SAS/C® C++ Development System User’s Guide,
Release 7.00

JSaS ‘ SAS Publishing

The Power to Know.,

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/C C++ Development System User’s Guide, Release 7.00, Cary, NC: SAS Institute
Inc., 2001.

SAS/C C++ Development System User’s Guide, Release 7.00
Copyright © 2001 by SAS Institute Inc., Cary, NC, USA.
1-58025-735-6

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, April 2001

SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, CD-ROM, hard copy books, and Web-based training, visit the SAS Publishing
Web site at www.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

IBM® and all other International Business Machines Corporation product or service
names are registered trademarks or trademarks of International Business Machines
Corporation in the USA and other countries.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

PARTI Users Guide 1

Chapter 1 A Introduction to the SAS/C C++ Development System 3
Introduction 4

Overview of the SAS/C C++ Development System 4

C++ Language Definition 6

Chapter 2 A Using the SAS/C C++ Development System under TS0, CMS, 0S/390 Batch,
and UNIX System Services 27

Introduction 28

Creating C++ Programs under TSO 28
Creating C++ Programs under CMS 32
Creating C++ Programs under OS/390 Batch 38
Translating C++ Programs under USS 57
COOL Control Statements 58

COOL Options 60

Chapter 3 A Translator Options 67
Introduction 67

Option Summary 68

Option Descriptions 71

Chapter 4 A Standard Libraries 87
Introduction 88

Header Files 88

C Library Header Files 98

C++ Complex Library 99

C++ I/O 106

370 I/O Considerations 112
Compatibility Issues for C++ I/O 115
I/0 Class Descriptions 117

Chapter 5 A Debugging C++ Programs Using the SAS/C Debugger 185
Introduction 185

Specifying C++ Function Names 186

Specifying Expressions 189

Searching for Data Objects 191

Debugging Initialization and Termination 192

Setting Breakpoints in Dynamically Loaded C++ Modules 192

C++ Debugging Example 192

PARTZ Appendixes 199

Appendix 1 A Converting a C Program to a C++ Program 201
Introduction 201
Differences between C and C++ 201

Appendix 2 A Header Files, Classes, and Functions 207
Introduction 207

Language Support 207

Complex Library Contents 207

Streams Library Contents 208

Appendix 3 A Templates 213
Introduction 213

Template Parameters 214

Template Arguments 214

Template Declarations and Definitions 215
Function Templates 217

Template Specialization Declarations 222
Template Instantiation 223

Appendix 4 A Pointer Qualification Conversions, Casts, and Run-Time Type
Identification 227

Pointer Qualification Conversions 227
Cast Operators 228
Run-Time Type Identification Requirements 228

Appendix 5 A Interpreting C++ Demangled Names 231
C++ Demangled Names 231
Special Conventions Used in Demangled Names 232

Appendix 6 A Handling Exceptions in SAS/C 235
Handling Exceptions in SAS/C 235

Exception Tracebacks 236

Exception Diagnostics 237

longjmp Function 237

blkjmp Handler 237

Signals 238

Coprocesses 239

Index 241

PART

User’s Guide

Chapter L. Introduction to the SAS/C C++ Development System 3

Chapter2.......... Using the SAS/C C++ Development System under TS0, CMS,
0S/390 Batch, and UNIX System Services 27

Chapter 3.......... Translator Options 67

Chapter4.......... Standard Libraries 87

Chapter 8.......... Debugging C++ Programs Using the SAS/C Debugger 185

CHAPTER

Introduction to the SAS/C C++
Development System

Introduction 4
Overview of the SAS/C C++ Development System 4
SAS/C C++ Development System Components 4
Preprocessor 5
Comments 6
Translator 6
Standard Libraries 6
C++ Language Definition 6
Improved Conformance with the C++ Standard 8
New Conformance Items 8
Incompatibility with Previous Releases 11
Environmental Elements 11
Special characters 11
Storage class limits 12
Numerical limits 13
Source file sequence number handling 13
Language Elements 14
Constants 14
Predefined constants 15
Language Extensions 16
ASCIIOUT Support 16
A and E Character Support 16
long long Type Support 17
Preprocessor extensions 17
Protected Include Files 17
SAS/C extension keywords 17
Alternate forms for operators and tokens 18
Embedded $ in identifiers 19
Floating-point constants in hexadecimal 19
Call-by-reference operator (@) 19
Nesting of #define 20
Zero-length arrays 20
__inline and _ _actual storage class modifiers 21
signed long long Support 21
extern “OS” Linkage Specifier 21
typename Keyword 21
Enabling Warning with the strict Option 22
C++ iostream Library Constructors 22
Implementation-Defined Behavior 22
Behaviors related to the SAS/C Compiler 22
C++-specific behaviors 23

4

Introduction A Chapter 1

Initialization and termination 24
Anachronisms 24

Introduction

As an object-oriented programming language, C++ is an improved programming tool
that makes program development, use, and maintenance easier and more efficient. The
SAS/C C++ Development System enables you to develop and run C ++ programs on the
mainframe under TSO, CMS, 0S/390 batch, and UNIX System Services (USS).

This chapter provides an overview of the SAS/C C++ Development System and gives
a brief description of the C++ language definition. After reading this chapter, you will
be ready to begin using the SAS/C C++ Development System to develop your C++
programs.

Overview of the SAS/C C++ Development System

This release of the SAS/C C++ Development System implements the C++ language by
means of a translator that translates C++ to C. The translated C code must be compiled
with the SAS/C Compiler, resulting in an object module. The complete translation/
compilation process for a C++ source program is shown in Figure 1.1 on page 4 .

Figure 1.1 Translation Process

CH++ C object

translated to i
source source | | complied to module

By default, when you invoke the translator both the translation and compilation are
performed; that is, you do not have to call the SAS/C Compiler as a separate step. Also
by default, the C source is not saved, but is instead a temporary file and is discarded
after compilation. You can control the translation and compilation of your program by
specifying options when you invoke the translator. These options are described in
“Option Descriptions” on page 71.

Once you have translated all the source modules in your program, use the COOL
utility to link the object modules into a load module. Using this load module, you can
call your program as you would call any other executable file under your operating
system.

SAS/C C++ Development System Components

As shown in Figure 1.2 on page 5 , the SAS/C C++ Development System consists of
three parts: a preprocessor, the translator, and a set of standard libraries.

Introduction to the SAS/C C++ Development System /\ Preprocessor 5

Figure 1.2 SAS/C C++ Development System Components

preprocessor

translator

standard
libraries

Preprocessor

As part of the translation process, your C++ code is preprocessed. Figure 1.3 on page
5 builds on Figure 1.1 on page 4 , showing the two separate phases the translator goes
through before producing C source.

Figure 1.3 Expanded Translation Process

C++ source
with
preprocessing
directives

C++ source
without
preprocessing
directives

preprocessed
by the
preprocessor

translated
by the
translator

C Coglgié?dc b object
source Compiler module

Note that the preprocessing and translating phases of the translator are conceptual
and may not be implemented as separate physical steps.

The preprocessor is the part of the C++ translator that transforms its input text (C++
source code, possibly containing preprocessing directives and operators) to C++ text
devoid of preprocessing directives and in which a variety of lexical substitutions or
operations may have been performed.

After the preprocessor step is completed, the translator translates your C++ code into
C code. (If you want to stop after the preprocessing step and skip the translation or
compilation steps, specify the pponly option, which is described in “Option
Descriptions” on page 71 .)

The preprocessor conforms to the ANSI Standard for C with the addition that it
accepts C++ style comments and it correctly handles all C++ tokens. If you need more

6 Translator A Chapter 1

detailed information on a particular preprocessor feature, refer to the ANSI Standard
for C or a C++ tutorial book.

Comments

The preprocessor supports both C++ style and C style comments. A C++ style
comment begins with a double slash (/) and extends to the end of its line but not
beyond. In contrast, a C style comment begins with a /* and ends with a * / and can
take up multiple lines. For example, the following are some C++ style comments:

// This comment is too long to fit on one
// line, so it is continued on the second line.
int i; // declaration of an integer
Here are the equivalent C style comments:
/* This comment is too long to fit on one

line, so it is continued on the second line.*/
int i; /* declaration of an integer */

In general, the comment style you use depends entirely on personal preference. If
you want to embed a comment within a line of code, you must use a C style comment,
as in the following example:

x=y; /* One assignment */ a=b; // and another.

However, imbedding comments like this does not produce readable code and is not
recommended.

Translator

After your C++ code has been preprocessed, it is translated into C code. You can
control the translation with a variety of options, which are discussed in “Option
Descriptions” on page 71 .

Standard Libraries

This release of the SAS/C C++ Development System includes two standard libraries:
the streams library and the complex library. Future releases of the product may include
other libraries. The “C++ I/0” on page 106 and the “C++ Complex Library” on page 99
discuss the details of the functions and classes included in the streams and complex
libraries.

C++ Language Definition

This section describes the main features of the SAS/C C++ Development System
implementation. The discussion does not attempt to teach you C++ and assumes you
have access to the SAS/C Compiler and Library User’s Guide.

The C++ language accepted by the SAS/C C++ Development System is based on the
C++ Standard, ISO/IEC 14882-1998, Programming languages - C++. Some more recent
features of the Standard are not yet implemented. These are described below.
Exception handling and Run-Time Type Identification (RTTI) are supported if the
appropriate compile time options are specified.

Introduction to the SAS/C C++ Development System /A GC++ Language Definition 7

2.2
No universal character names.

2.5
No identifier form alternative tokens (for example, and, and_eq, and so on).

3.5and 7.1.1
Statics in namespace scopes will conflict with declarations for objects in the same
namespace that have external linkage.

3.6.2 and 3.6.3
Global/static initialization/destruction order differs from the C++ Standard. In
particular local statics are destroyed at module cleanup, not synced with atexit ().

7.1.2
No extern inline. Inline functions with external linkage, such as member
functions, may have different addresses in different compilation units. Also static
variables defined inside such functions will refer to different objects in different
compilation units.

7.3.1.2
Friend names are injected into the enclosing namespace.

7.4
No asm declaration.

7.5
Language linkage is not applied to function declarators.

8.3.6
Default arguments for functions declared inside classes that reference member
template identifiers may need to be enclosed within parentheses to avoid parsing
problems.

10.3

No overriding of virtual function return types.
14

No export keyword or separate compilation of template definitions.
14.5.1.2

No out of line definition of member classes of templates.
14.5.2

Member templates of templates must be defined in the class.
14.5.2

No template conversion operators.
14.5.3

No template class member friend declarations.
14.5.4

No partial specialization of template classes.
14.5.5.2

No partial ordering of function templates for overload resolution.
14.6.2

Name lookup in template class and function bodies does not observe the
dependency rules.

14.6.2
Complex dependent names may be restricted in declarations.

8

Improved Conformance with the C++ Standard A Chapter 1

14.7.1 and 14.7.3
Member classes of class template specializations are instantiated with the
containing class, and may not be defined out of line or explicitly specialized.

Because C++ is in general a superset of C, the C++ language accepted by the SAS/C
C++ Development System includes many SAS/C features. You can find a detailed
definition of the SAS/C implementation in “Language Definition” section in the SAS/C
Compiler and Library User’s Guide. This section describes only those features that are
different from SAS/C behavior or that are specific to the C++ environment.

C++ code written for previous releases of the SAS/C C++ Development System
generally will be accepted by Release 7.00. However, in this release the C++ Standard
has taken priority over compatibility with older code in determining the language
accepted. Some changes which may cause compatiblity problems are noted in
“Improved Conformance with the C++ Standard” on page 8.

For a complete list of which anachronisms are supported by the SAS/C C++
Development System, see “Anachronisms” on page 24 .

Improved Conformance with the C++ Standard

We continue to improve the SAS/C compiler conformance with the ISO C++
Standard. The following information indicates new SAS/C conformance with the C++
Standard. The numbers at the beginning of each item indicate the relevant section
number in the ISO/IEC 14882: 1998 Programming Languages - C++.

New Conformance ltems

2.13.2
Character literals with multiple narrow chars are now correctly typed as int. All
but the last character are now ignored in wide character literals with multiple
chars.

3.4.2
The C++ translator now supports argument dependent name lookup. This extends
the name lookup used for an unqualified name that is the function expression of a
function call. The set of namespaces in which the identifier is looked up is
augmented by namespaces associated with the argument types. A similar lookup
is also performed for overloaded operator functions.

Note: The C++ translator still injects the names from friend declarations into
the containing namespace when defining a class, so such declarations will always
be considered if lookup includes the containing namespace. A

3.7.3
The operator new[] and operator delete[] forms of the allocation and
deallocation functions are now supported. Note that any user-defined new
operators now need the corresponding array versions to be declared if they are to
be used for array allocation.

Note: Remember to update the old code when there is a user placement new
that takes a single object pointer placement argument. Otherwise the library
array placment new defined in <new>

operator new[](size_t, void*),

could easily be called and produce unexpected results. A
Failure is now reported from the non-placement operator new and new[] by
throwing a std::bad_alloc exception. The nothrow placement new operators are

Introduction to the SAS/C C++ Development System /\ Improved Conformance with the C++ Standard 9

now defined. These operators do not exit via throw and report failure by returning
NULL.

3.9.1 and others
The C++ translator now supports the bool and wchar_t type keywords.

4.2
The C++ translator uses the updated type rules for string literals. This implies the
array type will decay to const char* in certain cases, which will cause errors
with some C and older C++ code.

4.8 and 4.9
The translator now generates the compile time error LSCT595 when an attempt is
made to assign or initialize from a floating-point constant that is outside the range
of the target type.

6.6.3
Void return expressions are now allowed in void functions.

7.11
The mutable storage class specifier for class members is now supported.

7.1.2
The explicit function specifier is supported.

7.2
Enumeration types can now have non-int underlying types. The translator will
use unsigned int as the underlying type if one of the enumeration constant
values is an unsigned quantity outside the range of int.

7.3
The C++ translator now supports namespaces, using directives, and using
declarations.

8.3.6
Default arguments may be specified for function templates. Based on the C++
Standard, all default arguments must be defined on the first declaration of the
template.

8.5
Initialization semantics have been updated to more closely match the C++
Standard. The translator now diagnoses const objects that are not explicitly
initialized and do not have a user-defined default constructor.

Zero-initialization is now supported. Explicit default initialization (of types
other than void, non-POD [Plain Old Data] classes, or arrays of non-POD classes
in contexts such as constructor initializers, new initializers, or call-style type
conversion) is performed by zeroing the elements of the target. See Chapter 9,
“Classes,” in the C++ Standard for information on non-POD classes.

8.5.1
An empty initializer list, {}, may now be used as an aggregate initializer.

8.5.3
The binding of non-const references to non-lvalues is no longer allowed. Warning
LSCT550 was formerly generated in such situations.

94.2
Static const data members with integral or enumeration types may be initialized
with a constant expression when declared in the class body.

11
Access checking has been cleaned up to more closely follow the standard. The
translator now performs access checking in many cases where it was not performed

10

Improved Conformance with the C++ Standard A Chapter 1

before, such as names used in nested name specifiers. Also, access checking has
been generalized, so access is allowed to names that are not directly accessible
through the class they are named in, but are accessible through a base class.

12.2
The translator now handles conditional and logical operators so the destruction of
temporaries is deferred until the end of the containing full expression or
initialization. Formerly, temporaries for conditionally executed subexpression were
destroyed at the end of the subexpression.

12.7
The class layout was modified to support virtual function calls while an object is
being constructed or destructed for functions that override virtual base members.

13
Many updates have been made to overload resolution.

13.5
The translator now performs built-in operator overloading for enums.

13.6
The signatures for the built-in operators have been updated. The changes for
built-in operator[] and operator+ should be noted. The signatures formerly
included combinations of a pointer and any integral index type. The index type
has changed to ptrdiff t (a signed type). This may cause ambiguity errors with
existing code.

14.1
Template default arguments are now supported for class templates.

14.3.2
Template arguments may now be function-member pointer constants. The rules
for equivalence of function-member pointer constants are intended to match the
run-time behavior of function member pointer comparison.

Note: The results may be a little surprising in some cases. In particular, a
member pointer to a base virtual function may not be equal to a member pointer
to an overriding virtual function, even when both have been converted to the same
type. &

14.3.3
Template template formals are now supported.

14.4
Restrictions on matching expressions in template declarations have been removed.
Formerly, complex expressions were matched on a textual basis.

14.5
The translator now checks actuals on dependent template identifiers in template
function prototypes.

14.5.2
Restricted member function and class templates are now supported. Template
members of template classes can only be defined in the containing template class
body. However, template conversion operators are not yet supported.

14.6
Type and value dependency in template-dependent expressions are now handled
separately in template declarations. This allows non-dependent name lookup to
occur at declaration time for expressions in template declarations. Names in class
and function bodies are still bound at instantiation time.

Introduction to the SAS/C C++ Development System /\ Environmental Elements 1"

14.8.2.1
Template argument deduction now allows derived-to-base conversions for function
arguments.

14.8.2.4
Template argument deduction now supports nondeduced contexts.

15
Exception handling is now supported with the EXCEPT option.

16.1
The sign promotion rules within #if expressions have been corrected to match the
C++ rules.

17 and others
The C standard headers have been modified for compatability with the C++
Standard. When compiling C++ code, most are now structured to include the
corresponding C++ header (for example <stdio.h> includes <estdio>) and
provide using declarations to make the appropriate names available in both the
global and std namespace scopes.

Incompatibility with Previous Releases

Object code generated by Release 7.00 of the C++ translator is not compatible with
object code generated by previous releases of the C++ translator and is not compatible
with the C++ library for previous releases.

Environmental Elements

This section describes four important environmental elements:
o special characters

O storage class limits

0O numerical limits
o

source file sequence numbers.

Special characters

C++ uses a number of special characters. Many IBM mainframe terminals and
printers do not supply all of these characters. The SAS/C C++ Development System
provides two solutions to this problem:

O a special character translation table
o digraphs (described in Table 1.5 on page 19).

The special character translation table enables each site to customize the
representation of special characters. That is, sites can decide which hexadecimal bit
pattern or patterns represent that character and so can choose a representation that is
available on their terminals and printers.

The special characters that can be customized are braces, square brackets,
circumflex, tilde, backslash, vertical bar, pound sign, and exclamation point. You should
determine if your site has customized values for these characters and find out what the
values are. Otherwise, the default representations listed in Table 1.1 on page 12 are in
effect. Consult your SAS Installation Representative for details about customized
values. Table 1.1 on page 12 shows the two possible default representations for each

12 Environmental Elements A Chapter 1

character. These primary and alternate representations in columns two and three are
EBCDIC equivalents of the characters in hexadecimal notation.

Remember that the alternate representations for characters apply only to C++
program source code and not to general file contents read by C++ programs.

Tahle 1.1 Default Representations for Special Characters

Source File Representation

Character Primary Alternate
left brace { 0xc0 0x8b
{ {
right brace } 0xd0 0x9b
} }
left bracket [Oxad Oxad
[[
right bracket | Oxbd Oxbd
]]
circumflex » 0x5f 0x71
(exclusive or) - A
tilde ~ Oxal Oxal
backslash \ 0xe0 Oxbe
\ #
vertical bar | or | 0x4f 0x6a

(inclusive or) | i

pound sign # 0x7b 0x7b
#
exclamation point ! 0x5a 0x5a

Storage class limits

The SAS/C Compiler imposes several limits on the sizes of various objects and these
may affect your C++ program after it is translated into C and compiled.

The total size of all objects declared in one translation with the same storage class is
limited according to the particular storage class, as follows:

extern 16,777,215 (16M-1) bytes
static 8,388,607 (8M-1) bytes
auto 8,388,607 (8M-1) bytes

formal 65,535 (64K-1) bytes.

Introduction to the SAS/C C++ Development System /\ Environmental Elements 13

Individual objects can be up to 8 megabytes in size. The translator imposes no limit on
array sizes.
The following types of programs generate very large CSECTS:
O programs compiled with norent and with large amounts of static or defined
external data or both
O programs compiled with rentext and with large amounts of static data.

You should consider alternatives to using large amounts of static data. One
alternative is to use the new operator for dynamic storage allocation. Storage allocated
with the new operator is limited only by available memory.

Numerical limits

The numerical limits are what one would expect for a 32-bit, twos complement
machine such as the IBM 370. Table 1.2 on page 13 shows the size ranges for the
integral types.

Table 1.2 Integral Type Sizes

Type Length in Bytes Range
char 1 0 to 255 (EBCDIC character
set)

signed char 1 -128 to 127

short 2 -32,768 to 32,767

unsigned short 2 0 to 65,535

int 4 -2,147,483,648 to 2,147,483,647

unsigned int 4 0 to 4,294,967,295

long 4 -2,147,483,648 to 2,147,483,647
4 0 to 4,294,967,295

unsigned long

Table 1.3 on page 13 shows the size ranges for float and double types.

Table 1.3 Float and Double Type Sizes

Type Length in Bytes Range

float 4 +/- 5.4E-79 to +/- 7.2E75
double 8 +/- 5.4E-79 to +/- 7.2E75
long double 8 +/- 5.4E-79 to +/- 7.2E75

Additional details on the implementation of the various data types can be found in
"Compiler Processing and Code Generation Conventions," in the SAS/C Compiler and
Library User’s Guide.

Source file sequence number handling

The translator examines the first record in the source file and each #include file to
determine if the file contains sequence numbers. Therefore, you can safely mix files

14

Language Elements A Chapter 1

with and without sequence numbers and use the translator on sequenced or
nonsequenced files without worrying about specifying a sequence number parameter.

For a file with varying-length records, if the first four characters in the first record
are alphanumeric and the following four characters are numeric, then the file is
assumed to have sequence numbers.

For a file with fixed-length records, if the last four characters in the first record are
all numeric and the preceding four characters are alphanumeric, then the file is
assumed to have sequence numbers.

If a file is assumed to have sequence numbers, then the characters in each record at
the sequence number position are ignored. This algorithm detects sequence numbers or
their absence correctly for almost all files, regardless of record type or record length.
Occasionally the algorithm may cause problems, as in the following examples:

o For a file in which only some records, not including the first record, contain
sequence numbers, the validity of the sequence number is questionable. The entire
record is treated as C code, so errors are certainly generated.

o A file of fixed-length records in which the last eight characters of the first record
resemble a sequence number but are instead, for example, a long numeric constant
also causes a problem. A dummy first record or a comment after the digits fixes
this problem.

Language Elements

Certain language elements, such as constants and predefined constants, deserve
special explanation, as the translator treats them in accordance with the language
described in The C++ Programming Language.

Constants

This section describes how the translator treats character constants and string
literals.

Character constants
The translator produces a unique char value for certain alphabetic escape
sequences that represent nongraphic characters. This char value corresponds to
the hex values shown in column 2 of Table 1.4 on page 14 .

Tahle 1.4 Escape Sequence Values

Sequence Hex Value Meaning

\a 0x2f alert

\b 0x16 backspace

\f 0x0c form feed

\n 0x15 newline

\r 0x0d carriage return

\t 0x05 horizontal tab

\v 0x0b vertical tab
String literals

By default, identically written string constants refer to the same storage location:
only one copy of the string is generated by the translator. The NOSTringdup

Introduction to the SAS/C C++ Development System /A Language Elements 15

compiler option can be used to force a separate copy to be generated for each use of
a string literal. However, modifying string constants is not recommended and
renders a program nonreentrant.

Note: Strings used to initialize char arrays (not char*) are not actually
generated because they are shorthand for a comma-separated list of
single-character constants. A

Predefined constants

The translator supports several predefined constants:

O
O
D_—
O
O
O

__cplusplus
c_plusplus
DATE_ _
__FILE_ _
__LINE__
__TIME__

These macros are useful for generating diagnostic messages and inline program
documentation. The following list explains the meaning of each macro:

__cplusplus

c

expands to the decimal constant 1.

_plusplus

expands to the decimal constant 1.

__DATE

expan_d_s to the current date, in the form Mmm dd yyyy (for example, Jan 01 1990).
Double quotes are a part of the expansion; no double quotes should surround
__DATE__ in your source code.

__FILE_

“expands to a string literal that specifies the current filename. Double quotes are a
part of the expansion; no double quotes should surround __FILE _ in your source
code.

For the primary source file under OS/390 batch, __FILE_ _ expands to the data
set name of the source file, if it is a disk data set, or the DDname allocated to the
source file. For the primary source file under CMS, __FILE _ expands to
"filename filetype", where filename is the CMS filename and filetype is the CMS
filetype.

For a #include or header file, under both OS/390 and CMS, __FILE _ expands
to the name that appears in the #include statement, 1nc1ud1ng the angle brackets
or double quotes as part of the string. Thus, for the following, __FILE _ expands
to "\" myfile.h \""

#include "myfile.h"
For the following, __FILE _ expands to " <myfile h e>"

#include <myfile h e>

__LINE_

“expands to an integer constant that is the relative number of the current source
line within the file (primary source file or #include file) that contains it.

__TIME_

“expands to the current time, in the form hh:mm:ss (for example, 10:15:30).
Double quotes are a part of the expansion; no double quotes should surround

__TIME__ in your source code.

16

Language Extensions A Chapter 1

None of the above predefined macros can be undefined with the #undef directive.
The translator also provides the following predefined macro names. Automatic
predefinition of these names can be collectively suppressed by using the undef
translator option. (Refer to “Option Descriptions” on page 71 for more information on
undef .) These macro names also can be undefined by the #undef preprocessor directive.
The following code shows their usage:

#define 0OSVS 1 // if translating under TSO

// or MVS batch
#define CMS 1 // if translating under CMS
#define 1370 1 // indicates the SAS/C

// Compiler or the translator
#define DEBUG 1 // if the DEBug option is

// used
#define NDEBUG 1 // if the DEbug option is not used

A few of the predefined macros can only be undefined by the #undef preprocessor
directive. They are not affected by the undef translator option. These macros are:

#define __COMPILER _ "SAS/C C++ 6.50B" // indicates
// the current release
// as a string
#define __I370__ 1 // indicates the SAS/C
// Compiler or the translator
#define __SASC__ 650 // indicates the current
// version as a number,
// for example, 650

Note: Because the translator is not a C compiler, the __STDC__ macro is not
defined. o

Language Extensions

This section describes SAS/C extensions to the language described in The C++
Programming Language.

Note: Use of these extensions is likely to render a program nonportable. A

For information on SAS/C extensions to the C language, such as the __asm keyword,
the __alignmem and __noalignmem keywords, and keywords used in declarations of
functions that are neither C++ nor C, see the SAS/C Compiler and Library User’s
Guide. Also refer to the SAS/C Compiler and Library User’s Guide for a discussion of
the implementation-defined behavior of the SAS/C Compiler.

ASCIIOUT Support

The C++ translator supports the ASCITIOUT option. See the SAS/C Compiler and
Library User’s Guide for more information on the ASCIIOUT option.

A and E Character Support

SAS/C Release 7.00 introduces A and E qualifiers for character and string constants
for C++. The new qualifiers cause the string to be either ASCII or EBCDIC.

A string literal prefixed with A is parsed and stored by the compiler as an ASCII
string. Here is an example of its usage:

A"this is an ASCII string"

Introduction to the SAS/C C++ Development System /A Language Extensions 17

A string literal prefixed with E is parsed and stored by the compiler as an EBCDIC
string. Here is an example of its usage:

E"this is an EBCDIC string"

long long Type Support

The C++ translator supports the long long type. The declaration types long long
int and unsigned long long int are available. long long arithmetic constants can
be specified using the suffix 11 or LL, as in 1ULL. There are some restrictions compared
to other integral types, however. long long types may not be used as the field type of a
bit field. Values outside the range of long or unsigned long may not be used to specify
enumeration constant values. Array sizes must still be in the range of unsigned long.
Also, the preprocessor does not yet support long long values in #if expressions.

Preprocessor extensions
Two #pragma directives are handled by the SAS/C C++ Development System directly:

#pragma linkage
#pragma map

These #pragma directives are described in the SAS/C Compiler and Library User’s
Guide. In C++ programs, these directives can be applied only to functions and variables
that have extern "C" linkage (that is, they are declared in an extern "C" block or have
extern "C" in their declaration).

The __ibmos SAS/C extension keyword is a simpler and more direct replacement for
#pragma linkage . The __ibmos keyword is described in the SAS/C Compiler and
Library User’s Guide. AR370 is a simpler and more powerful replacement for #pragma
map . The AR370 utility is described in the SAS/C Compiler and Library User’s Guide.

All other #pragma directives are passed on directly to the output C file and are
otherwise ignored by C++.

Protected Include Files

In Release 7.00, the translator can identify include files that are protected by a
preprocessor symbol, for example:

// optional comments and newlines
#ifndef SOME_ SYMBOL

// included definitions...

#endif

// end of file

When a second #include of the same file is found, the preprocessor can check the
specified preprocessor symbol and avoid rereading the file if the symbol is defined. The
recognized forms of the test are as follows:

#ifndef SYMBOL
or

#if !defined SYMBOL
or

#if !defined(SYMBOL)

SAS/C extension keywords

You can use the following SAS/C extension keywords in your C++ programs:

18

Language Extensions A Chapter 1

__asm __local __weak
__cobol __pascal

__foreign __pli

__fortran __ref

__ibmos __remote

Overloading on these SAS/C extension keywords is supported. The following example
shows overloading error_trap to take both local and remote function pointers:

int error_ trap(_\x12_local void(*f)());
int error trap(_\xl2 remote void(*£f)());

Functions defined using one or more of the keywords __ibmos , __asm, or __ref must
be written in assembler. Therefore, the translator assumes "C" linkage for these
functions, even if extern "C" is not explicitly used. Similarly, __pli, __cobol,
__fortran, __pascal, and __foreign functions have linkage appropriate for the
language and therefore do not have C++ linkage. The main effect of this behavior is
that overloading the following functions is not allowed:

___asm int myfunc(int);
__pli int myfunc(int¥);

These functions cannot be overloaded because only one linkage version of a function
that is not C++ is permitted.

For more information on SASC extension keywords, see the SAS/C Compiler and
Library User’s Guide.

Alternate forms for operators and tokens

C++ is traditionally implemented using the ASCII character set. The translator uses
EBCDIC as its native character set because EBCDIC is the preferred character set
under T'SO, CMS, and 0S/390 batch. Because some characters used by the C++
language are not normal EBCDIC characters (that is, they do not appear on many
terminal keyboards), alternate representations are available. Also, for some characters,
there is more than one similar EBCDIC character. The translator accepts either
character.

Table 1.5 on page 19 lists alternate representations that the translator accepts (this
set of digraphs is identical to the digraph set accepted by the SAS/C Compiler). The
digraph option(s) chosen determines which alternate forms are used:

digraph option 1
turns on the new ISO digraph support.
digraph option 2
turns on SAS/C bracket digraph support, (|’ or ’|).
digraph option 3
turns on all SAS/C digraphs but does not activate the new ISO digraphs unless
option 1 is also activated.

See “Option Descriptions” on page 71 for more information on digraph options.

Introduction to the SAS/C C++ Development System /A Language Extensions 19

Table 1.5 Digraph Sequences for Special Characters

Alternate Forms

(for use with Alternate Forms
digraph options 2, (for use with
C++ Character EBCDIC Value(s) (hex) 3) digraph option 1)
[(left bracket) Oxad q <
] (right bracket) O0xbd) >
{ (left brace) 0x8b, 0xc0 \(or (< <%
} (right brace) 0x9b, 0xdO \) or >) %>
| (inclusive or) 0x4f, 0x6a \!
~ (tilde) Oxal \—
#(pound sign) 0x7b %:
##(double pound sign) 0x7b 0x7b %:%:
\ (backslash) 0xe0, Oxbe (see below)

For all symbols except the backslash, substitute sequences are not replaced in string
constants or character constants. For example, the string constant "<:" contains two
characters, not a single left bracket. Contrast this behavior with the ANSI trigraphs,
which are replaced in string and character constants.

The backslash is a special case because it has meaning within string and character
constants as well as within C++ statements. You can also customize the translator to
accept an alternate single character for the backslash, as well as for other characters in
Table 1.5 on page 19 . The default alternate representations are listed in Table 1.1 on
page 12 . See your SAS Installation Representative for more information.

Embedded $ in identifiers

The dollar sign ($) can be used as an embedded character in identifiers. If the dollar
sign is used in identifiers, the dollars translator option must be specified. Use of the
dollar sign is not portable because the dollar sign is not part of the portable C++
character set. The dollar sign cannot be used as the first character in an identifier; such
usage is reserved for the library.

Floating-point constants in hexadecimal

An extended format for floating-point constants enables them to be specified in
hexadecimal to indicate the exact bit pattern to be placed in memory. A hexadecimal
double constant consists of the sequence 0.x , followed by 1 to 14 hexadecimal digits. If
there are fewer than 14 digits, the number is extended to 14 digits on the right with Os.
A hexadecimal double constant defines the exact bit pattern to be used for the constant.
For example, 0.x411 has the same value as 1.0 . Use of this feature is nonportable.

Call-by-reference operator (@)

The @ operator is a language extension provided primarily to aid communication
between C++ and other programs.

In C++ (as in C), the normal argument-passing convention is to use call-by-value;
that is, the value of an argument is passed. The normal IBM 370 (neither C nor C++)

20

Language Extensions A Chapter 1

argument-passing conventions differ from this in two ways. First, arguments are
passed by reference; each item in the parameter list is an argument address, not an
argument value. Second, the last argument address in the list is usually flagged by
setting the high-order bit.

One approach to the call-by-reference problem is to precede each function argument
by the & operator, thereby passing the argument address rather than its value. For
example, you can write asmcode (&x) rather than asmcode (x) . This approach is not
generally applicable because it is frequently necessary to pass constants or computed
expressions, which are not valid operands of the address-of operator. The translator
provides an option to solve this problem.

When the translator option at is specified, the at sign (@)is treated as an operator.
The @ operator can be used only on an argument to a function call. The result of using
it in any other context is undefined. The @ operator has the same syntax as the C
ampersand (&) operator. In situations where the C & can be used, @ has the same
meaning as & . In addition, @ can be used on values that are not lvalues such as
constants and expressions. In these cases, the value of @ expr is the address of a
temporary storage area to which the value of expr is copied. One special case for the @
operator is when its argument is an array name or a string literal. In this case, @array
is different from &array . The latter still addresses the array, while @array addresses a
pointer addressing the array. Use of @ is, of course, nonportable. Its use should be
restricted to programs that call routines, that are not C++, .using call-by-reference.

When declaring a call by reference instead of using the @ notation, you may want to
use the _asmor __ref keyword described in the SAS/C Compiler and Library User’s
Guide.

Nesting of #define

If the redef translator option is specified, multiple #define statements for the same
symbol can appear in a source file. When a new #define statement is encountered for a
symbol, the old definition is stacked but is restored if an #undef statement for the
symbol occurs. For example, if the line

#define XYZ 12
is followed later by
#define XYZ 43

the new definition takes effect, but the old one is not forgotten. Then, when the
translator encounters the following, the former definition (12) is restored:

#undef XYZ

To completely undefine XYZ, an additional #undef is required. Each #define must
be matched by a corresponding #undef before the symbol is truly forgotten. Identical
#define statements for a symbol (those permitted when redef is not specified) do not
stack.

Zero-length arrays

An array of length 0 can be declared as a member of a structure or class. No space is
allocated for the array, but the following member is aligned on the boundary required
for the array type. Zero-length arrays are useful for aligning members to particular
boundaries (to match the format of external data for example) and for allocating
varying-length arrays following a structure. In the following structure definition, no
space is allocated for member d , but the member b is aligned on a doubleword boundary:

struct ABC
{

Introduction to the SAS/C C++ Development System /A Language Extensions 21

int aj;
double d[0];
int b;

}i

Zero-length arrays are not permitted in any other context.

__inline and __actual storage class modifiers

__inline is a storage class modifier. It can be used in the same places as a storage
class specifier and can be declared in addition to a storage class specifier. If a function
is declared as __inline and the module contains at least one definition of the function,
the translator sees this as a recommendation that the function be inlined. If a function
is declared as __inline and has external linkage, a real copy of the function is created
so that other external functions can call it.

With the 6.50 release, if you use inline functions and have DEBUG turned off, the
translator performs inlining of inline functions whether the optimize option is on or
off. If DEBUG is turned on, the translator disables inlining. The optimize option is on

by default.
__actual is also a storage class modifier. It can be specified with or without the
_inline qualifier, but it implies __inline . __actual specifies that the translator

should produce an actual (callable) copy of the function if the function has external
linkage. If the function has internal linkage, the translator creates an actual function
unless it does not need one.

For additional information, see the discussion of __inline and __actual in the
SAS/C Compiler and Library User’s Guide.

Note: The difference between the __inline modifier and the inline C++ keyword
is that the inline keyword causes inline functions to behave as if they were declared
static while __inline does not. In some cases, current ANSI C++ rules may treat the
inline function as if it has external linkage. A

signed long long Support

The handling of decimal constants like 4000000000 that are too large to represent as
signed long but do not have a U or u suffix has changed. In Release 6.50, such
constants were treated as unsigned long (the C89 rule). In Release 7.00, such
constants are treated as signed long long (the C99 rule). Octal, hexadecimal, and
explicitly unsigned constants are unaffected.

extern “0S” Linkage Specifier

In Release 7.00, the translator accepts the extern ‘‘0s’’ linkage specifier. An
object or function declared with extern ‘‘0S’’ linkage effectively receives extern
++¢’* linkage. The type for any non-member function declarators in the scope of the
linkage specification implicitly receives the __ibmos function specifier.

typename Keyword

The typename keyword is optional for template formal dependent qualified type
specifiers in a template actual, providing the template name is a known class template
or template template formal. The ‘typename’ keyword must be specified for the actuals
of function templates, or when the template name itself has a nested name specifier
dependent on a template formal.

22

Implementation-Defined Behavior A Chapter 1

Enabling Warning with the strict Option

The warnings LSCT426, LSCT454, LSCT455, LSCT456, LSCT594, LSCT628, and
LSCT738 are now, by default, only diagnosed at the strict warning level. These
warnings can be turned on or off explicitly or enabled as a group with the strict option.

C++ iostream Library Constructors

The old C++ iostream library was modified for Release 7.00 to avoid a problem with
constructors when a user class was derived from a library stream class. The
non-default constructors for the base library streams istream, ostream, and iostream
now call ios::init(streambuf*) directly. This means that constructors for
user-derived stream classes no longer need to specify the ios: :ios(streambuf*)
constructor or call ios::init(streambuf*) themselves.

Implementation-Defined Behavior

Implementation-defined behaviors are translator actions that are not explicitly
defined by the language standard. For example, in The C++ Programming Language,
Stroustrup leaves the range of values that can be accommodated by a double to the
discretion of individual implementations. Each implementation is simply required to
document the chosen behavior. Allowing implementation-defined behavior enables each
vendor to implement the C++ language as efficiently as possible with in the particular
operating system and environment. This section describes the implementation-defined
behaviors of the translator.

Much of the implementation-defined behavior of the translator corresponds to the
implementation-defined behavior of the SAS/C Compiler, while some behaviors are
specific to C++. The next two sections describe the implementation-defined behavior of
the translator in detail.

Behaviors related to the SAS/C Compiler

The following list enumerates those behaviors common to both the translator and
compiler or behaviors that are similar but have small differences. The following list
gives a brief description of the behavior and a reference to the SAS/C Compiler and
Library User’s Guide, where necessary.

0 Characteristics of fundamental types for the translator are the same as those for
the SAS/C Compiler. These characteristics, defined in the 1imits.h and float.h
C header files, are described in the SAS/C Compiler and Library User’s Guide.

o Alignment requirements of fundamental types for the translator are the same
as those for the SAS/C Compiler. These alignment requirements are also
described in the SAS/C Compiler and Library User’s Guide.

O The translator does not support multibyte character constants and wehar_t
initializers.

0 The translator treats duplicate string constants in the same way as the SAS/
C Compiler. This topic is discussed in the SAS/C Compiler and Library
User’s Guide. (By default, only one copy of a string literal is kept at one time.)

0 The translator treats arithmetic overflow and division by zero in the same
way as the SAS/C Compiler. This topic is discussed in the SAS/C Compiler
and Library User’s Guide. (By default, integer overflow is ignored and both
floating-point overflow and division by zero cause abnormal program
termination unless an arithmetic signal handler is defined.)

O The type of size_t is unsigned int, as it is for the SAS/C Compiler.

Introduction to the SAS/C C++ Development System /A Implementation-Defined Behavior 23

O The type of ptrdiff t is signed long .

O The translator maps pointers to and from integers the same way as the SAS/
C Compiler. This topic is discussed in Implementation-defined Behavior in the
SAS/C Compiler and Library User’s Guide.

0 As with the SAS/C Compiler, the remainder from integer division (using the
binary % operator) has the same sign as the dividend, except that a 0
remainder is always positive.

o0 Right shifting a negative integral value works the same as it does in SAS/C
software; that is, the sign bit is used to fill the vacated positions on the left.
The result retains the sign of the first operand.

0 The alignment and sign of bitfields, both plain and noninteger, works the
same as it does for the SAS/C Compiler. These topics are discussed in the
SAS/C Compiler and Library User’s Guide.

To summarize, the bitfield translator option causes the translator to
accept any integral type in the declaration of a bitfield and enables you to
control the allocation of bitfields. By default, bitfields are aligned on word
boundaries. Plain int bitfields are treated as unsigned int bitfields, and
the order of allocation of bitfields with an int is left to right.

0 The details of how the translator and compiler search for #include header
files are the same as for the SAS/C Compiler. This topic is discussed in the
SAS/C Compiler and Library User’s Guide. You should also refer to Chapter
2, “Using the SAS/C C++ Development System under TSO, CMS, 0S/390
Batch, and UNIX System Services,” on page 27 .

0 The meaning of the #pragma preprocessing directive is discussed earlier in
this chapter, in “C++ Language Definition” on page 6 .

O The type of main is the same as it is for the SAS/C Compiler and complies
with the ANSI definition.

To summarize, main can be defined in one of two ways. It can either take
no arguments and be defined as

int main(void){ /* ... */ }
Or, it can have two parameters and be defined as

int main(int argc, char *argv[])

{/* ... */ }

For more information on the constraints for argc and argv, see Section 2.1.2.2 of
the ANSI C Standard.

You should also refer to the SAS/C Compiler and Library User’s Guide for
information about the environment variables extension provided by the SAS/C
Compiler.

C++-specific behaviors

Some implementation-defined behavior is specific to the C++ language. The following
list enumerates these behaviors.

n

0 There are only two accepted linkage strings, "¢" and " c++" . " ¢ " linkage for
functions means that type information is not encoded in the function’s identifier.
"c" linkage does not affect the linkage for nonfunctions. Remember that the
linkage for main is always " ¢ ".

O operator new is responsible for memory allocation; it does not leave the
allocation up to the constructor.

24

Anachronisms A Chapter 1

0 The effect of modifying a const object through a non- const pointer is
unpredictable and could cause an ABEND.

O An asm declaration (for example, asm(str_1it))is not allowed by the translator.
Do not confuse the use of an asm declaration with the SAS/C __asm keyword.

O Base classes are allocated in the order in which they are specified in the derived
class.

0 Non static data members are allocated in the order in which they are declared.

O There is no nesting limit for #include statements or for conditional compilation.

Initialization and termination

This section describes the order of initialization and termination of file-scope objects
defined in C++. Initialization of an object consists of executing its initializer. This
includes executing the object’s constructor if it has one. Termination of an object
consists of executing the object’s destructor, if it has one. In general, objects are
terminated in the reverse of the order that they are initialized, but this is not
necessarily the case for objects in dynamically loaded modules.

When a program containing C++ code is started, file-scope objects defined in C++
translation units in the main load module are initialized in the reverse order of the
translation unit’s inclusion into the load module by COOL. (For more information on
this topic, see “INCLUDE Statement” on page 58 .) Within a translation unit, objects
are initialized in the order that they are defined in the translation unit.

When the main program ends, either by calling exit or by returning from main ,
file-scope objects defined in C++ translation units in the main load module are
terminated in the reverse order of how they were initialized.

Objects defined in C++ translation units in dynamically loaded modules are
initialized when the module is loaded and terminated when the module is unloaded.
Within a dynamically-loaded module, the order of initialization and termination is the
same as for the main load module.

Anachronisms

The following list enumerates several features that a C++ implementation may
provide to support old coding styles and features. The following list enumerates these
compatibility issues and indicates which are supported by the SAS/C C++ translator.

0 The overload keyword is supported but must be enabled by the overload
translator option. overload is not treated as a reserved word unless you turn on
the overload option.

O The redef option allows you to nest #define statements. For more details, see
“Nesting of #define” on page 20 .

Kernighan and Ritchie (K&R) C style function definitions are allowed.
Cast of a bound pointer is not supported.
Assignment to this is not supported.

O o o d

The number of elements in an array can be specified when deleting an array;
however, this number is ignored.

0 In some implementations, a single function operator ++() can be used to
overload both prefix and postfix ++ and a single function operator --() can be
used to overload both prefix and postfix -- . The SAS/C C++ Development System
follows the more modern practice of using different function signatures for
overloading the prefix and postfix forms of these operators.

Introduction to the SAS/C C++ Development System /A Anachronisms 25

0 Nested class tags are hidden by the surrounding class or structure. That is, if you
declare a class within another class, even if no other class of that name is declared
in your program, you cannot use the nested class tag as if it was declared outside
its enclosing class.

0 Declarations of functions, notably friend declarations, that match the type of a
template function specialization but use a plain identifier in the declarator declare
a non-template function. Older code that used this construct to grant friendship to
the template specialization can be compiled with the NOTMPLFUNC option
(-Knotmpfunc for UNIX System Services and the cross-compiler).

26 Anachronisms A Chapter 1

271

CHAPTER

Using the SAS/C C++
Development System under TSO,
CMS, 0S/390 Batch, and UNIX
System Services

Introduction 28
Creating C++ Programs under TSO 28
Translating and Compiling Your Program under TSO 28
Saving the output data set under TSO 29
Locating header files under TSO 30
Linking Your Program under TSO 30
COOL CLIST 30
Running Your Program under TSO 31
Creating C++ Programs under CMS 32
Translating and Compiling Your Program under CMS 32
Saving the output file under CMS 33
Specifying a fileid 33
Files on an accessed minidisk or directory 33
Files in the XEDIT ring 34
Files in an SFS directory 34
Locating header files under CMS 35
CXXMACLIBS and CXXOPTIONS GLOBALV variables 35
Linking Your Program under CMS 36
COOL EXEC 36
Creating a MODULE file 31
Running Your Program under CMS 37
Creating C++ Programs under OS/390 Batch 38
General Notes about the Cataloged Procedures 38
Translating and Compiling Your Program under OS/390 Batch 38
DD statements used in translation and compilation 39
LCXXC cataloged procedure 40
LCXXCA cataloged procedure 40
Saving the output data set under OS/390 batch 41
Locating header files under OS/390 batch M1
Linking Your Program under OS/390 Batch 42
DD statements used in linking 42
ENV and ALLRES parameters 43
LCXXCL cataloged procedure 43
LCXXL cataloged procedure 45
Running Your Program under OS/390 Batch 46
DD statements used at run time 46
LCXXCLG cataloged procedure 46
LCXXLG cataloged procedure 48
Cataloged Procedure Listings 49
JCL for the LCXXC cataloged procedure 49
JCL for LCXXCA cataloged procedure 50

28

Introduction A Chapter 2

JCL for the LCXXCL cataloged procedure 51
JCL for the LCXXL cataloged procedure 53
JCL for the LCXXCLG cataloged procedure 54
JCL for the LCXXLG cataloged procedure 56
Translating C++ Programs under USS 57
COOL Control Statements 58
INCLUDE Statement 58
INSERT Statement 59
ARLIBRARY Statement 59
GATHER Statement 60
COOL Options 60

Introduction

This chapter explains how to use the translator, the SAS/C Compiler, the COOL
object code preprocessor, and a number of operating system utilities to create and run
C++ programs. Each section contains operating environment specifics that you need to
know when you are developing and running your programs under TSO, CMS, 0S/390
Batch, and UNIX System Services (USS).

However, you can develop a C++ program in one of these environments and use it in
another. In this case, you will need to read all of the appropriate sections. For example,
it is very common to develop a program using OS/390 cataloged procedures, but run the
finished program only as a TSO command. In this case, you should read about running
the translator, compiler, and linker in “Creating C++ Programs under OS/390 Batch” on
page 38 and about running the programs in “Creating C++ Programs under TSO” on
page 28.

Creating C++ Programs under TSO

Before running the translator, compiler, COOL, or any C++ program, ensure that the
transient library is allocated to the CTRANS DDname or that it is installed in the
system link list. Consult your SAS Installation Representative to determine if this has
been done for you.

Translating and Compiling Your Program under TSO

The LCXX CLIST invokes the translator and compiler. Optionally, you can also
invoke the OMD370 object module disassembler utility. The LCXX CLIST has the
following format:

LCXX dsname<options>

where dsname is the name of the data set containing the C++ program to be
translated and compiled. Follow standard TSO data set naming conventions. If the
data set belongs to another user, specify the full data set name enclosed in apostrophes.
If the program is a member of a partitioned data set (PDS), specify the member name
in parentheses following the data set name. Here are two examples of invoking LCXX
to translate and compile a program in a data set belonging to another user:

LCXX 'FRIEND.PROJ.CXX'
LCXX 'LEADER.APPL.CXX(SUBRTN) '

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Translating and
Compiling Your Program under TSO 29

If the data set belongs to you and you do not enclose the data set name in
apostrophes, LCXX assumes that the final qualifier of the data set name is CXX. If you
do not specify CXX, the CLIST adds it for you. Here are two examples of invoking
LCXX to translate and compile a program in a data set belonging to you:

LCXX PROJ.CXX
LCXX APPL (SUBRTN)
In the second example, the CLIST assumes that the program is in
userid. APPL.CXX(SUBRTN). If the data set belongs to you but is not named according
to the CLIST assumptions, you must enclose the data set name in apostrophes, as if the
data set belonged to someone else. dsname must be the first item on the command line.
options are any translator, compiler, and, if the OMD option is used to invoke the
OMDS370 utility, OMD370 options. Separate the options with one or more blanks,
commas, or tabs. See “Option Summary” on page 68 for the options that are available
for use with the translator. The LCXX CLIST executes the compiler if no errors occur
during iranslation. LCXX allocates a temporary data set to contain the translator
output.

Saving the output data set under TSO

The LCXX CLIST supports three options that enable you to save intermediate code
produced by the translator: pponly, tronly, and savec. These options require you to
specify the name of an output data set, using standard TSO conventions. Unlike the
input data set name, LCXX does not assume a final qualifier for the name of the output
data set. Also, if the data set name is fully qualified, use three apostrophes on each
end. Here is a brief description of each of the pponly, tronly, and savec options:

pponly performs only the preprocessing step. The program is not translated
or compiled. The output data set contains C++ code.

tronly performs the preprocessing and translation steps. The program is
not compiled. The output data set contains C code.

savec saves the C code resulting from translation. The program is
preprocessed, translated, and compiled. The output data set
contains C code.

For detailed information on these three options, see “Option Descriptions” on page 71.

Note: Because both tronly and savec save the intermediate C code data set, you
should use only one of them. For example, if you use tronly, you do not need to also
specify savec. A

Here are some examples of specifying an output data set. In this first example, the
pponly option causes only the preprocessing phase to be executed and the C++ code to
be saved in userid. PROJ.PP(MAIN). The C++ code is not translated or compiled.

LCXX PROJ(MAIN) PPONLY(PROJ.PP(MAIN))

In this next example, the tronly option causes the translator to be invoked and the
resulting C code to be saved in userid. PROJ.C(MAIN); however, the C code is not
compiled.

LCXX ’'userid.PROJ.PP(MAIN)’ TRONLY(PROJ.C(MAIN))

In this final example, the savec option causes the translator and compiler to be
invoked. The intermediate C code is saved in LEADER.PROJ.C(MAIN).

* The name of this data set is in the form userid. SASCTEMP.$nnnnnn.C where nnnnnn is a sequence of decimal digits. This
temporary data set is deleted after the compiler has completed. If by chance this file does not get deleted by default, you can
delete it yourself.

30

Linking Your Program under TS0 A Chapter 2

LCXX ‘userid.PROJ.PP(MAIN)’
SAVEC (' ' 'LEADER.PROJ.C(MAIN) ' ")

Locating header files under TSO

When a header filename is surrounded by angle brackets in a #include statement,
the translator searches for the header file in standard C and C++ header files supplied
by SAS Institute and in any library specified via the LCXX CLIST L1B option. The
syntax for this form of the #include statement is

#include <member.ext>
The .ext part can be omitted. Here is an example of including a standard header file:

#include <new.h>

For this statement, the translator includes the file named NEW from the standard
C++ header files.

When you use the LCXX CLIST, the data sets that contain the standard C++ and C
library header files are automatically available. You can add your own data sets to this
concatenation via the LCXX CLIST L1B option.

To include a header file from your personal files (as opposed to header files from
system files), surround the filename with double quotes, as shown here:

#include "member.ext"

The translator assumes that the header file is member in a PDS allocated to the ext
DDname. You must allocate this DDname to the member file data set before invoking
the LCXX CLIST. The .ext part can be omitted, in which case it defaults to .h. Here is
an example:

#include "project.h"

For this statement, the translator includes member PROJECT from the file
associated with the DDname H. If the file is not found, the translator also searches the
system header files.

Linking Your Program under TSO

All C++ programs must be preprocessed by the COOL object code preprocessor
because COOL automatically creates object code used during the initialization and
termination of static objects. In addition, COOL supports linking object files that
contain mixed case external names longer than eight characters, such as those created
by the compiler for source code generated by the translator. Such external names cannot
be handled by the linkage editor unless the object code has been preprocessed by COOL.

COOL CLIST

The COOL CLIST invokes COOL to preprocess your object code and then calls the
linkage editor to create a load module. The format of the COOL CLIST is

COOL dsname CXX <options>

where dsname is the name of the primary input data set and it is required. The data
set must contain either object code or control statements or both. Follow standard TSO
data set naming conventions when specifying this name. If the data set belongs to
another user, specify the full data set name enclosed in apostrophes. If the program is a
member of a PDS, specify the member name in parentheses following the data set

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Running Your
Program under TSO 31

name. The following two examples invoke COOL to link a program in a data set
belonging to another user:

COOL 'FRIEND.PROJ.OBJ’ CXX
COOL 'LEADER.APPL.OBJ(SUBRTN)' CXX

If the data set belongs to you and you do not enclose the data set name in
apostrophes, COOL assumes that the final qualifier of the data set name is OBJ. If you
do not specify OBJ, the CLIST adds it for you. The following two examples invoke
COOL to link a program in a data set belonging to you:

COOL PROJ.OBJ CXX
COOL APPL(SUBRTN) CXX

In the second example, the CLIST assumes that the program is in
userid. APPL.OBJ(SUBRTN). If the data set belongs to you but is not named according
to the CLIST assumptions, you must enclose the data set name in apostrophes, as if the
data set belonged to someone else. dsname must be the first item on the command line.

CXX is the only required option. This option makes the standard C++ object library
SASC.LIBCXX.A, as well as the standard C object libraries, available to COOL. You can
add your own data sets to this concatenation via the COOL LIB option. options are any
COOQL or linkage editor options. Separate the options with one or more blanks,
commas, or tabs. Refer to “COOL Options” on page 60 for more information.

COOL also accepts input from AR370 archives. For information on this type of file,
refer to the SAS/C Compiler and Library User’s Guide.

COOL input files can contain control statements instead of, or in addition to, object
code. Refer to “COOL Control Statements” on page 58 for more information.

More detailed information about the COOL utility and the COOL CLIST is available
in the SAS/C Compiler and Library User’s Guide.

Running Your Program under TSO

C++ programs can be called under TSO via the TSO CALL command. Depending on
how the SAS/C C++ Development System has been installed at your site, you may have
a higher level of support available. The optional methods are

o calling via the C command

O calling as a standard TSO command.

Here are some examples. Suppose that the load module for your program is member
CXXPROG in the data set userid. APPL.LOAD. Suppose that you want to redirect
stdin to the data set allocated to the DDname INPUT and pass the program option -z.
Finally, suppose that you want to override the default initial stack allocation using the
run-time option =48k. You can call the program using the CALL command as shown
here:

CALL APPL(CXXPROG) '<INPUT -Z =48K’

The CALL command automatically translates program arguments to uppercase. If
your program requires lowercase arguments, you can use the AsIs option of the CALL
command to suppress uppercasing of arguments. Here is an example using the ASIS
option:

CALL APPL(CXXPROG) '<INPUT -z =48k’ ASIS

Some older versions of TSO do not support the ASIS option.
If you want to run your program with the SAS/C Debugger, use the =D option when
you call your program, as in the following example:

CALL APPL(CXXPROG) ’'=D’

32

Creating C++ Programs under CMS A Chapter 2

For more information on debugging C++ programs, refer to Chapter 5, “Debugging
C++ Programs Using the SAS/C Debugger,” on page 185.

Note: Programs called via the CALL command cannot access their name via the
pointer in argv[0]. A

If the C command has been installed at your site, allocate your program library
userid. APPL.LOAD to the DDname CPLIB and call the program using this command
line:

C CXXPROG <INPUT -7 =48K

Also, if your site supports calling C programs as standard TSO commands, you can
call your program using this command line:

CXXPROG <INPUT -7 =48K

This method also requires that your program library userid. APPL.LOAD be allocated
to the DDname CPLIB.

Support for program invocation other than via the TSO CALL command is optional.
Consult your SAS Installation Representative to determine if this support is available
at your site.

Creating C++ Programs under CMS

Before running the translator, compiler, COOL, or any C++ program, ensure that the
transient library is available on an accessed minidisk or that it is installed in a
segment available to your virtual machine. Consult your SAS Installation
Representative to determine if this has been done for you.

Translating and Compiling Your Program under CMS

The LCXX EXEC invokes the translator and compiler. Optionally, you can also
invoke the OMD370 object module disassembler utility. The LCXX EXEC has the
following format:

LCXX fileid <(options<)>>

where fileid is the fileid of the file to be translated and compiled. The fileid can name
a file on a CMS minidisk, a file in the XEDIT ring, or a file in a Shared File System
(SFS) directory. The format of the fileid is described in “Specifying a fileid” on page 33.
The options are any translator options, compiler options, or, if the OMD option is used
to invoke the OMD370 utility, OMD370 options. See “Option Summary” on page 68 for
the options that are available for use with the translator.

By default, the translator writes its output (C code) to a temporary file and runs the
compiler if no errors were found. The name of the output file has the same filename as
the input file and a filetype of TROUT. If the input file is on an accessed minidisk or
directory accessed as a minidisk, the temporary output file is written on that minidisk.
If the minidisk is not write-accessed, the output file is written to the minidisk accessed
as filemode A. If the input file is in an SFS directory that is not accessed as a minidisk,
the output file is written to that directory. If the directory is not writable, the output
file is written to your top directory. If the input file is in the XEDIT ring, the output file
is written to the minidisk accessed as filemode A.

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Translating and
Compiling Your Program under CMS 33

Note: If you have an existing file with the same name as the C output file, it is
overwritten and then erased. Therefore, you may want to use the savec option to
specify a different name for the output file, as discussed in the following section. A

Saving the output file under CMS

You can use three options to save the intermediate code produced by the translator:
pponly, tronly, and savec. Here is a brief description of each of these options:

pponly performs only the preprocessing step. The program is not translated
or compiled. The output file contains C++ code.

tronly performs the preprocessing and translation steps. The program is
not compiled. The output file contains C code.

savec saves the C code resulting from translation. The program is
preprocessed, translated, and compiled. The output file contains C
code.

Under CMS, the savec option must be the last option on the
command line. LCXX uses the remainder of the command line as
the fileid of the output file.

For detailed information on these three options, refer to “Option Descriptions” on
page 71.

Note: Because both tronly and savec save the intermediate C code file, you should
use only one of them. For example, if you use tronly, you do not need to also specify
savec, unless you want to rename the intermediate C code file. A

Specifying a fileid

The following sections illustrate specifying fileids (for both input and output files).
The examples are divided according to your file environment, such as files on accessed
minidisk or directory, files on the XEDIT ring, and files in a Shared File System (SFS)
directory.

Files on an accessed minidisk or directory
To specify a file on an accessed minidisk or directory, use
filename <filetype <filemode>>

Optionally, you can separate the filename, filetype, and filemode by periods instead of
blanks. If the file is on an accessed minidisk or directory, you can optionally prefix the
fileid with cms:. If the filetype is omitted, the default filetype for the input file is CXX.
If the filemode is omitted, the translator searches all accessed minidisks and
directories. Here are some examples:

LCXX MYPROG
The input file is MYPROG CXX *. The output file is temporary and is named
MYPROG TROUT. The output file is written to either the minidisk where the
input file was found or to the A disk if the input minidisk is not writable.

LCXX MYPROG.CPP
The input file is MYPROG CPP *. The output file is temporary and is named
MYPROG TROUT.

LCXX MYPROG (SAVEC MYPROG CPPOUT B2
The input file is MYPROG CXX *. The savec option stores the output file as
MYPROG CPPOUT B2.

34 Translating and Compiling Your Program under CMS A Chapter 2

LCXX CMS:MYPROG.CPP.J (NOWARN SAVEC CMS:MYPROG.CPPOUT.B2
The input file is MYPROG CPP J. The nowarn option suppresses translator
warning messages. The savec option stores the output file as MYPROG CPPOUT
B2. Note that the savec option must be the last option specified.

Files in the XEDIT ring

If you run the LCXX EXEC from the XEDIT command line and the input file is in
the XEDIT ring, the translator automatically reads the input file from XEDIT. However,
the translator does not write its output to an XEDIT file.

Files in an SFS directory
To specify a file in an SFS directory, use the following format:
sf: filename <filetype <directory-name | namedef>>

The sf: prefix is required. If the filetype is omitted, the default filetype is CXX. If
you do not specify either a directory-name or a NAMEDEF, the default is your top
directory. Here are some examples:

LCXX SF:MYPROG

MYPROG CXX
is the input file.

MYPROG TROUT
is the temporary output file.

LCXX SF:MYPROG CPP
MYPROG CPP.

MYPROG TROUT
is the temporary output file.

LCXX SF:MYPROG (SAVEC MYPROG CPPOUT

MYPROG CXX.
is the input file.

MYPROG CPPOUT.
is the permanent output file, created by the savec option. Note that the
output file prefix defaults to the input file prefix.

LCXX SF:MYPROG CXX CXXPROG

MYPROG CXX CXXPROG
is the input file, where CXXPROG is a NAMEDEF defined in a NAMEDEF
command.

MYPROG TROUT.
is the temporary output file.

LCXX SF:MYPROG CXX .CXX.PROJ (SAVEC CMS:MYPROG TROUT B2

MYPROG CXX .CXX.PROJ
is the input file.

MYPROG TROUT B2
is the permanent output file, created by the savec option. The ems: prefix is
used to override the default prefix of sf:.

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Translating and
Compiling Your Program under CMS 35

Locating header files under CMS

The translator searches for header files in one of two locations, depending on how the
filename is specified in the #include statement. When the filename is surrounded by
angle brackets in the #include statement, the translator assumes that the header file
is a member of a macro library that has been designated GLOBAL. The syntax for this
form of the #include statement is

#include <member.ext>

The .ext part can be omitted.
For example:

#include <new.h>

In this case, the translator includes the first member named NEW that it finds in the
GLOBAL macro libraries.

When the filename is surrounded by double quotes in the #include statement, the
translator searches for the specified file. The syntax for this form of the #include
statement is

#include "fileid"

fileid can be any CMS fileid in the cms:, xed:, or sf: formats. For example, suppose
you had the following #include statement in your program:

#include "project.h"

In this case, the translator attempts to include the file named PROJECT H *. If this
file cannot be found, the translator searches the macro libraries that have been
designated GLOBAL. The translator uses that part of the fileid preceding any blank or
period as the member name. Refer to the SAS/C Library Reference, Third Edition,
Volume 1 for more information about CMS filename formats.

If you are using the translator in a version of CMS that supports the Shared File
System, the translator automatically searches your top directory for header files before
searching any accessed minidisks. You can specify additional directories to be searched
by using the _HEADERS environment variable. Refer to the SAS/C Compiler and
Library User’s Guide for more information about using environment variables.

Before invoking the LCXX EXEC, be sure that the C++ standard header files and C
standard header files are available. The C++ standard header files are in a macro
library named LCXX370 MACLIB. The C standard header files are in a macro library
named LC370 MACLIB. To make these header files available to the translator, issue
the following command before calling the translator:

GLOBAL MACLIB LCXX370 LC370

If your program requires header files in another macro library, add the filename of
the macro library to the GLOBAL MACLIB command.

CXXMACLIBS and CXXOPTIONS GLOBALV variables

The LCXX EXEC automatically issues a GLOBAL MACLIB command for you if you
set the CXXMACLIBS environment variable to the names of the macro libraries you
want to be made available. In addition, if you set the CXXOPTIONS environment
variable to a list of translator options, LCXX automatically passes those options to the
translator in addition to the options you specify on the command line. Set these
variables using the GLOBALV command. Both variables should be in the LC370 group.

The GLOBALV command (see Example Code 2.1 on page 36) sets the CXXMACLIBS
variable so that the LCXX EXEC automatically issues a GLOBAL MACLIB command
for the C++ standard header files and the C standard header files.

36

Linking Your Program under CMS A Chapter 2

Example Code 2.1 CXXMACLIBS GLOBALV Command

GLOBALV SELECT LC370 SETLP CXXMACLIBS LCXX370 LC370

You can suppress the use of environment variables for a single compilation by
specifying the NOGLOBAL option on the LCXX command line.

The following example shows how to set the CXXOPTIONS variable to cause LCXX
to automatically pass the overload option to the translator:

GLOBALV SELECT LC370 SETP CXXOPTIONS OVERLOAD

Options specified on the command line override options specified via the
CXXOPTIONS variable.

Linking Your Program under CMS

All C++ programs must be preprocessed by the COOL object code preprocessor
because COOL automatically creates object code used during the initialization and
termination of static objects. In addition, COOL supports linking object files that
contain mixed case external names longer than eight characters, such as those created
by the compiler for source code generated by the translator. Such external names cannot
be handled by the linkage editor unless the object code has been preprocessed by COOL.

COOL EXEC

The COOL EXEC calls COOL to preprocess your object code, and it optionally
invokes the CMS GENMOD command. The format of the COOL EXEC is

COOL <filenamel <filename2 . . .>> (CXX <options<)>>

Filenamel, filename2, and so on are the filenames of primary input files or AR370
archives. For each filename in the list, COOL first checks for an AR370 archive with
this filename; if one is not found, it looks for a TEXT file. For instance, if the filename
FINANCE is specified, COOL first looks for FINANCE A, an AR370 archive on an
accessed minidisk or in an SFS directory accessed as a minidisk. If FINANCE A is not
found, COOL looks for FINANCE TEXT. Any TEXT files specified on the command line
may contain object code, COOL control statements, or both. Any AR370 archives
specified on the command line are used to resolve unresolved references during the
processing of the other input files.

For example, the following command line causes COOL to use MYPROG TEXT as its
only input file, provided that MYPROG A is not found:

COOL MYPROG (CXX

If you do not specify any filenames, COOL prompts you for filenames. Enter as many
filenames as necessary in response to the COOL: prompt. Enter a null string (that is,
press the ENTER key) to cause COOL to begin processing the input files.

The CXX option is the only required option. This option causes the standard C++
object library to be added to COOL’s autocall list. Refer to “COOL Options” on page 60
for more information about COOL options. Before calling COOL, you must issue a
GLOBAL TXTLIB command to make the standard C object libraries available for
autocall resolution. The standard C object libraries are LC370BAS TXTLIB and
LC370STD TXTLIB.* The following GLOBAL TXTLIB command makes these libraries
available for COOL:

* The standard C++ object library is named LIBCXX A. Other run-time libraries include LC370GOS TXTLIB for use with the

Generalized Operating System, LC370SPE TXTLIB for use with the Systems Programming Environment, and LC370CIC
TXTLIB for use with the SAS/C CICS Command Language Translator.

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Running Your
Program under CMS 37

GLOBAL TXTLIB LC370BAS LC370STD

The COOL EXEC automatically issues a GLOBAL TXTLIB command for you if you
specify the names of the object libraries in the TXTLIBS environment variable.

The COOL input files can contain control statements instead of, or in addition to,
object code. For more information about COOL control statements, refer to “COOL
Control Statements” on page 58.

COOL writes the preprocessed object code to a file named COOL370 TEXT Al. This
file can be used as input to the LOAD command or the LKED command.

The COOL listing file is written to the terminal by default. You can redirect it to a
disk file. Enter the redirection argument in the filename part of the command line, not
the options part. For example, the following command causes COOL to write its listing
file to MYPROG COOLMAP A1:

COOL MYPROG >MYPROG.COOLMAP.Al (CXX

There are many special considerations for linking C++ programs under CMS that
parallel the considerations for linking C programs. Refer to the SAS/C Compiler and
Library User’s Guide for a complete discussion of these considerations.

Creating a MODULE file

The COOL EXEC accepts the GENMOD option, which specifies that the EXEC
should load the COOL370 TEXT file and issue the GENMOD command. You can specify
the name of the MODULE file following the GENMOD option. If you do not specify a
name, the COOL EXEC uses the first input filename on the command line as the name
of the MODULE. For example, the following command creates MYPROG MODULE:

COOL MYPROG LIBFNC (CXX GENMOD
The following command creates APPLL1 MODULE:
COOL MAIN1 SUBl SUB2 (CXX GENMOD APPL1

You can also cause COOL to invoke the START command or the LKED command.
Refer to the SAS/C Compiler and Library User’s Guide for more information.

Running Your Program under CMS

C++ programs can be run just like any other program under CMS. The most
frequently used method for running a program is to create a MODULE file (as shown
previously) and then call the module as a CMS command. For example, the following
command calls MYPROG MODULE, passing the program option -z, the run-time
option =48k, and redirecting stdin to INPUT FILE *:

MYPROG -z =48k <INPUT.FILE

You can also load a TEXT file and use the START command to run it. For example,
suppose you have created MYFILE TEXT by using COOL to preprocess MYPROG
TEXT. The following commands can be used to load and run it, passing the same
options as in the previous example:

LOAD MYFILE
START * -z =48k <INPUT.FILE

Programs that can be called from the CMS EXEC processor should be prepared to
accept tokenized parameters. This form of parameter is at most eight characters long
and is translated to uppercase by CMS. Refer to the SAS/C Compiler and Library
User’s Guide for more information. If you want to run your program with the SAS/C
Debugger, use the =D’ option when you call your program, as in the following example:

38

Creating C++ Programs under 0S/390 Batch A Chapter 2

MYPROG =D

For more information on debugging C++ programs, refer to Chapter 5, “Debugging
C++ Programs Using the SAS/C Debugger,” on page 185.

Creating C++ Programs under 0S/390 Batch

This section describes six cataloged procedures that you can use to translate,
compile, link, and run a C++ program. Table 2.1 on page 38 lists the procedures.

Table 2.1 C++ Cataloged Procedures

Store AR370

Translate and COOL and Link Archive
Procedure Compile Edit Run Member
LCXXC Yes No No No
LCXXCA Yes No No Yes
LCXXCL Yes Yes No No
LCXXL No Yes No No
LCXXCLG Yes Yes Yes No
LCXXLG No Yes Yes No

Each subsequent section describes using the procedures, giving both the general
syntax and an example.

General Notes ahout the Cataloged Procedures

Note the following considerations when you use any of the cataloged procedures
described in this section:

0 The actual cataloged procedures may differ slightly from the versions shown here

due to changes since this book was written.

o If you override SYSPRINT to describe a disk data set, the data set disposition
must be MOD. A SYSPRINT data set cannot be a member of a PDS.

0 The SYSLIB parameter refers to the site-selected name for an autocall library. Do

not override this parameter.

0 The CALLLIB parameter can be used to specify an object module call library to be

used in addition to the C standard object library.

In general, the CALLLIB parameter should not be used for a library containing
C++ object modules. This is because OS/390 partitioned data sets are not suitable
for storing C++ object modules, due to the limitation of eight-character uppercase

member names. You should store C++ object code in AR370 archives and access
them for autocall via the SYSARLIB DD statement.

Translating and Compiling Your Program under 0S/390 Batch

You can use one of two cataloged procedures to simply translate and compile your
C++ program and do nothing else (no link or run step). The LCXXC cataloged

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Translating and
Compiling Your Program under 0S/390 Batch 39

procedure invokes the translator and compiler in one job step and stores the compiler
output in an 0S/390 data set. The LCXXCA cataloged procedure is identical to the
LCXXC procedure, except that the compiler output is stored in an AR370 archive. You
can optionally run the OMD370 utility with either of these cataloged procedures.

If you only want to translate (not compile, link, or run) your C++ program, use the
LCXXC cataloged procedure and use the tronly option. This option causes only the
translator to be run. Similarly, if you only want to preprocess your code, use the
LCXXC cataloged procedure with the pponly option. For more information about
options you can use the with the translator, refer to “Option Summary” on page 68.

DD statements used in translation and compilation

The cataloged procedures consist of various JCL statements, some of which are DD
statements. Sometimes you may want to override some of the DD statements in the
procedures. The following list describes the most commonly overridden DD statements
in the translation and compilation steps. The descriptions include a brief overview of
each statement’s purpose and any pertinent DCB requirements for the data sets
described by the DD statement.

Note: These DD statements apply to not only the LCXXC and LCXXCA procedures
but to all cataloged procedures that translate and compile a program (LCXXC,
LCXXCA, LCXXCL, and LCXXCLG). A

SYSTROUT DD statement
describes the data set that is used to contain the translator output. Usually this is
a temporary data set. The data set can be sequential or a member of a PDS.

SYSTRIN DD statement
describes the translator input data set. This data set can have either fixed- or
variable-length records of any length. It can be blocked or unblocked and can be
sequential or a member of a PDS. The SYSTRIN DD statement is required.

SYSLIB DD statement
describes one or more standard header file data sets. These data sets must be
partitioned. They can have either fixed- or variable-length records of any length
and can be blocked or unblocked. However, all SYSLIB data sets must have the
same record format and record length, and the one with the largest block size
must be first. Usually, SYSLIB includes SASC.MACLIBC; if so, all other
partitioned data sets must match the SASC.MACLIBC record format and record
length (RECFM=FB, LRECL=80). The SYSLIB DD statement is required if any
standard header files are included in the primary input file.

SYSLIN
describes a file that is used for the compiled object code. It can be a sequential
data set or a PDS member. Its DCB should specify RECFM=FB and LRECL=80,
and the BLKSIZE value should be no greater than 3200. No SYSLIN statement
should be provided if you use the LCXXCA cataloged procedure.

SYSDBLIB
describes a file that contains debugging information for the compilation. This file
must be a PDS. Its DCB should specify RECFM=U and BLKSIZE=4080. A
SYSDBLIB DD statement is needed only if you use the translator debug option,
DBGOBJ, or use the AUTOINST option.

SYSARLIB
applies only to the LCXXA cataloged procedure. It describes an output AR370
archive. The compiled object code is stored in a member of the archive. Because

40 Translating and Compiling Your Program under 0S/390 Batch A Chapter 2

C++ programs use extended names, if you want to autocall your C++ functions,
you must store them in an AR370 archive, not in a PDS. For more information on
AR370 archives, refer to the SAS/C Compiler and Library User’s Guide.

In addition, the translator may require one or more DD statements describing
user-defined header files, as mentioned previously.

LCXXC cataloged procedure
In general, the LCXXC cataloged procedure is used as shown here:

//SAMPLE JOB jobcard information

//*

//STEP1 EXEC LCXXC,PARM.X='options’

//X.SYSLIN DD DISP=OLD,DSN=your.object.dataset
//X.SYSTRIN DD DISP=SHR,DSN=your.source.dataset
//X.ext DD DISP=SHR,DSN=your.headers.dataset

//

options are any translator, compiler, or, if the OMD option is used to run the OMD370
utility, OMD370 options. See “Option Summary” on page 68 for the options that are
available for use with the translator. You need only provide a SYSTRIN DD statement
to describe your source data set and a SYSLIN DD statement to describe your object
data set. The X.ext DD statement is optional and describes the PDS that the translator
searches for header files. Example Code 2.2 on page 40 illustrates using the LCXXC
cataloged procedure.

Example Code 2.2 Using the LCXXC Cataloged Procedure

//PROJECT1 JOB jobcard information

/1/*

//* Translator input: FRIEND.PROJ.CXX(MAIN1)
//* Translator options: NONE

//* Compiler options: RENT

//* Header Files: FRIEND.PROJ.H,
LEADER.SYSTEM.H

//* Object code: FRIEND.PROJ.OBJ(MAIN1)

//*

//MAINXC EXEC LCXXC,PARM.X='RENT’

//X.SYSLIN DD DISP=OLD,

// DSN=FRIEND.PROJ.OBJ(MAIN1)

//X.SYSTRIN DD DISP=SHR,

// DSN=FRIEND.PROJ.CXX(MAIN1)

//X.H DD DISP=SHR,DSN=FRIEND.PROJ.H

// DD DISP=SHR,DSN=LEADER.SYSTEM.H

//

LCXXCA cataloged procedure
In general, the LCXXCA cataloged procedure is used as shown here:

//SAMPLE JOB jobcard information

//*
// EXEC LCXXCA,MEMBER=AR-archive-member,
// PARM='options’

//X.SYSTRIN DD DISP=SHR,

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Translating and
Compiling Your Program under 0S/390 Batch M

// DSN=your.source.dataset
//A.SYSARLIB DD DISP=OLD,

// DSN=your.AR.dataset

//

Note that the MEMBER= parameter is required with this cataloged procedure.
AR-archive-member is the AR370 archive member in which you want the compiler
output stored. The options are any translator, compiler, or, if the OMD option is used
to run the OMD370 utility, OMD370 options. See “Option Summary” on page 68 for the
options that are available for use with the translator. You need only provide a
SYSTRIN DD statement to describe your source data set and a SYSARLIB DD
statement to describe your output AR370 archive. The X.ext DD statement is optional
and describes the PDS that the translator searches for header files. Note that you
never use a SYSLIN DD statement with the LCXXCA cataloged procedure. Example
Code 2.3 on page 41 illustrates using the LCXXCA cataloged procedure.

Example Code 2.3 Using the LCXXCA Cataloged Procedure

//PROJECT1 JOB jobcard information

//*

//* Translator input: FRIEND.PROJ.CXX(MAIN1)
//* Translator options: SNAME

//* Compiler options: RENT

//* AR370 archive/member: PROJECT.CXX.A(PARSER)
//*

// EXEC LCXXCA,MEMBER=PARSER,

// PARM='RENT, SNAME (PARSER) '
//X.SYSTRIN DD DISP=SHR,

// DSN=FRIEND.PROJ.CXX(MAIN1)
//A.SYSARLIB DD DISP=0OLD,DSN=PROJECT.CXX.A

//

Saving the output data set under 0S/390 batch

Under 0S/390 batch, the intermediate code produced by the translator is sent to the
DDname SYSTROUT, which by default is associated with a temporary file. You can
make the output file permanent by using the pponly or tronly options in combination
with altering the SYSTROUT DD statement. Here is a brief description of each of these

options:

pponly performs only the preprocessing step. The program is not translated
or compiled. The output data set contains C++ code.

tronly performs the preprocessing and translation steps. The program is

not compiled. The output data set contains C code.

To save the C code resulting from translation when compiling your program, change
SYSTROUT to refer to a permanent data set (no option is necessary). For detailed
information on the pponly and tronly options, refer to “Option Descriptions” on page
71.

Locating header files under 0S/390 hatch

When the filename is surrounded by angle brackets in an #include statement, the
translator searches for the header file in standard C and C++ header files supplied by
SAS Institute. The format of this form of the #include statement is:

42

Linking Your Program under 0S/390 Batch A Chapter 2

#include <member.ext>
The .ext part can be omitted. Here is an example of including a standard header file:

#include <new.h>

For this statement, the translator includes the file named ddn:SYSLIB(INEW). To
include a header file from your personal files (as opposed to header files from system
files), surround the filename with double quotes, as shown here:

#include "member.ext"

The translator assumes that the header file is member in a PDS described by the ext
DD statement. The .ext part can be omitted, in which case it defaults to .h. For
example, suppose you had the following #include statement in your program:

#include "project.h"

In this case, the translator attempts to include the member PROJECT from the data
set associated with the DDname H. If the file is not found, the translator searches the
system header files for the member.

Linking Your Program under 0S/390 Batch

All C++ programs must be preprocessed by the COOL object code preprocessor
because COOL automatically creates object code used during the initialization and
termination of static objects. In addition, COOL supports linking object files that
contain mixed case external names longer than eight characters, such as those created
by the compiler for source code generated by the translator. Such external names
cannot be handled by the linkage editor unless the object code has been preprocessed by
COOQL. This section describes the LCXXCL and LCXXL cataloged procedures.

DD statements used in linking

The cataloged procedures consist of various JCL statements, some of which are DD
statements. Sometimes you may want to override some of the DD statements in the
procedures. The following list describes the most commonly overridden DD statements
in the linking step. The descriptions include a brief overview of each statement’s
purpose and any pertinent DCB requirements for the data sets described by the DD
statement.

Note: These DD statements apply to not only the LCXXCL and LCXXL procedures
but to all cataloged procedures that link programs (LCXXCL, LCXXL, LCXXLG, and
LCXXCLG). a

SYSDBLIB
describes a file that contains debugging information for the compilation. This file
must be a PDS. Its DCB should specify RECFM=U and BLKSIZE=4080. A
SYSDBLIB DD statement is needed only if you use the debug option, DBGOBJ, or
use the AUTOINST option.

SYSLIB
defines an object code call library to COOL. If you want to use a single additional
call library, you should use the CALLLIB symbolic parameter, as described in the
SAS/C Compiler and Library User’s Guide. If you need several such libraries, you
should concatenate them after the standard libraries referenced by the cataloged
procedure.

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Linking Your
Program under 0S/390 Batch 43

SYSLDLIB
is an optional DD statement that defines any user or system autocall libraries
needed in load module form. Members in SYSLDLIB are left unresolved by COOL
and are resolved by the linkage editor.

SYSLMOD
defines the load module library and the member where the output of the linkage
editor is to be stored.

SYSIN
identifies the primary input to COOL. If you are using a procedure that runs the
translator and compiler as well as COOL, you should not define your own SYSIN
DD statement, as one is defined automatically by the procedure. If you are using
LCXXL or LCXX LG, you must specify SYSIN. The SYSIN data set can be a
sequential data set or a PDS member, and may contain object code, link-edit
control statements such as INCLUDE, or both.

SYSARLIB
identifies one or more input AR370 archives. Each AR370 archive contains C or
C++ routines to be linked into a load module by autocall. Because C++ programs
use extended names, if you want to autocall your C++ functions you must store
them in an AR370 archive, not in a PDS. For more information on AR370 archives,
refer to the SAS/C Compiler and Library User’s Guide.

If you want to concatenate your own AR370 archive to the C++ library archive, you can
do so. Here is an example of such a statement, which puts your AR370 archive
(PROJECT.CPLUS.A) after the library archive:

//LKED.SYSARLIB DD
// DD DSN=PROJECT.CPLUS.A,DISP=SHR

Alternatively, you can put your archive first:

//LKED.SYSARLIB DD DSN=PROJECT.CPLUS.A,
// DISP=SHR
// DD DSN=SASC.CXX.A,DISP=SHR

The SYSARLIB archives must have RECFM=U.
In addition, one or more DD statements describing user INCLUDE libraries or
AR370 archives may be required.

ENV and ALLRES parameters

The LCXXCL and LCXXL cataloged procedures, as well as the LCXXCLG and
LCXXLG cataloged procedures described in the next section, support the ENV
parameter and the ALLRES parameter.

The ENV parameter is used to select the program environment. The default is
ENV=STD, indicating that the module runs in a normal C environment.

The ALLRES parameter is used to specify whether the program uses the all-resident
library or the transient library. The default is ALLRES=NO.

In most cases, these parameters should be left to take their default values. Refer to
the SAS/C Compiler and Library User’s Guide for more information about these
parameters.

LCXXCL cataloged procedure

The LCXXCL cataloged procedure invokes the translator and compiler in one job
step, followed by COOL and the linkage editor in another step. As in the LCXX

44 Linking Your Program under 0S/390 Batch A Chapter 2

procedure, you can also optionally run the OMD370 utility. In general, the LCXXCL
cataloged procedure is used as shown in Example Code 2.4 on page 44.

Example Code 2.4 LCXXCL Cataloged Procedure

//SAMPLE JOB jobcard information

//*

//STEP1 EXEC LCXXCL,CALLLIB='your.object.lib’,
// PARM.X='C++-options’,

// PARM.LKED='COOL-options’

//X.SYSTRIN DD DISP=SHR,DSN=your.source.dataset
//X.ext DD DISP=SHR,DSN=your.headers.dataset
//LKED.SYSARLIB DD

// DD DISP=SHR,DSN=private.AR370.archive
//LKED.SYSLMOD DD DISP=0LD,

// DSN=your.load.module (member)
//LKED.SYSLDLIB DD DSN=your-autocall-load-1lib,
// DISP=SHR

//NAME DD DISP=SHR

// DD DSN=OTHER.NAME

By default, the LCXXCL cataloged procedure passes the LIST and MAP options to
the linkage editor. You can override this default by specifying different options via
PARM.LKED. You should provide a SYSTRIN DD statement to describe your source
data set and a SYSLMOD DD statement to describe your load module data set.
Example Code 2.5 on page 44 illustrates using the LCXXCL cataloged procedure.

Example Code 2.5 Using the LCXXCL Cataloged Procedure

//PROJECT1 JOB jobcard information

//*

//* Translator input: FRIEND.PROJ.CXX(MAIN1)
//* Translator options: NONE

//* Compiler options: RENT
//* Header files: FRIEND.PROJ.H,
//* LEADER.SYSTEM.H

//* Autocall object library: LEADER.SYSTEM.OBJ
//* Linkage Editor options: LIST,MAP,XREF,

//* AMODE=31, RMODE=ANY
//* AR370 archive: PROJECT.CPLUS.A
//* Load module: FRIEND.PROJ.LOAD (MAIN1)

//* Autocall load library: SYS1.ISPLOAD
//* (ISPF interface load module)

//*

//MAINXCL EXEC LCXXCL,

// PARM.X='RENT’,

// PARM.LKED=('LIST,MAP,XREF',

// ' AMODE=31, RMODE=ANY"),

// CALLLIB='LEADER.SYSTEM.OBJ’
//X.SYSTRIN DD DISP=SHR,

// DSN=FRIEND.PROJ.CXX(MAIN1)
//X.H DD DISP=SHR,DSN=FRIEND.PROJ.H
// DD DISP=SHR,DSN=LEADER.SYSTEM.H

//LKED.SYSARLIB DD
// DD DISP=SHR,DSN=PROJECT.CPLUS.A

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Linking Your
Program under 0S/390 Batch 45

//LKED.SYSLMOD DD DISP=OLD,

// DSN=FRIEND.PROJ.LOAD (MAIN1)
//LKED.SYSLDLIB DD DISP=SHR,DSN=SYS1.ISPLOAD
//

LCXXL cataloged procedure

The LCXXL cataloged procedure invokes COOL and the linkage editor to preprocess
and linkedit object code produced by another job. In general, the LCXXL cataloged
procedure is used as shown in Example Code 2.6 on page 45.

Example Code 2.6 LCXXL Cataloged Procedure

//SAMPLE JOB jobcard information

/1/*

//STEP1 EXEC LCXXL,

// CALLLIB='your.object.library’,
// PARM.LKED='options’
//LKED.SYSARLIB DD

// DD DISP=SHR,

// DSN=private.AR370.archive
//LKED.SYSLMOD DD DISP=OLD,

// DSN=your.load.module (member)
//LKED.SYSIN DD DISP=SHR,

// DSN=your.object.dataset
//LKED.libname DD DISP=SHR,

// DSN=your.object.library
//LKED.SYSLDLIB DD DSN=your-autocall-load-lib,
// DISP=SHR

//

By default, the LCXXL cataloged procedure passes the LIST and MAP options to the
linkage editor. You can override this default by specifying different options via
PARM.LKED. You should provide a SYSIN DD statement to describe your primary
input data set, and a SYSLMOD DD statement to describe your load module data set.
Example Code 2.7 on page 45 illustrates using the LCXXL cataloged procedure.

Example Code 2.7 Using the LCXXL Cataloged Procedure

//PROJECT1 JOB jobcard information

/1/*

//* Linkage Editor options: LIST,MAP,XREF,
/1% AMODE=31, RMODE=ANY
//* COOL primary input:

//* FRIEND.PROJ.OBJ(MAIN1)

//* COOL secondary input: LEADER.SUBS.OBJ
//* RAutocall object library:

//* LEADER.SYSTEM.OBJ

//* Load module: FRIEND.PROG.LOAD(MAIN1)
//* AR370 archive: PROJECT.CPLUS.A
//* Autocall load library: SYS1.ISPLOAD

//*

//MAINXL EXEC LCXXL,

// PARM.LKED=('LIST,MAP,XREF',

// ' AMODE=31, RMODE=ANY"'),

46

Running Your Program under 0S/390 Batch A Chapter 2

// CALLLIB='LEADER.SYSTEM.OBJ’
//LKED.SYSARLIB DD

// DD DISP=SHR,DSN=PROJECT.CPLUS.A
//LKED.SYSLMOD DD DISP=OLD,

// DSN=FRIEND.PROJ.LOAD (MAIN1)
//LKED.SYSIN DD DISP=SHR,

// DSN=FRIEND.PROJ.OBJ (MAIN1)
//LKED.SUBLIB DD DISP=SHR,

// DSN=LEADER.SUBS.OBJ
//LKED.SYSLDLIB DD DISP=SHR,DSN=SYS1l.ISPLOAD
//

Running Your Program under 0S/390 Batch

You can choose to use one of two cataloged procedures to run your program, as
described in this section. The LCXXCLG procedure translates, compiles, links, and runs
a program. The LCXXLG procedure simply links and runs a program.

DD statements used at run time

To run a C++ program, the DD statements described in the following list may be
required.

SYSTERM
describes the data set to which the cerr stream should be written. The usual
specification for this statement is SYSOUT=A. This DD statement is optional but
highly recommended. All library error messages are written to this file.

SYSPRINT
describes the data set to which the cout stream should be written. This DD
statement is optional.

SYSIN
describes the data set from which the cin stream is read. This DD statement is
optional.

Other DD statements may be needed if you want to run your program under the
SAS/C Debugger. Refer to the SAS/C Debugger User’s Guide and Reference for more
information. In addition, further DD statements may be required to define files opened
by your program.

Specify program arguments, library options, standard file redirections, and
environment variables via the PARM.GO parameter of the EXEC statement. If you
want to generate a dump, use a SYSUDUMP DD statement.

LCXXCLG cataloged procedure

The LCXXCLG cataloged procedure is identical to the LCXXCL cataloged procedure,
with the addition of a GO step to run the program. In general, the LCXXCLG cataloged
procedure is used as shown in Example Code 2.8 on page 46.

Example Code 2.8 LCXXCLG Cataloged Procedure

//SAMPLE JOB jobcard information

/1/*

//STEP1 EXEC LCXXCLG,

// CALLLIB='your.object.library’,

// PARM.X='C++-options’,

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A Running Your

//

//

//X.SYSTRIN

//

//X.ext

//
//LKED.SYSARLIB
//
//LKED.libname
//
//LKED.SYSLDLIB
//

//GO.DBGIN

//

//GO.SYSIN

//

//

PARM.LKED='COOL-options’,
PARM.GO='program-options’
DD DISP=SHR,
DSN=your.source.dataset

DD DISP=SHR,
DSN=your.headers.dataset
DD DD DISP=SHR,
DSN=private.AR370.archive
DD DISP=SHR,
DSN=your.object.library

DD DSN=your-autocall-load-1ib,

DISP=SHR

DD DISP=SHR,
DSN=your.debugger.input
DD DISP=SHR,
DSN=your.program.input

Program under 0S/390 Batch

47

Pass run-time options for your program such as program arguments, library options,
and standard file re-directions via the PARM.GO parameter. In addition to the DD

statements used with the LCXXCL cataloged procedure, you should provide a SYSIN
DD statement for the GO step to describe the cin input stream for your program, if

necessary. By default, the cout stream (SYSPRINT) and cerr stream (SYSTERM) are
specified as SYSOUT data sets. Example Code 2.9 on page 47 illustrates using the
LCXXCLG cataloged procedure.

Example Code 2.9 Using the LCXXCLG Cataloged Procedure

//PROJECT1 JOB
//*

//* Translator
//* Translator
//* Compiler op
//* Header file
//*

//* Autocall object library: LEADER.SYSTEM.OBJ

//* Linkage Edi
/1/*

//* AR370 archive:

//* Program arg

jobcard information
input: FRIEND.PROJ.CXX(MAINI1)
options: NONE
tions: NONE
S: FRIEND.PROJ.H,
LEADER.SYSTEM.H

tor options: LIST,MAP,XREF,

AMODE=31, RMODE=ANY

PROJECT.CPLUS.A
uments: =48k -z

//* Program input: MY .SAMPLE.INPUT(TEST1)
//*

/ /MAINXCLG EXEC LCXXCLG,

// CALLLIB='LEADER.SYSTEM.OBJ’

// PARM.LKED=('LIST,MAP,XREF',

// ' AMODE=31, RMODE=ANY"),

// PARM.GO='=48k -z’

//X.SYSTRIN D

// D
//X.H D
// D
//LKED.SYSARLIB

// D
//GO.SYSIN D
// D

D DISP=SHR,

SN=FRIEND.PROJ.CXX (MAIN1)

D DISP=SHR,DSN=FRIEND.PROJ.H

D DISP=SHR,DSN=LEADER.SYSTEM.H
DD

D DISP=SHR,DSN=PROJECT.CPLUS.A

D DISP=0OLD,

SN=MY . SAMPLE . INPUT (TEST1)

48 Running Your Program under 0S/390 Batch A Chapter 2

//

LCXXLG cataloged procedure

The LCXXLG cataloged procedure is identical to the LCXXL cataloged procedure
described earlier, with the addition of a GO step to run the linkedited program. In
general, the LCXXLG cataloged procedure is used as shown in Example Code 2.10 on
page 48.

Example Code 2.10 LCXXLG Cataloged Procedure

//SAMPLE JOB jobcard information

/1/*

//STEP1 EXEC LCXXLG,

// CALLLIB='your.object.library’,

// PARM.LKED='COOL-options’,

// PARM.GO='program-options’
//LKED.SYSIN DD DISP=SHR,

// DSN=your.object.dataset
//LKED.libname DD DISP=SHR,

// DSN=your.object.library
//LKED.SYSLDLIB DD DSN=your-autocall-load-lib,
// DISP=SHR

//LKED.SYSARLIB DD DD DISP=SHR,

// DSN=private.AR370.archive
//GO.DBGIN DD DISP=SHR,

// DSN=your.debugger.input
//GO.SYSIN DD DISP=SHR,

// DSN=your.program.input

//

Pass run-time options for your program such as program arguments, library options,
and standard file re-directions via the PARM.GO parameter. In addition to the DD
statements used with the LCXXL cataloged procedure, you should provide a SYSIN DD
statement for the GO step to describe the cin stream for your program, if necessary. By
default, the cout stream (SYSPRINT) and cerr stream (SYSTERM) are specified as
SYSOUT data sets. Example Code 2.11 on page 48 illustrates using the LCXXLG
cataloged procedure.

Example Code 2.11 Using the LCXXLG Cataloged Procedure

//PROJECT1 JOB jobcard information

//*

//* COOL autocall: LEADER.SYSTEM.OBJ
//* Linkage Editor options: LIST,MAP,XREF,
//* AMODE=31, RMODE=ANY
//* AR370 archive: PROJECT.CPLUS.A
//* Program arguments: =48k -z

//* Program input: MY.SAMPLE.INPUT(TEST1)
//*

//MAINLG EXEC LCXXLG,

// CALLLIB='LEADER.SYSTEM.OBJ',
// PARM.LKED=('LIST,MAP,XREF',
// ' AMODE=31, RMODE=ANY"),

// PARM.GO='=48k -z’

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /\ Cataloged
Procedure Listings 49

//LKED.SYSIN DD DISP=SHR,

// DSN=FRIEND.PROJ.OBJ (MAIN1)
//LKED.SYSARLIB DD DISP=SHR,

// DSN=PROJECT.CPLUS.A
//GO.SYSIN DD DISP=0LD,

// DSN=MY.SAMPLE.INPUT (TEST1)
//

Cataloged Procedure Listings

This section lists the JCL for the six cataloged procedures available for the
translator. Use this section for reference to determine the proper order of DD
statements when you are writing overriding JCL. The procedures are listed in the
following order: LCXXC, LCXXCA, LCXXCL, LCXXL, LCXXCLG, and LCXXLG.

JCL for the LCXXC cataloged procedure

This procedure translates and compiles your code.

//LCXXC PROC
//***
//* NAME: LCXXC

//* SUPPORT: C COMPILER DIVISION

//* PRODUCT: SAS/C C++ DEVELOPMENT SYSTEM

//* PROCEDURE: TRANSLATE AND COMPILE

//* DOCUMENTATION: SAS/C C++ DEVELOPMENT

//* SYSTEM USER’S GUIDE

//* FROM: SAS INSTITUTE INC., SAS CAMPUS DR.,
//* CARY, NC 27513
//***
//*

//X EXEC PGM=LC370CX

//STEPLIB DD DSN=SASC.LOAD,

// DISP=SHR TRANSLATOR LIBRARY

// DD DSN=SASC.LINKLIB,

// DISP=SHR RUNTIME LIBRARY

//SYSTERM DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSTROUT DD DSN=&&TROUT,

// SPACE=(6160,(10,10)),

// DISP=(NEW,PASS),UNIT=SYSDA
//SYSIN DD DSN=*.SYSTROUT,

// VOL=REF=*.SYSTROUT,

// DISP=(OLD,PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (10,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK, (10,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (10,10))
//SYSTRDB DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&&OBJECT,

// SPACE=(3200,(10,10)),

// DISP=(MOD,PASS),UNIT=SYSDA,

// DCB=(RECFM=FB, LRECL=80)

//SYSLIB DD DSN=SASC.MACLIBC,

// DISP=SHR C++ AND C STANDARD HEADERS

//SYSDBLIB DD DSN=&&DBGLIB,

50 Cataloged Procedure Listings A Chapter 2

// SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,

// SPACE=(TRK,25) VSl ONLY
//SYSTMP02 DD UNIT=SYSDA,

// SPACE=(TRK,25) VSl ONLY

JCL for LCXXCA cataloged procedure

This procedure translates and compiles your code and stores the compiler output
(object code) in an AR370 archive.

//LCXXCA PROC MEMBER=DO.NOT.OMIT
//***
//* NAME: LCXXCA

//* SUPPORT: C COMPILER DIVISION

//* PRODUCT: SAS/C C++ DEVELOPMENT SYSTEM

//* PROCEDURE: TRANSLATE AND COMPILE

//* DOCUMENTATION: SAS/C C++ DEVELOPMENT

//* SYSTEM USER’S GUIDE

//* FROM: SAS INSTITUTE INC., SAS CAMPUS DR.,
//* CARY, NC 27513
//***
//*

//X EXEC PGM=LC370CX

//STEPLIB DD DSN=SASC.LOAD,

// DISP=SHR TRANSLATOR LIBRARY

// DD DSN=SASC.LINKLIB,

// DISP=SHR RUNTIME LIBRARY

//SYSTERM DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSTROUT DD DSN=&&TROUT,

// SPACE=(6160,(10,10)),

// DISP=(NEW,PASS),UNIT=SYSDA
//SYSIN DD DSN=#*.SYSTROUT,

// VOL=REF=*.SYSTROUT,

// DISP=(OLD,PASS)

//8YSUT1 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSUT2 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSUT3 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSTRDB DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSLIN DD DSN=&&OBJECT (&MEMBER),
// SPACE=(3200,(10,10,1)),

// DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB, LRECL=80,DSORG=PO)
//SYSLIB DD DSN=SASC.MACLIBC,

// DISP=SHR C++ AND C STANDARD HEADERS
//SYSDBLIB DD DSN=&&DBGLIB,

// SPACE=(4080,(20,20,1)),

// DISP=(,PASS),

// UNIT=SYSDA,

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /\ Cataloged
Procedure Listings 51

// DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,

// SPACE=(TRK,25) VSl ONLY
//SYSTMP02 DD UNIT=SYSDA,

// SPACE=(TRK,25) VSl ONLY
//A EXEC PGM=AR370#,PARM=R,
// COND=(4,LT, X)

//STEPLIB DD DSN=SASC.LOAD,

// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,

// DISP=SHR RUNTIME LIBRARY

//SYSTERM DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSARLIB DD DSN=&&AR,

// SPACE=(4080,(10,10)),

// DISP-(NEW,PASS),UNIT=SYSDA
//OBJECT DD DSN=*.C.SYSLIN,

// VOL=REF=*.C.SYSLIN,

// DISP=(OLD,PASS)

//SYSIN DD DSN=SASC.BASEOBJ (AREOBJ),
// DISP=SHR

JCL for the LCXXCL cataloged procedure

This procedure translates, compiles, and links your program.

//LCXXCL PROC ENV=STD,ALLRES=NO,

// CALLLIB='SASC.BASEOBJ’,
// MACLIB='SASC.MACLIBC’,
// SYSLIB='SASC.BASEOBJ',
// CXXLIB='SASC.LIBCXX.A’

//***
//* NAME: LCXXCL

//* SUPPORT: C COMPILER DIVISION

//* PRODUCT: SAS/C C++ DEVELOPMENT SYSTEM

//* PROCEDURE: TRANSLATE, COMPILE, COOL,

//* LINK EDIT

//* DOCUMENTATION: SAS/C C++ DEVELOPMENT

//* SYSTEM USER’S GUIDE

//* FROM: SAS INSTITUTE INC., SAS CAMPUS DR.,
//* CARY, NC 27513
//***
//*

//***

//* ENV=STD: MODULE RUNS IN THE NORMAL C

//* ENVIRONMENT

//* ENV=CICS: MODULE RUNS IN A

//* CICS C ENVIRONMENT

//* ENV=GOS: MODULE RUNS USING THE

//* GENERALIZED SYSTEM ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS

//* PROGRAMMING ENVIRONMENT
//***
//X EXEC PGM=LC370CX

//STEPLIB DD DSN=SASC.LINKLIB,

52 Cataloged Procedure Listings A Chapter 2

// DISP=SHR C RUNTIME LIBRARY
// DD DSN=SASC.LOAD,

// DISP=SHR TRANSLATOR LIBRARY
//SYSTERM DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTROUT DD DSN=&&TROUT,

// SPACE=(6160,(10,10)),

// DISP=(NEW,PASS),UNIT=SYSDA
//SYSIN DD DSN=*.SYSTROUT,

// VOL=REF=*.SYSTROUT,

// DISP=(OLD,PASS)

//SYSUT1 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSUT2 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSUT3 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSTRDB DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSLIN DD DSN=&&OBJECT,

// SPACE=(3200,(10,10)),

// DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB, LRECL=80)
//SYSLIB DD DSN=SASC.MACLIBC,

// DISP=SHR C++ AND C STANDARD HEADERS
//SYSDBLIB DD DSN=&&DBGLIB,

// SPACE=(4080,(20,20,1)),

// DISP=(,PASS), UNIT=SYSDA,
// DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP0O1 DD UNIT=SYSDA,

// SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,

// SPACE=(TRK,25) VS1 ONLY
//LKED EXEC PGM=COOLB,PARM='LIST,MAP’,
// REGION=1536K,COND=(8,LT,X)
//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY
// DD DSN=SASC.LOAD,

// DISP=SHR COMPILER LIBRARY
//SYSPRINT DD SYSOUT=A,

// DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=A

//SYSIN DD DSN=#*.X.SYSLIN,

// VOL=REF=*.X.SYSLIN,

// DISP=(OLD,PASS)

//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,
// SPACE=(3200,(20,20)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSLIB DD DDNAME=AR#&ALLRES

//* ARESOBJ OR STDOBJ OR SPEOBJ
// DD DSN=SASC.&ENV.OBJ,

// DISP=SHR STDOBJ OR SPEOBJ OR GOSOBJ
// DD DSN=&SYSLIB,DISP=SHR

/1%

COMMON RESIDENT LIBRARY

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /\ Cataloged
Procedure Listings 53

// DD DSN=&CALLLIB,DISP=SHR
//SYSDBLIB DD DSN=*.X.SYSDBLIB,DISP=0LD,
// VOL=REF=*.X.SYSDBLIB

//SYSARLIB DD DSN=&CXXLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,

// DCB=BLKSIZE=1024,

// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD (MAIN),

// DISP=(,PASS),UNIT=SYSDA,

// SPACE=(1024,(50,20,1))

/ /AR#NO DD DSN=SASC.&ENV.OBJ,DISP=SHR

//AR#YES DD DSN=SASC.ARESOBJ,DISP=SHR

JCL for the LCXXL cataloged procedure

This procedure links an already translated and compiled program.

//LCXXL PROC ENV=STD,ALLRES=NO,

// CALLLIB='SASC.BASEOBJ’,
// SYSLIB='SASC.BASEOBJ’
// CXXLIB='SASC.LIBCXX.A'

//***
//* NAME: LCXXL

//* SUPPORT: C COMPILER DIVISION

//* PRODUCT: SAS/C C++ DEVELOPMENT SYSTEM

//* PROCEDURE: COOL, LINK EDIT

//* DOCUMENTATION: SAS/C C++ DEVELOPMENT

//* SYSTEM USER’S GUIDE

//* FROM: SAS INSTITUTE INC., SAS CAMPUS DR.,
//* CARY, NC 27513
//***
//*

//***

//* ENV=STD: MODULE RUNS IN THE NORMAL C

//* ENVIRONMENT

//* ENV=CICS: MODULE RUNS IN A CICS

//* C ENVIRONMENT

//* ENV=GOS: MODULE RUNS IN THE GENERALIZED
//* OPERATING SYSTEM ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS

//* PROGRAMMING ENVIRONMENT
//***
//LKED EXEC PGM=COOLB,PARM='LIST,MAP’,
// REGION=1536K

//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY

// DD DSN=SASC.LOAD,

// DISP=SHR COMPILER LIBRARY
//SYSPRINT DD SYSOUT=A,

// DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210)

//SYSTERM DD SYSOUT=A

//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,

// SPACE=(3200,(20,20)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSLIB DD DDNAME=AR#&ALLRES

54 Cataloged Procedure Listings A Chapter 2

//* ARESOBJ OR STDOBJ OR SPEOBJ

// DD DSN=SASC.&ENV.OBJ,

// DISP=SHR STDOBJ OR SPEOBJ OR GOSOBJ
// DD DSN=&SYSLIB,DISP=SHR

//* COMMON RESIDENT LIBRARY

// DD DSN=&CALLLIB,DISP=SHR
//SYSDBLIB DD DSN=&&DBGLIB,

// SPACE=(4080,(20,20,1)),

// DISP=(,PASS),UNIT=SYSDA,

// DCB=(RECFM=U,BLKSIZE=4080)

//SYSARLIB DD DSN=&CXXLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,

// DCB=BLKSIZE=1024,

// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD (MAIN),

// DISP=(,PASS),UNIT=SYSDA,

// SPACE=(1024,(50,20,1))

/ /AR#NO DD DSN=SASC.&ENV.OBJ,DISP=SHR

//BAR#YES DD DSN=SASC.ARESOBJ,DISP=SHR

JCL for the LCXXCLG cataloged procedure

This procedure translates, compiles, links, and executes your program.

//LCXXCLG PROC ENV=STD,ALLRES=NO,

// CALLLIB='SASC.BASEOBJ’,
// MACLIB='SASC.MACLIBC’,
// SYSLIB='SASC.BASEOBJ',
// CXXLIB='SASC.LIBCXX.A’

//***
//* NAME: LCXXCLG

//* SUPPORT: C COMPILER DIVISION

//* PRODUCT: SAS/C C++ DEVELOPMENT SYSTEM

//* PROCEDURE: TRANSLATE, COMPILE, COOL,

//* LINK EDIT, GO

//* DOCUMENTATION: SAS/C C++ DEVELOPMENT

//* SYSTEM USER’S GUIDE

//* FROM: SAS INSTITUTE INC., SAS CAMPUS DR.,
//* CARY, NC 27513
//***
//*

//***

//* ENV=STD: MODULE RUNS IN THE NORMAL C

//* ENVIRONMENT

//* ENV=CICS: MODULE RUNS IN A CICS

//* C ENVIRONMENT

//* ENV=GOS: MODULE RUNS IN THE GENERALIZED
//* OPERATING SYSTEM ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS

//* PROGRAMMING ENVIRONMENT
//***
//X EXEC PGM=LC370CX

//STEPLIB DD DSN=SASC.LOAD,

// DISP=SHR TRANSLATOR LIBRARY

// DD DSN=SASC.LINKLIB,

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /\ Cataloged
Procedure Listings 55

// DISP=SHR C RUNTIME LIBRARY
//SYSTERM DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

//SYSTROUT DD DSN=&&TROUT,

// SPACE=(6160,(10,10)),

// DISP=(NEW,PASS),UNIT=SYSDA
//SYSIN DD DSN=*.SYSTROUT,

// VOL=REF=*.SYSTROUT,

// DISP=(OLD,PASS)

//SYSUT1 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSUT2 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSUT3 DD UNIT=SYSDA,

// SPACE=(TRK, (10,10))
//SYSLIN DD DSN=&&OBJECT,

// SPACE=(3200,(10,10)),

// DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB, LRECL=80)
//SYSLIB DD DSN=&MACLIB,

// DISP=SHR C++ AND C STANDARD HEADERS
//SYSDBLIB DD DSN=&&DBGLIB,

// SPACE=(4080,(20,20,1)),

// DISP=(,PASS),UNIT=SYSDA,
// DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP0O1 DD UNIT=SYSDA,

// SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,

// SPACE=(TRK,25) VS1 ONLY
//LKED EXEC PGM=COOLB,PARM='LIST,MAP’,
// REGION=1536K,COND=(8,LT,X)
//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY
// DD DSN=SASC.LOAD,

// DISP=SHR COMPILER LIBRARY

//SYSPRINT DD SYSOUT=A,

// DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=A

//SYSIN DD DSN=*.X.SYSLIN,

// VOL=REF=*.X.SYSLIN,DISP=(OLD,PASS)
//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,

// SPACE=(3200,(20,20)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSLIB DD DDNAME=AR#&ALLRES

//* ARESOBJ OR STDOBJ OR SPEOBJ
// DD DSN=SASC.&ENV.OBJ,

// DISP=SHR STDOBJ OR SPEOBJ OR GOSOBJ
// DD DSN=&SYSLIB,DISP=SHR

//* COMMON RESIDENT LIBRARY

// DD DSN=&CALLLIB,DISP=SHR
//SYSDBLIB DD DSN=*.X.SYSDBLIB,DISP=0LD,
// VOL=REF=*.X.SYSDBLIB

//SYSARLIB DD DSN=&CXXLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,

56 Cataloged Procedure Listings A Chapter 2

// DCB=BLKSIZE=1024,

// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD (MAIN),

// DISP=(,PASS),UNIT=SYSDA,

// SPACE=(1024,(50,20,1))

/ /AR#NO DD DSN=SASC.&ENV.OBJ,DISP=SHR
//AR#YES DD DSN=SASC.ARESOBJ,DISP=SHR
//GO EXEC PGM=*.LKED.SYSLMOD,

// COND=((8,LT,X), (4,LT,LKED))
//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C TRANSIENT LIBRARY

//SYSPRINT DD SYSOUT=A
//SYSTERM DD SYSOUT=A
//DBGTERM DD SYSOUT=A
/ /DBGLOG DD SYSOUT=A
//DBGLIB DD DSN=*.X.SYSDBLIB,

// DISP=(OLD,PASS),

// VOL=REF=*.X.SYSDBLIB
//SYSTMPDB DD UNIT=SYSDA,

// SPACE=(TRK,25) VSl ONLY

JCL for the LCXXLG cataloged procedure

This procedure links and executes an already translated and compiled program.

//LCXXLG PROC ENV=STD,ALLRES=NO,

// CALLLIB='SASC.BASEOBJ’,
// SYSLIB='SASC.BASEOBJ',
// CXXLIB='SASC.LIBCXX.A’

//***
//* NAME: LCXXLG

//* SUPPORT: C COMPILER DIVISION

//* PRODUCT: SAS/C C++ DEVELOPMENT

//* PROCEDURE: COOL, LINK EDIT, GO

//* DOCUMENTATION: SAS/C C++ DEVELOPMENT

//* SYSTEM USER’S GUIDE

//* FROM: SAS INSTITUTE INC., SAS CAMPUS DR.,
//* CARY, NC 27513
//***
//*

//***

//* ENV=STD: MODULE RUNS IN THE NORMAL C

//* ENVIRONMENT

//* ENV=CICS: MODULE RUNS IN A CICS

//* C ENVIRONMENT

//* ENV=GOS: MODULE RUNS IN THE GENERALIZED
//* OPERATING SYSTEM ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS

//* PROGRAMMING ENVIRONMENT
//***
//LKED EXEC PGM=COOLB,PARM='LIST,MAP’,
// REGION=1536K

//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY

// DD DSN=SASC.LOAD,

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /\ Translating C++
Programs under USS 57

// DISP=SHR COMPILER LIBRARY
//SYSPRINT DD SYSOUT=A,
// DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210)

//SYSTERM DD SYSOUT=A
//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,

// SPACE=(3200,(20,20)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSLIB DD DDNAME=AR#&ALLRES

//* ARESOBJ OR STDOBJ OR SPEOBJ

// DD DSN=SASC.&ENV.OBJ,

// DISP=SHR STDOBJ OR SPEOBJ OR GOSOBJ
// DD DSN=&SYSLIB,DISP=SHR

//* COMMON RESIDENT LIBRARY

// DD DSN=&CALLLIB,DISP=SHR
//SYSDBLIB DD DSN=&&DBGLIB,

// SPACE=(4080,(20,20,1)),

// DISP=(,PASS),UNIT=SYSDA,

// DCB=(RECFM=U,BLKSIZE=4080)

//SYSARLIB DD DSN=&CXXLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,

// DCB=BLKSIZE=1024,

// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD (MAIN),

// DISP=(,PASS),UNIT=SYSDA,

// SPACE=(1024,(50,20,1))

/ /AR#NO DD DSN=SASC.&ENV.OBJ,DISP=SHR
//AR#YES DD DSN=SASC.ARESOBJ,DISP=SHR
//GO EXEC PGM=*.LKED.SYSLMOD,

// COND=(4,LT,LKED)

//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C TRANSIENT LIBRARY

//SYSPRINT DD SYSOUT=A

//SYSTERM DD SYSOUT=A

//DBGTERM DD SYSOUT=A

/ /DBGLOG DD SYSOUT=A

//SYSTMPDB DD UNIT=SYSDA,

// SPACE=(TRK,25) VS1 ONLY

Translating C++ Programs under USS

The compiler drivers sascc370 and sascC370 control the translation, compilation,
and link-editing of C++ programs under USS. The following syntax is used to translate,
compile, and/or link a C++ program from the USS shell:

sascc370 [options] filenamel [filename2 ...]
sasCC370 [options] filenamel [filename2 ...]

The options argument is a list of SAS/C Compiler options, COOL prelinker options,
and/or OS/390 linkage editor options (for details, see the SAS/C Compiler and Library
User’s Guide). You can also specify the C++ translator options as described in “Option
Descriptions” on page 71.* It also lists the SAS/C Compiler options that are not valid

* C++ translator options are processed by the translator itself, not by the compiler.

58

COOL Control Statements A Chapter 2

for C++ compilations. The filename arguments may contain any combination of C++
source files, C source files, object modules, and ar370 archives. sascc370 invokes the
C++ translator if any input file has a .¢ or .cxx extension, or if you specify the -cxx
compiler option. sascc370 invokes the C++ translator if any input file has a .c, .c, or
.cxx extension.

If you do not suppress the prelinking step with the -c compiler option, both
sascec370 and sascc370 invoke the COOL prelinker followed by the linkage editor to
link the object files. The C++ library is automatically added to the prelinking step if
any C++ translations have occurred.

The input source files may reside either in the USS hierarchical file system (HFS) or
in a standard OS/390 partitioned data set. The following example illustrates the use of
an HFS file:

sasCC370 ./proj/sort.cxx

If this program was located in an 0S/390 PDS member named
YOURLOG.PROJ4.CXX(SORT), the compiler could be invoked from the USS shell as
follows:

sasCC370 ’//dsn:yourlog.proj4.cxx(sort)’

In either case, the compiled and linked output module is stored in the file a.out in
your current directory. To specify another file, use the -o option. For example, the
following command stores the output module in the file . /proj5/sort:

sasCC370 -o ./proj5/sort ./proj5/sort.cxx

To invoke the sasce370 or sasCC370 command, you must include the directory
where SAS/C was installed in your PATH environment variable. Typically, your site will
define PATH appropriately for you when you start up the shell. If your site does not
define PATH for you, contact your SAS Installation Representative for C compiler
products to obtain the correct directory name and add it to your PATH.

For additional information about compiling programs under the USS shell, see the
SAS/C Compiler and Library User’s Guide.

COOL Control Statements

COOL accepts four control statements: INCLUDE, INSERT, ARLIBRARY, and
GATHER. All COOL control statements must have a blank in the first column.

INCLUDE Statement

The INCLUDE control statement is used to specify one or more additional files to be
used as input to COOL. The INCLUDE statement has two formats. The first is

INCLUDE filename <, . . .>

Under TSO and OS/390 batch, filename is a DDname that has been allocated to a
sequential data set or PDS member. Under CMS, filename is the filename of a CMS
file. The filetype must be TEXT. The file can be on any accessed minidisk or in a SFS
directory accessed as a minidisk, or it can be in an SFS directory that has been named
in the _INCLUDE environment variable. (See the SAS/C Compiler and Library User’s
Guide for more information about the _INCLUDE environment variable.)

The second format of the INCLUDE statement is

INCLUDE libname (member<,member>)<, . . .>

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A ARLIBRARY
Statement 59

Under CMS, libname is the name of a TEXT library. The filetype must be TXTLIB.
The library can be on any accessed disk. member is the name of a member in the TEXT
library. Under TSO and OS/390 batch, libname is a DDname that has been allocated to
a PDS, and member is the name of a member in that PDS. The two formats can be
combined in the same statement. Here are several examples of the INCLUDE
statement:

INCLUDE MYPROJ
Under CMS, the file MYPROJ TEXT is used as input. Under TSO and 0S/390
batch, this statement causes the sequential data set allocated to the MYPROJ
DDname to be used as input.

INCLUDE PROJLIB(MAINPROG)
Under CMS, member MAINPROG of PROJLIB TXTLIB is used. Under TSO and
0S/390 batch, this statement causes member MAINPROG in the PDS allocated to
the PROJLIB DDname to be used as input.

INCLUDE PROJLIB(MAINPROG,SUBRTN)
Under CMS, both member SUBRTN and member MAINPROG of PROJLIB
TXTLIB are used. Under TSO and OS/390 batch, this statement causes member
SUBRTN in the PDS allocated to the PROJLIB DDname to be used as input, in
addition to member MAINPROG.

INCLUDE PROJLIB(MAINPROG),SUBRTN
Under CMS, member MAINPROG of PROJLIB TXTLIB and the file SUBRTN
TEXT are used as input. Under TSO and 0S/390 batch, this statement causes
member MAINPROG in the PDS allocated to the PROJLIB DDname to be used as
input. In addition, the sequential data set allocated to the SUBRTN DDname is
used.

An included object file can also contain an INCLUDE statement. The specified
modules are also included, but any data in the object file after the INCLUDE statement
is ignored.

INSERT Statement

The INSERT control statement is used to specify one or more external symbols that
are to be resolved, if necessary, via COOL’s autocall mechanism. The format of the
INSERT statement is

INSERT symbol-1<,symbol-2 . . .>

If a symbol specified in an INSERT statement is not resolved after all primary input
has been processed, COOL attempts to resolve it by using automatic library call.

ARLIBRARY Statement

The ARLIBRARY statement specifies the names of one or more AR370 archives to be
used to resolve external references by COOL. The format of the ARLIBRARY statement
is as follows:

ARLIBRARY name-1<,name-2 . . .>

Under TSO and OS/390 batch, name is the DDname that has been allocated to the
data set. Under CMS, name is the filename of the archive file. COOL uses A as the
filetype.

For more information on the AR370 utility, refer to the SAS/C Compiler and Library
User’s Guide.

60

GATHER Statement A Chapter 2

GATHER Statement

The last control statement accepted by COOL is the GATHER control statement. You
do not need to use any GATHER statements to link your C++ program; however, a
GATHER statement is generated automatically for you by COOL when C++ programs
are linked. This special statement causes COOL to create tables of functions that are
used to initialize and terminate static objects in your program. COOL prints the names
of the functions in these tables in its listing. Usually this information can be ignored,
although it may be useful for debugging.

The format of the GATHER statement is

GATHER prefix< prefix2 . . .>

where prefix is a one- to six-character symbol.

COOL Options

Table 2.2 on page 60 lists the options available for the COOL utility and the systems
to which these options apply. The majority of these options are documented in detail in
the SAS/C Compiler and Library User’s Guide. This table is primarily for reference
only. A select few of the COOL options (the ones most applicable to the C++
environment) are documented following the table.

Table 2.2 COOL Options

Option TSO CMS 0S/390 Batch

allowrecool X X X
allresident X X

arlib
auto
cics
cicsvse
CXX
dbglib
dupsname

enexit

T N B I N S T o

T T B

enexitdata
entry

enxref

T T B B SIS T o T I

extname
files

genmod X

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A GOOL Options 61

Option TSO CMS 0S/390 Batch

global
gmap
gos

ignorerecool

T T B B

inceof

T T B B

lib

libe

lineno

list

T T B

lked

lkedname

load

loadlib

T B

nocool
output
pagesize
prem
print
prmap
rtconst
smpjclin

smponly

T T B B

smpxivec

T B S S B T o T B

spe
start
term
upper
verbose
warn

xfnmkeep

o T T B B T o T T T o T - B B T - B S

o T T B B
o T T B B

xsymkeep

The following list describes the COOL options that are most applicable to the C++
environment.

62 COOL Options A Chapter 2

allowrecool
specifies that the output object deck can be reprocessed by COOL. Therefore, the
deck is not marked as already processed by COOL.

The default noallowrecool specifies that the output object cannot be
reprocessed by COOL. A later attempt to reprocess the deck with COOL will
produce an error.

The short form of this option is -rc.

Note: COOL does not modify the object deck to enable reprocessing. It is the
user’s responsibility to determine if a particular object is eligible for reprocessing. A

See SAS/C Compiler and Library User’s Guide for more information on this
option.

CXX

specifies that the LCXX CLIST or EXEC should add the C++ object library to the
autocall list. This option is valid under TSO and CMS.
The short form of this option is -cxx.

dbglib
specifies a debugger file qualifier that provides for customization of the destination
of the debugger file. For each platform, dbglib specifies something different:

On 0S/390:
A SAS/C file specification that denotes a PDS. The filename is constructed
using whatever is supplied, followed by (sname)

On CMS:
If the option specified starts with a ’/’, then it is assumed that this is either
a’//sf:’ file specification or an SFS path. In this case, the specification is
prepended to the filename. For example:

dbglib(//sf:/ted/)
will generate the name
//sf:/ted/sname.DB

If the option specified does not start with a ’/’, then it is considered to be a
filemode, and will be appended to the filename. For example:

dbglib(d2)
will generate the name
sname.db.d2

The option has different defaults on the various platforms:

On 0S/390:
dbglib(ddn:sysdblib)

On CMS:
dbglib(A)
For the various platforms, this default causes the filename to take different
forms:

On 0S/390:
ddn:sysdblib (sname)

On CMS:
sname .DB.A
The short form of this option is -db.

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A GOOL Options 63

enxref
controls the production of the cross-references that are produced by default when
COOQL produces object files that contain extended names. The default value is
noenxref.

If enxref is specified, COOL produces three cross-references that are generated
in a table that follows all other COOL output. These three cross-references are
SNAME, CID, and LINKID. SNAME is in alphabetical order by the SNAME that
uniquely identifies an object file. CID displays the extended names in alphabetical
order by C identifier. LINKID displays the extended names in alphabetical order
by a link ID that COOL assigns. When REFERENCES is specified, referenced
symbols as well as defined symbols are included in the cross-reference listing.
noenxref suppresses the production of all extended names cross-references.

Under TSO, the enxref option takes the following form:

enxref (’'cross-ref,cross-ref,cross-ref')

where cross-ref is SNAME, CID, or LINKID, or its negation. For example, the
following specification suppresses the SNAME cross-reference and enables the CID
cross-reference:

enxref ('nosname,cid’)
Under CMS, the enxref option takes the following form:

enxref <cross-ref> <cross-ref> <cross-ref>

where cross-ref is SNAME, CID, or LINKID, or its negation. For example, the
following specification suppresses the SNAME cross-reference and enables the CID
cross-reference:

enxref nosname cid

Under CMS, if you specify enxref with no arguments, all three listings are
produced.
Under OS/390 batch, the enxref option takes the following form:

enxref (cross-ref,cross-ref,cross-ref)

where cross-ref is SNAME, CID, or LINKID, or its negation. For example, the
following specification suppresses the SNAME cross-reference and enables the CID
cross-reference:

enxref (nosname,cid)

The short forms of this option are:

-XXX for enxref (cid)

-xxe for enxref (linkid)

-xXS for enxref (sname)

-XXy for enxref (references)
genmod

specifies that the COOL EXEC is to create a MODULE file named filename, using
the genmod options that are specified. The genmod option takes the following form:

genmod <filename <options>>

The genmod option must follow any use of any other option on the command
line. The genmod option causes the COOL EXEC to issue the following CMS
commands after COOL has created the COOL370 TEXT file:

64

COOL Options A Chapter 2

LOAD COOL370 (NOAUTO NOLIBE CLEAR
GENMOD filename

where filename is either the filename specified following the genmod keyword or
the first name specified in the COOL command. If no filenames are specified in the
command, the COOL EXEC issues an error message. The genmod option is valid
only under CMS.

ignorerecool
specifies that if any marks are detected indicating that COOL has already
processed an input object deck, then the marks are to be ignored. If the
ignorerecool option is specified along with the verbose option, then a diagnostic
message is issued and processing continues.

The default noignorerecool specifies that any marks indicating that COOL
has already processed an input object deck should result in an error message and
process termination.

The short form of this option is -ri.

See SAS/C Compiler and Library User’s Guide for more information on this
option.

1lib
specifies the data set name of an autocall object library containing functions that
are to be linked automatically into the program if referenced. The 1ib keyword
has the following form:

lib (dsname)

(Note that load module libraries cannot be used.) If the library belongs to
another user, the fully qualified name of the data set must be given, and the name
must be preceded and followed by three apostrophes. No final qualifier is assumed
for a 1ib data set. This option is valid only under TSO.

load
names the data set into which the linkage editor stores the output load module.
The load keyword has the following form:

load (dsname)

This keyword should specify a PDS member. If the data set belongs to another
user, the fully qualified name of the data set must be given and the name must be
preceded and followed by three apostrophes. If the data set name is not specified
within three apostrophes, it is assumed to be a data set name with a final qualifier
of LOAD. Additional information about the load option is available in the SAS/C
Compiler and Library User’s Guide. This option is valid only under TSO.

print
controls where COOL and linkage editor output listings should be printed. The
print keyword has two forms. The first form is as follows:

print(*)

This form of the print keyword indicates that the COOL and linkage editor
output listings should be printed at the terminal.
The other form of the print keyword is as follows:

print (dsname)

This form of the print keyword specifies that the COOL and linkage editor
listings should be stored in the named data set. This data set must be sequential;
a PDS member is not allowed. If the data set belongs to another user, the fully
qualified name of the data set must be given, and the name must be preceded and

Using the SAS/C C++ Development System under TSO, CMS, OS/390 Batch, and UNIX System Services /A GOOL Options 65

followed by three apostrophes. If the data set name is not specified within three

apostrophes, it is assumed to be a data set name with a final qualifier of

LINKLIST. noprint specifies that no linkage editor or COOL listing is to be

produced. If you use the noprint option with CLK370, COOL, and linkage editor

output, except for diagnostic messages, is suppressed. If neither print nor

noprint is used, the default is noprint. This option is valid only under TSO.
The short form of this option is -h.

term

specifies that COOL error messages be written to the standard error output file
(the terminal or the SYSTERM DD statement in OS/390 batch) as well as to
COOQOL’s standard output. noterm suppresses COOL’s error output.

Under TSO, term is the default if the print option is not used, or if the print
option specifies a data set. The default is noterm if print (*) is specified.

Under CMS and 0S/390 batch, the default is noterm.

The short form of this option is -t.

upper
produces all output messages in uppercase. This option is valid in TSO, CMS, and
0S/390 batch.

The short form of this option is -u.

warn
specifies that warning messages (which are associated with RC=4) are to be
issued. This is the default. nowarn suppresses warning messages. This option is
valid in TSO, CMS, and OS/390 batch.
The short form of this option is -w.

66 COOL Options A Chapter 2

67

CHAPTER

Translator Options

Introduction 67
Which Options to Use 67
Listing options 68
Options that Affect Warning and Error Messages 68
Option Summary 68
Option Descriptions 71

Introduction

The translator accepts a number of options that enable you to alter the behavior of
the translator. This chapter explains what options are available and how to specify
them in each environment (CMS, TSO, OS/390 batch, and the UNIX System Services
(USS) shell).

Remember that when you invoke the translator, first your C++ code is translated to C
and is then compiled by the SAS/C Compiler. You can specify options when you invoke
the translator. The syntax of specifying options in each of the supported environments
is covered in Chapter 2, “Using the SAS/C C++ Development System under TSO, CMS,
0S/390 Batch, and UNIX System Services,” on page 27. The translator inspects each of
the options you specify and decides if it needs to act on that option. The only options
that are acted upon by the translator are those with a T in the Affects column in Table
3.1 on page 68. Options without a T in this column are passed to the compiler at the
compilation step. These options affect the C code output by the compiler. Some options
are both acted upon by the translator and then also passed on to the compiler. These
options have both a T and a C in the Affects column in Table 3.1 on page 68.

Which Options to Use

The translator accepts any compiler option described in the SAS/C Compiler and
Library User’s Guide, except for the exx option, which is implied when you invoke the
translator. Table 3.1 on page 68 lists those options that are of special interest to C++
users, including the translator-specific options savec and tronly and those options
whose behavior is slightly different when used with the translator (such as pponly).

Note: If you invoke the translator using a SAS/C Compiler option that is not
documented in this book, you do not receive an error. However, some compiler options,
such as listing options, apply only to the C code generated by the translator, not to your
C++ code. Other compiler options are inappropriate for C++ and should not be used
when translating and compiling a C++ program. For example, because C++ requires the
presence of prototypes for all functions, the regproto option is inappropriate. As
another example, the japan option has no effect when used with C++. A

68 Options that Affect Warning and Error Messages A Chapter 3

Listing options

Beginning with Release 6.50, the translator generates a listing of the C++ source
code. By default, source listing, options listings, and so on are produced. That is, the
defaults for C++ are print, options, source, and noxref. You can use all of the
listing options accepted by the SAS/C Compiler with the translator.

You can combine listing options such as ilist and maclist with options that
prevent compilation such as tronly and pponly. Because the listing options are
completely documented in the SAS/C Compiler and Library User’s Guide, that
information is not repeated here.

Options that Affect Warning and Error Messages

The translator performs the majority of the diagnostic work. Therefore, any options
such as enforce and suppress that control how messages are generated apply to
messages generated by the translator, not the compiler.

Option Summary

Table 3.1 on page 68 summarizes all options accepted by the translator that are
appropriate to the C++ environment.

In Table 3.1 on page 68, the option name is in the first column. An asterisk after the
option name indicates that the option may function differently depending on the
environment in which it is used. The second column lists the default for each option.
The third column indicates how the option is specified from the USS shell. The next
column lists the environment(s) for which an option is implemented. If the option is
valid in TSO, CMS, and 0S/390 batch, this column indicates "all". The Affects
Processes column names the process that the option affects:

affects compilation.

affects global optimization.
affects listings.

affects message generation.

affects C++ translation.

X 22 00 Q

affects cross referencing.

Detailed information about each option follows the table. Note that under OS/390
batch, the USS shell, and CMS, if you specify contradictory options, the option specified
last is used. Under TSO, the options are concatenated and treated as a single invalid
option.

Table 3.1 Translator Options

Option Name Default USS Environment Affects Processes
ALias NOALias -Kalias all G
ARlib* see description TSO C
asciiout noasciiout -Kasciiout all C

Translator Options

A Option Summary 69

Option Name Default USS Environment Affects Processes
AT NOAT -Kat all T,C
AUtoinst NOAUtoinst -Kautoinst all T,C
BItfield 4 -Kbitfield=n all T.C
BYtealign NOBYtealign -Kbytealign all T,C
COMPlexity* 0 -Kcomplexity=n all G
DBGmacro NODBGmacro -Kdbgmacro all C
DBGObj NODBGObj -Kdbgobj all C
DEBug NODEBug -Kdebug[=filename] all T.C
DEFine* see description -D[sym=val] all T
DEPth 3 -Kdepth=n all G
DIgraph see description -Kdigraph[n] all T,C
DLines NODLines all T
DOllars NODOllars -Kdollars all T,C
ENforce* see description —w~n all M
Except -Noexcept -Kexcept all T
FIles* see description 0S/390 batch T,C
FReg 2 -Kfreg=n all G
GReg 6 -Kgreg=n all G
HList NOHList -Khlist all L
HXref NOHXref -Khxref all X
IList NOIList -Kilist all L
HMulti HMulti -Khmulti all T
IMulti IMulti -Kimulti all T
INDep NOINDep -Kindep all C
INLIne see description -Kinline all G
INLOcal NOINLOcal -Kinlocal all G
IXref NOIXref -Kixref all X
LIB* NOLIB TSO T,C
LINeno LINeno -Klineno all C
LOop LOop -Kloop all G
MAClist NOMAClist -Kmaclist all L
MEMber* see description TSO C
MENtion see description —win all M
see description -0 filename TSO, CMS C

OBject*

70 Option Summary A Chapter 3

Option Name Default USS Environment Affects Processes
OLDFORSCOPE NOOLDFORSCOPE -Koldforscope all T
OPTIMize see description -Koptimize all G
Overload NOOverload -Koverload all T
OVERStrike NOOVERStrike -Koverstrike all L, X
PAgesize PAgesize(55) -Kpagesize=nn all L, X
PFlocal NOPFlocal -Kpflocal all T,C
POsix see description -Kposix TSO, 0S/390 C
batch
PPOnly* NOPPOnly -P all T
PRINt see description -Klisting[=filename] all L, X
RDEpth Y -Krdepth=n all G
REDef NOREDef -Kredef all T
REFdef NOREFdef -Krefdef all C
RENT NORENT -Krent all T,C
RENTExt NORENTExt -Krentext all T,C
RTti RTti -Krtti all C
SAvec* NOSAvec all T
SIze NOSIze all G
SName * see description —-Ksname=sname all T,C
SOurce SOurce -Ksource all L
STRICt NOSTRICt -Kstrict all M
STRINgdup STRINgdup -Kstringdup all C
SUppress* see description —wn all M
TIme NOTIme all G
TMplfunc TMplfunc -Ktmplfunc all T
TRANsS TRANS -Ktrans all L, X
TRIgraphs NOTRIgraphs -Ktrigraphs all T
TRonly* see description all T
UNdef * NOUNdef -Kundef all T
UPper NOUPper -Kupper all L, X
Warn Warn -Kwarn all M
Xref NOXref -Kxref all X

Translator Options /A Option Descriptions A

Option Name Default USS Environment Affects Processes
ZAPMin* ZAPMin (24) -Kzapmin=n all C
ZAPSpace* 1 -Kzapspace=n all C

Option Descriptions

The following list gives detailed descriptions of the options listed in Table 3.1 on page
68.

alias (-Kalias under USS)
specifies that the global optimizer should assume worst-case aliasing. See the

optimize

option in the SAS/C Compiler and Library User’s Guide for details on this option.
This option can only be used in conjunction with the optimize option.

arlib
identifies an AR370 archive in which the generated object code is to be stored.
arlib is valid under TSO only and cannot be specified together with the object
option.
The arlib option is specified as follows:

arlib(dsname)

where dsname specifies the name of an AR370 archive. If the archive belongs to
another user, you must specify the fully qualified name of the data set, and the
name must be preceded and followed by three apostrophes, as in the following
example:

arlib(’’'master.object.a’’’)

The extra apostrophes are required by the CLIST language. If the data set
name is not enclosed within three apostrophes, it is assumed to be a data set with
a final qualifier of A.

You can use the member option to specify the archive member name in which the
object code is to be stored. If arlib is specified and member is not specified, the
default member name is the partitioned data set (PDS) member name of the
source file. If the source file is not a PDS member, you must supply a member
name if you use the arlib option.

asciiout (-Kasciiout under UNIX System Services)
requests ASCII translation of character and string literals. The default is
noasciiout, and the minimum abbreviation is as. When the asciiout option is
used, the compiler generates string literals and character literals using the ASCII
character set instead of the default EBCDIC character set. String literals are
translated from IBM Code Page 1047 and ISO 8559-1, the Latin-1 character set.

at (-Kat under USS)
allows the use of the call-by-reference operator @.

autoinst (-Kautoinst under USS)
controls automatic implicit instantiation on template functions and static data
members of template classes. The compiler organizes the output object module so
that COOL can arrange for only one copy of each template item to be included in
the final program. To correctly perform the instantiation, the autoinst option

12

Option Descriptions A Chapter 3

must be enabled on a compilation unit that contains both a use of the item and its
corresponding template definition.

Note: Automatic instantiation requires that the translation of the C++ code to
C code must occur as part of the same process that generates the object module.
Therefore, while the savec and the tronly options can be used with the autoinst
option, the resulting C code cannot be compiled with the C compiler to produce an
equivalent object module at a later time. A

In Release 6.50, the compiler allows for the generation of automatically
instantiated template functions, when the autoinst compiler option is specified.
When this option is specified, the compiler uses a “shelled object” format
containing the output of the primary compilation and all template functions
needed by that compilation. In this release, COOL has been modified to process
this new object format and the “shelled” template functions.

When a “shelled object” is encountered by COOL, the primary object deck is
processed, and any template function objects are processed if a template function
by the same name has not already been processed. This results in the inclusion of
the first template function found with a given name.

Note: “shelled objects” are specified in the same manner as any other object
deck. A

bitfield (-Kbitfield=n under USS)

enables you to specify the allocation unit to be used for plain int bitfields. (C++,
unlike C, supports bitfields that are not integers.)
The following allocation units are valid:

1 indicates the allocation unit is a char.
indicates the allocation unit is a short.

4 indicates the allocation unit is a long.
The default allocation unit is a long (4).
Under TSO and 0S/390 batch, the bitfield option is specified as follows:

bitfield(value)

For example, the following option specification indicates the allocation unit for
int bitfields is a short:

bitfield(2)
Under CMS, the bitfield option is specified as follows:
bitfield value

For example, the following option specification indicates the allocation unit for
int bitfields is a long:

bitfield 4

This option cannot be negated.

bytealign (-Kbytealign under USS)

aligns all data on byte boundaries. Most data items, including all those in
structures, are generated with only character alignment. Because formal
parameters are aligned according to normal IBM 370 conventions even when you

Translator Options /A Option Descriptions 73

specify the bytealign option, you can call functions compiled with byte alignment
from functions that are not compiled with byte alignment and vice versa.

You can attach the __noalignmem keyword to structure definitions to force the
structure to be byte-aligned. Use the __alignmem keyword to force structures to
be normally aligned even in modules compiled with the bytealign option.

If functions compiled with and without byte alignment are to share the same
structures, you must ensure that such structures have exactly the same layout.
The layout is not exactly the same if any structure element does not fall on its
usual boundary; for example, an int member’s offset from the start of the
structure is not divisible by 4. You can force such alignment by adding
unreferenced elements of appropriate length between elements as necessary. If a
shared structure does contain elements with unusual alignment, you must compile
all functions that reference the structure using byte alignment.

complexity (-Kcomplexity=n under USS)
specifies the maximum "complexity" the function can have and remain eligible for
default inlining. This option applies to functions that have not been defined using
the inline keyword from C++ or the __inline keyword from SAS/C and is used
only in conjunction with the optimize option. See the optimize option in the
SAS/C Compiler and Library User’s Guide for more details.

dbgmacro (-Kdbgmacro under USS)
specifies that definitions of C macro names should be saved in the debugger file.
Note that this substantially increases the size of the file.

dbgobj (-Kdbgobj under USS)
causes the compiler to place the debugging information in the object, instead of a
separate debugger file. Debugging of automatically instantiated compiled objects
will not work when the debugging information is not placed in the object.
If automatic instantiation is specified with the autoinst option, dbgobj is
enabled automatically.
By default, the dbgobj option is off. The short form for the option is -xc.

debug (-Kdebug[=filename] under USS)
allows the use of the SAS/C Debugger. Note that the debug option causes the
compiler to suppress all optimizations as well as store and fetch variables to or
from memory more often.

define (-D[sym=val] under USS)
defines a symbol to an (optional) value.

Under 0S/390 batch and CMS, you can use the define option more than once,
to define any number of symbols. If the same symbol is defined twice, only the last
value applies.

Under TSO, the define option can be used only once. If you specify this option
more than once, only the last specification is used. Also note that TSO uppercases
the text of the define option before it is passed to the translator.

Under TSO, the specification is the following:

define(symbol)
define(symbol=value)

Here is an example:

define (USERDATA)
define(TSO=1)

Under CMS, the specification is the following:

74 Option Descriptions A Chapter 3

define symbol
define symbol=value

Here are some examples:

define USERDATA
define CMS=1

Under 0S/390 batch, the define option is specified as follows:
define(symbol)
Here are some examples:

define (USERDATA)
define (MYSYM=ABC)

depth (-Kdepth=n under USS)
specifies the maximum depth of function calls to be inlined. This option is used
only with the optimize option. See the optimize option in the SAS/C Compiler
and Library User’s Guide for more information.
Specify depth as follows, where n is between 0 and 6, inclusive (the default is

3):

System Syntax
0S/390 batch depth (n)
TSO depth(n)
CMS depth n

digraph (-Kdigraph[n] under USS)
enables the translation of the International Standard Organization (ISO) digraphs
and the SAS/C digraph extensions.
Specify digraph as follows:

System Syntax
0S/390 Batch digraph(n)
TSO digraph(n)
CMS digraph n

where n is between 0 and 3, inclusive. Specify n as follows:

0 Turn off all digraph support.

1 Turn on New ISO digraph support.

2 Turn on SAS/C Bracket digraph support — ’(|” or’|)
3

Turn on all SAS/C digraphs. This alone does not activate the
new ISO digraphs.

The default options are

digraph(l) and digraph(2)

See “Special characters” on page 11 and “Alternate forms for operators and
tokens” on page 18 for more information.

Translator Options /A Option Descriptions 75

dlines
suppresses emission of #line directives in the preprocessed C++ source code. This
option has an effect only when the pponly option is in effect.

dollars (-Kdollars under USS)
allows the use of the $ character in identifiers, except as the first character.*

enforce (-w~n under USS)
treats one or more translator warning messages as error messages. Each warning
message is identified by an associated message number. Messages whose numbers
have been specified are treated as errors, and the translator return code is set to
12 instead of 4.
Under TSO, specify the enforce option as follows:

enforce (n)

where n is the message number you want to enforce. If more than one warning
message is to be enforced, specify each number in a comma-delimited list, enclosed
by quotes, as follows:

enforce(’'nl,n2,...")
Under CMS, use the following:

enforce n
enforce nl n2 ...

Under OS/390 batch, use the following:

enforce(n)
enforce(nl,n2,...)

Any number of warning messages can be specified. If both suppress and
enforce specify the same warning message number, the warning is enforced.

except
Enables code generation for exception handling in the C++ translator. This option
is not enabled by default because it can add additional overhead to the generated
code. If exception handling is required then it is recommended that all C++
compilation units be compiled with the -Kexcept option. Otherwise unpredictable
effects may occur if an exception is thrown.

files
replaces SYS in translator DDnames with the other prefix. This option is valid for
0S/390 batch only. The only DDname in which SYS cannot be replaced is
SYSTERM. The prefix can contain from one to three characters. For example, the
following specification causes the SYS prefix to be replaced by CXX:

files(cxx)

In this case, some of the DDname replacements are as follows:

Original Replacement

SYSTROUT CXXTROUT

* If you use the all-resident library and the resident .h header file with your C++ program, you must specify the
dollars option.

76 Option Descriptions A Chapter 3

freg (-Kfreg=n under USS)
specifies the maximum number of floating-point registers that the optimizer can
assign to register variables in a function. This option is used only with the
optimize option. See the optimize option in the SAS/C Compiler and Library
User’s Guide for additional details.
Specify freg as follows, where n is between 0 and 2, inclusive (the default is 2):

System Syntax
TSO freg(n)
CMS freg n

greg (-Kgreg=n under USS)
specifies the maximum number of registers that the optimizer can assign to
register variables in a function. This option is used only with the optimize option.
See the optimize option in the SAS/C Compiler and Library Guide for more
details.
Specify greg as follows, where n is between 0 and 6, inclusive (the default is 6):

System Syntax
TSO greg(n)
CMS greg n

hlist (-Khlist under USS)
includes standard header files in the formatted source listing. These files are
included using the following syntax:

#include <name.h>
or
#include <name>

hmulti (-Khmulti under USS)
allows reinclusion of a header file specified within angle brackets. hmulti is the
default. If nohmulti is used, then the translator does not reinclude a header file
specified within angle brackets.

hxref (-Khxref under USS)
prints references in standard header files in the cross reference listing. See hlist
for a description of header files.

ilist (-Kilist under USS)
includes user header files referenced by the #include statement in the formatted
source listing. The #include filename appears in the right margin of each line
taken from the #include file. See also hlist

imulti (-Kimulti under USS)
allows reinclusion of a header file specified within double quotes. imulti is the
default. If noimulti is used, then the translator does not reinclude a header file
specified within double quotes.

Translator Options /A Option Descriptions 77

indep (-Kindep under USS)
generates code that can be called before the C framework is initialized or code that
can be used for interlanguage communication. See the SAS/C Compiler and
Library User’s Guide for a detailed description of the use of this option.

inline (-Kinline under USS)
inlines small functions identified by complexity and those with the C++ inline
keyword or the SAS/C __inline keyword. This option is used only with the
optimize option. See the optimize option in the SAS/C Compiler and Library
User’s Guide for more details.

inlocal (-Kinlocal under USS)
inlines single-call static functions. This option is used only with the optimize
option. See the optimize option in the SAS/C Compiler and Library User’s Guide
for more information.

ixref (-Kixref under USS)
lists references in user #include files.

1lib
identifies a header file library and is valid under TSO only. The 1ib option is
specified as follows:

lib(dsname)

This option indicates the name of a library that contains header files, that is,
one containing members that are to be included using the #include <member.h>
(or <member>) form of the #include statement. If the library belongs to another
user, the fully qualified name of the data set must be used and the name must be
preceded and followed by three apostrophes (because of CLIST language
requirements). No final qualifier is assumed for a 1ib data set.

Using nolib indicates that no header file libraries are required other than the
standard library provided with the translator. nolib is the default.

lineno (-Klineno under USS)
allows identification of source lines in run-time messages. (When lineno is
specified, module size is increased because of the generation of line number and
offset tables.)

loop (-Kloop under USS)
specifies that the global optimizer should perform loop optimizations. See the
optimize option in the SAS/C Compiler and Library User’s Guide for more details
on this option. This option is used only with the optimize option.

maclist (-Kmaclist under USS)
prints macro expansions. Source code lines containing macros are printed before
macro expansion.

member
is used to specify the member of an AR370 archive in which the object code is to be
stored. member is valid under TSO only. The member option is specified as follows:

member (member-name)

where member-name is a valid OS/390 member name.

The member option is valid only if the arlib option is also specified. Otherwise,
member is ignored.

If arlib is specified and member is not specified, the default member name is
the PDS member name of the source file. If the source file is not a PDS member,
you must supply a member name if you use the arlib option.

78

Option Descriptions A Chapter 3

mention (-w+n under USS)
specifies that the translator warnings whose numbers are specified as n1, n2, and
so on are not to be suppressed. (See the suppress option as well.)
Under TSO, specify the mention option as follows:

mention(n)

where n is the number of the message associated with the warning condition. If
more than one warning condition is to be mentioned, specify the numbers in a
comma-delimited list, enclosed by quotes, as follows:

mention(’'nl,n2,...")
Under CMS, use the following:
mention n mention nl n2 ...

Under 0S/390 batch, use the following:

mention(n)
mention(nl,n2...)

Any number of warning conditions can be specified.

object (-o filename under USS)
outputs object code.
Under TSO, this option is specified as follows:

object (dsname)

where dsname names the data set in which the compiler stores the object code.
The data set name can be a PDS member. If the data set belongs to another user,
the fully qualified name of the data set must be specified and the name must be
preceded and followed by three apostrophes, as in the following example:

OBJECT (' ' YOURLOG.PROJ4.0BJ (PART1) ' ' ')

The extra apostrophes are required for the CLIST language. If the data set
name is not specified within three apostrophes, it is assumed to be a data set with
a final qualifier of OBJ.

Using noobject indicates that no object code is to be stored by the compilation.

When neither object nor noobject is specified under TSSO, the default depends
on how the source data set name is specified, as explained here:

o If the source data set name is specified in apostrophes, the default is
noobject.

0 Otherwise, the default is object. (The object data set name is determined by
replacing the final CXX in the source data set name with OBJ.)

Under TSO, if both noobject and omd are specified, object code is generated but
discarded after the OMD is run. See the SAS/C Compiler and Library User’s
Guide for a discussion of the omd option.

Under CMS, the default is object. By default, object code is generated in pass
two of the compiler. If you specify noobject, pass two is suppressed and object
code is not generated. Under CMS, if both noobject and omd are specified, neither
pass two nor the OMD is run.

oldforscope (-Koldforscope under USS)
specifies that the scope of a variable defined in the initialization clause of a for
statement will follow the old rules concerning scoping. The new ANSI scoping
rules specify that the scope of a variable defined in the for loop initialization
clause only includes the for statement and its associated loop body. Therefore, the
code in the following example would not work under the new scoping rules:

Translator Options /A Option Descriptions 79

for (int i=0; i < n; ++i)

if (£(1))
break;
if (1 <n) // the 'i’ declared in
// the ’'for’ loop
do_something(); // broke out of
//the loop...

For compatibility with the C++ Standard, the oldforscope option is disabled
by default.

optimize (-Koptimize under USS)
executes the global optimizer phase of the compiler. Optimizing is the default
unless you use the debug option. See the optimize option in the SAS/C Compiler
and Library User’s Guide for details on this option.

overload (-Koverload under USS)
turns on the recognition of the overload C++ keyword. If this option is on, the
translator recognizes the keyword syntax as documented (for example, in
Stroustrup’s The C++ Programming Language, Second Edition). The overload
keyword is obsolete in modern C++. The overload keyword is treated as a
reserved word only if the overload option is turned on; it is treated as an
identifier otherwise.

overstrike (-Koverstrike under USS)
prints special characters in the listing file as overstrikes. This option is useful, for
example, if you do not have a printer that can print the special characters left
brace, right brace, left bracket, right bracket, and tilde. See the SAS/C Compiler
and Library User’s Guide for more information on special characters.

pagesize (-Kpagesize=nn under USS)
defines the number of lines per page of source and cross reference listings.
pagesize is specified as follows:

System Syntax

0S/390 batch pagesize (nn)
TSO pagesize (nn)
CMS pagesize nn

nn lines per page of listing are printed at the location determined by the print
option. The default is 55 lines per page. (The default location is different for each
operating system and is described in the discussion of print.)

pflocal (-Kpflocal under USS)
assumes that all functions are __local unless __remote is explicitly specified in
the declaration. The default is nopflocal.

80

Option Descriptions A Chapter 3

posix (-Kposix under USS)

informs the compiler that the program is POSIX-oriented and that compile-time
and run-time defaults should be changed for maximum POSIX compatability. The
default is noposix under TSO, CMS, and OS/390 batch and ---Kposix under USS.
Specifically, the posix option has the following effects on compilation:
o The SAS/C feature test macro _SASC_POSIX SOURCE is automatically defined.
O The translator option refdef is assumed if norefdef is not also specified.
O The special POSIX symbols environ and tzname are automatically treated
as __rent unless declared as __norent.

Additionally, if any compilation in a program’s main load module is compiled
with the posix option, it will have the following effects on the execution of the
program:

0 The fopen function assumes at run-time that all filenames are HFS

filenames unless prefixed by"//".

0 The system function assumes at run-time that the command string is a shell

command unless prefixed by "//".

0 The tmpfile and tmpnam functions refer to HFS files in the /tmp directory.

Note that you should not use the posix translator option when compiling
functions that can be used by both POSIX and other applications that are not
POSIX.

Under USS and UNIX, use -Kposix.

For details about developing POSIX applications, see the SAS/C Compiler and
Library User’s Guide.

pponly (-P under USS)

creates a file containing preprocessed source code for this translation.
Preprocessed source code has all macros and #include files expanded. If the
pponly option is used, all syntax checking (except in preprocessor directives) is
suppressed, no listing file is produced, and no object code is generated. The
preprocessor used by the pponly option is the C++ preprocessor, not the C
preprocessor. These two preprocessors are identical, except that the C++
preprocessor accepts C++ style comments as well as C style comments.

Under TSO, use the following:

pponly (dsname)

where dsname indicates the name of a data set in which the preprocessed
source file is to be stored. If the library belongs to another user, the fully qualified
name of the data set must be used and the name must be preceded and followed
by three apostrophes because of the CLIST language requirements. No final
qualifier is assumed for a pponly data set.

Under CMS, use pponly. The output file is written to a file with the same
filename as the source file and a filetype of PP.

Under OS/390 batch, use pponly. The output file is written to the data set
allocated to the DDname SYSTROUT. Because the default SYSTROUT data set is
temporary, you should alter the SYSTROUT DD statement to refer to a permanent
file.

print (-Klisting[=filename] under USS)

produces a listing file.

Under OS/390 batch, the print option produces a listing file and sends it to
SYSPRINT. The listing file also includes error messages. If noprint is used, the
listing file is suppressed. Under OS/390 batch, the default is print.

In TSO, the print option is used with both the LCXX CLIST and the OMD370
CLIST to specify where the listing file is to be stored.

If you specify the following, the listing file is printed at the terminal:

Translator Options /A Option Descriptions 81

print (*)

If you use print (*), you do not need to use the term compiler option. If you
do, error messages are sent to the terminal twice.
The following stores the listing file in the named data set:

print (dsname)

This data set must be sequential; a partitioned data set member is not allowed. If

the data set belongs to another user, the fully qualified name of the data set must

be specified, and the name must be preceded and followed by three single quotes

because of the CLIST language requirements. If the data set name is not specified

within three quotes, it is assumed to be a data set with a final qualifier of LIST.
The following form specifies that no listing file is to be produced:

noprint

If you use noprint, the compiler ignores all other listing options, such as
pagesize and ilist. The xref option also is ignored.

If the source data set name is enclosed in single quotes, the default is noprint.
Otherwise, the default is print. The listing data set name is determined by
replacing the final CXX in the source data set name with LIST and ignoring any
member name specification.

You cannot specify noprint when you use the OMD370 CLIST.

If you do not specify print when you use the OMD370 CLIST, the default is
print (*) if the object data set name is enclosed by single quotes. Otherwise, the
listing data set name is determined by replacing the final OBJ qualifier in the
source data set name with LIST, and any member name specification is ignored.

Under CMS, print spools the listing file to disk. noprint suppresses the listing
file. noprint is an alternative to the print option. You can also give the print
option to the OMD370 EXEC.

Under USS, by default, no listing file is generated unless you specify the
-Klisting option. You can supply the name of the listing file by specifying
-Klisting=filename. If -Klisting is specified without a filename, the listing is
stored in an HFS file with a .1st extension. See the object option for a
description of this process.

rdepth (-Krdepth=n under USS)
defines the maximum level of recursion to be inlined (the default is 0). This option
is used only with the optimize option. See the optimize option in the SAS/C
Compiler and Library User’s Guide for more details. rdepth is specified as follows:

System Syntax
TSO rdepth(n)
CMS rdepth n

redef (-Kredef under USS)
allows redefinition and stacking of #define names.

refdef (-Krefdef under USS)
causes the compiler to generate code that forces the use of the strict ref/def model
for reentrant external variables. The default is norefdef, which specifies that the
compiler use the common model. Note that this option has meaning only when

82 Option Descriptions A Chapter 3

used in conjunction with the rent or rentext options. When norent is used, the
compiler always uses the strict ref/def model; this cannot be overridden by the user.

rent (-Krent under USS)
allows reentrant modification of static and external data. If you use the tronly
option (translate only) and use the rent option as well, be sure to specify the rent
option at compile time.

rentext (-Krentext under USS)
allows reentrant modification of external data. If you use the tronly option
(translate only) and use the rentext option as well, be sure to specify the rentext
option at compile time.

rtti (-Krtti under USS)
enables the generation of information required for RTTI on class objects that have
virtual functions. By default, this option is not enabled because it increases the
number and the size of the tables used to implement virtual function calls.
If your program uses the dynamic_cast or typeid operators, the rtti option
must be specified for each compilation unit to assure the class objects have the
information required for dynamic type identification.

savec
creates a file containing the C source code emitted by the translator for this
compilation. Translated source code has all macros and #include files expanded.
Unless you use the savec option, the translator output is stored in a temporary
data set and is discarded after compilation.
Under TSO, use the following:

savec (dsname)

where dsname indicates the name of a data set in which the translated source
file is to be stored. If the library belongs to another user, the fully qualified name
of the data set must be used, and the name must be preceded and followed by
three apostrophes because of the CLIST language requirements. No final qualifier
is assumed for a savec data set.

Under CMS, use

savec fileid

where fileid is any valid CMS filename. Under CMS, savec must be the last
option on the command line; the remainder of the command line is interpreted as
the fileid of the output file.

Under 0S/390 batch, you cannot use the savec option. The output file is, by
default, written to the data set allocated to the DDname SYSTROUT, which is
normally a temporary data set. To override the default SYSTROUT DD statement,
use your own DD statement, specifying a permanent file.

Note: If you compile the C source saved by the savec option with the SAS/C
Compiler, you must compile with the exx compiler option, which informs the
compiler that it is compiling C code resulting from C++ translation. A

slze
specifies that the global optimizer should favor optimizations that reduce the size
of the generated code. This option is used only with the optimize option. See the
optimize option in the SAS/C Compiler and Library User’s Guide for details on
this option.

sname (-Ksname=sname under USS)
defines the sname used by the translator and compiler. The name cannot be longer
than seven characters. If name is longer than seven characters, it is truncated.

Translator Options /A Option Descriptions 83

The name cannot contain any national characters and can contain a dollar sign ($)
only if you also specify the dollars option.

Each source file in a multisource file program should be translated using a
unique value for the sname option. CLINK detects duplicate snames and
terminates the link process. Usually, the default sname is sufficient to ensure
uniqueness. For more information on snames, see the SAS/C Compiler and Library
User’s Guide.

Under TSO and 0S/390 batch, the specification is as follows:

sname (name)

where name defines the sname and is unique to this source file. If you do not
use the sname option, the sname defaults to the member name of the source file if
it is a PDS member, or to NOSNAME otherwise.

Under CMS, the specification is as follows:

sname name

where name defines the sname and is unique to this source file. If you do not
use the sname option, the sname defaults to the filename of the source file.

source (-Ksource under USS)

outputs a formatted source listing of the program to the listing file. (The default
location of the listing file is different for each operating system and is described in
the discussion of print.)

nosource suppresses only the source listing; the cross reference listing is still
printed if requested with the xref option.

The source option has no effect on the OMD listing if an OMD listing is
requested. Whether source code is merged into the OMD listing is controlled by
the merge compiler option.

strict (-Kstrict under USS)
enables an extra set of warning messages for questionable or nonportable code.
For more information on error messages, see the SAS/C Software Diagnostic
Messages, Release 6.50manual.

stringdup (-Kstringdup under USS)
creates a single copy of identical string constants.

suppress (-wn under USS)
ignores one or more translator warning messages. Each warning message is
identified by an associated message number. Messages whose numbers have been
specified are suppressed. No message is generated, and the translator return code
is unchanged.
Under TSO, specify the suppress option as follows:

suppress(n)

where n is the number of the message associated with the warning condition. If
more than one warning message is to be suppressed, specify the numbers in a
comma-delimited list, enclosed by quotes, as follows:

suppress('nl,n2,...")
Under CMS, use the following:

suppress n
suppress nl n2 ..

Under 0S/390 batch, use the following:

84 Option Descriptions A Chapter 3

suppress(n)
suppress(nl,n2 ...)

Any number of warning messages can be specified. If both suppress and
enforce specify the same message number, the warning is enforced.

Note that suppress suppresses only translator messages, not messages
generated by the compiler.

time
specifies that the global optimizer should favor optimizations that reduce the
execution time of the generated code. This option is used only with the optimize
option. See the optimize option in the SAS/C Compiler and Library User’s Guide
for details on this option.

tmplfunc (-Ktmplfunc under USS)
Controls whether a nontemplate function declaration that has the same type as a
template specialization refers to the template specialization. When -Knotmplfunc
is specified, template specializations may also be referred to by nontemplate
declarations. -Knotmplfunc provides compatibility with older code. -Ktmplfunc is
the default for compatibility with the ISO C++ Standard.

trans (-Ktrans under USS)
translates special characters to their listing file representations. Default
representations for these characters are

Character Listing File Representation
left brace 0x8b

{
right brace 0x9b

}
left bracket Oxad

[
right bracket 0xbd

]
not sign (exclusive or) 0x5f
tilde Oxal

° (degree symbol)

backslash Oxbe

#*
vertical bar (exclusive or) Ox4f

I
pound sign 0x7b

#

exclamation point 0x5a

Translator Options /A Option Descriptions 85

If you specify notrans, all special characters are written out as they appear in the
source data.

trigraphs (-Ktrigraphs under USS)
enables translation of ANSI Standard trigraphs. See the SAS/C Compiler and
Library User’s Guide for more information on trigraphs.

tronly
creates a file containing the C source code that is the result of translating the C++
source for this compilation. Processing is terminated at this stage and does not go
on to compile the source. Translated source code has all macros and #include files
expanded. The normal syntax and semantic analysis of the C++ code is performed,
and warning or error messages are emitted as appropriate.
Under TSO, use the following:

tronly(dsname)

where dsname indicates the name of a data set in which the translated source
file is to be stored. If the library belongs to another user, the fully qualified name
of the data set must be used, and the name must be preceded and followed by
three apostrophes because of the CLIST language requirements. No final qualifier
is assumed for a tronly data set.

Under TSO, the tronly, pponly, and savec options are mutually exclusive.

Under CMS, use tronly. The output file is written to a file with the same
filename as the source file and a filetype of C.

Under OS/390 batch, use tronly. The output file is written to the data set
allocated to the DDname SYSTROUT. Because the default SYSTROUT data set is
temporary, you should alter the SYSTROUT DD statement to refer to a permanent
file.

Note: If you compile the C source saved by the tronly option with the SAS/C
Compiler, you must compile with the exx compiler option, which informs the
compiler it is compiling C code resulting from C++ translation. A

undef (-Kundef under USS)
undefines predefined macros. “Predefined constants” on page 15 describes the
predefined macros for TSO, CMS, and OS/390 batch.

upper (-Kupper under USS)
outputs all lowercase characters as uppercase in the listing file. upper implies
overstrike.

warn (-Kwarn under USS)
lists translation warning messages. nowarn suppresses warning messages.

xref (-Kxref under USS)
produces a cross reference listing.

zapmin (-Kzapmin=n under USS)
specifies the minimum size of the patch area, in bytes. Under TSO and 0S/390
batch, use the following:

zapmin(n)

where n refers to the number of bytes in the patch area. The default is 24 bytes.
Under CMS, use the following:

zapmin n

where n refers to the number of bytes in the patch area. The default is 24 bytes.

For more information about the patch area, see the SAS/C Compiler and
Library User’s Guide. For more information about using the zapmin option, see
the zapmin option in the SAS/C Compiler and Library User’s Guide.

86 Option Descriptions A Chapter 3

zapspace (-Kzapspace=n under USS)
changes the size of the patch area generated by the compiler.
Under 0S/390 batch or TSO, use the following:

zapspace(factor)
Under CMS, use the following:
zapspace factor

For more information about the patch area, see the SAS/C Compiler and
Library User’s Guide. For more information about using the zapspace option, see
the zapspace option in the SAS/C Compiler and Library User’s Guide.

CHAPTER

Standard Libraries

Introduction 88
Header Files 88
Header Files Supplied with the Standard Libraries 89
The <exception> Header File 89
The <new> Header File 92
The new.h Header File 95
The <typeinfo> Header File 95
typeinfo.h Header File 98
C Library Header Files 98
C++ Complex Library 99
Function Descriptions 99
complex() 100
abs, arg, conj, imag, norm, polar, real 100
exp, log, pow, sqrt 101
sin, cos, sinh, cosh 102
Complex Operators 104
operator << and operator >> 105
C++1/0 106
Insertion and Extraction 107
Get and put pointers 107
Streams 108
Streams provided by the library 108
Stream class hierarchy 109
Stream member functions 109
Creating streams 110
Opening files 111
Defining a strstream 111
Formatting 111
Manipulators 111
1/0 Status Handling 112
370 1/0 Considerations 112
Text and Binary Access 113
Filenames 113
0S/390 filenames 113
CMS filenames 114
Amparms 114
File Positioning 115
Other Differences between UNIX and 370 I/O 115
Compatibility Issues for C++ I/0 115
AT&T C++ Release 2 115
AT&T C++ Release 1 115

87

88 Introduction A Chapter 4

stream.h header file 116
Future Directions 117
1/0 Class Descriptions 117
Stream Class Descriptions 117
class bsamstream, ibsamstream, and obsamstream 118
class fstream, ifstream, and ofstream 126
class tos 129
enum formait_state 132
enum io_state 136
enum open_mode 137
enum seek_dir 138
class iostream 139
class istream 139
class ostream 145
class stdiostream 151
class streampos 152
class strstream, istrstream, and ostrstream 153
Buffer Class Descriptions 156
class bsambuf 157
class bsam_exit_list 165
class filebuf 168
class stdiobuf 11
class streambuf 173
class strstreambuf 176
Manipulator Descriptions 179
class IOMANIP 179

Introduction

Two libraries are provided with this release of the SAS/C C++ Development System:
the complex library and the streams library. The complex library provides for
manipulation of complex numbers, while the streams library provides for input, output,
and string formatting. This chapter first describes the fundamentals of using header
files with C++, after which the complex and streams libraries are described. A
discussion of the most basic aspects of C++ I/O and considerations for performing I/O on
IBM 370 machines is contained in “C++ I/O” on page 106. This chapter is primarily a
reference chapter. Appendix 2, “Header Files, Classes, and Functions,” on page 207
provides cross-reference to the material contained in this chapter.

Note: By including the header files provided by SAS/C, you can use all the SAS/C
library functions in your C++ program. The only exceptions are the setjmp and
longjmp functions. Using longjmp could cause destructors not to be called for
automatic objects, producing unpredictable results. A

Header Files

Most C++ programs need to access some of the classes and functions contained in the
libraries provided with the SAS/C C++ Development System. These classes and
functions are declared in header files. In addition, you can have header files of your
own. Chapter 2, “Using the SAS/C C++ Development System under TSO, CMS, 0S/390
Batch, and UNIX System Services,” on page 27 , describes how header files are stored

Standard Libraries /A The <exception> Header File 89

and named under your operating system. Here are some other tips to keep in mind
when you use header files in C++ programs:

0 always use the following form for standard files (those provided with the
translator or compiler):

< header-filename.h>
Use this form for your own header files:
"header-filename.h"

o always use the fully qualified filename for your own files.

Header Files Supplied with the Standard Libraries
The following header files are supplied with the standard libraries:

Table 4.1

bsamstr.h <cassert> <cctype>
<cerrno> <cfloat> <climits>
<clocale> <cmath> complex.h
<csetjmp> <csignal> <cstdarg>
<cstddef> <cstdio> <cstdlib>
<cstring> <ctime> <cwctype>
<exception> fstream.h iomanip.h
iostream.h <new> new.h
stream.h stdiostream.h strstream.h
<typeinfo> typeinfo.h

The contents of the bsamstr.h, complex.h, fstream.h, iomanip.h, iostream.h,
stdiostream.h, and strstream.h header files are described in “I/O Class
Descriptions” on page 117. The contents of stream.h are described in “stream.h header
file” on page 116.

The <exception> Header File

The <exception> header declares classes, functions, and types used for exception

handling in C++. The contents of <exception> are as follows:
std::set_unexpected, std::unexpected_handler, and std: :unexpected
Provides for unexpected exception handling.

SYNOPSIS

namespace std {
typedef void (*unexpected handler)();
unexpected handler set_unexpected(unexpected handler) throw();
void unexpected();

}

DESCRIPTION
These functions and types are part of the mechanism used to handle exceptions
that do not match the exception specification of a function that is being exited due
to exception unwinding.

90 The <exception> Header File A Chapter 4

std: :unexpected_handler
This is the type for a pointer to a handler function called when
std: :unexpected is invoked.

old handler = std::set_unexpected(new_handler);
This function sets the current unexpected exception handler and returns the
previous one. The new_handler pointer must not be NULL. The handler
function may not return but may throw an exception or end the program.

std: :unexpected
This function calls the current unexpected exception handler. This is
effectively called by the exception unwinding mechanism when the exception
being thrown does not match the exception specification for a function that is
being unwound. The default handler calls std: :terminate.

std::set_terminate,std::terminate_handler,and.std::terminate
Provides termination handling for exceptions.

SYNOPSIS

namespace std {
typedef void (*terminate handler)();
terminate_handler set_terminate(terminate_ handler new_handler) throw();
void terminate();

}

DESCRIPTION
These functions and types are part of the mechanism used to terminate the
program when normal exception handling fails.

std::terminate_handler
This type represents a handler function. A handler function is called when
std::terminate() is called. The handler function must end the program
without returning.

old_handler = std::set_terminate(new_handler);
This function sets a user-specified terminate handler that can be used to
perform cleanup before terminating program execution. The new handler
pointer must not be NULL. The old handler value is returned.

std::terminate();
This function calls the termination handler. This function is effectively called
by the C++ exception handler under various conditions when an exception
cannot be handled. These conditions include the following:

0 no handler is found for an exception

0 a destructor called by the exception unwinding mechanism exits by
throwing an exception

0 a rethrow is requested but there is no currently handled exception

O the evaluation of the initialization of a catch handler variable from the

exception object cannot be completed because a user function exits with
an exception.

std::uncaught_exception
Check for pending uncaught exceptions.

SYNOPSIS

namespace std {
bool uncaught_exception();

}

Standard Libraries /A The <exception> Header File 91

DESCRIPTION
This function can be called to determine if the stack is being unwound because of
an uncaught exception. During unwinding, throwing an exception may cause a
user function invoked by stack unwinding to exit via a throw. In such situations
std::terminate () will be called. This function can be called to determine if such
a situation might exist. Only the current coprocess is considered.

class std::exception
Base class for C++ run time and library exceptions.

SYNOPSIS

namespace std

{

class exception

{

public:
exception() throw();
exception(const exception&) throw();

exception& operator=(const exception&) throw();

virtual ~exception(); throw();
virtual const char* what() const throw();
Yi
}
DESCRIPTION

This is the base class used for exceptions thrown by the C++ library and run-time
support.

CONSTRUCTORS
This class has the standard public default and copy constructors.

DESTRUCTORS
The destructor is virtual and public.

ASSIGNMENT OPERATOR
The assignment operator is public. The object is unchanged.

VIRTUAL MEMBER FUNCTIONS

virtual const char* what() const throw();

This function returns a character string describing the exception type. Unless
overridden in a derived class this string is std: :exception or derived class.

STATIC MEMBER FUNCTIONS (SAS/C EXTENSION)

static void xtrace(_ remote void (*writer)(const char *line) = 0);

This function dumps traceback information saved from the point of the original
throw for the currently handled exception. If the function pointer is NULL, the
output is sent to stderr unless the SPE library is being used. See Appendix 6,
“Handling Exceptions in SAS/C,” on page 235 for more information.

static bool is_xtraced();
This function is used to determine if xtrace information has been output. It
returns true if the information for the currently handled exception was dumped
by =xtrace or an xtrace() call.

class std::bad_exception
Class for reporting unexpected exceptions.

92

The <new> Header File A Chapter 4

SYNOPSIS

namespace std

{

class bad_exception : public exception

{

public:
bad_exception() throw();
bad_exception(const bad_exception&) throw();

bad_exception& operator=(const bad exception&) throw();

virtual ~bad_exception(); throw();
virtual const char* what() const throw();
Yi
}
DESCRIPTION

This is the class of the object that is thrown by the C++ exception handling
mechanism when the exception thrown by an unexpected handler is not allowed by
the exception specification of the function being unwound. The object is used to
replace the current exception.

CONSTRUCTORS
This class has the standard public default and copy constructors.

DESTRUCTORS
The destructor is virtual and public.

ASSIGNMENT OPERATOR
The assignment operator is public. The object is unchanged.

VIRTUAL MEMBER FUNCTIONS
virtual const char* what() const throw();

This function returns a character string describing the exception type. Unless
overridden in a derived class, this string is as follows:

std::bad_exception
or

derived class

The <new> Header File

The <new> header declares the classes, functions, and types used for dynamic
memory allocation in the C++ library. The contents of <new> are as follows:

class std::bad_alloc

Class for reporting allocation errors.

SYNOPSIS

namespace std
{
class bad_alloc : public exception
{
public:
bad_alloc() throw();
bad_alloc(const bad_alloc&) throw();

Standard Libraries /A The <new> Header File 93

bad_alloc& operator=(const bad_alloc&) throw();

virtual ~bad_alloc(); throw();
virtual const char* what() const throw();
}i
}
DESCRIPTION

This class is declared by including <new> or <new.h>. It is used as an exception
type for memory allocation errors. The default new operators report memory
allocation failure by throwing an object of this class or a derived class.

CONSTRUCTORS
This class has the standard public default and copy constructors.

DESTRUCTORS
The destructor is virtual and public.

ASSIGNMENT OPERATOR
The assignment operator is public. The object is unchanged.

VIRTUAL MEMBER FUNCTIONS

virtual const char* what() const throw();
This function returns a character string describing the exception type. Unless
overridden in a derived class this string is std: :bad_alloc or derived
class.

std::nothrow_t and std::nothrow
SYNOPSIS

namespace std {
struct nothrow_t {};
extern const nothrow_t nothrow;

}
DESCRIPTION

std::nothrow_t
This is simply an empty class.

std: :nothrow
This is a library-supplied object that can be used as a placement operand in a
new-expression to select the non-throwing version of operator new or
operator new[], which are described below.

void* operator new(std::size_t size) throw(std::bad_alloc);
Allocates a block of dynamic memory of size bytes. If insufficient free
dynamic memory is available and a new-handler is currently defined, the
new-handler is called. If the new-handler returns, operator new tries again
to allocate memory, and the process repeats. The new-handler may also exit
via throwing an exception of type std: :bad_alloc or some class publicly
derived from it, in which case operator new exits with the exception. If
insufficient memory is available and there is no new-handler, operator new
exits by throwing an exception of type std::bad_alloc. This function is
user-replaceable. It should never return a NULL pointer.

void* operator new(std::size_t size, const std::nothrow_t&)

throw() ;
Allocates a block of dynamic memory of size bytes or returns NULL. If
insufficient free dynamic memory is available and a new-handler is currently

94

The <new> Header File A Chapter 4

defined, the new-handler is called. If the new-handler returns, then
operator new tries again to allocate memory, and the process repeats. The
new-handler may also exit via throwing an exception of type
std::bad_alloc or some class publicly derived from it, in which case
operator new returns a NULL pointer. If insufficient memory is available
and there is no new-handler, operator new returns NULL. This function is
user-replaceable. A pointer returned from this version of the operator is
required to be equivalent to a pointer obtained from the standard version.

void operator delete(void* ptr) throw(); void operator
delete(void* ptr, std::nothrow_t&) throw();
Frees the block of dynamic memory pointed to by ptr. These functions are
equivalent and should accept pointers from both the standard and
non-throwing versions of operator new as well as NULL pointers. Each
function is user-replaceable.

void* operator new[](std::size_t bytes)throw(std::bad_alloc);
void* operator new[](std::size_t bytes, const std::nothrow_t&
Ythrow();
These are user-replaceable array versions of the preceding operator new
declarations. The requirements on these functions are the same as the
corresponding non-array versions. The default library versions call the
corresponding non-array version.

void operator delete[](void* pointer)throw(); void operator
delete[] (void* pointer, const std::nothrow_t&)throw();
These are user-replaceable deletion operators corresponding to the preceding
operator new[] declarations. The requirements on these functions are the
same as the corresponding non-array delete operators. The default library
versions call the corresponding non-array version.

void* operator new(std::size_t size, void* location) throw();

void* operator new[](std::size_ t size, void* location) throw();
Does not allocate memory, but instead ignores the size argument and simply
returns the location argument as its result. This version of operator new is
used to construct objects at a specified location.

void operator delete(void* ptr, void* location) throw(); void
operator delete[] (void* ptr, void* location) throw();
Does nothing. These are the placement delete forms corresponding to the
preceding operator new and operator new|[].

std::new_handler and std::set_new_handler

SYNOPSIS

namespace std {
typedef void (*new_handler)();
new_handler set new_handler(new_handler);

}

DESCRIPTION

std::new_handler
This type describes a pointer to a handler function for
std::set_new_handler().

std::set_new_handler

Is used to designate a user-defined function (a new-handler) to handle
out-of-memory conditions detected by operator new. The new-handler is

Standard Libraries /A The <typeinfo> Header File 95

called if an operator new function cannot allocate any dynamic memory.
The new-handler function takes no arguments and returns void. The
new-handler should free some memory before returning to its caller or throw
an exception of type std::bad_alloc or a class derived from it; otherwise,
an endless loop could result. If it cannot free any memory, it should throw an
exception or terminate the program via exit, std::terminate, or abort.
Another alternative for the function is to remove itself as a new-handler by
calling std::set_new_handler with NULL or a pointer to some other
handler. std::set_new_handler returns the previous new-handler or NULL
if there was not a previous new-handler.

The new.h Header File

The <new.h> header file provides compatibility with older C++ code. It includes
<new> and makes the set_new_handler function visible in the global scope via a using
declaration.

The <typeinfo> Header File

The class, functions, and types declared in the header file are provided to identify and
compare types, and to specify run time error handling for Run Time Type Identification,
or RTTI. The classes std::type_info, std::bad_cast, std::bad_typeid, and
std::_non_rtti are declared in this header file. A description of the functions,
operators, and types found in these classes is included in this section.

See “Run-Time Type Identification Requirements” in “Appendix 4” in the SAS/C C++
Development System User’s Guidefor more information on rtti.

class std::type_info

Provides information on object types.

SYNOPSIS

namespace std {
class type_ info
{
public:
virtual ~type info();

bool operator==(const type_info& rhs) const;
bool operator!=(const type_info& rhs) const;

bool before(const type_info& rhs) const;

const char* name() const;
}i
}

DESCRIPTION
The RTTI operator typeid() returns a reference to a const object of this type.
Such objects are created by the C++ implementation to provide an identifier for
types. The class allows two std: :type_info objects to be compared for type
equivalence, or compared for order in an arbitrary collating sequence of types. It
also allows a printable description of the represented type to be retrieved.

CONSTRUCTORS
This class has no public constructors.

96 The <typeinfo> Header File A Chapter 4

DESTRUCTORS
The destructor is virtual, so the class is polymorphic itself.

NONVIRTUAL MEMBER FUNCTIONS

bool operator==(const type_info& rhs) const;
Returns true if the two type_info objects represent the same type, and
returns false otherwise.

bool operator!=(const type_ info& rhs) const;
Returns false if the two type_info objects represent the same type, and
returns true otherwise.

bool before(const type_info& rhs) const;
Returns true if the type represented by this object precedes the type
represented by rhs in an arbitrary collating sequence of types, and returns
false otherwise. This order is arbitrary and may change in different program
loads.

const char* name() const;
Returns a pointer to a character string containing a human readable
representation of the type represented by the type info object. The function
calls operator new to allocate working storage. The result is cached, so it
should not be deallocated by the user.

class std::bad_cast
Class for reporting dynamic_cast errors.

SYNOPSIS

namespace std

{

class bad cast : public exception

{

public:
bad_cast() throw();
bad_cast(const bad_casté&) throw();

bad_cast& operator=(const bad cast&) throw();

virtual ~bad_cast(); throw();
virtual const char* what() const throw();
Yi
}
DESCRIPTION

This class is used to report invalid dynamic_cast operations. It indicates a
dynamic_cast to a reference type when the object could not be cast to the
specified type.

CONSTRUCTORS
This class has the standard public default and copy constructors.

DESTRUCTORS
The destructor is virtual and public.

ASSIGNMENT OPERATOR
The assignment operator is public. The object is unchanged.

VIRTUAL MEMBER FUNCTIONS

virtual const char* what() const throw();
Returns a character string describing the exception type. Unless overridden
in a derived class, this string is std: :bad_cast or derived class.

Standard Libraries /A The <typeinfo> Header File 97

class std::bad_typeid
Class for reporting typeid operator errors.

SYNOPSIS

namespace std

{
class bad_typeid : public exception

{

public:
bad_typeid() throw();
bad typeid(const bad_typeids) throw();
bad typeid& operator=(const bad_ typeid&) throw();
virtual ~bad_typeid(); throw();
virtual const char* what() const throw();
Yi
}
DESCRIPTION

This class is used to report invalid uses of the typeid operator. It is thrown when
the typeid operator is applied to an lvalue expression of the form *p, where p is
an expression whose value is a NULL pointer.

CONSTRUCTORS
This class has the standard public default and copy constructors.

DESTRUCTORS
The destructor is virtual and public.

ASSIGNMENT OPERATOR
The assignment operator is public. The object is unchanged.

VIRTUAL MEMBER FUNCTIONS
virtual const char* what() const throw();

Returns a character string describing the exception type. Unless overridden in a
derived class, this string is std::bad_typeid or derived class.

class std::__non_rtti
Class for reporting missing RTTI type information.

SYNOPSIS

namespace std

{

class __non_rtti : public exception

{

public:
__non_rtti() throw();
__non_rtti(const _ _non rttis) throw();
__non_rtti& operator=(const __non rtti&) throw();
virtual ~_ _non_rtti(); throw();
virtual const char* what() const throw();

}i

}
DESCRIPTION

This class is a SAS/C extension. An exception with this type is generated when
dynamic_cast or typeid is applied to a object with polymorphic type constructed
in a compilation unit that was compiled without the RTTI option.

98

typeinfo.h Header File A Chapter 4

CONSTRUCTORS
This class has the standard public default and copy constructors.

DESTRUCTORS
The destructor is virtual and public.

ASSIGNMENT OPERATOR
The assignment operator is public. The object is unchanged.

VIRTUAL MEMBER FUNCTIONS
virtual const char* what() const throw();

Returns a character string describing the exception type. Unless overridden in a
derived class, this string is std::__non_rtti or derived class.

typeinfo.h Header File

The typeinfo.h header file is provided for compatibilty with older C++ code. It
includes the header and makes the class names type info, bad_cast, bad_typeid,
and __non_rtti available in the global scope as using declarations. It also makes the
names terminate_handler, set_terminate, and terminate available in the global
scope by using declarations.

C Library Header Files

The following header files have been created to provide access to standard C library
functions in accordance with the C++ Standard. Each of the following header files
provides access to the standard C functions, macros, and types defined by the C
Standard for the corresponding C header:

Table 4.2

<cassert> <cctype> <cerrno>
<cfloat> <climits> <clocale>
<cmath> <csetjmp> <csignal>
<cstdarg> <cstddef> <cstdio>
<cstdlib> <cstring> <ctime>
<cwctype>

In general, <cNAME> contains items corresponding to the <NAME.h> header. For
example, <cstdio> declares the items from the C header <stdio.h>. However, the
function and type names for these headers are placed in the std namespace.

As an extension, the header files <climits> and <cstdlib> include the long long
support items declared in the corresponding C headers. These declarations may be
hidden by defining the macro _sAsc_HIDE_LLLIB. Other nonstandard items, such as
those required for POSIX support, are not declared in these headers.

The standard C headers have also been updated to comply with the C++ Standard.
Each header <NAME.h> declares the items from the header. Then each function and
type name declared in the std namespace is also declared in the global scope via a
using declaration. Nonstandard items normally declared for C are also declared for
C++, but only in the global scope.

Standard Libraries /A Function Descriptions 99

Note: The C++ Standard changes the return type of strchr (), strrchr(),
memchr (), and strstr() to a const pointer when the first argument is a const
pointer. This can cause errors like LSCT544 with existing code. The errors can be fixed
by updating the use of the return value to expect the appropriate type. A

C++ Complex Library

The functions and operators pertaining to complex numbers are implemented by
means of class complex and are contained in the C++ complex number mathematics
library. The definition of class complex overloads the standard input, output,
arithmetic, comparison, and assignment operators of C++, as well as the standard
names of the exponential, logarithm, power, square root, and trigonometric functions
(sine, cosine, hyperbolic sine, and hyperbolic cosine). Functions for converting between
Cartesian and polar coordinates are also provided. This section describes the functions,
classes, and operators found in class complex . Declarations for these functions and
operators are contained in the header file complex.h . In the function descriptions, the
form (a,b) is used to represent a complex number. This is equivalent to the
mathematical expression a+bi .

Function Descriptions
The function descriptions for the complex library are organized as follows:

constructors and conversion operators
include constructors and conversion operators for complex variables.

cartesian and polar coordinate functions
include descriptions of abs () , arg() , conj() , imag(), norm() , polar() , and
real() .

exponential, logarithmic, power, and square root functions
include descriptions of exp() , log() , pow() , and sqgrt() .

trigonometric and hyperbolic functions
include descriptions of sin() , cos() , sinh() , and cosh() .

operators
include the operators available for the complex library (+, * , ==, and so on).

complex I/O functions
provide complex I/O, that is, the insertion and extraction operators << and >> .

Each set of function descriptions includes the following information:

O a synopsis of the functions

O a brief description of the purpose of the functions

O details about diagnostics, if appropriate

O any appropriate cautionary information.
In the following descriptions, specific diagnostic information is given for a function or
group of functions, where appropriate. However, more general diagnostic information is
not included in this book. Also, some of the complex library functions call SAS/C math
library functions. If you find you need more information on error handling for math
functions, or if you need more information about functions called by the complex library

functions, see the SAS/C Library Reference. If you want to use signal handlers to trap
overflows, see the SAS/C Library Reference, Volume 1 also.

100 Function Descriptions A Chapter 4

complex()
Constructors and Conversion Operators
SYNOPSIS

#include <complex.h>
class complex
{
public:
complex();
complex(double real, double imag = 0.0);

}i

DESCRIPTION
The following constructors are defined for class complex .

complex ()
enables you to declare complex variables without initializing them. File-scope
complex variables declared without an initializer have an initial value of
(0,0) ; other uninitialized complex variables have an undefined initial value.

complex(double real, double imag = 0.0)
allows explicit initialization of complex variables. For example, the following
two statements are valid:

complex cl1(1.0, 2.0);
// The imaginary part is 0.0.
complex c2(1.0);

This constructor also allows for implicit conversion from arithmetic types to
complex values. For example, the following two statements are valid:

complex c¢3 = 3.4; // c3 is (3.4, 0.0).
c3=10; // ¢3 is (10.0, 0.0).

Using this constructor, you can also create complex values within
expressions. Here is an example:

// Uses complex::operator +
c2 = c3 + complex(l.2, 3.5);

abs, arg, conj, imag, norm, polar, real
Cartesian and Polar Functions
SYNOPSIS

#include <complex.h>

class complex

{

public:
friend double abs(complex a);
friend double arg(complex a);
friend complex conj(complex a);
friend double imag(complex a);
friend double norm(complex a);
friend complex polar(double r,

double t);

friend double real(complex a);

Standard Libraries /A Function Descriptions

DESCRIPTION
The following functions are defined for class complex, where d , r , and t are of

type
d

double and a and z are of type complex .

= abs(a)
returns the absolute value (magnitude) of a .

= arg(a)

101

returns the angle of a (measured in radians) in the half-open interval (- to].

= conj(a)
returns the conjugation of a . If a is (x,y) , then conj (a) is (x,-y) .

= imag(a)
returns the imaginary part of a .

= norm(a)
returns the square of the magnitude of a .

= polar(r, t)

returns a complex . The arguments represent a pair of polar coordinates
where r is the magnitude and t is the angle (measured in radians).
polar(r,t) is defined by the formula r*e ™.

= real(a)
returns the real part of a .

exp, log, pow, sqrt

Exponential, Logarithmic, Power, and Square Root Functions

SYNOPSIS

#include <complex.h>

class complex

{

public:

}i

friend complex exp(complex a);
friend complex log(complex a);
friend complex pow(double a, complex b);
friend complex pow(complex a, int b);
friend complex pow(complex a, double b);
friend complex pow(complex a,

complex b);
friend complex sgrt(complex a);

DESCRIPTION

The following functions are overloaded by the C++ complex library, where z is of

type complex and a and b are of the types indicated by the function prototypes in
the SYNOPSIS.

z

z

z

= exp(a)
returns e .

= log(a)
returns the natural logarithm of a .

= pow(a, b)
returns a ’

102 Function Descriptions A Chapter 4

z = sqrt(a)
returns the square root of a that is contained in the first or fourth quadrant
of the complex plane.

DIAGNOSTICS
The exp() and log () functions have special diagnostic considerations.

exp () function

If overflow is caused by the real part of a being small or the imaginary part of a
being large, then exp(a) returns (0,0) and errno is set to ERANGE

If the real part of a is large enough to cause overflow, exp (a) returns different
values under the following conditions pertaining to the sine and cosine of the
imaginary part of a .

In Table 4.3 on page 102 , the real portion of a complex number a depends on
the cos(imag(a)) and the imaginary part depends on the sin(imag(a)). HUGE
corresponds to the largest representable double.

Table 4.3 Return Values for exp(a)

cos (imag(a)) sin(imag(a)) exp(a) returns
positive positive (HUGE, HUGE)
positive negative or 0 (HUGE, -HUGE)
negative or 0 positive (-HUGE, HUGE)
negative or 0 negative or 0 (-HUGE, -HUGE)

As you can see from this table, the translation is simple. If the cosine is positive,
exp (a) returns HUGE for the real portion of a ; if the cosine is negative, exp(a)
returns -HUGE for the real part. If the cosine is not positive, exp(a) returns
-HUGE for the real part. The same rules hold true for the sine and the imaginary
part of a . In all overflow cases, errno is set to ERANGE.

log () function
When a is (0,0), log(a) returns (-HUGE,O0) and errno is set to EDOM .

sin, cos, sinh, cosh
Trigonometric and Hyperbolic Functions
SYNOPSIS

#include <complex.h>

class complex

{

public:
friend complex sin(complex a);
friend complex cos(complex a);
friend complex sinh(complex a);
friend complex cosh(complex a);

}i

DESCRIPTION
The following functions are defined for class complex, where a and z are of type
complex .

z = sin(a)
returns the sine of a .

z = cos(a)

returns the cosine of a .

z = sinh(a)

returns the hyperbolic sine of a .

z = cosh(a)

returns the hyperbolic cosine of a .

DIAGNOSTICS

Standard Libraries /A Function Descriptions 103

sin(a) and cos(a) return (0,0) if the real part of a causes overflow. If the
imaginary part of a is large enough to cause overflow, sin(a) and cos(a) return
values as shown in Table 4.4 on page 103 and Table 4.5 on page 103 . HUGE

corresponds to the largest representable double .

Table 4.4 Return Values for cos(a)

cos(real(a))

sin(real(a))

cos (a) returns

positive or 0
positive or 0
negative

negative

positive or 0
negative
positive or 0

negative

Table 4.5 Return Values for sin(a)

sin(real(a))

cos(real(a))

(HUGE, -HUGE)
(HUGE, HUGE)

(-HUGE, -HUGE)
(-HUGE, HUGE)

sin(a) returns

positive or 0
positive or 0
negative

negative

positive or 0
negative
positive or 0

negative

(HUGE, HUGE)

(HUGE, -HUGE)
(-HUGE, HUGE)
(-HUGE, -HUGE)

sinh(a) and cosh(a) return (0,0) if the imaginary part of a causes overflow. If
the real part of a is large enough to cause overflow, sinh(a) and cosh(a) return

values according to Table 4.6 on page 103 .

Table 4.6 Return Values for cosh(a) and sinh(a)

cos (imag(a))

sin(imag(a))

cosh(a) and sinh(a) both
return

positive or 0
positive or 0
negative

negative

In all overflow cases, errno is set to ERANGE .

positive or 0
negative
positive or 0

negative

(HUGE, HUGE)

(HUGE, -HUGE)
(-HUGE, HUGE)
(-HUGE, -HUGE)

104

Function Descriptions A Chapter 4

Complex Operators
Operators for the C++ Complex Library

SYNOPSIS

#include <complex.h>

class complex

{
public:
friend

friend
friend

friend

friend

friend

friend

friend

complex

complex
complex

complex

complex

complex

int ope

int ope

void operator

void operator

void operator

void operator

void operator

+i

DESCRIPTION

operator +(complex

al
b);
a);
al
b);
al
b);
al
b);

a,

complex
operator -(complex
operator -(complex
complex
operator *(complex
complex
operator /(complex
complex
operator /(complex
double d);

rator ==(complex a,

complex b);

rator !=(complex a,

complex b);

+=(complex a);
-=(complex a);
*=(complex a);
/=(complex a);
/=(double d);

The usual arithmetic operators, comparison operators, and assignment operators

are overloaded for complex numbers. The usual precedence relations among these
operators are in effect. In the descriptions below, a and b are of type complex and
d is of type double .

Arithmetic operators

The following are the arithmetic operators.

a+b

is the arithmetic sum of a and b .

-a

is the arithmetic negation of a .

a->b

is the arithmetic difference of a and b .

a * b

is the arithmetic product of a and b .

a/b and a/d
are the arithmetic quotient of a and b or a and d .

Comparison operators
The following are the comparison operators.

a ==

is nonzero if a is equal to b ; it is zero otherwise.

Standard Libraries /A Function Descriptions 105

al=b
is nonzero if a is not equal to b ; it is zero otherwise.

Assignment operators
The following are the assignment operators.

a+=b
assigns to a the arithmetic sum of itself and b .

a-=>,
assigns to a the arithmetic difference of itself and b .

a *= b
assigns to a the arithmetic product of itself and b.

a/=banda /= d
assign to a the arithmetic quotient of themselves and b or d .

CAUTION
The assignment operators do not yield a value that can be used in an expression.
For example, the following construction is not valid:

complex a, b, c;
a= (b +=c¢c);

operator << and operator >>
\> operator">
Complex I/O Functions
SYNOPSIS

#include <complex.h>
class complex
{
public:
ostream& operator <<(ostream& os,
complex c);
istream& operator >>(istream& is,
complex& c);

}i

DEFINITION
The following functions provide insertion and extraction capabilities for complex
numbers.

ostream& operator << (ostream& os,

complex c)
writes a complex number ¢ to os . The output is formatted in the following
manner:

(real-part,imag-part)

where real-part and imag-part are the real and imaginary parts of the
complex number, respectively. Both real-part and imag-part are formatted as
doubles. For more information, refer to the descrip tion of the operator
<<(ostreams&, double) in “class ostream” on page 145 . The formatting of
real-part and imag-part is controlled by flags associated with the stream. See
“enum format_state” on page 132 .

106 C++1/0 A Chapter 4

istream& operator >>(istream& is,

complex& c)
reads a formatted complex number from is into ¢ . The istream should
contain the complex number to be read in one of these formats:

(real-part,imag-part)
(real-part)

where real-part and imag-part are the real and imaginary parts of the
complex number, respectively. Both real-part and imag-part should be
formatted as double s. For more information, refer to the description of the
operator >>(istream&, double&) in “class istream” on page 139. The
formatting of real-part and imag-part is controlled by flags associated with
the stream. See “enum format_state” on page 132 .

Remember the following when performing complex 1/O:

O you must use the parentheses and comma for input
O you can use white space in your input but it is not significant.

If your input variable represents a real number such as 5e-2 or (502), the >>
operator interprets it as a complex number with an imaginary part of 0.

DIAGNOSTICS
If the istream does not contain a properly formatted complex number, operator
>> gets the ios::failbit bit in the stream’s I/O state.

EXAMPLES
Here is an example of using operator <<:

complex c(3.4,2.1);
cout << "This is a complex: " << ¢ << endl;

This code writes the following string to cout :
This is a complex: (3.4,2.1)

Here is an example of using operator >> . Suppose cin contains (1.2, 3.4) .
Then the following code reads the value (1.2, 3.4) and the value of ¢ becomes
(1.2,3.4) .

complex c;
cin >> c¢;

C++ 1/0

The fundamental concepts of I/O in C++ are those of streams, insertion, and
extraction. An input stream is a source of characters; that is, it is an object from which
characters can be obtained (extracted). An output stream is a sink for characters; that
is, it is an object to which characters can be directed (inserted). (It is also possible to
have bidirectional streams, which can both produce and consume characters.) This
section explains the basics of performing C++ I/O. For more details, refer to your C++
programming manual.

This section covers the following components of C++ 1/O:

O insertion and extraction
O explanation of streams

o formatting I/O

Standard Libraries /\ Insertion and Extraction 107

O using manipulators in streams
o I/O status handling.

Insertion and Extraction

Insertion is the operation of sending characters to a stream, expressed by the
overloaded insertion operator <<. Thus, the following statement sends the character
"x' to the stream cout :

cout << ‘x’;

Extraction is the operation of taking characters from a stream, expressed by the
overloaded extraction operator >> . The following expression (where ch has type char
Jobtains a single character from the stream cin and stores it in ch .

cin >> ch;

Although streams produce or consume characters, insertion and extraction can be used
with other types of data. For instance, in the following statements, the characters "1 ,
r2’ ,and '3’ are inserted into the stream cout , after which characters are extracted

from cin , interpreted as an integer, and the result is assigned to i :

int 1 = 123;
cout << i;
cin >> 1i;

Insertion and extraction can be overloaded for user-defined types as well. Consider the
following code:

class fraction
{
int numer;
unsigned denom;
friend ostream& operator <<(ostream& os,
fraction& f)
{
return os << f.numer << ‘/’ << f.denom;
Yi
Yi

These statements define an insertion operator for a user-defined fraction class,
which can be used as conveniently and easily as insertion of characters or ints .

Get and put pointers

The definition of C++ stream I/O makes use of the concepts of the get pointer and the
put pointer. The get pointer for a stream indicates the position in the stream from
which characters are extracted. Similarly, the put pointer for a stream indicates the
position in the stream where characters are inserted. Use of the insertion or extraction
operator on a stream causes the appropriate pointer to move. Note that these are
abstract pointers, referencing positions in the abstract sequence of characters
associated with the stream, not C++ pointers addressing specific memory locations.

You can use member functions of the various stream classes to move the get or put
pointer without performing an extraction or insertion. For example, the
fstream: :seekoff () member function moves the get and put pointers for an fstream .

The exact behavior of the get and put pointers for a stream depends on the type of
stream. For example, for fstream objects, the get and put pointers are tied together.
That is, any operation that moves one always moves the other. For strstream objects,

108

Streams A Chapter 4

the pointers are independent. That is, either pointer can be moved without affecting the
other.

The get and put pointers reference positions between the characters of the stream,
not the characters themselves. For example, consider the following sequence of
characters as a stream, with the positions of the get and put pointers as marked in
Figure 4.1 on page 108 :

Figure 4.1 lllustration of Get and Put Pointers

v o,c a b ul a

| -

get put
pointer pointer

In this example, the next character extracted from the stream is ’c ’, and the next
character inserted into the stream replaces the 'r .

Streams

This section covers the basics of using streams, including explaining which streams
are provided by the streams library, how the different streams classes are related,
which member functions are available for use with streams, and how to create your own
streams.

Streams provided by the library
The streams library provides four different kinds of streams:

strstream
where characters are read and written to areas in memory.

fstream
where characters are read and written to external files.

stdiostream
where characters are read and written to external files using the C standard I/O
library.

bsamstream
where a bsambuf object is used for performing formatted file I/O.

stdiostream objects should be used in programs that use the C standard I/O package
as well as C++, to avoid interference between the two forms of I/O; on some
implementations, fstreams provide better performance than stdiostreams when
interaction with C I/O is not an issue.

Other types of streams can be defined by derivation from the base classes iostream
and streambuf . See “Stream class hierarchy” on page 109 for more information on the
relationships between these classes.

Every C++ program begins execution with four defined streams:

cin is a standard source of input. It reads input from the same place
that stdin would have.

cout is a stream to which program output can be written. It writes
output to the same place stdout would have.

Standard Libraries /A Streams 109

cerr is a stream to which program error output can be written. It writes
output to the same place stderr would have.

clog is another error stream that can be more highly buffered than cerr .
It also writes output to the same place stderr would have.

To use these streams, you must include the header file iostream.h .
Additional streams can be created by the program as necessary. For more in-
formation, see “Creating streams” on page 110 .

Stream class hierarchy

All the different stream classes are derived from two common base classes: ios and
streambuf . class ios is a base class for the classes istream (an input stream),
ostream (an output stream) and iostream (a bidirectional stream). You are more likely
to use these classes as base classes than to use class ios directly. The streambuf class
is a class that implements buffering for streams and controls the flushing of a full
output buffer or the refilling of an empty input buffer.

Four sets of stream classes are provided in the standard streams library: fstream,
strstream , stdiostream, and bsamstream. Corresponding to each of these stream
classes is a buffer class: filebuf , strstreambuf , stdiobuf , and bsambuf ,
implementing a form of buffering appropriate to each stream. Note that the stream
classes are not derived from the buffering classes; rather, a stream object has an
associated buffering object of the appropriate kind (for instance, an fstream object has
an associated filebuf), which can be accessed directly if necessary using the rdbuf ()
member function. Figure 4.2 on page 109 shows the inheritance relationships between
the various classes.

Figure 4.2 Relationship between Stream Classes

istream

ios

ostream

iostream

ibsamstream

‘ ifstream ‘ ‘ istrstream ‘

‘obsamstream‘ ‘ ofstream ‘ ‘ ostrstream

‘bsamstl‘eam‘ ‘ fstream ‘ ‘ strstream ‘ ‘stdiostream‘

streambuf

‘ bsambuf H filebuf HstrstreambufH stdiobuf

Stream member functions

In addition to providing the insertion and extraction operations, the stream classes
define a number of other member functions that can be more convenient than using
insertion and extra ction directly. All these functions are discussed in some detail in the

110 Streams A Chapter 4

class descriptions later in this chapter. The following list briefly describes a few of the
most useful member functions.

get () and getline()
allows extraction of characters from a stream until a delimiter (by default ’\n ’)is
encountered, possibly with a limit to the number of characters to be extracted.
The get () and getline() functions behave similarly, except that getline()
extracts the final delimiter and get () does not.

read()
extracts a fixed number of characters from a stream. read() is intended for use
with binary data, whereas get () and getline() are usually more appropriate
with text data.

putback ()
allows a character extracted from a stream to be "pushed back," so that it will be
extracted again the next time a character is required from the stream.

write()
inserts a number of characters into a stream. The null character is treated as any
other character and therefore this function is suitable for inserting binary data.

flush()
immediately transmits any buffered characters. For a stream associated with a
terminal file, this causes any buffered characters to be transmitted to the
terminal. For a nonterminal file, calling £lush () may not cause any characters to
be immediately written, depending on the characteristics of the file.

tie()
ties one stream to another stream, so that whenever the first file’s buffer is full or
needs to be refilled, the tied file’s buffer is flushed. The cin stream is automatically
tied to cout , which means that cout ’s buffer is flushed before characters are
extracted from cin . If, as is usually the case, cin and cout are both terminal
files, this assures that you see any buffered output messages before having to
enter a response. Similarly, the cerr stream is tied to cout , so that if an error
message is generated to cerr , any buffered output characters are written first.

seekg() and seekp()
are used to reposition a stream for input and output respectively.

Note: Positioning of files is very different on 370 systems than on many other
systems. See “370 I/O Considerations” on page 112 for some details. A

tellg() and tellp()
The member functions tellg() and tellp() are used to determine the read or
write position for a stream. As with the seeking functions, the results of these
functions are system-dependent. See “370 I/O Considerations” on page 112 for
details.

Creating streams

Streams are normally created by declaring them or by use of the new operator.
Creating an fstream or stdiostream entails opening the external file that is to be the
source or sink of characters. Creating a strstream entails specifying the area of
storage that will serve as the source or sink of characters. For fstream , a stream
constructor can be used to create a stream associated with a particular file, similar to
the way the fopen function is used in C. For instance, the following declaration creates
an output £stream object, dict , associated with the CMS file named DICT DATA:

ofstream dict("cms:dict data");

Standard Libraries /A Manipulators m

Opening files

When you create an fstream (or a stdiostream), you must usually provide a
filename and an open mode. The open mode specifies the way in which the file is to be
accessed. For an ifstream , the default open mode is ios::in , specifying input only;
for an ofstream , the default open mode is ios: :out , specifying output only. See “370
I/0 Considerations” on page 112 for information on additional arguments that can be
supplied and for additional information on the form of filenames.

If you declare an fstream without specifying any arguments, a default constructor is
called that creates an unopened fstream . An unopened stream can be opened by use of
the member function open (), which accepts the same arguments as the constructor.

Defining a strstream

When you create a strstream , you must usually provide an area of memory and a
length. Insertions to the stream store into the area of memory; extractions return
successive characters from the area. When the array is full, no more characters can be
inserted; when all characters have been extracted, the ios: :eof flag is set for the
stream. For an istrstream, the length argument to the constructor is optional; if you
omit it, the end of the storage area is determined by scanning for an end-of-string
delimiter (" \o).

For a strstream that permits output, you can create a dynamic stream by using a
constructor with no arguments. In this case, memory is allocated dynamically to hold
inserted characters. When all characters have been inserted, you can use the member
function str() to "freeze" the stream. This prevents further insertions into the stream
and returns the address of the area where previously inserted characters have been
stored.

Formatting

When a program inserts or extracts values other than single characters, such as
integers or floating-point data, a number of different formatting options are available.
For instance, some applications might want to have an inserted unsigned int
transmitted in decimal, while for other applications hexadecimal might be more
appropriate. A similar issue is whether white space should be skipped on input before
storing or interpreting characters from a stream. The member function setf () is
provided to allow program control of such options. For instance, the following
expression sets the default for the stream cout to hexadecimal, so that integral values
written to cout will ordinarily be transmitted in hexadecimal:

cout.setf(ios:hex, ios:basefield)
The streams library provides several similar functions:

width ()
sets the number of characters to display.

£ill()
defines the fill character when there are fewer characters to insert than the width.

precision()
sets the number of significant digits to write for floating-point values.

Manipulators

Use of the setf () , width() , and similar member functions is very convenient if the
same specifications are used for a large number of inserted items. If the formatting

112

1/0 Status Handling A Chapter 4

frequently changes, it is more convenient to use a manipulator. A manipulator is an
object that can be an operand to the << or >> operator, but which modifies the state of
the stream, rather than actually inserting or extracting any data. For instance, the
manipulators hex and dec can be used to request hexadecimal or decimal printing of
integral values. Thus, the following sequence can be used to write out the value of i in
decimal and the value of x[i] in hexadecimal:

cout << "i = " << dec << i << ",
X[1] = " << hex << x[i];

Other manipulators include the following:

ws skips white space on input.

flush flushes a stream’s buffer.

endl inserts a newline character and then flushes the stream’s buffer.
ends inserts an end-of-string character (*\0"’).

It is possible to create user-defined manipulators in addition to the standard
manipulators, but this is beyond the scope of this book. See “class IOMANIP” on page
179 for examples of user-defined manipulators, or refer to the C++ Programming
Language, Second Edition for a detailed discussion.

1/0 Status Handling

Associated with each stream is a set of flags indicating the I/O state of the stream.
For example, the flag ios::eofbit indicates that no more characters can be extracted
from a stream, and the flag ios::failbit indicates that some previous request failed.
The I/O state flags can be tested by member functions; for example, cin.eof () tests
whether more characters can be extracted from the standard input stream. The I/O
state flags can be individually manipulated by using the clear () member function; for
example, cout.clear (0) clears all the I/O state flags for the stream cout .

For convenience, the ! operator and the conversion to void* operator allow concise
testing of a stream for any error. These operators allow you to use statements such as
the following, which writes the results of the function nextline to the standard output
stream until an error occurs:

while(cout)
cout << nextline();

Because an insertion or extraction always produces its stream argument as its result,
this can be further abbreviated to the following statement:

while(cout << nextline());

This form makes it more obvious that the loop might not terminate at all. Note that
attempting to extract from a stream from which no more characters can be taken is
considered a failure. Thus, you can use a loop such as the following to extract and
process items from a stream until the stream is exhausted:

while(cin >> datum)
process (datum) ;

370 1/0 Considerations

Many C++ programs were developed under UNIX operating systems, which are
where the first C++ translators were available. Unfortunately, I/O is very different

Standard Libraries /A Filenames 113

under 0S/390 and CMS than under UNIX. This may require you to make some changes
to existing C++ applications to adapt to the mainframe environment. This section
discusses some of these issues. For a more detailed discussion of the differences
between 370 I/O and traditional UNIX I/O, and of portable I/O coding techniques, see
the SAS/C Library Reference, Volume 1.

Text and Binary Access

Under UNIX and some other operating systems, files are stored as sequences of
characters, and the newline character serves to separate one line from the next. Under
0S/390 and CMS, files are stored as sequences of records, separated by gaps (which do
not contain any characters). Files in such systems therefore support two forms of
access: text and binary. When a file is accessed in binary mode, only the characters are
accessed and information about lines or records is lost. When a file is accessed in text
mode, record gaps are treated as if they contained a newline character. That is, a
newline is inserted at the end of each record on input, and writing a newline on output
causes a record gap to be generated, but no physical character is written.

Text access is generally more suitable for programs that need to be aware of line
boundaries, while binary access is suitable for programs that must read or write data
exactly as specified. (For example, a program that writes an object deck must use
binary access, to keep newlines in the object deck from being translated to record gaps.)

When a stream is associated with an external file, the default access mode is text.
You can specify ios: :binary in the open mode if you need binary access, as in the
following statement:

ostream object("tso:fred.obj",
ios::out|ios::binary);

Filenames

Mainframe systems offer several unique ways of naming files, most of which bear
little resemblance to traditional MYFILE.TXT style filenames found under UNIX. The
general form of a file name is

style:name

where style is a code describing how the rest of the name is to be interpreted. The
style: portion of a filename can be omitted, in which case a default is assumed.

0S/390 filenames
Under 0S/390, the following filename styles are supported:

ddn:name
indicates the name portion is a DDname, associated with a batch JCL DD
statement or a TSO ALLOCATE command. This style is the default 0OS/390
filename style; that is, a filename of XYZ is assumed to refer to DDname XYZ.

dsn:name
indicates the name portion is a fully qualified data set name, for example,
dsn:SYS1.MACLIB(DCB).

tso:name
indicates the name portion is a data set name in TSO style. A fully qualified name
is generated from it by using the prefix name with the TSO userid. For instance,
opening tso:MY.DATA opens the file userid. MY.DATA, where userid is the userid of

114 Amparms A Chapter 4

the user running the program. tso : style names most closely resemble typical
filenames under UNIX systems.

CMS filenames
Under CMS, the following filename styles are supported:

cms:name
indicates the name portion is a CMS filename, composed of a filename, a filetype,
and an optional filemode, separated by blanks, for example, cms:PROFILE XEDIT.
As a convenience, periods can be used in place of blanks to separate the portions of
the filename, so that cms:PROFILE.XEDIT and cms:PROFILE XEDIT identify the
same file. This style is the default CMS filename style.

sf:fileid dirid
indicates the file is stored in the CMS Shared File System (SFS). The fileid
specifies the name of a file and dirid specifies a directory path in the CMS Shared
File System. For more information about this sort of filename, see the SAS/C
Compiler and Library User’s Guide.

ddn:name
indicates the name portion is a DDname, defined using the FILEDEF command.
This form of filename is useful mostly for compatibility with OS/390.

You can change the default style for your program by including a declaration for an
external char* variable named _style . For example, the following statement specifies
that by default all filenames are to be interpreted as tso: style names:

char *_style = "tso:";

Amparms

To successfully and efficiently use a file on IBM 370 systems, it is often necessary to
provide information about actual or desired file attributes in addition to the filename.
For example, when you create a new file under 0S/390, it may be necessary to specify
the file size and how large the records are to be. File attributes of this sort are specified
via amparms, which are keyword parameters defined by the SAS/C library. Amparms
can be specified as a third argument to an fstream constructor or open() member
function. For example, the following statements specify that the DDname SYSLIN
should define a file with fixed-length 80-byte records, grouped into blocks of 3,200
characters:

ostream objfile;
objfile.open("syslin", ios::out|ios::binary,
"recfm=f,reclen=80,blksize=3200");

The translator supports the same amparms as the SAS/C Compiler, as described in the
SAS/C Library Reference, Volume 1.

An additional optional argument to stream constructors and open () member
functions is an access method name. For instance, the following statement defines an
iostream processed by the "rel" access method.

iostream work("dsn:&wkfile",
ios::out|ios:binary,
"alcunit=cyl,space=5","rel");

See the SAS/C Library Reference, Volume 1 for a discussion of the meaning and
utility of specifying an access method.

Standard Libraries /A AT&T C++ Release 1 115

File Positioning

Under UNIX systems, it is generally possible to reposition any file to a particular
character, for example, the 10,000th character. Due to the inner workings of mainframe
I/0, this is generally not possible under OS/390 or CMS. One exception is for files
accessed for binary access, using the "rel" access method. These files can be freely
positioned to particular characters in a way compatible with UNIX systems.

The streams library defines two different types to deal with file positioning,
streampos and streamoff . The streampos type is used to hold file positions, while
streamoff is used to hold offsets of one point in a file from another.

In UNIX implementations of C++, both streampos and streamoff are integral types
and both may be used freely with any file. However, in the SAS/C implementation, only
streamoff is an integral type. Further, streamoff can only be used for files that
behave like UNIX files, namely, those opened for binary access using the "rel" access
method. streampos is a nonintegral type that encodes a file position in a
system-dependent manner. You can use the tellg() and tellp() member functions to
obtain a streampos for a particular point in the file, and you can use the seekg() and
seekp () functions to position to a point whose location has previously been determined.
Because no arithmetic or other operations are defined on streampos values, more
general positioning operations such as seeking 10,000 characters past a specific location
in the file are not supported.

Other Differences hetween UNIX and 370 1/0

370 I/O is not based on file descriptors. For this reason, member functions such as
fd() and attach() are not meaningful in the IBM 370 environment and are not
supported. Similarly, UNIX protection modes are not meaningful to OS/390 or CMS and
constructors or open() calls that specify a protection mode will be rejected at compile
time.

Compatibility Issues for C++ 1/0

This section explains how the SAS/C implementation relates to releases of AT&T
C++ and discusses some considerations for developing C++ programs that will adapt
easily to the future directions of C++.

AT&T C++ Release 2

The streams library is fully compatible with the AT&T Release 2 streams library. One
exception is that member functions that refer to file descriptors and to other aspects of
U NIX low-level I/O, such as £d() and attach() , have not been implemented.

AT&T C++ Release 1

The C++ streams library was redefined after the first release, and the Release 2
version is somewhat incompatible with Release 1. (Release 1 is described in
Stroustrop’s book, The C++ Programming Language, First Edition.) The SAS/C C++
Development System implements the old Release 1 streams library for compatibility
with old programs, if you include the old header file stream.h. However, this usage is
obsolete and will probably be removed from the library at some point.

116 AT&T C++ Release 1 A Chapter 4

stream.h header file

The functions, constants, and types defined in the stream.h header file are provided
for compatibility with older versions of some C++ I/O libraries and may not be
supported by future versions of the SAS/C C++ I/O library.

All of the functions declared in this header file share an internal static data area
and return a pointer to this data area. Each call to any of these functions overwrites
this data area.

Here are the contents of the stream.h header file:

char* form(char *format, . . .) ;
provides printf style formatting of character strings. The format string is the
same as the format string for the C printf function. (See the description of
printf in the SAS/C Library Reference, Volume 1 for more information.) The
number and type of the arguments following the format argument are controlled
by the format string.

char* oct(long value, int size = 0) ;
char* hex(long value, int size = 0) ;
char* dec(long value, int size = 0) ;
char* chr(long value, int size = 0) ;
char* str(char *value, int size = 0) ;
format value into a string and return a pointer to the string.
The following list describes each function in more detail:

oct () formats value as an octal number using the digits 0-7.

hex () formats value as a hexadecimal number using the digits 0-9
and uppercase A-F.

dec() formats value as a decimal number using the digits 0-9.

chr () formats value as a character.

str() formats value as a string.

If size is zero, the returned string is exactly as long as needed to represent the
value of 1 . Otherwise, if size is less than the length of the converted value, the
converted value is truncated on the right. If size is greater than the length of the
converted value, spaces are added to the left of the converted value.

istream& WS(istream& i) ;

void eatwhite(istream& i) ;
move the get pointer for i past any white space. If the current character of i is
not a white space character, these functions do nothing. A white space character is
any character for which the macro isspace returns true. See the SAS/C Library
Reference, Volume 1 for a description of isspace .

const int input = ios::in;

const int output = ios::out;

const int append = ios::app;

const int atend = ios::ate;

const int good = ios::goodbit;

const int _bad = ios::badbit;

const int _fail = ios::failbit;

const int _eof = ios::eofbit;
are constants that are passed to or are returned from functions of the I/O library.
These names are only provided for compatibility with old programs; the new ios::
style names should be used in new programs. See “enum io_state” on page 136 for
details on each constant.

Standard Libraries /A Stream Class Descriptions 117

typedef ios::io_state state_value;
provides the old name (state_value)for what is now defined as ios::io_state .
See “enum io_state” on page 136 for details on ios::io_state .

Future Directions

ANSI Committee X3J16 is currently working on an official standard for C++,
including the streams library. As this work proceeds, it is very likely that there will be
additional changes in the specifications of the streams library, some of which may cause
existing programs to fail. It is therefore recommended that C++ streams applications
should be kept relatively simple, to lessen the chances of disturbance by redefinition of
some of the more obscure parts of the library. Especially, we recommend that you avoid
deriving from the streambuf classes, as this interface is infrequently used and is
expected to be volatile.

Note: There is not yet an ANSI Standard for C++, but when one is developed, the
SAS/C C++ Development System will comply with this Standard. At such time, ANSI
compatibility will take precedence over compatibility with the C++ language described
in The C++ Programming Language. A

1/0 Class Descriptions

The class descriptions for the streams library are divided into three parts: description
of stream classes (such as istream and ostream), description of the buffer classes
(such as filebuf and streambuf), and description of manipulators (class IOMANIP).

Most C++ programmers need only understand the stream classes. However, if you
are doing more advanced programming, such as creating your own streams, you may
want to also read the descriptions of the buffer and manipulator classes.

The protected interfaces in each of the classes have been implemented in accordance
with AT&T Version Release 3.0 but are beyond the scope of this book to describe. For
information on the protected interface for these classes, refer to your C++ book (such as
the C++ Language System Release 3.0 Library Manual).

Note: It is not recommended that you use the protected member functions in your
applications. This interface is volatile and is quite likely to change when the ANSI
committee generates a C++ standard. Using the protected interface in your applications
makes them much more likely to be quickly obsolete. A

Stream Class Descriptions

This section provides descriptions of the stream classes, such as iostream and
strstream . As noted previously, the protected interface to these functions is not
documented in the descriptions that follow. Each class (or occasionally a set of related
classes) is listed alphabetically. All class descriptions include the following information:

O a synopsis of the class
a brief description of the purpose and structure of the class
a discussion of parent classes

O
O

0 a detailed description of the members of the class

O examples of using some of the members, if appropriate
O

a SEE ALSO section that points you to related classes.

118 Stream Class Descriptions A Chapter 4

In addition, some class descriptions contain other sections, as appropriate for the class.
The following classes are described in this section:

Table 4.7

class fstream class strstream
class ifstream class istrstream
class ofstream class ostrstream
class iostream class stdiostream
class istream class ios

class ostream class streampos
class bsamstream class ibsamstream

class obsamstream

The class ios description is divided into several sections. One section describes the
basic stream-manipulation functions. The other sections deal with the enumerations
provided by class ios and the functions that manipulate these enumerations.
Examples of the enumerations include the format flags, the I/O state flags, the open
mode flags, and the seek_dir flags.

Note: The term character in the following class and function descriptions refers to
either a char , a signed char , or an unsigned char . 2

class hsamstream, ibsamstream, and ohsamstream

Provide formatted File I/O Using BSAM Low-Level
I/0

SYNOPSIS

#include <bsamstr.h>
class bsamstream : public iostream
{
public:
bsamstream();
bsamstream(const char *filename,
int mode,
const char *keywords = 0,
int willseek = 0,
bsam exit_list *exit list = 0);
virtual ~bsamstream();
void open(const char *filename,
int mode,
const char *keywords = 0,
int willseek = 0,
bsam exit_list *exit list = 0);
int find(const char *name);
int init_directory();
int delete_member(const char *name);
int rename_member
(const char *old_name,
const char *new_name);

}

{

Standard Libraries /A Stream Class Descriptions

int stow(const char *name,
char action = 'R’,
int user_data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
int add member(const char *name,
int user data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
int replace_member (const char *name,
int user_data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
void close();
void setbuf(char *buffer,
size_t length);
int error_info(bsambuf::error_id& id);
void clear_error_info();
void set_user_data(void *user_data);
void *get_user_data();
const char *get_ddname();
const char *get_member();
bsambuf *rdbuf();
char dcbrecfm();
short dcblrecl();
short dcbblksize();
DCB_t *getdcb();

r

class ibsamstream : public istream

public:

ibsamstream();
ibsamstream(const char *filename,
int mode,
const char *keywords = 0,
int willseek = 0,
bsam exit_list *exit list = 0);
virtual ~ibsamstream();
void open(const char *filename,
int mode,
const char *keywords = 0,
int willseek = 0,
bsam exit_list *exit list = 0);
int find(const char *name);
int init directory();
int delete_member(const char *name);
int rename_member
(const char *old_name,
const char *new_name);
int stow(const char *name,
char action = 'R’,

119

120 Stream Class Descriptions A Chapter 4

int user data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
int add member(const char *name,
int user data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
int replace_member(const char *name,
int user data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
void close();
void setbuf (char *buffer,
size_t length);
int error_info(bsambuf::error_ids& id);
void clear_error_info();
void set_user_ data(void *user_data);
void *get user data();
const char *get_ddname();
const char *get_member();
bsambuf *rdbuf();
char dcbrecfm();
short dcblrecl();
short dcbblksize();
DCB_t *getdcb();
}i
class ibsamstream : public istream
{
public:
ibsamstream();
ibsamstream(const char *filename,
int mode,
const char *keywords = 0,
int willseek = 0,
bsam exit_list *exit list = 0);
virtual ~ibsamstream();
void open(const char *filename,
int mode,
const char *keywords = 0,
int willseek = 0,
bsam exit_list *exit list = 0);
int find(const char *name);
int init_directory();
int delete_member(const char *name);
int rename_member
(const char *old_name,
const char *new_name);
int stow(const char *name,
char action = 'R’,
int user_data_length = 0,
const void *user_data = 0,

Standard Libraries /A Stream Class Descriptions 121

int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
int add member(const char *name,
int user data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
int replace_member (const char *name,
int user_data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
void close();
void setbuf(char *buffer,
size_t length);
int error_info(bsambuf::error_id& id);
void clear_error_info();
void set_user_data(void *user_data);
void *get user_data();
const char *get_ddname();
const char *get_member();
bsambuf *rdbuf();
char dcbrecfm();
short dcblrecl();
short dcbblksize();
DCB_t *getdcb();
Yi

DESCRIPTION
These three classes, defined in the <bsamstr.h> header file, specialize the classes
iostream , istream , and ostream for file I/O using a bsambuf . class
bsamstream and class obsamstream define an identical set of functions. class
ibsamstream omits the set of functions that can change the file.

PARENT CLASSES
class bsamstream inherits characteristics from class iostream . class
ibsamstream inherits characteristics from class istream. class obsamstream
inherits characteristics from class ostream . All three of class bsamstream,
class ibsamstream, and class obsamstream inherit characteristics from class
ios . See the descriptions of these parent classes for details on functions and
operators that are inherited.

CONSTRUCTORS
Each class defines two constructors.

bsamstream: :bsamstream()
ibsamstream: : ibsamstream()
obsamstream: :obsamstream()
create an unopened stream of the appropriate type.

122

Stream Class Descriptions A Chapter 4

bsamstream: :bsamstream

(const char *filename, int mode,

const char *keywords = O,

int willseek = 0, bsam exit list *exit_list = 0)

ibsamstream: :ibsamstream

(const char*filename, int mode,
const char *keywords = O,

int willseek = O,

bsam exit list *exit_list = 0)

ibsamstream: : ibsamstream

(const char *filename, int mode,

const char *keywords = O,

int willseek = O,

bsam exit list *exit_list = 0)
create a stream of the appropriate type, using the DD name (and member
name, if present) specified by filename , using the specified mode . The
ibsamstream behaves as if ios::in was set in the mode argument, whether
or not it was set by the caller. The obsamstream behaves as if ios: :out was
set in the mode argument, whether or not it was set by the caller.

All of the arguments are identical to the corresponding bsambuf: : open
arguments. Refer to “class bsambuf” on page 157 for a description of these
arguments.

If the open fails, ios: :badbit is set in the stream’s I/O state flags, as
described in “enum io_state” on page 136 .

DESTRUCTORS

class bsamstream, class ibsamstream, and class obsamstream each have
one destructor:

virtual bsamstream::~bsamstream()

virtual ibsamstream::~ibsamstream()

virtual obsamstream::~obsamstream()
close the stream, if opened. If the close fails, ios::failbit is set in the
stream’s I/0 state flags, as described in “enum io_state” on page 136 .

MEMBER FUNCTIONS
The following descriptions give the purpose and return type of the member
functions, as well as any other appropriate information. Except where otherwise
stated, the arguments have the same meaning, format, and use as the bsambuf
arguments of the same name and function.

bsamstream: :open(const char *filename,
int mode, const char *keywords = O,
int willseek = O,

bsam exit list *exit_list = 0)

ibsamstream: :open(const char *filename,
int mode, const char *keywords = O,

int willseek = O,

bsam exit list *exit_list = 0)

obsamstream: :open(const char *filename,

int mode, const char *keywords = O,

int willseek = O,

bsam exit list *exit_list = 0)
create a stream of the appropriate type, using the DDname (and member
name, if present) specified by filename and using the specified mode . The

Standard Libraries /A Stream Class Descriptions 123

ibsamstream constructor behaves as if ios::in was set in the mode
argument, whether or not it was set by the caller. The obsamstream
constructor behaves as if ios: :out was set in the mode argument, whether
or not it was set by the caller.

If the open fails, the ios: :badbit is set in the stream’s I/O state flags, as
described in “enum io_state” on page 136 .

int bsamstream::find(const char *name)

int ibsamstream::find(const char *name)

int obsamstream::find(const char *name)
position the file connected to the stream, which must be a PDS, to the start of
the member identified by name. name may be specified in either upper- or
lowercase. If name is shorter than eight characters, it will be padded on the
right with blanks. f£ind returns 0 if the file is successfully positioned or a
value other than 0 otherwise.

int bsamstream::init directory()

int obsamstream::init_directory()
invoke the "initialize directory" function of the STOW macro on the file
(which must be a PDS) connected to the stream. The value returned is 0 if
the function succeeds or is a value other than 0 otherwise.

int bsamstream::delete_member
(const char *name)

int obsamstream::delete_member

(const char *name)
deletes the PDS member identified by name from the file connected to the
stream . name may be specified in either upper- or lowercase. If name is
shorter than eight characters, it will be padded on the right with blanks. The
value returned is 0 if the member is successfully deleted or is a value other
than 0 otherwise.

int bsamstream::rename_member
(const char *old_name,
const char *new_name)

int obsamstream::rename_member

(const char *old_name,

const char *new_name)
renames the PDS member identified by o1d_name to new_name . o1d_name
and new_name may be specified in either upper- or lowercase. If either name
is shorter than eight characters, it will be padded on the right with blanks.
The value returned is 0 if the member is successfully renamed or is a value
other than 0 otherwise.

int bsamstream::stow(const char *name,
char action = 'R’,

int user_data_length = O,

const void *user_data = 0, int alias = 0,
int TT = 0, int R = 0, int TTRN = 0)

int obsamstream::stow(const char *name,

char action = 'R’,

int user_data_length = O,

const void *user_data = 0, int alias = 0,

int TT = 0, int R = 0, int TTRN = 0)
adds or replaces a member or alias in the file connected to the bsambuf . The
file must be a PDS. stow returns a value other than 0 if any of the arguments

124

Stream Class Descriptions A Chapter 4

are out of bounds. If stow invokes the STOW macro, with one exception,
stow returns the return code from the STOW macro. (This code can also be
retrieved via the error_info function.) In general, the STOW macro returns
0 if the requested action succeeded or a value other than 0 otherwise. The
exception occurs when action is 'R’ and the STOW macro returns 8. This
return code from the STOW macro indicates that the member or alias did not
previously exist and so was added. In this case, stow returns 0.

If an error occurs, the ios: :badbit is set in the stream’s I/O state.

int bsamstream::add_member
(const char *name,

int user_data_length = O,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);

int obsamstream::add_member

(const char *name,

int user_data_length = O,

const void *user_data = 0,

int alias = 0, int TT = O,

int R = 0, int TTRN = 0);
is equivalent to the stow function when action is ’A’. The arguments and
return value are identical to stow .

int bsamstream::replace_member
(const char *name,

int user_data_length = O,
const void *user_data = 0,

int alias = 0, int TT = O,

int R = 0, int TTRN = 0)

int obsamstream::replace member

(const char *name,

int user_data_length = O,

const void *user_data = 0,

int alias = 0, int TT = O,

int R = 0, int TTRN = 0)
is equivalent to the stow function when action is 'R’. The arguments and
return value are identical to stow .

void bsamstream::close()

void ibsamstream::close()

void obsamstream::close()
close the connection between the appropriate object and its associated file.
Unless an error occurs, all bits in the object’s I/O state are set to zero. If the
close fails, ios: : failbit is set in the stream’s I/O state. The close could fail
if the call to rdbuf ()->close () fails. These functions have no return value.

void bsamstream::setbuf (char *buffer,
size_t length)

void ibsamstream::setbuf(char *buffer,
size_t length)

void obsamstream::setbuf (char *buffer,

size_t length)
call rdbuf ()->setbuf (buffer, length) . These functions have no return
value.

Standard Libraries /A Stream Class Descriptions 125

bsambuf *bsamstream: :rdbuf ()
bsambuf *ibsamstream::rdbuf ()
bsambuf *obsamstream: :rdbuf ()
return a pointer to the bsambuf associated with the stream.

int bsamstream::error_info
(bsambuf::error_id& id)

int ibsamstream::error_info
(bsambuf::error_id& id)

int obsamstream::error_info

(bsambuf::error_id& id)
return the return code from the first failed low-level routine. See the table
under the description of bsambuf: :error_info for a list of values that can
be stored in the id argument.

void bsamstream::clear_error_info()

void ibsamstream::clear_error_info()

void obsamstream::clear_error_info()
set the stored error information to the initial state. If error_info is called in
this state, the value of error_id is Enone and the return code is 0.

void bsamstream::set_user_ data
(void *user_data)

void ibsamstream::set_user data
(void *user_data)

void obsamstream::set_user data

(void *user_data)
stores the value in user_data for retrieval by get_user_data . The value
may be any value required by the program. It is ignored by the stream.

void *bsamstream::get_user data()

void *ibsamstream::get user_data()

void *obsamstream::get user_data()
retrieves the value stored by set_user data.

void *bsamstream::get_ddname()

void *ibsamstream::get_ddname ()

void *obsamstream::get_ddname ()
returns a pointer to the DDname part of the filename of the associated file.
The DDname is in uppercase characters.

void *bsamstream::get_member ()

void *ibsamstream::get_member ()

void *obsamstream::get_member ()
returns a pointer to the member name part of the filename of the associated
file. The member name is in uppercase characters. If the filename did not
specify a member name, the pointer points to a 0-length string.

DCB_t *bsamstream::getdcb()
DCB_t *ibsamstream::getdcb()
DCB_t *obsamstream::getdcb()
return a pointer to the DCB associated with the stream.

char bsamstream: :dcbrecfm()

char ibsamstream::dcbrecfm()

char obsamstream::dcbrecfm()
return the value of the DCBRECFM field in the DCB associated with the
stream.

126 Stream Class Descriptions A Chapter 4

short bsamstream: :dcblrecl()
short ibsamstream::dcblrecl()
short obsamstream: :dcblrecl()
return the logical record length (LRECL) of the file connected to the stream.

short bsamstream::dcbblksize()
short ibsamstream::dcbblksize()
short obsamstream::dcbblksize()
return the physical block size (BLKSIZE) of the file connected to the stream.

SEE ALSO

class bsambuf, class bsam exit list

class fstream, ifstream, and ofstream

Provide Formatted File I/O
SYNOPSIS

#include <fstream.h>
class ifstream : public istream
{
public:
ifstream();
ifstream(const char *name,
int mode = ios::in,
const char *amparms = "",
const char *am = "");
virtual ~ifstream();
void open(const char *name,
int mode = ios::in,
const char *amparms = "",
const char *am = "");
void close();
void setbuf(char *p, int len);
filebuf* rdbuf();

}i
class ofstream : public ostream
{
public:
ofstream();
ofstream(const char *name,
int mode = ios::out,
const char *amparms = "",
const char *am = "");
virtual ~ofstream();
void open(const char *name,
int mode = ios::out,
const char *amparms = "",
const char *am = "");
void close();
void setbuf(char *p, int len);
filebuf* rdbuf();
Yi

class fstream : public iostream

Standard Libraries /A Stream Class Descriptions 127

{
public:
fstream();
fstream(const char *name, int mode,
const char *amparms = "",
const char *am = "");
virtual ~fstream();
void open(const char *name, int mode,
const char *amparms = "",
const char *am = "");
void close();
void setbuf(char *p, int len);
filebuf* rdbuf();

+i

DESCRIPTION
The three classes contained in the fstream.h header file specialize the classes
istream, ostream, and iostream for file I/O. In other words, the streambuf
associated with the I/O operations is a filebuf . The functions associated with
each of the classes in this header file, class ifstream, class ofstream, and
class fstream, are very similar.

PARENT CLASSES
class ifstream inherits characteristics from class istream . class ofstream
inherits characteristics from class ostream. class fstream inherits
characteristics from class iostream . All three of class ifstream, ofstream,
and fstream inherit characteristics from class ios . See the descriptions of
these parent classes for the details on functions and operators that are inherited.

CONSTRUCTORS
There are two sets of constructors for class ifstream, class ofstream, and
class fstream, as follows:

ifstream::ifstream()
ofstream: :ofstream()
fstream::fstream()
create an unopened stream of the appropriate type.

ifstream::ifstream(const char *name,
int mode = ios::in,

const char *amparms = " ",

const char *am = " ")

ofstream: :ofstream(const char *name,
int mode = ios::out,

const char *amparms = "",

const char *am = "")

fstream::fstream(const char *name,

int mode, const char *amparms = "",

const char *am = "")
create a stream of the appropriate type, named name , using the specified
mode . The ifstream constructor behaves as if ios::in was set in the mode
argument, whether or not it was set by the caller. The ofstream constructor
behaves as if ios: :out was set in the mode argument, whether or not it was
set by the caller.

An explanation of filename specification, as well as the arguments amparms

and am can be found in the SAS/C Library Reference, Volume 1. (Note that

128

Stream Class Descriptions A Chapter 4

the order of the amparms and am , arguments in these constructors is the
opposite of the order in which they appear in calls to the C afopen function.)
You may also want to refer to the SAS/C Compiler and Library User’s Guide.

The available modes are described in “enum open_mode” on page 137 . If
the open fails, the stream’s status is reflected in its I/O state flags, as
described in “enum io_state” on page 136 .

DESTRUCTORS
class ifstream, class ofstream, and class fstream each have one
destructor: virtual ifstream::~ifstream() virtual
ofstream: :~ofstream() virtual fstream::~fstream()

close the stream, if opened.

MEMBER FUNCTIONS
The following descriptions give the purpose and return type of the member
functions, as well as any other appropriate information.

void ifstream::open(const char *name,
int mode = ios::in,

const char *amparms = " ",

const char *am = " ")

void ofstream::open(const char *name,
int mode = ios::out,

const char *amparms = " ",

const char *am = " ")

void fstream::open(const char *name,

int mode,

const char *amparms = "",

const char *am = "")
open the named file using the specified mode . ifstream: :open() behaves as
if ios::in was set in the mode argument, whether or not it was set by the
caller. ofstream: :open () behaves as if ios: :out was set in the mode
argument, whether or not it was set by the caller. For £stream objects there
is no default open_mode bit set.

The available open modes are described in “enum open_mode” on page 137
. An explanation of the arguments amparms and am can be found in the SAS/
C Library Reference, Volume 1. (Note that the order of the amparms and am
arguments in these functions is the opposite of the order in which they
appear in calls to the C afopen function.) You may also want to refer to the
SAS/C Compiler and Library User’s Guide.

These functions do not have a return value. If an error occurs during the
open, the ios::failbit bit is set in the stream’s I/O state. Reasons for a
failed open include that the file already exists, or that the call to
rdbuf () ->open() fails.

void ifstream::close()

void ofstream::close()

void fstream::close()
close the connection between the appropriate object and its associated file.
Unless an error occurs, all bits in the object’s I/O state are set to zero. The
close could fail if the call to rdbuf ()->close() fails. These functions have
no return value.

void ifstream::setbuf(char *p, int len) void ofstream::setbuf (char
*p, int len) void fstream::setbuf(char *p, int len)
call filebuf::setbuf(p,len) . These functions have no return value.

Standard Libraries /A Stream Class Descriptions 129

filebuf* ifstream::rdbuf()
filebuf* ofstream::rdbuf()
filebuf* fstream::rdbuf ()
return a pointer to the filebuf associated with the stream.

SEE ALSO

class filebuf

class ios

Provide Buffer and Stream Manipulation

SYNOPSIS

#include <iostream.h>

class ios

{

public:

/* See the enum format_state, enum
io_state, enum open _mode, and enum
seek_dir descriptions for more

definitions. */

ios(streambuf *buf);

virtual ~ios();

int width();
int width(int w);

char £fill();
char fill(char c);

int precision();
int precision(int 1i);

static unsigned long bitalloc();
static int xalloc();

long& iword(int 1i);

void*& pword(int 1i);

streambuf* rdbuf();

ostream* tie();
ostream* tie(ostream *s);

}i

DESCRIPTION
The iostream.h header file declares class ios . This class and the classes
derived from it provide an I/O interface for inserting information into and
extracting information from streambuf . This I/O interface supports both
formatted and unformatted information. This description is devoted to those
operations used in stream and buffer manipulation.

Several enumerations are defined in class ios (io_state, open mode ,

seek_dir , and the format flags). These enumerations are described in subsequent

130 Stream Class Descriptions A Chapter 4

sections. The open_mode and seek_dir flags are not used directly by the
functions in class ios but are used by classes derived from it.

PARENT CLASSES
class ios is the parent of all the stream classes. It has no parent class.

CONSTRUCTORS

class ios defines one constructor:

ios::ios(streambuf *buf)
sets up buf as the associated streambuf . If buf is NULL , the effect is
undefined.

DESTRUCTORS
Here is the class ios destructor:

virtual ios::~ios|()
closes the stream.

BUFFER AND STREAM MANIPULATION FUNCTIONS
class ios defines several functions that provide buffer and stream manipulation
capabilities. The following list describes these functions.

streambuf* ios::rdbuf()
returns a pointer to the streambuf associated with the ios when it was
created.

ostream* ios::tie()
returns the ostream currently tied to the ios , if any; returns NULL otherwise.

ostream* ios::tie(ostream *s)
ties s to the ios and returns the stream previously tied to this stream, if any;
returns NULL otherwise.
If the ios is tied to an ostream , then the ostream is flushed before every
read or write from the ios . By default, cin , cerr , and clog are tied to
cout .

FORMATTING FUNCTIONS
class ios defines several functions that use and set the format flags and
variables. class ios also provides functions you can use to define and
manipulate your own formatting flags, plus several built-in manipulators that
allow you to set various format flags.

Format flag functions
The following list describes some of the functions that use and set the
library-supplied format flags. The flags() , setf() , and unsetf () functions and
the format flags are described in “enum format_state” on page 132 .

int ios::width()
returns an int representing the value of the current field width.

int ios::width(int w)
sets the field width to w and returns an int representing the previous field
width value.

The default field width is 0. When the field width is 0, inserters insert only
as many characters as necessary to represent the value. When the field width
is nonzero, inserters insert at least as many characters as are necessary to
fill the field width. The fill character is used to pad the value, if necessary, in
this case.

Numeric inserters do not truncate their values. Therefore, if the value
being inserted is wider than the field width, the entire value is inserted,

Standard Libraries /A Stream Class Descriptions 131

regardless of the field width overrun. As you can see, this implies that the
field width value is a minimum constraint; there is no way to specify a
maximum constraint on the number of characters to be inserted.

The field width variable is reset to 0 after each insertion or extraction. In
this sense, the field width serves as a parameter for insertions and
extractions.

You can also use the parameterized manipulator, setw , to set the field
width.

char ios::£fill()
returns a char representing the current fill character.

char ios::fill(char c)
sets the fill character to ¢ and returns a char representing the previous
value. The default fill character is a space. You can also set the fill character
using the parameterized manipulator, set£ill .

int ios::precision()
returns an int representing the current precision value.

int ios::precision(int i)
sets the precision to i and returns an int representing the previous
precision. Use this function to control the number of significant digits
included in floating-point values. The default precision is six. You can also
set the precision using the parameterized manipulator, setprecision .

User-defined format flag functions
class ios includes four functions that you can use to define format flags and
variables in addition to those described in “enum format_state” on page 132 .

static unsigned long ios::bitalloc()
returns an unsigned long with a single, previously unallocated, bit set. This
allows you to create additional format flags. This function returns 0 if there
are no more bits available. Once the bit is allocated, you can set it and clear
it using the flags() , setf() , and unsetf () functions.

static int ios::xalloc()
returns an int that represents a previously unused index into an array of
words available for use as format state variables. These state variables can
then be used in your derived classes.

long& ios::iword(int i)
returns a reference to the i th user-defined word. i must be an index
allocated by ios::xalloc() .

void*& ios::pword(int i)
returns a reference to the i th user-defined word. i must be an index
allocated by ios::xalloc().pword() is the same as iword () except that its
return type is different.

Refer to the C++ Language System Release 3.0 Library Manual for details on
defining and using user-defined format flags.

Built-in manipulators
Manipulators take an ios& , an istream& , or an ostreams& and return their
argument. The following built-in manipulators are useful with ios objects.
stream has type ios& .

stream >> dec and stream << dec
set the conversion base for the stream to decimal (by setting the ios: :dec
bit and clearing ios: :oct and ios::hex).

132

Stream Class Descriptions A Chapter 4

stream >> oct and stream << oct
set the conversion base for the stream to octal (by setting the ios::oct bit
and clearing ios::dec and ios::hex).

stream >> hex and stream << hex
set the conversion base for the stream to hexadecimal (by setting the
ios: :hex bit and clearing ios: :dec and ios::oct).

stream >> ws
extracts whitespace characters.

stream << endl
inserts a newline character and flushes the stream.

stream << ends
inserts a null (\0)character into the stream.

stream << flush
flushes the given ostream object.
In addition, parameterized manipulators are available to operate on ios objects.

These include setfill, setprecision , setiosflags , and resetiosflags ,
described in detail in “class IOMANIP” on page 179 .

SEE ALSO

class iostream, class istream, class ostream

enum format_state

Provide Buffer and Stream Formatting
SYNOPSIS

#include <iostream.h>

class ios

{
public:

/* See the class ios, enum io state,
enum open mode, and enum seek dir
descriptions for more definitions. */

enum {skipws,

left,
right,
internal,

dec,
oct,
hex,

showbase,
showpoint,
uppercase,
showpos,

Standard Libraries /A Stream Class Descriptions 133

scientific,
fixed,

unitbuf,

stdio

Yi
static const unsigned long basefield;
static const unsigned long adjustfield;
static const unsigned long floatfield;

unsigned long flags();
unsigned long flags(unsigned long f);

unsigned long setf(unsigned long mask);
unsigned long setf(unsigned long
setbits, unsigned
long mask);
unsigned long unsetf(unsigned long
mask) ;

}i

DESCRIPTION
class ios (defined in the iostream.h header file) provides a format state, which
is used by the stream classes to control formatting. The format state is controlled
by the format flags, and class ios provides several functions to manipulate these
flags. The member functions flags() , setf() , and unsetf () control the
majority of formatting. These functions are described further on in this section.
Other member functions that have an effect on the format state are £i11(),
width() , and precision() . These functions are described in the previous class
ios description.

In addition to the predefined format flags, users can create their own

user-defined format flags. This is described in the previous class ios description,
under “User-defined format flag functions”.

FORMAT FLAGS
The following list describes each format flag in detail.

skipws
skips whitespace on input. This flag applies only to scalar extractions. If
skipws is not set, whitespace is not skipped.
To protect against looping, zero-width fields are considered a bad format.
Therefore, if the next character is whitespace and skipws is not set,
arithmetic extractors signal an error. skipws is set by default.

padding flags
control the padding of formatted values. There are three of them:
left
causes output to be left-adjusted.
right
causes output to be right-adjusted. This is the default if none of the
padding bits is set. right is set by default.

internal
causes padding to occur between the sign or base indicator and the value.

These padding flags are grouped together by the member adjustfield . To
set the fill character, use the £i11 () function. To control the width of
formatted items, use the width () function.

134

Stream Class Descriptions A Chapter 4

conversion base flags
control the conversion base of values, as follows:

dec indicates the conversion base is decimal. This is the
default for input if none of the conversion base flags is set.
dec is set by default.

oct indicates the conversion base is octal.

hex indicates the conversion base is hexadecimal.

These conversion base flags are grouped together by the member
basefield .

Although decimal is the default conversion base for insertions (if none of
these flags is set), the default conversion base for extractions follows the C++
lexical conventions for integral constants. You can also use the built-in
manipulators dec, oct , and hex to control the conversion base. These
manipulators are described in the previous class ios description.

showbase
causes the base indicator to be shown in the output. This form of output
follows the C++ lexical conventions for integral constants. showbase is not
set by default.

showpoint
causes the output to include any trailing zeros and decimal points resulting
from floating-point conversion. showpoint is not set by default.

uppercase
causes uppercase letters to be used in output. For example, an X is used
instead of x in hexadecimal output, and an E is used instead of e in scientific
notation. uppercase is not set by default.

showpos
causes a + sign to be added to the decimal conversion of positive integers.
showpos is not set by default.

floating-point flags
control the format of floating-point conversions, as follows:

scientific
causes the value to be converted using scientific notation. In this form,
there is one digit preceding the decimal point, and the number of digits
after the decimal point is equal to the precision (set with the
precision() function). The default precision is six. An e (or E if
uppercase is set) precedes the exponent.

fixed
causes the value to be converted to decimal notation. The precision of
the value is controlled with the precision() function. The default
precision is six.
If neither scientific nor fixed is set, the value is converted to one
or the other format, according to the following rules:

o If the exponent resulting from the conversion is less than -4 or
greater than the precision, scientific notation is used.
0 Otherwise, fixed notation is used.

Unless showpoint is set, trailing zeros are removed from the value,
regardless of the format. A decimal point appears in the value only if it
is followed by a digit. These flags are grouped together by the member
floatfield . They are not set by default.

Standard Libraries /A Stream Class Descriptions 135

unitbuf
causes the stream to be flushed after an insertion. unitbuf is not set by
default.

stdio
causes the standard C output files stdout and stderr to be flushed
after an insertion. stdio is not set by default.

FORMATTING FUNCTIONS
The following functions can be used to turn format flags on and off.

unsigned long ios::flags()
returns an unsigned long representing the current format flags.

unsigned long ios::flags

(unsigned long f)
sets (turns on) all the format flags specified by £ and returns an unsigned
long representing the previous flag values.

unsigned long ios::setf

(unsigned long mask)
sets (turns on) only those format flags that are set in mask and returns an
unsigned long representing the previous values of those flags. You can
accomplish the same task by using the parameterized manipulator,
setiosflags .

unsigned long ios::setf

(unsigned long setbits,

unsigned long mask)
turns on or off the flags marked by mask according to the corresponding
values specified by setbits and returns an unsigned long representing the
previous values of the bits specified by mask . The EXAMPLES section
provides an example of using this function.

Using setf (0, mask) clears all the bits specified by field . You can

accomplish the same task by using the parameterized manipulator
resetiosflags .

unsigned long ios::unsetf

(unsigned long mask)
clears the format flags specified by mask and returns an unsigned long
representing the previous flag values.

EXAMPLES
The setf () function is used to change format flags. For example, if you want to
change the conversion base in an ios object called s , you could use the following
expression:

s.setf(ios::hex, ios::basefield)

In this example, ios: :basefield represents the conversion base bits you want
to change, and ios: :hex is the new value.

To set a flag that is not part of a field, use setf () with a single argument, as in
the following example, which sets the skipws flag:

s.setf(ios::skipws)
To clear the skipws flag, use unsetf() :
s.unsetf(ios: :skipws)

As another example of using setf () , suppose you want to clear in your ios
object s all the bits specified by the variable clearbits . You could use the
following expression to accomplish this:

136

Stream Class Descriptions A Chapter 4

s.setf(0, clearbits)

enum io_state

Provide Stream I/O State

SYNOPSIS

#include <iostream.h>

class ios

{

public:
enum io_state {goodbit = 0,
eofbit,
failbit,
badbit
}i
/* See the class ios, enum format_state,

enum open mode, and enum seek dir

descriptions for more definitions. */

int
int
int
int
int

rdstate();
eof();
fail();
bad();
good();

void clear(int i = 0);

operator void*();

int

+i

operator ! ();

DESCRIPTION
class ios (defined in the iostream.h header file) defines io_state flags that
represent the internal state of an ios object. Each flag has a value that can be set
or reset independently for an ios object. Note that goodbit is not a flag but
rather a symbolic name for the condition in which no flags are set. The functions
such as rdstate() and eof () use and manipulate the I/O state flags.

I/O STATE FLAGS
A stream is in an unusual state (error or EOF) if any of the I/O state flags are set
for the stream. If none of the flags are set, the stream is in the normal (nonerror)
state. The meanings of the io_state enumerators are as follows:

goodbit

eofbit

failbit

is not a flag. It is a symbolic name for the condition in which
no flags are set.

indicates the end of file has been encountered. If the stream is
repositioned after eofbit is set, the bit is cleared.

indicates an error other than an I/O error, such as an error in
formatting. Once the failbit bit is cleared, I/O can usually

Standard Libraries /A Stream Class Descriptions 137

continue. failbit is also set if an operator or member function
fails because no more characters can be extracted.

badbit indicates an I/O operation failed. Do not continue I/O
operations after this bit is set.

I/O STATE FUNCTIONS
class ios also provides several functions that use or manipulate the I/O state
flags. In addition to the I/O state functions, class ios also defines two operators
that allow you to check the I/O state of an ios object.
The following functions use and manipulate the values of the I/O state flags.

int ios::rdstate()
returns the current I/O state.

int ios::eof()
returns the value of eofbit if eofbit is set; otherwise, returns 0.

int ios::fail()
returns the value of failbit if failbit is set; otherwise, returns 0.

int ios::bad()
returns the value of badbit if badbit is set; otherwise, returns 0.

int ios::good()
returns a nonzero value if no bits are set in the stream’s I/O state; otherwise,
returns 0.

void ios::clear(int i = 0)
sets the stream’s I/O state to i . The default value for i is 0. clear () has no
return value.
The following two operators are useful when checking the I/O state of an ios
object.

ios::operator void* ()
converts an ios object to a pointer. If no bits are set in the stream’s I/O state,
this operator returns a pointer value that is not null. If failbit or badbit is
set, the operator returns 0.

int ios::operator !()
converts an ios object to 0 if no bits are set in the stream’s I/O state, or to a
nonzero value if any bits are set in the stream’s I/O state.

Provide Buffer and Stream Open Modes
SYNOPSIS

#include <iostream.h>

class ios

{

public:

/* See the class ios, enum format_state,
enum io_state, and enum seek dir
descriptions for more definitions. */

enum open mode {in,

138 Stream Class Descriptions A Chapter 4

out,
ate,
app,
trunc,
nocreate,
noreplace,
binary
Yi
Yi

DESCRIPTION
The open_mode enumeration is defined in iostream.h. This enumeration defines
a number of flags that can be used when creating or opening a stream to specify
attributes of the stream. You can specify several attributes simultaneously by
using the OR operator to combine them. For example, to specify both the out and
binary flags, use ios::out|ios::binary.
Only the ios::ate and ios::app flags are meaningful for string streams, such
as strstream objects. See the description of class strstream, class
istrstream, and class ostrstream for information on how these flags are used
with these classes.
The following list describes the meaning of the open_mode flags for the
file-oriented stream classes:
in
means access the file for input.

out
means access the file for output. If the file already exists, it is truncated
unless one of ios::in , ios::ate , or ios: :app is also specified.

ate
means to position the file to the end of the file when the file is opened.

app
means to access the file in append mode. In append mode, each output
operation to the file causes the file to be positioned to the end before writing.

trunc
means to truncate the file (making it empty) when it is opened. ios::trunc
has no effect if the file does not yet exist.

nocreate
means the open fails if the file to be opened does not exist.

noreplace
means the open fails if the file already exists.

binary
means to access the file in binary mode. If ios::binary is not specified, the
file is accessed in text mode. See the SAS/C Library Reference, Volume 1 for
more information on the differences between text mode and binary mode.

enum seek_dir

Provide Buffer and Stream Seeking
SYNOPSIS

#include <iostream.h>

Standard Libraries /A Stream Class Descriptions 139

class ios

{
public:

/* See the class ios, enum format state,
enum open mode, and enum open mode
descriptions for more definitions. */

enum seek_dir {beg, cur, end};
}i
DESCRIPTION
When you perform a seek on a stream, you must specify the starting point for the

seek. class ios (defined in the iostream.h header file) provides the seek_dir
flags to control seeking. The following list describes these flags:

beg means the seek is relative to the beginning of the stream.
cur means the seek is relative to the current position of the stream.
end means the seek is relative to the end of the stream.

class iostream

Provide Bidirectional Stream
SYNOPSIS

#include <iostream.h>
class iostream : public ostream,
public istream
{
public:
iostream(streambuf *buf);

}i

DESCRIPTION
The iostream.h header file also provides class iostream , which is both an
istream and an ostream. class iostream includes all the operations of both
subclasses. It adds only a constructor of its own.

PARENT CLASSES
class iostream inherits characteristics from both class istream and class
ostream . See the descriptions of these parent classes for the details on functions
and operators that are inherited.

CONSTRUCTORS

class iostream defines one constructor:

iostream::iostream(streambuf *buf)
sets up buf as the associated streambuf . If buf is NULL , the effect is
undefined.

SEE ALSO

class ios, class istream, class ostream

class istream

140

Stream Class Descriptions A Chapter 4

Provide for Stream Extraction

SYNOPSIS

#include <iostream.h>

class istream : virtual public ios

{
public:

istream(streambuf

virtual ~istream()

int ipfx(int need

istream&
istream&
istream&
istream&
istream&

istream&

istream&
istream&

istream&
istream&

istream&
istream&

istream&

istream&

istream&

istream&

istream&

istream&

istream&

istream&

istream&

istream&
istream&
istream&
istream&

operator
operator
operator

operator
operator

operator

operator
operator

operator
operator

operator
operator

operator
operator
operator
operator
operator

operator

get (char
char

*buf);

=0);

>>(char *str);
>>(unsigned char *str);
>>(signed char *str);

>>(char& c);
>>(unsigned char& c);
>>(signed charé& c);

>>(short& sh);

>>(unsigned shorté& sh);

>>(int& 1i);

>>(unsigned int& i);

>>(long& 1);
>>(unsigned long& 1);

>>(float& f);
>>(double& d);
>>(long double& 1d);

>>(streambuf *buf);
>>(istream& (*f)
(istream&));

>>(ios&(*f) (ios&));

*str, int len,

delim = ’'\n’);

get (unsigned char *str,

int len,

char

delim = ’'\n’);

get(signed char *str,

int len,

char

delim = ’'\n’);

get(signed char& c);

get (unsigned char& c);

get(char& c);

get(streambuf& sb,

char

delim = ’'\n’);

Standard Libraries /A Stream Class Descriptions 141

int get();

istream& getline(char *str, int len,
char delim = '\n’);
istream& getline(unsigned char *str,
int len,
char delim = '\n’);

istream& getline(signed char *str,
int len,
char delim = '\n’);

istream& ignore(int n = 1,
int delim = EOF);

istream& read(char *str, int n);

istream& read(unsigned char *str,
int n);

istream& read(signed char *str,
int n);

int gcount();
int peek();

istream& putback(char c);

int sync();

istream& seekg(streampos pos);
istream& seekg(streamoff offset,
seek_dir place);

streampos tellg();

istream& ws(istream&);

DESCRIPTION
class istream is defined in the iostream.h header file and is the base class for
those stream classes that support only input. It includes all the basic extraction
functions (formatted input) on fundamental C++ types, as well as a number of
unformatted input functions and several functions that enable you to move the get
pointer. It also includes one manipulator. These members are described in the
following sections.

PARENT CLASSES
class istream inherits characteristics from class ios . See the description of
this parent class for the details on functions and operators that are inherited.

CONSTRUCTORS

class istream defines one constructor:

istream: :istream(streambuf *buf)
initializes an istream and associates a
streambuf with it.

DESTRUCTORS

Here is the class istream destructor:

142

Stream Class Descriptions A Chapter 4

virtual istream::~istream()
closes the istream .

INPUT PREFIX FUNCTION

class istream defines an input prefix function that performs those operations
that must be done before each formatting operation. This function is defined as
follows:

int istream::ipfx(int need = 0);

If any I/O state flags are set for the istream , this function returns 0 immediately.
If necessary, it flushes the ios (if any) tied to this istream . Flushing is necessary
if need is 0 or if there are less than need characters available for input.

If ios: :skipws is set and need is 0, then this function causes any leading
white space in the input to be skipped. If an error occurs during this skipping,
ipfx () returns 0. If no errors have occurred, this function returns 1.

This function is called by all formatted extraction operations and should be
called by user-defined extraction operators unless the first input operation used by
the user-defined extraction operator is a formatted extraction. For user-defined
operations, ip£x () should be called with the argument equal to 0.

FORMATTED INPUT FUNCTIONS

The functions named operator >> are called extraction operators. They are
formatted input functions. They each call the input prefix function ipfx(0) and
do nothing else if it returns 0. If ip£x (0) does not return 0, the formatted input
functions extract leading characters from the associated streambuf according to
the type of their argument and the formatting flags in the ios . They all return
the address of the istream .

Errors during extraction are indicated by setting the appropriate I/O state flags
for the stream, as follows:

ios::failbit
means that the actual input characters did not match the expected input
format.

ios::badbit
means that an error occurred during extraction of characters from the
streambuf .

Here are the functions.

istream& istream::operator >>(char *str)

istream& istream::operator >>(unsigned
char *str)

istream& istream::operator >>(signed

char *str)
extract characters up to the next white space character. The terminating
white space character is not extracted. If width () is nonzero, these functions
extract no more than width() - 1 characters and reset width() to 0. These
functions add a terminating null character, even if an error occurs during
extraction.

istream& istream::operator >>(char& c)

istream& istream::operator >>(unsigned
char& c)

istream& istream::operator >>(signed
char& c)
extract a single character and store it in the argument.

istream& istream::operator

istream& istream::operator
short& sh)

istream& istream::operator
istream& istream::operator
int& i)

istream& istream::operator

istream& istream::operator
long& 1)

Standard Libraries /A Stream Class Descriptions

>>(short& sh)

>>(unsigned

>>(int& i)

>>(unsigned

>>(long& 1)

>>(unsigned

143

extract a number and store it in the argument. There may be a leading sign
character (+ or -). If any of ios::dec, ios::oct , or ios::hex is set in the
formatting state, characters are extracted and converted according to the bit
that is set. If none of these bits is set, then these functions expect any of the

following formats:
0x hhh
0X hhh
0 ooo
ddd

Extraction stops when it reaches an unacceptable character. The acceptable

characters are

0-7
for octal conversion

0-9
for decimal conversion

0-9, a-f, and A-F

for hexadecimal conversion.

ios::failbit is set if no digits are found.

istream& istream::operator
istream& istream::operator

istream& istream::operator
double& 1d)

>>(float& f)
>>(double& d)

>>(long

extract a floating-point number and store it in the argument. The expected
input format is an optional sign, followed by a decimal mantissa (optionally
including a decimal point), followed by an optional floating-point exponent.
The exponent may contain either an uppercase or a lowercase E and may
have a + or - following the E. Extraction stops when EOF is encountered, or
when a character is read that cannot continue the previous input in a valid
manner. ios::failbit is set if there are no digits to extract or if the format
is not correct.

istream& istream::operator >>(streambuf
*buf)

extracts all characters from the istream and inserts them into the
streambuf . Extraction stops when no more characters can be obtained from
the istream .

144

Stream Class Descriptions A Chapter 4

istream& istream::operator >> (istream& (*f) (istream&))

istream& istream::operator >> (ios& (*f) (ios&))
are for support of simple manipulators. Although these operators resemble
an extraction in appearance, they are used to manipulate the stream rather
than to extract characters from it. The argument to either of these operators
is a manipulator function that modifies its ios or istream argument in some
manner.

UNFORMATTED INPUT FUNCTIONS
The following functions are the unformatted input functions. They each call
ipfx (1) first and do nothing else if 0 is returned.

istream& istream::get(char *str, int len,
char delim = '\n’)

istream& istream::get(unsigned char *str,
int len, char delim = ’'\n’)

istream& istream::get(signed char *str,

int len, char delim = ’'\n’)
extract up to len - 1 characters. Extraction stops when a delim character
is extracted, when no more characters are available, or when len - 1
characters have been found. These functions store a terminating null
character in the array. ios::failbit is set only if no characters at all were
extracted.

istream& istream::getline(char *str,
int len, char delim = ’'\n’)

istream& istream::getline
(unsigned char *str, int len,
char delim = '\n’)

istream& istream::getline

(signed char *str, int len,

char delim = '\n’)
behave like the get () functions, except that the terminating delim character
(if found) is extracted. A terminating null character is always stored in the
array.

istream& istream::get(streambuf& sb,

char delim = '\n’)
extracts characters up to the next delim character or EOF and inserts them
into sb . delim is not extracted or inserted. ios::failbit is set if an error
occurs while inserting into sb .

istream& istream::get(signed char& c) istream&

istream: :get (unsigned char& c) istream& istream::get(char& c)
extract a single character. ios::failbit is set if no characters can be
extracted.

int istream::get()
extracts a single character and returns it. EOF is returned if no characters
can be extracted. ios::failbit is never set.

istream& istream::ignore(int n =1,

int delim = EOF)
extracts up to the next n characters or up to the next delim character.
ios::failbit is never set.

Standard Libraries /A Stream Class Descriptions 145

istream& istream::read(char *str, int n)

istream& istream::read(unsigned char *str,
int n)

istream& istream::read(signed char *str,
int n)
extract the next n characters and store them into the array pointed to by s .

ios::failbit
is set if fewer than n characters can be extracted.

OTHER MEMBER FUNCTIONS
class istream includes several other functions, as follows:

int istream: :gcount()
returns the number of characters extracted by the last unformatted
extraction function. Formatted extraction functions may change the value of
this function in unexpected ways.

int istream::peek()
returns EOF if ipfx (1) returns 0 or if no characters remain to be extracted.
Otherwise it returns the next character in the stream without extracting it.

istream& istream::putback(char c)
does nothing if any bits are set in the stream’s I/O state. If no bits are set in
the stream’s I/O state, this function pushes back the character ¢ so it will be
the next character extracted. ¢ must be the same as the last character
extracted from the istream. ios::badbit is set if the streambuf cannot push
c back.

int istream::sync()
calls sync() on the associated streambuf . This function returns whatever
the streambuf: :sync() call returned.

istream& istream::seekg(streampos pos)

istream& istream::seekg(streamoff offset,

seek_dir place)
move the get pointer of the associated streambuf.pos is a value returned by
a previous call to tellg(). offset and place are explained in the
streambuf::seekoff() .

streampos istream::tellg()
returns the current streampos of the get pointer of the associated streambuf

MANIPULATORS
The following function is a manipulator. It is intended to be used with the
extractors to manipulate the stream in a specified way. This manipulator does
nothing if any of the stream’s I/O state flags are set. It signals an error by setting
flags in the stream’s I/O state. It returns its argument.

istream& ws(istream&);
skips over any white space in the stream.

SEE ALSO

class ios, class iostream, class ostream

class ostream

146 Stream Class Descriptions A Chapter 4

Provide for Stream Insertion
SYNOPSIS

#include <iostream.h>

class ostream : virtual public ios
{
public:
ostream(streambuf *buf);
virtual ~ostream();

int opfx();

void osfx();

ostream& operator <<(char c);
ostream& operator <<(signed char c);
ostream& operator <<(unsigned char c);

ostream& operator <<(const char *str);

ostream& operator <<(const unsigned
char *str);

ostream& operator <<(const signed
char *str);

ostream& operator <<(short sh);
ostream& operator <<(unsigned short sh);

ostream& operator <<(int i);
ostream& operator <<(unsigned int 1i);

ostream& operator <<(long 1l);
ostream& operator <<(unsigned long 1);

ostream& operator <<(float f);
ostream& operator <<(double d);

ostream& operator <<(void *vp);

ostream& operator <<(streambuf *buf);

ostream& operator <<(ostream&(*f)
(ostream&));
ostream& operator <<(ios&(*f)(ios&));

ostream& put(char c);

ostream& write(const char *str, int n);

ostream& write(const signed char *str,
int n);

ostream& write(const unsigned char *str,
int n);

ostream& flush();

streampos tellp();

Standard Libraries /A Stream Class Descriptions 147

ostream& seekp(streampos pos);
ostream& seekp(streamoff offset,
seek dir place);
}i
ostream& endl(ostream&);
ostream& ends(ostream&);
ostream& flush(ostream&);

DESCRIPTION
class ostream is declared in the iostream.h header file and is the base class for
those classes that support only output. It includes all the basic insertion operators
(formatted output) on fundamental C++ types, as well as a number of unformatted
output functions and functions designed to change the stream position. In
addition, some output manipulators are defined for use with this class.

PARENT CLASSES
class ostream inherits characteristics from class ios . See the description of
this parent class for the details on functions and operators that are inherited.

CONSTRUCTORS

class ostream defines one constructor:

ostream: :ostream(streambuf *buf)
initializes an ostream and associates a streambuf with it.

DESTRUCTORS
Here is the class ostream destructor:

virtual ostream::~ostream()
closes the ostream.

PREFIX AND SUFFIX OUTPUT FUNCTIONS
Certain operations are defined to happen either before or after formatted output
through a ostream . The prefix operations are done by ostream: :opfx () and the
suffix operations are done by ostream: :osfx() .

int ostream::opfx()
performs prefix operations for an ostream . This function returns 0 and does
nothing else if any bits in the stream’s I/O state are set; it returns 1
otherwise. If the ostream is tied (see tie()) to another, the other stream is
flushed (see £lush()).

By convention, opfx () is called before any formatted output operation on a
stream. If it returns 0 (meaning one or more bits are set in the stream’s I/O
state), the output operation is not performed. Each of the built-in inserters
follows this convention. User-defined formatted output functions should also
follow this convention by calling this function and checking the return code
before doing any output.

void ostream::osfx()
performs suffix operations on the stream. If ios: :unitbuf is set, this
ostream is flushed. If ios::stdio is set, cout and cerr are flushed. This
function should be called at the end of any formatted output function that
does unformatted output on the ostream . It need not be called if the last
output operation on the ostream was formatted.

148

Stream Class Descriptions A Chapter 4

FORMATTED OUTPUT FUNCTIONS

The functions named operator << are called inserters (because they insert values
into the output stream). All inserters are formatted output operations and as such
follow the formatted output conventions mentioned previously.

All of the inserters do the following: First, they call opfx () , and if it returns 0,
they do nothing else. If there is no error, they then convert the input argument to
a converted value (a sequence of characters), based on the argument’s type and
value and on the formatting flags set for the stream. The rules for construction of
the converted value are given here for each inserter.

Once a converted value has been determined, it is copied, possibly with the
addition of fill characters, to an output field. The characters of the output field are
then inserted into the stream’s buffer. The ios: :width() function for the stream
determines the minimum number of characters in the output field. If the
converted value had fewer characters, fill characters (defined by the value of
ios::£ill1() for the stream) are added to pad out the field. The placement of fill
characters is as follows::

ios::right
places the converted value in the rightmost portion of the field (leading
padding).

ios::left
places the converted value in the leftmost portion of the field (trailing
padding).

ios::internal
places the sign and base indicators of the converted value in the leftmost
portion of the field and the remainder in the rightmost portion (internal
padding).

Note that truncation cannot occur when copying the converted value to an
output field, regardless of the value of width() .

Once the converted value is constructed and the field is padded to be at least
ios::width() characters wide, ios: :width() is reset to 0 and os£x () is called.
All inserters indicate errors by setting I/O state flags in the ostream , as
necessary. Inserters always return a reference to their ostream argument.

Here are the formatted output functions.

ostream& ostream::operator <<(char c)

ostream& ostream: :operator <<(signed
char c)

ostream& ostream::operator <<(unsigned
char c)
convert the argument to the char c.

ostream& ostream::operator <<(const
char *str)

ostream& ostream::operator <<(const
unsigned char *str)

ostream& ostream::operator <<(const

signed char *str)
convert the argument to a sequence of chars , up to but not including a ’\0
’character, pointed to by str .

ostream& ostream::operator <<(short sh)

ostream& ostream::operator <<(unsigned
short sh)

Standard Libraries /A Stream Class Descriptions

ostream& ostream::operator <<(int i)

ostream& ostream: :operator <<(unsigned
int i)

ostream& ostream::operator <<(long 1)

ostream& ostream: :operator <<(unsigned
long 1)
convert the value of the argument to a sequence of digits, preceded by a
leading ’- ’if the argument is negative.
If the following format flags within the ostream are set, they affect the
converted value as follows:

ios: :showpos

149

causes a leading '+ ’to be included in the converted value if the value is

positive.

ios::dec,, ios::oct, and ios::hex
determine the base used for the converted value.

ios: :showbase

causes the converted value to indicate the appropriate base as follows:

decimal makes no change to the converted value.

octal prefixes the converted value with a single ’0 ’digit. If

the value is 0, there is only one zero digit.

hexadecimal prefixes the converted value with ’0x °. If

ios: :uppercase is set, a leading ’0X ’is used instead.
If both a sign representation (+ or -) and a base representation appear

in the converted value, the sign appears first.
ostream& ostream::operator <<(float f)

ostream& ostream::operator <<
(double 4d)

convert the argument to a character representation of its value in one of

two formats:
O fixed notation (* ddd.ddd ’)
O scientific notation C + d.dddex dd’).

These formats are described in detail in “enum format_state” on page
132 . The format of the converted value is affected by the settings of the

following format flags:

ios::fixed or ios::scientific
determines the overall representation format. If neither is set,

then the overall format is scientific if the exponent is less then -4
or greater than the precision. Fixed notation is chosen otherwise.

ios: :showpoint

causes the decimal point to be shown, followed by at least one digit.

If showpoint is not set and all digits after the decimal point are
zero, these digits and the decimal point are dropped.

ios: :uppercase

causes the ’e ’in scientific notation to be ’E ’instead.
ios: :showpos

causes a leading '+ to be output for positive values.

150

Stream Class Descriptions A Chapter 4

ostream& ostream::operator <<

(void *vp)
converts the value of the pointer vp to an unsigned long and
represents it as if ios: :hex and ios::showbase were set.

ostream& ostream::operator <<

(streambuf *buf)
fetches all the characters in buf and inserts them into the output
stream, provided no bits are set in buf ’s I/O state. No padding is done.
If any bits are set in buf ’s I/O state, this function returns immediately.

ostream& ostream::operator <<
(ostream& (*f) (ostream&))

ostream& ostream::operator <<

(ios&(*£f) (ios&))
are for support of simple manipulators. Although these operators
resemble an insertion in appearance, they are used to manipulate the
stream rather than to insert characters into it. The argument to either
of these operators is a manipulator function that modifies its ios or
ostream argument in some manner.

UNFORMATTED OUTPUT FUNCTIONS
The following functions are for support of unformatted output to a stream.
Because they are unformatted operations they do not call opfx() and osfx() ;
however, these functions do check to see whether any I/O state flags are set for the
ostream and take no further action if any are found. All inserters indicate errors
by setting I/O state flags in the ostream . Each of these functions returns a
reference to its argument ostream .

ostream& ostream::put(char c)
inserts its argument into the stream.

ostream& ostream::write(const char *str,
int n)

ostream& ostream::write(const signed
char *str, int n)

ostream& ostream::write(const unsigned

char *str, int n)
insert n characters starting at str into the stream. The characters are
treated as plain chars independent of their actual type. The null character is
treated the same as any other character.

OTHER MEMBER FUNCTIONS
The following functions are also members of class ostream.

ostream& ostream::flush()
calls rdbuf ()->sync() . For more information, refer to the description of
streambuf::sync() .

streampos ostream::tellp()
returns the stream’s current put pointer position. For more information, refer
to the descriptions of streambuf: :seekoff () and streambuf: :seekpos() .

ostream& ostream::seekp(streampos pos)

ostream& ostream::seekp(streamoff offset,

seek_dir place)
reposition the stream’s put pointer. For more information, refer to the
descriptions of streambuf: : seekoff () and streambuf: :seekpos() .

Standard Libraries /A Stream Class Descriptions 151

MANIPULATORS
The following functions are called manipulators. They are intended to be used

with the inserters to manipulate the stream in specified ways. These manipulators
do nothing if any of the stream’s I/O state flags are set. They signal errors by
setting flags in the stream’s I/O state. They each return their argument.

ostream& endl (ostream&)
inserts a '\n ’character into the stream. Here is an example:

#include <iostream.h>

float mynum=3.2;
// Writes "mynum is:" and the value
of mynum on one line.
cout << "mynum is: " << mynum << endl;

ostream& ends (ostream&)
inserts a '\ 0 ’character into the stream. Here is an example, using a
strstream :
#include <iostream.h>
strstream mystream;
float mynum=3.2;

// Writes mynum to mystream.
mystream << "mynum is: " << mynum <<

ends;

ostream& flush(ostream&)
calls ostream.flush() .

SEE ALSO

class ios, class iostream, class istream

class stdiostream

Provide Formatted I/O in a Mixed C and C++ Environment

SYNOPSIS

#include <stdiostream.h>

class stdiostream : public iostream
{
public:

stdiostream(FILE *file);

FILE* stdiofile();

stdiobuf* rdbuf();
Yi
DESCRIPTION
class stdiostream is declared in the stdiostream.h header file. It provides
iostream access to an external file accessed by C functions using the ANSI
standard I/O interfaces declared in stdio.h . Use of class stdiostream enables
a program to use stdio output and C++ iostream output in the same output file.

152

Stream Class Descriptions A Chapter 4

Similarly, class stdiostream enables your program to use stdio input and C++
iostream input to process the same input file.

PARENT CLASSES
class stdiostream inherits characteristics from class iostream , which in
turn inherits characteristics from class istream, class ostream, and class
ios . See the descriptions of these parent classes for the details on functions and
operators that are inherited.

CONSTRUCTORS

class stdiostream has one constructor:

stdiostream: :stdiostream(FILE *file)
creates a stream from the open FILE* file . The constructor assumes that
the file is open.

MEMBER FUNCTIONS
The following descriptions give the purpose and return type of the member
functions, as well as any other appropriate information.

stdiostream: :FILE* stdiofile()
returns the FILE* associated with this stream.

stdiobuf* stdiostream: :rdbuf ()
returns a pointer to the stdiobuf associated with the stream.

SEE ALSO

class stdiobuf

class streampos

Mark a Stream Location
SYNOPSIS

#include <iostream.h>

class streampos

{

public:
streampos();
streampos(long n);
operator long();
fpos_t* fpos();

Yi

DESCRIPTION
class streampos is declared in the iostream.h header file and is used to record
or specify a position in a stream. This class is for use only with streams that
support seeking.

Most streampos values are similar to C fpos_t values; that is, they record file
position values in a way private to the implementation. Because these values are
probably not useful for user-defined stream classes, it is also possible to create
integral-valued streampos objects. Note that integral-valued streampos objects
probably are not useful for positioning fstream or stdiostream objects.

CONSTRUCTORS
This class defines two constructors:

Standard Libraries /A Stream Class Descriptions 153

streampos: :streampos()
creates a streampos object with an unknown value.

streampos: :streampos (long n)
creates a streampos object from the value n . All kinds of stream buffers
support the following values of n :

streampos (0)
indicates the beginning of the stream.

streampos (EOF)
indicates the end of the stream.
strstream objects created from other values of n are not useful for
positioning fstream or stdiostream objects.

MEMBER FUNCTIONS
This class defines two member functions:

streampos: :operator long()
reduces the value of the streampos to a long integer. The value of
long(streampos (long val)) is defined to be equal to long_val . The
result of converting a streampos not constructed from a long is undefined.

fpos_t* streampos::£fpos()
returns a pointer to an fpos_t contained in the streampos . This fpos_t
contains a valid value only if this streampos was returned from a call to
seekoff () or seekpos() on a filebuf or stdiobuf object.

class strstream, istrstream, and ostrstream

Provide Formatted String I/O
SYNOPSIS

#include <strstream.h>

class istrstream : public strstreambuf,
public istream

{

public:
istrstream(char *str);
istrstream(char *str, int size);
~istrstream();
strstreambuf* rdbuf ();

}i

class ostrstream : public strstreambuf,
public ostream

{

public:
ostrstream(char *str, int size,
int mode = ios::out);
ostrstream();
~ostrstream();

char* str();
int pcount ();

154 Stream Class Descriptions A Chapter 4

strstreambuf* rdbuf();
}i

class strstream : public strstreambuf,

public iostream
{
public:
ostrstream(char *str, int size,
int mode = ios::out);
ostrstream();
~ostrstream();

char* str();

int pcount();

strstreambuf* rdbuf();
}i

class strstream : public strstreambuf,

public iostream

{

public:
strstream(char *str, int size,

int mode = ios::out);

strstream();
~strstream();
char* str();
int pcount();
strstreambuf* rdbuf();

Yi

DESCRIPTION

class strstream and its associated classes class istrstream and class
ostrstream are declared in the strstream.h header file. These classes support
string (array) I/O. They do this by customizing the I/O operations defined in the
base classes istream , ostream, and iostream .

PARENT CLASSES
class istrstream inherits characteristics from class istream . class
ostrstream inherits characteristics from class ostream, and class strstream
inherits characteristics from class iostream . All three of class istrstream,
ostrstream , and strstream inherit characteristics from class ios . See the
descriptions of these parent classes for the details on functions and operators that
are inherited.

CONSTRUCTORS
class strstream, class istrstream, and class ostrstream each have two
constructors. For a discussion of dynamic mode versus static mode streams, see
“class strstreambuf” on page 176 .

istrstream::istrstream(char *str)
creates a static mode istrstream such that extraction operations on the
stream will fetch the characters of str , up to the terminating ’\0’. str must
be null-terminated. The ’\0 ’character is not fetched. Seeks are allowed
within the array.

Standard Libraries /A Stream Class Descriptions 155

istrstream::istrstream(char *str,

int size)
creates a static mode istrstream such that extraction operations on the
stream will fetch characters from the array starting at str and extending for
size bytes. Seeks are allowed within the array.

ostrstream: :ostrstream(char *str,

int size, int mode = ios::out)
creates a static mode ostrstream referencing an area of size bytes starting
at the character pointed to by str . The get pointer is positioned at the
beginning of the array. The put pointer is also positioned at the beginning of
the array unless either the ios::ate or ios: :app bit is set in mode ; if either
of these bits is set, the put pointer is positioned at the space that contains the
first null character. Seeks are allowed anywhere within the array.

ostrstream: :ostrstream()
creates a dynamic mode ostrstream . This involves dynamically allocating
space to hold stored characters. Seeks are not allowed.

strstream: :strstream(char *str,

int size, int mode = ios::out)
creates a static mode strstream referencing an area of size bytes starting
at the character pointed to by str . The get pointer is positioned at the
beginning of the array. The put pointer is also positioned at the beginning of
the array unless either the ios::ate or ios: :app bit is set in mode ; if either
of these bits is set, the put pointer is positioned at the space that contains the
first null character.

strstream: :strstream()
creates a dynamic mode strstream . This involves allocating space to hold
stored characters. Seeks are not allowed. The get pointer is positioned at the
beginning of the array.

DESTRUCTORS

class istrstream, class ostrstream, and class strstream each have one
destructor:

istrstream::~istrstream() ostrstream::~ostrstream()

strstream: :~strstream()
closes the stream. For dynamic stream objects, closing means delete the array,
unless it has been frozen. For static stream objects, closing is meaningless.

MEMBER FUNCTIONS
The following functions are members of class istrstream, class ostrstream,
and class strstream.

char* ostrstream::str()

char* strstream::str()
call str() on the associated streambuf . These functions return whatever
the streambuf::str () call returned.

int ostrstream::pcount()
int strstream::pcount()
return the number of stored bytes.

strstreambuf* istrstream::rdbuf() strstreambuf*
ostrstream: :rdbuf () strstreambuf* strstream::rdbuf ()
return a pointer to the strstreambuf associated with the stream.

EXAMPLE
This example creates a strstream , inserts a string and a number, then extracts
them again, writing the contents of mystream to cout .

156 Buffer Class Descriptions A Chapter 4

strstream mystream;
float mynum=3.2;
float num2;

// Write mynum to mystream.
mystream << mynum << ends;

// Extract the contents of mystream
// and store them in num2.
mystream >> num2;

// Get the string from mystream and
// write it to cout.
cout << mystream.str();

SEE ALSO

class strstreambuf

Buffer Class Descriptions

This section provides the descriptions of the buffer classes, such as filebuf and
strstreambuf .

Using these classes is an advanced programming technique and is not required for
simple C++ programs that use I/O. As with the stream class descriptions, the protected
interface to the buffer classes is not included in the class descriptions that follow,
although it is implemented.

Each class (or occasionally, a set of related classes) is listed alphabetically. All class
descriptions include the following information:

O a synopsis of the class

O a brief description of the purpose and structure of the class

O a discussion of parent classes

0O a detailed description of the members of the class

O examples of using some of the members, if appropriate

o a SEE ALSO section that points you to related classes.

In addition, some class descriptions contain other sections, as appropriate for the

class.
The following classes are described in this section:

class filebuf class stdiobuf
class streambuf class strstreambuf
class bsambuf class bsam exit list

The bsambuf class is a specialized version of class streambuf and was added with
Release 6.00. It implements I/O via the record-oriented Basic Sequential Access Method
(BSAM) interface of the SAS/C OS Low-Level I/O functions. In addition to providing all
the functionality of the streambuf class, class bsambuf permits functions to be called
as BSAM exits via objects of class bsam exit list.

The bsambuf class is defined in the header file <bsamstr.h> . This header file also
defines a set of classes for performing formatted file I/O using a bsambuf object. These
include:

0O class bsamstream

O class ibsamstream

Standard Libraries /\ Buffer Class Descriptions 157

0O class obsamstream.

These classes are specialized versions of class iostream, istream, and ostream,
respectively.

For details about the streams library and the parent class of class bsambuf, refer
to “class streambuf” on page 173 in the “I/O Class Descriptions” section. For details
about the OS Low-Level I/O functions, refer to SAS/C Library Reference, Volume 2. For
more information about BSAM, refer to the IBM publication MVS/XA Data
Administration Guide (GC26-4140).

Note: The classes defined in <bsamstr.h> can be used in a C++ program that uses
the Systems Programming Environment (SPE) library. A

Note: The term character in the following class and function descriptions refers to
either a char , a signed char , or an unsigned char . 2

class hsambuf
Provide File I/O via BSAM
SYNOPSIS

class bsambuf : public streambuf
{
public:
enum error_id { Enone,
Estorage,
Eabend,
Eopen,
Eclose,
Eget,
Eput,
Efind,
Estow,
Eflush,
Eseek,
Etell
Yi
bsambuf ();
virtual ~bsambuf();
int is_open();
bsambuf *open(const char *filename,
int mode, const char *keywords = 0,
int willseek = 0,
bsam exit_list *user_exits = 0);
bsambuf *attach(DCB_t *dcb, int mode,
int willseek = 0);
int init directory();
int delete_member(const char *name);
int rename_member (const char *old_name,
const char *new_name);
int stow(const char *name,
char action = 'R’,
int user data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);

158

Buffer Class Descriptions A Chapter 4

int add member(const char *name,
int user data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
int replace_member(const char *name,
int user data_length = 0,
const void *user_data = 0,
int alias = 0, int TT = O,
int R = 0, int TTRN = 0);
int find(const char *name);
bsambuf *close();
char dcbrecfm();
short dcblrecl();
short dcbblksize();
DCB_t *getdcb();
int error_info(error_ids& id);
void clear_error_info();
void set_user_ data(void *user_data);
void *get user data();
const char *get_ddname();
const char *get_member();
virtual streambuf *setbuf(char *buffer,
int length);
virtual streampos seekoff (streamoff
offset,ios::seek _dir dir, int mode);
virtual streampos seekpos (streampos
pos, int mode);
virtual int sync();

+i

DESCRIPTION

The <bsamstr.h> header file defines class bsambuf. The bsambuf class is a
specialization of class streambuf that implements I/O via the record-oriented
BSAM interface of the OS Low-Level I/O functions. bsambuf objects are intended
for use in C++ programs that use the SPE version of the library, but they may also
be useful in other contexts.

In addition to the expected streambuf functionality, class bsambuf permits
functions to be called as BSAM exits via objects of class bsam_exit_list .

For more information about the OS Low-Level I/O functions, refer to SAS/C
Library Reference, Volume 2. For more information about BSAM, refer to the IBM
publication MVS/XA Data Administration Guide (GC26-4140).

RESTRICTIONS

o A file having the DCB characteristic LRECL=X cannot be connected to a
bsambuf.

0 "Short records," that is, records in a fixed-length record data set that are
shorter than the record length, are padded on the right. If the file was
opened in ios::binary mode, the record is padded with null (all bits 0)
characters, otherwise the record is padded with blank characters. Padding
characters are not removed from records on input.

O The number of pushback characters is limited to the size of the buffer, which
is either the logical record length of the file or the size specified by setbuf ,
whichever is smaller. In no case can characters be pushed back beyond a
record boundary.

Standard Libraries /\ Buffer Class Descriptions 159

PARENT CLASSES
class bsambuf inherits characteristics from class streambuf . See the
description of this parent class for the details on functions and operators that are
inherited.

CONSTRUCTORS

class bsambuf defines one constructor:

bsambuf: :bsambuf ()
constructs a bsambuf object for an unopened file.

DESTRUCTORS
Here is the class bsambuf destructor:

virtual bsambuf::~bsambuf ()
closes the file, if opened.

TYPES
class bsambuf defines one type, enum error_id . This type enumerates the
values that may be retrieved by the error_info function, described later in this
section.

NONVIRTUAL MEMBER FUNCTIONS
The following nonvirtual functions are defined in class bsambuf . The virtual
functions are described later in this section.

int bsambuf::is_open()
returns a value other than 0 if the bsambuf is connected to an open file;
returns 0 otherwise.

bsambuf *bsambuf::open

(const char *filename, int mode,

const char *keywords = O,

int willseek = O,

bsam _exit list *user_exits = 0)
opens a file named filename and connects the bsambuf to it. If the open is
successful, open returns a pointer to the bsambuf . If an error occurs during
the open, open returns 0. filename is a DDname optionally followed by a
parenthesized member name. filename may be in upper- or lowercase. For
example, ’sysin’ is a valid filename, as is ’obj (subrtn)’. mode is a
combination of one or more enum open_mode flags. One or more of ios::in,
ios::out , or ios::app must be set. keywords is a string of 0 or more DCB
macro keywords. The supported keywords are DSORG, RECFM, LRECL,
BLKSIZE, OPTCD, NCP, and BUFNO. The keywords and their values can be
in either upper- or lowercase. If several keywords are specified, they can be
separated by blanks or commas. For example, the keyword string
'recfm=£fb,blksize=6400,lrecl1=80" corresponds to the DCB specification

160

Buffer Class Descriptions A Chapter 4

DCB=(RECFM=FB,BLKSIZE=6400,LRECL=80). By default, no keywords are
used.

DCB attributes may be specified via the keywords string or by the DD
statement or TSO ALLOCATE for the DDname. If any attributes are
unspecified for a new file, the following default values are used:

o If the record format is not specified, it defaults to variable-length,

blocked records (RECFM=VB).

o If the record length is not specified, the default is 259 for a

variable-length file or 80 for a fixed-length file.

o If the block size* is not specified, the default is shown in the following

table:

Format Default Blocksize

RECFM=F either the logical record length or the
largest multiple of the logical record
length less than 6144, whichever is larger

RECFM=V either the logical record length + 4 or
6144, whichever is larger

RECFM=U 255

If the value of willseek is 0, seeking is disabled for this file. Any attempt
to use either the seekoff and seekpos function will result in an error.
Specify a value other than 0 for this parameter if you intend to use either
seekoff or seekpos on this file. The default value is 0. user_exitsis a
pointer to a bsam_exit_list object describing a number of functions to be
called as BSAM exit routines. See “class bsam_exit_list” on page 165 for
information about this parameter. By default, no user exits are enabled.

Restrictions
0 The ios::app mode flag is treated as ios::ate.
0 The ios: :nocreate and ios: :noreplace mode flags are ignored.

bsambuf *bsambuf::attach(DCB_t *dcb,
int mode, int willseek = 0)

associates a DCB that has already been created by either the osdcb or
osbdcb function to a bsambuf and opens the file. If the open is successful,
attach returns a pointer to the bsambuf . If an error occurs during the open,
attach returns 0. mode and willseek have the same meaning as they have
in the open function.

Restrictions
0 The DCB cannot already be open.
O The bsambuf implementation reserves the DCBUSER field for its own
use.
0 The ios::app mode flag is treated as ios::ate.
0 The ios: :nocreate and ios: :noreplace mode flags are ignored.

* If the program is running on a version of 0S/390 that supports SMS, a default block size is not assigned unless the file has

undefined-length records or is a tape.

Standard Libraries /\ Buffer Class Descriptions 161

int bsambuf::init_directory()
invokes the "initialize directory" function of the STOW macro on the file
(which must be a PDS) connected to the bsambuf . The value returned is 0 if
the function succeeds or is a value other than 0 otherwise.

int bsambuf::delete_member

(const char *name)
deletes the PDS member identified by name from the file connected to the
bsambuf . name may be specified in either upper- or lowercase. If name is
shorter than eight characters it will be padded on the right with blanks. The
value returned is 0 if the member is successfully deleted or is a value other
than 0 otherwise.

int bsambuf::rename_member

(const char *old_name,

const char *new_name)
renames the PDS member identified by o1d_name to new_name . o1d_name
and new_name may be specified in either upper- or lowercase. If either name
is shorter than eight characters it will be padded on the right with blanks.
The value returned is 0 if the member is successfully renamed or is a value
other than 0 otherwise.

int bsambuf::stow(const char *name,

char action = 'R’,

int user_data_length = 0,

const void *user_data = 0,

int alias = 0, int TT = O,

int R = 0, int TTRN = 0)
adds or replaces a member or alias in the file connected to the bsambuf . The
file must be a PDS. name is the name of the member or alias. name may be
specified in either upper- or lowercase. If name is shorter than eight
characters, it will be padded on the right with blanks. action may be either
'R’, indicating that name replaces an existing member or alias in the PDS, or
’A’, which indicates that name is to be added to the PDS. The default value is
‘R’. user_data_length is the length, in bytes, of the user data to be
associated with name in the PDS directory. This value must be nonnegative
and no greater than 62. user_data is a pointer to the user data. The default
value of both user_data_length and user_data is 0.

If alias is a value other than 0, then name is treated as an alias to be
added or replaced. The default value of alias is 0. TT and R are the relative
track and record number, respectively, of name . These values are ignored
when alias is 0. By default both are 0.* TTRN is the number of TTRN fields
in user_data . This must be a nonnegative number no greater than 3. By
default it is 0. stow returns a value other than 0 if any of the arguments are
out of bounds. If stow invokes the STOW macro, with one exception, stow(
Jreturns the return code from the STOW macro. (This code can also be
retrieved via the error_info function.) In general, the STOW macro returns
0 if the requested action succeeded, or a value other than 0 otherwise. The
exception occurs when action is 'R’ and the STOW macro returns 8. This
return code from the STOW macro indicates that the member or alias did not
previously exist and so was added. In this case, stow returns 0.

* class bsambuf defines no function that can retrieve this information. Use the osnote function in the OS Low-Level I/

O group of functions to get the TTRz value for the current position in the file.

162

Buffer Class Descriptions A Chapter 4

int bsambuf: :add_member (const char *name,

int user_data_length = O,

const void *user_data = O,

int alias = 0, int TT = O,

int R = 0, int TTRN = 0)
is equivalent to the stow function when action is ’A’. The arguments and
return value are identical to stow .

int bsambuf::replace member

(const char *name,

int user_data_length = O,

const void *user_data = O,

int alias = 0, int TT = O,

int R = 0, int TTRN = 0)
is equivalent to the stow function when action is 'R’. The arguments and
return value are identical to stow .

int bsambuf::find(const char *name)
positions the file, which must be a PDS, to the start of the member identified
by name . name may be specified in either upper- or lowercase. If name is
shorter than eight characters it will be padded on the right with blanks.
find returns 0 if the file is successfully positioned, or a value other than 0
otherwise.

bsambuf *bsambuf::close()
causes any outstanding output to be flushed, then closes the file and
disconnects the bsambuf from it (even if errors occur). The bsambuf ’s I/O
state is cleared. If the close is successful, close returns a pointer to the
bsambuf . If an error occurs, close returns 0.

char bsambuf::dcbrecfm()
returns the value of the DCBRECFM field in the DCB. The bits in this field
describe the record format of the file connected to the bsambuf . The
<osio.h> header file contains preprocessor symbol definitions for the bits
that may be set in this field. The most commonly used flags are shown in the
following table:

Symbol | Format
DCBRECF | fixed
DCBRECV |variable
DCBRECU |undefined (see Note)
DCBRECBR | blocked

Note: DCBRECU is equivalent to ORing DCBRECF with DCBRECV.
When examining the value returned by debrecfm , you must always check
for DCBRECU before testing the DCBRECF or DCBRECYV flags. A

short bsambuf::dcblrecl()

short bsambuf::dcbblksize()
return the logical record length (LRECL) and block size (BLKSIZE) of the file
connected to the bsambuf .

DCB_t *bsambuf::getdcb()

Standard Libraries /\ Buffer Class Descriptions

163

returns a pointer to the DCB associated with the file connected to the

bsambuf .

int bsambuf::error_info(error_id& id)
returns the return code from the first failed low-level routine. If a function
receives a value other than 0 as a return code from a low-level routine, it
saves the return code and a value of type error_id indicating which routine
failed. error info retrieves this information, which may be used for a

detailed error analysis.

The value returned in the id argument may have one of the values shown
in the following table. Unless otherwise noted, the failing routine is a BSAM

routine in the OS Low-Level I/O group of functions.
error_id Routine
Enone (no error)
Estorage GETMAIN
Eabend BSAM?
Eopen osopen
Eclose osclose
Eget osget3
Eput osput

Efind osfind
Estow osstow
Eflush osflush
Eseek osseek
Etell ostell

1 This value is set when storage cannot be

error_info is always 4.

allocated for a buffer.

The code returned by

2 This value is returned when an "ignorable" ABEND has occurred. An ignorable ABEND does
not terminate the program but does prevent any further I/O from being performed on the file
connected to the bsambuf. The value of the return code is that of the completion code field

in the ABEND exit parameter list.

3 Although end-of-file causes osget to return a value other than zero as a return code, this

value is not stored as an error code.

If, after a low-level routine has failed and its error information stored, a
subsequent low-level routine fails, the error information for that failure is not

stored unless clear_error_info

has been called.

void bsambuf::clear_ error_info()
sets the stored error information to the initial state. In this state, the value
of error_id is Enone and the return code is 0.

void bsambuf::set_user_data
(void *user_data)

stores the value in user_data for later retrieval by get_user_data . The
value may be any value required by the program. It is ignored by the stream.

void *bsambuf::get_user_data()

retrieves the value stored by set_user_data .

164 Buffer Class Descriptions A Chapter 4

void *bsambuf::get_ddname()
returns a pointer to the DDname part of the filename argument to open . The
DDname is uppercased and terminated by a ’\0 ’. If the DCB was associated
to the bsambuf by the attach function, the pointer points to a 0-length string.

void *bsambuf::get_member ()
returns a pointer to the member part of the filename argument to open . The
member name is uppercased and terminated by a ’\0 ’. If the DCB was
associated to the bsambuf by the attach function, or the filename did not
specify a member name, the pointer points to a 0-length string.

VIRTUAL MEMBER FUNCTIONS

virtual streambuf *bsambuf::setbuf

(char *buffer, int length)
offers the character array starting at buffer and containing length bytes as
a buffer for use by the bsambuf . If buffer is 0 or length is less than or
equal to 0, the bsambuf is unbuffered. (However, buffering by BSAM will still
take place.) This function must be called before any I/O is requested for this
bsambuf and can be called only once for the bsambuf . If the buffer will be
used by the bsambuf , setbuf returns a pointer to the bsambuf .

If this function is called after I/O has been requested for the bsambuf , it
does nothing and returns 0. If this function is called more than once,
subsequent calls for the bsambuf do nothing except return 0. This function
does not affect the I/O state of the bsambuf .

By default, the buffer size is equal to the number of data characters in a
record. In most cases, use of the setbuf function will have little, if any, effect
on I/O performance. However, changing the bsambuf to be unbuffered will
severely degrade the performance. Also note that the underlying BSAM
routines will always buffer the data, whether the bsambuf is unbuffered or
buffered.

virtual streampos bsambuf::seekoff

(streamoff offset, ios::seek_dir dir, int mode)
sets the get and put pointers to a new position, as indicated by offset and
dir . For a bsambuf , seekoff will only accept 0 as the value of offset. The
only acceptable values for dir are ios::beg and ios::cur . (Refer to the
description of streambuf: :seekoff for an explanation of these two values.)
If dir is ios: :beg , the file is positioned to the beginning. If dir is
ios: :cur, the position of the file is not changed. The new location of the file
is returned in the streampos .

For bsambuf objects, the get and put pointers are the same, so the mode
argument is ignored. seekoff returns (streampos) EOF if offset is a value
other than 0, if dir is neither ios: :beg or ios: :cur , or if the file position
cannot be moved. seekoff will also always return (streampos) EOF if
willseek was 0 when the file was connected to the bsambuf by either open
or attach .

virtual streampos bsambuf::seekpos

(streampos pos, int mode)
sets the get and/or put pointers to a new position, as indicated by streampos
. This function returns the new position, or seekpos (EOF) if an error occurs.
For bsambuf objects, the get and put pointers are the same, so the mode
argument is ignored.

Standard Libraries /\ Buffer Class Descriptions 165

virtual int sync()
tries to force the state of the get and put pointers of the bsambuf to be
synchronized with the state of the file it is associated with. If some characters
have been buffered for output they will be written to the file.* Characters that
have been buffered for input will be discarded. Note that synchronization is
not possible unless the file is positioned at a record boundary.

This function returns 0 if synchronization succeeds, otherwise it returns
EOF.

SEE ALSO

class bsam exit list, class bsamstream, class ibsamstream, class
obsamstream

class hsam_exit_list
Define BSAM Exit Routines
SYNOPSIS

#include <bsamstr.h>

class bsam exit list {
bsam exit_list();
bsam exit_list(exit_t *list);
int use(_e_exit code, _e exit fp exit);
int use(_e_exit code, void *exit);
int remove(_e_exit code,_e exit_ fp exit);
int remove(_e_exit code, void *exit);

}i

DESCRIPTION
The <bsamstr.h> header file defines class bsam_exit_list . A pointer to a
bsam_exit_list object can be passed to the bsambuf: :open , bsamstream: :open
, ibsamstream: :open , or obsamstream:open function to define one or more
functions that are to be used as DCB exit routines.

RESTRICTIONS
0 Functions that serve as DCB exit routines cannot be member functions.
0 Only one function can be called for each type of DCB exit.

o0 No more than 18 exits can be specified in each bsam_exit_list object. OS
Low-Level I/O defines only 18 distinct exits.

CONSTRUCTORS

class bsam_exit_list defines two constructors:

bsam exit list::bsam exit list()
constructs an object that defines no exits.

bsam exit list::bsam exit list

(exit_t list[])
constructs an object that defines the exits specified by 1list . list is an
array of type exit_t . This type is defined as shown here:

typedef struct {

unsigned exit code;

* The sync function invokes the low-level osflush routine to flush all buffered characters to the operating system. Note,
however, that all characters may not be written immediately, due to additional buffering performed by the operating system.

166 Buffer Class Descriptions A Chapter 4

union {
_e exit fp exit_addr;
void *area_addr;
Yi
} exit_t;

exit_code may be any one of the values defined for the enumeration type
_e_exit , which is also defined as shown here:

enum _e exit {INACTIVE = 0, INHDR 1,
OUTHDR = 2, INTLR = 3, OUTTLR 4,
OPEN = 5, EOV = 6, JFCB = 7,
USER_TOTAL = 10, BLK_COUNT =11,
DEFER_INTLR = 12,
DEFER_NONSTD_INTLR = 13, FCB = 16,
ABEND = 17, JFCBE = 21,
TAPE_MOUNT = 23, SECURITY = 24,
LAST = 128, SYNAD = 256};

The last entry in the list must set area_addr to 0 and have an exit_code
value of LAST or, if either exit_addr or area_addr is a value other than O,
you must OR the exit_ code value with LAST.

Here is an example using this constructor:

static int open_exit(void *rl, void *r0)
{
// DCB open exit processing...
return 0;
}
static int abend_exit(void *rl, void *r0)
{
// DCB abend exit processing...
return 0;
}
int main()
{
exit_t exit_array[] = {{OPEN, open_exit},
{ABEND, abend exit},
{LAST, 0}
Yo
// Construct "list" with
// two DCB exits.
bsam exit list list(exit_array);

// Open DDname "OUT"
// defining two DCB exits.
obsamstream o("out", ios::out, 0, O,
&list);

/* remainder of program */

DESTRUCTORS
Here is the class bsam exit_ list destructor:

Standard Libraries /\ Buffer Class Descriptions 167

virtual bsam exit list::~bsam exit list()

NONVIRTUAL MEMBER FUNCTIONS
The following nonvirtual functions are defined in class bsam exit list . This
class defines no virtual functions.

Note: BSAM exits may be either functions or data areas. Therefore, class
bsam_exit_list defines functions for both types. o

int use(_e_exit code, _e exit fp exit)
adds a pointer to a function to be used as a DCB exit to the bsam_exit_list
. The pointer must have type e exit_ £fp , which is defined as:

typedef __remote int (*_e_exit_ fp)
(void *, void *)

The exit must be a static member function or a nonmember function. The
BSAM exit type is specified by code . If the exit is added, use returns 0.
Otherwise it returns a value other than 0.

On entry to a BSAM exit, the first argument is the value of general
register 1 as established by BSAM. Likewise, the second argument is the
value of general register 0.

ABEND exit considerations
A default DCB ABEND exit is always defined for a bsambuf . If you define an
DCB ABEND exit for the bsambuf , your exit will be run first, followed by the
default exit. Your exit must set the option mask byte in the ABEND exit
parameter list before returning. If the option mask byte is set to 4, indicating
that the ABEND should be "ignored," the default exit causes the DCB to be
closed and freed.

For your convenience, the <bsamstr.h> header file contains a partial
definition of the parameter list BSAM creates for the DCB ABEND exit. On
entry to the exit function, general register 1 (the first argument) contains a
pointer to this parameter list:

struct Abend exit_parms {
char completion_code :12;
char :4;
char return_code;
union {
struct {
char

~e

char recover :
char ignore
char delay

...... ..
e
~

~e

char
} canj;
char option mask;
}i
DCB_t *dcb;
}i
// Set "option _mask" to this value
// to ignore the ABEND.
const int IGNORE_ABEND = 4;

int remove(_e_exit code, _e exit fp exit)
removes an exit function from the bsam_exit_list . If an exit having the
matching exit code and function pointer is not in the bsam exit list,

168 Buffer Class Descriptions A Chapter 4

remove returns a value other than 0. Otherwise, remove removes the exit
and returns 0.

int use(_e exit code, void *exit)
adds a data pointer to be used as a DCB exit to the bsam_exit_list . The
BSAM exit type is specified by code .
If the exit is added, use returns 0. Otherwise it returns a value other than
0.

int remove(_e_exit code, void *exit)
removes a data exit from the bsam_exit_list . If an exit having the
matching exit code and address is not in the bsam_exit_list , remove
returns a value other than 0. Otherwise, remove removes the exit and
returns 0.

SEE ALSO

class bsambuf, class bsamstream, class ibsamstream, class
obsamstream

class filebuf

Provide File I/O
SYNOPSIS

#include <fstream.h>
class filebuf : public streambuf
{
public:
filebuf();
virtual ~filebuf();
int is_open();
filebuf* open(const char *name,
int mode,
const char *amparms = "",
const char *am = "");
filebuf* close();
virtual streampos seekoff (streamoff
offset, seek dir place,
int mode = ios::in|ios::out);
virtual streampos seekpos(streampos pos,
int mode = ios::in|ios::out);
virtual streambuf* setbuf(char *p,
size_t len);
virtual int sync();

+i

DESCRIPTION
The fstream.h header file defines class filebuf . filebuf objects represent
the lowest level of file I/O that is standard C++. They provide a specialized form of
streambufs that uses a file as the source or destination (sink) for characters.
Input corresponds to file reads and output corresponds to file writes. For filebuf
objects, the get and put pointers are tied together. That is, if you move one, you
move the other. If the file has a format that allows seeks, a f£ilebuf allows seeks.
filebuf I/O guarantees at least four characters of putback. You do not need to

Standard Libraries /\ Buffer Class Descriptions 169

perform any special action between reads and writes (in contrast to standard C I/
O, where such seeks are required).

When a filebuf is connected to a file, the filebuf is said to be open. There is
no default open mode, so you must always specify the open mode when you create
a filebuf .

PARENT CLASSES
class filebuf inherits characteristics from class streambuf . See the
description of this parent class for the details on functions and operators that are

inherited.

CONSTRUCTORS
class filebuf defines one constructor:

filebuf::filebuf()
creates an unopened file.

DESTRUCTORS
Here is the class filebuf destructor:

virtual filebuf::~filebuf()
closes the file, if opened.

NONVIRTUAL MEMBER FUNCTIONS
The following nonvirtual functions are defined in class filebuf . The virtual
functions are described later in this section.

int filebuf::is_open()
returns a nonzero value if the filebuf is connected to an open file; returns 0
otherwise.

filebuf* filebuf::open(const char *name,

int mode, const char *amparms = "",

const char *am = "")
opens a file named name and connects the filebuf to it. If the open is
successful, open () returns a pointer to the filebuf . If an error occurs
during the open (for example, if the file is already open), open () returns O.
See “enum open_mode” on page 137 for a description of the mode argument.

An explanation of filename specification and the arguments amparms and

am can be found in the SAS/C Library Reference, Volume 1. (Note that the
order of the amparms and am arguments in this function is the opposite of the
order in which they appear in calls to the C afopen function.) You may also
want to refer to the SAS/C Compiler and Library User’s Guide.

filebuf* filebuf::close()
causes any outstanding output to be flushed, then closes the file and
disconnects the filebuf from it (even if errors occur). Also, the filebuf ’s I/
O state is cleared. If the close is successful, close() returns a pointer to the
filebuf . If an error occurs during the close, close () returns O.

VIRTUAL MEMBER FUNCTIONS
The following functions override their base class definitions (in class streambuf

).

virtual streampos filebuf::seekoff

(streamoff offset, seek_dir place,

int mode = ios::in|ios::out)
sets the get and put pointers to a new position, as indicated by place and
offset . (Descriptions of offset and place are contained in the
streambuf: :seekoff () description.) This function returns the new position,

170

Buffer Class Descriptions A Chapter 4

or it returns streampos (EOF) if an error occurs (for example, the file may not
support seeking, or you may have requested a seek to a position preceding
the beginning of the file). The position of the file after an error is undefined.
Some files support seeking in full, and some impose lesser or greater
restrictions on seeking. seekoff () corresponds to the C fseek function, and
seekpos () corresponds to the C £setpos function. Rules for these similar C
functions are given in the SAS/C Library Reference, Volume 1.

For filebuf objects, the get and put pointers are the same (moving either
one moves the other). Because of this, you do not have to use the last
argument, mode .

virtual streampos filebuf::seekpos

(streampos pos,

int mode = ios::in|ios::out)
sets the get and/or put pointers to a new position, as indicated by streampos
. This function returns the new position, or it returns seekpos (EOF) if an
error occurs. For filebuf objects, the get and put pointers are the same
(moving either one moves the other). Because of this, you do not have to use
the last argument, mode .

virtual streambuf* filebuf::setbuf

(char *p, size_t len)
offers the character array starting at p and containing len bytes as a buffer
for use by the filebuf . If p is null or len is less than or equal to 0, the
filebuf is unbuffered. (However, buffering by the SAS/C Library and the
operating system may still take place.) This function must be called before
any I/O is requested for this filebuf and can be called only once for the
filebuf . Under normal conditions, setbuf () returns a pointer to the
filebuf .

If this function is called after I/O has been requested for the filebuf , this
function does nothing and returns NULL . If this function is called more than
once, subsequent calls for the filebuf do nothing except return NULL . This
function does not affect the I/O state of the filebuf .

virtual int filebuf::sync()
tries to force the state of the get or put pointer of the filebuf to be
synchronized with the state of the file it is associated with. This attempt at
synchronization may result in the following:

0 characters being written to the file, if some have been buffered for
output. Note that all characters may not be written immediately due to
additional buffering performed by the operating system.

O an attempt to seek the file, if characters have been read and buffered for
input.

This function usually returns 0; if synchronization is not possible, it returns
EOF.

IMPLEMENTATION
Usually, filebuf objects directly access the native I/O facilities of the system on
which they are implemented. For this release of the SAS/C C++ Development
System, filebuf objects are implemented in terms of C FILE* s. This may be
changed in later versions of this library, and no assumptions should be made of
this particular implementation.

SEE ALSO

class fstream, class ifstream,
class ofstream

Standard Libraries /\ Buffer Class Descriptions 17

class stdiobuf

Provide I/O in a Mixed C and C++ Environment
SYNOPSIS

#include <stdiostream.h>

class stdiobuf : public streambuf
{
public:

stdiobuf (FILE *file);

virtual ~stdiobuf();
int is_open();
FILE* stdiofile();

streampos seekoff (streamoff offset,
seek dir place,
int mode =
ios::in|ios::out);
streampos seekpos(streampos pos,
int mode =
ios::in|ios::out);
virtual int sync();

}i

DESCRIPTION
The stdiostream.h header file declares class stdiobuf . stdiobufs are
intended to be an interface to ANSI C style FILE *s on those systems that provide
FILE *s. Calls to stdiobuf member functions are mapped directly to calls to ANSI
C stdio functions.
Because stdiobuf objects provide no buffering other than that provided by the
C stdio functions, any changes to file attributes or contents made via a stdiobuf
are reflected immediately in the stdio data structures. This includes file
positioning using seekoff () or seekpos () . For stdiobuf objects, the get and
put pointers are tied together. That is, if you move one, you move the other.
Unless you are mixing streambuf and stdio access to the same file, you should
use class filebuf instead of class stdiobuf . Use of filebuf objects may
improve performance.

PARENT CLASSES
class stdiobuf inherits characteristics from class streambuf . See the
description of this parent class for the details on functions and operators that are
inherited.

CONSTRUCTORS

class stdiobuf defines one constructor:

stdiobuf::stdiobuf (FILE *file)
creates a stdiobuf object associated with an open FILE *.

DESTRUCTORS
Here is the class stdiobuf destructor:

virtual stdiobuf::~stdiobuf ()
closes the associated FILE *, if opened.

172 Buffer Class Descriptions A Chapter 4

NONVIRTUAL MEMBER FUNCTIONS
The following descriptions detail the nonvirtual member functions for class
stdiobuf . The redefined virtual functions are described later in this section.

int stdiobuf::is_open()
returns a nonzero value if the stdiobuf is connected to an open file; returns
0 otherwise.

FILE* stdiofile()
returns the associated FILE *.

VIRTUAL MEMBER FUNCTIONS
The following functions override their base class definitions
(in class streambuf).

streampos stdiobuf::seekoff

(streamoff offset, seek_dir place,

int mode = ios::in|ios::out)
moves the get and/or put pointers of the streambuf . place can be one of the
following:

ios::beg
indicates the start of file.

ios::cur
indicates the current get and put position.

ios::end

indicates the end of file.

offset is a positive or negative integer position relative to place. mode can
be one of the following:

ios::in
moves the get pointer.

ios::out
moves the put pointer.

ios::in|ios::out
moves both pointers.
Whether seekoff () and seekpos () work for an stdiobuf depends on the
characteristics of the associated FILE* . See the SAS/C Library Reference,
Volume 1 for more information on FILE* characteristics.

streampos stdiobuf::seekpos

(streampos pos,

int mode = ios::in|ios::out)
moves the get and/or put pointers of the streambuf . pos must be a
value returned by a previous call to seekoff () . mode can be one of the
following:

ios::in

moves the get pointer.
ios::out

moves the put pointer.
ios::in|ios::out

moves both pointers.

Some stream buffers do not support seeking. For those stream buffers,
seekpos () returns streampos (EOF) to indicate an error occurred. See

Standard Libraries /\ Buffer Class Descriptions 173

the documentation for particular stream buffer classes (such as filebuf
)for more information on what kinds of seeking are allowed.

virtual int stdiobuf::sync()
tries to force the state of the get or put pointer of the stdiobuf to be
synchronized with the state of the associated file. This attempt at
synchronization may result in the following:
0 buffered for output. Note that all characters may not be written
immediately due to additional buffering performed by the operating
system.

O an attempt to seek the file, if characters have been read and
buffered for input.

This function usually returns 0; if synchronization is not possible it
returns EOF.

SEE ALSO

class stdiostream

class streambuf

Provide Base Class for All Stream Buffers
SYNOPSIS

#include <iostream.h>

class streambuf

{

public:
int in_avail();
int out_waiting();

int sbumpc();

int sgetc();

int sgetn(char *s, int n);
int snextc();

void stossc();

int sputbackc(char c);
int sputc(int c);
int sputn(const char *s, int n);

virtual int sync();
virtual streampos seekoff(streamoff
offset, seek dir place,
int mode = ios::in|ios::out);
virtual streampos seekpos(streampos pos,
int mode = ios::in|ios::out);
virtual streambuf* setbuf(char *p,
int len);

+i

DESCRIPTION
class streambuf is declared in the iostream.h header file and is the base class
for all stream buffers. Stream buffers manage the flow of characters between the

174 Buffer Class Descriptions A Chapter 4

program and the ultimate sources or consumers of characters, such as external
files. The streambuf class defines behavior common to all stream buffers. More
specialized classes can be derived from class streambuf to implement
appropriate buffering strategies for particular stream types. For instance,
filebufs implement buffering suitable for file input or output and
strstreambufs implement buffering suitable for transfer of data from strings in
memory. A streambuf is almost never used directly (classes derived from it are
used instead) but more often acts as an interface specification for derived classes.

The functions defined by the streambuf interface are divided into two groups:
nonvirtual functions and virtual functions. These sets of functions are described
separately.

CONSTRUCTORS AND DESTRUCTORS
class streambuf defines two constructors and one destructor. All these functions
are protected. This ensures that class streambuf is used only as a base class for
derived classes.

NONVIRTUAL MEMBER FUNCTIONS
The following list describes the nonvirtual streambuf interface.

int streambuf::in_avail()
returns the number of characters that have been buffered for input, that is,
the number of characters that have been read from the ultimate source of the
input but have not been extracted from the streambuf . Generally, this
information is useful only for classes derived from class streambuf .

int streambuf::out_waiting()
returns the number of characters that have been buffered for output, that is,
the number of characters that have been inserted into the streambuf but
have not been delivered to its ultimate destination. Generally, this
information is useful only for classes derived from class streambuf .

int streambuf::sbumpc()
advances the get pointer one character and returns the character preceding
the advanced pointer. If the get pointer is at the end of the stream, the get
pointer is not moved and EOF is returned.

int streambuf::sgetc()
returns the character following the get pointer. This function does not move
the get pointer. If the get pointer is at the end of the stream, this function
returns EOF.

int streambuf::sgetn(char *s, int n)
extracts the next n characters from the stream into s and positions the get
pointer after the last extracted character. If there are less than n characters
between the get pointer and the end of the stream, those characters are
extracted into s and the get pointer is moved to the end of the stream. This
function returns the number of characters extracted into s .

int streambuf::snextc()
advances the get pointer one character and returns the character after the
advanced pointer. If the get pointer is at the end of the stream, the get
pointer is not moved and EOF is returned.

void streambuf::stossc()
advances the get pointer one character.

int streambuf::sputbackc(char c)
backs the get pointer up one character, returning ¢ . ¢ must be the character
that the get pointer is moved over; if it is not, the effects of this function are

Standard Libraries /\ Buffer Class Descriptions 175

undefined. For example, if the get pointer is at the start of the stream and
you call this function, the effect is undefined.

Also, each class derived from streambuf may impose a limit on the
number of characters that can be moved over by sputbackec() . If you exceed
this limit, this function returns EOF. For some classes, you cannot back up
over any characters.

int streambuf::sputc(int c)
stores c in the position following the put pointer, replacing any pre-existing
character, and then advances the put pointer one position. This function
returns c if the operation is successful, or EOF if an error occurs.

int streambuf::sputn(const char *s,

int n)
stores after the put pointer the first n characters addressed by s , replacing
any pre-existing characters in those positions, and then advances the put
pointer past the last character stored. This function returns the number of
characters successfully stored.

VIRTUAL MEMBER FUNCTIONS
The following virtual functions are members of class streambuf . These
functions can be redefined in derived classes (both those supplied by the library
and those you define yourself) to customize the behavior of streambuf objects.

virtual int streambuf::sync()
tries to force the state of the get or put pointer of the streambuf to be
synchronized with the state of the sink or source it is associated with. This
function returns 0 if successful, or EOF if an error occurs.

virtual streampos streambuf::seekoff

(streamoff offset, seek_dir place,

int mode = ios::in|ios::out)
moves the get and/or put pointers of the streambuf . place can be one of the
following:

ios::beg
indicates the start of file.

ios::cur
indicates the current get or put position.

ios::end

indicates the end of file.

offset is a positive or negative integer position relative to place. mode can
be one of the following:

ios::in
moves the get pointer.

ios::out
moves the put pointer.

ios::in|ios::out
moves both pointers. This is the default value.

Some kinds of seeking are not supported for certain stream buffers. If a
particular stream buffer does not support the seeking specified, this function
returns streampos (EOF) to indicate an error occurred. See the
documentation for particular stream buffer classes (such as filebuf) for
more information on what kinds of seeking are allowed.

176 Buffer Class Descriptions A Chapter 4

virtual streampos streambuf::seekpos

(streampos pos,

int mode = ios::in|ios::out)
moves the get and/or put pointers of the streambuf . pos must be a value
returned by a previous call to seekoff () . mode can be one of the following:

ios::in
moves the get pointer.

ios::out
moves the put pointer.

ios::in|ios::out
moves both pointers. This is the default value.

Some stream buffers do not support seeking. For those stream buffers,
seekpos () returns streampos (EOF) to indicate an error occurred. See the
documentation for particular stream buffer classes (such as filebuf)for
more information on what kinds of seeking are allowed.

virtual streambuf* streambuf::setbuf
(char *p, int len)
allocates a buffer area to be used for buffering within the streambuf .

class strstreambuf
Provide String I/O
SYNOPSIS

#include <strstream.h>

class strstreambuf : public streambuf
{
public:
strstreambuf();
strstreambuf (int len);
strstreambuf (void* (*a) (long),
void (*f) (void¥*));
strstreambuf (char *b, int size,

char *pstart = 0);
~strstreambuf();

void freeze(int n = 1);
char* str();

virtual streambuf* setbuf(char *p,
int len);
inc sync();
virtual streampos seekoff
(streamoff offset,
seek_dir place,
int mode = ios::in|ios::out);

virtual streampos seekpos
(streampos pos,
int mode = ios::in|ios::out);

Standard Libraries /\ Buffer Class Descriptions 177

}i

DESCRIPTION
The header file strstream.h declares class strstreambuf , which specializes
class streambuf to provide for I/O using arrays of char (strings).

For strstreambuf objects, the get and put pointers are separate. That is, if you
move one of these pointers you do not necessarily move the other. strstreambuf
objects are created in one of two different modes, dynamic mode or static (fixed)
mode. Once a strstreambuf is created, it does not change modes. The following
list explains the difference between fixed and dynamic mode:

dynamic mode
means the strstreambuf does not have a fixed size and grows as needed.
When the array associated with a dynamic mode strstreambuf is filled, the
strstreambuf automatically allocates a larger array, copies the old smaller
array to the larger, and frees the smaller array. The functions used to handle
allocating and freeing the arrays are determined by the constructor used to
create the strstreambuf (see the description of constructors for “class
strstreambuf” on page 176 .

static mode
means the strstreambuf has a fixed size that does not change. If the array
associated with a static mode strstreambuf is filled, further writes to the
strstreambuf may corrupt memory. Be cautious when inserting into static
mode strstreambuf s.

Note: Do not confuse static mode with the static storage class modifier. A
class strstreambuf defines some member functions of its own and also
redefines several virtual functions from the base class.

PARENT CLASSES
class strstreambuf inherits characteristics from class streambuf . See the
description of this parent class for the details on functions and operators that are
inherited.

CONSTRUCTORS

class strstreambuf defines four constructors:

strstreambuf::strstreambuf ()
creates an empty strstreambuf object in dynamic mode.

strstreambuf::strstreambuf (int len)
creates an empty strstreambuf object in dynamic mode. The initial allocation
uses at least len bytes.

strstreambuf::strstreambuf

(void* (*a) (long), void (*f) (void¥*))
creates an empty strstreambuf object in dynamic mode. a is the allocation
function to be used to do the dynamic allocation and takes as its argument a
long , which specifies the number of bytes to allocate. If a is NULL , the
operator new is used instead of a . £ is the deallocation function, which
frees the space allocated by a . £ takes as its argument a pointer to an array
allocated by a . If £ is NULL , the operator delete is used instead of £ .

178 Buffer Class Descriptions A Chapter 4

strstreambuf::strstreambuf (char *b,

int size, char *pstart = 0)
constructs a strstreambuf object in static mode; it does not grow
dynamically. b specifies where to start the array and size specifies the size
of the array, as explained in the following list.

o0 If size is positive, the array is size bytes long.

0 If size is 0, the function assumes b points to the start of a
null-terminated string. In this case, the string, not including the \0’
character, is considered to be the strstreambuf .

0 If size is negative, the strstreambuf is assumed to be indefinitely long.

The get pointer receives the value of b and the put pointer receives the value
of pstart . If pstart is NULL , then storing characters in the strstreambuf
is not allowed and causes the function to return an error.

DESTRUCTORS
Here is the class strstreambuf destructor:

strstreambuf::~strstreambuf ()
closes the strstreambuf object. The destructor causes any memory allocated
for the strstreambuf to be freed.

NONVIRTUAL MEMBER FUNCTIONS
class strstreambuf defines two nonvirtual member functions.

void strstreambuf::freeze(int n = 1)

controls the automatic deletion of the array. If n is nonzero, which is the
default, the array is not deleted automatically. If n is 0, the array is unfrozen
and is deleted automatically. The array is deleted whenever a dynamically
created strstreambuf needs more space or when the destructor is called.
This function only applies to dynamically created strstreambuf s; it has no
effect on statically created strstreambuf s.

If you try to store characters in a frozen array, the effect is undefined.

char* strstreambuf::str()
returns a pointer to the first character in the current array and freezes the
array. After str() has been called, the effect of storing characters in the
array is undefined until the strstreambuf is unfrozen by calling freeze (0) .

VIRTUAL MEMBER FUNCTIONS
class strstreambuf redefines several virtual functions from its base class (
class streambuf).

virtual strstreambuf::streambuf* setbuf

(char *p, int len)
tells the strstreambuf that the next time an array is dynamically allocated
it should be at least l1en bytes long. p is ignored.

int strstreambuf::sync()
returns EOF.

virtual streampos strstreambuf::seekoff
(streamoff offset, seek_dir place,
int mode = ios::in|ios::out)
moves the get and/or put pointers of the strstreambuf . See the description
of streambuf: :seekoff for explanations of offset , place and mode .
If the strstreambuf is in dynamic mode, this function returns
streampos (EOF) to indicate an error occurred.
If either the get or put pointer is moved to a position outside the
strstreambuf , or if the put pointer is moved for a strstreambuf that does

Standard Libraries /A Manipulator Descriptions 179

not allow output, then streampos (EOF) is returned and the pointers are not
moved.
If place is ios: :end , it refers to the end of the array.

virtual streampos strstreambuf::seekpos
(streampos pos,
int mode = *ios::in|ios::out)
moves the get and/or put pointers of the strstreambuf .
If the strstreambuf is in dynamic mode, this function returns
streampos (EOF) to indicate an error occurred. pos must be a value returned
by a previous call to seekoff () .
See the description of streambuf: : seekpos () for an explanation of mode .
If ios: :out is specified for mode and output is not allowed for this
strstreambuf , then streampos (EOF) is returned to indicate an error
occurred and the put pointer is not moved.

SEE ALSO

class strstream

Manipulator Descriptions

This section describes contents of the iomanip.h header file, which provides
predefined manipulators, as well as support functions and classes that enable you to
create your own manipulators.

class IOMANIP

Provide Manipulators
SYNOPSIS

#include <IOMANIP.h>

/* Macros for creating class names */
#define SMANIP(T)

#define SAPP(T)

#define IMANIP(T)

#define IAPP(T)

#define OMANIP(T)

#define OAPP(T)

#define IOMANIP(T)

#define IOAPP(T)

// Start of IOMANIPdeclare macro
#define IOMANIPdeclare(T)

class SMANIP(T)
{
public:
SMANIP(T) (ios&(*f)(ios&, T), T d);
friend istream& operator >>(istream& i,
SMANIP(T)& m);
friend ostream& operator <<(ostream& o,

180 Manipulator Descriptions A Chapter 4

SMANIP(T)& m);

class SAPP(T)

{
public:
SAPP(T) (ios&(*f) (ios&, T));
SMANIP(T)operator() (T d);
}i

class IMANIP(T)

{
public:
IMANIP(T) (ios&(*f) (ios&, T), T d);
friend istream& operator >>(istream& i,
IMANIP(T)& m);
Yi

class IAPP(T)

{

public:
IAPP(T) (ios&(*f) (ios&, T));
IMANIP(T)operator () (T d);

}i

class OMANIP(T)

{

public:
OMANIP(T) (ios&(*f)(ios&, T), T d);
friend ostream& operator <<(ostream& o,

OMANIP(T)& m);

}i

class OAPP(T)

{

public:
OAPP(T) (ios&(*f) (ios&, T));
OMANIP(T)operator()(T d);

}i

class IOMANIP(T)
{
public:
IOMANIP(T) (ios&(*f) (ios&, T), T d);
friend istream& operator >>(istream& i,
IOMANIP(T)&m);
friend ostream& operator <<(ostream& o,
IOMANIP(T)&m);

class IOAPP(T)

{

public:
IOAPP(T) (ios&(*f) (ios&, T));
IOMANIP(T)operator() (T d);

Standard Libraries /A Manipulator Descriptions 181

// End of IOMANIPdeclare macro

IOMANIPdeclare(int);
IOMANIPdeclare(long);

SMANIP(int) setw(int width);

SMANIP(int) setbase(int base);
SMANIP(int) setfill(int fill char);
SMANIP(int) setprecision(int precision);
SMANIP(long) setiosflags(long flags);
SMANIP(long) resetiosflags(long flags);

DESCRIPTION
The IOMANIP.h header file declares some predefined manipulators, as well as
support functions and classes that enable you to create your own manipulators. A
manipulator is a value that can be used to effect some change to a stream by
inserting it into or extracting it from the stream. For example, the £1lush function
is a manipulator of ostream objects:

cout << flush; // Causes cout to be flushed.
In fact, any function of one the following types is a manipulator:

ostream& (ostream&)
is a manipulator for ostream objects.

istream& (istream&)
is a manipulator for istream objects.

ios& (ios&)
is a manipulator for istream or ostream objects.

You can also create manipulators that have arguments. The T0MANIP.h header
file defines two manipulator-creation classes for each type of stream (ios, istream
, ostream, and iostream). One class has a name in the form xMANIP(T) , and the
other class has a name in the form xAPP (T) , where T is an identifier that names a
type (such as a typedef name for a class name) and x is a letter such as S.

For ios objects, these two classes are named SMANIP(T) and SAPP(T) .

PREDEFINED MANIPULATORS
The predefined manipulators defined by iomanip.h allow you to control various
pieces of the format state of a stream. These manipulators are described in the
following list.
SMANIP(int) setw(int w)
returns a manipulator (an SMANIP (int)) that can be used to set the width()
value of an ios object.

SMANIP(int) setbase(int base)
returns a manipulator that can be used to set the default numeric conversion
base of an ios object. The argument must be one of the values 8, 10, or 16.

SMANIP(int) setfill(int f)
returns a manipulator that can be used to set the £i11 () value of an ios
object.

SMANIP(int) setprecision(int p)
returns a manipulator that can be used to set the precision() value of an
ios object.

SMANIP(long) setiosflags(long flags)
returns a manipulator that can be used to set the flags () value of an ios
object.

182 Manipulator Descriptions A Chapter 4

SMANIP(long) resetiosflags(long flags)
returns a manipulator that can be used to reset the £lags () value of an ios
object.

EXAMPLES USING PREDEFINED MANIPULATORS
The following example transmits *****+%%27,00048 :

cout << setw(10) << setfill(’'*")
<< 27 << ' ,' << setw(5)
<< setfill(’0’) << 48;

The following example transmits 32,5 :

cout << setprecision(2) << 32.1 << '’

<< setprecision(0) << 5.3;
The following example sets the skipws bit in cout’s format state:
cout << setiosflags(ios::skipws);
The following example clears the skipws bit in cout’s format state:

cout << resetiosflags(ios::skipws);

USER-DEFINED MANIPULATORS
As well as the predefined manipulators described in the previous section, the
IOMANIP.h header file also provides the means for you to create your own
manipulators. It does this by defining a macro, IoMANIPdeclare(T) , that when
invoked with a typedef name for T declares the following classes:

SMANIP(T) and SAPP(T)
use with ios objects.

IMANIP(T) and IAPP(T)
use with istream objects.

OMANIP(T) and OAPP(T)
use with ostream objects.

IOMANIP(T) and IOAPP(T)

use with iostream objects.

class SMANIP(T) and SAPP(T) are explained in detail in this section; the other
classes are very similar to SAPP(T) and only the differences between them and
class SMANIP and SAPP(T) are noted.

If you are going to create new manipulators using the various xMANIP(T) and
xAPP (T) classes, the classes must first be defined for a particular type name. This
is done by putting the following definition in any module that uses the xMANIP(T)
or xAPP(T) classes for a particular type name:

IOMANIPdeclare(type-name) ;

where type-name can be any valid type identifier. Because int and long are
the most commonly used type names in manipulators, the IOMANIPdeclares for
these type names are included in the TIOMANIP.h header file, and your program
should not declare them again. If you need to create manipulators using the
xMANIP(T) and xAPP(T) classes for type names other than int or long , you must
include a use of IOMANIPdeclare() in your module.

For example, before using xMANIP(T) and xAPP(T) classes to create
manipulators that accept char arguments, the xMANIP (T) and xAPP(T) classes for
the type name char must be declared as follows:

#include <IOMANIP.h>
IOMANIPdeclare(char);

Standard Libraries /A Manipulator Descriptions 183

If you need to create manipulators that accept arguments of more complicated
types, like char* arguments, you must first declare a typedef for the type
because IOMANIPdeclare requires a single-word type name. Here is an example:

#include <IOMANIP.h>
typedef char* STRING;
IOMANIPdeclare(STRING);

class SMANIP(T)
provides a constructor and two operators, as detailed next.

SMANIP(T) (ios&(*f) (ios&, T), T d)
constructs an SMANIP(T) and returns a single argument manipulator by
collecting the function £ and argument d into a single manipulator value. It
is assumed that £ is a function that changes ios in some way using the value
of 4.

friend istream& operator >> (istream& i,

SMANIP(T)& m)

friend ostream& operator << (ostream& o,

SMANIP(T)& m)
enable SMANIP(T) objects to be "inserted-into" istream objects and
"extracted-from" ostream objects, respectively. They each use the values £
and d from the SMANIP(T) value. They then call £ (myios,d) where myios is
the ios part of i or o, respectively. It is assumed that £ is a function that
changes ios in some way using the value of d .

It is often easier to create manipulators using the applicator classes, in this case
SAPP(T) , than to use the xMANIP(T) classes. class SAPP(T) is described next.

class SAPP(T)
provides a constructor and an operator, as detailed next. SAPP(T) objects make it
easier to use SMANIP (T) objects. The EXAMPLES section gives an example of
using an SAPP(T) object. Here are the members of class SAPP(T) :
SAPP(T) (ios&(*f) (ios&, T))
initializes an SAPP (T) object to contain £ .
SMANIP(T) operator() (T d)
creates and returns an SMANIP(T) object using the £ from the sSAPP(T) and
the d argument.

Other manipulator classes
The rest of the classes defined by TOMANIPdeclare(T) are similar to class
SAPP (T) , with the following differences:

0 for IMANIP(T) and IAPP(T) , £ has type
istream&(*f) (istream&, T)

0 for OMANIP(T) and OAPP(T) , £ has type
ostream& (*f) (ostream&, T)

O for IOMANIP(T) and IOAPP(T) , f has type
iostream&(*f) (iostream&, T)

O IMANIP(T) does not contain operator <<
O OMANIP(T) does not contain operator >>
EXAMPLES OF USER-DEFINED MANIPULATORS

The following code creates a manipulator setwidth , which works like the
library’s setw .

184 Manipulator Descriptions A Chapter 4

ios& setw_func(ios& i, int w)
{
i.width(w);
return i;
}
SAPP(int) setwidth(setw_func);

185

CHAPTER

Debugging C++ Programs Using
the SAS/C Debugger

Introduction 185
Specifying C++ Function Names 186
Multitoken Function Names 186
Overloaded Function Names 186
File-Scope and Member Functions 187
Constructors and Destructors 188
Functions in a Mix of C and C++ Code 188
Translator Generated Functions 188
Specifying Expressions 189
Operators 189
Casts 189
Data Types 190
assign command 190
dump command and Dump window 190
monitor command 190
return command 191
transfer command 191
whatis command 191
Expression Evaluation 191
Searching for Data Objects 191
Debugging Initialization and Termination 192
Bypassing Initialization Functions 192
Setting Breakpoints in Dynamically Loaded C++ Modules 192
C++ Debugging Example 192
Example Source Code 193

Introduction

For the most part, debugging C++ programs is the same as debugging C programs.
There are only a few differences, which are the focus of this chapter. This chapter does
not attempt to teach you how to set up and use the basic features of the debugger. For
general information about setting up the debugger under CMS and TSO and for
tutorials on using the debugger, refer to the SAS/C Debugger User’s Guide and
Reference, Third Edition.

The main areas of concern in debugging C++ programs are

o specifying C++ function names in debugger commands

O

specifying C++ expressions in debugger commands

O

searching for data objects

O

debugging initialization and termination routines

186 Specifying C++ Function Names A Chapter 5

O setting breakpoints in dynamically loaded modules.

These areas are covered in the next few sections. The final section contains an example
that illustrates debugging a sample C++ program.

Specifying C++ Function Names

One of the unique features of the SAS/C C++ Development System is that the
debugger accepts and understands C++ function names, including multitoken and
overloaded function names. This section describes how to specify C++ function names in
debugger commands.

If you are specifying a nonoverloaded, single token function name in a debugger
command, you do not have to do anything different from specifying a C function name.
For example, you could issue the following command:

break funcl entry

There are additional rules, however, for specifying multitoken C++ function names
and overloaded function names in debugger commands. This section also explains how
to specify member function names and file-scope function names.

The rules for specifying constructor and destructor function names are unique to
these types of functions and are covered separately. There is also a section explaining
how the debugger handles function names when you mix C and C++ code and a section
describing how the debugger handles translator-generated functions (such as
assignment operators and copy constructors).

Multitoken Function Names

Multitoken function names are function names that are not just a C++ identifier, but
that contain other items such as the scope operator (::) or two-word function names
such as operator and conversion functions. Here are some examples of multitoken C++
function names:

O ABC::ABC

O myfunc::~myfunc

O operator int *

O ABC::operator >=
When you specify a multitoken C++ function name in a debugger command, the
function name must be enclosed in double quotes. Here is an example of the break

command and a multitoken function name. This command specifies to break at the
entry to member function funcl in class ABC:

break "ABC::funcl" entry

Spaces around tokens that are not identifiers are optional.

Overloaded Function Names

One of the things that sets C++ apart from C is C++ support of overloaded functions.
However, overloaded functions present a challenge for the debugger because the
debugger has to determine which function you want to access.

When you specify an overloaded function name in a debugger command, you are
presented with a numbered list of C++ function names with arguments. Determine

Debugging C++ Programs Using the SAS/C Debugger /A File-Scope and Member Functions 187

which number represents the function you want to access, and reissue the debugger
command by appending a parenthesized number after the function name. For example,
suppose you have the following three constructors declared in class myclass, in this
order:

myclass(char);
myclass(short);
myclass(long);

If you issue a break "myclass::myclass" entry command, the debugger shows you
the following list:

1 myclass::myclass(char)
2 myclass::myclass(short)
3 myclass::myclass(long)

You can place a breakpoint on entry to the constructor that takes a short by
specifying the following break command:

break "myclass::myclass"(2) entry

As long as you do not relink your program, the subscript numbers for overloaded
functions remain the same. For example, you can define a debugger macro or alias
using the subscripts and use it throughout your debugging session.

Instead of choosing a particular number, you can specify that the command apply to
all instances of the function by using 0 as the parenthesized number. For example, the
following command sets breakpoints on entry to any myfunc function in class
myclass, regardless of the argument type:

break "myclass::myfunc"(0) entry

However, a subscript of 0 is valid only at entry hooks, return hooks, call hooks, or *
(that is, all line hooks). The only commands that permit a subscript of 0 are break,
trace, ignore, runto, and on.

File-Scope and Member Functions

The debugger uses the scope operator (::) to determine if you want to access either
a filescope or a member function.

If you have declared both a filescope myfunc and a member function myfunc in class
ABC, use the scope operator to tell the debugger which function you mean when you
issue debugger commands:

"::myfunc"
refers to a file-scope function of name myfunc.

"ABC: :myfunc"
refers to a member function of name myfunc in class ABC.

If you have only a file-scope function named myfunc, or only one member function
named myfunc (but not both a file-scope function and a member function), you can omit
the scope operator and specify just the function name in the debugger command.

Note: If the debugger is stopped in a member function when you issue a debugger
command that includes only the function name (and no scope operator), the command
works as if you were not stopped in a member function. That is, the debugger does not
automatically prefix the function name with the class name of the class whose member
function you are stopped in. This is slightly different from the behavior for data objects,
where the class name is automatically prefixed (see “Searching for Data Objects” on
page 191). A

188

Constructors and Destructors A Chapter 5

Constructors and Destructors

When you specify a constructor or destructor in a debugger command, it must be in
one of the following two forms:

"elass-name: :class-name"
indicates a constructor.

"elass-name: :~class-name"
indicates a destructor.

Here is an example of setting a breakpoint on entry to the destructor for class ABC:

break "ABC::~ABC" entry

Functions in a Mix of C and C++ Code

If your load module contains at least one C++ compilation, your load module also
contains a list of all function names visible to C++ compilations. If you issue a debugger
command that refers to a function name not in this list, the debugger issues a warning
message and assumes the function is a C function.

For example, suppose you have the following construct, where a() is a C++ function
and b() and ¢ () are C functions:

a() calls b() calls c()

There is a function prototype for b () in the compilation containing a(). Because b()
is visible to a C++ compilation, it is contained in the debugger’s list of visible function
names. But no function prototype for c() is visible in any C++ compilation. Therefore,
c() is not contained in the list of function names visible to the debugger. If you use c ()
in a debugger command (such as in a break command), the debugger issues a message
that it cannot resolve the function name using the debugger file. The debugger
therefore assumes that c () is a C function.

Note: If you see the warning message about unresolved function names yet you
know that your program consists of only C++ functions, check the spelling of function
names in your debugger commands. A

Translator Generated Functions

The translator creates a number of functions automatically. These functions are
required by the C++ language and follow the usual C++ rules. The functions that the
translator may create include constructors, copy constructors, assignment operators,
and destructors. The translator creates such a function when there is not a user-defined
version of the function. The list of overloaded constructors that is displayed by the
debugger when you issue a debugger command may include a translator generated
constructor as well as the user-defined constructors.

The following list shows the declarations for translator generated functions:

class::class ()
is the default constructor for class class. This constructor is called whenever an
object of type class is defined without an explicit initializer.

class::class(const|volatile class&)
is the default copy constructor for class class. A default copy constructor is
created for any class, struct, or union that does not have a user-defined copy
constructor. The copy constructor is called to initialize an object of type class

Debugging C++ Programs Using the SAS/C Debugger A Casts 189

with another object of the same class. The presence of const or volatile depends
on the characteristics of the class.

class& class::operator=(const|volatile class&)
is the default assignment operator. This operator is called when an object of type
class has an object assigned to it. The presence of const or volatile depends on
the characteristics of the class.

class::~class()
is the default destructor. This destructor is called when an object of type class
goes out of scope.

You may occasionally step into one of these translator-generated functions as you
debug your code. When this happens, the Source window displays the source text at the
class definition and the Status window displays the function name.

Specifying Expressions

The debugger supports the use of operators, types, and casts that are specific to C++.
This section delineates these items and explains how expressions are evaluated for C++
programs in the debugger. Note that only standard C++ operators are supported in
expressions. That is, user-defined overloaded operators cannot be used. This includes
the use of complex and I/O stream operators. For example, you cannot specify print
(a+b) where a and b are complex.

Operators
(member pointer)">The following operators are supported in debugger expressions:

:: (unary scope)
indicates the scope operator (identifies the object or function as file-scope).

:: (binary scope)
indicates the scope operator (identifies the object or function as a member of a
class).

_>%*
indicates a member-pointer.

o *

indicates a member-pointer.

Only one level of :: is supported after a . or -> operator. For example, the following is
not valid syntax in a debugger command:

p->A::BB::C

Casts

In addition to the syntax for casts supported for C in the debugger, the keyword
class is supported as in

(class TAG*)ADD

190

Data Types A Chapter 5

Casts to reference types are not supported. If two classes you are referencing are
related (that is, one is derived from the other), the debugger performs the cast and
issues a message that indicates address translation may have occurred.

Data Types

All debugger commands that support expressions support the following C++ data
types:

O pointers to base or derived classes

0O member-pointers

O references

O classes

The following sections detail any special considerations for using debugger commands
with C++ data types. Static members of class objects do not participate in any assign,
copy, dump, monitor, print, return, or watch commands that deal with objects of type
class. For example, because all classes share the same static data, if you copy a class
with the copy command, you do not modify static members.

A member-pointer is not considered a pointer in the C or C++ sense. Therefore, it is
invalid to specify an expression of type member-pointer in a command (such as dump)
that takes an address for an operand.

assign command

The assign command can be used to assign a pointer to an object of a derived class
to a pointer to the base class. When multiple inheritance is used, this can cause the
values of the derived pointer and the base pointer as printed by the print command to
differ. This can also occur for assignments involving member-pointers.

An assignment to a reference assigns to the referenced object.

An assignment to a class object is permitted using an initializer list or a class object
only if the class does not have base classes and if no user-defined constructors need be
invoked to initialize the class object.

dump command and Dump window

The dump command and the Dump window support all the data types listed earlier in
this section. The dump command takes an address as an argument and, by default,
dumps memory corresponding to the size of the object. A member pointer can be one of
two sizes, depending on whether it is a data pointer or a function pointer:

data pointers are 4 bytes long.
function are 12 bytes long.
pointers

A member-pointer is not considered to yield an address type. Therefore the following
command is not valid:

dump member-pointer

The following command dumps the referenced object, as explained in “Expression
Evaluation” on page 191:

dump reference-object

monitor command

You cannot monitor an object through a reference variable. You can only monitor the
reference variable itself. If you set a monitor on a class object that con- tains a

Debugging C++ Programs Using the SAS/C Debugger /\ Searching for Data Objects 191

reference, the storage allocated for the class object (which includes the storage allocated
to the reference variable) is monitored. That is, the referenced object is not monitored.

For objects of derived classes, the base objects are also monitored. Because the entire
storage of an object is monitored, it is possible for the monitor to be triggered without
any change in the printed value. That is, for some data types (such as function
member-pointers), some parts of the value may not be reflected in the value produced
by the print command. The debugger attempts to detect corruption of control data and
hidden pointers to virtual base classes (that is, members of a class that are in addition to
those members you have explicitly created). If your program is erroneously overwriting
memory, it could overwrite some of these control data or hidden pointers. Even though
this corruption does not affect the value that is printed, the monitor is triggered.

return command

For a function that returns a reference, the return command returns a reference. A
function may return a class using an initializer list or a class object only if the class
does not have base classes and if no constructors are needed to initialize the class.

transfer command

For a reference type object, use the C++ notation for references (such as class
myobjects&) in the typeof keyword of the transfer command.

whatis command

The whatis command uses the C++ notation for references (such as myobjects&) in
its output.

For classes, whatis displays the following information, in addition to the usual C
information:

O base classes
O access attributes

o all non-C member types that can occur as class members (classes, enums,
typedefs, and functions, including function prototypes).

Expression Evaluation

Normal C++ rules are followed in expression evaluation, with the following
exception. If a static member is dereferenced using the -> or . operator, the
expression to the left of the -> or . operator is evaluated by the debugger.

Searching for Data Objects

Normal C++ scoping rules apply to most searches in the debugger. When you are in a
member function, you do not have to specify this-> to access class members. If your
source code is structured so that classes are nested within classes, the debugger also
searches any lexically enclosing scopes. The debugger applies normal C++ rules for
ambiguity resolution.

You can access static members using the class-name: :member-name syntax.

192

Debugging Initialization and Termination A Chapter 5

Debugging Initialization and Termination

Functions

A typical C++ program contains intialization functions in each compilation at
program startup, which are called at program startup to initialize static and extern
data defined in that compilation. If you want to debug one of these initialization
functions, you can set a breakpoint on __init_sname, where sname is the sname for
that compilation. (See “Option Descriptions” on page 71.) Similarly, a function called
__term_sname is called for each compilation at termination.

By default, the first function name shown in the Status window is one of these
initialization functions. While the debugger is stopped in these functions, you can
debug the initialization of static and extern variables. As you step through the
initialization functions, each function is in turn shown in the Status window. Note that
the initialization and termination functions are not shown in the Source window, as
they do not exist in user C++ code.

Note: The functions __init_sname and __term_sname are
implementation-dependent. Either the implementation or the names, or both, may
change in a future release. 2

Bypassing Initialization Functions

If you do not want to debug your program’s initialization functions, you can bypass
them in one of several ways:

O set breakpoints in functions that are of interest and issue a go command

O put a Break main entry command in your debugger profile and issue a go
command (this causes debugging to begin at the main function)

O issue a Runto main entry command from the command line (this causes your
program to advance to main).

Setting Breakpoints in Dynamically Loaded C++ Modules

The debugger keeps track of load modules containing C++ code as they are loaded
and unloaded. When you specify a function in a debugger command, the debugger first
looks for the function in the current load module. If it fails to find it there, the
debugger searches the list of modules that have been loaded. If you want to set a
breakpoint in a module that has not yet been loaded, you can set a breakpoint on entry
to _dynamn. Then, when you reach this breakpoint, set the desired breakpoint in the
module. Note, however, that _dynamn is called only after constructors for static and
extern objects in the loaded module have been run.

C++ Debugging Example

This section provides an example of running the debugger with a C++ program.
Some of the features the example illustrates include

O the need to enclose most C++ function names in double quotes.
o0 how to specify overloaded C++ function names using a subscript.
o how to specify all overloaded functions at once using a subscript of 0.

Debugging C++ Programs Using the SAS/C Debugger /\ Example Source Code 193

0 how to set breakpoints in special C++ functions, such as constructors and
destructors. (Specifically, this example shows that user-defined constructors and
destructors can be debugged even when they are driven by the C++ new and
delete operators.)

0 how to debug C++ class member functions.

The important thing to remember is that debugging C++ programs with the SAS/C
Debugger is virtually the same as debugging C programs. The debugger looks and feels
the same, and in general the commands are the same. This example simply shows the
few extra things to remember when you are debugging C++ programs. Once you
complete this example, you should be ready to debug your own C++ programs.

Note: This example requires you to allocate the DDname DBGSLIB to the location
of your standard header files. See SAS/C Compiler and Library User’s Guide for more
information on the DBGSLIB DDname. A

Example Source Code

Here is the source code for the example. The program declares class X, which
includes one data object, two constructors, one member function, and a destructor. The
member function multiplies the data object by 2. The destructor checks the value of the
data object and prints an error message if the data object is not between 7 and 10. The
main function uses the constructors to create several instances of class X, calls the
member function four times (once for each instance of class X), and then deletes the
instances of class X.

#include <iostream.h>
class X
{
public: int i;
// first X constructor
X(int ia)
{
i = ia;
}i
// second X constructor
X(int ib, int jb)
{
i = ib + jb;
}i
// X member function myfunc()
void myfunc()
{
i *= 2;
Yi
// X destructor
~X()
{
int id;
id = 1 / 2;
if (id < 7 || id > 10)
printf("Error - Out of range\n");
Yi
}i

int main()

194 Example Source Code A Chapter 5

{
X *x1 = new X(7);
X *x2 = new X(6,2);
X *x3 = new X(9);
X *x4 = new X(9,1);
x1->myfunc();
x2->myfunc();
x3->myfunc();
x4->myfunc();
delete x1;
delete x2;
delete x3;
delete x4;
return 0;

}

In this example debugger session, you use the break, go, query, drop, and on
debugger commands to complete the program. The numbered steps tell you what to
type in and show the results of your commands in the various debugger windows.

You first need to translate, link, and run the sample program. Be sure to specify the
debug option when you translate. For information on translating, linking, and running
a program in your environment (T'SO or CMS), see Chapter 2, “Using the SAS/C C++
Development System under TSO, CMS, 0S/390 Batch, and UNIX System Services,” on
page 27. For information on setting up your files and invoking the debugger, see the
SAS/C Debugger User’s Guide and Reference and the SAS/C Compiler and Library
User’s Guide. Display 5.1 on page 194 shows the appearance of the debugger at the
beginning of your debugging session.

Display 5.1 Initial Appearance of the SAS/C Debugger

| Module: EXAMPLE Line: 1

| #include <iostream.h>
2

5 public: int i:

// first X constructor
X{int ia)

// second constructor
X{int ib. int jb)

| Set system breakpoint at 0005/bac to activate the ESCAPE command.

Cdebug:

Debugging C++ Programs Using the SAS/C Debugger /A Example Source Code 195

Enter the following debugger commands in sequence. Debugger commands are
entered after the cdebug: prompt located in the Command window at the bottom of the
screen. (In the following discussion, debugger commands are shown in monospace font.)

1 break "X::X"(0) entry
This command sets breakpoints at entry to all constructors for Xx. The subscript

of 0 is necessary because the constructors are overloaded functions. Because the
function name has a multitoken name, double quotes are necessary.

2 break main 37
go
These two commands first set a breakpoint at line 37 of the main function and
tell the debugger to advance to the first breakpoint. The debugger stops on line 37

of main, as shown in the illustration of the Source window in Display 5.2 on page
195.

Display 5.2 Stopping at Main

EXAMPLE Line: 31
printf ("Error - Out of range\n"}:

}:
}:

int main()

{
X ¥x2 = new X(6.2):
X #x3 = new X(9):
X #¥x4 = new X(9.1):

x1->myfunc:
x2->myfunc :
x3->myfunc) :

Chebug:

The program proceeds until it enters the first constructor. Display 5.3 on page
196 shows the Source window.

196 Example Source Code A Chapter 5

Display 5.3 Stopping in a Constructor

: EXAMPLE Line: 2

class X
{

public: int i:

// first ¥ constructor
{
i = ia:

}:

// second constructor
X(int ib, int jb)
{

4 go
Yet another go causes the debugger to stop at entry to the next constructor, as
shown in Display 5.4 on page 196.

Display 5.4 Stopping in Another Constructor

| Hodule: EXAMPLE Line: 12

// second constructor
{
i = ib + jb:

}:

/7 X member function myfunc()
void myfunc()
{

iow= 2:

}:

/7 X destructor

5 query
This command requests the Log window to show all actions and monitors in
effect. Two breakpoints are shown; of special interest is the first breakpoint, which
shows the subscript of 0, indicating a breakpoint is in effect for all instances of the
overloaded constructor, X. Display 5.5 on page 196 shows the Log window.

Display 5.5 Querying the Log Window

+—Log
break "X::X"(0) entry
break main 37
go
go
go

query
AUTO NOECHO ID LIST NONULLPTR MWRAP NOCMACROS NODUMPABS NOEXECECHO
EXTNAME CXX LINESIZE:0/8

fictions and monitors in effect:
1. BREAK X::X(0) ENTRY
2. BREAK MAIN 37

6

Di

=
|
|
|
|
|
|
|
|
|
|
|

Debugging C++ Programs Using the SAS/C Debugger A Example Source Code 197

drop 1

break "X::X" (1) return
break "X::X"(2) return
on myfunc entry print i
on myfunc return print i

b "X::~X" return

query

The drop command drops breakpoint #1 (it is no longer necessary). Next, you
set breakpoints on the return of both versions of the overloaded constructor, using
the subscripts 1 and 2. The two on commands tell the debugger to print the value
of the X member function i on the entry to and return from the myfunc member
function. The next command sets a breakpoint on the return of the destructor (b is
an abbreviation for break). Finally, the query command shows all the actions and
monitors in effect. Of special interest are breakpoints #3 and #4. These
breakpoints show the prototypes for the first and second constructors (the first
takes a single int; the second takes two ints). Display 5.6 on page 197 shows the
Log window after this series of commands.

splay 5.6 Another Log Window

Log
b "X::7X" return

query

AUTO NOECHO ID LIST NONULLPTR HWRAP NOCHMACROS NODUMPABS NOEXECECHO
EXTNAME CXX LINESIZE:078

fictions and monitors in effect:

2. BREAK MAIN 37

BREAK X::X(int)> RETURN

BREAK X::X{int.int) RETURN

ON X::myfunc(void) ENTRY print i
ON X::myfunc(void) RETURN print i
BREAK X::"X(void) RETURN

go

This go command causes the debugger to proceed until it reaches the return
from the second constructor.
go

Another go causes the debugger to proceed until it reaches the return from the
first constructor.
go

This go command causes the debugger to stop again at return from the second
constructor.
go

After this go command, the Log window shows the output from eight print
commands (4 from entry to myfunc and 4 from return from myfunc). The values
printed are 7, 14, 8, 16, 9, 18, 10, and 20. Notice also that the debugger stops at

return from the destructor. Display 5.7 on page 198 shows the Log and Source
windows for this step.

198

Example Source Code A Chapter 5

Display 5.7 Log Window Showing Results from Print Commands

EXAMPLE Line: 30
if (id < 7 11 id > 10)

printf ("Error - Out of range\n"):

int main()

{

new X(/7):
new X(6.2):
new X(9):
new X(9.1):

#x1
®x2
®#x3
#x4

X
X
X
X

x1->myfunc) :
x2->myfunc():

7 (0x00000007)
14 (0x0000000e)
8 (0x00000008)
16 (0x00000010)
9 (Ox00000009)
18 (0x00000012)
10 (0x0000000a)
T 20 (0x00000014)

go

At each of these go commands, the debugger stops at the return from the
destructor.

11 break "X::Y" entry

This command illustrates the warning message issued by the debugger when it
cannot find a function in the debugger’s list of visible functions. Because X::Y is
not a valid function name for this program, a warning message appears in the Log
window, as shown in Display 5.8 on page 198.

Display 5.8 Warning Message Displayed when the Debugger Can’t Find a Function Name

=
| 1 8 (0x00000008)
| 16 (Ox00000010)
| 9 (0x00000009)
| 118 (Ox00000012)
| 10 (0x0000000a)
1

|

|

|

|

|

220 (0x00000014)

go

go

go

break "X::Y" entry

LSCD315 Could not resolve function name "X::Y" using merged debugger files.

See “Functions in a Mix of C and C++ Code” on page 188 for more information
on when you may see this warning message.

12 go
With this last go command, execution completes, and the debugger terminates.

199

PART

Appendixes

Appendix 1. Converting a C Program to a C++ Program 201

Appendix 2. Header Files, Classes, and Functions 207

Appendix 3. Templates 213

Appendix 4. Pointer Qualification Conversions, Casts, and Run-Time Type

Identification 227

Appendix 8. Interpreting C++ Demangled Names 231

Appendix 6. Handling Exceptions in SAS/C 235

200

201

APPENDIX

Converting a C Program to a
C++ Program

Introduction 201
Differences between C and C++ 201
Reserved Keywords 202
Function Prototypes 202
"C" Linkage 202
Multiple Declarations of File-Scope Variables 202
Assigning Integers to enums 203
Assigning void* Values to Pointers 203
Using Strings to Initialize a Character Array 203
Using File-Scope Constants 203
Using #pragma linkage 204
Identical Class Names and typedef Names 204
Embedded Structure Tags 205
Using goto Statements 205
Differing Types 205
Character literals 205
Enumerations 205

Introduction

C++ was intended to be as close to C as possible. However, C++ added many features
to the language. Therefore, valid C programs are not always valid C++ programs.
Examples of the differences between C and C++ are extra reserved keywords and
required function prototypes. If you want to convert your C programs to C++ programs,
you should be aware of the considerations outlined in this appendix.

Differences hetween C and C++

The following sections outline the major differences between C and C++ and describe
how to change the C constructs to their corresponding C++ constructs.

202

Reserved Keywords A Appendix 1

Reserved Keywords

The following keywords cannot be used as identifiers in C++ programs because they
are reserved:

asm new this
catch operator throw
class private try
const_cast protected typeid
delete public typename
dynamic_cast reinterpret_cast virtual
friend static_cast

inline template

If these keywords are used as identifiers in your C program, you must change them
to some other name.

Function Prototypes

In C++, a function must have a prototype in scope when it is called. In C, this is not
necessary, although it is regarded as good programming practice. It is common in C
code to find function declarations that are not prototypes (because frequently it is only
the return type that is important to declare). For example, the following statement is
regarded in C as a declaration but not a prototype of a function with no parameters:

int myfunc();
In C++, this same statement is interpreted as a prototype equivalent to the following:
int myfunc(void);

If you mistakenly use the myfunc() form in your C++ program as a prototype and then
call the function with one or more parameters, you will receive error messages. In
converting a program from C to C++, you must change all of your nonprototypical
function declarations to prototypes.

"C" Linkage

If a C++ function calls C functions that are not to be converted to C++ functions
(using the guidelines in this appendix), the declarations of these C functions in the C++
source (or header files) must include the extern "C" qualifier or be within an extern "C"
block. For the standard SAS/C library functions, "C" linkage is specified in the SAS/C
header files.

Multiple Declarations of File-Scope Variables

In ANSI C, a file-scope variable can be declared more than once without using the
extern keyword. This is not legal in C++. To convert your program from C to C++,

Converting a C Program to a C++ Program A Using File-Scope Constants 203

make sure that all but one declaration of a file-scope variable has the extern keyword.
If the file-scope variable is initialized, the initializer should be attached to the one
declaration without the extern keyword.

Assigning Integers to enums

In C++, an integer cannot be assigned directly to an enum as it could be in C. If your
program contains such assignments, first cast the integer to the enum type, as in the
following example:

int i;

enum X {a, b, c} e;

e = i; /* Legal in C, not in C++. */

e (enum X)i; // Legal in C++.

Of course, the best approach is to use the correct enum constant in the first place.

Assigning void* Values to Pointers

In C++, a void* pointer can be assigned only to another void* pointer. If your C
program contains assignments of void+* pointers to other kinds of pointers, you should
cast the void* to the other pointer type before the assignment, as in the following
example:

int* ip;

void* vp;

ip = vp; /* Legal in C, not in C++. */
ip = (int*)vp; // Legal in C++.

Using Strings to Initialize a Character Array

In C++, a string used to initialize a character array must be at least one character
shorter than the array it is initializing. The extra element is for the terminating null
character. The following example shows how this works:

char a[3] = "SAS"; /* Legal in C, not in C++. */
// Legal in C++, keeps the terminating null

// character.
char a[4] = "SAS";

// Legal in C++, omits the null-character.
char a[3] = {'S’, 'A’', 'S'};

Using File-Scope Constants

In C, file-scope constants are external by default. In C++, file-scope constants are
static by default. You can take two approaches to converting this type of problem:

o If the constant is a large array or structure, add extern to the declaration of the
file-scope constant that has the initialization.

204

Using #pragma linkage A Appendix 1

o If the constant is not large, move the declaration of the constant with the
initialization into a header file included by all modules that need access to the
constant. Then remove any extern keywords attached to declarations of the
constant.

Using #pragma linkage

The SAS/C extension #pragma linkage is supported only within extern "cC"
linkage blocks in C++ programs. Programs that use the #pragma linkage feature
outside extern "cC" blocks should be changed to use the __ibmos keyword.

To change uses of #pragma linkage, remove the #pragma linkage and add
__ibmos to the declaration of the function that needs IBM OS linkage. The following
example shows equivalent C and C++ usage:

/* Meaningful only in C. */
#pragma linkage (fname, 0S)
int fname();

// Meaningful in both C and C++.
__ibmos int fname();

__ibmos functions always have "C" linkage. For more information on the __ibmos
keyword, refer to the SAS/C Compiler and Library User’s Guide, Fourth Edition.

Identical Class Names and typedef Names

In C++, if a class name and a typedef name are the same, the typedef name must
refer to the class. If your C program contains a class (structure) name and a typedef
name that are the same, but refer to different things, you must change one of the
names. Here is an example:

/* This code is legal in C, but not in C++,
because VAL refers to an int and a struct. */
typedef int VAL;
struct VAL
{
long x;
char *text;

}i

// This code is legal in both C and C++,
// because VAL refers to the same thing in each
// case.

struct VAL

{

long x;

char *text;

}i

typedef struct VAL VAL;

Converting a C Program to a C++ Program /A Differing Types 205

Embedded Structure Tags

In C, a structure tag can be defined inside the definition of some other structure tag.
This is also legal in C++, but because structures (classes) are scopes in C++, the inner
structure tag is hidden inside the outer structure. If you do not want this scoping effect,
do not embed structure tags. (In other words, move the inner structure’s definition
outside the outer structure’s definition, or use the scope operator (::) to use the inner
structure’s tag in subsequent instantiations, as in outer: :inner.)

Using goto Statements

C++ does not allow you to use the goto statement to jump over an initialization. If
your C program contains such jumps, you must remove them.

Differing Types

C++ defines the types of character literals and enumerations differently than C does.

Character literals

In C, the type of a single-character character literal (for example, 'H’) is int. In C++,
character literals are of type char. You do not usually have to worry about this
distinction, unless your program expects the result of sizeof (’H’) to be greater than
one.

Enumerations

In C, the type of an enum is int. In C++, enumerations have type enum. Again, you
do not usually have to worry about this distinction; just remember that the size of an
enum may be different in C and in C++.

206 Differing Types A Appendix 1

207

APPENDIX

Header Files, Classes, and
Functions

Introduction 207

Language Support 207

Complex Library Contents 207

Streams Library Contents 208
Stream Classes 208
Buffer Classes 210

Introduction

Chapter 4, “Standard Libraries,” on page 87 describes in detail the classes and
functions supplied with the SAS/C C++ Development System. This appendix provides a
cross-reference to the information contained in that chapter.

Language Support
Table A2.1 on page 207 provides a reference for the classes and functions in the
new.h and typeinfo.h header files. This information includes header filenames, the

classes contained in those header files, and the functions contained in those classes.

Table A2.1 Header Files, Classes, and Functions for Language Support

Header File Class Functions

new.h operator delete() operator
new() set_new_handler()

typeinfo.h type_info operator ==() operator !=()
before() name()
set_terminate() terminate()

Complex Library Contents

Besides two constructors, the following functions are provided by class complex,
which constitutes the complex library. All these functions are public and are contained

208 Streams Library Contents A Appendix 2

in the header file complex.h. The functions are listed in the order in which they
appear in Chapter 4.

abs () arg()

conj () imag()

norm() polar()

real ()

exp () log()

pow () sqrt()

sin() cos ()

sinh() cosh ()
operator +() operator- ()
operator *() operator / ()
operator == operator != ()
operator +=() operator -= ()
operator *= operator /=()
operator << () operator >> ()

Streams Library Contents

The tables in this section give information about the stream and buffer classes
supplied with the streams library. This information includes header filenames, the
classes contained in those header files, and the functions contained in those classes. It
also lists the base classes for derived classes. The header files, classes within header
files, and member functions are listed alphabetically. The constructors and destructors
are not listed in the function columns because they are implied.

Stream Classes

Table A2.2 on page 209 gives the header files, classes, and functions for the stream
classes.

Header Files, Classes, and Functions /\ Stream Classes

Table A2.2 Header Files, Classes, and Functions for Streams

209

Header File

Class (Base Classes)

Functions

bsamstr.h

fstream.h

iomanip.h

iostream.h

bsamstream
(iostream)

ibsamstream
(istream)

obsamstream
(ostream)

fstream (iostream)

ifstream (istream)

ofstream (ostream)

IOMANIP

ios

iostream (ostream)
(istream)

istream (ios)

ostream (ios)

add_member ()
clear_error_info() close()
dcbblksize() dcblrecl()
dcbrecfm() delete_member ()
error_info() find() getdcb()
get_ddname() get_member ()
get_user_data()
init_directory() open()
rdbuf () rename_member ()
replace_member () setbuf()
set_user_data() stow()

clear_error_info() close()
dcbblksize() dcblrecl()
dcbrecfm() error_info()
find() getdcb() get_ddname()
get_member () get user_data()
open() rdbuf() setbuf()
set_user_data()

add_member ()
clear_error_info() close()
dcbblksize() dcblrecl()
dcbrecfm() delete_member ()
error_info() find() getdcb()
get_ddname() get_member ()
get_user_data()
init_directory() open()
rdbuf () rename_member ()
replace_member () setbuf()
set_user_data() stow()

close() open() rdbuf()
setbuf ()

close() open() rdbuf()
setbuf ()

close() open() rdbuf()
setbuf ()

See the class description

bad() bitalloc() clear()
eof () fail() £ill()

flags() good() iword()
operator void*() operator! ()
precision() pword() rdbuf()
rdstate() setf() tie()
unsetf() width() =xalloc()

defines nothing but constructors

gcount () get() getline()
ignore() ipfx() operator>>()
peek() putback() read()
seekg() sync() tellg()

ws ()

endl() ends() flush()
operator<<() opfx() osfx()
put() seekp() tellp()
write()

210 Buffer Classes A Appendix 2

Header File Class (Base Classes) Functions
streampos fpos() operator long()
stdiostream.h stdiostream rdbuf() stdiofile()
(iostream)
strstream.h istrstream rdbuf ()
(strstreambuf)
(istream)
ostrstream pcount() rdbuf() str()
(strstream- base)
(ostream)
strstream pcount() rdbuf() str()
(iostream)

Buffer Classes

Table A2.3 on page 210 gives the header files, classes, and functions for the buffer
classes.

Table A2.3 Header Files, Classes, and Functions for Buffers

Header File Class (Base Classes) Functions

bsamstr.h bsambuf (streambuf) add_member () attach()
clear_error_info()
close() dcbblksize()
dcblrecl () dcbrecfm()
delete_member()
error_info() find()
getdbc () get_ddname()
get_member ()
get_user_data()
init_directory()
is_open() open()
rename_member ()
replace_member ()
setbuf () seekoff()
seekpos ()
set_user_data() stow()

sync()
bsamstr.h bsam _exit_list remove() use()
fstream.h filebuf (streambuf) close() is_open()

open() seekoff()
seekpos() setbuf()

sync ()

iostream.h streambuf in_avail()
out_waiting() sbumpc()
seekoff() seekpos()
setbuf() sgetc()
sgetn() snextc()
sputbackc() sputc()
sputn() stossc()

sync ()

Header Files, Classes, and Functions /\ Buffer Classes

211

Header File

Class (Base Classes)

Functions

stdiostream.h

strstream.h

stdiobuf (streambuf)

strstreambuf
(streambuf)

is_open() seekoff()
seekpos() stdiofile()
sync()

freeze() seekoff()
seekpos() setbuf()
str() sync()

212 Buffer Classes A Appendix 2

213

APPENDIX

Templates

Introduction 213
Template Parameters 214
Template Arguments 214
Template Declarations and Definitions 215
Using Typename with Dependent Qualified Names 215
Declaration Rules 216
Function Templates 217
Overloading Function Templates 217
Deducing Arguments 218
Specifying Arguments 219
Function Template Signatures 221
Other Template Signatures 221
Template Specialization Declarations 222
Template Instantiation 223
Explicit Instantiation 223
Automatic Instantiation 224

Introduction

In C++, it is common for the same abstract data structure to be applied to different
data types. For example, you could have a stack of integers, characters, or pointers.
Rather than create a new stack class for each type, a template allows you to write
generic type-independent code. A C++ template defines a family of types or functions by
creating a parameterized type. Parameterized types can be used wherever actual types
can be used. However, the template itself is not a type.

Templates are part of the evolving C++ language. The framework of the C++
language was created primarily by Bjarne Stroustrup. His book, The C++ Programming
Language, 2nd Edition, provides good basic reference information but has limited
coverage of templates.

Committee X3J16 has been working on an official standard for C++ for several years.
During this time, the committee has standardized the existing features and added new
features. Different implementations of the C++ language support different sets of
features, exhibit different limitations, or exhibit different behavior in parts of the
language that were not previously well defined.

Beginning with Release 6.50, the SAS/C C++ Development System supports
templates as described in Stroustrup’s book The C++ Programming Language, Second
Edition, but implements clarifications to the specification introduced by the ANSI draft
C++ standard, as well as a few language extensions. This appendix explains and
clarifies the implementation of templates as provided by the SAS/C C++ Development
System. The descriptions assume that you are already familiar with C++ templates.

214 Template Parameters A Appendix 3

Template Parameters

The SAS/C C++ Development System supports nontype template parameters as
described in the ANSI draft C++ standard. Nontype template parameters types must be

O integer types

enumeration types

pointers to functions or objects
references to functions or objects

O o o o

data member pointers.

Nontype template parameters can use previously declared template parameters in
their declaration type. However, template parameters cannot be used in subexpressions
within the type. For example:

template <class T, T* someObject>
class C { . . . };
int p;
C <int, &p> cj;
template <int I, int a[I]* pArray> class C2; // ok
template <int I,
int a[I*100]* pBigArray> // error because
// of subexpression I*100
class C2;

Template Arguments

Template arguments in the SAS/C C++ Development System follow these guidelines:

0 Template arguments cannot be unnamed types or local types. Local types are
declared inside a function.

o Nontype template arguments must be one of the following:
O integral constant expressions (including enum constants)

O pointers to objects with external linkage (including static class members)
specified as:

&external name Or &class_name::static_member
O pointers to functions with external linkage specified as:
external name or
class_name::static_member or
&external name or
&class_name::static_member

O references to functions or objects with external linkage (including static class
members) specified as:

external name or
class_name::static_member
0 member pointer constants for nonstatic data members specified as:

&class_name: :member

Templates A Using Typename with Dependent Qualified Names 215

The C++ translator performs a limited number of conversions on explicitly specified
template arguments in order to match the type of the formal template. The outer level
qualifiers on the formal type are ignored for matching purposes. The standard
conversions performed on template arguments are

O integral conversions

0 reference binding where an object or function name argument of type T converts to
a parameter of type T&

o function to pointer conversion
O qualification conversions

Template Declarations and Definitions

The syntax for declaring a class template is
template <class T> class C; // T is a type parameter

Within the body of a class template or class template member definition, the class
template name without a template argument list may be used as a synonym for the
particular class specialization being instantiated. A specialization of a class template is
referred to as a template class. For example:

template <class T> class C {
C<T>* pl;
C* p2; // type is also C<T>*
}i

The SAS/C C++ Development System also supports the ANSI/ISO typename
keyword. typename can be used as a substitute for the keyword class when declaring
template type arguments, as follows:

template <typename T> class C; // an alternate
// declaration

Using Typename with Dependent Qualified Names

The primary use of typename is as a name modifier in template declarations.
Dependent qualified names are defined as those names in which the qualifier scope
explicitly depends on a template parameter that is part of the name. The typename
keyword is required to precede dependent qualified names. This is necessary because
declaration and expression parsing must be able to distinguish between type and
nontype names before the types and values of the template arguments are known.
Dependent qualified names cannot be resolved by lookup as they would be for a normal
class of names.

For example, if T is a template parameter and A is a template class that has a single
type parameter, then the names are referred to as dependent qualified names because
the scopes of the names are dependent:

T::n
A<T>::n

In this example, the scope of the name is not dependent:

216

Declaration Rules A Appendix 3

A<int>::n
An example of a template declaration that uses typename follows:

template <class T> class Vector {

public:
typedef T* Iterator;
friend Iterator first(Vector<T>&);
}i
template <class T>
typename Vector<T>::Iterator first(Vector<T>& v)

{ . « <« };

The current release of the SAS/C C++ Development System only checks for typename
when parsing declaration specifiers in a template declaration. However, the C++ draft
requires the typename modifier on qualified dependent type names in the body of a
template definition. You should consider using the typename keyword in new template
code. For use with older compilers that do not support the typename keyword, the
typename keyword can be hidden with the preprocessor directive as follows:

#define typename /* nothing */

Declaration Rules

Template classes and nonmember function templates may be declared multiple times
in a translation unit, but they are subject to the single definition rule. The single
definition rule states that a template may be defined at most once within each
translation unit. However, a template may be defined in multiple translation units.
Each specialization of a function or template class member must be defined in at most
one translation unit.

Template class member declarations that are not friend declarations must be
definitions.

Note: Template friend declarations of template class members are not supported in
this release of the SAS/C C++ Development System. A

Template declarations may be used to declare friend classes and functions. However,
friend template declarations may not be definitions.

For each template declaration, the template parameters can be specified with
different names just as different function parameter names may be specified in different
function declarations. For example:

// forward declaration of template C
template <class T, class U> class C;

// redeclaration of template C
template <class X, class Y> class C;

When declaring a template class member, the order of template parameters in the
template class member must match the order of the corresponding parameters in the
class template. The same order must also be used to specify the template parameters in
the scope portion of the qualified member name being declared.

Templates A QOverloading Function Templates 217

template <class T, class U>
class C {
public:

static int i;

static int j;

}i

template <class T, class U>
int C<T, U>::i = 0; // OK

template <class T, class U>
int C<U, T>::j = 0; // error - parameter order not
// the same

Note: Beginning with Release 6.50, template parameters may not have default
arguments. A

Function Templates

The C++ language allows function templates in addition to class templates. Function
templates provide the ability to create generic functions that are parameterized on
types and constant values. The terms function template and template function are
sometimes used interchangeably. Strictly, however, a function template is a declaration
that specifies a family of overloaded functions. The declaration of a member function in
a class template also is considered a function template. An instance of the family of
overloaded functions associated with a function template is generated by specializing
the template, which involves filling in particular types and values for the template
parameters. A template function, then, is just an instance of a function template where
particular values for all the template parameters have been determined.

The SAS/C C++ Development System supports function templates with nontype
parameters. Refer to “Template Parameters” on page 214 for a description of nontype
parameters. You can use nontype parameters to declare the template parameters and
return types in a function template declaration. An example follows:

template <int SZ> class Bitvect;
template <int SZ1l, int Sz2>

Bitvect<SZ1+SZ2> concat(const Bitvect<SZl>& bl,
const Bitvect<Szl>& b2);

Nonmember function templates cannot have default arguments.

Overloading Function Templates

Function templates and ordinary nontemplate functions having the same name are
not related. However, C++ allows for a function template to be overloaded with other
function templates or nontemplate functions. During call overload resolution, each
function template corresponding to the called name creates at most one candidate
specialization of the template. The specialization is created by determining types and
values for the template parameters through template argument deduction.

Specializations of a function template participate like ordinary functions in the
overload resolution process. Once all functions for which there are better matches are
eliminated, only the nontemplate functions that are left over are considered. Therefore,

218

Deducing Arguments A Appendix 3

a function template is chosen only if it is a better match than any of the nontemplate
functions.

Deducing Arguments

The template arguments for a member function of a template class are the actual
template arguments for the template class. Otherwise, the template arguments are
determined by deduction from the function parameter types.

Template argument deduction determines template parameter values by comparing
each function parameter of the function template with the corresponding arguments of
the call. Arguments that are not dependent on unspecified template parameters are
matched to parameters exactly as they would be in normal function arguments.
Otherwise, types and values are chosen for the template parameters which, when
substituted in each function template parameter type, will match the corresponding
argument type after trivial argument conversions. The trivial conversions performed on
template arguments are

o reference binding

Reference type arguments are dereferenced normally before type matching
occurs. If a parameter type is a reference, the dereferenced type is used for
matching purposes. For example:

template <class T> void f(T&);

void testit(int i)
{
£(1i); // calls f(inté&)
}
o function to pointer conversion and array to pointer conversion
For arguments to nonreference parameters, the normal function to pointer and

array to pointer conversions are applied before matching. For example:

template <class T> void f£(T);

int a[5];
void testit()
{
f(a); // calls f(int*)
}

O qualifier changes

Trivial qualifier changes are allowed. Pointer qualifier changes are allowed also.
Outer level qualifiers are ignored for deduction purposes. For example:

template <class T> void f(const T*);

void testit(int* p)
{

f(p); // calls f(const int*)
}

In certain cases, template parameters cannot be deduced. For example, a template
parameter used in the scope of a qualified name cannot be deduced:

template <class T>
void f(typename T::Z*); // T not deducible

Templates /A Specifying Arguments 219

Template parameters used in subexpressions in a template function declaration cannot
be deduced either. However, parameters that are used directly as array bounds and
class template arguments are deducible. Several examples follow:

template
void £1(

template

void £2(

template

template
void £3¢(

template
void f£4(

template
void £5¢(

template
void £6(

<int sz>

int (*arrayPtr)[sz]); // deducible
<int sz>

int (*arrayPtr)[sz+l]); // sz not

// deducible

<class T, int SZ> class Vect;

<class T, int sz>
Vect<T, sz>& v); // deducible

<class T, int sz>
Vect<T, sz+1>& v); // sz not deducible

<class T>
Vect<T, 8/sizeof(T) >& v); // T not
// deducible

<class T, int sz>
Vect<T*, sz >& v); // deducible

Note: The major array bound of an array parameter to a function is ignored when
deducing the parameter type:

template
void £7¢(

A

<int size>
int a[size][4]); // size not
// deducible,
// same as "int (*a)[4]"

Because the type of a function template that uses template parameters in
subexpressions is not readily available, any redeclaration of the function template must
match textually, at the token level, with the exception of template parameters which
can be renamed. For example:

template
void £8(

template
void £8(

<int N>
int(*ap) [N+1]);

<int U>
int(*ap) [U+1]); // redeclaration -
// template parameters renamed

Specifying Arguments

Template arguments for nonmember template functions may be specified in the form:

function template name< optional_ template_args >;

The function template name is followed by a possibly empty (< >) template argument

list.

Explicit template argument list specifications for function templates are an ANSI/
ISO extension. They are used as a function name in expressions and in explicit

220 Specifying Arguments A Appendix 3

specialization and instantiation declarations when the template has parameters that
cannot be deduced from the context. For example, if a function template has template
parameters that are not deducible, then an explicit template argument list containing
actual values for those parameters must be used to call it.

Effectively, explicit template arguments are used to select a subset of the function
templates that match the specified arguments. Then the parameters that correspond to
the specified arguments are fixed. For example:

template <class T, class U>

inline T implicit cast(U u) { return u; }

This example produces a function that will perform an implicit conversion to the
specified type, therefore avoiding a cast that could allow unsafe conversions:

void f(double);
void £(int);

template <class T>
void callit(T t)
{
// call f(double)
f(implicit_cast<double>(t));
}

Not all the arguments for the function template need to be specified when using an
explicit template argument list. The specified arguments are substituted for the
corresponding parameters in the declared type of each matching template. Any
template arguments not specified are deduced in the normal manner. Function
arguments for which all template parameters are specified are treated like normal
function arguments for overload resolution purposes. For example:

template <class T>
inline T Max(T x, Ty)
{ return (x >y) ? X :y; }

int compare(int i, char c)
{
// Calling Max(i, ¢) would fail because
// the argument types differ too much,
// and the template parameter cannot
// be deduced. But you can explicitly
// specify the type.
Max<int>(i, ¢); // OK, calls Max(int, int)

}

As an alternative to explicit template argument specification, older C++
implementations allow a construct called a guiding declaration. A guiding declaration
uses an ordinary declaration to specify a specialization of a function template. A
guiding declaration is used to avoid the same deduction problem illustrated in the
previous example.

template <class T>
inline T Max(T x, Ty)
{ return (x >y) ? X : y; }

int Max(int, int); // guiding declaration

int compare(int i, char c)

Templates A\ Other Template Signatures 221

// Calling Max(i, ¢) would fail without
// the guiding declaration because the

// argument types differ too much.

Max(i, ¢); // OK, calls Max(int, int)

When the tmplfunc translator option is specified, nontemplate functions are distinct
from template specializations. Therefore, guiding declarations are not recognized. In
such cases, inline functions can be used in place of the guiding declaration:

template <class T>
inline T Max(T x, Ty)
{ return (x >y) ? X : y; }

// forwarding declaration

inline int Max(int x, int y)

{ return Max<>(X, y); } // call the template
// version

int compare(int i, char c)
{
// Calling Max(i, ¢) would fail without
// the forwarding declaration because the
// argument types differ too much.
Max(i, ¢); // OK, calls Max(int, int) }

See “Option Descriptions” on page 71 for a full description of the tmplfunc option.

Function Template Signatures

Functions with normal linkage conventions (not extern "c") encode information
about their parameter types into their linkage name. For specializations of function
templates, this linkage information potentially includes the template arguments also.
When the template arguments are included, components such as COOL will print the
name including the template arguments using the function name followed by the actual
template arguments.

The ANSI/ISO C++ draft treats specializations of function templates as distinct
objects from non-template declarations with the same name and type. Effectively, the
linkage names of template specializations are different from non-template linkage
names. Older C++ compilers treat non-template declarations that match template
specializations as the same object. Therefore, the same linkage name is used.

By default, the SAS/C C++ Development System uses the nontemplate linkage name
for specializations of normally deducible function templates for compatibility with older
code. Functions which are not deducible (see message LSCT628 in SAS/C Software
Diagnostic Messages), which older compilers treat as erroneous, always include the
template parameters in their linkage. With the tmplfunc option, the linkage names of
function template specializations will be made distinct from nontemplate functions, by
including the template arguments for the specialization in the linkage name.

Other Template Signatures

When the translator or other tools refer to names with C++ linkage whose scope or
type depends on templates, the name printed out contains template argument lists. For

222

Template Specialization Declarations A Appendix 3

the most part, the interpretation of these template arguments should be obvious. These
tools have incomplete information about the types and definitions involved, so some
special cases are worth noting:

o0 Template arguments are not output in tracebacks. In tracebacks, templates are
denoted with an empty argument list < >. Also the argument list may be omitted
in cases where there is not enough space to output the list completely.

0 Enumeration constants are described by their numeric value.

enum Color { Red = 1, Blue = 2, Green = 4 };
template <Color clr> class C
{
public:
static int sij;
}i
A reference to C<Red>: :si might be output as c<1>::si.
o Data member pointers are printed in terms of their offset within the structure.

In the latter two cases, there may be no unique C++ expression that generates the
given value, so a standard form was chosen.

Template Specialization Declarations

An explicit specialization is a declaration of a specialization of a template or template
member that overrides generation of the specialization from its template definition.
Such a specialization is called explicitly specialized. Members of explicitly specialized
classes are treated as if they too are explicitly specialized.

Explicitly specialized items must be declared before their first use in every
translation unit in which they are used. If the specialized item is used, it must be
defined in a translation unit within the program.

The ANSI/ISO C++ draft form for an explicit specialization is a global declaration of
the form:

template < > DECLARATION

The declaration refers to a specialization of a previously declared template or template
member. The declaration may be a definition. If the declarator names a function
template, an explicit template argument list may optionally follow the template name
in order to disambiguate the specialization being declared. For example:

template <class T> class TypeAttr {
public:
static const int isIntegral;
typedef T* Pointer;
}i

template <class T>
const int TypeAttr<T>::isIntegral = 0; // default to
// non-integral

template < >
const int TypeAttr<int>::isIntegral = 1;

template < >
const int TypeAttr<long>::isIntegral = 1;

Templates A Explicit Instantiation 223

template <class T>
T& deref(typename TypeAttr<T>::Pointer); // T not
// deducible

template < >
int& deref<int>(int *p) // have to specify <int>
// to disambiguate

{ return *p }

For compatibility with older compilers, if the TMPLFUNC option is not specified,
ordinary function declarations that match the types of template specializations are
treated as explicit specializations. As a special case, for compatibilty with older
compilers, friend declarations inside a template class that use template parameter
names in the declaration type are not treated as specializations. An example follows:

#include <iostream.h>

template <class T>
class Vector {
// the following uses template
// parameter "T", not a specialization
friend ostream& operator<<
(ostream&, Vector<T>&);

// the following does not use
// template parameters
// It is treated as an explicit specialization
friend ostream& operator<<
(ostream&, Vector<int>&);

// define the template
template <class T>
ostream& operator<<(ostream& o, Vector<T>& v)

{ .« . .3

// the following definition is also
// treated as an explicit specialization
ostream& operator<<(ostream& o, Vector<double>& v)

Template Instantiation

Beginning with Release 6.50, SAS/C C++ supports both explicit instantiation and
automatic instantiation of templates. The following two sections describe their features.

Explicit Instantiation

An explicit instantiation is a declaration with global scope of the form:

224

Automatic Instantiation A Appendix 3

template declaration

where declaration specifies a template class member, a template function, or a template
class name, for example,

class C<int>

An explicit instantiation must be a global declaration.

The template specialization declared is generated from its template definition in the
current translation unit, even if the specialization is not used. If the autoinst option is
not used, a nonstatic noninline template function or static data member of a template
class may only be explicitly instantiated in one translation unit.

When declaring a specialization of a function template, a template argument list
optionally may follow the function template name in order to disambiguate the
declaration.

template <class X>
class C
{

static X* sp;

+i

template <class T>
T* C<T>::sp = 0;

template C<int>::sp; // declare C<int>::sp here

The declaration may not be a definition. The template definition must be available at
the point of the explict instantiation declaration.

Automatic Instantiation

The bodies of template classes and inline (or static) template functions are always
instantiated implicitly when their definitions are needed. Member functions of template
classes are not instantiated until they are used. Other template items can be
instantiated by using explicit instantiation. However, explicit instantiation becomes
unwieldy with more complex uses of templates. When the autoinst option is used,
nonstatic noninline template functions and static data members of template classes are
automatically implicitly instantiated. The restrictions on automatic instantiation are
described below.

Implicit instantiation of a template item with autoinst requires that the option be
enabled on a compilation unit, which contains both a use of the item and its
corresponding template. Often, this can be arranged by including the definition of any
needed templates in the header file which declares the templates.

With the autoinst option, the compiler organizes the output object module so that
COOL can arrange for only one copy of each template item to be included in the final
program. The original compilation unit from which the final copy is generated and the
section name created for the template item are unpredictable, although the section
name can be determined from the COOL listing.

Each nonstatic noninline template function or static data member of a template class
that is used must be either implicitly instantiated by autoinst, explicitly instantiated
in exactly one compilation unit, or else explicitly specialized and defined. Otherwise,
COOL will diagnose a missing definition for the template item.

The draft C++ standard requires that nonstatic templates and inline functions that
are defined in more that one compilation unit refer to the same set of objects and

Templates /A Automatic Instantiation 225

functions with each definition. Implicit instantiation with the autoinst option depends
on this requirement being satisfied. Nonstatic template definitions of functions and
static data members may not refer to global static objects and functions if the definition
appears in more than one compilation unit. Uses of global statics inside a template
item instantiated from such definitions will be diagnosed with WARNING 683:

Implicit template instantiation uses static object. For more information on
this warning message, see SAS/C Software Diagnostic Messages. An example follows:

static int i;

template <class T>
void collect(const T& t)
{
i += t; // use of static ’'i’ gets warning 683

}

void testit()
{
collect(1); // cause instantiation of
//collect(const int&)

Because global static objects and functions are available only in their original
compilation units, use of statics in items implicitly instantiated from templates force
the item to be inserted in the current compilation unit as if the template item were
explicitly specialized. This insertion is diagnosed with WARNING 684: Static use
forces automatic template instantiation in primary module. For more
information on this warning message, see SAS/C Software Diagnostic Messages. This
insertion may cause a multiple definition error for the template item at link time if the
template was defined in more than one compilation unit.

Calls from template definitions to inline functions that use global static objects or
functions cause similar problems in the direct use of those statics. Therefore, WARNING
685: Inline function uses static object will be generated for use in nonstatic
inline functions. The function will be treated as static for the purposes of warning
messages 683, 684, and 685. Warnings 683 and 684 are only output for items
automatically instantiated by autoinst from template definitions. The definitions of
explicitly specialized template items may reference global statics without generating
warnings 683 or 684. For more information on these warning messages, see SAS/C
Software Diagnostic Messages.

226 Automatic Instantiation A Appendix 3

227

APPENDIX

Pointer Qualification
Conversions, Casts, and
Run-Time Type Identification

Pointer Qualification Conversions 227
Cast Operators 228
Run-Time Type Identification Requirements 228

Pointer Qualification Gonversions

Compilers for ANSI C and older C++ compilers allow implicit pointer qualification
conversions such as int** to const int** that are not type-safe. For example:

void set_it(const int** target, const int* source)

{

*target = source;

void test_it(const int* const ptr)

{

int* nonconst ptr;

// Get a non-const copy of const_ptr

// without casts!!

// The first argument uses the old unsafe
// implicit conversion.

set_it(&nonconst_ptr,

const_ptr);

*nonconst_ptr = 0; // assignment through
// const pointer

}

To avoid a similar problem with the C++ type system, the draft version of C++ allows
only a subset of the implicit qualification conversions allowed in ANSI C. This subset
can be summarized as follows:

o Conversion of single level pointers work as they did in ANSI C.

0 With multiple pointer levels, when qualifiers change on a pointed to type,
intermediate pointed to types in the target type must be const. For example, an
int+** pointer cannot be implicitly converted to const int** but it can be
implicitly converted to

const int* const *

For more information on implicit pointer qualification conversions, refer to section
4.4 of the ISO C++ draft.

228 Cast Operators A Appendix 4

Cast Operators

This release of the C++ translator supports several new cast operators. These
operators are defined in the ISO C++ draft as improved alternatives to the old cast
operators, for example, (type) (expr) or type name (expr). For more information on
these operators, see Stroustrup’s Design and Evolution of C++.

The new cast operators are

static_cast< type > (expr)
portable conversions that do not cast away constness

const_cast< type > (expr)
pointer qualification conversions, including the unsafe conversions which cannot
be performed implicitly

reinterpret cast< type > (expr)
nonportable conversions such as:
O conversion from pointer to int and back
O conversions between arbitrary pointers to objects
O conversions between arbitrary pointers to functions

dynamic_cast< type > (expr)
run-time type dependent pointer and reference conversions.

The new cast operators, except dynamic_cast, provide separate components of the
functionality of the old casts that allow improved type checking. Any old-style cast can
be expressed as a combination of the new casts. The new cast operators, other than
const_cast, are not allowed to cast away constness on pointer, pointer to member, and
reference conversions. See section 5.2.11 of the ISO draft for more information.

Run-Time Type Identification Requirements

Beginning with Release 6.50, the SAS/C C++ Development System supports
Run-Time Type Identification, or RTTI. RTTI enables the compiler to automatically
generate type information for objects checked at run time. The RTTI option must be
specified for each compilation unit to assure that class objects constructed with
functions defined in the unit have the information required for dynamic type
identification by the dynamic_cast and typeid() operators. See “Option Descriptions”
on page 71 for more information on the RTTI option. The generated code will abort if
the dynamic_cast or typeid() operators are applied to C++ class objects with virtual
functions which do not have RTTI information. This means it is generally unsafe to
have a program that uses dynamic_cast or typeid() but does not generate RTTI
information in all of its compilation units.

Compilation units that do not use dynamic_cast or typeid() can be compiled with
the RTTI information. The resulting object files can be safely linked into progams that
do not use RTTI. The C++ library is compiled this way. Note that dynamic type
identification applies only to C++ classes with virtual functions, so there is no
compatibility issue with non-C++ code.

ISO C++ specifies that certain erroneous uses of dynamic_cast and typeid() cause
a C++ exception to be thrown. If no exception handler is available, the terminate ()
operator is called, which aborts the program by default. However, a handler can be
specified by set_terminate() to perform cleanup before terminating program

Pointer Qualification Conversions, Casts, and Run-Time Type Identification /A Run-Time Type ldentification Requirements 229

execution. See “typeinfo.h Header File” on page 98 for more information on these
operators.

As an extension to ISO C++, the run-time code for RTTI will detect when dynamic
type information is requested for an object that was not compiled with the RTTI option.
In such cases, an exception type of std::__non__rtti is thrown.

The typeid () operator returns a reference to a statically allocated object. The
destructor should never be called for this object. Calling typeid() for the same type in
different compilation units may produce references to different objects. Always use
operator == or operator != to test for type equality.

230 Run-Time Type Identification Requirements A Appendix 4

231

APPENDIX

Interpreting C++ Demangled
Names

C++ Demangled Names 231
Special Conventions Used in Demangled Names 232

C++ Demangled Names

Some SAS/C components, such as the COOL pre-linker and the SAS/C Debugger, need
to refer to overloadable names in their messages and reports, as in COOL diagnostic
messages or debugger prompts to select one of several overloaded functions. In these
contexts, a routine called the demangler is called to generate a demangled name, which
is an approximation to the original C++ declaration of the name. For instance, the
demangled form of reciprocal _Fd is reciprocal (double). The demangled name
may fail to match the actual declaration of an object for any of several reasons:

0 The mangled name may not contain enough information to completely reproduce

the original form. For instance, if a type is defined using a typedef, the typedef
name is not present in the mangled name. For example:

typedef container box;
bool open(box *);

The demangled form of this open function will be open(container *).

0 In some cases, a demangled name may not even be valid C++. This can happen
when valid C++ code requires the use of a typedef. For example:

typedef void (*functionp) (int);
class example {
operator functionp(); /* convert example to functionp */

}

The demangled name for example: :operator functionp above will be
example: :operator void(*) (int) (), which is not an acceptable syntax for a
conversion operator.

0 In many contexts where mangled names are used, a limited amount of space is
available to display the name. Not only are many C++ names long in their original
form, but the expansion of typedefs can result in very long names for functions
whose declarations are quite short. For instance, the complete demangled name of
an extraction operator in the standard template library is as follows:

std::basic_ostream<char,std::char_ traits<char> >::operator <<
(std::basic_ostream<char,std::char_traits<char> >&(*)
(std::basic_ostream<char,std::char_ traits<char> >&))

Names such as that above generally must be compressed in some fashion in order to
fit in a fixed-size field. Such compression loses information, and also produces a name

232

Special Conventions Used in Demangled Names A Appendix 5

that is not valid for C++. For example, the name above, in a COOL cross-reference, will
possibly be compacted to the following:

std::basic_stream<char,std::char_traits<char> >::operator <<(...1l)

Of course, this is not a valid C++ operator specification, and all information about
the type of the argument has been lost. The combination of these factors can make
demangled names quite difficult to interpret.

Note: See the information the information on the endisplaylimit COOL option in
SAS/C Compiler and Library User’s Guide for information about generating
non-compacted names. A

The remainder of this section describes the special conventions used in demangled
names as an aid to figuring out the specific identifier a demangled name refers to.

Special Conventions Used in Demangled Names

This section describes the special conventions that are used in demangled names.
You can use it as an aid to determine the specific identifier to which a demangled name
refers.

Certain SAS/C keywords may be replaced in a name with shorter abbreviations. The
keywords and their abbreviations are listed in Table A5.1 on page 232.

Table A5.1 Keywords and Their Abbreviations

Keyword Abbreviation
signed S
unsigned U
const C
volatile v
__local _L
__asm _A
__ref _R
__ibmos I
_ _cobol _c
__fortran _Fo
_ _pascal _PA
__pli _PL
__foreign FR

Long identifier names may be truncated in the middle. This truncation means that
the first and last parts of the identifier will be printed with the middle characters
replaced by “...”. For instance, if necessary, the name ComputeCumulativeLoss may be
printed as Compute...iveLoss.

When a name has multiple levels of nesting, the inner scope identifiers may be
removed and replaced with an ellipsis. For example, the name
I0_Namespace::FileManager::UtilityOperations::Reposition(£file) might be

A Special Conventions Used in Demangled Names 233

If a function or function type has a long list of arguments, one or more of the
arguments may be omitted. This is indicated by an ellipsis after the last argument
printed, followed by the number of omitted arguments. If the function has a variable
number of arguments, another ellipsis will be generated after the number of arguments.
For instance, the name Interpolate(formula,double,...3...) indicates a function
with 5 arguments, the first two of which are a formula and a double, plus a varying
number of additional arguments. In addition to omitting arguments to save space, the
demangler also omits arguments for nested functions because overloading based on
argument types for nested function pointer arguments is almost never used.

Names involving nested templates may be displayed with some of the template levels
omitted. For example, the name
f (namel<name2, <name3<name4<int,name5*> >,name6>) could be truncated to
f (namel<name2, <name3<>,name6>), or even to f (namel<>) if some of the names were
very long. It is also possible, though not common, for some of the arguments in a
template to be omitted. In this case, an ellipsis indicates the presence of one or more
additional template arguments. For example, the name of £ above might be shortened
to f (namel<name2,...>).

When a template argument is an integral constant, it is printed in the form
type (value), for example, long(14). The type will either be a built-in integer type or
an enumeration type.

When a template argument is a member data pointer, the mangled name does not
contain enough information for the demangler to print the name of the member
addressed. Instead, one of the following notations is used: class::offset indicates a
pointer to a member at the indicated offset from the class, while class: :* (0) indicates
a null member pointer. In the following example, the demangled name for the function
named confusing will be confusing(&my class::+4):

class myclass {
public:
int a,b;

}i

template <int myclass::*> class strange {
/* template body */
}i

void confusing(strange<&my_class::b>);

The C++ language does not have a notation to explicitly specify an unnamed
namespace. A mangled name for a function or identifier in an unnamed namespace is
printed as if the name of the unnamed namespace was {unnamed}. An example is the
name {unnamed}::myclass::invert (int). If compression of such a name is needed,
{unnamed} may be further compressed to {0}.

As noted above, a conversion operator may be displayed in a form that is not valid
C++. In some cases, the name of the conversion operator may be so long that it cannot
be truncated without being misleading. In this case, a complex type in the operator
name may be replaced by the word typedef. For example, the demangled name
classname: :operator typedef *() is a conversion operator that converts to a
pointer type, where the name of the type pointed to was too long to print.

Sometimes, a demangled name will refer to an object constructed by the translator
that does not correspond to any object declared by the user. Such names generally have
the form {name[index]}, where name is a descriptive name and index is a unique
number identifying the object. For example, a translator-generated virtual function
table for a class named GraphicalObject could be GraphicalObject:: {VTable[1]}.

234 Special Conventions Used in Demangled Names A Appendix 5

Some names generated by the translator are given names relative to the compilation.
The demangled name in this case will have a qualifier that resembles a class or
namespace name, but ends in an @. For example, the name REPORTR@:: __init(void)
refers to a translator-generated initialization function for a compilation whose sname
(or section name) was specified as REPORTR.

When demangled names are generated on the mainframe, brackets in the name ([
and])are replaced with digraphs ((| and |)), since the brackets are often not printable
on mainframe I/O devices.

235

APPENDIX

Handling Exceptions in SAS/C

Handling Exceptions in SAS/C 235
Exception Tracebacks 236
Exception Diagnostics 237

longimp Function 237

blkjmp Handler 237

Signals 238

Coprocesses 239

Handling Exceptions in SAS/C

Exception handling is enabled in SAS/C C++ using the except option, -Kexcept for
the cross-compilers and UNIX System Services (USS). This implements exception
handling as specified in the ISO C++ standard. This support includes throws, rethrows,
stack unwinding, try blocks, function try blocks, and exception specifications. Code will
be generated in new-expressions to perform cleanup and deallocation if an exception is
thrown while constructing the new object. Also, delete expressions will attempt to
destroy the remaining elements in a class array before continuing unwinding if a
destructor for an element exits because of an exception. Code is also added to
constructors and destructors to ensure proper cleanup if an exception is thrown while
processing a sub-object.

The exception handling mechanism supports C++ and C code. An exception may be
thrown in C++ code called from a C function. The C functions will be unwound, if
necessary, to find a C++ handler for the exception. The exception handling mechanism
uses longjmp internally. As a consequence, extra care must be taken when using
exception handling in combination with C code compiled with the armode option.

It is possible to mix C++ code compiled with the except option with C++ code that
was not compiled with except. This is useful to avoid supplying multiple versions of
libraries or objects. However destructors for objects with automatic storage will not be
invoked during exception unwinding for a C++ function compiled without the except
option. Also, exception specifications will not be checked. Other exception related
cleanup will also not occur in code compiled without the except option. Because of
inlining and virtual functions, it can be difficult to predict the behavior of mixed code
when an exception is thrown.

The C++ libraries supplied with the SAS/C C++ development system are compiled
with exception handling enabled. The Rogue Wave Standard C++ library requires code
that uses it to be compiled with the except option. Code that uses only the basic C++
library (run-time support and the compatibility complex and iostream classes) can be
compiled without the except option. The fact that the library was compiled with the
except option will be invisible unless an exception is actually thrown.

236

Exception Tracebacks A Appendix 6

Note that the C++ libraries will throw exceptions to indicate certain conditions, as
specified by the C++ standard. For example, the default operator new will throw the
exception std::bad_alloc to indicate an allocation failure. Other exceptions are
generated for run-time conditions involving the RTTI operators typeid and
dynamic_cast<>. If there is no C++ handler to catch the exception, then the program
will be terminated by a call to std::terminate.

Exception Tracebacks

Because of unwinding, information about the context of a throw will no longer be
available at the point when the exception is handled or the exception handling
mechanism decides that the exception has no handler. In order to simplify problem
diagnosis, traceback information is normally captured when an exception is thrown.
The information remains available throughout the lifetime of the exception. This
information can be displayed with the =xtrace run-time option or the function
std: :exception: :xtrace.

If QUIET is in effect (via an active quiet(1) which was not ignored due to the =warning
run-time option) and it is not overridden by =xtrace, then traceback information will
not be collected at throws. This allows the collection overhead to be avoided. Note that
the traceback information may also not be collected if insufficient memory is available.

The function std::exception: :xtrace outputs the collected traceback information,
if any, for the currently handled exception. This is the exception for the catch handler
that has been most recently entered but not exited. This is the same exception that
would be rethrown by a throw; statement. The function is similar to the C library
function btrace. It takes a function pointer to redirect output. When the pointer is 0,
the output goes to the stderr stream unless the SPE library is being used, in which
case the call is ignored.

Exception traceback information may be output due to the =xtrace run-time option.
If =xtrace is specified then the collected traceback is output immediately to the stderr
stream, preceded by run-time message LSCX251. The message includes the type of the
exception object, if its type is one of the standard library exception classes. The
std::exception::is_xtraced function is provided to determine if the traceback
information for the current exception has been previously output. This allows duplicate
output to be avoided. With the SPE library, no tracebacks will be printed except for
explicit calls to std: :exception: :xtrace that specify a non-NULL argument.

The following code example demonstrates one use of xtrace and is_xtraced. This
will print to stderr a traceback from the point at which the library operator new
function throws the std::bad_alloc exception.

#include #include
void throwit()
{
// this allocation is expected to be unlikely to succeed
// this should throw std::bad_alloc
char* p = new char[256%1024*1024];
delete [] p;
}

int main()
{
try

{
throwit();

A blkjmp Handler 237

}

catch (const std::exception& e)
{
if (!std::exception::is_xtraced())
{
cerr << "xtrace() information follows for class "
<< e.what()
<< endl;

std: :exception: :xtrace();

Exception Diagnostics

To facilitate problem diagnosis, the exception handling mechanism will issue library
warning LSCX252 before calling a terminate handler. Also, an xtrace(0) traceback is
dumped before calling the default terminate handler. The behavior of calling xtrace(0)
can be overridden by providing a new terminate handler with std::set_terminate.

The exception handling mechanism will also issue an LSCX253 warning before
calling the terminate handler in other circumstances. The message is issued when a
rethrow is requested but there is no currently handled exception. In such a
circumstance, no unwinding has occurred, so LSCX252 and the xtrace information is
not output. The LSCX253 warning will also be issued when an uncaught exception is
being processed and a user function called by the exception handling mechanism exits
by way of an exception.

longjmp Function

The longjmp function, and related functions, may be used in combination with
exception handling. However, such non-local gotos do not cause the auto destructors to
run as they would with exception unwinding. Also use of setjmp, blkjmp, or similar
functions in a C++ functions that contain try blocks or non-trivial auto destructors
could cause unpredictable results. In such cases, the internal state information used by
exception handling may not be correct for the stack frame that becomes current after
the non-local goto.

blkjmp Handler

blkjmp handlers are called during unwinding for an exception. A blkjmp handler is
called after stack unwinding has called all auto destructors for the current function as
well as functions called by this function. The unwind process is suspended during the
blkjmp handler and the information necessary to restart it is saved in the jmp_buf
specified by the blkjmp call’s argument.

Since the unwind process is suspended while the blkjmp handler is executing, the
unwind process is not visible to std: :uncaught_exception. This means that the
result of std: :uncaught_exception will be false if it would have been false prior to
the throw that started the suspended unwind process.

238 Signals A Appendix 6

Note: It is possible to bypass the unwind process by exiting the blkjmp handler in
some other way than longjmp with the information saved in the jmp_buf or by using
longjmp from a user function called by the unwinder. This is not a recommended
practice. It prevents proper cleanup of the exception after all handlers have completed.
The memory allocated to the exception will not be released in this case nor will the

exception object destructor be called. If this happens repeatedly then memory allocation

problems may occur. Also, the effects are unpredictable if a blkjmp handler returns to
its caller and the saved jmp_buf information is used later. o

Signals

Throwing an exception from a signal handler will cause unpredictable results.
Exception handling depends on examining state information saved in the stack frames
for currently active functions. However, signal handlers may be invoked in situations
where this state information is incompletely updated. Consequently, an exception
thrown in such circumstances could cause improper operation during stack unwinding.

If it is necessary to report an event triggered by a signal as an exception, then the
traditional C methods should be used to trap the signal. An exception can then be
thrown outside the signal handler. The following example uses such a technique:

#include #include #include #include
// a simple user defined class for exception reporting

class fpe_error : public std::exception {

public:
virtual const char* what() const throw()
{ return "fpe error"; }

}i

jmp_buf jb;

// trivial signal handler
void handler(int signum)

{
longjmp(jb, signum);

// dummy example code, this always generates a SIGFPE.
void doit()

{
raise(SIGFPE);

// This function "adapts" signals to exceptions.
// Since this function calls setjmp(), it should not have any try blocks
// or autos with nontrivial destructors.
void trapper/()
{

signal(SIGFPE, handler);

if (setjmp(jb))

throw fpe_error();

else

{

A Coprocesses 239

doit();
signal(SIGFPE, SIG_DFL);

int main()
{
try
{
trapper();
}

catch (const std::exception& e)

{

cout << "Caught exception class " << e.what() << endl;

}

Note: Exception handling and signal handling use separate mechanisms in SAS/C.
In particular, it is not possible to intercept a signal with a catch handler unless it has
been converted to an exception, as in the example code. 2

Coprocesses

Exception handling can be used within coprocesses. However, any exception must be
caught within the coprocess. In particular, it is not possible to pass an exception on to a
calling coprocess. Since coexit uses longjmp, any pending exceptions in a coprocess
will not be cleaned up after a call to coexit.

240 Coprocesses A Appendix 6

Index

Index 241

A

A qualifier 16
abs() 100
absolute values 100
access checking 9
__actual storage class modifier 21
add_member()
bsambuf class 162
bsamstream class 124
obsamstream class 124
aggregate initializers 9
alias, translator option 71
allowrecool, COOL option 62
ALLRES parameter 43
amparms 114
ampersand (), call-by-reference operator 20
angles 100
app flag 138
AR370 archives
C++ programs, CMS 36
C++ programs, OS/390 batch 39, 40, 43, 50
preprocessing object code 36, 59
translator output 71, 77
arg() 100
argument-dependent name lookup 8
arithmetic functions
See complex library
arithmetic operators 104
arithmetic overflow 22
arlib, translator option 71
ARLIBRARY statement 59
arrays
decaying to const char* 9
deleting 24
zero length 20
ASCII alternatives for EBCDIC characters 18
ASCII translation of literals 71
asciiout, translator option 71
ASCIIOUT support 16
asm declarations 24
assign command 190
assignment operators 104
at, translator option 71
at sign (@), call-by-reference operator 19, 71
ate flag 138
autocall list, adding C++ object library 62
autocall object library, specifying 64
autoinst, translator option 71
automatic implicit instantiation 71

B C++ programs, CMS 32
AR370 archives 36

bad() 137 compiling 32

bad_alloc(), std class 92 COOL EXEC 36

badbit flag 137 CXXMACLIBS variable 35

bad_exception(), std class 91 CXXOPTIONS variable 35

base classes file access, directories 33
allocation order 24 file access, from XEDIT 34
buffers 173 file access, in an SFS directory 34
streams 109 file access, minidisks 33

beg flag 139 fileids, specifying 33

behaviors, implementation-defined GLOBALYV variables 35
C++-specific 23 header files, locating 35
initialization and termination 24 linking 36
SAS/C compiler 22 MODULE files, creating 37

bidirectional streams 139 output data sets, saving 33

binary data access 113 preprocessing 36

binary flag 138 running programs 37

binary scope (::) operator 189 translating 32

bitalloc() 131 C programs, converting to C++ 201

bitfield, translator option 72 C linkage 202 L i)

bitfields, alignment and signs 23 character arrays, initializing with strings 203

character literals 205

class names, same as typedef names 204
embedded structure tags 205
enumerations 205

blkjmp handler 237
bool keyword 9
breakpoints, setting 192
BSAM 1/O0

See 1/0 classes, BSAM 1/0
bsambuf class 157
bsam_exit_list 165
bsamstream class 108, 118
buffer seeking 138
buffers

base classes 173

classes 156, 210

file-scope constants 203

file-scope variables, multiple declarations 202
function prototypes 202

goto statements 205

integers, assigning to enums 203

#pragma linkage 204

reserved keywords 202

type differences 205

void* values, assigning to pointers 203

formatting 132 C++ programs, OS/390 batch 38
manipulation 129 ALLRES parameter 43
open modes 137 AR370 archive input 43
built-in manipulators 131 AR370 archive output 39, 40, 50
built-in operators, signatures 10 cataloged procedures 38
byte boundary alignment, specifying 72 compiling 38
bytealign, translator option 72 COOL input 43

DD statements, link step 42
DD statements, run-time 46

C DD statements, translation and compilation
steps 39
C library header files debugger file 39, 42
See header files, C library ENV parameter 43
C linkage 202 error messages, data set for 46

C++ programs 28 header files, locating 39, 41

242 Index

input data set 46

LCXXC cataloged procedure 40

LCXXC cataloged procedure, JCL for 49
LCXXCA cataloged procedure 40
LCXXCA cataloged procedure, JCL for 50
LCXXCL cataloged procedure 43
LCXXCL cataloged procedure, JCL for 51
LCXXCLG cataloged procedure 46
LCXXCLG cataloged procedure, JCL for 54
LCXXL cataloged procedure 45

LCXXL cataloged procedure, JCL for 53
LCXXLG cataloged procedure 48
LCXXLG cataloged procedure, JCL for 56
linking 42

load module library 43

object code call library 42

object module 39

output data sets, saving 40, 41

reports, data set for 46

running programs 46

system autocall libraries 43

translating 38

translator input 39

translator output 39

C++ programs, TSO 28

compiling 28

COOL CLIST 30

header files, locating 30
LCXX CLIST 28

linking 30

load modules, creating 30
output data sets, saving 29
preprocessing 30

running programs 31
translating 28

C++ programs, USS 57
C++ Standard

ANSI Standard 117
conforming features 8
nonconforming features 6

C standard headers, C++ Standard 11
Cartesian functions 100

cast operators 228

casts

debugger and 189
of bound pointers 24

cataloged procedures 38

LCXXC 40

LCXXC, JCL for 49
LCXXCA 40
LCXXCA, JCL for 50
LCXXCL 43
LCXXCL, JCL for 51
LCXXCLG 46
LCXXCLG, JCL for 54
LCXXL 45

LCXXL, JCL for 53
LCXXLG 48
LCXXLG, JCL for 56

c_cplusplus macro 15
character arrays, initializing with strings 203
character constants

ASCII/EBCDIC support 16
C to C++ conversions 205
multibyte 22

translator handling 14

typing 8

class information, displaying in the debug-
ger 191
class names, same as typedef names 204
class tags, nested 25
class templates
restricted 10
template default arguments 10
classes, I/0
See 1/O classes
clear() 137
clear_error_info()
bsambuf class 163
bsamstream class 125
ibsamstream class 125
obsamstream class 125
close() 162
bsambuf class 162
bsamstream class 124
filebuf class 169
fstream class 128
ibsamstream class 124
ifstream class 128
obsamstream class 124
ofstream class 128
CMS environment
See C++ programs, CMS
comments 6
comparison operators 104
compatibility issues
dynamic memory allocation 95
/0 116
type information 98
compiling programs
CMS 32
0S/390 batch 38
TSO 28
complex() 100
complex class 99
complex library 99
abs() 100
absolute values 100
angles 100
arg() 100
arithmetic operators 104
assignment operators 104
Cartesian functions 100
comparison operators 104
complex() 100
complex operators 104
conj() 100
conjugations 100
content summary 207
conversion operators 100

cos() 102
cosh() 102
exp() 101

exponential functions 101
hyperbolic functions 102
imag() 100

imaginary parts 100
inserting/extracting complex numbers 105
log() 101

logarithmic functions 101
norm() 100

operators 105

polar() 100

polar functions 100

pow() 101

power functions 101
real() 100

real parts 100

sin() 102

sinh() 102

sqrt() 101

square of magnitude 100
square root functions 101
trigonometric functions 102
complex number functions
See complex library
complex operators 104
complexity, translator option 73
conditional operators, destruction of tempo-
raries 10
conj() 100
conjugations 100
const data members, initializing 9
const objects
initialization 9
modifying through non-const pointers 24
constants 14
const_cast operator 228
constructors, in debugger commands 188
conversion base, setting 131, 181
conversion operators 100
converting base values 134
COOL
CMS EXEC 36
TSO CLIST 30
COOL control statements
ARLIBRARY statement 59
GATHER statement 60
INCLUDE statement 58
INSERT statement 59
coprocesses 239
cos() 102
cosh() 102
__cplusplus macro 15
cross reference listings, generating 85
cross references for extended names 63
cur flag 139
cxx, COOL option 62
CXXMACLIBS variable 35
CXXOPTIONS variable 35

D

-D, translator option 73

data members, non static allocation order 24

data objects, searching for 191

data type information, getting
bad_cast(), std class 96
bad_typeid(), std class 97
__non_rtti(), std class 97
type_info(), std class 95
typeinfo files 95
typeinfo.h files 98, 207

data types 205
C to C++ conversions 205
in debugger 190

date, getting 15

_ DATE__ macro 15

dbglib, COOL option 62

dbgmacro, translator option 73

dbgobj, translator option 73
dcbblksize() 126
dcblrecl()
bsambuf class 162
bsamstream class 126
ibsamstream class 126
obsamstream class 126
dcbrecfm()
bsambuf class 162
bsamstream class 125
ibsamstream class 125
obsamstream class 125
DD statements, OS/390
link step 42
run-time 46
translation and compilation steps 39
debug, translator option 73
debugger 185
assign command 190
breakpoints, setting 192
C++ function names 186
casts 189
class information, displaying 191
constructors 188
data objects, searching for 191
data types 190
debugging example 192
destructors 188
dump command 190
Dump window 190
enabling 73
expressions, evaluating 191
expressions, specifying 189
file-scope functions 187
functions in a mixed environment 188
initialization 192
member functions 187
memory dumps 190
monitor command 190
monitoring program execution 190
multitoken function names 186
operators 189
overloaded function names 186
pointers, assigning 190
references, C++ notation 191
references, returning 191
return command 191

saving information in object module 73

termination 192
transfer command 191
translator generated functions 188
whatis command 191
debugger files
destination, specifying 62
saving C macro names in 73
dec flag 134
define, translator option 73
#define names, redefinition and stacking
#define statements, nesting 20, 24
demangled names 231
depth, translator option 74
destructors, in debugger commands 188
diagnostic messages
See error messages
diagnostics, exception handling 237
digraph, translator option 74
digraph translation, enabling 74

81

digraphs 19
divide by zero 22
division, remainder handling 23
dlines, translator option 75
documentation, predefined macros for 15
dollar sign ($), in identifiers 19, 75
dollars, translator option 75
dump command 190
Dump window 190
duplicate string constants 22
dynamic memory allocation

See memory allocation, dynamic
dynamic_cast operator 228

E

E qualifier 16
EBCDIC characters, alternate representation
embedded structure tags 205

end flag 139
endl() 151
ends() 151

enforce, translator option 75
enum format_state class 132
enum io_state class 136
enum open_mode 137
enum seek_dir class 138
enumeration types 9
enumerations, C to C++ conversions 205
ENV parameter 43
enxref, COOL option 63
eof() 137
eofbit flag 136
error messages 15, 22
diagnostic messages, predefined macros
for 15
directing to the terminal 65
source lines in translator messages 77
strict warnings 83
translator listing options 68
uppercasing 65
warning messages, enabling 22, 65
warning messages, ignoring 83
warning messages, listing 85
warning messages, suppressing 78
warning messages, treating as error mes-
sages 75
error_info()
bsambuf class 163
bsamstream 125
ibsamstream class 125
obsamstream class 125
except, translator option 75
exception(), std class 91
exception files 89
exception handling
bad_exception(), std class 91
blkjmp handler 237
coprocesses 239
diagnostics 237
EXCEPT option 11
exception(), std class 91
exception header files 89
is_xtraced(), std class 91
longjmp function 237
non-local gotos 237

Index 243

SAS/C 235
set_terminate(), std class 90
set_unexpected(), std class 89
signals 238
terminate(), std class 90
terminate_handler(), std class 90
throwing exceptions 238
tracebacks 236
translator 75
uncaught_exception(), std class 90
unexpected(), std class 89
unexpected_handler(), std class 89
xtrace information, detecting 91
exception header files 89
executing programs
See running programs
exit routines, defining 165
exp() 101
explicit function specifier 9
explicit specializations 222
exponential functions 101
expressions, in the debugger
evaluating 191
specifying 189
extended names, cross references for 63
extern OS linkage specifier 21
external file /O 108
external symbol resolution 59
extraction 107
See also 1/0
See also streams
complex numbers 105
fixed number of characters 110
ibsamstream class 118
ifstream class 126
iostream class 139
istream class 140
replacing extracted characters 110
to a delimiter 110
extraction points, setting 107, 110
extractions, overloading 107
extractors 105, 142

F

fail() 137
failbit flag 136
file access, CMS
directories 33
from XEDIT 34
in SFS directory 34
minidisks 33
file attribute information 114
file descriptors 115
file /O 168
_ FILE__ macro 15
file positioning 115
file-scope constants, C to C++ conversions
file-scope objects, initialization and termina-
tion 24
file-scope variables, multiple declarations
filebuf 168

filenames
CMS 114
0S/390 113

files, closing

244 Index

See close()
files, opening 111
See open()
files, translator option 75
fill() 111
ios class 131
fill characters
See fill()
See setfill()
find()
bsambuf class 162
bsamstream class 123
ibsamstream class 123
obsamstream class 123
fixed flag 134
flags() 135
floating-point registers, specifying maximum
floating-point values
formatting 134
in hexadecimal 19
outside range of target type 9
precision 111, 131
flush() 150, 151
flushing streams 110, 132
format flags
descriptions 133
turning on/off 135
formatted file I/O
See 1/0 classes, formatted file
formatted string /O 153
formatting streams 132
fpos() 153
freg, translator option 76
fstream class 108, 126
function names, and the debugger
C++ 186
multitoken names 186
overloaded names 186
function prototypes, C to C++ conversions
function templates
See templates, function
functions
assuming as local 79
call depth, specifying 74
complexity, specifying 73
declaring 25
inlining single-call static 77
inlining small 77
KR definitions 24
register variables, maximum 76
functions, and the debugger
file-scope functions 187
mixed environment functions 188
translator generated functions 188

G

GATHER statement 60
geount() 145
genmod, COOL option 63
get(), istream class 144
get pointers 107
get pointers, moving

See seekoff()

See seekpos()

getdcb()
bsambuf class 163
bsamstream class 125
ibsamstream class 125
obsamstream class 125
get_ddname()
bsambuf class 164
bsamstream class 125
ibsamstream class 125
obsamstream class 125
getline(), istream class 144
get_member()
bsambuf class 164
bsamstream class 125
ibsamstream class 125
obsamstream class 125
get_user_data()
bsambuf class 163
bsamstream class 125
ibsamstream class 125
obsamstream class 125
global optimization
executing 79
for execution time 84
for size 82
loop optimization 77
GLOBALV variables 35
good() 137
goodbit flag 136
goto statements, C to C++ conversions 205
gotos, non-local 237
greg, translator option 76
guiding declarations 220

H

header file library, specifying 77
header files 88
exception files 89
in standard libraries 88
#include header files, search order 23
new files 92
new.h files 95, 207
typeinfo files 95
typeinfo.h files 98, 207
header files, C library 98
header files, locating
CMS 35
0S/390 41
TSO 30
header files, standard 76
including 76
references, in cross reference listing 76
reincluding 76
header files, user 76
hex flag 134
hlist, translator option 76
hmulti, translator option 76
hxref, translator option 76
hyperbolic functions 102

/0 115

See also extraction

See also insertion

See also streams
compatibility issues 115
display width 111

fillh) 111

formatting 111
precision() 111

stream.h header files 116
width() 111

/0, 370 112

amparms 114

binary access 113

file attribute information 114
file descriptors 115

file positioning 115
filenames, CMS 114
filenames, OS/390 113
streamoff type 115
streampos type 115

text access 113

/0, BSAM

See 1/0 classes, BSAM 1/0

1/0, formatted file

See 1/0 classes, formatted file

1/O classes 117

bad() 137

bidirectional streams 139
bitalloc() 131

buffer classes 156

buffer formatting 132
buffer manipulation 129
buffer open modes 137
buffer seeking 138

built-in manipulators 131
clear() 137

close(), filebuf class 169
endl() 151

ends() 151

enum format_state 132
enum io_state 136

enum open_mode 137
enum seek_dir 138

eof() 137

fail() 137

file /O 168

filebuf 168

fill(), ios class 131

flags() 135

flush() 150, 151

format flags, descriptions 133
format flags, turning on/off 135
formatted string /O 153
fpos() 153

geount() 145

get(), istream class 144
getline(), istream class 144
good() 137

I/O state flags 136
ignore(), istream class 144
in_avail() 174

ios 129

iostream 139

is_open(), filebuf class 169
is_open(), stdiobuf class 172
istream 140

istrstream 153

iword() 131

mixed environment, formatted I/O 151
mixed environment, I/O 171
open(), filebuf class 169
operator() 137

operator long() 153

opfx() 147

osfx() 147

ostream 146

ostrstream 153
out_waiting() 174

pcount() 155

peek() 145

precision(), ios 131

prefix output functions 147
put) 150

putback() 145

pword() 131

rdbuf(), ios class 130
rdbuf(), istrstream class 155
rdbuf(), stdiostream 152
rdstate() 137

read(), istream class 145
sbumpc() 174

seekg() 145

seekoff(), filebuf class 169
seekoff(), stdiobuf class 172
seekoff(), streambuf class 175
seekoff(), strstream class 178
seekp() 150

seekpos(), filebuf class 170
seekpos(), streambuf class 176
seekpos(), strstream class 179
setbuf(), filebuf class 170
setbuf(), streambuf class 176
setf() 135

sgetc() 174

sgetn() 174

snextc() 174

sputbacke() 174

sputc() 175

sputn() 175

stdiobuf 171

stdiofile() 152

stdiostream 151

stossc() 174

str() 155

stream buffer base classes 173
stream classes 117

stream extraction 140
stream formatting 132
stream I/O state 136

stream insertion 146

stream manipulation 129
stream open modes 137
stream seeking 138
streambuf 173

streampos 152

string /O 176

strstream 153

strstreambuf 176

suffix output functions 147
sync(), filebuf class 170
sync(), istream class 145
sync(), stdiobuf class 173
sync(), streambuf class 175
sync(), strstream class 178

tellg() 145
tellp() 150
tie() 130
unformatted input 144
unformatted output 150
width(), ios class 130
write() 150
xalloc() 131

1/O classes, BSAM I/O 118
add_member(), bsambuf class 162
add_member(), bsamstream class 124
add_member(), obsamstream class 124
bsambuf 157
bsam_exit_list 165
bsamstream 118
clear_error_info(), bsambuf class 163
clear_error_info(), bsamstream class 125
clear_error_info(), ibsamstream class 125
clear_error_info(), obsamstream class 125
close(), bsambuf class 162
close(), bsamstream class 124
close(), ibsamstream class 124
close(), obsamstream class 124
dcbblksize() 126
dcblrecl(), bsambuf class 162
dcblrecl(), bsamstream class 126
dcblrecl(), ibsamstream class 126
dcblrecl(), obsamstream class 126
dcbrecfm(), bsambuf class 162
dcbrecfm(), bsamstream class 125
dcbrecfm(), ibsamstream class 125
dcbrecfm(), obsamstream class 125
delete_member(), bsambuf class 161
delete_member(), bsamstream class 123
delete_member(), obsamstream class 123
error_info(), bsambuf class 163
error_info(), bsamstream 125
error_info(), ibsamstream 125
error_info(), obsamstream 125
exit routines, defining 165
find(), bsambuf class 162
find(), bsamstream class 123
find(), ibsamstream class 123
find(), obsamstream class 123
getdcb(), bsambuf class 163
getdcb(), bsamstream class 125
getdcb(), ibsamstream class 125
getdcb(), obsamstream class 125
get_ddname(), bsambuf class 164
get_ddname(), bsamstream class 125
get_ddname(), ibsamstream class 125
get_ddname(), obsamstream class 125
get_member(), bsambuf class 164
get_member(), bsamstream class 125
get_member(), ibsamstream class 125
get_member(), obsamstream class 125
get_user_data(), bsambuf class 163
get_user_data(), bsamstream class 125
get_user_data(), ibsamstream class 125
get_user_data(), obsamstream class 125
ibsamstream 118
init_directory(), bsambuf class 161
init_directory(), bsamstream class 123
init_directory(), obsamstream class 123
is_open(), bsambuf class 159
obsamstream 118
open(), bsamstream class 122

Index 245

open(), ibsamstream class 122
open(), obsamstream class 122
rdbuf(), bsamstream class 125
rdbuf(), ibsamstream class 125
rdbuf(), obsamstream class 125
rename_member(), bsambuf class 161
rename_member(), bsamstream class 123
rename_member(), obsamstream class 123
replace_member() 124
replace_member(), bsambuf class 162
seekoff(), bsambuf class 164
seekpos(), bsambuf class 164
setbuf(), bsambuf class 164
setbuf(), bsamstream class 124
setbuf(), ibsamstream class 124
setbuf(), obsamstream class 124
set_user_data(), bsambuf class 163
set_user_data(), bsamstream class 125
set_user_data(), ibsamstream class 125
set_user_data(), obsamstream class 125
stow(), bsambuf class 161
stow(), bsamstream class 123
stow(), obsamstream class 123
1/O classes, formatted file 126
close(), fstream class 128
close(), ifstream class 128
close(), ofstream class 128
fstream 126
ifstream 126
ofstream 126
open(), fstream class 128
open(), ifstream class 128
open(), ofstream class 128
rdbuf(), fstream class 129
rdbuf(), ifstream class 129
rdbuf(), ofstream class 129
setbuf(), ifstream class 128
1/0 state 112, 136
I/O state flags 136
__ibmos keyword 17
ibsamstream class 118
#if expressions
long long values 17
sign promotion rules 11
ifstream class 126
ignore(), istream class 144
ignorerecool, COOL option 64
ilist, translator option 76
imag() 100
imaginary parts 100
imulti, translator option 76
in flag 138
in_avail() 174
include files, protected 17
#include header files, search order 23
INCLUDE statement 58
#include statements
nesting limits 24
TSO 30
indep, translator option 77
init_directory()
bsambuf class 161
bsamstream class 123
obsamstream class 123
initialization
const objects 9
file-scope objects 24

246 Index

implementation-defined behaviors 24
static const data members 9
initialization functions, gathering 60
inline, translator option 77
__inline storage class modifier 21
inlining functions
maximum recursion depth 81
single-call static functions 77
small functions 77
inlocal, translator option 77
INSERT statement 59
inserters 105, 148
insertion 107
See also 1/0
See also streams
complex numbers 105
fixed number of characters 110
obsamstream class 118
ofstream class 126
ostream class 146
ostrstream class 153
insertion points, setting 107, 110
insertions, overloading 107
int bitfield size, specifying 72
integers, assigning to enums 203
interlanguage communication 77
internal flag 133
IOMANIP class 179
ios class 129
ios object precision 181
iostream class 139
iostream library constructors 22
is_open()
bsambuf class 159
filebuf class 169
stdiobuf class 172
istream class 140
istrstream class 153
is_xtraced(), std class 91
iword() 131
ixref, translator option 77

K

-Kalias, translator option 71
-Kasciiout, translator option 71
-Kat, translator option 71
-Kautoinst, translator option 71
-Kbitfield, translator option 72
-Kbytealign, translator option 72
-Kcomplexity, translator option 73
-Kdbgmacro, translator option 73
-Kdbgobj, translator option 73
-Kdebug, translator option 73
-Kdepth, translator option 74
-Kdigraph, translator option 74
-Kdollars, translator option 75
Kernighan and Ritchie function definitions 24
-Kexcept, translator option 75
-Kfreg, translator option 76
-Kgreg, translator option 76
-Khlist, translator option 76
-Khmulti, translator option 76
-Khxref, translator option 76
-Kilist, translator option 76
-Kimulti, translator option 76

-Kindep, translator option 77
-Kinline, translator option 77
-Kinlocal, translator option 77
-Kixref, translator option 77
-Klineno, translator option 77
-Klisting, translator option 80
-Kloop, translator option 77
-Kmaclist, translator option 77
-Knoalias, translator option 71
-Knoasciiout, translator option 71
-Knoat, translator option 71
-Knoautoinst, translator option 71
-Knobytealign, translator option 72
-Knodbgmacro, translator option 73
-Knodbgobj, translator option 73
-Knodebug, translator option 73
-Knodollars, translator option 75
-Knoexcept, translator option 75
-Knohlist, translator option 76
-Knohmulti, translator option 76
-Knohxref, translator option 76
-Knoilist, translator option 76
-Knoimulti, translator option 76
-Knoindep, translator option 77
-Knoinlocal, translator option 77
-Knoixref, translator option 77
-Knolisting, translator option 80
-Knomaclist, translator option 77
-Knooverload, translator option 79
-Knooverstrike, translator option 79
-Knopflocal, translator option 79
-Knoposix, translator option 80
-Knoredef, translator option 81
-Knorent, translator option 82
-Knorentext, translator option 82
-Knosource, translator option 83
-Knostrict, translator option 83
-Knotmplfunc, translator option 84
-Knotrigraphs, translator option 85
-Knoundef, translator option 85
-Knoupper, translator option 85
-Knowarn, translator option 85
-Knoxref, translator option 85
-Koldforscope, translator option 78
-Koptimize, translator option 79
-Koverload, translator option 79
-Koverstrike, translator option 79
-Kpagesize, translator option 79
-Kpflocal, translator option 79
-Kposix, translator option 80

KR function definitions 24
-Krdepth, translator option 81
-Kredef, translator option 81
-Krent, translator option 82
-Krentext, translator option 82
-Krtti, translator option 82
-Ksname, translator option 82
-Ksource, translator option 83
-Kstrict, translator option 83
-Kstringdup, translator option 83
-Ktmplfunc, translator option 84
-Ktrans, translator option 84
-Ktrigraphs, translator option 85
-Kundef, translator option 85
-Kupper, translator option 85
-Kwarn, translator option 85
-Kxref, translator option 85

-Kzapmin, translator option 85
-Kzapspace, translator option 86

L

language extensions 16

LCXX CLIST 28

LCXXC cataloged procedure 40
JCL for 49

LCXXCA cataloged procedure 40
JCL for 50

LCXXCL cataloged procedure 43
JCL for 51

LCXXCLG cataloged procedure 46
JCL for 54

LCXXL cataloged procedure 45
JCL for 53

LCXXLG cataloged procedure 48
JCL for 56

left flag 133

lib, COOL option 64

lib, translator option 77

#line directives, suppressing 75

__LINE__ macro 15

lineno, translator option 77

linkage strings 23

linking programs
CMS 36
0S/390 42
TSO 30

listings
See reports

load, COOL option 64

load modules, creating
CMS 37
COOL preprocessor 63, 64
TSO 30

log() 101

logarithmic functions 101

logical operators, destruction of temporaries

long long type 17

longjmp function 237

loop, translator option 77

loop optimization, enabling 77

M

maclist, translator option 77
macro expansions, printing 77
macro names, saving in debugger file 73
macros
c_cplusplus 15
__cplusplus 15

_DATE__ 15
_FILE__ 15
_LINE__ 15
predefined 15
_TIME__ 15

undefining 16, 85
main type 23
manipulators 111
buffer manipulation 129
built-in 131, 179
IOMANIP class 179

10

Index 247

resetiosflags() 182 noinlocal, translator option 77 arithmetic 104

SAPP(T) class 183 noixref, translator option 77 assignment 104

setbase() 181 nolib, translator option 77 built-in, signatures 10

setfill() 181 nomaclist, translator option 77 cast 228

setiosflags() 181 non-const references, binding to non-lvalues 9 comparison 104

setprecision() 181 non-local gotos 237 complex 104

setw() 181 nooverload, translator option 79 conditional, destruction of temporaries 10

SMANIP(T) class 183
stream manipulation 129
user-defined 182
map pointers 23
member, translator option 77
member functions
debugger and 187
restricted 10

memory allocation, C++ behavior 23

memory allocation, dynamic 92
bad_alloc(), std class 92
new files 92
new.h files 95, 207
new_handler(), std class 94
nothrow(), std class 93
nothrow_t(), std class 93
set_new_handler(), std class 94
memory dumps 190
memory I/O 108
mention, translator option 78
MODULE files
creating 37
specifying 63
monitor command 190
monitoring program execution 190
multibyte character constants 22
multitoken function names 186
mutable storage class specifier 9

N

\n character, inserting 151
namespaces 9

negative integers, right-shifting 23
new files 92

new.h files 95, 207
new_handler(), std class 94
newline characters, inserting 132
noalias, translator option 71
noallowrecool, COOL option 62
noasciiout, translator option 71
noat, translator option 71
noautoinst, translator option 71
nobytealign, translator option 72
nocreate flag 138

nodbgmacro, translator option 73
nodbgobj, translator option 73
nodebug, translator option 73
nodlines, translator option 75
nodollars, translator option 75
noenxref, COOL option 63
noexcept, translator option 75
nohlist, translator option 76
nohmulti, translator option 76
nohxref, translator option 76
noignorerecool, COOL option 64
noilist, translator option 76
noimulti, translator option 76
noindep, translator option 77

nooverstrike, translator option 79
nopflocal, translator option 79
noposix, translator option 80
nopponly, translator option 80
noprint, COOL option 64
noprint, translator option 80
noredef, translator option 81
norent, translator option 82
norentext, translator option 82
noreplace flag 138
norm() 100
nosavec, translator option 82
nosize, translator option 82
nosource, translator option 83
nostrict, translator option 83
noterm, COOL option 65
nothrow(), std class 93
nothrow_t(), std class 93
notime, translator option 84
notmplfunc, translator option 84
notrigraphs, translator option 85
noundef, translator option 85
noupper, translator option 85
nowarn, COOL option 65
nowarn, translator option 85
noxref, translator option 85
numbers, very large

long long type 17

signed long long type 21
numerical limits 13

(o)

-0, translator option 78
\O character, inserting 151
object, translator option 78
obsamstream class 118
oct flag 134
ofstream class 126
oldforscope, translator option 78
open() 122
bsamstream class 122
filebuf class 169
fstream class 128
ibsamstream class 122
ifstream class 128
obsamstream class 122
ofstream class 128
open modes 137
opening files 111
operator() 137
operator delete[] function 8
operator long() 153
operator new, C++ behavior 23
operator new[] function 8
operator+ signature 10
operator[] signature 10
operators
alternate representation 18

conversion 100
debugger 189
for enums, overloading 10
logical, destruction of temporaries
stream operators 105
opfx() 147
optimize, translator option 79
0S/390 environment
See C++ programs, OS/390 batch
osfx() 147
ostream class 146
ostrstream class 153

out flag 138

output data sets, saving
CMS 33
0S/390 40, 41
TSO 29

output load module, specifying 64
out_waiting() 174
overload, translator option 79
overload keyword 24, 79
overload resolution 10
overloading
function templates 217
insertions/extractions 107
operators for enums 10
SAS/C extension keywords 17
overstrike, translator option 79

P

-P, translator option 80
padding formatted values 133
pagesize, translator option 79
patch area
changing size 86
minimum size 85
pcount() 155
peek() 145
pflocal, translator option 79
pointer qualification conversions 227
pointers
See also get pointers
See also put pointers
assigning in debugger 190
polar() 100
polar functions 100
posix, translator option 80
POSIX compliance 80
pow() 101
power functions 101
pponly, translator option 80
CMS 33
0S/390 batch 41
TSO 29
#pragma directives
C to C++ conversions 204
__ibmos keyword alternative 17
preprocessor extensions 17

248 Index

precision
floating-point 111, 131
ios objects 181

precision() 111
ios class 131

predefined macros 15

prefix output functions 147

preprocessing object code
AR370 archives 59
autocall list, adding C++ object library 62
autocall object library 64
CMS 36
cross references for extended names 63
debugger file destination 62
external symbol resolution 59
initialization/termination functions, gather-

ing 60

input files 58
MODULE file 63
output listing destination 64
output load module 64
reprocessing, enabling 62
reprocessing, ignoring marks 64
TSO 30

preprocessor 5

print, COOL option 64

print, translator option 80

printouts
See reports

programs
See C programs, converting to C++
See C++ programs

ptrdiff_t type 23

put() 150

put pointers 107

put pointers, moving
See seekoff()
See seekpos()

putback() 145

pword() 131

R

rdbuf()
bsamstream class 125
fstream class 129
ibsamstream class 125
ifstream class 129
ios class 130
istrstream class 155
obsamstream class 125
ofstream class 129
stdiostream class 152
rdepth, translator option 81
rdstate() 137
read(), istream class 145
reading data
See 1/0
See extraction
See streams
real() 100
real parts 100
redef, translator option 81
nesting #define statements 24
reentrant modification
external data 82

static data 82
references, and debugger
C++ notation 191
returning 191
reinterpret_cast operator 228
remainder from divisions 23
rename_member()
bsambuf class 161
bsamstream class 123
obsamstream class 123
rent, translator option 82
rentext, translator option 82
replace_member()
bsambuf class 162
bsamstream class 124
obsamstream class 124
reports 64
cross reference listings, generating 85
destination, specifying 64
translator listing options 68
reports, translator
formatted source listings 83
generating 80
lines per page 79
uppercasing 85
reprocessing object code
enabling 62
ignoring marks 64
reserved keywords 202
resetiosflags() 182
return command 191
right flag 133
right-shifting negative integers 23
RTTI 82
enabling 82
error handling 97
requirements 228
rtti, translator option 82
Run-Time Type Identification
See RTTI
running programs 31
CMS 37
0S/390 46
TSO 31

S

SAPP(T) class 183

SAS/C C++ Development System 4
backwards compatibility 11, 24
C++ Standard, conforming features 8
C++ Standard, nonconforming features
components 4

SAS/C debugger
See debugger

SAS/C extension keyword support 17

sascc370 compiler driver 57

sasCC370 compiler driver 57

savec, translator option 82
CMS 33
TSO 29

sbumpc() 174

scientific flag 134

scoping, by old rules 78

seekg() 145

6

seekoff() 164
bsambuf class 164
filebuf class 169
stdiobuf class 172
streambuf class 175
strstream class 178
seekp() 150
seekpos() 164
bsambuf class 164
filebuf class 170
streambuf class 176
strstream class 179
sequence number handling 13
setbase() 181
setbuf()
bsambuf class 164
bsamstream class 124
filebuf class 170
ibsamstream class 124
ifstream class 128
obsamstream class 124
streambuf class 176
setf() 135
setfill() 181
setiosflags() 181
set_new_handler(), std class 94
setprecision() 181
set_terminate(), std class 90
set_unexpected(), std class 89
set_user_data()
bsambuf class 163
bsamstream class 125
ibsamstream class 125
obsamstream class 125
setw() 181
sgetc() 174
sgetn() 174
showbase flag 134, 149
showpoint flag 134
showpos flag 134, 149
signals 238
signatures
built-in operators 10
template 221
signed long long type 21
sin() 102
sinh() 102
size, translator option 82
size_t type 22
skipws flag 133
slashes (//), comment delimiter
SMANIP(T) class 183
sname, translator option 82
snames, specifying 82
snextc() 174
source, translator option 83
source code, preprocessed only
CMS 33
0S/390 batch 41
pponly translator option 80
TSO 29
source code, translated only
CMS 33
0S/390 batch 41
tronly translator option 85
TSO 29
source code file, saving 82

6

source files
current filename, getting 15
current line, getting 15
sequence number handling 13
special characters
alternate representations 11
printing as overstrikes 79
translating 84
specialization declarations 222
sputbacke() 174
sputc() 175
sputn() 175
sqrt() 101
square of magnitude 100
square root functions 101
standard header files
See header files, standard
static_cast operator 228
stdio flag 135
stdiobuf class 171
stdiofile() 152
stdiostream class 108, 151
storage class limits 12
storage class modifiers 21
stossc() 174
stow()
bsambuf class 161
bsamstream class 123
obsamstream class 123
str() 155
stream class hierarchy 109
stream classes 117
base classes 109
buffer base classes 173
summary table of 208
stream manipulation 129
stream member functions
flush() 110
get() 110
getline() 110
putback() 110
read() 110
seekg() 110
seekp() 110
tellg) 110
tellp) 110
tie() 110
write() 110
stream operators 105
stream extraction 142
stream insertion 148
streambuf class 173
stream.h header files 116
streamoff type 115
streampos class 152
streampos type 115
streams 106
bidirectional 139
bsamstream 108
conversion base, setting 131, 181
converting base values 134
external file /O 108
extraction 140
flushing 110, 132
formatted file /O 108
formatting 132
fstream 108

1/O state 112, 136
insertion 146
insertion/extraction points, setting 107, 110
location marking 152
managing character flow 173
manipulation 129
memory I/O 108
modifying state of 111
\n character, inserting 151
newline characters, inserting 132
\O character, inserting 151
open modes 137
opening files 111
padding formatted values 133
seeking 138
stdiostream 108
strstream, defining 111
strstream, definition 108
tieing together 110
uppercasing output 134
whitespace, extracting 132
whitespace, skipping 133, 145
streams, creating 110
See open()
streams library 108, 208
strict, translator option 83
strict option 22
string constants
A and E qualifiers 16
ASCII/EBCDIC support 16
duplication 22, 83
translator handling 14
updated type rules 9
string /O 153, 176
stringdup, translator option 83
strstream class 108
defining 111
description 153
strstreambuf class 176
suffix output functions 147
summary table, translator option 68
suppress, translator option 83
symbols, defining values for 73
sync()
filebuf class 170
istream class 145
stdiobuf class 173
streambuf class 175
strstream class 178
SYS DDname prefix, replacing 75
SYSARLIB DD statement 39, 43
SYSDBLIB DD statement 39
SYSDLIB DD statement 42
SYSIN DD statement 43, 46
SYSLDLIB DD statement 43
SYSLIB DD statement 39, 42
SYSLIN DD statement 39
SYSLMOD DD statement 43
SYSPRINT DD statement 46
SYSTERM DD statement 46
SYSTRIN DD statement 39
SYSTROUT DD statement 39

T

tellg() 145

Index 249

tellp) 150
template argument deductions
derived-to-base conversions 11
nondeduced contexts 11
template-dependent expressions 10
template template formals 10
templates 213
arguments 10, 214
declarations 10, 215
definitions 215
explicit specializations 222
function prototypes 10
instantiation, automatic 224
instantiation, explicit 223
parameters 214
signatures 221
specialization declarations 222
typename with dependent qualified names 215
templates, function 217
arguments, deducing 218
arguments, specifying 219
default arguments 9
guiding declarations 220
overloading 217
signatures 221
term, COOL option 65
terminate(), std class 90
terminate_handler(), std class 90
termination
file-scope objects 24
implementation-defined behaviors 24
termination functions, gathering 60
text data access 113
this, assignment to 24
throwing exceptions 238
tie() 130
time, getting 15
time, translator option 84
_ TIME__ macro 15
tmplfunc, translator option 84
tokens, alternate representation 18
tracebacks 236
trans, translator option 84
transfer command 191
translating programs
CMS 32
0S/390 38
TSO 28
Uuss 57
translator
alignment requirements 22
AR370 archive output 71, 77
arithmetic overflow 22
ASCII translation of literals 71
at sign (@), call-by-reference operator 71
automatic implicit instantiation 71
bitfields, alignment and signs 23
byte boundary alignment 72
C macro names, saving in debugger file 73
cross reference listings 85
debugging information, saving in object mod-
ule 73
#define names, redefinition and stacking 81
digraph translation, enabling 74
divide by zero 22
dollar sign ($), allowing in identifiers 75
duplicate string constants 22

250 Index

error messages, identifying source lines in 77 standard header files, including 76 translator reports 85

error messages, ignoring warnings 83 standard header files, reincluding 76 uppercasing output 134

error messages, strict warnings 83 string constant duplication 83 user header files, including 76
exception handling 75 summary table 68 user #include file references, listing 77
floating-point registers, maximum 76 symbols, defining values for 73 USS environment 57

function call depth 74 SYS DDname prefix, replacing 75

function complexity 73 trigraphs, enabling 85

function register variables, maximum 76 user header files, including 76 \Y;

functions, assuming as local 79 user #include file references, listing 77

global optimization, for execution time 84 warning messages, listing 85 virtual function calls 10

global optimization, for size 82 warning messages, suppressing 78 void functions 9

global optimizer, executing 79 warning messages, treating as error mes- void* values, assigning to pointers 203

header file library 77 sages 75
#include header files, search order 23
inlining, maximum recursion depth 81
inlining single-call static functions 77
inlining small functions 77

wchar_t initializers 22
worst-case aliasing 71 W
trigonometric functions 102

e X trigraphs, enabling 85 warn, COOL option 65
%nt bitfield size 72 o trigraphs, translator option 85 warn, translator option 85
mFerlar%guag.;e commumca.tlon 77 tronly, translator option warning messages
#line directives, suppressing 75 CMS 33 s
L . ee error messages
o srin 5 v L 2
o 0S/390 batch 41

. wchar_t keyword 9
macros, undefining 85 TSO 29

main type 23 whatis command 191

trunc flag 138 whitespace

map pointers 23 TSO . ¢

multibyte character constants 22 environmen extracting 132
See C++ programs, TSO .

tvoeinfo files 95 skipping 133, 145

YPelno fies width() 111

typeinfo.h files 98, 207

object code output, enabling 78
overload keyword, enabling 79

patch area, changing size 86 ios class 130
patch area, minimum size 85 typename keyword 21 . -wn, translator option 83
POSIX i 80 typenames, dependent qualified names 215 ’)

; compliance types -w+n, translator option 78
ptrdiff_t type 23)

-w~n, translator option 75
reentrant modification, external data 82 See data types

reentrant modification, static data 82
remainder from divisions 23

reports, formatted source listings 83 U
reports, generating 80
reports, lines per page 79
reports, uppercasing 85

worst-case aliasing 71
write() 150
writing data
See 1/0
unary scope (::) operator 189 See insertion

uncaught_exception(), std class 90 See streams

right-shifting negative integers 23 undef, translator option 85

RTTL enabling 82 undefining macros 16

SAS/C debugger, enabling 73 unexpected(), std class 89 X

scoping, by old rules 78 unexpected_handler(), std class 89

size_t type 22 unitbug flag 135 xalloc() 131

snames, specifying 82 UNIX System Services xref, translator option 85
source code, preprocessed only 80 See USS environment xtrace information, detecting 91
source code, translated only 85 upper, COOL option 65

source code file, saving 82 upper, translator option 85

special characters, printing as overstrikes 79 uppercase flag 134 Z

special characters, translating 84 uppercasing

standard header file references, in cross refer- error messages 65 zapmin, translator option 85

ence listing 76 stream output 134 zapspace, translator option 86

Your Turn

If you have comments or suggestions about SAS/C C++ Development System User’s
Guide, Release 7.00, please send them to us on a photocopy of this page, or send us
electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing

SAS Campus Drive

Cary, NC 27513

email: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive

Cary, NC 27513

email: suggest@sas.com

Welcome * Bienvenue * Willkommen * Yohkoso * Bienvenido

SAS Publishing Is Easy to Reach

Visit our Web page located at www.sas.com/pubs

You will find product and service details, including

» sample chapters
» tables of contents
» author biographies

* book reviews

Learn about

* regional user-group conferences
e trade-show sites and dates

* authoring opportunities

* custom textbooks

Explore all the services that SAS Publishing has to offer!

Your Listserv Subscription Automatically Brings the News to You

Do you want to be among the first to learn about the latest books and services available from SAS Publishing?
Subscribe to our listserv newdocnews-l and, once each month, you will automatically receive a description of the
newest books and which environments or operating systems and SAS® release(s) each book addresses.

To subscribe,

1. Send an e-mail message to listserv@vm.sas.com.
Leave the “Subject” line blank.

3. Use the following text for your message:
subscribe NEWDOCNEWS-L your-first-name your-last-name
For example: subscribe NEWDOCNEWS-L John Doe

Create Customized Textbooks Quickly, Easily, and Affordably

SelecText® offers instructors at U.S. colleges and universities a way to create custom textbooks for courses that
teach students how to use SAS software.

For more information, see our Web page at www.sas.com/selectext, or contact our SelecText coordinators by
sending e-mail to selectext@sas.com.

You're Invited to Publish with SAS Institute’s User Publishing Program

If you enjoy writing about SAS software and how to use it, the User Publishing Program at SAS Institute

offers a variety of publishing options. We are actively recruiting authors to publish books, articles, and sample
code. Do you find the idea of writing a book or an article by yourself a little intimidating? Consider writing with
a co-author. Keep in mind that you will receive complete editorial and publishing support, access to our users,
technical advice and assistance, and competitive royalties. Please contact us for an author packet. E-mail us at
sasbbu@sas.com or call 919-531-7447. See the SAS Publishing Web page at www.sas.com/pubs for complete
information.

Book Discount Offered at SAS Public Training Courses!

When you attend one of our SAS Public Training Courses at any of our regional Training Centers in the U.S., you
will receive a 20% discount on book orders that you place during the course.Take advantage of this offer at the
next course you attend!

SAS Institute Inc. E-mail: sasbook@sas.com

SAS Campus Drive Web page: www.sas.com/pubs

Cary, NC 27513-2414 To order books, call Fulfillment Services at 800-727-3228*
Fax 919-677-4444 For other SAS business, call 919-677-8000*

* Note: Customers outside the U.S. should contact their local SAS office.

The Power to Know.. JsaS® ‘ SAS Publishing

