying cool Options at Compilation

Most cool options have two forms:

� A form that you use when you call cool directly

� A form that you use when you specify cool options at compilation.

When you call cool directly, you specify one or more of the options listed in “Option
Summary” on page 76. When you specify cool options at compilation, you specify the
compiler driver form of the option. “Option Summary” on page 76 lists each cool option
and its corresponding compiler driver form. The compiler driver form begins with -A.
The two forms are not interchangeable: You cannot use cool options with the
sascc370 and sasCC370 compiler drivers, and you cannot use the compiler driver
options with cool.

For example, the compiler driver form of the -p option is -Aprem. The rules for
specifying this option are as follows:

� When calling cool directly, you specify the following:

cool -p filename

Prelinking C and C++ Programs 4 Prelinker Defaults 75

� When using the sascc370 (or sasCC370) compiler driver, you specify the following:
sascc370 -Aprem filename

� You cannot specify the following: cool -Aprem filename

Note: You can also specify cool options at compilation by prefixing the option with
-Wl (-W followed by the letter l). For details on specifying the compilation phase, refer to
Chapter 3, “Compiling C and C++ Programs,” on page 39. Also see Appendix 5,
“Compatibility Notes,” on page 145. 4

Specifying Control Statements

Each cool input file may contain object code, control statements, or both. Control
statements must be stored in the EBCDIC character set. Each control statement must
be an 80-byte card image, padded with EBCDIC blanks if necessary. Control
statements must not be separated by new-line characters. The atoe utility described in
Chapter 8, “Conversion of Existing Programs,” on page 89 is useful when generating
these card images. Any of the cool control statements described in the SAS/C Compiler
and Library User’s Guide, Fourth Edition can be used with cool.

Marking and Detecting Previously Processed cool Objects

Prior to Release 6.50, a problem frequently encountered was an attempt to process
an object deck with cool that had already been prelinked by cool. This caused a
number of problems, not obviously related to the attempt to reprocess an object with
cool, and usually resulted in an ABEND. In this release, cool marks each object deck
as it is processed, and if an attempt is made to reprocess the marked object, produces a
diagnostic message indicating the condition.

The new processing is divided into two phases. The first phase marks the output
object deck to indicate it has already been processed with cool. It is controlled by the
allowrecool and noallowrecool options. The second phase detects that an input
object deck has been marked to indicate it was previously processed. The second phase
is controlled by the ignorerecool and noignorerecool options. In Release 6.50, by
default, cool marks the object deck to prevent an attempt to reprocess it. Also by
default, cool detects that the input object deck was previously processed by cool.

These defaults can cause cool to indicate an error where it would not detect such an
error in previous releases. Under certain restricted circumstances, it is possible to
generate object code that can be successfully processed by cool more than once. If this
behavior is desired, the options can be specified such that the output object’s decks are
not marked and that such marking be ignored.

Prelinker Defaults

Most cool compiler driver options that begin with -A have both a positive and
negative form. Most of these default to their negative form if unspecified, but a few
default to their positive form.

For example, if you do not specify the -Adupsname option, cool does not allow the
same SNAME to be used in multiple input files; specifying -Anodupsname has the same

76 Option Summary 4 Chapter 6

effect. Other options behave the opposite way. For example, cool processes extended
names by default (-Aextname). To disable this feature, you must specify the
-Anoextname option.

“Option Summary” on page 76 lists the default for each cool option with a positive
and negative form.

Option Summary
The cool options are summarized in Table 6.1 on page 76. A more detailed

description of each option is provided in the section “Option Descriptions” on page 78.
The first column lists the option’s compiler driver form. This is the form of the option

that you will probably use most often. The second column indicates whether the option
can be negated. An exclamation point (!) means that the option can be negated. A plus
sign (+) means that the option cannot be negated. Both compiler driver options and
cool options can be negated. To negate a compiler driver option, precede the option
name with no. For example, to negate the -Acontinue option, specify -Anocontinue.
To negate a cool option, precede the option name with ! instead of -, for example !p.
The third column lists the default for each option that can be negated. The fourth
column lists the standalone cool option. This is the form of the option that you must
specify when calling cool directly.

Note: Some options have no compiler driver form; they can be used only when
calling cool directly. 4

Table 6.1 cool Options

sascc370 Option Negation Default
cool
Option Description

-Aallowrecool ! -Anoallowrecool -rc Specifies that the output object
deck can be reprocessed by cool.

-Acidxref ! -Anocidxref -xxx Generates an extended name CID
cross-reference.

-Aclet (or -Acletall) ! -Anoclet -m Suppresses the generation of a
non-zero return code for all
unresolved references, including
those for extended names, and
allows an output object module to
be stored.

-Acletnoex ! -Anoclet -mn Suppresses the generation of a
non-zero return code for
unresolved references to
non-extended names, and allows
an output object module to be
stored. Unresolved references to
extended names result in an error
return code from cool.

-Acontinue ! -Anocontinue -zc Continues processing even if a
corrupted ar370 archive is
detected.

Prelinking C and C++ Programs 4 Option Summary 77

sascc370 Option Negation Default
cool
Option Description

-Adglib=pn -db Specifies a debugger file qualifier
that provides for customization of
the destination of the debugger
file.

-Adupsname ! -Anodupsname -zd Allows multiple input files to
define the same SNAME.

-Aendisplaylimit=nnn + -ynnnn Defines the maximum number of
characters used to display
extended names in messages and
listings.

-Aenexit=prog,data + -xt prog,
data

Invokes a user exit program with
optional data.

-Agather=prefix + -gprefix Specifies a 1- to 6-character
GATHER prefix.

-Agmap ! -Anogmap -yg Includes "gathered" symbols in
the listing file.

-Aignorerecool ! -Anoignorerecool -ri Specifies that cool should ignore
marks indicating it has already
processed an input object deck.

-Ainsert=symbol + -isymbol Specifies an external symbol that
is to be resolved by the cool
autocall mechanism.

-Alinkidxref ! -Anolinkidxref -xxe Generates an extended name
LINKID cross-reference.

-Alist ! -Anolist -yl Echo input control statements to
the listing file.

-Anoextname ! -Aextname -n Specifies that cool will not
process extended names.

-Anoinceof ! -Ainceof -zi Processes data after an INCLUDE
statement in an input file.

-Anolineno ! -Alineno -d Deletes all the line-number and
offset table CSECTs.

-Anortconst ! -Artconst -r Suppresses the copying of
run-time constants CSECTs to
the output object file.

-Anowarn ! -Awarn -w Suppresses warning messages.

-Anoxfnmkeep ! -Axfnmkeep -f Deletes extended function name
CSECTs.

-Apagesize=nn + -snn Defines the number of lines to
print per page in the listing file.

-Aprem ! -Anoprem -p Removes pseudoregisters from the
output object file.

78 Option Descriptions 4 Chapter 6

sascc370 Option Negation Default
cool
Option Description

-Areferences ! -Anoreferences -xxy Specifies that referenced symbols
and defined symbols are included
in the cross-reference listing.

-Aprmap ! -Anoprmap -yp Includes a pseudoregister map in
the listing.

-Asmponly ! -Anosmponly -vo Creates only an @EXTVEC#
CSECT.

-Asmpxivec ! -Anosmpxivec -v Creates an @EXTVEC# CSECT.

-Asnamexref ! -Anosnamexref -xxs Generates an extended name
SNAME cross-reference.

-Averbose ! -Anoverbose -zv Prints additional informational
messages.

-Axsymkeep ! -Anoxsymkeep -e Retains extended external
identifier CSECTs.

-h[name] Produces a listing and, optionally,
directs the listing to the specified
file.

-lname -lname Identifies an ar370 archive,
libname.a, containing files that
may be included by cool to
resolve external references.

-Ldirectory -Ldirectory Specifies a directory that is
searched for libname.a files.

-o
filename

Specifies an output file.

Option Descriptions
This section provides a more detailed description of each of the options listed in

“Option Summary” on page 76. The options are listed alphabetically by compiler driver
name. The corresponding cool option is shown in parentheses. cool options with no
compiler driver form are described last.

-Aallowrecool (-rc for standalone cool)
The allowrecool option specifies that the output object deck can be reprocessed
by COOL. Therefore, the deck is not marked as already processed by COOL.

The default noallowrecool specifies that the output object cannot be
reprocessed by COOL. A later attempt to reprocess the deck with COOL will
produce an error.

Note: COOL does not modify the object deck to enable reprocessing. It is the
user’s responsibility to determine if a particular object is eligible for reprocessing. 4

Prelinking C and C++ Programs 4 Option Descriptions 79

-Acidxref (-xxx for standalone cool)
generates an extended name CID cross-reference table. The table is displayed
following the other cool output directed to stdout. The extended names are
displayed in alphabetical order by C identifier.

The -Acidxref option is similar to the mainframe COOL option ENXREF(CID).

-Aclet or -Acletall-m for standalone cool)
suppresses the generation of a non-zero return code for all unresolved references,
and allows an output object module to be stored. The -Aclet option is maintained
for compatibility with previous releases of cool, and is equivalent to -Acletall.

-Acletnoex (-mn for standalone COOL)
suppresses the generation of a non-zero return code for unresolved references to
non-extended names, and allows an output object module to be stored. Unresolved
references to extended names result in an error return code from COOL when this
option is specified.

-Acontinue (-zc for standalone cool)
causes cool to continue processing even if a corrupted ar370 archive is detected.

The -Acontinue option is equivalent to the mainframe COOL option CONTINUE.

-Adbglib=pn (-db for standalone cool)
dbglib specifies a debugger file qualifier that provides for customization of the
destination of the debugger file. On UNIX platforms, the option specified is a
pathname to be prefixed to the file name. For example,

dbglib(/u/sasc/dbg/)

will generate a filename of

/u/sasc/dbg/sname.dbg370

dbglib() is the default.

Note: On UNIX platforms, the sname is capitalized and remains so for
debugger filename generation. 4

Note: In Release 6.50, the compiler allows the placement of the debugging
information in the object file when the dbgobj option is specified. The dbgobj
option is specified by default when the -Kautoinst option is enabled. When this
information is discovered by COOL to be present in the object file, COOL will
write the debugging information to a file supported by the debugger. The default
filename used is somewhat different than when the debugging information is
written directly by the compiler in that it is generated using the sname of the
containing object. 4

-Adupsname (-zd for standalone cool)
causes cool to permit the same SNAME to be used in more than one input file.

The -Adupsname option is equivalent to the mainframe COOL option DUPSNAME.

-Aendisplaylimit=nnn (-ynnnn for stand-alone COOL)
defines the maximum number of characters used to display extended names in
messages and listings.

nnn represents the maximum number of characters that can be used to display
extended names. nnn can be an asterisk (*) specifying that extended names are to
be fully displayed regardless of their length, or it can be a number. The minimum
display limit is set internally and cannot be overriden.

The -Aendisplaylimit option is equivalent to the mainframe COOL option
endisplaylimit.

80 Option Descriptions 4 Chapter 6

-Aenexit=prog,data (-xt prog,data for standalone cool)
invokes a user exit program with optional data. The prog argument is the UNIX
pathname to the program to be invoked. The data argument is 1 to 8 characters of
data to be passed to the program; data is optional. For example, you would specify
the following to invoke the program at /u/bin/myprog and pass it the value "1 2
3":

-Aenexit=/u/bin/myprog,"1 2 3"

Note: The rules for quoting the data value are determined by your UNIX
shell. 4

-Agather=prefix (-g prefix for standalone cool)
causes cool to create data tables based on the prefix argument and append these
tables to the cool output object code.

The -Agather option is similar to the GATHER control statement used with the
mainframe COOL utility. The -Agather option is used primarily with C++;
occasions for using the -Agather option are rare. Refer to the SAS/C Compiler
and Library User’s Guide for more information.

-Agmap (-yg for standalone cool)
causes cool to print a cross-reference of "gathered" symbols in the listing file.

The -Agmap option is similar to the mainframe COOL option GMAP. Refer to the
SAS/C Compiler and Library User’s Guide, Fourth Edition for more information.

-Aignorerecool (-ri for standalone cool)
ignorerecool specifies that if any marks are detected indicating that COOL has
already processed an input object deck, then the marks are to be ignored. If the
ignorerecool option is specified along with the verbose option, then a diagnostic
message is issued and processing continues.

The default noignorerecool specifies that any mark indicating that COOL has
already processed an input object deck should result in an error message and
process termination.

-Ainsert=symbol (-i symbol for standalone cool)
specifies an external symbol that is to be resolved by cool, if necessary. If the
symbol specified by the -Ainsert option is not resolved after all primary input has
been processed, cool attempts to resolve it from an ar370 archive.

The -Ainsert option is similar to the INSERT control statement used with the
mainframe COOL utility.

-Alinkidxref (-xxe for standalone cool)
generates an extended name LINKID cross-reference table. The table is displayed
following the other cool output directed to the standard output device. The
extended names are displayed in alphabetical order using a link id that cool
assigns.

The -Alinkidxref option is similar to the mainframe COOL option
ENXREF(LINKID).

-Alist (-yl for standalone cool)
causes cool to echo input control statements to the listing file.

The -Alist option is similar to the mainframe COOL option LIST.

-Anoextname (-n for standalone cool)
specifies that cool will not process extended names. The -Anoextname option is
equivalent to the mainframe COOL option NOEXTNAME.

For more information about extended names processing, see the description of
the -Kextname compiler option in Chapter 3, “Compiling C and C++ Programs,” on
page 39.

Prelinking C and C++ Programs 4 Option Descriptions 81

-Anoinceof (-zi for standalone cool)
causes cool to process data following an INCLUDE statement in an input file. By
default, cool ignores any data following an INCLUDE statement for compatibility
with the IBM linkage editor.

The -Anoinceof option is equivalent to the mainframe COOL option NOINCEOF.

-Anolineno (-d for standalone cool)
deletes all the line-number and offset table CSECTs from the output object code.
These CSECTs are generated by the cross-platform compiler when the -Klineno
compiler option is used.

Line-number and offset table CSECTs are used by the debugger and run-time
library to compute the address of a source line number in a function. If these
CSECTs are not present, the debugger cannot break on a source statement and
run-time library ABEND tracebacks do not contain function line numbers.

The -Anolineno option is equivalent to the mainframe COOL option NOLINENO.

-Anortconst (-r for standalone cool)
specifies that cool is to suppress copying the run-time constants CSECTs from the
output object file. The resulting object file will be somewhat smaller but certain
information used by the debugger will not be available. By default, cool copies
these CSECTs from the input file(s) to the output file.

The -Anortconst option is equivalent to the mainframe COOL option NORTCONST.

-Anowarn (-w for standalone cool)
suppresses the generation of warning messages.

The -Anowarn option is equivalent to the mainframe COOL option NOWARN.

-Anoxfnmkeep (-f for standalone cool)
deletes extended function names CSECTs in all input object files. By default, cool
retains these CSECTs.

The extended function names CSECT may be useful at run time if you are using
the SAS/C Debugger to debug your program. If the CSECT containing the extended
function name is available, the debugger uses the extended name in displays and
accepts the extended name in commands. Refer to the SAS/C Debugger User’s
Guide and Reference, Third Edition for more information about the debugger.
Also, if the CSECT that contains the extended function name is present, the
library ABEND-handler includes the extended name in ABEND tracebacks.

The -Anoxfnmkeep option is equivalent to the mainframe COOL option
NOXFNMKEEP.

-Apagesize=nn (-snn for standalone cool)
specifies the number of lines to print per page in the listing file. The default is 55
lines per page.

The -Apagesize option is equivalent to the mainframe COOL option PAGESIZE.

-Aprem (-p for standalone cool)
specifies that cool is to remove pseudoregisters from the output object file.

The -Aprem option is automatically enabled if either the -Tcms370 or the
-Tpcms370 compiler option is specified.

The -Aprem option is equivalent to the mainframe COOL option PREM.

-Aprmap (-yp for standalone cool)
causes cool to include a pseudoregister map in the listing file.

The -Aprmap option is similar to the mainframe COOL option PRMAP.

-Areferences (-xxy for standalone COOL)
When the -Areferences option is specified along with one or more of the
cross-reference options (-Acidxref, -Alinkxref, or -Asnamexref), referenced
symbols as well as defined symbols are included in the cross-reference listing.

82 Option Descriptions 4 Chapter 6

-Asmponly (-vo for standalone cool)
causes cool to build the @EXTVEC# vector described under the -Asmpxivec
option. The remaining portion of the cool output is suppressed, so that the entire
object file consists of only the @EXTVEC# CSECT.

The -Asmponly option is equivalent to the mainframe COOL option SMPONLY.

-Asmpxivec (-v for standalone cool)
causes cool to build a vector named @EXTVEC# that references the sname@
vector generated by the -Ksmpxivec compiler option. The sname@ vector provides
an alternate mechanism for reentrant initialization of static and extern data
used with SMP update methods.

The -Asmpxivec option is equivalent to the mainframe COOL option SMPXIVEC.
The -Ksmpxivec cross-platform compiler option is described in Chapter 3,
“Compiling C and C++ Programs,” on page 39. For more information about SMP,
refer to Programmer’s Report: SMP Packaging for SAS/C Based Products.

-Asnamexref (-xxs for standalone cool)
generates an extended name SNAME cross-reference table. This table is displayed
in alphabetical order, sorted on the SNAME associated with each object file,
following the other cool output directed to stdout.

The -Asnamexref option is similar to the mainframe COOL option
ENXREF(SNAME).

-Averbose (-zv for standalone cool)
causes cool to produce extra messages about its processing. These messages are
displayed on the standard error device, and are included in the listing if a listing
file is being produced. These messages are particularly useful for determining how
symbols are resolved.

The -Averbose option is equivalent to the mainframe COOL option VERBOSE.

-Axsymkeep (-e for standalone cool)
specifies that the extended external identifier CSECTs in all input files are
retained. By default, these CSECTs are not retained.

Note: Retaining the extended function names CSECT or the extended external
identifier CSECT makes the resulting prelinked object file somewhat larger. 4

The -Axsymkeep option is equivalent to the mainframe COOL option XSYMKEEP.

-h [name] (standalone cool only)
produces a listing and, optionally, directs the listing to the specified file. If you do
not specify a file name, the listing is directed to stdout (the standard output
device). The listing file contains a list of the options that are in effect and copies of
any diagnostic messages. All cool messages are directed to the listing file and to
stderr (standard error device). "Trivial" messages, like banners and the cool
return code message, are directed to the listing file and also to stdout, if stdout
is not the listing and the -zv (verbose) option is specified.

When you specify any of the following cool options, -h is assumed: -yl, -yp,
-yg, -xxe, -xxs, -xxx.

You can also use the -Klisting compiler option to produce a listing for all
phases of the compilation, including the prelinking phase. Message handling is the
same as -h. When you specify any of the following cool options during
compilation, -Klisting is assumed: -Alist, -Aprmap, -Agmap, -Alinkidxref,
-Asnamexref, -Acidxref.

-lname
identifies an ar370 archive containing members that may be included by cool to
resolve unresolved external references. The name parameter specifies the filename
of the ar370 archive. cool will look for the archive named libname.a

Prelinking C and C++ Programs 4 Option Descriptions 83

Note: There must not be a space between -l and name. 4
The -l option has no effect unless the -Ldirectory option is also specified.
The -l option is similar to the mainframe COOL option ARLIB.

-L directory
specifies the name of a directory to be searched for ar370 archives.

Note: There must not be a space between -L and directory. 4
The -L option is similar to the ARLIBRARY control statement used with the

mainframe COOL utility.

-ofilename (stand-alone cool only)
names the file in which the cool utility stores its output. This option must be
specified when cool is invoked as a stand-alone utility. If cool is invoked by
sascc370 or sasCC370, the output is directed to the a.out file by default unless
the -o compiler option is specified.

84 Option Descriptions 4 Chapter 6

85

C H A P T E R

7
ar370 Archive Utility

Introduction 85
Using the ar370 Utility 86

Command Characters 86

Optional Modifier Characters 87

Combinations of Commands and Modifiers 88

Introduction
The ar370 archive utility is used to maintain groups of files that are combined into a

single archive file. Normally, the ar370 archive utility is used to generate an archive
containing object files used by cool to resolve external references.

An ar370 archive is organized as a collection of members, identified by a member
name that resembles a filename. The member names serve only to identify the
members to the ar370 utility. Otherwise, member names are not significant. For each
object file contained in an ar370 archive, the ar370 utility records the names of
external symbols defined or referenced in the member (including external objects with
extended names). This allows cool to find the member that defines a particular
symbol. No connection is required between an ar370 member name and the external
symbol names defined by the member.

Physically, each ar370 archive is composed of three parts.

Table 7.1 ar370 Components

Component Contents

header information such as the date of the last modification and the
release number of the ar370 utility that made the modification.

member archive a copy of each file added to the library. (For ar370 archives, unlike
the files in a UNIX directory, the order of members may be
significant.)

symbol table a list of each external symbol defined or referred to by any member
of the archive.

When adding or replacing members, the ar370 utility inserts a copy of each input file
into the member archive. The utility also searches the external symbol dictionary
(ESD) of each input file, creates a sorted list of ESD entries, and inserts the list in the
library symbol table. The library symbol table is used by cool to search an archive
efficiently for ESD symbols and extended names.

86 Using the ar370 Utility 4 Chapter 7

CAUTION:
ar370 archives are created and maintained only by ar370.

The internal structures and the data they contain are in EBCDIC. ar370 archives
should never be modified or accessed in any way, other than through ar370. 4

Note: The SAS/C Cross-Platform Compiler includes two utilities that are useful for
working with ar370 archives: ar2updte and updte2ar. For details, see Appendix 3,
“ar2updte and updte2ar Utilities,” on page 127. 4

Using the ar370 Utility
The ar370 archive utility is invoked directly with the following command:

ar370 cmds [posname] libname [fname...]

The cmds argument must be specified, and consists of an optional -, followed by one of
the command characters d, m, r, x, or t. (t may be specified with any other command.)
Optionally, you can concatenate the command character with one or more of the
command modifier characters a, b, e, j, q, or v. The command and command modifier
characters are described later in this section.

The optional posname argument specifies the name of a specific archive member and
is required only if one of the relative positioning command modifiers is specified.

The libname argument specifies the filename of the archive library and must be
present. By convention, an extension of .a is used to identify archive library files.

Each fname argument specifies the name of a file to be added or replaced, or the
name of an archive member to be manipulated. Member names must be specified
exactly as they appear in the archive.

One common use of the ar370 archive utility is to replace or add files to an archive.
In the following example, the utility is invoked to replace the members run.txt and
walk.txt in the ar370 archive named zoom.a. Verbose output is requested.

ar370 rv zoom.a run.txt walk.txt

If either run.txt or walk.txt does not exist in the zoom.a archive, it is added to the
archive by the r command character.

When performing an add or replace, the name of the archive member is generally
derived from the file name. You can specify an alternate name for the archive member
by following the complete input file name with the replace-as operator ‘=’ and the
alternate name for the archive member. For example:

ar370 r mylib this.text.a1=that.obj

This command stores the file this.text.a1 in the archive mylib with the member
name that.obj.

Command Characters
The following command characters are recognized:

ar370 Archive Utility 4 Optional Modifier Characters 87

Table 7.2

Command
Character Description

d deletes the specified members from the archive.

m moves the specified members. By default, the members are moved to the end of
the archive. If an optional positioning character (a or b) is used, the posname
argument must be present, specifying that the named members are to be placed
after (a) or before (b) posname. Note that the members are moved in the order
of their appearance in the archive, not in the order specified on the command
line. This means that when a number of members are moved, they remain in
the same order relative to each other as before the move.

r replaces the specified files in the archive, creating new members for any that
are not already present. If an optional positioning character (a or b) is used, the
posname argument must be present to specify that the new members are to be
placed after (a) or before (b) the posname member. In the absence of a
positioning character, new members are appended at the end. When the r
command character is used, the ar370 archive utility creates an archive file if
it does not already exist. If no files are specified by fname arguments, the
utility creates an empty archive.

t types a description of the contents of the archive. If no member names are
specified, all members in the archive are described by name. If any member
names are specified, information about only those members appears. Additional
information is produced when either the (v) or (e) command modifiers is
specified.

x extracts the named archive members. If no names are specified, all members of
the archive are extracted. The member name is used as the name of each
extract output file. The extract command does not alter or delete entries from
the library.

Optional Modifier Characters
The following optional modifier characters are recognized:

Table 7.3

Modifier
Characters Description

a Positions the members to be moved or replaced after the member specified
by the posname argument. If you specify a, you must specify posname.

b Positions the members to be moved or replaced before the member
specified by the posname argument. If you specify b, you must specify
posname.

e Enumerate: Lists the defined symbols for the members specified for the
type command. This modifier is meaningful only when used with the
type (t) command. When used with the verbose (v) command modifier,
all symbols (defined and referenced) in the specified members are
displayed.

88 Combinations of Commands and Modifiers 4 Chapter 7

Modifier
Characters Description

j Japan or uppercase: Produces all output in uppercase (japan).

q Quick: Processes members of existing archives more quickly. This option
keeps ar370 from reprocessing every member in the archive. It greatly
reduces the amount of I/O needed to add, replace, delete, and move
members in an archive, since no work file is used. You should use this
option with care, however, because an existing library containing data
could be destroyed if space in the data set runs out. Prior to using ar370
with the q option, we recommend that you back up the archive so that you
will not lose your data in the event that the original dataset is destroyed.

Note: The q command modifier causes the member order to
be maintained only in the symbol table. This avoids the I/O
needed to reposition the actual objects within the archive.
Only the order of members in the symbol table is relevant to
the linker. Therefore, the order of the actual object files in the
archive does not always have to be maintained. If an archive
has been modified by ar370 and is subsequently changed
without the q option, the actual order of the objects within the
archive is changed to match the order of the members in the
symbol table. 4

v Verbose: When used with t, the v command modifier produces a long
listing of information for each specified member in the form of name, date,
size, and number of symbols. If no members are specified, a listing is
produced for all members in the archive.

When used with the d, m, or x modifiers, the v modifier causes the ar370
archive utility to print each command modifier character and the member
name associated with that operation. For the r modifier, the ar370
archive utility shows an a if it adds a new file or an r if it replaces an
existing member. The verbose modifier also produces the ar370 archive
utility’s title and copyright notice.

Combinations of Commands and Modifiers
Only the combinations of commands and command modifiers shown in the following

table are meaningful.

Table 7.4 Command and Command Modifier Combinations

Command Accepted Modifiers and Commands

d e, f, j, q, t, v

m e, f, j, q, t, v and a | b

r e, f, j, q, t, v and a | b

t d, e, f, j, m, r,v, x

x e, f, j, t, v

89

C H A P T E R

8
Conversion of Existing Programs

Introduction 89
Source Code Changes 89

Filename Changes 89

Utility Programs 90

mf2unix and unix2mf 90

mf2unix Options 90
unix2mf Options 91

Examples 91

etoa and atoe 91

Examples 92

objdump 92

Example 92

Introduction
In an effort to take full advantage of the workstation environment, the SAS/C C and

C++ cross-platform compilers have been designed to be very similar to a UNIX C
compiler. Because of this, some changes may be needed when you first move your
application from a native compilation environment to a cross-development environment.
These suggested changes do not alter your application’s ability to be built in the native
environment.

Source Code Changes
The SAS/C C and C++ cross-platform compilers support the same set of digraphs

supported by the SAS/C Compiler on the mainframe. However, to aid in portability, it is
advisable to replace these digraphs with characters that are readily available on the
host workstation. The mf2unix and unix2mf utilities described later in this chapter
can assist with this conversion.

Also, when moving source code from the mainframe to the workstation, any sequence
numbers must be removed, since the SAS/C C and C++ cross-platform compilers do not
support sequence numbers.

Filename Changes
The SAS/C C and C++ cross-platform compilers do not translate filenames found in

#include statements. These filenames are case-sensitive and no truncation occurs.
Unlike the mainframe, no special consideration is given to case in include-file

90 Utility Programs 4 Chapter 8

processing; therefore, source code that contains uppercase filenames in #include
statements will probably require alteration.

Utility Programs

The cross-platform compiler provides the following utilities to help you port
applications from the mainframe to the workstation:

Table 8.1 Utility Programs

Utility Description

mf2unix translates source code from mainframe format to UNIX format.

unix2mf translates source code from UNIX format to mainframe format.

etoa translates text from EBCDIC to ASCII.

atoe translates text from ASCII to EBCDIC.

objdump prints out a mainframe object file for viewing on the host workstation.

Each of these utility programs is described in the following sections.

Note: If your object code is currently stored in a PDS on the mainframe, you may
also find the updte2ar utility useful. For details, see Appendix 3, “ar2updte and
updte2ar Utilities,” on page 127. 4

mf2unix and unix2mf
The mf2unix utility program translates source code from mainframe to UNIX format,

and the unix2mf utility program is used to translate source code when porting in the
opposite direction, that is, from UNIX to mainframe format. The syntax for invoking
these utilities is as follows:

mf2unix [option...]

unix2mf [option...]

Both utilities take source code from standard input, perform the translation, and
then print the output to the standard output. The translations performed by the two
utilities are different:

� mf2unix strips off trailing blanks and sequence numbers, and changes digraphs to
brackets.

� unix2mf breaks long lines, changes brackets to digraphs, and replaces tabs with
the correct number of blank space characters.

mf2unix Options
The following option arguments can be specified to modify the translation performed

by the mf2unix utility:

Conversion of Existing Programs 4 etoa and atoe 91

Table 8.2 mf2unix Options

Option Description

-lbl leave trailing blanks.

-offdi do not change digraphs to brackets.

-recfm format-type specifies the record format of the input file. format-type can be
either a v to indicate variable-length records, or f to indicate
fixed-length records.

-noseq do not remove sequence numbers.

unix2mf Options
The following option arguments can be specified to modify the translation performed

by the unix2mf utility:

Table 8.3 unix2mf Options

Option Description

-l num defines the output line length, where num is the maximum number of
characters in a line. The default line length is 72 characters.

-t num specifies the number, num, of blank space characters used in place of
the tab character. If num is not specified, the default is 8.

-offt do not replace tabs with blank space characters.

-offdi do not replace brackets with digraphs.

Examples
In the following example, the mf2unix utility is used to translate the source code

contained in native.c from mainframe to UNIX format, redirecting the output to
cross.c:

mf2unix -lbl < native.c > cross.c

The -lbl option specifies that trailing blanks should not be removed. (Notice that
the < and > redirection operators are used to redirect the input and output of mf2unix.)

In the next example, the unix2mf utility translates the source code contained in the
file cross.c from UNIX format to mainframe format:

unix2mf -t 10 < cross.c > native.c

Output is redirected to native.c and the -t 10 option specifies that tabs should be
replaced with 10 blank space characters instead of the default of 8.

etoa and atoe
The etoa utility performs an EBCDIC-to-ASCII translation, and the atoe utility

performs an ASCII-to-EBCDIC translation. Both utilities read from standard input,
perform the translation, and then write to standard output. No assumptions about
input file format are made, with regard to new-lines or any other record format. The

92 objdump 4 Chapter 8

utilities simply copy the bytes while performing the translation. Also, both utilities use
the same translation tables used by the SAS/C C and C++ cross-platform compilers.
(IBM code page 1047 standard).

Examples
The etoa and atoe utilities do not accept input or output filename arguments;

therefore, the most effective way to use these utilities is to redirect the input and
output files. For example, the following command redirects the input from native,
performs an EBCDIC-to-ASCII translation, and then redirects the output to cross:

etoa < native > cross

Another way to effectively control input is with a pipe. For example, the output from
the operating system’s cat command can be piped to the atoe utility as follows:

cat native | atoe > cross

In this example, the input file, native, is copied to the standard output file, cross,
with ASCII-to-EBCDIC translation performed by atoe.

objdump
The objdump utility prints out a mainframe object file (either OS/390 or CMS) for

viewing on a host workstation. Output from the utility is directed to the standard
output file and is printed in 80-column lines, with EBCDIC characters translated to
ASCII. (objdump uses the same translation tables as used by etoa and atoe.) The
resulting output is similar to what you would see if you were to browse the file using
the ISPF editor under MVS.

The syntax used to invoke objdump is as follows:

objdump [option...] object-file

The input file is specified by the object-file argument, and the option arguments can
be either of the following:

Table 8.4 objdump option Arguments

Option Description

-e Specifies that no EBCDIC-to-ASCII translation is to be performed. The
output will remain in EBCDIC characters.

-h specifies HEX ON. Each line of the output is followed by two lines
representing the hexadecimal values of the bytes; as if the HEX ON
command had been given in the ISPF editor.

-n specifies numbered output. Each 80-column line of output is preceded by a
line number.

Example
Assuming that foo.o is the output of the cross-platform compiler, the following

command directs a dump of that object file to stdout.

objdump -h -n foo.o

In this case, both hexadecimal values and line numbers are displayed in the output.

93

C H A P T E R

9
Cross-Debugging

Introduction 93
Using the SAS/C Debugger in a Cross-Development Environment 95

Using the Debugger’s set Command 95

Locating the Debugger File 95

Locating Source Files 96

Locating include Files 97
Debugger Performance Considerations 97

set Command Reference 98

set 98

ABBREVIATION 98

FORMAT 98

DESCRIPTION 99
search SUBCOMMAND 99

Reattempting a set search 101

cache SUBCOMMAND 102

EXAMPLES 102

SYSTEM DEPENDENCIES 103
COMMAND CAN BE ISSUED FROM 103

SCOPE 103

RETURN CODES SET 103

Introduction
The SAS/C Debugger provides the capability of debugging programs in a

cross-development environment. To debug a load module that was compiled with the
SAS/C or C++ cross-platform compiler, you simply run the program with the =debug
runtime option, just like any other SAS/C or C++ load module.

The debugger provides access to information from several different types of files,
which may be resident on either the UNIX host or the target mainframe, including:

� System Include Files

� User Include Files
� Source Files
� Alternate Source Files

� Debugger Files

When developing an application in a cross-development environment, the files used
by the debugger, with the exception of the load module, may reside on the host
workstation. In order for the debugger to access files that reside on the workstation, a
distributed file system must be used to establish a client/server relationship between

94 Introduction 4 Chapter 9

the target mainframe and the host workstation. The distributed file system used in the
SAS/C cross-development environment is the Network File System (NFS) described in
Appendix 1, “Installing and Administering the NFS Client,” on page 107 and SAS
Technical Report C-113 SAS/C Connectivity Support Library, Release 1.00. Using NFS,
the debugger, running on the mainframe under OS/390 or CMS, has direct access to the
source, include, and debugger files that reside on the host workstation.

If the debugger’s default file searching mechanism does not meet your needs, you can
change or augment the search mechanism with the debugger’s set search command.

The set search command is used to specify filename templates. Filename templates
are used to specify the identity and location of the source, include, or debugger files
associated with the load module being debugged. Multiple filename templates can be
defined for each type of file. As a result, the debugger can search for a file by more than
one name or in multiple locations. Each template is saved in a search list, and each
search list is associated with a specific type of file.

Filename templates are character strings which are similar to the patterns used in a
C printf statement. Each filename template may contain conversion specifiers and
characters. A conversion specifier is a character or a string preceded by a percent
character. The conversion specifier is either replaced by its associated string or specifies
the format of the conversion specifier that follows it. The resulting string is used as the
name of the file to be opened. If a file with the resulting name cannot be opened, the
next filename template in the search list is processed until either a file is opened or
there are no more filename templates in the search list for that type of file.

This is a very powerful technique that allows you to direct the debugger to files that
have moved or even changed names or file systems. This chapter explains how to use
the set search and set cache commands to define filename templates and establish
search lists.

Figure 9.1 on page 94 illustrates the relationship between the files used by the
SAS/C Debugger in the cross-development environment.

Figure 9.1 Debugging in a Cross-Development Environment

HOST (NFS Server)

TARGET (MAINFRAME-NFS Client)

NFS (file server)

Load
Module

System
Include

Files

User
Include

Files

Source
Files

Alternate
Source

Files

Debugger
Files

Object
Files

Debugger
Files

Alternate
Source

Files

Source
Files

User
Include

Files

System
Include

Files

SAS/C Debugger

FTP (file transfer)

Cross-Debugging 4 Locating the Debugger File 95

Using the SAS/C Debugger in a Cross-Development Environment
To debug a program in the cross-development environment, you should perform the

following steps:
1 Compile the program on the host workstation, using the -g option to specify

generation of a debugger file.
2 Create a load module for your program that resides on the target mainframe.
3 Use the NFSLOGIN command to access the NFS server network from the

mainframe. See “Logging on to the NFS Network” on page 118 for more
information.

4 Mount the workstation’s file system from your mainframe client using one of the
methods described in “Accessing Remote File Systems” on page 119.

5 Invoke the debugger, using set search commands in the debugger PROFILE to
specify search lists for the source, include, and debugger files.

Note: The debugger uses standard fopen calls to access these files. If you
encounter difficulty accessing files, the problem may be caused by your remote file
mount, and the failure to properly match the mount point and the templates in the
debugger’s search lists. 4

If you do not use the set search command to specify search lists, the debugger
resorts to its default search mechanism, using the filenames contained in the object and
debugger files to locate files. By default, the debugger uses the path: filename style
prefix with workstation filenames. The path: prefix is described in Appendix 1.

The next section explains how to use the debugger’s set command to specify search
lists and a cache location for the debugger file. You should refer to the SAS/C Debugger
User’s Guide and Reference for additional information about the SAS/C Debugger.

Using the Debugger’s set Command
The SAS/C Debugger’s set command provides two subcommands: set search and

set cache. The set search command is used to specify a search list consisting of one
or more filename templates. Each filename template specifies a location used by the
debugger to search for source, include, or debugger files associated with the load module
being debugged. The debugger traverses the search list, looking for the file specified by
each filename template.

The set cache command is used in cross-development environments that support a
distributed file system, primarily to improve the debuggers performance when accessing
debugger files. The benefit is especially noticeable when debugger files are large. This
command uses a filename template to specify the primary location to save and search
for debugger files. In a typical cross-debugging session, this location would be on the
mainframe.

Note: Frequently, file access problems are caused by an improper mount to the
remote file system. If you encounter difficulty with either the set search or the set
cache subcommands, refer to “Accessing Remote File Systems” on page 119. 4

Locating the Debugger File
Load modules that have been generated from objects compiled by the SAS/C compiler

contain filename information for the debugger file. The format of this filename

96 Locating Source Files 4 Chapter 9

information depends on the host that performed the compilation and the file system the
debugger file was created in. When debugging a program compiled by the SAS/C
Cross-Platform Compiler, the debugger will look for the debugger file in the following
locations in the order listed:

1 Any cache location, as specified by the set cache command.

2 Any locations in the debug search list, as specified by the set search debug
command.

3 The original file name the compiler used to open the file when it was created.

4 The file name the compiler used to open the file when it was created with the
SAS/C filename style prefix path:.

The debugger first checks to see if a cache location has been specified. The set
cache command uses a filename template to specify a location for the debugger file. For
example, the following form of the set cache command could be used to specify a cache
location in the CMS file system:

’SET CACHE DEBUG = "%sname dbg370"’

If the debugger file is found in the cache location, that file is opened. If the debugger
file is not found in the cache location or the module has been recompiled since the
debugger file in the cache location was last copied, the debugger continues to search for
the file by performing the remaining steps in the search order. If the debugger file is
found, it is then copied to the specified cache location and the new cache file is used.

If no cache location was specified or a debugger file is not found in the cache location,
the debugger will attempt to find the debugger file using any filename templates
defined in the debug search list. On OS/390 systems, the debugger has a default search
list for debugger files which, is equivalent to the command:

set search debug = "//ddn:DBGLIB(%sname)"

Note: You can create an empty debug search list with a set search debug
command of the form: set search debug = "". 4

On CMS systems, no default templates are defined for the debug search list, so you
will probably want to define one or more templates. The following form of the set
search command can be used to specify a new search list for the debugger file:

’SET SEARCH DEBUG = "cms: %sname db *"’

If the debugger file is not found using the debug search list, then the debugger will
attempt to open the file by the name the compiler used when it created the file.

Finally, the debugger will attempt to open a file with the name the compiler used
when it created the file and the SAS/C filename style prefix path:.

Locating Source Files
The debugger file contains filename information for the source and alternate source

files used to compile your program. The debugger will look for the source file in the
following locations in the order listed:

1 Any locations in the source search list, as specified by the set search source
command.

2 The original file name the compiler used to open the file when it was created.

3 The file name the compiler used to open the file when it was created with the
SAS/C filename style prefix path:.

Cross-Debugging 4 Debugger Performance Considerations 97

On OS/390 systems, the debugger uses a default search list for source files, which is
equivalent to the following command:

set search source = "//ddn:DBGSRC(%sname)"

If a file is not found using one of the templates in the source search list the debugger
attempts to open the file by the name the compiler used for the file. Finally, the
debugger will attempt to open a file with the name the compiler used when it created
the file, prefixed by the SAS/C filename style prefix path:.

The source search list is not checked for source files that have been altered by a #line
preprocessor statement that specified a filename. Instead, the separate altsource
search list is used. See Table 9.2 on page 99 for more information on altsource.

You can use the following forms of the set search command to specify a new source
search list to be used to locate these files:

set search source = "template1" "template2"...

set search altsource = "template1" "template2"...

Locating include Files
The debugger file also contains filename information for the system include and user

include files used to compile your program. The different types of include files each
have a separate search list. The debugger will look for an include file in the following
locations in the order listed:

1 Any locations in the associated search list, as specified by the set search
systeminclude command or the set search userinclude command.

2 The original file name the compiler used to open the file when it was created.

3 The file name the compiler used to open the file when it was created with the
SAS/C filename style prefix path:.

You can use the following forms of the set search command to specify a new search
list to be used to locate these files:

set search systeminclude =
"template1" "template2"...

set search userinclude =
"template1" "template2"...

Debugger Performance Considerations

A distributed file system makes it possible to develop your applications in a
cross-development environment. In a distributed file system, programs can read or
write files directly in a file system on a remote machine. The Network File System
(NFS) client support provided by the SAS/C Connectivity Support Library allows the
SAS/C Debugger to access files that do not reside on the mainframe at all. Additional
information can be found in Appendix 2, “Using the NFS Client,” on page 117.

The main performance issue to consider when debugging in a cross-development
environment is the time required by the debugger, which runs on the mainframe, to
access files residing on the host workstation. In general, if you can reduce the number
of times files that reside on the workstation are accessed by the debugger, performance
will be improved.

98 set Command Reference 4 Chapter 9

One method of improving debugger performance is to use the set search command
to direct the debugger to access files residing on the mainframe whenever possible. For
example, when developing in a cross-development environment, it is likely that
identical copies of the system include files will reside on both the host workstation and
the target mainframe. You should use the set search systeminclude command to
direct the debugger to use the system include files located on the target mainframe.

Another way to improve performance is to specify a debugger Source Window buffer
that is large enough to hold the entire source file. This allows the debugger to keep the
entire source file in mainframe memory for the time that the compilation is being
debugged. Switching compilations causes the file to be flushed. As a guideline, the
amount of memory needed to hold one source line is equal to the length of the line, after
stripping trailing blanks, plus three bytes. Refer to documentation for the Config
Window and the window memory command in the SAS/C Debugger User’s Guide and
Reference for more information about debugger window buffers.

Even though your source, include, and debugger files may reside on the host
workstation, on systems that do not enjoy the advantages of a distributed file system, or
if your situation requires you to minimize network traffic, it may be advantageous to
use a file transfer mechanism, such as FTP, to copy some of these files to the target
mainframe. For example, if you are debugging an application composed of many source
files and you are only actively developing the code in one or two of those files, the
performance of the debugger will be improved if the source files that will not require
frequent changes and re-compilation reside on the target mainframe as well as the host
workstation.

Similarly, you may use the set cache command to establish a cache location for
your debugger file if you feel this appropriate for the application being debugged.

set Command Reference

The SAS/C Debugger’s set command is best used in the debugger PROFILE to
specify search lists for source, include, and debugger files, as well as a cache location for
your debugger file. However, the set command may also be issued on the command
line. The following reference section describes both the set search subcommand and
the set cache subcommand.

set
Controls file access.

ABBREVIATION

se{t}

FORMAT

set subcommand subcommand-arguments

Cross-Debugging 4 search SUBCOMMAND 99

DESCRIPTION
The set command has two subcommands: search and cache. The set search

command is used to control the search templates that are used to access debugger and
source files, and the set cache command is used to specify a cache location for
debugger files. The set cache command also uses a template to specify this location.

The set search and set cache subcommands are described in the following
paragraphs.

search SUBCOMMAND
The search subcommand is used to establish a search list, control tracing, add, or

remove templates from a search list. The search subcommand has the following forms:

Table 9.1 search Subcommand Formats

Format Example

1 set search file-tag =|+|- “template1" ["template2” ...]

2 set search file-tag =

3 set search file-tag |* ?

4 set search file-tag |* trace on|trace off

The file-tag argument specifies the type of file that a template applies to and can be
any of the following:

Table 9.2 file-tag Values

Type of file Description

debug specifies that the template is for debugger files.

source specifies that the template is for source files.

altsource specifies that the template is for alternate source files. (An alternate
source file refers to source code altered by a #line preprocessor
statement that specifies a filename.)

systeminclude specifies that the template is for system include files.

userinclude specifies that the template is for user include files.

Format 1: This format of the set command specifies a search list for the type of files
designated by file-tag. Each search list consists of one or more templates that are used
by the debugger to locate debugger or source file types.

The =|+|- argument is used as follows:

100 search SUBCOMMAND 4 Chapter 9

Table 9.3 set command Operations

Argument Description

= sets the search list equal to the specified templates.

+ appends the specified templates to the search list.

- removes all occurrences of the specified templates from the search list.

The template arguments define the search list. Each template argument uses one or
more of the following conversion specifiers to define a template used by the debugger to
generate filenames:

Table 9.4 template Arguments

Value Description

%lower or %l causes the replacement text for the conversion specifier following the
%lower to be converted to lowercase. The character after the %lower
or %l must be the start of another conversion specifier.

%upper or %u causes the replacement text for the conversion specifier following the
%upper to be converted to uppercase. The character after the %upper
or %u must be the start of another conversion specifier.

%sname or %s is replaced by the section name of the program being debugged. (The
section name must have been specified when the program was
compiled.) The section name is always uppercase, if a lowercase
version is required, prefix the %sname or %s specification with %lower.

%fullname is replaced by the entire filename stored in the object or debugger files.
The format of the filename is implementation dependent and this
conversion specifier should not be used unless you have complete
knowledge of the filename stored in the object or debugger files. This
conversion specifier is most useful for alternate source files, where it
will be replaced by the complete filename that appears in the #line
statement.

%leafname or %lf is replaced by the portion of the filename stored in the object or
debugger files after the last slash, if present. If there is no slash, it is
the entire filename stored in the object or debugger files.

%basename or %b is replaced by the portion of %leafname that is before the last dot. If
there is not a dot in %leafname, then %basename is the same as
%leafname.

%extension or %e is replaced by the portion of %leafname that is after the last dot. If
there is not a dot in %leafname, then %extension is set to a null
string.

%m is replaced by the member name of the original source file if it was a
member of PDS.

You can include a percent character (%) in a template by specifying two percent
characters successively (%%).

The filenames generated by the application of the conversion specifiers in the
template are passed to the fopen function, which opens the appropriate file for the

Cross-Debugging 4 search SUBCOMMAND 101

debugger to access. If these files are located on a remote host, the SAS/C Connectivity
Support Library is used to establish an NFS connection between the local and remote
host.

For example, to use SAS/C Connectivity Support Library to access files on a UNIX
workstation, the following template could be specified:

"path:dbgfiledir/%leafname"

If %leafname consists of a base and an extension, a functionally equivalent template
could be specified as follows:

"path:dbgfiledir/%basename.%extension"

A similar template could be specified to access files on MVS. For example, the
following template would access a PDS member that matches %basename:

"dsn:userid.proj4.h(%basename)"

Format 2: The second form of the set search command is used to remove all of the
search templates associated with a file-tag. It specifies a null search list.

Format 3: The question mark (?) character is used to display the search list
associated with a file-tag. An asterisk (*) can be used as a wildcard character in place
of a specific file-tag argument. Specifying set search * ? will display the search lists
for all debugger and source files, including the cache location, if it was specified with a
set cache command.

Format 4: The final form of the set search subcommand is used to turn tracing on
or off. When tracing is turned on, the debugger displays a message each time it
attempts to open a file, possibly using a filename generated by a template. The message
displays the name of the file the debugger was looking for and whether or not the
search was successful.

An asterisk (*) can be used as a wildcard character in place of a specific file-tag
argument. If an asterisk is specified for the file-tag, tracing will be affected (either
turned on or turned off) for debug, source, altsource, systeminclude, and userinclude
files.

Reattempting a set search

Release 6.50 of the SAS/C Debugger enhances the set search capability introduced
in Release 6.00. In Release 6.00, only one attempt to locate the debugger or source files
would be made. This meant that if the set search commands located in the profile
were not correct, or had not been corrected before an attempt to load the source, the
current debugging session would have to continue without access to that particular
source.

In Release 6.50, if a set search command is issued, followed by a list command,
the debugger attempts to load any files that were not previously found, using the
modified set search templates. For example, if an attempt to load a source file fails
because the source files have been moved to the dataset SASC.APPL.SOURCE, issuing
the command :

set search source+"dsn:sasc.appl.source(%basename)"

followed by a list command causes the debugger to reattempt the search for the source.
The set search issued does not have to directly correlate to the failed search. For

example, a common problem encountered when debugging, is to forget to allocate the
DBGLIB dataset definition. When the debugger fails to locate the debugger file, a
command such as:

system alloc fi(dglib) dsn(appl.dbglib)shr

102 search SUBCOMMAND 4 Chapter 9

could be issued to allocate the DD. A ‘dummy’ set search command could then be
issued. For example:

set search altsource+""

followed by a list command will cause the search to be reattempted.

cache SUBCOMMAND
The set cache command is used to specify a cache location for the debugger file. (In

a cross-development environment, the original debugger file may be located on the host
workstation and the cache location will be on the target mainframe.) A cache location is
specified to provide faster access to debugging information.

The format for the set cache subcommand is as follows:
Format: set cache debug = "template"
Notice that debug is the only valid type of file for the set cache subcommand.
The template argument is described in the previous section and is used to specify the

cache location. When debugging a program, the debugger first looks for the debugger
file in the cache location. If the debugger finds a current version of the debugger file in
the cache location, then the debugger uses the file. If a debugger file is not found in the
cache location, or if the debugger file in the cache location is not current, then the
current debugger file is copied to the cache location. However, if the cache file is not a
valid debugger file, it will not be overwritten by the debugger.

EXAMPLES

set search userinclude =
"path:/usr/c/headers/%leafname"

specifies a search list for user include files. When the debugger looks for source code
that was included from a user include file located on a host workstation, this template
is used to generate a filename and open the file on the workstation.

set search source =
"hfs:/home/cxx/src/%leafname"

specifies a search list for source files in the OS/390 UNIX System Services hierarchical
file system (HFS). The hfs: filename style prefix instructs the debugger to look for the
file in the HFS file system and open the file if it is found.

set search userinclude +
"dsn:userid.c.headers(%basename)"

specifies a template that is appended to the search list for user include files that was
established in the previous example. This template generates an OS/390 dsn: style
filename that is searched if the user include file is not found on the workstation.

set search userinclude trace on

turns tracing on for user include files. Whenever the debugger searches for a user
include file, a message will be displayed telling you the name of the file searched for
and if the search was successful or not.

set search userinclude ?

Cross-Debugging 4 search SUBCOMMAND 103

displays the search template list used to generate filenames for user include file
searches.

set search userinclude =

resets the search template list for user include files to null.

set cache debug = "dsn:userid.cache.db(%sname)"

specifies an OS/390 data set used to cache the debugger file on the target mainframe.

set cache debug = "cms:%sname dbg370"

specifies the location of a CMS file used to cache the debugger file on a target
mainframe.

SYSTEM DEPENDENCIES
The filenames generated by the search templates are dependent upon the names the

compiler used to open the files originally, which are operating system dependent.

COMMAND CAN BE ISSUED FROM

debugger start-up file yes

command line yes

configuration file no

Source window prefix none

SCOPE
The set command is not affected by changes in scope.

RETURN CODES SET

Successful: 0
Unsuccessful: 1

104 search SUBCOMMAND 4 Chapter 9

105

P A R T2

Appendices

Appendix 1.Installing and Administering the NFS Client 107

Appendix 2.Using the NFS Client 117

Appendix 3.ar2updte and updte2ar Utilities 127

Appendix 4.Redistributing SAS/C Product Files 135

Appendix 5.Compatibility Notes 145

106

107

A P P E N D I X

1
Installing and Administering the
NFS Client

Introduction 107
Distributed File Systems 108

NFS Design 108

SAS/C NFS Client Overview 109

Accessing Files 109

Mounting Directories 109
File Security 110

Installation Considerations 110

NFS Security Administration 111

UID/GID Acquisition 111

RACF Definitions for NFS Clients 112

Configuring a Default Login Server 113
Developing Standardized File-System Configurations 113

Diagnosing Problems 113

Recommended Reading 114

NFS Administrator Commands 114

SHOWMNT 114
SYNOPSIS 114

DESCRIPTION 114

INVOCATION SYNTAX 115

EXAMPLES 115

Introduction
In a cross-development environment, the Network File System (NFS) client support

provided by the SAS/C Connectivity Support Library (CSL) enables the SAS/C
Debugger to communicate with the host workstation. This appendix provides the basic
information necessary to administer this NFS support. Additional information is
contained in Appendix 2, “Using the NFS Client,” on page 117 and SAS Technical
Report C-113, SAS/C Connectivity Support Library, Release 1.00.

As an administrator for the SAS/C CSL NFS client, you must be concerned with
installing the software, establishing access controls for remote file security, (optionally)
developing file-system mount configurations, and diagnosing problems. This support is
provided in a distributed file systems environment that uses Sun NFS protocol for
network communication between computer systems.

108 Distributed File Systems 4 Appendix 1

Distributed File Systems
As networking protocols and applications have become more sophisticated, file

sharing among computers has evolved from simple file transfer to the construction of
distributed file systems. In a distributed file system, programs and users can access
(open, read, write, etc.) file systems from a remote machine directly, as if they were
attached to the local system.

Although numerous designs for distributed file systems have been implemented
experimentally, only a few have achieved commercial success. Of these, the Sun
Microsystems Network File System (NFS) protocol is by far the most widely used.
Although not as full-featured as some other file systems (most notably the Andrew File
System) in areas such as file caching and integrated security administration, its simple
and modest design have made it easy to implement on a wide variety of systems. NFS
software is currently available for almost every computer and operating system on the
market today.

NFS Design
NFS is implemented using a protocol composed of Sun Remote Procedure Call (RPC)

function calls. As with most RPC applications, the protocol supports a dialog among
servers and clients. The NFS servers are the machines that provide remote access to
their file systems. NFS clients are programs that access the files on another system.
Use of RPC enhances interoperability among diverse machines.

The NFS protocol views all file systems as conforming to the hierarchical directory
organization that has been popularized by the UNIX operating system and that was
subsequently codified by the IEEE POSIX standard. The NFS protocol not only allows
reading and writing of files, it also supports manipulation of directories.

Each NFS client system builds and maintains its own file system view. This view
results from a hierarchical combination of its own file systems and the file systems of
servers to which it wants access. At any given directory of this view, the client system
may attach a new sub-tree of directories from an NFS server. This process of attaching
a new sub-tree of directories is called mounting a remote file system. The directory to
which the remote file system is mounted is called the mount point.

An important effect of the mount operation is that the files in the mount-point
directory are no longer visible to the client. The newly mounted files in the remote file
system are visible instead.

Another important principle is that NFS mounts that are made by a server, when it
acts as a client to another system, are not visible to its clients. The clients see only the
files that are physically located on the server.

For users of MVS and CMS, perhaps the most important aspect of the NFS design is
its orientation toward being a network service instead of being the file system
component of a distributed operating system. This orientation is critical in enabling the
use of NFS on operating systems that are dissimilar to the UNIX environments in
which NFS was originally implemented. The primary requirements for an operating
system to participate in NFS are the ability to interpret a hierarchical file system
structure and to share UNIX format user identification numbers. Other similarities to
UNIX are not required. The SAS/C CSL NFS implementation is able to effect support
for directories and UNIX user identification on MVS and CMS.

Installing and Administering the NFS Client 4 Mounting Directories 109

SAS/C NFS Client Overview
When working in a distributed environment without file sharing, the barrier

between systems can become problematic. Files that are needed on one system often
reside on another. The solution of transferring the entire file, using File Transfer
Protocol (FTP) for example, is practical if the file is small and seldom changes, but
becomes much more laborious when this is not the case.

Traditionally, programs running on MVS and CMS have had little or no access to
files located on PCs, workstations, and other non-mainframe computers. The SAS/C
CSL NFS client support changes this situation. For example, in the cross-development
environment you can run the SAS/C Debugger on the mainframe while your source and
debugger files reside on a workstation.

Accessing Files
The SAS/C CSL NFS client transient libraries enable a new filename style prefix,

path:, in SAS/C filenames. In the same way that an MVS program can use the dsn:
prefix to open a file by data set name, the program can now open an NFS file with the
path: prefix. Thus, files that are accessed using NFS are placed in a separate name
space from traditional MVS or CMS files. This separation is due to differences in file
system organizations, such as directories versus partitioned data sets, rather than the
fact that one group is local and the other is remote.

Mounting Directories
SAS/C CSL functions and configuration files are available to mount directories in

the mainframe environment. As multiple mounts are established from one or more
remote machines, the CSL NFS client library maintains a unified hierarchical view of
the resultant directory structure. With the CSL NFS client, mounts are the
responsibility of the individual user, not of a system administrator.

For example, a configuration file with the following line can be used if the user wants
to access a UNIX root directory / on a machine named acct.langdev.abc.com.

acct.langdev.abc.com:/ / nfs

This indicates that the root of the acct.langdev.abc.com machine should be
mounted as the root directory on the mainframe, thus enabling a debugger user to
specify set search commands relative to the mount point. (See Chapter 9,
“Cross-Debugging” for information about the SAS/C Debugger’s set search command.)

To continue our example, suppose the user now invokes the debugger on the
mainframe and enters the following set search command:

set search userinclude =
"path:/usr/name/project/headers/%leafname"

The debugger will now look for user include files in the /usr/name/project/
headers directory on the remote workstation named acct.langdev.abc.com.

In a more complicated setup, many different UNIX workstation file systems can be
mounted together. The overall organization is the responsibility of the mainframe user,
and the pathname for a particular file will often differ from what would be used on any
of the systems individually.

110 File Security 4 Appendix 1

File Security
The CSL NFS client enforces security controls that prevent unauthorized access to

files on the server. Before the user can access an NFS file, the user identification must
be authorized by the local RACF compatible security system, if one is available, and by
a login server running on a UNIX system. If a local security system is available, this
login process can be invoked automatically by the CSL library. If not, the user must
supply a UNIX, or other NFS server operating system, username, and password.

In either case, the NFS client software maintains the standard UNIX, or POSIX,
User Identification (UID) and Group Identification (GID) numbers for the duration of
the user’s session. The NFS client software controls access to remote files based on the
user identification and the file’s permissions.

Installation Considerations
The NFS client software depends on the SAS/C transient library, the SAS/C CSL

transient library, and the TCP/IP software provided by your TCP/IP vendor. These must
all be installed properly for the NFS client software to function correctly. Refer to
SAS/C Library Reference, Third Edition, Volume 2 for additional information.

The NFS client commands must be accessible to users. On CMS, this involves
accessing the disk. On MVS, the commands can be found if the commands are placed in
linklist or LPALIB, or if they are in a data set allocated to the DDname CPLIB
(provided that the optional SAS/C TSO command support is installed). Alternatively,
MVS sites with REXX support can use REXX EXECs which invoke the commands. This
avoids any need to install the SAS/C TSO command support.

In addition to mainframe installation considerations, you must coordinate NFS usage
with the administrators of the NFS servers. They must grant the mainframe access in
their configuration files. Additionally, they must install a login server for mainframe
users to contact.

SAS/C CSL comes with distribution kits (in UNIX tar format) for two login servers.
The first is the standard PCNFSD version 2 server from Sun Microsystems. The second
is the CSL’s sascuidd server, which is used for login without a password. If the NFS
network is already running a PCNFSD version 1 server, it can be used instead of the
PCNFSD version 2 server. The distribution kits come with "README" and "Makefile"
files to guide the process of building the programs on your login server operating system.

PCNFSD may be hard to port to some systems, particularly systems that are not
UNIX systems. There are a number of alternative approaches to solve this problem. If
there is a secure UNIX system available in the network that is already running
PCNFSD, then that system can be used. If no such system is available, sites with
mainframe security systems can rely exclusively on sascuidd (which is much easier to
port). sascuidd will run on any POSIX system that also supports RPC. It is also
possible to use a stripped down version of PCNFSD. Only the authorization and null
procedures are needed for CSL NFS. The others (mostly related to printing) are not
needed.

Whatever server is installed and used, it must be up and running whenever
mainframe users might need access to NFS files.

Installing and Administering the NFS Client 4 UID/GID Acquisition 111

NFS Security Administration
The installation of NFS client software on any system should be a security concern

for administrators of NFS servers. The availability of client software might enable file
access by users to whom the access was not previously possible.

All security on NFS servers is via UNIX (or POSIX) UIDs and GIDs. The UID is a
number that represents a user. The GID represents a group of users. The NFS design
assures that all participating machines share the same UID and GID assignments.
MVS users are identified by a security system such as RACF or ACF2. CMS users are
identified by entries in a CP directory. UNIX UIDs and GIDs are not normally
associated with mainframe users.

Administrators of NFS servers can usually control, on a file system basis, which
client machines can access files via NFS. When security is a concern, the ability of the
client machine to allow only authorized UID and GID associations is the most
important factor. The CSL NFS client software derives its UID and GID associations
from a combination of mainframe security system and UNIX servers. The exact source
authorization depends on site configuration.

Because of differences between UNIX and mainframe operating systems, and because
of a lack of reserved port controls in current mainframe TCP/IP implementations, the
CSL NFS client software is generally less secure (in authorizing UID and GID
associations) than most UNIX NFS client implementations. Methods of attack are
briefly described in the SAS/C CSL installation instructions. Note that it is server file
security that is of concern. An NFS client implementation can pose no additional
security threat to files on the client (in this case the mainframe) unless it gives
unauthorized access to files containing passwords. Note also that most UNIX NFS
servers allow controls for which file systems can be accessed, thus limiting exposure to
unauthorized UID associations.

Because it can use authorizations that are provided by a mainframe security system,
CSL NFS client software is generally more secure than NFS client implementations on
PC operating systems.

UID/GID Acquisition
The SAS/C CSL NFS client software will always retrieve the UNIX UID and GID

information from a UNIX server. The retrieval of the UID information is based on a
UNIX username. The association of UNIX username to UID/GID is always performed
by a UNIX server.

One of two methods is used to associate a UNIX username with a mainframe user. If
there is a (RACF compatible) security system installed, profiles can be established to
authorize mainframe users to UNIX usernames. Users whose mainframe login ID is the
same as their UNIX username are a special case that can be authorized using a single
profile. There is considerable flexibility in this assignment. For example, the
association between mainframe userids and UNIX usernames need not be one-to-one.
When this method is used, the sascuidd login server is used to provide UID
information for that username. No UNIX password is required.

A second method is for the mainframe user to supply the desired username and
password to the UNIX login server PCNFSD (version 2 if available, otherwise version
1), which authorizes the username (based on the password) and supplies UID
information in one step.

The first method will generally be preferred when available because it makes login
easier and removes the requirement that UNIX passwords be present on the mainframe.

For TSO or CMS users, the UID information is stored in environment variables. The
UID is stored in NFS_UID. The primary GID is stored in NFS_GID. The list of

112 RACF Definitions for NFS Clients 4 Appendix 1

supplementary GIDs (sascuidd and PCNFSD V2 only) is stored in NFS_GIDLIST.
NFS_LOGINDATE is set to the date of the login.

The environment variable NFS_LOGINKEY receives an encrypted value which is
used by subsequent NFS calls to determine that these environment variables have not
been tampered with.

NFS logins must be reissued each time the user logs in to TSO or CMS.
Authorization is also lost after about 48 hours, even if the user does not log off. This
prevents users from retaining their authorization indefinitely, even after they have had
their UNIX authorizations removed.

At most 16 additional GIDs are allowed. This is the maximum supported by the
PCNFSD protocol. A user who can login as UID 0 (root) will probably not be given full
authority by the NFS server system. Most NFS servers remap UID 0 to a UID value of
(unsigned short) -2.

SAS/C NFS client capabilities cannot be used until a successful login has occurred.
Successive calls to NFSLOGIN can be made in order to access a different server or to
use a different login ID. If a security system is present to allow login without a
password, the actual login may be performed automatically when an NFS operation is
requested. No corresponding logout is required.

When a mainframe security system is present, it can also control which login server
a user is allowed to access. This prevents users from rerouting their login authorization
request to a less trusted machine. It also reduces the risk of a user sending a UNIX
password to a "Trojan horse" program that is running on an unauthorized system.

Use of a mainframe security system requires the definition of a generalized resource
named LSNUID. The mainframe security administrator can then enter profiles that
give mainframe users access to particular login servers and equate mainframe userids
with UNIX usernames. The next section describes this in detail.

RACF Definitions for NFS Clients
The SAS/C CSL NFS Client mainframe security system interface is based on profiles

that are defined for a generalized resource named LSNUID. Using this resource, you
grant specific mainframe users access to specific UNIX userids and login servers in the
same way that DATASET profiles allow you to grant users access to mainframe files.

Until this resource is defined and activated, the NFS client code behaves as it does
when no security system is installed.

Here is a description of the macro parameters needed to define LSNUID (in a RACF
environment).

ICHERDCE CLASS=LSNUID
ID=nn
MAXLNTH=39
FIRST=ANY
OTHER=ANY
POSIT= (prevented when RACF unavailable,

auditing if you want it,
statistics if you want them,
generic profile checking on,
generic command processing on
global access checking off)

ICHRFRTB CLASS=LSNUID
ACTION=RACF

In RACF, once this resource is defined, it must also be activated via the command:

SETROPTS CLASSACT(LSNUID)

Installing and Administering the NFS Client 4 Diagnosing Problems 113

The NFS client libraries make authorization inquiries about the following profile
names (all requests are for "read" permission):

LOCAL_USERID
Users who are permitted to this profile are authorized to use their mainframe
userid (lowercased) as the UNIX username without specifying a UNIX password.

USER_name
Users who are permitted to this profile are authorized to use the string name
(lowercased) as their UNIX username without specifying a UNIX password. For
example, if a mainframe user is permitted to the profile USER_BILL, then he is
allowed to assume the UNIX username of bill.

Pddd.ddd.ddd.ddd
This specifies the network address (dotted decimal) of a PCNFSD server which the
user can access to obtain a UID and GID. Permissions against servers prevent
users from setting up unauthorized versions of PCNFSD on a less trusted machine
and then directing their login queries to it. For example, if mainframe user BILL
is permitted to P149.133.175.68, he can use the server at that IP address when
logging in. Leading zeros are not allowed in these names. That is, the previous
profile could not have been for P149.133.175.068.

Sddd.ddd.ddd.ddd
This is similar to the above, but permits access to a sascuidd server.

Configuring a Default Login Server
In most cases, it is better for users to reach a default login server. Having a correct

default reduces user effort and confusion. But most importantly, the correct default
must be set if the NFS client library is to perform logins automatically.

You can control the login server in three ways. One way is to set the
NFSLOGIN_SERVER environment variable in the user’s PROFILE EXEC or TSO
startup CLIST. Another way is to apply the default login server configuration zap that is
supplied in the installation instructions. The best method is to accept the default name
nfsloginhost and to configure your nameserver or /etc/hosts format file accordingly.

Developing Standardized File-System Configurations

You may want to set up the file system configuration for users. If so, you can create
a system-wide fstab file to perform their mounts. The search rules for the fstab file
include a provision for a system-wide name. Users who do not set up fstab files of
their own will get the system-wide file. If you want users to save file system context
between programs, you can define the ETC_MNTTAB environment variable in the
PROFILE EXEC or TSO startup CLIST.

Diagnosing Problems

The first step in identifying problems is to look carefully at the diagnostics produced
by the debugger at the point where the failure occurred. Depending on whether the
messages are generated by the debugger or by the library, the messages may be printed
in the log window, or may be printed in line mode after erasing the debugger screen.

114 Recommended Reading 4 Appendix 1

Many user problems are caused by incorrect installation of system software. These
problems can often be diagnosed by understanding what is missing. Sometimes a
configuration file is missing. Other times an environment variable definition is needed,
or a REXX EXEC is not placed where it will be accessed.

In other cases, problems are caused by network and server failures. For server
problems and failures on remote systems, the RPCINFO and SHOWMNT commands are
useful. SHOWMNT is described in “SHOWMNT” on page 114, and RPCINFO is described in
SAS Technical Report C-113, SAS/C Connectivity Support Library, Release 1.00. Both
SHOWMNT and RPCINFO are compatible with the equivalent commands on UNIX.

For true network problems, SNMP or other network diagnostic facilities are most
useful.

Recommended Reading
O’Reilly & Associates, Inc. publishes "Managing NFS and NIS," by Hal Stern. This

book describes NFS administration in a UNIX environment. Many of the concepts and
topics discussed may also help you administer mainframe NFS client software. If you
cannot locate this book in your local bookstore, O’Reilly & Associates may be contacted
at:

O’Reilly & Associates, Inc.

103 Morris Street, Suite A

Sebastopol, CA 95472

(800) 998-9938 US/Canada

707-829-0515 overseas/local

707-829-0104 Fax

NFS Administrator Commands
In addition to the commands described in Appendix 2, “Using the NFS Client,” on

page 117, as an NFS administrator you should be familiar with the SHOWMNT command,
which is described in “SHOWMNT” on page 114.

SHOWMNT
Queries an NFS server for file system information

SYNOPSIS

SHOWMNT [-e] [-d] [-a] [host]

DESCRIPTION
The SHOWMNT command queries an NFS server for information on file systems that

may be mounted by NFS.

Installing and Administering the NFS Client 4 SHOWMNT 115

host is the hostname of the NFS server. If you omit this parameter, SHOWMNT returns
information about the NFS server on the local machine (if one is installed).

SHOWMNT handles two basic types of lists. The first is an exports list. The exports list
tells which file systems can be mounted. The second is a list describing which mounts
have actually taken place. The form of the second list depends on the -d and -a flags.

The -e flag requests the exports list. This includes information about which hosts
are authorized to mount the listed file systems. This information may either be
everyone, or a list of group names that represent a set of hosts. If it is authorized, a
host may mount any of the listed file systems.

You can use the following command when you are trying to determine the name of a
file system to mount:

SHOWMNT -e

Note: You can often mount subdirectories of the listed file systems. Whether or not
you can do this depends on whether the subdirectory is in the same physical file system
on the server. Contact the server administrator or examine server configuration files to
determine this. 4

If -e is used in conjunction with other flags, this exports list will be printed first,
followed by the list describing actual mounts.

If you don’t specify any flags, SHOWMNT prints the list of actual mounts, showing only
the names of the hosts that have a mount. The list is sorted by host name.

If you specify -d, SHOWMNT prints the list of actual mounts, showing only the names
of directories that have been mounted. The list is sorted by directory name.

The -a flag gives the most verbose format for the list of actual mounts. It indicates
that the list should be printed as "host:directory" pairs. If you do not use -d, SHOWMNT
sorts the list by host. If you do use -d, SHOWMNT sorts the list by directory.

INVOCATION SYNTAX
The syntax is generally identical to that shown above. On MVS, system

administration considerations may require use of the TSO CALL command or other
techniques.

EXAMPLES

showmnt -e byrd.unx

Show mountable file systems on the byrd.unx NFS server.

showmnt byrd.unx

Show the list of other hosts that have mounted the NFS file system from byrd.unx.

116 SHOWMNT 4 Appendix 1

117

A P P E N D I X

2
Using the NFS Client

Introduction 117
Logging on to the NFS Network 118

Accessing Remote File Systems 119

Saving File-System Context 119

Setting Up an fstab Configuration File 120

Mount Options 121
Mounting and Unmounting Manually 122

Manipulating Files and Directories 122

NFS User Commands 123

NFSLOGIN 124

SYNOPSIS 124

DESCRIPTION 124
EXAMPLES 125

MOUNT 125

SYNOPSIS 125

DESCRIPTION 125

EXAMPLES 125
UMOUNT 126

SYNOPSIS 126

DESCRIPTON 126

EXAMPLE 126

Introduction

In a cross-development environment, the Network File System (NFS) client support
provided by the SAS/C Connectivity Support Library enables the SAS/C Debugger to
communicate with the host workstation. This appendix provides the basic information
necessary to use this NFS support. Additional information is contained in Appendix 1,
“Installing and Administering the NFS Client,” on page 107 and SAS Technical Report
C-113, SAS/C Connectivity Support Library, Release 1.00.

The NFS client feature provides flexibility in configuring NFS for each user. The
degree of effort required to set up your configuration depends on the amount of support
given by the system administration staff at your site.

For example, minimal user effort is required when the system administrators provide
a centralized mount-configuration file and set up security-system definitions to allow
automatic login. In this situation, users can begin specifying NFS filenames to
application programs immediately. On the other hand, some sites may leave mounting
files to the individual user. Lack of a RACF compatible security system might require
that users issue an NFSLOGIN command at the beginning of each session. Even at

118 Logging on to the NFS Network 4 Appendix 2

sites where a centralized configuration has been set up, individual users with
specialized access requirements may still develop their own configurations.

If your site management has already developed a configuration and makes it
available to you automatically, perhaps with some instructions for using NFS at your
site, you can bypass this section. Otherwise, you may need to use some of the
commands and facilities described here.

Before using NFS to access remote files, you must understand two things:
� How to log on to an NFS login server.
� What remote files you want to access.

Logging on to the NFS Network
NFS servers use a UNIX, or POSIX, file-permission system. This system gives each

user a UID, a GID, and possibly several additional supplementary GIDs. Each file is
assigned ownership by user identification number (UID) and by group identification
number (GID). Permissions for the file are set based on whether the user desiring
access is the owner (has the same UID as the file), is in the file’s group (has a GID that
matches the GID of the file), or is some other user. For each of these three categories
(owner, group, and other) read, write, and execute permissions can be assigned.

To access files using NFS, your session on MVS or CMS must acquire UID and GID
numbers that correspond to some user on the NFS server network. You acquire these
numbers by contacting a login server on the NFS network to ask permission to access
files according to a username that is known to that server. In many cases, contact with
the NFS login server can be automatic the first time you access an NFS file. In other
cases, you must issue the NFSLOGIN command to effect the login.

The function of the login server is to check your identification and grant you access to
the network. Once logged on, the login server functions as an NFS server and provides
access to the files located on the machine on which it resides. At this point you may
also use the network to access files controlled by other NFS servers on other machines.

If you have a RACF compatible security system running on your mainframe and your
site administration has given you access to your NFS login server username, then the
security system can vouch for you and no password is required. Note that the login
server username is not necessarily the same as your MVS or CMS userid. If you do not
have a security system, then you will need to enter your password during the login
process.

In summary, the login process can involve three pieces of information:
� host name of the login server. (For example, the host name of a workstation

running UNIX that acts as an NFS server.)
� login server username. (For example, your username on UNIX.)
� login server password for that username.

The requirement for a password depends on whether a mainframe security system
can provide authentication for login server usernames. If the NFS client software can
determine the other two pieces of information, either by default or by environment
variables, then automatic login is possible. Otherwise, the NFSLOGIN command must
be used.

For example, if your NFS network is composed of UNIX machines, your UNIX
username is comkzz, and your login server is a UNIX machine called byrd.unx, then
the CSL NFS client software must contact byrd.unx and provide comkzz as the user
name. If your MVS username is also COMKZZ (the same except for upper case), the
mainframe security administrator has authorized you to use the comkzz username for
NFS, and byrd.unx has been configured as the default login server at your site, then
the NFS client library will log you in automatically the first time you try to use NFS.

Using the NFS Client 4 Saving File-System Context 119

If, on the other hand, your site does not have RACF, a password is required. In this
case, you need to issue the NFSLOGIN command to enter your password. See
“NFSLOGIN” on page 124 for details.

After the login processing has succeeded, your session receives a UID and one or
more GIDs. These control your subsequent accesses to NFS files.

Accessing Remote File Systems
Logging on establishes UID and GID information. The next step is to mount the

remote file systems that you want to access.
Because the SAS/C CSL NFS client feature runs totally within your user address

space under MVS, or on a virtual machine under CMS, you must mount remote file
systems before accessing NFS files. A number of facilities are provided to make this
process as transparent as possible. Mounts can occur in three ways:

� The configuration file, fstab, specifies a mount that occurs at session or program
startup.

� You issue the MOUNT command.
� An application program performs a mount as part of its own processing logic.

At sites with standardized configurations, a series of mounts may be provided
automatically. In this case, you do not need to do additional work unless you want a
different configuration.

Saving File-System Context
Assuming that you are doing the configuration yourself, one of the first things to

decide is the duration of your mounts. That is, do you want mounts and directory
changes from one program to be preserved for the next program that is run? Mounts
and directory changes form a file system context that may be restricted to the execution
of a particular program or may be shared serially by programs under TSO or CMS.

Not sharing context can be easier. NFS mounts are very fast and involve minimal
processing on the server. The serial sharing of file system context is accomplished using
the mnttab file. When only a few file systems are mounted, reissuing the mounts in
each program can be faster than reading and writing the mnttab file.

Unfortunately, processing the mnttab file at program startup and shutdown adds
noticeable delays to otherwise fast commands and programs. The NFS sample
programs cd, pwd, and ls illustrate this. Overall NFS performance is much better
when a single program does many operations. Sharing is required, however, if working
directory changes are to be preserved from one program to the next. You should always
save the file-system context when working with the SAS/C Debugger in a
cross-development environment.

You specify serial sharing of file system context by setting the ETC_MNTTAB
environment variable to the name of a file to contain the context. For example, under
TSO, you might use the value TSO:ETC.MNTTAB. This creates a file
tsoprefix.ETC.MNTTAB. Under TSO you set the value using the PUTENV command.
Allocating a DDname of ETCMNTTB has the same effect under MVS batch and may be
more convenient. Under CMS, you can set the value using GLOBALV commands with
the CENV group. Refer to SAS/C Compiler and Library User’s Guide and SAS/C
Library Reference, Volume 1, for more information about using environment variables
with the SAS/C Compiler.

You do not need to create the mnttab file yourself. The NFS client library will create
it automatically. It will also be deleted each time you log in to the NFS server. Note

120 Setting Up an fstab Configuration File 4 Appendix 2

that, unlike the conceptually similar UNIX /etc/mnttab file, this file has a binary
format. It also contains information, notably the current working directory, that is held
by the kernel in UNIX.

Finally, be aware that the mnttab file cannot be shared simultaneously by many
programs. If you are managing multiple programs that use NFS concurrently, either set
up multiple mnttab files or set them up not to save context at all.

To avoid serial sharing, do not set the environment variable. Be aware that in this
case, the MOUNT command and the sample cd command appear to have no effect,
because the changes that they request are not saved when they end. When not sharing
file system context, you will normally invoke all your mounts with the fstab
configuration file.

Setting Up an fstab Configuration File
When NFS starts with no mnttab file available, either because there is no serial

sharing of file system context, or NFS has not yet been used, the NFS client library
searches for an fstab configuration file from which to perform initial mounts. The
fstab file removes the need to issue mount commands manually each time NFS is used.

The fstab configuration file format is identical to that used on most UNIX systems.
It should have a series of lines that specify mount points using the following format:

server : directory mount-point type options

Fields are separated by white space, and any fields that follow the options
parameter are ignored. You can also include comments in the fstab configuration file.
The pound (#) character at the beginning of a line or preceded by whitespace indicates
that the rest of the line is a comment.

For NFS file systems, the device is specified as a server name followed by a colon (:),
which is followed by the name of the directory to mount. This name must be a physical
file on the server. It must not be a name that was created by NFS client features of the
server. This is a common source of confusion. Users of the NFS server are often
accustomed to specifying directory names that are not physical directories on their
system. As discussed earlier, the design of NFS does not cause these names to be
propagated automatically to NFS clients of that server.

The mount-point parameter must be a pathname in the directory hierarchy that is
being created on the mainframe. In order for the first directory to be mounted, the
mount point must be a slash (/), which indicates the root directory. Following NFS
conventions, later mount points must be actual directories in a file system that have
already been mounted. The directories that are being mounted then obscure the
contents of the directory they are mounted on.

The type parameter must be nfs. As on UNIX, the table definition is generalized to
accommodate multiple types of file systems; however, at present only NFS file systems
are supported.

Mount options, which are described in “Mount Options” on page 121, generally are
not needed.

Output A2.1 on page 121 shows a typical fstab configuration file:

Using the NFS Client 4 Setting Up an fstab Configuration File 121

Output A2.1 Example fstab configuration file

My NFS setup
byrd.unx:/local/u/bill / nfs #No mount options
server.unx:/tools /tools nfs ro # Mount tools read-only
elgar.langdev:c:/ /lang nfs # Mount from OS/2

This example assumes that the /local/u/bill directory on byrd.unx contains
subdirectories called tools and lang. Presumably these are empty directories that
were set up to serve as mount points for the second and third mounts. If they are not
empty, any contents that they have are obscured to the mainframe user by the second
and third mounts. Instead of seeing the contents of the local directories, the
corresponding directory trees from the /tools directory on server.unx and the c:/
directory on elgar.langdev are seen by the mainframe user at those locations.

The fstab data set is located in the following manner:

1 If there is an environment variable named ETC_FSTAB, its value is used. Note that
the default style is ddn:. Remember to include the style at the beginning of the
name if you want a different one, such as in tso:etc.fstab.

2 On MVS, if there is a DDname of ETCFSTAB, it will be used.

3 The next data set in the sequence depends on the operating system you are
working under.

� Under TSO, tsoprefix.ETC.FSTAB is used.

� Under MVS (other than TSO), if the userid can be determined,
userid.ETC.FSTAB is used.

� Under CMS, ETC FSTAB is used.

4 If on MVS, zappedprefix.ETC.FSTAB is used. The zappedprefix defaults to NFS if
not zapped and can be overridden by the NFS_PREFIX environment variable.

The fstab data set cannot itself be accessed with the path: prefix. See “Accessing
Files” on page 109 for information about the path: prefix.

Mount Options
Mount options control the operation of mounting the file system, as well as the file

system’s characteristics for subsequent use. They must be separated by commas, with
no intervening spaces. They can be specified in either uppercase or lowercase. Mount
options are not usually needed; the defaults are generally adequate.

Table A2.1 on page 121 contains the options you can specify.

Table A2.1 Mount Options

Option Description

RW Indicates that the file system is read/write. This is the default setting.

RO Indicates that the file system is read-only.

DELTAMIN Indicates the time adjustment in minutes to be applied to time stamps on the given file system.
This can be useful when file systems are set to operate in different time zones. This value can be
either positive or negative.

122 Mounting and Unmounting Manually 4 Appendix 2

Option Description

RETRY=n Number of retries for mount failures. The default is 1. The parameter affects only mount
attempts. It does not affect other operations such as read and write. (See RETRANS for other
operations.)

RWSIZE=nnK Read and write buffer size. The default is 4K. The maximum allowed is 1024K.

TIMEO=n Controls the timeout interval in tenths of a second used between retransmission attempts. The
actual timeout interval begins at n tenths of a second and is doubled for each retransmission.
The default TIMEO value is 7. (See also RETRANS.)

RETRANS=n</
code>

Specifies the number of NFS retransmissions. The default is 4. The timeout is multiplied by 2
for each successive retransmission.

SOFT Specifies that a transmission attempt should be abandoned after a complete set of
retransmissions fails. This is the default.

HARD Specifies that a transmission attempt should not be abandoned after a complete set of
retransmissions fails. If HARD is specified, the retransmission process is started over again
after each set of transmissions is completed.

TEXT Perform ASCII or EBCDIC translation on all files. An ASCII-to-EBCDIC translation is
performed when the file is read from the server, and an EBCDIC-to-ASCII translation is
performed when the file is written to the server.

BINARY Always leave data in untranslated, binary form.

XLATE The name of a loadable translate table to be used for ASCII and EBCDIC translation in this file
system. This translation affects data that are read and written. By default, NFS data are
translated using the IBM code page 1047 standard. The table is built in much the same manner
as SAS/C CSL RPC translate tables. (Refer to the description of the xdr_string function in
SAS Technical Report C-113, SAS/C Connectivity Support Library, Release 1.00) The only
difference is that you may choose any load module name and then specify it here. If you have
created an L$NAEXDR table for RPC, you may specify it to get the same translations for NFS
data as for RPC strings. The XLATE option does not affect pathnames, which are controlled by
the RPC L$NAEXDR translate table if present. If the translate table is not present, use the code
page 1047 standard.

The TEXT and BINARY mount options allow you to override the defaults, which are
determined by the debugger when it accesses a file on the workstation. However, we
recommend using them only in unusual situations. When using the SAS/C Debugger,
the settings defined by the debugger are generally appropriate.

Mounting and Unmounting Manually

When you are saving your file system context between programs, you can manipulate
your file system organization by using the MOUNT and UMOUNT commands. These
commands are described later in this chapter.

Manipulating Files and Directories

Once you are logged in and have the remote file systems mounted into the directory
structure that you want, you can begin to access files. In many cases you can do this
through SAS/C programs that are not aware of NFS simply by specifying path: where

Using the NFS Client 4 NFS User Commands 123

you previously specified a local file name. This will work if the particular program that
you are using allowed you to specify the style prefix. For example, CMS programs that
let you access CMS Shared File System files using the sf: prefix will now allow you to
access NFS file using the path: prefix. If the program uses the correct setting for text
or binary processing when it opens files, text files will be translated from ASCII to
EBCDIC automatically. If it does not, you can use the TEXT and BINARY mount options
to override the program’s decision.

Existing SAS/C programs can also remove, rename, and check accessibility of NFS
files.

If you are not saving file system context, or if you are, but have not run a program to
change the initial directory, you must use the full pathname (from the mainframe point
of view) in order to access a file.

Programs that were developed using SAS/C CSL can access and manipulate the
remote file systems more completely. They can create, delete, and list directories. They
can work with hard and symbolic links. They can change or check the current working
directory, and they can retrieve and change UNIX, or POSIX, file-status information.

The SAS/C CSL product contains many sample programs which can also be used as
simple utilities. For example, there is a simple ls command that lists the files in a
directory. There is an ncp command that can copy files between mainframe file systems
and NFS file systems (and can be much quicker than getting into FTP). These are
simple sample programs. They do not have the full features of their UNIX equivalents,
but they are useful.

The following examples are distributed with the CSL run-time transients provided
with the SAS/C Cross-Platform Compiler:

Table A2.2 Sample Programs

Example Description

cd Change the directory (requires an ETC_MNTTAB setting)

ls List a directory (no wildcards)

ncp Copy files between mainframe and NFS file systems

pwd Print the working directory

NFS User Commands
The following commands are used primarily by users who are running NFS client

applications:

Table A2.3 NFS User Commands

Command Description

NFSLOGIN Authorizes TSO or CMS users to access files via NFS.

MOUNT Mounts remote NFS file systems into the NFS client file system
structure.

UMOUNT Removes a previously established mount.

The format used to invoke the NFSLOGIN, MOUNT, and UMOUNT commands is generally
identical to that shown in the following reference information. On MVS, system
administration considerations may require use of the TSO CALL command or other

124 NFSLOGIN 4 Appendix 2

techniques. See your system administrator for details. See “MOUNT” on page 125,
“NFSLOGIN” on page 124, and “UMOUNT” on page 126 for reference information.

NFSLOGIN
Authorizes TSO or CMS users to access files via NFS

SYNOPSIS

Format 1: NFSLOGIN [-s server] [-u username] [-p password] [-n]

Format 2: NFSLOGIN -f

DESCRIPTION
The NFSLOGIN command authorizes TSO or CMS users to access files via NFS. In

some cases the NFS client software can determine the correct server and username
without you specifying them. If a RACF compatible security system is installed, the site
can define particular mainframe users as having access to specified UNIX userids
without requiring a password. If no password is required, and if the other values are
correct by default, you do not need to use this command. The login will occur
automatically when you access the first NFS file or directory.

The NFSLOGIN command is provided for sites and situations where either a password
is needed or the default server or username values must be overridden.

See “Logging on to the NFS Network” on page 118 for an introductory discussion of
NFS login considerations. Also see“NFS Security Administration” on page 111 and the
description of the nfslogin function in SAS Technical Report C-113, SAS/C
Connectivity Support Library, Release 1.00 for more detailed information.

The -f option requests a full-screen display. This display has fields for entering the
same information that can be specified on the command line. The full-screen option
provides non-display password entry.

The server parameter is the host name of the login server that you want to contact.
This may differ from the servers on which files are being accessed. The specified host
must be running the appropriate login server software. See Appendix 1, “Installing and
Administering the NFS Client,” on page 107 for details. You can usually omit this
option because the site can set up a default at installation time. Note also that, when a
security system is installed, the mainframe security administrator controls your access
to login servers. Using an unauthorized server causes a RACF violation.

For username, enter your username on the NFS login server. This is often different
from your MVS or CMS login ID. You do not need to specify a username if the USER
environment variable is set to the desired name, or if your login server username is the
same as your mainframe userid converted to lower case.

If you do not have a RACF compatible security system, or if you want to login as a
username that is not associated with your RACF profile, use the -p option or the
password field to specify your password on the login server. The mainframe security
system (if present) can also control whether a password will or will not be allowed on
your NFSLOGIN.

Note that the -p option requires a value. The -n option is required for the special
case where the UNIX (or other login server operating system) system account has a null
password. The -p and -n options are mutually exclusive. Not specifying either -p or -n
indicates that the user expects the mainframe security system to authorize access to
the login server username. The full-screen display also allows for the special case of a
null password.

Using the NFS Client 4 MOUNT 125

If the login attempt fails, NFSLOGIN prints a message describing the reason.
Otherwise it prints a message indicating success. The login fails if the login server is
not running on the NFS network.

Note that you don’t need to log out from the login server; your UID and GID
permissions will expire after you log off of TSO or CMS. If you want to access files under
a different user name, you can issue NFSLOGIN again. A login will expire after two days.
If you are connected to a session for several days, you will need to log in again.

EXAMPLES

nfslogin -f

Invoke the full-screen login panel.

nfslogin -u bbritten -p ocean

Log in to the default login server with username bbritten and password ocean.

MOUNT
Mounts remote NFS file systems into the NFS client file system structure.

SYNOPSIS

Format 1: MOUNT server :directory mount-point [options]

DESCRIPTION
The MOUNT command is one method of mounting remote NFS file systems into the

NFS client file system structure on the mainframe. This command is useful only when
you have configured your session to save file system context. Otherwise, the effect of
the mount disappears when the MOUNT command completes.

The server parameter specifies the name of the NFS server on which the files are
physically located. The directory is the name of the directory for the directory tree that
you want to mount. It must be a physical filename on that server (it cannot be created
by the server’s NFS client software).

The mount-point parameter specifies the name of the mainframe NFS client directory
on which the remote file system is to be mounted. For the first mount, this must be a
slash (/). For subsequent mounts, it must be a valid pathname in the directory
structure established by existing mounts.

The options string is not required. It specifies mount options for the file system. See
“Mount Options” on page 121. The string of options must be separated by commas, with
no intervening spaces.

You cannot mount on a directory that is already being used as a mount point. You
must first unmount the existing file system with the UMOUNT command.

Be aware that mounts made by this command are preceded by mounts from any
fstab file.

EXAMPLES
These examples assume that there is no fstab file and that file system context is

being saved.

mount byrd.unx:/local/u/bill /

126 UMOUNT 4 Appendix 2

Mount bill’s home directory on "byrd.unx" as the root directory on the mainframe.

mount server.unx:/tools /tools ro

Add the /tools directory from server.unx as a subdirectory and treat it as
read-only.

UMOUNT
Removes a previously established mount

SYNOPSIS

Format 1: UMOUNT mount-point

DESCRIPTON
The UMOUNT command removes a previously established mount. This command is

useful only when you have configured your session to save file system context.
Otherwise, the effect of the unmount disappears when the UMOUNT command completes.

The mount-point parameter specifies a mainframe pathname to a directory from
which a remote file system will be unmounted. The directory must have been used in a
previous mount operation.

You cannot unmount the root directory. If you want to mount a totally different root
directory, delete the mnttab file and then mount the new root directory. NFSLOGIN
also deletes the mnttab file.

You cannot unmount a file system that has other directories mounted over it, or a file
system containing your current directory. Attempting to do so results in the following
message:

UMOUNT failed: file or record in use.

EXAMPLE
This example assumes that file system context is being saved.

umount /tools

Remove the file system that was previously mounted at /tools. If the file system
mounted at / had any files in its tools subdirectory, these now become visible.

127

A P P E N D I X

3
ar2updte and updte2ar Utilities

Introduction 127
ar2updte Utility 127

ar2updte Syntax 128

Examples 128

Default Member Translation Rules 129

ar2updte Diagnostics 129
updte2ar Utility 131

updte2ar Syntax 132

Examples 132

updte2ar Diagnostics 133

Introduction

The utilities ar2updte and updte2ar transform an ar370 archive into a file which is
suitable for input to the IBM IEBUPDTE utility, and vice versa. These utilities can be
useful for converting an existing object code PDS into an ar370 archive and for creating
an OS/390 PDS from an existing archive.

ar2updte Utility

ar2updte is a utility program that converts an ar370 archive to an IEBUPDTE
input format data file. ar2updte reads in the archive and creates a new file of
IEBUPDTE input format data. The ar2updte output file can be used as input to the
IBM IEBUPDTE utility to build an OS/390 partitioned data set that approximates the
ar370 archive provided as input to ar2updte. Together, ar2updte and IEBUPDTE can
be used to copy every member of an ar370 format archive into a corresponding member
of a partitioned data set.

Archives built on a non-OS/390 system may have member names which are not
acceptable as member names to IEBUPDTE. ar2updte offers a translation feature
which permits the user to specify how archive member names should be translated to
PDS member names. Default translation rules are always applied unless the user
specifies that no translation should be performed.

CAUTION:
ar370 archives are created and maintained only by ar370 and updte2ar. The

internal structures and the data these files contain are in EBCDIC format. ar370
archives should never be modified or accessed in any way, other than through ar370.
Similarly, IEBUPDTE input format data files are created only by IEBUPDTE and

128 ar2updte Syntax 4 Appendix 3

ar2updte. The internal structures and the data these files contain are also in
EBCDIC. 4

ar2updte Syntax
The ar2updte utility is invoked with the following command:

ar2updte [options...] infile outfile

The options portion of the command line specifies one or more options, each of which
is a single character preceded by a hyphen (-). Some options (for example, -t) must be
followed by an option argument. The argument can be separated from the option by
white space, but need not be.

Note: The case of option characters is not significant, but case is significant for most
option arguments. 4

The following options are recognized by the ar2updte utility:

Table A3.1 ar2updte Options

Option Description

-t c:s specifies a translation rule to be used by ar2updte when deriving a PDS
member name from an archive member name. More than one -t option can be
specified. The option argument c:s indicates that if the string ‘c’ (which can be
longer than a single character) occurs in an archive member name, it is to be
replaced by the string ‘s’ in the output PDS member name.

-x specifies that no character translations will be applied to the member names
during the archive to IEBUPDTE conversion. The -x option can be used to
preserve the original input archive’s member names, even if they do not
conform to the IEBUPDTE rules for acceptable PDS member names. The
resulting output may not be usable as input to IEBUPDTE, but it can be used
as input to updte2ar to build a copy of the input archive.

Unless -x is specified, default member translation rules are used. See the
section “Default Member Translation Rules” on page 129 for details.

The infile and outfile arguments must be specified. The infile argument specifies the
archive file identifier. It must be a valid archive. The outfile argument specifies the file
identifier of the resulting output file which is in IEBUPDTE input format.

Examples
The following examples show typical ar2updte command lines.

ar2updte testlib.a test.iebupdte

Create a new IEBUPDTE input format file named test.iebupdte from the archive
testlib.a.

ar2updte -x testlib.a test2.iebupdte

Create a new IEBUPDTE input format file named test2.iebupdte from the archive
testlib.a without performing any translations on the names of object members in the
archive.

ar2updte -t ?:QU -t x:$ testlib.a test3.iebupdte

ar2updte and updte2ar Utilities 4 ar2updte Diagnostics 129

Create a new IEBUPDTE input format file named test3.iebupdte from the archive
testlib.a. Convert all question marks to the letters QU, and then convert all x’s to
the dollar sign.

Default Member Translation Rules
Unless the -x option is specified, some translations are automatically performed by

the ar2updte utility:

� If a period (.) is in a member name, and it is not the first character, it is removed,
and the rest of the member name is truncated (that is, MEMBER.NAME becomes
MEMBER in the resulting IEBUPDTE file.

� If a period (.) is the first character of a member name, it is translated to the at
symbol (@).

� If blank ()is the first character of a member name, and it is not a translate
character, then it is translated to a dollar sign ($).

� All member names are truncated to 8 characters since IEBUPDTE will not allow
member names longer than 8.

� All member names are uppercased.

Note: Translations specified by the user occur prior to the default translations.
Interactions between the user specified translations and the default translations may
cause unexpected behavior. For example, if the -t option is invoked with .:per, then
the default translation which converts a leading period (.) to the at sign (@) will not
occur. The leading period (.) will be converted to "per". Also, if the -t option is invoked
with b:_, then the bs will be converted to underscores (_) first and then to the pound
sign (#), by default. 4

ar2updte Diagnostics
The following diagnostic messages are generated by the ar2updte utility. Diagnostic

messages from the run-time library that further describe the problem may appear in
conjunction with the ar2updte diagnostics.

001 Error opening input file, "[filename]".
An attempt to open the file filename failed. Check all input files for validity and
integrity.

002 Error opening output file, "[filename]".
An attempt to open the file filename failed. There may be a file system problem or
failure.

003 Error reading file, "[filename]".
An error occurred when attempting to read from the archive named filename. This
diagnostic may be produced if the archive has been modified by any utility other
than ar370 or updte2ar, but any file system problem or failure that might cause a
read to fail could also cause this message. Check all input files for validity and
integrity.

004 Error writing file, "[filename]".
An attempt to write one or more items to the output file stream has been
unsuccessful. Usually this is caused by having insufficient space available for all
the output, but any file system problem or failure that might cause a write to fail

130 ar2updte Diagnostics 4 Appendix 3

could also be the cause. Make sure the space available for the output file is large
enough to hold all the output.

006 Wrong number of command line arguments.
Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]] filein
fileout

The command line requires a minimum of two arguments, an input archive and
an output filename.

007 Error loading list of translate characters.
Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]] filein
fileout

The program failed while attempting to parse the options and translate
characters in the command line. Be sure the command line is formatted correctly.

009 Option -"option" needs to be followed by an argument.
Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]] filein
fileout

The -"option" option must be followed by an argument.

010 Unrecognized option -"option".
Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]] filein
fileout

The only valid options in ar2updte are: -x and -t c:s.

011 The argument "argument" that follows the -t option must be in the
form c:s where c is the string to be translated and s is the
resulting string.

Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]] filein
fileout

The -t option must be followed immediately with an argument in the form c:s.
All strings ‘c’ in the member names of the archive will then be translated to the
string ‘s’ in the resulting IEBUPDTE input file.

012 Unable to identify ar370 archive, "[filename]".
An ar370 archive can not be located from the filename specified in the command
line. The input file in the command line must be a valid archive file.

013 Error reading ar370 archive members in "[filename]".
An error occurred when attempting to read the members in the archive filename.
This diagnostic may be produced if the archive has been modified by any utility
other than ar370 or updte2ar, but any file system problem or failure that might
cause a read to fail could also cause this message. Check all input files for validity
and integrity.

014 "[filename]" is not an ar370 archive.
This file filename is not an archive. It cannot be processed as an archive. The
input for ar2updte must be an archive created by ar370 or udpte2ar.

015 File is not recognized as an archive. Can not process
file"[filename]".

A file, filename, specified as an archive does not contain a valid archive header.
Data read from the file is checked to verify it is an archive. If the archive has been
modified by any utility other than ar370 or updte2ar data could be lost or
corrupted.

016 Archive format unrecognized. Cannot process file "[filename]".
The file, filename, is an archive, but it contains an error in the symbol table. If the
archive has been modified by any utility other than ar370 or updte2ar, data could
be lost or corrupted.

ar2updte and updte2ar Utilities 4 updte2ar Utility 131

017 Archive format unrecognized. Cannot process file "[filename]".
The file, filename, is an archive, but it contains an error in the string table. If the
archive has been modified by any utility other than ar370 or updte2ar data could
be lost or corrupted.

018 Error writing to output file, "[filename]".
An attempt to write one or more items to the output file has been unsuccessful.
Usually this is caused by having insufficient space available for all the output, but
any file system problem or failure that might cause a write to fail could also be the
cause.

028 The number of aliases for the member "[member name]" exceeds 16.
The member, member name, is defined with more than 16 aliases. All of these
aliases have been included in the resulting IEBUPDTE input format data file.
However, IEBUPDTE cannot process members defined with more than 16 aliases.
The excess alias cards should be removed before running IEBUPDTE.

029 Duplicate member name "[member name]" has been generated in
output.

member name is the identifier for more than one member in the archive. This
name has been included more than once in the resulting IEBUPDTE input format
file. However, the name of each PDS member must be unique, so before a
partitioned data set is created, the IEBUPDTE input format file should be edited,
or the archive should be manipulated using ar370 so that all members have
unique names.

030 Symbol "[symbol name]" was previously defined and has been
omitted from output.

Aliases are created for all symbols defined in each member of the archive. A
symbol definition for symbol name appears in more than one member of the
archive. Since PDS member and alias names must be unique, symbols that conflict
with previous definitions have been omitted from the output. Linking
characteristics of the partitioned data set should still be preserved since only the
first symbol defined by an archive is linked when using the archive.

updte2ar Utility

The updte2ar utility is a program that is used to create an ar370 archive by
reading in the contents of a file in IEBUPDTE input format. The IEBUPDTE input file
must contain 80-byte records, in the format accepted by the MVS IEBUPDTE utility,
and described in the IBM manual MVS/DFP Utilities (SC26-4559). The file is divided
into segments by IEBUPDTE "./ ADD" control records: each segment represents a
single PDS member. A file can be generated in this format from an MVS card-image
partitioned data set using the MVS SAS System’s PROC SOURCE. updte2ar reads in
this data and creates an ar370 archive. This archive can then be manipulated by the
ar370 utility to delete, move, replace, view, or extract members. updte2ar options
allow you to control the translation of PDS member names to archive member names.
They also specify whether the archive’s symbol table should mimic the source PDS
directory, or include all external symbols defined in members of the PDS.

CAUTION:
ar370 archives are created and maintained only by ar370 and updte2ar. The

internal structures and the data these files contain are in EBCDIC format. ar370
archives should never be modified or accessed in any way, other than through ar370.
Similarly, IEBUPDTE input format data files are created only by IEBUPDTE and

132 updte2ar Syntax 4 Appendix 3

ar2updte. The internal structures and the data these files contain are also in
EBCDIC. 4

updte2ar Syntax

The updte2ar utility is invoked with the following command:

updte2ar [options...] infile outfile

The options portion of the command line specifies one or more options, each of which
is a single character preceded by a hyphen (-). Some options (for example, -t) must be
followed by an option argument. The argument can be separated from the option proper
by white space, but need not be. Note that the case of option characters is not
significant, but that case is significant for most option arguments.

The following options are recognized by the updte2ar utility:

Table A3.2 updte2ar Options

Option Description

-a ending appends the specified ending to the input member name to produce
the output archive member name. The ending is limited to 8
characters.

-l converts the member names to lowercase.

-s </ para> specifies that all external symbols defined in any input member are
to be included in the archive symbol table. An archive produced with
the -s option of updte2ar will have the same linking characteristics
as an archive produced directly with ar370. If -s is omitted, then
the archive symbol table will reference only the member names and
aliases referenced by ./ control statements in the input file. An
archive produced without -s will have the linking characteristics of
the source PDS.

-t c:s specifies a translation rule to be used by updte2ar when deriving an
archive member name from a PDS member name. More than one -t
option can be specified. The option argument c:s indicates that if the
string ‘c’ (which can be longer than a single character) occurs in an
input member name, it is to be replaced by the string ‘s’ in the output
archive member name.

The infile and outfile arguments must be specified. The infile argument specifies the
input file which must be in valid IEBUPDTE input format. The outfile argument
specifies the file identifier of the resulting output archive.

Examples

The following examples show typical updte2ar command lines.

updte2ar test.iebupdte testlib.a

Create a new archive named testlib.a using the IEBUPDTE input format file
named test.iebupdte.

updte2ar -t QU:? -t $:x test3.iebupdte testlib.a

ar2updte and updte2ar Utilities 4 updte2ar Diagnostics 133

Create a new archive named testlib3.a using the IEBUPDTE input format file
named test.iebupdte. Convert all letters QU to question marks and then convert all
dollar signs to x s.

updte2ar -l -a .o test.iebupdte testlib4.a

Create a new archive named testlib4.a using the IEBUPDTE input format file
named test.iebupdte. Put all the member names in lowercase and append a .o to
each member name. For example, the input member BUILD would be translated to the
archive member build.o.

updte2ar Diagnostics
The following diagnostic messages are generated by the updte2ar utility. Diagnostic

messages from the run-time library that further describe the problem may appear in
conjunction with the updte2ar diagnostics.

003 Error reading file, "[filename]".
An error occurred when attempting to read from the input file, filename. Check all
input files for validity and integrity. Input files should be composed of 80-byte
records.

004 Error writing file, "[filename]".
An attempt to write one or more items to the output file stream has been
unsuccessful. Usually this is caused by having insufficient space available for all
the output, but any file system problem or failure that might cause a write to fail
could also be the cause. Make sure the space available for the output file is large
enough to hold all the output.

006 Wrong number of command line arguments.
Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1 [-t
c2:s2...]] filein fileout

The command line requires a minimum of two arguments, an input archive and
an output filename.

007 Error loading list of translate characters.
Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1 [-t
c2:s2...]] filein fileout

The program failed while attempting to parse the options and translate
characters in the command line. Be sure the command line is formatted correctly.

008 Argument following -a cannot be longer than 8 characters.
Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1 [-t
c2:s2...]] filein fileout

The -a option specified a suffix that was more than 8 characters.

010 Unrecognized option -option.
Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1 [-t
c2:s2...]] filein fileout

The only valid options in updte2ar are: -l, -s, -a ending, and -t c:s.

011 The argument argument that follows the -t option must be in the
form c:s where c is the string to be translated and s is the
resulting string.

Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1 [-t
c2:s2...]] filein fileout

The -t option must be followed immediately with an argument in the form c:s.
All strings ‘c’ in the member names of the IEBUPDTE file will then be translated
to the string ‘s’ in the resulting ar370 archive.

134 updte2ar Diagnostics 4 Appendix 3

019 Invalid name for symbol, "[symbolname]" specified in a SYMDEF
control statement.

SYMDEF symbols must be 1 to 8 characters in length. The symbol name,
symbolname, is too long. Symbols specified via SYMDEF control statements must
be at least 1 character and not more than 8 characters in length. Check the
symdef cards in the input object files.

020 Invalid SYMDEF control card in file "[filename]".
An ar370 SYMDEF control statement in the input file, filename, contained invalid
syntax. Check the SYMDEF control statement in the specified input file to make
sure it conforms to the general form and syntax of linkage editor control
statements. Make sure the symbol names are between 1 and 8 characters in
length.

021 Unable to write object to ar370 archive file, "[filename]".
An attempt to write one or more items to the output file stream has been
unsuccessful. Usually this is caused by having insufficient space available for all
the output, but any file system problem or failure that might cause a write to fail
could also be the cause. Make sure the space available for the output file is large
enough to hold all the output.

022 Encountered EOF in continued SYMDEF card in file, "[filename]".
An ar370 SYM DEF control statement in the file, filename, is invalid. An End of
File was encountered in place of the continuation of the SYMDEF card. Check the
SYMDEF cards in the input file.

023 Unable to open IEBUPDTE file, "[filename]".
An attempt to open the file filename failed. Check all input files for validity and
integrity.

024 Unable to open ar370 archive file, "filename".
An attempt to open the file, filename, failed. There may be a file system problem
or failure.

025 Read of input file, "[filename]" failed.
When attempting to read the input file, filename, updte2ar was unable to read 80
bytes. The IEBUPDTE utility requires the input file to be composed of 80-byte
records. Check the input file for validity and integrity.

026 Error writing library header to output file, "[filename]".
An attempt to write one or more items to the output file stream has been
unsuccessful. Usually this is caused by having insufficient space available for all
the output, but any file system problem or failure that might cause a write to fail
could also be the cause. Make sure the space available for the output file is large
enough to hold all the output.

027 Error in seeking to offset in file, "[filename]".
An error occurred when attempting to position to an offset in the file, filename.

135

A P P E N D I X

4
Redistributing SAS/C Product
Files

Introduction 135
Limited Distribution Library 136

LDL Files on the Host Workstation 136

LDL Files on the Target Mainframe 136

SAS/C Redistribution Packages 136

SAS/C Redistribution Package for AIX 137
Executables 137

Man Pages 137

ar370 Libraries for MVS 137

ar370 Libraries for CMS 138

SAS/C Redistributable Package for SunOS 138

Executables 138
Man Pages 139

ar370 Libraries for MVS 139

ar370 Libraries for CMS 139

SAS/C Redistributable Packages for HP-UX 140

Executables 140
Man Pages 140

ar370 Libraries for MVS 140

ar370 Libraries for CMS 141

SAS/C Redistribution Packages for Windows 95 and Windows NT 141

Executables 141
Man Pages 142

ar370 Libraries for MVS 142

ar370 Libraries for CMS 142

Introduction
To facilitate the distribution of your SAS/C applications, you may need to redistribute

certain files provided by SAS Institute. The files provided by the SAS/C Limited
Distribution Library (LDL) are redistributable on an "as is" basis. You may also want to
redistribute files that are included in the SAS/C Redistribution Package. Licensing the
SAS/C Redistribution Package allows you to redistribute a selection of SAS/C programs
and libraries to your customers, above and beyond the files provided by the SAS/C
Limited Distribution Library. The SAS/C Redistribution Package is available on all
SAS/C supported platforms and may only be licensed by current SAS/C Compiler sites.

In the cross-development environment, the files that compose the SAS/C Limited
Distribution Library are located on the host workstation or on the target mainframe,
depending on how your site has licensed SAS/C software. The LDL files are located on
the host workstation if your site has licensed the SAS/C Cross-Platform Compiler

136 Limited Distribution Library 4 Appendix 4

independently of any SAS/C mainframe software. The LDL files are located on the
target mainframe if your site has licensed the SAS/C Cross-Platform Compiler and is
also a licensed SAS/C mainframe customer.

The files that compose the SAS/C Redistribution Package are located on the host
workstation that has a licensed copy of the SAS/C Cross-Platform Compiler installed.

Limited Distribution Library

LDL Files on the Host Workstation
If your site licensed the SAS/C Cross-Platform compiler independently of any SAS/C

mainframe software, the LDL files are located on your host workstation. The LDL files
are listed in ./lib/mvs/sascindp/redist.txt if your mainframe target is MVS. For
ESA mode CMS, the LDL files are listed in ./lib/cms/sascindp/redist.txt. For
370 Mode CMS, the LDL files are listed in ./lib/pcms/sascindp/redist.txt.

redist.txt is a complete list of all SAS/C programs and libraries that are
redistributable at no charge. To redistribute other SAS/C programs and libraries you
must license the SAS/C Redistribution Package.

LDL Files on the Target Mainframe
If your site licensed the SAS/C Cross-Platform compiler and is also a licensed SAS/C

mainframe customer, the LDL files are located on your target mainframe. The LDL files
may be copied to tape by running one of the following jobs:

� Under MVS, run the JCL contained in sasc.cntl (DUMPRLDB).
� Under CMS, run the DUMPRLDB EXEC.

The files copied to tape by these jobs contain all of the SAS/C programs and libraries
that are redistributable at no charge. To redistribute other SAS/C programs and
libraries you must license the SAS/C Redistribution Package.

To obtain a list of the files that are written to tape by your job, print a listing of the
JCL or EXEC. On MVS, the JCL can be found in sasc.CNTL(DUMPRLDB), where the
sasc qualifier is site-specific.. If you cannot locate the JCL or EXEC, please see your
SAS Support Consultant or Installation Representative for site-specific information.

SAS/C Redistribution Packages
This section lists the programs and libraries that comprise the SAS/C Redistribution

Package for each SAS/C supported platform. This list is subject to change at any time.
In a cross-development environment, the SAS/C Redistribution Package is licensed

on a cross-platform host basis. That is, the SAS/C Redistribution Package may only be
licensed for the host workstation that has a licensed copy of the SAS/C Cross-Platform
Compiler installed.

For more information about redistribution, have your SAS/C Support Consultant or
Installation Representative call the Institute’s Technical Support Division. For
additional information regarding the terms and conditions under which these programs
and libraries may be redistributed, please refer to the SAS/C Compiler licensing
documents.

Redistributing SAS/C Product Files 4 SAS/C Redistribution Package for AIX 137

Note: All of the files specified in Table A4.1 on page 137 through Table A4.16 on
page 142 are specified relative to the installation location for the SAS/C Cross-Platform
Compiler. See your SAS/C Support Consultant or Installation Representative for the
installation location used on your workstation. 4

SAS/C Redistribution Package for AIX
Table A4.1 on page 137, Table A4.2 on page 137, Table A4.3 on page 138, and Table

A4.4 on page 138 list the files that comprise the AIX (RS/6000) components of the
SAS/C Redistribution Package:

Executables

Table A4.1 Redistributable AIX (RS/6000) Executables

File Description

host/r6x/bin/cool SAS/C cool pre-linker

host/r6x/bin/clink SAS/C clink pre-linker

host/r6x/bin/ar370 SAS/C ar370 archive utility

host/r6x/bin/objdump SAS/C object file display tool

host/r6x/bin/atoe SAS/C ASCII/EBCDIC translation tools. (The etoa
program is a hard-link to atoe.)

host/r6x/bin/sheller SAS/C C++ template utility

host/r6x/bin/sascc370 SAS/C cool front end

Man Pages

Table A4.2 Redistributable man Pages

File Description

man1/cool.1 documents the SAS/C cool pre-linker

man1/clink.1 documents the SAS/C clink pre-linker

man1/ar370.1 documents the SAS/C ar370 archive utility

man1/objdump.1 documents SAS/C object file display tool

man1/atoe.1 documents the SAS/C ASCII/EBCDIC translation tools.
(The etoa program is a hard-link to atoe.)

ar370 Libraries for MVS

138 SAS/C Redistributable Package for SunOS 4 Appendix 4

Table A4.3 Redistributable ar370 Libraries (MVS)

File Description

lib/mvs/libc.a Resident library

lib/mvs/libspe.a MVS SPE library

lib/libcxx.a C++ library

lib/cics/libc.a CICS Resident library

lib/cicsspe/libc.a CICS SPE Resident library

ar370 Libraries for CMS

Table A4.4 Redistributable ar370 Libraries (CMS)

File Description

lib/cms/libc.a Resident library

lib/cms/libspe.a CMS SPE library

lib/pcms/libc.a 370–Mode Resident library

lib/pcms/libspe.a 370–Mode SPE library

lib/libcxx.a C++ library

lib/cics/libc.a CICS Resident library

lib/cicsspe/libc.a CICS SPE Resident library

SAS/C Redistributable Package for SunOS
Table A4.5 on page 138, Table A4.6 on page 139, Table A4.7 on page 139, and Table

A4.8 on page 139 list the files that comprise the SunOS (SPARC) components of the
SAS/C Redistribution Package:

Executables

Table A4.5 Redistributable SunOS (SPARC) Executables

File Description

host/s4x/bin/cool SAS/C cool pre-linker

host/s4x/bin/clink SAS/C clink pre-linker

host/s4x/bin/ar370 SAS/C ar370 archive utility

host/s4x/bin/objdump SAS/C object file display tool

host/s4x/bin/atoe SAS/C ASCII/EBCDIC translation tools. (The etoa
program is a hard-link to atoe.)

Redistributing SAS/C Product Files 4 SAS/C Redistributable Package for SunOS 139

File Description

host/s4x/bin/sheller SAS/C C++ template utility

host/s4x/bin/sascc370 SAS/C cool front end

Man Pages

Table A4.6 Redistributable man Pages

File Description

man1/cool.1 documents the SAS/C cool pre-linker

man1/clink.1 documents the SAS/C clink pre-linker

man1/ar370.1 documents the SAS/C ar370 archive utility

man1/objdump.1 documents SAS/C object file display tool

man1/atoe.1 documents the SAS/C ASCII/EBCDIC translation tools.
(The etoa program is a hard-link to atoe.)

ar370 Libraries for MVS

Table A4.7 Redistributable ar370 Libraries (MVS)

File Description

lib/mvs/libc.a Resident library

lib/mvs/libspe.a MVS SPE library

lib/libcxx.a C++ library

lib/cics/libc.a CICS Resident library

lib/cicsspe/libc.a CICS SPE Resident library

ar370 Libraries for CMS

Table A4.8 Redistributable ar370 Libraries (CMS)

File Description

lib/cms/libc.a Resident library

lib/cms/libspe.a CMS SPE library

lib/pcms/libc.a 370-Mode Resident library

lib/pcms/libspe.a 370-Mode SPE library

lib/libcxx.a C++ library

140 SAS/C Redistributable Packages for HP-UX 4 Appendix 4

File Description

lib/cics/libc.a CICS Resident library

lib/cicsspe/libc.a CICS SPE Resident library

SAS/C Redistributable Packages for HP-UX
Table A4.9 on page 140, Table A4.10 on page 140, Table A4.11 on page 141, and

Table A4.12 on page 141 list the files that comprise the HP-UX components of the
SAS/C Redistribution Package:

Executables

Table A4.9 Redistributable HP-UX Executables

File Description

host/h8x/bin/cool SAS/C cool pre-linker

host/h8x/bin/clink SAS/C clink pre-linker

host/h8x/bin/ar370 SAS/C ar370 archive utility

host/h8x/bin/objdump SAS/C object file display tool

host/h8x/bin/atoe SAS/C ASCII/EBCDIC translation tools. (The etoa
program is a hard-link to atoe.)

host/h8x/bin/sheller SAS/C C++ template utility

host/h8x/bin/sascc370 SAS/C cool front end

Man Pages

Table A4.10 Redistributable man Pages

File Description

man1/cool.1 documents the SAS/C cool pre-linker

man1/clink.1 documents the SAS/C clink pre-linker

man1/ar370.1 documents the SAS/C ar370 archive utility

man1/objdump.1 documents SAS/C object file display tool

man1/atoe.1 documents the SAS/C ASCII/EBCDIC translation tools.
(The etoa program is a hard-link to atoe.)

ar370 Libraries for MVS

Redistributing SAS/C Product Files 4 SAS/C Redistribution Packages for Windows 95 and Windows NT 141

Table A4.11 Redistributable ar370 Libraries (MVS)

File Description

lib/mvs/libc.a Resident library

lib/mvs/libspe.a MVS SPE library

lib/libcxx.a C++ library

lib/cics/libc.a CICS Resident library

lib/cicsspe/libc.a CICS SPE Resident library

ar370 Libraries for CMS

Table A4.12 Redistributable ar370 Libraries (CMS)

File Description

lib/cms/libc.a Resident library

lib/cms/libspe.a CMS SPE library

lib/pcms/libc.a 370-Mode Resident library

lib/pcms/libspe.a 370-Mode SPE library

lib/libcxx.a C++ library

lib/cics/libc.a CICS Resident library

lib/cicsspe/libc.a CICS SPE Resident library

SAS/C Redistribution Packages for Windows 95 and Windows NT
Table A4.13 on page 141, Table A4.14 on page 142, Table A4.15 on page 142, and

Table A4.16 on page 142 list the files that comprise the Windows 95 and Windows NT
components of the SAS/C Redistribution Package:

Executables

Table A4.13 Redistributable Windows 95 and Windows NT Executables

File Description

host\wnt\bin\cool.exe SAS/C cool pre-linker

host\wnt\bin\clink.exe SAS/C clink pre-linker

host\wnt\bin\ar370.exe SAS/C ar370 archive utility

host\wnt\bin\objdump.exe SAS/C object file display tool

host\wnt\bin\atoe.exe SAS/C ASCII/EBCDIC translation tools.

142 SAS/C Redistribution Packages for Windows 95 and Windows NT 4 Appendix 4

File Description

host\wnt\bin\etoa.exe SAS/C EBCDIC/ASCII translation tools.

host\wnt\bin\sheller.exe SAS/C C++ template utility

host\wnt\bin\sascc370.exe SAS/C cool front end

Man Pages

Table A4.14 Redistributable man Pages

File Description

man1\cool.1 documents the SAS/C cool pre-linker

man1\clink.1 documents the SAS/C clink pre-linker

man1\ar370.1 documents the SAS/C ar370 archive utility

man1\objdump.1 documents SAS/C object file display tool

man1\atoe.1 documents the SAS/C ASCII/EBCDIC translation tools.

man1\etoa.1 documents the SAS/C EBCDIC/ASCII translation tools.

ar370 Libraries for MVS

Table A4.15 Redistributable ar370 Libraries (MVS)

File Description

lib\mvs\libc.a Resident library

lib\mvs\libspe.a MVS SPE library

lib\libcxx.a C++ library

lib\cics\libc.a CICS Resident library

lib\cicsspe\libc.a CICS SPE Resident library

ar370 Libraries for CMS

Table A4.16 Redistributable ar370 Libraries (CMS)

File Description

lib\cms\libc.a Resident library

lib\cms\libspe.a CMS SPE library

lib\pcms\libc.a 370-Mode Resident library

lib\pcms\libspe.a 370-Mode SPE library

Redistributing SAS/C Product Files 4 SAS/C Redistribution Packages for Windows 95 and Windows NT 143

File Description

lib\libcxx.a C++ library

lib\cics\libc.a CICS Resident library

lib\cicsspe\libc.a CICS SPE Resident library

144 SAS/C Redistribution Packages for Windows 95 and Windows NT 4 Appendix 4

145

A P P E N D I X

5
Compatibility Notes

Changes for Release 6.50 145
Marking and Detecting Previously Processed cool Objects 145

Changes for Release 6.00 145

Compiler Options 145

Pre-Linker 147

Changes for Release 6.50
The following section describes changes for Release 6.50 of the SAS/C Cross-Platform

Compiler.

Marking and Detecting Previously Processed cool Objects
In Release 6.50, by default, cool marks the object deck to prevent an attempt to

reprocess it. Also by default, cool detects that the input object deck was previously
processed by cool

These defaults can cause cool to indicate an error where it would not detect such an
error in previous releases. Under certain restricted circumstances, it is possible to
generate object code that can be successfully processed by cool more than once. If you
want this type of behavior from cool, the options can be specified such that the output
object’s decks are not marked and/or that such marking is ignored.

Changes for Release 6.00
Release 6.00 of the SAS/C Cross-Platform Compiler has new compiler option names

and a different default pre-linker program. The following sections describe these
changes and discusse their compatibility with previous releases.

Compiler Options
Prior to Release 6.00, most C parsing phase (phase 1) compiler options used the

syntax:

-W1,-option_name

where option_name was a mnemonic for the corresponding mainframe compiler
option. In this release, these options have been replaced with options of the form:

146 Compiler Options 4 Appendix 5

-Koption_name

where option_name more closely resembles the corresponding mainframe compiler
option.

Options for several other compilation phases have also been replaced with
-Koption_name forms, including:

� code generation phase (phase 2)

� global optimizer phase (phase g)

� C++ translation phase (phase C)

Several non-phase-related options have also been renamed to indicate more
accurately what the options are for.

Table A5.1 on page 146 shows the correspondence between the old option names and
the new option names. To maintain compatibility with existing build procedures, the
cross-platform compiler accepts the old names. However, we recommend that you
migrate to the new names. For example, you can use either of the following commands
and achieve the same results:

sascc370 -Kredef -Kcomnest alpha.c (new syntax)

sascc370 -W1,-cr -W1,-cc alpha.c (old syntax)

These commands compile alpha.c and allow redefinition and stacking of #define
names, and nested comments. For a complete description of these compiler options, see
“Option Descriptions” on page 47.

Table A5.1 Compiler Option Changes in Release 6.00

Old Option New Option Description

-W1,-ao -Kasciiout Character string constants are output as ASCII values.

-W1,-cc -Kcomnest Allow nested comments.

-W1,-cg -Ktrigraphs Enable translation of ANSI standard trigraphs.

-W1,-co -Kppix Allow nonstandard token-pasting.

-W1,-cr -Kredef Allow redefinition and stacking of #define names.

-W1 -cs -Kstringdup Create a single copy of identical string constants.

-W1,-hs -Knohmulti Specifies that system include files will only be included
once.

-W1,-hl -Knoimulti Specifies that local include files will only be included once.

-W1,-i -Kindep Generate code that can be called before the run-time
library framework is initialized or code that can be used
for interlanguage communication.

-W1,-k -Ksmpxivec Generate a CSECT with a unique name of the form
sname@. in place of @EXTVEC# (for SMP support).

-W1,!l -Knolineno Disable identification of source lines in run-time
messages produced by the SAS/C Library.

-W1,-ll -Kstrict Enable an extra set of warning messages for questionable
or nonportable code.

-W1,-q002=filename -Klisting=filename Specify the name of the listing file.

Compatibility Notes 4 Pre-Linker 147

Old Option New Option Description

-W1,-v -Kvstring Generate character string literals with a 2-byte length
prefix.

-W2,-q001=filename -Ksrcis=filename Override the name of the source file in the debugging file.

-W2,-q003=filename -Kdebug=filename Generate a .dbg370 debugging information file and,
optionally, specify the full name of the file.

-W2,-q004 -Ksingleret Forces the code generator to generate a single return
sequence at the end of each function.

-W2,-q006 -Knodbgcmprs Do not compress debugging information.

-Wg,-!inline -Knoinline Disable all inlining during the optimization phase.

-Wg,-!inlocal -Knoinlocal Disable inlining of single-call, static functions during the
optimization phase.

-WC,-wEn -w~n Cause warning message n to be treated as an error
condition.

-WC,-wMn -w+n Specify that warning number n should not be suppressed.

-WC,-wSn -wn Suppress warning message number n.

-Knonuinc -Knousearch Specify #include file search rules that are not typical of
UNIX.

-se -Kexclude Omit listing lines that are excluded by preprocessor
statements from the formatted source listing.

-sh -Khlist Print standard header files in the formatted source listing.

-si -Kilist Print the source referenced by the #include statement
in the formatted source listing.

-sm -Kmaclist Print macro expansions in the formatted source listing.

-ss -Ksource Output a formatted source listing of the program to the
listing file.

-sx -Kxref Produce a cross-reference listing.

Pre-Linker
In this release, the program cool replaces clink as the default object code

preprocessor. If you do not suppress pre-linking with the -c compiler option, sascc370
and sasCC370 pre-link the object file with cool.

The cool program is designed to be backwards compatible with source code that was
developed prior to Release 6.00. In addition to accepting all of the driver options
supported by the old clink program, cool accepts the following options, which are new
for this release:

� The -r option suppresses copying the run-time constants CSECTs to the output
object file.

� The -snn option defines the number of lines per page in the listing file.
� The -vo option creates only the EXTVEC# CSECT.
� The -xt option invokes a user exit program with optional data.
� The -yl option causes input control statements to be echoed to the listing.
� The -yg option includes "gathered" symbols in the listing.

148 Pre-Linker 4 Appendix 5

� The -yp option includes a pseudoregister map in the listing.
� The -zc option allows processing to continue even if a corrupted ar370 archive is

detected.

� The -zd option allows multiple input files to define the same SNAME.
� The -zi option processes data after an INCLUDE statement in an input file.
� The -zv option prints additional informational messages.

Since clink is still distributed with the SAS/C Cross-Platform Compiler and C++
Development System, you can pre-link your program with clink, instead of cool, if
desired. You can use either of the following methods:

1 Use the -Kuse_clink compiler option to invoke clink automatically when you
run sascc370 or sasCC370. For example, the following commands compile
alpha.c and pre-link the output file with clink:

sascc370 -Kuse_clink -Anolineno alpha.c (new syntax)

sascc370 -Kuse_clink -Wl,-d alpha.c (old syntax)

You can pass any of the pre-linker options described in Table 6.1 on page 76 to
clink, except the ones listed above, which are supported only by cool.

In this release, the recommended way to pass an option to the pre-linker during
compilation is with the -Aoption_name compiler driver form. In the first example
above, the -Anolineno option is passed to the pre-linker to delete the line number
and offset table CSECTs. However, for compatibility with existing build
procedures, you can also specify the compilation phase with the -Wl prefix. In the
second example above, the -Wl,-d option is passed to the pre-linker, which has the
same effect as specifying -Anolineno. Notice that you must use the actual
pre-linker option (in this case -d) when specifying the compilation phase with -Wl.
For more information about specifying the compilation phase, refer to Chapter 3,
“Compiling C and C++ Programs,” on page 39.

2 You can also suppress pre-linking when you compile your program and then call
clink directly. For example, these commands compile alpha.c and pre-link the
object file with clink in a separate step:

sascc370 -c alpha.c

clink -d alpha.o /libdir/libc.a

You can specify any of the pre-linker options described in Table 6.1 on page 76,
except the ones listed above, which are supported only by cool. If you specify any
cool-only options, they are ignored.

Index 149

Index

Numbers
31-bit addressing 62

A
a, ar370 modifier character 87
-a, ccp option 66
A qualifier 64
-Aallowrecool, cool option

reprocessing objects 78
syntax 75

-Acidxref, cool option 79
-Aclet, cool option 79
-Acletall, cool option 79
-Acletnoex, cool option 79
-Acontinue, cool option 79
-Adbglib, cool option 79
administrator commands 114
-Adupsname, cool option 79
-Aendisplaylimit, cool option 79
-Aenexit, cool option 80
-Aextname, cool option 80
-Agather, cool option 80
-Agmap, cool option 80
-Aignorerecool option

reprocessing objects 80
syntax 75

-Ainceof, cool option 81
-Ainsert, cool option 80
AIX, redistributing SAS/C product files 137
AIX environment, SAS/C redistribution package

for 137
-Alineno, cool option 81
-Alinkidxref, cool option 80
-Alist, cool option 80
all-resident library routines 20

enabling 13, 60
altsource search list 99

locating debugger files 95
locating source files 97

-Anoallowrecool, cool option
reprocessing objects 75
syntax 78

-Anocidxref, cool option 79
-Anoclet, cool option 79
-Anocletall, cool option 79
-Anocletnoex, cool option 79
-Anocontinue, cool option 79

-Anodbglib, cool option 79
-Anodupsname, cool option 79
-Anoendisplaylimit, cool option 79
-Anoenexit, cool option 80
-Anoextname, cool option 80
-Anogather, cool option 80
-Anogmap, cool option 80
-Anoignorerecool, cool option

reprocessing objects 75
syntax 80

-Anoinceof, cool option 81
-Anoinsert, cool option 80
-Anolineno, cool option 81
-Anolinkidxref, cool option 80
-Anolist, cool option 80
-Anopagesize, cool option 81
-Anoprem, cool option 81
-Anoprmap, cool option 81
-Anoreferences, cool option 81
-Anortconst, cool option 81
-Anosmponly, cool option 82
-Anosmpxivec, cool option 82
-Anosnamexref, cool option 82
-Anoverbose, cool option 82
-Anowarn, cool option 81
-Anoxfnmkeep, cool option 81
-Anoxsymkeep, cool option 82
ANSI trigraph translation 57
-Apagesize, cool option 81
-Aprem, cool option 81
-Aprmap, cool option 81
ar2updte utility 127

default member translation rules 129
diagnostic messages 129
error messages 129
examples 128
syntax 128

ar370 archive utility 85
command characters 86
components of 85
invoking 86
modifier characters 87
verbose mode 87

ar370 archives, and cool
ignoring corrupted 79
including 82
search path 83

ar370 archives, definition 37
ar370 archives, in cool

corrupted, ignoring 79

including 82
search path 83

-Areferences, cool option 81
-Artconst, cool option 81
ASCII output 48
ASCII to EBCDIC conversion

mount options 121
programs 91

-Asmponly, cool option 82
-Asmpxivec, cool option 82
-Asnamexref, cool option 82
asterisk (*), wildcard character 101
at sign (@) 48, 63

in ar2updte utility 129
atoe utility 91
-Averbose, cool option 82
-Awarn, cool option 81
-Axfnmkeep, cool option 81
-Axsymkeep, cool option 82

B
b, ar370 modifier character 87
-b, ccp option 67
binary mount option 122
BINARY mount option 121
blanks, in ar2updte utility 129
BMS map generation 67
byte boundary alignment 49

C
-c, ccp option 67
C and C++ programs, compiling

See compiling C and C++ programs
C and C++ programs, linking

See COOL utility
See cool prelinker

-c compiler option
examples 13, 15, 16
syntax 47

C keywords, uppercasing 67
cache command

See set cache command
cache location specification

See set cache command
call-by-reference operator 48

150 Index

case
C keywords 67
compiler output 52

case conversion 52
case sensitivity

filenames 89
mount options 121

ccp command
invoking automatically 66
invoking directly 65
options 66

ccp_exec_cics prototype 68
-cf compiler option 47
character literal prefixes 57
character qualifiers 64
CICS, compiling for 60, 66
CICS Command Preprocessor 12

BMS map generation 67
ccp command, invoking automatically 66
ccp command, invoking directly 65
ccp command options 66
ccp_exec_cics prototype 68
EDF 67
EXEC CICS commands 67
EXEC DLI commands 67
external call interface, enabling 68
linking preprocessed files 66
nested comments 67
output file record length 68
output to file 67
uppercasing C keywords 67

CICS VSE, compiling for 60, 66
CID cross reference table 79
clink program

prelinking with 57
replaced by cool 147

CMS in System 370, compiling for 13, 61
CMS VM/ESA or VM/XA, compiling for 13,

15, 61
colon (:), in mount point specifications 120
colon (:), in NFS client 120
comments

nesting 49, 67
pound sign (#) indicator 120
slashes (//) indicator 63

compiler options
Release 6.00 changes 145

compiler options, compiler driver
changes for Release 6.00 145
syntax and description 41

compiler options, IDE
adding/deleting 33
configuring 32, 34

Compiler Options menu item, moving 30
compiler output file names

See output file names, specifying
compiling C and C++ programs 39

See also converting existing programs
See also sasCC370 compiler driver
See also sascc370 compiler driver
all-resident library routines, enabling 13, 60
ANSI trigraph translation 57
ASCII output 48
byte boundary alignment 49
C++ exception handling 51
call-by-reference operator 48
case conversion 52

character literal prefixes 57
CICS target 60, 66
CICS VSE target 60, 66
CMS in System 370 mode target 13, 61
CMS VM/ESA or VM/XA target 13, 15, 61
comments, indicating 63
comments, nesting 49
cross-platform compiler defaults 41
CSECT name, generating 56
#define names, redefinition and stacking 55
digraph translation 50
dollar sign ($) in identifiers 51
far pointer support 48
floating-point registers 48, 51
instantiation of static data members 48
int bitfield size 48
int bitfield size, specifying 48
interlanguage communication 52
ISO digraph translation 50
#line statements, ignoring 51
long-form options 40
macros, undefining 57, 61
nonstandard token pasting 55
object module disassembler, invoking 54, 60
overload keyword, enabling 54
patch area, sizing 57
phases, definition 40
phases, examples 41
POSIX compliance 54
prelinking, suppressing 15, 16, 47
prelinking, with clink program 57
preprocessing .c files only 60
register variables 51
registers 48
__rent identifiers, external linkage 55
return code style 58
RTTI information, generating 28, 55
search path, adding directories to 48
search path, alternate 60
section name, as source code file name 27, 56
short-form options 40
SPE programs, building 13, 61
string constant duplication, enabling 54
symbol definition 47
template specialization 57
temporary directory 61
temporary directory, specifying 61
trigraph translation 57
uppercase output 52
verbose mode 28, 61
worst-case aliasing 48

compiling C and C++ programs, under a DOS
shell

building source code 28
prelinking object code 28
sample batch files 27
sascc370 compiler driver 16

compiling C programs, under UNIX 13
compiling C++ programs, under UNIX 14
compiling object code, IDE 34, 35
configuration file, Windows environment 26
conversion specifiers 94
converting existing programs 89

ASCII to EBCDIC 91
atoe utility 91
EBCDIC to ASCII 91
etoa utility 91

filename changes 89
mainframe object files, generating 92
mainframe to UNIX 90
mf2unix utility 90
objdump utility 92
source code changes 89
UNIX to mainframe 90
unix2mf utility 90

converting existing programs, examples
EBCDIC/ASCII conversions 91
generating mainframe object files 92
mainframe/UNIX conversions 91

cool prelinker 18, 73
compatibility with earlier versions 147
compile-time options 74
control statements 75
data tables, creating 80
defaults 75
echoing input statements 80
examples 18
extended external identifier CSECTs, retain-

ing 82
extended function name CSECTs, deleting 81
extended name CID cross reference table 79
extended name length 79
extended name length, specifying 79
extended name LINKID cross-reference ta-

bles 80
extended name SNAME cross-reference ta-

bles 82
extended names, disabling 80
external symbol resolution 80
@EXTVEC# vector, building 82
gathered symbols, printing 80
INCLUDE statements, enabling 81
linking C/C++ programs 18
negating options 76
offset table CSECTs, suppressing 81
output file 83
output file destination 79
output line numbers, suppressing 81
previously-processed objects, marking and de-

tecting 145
pseudoregister maps, including 81
pseudoregisters, removing 81
reentrant initialization 82
run-time constant CSECTs, in output file 81
SNAME duplicates, allowing 79
syntax 74
unresolved references, ignoring 79
user exit programs, invoking 80

cool prelinker, and ar370 archives
ignoring corrupted 79
including 82
search path 83

cool prelinker, reprocessing objects
-Aallowrecool option 78
-Aignorerecool option 80
marking and detecting processed objects 75,

145
cool prelinker options

Release 6.00 changes 147
syntax and descriptions 76

COOL utility 19
linking C/C++ programs 19
reprocessing objects 78

cross-debugging

Index 151

See debugger
cross-platform compiler 3

architecture 6
benefits of 4
compatibility with earlier versions 145
IDE 32
installation considerations 8
relationship to mainframe systems 9
under IDE 32

cross-platform compiler, invoking
UNIX systems 12
Windows systems 12

CSECT name, generating 56
cxx C++ translator 8
-cxx compiler option 47

D
d, ar370 command character 86
-d, ccp option 67
-d, cool option 81
-db, cool option 79
debuggable code, generating 47, 50, 70
debugger 93

See also object module disassembler
conversion specifiers 94
debugger files, locating 95
global optimizer and 70
hooks, generating 49, 70
in cross-platform environment 95
include files, locating 97
performance 97
saving information in object file 49, 79
source files, locating 93, 96, 97
source files, types of 93

debugger, altsource search list 99
locating debugger files 95
locating source files 97

debugger, filename templates 94
in search lists 99

debugger files
cache location 102
compressing 52
creating 47, 70
locating 95
overriding source file name 57
saving macro names in 49

debugger search mechanism
See set search command

#define names, redefinition and stacking 55
deltamin mount option 121
DELTAMIN mount option 121
digraph translation 50
directories, mounting 109
directory access 122
directory manipulation 122
distributed file systems 108
dollar sign ($)

in ar2updte utility 129
dollar sign ($) in identifiers 51
-Dsym[=val] compiler option 47

E
e, ar370 modifier character 87
-e, ccp option 67
-e, cool option 82
E qualifier 64
EBCDIC to ASCII conversion

mount options 121
programs 91

echoing cool input statements 80
EDF (Execution Diagnostic Facility) 67
error messages 57

ar2updte diagnostics 129
cool, suppressing 81
cool, verbose mode 82
enabling 57
ignoring 62
message level, setting 67
source line identification 53
suppressing 62
updte2ar diagnostics 133
warnings treated as errors 62

etoa utility 91
EXEC CICS commands 67
EXEC DLI commands 67
executable files 7
Execution Diagnostic Facility (EDF) 67
extended external identifier CSECTs, retain-

ing 82
extended function name CSECTs, deleting 81
extended names

CID cross reference table 79
length, specifying 79
length specification 79
LINKID cross-reference tables 80
SNAME cross-reference tables 82

extended names, enabling/disabling
cool prelinker 80
examples 13, 16, 28
-Kextname option 52

external call interface, enabling 68
external compiler variables 62
external symbol resolution 80
@EXTVEC# vector, building 82

F
-f, ccp option 67
-f, cool option 81
far pointer support 48
file access 122
file manipulation 122
file requirements

all-resident library routines 20
executable files 7
header files 20
input files 22
library files 20
output filename generation 24
output files 23
resident library routines 20
sascc370 input files 22
sasCC370 input files 23
SPE library routines 20
transient library routines 20

file security, NTFS clients 110

file-system configurations, standardizing 113
file-system context, saving 119
file system information, querying 114
File Transfer Protocol (FTP) 5
filename templates 94

in search lists 99
files, accessing 109
floating-point registers 48, 51
floating-point registers, specifying number

of 48, 51
fstab configuration file, setting up 120
fstab configuration files, setting up 120
fstab file 113
FTP (File Transfer Protocol) 5
functions

See also inlining functions
assuming as local 54
generating single return sequences 55
instantiation of template functions 48
prototypes in scope 47

functions, inlining
See inlining functions

G
-g, ccp option 67
-g, cool option 80
-g compiler option

global optimization and 70
syntax 47

gathered symbols, printing 80
-Gfn compiler option

in global optimizer 70
syntax 48

GIDs (Group Identifications) 110, 111
global optimizer 69

compiler options 70
debugger and 70
invoking 54, 58
loop optimization 52, 59
worst-case aliasing 48, 58

go
See global optimizer

Group Identifications (GIDs) 110, 111
-Gvn compiler option

in global optimizer 70
syntax 48

H
-h, cool option 82
HARD mount option 121
header files 8, 20
help

man pages, installing 8
SAS/C Help Files menu item, moving 30

hooks, generating 49, 70
host workstation requirements 5
HP-UX, redistributing SAS/C product files 140
HP-UX environment, SAS/C redistribution pack-

age for 140
hyphen (-)

in ar2updte utility 128

152 Index

I
-i, ccp option 67
-i, cool option 80
IDE (Integrated Design Environment) 30

compiler options, adding/deleting 33
compiler options, configuring 32, 34
compiling object code 34, 35
cross-platform compiler 32
customizing 30
prelink options, adding/deleting 33
prelink options, configuring 32, 34
prelinking object code 34, 35
SAS/C C and C++ 34

include files
in source listings 52
local 53
locating 21, 97
system 53

include files, specifying search rules
at compile time 21, 54
in configuration file 26

INCLUDE statements, enabling 81
inlining functions 49

disabling 53
extern functions 59
maximum complexity 49, 59
maximum depth 50, 59
maximum recursion level 55
maximum recursive calls 59
single-call static functions 53, 59
static functions 59

input files 8
cross-platform compiler 8
sascc370 22
sasCC370 23
UNIX environment 22
Windows environment 22

installation considerations 8
instantiation of static data members 48
int bitfield size 48
int bitfield size, specifying 48
Integrated Design Environment

See IDE (Integrated Design Environment)
interlanguage communication 52
-Ipathname compiler option 48
ISO digraph translation 50

J
j, ar370 modifier character 87
-j, ccp option 67

K
-Kalias compiler option

in global optimizer 70
syntax 48

-Karmode compiler option 48
-Kasciiout compiler option 48
-Kat compiler option 48
-Kautoinst compiler option

example 48
in cool prelinker 79

syntax 48
-Kbitfield compiler option 48
-Kbytealign compiler option 49
-Kcomnest compiler option 49
-Kcomplexity compiler option

in global optimizer 70
syntax 49

-Kdbgcmprs compiler option 52
-Kdbgmacro compiler option 49
-Kdbgobj compiler option 49
-Kdbhook compiler option

global optimization 70
syntax 49

-Kdebug compiler option 50
-Kdepth compiler option

in global optimizer 70
syntax 50

-Kdigraph compiler option 50
-Kdollars compiler option 51
-Kexcept compiler option 51
-Kexclude compiler option 51
-Kextname compiler option

examples 13, 16, 28
in cool prelinker 74
in sascc370 13
in sasCC370 15
syntax 52

-Kfreg compiler option
in global optimizer 70
syntax 51

-Kgreg compiler option
in global optimizer 70
syntax 51

-Khlist compiler option 51
-Khmulti compiler option 53
-Kigline compiler option 51
-Kilist compiler option 52
-Kimulti compiler option 53
-Kindep compiler option 52
-Kinline compiler option

in global optimizer 70
syntax 53

-Kinlocal compiler option
in global optimizer 70
syntax 53

-Kjapan compiler option 52
-Klineno compiler option 53
-Klisting compiler option 52
-Kloop compiler option

in global optimizer 70
syntax 52

-Kmaclist compiler option 52
-Knarrow compiler option 52
-Knoalias compiler option 48
-Knoarmode compiler option 48
-Knoasciiout compiler option 48
-Knoat compiler option 48
-Knoautoinst compiler option 48
-Knobitfield compiler option 48
-Knobytealign compiler option 49
-Knocomnest compiler option 49
-Knocomplexity compiler option 49
-Knodbgcmprs compiler option 52
-Knodbgmacro compiler option 49
-Knodbgobj compiler option 49
-Knodbhook compiler option 49
-Knodebug compiler option 50

-Knodepth compiler option 50
-Knodigraph compiler option 50
-Knodollars compiler option 51
-Knoexcept compiler option 51
-Knoexclude compiler option 51
-Knoextname compiler option

in sascc370 13
syntax 52

-Knofreg compiler option 51
-Knogreg compiler option 51
-Knohlist compiler option 51
-Knohmulti compiler option 53
-Knoigline compiler option 51
-Knoilist compiler option 52
-Knoimulti compiler option 53
-Knoindep compiler option 52
-Knoinline compiler option 53
-Knoinlocal compiler option 53
-Knojapan compiler option 52
-Knolineno compiler option 53
-Knolisting compiler option 52
-Knoloop compiler option 52
-Knomaclist compiler option 52
-Knonarrow compiler option 52
-Knoomd compiler option 54
-Knooptimize compiler option 54
-Knooverload compiler option 54
-Knopagesize compiler option 54
-Knopflocal compiler option 54
-Knoposix compiler option 54
-Knoppix compiler option 55
-Knordepth compiler option 55
-Knoredef compiler option 55
-Knorefdef compiler option 55
-Knorent compiler option 55
-Knorentext compiler option 55
-Knortti compiler option 55
-Knosingleret compiler option 55
-Knosmpxivec compiler option 56
-Knosname compiler option 56
-Knosource compiler option 56
-Knosrcis compiler option 57
-Knostrict compiler option 57
-Knostringdup compiler option 54
-Knotmplfunc compiler option 57
-Knotrigraphs compiler option 57
-Knoundef compiler option 57
-Knousearch compiler option

locating include files 21
syntax 54

-Knouse_clink compiler option 57
-Knovstring compiler option 57
-Knoxref compiler option 57
-Knozapmin compiler option 57
-Knozapspace compiler option 57
-Komd compiler option 54
-Koptimize compiler option 54
-Koverload compiler option 54
-Kpagesize compiler option 54
-Kpflocal compiler option 54
-Kposix compiler option 54
-Kppix compiler option 55
-Krdepth compiler option

in global optimizer 70
syntax 55

-Kredef compiler option 55
-Krefdef compiler option 55

Index 153

-Krent compiler option
examples 13, 15, 16, 27
in cool prelinker 73
linking CICS applications 66
syntax 55

-Krentext compiler option
in cool prelinker 73
linking CICS applications 66
syntax 55

-Krtti compiler option
example 28
syntax 55

-Ksingleret compiler option 55
-Ksmpxivec compiler option 56
-Ksname compiler option

section name as source code filename 27
syntax 56

-Ksource compiler option 56
-Ksrcis compiler option 57
-Kstrict compiler option 57
-Kstringdup compiler option 54
-Ktmplfunc compiler option 57
-Ktrigraphs compiler option 57
-Kundef compiler option 57
-Kusearch compiler option 54
-Kuse_clink compiler option 57
-Kvstring compiler option 57
-Kxref compiler option 57
-Kzapmin compiler option 57
-Kzapspace compiler option 57

L
-l, ccp option 67
-l, cool option 82
-L, cool option 83
language extensions 63
layout file, importing 31
lc1 C++ parser 8
lc2 C++ code generator 8
LDL files 136

on the host workstation 136
on the target mainframe 136

library extensions 63
library files 8, 20
limited distribution library 136
line numbers, suppressing 81
#line statements, ignoring 51
LINKID cross-reference tables 80
linking preprocessed CICS files 66
listings 51
listings, CICS Preprocessor

CICS options in effect 67
generating 67
lines per page 68
sequence numbers 66
showing generated C code 67

listings, compiler
cross-reference listings 57
directing to files 52
header files, in source listings 51
macro expansions in 52
page size 54
source listings, excluding lines from 51
source listings, generating 56
width, setting 52

listings, cool
generating 82
including symbols in 81
page size 81

LOCAL_USERID profile 113
logging on to NFS client 118, 124
logging on top NFS 118, 124
login server, configuring a default 113
login servers, configuring a default 113
loop optimization 52, 59

M
m, ar370 command character 86
-m, ccp option 67
-m, cool option 79
macro names, saving in debugger file 49
macros, undefining 57, 61
mainframe object files, generating 92
mainframe requirements, for cross-platform com-

piler 5
mainframe to UNIX conversions 90
man pages, installing 8
messages

See also error messages
ar2updte utility 129
updte2ar utility 133

mf2unix utility 90
Microsoft Visual C++ Integrated Design Environ-

ment
See IDE (Integrated Design Environment)

-mn, cool option 79
mnttab file 119
MOUNT command 125
mount commands, NFS client, automating 120
mount duration, specifying 119
mount options 121
mount options, NFS client 121
mount points 108

set search command and 109
mounting

directories 109
file systems 125
manually 122
remote file systems 108

mounting directories 109
mounting remote file systems 108, 125
-mrc compiler option 58

N
-n, ccp option 67
-n, cool option 80
NFS 107, 117

accessing remote file systems 119
directory manipulation 122
file manipulation 122
file-system context, saving 119
fstab configuration file, setting up 120
logging on 118, 124
mnttab file 119
MOUNT command 125
mount options 121
mounting file systems 125

mounting/unmounting manually 122
NFSLOGIN command 124
UMOUNT command 126
unmounting file systems 126
user commands 123

NFS, administering 107
administrator commands 114
default login server, configuring 113
design of 108
diagnosing problems 113
distributed file systems 108
fstab file 113
installation considerations 110
LOCAL_USERID profile 113
mount points 108
mounting remote file systems 108
pddd.ddd.ddd.ddd profile 113
RACF definitions 112
recommended reading 114
sddd.ddd.ddd.ddd profile 113
security administration 111
SHOWMNT command 114
standardized file-system configuration 113
UID/GID acquisition 111
USER_name profile 113

NFS client
accessing files 109
administrator commands 114
design 108
directory access 122
distributed file systems 108
file access 122
file-system configurations, standardizing 113
file-system context, saving 119
file system information, querying 114
fstab configuration files, setting up 120
Group Identifications (GIDs) 110, 111
installation considerations 110
logging on 118, 124
login servers, configuring a default 113
MOUNT command 125
mount commands, automating 120
mount duration, specifying 119
mount options 121
mount points 108
mounting directories 109
NFSLOGIN command 124
overview 109
RACF definitions 112
remote file systems, accessing 119
remote file systems, mounting 108, 125
remote file systems, unmounting 126
security, file 110
security administration 111
SHOWMNT command 114
Sun Remote Procedure Call (RPC) 108
troubleshooting 113
UMOUNT command 126
user commands 123
User Identifications (UIDs) 110, 111

NFSLOGIN command 124
nonstandard token pasting 55

O
-o, ccp option 67

154 Index

-o, cool option 83
-o compiler option

examples 13, 15, 16
invoking global optimizer 70
invoking the global optimizer 70
output filename generation 24
syntax 59
with cool prelinker 59

-O compiler option 58
-Oa compiler option

in global optimizer 70
syntax 58

objdump utility 92
object code

compiling under IDE 34, 35
prelinking under a DOS shell 28
prelinking under IDE 34, 35

object module disassembler 7
object module disassembler, invoking

-Komd 54
omd 71
-S 60, 71

offset table CSECTs, suppressing 81
-Oic compiler option

in global optimizer 70
syntax 59

-Oid compiler option
in global optimizer 70
syntax 59

-Oil compiler option
in global optimizer 70
syntax 59

-Oin compiler option
in global optimizer 70
syntax 59

-Oir compiler option
in global optimizer 70
syntax 59

-Ol compiler option
in global optimizer 70
syntax 59

omd
See object module disassembler

optimizing code
See global optimizer

output file names, specifying 59
examples 13, 15, 16, 18
-o option 24, 59

output files, cool
destination 79
naming 83

output files, cross-platform compiler 8, 23
overload keyword 54
overload keyword, enabling 54

P
-p, ccp option 68
-p, cool option 81
-P compiler option 60
patch area, sizing 57
pddd.ddd.ddd.ddd profile 113
percent sign (%), in filename templates 100
period (.), in ar2updte utility 129
POSIX compliance 54

pound sign (#)
in ar2updte utility 129
in NFS client 120

pound sign (#), comment indicator 120
prelink options, IDE

adding/deleting 33
configuring 32, 34

prelinking
See also cool prelinker
clink program 57, 147
conditions requiring 17
COOL utility 19, 78
suppressing 15, 16, 47

prelinking, reprocessing objects
See cool prelinker, reprocessing objects

prelinking object code, IDE 34, 35
printouts

See listings
programs, compiling

See compiling C and C++ programs
pseudoregister maps, including 81
pseudoregisters, removing 81

Q
q, ar370 modifier character 87
-Q compiler option 60
question mark (?), displaying search lists 101

R
r, ar370 command character 86
-r, ccp option 68
-r, cool option 81
RACF definitions 112
-rc, cool option 78
redistributing SAS/C product files 135

for AIX 137
for HP-UX 140
for SunOS 138
for Windows 95/NT 141
LDL files 136
LDL files on the host workstation 136
LDL files on the target mainframe 136
limited distribution library 136

reentrant initialization 82
reentrant modification of external/static data

CICS applications 66
cool prelinker 73
examples 13, 15, 16
-Krent option 27, 55
-Krentext option 55

register variables 51
register variables, specifying number of 51
registers 48
registers, specifying number of 48
remote file systems

accessing 119
mounting 125
unmounting 126

remote file systems, accessing 119
__rent identifiers, external linkage 55
reports

See listings

reprocessing cool objects
See cool prelinker, reprocessing objects

resident library routines 20
RETRANS mount option 121
retry= mount option 122
RETRY mount option 121
return code style 58
return code style, specifying 58
-ri, cool option 80
ro mount option 121
RO mount option 121
RPC (Sun Remote Procedure Call) 108
RTTI information, generating 28, 55
run-time constant CSECTs, in output file 81
rw mount option 121
RW mount option 121
rwsize= mount option 122

S
-s, cool option 81
-S compiler option

invoking object module disassembler 71
invoking the object module disassembler 71
syntax 60

sas/c c and c++
compatibility with earlier versions 141

SAS/C C and C++, under IDE 34
SAS/C cross-platform architecture 6
SAS/C Help Files menu item, moving 30
SAS/C NFS client 109

accessing files 109
file security 110
mounting directories 109

SAS/C redistribution packages 136
AIX environment 137
HP-UX environment 140
SunOS environment 138
Windows environment 141

sascc370 compiler driver 7
compiling C programs under a DOS shell 16
compiling C programs under UNIX 13
input files 22
syntax 39

sasCC370 compiler driver 7
compiling C++ programs under a DOS

shell 16
compiling C++ programs under UNIX 14
input files 23
syntax 39

sascc.cfg file 26
sddd.ddd.ddd.ddd profile 113
search command

See set search command
search lists, displaying 101
search order

See also set search command
UNIX environment 22
Windows environment 22

search paths
adding directories to 48
specifying an alternate 60

section name, as source code file name 56
security

NFS 111
SAS/C NFS client 110

Index 155

security, NTFS clients 111
set cache command 102

examples 102
locating debugger files 95
specifying cache location 102
syntax 102

set command 98
set search command 99

debugger search mechanisms 94
examples 102
filename templates 94, 99
locating debugger files 95
performance 97
reattempting a set search 101
relative to mount points 109
search lists, displaying 101
syntax 99

SHOWMNT command 114
slash (/), in mount point specification 120
slashes (//), comment indicator 63
SNAME cross-reference tables 82
SNAME duplicates, allowing 79
soft mount option 122
SOFT mount option 121
source code, building under a DOS shell 28
source code file name, using section name

as 27, 56
source files, compiler

See input files
source files, debugger

locating 93, 96, 97
types of 93

SPE library routines 20
SPE programs, building 13, 61
stack space 62
standardized file-system configuration 113
string constant duplication 54
string constant duplication, enabling 54
string qualifiers 64
Sun Remote Procedure Call (RPC) 108
SunOS, redistributing SAS/C product files 138
SunOS environment, SAS/C redistribution pack-

age for 138
symbols, defining 47
system requirements 5

T
t, ar370 command character 86
-Tallres compiler option

example 13
syntax 60

target mainframe requirements 5
-Tcics370 compiler option

example 66

syntax 60
-Tcicsvse compiler option

example 66

syntax 60

-Tcms370 compiler option

example 13, 15

syntax 61

-temp compiler option 61
template specialization 57

temporary directory 61

temporary directory, specifying 61

text mount option 122

TEXT mount option 121

TIME0 mount option 121
timeo= mount option 122

-Tpcms370 compiler option

example 13

syntax 61

transient library routines 20

trigraph translation 57

troubleshooting NTFS clients 113
-Tspe compiler option 13, 61

U
-U compiler option 61

UID/GID acquisition 111

UIDs (User Identifications) 110, 111

UMOUNT command 126

underscore (_), in ar2updte utility 129
UNIX to mainframe conversions 90

unix2mf utility 90

unmounting file systems 126

unmounting manually 122

unmounting remote file systems 126

unresolved references, ignoring 79

updte2ar utility 131
description 131

diagnostic messages 133

error messages 133

examples 132

syntax 132

uppercasing
C keywords 67

compiler output 52

user commands, NFS client 123

user exit programs, invoking 80

User Identifications (UIDs) 110, 111

USER_name profile 113

V
v, ar370 modifier character 87

-v, cool option 82
-v compiler option

example 28

syntax 61
verbose mode

ar370 utility 87

compiling C and C++ programs 28, 61

cool error messages 82
-vo, cool option 82

W
-w, cool option 81

warning messages

See error messages
Windows 95/NT, redistributing SAS/C product

files 141
Windows configuration file 26

Windows environment

SAS/C redistribution package for 141

-wn compiler option 62
-w+n compiler option 62

-w~n compiler option 62

workstation requirements 5
worst-case aliasing 48, 58

X
x, ar370 command character 86

-x, ccp option 68

xlate mount option 122
XLATE mount option 121

-xt, cool option 80

-xxe, cool option 80
-xxs, cool option 82

-xxx, cool option 79

-xxy, cool option 81

Y
-yg, cool option 80
-yl, cool option 80

-yn, cool option 79

-yp, cool option 81

Z
-z, ccp option 68
-zc, cool option 79

-zd, cool option 79

-zi, cool option 81

-zv, cool option 82

Your Turn

If you have comments or suggestions about SAS/C Cross-Platform Compiler and C++
Development System User’s Guide, Release 7.00, please send them to us on a photocopy
of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

Welcome * Bienvenue * Willkommen * Yohkoso * Bienvenido

SAS Publishing Is Easy to Reach

Visit our Web page located at www.sas.com/pubs

You will find product and service details, including

• sample chapters

• tables of contents

• author biographies

• book reviews

Learn about

• regional user-group conferences
• trade-show sites and dates
• authoring opportunities

• custom textbooks

Explore all the services that SAS Publishing has to offer!

Your Listserv Subscription Automatically Brings the News to You
Do you want to be among the first to learn about the latest books and services available from SAS Publishing?
Subscribe to our listserv newdocnews-l and, once each month, you will automatically receive a description of the
newest books and which environments or operating systems and SAS® release(s) each book addresses.

To subscribe,

1. Send an e-mail message to listserv@vm.sas.com.

2. Leave the “Subject” line blank.

3. Use the following text for your message:

subscribe NEWDOCNEWS-L your-first-name your-last-name

For example: subscribe NEWDOCNEWS-L John Doe

Create Customized Textbooks Quickly, Easily, and Affordably

SelecText® offers instructors at U.S. colleges and universities a way to create custom textbooks for courses that
teach students how to use SAS software.

For more information, see our Web page at www.sas.com/selectext, or contact our SelecText coordinators by
sending e-mail to selectext@sas.com.

You’re Invited to Publish with SAS Institute’s User Publishing Program
If you enjoy writing about SAS software and how to use it, the User Publishing Program at SAS Institute
offers a variety of publishing options. We are actively recruiting authors to publish books, articles, and sample
code. Do you find the idea of writing a book or an article by yourself a little intimidating? Consider writing with
a co-author. Keep in mind that you will receive complete editorial and publishing support, access to our users,
technical advice and assistance, and competitive royalties. Please contact us for an author packet. E-mail us at
sasbbu@sas.com or call 919-531-7447. See the SAS Publishing Web page at www.sas.com/pubs for complete
information.

Book Discount Offered at SAS Public Training Courses!
When you attend one of our SAS Public Training Courses at any of our regional Training Centers in the U.S., you
will receive a 20% discount on book orders that you place during the course.Take advantage of this offer at the
next course you attend!

SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513-2414
Fax 919-677-4444

* Note: Customers outside the U.S. should contact their local SAS office.

E-mail: sasbook@sas.com
Web page: www.sas.com/pubs
To order books, call Fulfillment Services at 800-727-3228*
For other SAS business, call 919-677-8000*

Your Turn

If you have comments or suggestions about SAS/C Cross-Platform Compiler and C++
Development System User’s Guide, Release 7.00, please send them to us on a photocopy
of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

