
SAS/C® Compiler and Library User’s Guide,
Release 7.00

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/C Compiler and Library User’s Guide, Release 7.00, Cary, NC: SAS Institute Inc.,
2001.

SAS/C Compiler and Library User’s Guide, Release 7.00
Copyright © 2001 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–727–5
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, April 2001
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, CD-ROM, hard copy books, and Web-based training, visit the SAS Publishing
Web site at www.sas.com/pubs or call 1-800-727–3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
IBM® and all other International Business Machines Corporation product or service
names are registered trademarks or trademarks of International Business Machines
Corporation in the USA and other countries.
Oracle® and all other Oracle Corporation product or service names are registered
trademarks or trademarks of Oracle Corporation in the USA and other countries.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

P A R T 1 User’s Guide 1

Chapter 1 4 Introduction 3
Introduction to the SAS/C Compiler 3

Development and Execution Environments 4

Quick Start to Using the SAS/C Compiler 5

Summary of Changes and Enhancements 7

Chapter 2 4 Source Code Conventions 9
Introduction 10

Environmental Elements 11

Language Elements 24

Data Types 27

Language Extensions 28

Implementation-defined Behavior 38

Chapter 3 4 Code Generation Conventions 45
Introduction 46

Instruction Set 46

Arithmetic Data Types 46

Arithmetic Exceptions 47

Data Pointers 48

Access Register Mode Support 48

Function Pointers 50

Compiler-generated Names 53

External Variables 55

Reentrant and Non-reentrant Identifiers 57

Register Conventions and Patch Writing 60

Chapter 4 4 Optimization 63
The optimize Option 63

The __inline Keyword for Inline Functions 68

Efficient Programming with the SAS/C Compiler 79

Chapter 5 4 Compiling C Programs 81
Introduction 81

Compiling C Programs in TSO 82

Compiling C Programs from the USS Shell 83

Compiling C Programs under CMS 84

Compiling C Programs under OS/390 Batch 87

Compiler Return Codes 95

The Object Module Disassembler 95

iv

Chapter 6 4 Compiler Options 101
Introduction 101

Option Summary 101

Object Module Disassembler Options 105

Option Descriptions 105

Listing File Description 126

Interaction between the term, print, disk, and type Options 127

Preprocessor Options Processing 128

Chapter 7 4 Linking C Programs 131
Introduction 132

The COOL Object Code Preprocessor 132

Linking Multilanguage Programs 134

Linking Programs under CMS 134

Linking Programs in TSO 136

Linking Programs from the UNIX System Services Shell 137

Linking Programs under OS/390 Batch 138

COOL Options 149

COOL Control Statements 161

Using AR370 Archives 166

Specifying the Correct Entry Point 167

SAS/C Library Names 168

Chapter 8 4 Executing C Programs 171
Introduction 171

Executing C Programs in TSO 171

Executing C Programs from the USS Shell 173

Executing C Programs under CMS 174

Executing C Programs under OS/390 Batch 175

Using the GETENV and PUTENV TSO Commands 182

Chapter 9 4 Run-Time Argument Processing 185
Introduction 185

Types of Run-Time Arguments 185

Environment Variables 186

Run-Time Options 188

Standard File Redirection 198

Argument Redirection 200

Chapter 10 4 All-Resident C Programs 201
Introduction 201

Library Organization 202

The <resident.h> Header File 202

Restrictions 206

Development Considerations 207

Linking 208

v

Chapter 11 4 Communication with Assembler Programs 209
Introduction 209

Calling Conventions for C Functions 210

Adding Assembler Routines to C Programs 214

Using Macros, Control Blocks, and DSECTs 215

Calling an Assembler Routine from C 219

Calling a C Function from Assembler 223

Calling a C Program from Assembler 224

Chapter 12 4 Simple Interlanguage Communication 227
Introduction 227

An Overview of Interlanguage Communication 227

Calling a C main Function from Another Language 228

Calling a MAIN Routine in Another Language from C 229

Chapter 13 4 Inline Machine Code Interface 231
Introduction 234

Functions 239

Macros and Header Files 259

Example of the Inline Machine Code Interface 270

Chapter 14 4 Systems Programming with the SAS/C Compiler 273
Introduction 277

An Overview of SPE 278

The SPE Framework: Creating and Terminating 280

SPE Internals 289

Interrupt Handling in SPE 295

Issuing CICS commands 297

Writing CICS User Exits 298

SPE and USS 298

The SPE Library 300

Linking for SPE 329

Chapter 15 4 Developing Applications for Use with UNIX System Services OS/390 331
Introduction 331

POSIX Conformance 332

Compiling POSIX Programs 334

exec-Linkage Programs 334

Using the USS Shell 335

File Access 335

Processes 338

User and Group Identification 338

P A R T 2 Appendixes 341

Appendix 1 4 The DSECT2C Utility 343

vi

Introduction 343

How to Use DSECT2C 343

typedefs and Macros 350

Messages 351

Appendix 2 4 The AR370 Archive Utility 353
Introduction 353

Using the AR370 Archive Utility under CMS 354

Using the AR370 Archive Utility in TSO 357

Using the AR370 Archive Utility under OS/390 Batch 360

Appendix 3 4 The AR2UPDTE and UPDTE2AR Utilities 367
Introduction 367

AR2UPDTE Utility 367

UPDTE2AR Utility 373

Appendix 4 4 The CMS GENCSEG Utility 379
Introduction 379

GENCSEG Parameters 381

Load Parameters 381

Option Parameters 383

The GENCSEG Listing File 384

Virtual Machine Requirements when Using GENCSEG to Save a Segment 384

Renaming the Default Run-Time Library Segment 385

Sample GENCSEG Listings 385

Appendix 5 4 Sharing extern Variables among Load Modules 389
Global extern Variables 389

L$UGLBL 389

Cautions 391

Appendix 6 4 Using the indep Option for Interlanguage Communication 393
Introduction 393

Simple Multilanguage Programs 394

Execution Frameworks 394

Interlanguage Communication Considerations 399

Using Interlanguage Communication 400

Sample Interlanguage Calls 402

Link-Editing Multilanguage Programs 404

Appendix 7 4 Extended Names 405
Introduction 405

Extended Names Processing 405

Extended Names CSECTs 406

The enxref Compiler Option 408

COOL Extended Names Processing 408

The enxref COOL Option 410

vii

The xfnmkeep Option 411

The xsymkeep Option 412

Determining the Extended Function Name at Execution Time 412

Using #pragma map to Create Constant External Symbols 414

Extended Names Processing by the GATHER Statement 414

Appendix 8 4 Library Initialization and Termination Exits 415
Introduction 415

Location of Exits 415

Exit Linkage Conventions 415

Appendix 9 4 SAS/C Redistribution Package 417
Introduction 417

Limited Distribution Library 417

SAS/C Redistribution Package 417

Index 421

viii

1

P A R T1

User’s Guide

Chapter 1.Introduction 3

Chapter 2.Source Code Conventions 9

Chapter 3.Code Generation Conventions 45

Chapter 4.Optimization 63

Chapter 5.Compiling C Programs 81

Chapter 6.Compiler Options 101

Chapter 7.Linking C Programs 131

Chapter 8.Executing C Programs 171

Chapter 9.Run-Time Argument Processing 185

Chapter 10.All-Resident C Programs 201

Chapter 11.Communication with Assembler Programs 209

Chapter 12.Simple Interlanguage Communication 227

Chapter 13.Inline Machine Code Interface 231

Chapter 14.Systems Programming with the SAS/C Compiler 273

Chapter 15.Developing Applications for Use with UNIX System Services
OS/390 331

2

3

C H A P T E R

1
Introduction

Introduction to the SAS/C Compiler 3
Development and Execution Environments 4

OS/390, CMS, TSO 4

XA CMS Support 4

CICS 4

UNIX System Services 4
Cross-Platform 5

Compatibility between versions 5

Quick Start to Using the SAS/C Compiler 5

TSO Quick-Start 6

CMS Quick-Start 6

USS Quick-Start 6
Summary of Changes and Enhancements 7

Introduction to the SAS/C Compiler
The SAS/C Compiler, Release 7.00 is a portable implementation of the high-level C

programming language. The primary elements of the SAS/C Compiler are the compiler
and the run-time library. Additionally, the compiler product also includes a number of
utility programs, as well as several configurations of the run-time library for specialized
environments. Although the compiler is heavily oriented for use in large software
systems, it is an efficient tool for any software project that is written in the C language.

Compiler features include the following:
� generation of reentrant code, enabling many users to share the same code.
� an optimization phase to increase speed and efficiency of generated code.
� the ability for generated code to be executed in both 24-bit and 31-bit addressing

modes, allowing compiled programs to execute above the 16-megabyte line under
any extended architecture operating system.

� identical generated code for OS/390 and CMS operating systems, allowing
compatibility without recompiling.

� built-in functions, including many of the traditional string-handling functions, that
generate inline machine code rather than function calls.

� support for low-level systems programming through inline machine code and the
Systems Programming Environment (SPE).

� full support for interlanguage communication.
� dynamic loading of I/O support routines. Modules are loaded as needed at run

time.
� Full-Screen Support Library (FSSL) (optional).

4 Development and Execution Environments 4 Chapter 1

� full-function debugger.
� BSD socket support.

The compiler also provides a complete library of functions, including functions
compatible with the International Standards Organization (ISO) and American
National Standards Institute (ANSI) C language standards as well as functions that
support nonstandard features such as interuser communication. The library also
includes functions defined by the ISO POSIX 1003.1 and 1002.1a standards, plus other
functions from UNIX operating systems. Extensive information about the library and
each library function is provided in SAS/C Library Reference, Volume 1 and SAS/C
Library Reference, Volume 2.

Development and Execution Environments
The SAS/C Compiler supports a number of development and execution environments

that facilitate the efficient development of applications designed to run on the IBM
System/370 mainframe. The SAS/C C++ Development System is an add-on product that
extends the capabilities of these development environments to support the C++
programming language. The following paragraphs briefly describe these development
environments.

OS/390, CMS, TSO
Traditionally, SAS/C applications have been developed in one of the System/370

operating environments: TSO, CMS, or OS/390 batch. This book is designed to provide
information you will need to use the SAS/C Compiler effectively in the mainframe
SAS/C development environment.

XA CMS Support
There are two versions of the SAS/C Compiler available under CMS: the 370 mode

version and the XA version. The 370 mode version of the compiler (and programs
developed with it) runs under CMS for VM/SP Releases 3, 4, 5, 6, and later. This
version runs in tolerance mode (XA-mode but only AMODE 24) under CMS for VM/XA
SP Releases 1, 2, and later. The XA version works under the CMS associated with
releases of VM after Release 5 of VM/SP. Under VM extended architecture systems,
programs run in exploitation mode, that is, they run AMODE 31, taking advantage of
storage above the 16-megabyte line.

CICS
The SAS/C CICS Command Language Translator extends the mainframe execution

environment so that you can write C programs that interact with the IBM Customer
Information Control System (CICS). The SAS/C Library supports the CICS run-time
environment under TSO, CMS, and OS/390 batch. The SAS/C CICS Command
Language Translator is documented in the SAS/C CICS User’s Guide.

UNIX System Services
With the UNIX System Services (USS) subsystem from IBM, the SAS/C Library

supports the operating system interface defined by the ISO POSIX 1003.1 standard.

Introduction 4 Quick Start to Using the SAS/C Compiler 5

This support extends the mainframe development environment to the USS shell under
OS/390. This support is described in Chapter 15, “Developing Applications for Use with
UNIX System Services OS/390,” on page 331.

Cross-Platform
The SAS/C Cross-Platform Compiler and the SAS/C C++ Cross-Platform

Development System are the cornerstones of a cross-platform development environment
that enables you to compile mainframe SAS/C and SAS/C C++ applications on a UNIX
workstation. These add-on products run on the workstation and produce prelinked
output files that can be transferred to an IBM System/370 mainframe, where they can
be linked to produce an executable load module.

There are several benefits to using SAS/C and C++ cross-platform software.

Reduced mainframe load
By moving compilations off the mainframe, mainframe CPU cycles are preserved
for other users. This can amount to a significant reduction in mainframe
requirements, directly translating into a cost savings.

Improved source management
Developers may take advantage of improved source management tools, as well as
the UNIX hierarchical file system.

Improved build management
Developers may take advantage of improved build management tools, such as
make.

Improved compilation turnaround
In a heavy development environment, developers often find that performing
compilations locally can result in a better turnaround time.

For more information about the cross-platform development environment, refer to
SAS/C Cross-Platform Compiler and C++ Development System User’s Guide.

Compatibility between versions
The following points should be considered when determining compatibility between

the two CMS versions of the compiler:
� The library does not support I/O to globaled OS/390 PDSs except in 370 mode.
� Programs linked using the XA CMS library will not run under VM/SP Releases 3,

4, and 5.

Quick Start to Using the SAS/C Compiler
The following procedures provide the essential information you need to get started

using the SAS/C Compiler under TSO, CMS, or the USS shell. To use these procedures,
you need to create a simple source file such as the following:

#include <stdio.h>

main()
{
printf("Hello World!\n");

}

Each quick-start procedure gives only basic instructions for compiling, linking, and
running a C program. See the following chapters for detailed information:

6 TSO Quick-Start 4 Chapter 1

� Chapter 5, “Compiling C Programs,” on page 81
� Chapter 7, “Linking C Programs,” on page 131

� Chapter 8, “Executing C Programs,” on page 171

TSO Quick-Start
Use this procedure to compile, link, and run a simple C program from the TSO

environment.

1 Write a small "Hello World!" program and store it in userid.QSTART.C(HELLO).

Note: The transient run-time library must be allocated to the DDname
CTRANS or installed in the system link list before you can use the SAS/C
Compiler. Your installation will probably cause it to be allocated automatically. If
you encounter difficulty with the following steps, use the TSO ALLOCATE
command to associate the library with the DDname CTRANS. 4

2 Enter the following command to compile the C source code stored in
userid.QSTART.C(HELLO):

LC370 QSTART(HELLO)

The object code output is stored in userid.QSTART.OBJ(HELLO).
3 Enter the following command to link the HELLO program:

COOL QSTART(HELLO)

The load module is stored in userid.QSTART.LOAD(HELLO).
4 Enter the following command to run the HELLO program:

CALL QSTART(HELLO)

The program executes and "Hello world!" is displayed.

CMS Quick-Start
Use this procedure to compile, link, and run a simple C program from the CMS

environment.
1 Write a small "Hello world!" program and store it in a file named HELLO C.

2 Enter the following command to compile the C source code stored in HELLO C:

LC370 HELLO

The object code output is stored in HELLO TEXT.

3 Enter the following command to link the HELLO program:

COOL HELLO (GENMOD HELLO

The load module is stored in HELLO MODULE.

4 Enter the following command to run the HELLO program:

HELLO

The program executes and "Hello world!" is displayed.

USS Quick-Start
Use this procedure to compile, link, and run a simple C program from the USS shell.

Introduction 4 Summary of Changes and Enhancements 7

Note: The transient library must be defined before a SAS/C program can be
executed under the shell unless the library modules have been installed in the system
link list. If your site does not define this library automatically, you will need to assign
the transient library data set name to the environment variable ddn_CTRANS and
export it before running the compiler. 4

1 Write a small "Hello world!" program and store it in a hierarchical file system
(HFS) file named hello.c.

Note: In order to invoke the sascc370 command, you must include the
directory where SAS/C was installed in your PATH environment variable.
Probably, your site will define PATH appropriately for you when you start up the
shell. If your site does not do this, contact your SAS Software Representative for C
compiler products to obtain the correct directory name and add it to your PATH. 4

2 Enter the following command to compile and link the C source code stored in
hello.c:

sascc370 -o hello hello.c

The object code output is stored in hello.o, and the executable output is stored
in hello.

3 Enter the following command to run the hello program:

hello

The program executes and "Hello world!" is displayed.

Summary of Changes and Enhancements
For details on changes and enhancements to the SAS/C and C++ compiler, see the

following documents:

� SAS/C Software: Changes and Enhancements, Release 7.00

� SAS/C Software: Changes and Enhancements, Release 6.50

8 Summary of Changes and Enhancements 4 Chapter 1

9

C H A P T E R

2
Source Code Conventions

Introduction 10
Environmental Elements 11

Source File Sequence Number Handling 11

Include-File Processing 11

Simple include-file processing under OS/390 12

Simple include-file processing under CMS 12
Simple include-file processing under the USS shell 13

Header file mapping 13

Locating the header map 14

Format of the header map 14

Header map example 14

#chain Command 15
Complete include processing 16

Multibyte Character Support 18

Control of character types by locale support 18

Compiler lexical processing 19

Character constants 19
String literals 20

Header filenames 20

Array initializers 20

Special Character Support 20

Trigraphs sequences 20
Digraphs 20

Special character translate table 21

Escape Sequences 22

Translation Limits 23

Storage Class Limits 23

Numerical Limits 24
Language Elements 24

Constants 24

String literals 24

Conversions 25

Pointer conversion 25
Declarations 25

Function prototypes 25

Structure and union type names 25

Bitfields 26

Predefined Macro Names 26
Data Types 27

long long data type Support 27

Description of the long long Data Type 27

10 Introduction 4 Chapter 2

Language Extensions 28
28

Embedded $ in identifiers 28

Comment nesting 28

C++ Style Comments 29

Specifying floating-point constants in hexadecimal 29
Function pointer formats 29

Far Pointer Support 29

The __local and __remote keywords 29

Keywords for assembler language functions 31

__weak storage class modifier 31

The @ operator 31
Nesting of #define 32

Preprocessor directives for listing control 32

Anonymous unions 33

Noninteger bitfields 34

Zero-length arrays 34
The __alignmem and __noalignmem keywords 35

Special keywords for declarations of non-C functions 35

__inline and __actual storage class modifiers 36

The #pragma options statement 36

The #pragma linkage statement 36
The #pragma map statement 37

Character and String Qualifiers 37

Implementation-defined Behavior 38

38

Translation (G.3.1) 38

Environment (G.3.2) 38
Identifiers (G.3.3) 38

Characters (G.3.4) 38

Integers (G.3.5) 39

Floating point (G.3.6) 40

Arrays and pointers (G.3.7) 40
Registers (G.3.8) 40

Structures, unions, enumerations, and bitfields (G.3.9) 40

Qualifiers (G.3.10) 41

Declarators (G.3.11) 41

Statements (G.3.12) 41
Preprocessing directives (G.3.13) 41

Library functions (G.3.14) 41

Locale-specific behavior (G.4) 43

Introduction

The C language accepted by Release 6.00 of the SAS/C Compiler corresponds to that
specified by the ISO/ANSI C Standard (American National Standards Committee 1989).
This chapter discusses in more detail the C language accepted by the compiler.

“Environmental Elements” on page 11 below and “Language Elements” on page 24
provide specific SAS/C information about environment-dependent aspects of the SAS/C
implementation. This discussion is structured like the ISO/ANSI Standard.
Comparisons are made to relevant sections of Appendix A, "C Reference Manual," in
The C Programming Language, Second Edition (Kernighan and Ritchie 1988).

Source Code Conventions 4 Include-File Processing 11

“Language Extensions” on page 28 describes SAS/C extensions to the C language as
described by the ISO/ANSI Standard. While these extensions can be very useful on
IBM mainframes, they are nonportable.

“Implementation-defined Behavior” on page 38 documents the behavior of the SAS/C
Compiler and Library in areas the ISO/ANSI Standard leaves open for definition by a
particular implementation of the C language.

Environmental Elements
This section covers the following environmental elements, which affect the SAS/C

Compiler’s processing of source code:
� Source File Sequence Number Handling
� Include-File Processing
� Multibyte Character Support
� Special Character Support
� Escape Sequences
� Translation Limits
� Storage Class Limits
� Numerical Limits

Source File Sequence Number Handling
The compiler examines the first record in the source file and in each #include file to

determine if that file contains sequence numbers. Therefore, you can safely mix files
with and without sequence numbers and use the compiler on sequenced or
nonsequenced files without worrying about specifying a sequence number parameter.

For a file with varying-length records, if the first four characters in the first record
are alphanumeric and the following four characters are numeric, then the file is
assumed to have sequence numbers.

For a file with fixed-length records, if the last four characters in the first record are
all numeric and the preceding four characters are alphanumeric, then the file is
assumed to have sequence numbers.

If a file is assumed to have sequence numbers, then the characters in each record at
the sequence number position are ignored. The characters are not treated as part of the
program by the compiler, and they are printed in the sequence number position on the
listing, rather than where they actually appear in the record.

This algorithm detects sequence numbers or their absence correctly for almost all
files, regardless of record type or record length. Occasionally it may cause problems, as
in the following examples:

� For a file in which only some records, not including the first record, contain
sequence numbers, the validity of the sequence number is questionable. The entire
record is treated as C code, so errors are certainly generated.

� Another problem is a file of fixed-length records in which the last eight characters
of the first record resemble a sequence number but are instead, for example, a long
numeric constant. A dummy first record fixes this problem.

Include-File Processing
Because of the variety of environments in which the SAS/C Compiler executes, and

the variety of include-file organizations used by programs of different sorts, the

12 Include-File Processing 4 Chapter 2

compiler’s include-file processing can be quite complex. The implementation was
designed to meet the following requirements:

1 Include files can be stored in any file type readable by the compiler, including OS/
390 PDSs (partitioned data sets), CMS minidisks or shared file system files, and
UNIX System Services (USS) HFS files.

2 The user can easily specify the locations where include files reside, in any
environment.

3 The user can choose between UNIX oriented or mainframe oriented search rules.

4 Provision is made to allow include statements specifying a directory path to be
resolved from a file system that does not support directories by means of a header
name mapping facility.

The rest of this section presents include-file processing topics in the following order.

1 Processing in simple OS/390, CMS, and USS applications, in which no include
directives specify directory paths.

2 Processing in applications that specify directory paths in include directives, but
where the include files are stored in a mainframe file system (for example, a CMS
minidisk).

3 Processing in applications that access include files from the USS hierarchical file
system, or that require more flexibility than provided by the facilities described in
the first two sections.

Simple include-file processing under OS/390
On OS/390, the accepted forms for a simple #include directive are as follows:

#include "member.libddn"
#include "style:pathname"
#include "//[style:]pathname"
#include <member.h>
#include <member>

In the first form, the first part of the filename is interpreted as a member name and the
second part as a DDname. For instance, an include of "protos.h" will look in DDname
H for a PDS member PROTOS. Note that the DDname H could also reference an USS
HFS directory, in which case the compiler includes the file protos.h from that directory.
If the member specified is not found in the DDname specified, the compiler processes
the directive as if the filename were enclosed in angle brackets. In the example, if the
compiler failed to locate "protos.h", it would attempt to include <protos.h>.

In the second or third form, the filename must be a valid pathname for a call to
fopen (see SAS/C Library Reference, Volume 1). In this case, the compiler simply
includes the file specified. If the file cannot be opened, the compilation fails.

In the fourth and fifth forms, the first part of the filename is interpreted as a
member name, and the rest of the filename, if any, is ignored. The include file is read
from the DDname SYSLIB. If the member cannot be found, the compilation fails.

Note that if the underscore character (_) appears in the member or libddn part of an
include filename, it is translated to a pound sign (#) wherever it occurs, except when
including from an HFS directory. For instance, including "name_1.my_lib" would fetch
the member NAME#1 from the PDS referenced by the DDname MY#LIB. Also note that
if the member name or libddn name is longer than eight characters, it is truncated.

Simple include-file processing under CMS
On CMS, the accepted forms for a simple #include directive are as follows:

Source Code Conventions 4 Include-File Processing 13

#include "filename.filetype"
#include "style:pathname"
#include "//[style:]pathname"
#include <member.h>
#include <member>

In the first form, the filename is interpreted as a CMS filename and filetype and located
on an ACCESSed minidisk. For instance, an include of "protos.h" will search all
ACCESSed minidisks for the file PROTOS H. If the file specified cannot be found, the
compiler processes the directive as if the filename were enclosed in angle brackets. In
the example, if the compiler failed to locate "protos.h", it would attempt to include
<protos.h>.

In the second and third forms, the filename must be a valid pathname for a call to
fopen (see SAS/C Library Reference, Volume 1). In this case, the compiler simply
includes the file specified. If the file cannot be opened, the compilation fails.

In the fourth and fifth forms, the first part of the filename is interpreted as a member
name, and the rest of the filename, if any, is ignored. The include file is read from the
currently GLOBALed MACLIBs. If the member cannot be found, the compilation fails.

Note that if a member name or filename component is longer than eight characters,
it is truncated.

Simple include-file processing under the USS shell
Under the USS shell, the accepted forms for a simple #include directive are as

follows:

#include "pathname"
#include "//[style:]pathname"
#include <member.h>

In the first form, the filename is interpreted as an HFS filename in the same directory
as the including file. For instance, an include of "protos.h" in the source program will
search the source directory for the file protos.h. If the file specified cannot be found,
the compiler processes the directive as if the file were enclosed in angle brackets. In the
example, if the compiler failed to locate "protos.h", it would attempt to include
<protos.h>.

In the second form, the filename must be a valid pathname for a call to fopen (see
SAS/C Library Reference, Volume 1). In this case, the compiler simply includes the file
specified. If the file cannot be opened, the compilation fails.

In the third form, the first part of the filename is interpreted as a member name, and
the rest of the filename, if any, is ignored. The member is read from the site-defined
OS/390 PDS containing the standard header files. If the member cannot be found, the
compilation fails.

Note that complex applications may require the use of the ipath compiler option to
augment these simple search rules. This option is discussed in “Complete include
processing” on page 16.

Header file mapping
Many existing programs written for other environments such as UNIX contain

#include directives which reference directories or which have long filenames that are
not unique within the first eight characters. Since the OS/390 and CMS file systems do
not support directories or filename components longer than eight characters, these files
could not be stored on the mainframe without being renamed and/or reorganized.
Header file mapping was developed for the SAS/C Compiler to allow the portable source
for these applications to be used despite the deficiencies of the mainframe file systems.

14 Include-File Processing 4 Chapter 2

SAS/C allows a user to define a lookup table to the compiler, which defines a mapping
from include filenames as specified in the program to actual filenames. Because the
table is external to the program, the program’s source need not be changed, and the
same table can be used for multiple programs. There are two header mapping files: one
for system (angle-bracketed) include files and one for user (double-quoted) include files.

Locating the header map
Before opening any include file, the compiler attempts to open a $$HDRMAP file. If

the include file is a system header file, the header map file is found like <$$hdrmap.h>
(that is, on OS/390 it is the $$HDRMAP member of SYSLIB, and on CMS it is the
$$HDRMAP member of the GLOBALed MACLIBs). Similarly, if the include file is a
user include file, the compiler looks for $$HDRMAP as if it were included as
"$$hdrmap.h". Note that on OS/390 the libddn part of the original user include
filename is ignored, and $$HDRMAP is always fetched from the DDname H.

Note that $$HDRMAP is processed for any include directive, even if the filename
does not include a directory specification.

Format of the header map
The $$HDRMAP file consists of one or more mapping lines and comments. A

comment is any line whose first non-white-space character is a pound sign (#). A
mapping line is a line containing two strings separated by blanks or tabs and optionally
followed by comments. For example:

X11/AtomMgr.h XATMGR.H X11R5 header

The first name is the expected header filename. The filename from a compiled
#include directive is compared with the header name in each $$HDRMAP line until a
matching line is found. The names must match exactly. For example, "./X11/
AtomMgr.h" and "X11/AtomMgr.h" are not considered to match. If the compiled
filename does match the first name of a header map line, the compiler replaces it with
the second string on the line and proceeds to search for that file using the rules
described in “Include-File Processing” on page 11. Thus, on OS/390, a #include
directive for "X11/AtomMgr.h" would attempt to include the member XATMGR in the
DDname H.

Note that a target filename in the $$HDRMAP file should not be bracketed or
quoted. The type of file (system or user) is always assumed to be the same as in the
original #include directive. Also note that if the search for a user header file (whether
the name is mapped or not) fails, the system $$HDRMAP file is used to map the name
before the system header file location is searched. Therefore, the order of steps for a
user header file is as follows:

1 Look for a matching entry in the user $$HDRMAP. If found, replace the original
name by the mapped name.

2 Search the user header file location for the filename resulting from step 1.

3 If that fails, look for an entry matching the original name in the system
$$HDRMAP. If found, replace the original name by the mapped name.

4 Search the system header file location for the filename resulting from step 3.

Header map example
Assume the following system header file map (SYSLIB($$HDRMAP) on OS/390):

X11/AtomMgr.h XATMGR.H
X11/Xlibos.h XLIBOS.H

Source Code Conventions 4 Include-File Processing 15

../mydir/george.h GEORGE.MYDIR

and the following user header file map (H($$HDRMAP) on OS/390):

MyVeryLongName.h MVLN.H
../mydir/myfile.h MYFILE.MYDIR

Then, the following #include directives would be processed as follows:

#include "../mydir/myfile.h"
The second line of the user header map would be located, and the compiler would
attempt to read the include file from member MYFILE of the DDname MYDIR.

#include "../mydir/george.h"
No match is found in the user header file map. Assuming that there is no member
GEORGE in the file referenced by DDname H, the system map is then searched
and the third line is a match. Because the match was found in the system map,
GEORGE.MYDIR is treated as a system header filename, and the compiler
attempts to read member GEORGE of DDname SYSLIB.

#include <X11/Xlibos.h>
The compiler searches the system header file map and finds the second line. The
compiler reads member XLIBOS of DDname SYSLIB.

#chain Command

#chain FILENAME

When the #chain command is specified in a $$HDRMAP file, the header-map lookup
uses the #include processing rules specified on this compilation to locate the file
named FILENAME. It uses system include rules when processing system $$HDRMAP
files and user include rules for user defined $$HDRMAP files.

Any header-map entries found in the file will be inserted in the list at the point of
the #chain command.

A file that is processed using a #chain can #chain other files. If the file named on
the #chain cannot be located or opened using the include search rules, the #chain is
ignored and processing continues.

For example, in a user include $$hdrmap.h, you could have

foo.h bar.h
harry.h george.h
#
Go get the mappings for the current project.
#

#chain //DDN:PROJECT(MAPPINGS)

alice.h betty.h

If the DDN “PROJECT” was defined so that MAPPINGS contained

somebiglongname.h sbln.h

Then the header map list would be :

foo.h ---> bar.h
harry.h ---> george.h
somebiglongname.h ---> sbln.h
alice.h ---> betty.h

16 Include-File Processing 4 Chapter 2

Complete include processing
This section describes in detail the entirety of the compiler’s header file processing.

This section is most relevant if you have header files in the USS hierarchical file
system, but it may also be relevant to other complicated applications.

To deal with the complexities introduced by HFS directories and to provide a high
level of compatibility with UNIX include-file processing, the compiler offers the ipath
and usearch options. Additionally, on CMS the _HEADERS environment variable
provides additional flexibility for users of the CMS shared file system. Refer to “Using
Environment Variables to Specify Defaults” on page 85 for information on the
_HEADERS environment variable.

The usearch option specifies "UNIX search rules," which is a rearrangement of the
compiler’s normal methods of processing for greater UNIX compatibility. usearch is the
default when you compile under the USS shell, but it may be specified for compiles from
other environments. The ipath option allows you to specify one or more locations to be
searched for header files. These are normally HFS directories, but they could also be
PDS names or CMS shared file system directories.

If the usearch option is not in effect, the order of include processing for a #include
of a user (double-quoted) header file is as follows. (Note that if any step locates the file,
the remaining steps are not performed.)

1 A $$HDRMAP lookup is performed to see if the filename should be mapped to
another name.

2 If the filename was specified with a style prefix, the compiler attempts to open the
file specified. Similarly, if the compiler is running from the USS shell and the
include file is specified using an absolute pathname (one beginning with a slash),
the compiler attempts to open the file specified. In either case, if this fails, no
further steps are attempted.

3 The locations specified by ipath options are searched for the header file, in the
order in which they were specified.

4 If the file containing the include directive was obtained from an HFS directory,
the compiler searches this directory.

5 If the compiler is running under the USS shell, it searches the current directory.
6 The compiler looks in the normal, system-dependent place for the header file. On

OS/390, it transforms the filename into an OS/390 member name and DDname, as
described in “Simple include-file processing under OS/390” on page 12, discarding
any directory specification. On CMS, this search takes place in two stages:

a If the _HEADERS environment variable was defined, as described in
“Specifying Shared File System Directories” on page 86, the compiler searches
each shared file system directory specified by _HEADERS for the required file.

b Any directory specification in the filename is discarded, and all ACCESSed
minidisks are searched for the file.

7 The compiler attempts to locate the file as a system header file.

If the usearch option is not in effect, the order of processing for a system (bracketed)
include file is as follows. (Note that if any step locates the file, the remaining steps are
not performed.)

1 A $$HDRMAP lookup is performed to see if the filename should be mapped to
another name.

2 If the filename was specified with a style prefix, or if the compiler is running
under the shell and an absolute pathname was specified, the compiler attempts to
open the file specified. If that fails, no further steps are attempted.

3 The compiler searches each location specified via the INCLUDE environment
variable. (This facility is defined for use in library development and is not
recommended as a customer interface.)

Source Code Conventions 4 Include-File Processing 17

4 The compiler looks for the header file as a member of SYSLIB on OS/390 or of the
GLOBAL MACLIBs on CMS.

If the usearch option is specified to enforce UNIX search rules, the search for a user
(double-quoted) include file proceeds as follows. (Note that if any step locates the file,
the remaining steps are not performed.)

1 A $$HDRMAP lookup is performed to see if the filename should be mapped to
another name.

2 If the filename was specified with a style prefix, or if the compiler is running
under the shell and an absolute pathname was specified, the compiler attempts to
open the file specified. If that fails, no further steps are attempted.

3 The compiler looks for the header file in the location (HFS directory, OS/390 PDS,
CMS minidisk or shared file system directory) containing the file that included
this one.

4 The locations specified by ipath options are searched for the header file, in the
order in which they were specified.

5 The compiler looks in the normal, system-dependent place for the header file. On
OS/390, it transforms the filename into an OS/390 member name and DDname, as
described in “Simple include-file processing under OS/390” on page 12, discarding
any directory specification. On CMS, this search takes place in two stages:

a If the _HEADERS environment variable was defined, as described in
“Specifying Shared File System Directories” on page 86, the compiler searches
each shared file system directory specified by _HEADERS for the required file.

b Any directory specification in the filename is discarded, and all ACCESSed
minidisks are searched for the file.

6 The compiler attempts to locate the file as a system header file.

If the usearch option is specified to enforce UNIX search rules, the search for a
system (bracketed) include file proceeds as follows. (Note that if any step locates the
file, the remaining steps are not performed.)

1 A $$HDRMAP lookup is performed to see if the filename should be mapped to
another name.

2 If the filename was specified with a style prefix, or if the compiler is running
under the shell and an absolute pathname was specified, the compiler attempts to
open the file specified. If that fails, no further steps are attempted.

3 The locations specified by ipath options are searched for the header file, in the
order in which they were specified.

4 The compiler searches each location specified via the INCLUDE environment
variable. (This facility is defined for use in library development and is not
recommended as a customer interface.)

5 The compiler looks for the header file as a member of SYSLIB on OS/390 or of the
GLOBAL MACLIBs on CMS.

The primary differences between the UNIX (usearch) search rules and the ordinary
SAS/C (nousearch) search rules are the following:

� When usearch is in effect, the locations specified by ipath are searched for both
user and system header files. When usearch is not in effect, ipath is used only to
search for user header files.

� When usearch is in effect, the including file’s directory is searched before the
ipath directories. When usearch is not in effect, the ipath directories are
searched before the directory of the including file.

� When usearch is in effect, the location of the including file is always searched.
When usearch is not in effect, it is searched only if the including file was obtained
from the HFS.

18 Multibyte Character Support 4 Chapter 2

� When usearch is not in effect and the compiler is running under the shell, an
explicit search of the current directory is performed before the system-dependent
search. This step is not performed when usearch is in effect.

Multibyte Character Support

Multibyte character support enables programs to adapt to different cultures by
providing support for large character sets. (See Chapter 10, "Localization," and Chapter
11, "Multibyte Character Functions," in SAS/C Library Reference, Volume 2 for more
information.) To support large character sets (for example, the 14,000 or so most
commonly used Japanese ideographs), at least 2 bytes are needed to provide encoding
for the complete set. An 8-bit byte alone cannot provide the number of distinct values
necessary to provide this support.

The ISO/ANSI Standard defines the concepts of multibyte characters and wide
characters to support these large character sets. The method of implementation of
these concepts is implementation-defined. The compiler has chosen to implement these
features compatibly with the EBCDIC DBCS (double-byte character set) definition
when the current locale at compile time supports DBCS.

A wide character is a value of type wchar_t, which the compiler defines as unsigned
short. If the value is in the range of the char type, it represents a standard EBCDIC
character. If the value is outside the range of char, it represents an extended character,
such as a character of the Japanese Kanji character set. EBCDIC DBCS constrains
each byte of a wide character outside the range of char to have a value between 0x40
and 0xFE.

Wide characters are easy to process in C, but external DBCS data are usually not in
this format. The multibyte character string format is more common. A multibyte
character string contains a mixture of standard EBCDIC single-byte characters and
extended double-byte characters. (This is called a mixed string in EBCDIC DBCS
terminology.)

When DBCS support is enabled, the interpretation of the bytes of a multibyte
character string is controlled by use of the SO (shift out) and SI (shift in) characters
whose values are 0x0E and 0x0F, respectively. At the start of a multibyte string,
characters are interpreted as single-byte EBCDIC characters until an SO character is
encountered. This causes a transition to the double-byte shift state in which each pair
of characters is interpreted as an extended double-byte character. If an SI character is
encountered, the single-byte interpretation is resumed, and so on. Thus, the
interpretation of individual characters in a multibyte character string is dependent on
the current shift state.

When DBCS support is not enabled, all characters are interpreted as standard
EBCDIC characters, and no special semantics are associated with SO or SI.

Note that the term multibyte character is used to refer to any character of the
extended character set. In particular, standard EBCDIC characters such as A are
multibyte characters even though only a single byte is required to represent them.

The following two sections cover aspects of the multibyte character implementation
related to compiler support. Chapter 11 in SAS/C Library Reference, Volume 2 covers
the library implementation of the multibyte functions.

Control of character types by locale support

The compiler uses the current locale to enable its DBCS support. This is controlled
by the environment variable _LOCALE as described in Chapter 10 in SAS/C Library
Reference, Volume 2. For example, the locale that needs to be set is the one in use
when running the compiler (not when executing the resultant program).

Source Code Conventions 4 Multibyte Character Support 19

The compiler uses the locale in effect during compilation to enable its DBCS support.
This is controlled by the environment variable _LOCALE. Under OS/390 batch, the
environment variable is set by including =_LOCALE=DBCS in the compiler’s PARM
string. In TSO, you can use the PUTENV command to set _LOCALE, if your site makes
this command available. Under CMS, assigning the value DBCS to the GLOBALV
variable _LOCALE in the CENV group has the same effect. Note that, because
GLOBALV variables are shared by all programs, this assignment also affects any C
program that uses the default locale during execution. To limit the effect to just the
compiler under CMS, you should use an explicit command-line assignment, as you
would under OS/390.

Compiler lexical processing

The values assigned to characters are implementation-defined. For all basic
characters and other single-byte characters, the values are those given by EBCDIC. For
multibyte characters, the values given by the DBCS for the language character set
currently enabled are used.

All instances of DBCS in C source are in mixed strings. For string literals (including
array initializers) and character constants, an L prefix controls whether or not the type
of the literal or constant is based on char or wchar_t.

The ISO/ANSI C Standard allows the following lexical elements to contain multibyte
characters (or any other members of the extended character set):

� character constants

� string literals

� header filenames

� array initializers.

Character constants

There are two kinds of character constants: integral and wide. Wide character
constants are prefixed by the letter L. Integral character constants have type int; wide
character constants have type wchar_t. In the SAS/C implementation, wchar_t is an
unsigned short.

An integral character constant normally contains only a single character. If more
than one character is present, the value of the constant is the value of the integer
whose rightmost bytes are those of the constant. (If there are more than four
characters, only the four rightmost are used.) For instance, the integral character
constant ‘HI‘ has the same value as 0xC8C9. Note that use of an integral character
constant containing more than one character is not portable.

A wide character constant normally contains only a single multibyte character or
escape sequence. If a wide character constant contains more than one, only the
rightmost is used. The value of a wide character constant is determined as follows:

� If it contains a single-byte character or an escape sequence other than an octal or
hexadecimal escape sequence, the value of the wide character constant is the same
as that of the corresponding integral character constant.

� If it contains a double-byte character, the value of the wide character constant is
the value of the two bytes between the SO and SI characters that delimit the
double-byte character in the source file.

� If it contains a hex or octal escape sequence, the sequence is interpreted as a
wchar_t value, using its rightmost bits; any excess bits are ignored.

20 Special Character Support 4 Chapter 2

String literals
The implementation of string literals and wide string literals is nearly identical to

that of character constants. The type of a wide string literal is interpreted as an array
of wchar_t. The compiler issues a warning message for attempts to use adjacent string
concatenation with different types of string literals and gives the type for the first
literal in the concatenation. (The ISO/ANSI Standard treats this as undefined.)

Header filenames
The compiler accepts multibyte sequences in header filenames. The mixed DBCS

string is passed to the operating system unchanged.

Array initializers
A wide string literal may be used to initialize an array of elements whose type is

wchar_t. Both static and auto array initialization are supported.

Special Character Support
The C language uses a number of special characters. Many IBM mainframe

terminals and printers do not supply all of these characters. The compiler provides
three solutions to this problem:

� ISO/ANSI trigraphs

� digraphs
� a special character translation table.

Trigraphs sequences
Trigraph sequences are an invention of the C standardization committee. They are

intended to serve as replacements for characters in the C character set that do not
appear in the ISO 646 character set. See the trigraphs option in Chapter 6, “Compiler
Options,” on page 101 for information about trigraphs.

Digraphs
The C language is implemented traditionally using the ASCII character set. The

compiler uses EBCDIC, the IBM 370 preferred character set, as its native set. Because
some characters used by the C language are not normal EBCDIC characters (that is,
they do not appear on many terminal keyboards), alternate representations are
available for them. Also, for some characters there is more than one similar EBCDIC
character. In such cases, the compiler accepts either.

Table 2.1 on page 20 gives alternate representations that the compiler accepts.

Table 2.1 Digraph Sequences For Special Characters

C Character EBCDIC Values(s) (hex) Alternate Forms

[(left bracket) 0xad (|

] (right bracket) 0xbd |)

{ (left brace) 0x8b, 0xc0 \(or (<

Source Code Conventions 4 Special Character Support 21

C Character EBCDIC Values(s) (hex) Alternate Forms

} (right brace) 0x9b, 0xd0 \) or >)

| (inclusive or) 0x4f, 0x6a \!

~ (tilde) 0xa1

\ (backslash) 0xe0, 0xbe (see discussion below)

For all symbols except the backslash (), substitute sequences are not replaced in
string constants or character constants. For example, the string constant "(|" contains

two characters, not a single left bracket. (Contrast this behavior with the standard
trigraphs, which are replaced in string and character constants.)

The backslash is a special case because it has significance within string and character
constants as well as within C statements. However, the compiler can be customized to
accept an alternate single character for the backslash. In addition, the customization
can include alternate single character representations of the characters in Table 2.1 on
page 20. The default alternate representations are listed in Table 2.2 on page 22. See
your SAS Software Representative for C compiler products for more information.

Note that in addition to the digraphs described in Table 2.1 on page 20, your site can
customize the compiler to accept alternate single-character representations of the
characters. See your site representative for details.

Special character translate table

The special character translate table enables each site to customize the
representations of special characters. That is, the site decides which hexadecimal bit
pattern or patterns represent that character and, thus, can choose a representation that
is available on their terminals and printers. The special character translate table
enables you to choose a representation of all the unusual C characters, in addition to
the exclamation point (!).

The special characters that can be customized are braces ({}), square brackets ([]), not
sign (), tilde (~), backslash (), the vertical bar (|), the exclamation point (!), and the
pound sign (#). You should determine if your site has customized values for these
characters and determine values. Otherwise, the default representations listed in Table
2.2 on page 22 are in effect. Consult your SAS Software Representative for C compiler
products for details of customized values.

Table 2.2 on page 22 shows the four possible default representations for each
character. The compiler and OMD (object module disassembler) accept either of two
representations of the character in a source file. These are the primary and alternate
representations in columns two and three. The compiler and OMD can produce either
of two representations of each character in a listing file depending on the execution
options specified. The first is the standard print representation shown in column four.
The second, the overstrike representation listed in column five, is produced by
overstriking the character with another character. (Details about the execution options
and how they interact are provided in Chapter 6, “Compiler Options,” on page 101.) The
entries in columns two through five are EBCDIC equivalents of the characters in
hexadecimal notation.

Keep in mind that these alternate representations for characters apply only to C
program source and not to the contents of files read by C programs.

In addition to the problem of entering C source text on devices that do not have the
full character set, there is also the problem of printing the text. The compiler supports
two options to assist in this area: the trans option and the upper option. See Chapter
6, “Compiler Options,” on page 101 for more information on these options.

22 Escape Sequences 4 Chapter 2

Note: Do not use an underscore (_) as an overstrike character. When you specify an
alternate character in the source file, the compiler places an underscore under the
alternate character in the listing file. If you use an underscore as an overstrike
character, it will not be clear whether the underscore in the listing file represents an
alternate character or an overstrike character. 4

Table 2.2 Default Representations for Special Characters

Source File Representation
Listing File
Representation

Character Primary Alternate Print Overstrike

left brace

0xc0

{

0x8b

{

0x8b

{

0x4c / 0x4f

< with | overstrike

right brace 0xd0

}

0x9b

}

0x9b

}

0x6e \ 0x4f

> with | overstrike

left bracket 0xad

[

0xad

[

0xad

[

0x4c / 0x60

< with - overstrike

right bracket 0xbd 0xbd 0xbd 0x6e / 0x60

> with - overstrike

not sign (exclusive or) 0x5f 0x71 0x5f 0x5f (no overstrike)

tilde 0xa1

~

0xa1

~

0xa1

(degree symbol)

0x7d / 0x60

’ with - overstrike

backslash 0xe0 0xbe 0xbe 0x7e

vertical bar | or
(inclusive or)

0x4f

|

0x6a 0x4f

|

0x4f (no overstrike)

|

pound sign 0x7b

#

0x7b

#

0x7b

#

0x7b (no overstrike)

#

exclamation point 0x5a

!

0x5a

!

0x5a

!

0x5a (no overstrike)

!

Escape Sequences
The compiler produces a unique char value for certain alphabetic escape sequences

that represent nongraphic characters. The characters’ associated hex values and ISO/
ANSI meaning appear in Table 2.3 on page 23.

Source Code Conventions 4 Storage Class Limits 23

Table 2.3 Escape Sequence Values

Sequence Hex Value Meaning

\a 0x2f alert

\b 0x16 backspace

\f 0x0c form feed

\n 0x15 new line

\r 0x0d carriage return

\t 0x05 horizontal tab

\v 0x0b vertical tab

Translation Limits
Wherever possible, the compiler avoids imposing fixed translation limits. The ISO/

ANSI Standard translation limits for which the compiler does impose a fixed limit are
listed in Table 2.4 on page 24, followed by some other limits of practical interest. If no
limit is listed, the only limit is imposed by the memory available to the compiler or by
the program when it is executed. The extname option can override the following
translation limits for internal and external identifiers and allow 64K characters of
significance:

� Internal identifiers have 31 characters of significance.

� External identifiers have 8 (monocase) characters of significance.

� Forty arguments are the maximum allowed in a macro definition.

� Individual objects can be up to 8 megabytes in size. The compiler imposes no limit
on array sizes. Overall limits for each storage class are listed in “Storage Class
Limits” on page 23.

� The maximum level of #include file nesting is 16.

Storage Class Limits
The total size of all objects declared in one compilation with the same storage class is

limited according to the particular class, as follows:

� extern - 16777215 (16M-1) bytes

� static - 8388607 (8M-1) bytes

� auto - 8388607 (8M-1) bytes

� formal - 65535 (64K-1) bytes.

Note that the following types of programs generate very large CSECTS:

� programs compiled with the norent option and with large amounts of static or
defined external data or both

� programs compiled with the rentext option and with large amounts of static data.

You should consider alternatives to using large amounts of static data (for example,
dynamic storage allocation via malloc).

Storage allocated via the malloc family of routines is limited only by available
memory.

24 Numerical Limits 4 Chapter 2

Numerical Limits
The numerical limits are what you would expect for a 32-bit, two’s complement

machine such as the IBM 370. Table 2.4 on page 24 shows the size ranges for the
integral types.

Table 2.4 Integral Type Sizes

Type Length in Bytes Range

char 1 0 to 255 (EBCDIC character
set)

signed char 1 -128 to 127

short 2 -32768 to 32767

unsigned short 2 0 to 65535

int 4 -21474883648 to 2147483647

unsigned int 4 0 to 4294967295

long 4 -2147483648 to 2147483647

unsigned long 4 0 to 4294967295

Table 2.5 on page 24 shows the size ranges for float and double types.

Table 2.5 Float and Double Type Sizes

Type Length in Bytes Range

float 4 +/-5.4E-79 to +/-7.2E75

double 8 +/-5.4E-79 to +/-7.2E75

long double 8 +/-5.4E-79 to +/-7.2E75

For more details on the implementation of the various data types, see Chapter 3,
“Code Generation Conventions,” on page 45.

Language Elements
This section describes standard C constructs for which there are special SAS/C

considerations.

Constants

String literals
By default, identically written string constants refer to the same storage location;

that is, only one copy of the string is generated by the compiler. The nostringdup

Source Code Conventions 4 Declarations 25

compiler option can be used to force a separate copy to be generated for each use of a
string literal. However, modifying string constants is not recommended and renders a
program non-reentrant.

Strings that are used to initialize char arrays (not char *) are not actually generated
because they are shorthand for a comma-separated list of single-character constants.

Conversions

Pointer conversion
Implicit pointer conversion by assignment is allowed but generates a warning

message (which is a diagnostic in the sense of the C Standard) whenever any value
other than a pointer of the same type, a pointer to void, the constant 0, or NULL is
assigned to a pointer. There is an important reason for the warning. Although many C
programs make the implicit assumption that pointers of all types can be stored in int
variables or other pointer types and retrieved without difficulty (and this is true for the
SAS/C Compiler), the language itself does not guarantee this. On word-addressed
machines, for example, such conversions do not always work properly. The warning
message provides a gentle (and nonfatal) reminder of this fact. A cast operator can be
used to eliminate the warning. The cast then indicates that the conversion is
intentional and not the result of improper coding.

A more stringent requirement is enforced for initializers, where the expression to
initialize a pointer must evaluate to a pointer, null, or an integral constant 0. Any
other value is an error.

When pointers of different types are compared, the operand on the right side of the
comparison is converted to the type of the operand on the left side of the comparison;
comparison of a pointer and one of the integral types causes a conversion of the integer
to the pointer type. Both of these operations are of questionable value unless pointers
are being compared for equality or inequality. Note that the result of a relational
pointer comparison is undefined (according to ISO/ANSI) if the pointers do not address
elements of the same array, structure, or union object.

Declarations

Function prototypes
The standard header files contain prototypes for library functions as specified by the

C Standard. Should you want to avoid the use of these prototypes, the preprocessor
variable _NOLIBCK enables you to do this. To bypass the prototypes, precede the
#include statement for a header file with a #define statement in the following form:

#define _NOLIBCK

You can also define _NOLIBCK from the command line using the define compiler
option. Use of _NOLIBCK to suppress library prototypes is strongly discouraged.

Structure and union type names
The compiler accepts unions that have no identifier. See “Anonymous unions” on

page 33 for more information.

26 Predefined Macro Names 4 Chapter 2

Bitfields
The compiler optionally allows bitfields to have a type other than int, signed int,

or unsigned int. See “Noninteger bitfields” on page 34 for more information.

Predefined Macro Names
The compiler provides the following predefined macro names required by the C

Standard:

__DATE__

__FILE__

__LINE__

__STDC__

__TIME__

These macros are useful for generating diagnostic messages and inline program
documentation.

__DATE__ specifies the current date, in the form "Mmm dd yyyy" (for example,
Jan 01 1991).

__FILE__ expands to a string constant containing the current filename. The
exact form of the name is system-dependent and also depends on the
type of the file. In general, the name of the __FILE__ will be a
canonicalized version of the source or include filename. If the file is
an USS HFS file, __FILE__ contains an absolute pathname, for
example, "//HFS:/u/howard/hdrs/protos.h".

__LINE__ expands to an integer constant that is the relative number of the
current source line within the file (primary source file or #include
file) that contains it.

__STDC__ specifies the decimal constant 1.

__TIME__ specifies the current time, in the form "hh:mm:ss".

None of the above predefined macros can be undefined with #undef.
The compiler provides the following predefined macro names in addition to the

names specified by the ISO/ANSI Standard. The automatic definition of these names
can be collectively suppressed by using the undef compiler option. See Chapter 6,
“Compiler Options,” on page 101 for more information.

#define DEBUG 1 /* if DEBUG option is used */
#define NDEBUG 1 /* if DEBUG option is not used */
#define OSVS 1 /* if compiling under TSO or MVS batch */
#define CMS 1 /* if compiling under CMS */
#define _ _I370_ _ 1 /* indicates the SAS/C Compiler */

The #undef preprocessor directive can undefine individually these macro names.
Some predefined macro names indicate certain compiler options. See “Preprocessor

Options Processing” on page 128 for more information.
The compiler creates two other preprocessor symbols in addition to the option

symbols:

__SASC__ is assigned the current release number of SAS/C software. For
example, the preprocessor symbol assignment for Release 6.00 is
equivalent to the following definition:

Source Code Conventions 4 long long data type Support 27

#define __SASC__ 600

__COMPILER__ is assigned the current release of SAS/C software as a string. For
Release 6.00, this is equivalent to the following definition:

#define __COMPILER__ "SAS/C Version 6.00x "

where x is the product release letter.

Data Types
Data types are sets of values combined with sets of allowable operations that apply

to each member of a specific data type. The members of a data type can assume only
those values and return only those functions contained in that data type.

long long data type Support
SAS/C Release 7.00 supports the long long data type, both signed and unsigned.

This data type is used for 64-bit (8-byte) integers. To specify either type in a declaration
or cast, use the keyword long twice, and the unsigned keyword when necessary, as
shown in the following example:

long long taxes();
if (taxes() >= (unsigned long long) my_salary)

panic();

Description of the long long Data Type
A signed long long can hold any integer value between -9223372036854775808 (-2

to the 63rd power) to 9223372036854775807 (2 to the 63rd power - 1). These values are
associated with the symbols LLONG_MIN and LLONG_MAX (defined in limits.h),
respectively. An unsigned long long can hold any value between 0 and
18446744073709551615 (2 to the 64th power - 1). This value is associated with the
symbol ULLONG_MAX defined in limits.h.

Constants in the range of the long long types may be written in decimal, octal, or
hexadecimal form, the same as other integer constants. If a constant is too large to be
an unsigned long, it is assumed to be a long long or unsigned long long constant.
long long constants in the range of a 32-bit integer type can be written using the
suffix LL (for signed long long) or ULL (for unsigned long long). Examples of
long long constants are 14LL and 0XFF00FF00ULL.

long long values can be converted to and from all other numeric types, sometimes
with a loss of accuracy. Note that a long long, with 63 bits of accuracy, is more
accurate than a double, with 53-56 bits, and that therefore conversions from long
long to double may well lose precision. Note that if an expression has a double (or
float) operand and a long long operand, the long long operand is converted to a
double. You should use a cast if this is not the outcome you want.

Expressions with long long or unsigned long long operands behave the way a C
programmer would expect. The result of such an operation having only integral
operands is a signed or unsigned long long (with a couple of exceptions), unsigned
if any operand (after promotion) was unsigned, and otherwise signed. The main
exception to the rule stated above has to do with the shift operator. If the first operand
of a shift operand is long long, the result will be long long, but the type of the
second operand has no effect on the type of the result. Thus, 1L << 10LL has type
long, but 1LL << 10L has type long long.

28 Language Extensions 4 Chapter 2

long long bit fields are not supported. long long enum values are also not
supported.

long long variables are ordinarily aligned on a doubleword boundary. The SAS/C
extension _ _noalignmem can be used to have unaligned long long members in a
structure.

Subscript expressions are always converted to int. An expression such as
b[0x100000001LL] is syntactically valid, but has the same meaning as
b[(int)0x100000001LL] or, equivalently, b[1], which may not have been the
programmer’s intent.

The control variable of a switch statement may have long long type.
The implementation of long long in SAS/C is compatible with the ISO 1999 C

Language Standard.
The addition of the long long data type is an extension to the ANSI/ISO C language

standard of 1989. In most cases, the existence of long long does not change the
meaning of existing standard-conforming programs. However, in some cases, such
changes are possible. These changes can occur mostly because of the potentially
different meanings of arithmetic constants. Take the following example:

long m = (0xffffffff * 0xffffffff) / 0xffffffff;

Prior to SAS/C Release 7.00, the initial value of m was 0. For Release 7.00 and
beyond, the value will be -1, because 0xffffffff is now treated as a signed long long
constant rather than as an unsigned long constant.

Another way in which the addition of the long long data type could affect existing
standard-conforming programs is that certain library headers have been updated to
include prototypes for long long functions. Any program that uses one of these names
for a different purpose and includes the corresponding header file will probably not
compile or execute. The compiler define option can be used in such a case to define the
feature test macro _SASC_HIDE_LLLIB, which suppresses these prototypes.

Language Extensions

This section describes extensions to the ISO/ANSI C language implemented by the
compiler. Library extensions are described in SAS/C Library Reference, Volume 1 and
SAS/C Library Reference, Volume 2. Note that use of these extensions is likely to
render a program nonportable.

Embedded $ in identifiers
The dollar sign ($) can be used as an embedded character in identifiers. If the dollar

sign is used in identifiers, the dollars compiler option must be specified. As
mentioned, use of the dollar sign is not portable because the dollar sign is not part of
the portable C character set specified by the C Standard. Also, the dollar sign cannot be
used as the first character in an identifier; such usage is reserved for the library.

Comment nesting
The compiler optionally allows comments to be nested. (The C Standard does not

sanction this usage.) The comnest compile-time option must be specified to enact
comment nesting. When comment nesting is honored, each /* encountered must be
matched by a corresponding --> before the comment terminates. This feature makes it

Source Code Conventions 4 29

easy to comment out large sections of code that contain comments. Thus, sections of
debugging code can be removed easily and preserved. Comment nesting is nonportable.

C++ Style Comments
The SAS/C Compiler now supports C++ style line comments. A line comment starts

with two forward slashes and goes to the end of the line. An example of the new
comment extension is:

// This is a comment line

Note: This support is turned off if the strict compiler option is used. 4

Specifying floating-point constants in hexadecimal
An extended format for floating-point constants enables them to be specified in

hexadecimal to indicate the exact bit pattern to be placed in memory. A hexadecimal
double constant consists of the sequence 0.x, followed by 1 to 14 hexadecimal digits. (If
there are fewer than 14 digits, the number is extended to 14 digits on the right with 0s.)
A hexadecimal double constant defines the exact bit pattern to be used for the constant.
As an example, 0.x411 has the same value as 1.0. Use of this feature is nonportable.

Function pointer formats
The compiler supports two function pointer formats: local and remote. A remote

function pointer is indirect; it points to an 8- or 12-byte area containing the address of
the function code as well as the address of the extern (and possibly static) data
associated with the load module. A local function pointer is direct; it is simply the
address of the function code. No other addresses are needed. In 370 object code
terminology, a local function pointer is a V-type address constant.

The remote format supports pointers to functions in other load modules that have
their own set of externs. Since most of the run-time library functions are in separate
load modules, library functions that accept function pointer arguments, such as signal
or atexit, typically require remote function pointers.

The local format is simpler. Many assembler language subroutines that accept
subroutine addresses only accept addresses in this format. The disadvantage is that a
function pointer in local format cannot call a function in another load module if the
called function references extern or static data in that load module, or if that
function calls C library routines that might reference such data.

You should use the remote format unless your application has a specific need for
function pointers in local format. The remote format is supported by all library
functions.

By default, all function pointers are remote. The __local and __remote keywords
explicitly declare function pointers in local or remote format. You can use the pflocal
option to force the compiler to generate local format function pointers by default.

Far Pointer Support
SAS/C supports the _ _near and _ _far keywords in pointer type declarations as part

of its access-register mode support. See “Access Register Mode Support” on page 48 for
more information.

Note: The C++ translator does not support _ _near and _ _far for Release 7.00. 4

The __local and __remote keywords
The __local and __remote keywords can be used in function pointer declarations to

specify whether the function pointer is in remote or local format.

30 4 Chapter 2

The pflocal compiler option specifies that all function pointers declared in a
compilation are local, except those specifically declared with the __remote keyword.
Under the default, nopflocal, most function pointers declared in the compilation are
remote, except those specifically declared with the __local keyword.

There are three exceptions to this rule: the __asm, __ref, and __ibmos keywords.
Use of the __asm or __ref keywords in a function pointer declaration implies that the
declared function pointer is local unless the __remote keyword is explicitly specified in
the declaration. Function pointers that are declared with the __ibmos keyword are
always local.

Remote function pointers can be converted to local function pointers. However, local
function pointers cannot be converted to remote function pointers. Local function
pointers cannot be passed as arguments to library functions.

Below is a list of the library functions that require remote function pointers.

atcoexit

atexit

atfork

bldexit

bsearch

btrace

buildm

cmsrxfn

cosignal

costart

loadd

loadm

qsort

sigdef

signal

unloadd

unloadm

The sa_handler field of the library sigaction structure is a remote function pointer.
The function pointers that specify alternate strcoll and strxfrm functions for

user-added locales must be remote, and the function pointers that specify a DCB exit
routine for the osdcb and osbdcb functions must be remote.

The address of a function, that is, the value of &fnc_name, is either local or remote,
depending on the setting of the pflocal option. If pflocal is used, &fnc_name is
considered a local function pointer. If nopflocal is used, &fnc_name is considered a

remote function pointer. You can override this behavior by using an explicit cast, as
in the following example:

atexit((__remote void (*)(void)) &exit_func);

Note that you must be careful using function addresses within conditional
expressions. In an expression like the following example, both function addresses are
converted to the default function pointer type.

test ? &fnc_name1 : &fnc_name2

Source Code Conventions 4 31

If the pflocal option was specified and the expression above is assigned to a
__remote function pointer variable, an error will be indicated by the compiler, since the
result of the conditional expression is a local function pointer. You should use casts in
expressions of this sort to ensure correct interpretation, as in this example:

test ? (__remote void(*)(void)) &fnc_name1 :
(__remote void(*)(void)) &fnc_name2

Note: The SAS/C dynamic-loading functions that are described in SAS/C Library
Reference, Volume 2 require the use of remote function pointers. You cannot use the
loadm function with a function pointer that has been declared with the __ibmos
keyword. 4

Keywords for assembler language functions
SAS/C supports three keywords that can be used to declare functions and pointers to

functions written in assembler language that expect a parameter list in OS format:
� __asm

� __ref

� __ibmos

Refer to “_ _asm, _ _ref, and _ _ibmos Keywords” on page 211 for a discussion of these
keywords.

__weak storage class modifier
The __weak storage class modifier applies only to references to external named

objects and functions. For objects, it has meaning only for __norent objects or const
objects that can be initialized at compile time. (See Chapter 3, “Code Generation
Conventions,” on page 45 for a discussion of __norent objects.) The __weak keyword is
placed next to extern on the declaration of those objects and functions. The __weak
keyword causes the compiler to generate weak references to the declared object. A weak
reference suppresses autocall of the symbol by both COOL and the linkage editor or
loader. A symbol or function declared with__weak need not actually be present in the
load module unless specifically included, or referenced by some other compilation in
which it is declared without the use of __weak. __weak does not apply to definitions;
therefore, it does not cause the creation of a new storage class. __weak external objects
are still storage class extern.

As a storage class modifier, __weak cannot appear as part of a typedef, in a cast, on
a structure member, and so on. Also, you cannot have a "pointer to __weak," any more
than one can have a "pointer to extern."

When declaring a __weak pointer, you must place the __weak after the asterisk (*).
The following example demonstrates the use of __weak:

__weak extern double wd;
extern double * __weak wpd; /* __weak pointer to double */
__weak int wf();

You can use the isunresolved library macro to test whether or not a __weak
reference has been resolved by the linkage editor. See SAS/C Library Reference, Volume
1 for more information about isunresolved.

The @ operator
The @ operator is a language extension provided primarily to aid communication

between C and non-C programs.

32 4 Chapter 2

In C, the normal argument-passing convention is to use call-by-value; that is, the
value of an argument is passed. The normal IBM 370 (non-C) argument-passing
conventions differ from this in two ways. First, arguments are passed by reference; that
is, each item in the parameter list is an argument address, not an argument value.
Second, the last argument address in the list is usually flagged by setting the
high-order bit, which does not change the value of the address since IBM 370 addresses
are 31 bits (XA) or 24 bits (non-XA).

A simplistic approach to the problem of call-by-reference is to precede each function
argument by the ampersand (&) operator, thereby passing the argument address rather
than its value. For example, you can write asmcode(&x) rather than asmcode(x). This
approach is not generally applicable because it is frequently necessary to pass constants
or computed expressions, which are not valid operands of the address-of operator. The
compiler provides an option to solve this problem.

When the compiler option AT is specified, the at sign (@) is treated as a new operator.
The @ operator can be used only in an argument to a function call. (The result of using
it in any other context is undefined.) The @ operator has the same syntax as &. In
situations where & can be used, @ has the same meaning as &.

In addition, @ can be used on non-lvalues such as constants and expressions. In these
cases, the value of @expr is the address of a temporary storage area to which the value
of @expr is copied.

One special case for the @operator is when its argument is an array name or a string
literal. In this case, @array is different from &array. While @array addresses a
pointer addressing the array, &array still addresses the array.

The compiler continues to process the @ operator as in earlier releases when the @ is
in the context of a function call. Use of @ is nonportable. Its use should be restricted to
programs that call non-C routines using call by reference.

Nesting of #define
If the compiler option redef is specified, multiple #define statements for the same

symbol can appear in a source file. When a new #define statement is encountered for a
symbol, the old definition is stacked but is restored if an #undef statement for the
symbol occurs. For example, if the line

#define XYZ 12

is followed later by

#define XYZ 43

the new definition takes effect, but the old one is not forgotten. Then, when the
compiler encounters the following, the former definition (12) is restored:

#undef XYZ

To completely undefine XYZ, an additional #undef is required. Each #define must
be matched by a corresponding #undef before the symbol is truly forgotten. Identical
#define statements for a symbol (those permitted when redef is not specified) do not
stack.

Preprocessor directives for listing control
The following preprocessor commands are available to control the format of the

printed listing. They have no effect on any aspect of a program except the program
listing and can appear anywhere in program code, except as a continuation line.

� #pragma eject

� #pragma title text

Source Code Conventions 4 33

� #pragma space n

pragma can be omitted. However, omitting pragma renders a program nonportable.

� The #pragma eject statement skips to a new page in the listing at the point
where #pragma eject occurs.

� The #pragma title text statement stores the title specified by text and prints it
at the top of subsequent pages of the listing. The text following title should be a
C string literal. If the text is not a single valid C string literal, it is accepted, but
errors may occur if C tokenization rules are not adhered to, for example, if the text
contains an unmatched quote. Each time a new #pragma title text statement
is found, any title specified previously is discarded and the new one is used. The
#pragma title text statement does not automatically cause a skip to a new page
when it is encountered by the compiler. To skip to a new page and print a new title,
the #pragma eject statement must follow the #pragma title text statement.

� The #pragma space n statement causes a skip of n lines (n is an integer) in the
listing at the point where the statement occurs. If n is greater than the number of
lines left on a page, the listing skips to the next page and continues on the first
line after all the page headings.

Anonymous unions
An anonymous union, that is, a union with no associated identifier, can be declared

in a structure. Members of anonymous unions are in the same scope as the containing
structure. Here are two examples of anonymous unions:

union ANON {
int i;
short o[2];

} ;

static struct {
int a;
union ANON;
double d;

} ex;

static struct {
int a;

union {
int i;
short o[2];

} ;
double d;

} ex;

Member o[1]of the union can be accessed by using this expression:

ex.o[1]

The members of an anonymous union are in the same name space as that of other
members in the containing structure. Therefore, a member of the union cannot have
the same identifier as a member of the containing structure or a member in another
anonymous union in the containing structure.

Other than the above considerations, anonymous unions have the same properties
and can be used in the same manner as other unions.

34 4 Chapter 2

Noninteger bitfields

By default, all bitfields must have type int, signed int, or unsigned int. The
bitfield compiler option can be used in order for other types to be used. If the
bitfield option is used, the compiler accepts any integral type in the declaration of a
bitfield as in this example:

struct {
char f1 :3;
signed short f2 :15;
unsigned long f3 : 28;

} ex;

Types that are not int can be used to specify the allocation unit to be used by the
compiler. (See “Structure and union type names” on page 25.) By default, the allocation
unit is an int. This means that the compiler allocates 4 bytes of storage for the first
bitfield it encounters in a structure definition. Adjacent bitfields are packed into the
int until not enough bits remain for the next bitfield, a nonbit-field member is
declared, or a zero-length bitfield is encountered.

If the bitfield option is used, the type of the bitfield determines the allocation unit.
If the type is a char type, the allocation unit is 1 byte. If the type is a short or long
type, the allocation unit is 2 or 4 bytes, respectively.

The first bitfield declared with a particular type is aligned on the appropriate
boundary for that type (as modified by the bytealign option, __noalignmem, or both).
In the previous example, f1 is allocated in byte 1, f2 is allocated in bytes 3 and 4, and
f3 is allocated in bytes 5 through 8.

The bitfield option also specifies the allocation unit to be used for int bitfields.
The unit can be char, short, or long. When a bitfield of type int is declared, the
compiler uses the allocation unit specified by the option.

For example, in the following structure definition, the compiler, by default, allocates
4 bytes of storage for the 8 bits:

struct {
unsigned f1 : 3;
unsigned f2 : 5;

} ex;

However, the bitfield option can be used to specify that the allocation unit should
be a char, which specifies that only 1 byte of storage should be allocated, or a short,
which specifies that 2 bytes of storage should be allocated.

See Chapter 6, “Compiler Options,” on page 101 for information on how to specify the
bitfield option and the allocation unit.

Zero-length arrays

An array of length 0 can be declared as a member of a structure. No space is allocated
for the array, but the following member will be aligned on the boundary required for the
array type. Zero-length arrays are useful for aligning members to particular boundaries
(to match the format of external data for example) and for allocating varying-length
arrays following a structure. In the following structure definition, no space is allocated
for member d, but the member b will be aligned on a doubleword boundary:

struct ABC {
int a;
double d[0];
int b;

} ;

Source Code Conventions 4 35

Zero-length arrays are not permitted in any other context.

The __alignmem and __noalignmem keywords
The __alignmem and __noalignmem keywords can be used in a structure definition

to specify whether members of a structure are to be aligned normally (__alignmem) or
on byte boundaries (__noalignmem). The keywords are associated with the structure
tag. Note that the keyword must precede the word struct in the structure declaration.
For example, in the following structure declaration, member ex.d will not be aligned on
a doubleword boundary, but it will be allocated at the next available location, a word
boundary:

__noalignmem struct XYZ {
int a;
double d;

} ex;

This property can be useful when C structures are used to map existing data areas,
such as operating system control blocks, that have fields aligned on boundaries other
than those normally associated with the C data types.

The keywords can be used to force alignment even when the bytealign compiler
option is used or to force byte alignment when the nobytealign option is used. See the
discussion of bytealign in “Option Descriptions” on page 105.

__alignmem and __noalignmem propagate to any structure members. For example,
in the following structure declaration, the members of s will be byte-aligned as well:

__noalignmem struct XYZ {
struct ABC {

char c;
float f;

} s;
double d;

} ex;

The keywords can be used in the declaration of inner structures to change alignment
requirements. In the following example, the members of the outer structure are not
aligned. The members of the inner structure are aligned.

__noalignmem struct XYZ {
int a;
short b;
__alignmem struct ABC {

int c;
double d;

} abc;
double d;

} ;

Special keywords for declarations of non-C functions
The compiler accepts a number of special interlanguage communication keywords in

the declarations of functions and function pointers. These keywords indicate that the
declared function, or the function pointed to, is written in a language other than the C
language. The following keywords are accepted by the compiler:START OF ASIS
SECTION

__asm __pascal __pli __cobol __fortran __foreign
END OF ASIS SECTION

36 4 Chapter 2

Note: If you use any of these keywords other than __asm, you must also use the
SAS/C Interlanguage Communication Feature. Do not use these keywords if you are
using another technique for interlanguage communication. 4

Here is an example of a function declaration for a function written in FORTRAN.
The function returns a value of type double, as follows:

double __fortran xyz();

The keywords can be used in combination either via a typedef or directly. For
example, suppose pasfnc is a function written in Pascal that returns a pointer to a
function written in assembler language. The assembler language function, in turn,
returns a value of type int. To declare pasfnc, you can use a typedef as in the
following example:

typedef __asm int (*asmfp)();
__pascal asmfp pasfnc();

Here is an example that does not use a typedef:

char *(__asm *__pli p())();

In this example, a PL/I function returns a pointer to an assembler function (the
assembler function returns a pointer to char).

Do not use the prototype form of function declaration in declarations containing one
of these keywords.

See Chapter 3, "Communication with other Languages," in SAS/C Compiler
Interlanguage Communication Feature User’s Guide for detailed information on how
these keywords can be used.

__inline and __actual storage class modifiers
__inline is a storage class modifier. It can go in the same places as a storage class

specifier and can be given in addition to a storage class specifier. If a function is
declared as __inline and the module contains at least one definition of the function,
the compiler sees this as a recommendation that the function be inlined. __actual is
also a storage class modifier. It can be specified with or without the __inline qualifier,
but it implies __inline. __actual is used to specify that the compiler should produce
an actual (callable) copy of the function if the function has external linkage. If the
function has internal linkage, the compiler may not output an actual function if it does
not need one.

For additional information, see the discussion of __inline in “Global Optimization
Compiler Options” on page 66 and __actual in “The __actual Keyword for Inline
Functions” on page 74.

The #pragma options statement
The #pragma options statement specifies compiler options within program source

code. More than one #pragma options statement can be used in a source file. See
Chapter 6, “Compiler Options,” on page 101 for more information about the #pragma
options statement.

The #pragma linkage statement
The compiler accepts the following statement in which identifier is the name of a

function or a typedef of a function. This statement specifies that identifier is called
using IBM OS linkage.

Source Code Conventions 4 37

#pragma linkage (identifier ,OS)

Example Code 2.1 on page 37 illustrates the use of the #pragma linkage statement
in a program.

Example Code 2.1 Sample #pragma linkage Statement

extern int asm_func(void); /* Declare ’asm_func’ as called */
#pragma linkage (asm_func,OS) /* using OS-linkage. */
typedef int os_linkage_t(void); /* Declare functions of type */
#pragma linkage (os_linkage_t,OS) /* ’os_linkage_t’ as called */
extern os_linkage_t asm_func; /* using OS-linkage. */

The compiler accepts the #pragma linkage statement to ensure compatibility with
IBM products whose C language interface functions are defined with this statement.
Refer to the IBM documentation for a specific product for more information. For more
information on IBM OS linkage, see Chapter 6, “Compiler Options,” on page 101.

The #pragma map statement
The compiler accepts the following statement:

#pragma map (external-identifier,"external-name")

This statement directs the compiler to use external-name as the object code external
symbol for external-identifier. The external identifier must be a C identifier of storage
class extern. The external symbol can be any sequence of characters, enclosed by
double quotes. If the external symbol is longer than eight characters, the compiler
truncates it on the right to eight characters.

For example, suppose you had an assembler language module named ABC$DEF and
you wanted to reference it in your C programs with a more natural looking name. You
could use the following #pragma statement to map abc_def to ABC$DEF:

#pragma map(abc_def, "ABC$DEF")

Adhering to the following guidelines ensures that the symbols you create do not
conflict with the compiler-generated symbols or symbols defined in the SAS/C Library:

� The first character must be alphabetic or a pound sign (#).
� The last character must be alphanumeric.
� The at sign (@) must not be used.
� If the norent option has been specified and the external symbol is eight characters

or more in length, the first character must be an uppercase alphabetic character.

The compiler issues a warning diagnostic message for any external symbol name that
does not follow these guidelines. Depending on the context, the compiler may refer to
the external identifier by the external symbol name in a diagnostic message. Appendix
7, “Extended Names,” on page 405 contains information on using #pragma map with the
extname compiler option.

Character and String Qualifiers
Release 6.50 introduced A and E qualifiers for character and string constants. The

new qualifiers causes the string to be either ASCII or EBCDIC.
A string literal prefixed with A is parsed and stored by the compiler as an ASCII

string. An example of its usage is:

A"this is an ASCII string"

A string literal prefixed with E is parsed and stored by the compiler as an EBCDIC
string. An example of its usage is:

38 Implementation-defined Behavior 4 Chapter 2

E"this is an EBCDIC string"

The translation between ASCII and EBCDIC is based on IBM Code Page 1047 for
EBCDIC and ISO 8859–1 (Latin 1) for ASCII.

Implementation-defined Behavior
In many instances, the ISO/ANSI Standard gives an implementor of the C language

the freedom to choose an appropriate approach for a particular aspect of the language.
The only requirement is that the choice made is explained to the user. For SAS/C
software, implementation-defined behavior refers to aspects of the compiler where
coding decisions have been made as a result of the SAS/C implementation of the ISO/
ANSI Standard C language. The following sections follow the ISO/ANSI Standard in
covering implementation-defined behavior for the compiler. The ISO/ANSI Standard
conventions are given in Annex G.3 of the ISO/IEC 9899:1990 Standard for
Programming Languages – C. The relevant sections of this appendix are noted next to
the topic.

Translation (G.3.1)

� Compiler diagnostics are listed in SAS/C Software Diagnostic Messages.

Environment (G.3.2)

� The compiler conforms to the ISO/ANSI Standard for a hosted environment as
documented in Section 2.1.2.2 of the American National Standard for Information
Systems - Programming Language C. It also conforms to the environment
variables extension documented in Chapter 9, “Run-Time Argument Processing,”
on page 185.

� The library recognizes the terminal as the only interactive device. Under OS/390
batch, the terminal is logically represented by the DDname SYSTERM.

Identifiers (G.3.3)

� The number of significant initial characters in an identifier without external
linkage is 31. The significant initial characters are 65,535 if the extname option
is specified.

� The compiler recognizes eight significant characters in an identifier with external
linkage if the extname option is not specified.

� Case distinctions are not significant in an identifier with external linkage unless
the extname option is specified.

Characters (G.3.4)

Source Code Conventions 4 39

� The source and execution character sets include all EBCDIC characters.
� Two shift states are used for encoding multibyte characters; a single byte shift

state and a double byte shift state. 0x0e causes entry into the double byte shift
state, and 0x0f causes return to the single byte shift state.

� There are eight bits in a character in the execution character set.
� The mapping of members of the source character set (in character constants and

string literals) to members of the execution character set is standard EBCDIC.
Refer to Table 2.3 on page 23.

� All characters in the basic (or extended) source character set are also in the basic
(or extended) execution character set.

� An integer character constant that contains more than one character is interpreted
as a 4-byte integer. If it contains more than four characters, only the rightmost
four characters are used. A wide character constant that contains more than one
character is interpreted by ignoring all characters but the rightmost.

� By default, a non-DBCS locale is used to convert multibyte characters to wide
characters (and in all other processing of multibyte characters within the
compiler). This can be changed by supplying an environment variable to the
compiler that affects its locale. (See Chapter 10, "Localization Functions," and
Chapter 11, "Multibyte Character Functions," in SAS/C Library Reference, Volume
2 for more information.) If the specified locale supports DBCS, EBCDIC DBCS
rules are used to convert multibyte characters to wide character codes.

� A plain char is identical to an unsigned character.

Integers (G.3.5)

� Refer to Table 3.1 on page 46 for the representations and sets of values of the
various types of integers. The IBM architecture and SAS/C software use two’s
complement representation.

� When an integer is converted to a shorter signed integer, the high-order bytes are
discarded. The bit pattern of the remaining bytes is unchanged. The bit pattern of
an unsigned integer is not changed when it is converted to a signed integer of
equal length.

� The following list covers the results of bitwise operations on signed integers:

~ (bitwise NOT) The bits are inverted, that is, 1 bits are set to 0, and 0 bits are
set to 1.

>> (shift right) The bits are right shifted. The sign bit (bit 0) is used to fill the
vacated bit positions on the left.

<< (shift left) The bits are left shifted. The vacated bit positions on the right
are filled with 0s.

& (bitwise AND) If the corresponding bits in both operands are 1, then the
corresponding bit in the result is set to 1; otherwise it is set to
0.

| (bitwise OR) If either of the corresponding bits in the operands are 1, then
the corresponding bit in the result is set to 1; otherwise it is set
to 0.

(ˆ bitwise XOR) If the corresponding bits in the operands are not alike, then the
corresponding bit in the result is set to 1; otherwise it is set to
0.

40 4 Chapter 2

� In integer division, the remainder has the same sign as the dividend, except that a
0 remainder is always positive. (These are the results produced by the 370
DIVIDE instruction.)

� In a right shift of a negative-valued signed integral type, the sign bit is used to fill
the vacated bit positions on the left; that is, the result retains the sign of the first
operand.

Floating point (G.3.6)

� Table 3.1 on page 46 provides the representations and sets of values of the various
types of floating-point numbers.

� The IBM 370 representation of a double can represent all integral values exactly,
so no rounding is necessary when an integer is converted to a double. When a
long integer value is converted to float, the value is rounded.

� Rounding (away from 0 when either direction is equally correct) occurs when a
floating-point number is converted to a narrower floating-point number. (These are
the results of the IBM 370 LOAD ROUNDED instruction.)

Arrays and pointers (G.3.7)

� The type of integer required to hold the maximum size of an array (for example,
the type of the result of the sizeof operator, size_t) is unsigned int.

� When a pointer is converted to integer, the integer contains the logical address of a
data object. (Function pointers may use an indirect representation. See “Local
Function Pointers” on page 51 for more information.) If the logical address is not
representable in the destination integral type, the conversion is analogous to the
conversion from unsigned long to the destination type. Nonaddress bits in the
pointer will be preserved.

� When an integer is converted to a pointer, the value used is that of the integer
converted to unsigned long. The pointer contains the logical address
corresponding to the integral value. Nonaddress bits are preserved.

� ptrdiff_t is signed long.

Registers (G.3.8)

� There can be up to six integer or pointer register variables and up to two
floating-point register variables. The register keyword is ignored when the
optimize option is used because registers are allocated to variables by the
compiler when the optimize option is specified. The number of registers allocated
can be controlled by the greg and freg options. See “Optimizations” on page 64
for more information.

Structures, unions, enumerations, and bitfields (G.3.9)

� If a member of a union object is accessed using a member of a different type, the
result is undefined.

Source Code Conventions 4 41

� Each element is aligned according to Table 3.1 on page 46 unless the bytealign
option is used or the __noalignmem keyword is used. Padding is introduced as
necessary to maintain correct alignment. For bitfields, see “Noninteger bitfields”
on page 34. By default, bitfields are aligned on word boundaries.

� Plain int bitfields are treated as unsigned int bitfields.
� The order of allocation of bitfields within an int is left to right.
� A bitfield can straddle a storage unit boundary if the bitfield option specifies a

storage allocation unit size of less than 4 bytes.
� The values of an enumeration type are represented as ints.

Qualifiers (G.3.10)

� Any reference to an object that has volatile-qualified type is considered an
access to that object.

Declarators (G.3.11)

� There is no limit on the number of declarators that can modify an arithmetic,
structure, or union type.

Statements (G.3.12)

� There is no limit to the number of case values in a switch statement.

Preprocessing directives (G.3.13)

� A value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant in
the execution character set. However, such a character cannot have a negative
value.

� The method for locating includable source files is outlined in Chapter 3, “Code
Generation Conventions,” on page 45.

� The support of quoted names for includable source files is outlined in Chapter 3,
“Code Generation Conventions,” on page 45.

� The mapping of source file character sequences is found in Chapter 3, “Code
Generation Conventions,” on page 45.

� The behavior of each recognized #pragma directive is covered earlier in this
chapter.

� The compiler does not create the __DATE__ and __TIME__ macros when the date
and time are not available.

Library functions (G.3.14)

� The null pointer constant to which the macro NULL expands is 0.

42 4 Chapter 2

� For information about the behavior of the assert function see Chapter 6,
"Function Descriptions" in SAS/C Library Reference, Volume 1. The diagnostic
printed by the assert diagnostic control function is

Assertion failed: expr
Interrupted while: Executing line <number > of <source file >

where number is the current value of __LINE__ and source file is the current
value of __FILE__.

� The sets of characters tested for by the isalnum, isalpha, iscntrl, islower,
isprint, and isupper functions are described in Chapter 6, "Function
Descriptions," in SAS/C Library Reference, Volume 1 .

� The values returned by the mathematical functions on domain errors are covered
in Chapter 6, "Function Descriptions," in SAS/C Library Reference, Volume 1.

� On underflow range errors the mathematical functions set the integer expression
errno to the macro ERANGE.

� A value of 0 is returned when the fmod function has a second argument of 0.
� The following items are documented in Chapter 5, "Signal-Handling Functions" in

SAS/C Library Reference, Volume 1:
� the set of signals for the signal function
� the semantics for each signal recognized
� default handling and handling at program start-up for each signal recognized
� the treatment of a signal on entry to a handler
� whether default handling is reset if the SIGILL signal is received by a

handler specified to the signal function.

� The last line of a text stream requires a terminating new-line character, unless the
stream is an USS HFS file. One is generated if not explicitly written.

� Depending on file format, space characters that are written out to a text stream
immediately before a new-line character may or may not appear when read in.

Note: See Chapter 3, "I/O Functions" in SAS/C Library Reference, Volume 1 for
additional information concerning the pad amparm. 4

� As many null characters can be appended to data written to a binary stream as it
takes to fill out a complete logical record.

� When a file is opened with open mode "a" or "ab", it is initially positioned to the
end of file. When opened with "a+" or "a+b", it is initially positioned to the start of
the file.

� Whether a write on a text stream causes the associated file to be truncated beyond
that point depends on the file type and options. See Chapter 3, "I/O Functions" in
SAS/C Library Reference, Volume 1.

� For the characteristics of file buffering, refer to the discussion of setbuf and
setvbuf in Chapter 6, "Function Descriptions" in SAS/C Library Reference,
Volume 1.

� Refer to the section "IBM 370 I/O Concepts" in Chapter 3, "I/O Functions" in SAS/
C Library Reference, Volume 1 for information on the existence of a zero-length file.

� Refer to "Opening Files" in Chapter 3, "I/O Functions" in SAS/C Library
Reference, Volume 1 for the rules for composing valid filenames.

� The terminal can be opened multiple times, as can files open for input only.
Opening a nonterminal file for output multiple times or for both input and output
gives unpredictable results.

� The effect of the remove function on an open file is unpredictable.

Source Code Conventions 4 43

� rename will fail if a file with the new name exists prior to a call to the rename
function.

� The output for %p conversion in the fprintf function is the pointer value in
hexadecimal.

� The input for the %p conversion in the fscanf function is a hexadecimal string,
optionally preceded by 0x or 0p.

� In the fscanf function, the hyphen (-) character has no special meaning. It is
interpreted the same way as any other character in the scan list.

� Refer to the documentation for fgetpos and ftell in Chapter 6, "Function
Descriptions" in SAS/C Library Reference, Volume 1 for information on failure of
these functions.

� The messages generated by the perror function are listed in SAS/C Software
Diagnostic Messages.

� calloc, malloc, and realloc return a NULL pointer if the size requested is 0.

� Open files are not closed if the abort function is called. The effect on temporary
files is unpredictable and system dependent.

� If the value of the argument to exit is other than 0, EXIT_SUCCESS, or
EXIT_FAILURE, the status returned by exit is passed unchanged to CMS or
reduced modulo 4096 in OS/390. Under the USS shell, a negative exit status or
one greater than 255 is set by the USS kernel to 255.

� See the documentation for the getenv function in Chapter 6, "Function
Descriptions," in SAS/C Library Reference, Volume 1 for information on the set of
environment names and the method for altering the environment list.

� See the documentation for the system function in Chapter 6, "Function
Descriptions," in SAS/C Library Reference, Volume 1 for information on the
contents and mode of execution of the string involved.

� The contents of the error message strings returned by the strerror function are
the same as the perror messages.

� The local time zone can be defined by setting the TZ environment variable. See
the description of tzset in Chapter 6, "Function Descriptions," in SAS/C Library
Reference, Volume 1. If TZ is not set, the offset from Greenwich time is determined
by the operating system, and no Daylight Savings Time information is available.

� The era for the clock function under OS/390 is set at the first call to clock, under
CMS, at virtual machine log on.

Locale-specific behavior (G.4)
� The execution character set contains all EBCDIC characters in all locales.

� The direction of printing is left-to-right.

� A period (.) is the decimal point character.

� See Chapter 3 in SAS/C Library Reference, Volume 1 for the documentation of the
ctype functions for the implementation-defined aspects of character-testing and
case-mapping functions.

� The collation sequence for EBCDIC characters is used as the collation sequence of
the execution character set.

� SAS/C software uses the normal U.S. time and date conventions for the “C” locale.
The exact lisitngs are shown in Table 2.6 on page 44 (both locales are the same).

44 4 Chapter 2

Table 2.6 C Locale U.S. Date/Time Conversions

Type Values

Abbreviated weekday name Sun Thu

Mon Fri

Tue Sat

Wed

Full weekday name Sunday Thursday

Monday Friday

Tuesday Saturday

Wednesday

Abbreviated month name Jan Jul

Feb Aug

Mar Sep

Apr Oct

May Nov

Jun Dec

Full month name January July

February August

March September

April October

May November

June December

Date representation Mnn dd yyyy

May 01 1989

Time representation hh:mm:ss

01:22:45

Note that conventions for user-written locales are defined by the user.

45

C H A P T E R

3
Code Generation Conventions

Introduction 46
Instruction Set 46

Arithmetic Data Types 46

Arithmetic Exceptions 47

Data Pointers 48

Access Register Mode Support 48
Function Pointers 50

Remote Function Pointers 50

Local Function Pointers 51

Conversions 52

Compiler-generated Names 53

Control Section Names 53
Run-time constants 54

Extended names CSECTs 55

Exceptions 55

Pseudoregister Names 55

The const Type Qualifier 55
External Variables 55

56

The extname option 56

External Variable Models 56

Common ref/def model 56
Strict ref/def model 57

Programming Considerations 57

Reentrant and Non-reentrant Identifiers 57

Non-reentrant Identifiers 57

Reentrant Identifiers 57

Placement of Data 58
Initialization and Reentrancy 58

Declarations Must Agree 59

Cross-reference 59

Sharing External Variables with Assembler Language Programs 59

Sharing External Variables with FORTRAN Programs 60
Register Conventions and Patch Writing 60

The Patch Area 61

The zapspace option 61

The zapmin option 61

Register Conventions 61

46 Introduction 4 Chapter 3

Introduction
Many important features of the C language are implementation-dependent since the

ISO/ANSI Standard language definition does not completely specify all aspects of the
language. This flexibility in the finer details permits C to be implemented on a variety
of machine architectures without forcing code generation sequences that are elegant on
one machine and awkward on another. This chapter focuses on hardware and
operating-system-dependent features of the compiler as implemented on machines with
IBM 370 architecture that are running under one of the OS/390 or CMS operating
systems or any extended architecture system.

Instruction Set
The compiler generates code that uses the standard IBM 370 or 390 instruction set.

Therefore, the code will execute on any IBM 370 or 390 architecture machine, including
the 309X, 308X, 9370 series, 4300 series, 303X, and the 370/168. Certain floating-point
operations and the run-time library routines for conversion of floating-point data
require the Extended Precision Floating-Point Feature (or a software simulation).

Arithmetic Data Types
The compiler implements the standard C data types as follows:
� doubles and long doubles are 8 bytes in length and are aligned on an 8-byte

(doubleword) boundary. floats are 4 bytes in length and are aligned on a 4-byte
boundary.

� longs and ints, both signed and unsigned, are 4 bytes in length and are aligned
on a 4-byte (fullword) boundary.

� shorts and unsigned shorts are 2 bytes in length and are aligned on a 2-byte
(halfword) boundary.

� both signed and unsigned char are 1 byte (8 bits) in length and are aligned on
byte boundaries.

� A structure or union is aligned according to the strictest alignment requirement of
any of its members (including other structures or unions). This rule is applied
recursively. Note that if you specify the bytealign compiler option, most data
items, including all those in structures, are generated with only character
alignment.

All data types use the normal 370 representation. Table 3.1 on page 46 summarizes
the characteristics of the arithmetic data types.

Table 3.1 Data Type Characteristics

Type Length Alignment Range

char 1 byte 0 to 255 (EBCDIC character set)

signed char 1 byte — 128 to 127

unsigned char 1 byte 0 to 255 (EBCDIC character set)

Code Generation Conventions 4 Arithmetic Exceptions 47

Type Length Alignment Range

short 2 halfword — 32768 to 32767

unsigned short 2 byte 0 to 65535

int 4 word — 2147483648 to 2147483647

long 4 word — 2147483648 to 2147483647

unsigned 4 word 0 to 4294967295

float 4 word =/ — 5.4E — 79 to =/ — 7.2E75

double 8 doubleword =/ — 5.4E — 79 to =/ — 7.2E75

long double 8 doubleword =/ — 5.4E — 79 to =/ — 7.2E75

char unsigned char defines an 8–bit unsigned integer

signed char short
short int

defines an 8–bit signed integer

defines a 16-bit signed integer

unsigned short
unsigned short int

defines a 16–bit unsigned integer

int long long int defines a 32–bit signed integer

unsigned unsigned
int unsigned long
int

defines a 32–bit unsigned integer

float defines a 32–bit signed floating-point number in the standard 370 representation, that
is, a sign bit, a 7-bit biased hexadecimal exponent, and a 24-bit fractional part. The
exponent bias is 64. All constants and results generated by compiled code are
normalized (except for constants specified in hexadecimal notation). This representation
is equivalent to approximately 6 or 7 decimal digits of precision

double long double defines a 64–bit signed floating-point number in the standard 370 representation, that
is, a sign bit, a 7-bit biased hexadecimal exponent, and a 56-bit fractional part. The
exponent bias is 64. All constants and results generated by compiled code are
normalized (except for constants specified in hexadecimal notation). This representation
is equivalent to approximately 16 or 17 decimal digits of precision

Note that in contrast to the signed integer representations, negative floating-point
values are not represented in two’s complement notation; positive and negative
numbers differ only in the sign bit. Also note that there are multiple representations of
0; any value that has a 0 fractional part is treated as 0 by the IBM 370 floating-point
instructions, regardless of the exponent value.

Code that checks float or double objects for 0 by means of type punning (that is,
examining the objects as if they were int or some other nonfloating-point type) may
assume (falsely) negative 0 not to be 0.

Arithmetic Exceptions

All arithmetic operations are performed by inline code. The code expects fixed-point
overflow to be disabled (with the PSW mask bit), causing integer overflow to be ignored
for both unsigned and signed operands. Integer division by 0 causes abnormal program
termination (program interruption code 0009) if no arithmetic signal handler is defined.

48 Data Pointers 4 Chapter 3

Floating-point exceptions produce a program interrupt that causes abnormal program
termination (program interruption codes 000D or 000F) if no arithmetic signal handler
is defined. Note that the code will execute correctly whether or not floating-point
underflow is disabled (via the PSW mask bit). Consult the appropriate IBM principles of
operation manual for more information about the floating-point formats and exceptions.

Data Pointers
Pointers to all data types are 4 bytes long and are aligned on a 4-byte (fullword)

boundary unless the bytealign compiler option or __noalignmem keyword is used. All
pointers to data have the same representation. (However, code that relies on this fact is
likely to be nonportable.) NULL has all 32 bits set to 0.

The rest of this section is relevant only if you need to know the details of pointer
representation or if you plan to create pointers in non-C code and pass them to C code.

IBM 370 and XA addressing do not use all 32 bits of a 4-byte pointer. In 24-bit
addressing mode, only bits 8 through 31 (starting at the left) are used as an address. In
31-bit addressing mode (provided only on XA machines), only bits 1 through 31 are used
as an address (bit 0 is not). All addresses generated by the compiler have the
nonaddress bits (bits 0 through 7 or bit 0) set to 0. Therefore, all pointers that are set
to an address by C code (whether at compile time or execution time) have the
nonaddress bits set to 0.

In most circumstances, it does not matter whether the nonaddress bits of a pointer
are 0. The bits are ignored by the hardware when the pointer is used to address data.
However, if pointers are compared, the setting of the bits becomes significant. If you
create pointers in non-C code and pass them to C code, be sure that the nonaddress bits
are 0, or turn them off (using a cast) in C code before using the pointer in comparison
operations.

The value in the nonaddress bits also becomes significant if pointers are subtracted
from each other. In this case, the code generated by the compiler always clears the
nonaddress bits to 0 before doing the subtraction, so this case need not concern you.

Finally, note that pointer assignment, pointer addition, and pointer-integer
subtraction do not set the nonaddress bits to 0. If these operations take a pointer
created outside of C as input and that pointer has nonaddress bits set, then the result
may also have nonaddress bits set (not necessarily the same bits).

To summarize, the compiler always creates pointers with the nonaddress bits all set
to 0 but may propagate non-zero values in these bits from pointers created outside of C.

Access Register Mode Support
As part of its systems-programming support, SAS/C allows a C function to execute in

access register mode, and to access data in dataspaces or other address spaces. This
facility is presently supported only in an OS/390 SPE environment (see Chapter 14,
“Systems Programming with the SAS/Compiler” in the SAS/C Compiler and Library
User’s Guide). See the IBM ESA/390 Principles of Operation publication (SA22-7201)
for more information on access registers and access register mode.

Access to data in a dataspace or another address space is accomplished through the
use of far pointers. A far pointer is an 8-byte object that contains an ALET (an address
space identifier) as well as an address. When a far pointer is dereferenced, the ALET is
loaded into the hardware access register corresponding to the general register
containing the address part of the pointer. The ALET is stored in the first word of the
far pointer, and the address in the second word.

Code Generation Conventions 4 Access Register Mode Support 49

Note: When a regular (near) pointer is dereferenced, an ALET of 0, specifying the
primary address space, is loaded into the appropriate access register. 4

Far pointers are declared using the _ _far keyword. This keyword is syntactically
similar to the const keyword, but applies only to data pointer types. The _ _near
keyword can be used to explicitly declare a pointer as a near pointer. Here are some
examples of declarations using the _ _near and _ _far keywords.

_ _far char *keyptr;
keyptr is a far pointer to character.

_ _far char **nearfar;
nearfar is a near pointer to a far pointer to character.

char *_ _far *farnear;
farnear is a far pointer to a near pointer to character.

int cache(_ _near void *, _ _far void *);
cache is a function taking two arguments — a near pointer and a far pointer.

_ _far struct udata *lookup(char *uname);
lookup is a function that returns a far pointer to a structure. Its argument is a
near pointer to character.

The following uses of _ _far will fail to compile for the indicated reason:

_ _far double[40000]; /* Error: _ _far is only meaningful for pointers */
int (_ _far *service)(int);

/* Error: only data pointers, not function
pointers, can be far */

The result of the address operator (&) is normally a near pointer. However, the
address of an object accessed via a far pointer is itself a far pointer. For example,
&(a->b) is a near pointer if a is near, and a far pointer if a is far. This distinction is
important mostly when passing arguments to functions without prototypes, or with a
variable number of arguments.

Far pointers may be converted to near pointers and vice versa. When a far pointer is
converted to near, its ALET is discarded; when a near pointer is converted to far, a zero
ALET is implied. Note that converting from a far pointer to a near pointer is ordinarily
"safe" only when its ALET is known to be 0.

Far pointers may be subtracted. The result is a ptrdiff_t, and the ALET portions
of the pointers are ignored during the subtraction. Because far pointers are 8-byte
pointers, they can be converted to a long long integer without loss of information.
Conversion to a shorter integer type will cause the ALET information to be lost.

The armode compiler option is required for any C function that uses the value of a
far pointer. Code that is compiled with the armode option runs entirely in access
register mode, except that function entry, function exit, and subroutine calls take place
in primary address space mode. This allows code compiled with the armode option and
code compiled without it to be freely mixed.

The SAS/C compiler’s access register mode support uses a callee saves convention for
the access registers. This means that a called access register mode routine saves the
access registers on entry and restores them on exit. Note that this implies that any
assembler language routine that might be called, directly or indirectly, from a caller
compiled with the armode option must restore any access registers it uses before
returning.

When a far pointer is passed to a function, the pointer is doubleword-aligned in the
argument list. (Far pointers in static or auto storage, on the other hand, need only be
fullword-aligned.) When a function returns a far pointer, the address is returned in
general register 15 and the ALET in access register 15.

50 Function Pointers 4 Chapter 3

Note that obtaining access to data in dataspaces or other address spaces remains the
responsibility of the user program. Stack and heap memory, as well as control blocks
like the PRV are always allocated in the primary address space. The library routines
dspserv, aleserv, and falloc, which are described in SAS/C Library Reference,
Volume 2, can be used to create a dataspace and to allocate space in a dataspace. This
functionality can also be performed in assembler language.

Function Pointers
SAS/C software allows two types of function pointers, remote and local. Function

pointers of each type may be declared using the nonstandard keywords _ _remote and
_ _local. Function pointers are remote by default. Normally, you do not need to be
concerned with the details of function-pointer implementation. If all of your programs
are in C, the compiler takes care of setting up the pointer and calling a function
through the pointer. This section provides information for users who have to build or
use C function pointers in assembler language routines, who have to map between
function pointers and data pointers, or who need to know the details of function-pointer
implementation for some other purpose.

Remote Function Pointers
By default, all function pointers are remote. You can also explicitly declare a remote

function pointer using the positional type qualifier keyword _ _remote. For example:

int _ _remote (*remote_fp)(void);

Remote function pointers are 4 bytes long and are aligned on a fullword boundary.
They are indirect, that is, they do not point directly to executable code. Remote function
pointers can call a function in another load module which has a different pseudoregister
vector. A remote function pointer must define both the address of the called function
and the new pseudoregister vector. An indirect implementation makes it possible for
remote function pointers to contain both pieces of data. A remote function pointer
points to an object containing two 4-byte addresses. The first address is the address of
the function, the second is the address of the pseudoregister vector for the load module
containing the function. For more information, refer to “External Variables” on page 55.

Use the following procedure to call a function through a remote function pointer in
assembler language:

1 Load the function pointer into general register 15.
2 Save the value in CRABPRV in a general register.
3 Copy the second fullword addressed by general register 15 (the new pseudoregister

vector address) into CRABPRV. If the called function is in the same load module as
the calling function, the new address will be the same as the old address, but it is
quicker to move it than it is to check.

4 Load the address in the first fullword (the called function address) into general
register 15 and call the function with a standard BALR 14,15.

5 When the called function returns, restore the old value of CRABPRV from the
general register in which it was saved.

CRABPRV is a field containing the address of the pseudoregister vector for the
currently executing load module. During program execution, this field is always located
at offset decimal 12 from the address in general register 12.

The following example illustrates this procedure:

Code Generation Conventions 4 Local Function Pointers 51

Example Code 3.1 Sample Assembler Language Routine for Calling a Function with a Remote Function Pointer

L R15,FUNCPTR Load function pointer into R15.
L RX,12(,R12) Save current pseudoregister vector

address. This assumes that R12 has
the CRAB address.

MVC 12(4,R12),4(R15) Copy new pseudoregister vector
address into CRABPRV.

L R15,0(,R15) Load function address into R15.
BALR R14,R15 Call the function.
ST RX,12(,R12) Restore old pseudoregister vector

address.
.
.
.
FUNCPTR DS A

If you are using the norent compiler option, the format of a remote function pointer
that has not yet been used to call a function is slightly different. A function pointer in
this state addresses an object containing three addresses. The first is the address of a
library routine (L$CFNAD), the second addresses the object itself, and the third
addresses the entry point of the function. The procedure for calling a function through
a function pointer in this format is no different from that outlined above. Steps 2, 3,
and 5 (the psuedoregister vector address swap) must be performed. You can identify a
function pointer in this format by testing bit 0 of the second address. If the bit is set to
1, the function pointer is in this format.

Local Function Pointers
Local function pointers are 4 bytes long and aligned on a fullword boundary. A local

function pointer points directly to the entry point of the function.
To declare a local function pointer, specify the keyword _ _local preceding the open

parenthesis of the function pointer declaration, as in the following example:

int _ _local (*local_fp)(void);

Earlier versions of SAS/C documentation showed the keyword _ _local preceding
the return type. That syntax is ambiguous, but the compiler attempts to honor it in
simple cases. The following example is a correct declaration of a local function pointer
that returns a remote function pointer.

int _ _remote (*_ _local(*local_fp)(void))(int);

The above declaration could not be specified using the previously documented syntax
without use of a typedef. Nevertheless, in practice, a typedef would be recommended
for clarity.

The pflocal compiler option can be used to specify that all function pointers in a
program are local except for those specifically declared with the _ _remote keyword.
For more information on the pflocal option, see Chapter 6, “Compiler Options,” on
page 101.

In assembler language terminology, the pointer can be thought of as a V-type address
constant. To call a function through a local function pointer in assembler language, load
the value of the function pointer into the appropriate general register, usually general
register 15, and call the function with the instruction sequence expected by the
function. Example Code 3.2 on page 52 illustrates the standard calling sequence.

52 Local Function Pointers 4 Chapter 3

Example Code 3.2 Sample Assembler Routine for Calling a Function with a __local Function Pointer

L R15,FUNCPTR Load __local function pointer into R15.
BALR R14,R15 Call the function.
ST R15,RETVAL Save function return value.
.
.
.
FUNCPTR DS A

Function pointers declared using the _ _asm, _ _ref, or _ _ibmos keyword are local
by default. You can, however, use the _ _local keyword in such a declaration without
causing an error.

Conversions

It is possible to convert a remote function pointer to a local function pointer by
assignment or with a cast. This can be used to obtain the entry point address of a C
function or to pass the entry point address to an assembler language routine. For
instance, the code in Example Code 3.3 on page 52 passes the actual entry point
address of vdefexit to ISPLINK.

Example Code 3.3 Conversion of a Remote Function Pointer to a Local Function Pointer

#include <stddef.h>
extern int cuserxt();
extern __asm int ISPLINK(); /* Declare ISPLINK as an */

/* assembler language function. */

void main()
{

struct {
_ _local int (*exit)();
char *data;

} udata;
char name[41] ;
.
.
.

/* Assign the cuserexit function pointer */
/* to the _ _local function */
/* pointer udata.exit. */

udata.exit = cuserxt;
udata.data = NULL;

/* Define an ISPF variable as using a user exit. */
(void) ISPLINK("VDEFINE ", "NAME ", name, "USER ",

@40, " ", @udata);
.
.
.

}

Code Generation Conventions 4 Control Section Names 53

Since local function pointers do not contain a pseudoregister address, conversion
from local to remote is not possible. You can frequently use the buildm function to
create a remote function pointer from a local function pointer. For more information on
the buildm function, see Chapter 1, "Dynamic-Loading Functions," in SAS/C Library
Reference, Volume 2 .

Note: Never attempt to use a function pointer to modify the code of a function. In
addition to the reentrancy implications, note that a _ _remote function pointer does not
address the function’s code directly, and using it to store new data will produce
unpredictable results. 4

For more information about using assembler language routines in C programs, see
Chapter 11, “Communication with Assembler Programs,” on page 209. For more
information about the _ _remote and _ _local keywords, refer to Chapter 2, “Source
Code Conventions,” on page 9.

Compiler-generated Names

During compilation, the compiler creates names for various data objects in the
compilation. In general, compiler-generated names are based on the section name. The
section name, in turn, can be specified by the sname option or determined by default.

In general, compiler-generated external names are created by appending one or more
special characters to the section name. Each type of data object has a unique special
character associated with it. If the section name is less than seven characters long,
then all of the created names are suffixed by an @, followed by the special character for
the data object type (unless that is a second @). If the section name is exactly seven
characters long, then only the special character is used as the suffix.

Control Section Names
The compiler creates one or more control sections (CSECTs) for a compilation. Each

CSECT contains a specific type of data; for example, there is a separate CSECT for the
executable code for the functions in the compilation. The number of CSECTs created
varies depending on the compilation and the compiler options used. Table 3.2 on page
53 lists the possible CSECT suffixes and compiler options that may cause the CSECT to
be created.

Table 3.2 Control Section Suffixes

Suffix Type of Data Compiler Options

@ executable code (any)

: constants (any)

$ string literals (any)

$ static data norent, rentext

= initialization data rent, rentext

? line number/offset table lineno, debug

+ run-time constants (always generated)

54 Control Section Names 4 Chapter 3

Suffix Type of Data Compiler Options

> extended funtion names extname

< extended identifiers other than
function names

extname

Run-time constants

The run-time constants CSECT contains data items used by the library or the
debugger during program execution. The program itself, or another program, such as a
dump analysis program, may also refer to the data in the run-time constants CSECT.

The following structure definition shows how the compiler stores the run-time
constants in this CSECT:

struct Run_Time_Constants {
int RESERVED1;
int RESERVED2;
void *RESERVED3;
void *ext_names;
char datetime1[16] ;
char sname[8] ;
time_t datetime2
void *statics;
int RESERVED4;
int dbg_filename_len;
char dbg_fileneame[1];

};

The ext_names field is a pointer to the extended function names CSECT or is NULL if
an extended function names CSECT does not exist. The datetime1 field is the
compilation date and time in character format. The date and time field is 16 bytes long
and is in the following format:

ddMMMyy hh:mm:ss

An example of the format of the date and time field follows:

19DEC90 12:34:56

Under OS/390, the sname field contains the section name of the compilation and is
terminated by a 0 byte. Under CMS, the sname field contains the filename of the source
file. The filename is not terminated with a 0 byte if it is exactly eight characters long.
The datetime2 field is the compilation date and time in numeric time_t format. For
more information on the type time_t see "Timing Functions," in Chapter 2 of SAS/C
Library Reference, Volume 2. The statics field is the pointer to the static data or
string literal CSECT, that is, the CSECT with a name ending in a dollar sign ($).

Note: All of the fields in this structure definition are reserved for use by the
compiler, library, or debugger and should not be modified. Modification may result in
unpredictable results. 4

At runtime, the address of the run-time constants CSECT is at offset +8 in the
constants CSECT. General register 4 always contains the address of the constants
CSECT at execution time. The address of the constants CSECT is also stored at
decimal offset 36 from the start of each function.

OMD370 disassembles the run-time constants CSECT when the verbose option is
specified.

Code Generation Conventions 4 External Variables 55

Extended names CSECTs
The CSECTs for extended function names and extended identifiers other than

function names are created when the extname option is specified. See “External
Variables” on page 55 for a detailed discussion of the extended names CSECTs.
OMD370 displays the extended names CSECTs when the verbose option is specified.

Exceptions
When the norent option is used, function pointers are defined as CSECTs. If the

function name is seven or fewer characters long, the CSECT name is created by
prefixing an ampersand (&) to the function name. If the function name is longer than
seven characters, the compiler generates a special name, only distantly related to the
actual name of the function, beginning with an unusual character.

In addition to the names described above, the compiler may generate other CSECTs
or pseudoregisters that do not follow the same naming convention. Typical examples
are @EXTERN#, the CSECT containing initialization data for external variables stored
in pseudoregisters; and @ISOL@, used for a CSECT when no section name can be
determined. (This occurs only when the compilation contains no externally visible
functions or data.)

Pseudoregister Names
When the compiler options rent and rentext are used, the compiler creates

pseudoregisters to contain certain types of external and static data (see “External
Variables” on page 55). The names of the pseudoregisters are created as described in
the previous sections. The table below lists the possible pseudoregister suffixes

Table 3.3

Suffix Type of Data

* static data other than function pointers

& static function pointers

The const Type Qualifier
If either the rent or rentext compiler option is used, defined external and static

objects that are qualified as const are placed in the string literal CSECT if possible.
See “Placement of Data” on page 58

External Variables
External identifiers differ from ordinary identifiers in one important respect: IBM

370 link utilities treat upper- and lowercase letters as if they were the same. Therefore,
when default options are used, the compiler converts all external identifiers to
uppercase. For example, although the programmer may consider vermont and VERMONT
to be two different functions, the linkage editor does not. If they are intended to be
distinct functions, the compiler extname option should be used. (See “The extname
option” on page 56.)

56 4 Chapter 3

External names are limited by the 370 object code format to eight characters, and
SAS/C translates underscores (_) in external names to pound signs (#). Since the
compiler always assumes that external names have the same characteristics as
ordinary identifiers, programmers must be careful not to define external names that the
compiler believes are different but that the linkage editor interprets as the same name.

A safe rule is to use lowercase letters only for all items that are declared external or
that have no storage class and are positioned outside functions. These items include
functions and data items that are to be defined for reference from functions in other
source files. Avoid using the dollar sign ($) as the eighth character of a function name
since this may cause it to duplicate the name of a control section generated by the
compiler for some other function.

You can define external objects with any name that does not begin with a dollar sign
($), two underscores (__) or an underscore followed by a letter. Certain library functions
and data elements (defined in modules written in C) have names that start with an
underscore (that appears as a pound sign (#) in the object code) or a dollar sign ($).

The extname option
To circumvent the above restrictions, the compiler enables you to specify the extname

option, which permits extended names of up to 64K in length. An extended name is any
name that identifies an extern variable or that identifies an extern or static function
and fits either of the following criteria:

� is longer than eight characters

� is at most eight characters long, contains uppercase alphabetic characters, and is
not the name of an __asm or high-level language (for example, __pascal) function.

External Variable Models
The compiler uses one of two reference-definition (ref/def) models for external

variables, depending upon whether reentrant modification of external variables is
allowed. The rent and rentext compiler options are used as follows to determine
whether or not reentrant code is generated:

� If norent is specified, reentrant execution is not allowed and the compiler uses the
strict ref/def model.

� If rent is specified, reentrant modification is allowed and the compiler uses the
common ref/def model, unless the refdef compiler option is also specified. (The
refdef option forces the use of the strict ref/def model.)

See “Reentrant and Non-reentrant Identifiers” on page 57 for more information about
rent and norent.

Common ref/def model
The common model allows any number of definitions (including 0), with and without

initializers, and any number of declarations of an external variable to be present. A
single declaration is sufficient to create the variable. Only one definition of an external
variable may specify an initializer. If more than one is encountered, the COOL linkage
editor preprocessor issues a warning message, and the actual initial values used are
unpredictable. If no initializations of a variable are present, then the variable is
initialized to 0 as the C language definition requires.

Code Generation Conventions 4 Reentrant Identifiers 57

Strict ref/def model
In contrast to the common model, the strict ref/def model requires exactly one

definition, with or without an initializer, to be present for each external variable.
Again, if no initializations of a variable are present, then the variable is initialized to 0.

Programming Considerations
Any program that conforms to the strict ref/def model also conforms to the common

model. However, the reverse is not true. A program that takes advantage of the
common model (for example, by omitting definitions for some variables) may not
compile or link correctly when using the strict ref/def model. Also, a program that uses
the common model and is compiled with the rent or rentext option may not work
correctly when compiled with the norent option.

The ISO/ANSI C Standard mandates the strict ref/def model for external variables.
If you plan to move a program to other machines, follow the strict ref/def model unless
you are sure that all the other C compilers follow a more permissive model.

You should not link compilations that have been created with the rent and rentext
options with compilations that have been created with the norent option. External
variables cannot be shared between these two types of compilations, nor will the
resulting load module be reentrant.

Object code produced by the compiler with the rent or rentext options must be
preprocessed by COOL if external variables are initialized in more than one
compilation. Conversely, object code produced by the compiler with the norent option
does not need to be preprocessed by COOL. If you use the rent option rather than the
rentext option, the initializations of static as well as external variables affect whether
or not the use of COOL is required.

Reentrant and Non-reentrant Identifiers
This section describes reentrant and non-reentrant identifiers and explains how to

use the rent, rentext, and norent compiler options as well as the __rent and
__norent keywords to control whether an identifier is reentrant or non-reentrant.

The reentrant and non-reentrant attributes apply only to extern or static data. All
functions, parameters, and automatic data are automatically reentrant.

Non-reentrant Identifiers
Non-reentrant data reside in a CSECT and are thus a part of the load module at

execution time. If the program modifies non-reentrant data, it is modifying its own load
module, thus rendering itself non-reentrant (that is, the same copy cannot be executed
by multiple users or in multiple tasks simultaneously).

The compiler places non-reentrant data in the static CSECT. Wherever possible,
non-reentrant data are initialized at compile time and are referenced using address
constants (ACONs).

Reentrant Identifiers
Reentrant data are placed in the PRV (pseudoregister vector). The PRV is an area of

memory allocated by the run-time library when the C program is executed. Thus,
reentrant data can be freely modified without affecting the reentrancy of the program.

58 Placement of Data 4 Chapter 3

Reentrant data are referenced using Q-type address constants (QCONs). The QCON
for a reentrant identifier contains the offset of the identifier from the start of the PRV.
The offset is added to the address of the PRV to obtain the address of the data.

Placement of Data
In general, static and extern identifiers can be placed in either the non-reentrant

section or the reentrant section (PRV). A number of rules control where a particular
identifier is placed.

First, if you code an explicit __rent or __norent keyword, then the identifier is
always placed in the section specified. With __rent and __norent you can control
which section is used.

If you do not provide an explicit keyword, then generally the rent, rentext or
norent compiler option determines the section into which the identifier is placed. rent
places both externs and statics (without a __rent or __norent keyword) in the
reentrant section. norent places them both in the non-reentrant section. rentext
places externs in the reentrant section and statics in the non-reentrant section.

There are two exceptions (cases where the compiler option is overridden). The first
exception occurs with extern identifiers whose names start with an underscore. These
are always placed in the reentrant section. (The ISO/ANSI C Standard reserves such
names for use by the compiler implementor).

The second exception occurs if the const keyword is used. const declares constant
data. Since the data are not expected to change during program execution, the compiler
tries to promote const identifiers into the non-reentrant section. The rules for this are
fairly complicated. An identifier is promoted to the non-reentrant section if all of the
following are true:

� The identifier is declared with the const keyword.
� The identifier is not declared with the volatile keyword.
� The identifier is not declared with the __rent keyword.
� The identifier has static scope or, if extern , the first letter of the identifier’s

name is not an underscore.
� The identifier is not a pointer, other than a local function pointer; and, if the

identifier is an aggregate, it does not contain any pointers–including recursively
generated pointers in any inner aggregates–other than local function pointers.

The const type qualifier is ignored (not used to place the data object in the string
literal CSECT) in the following situations:

� if the identifier begins with an underscore (_)
� if the declaration also has the volatile type qualifier
� if the defined object is a pointer type or an aggregate that contains a pointer

element, unless the pointer is a __local function pointer.

The last exception is a situation in which the pointer value cannot be determined
until execution time; therefore, a value in the CSECT cannot be initialized without
violating reentrancy.

Initialization and Reentrancy
If you plan for your program to be reentrant, you should not modify any data in the

non-reentrant section when the program executes. You may also need to be careful
when initializing non-reentrant data. Most initializations are done at compile time,
which preserves reentrancy, but there are a couple of exceptions:

Code Generation Conventions 4 Sharing External Variables with Assembler Language Programs 59

� initializing a pointer to the address of a reentrant identifier. The address of
reentrant identifiers is not known until execution time since the PRV is allocated
then.

� initializing a nonlocal function pointer. A nonlocal function pointer does not point
directly to the function code but to additional information, some of which is not
known until execution time.

To help you in such situations, the compiler produces a warning diagnostic if all of
the following conditions are true:

� The initializers for an identifier in the non-reentrant section could require writing
into the load module at execution time.

� The rent or rentext compiler option was specified; that is, you requested that a
reentrant executable be created.

For a reentrant program, a simple way to avoid problems is to use only reentrant
data. If your program is not intended to be reentrant, none of these considerations need
concern you.

Declarations Must Agree
If you declare an identifier reentrant in one place and non-reentrant in another, you

can end up with two different identifiers in the same compilation. Each of these
identifiers will reference a location that is different from the other. The compiler will
produce an error message in this situation.

This applies not only to explicit use of the __rent and __norent keywords, but to
the implicit assignment of data to the reentrant and non-reentrant section using
compiler options and the const keyword, as described above.

All declarations of an identifier must agree. Use the same rent, rentext, and
norent settings for all compilations, or use the __rent or __norent keywords.

Cross-reference
The cross-reference tells you whether an identifier is reentrant (rent is listed) or

non-reentrant (norent is listed). This information is produced regardless of how the
reentrancy was determined (keywords, compilation options, etc). This may be helpful to
you in cases where the rules above are not clear.

Sharing External Variables with Assembler Language Programs
External variables stored in the static CSECT can be accessed from assembler

language programs via a V-type address constant (VCON). Accessing an external
variable stored in a pseudoregister must be done indirectly by computing the offset of
the variable in the pseudoregister vector. The address of the pseudoregister vector is
stored at decimal offset 12 from the address in general register 12. (This area is known
as CRABPRV.) Example Code 3.4 on page 59 sketches an assembler language routine
that accesses an external variable stored as a pseudoregister.

Example Code 3.4 Sample Assembler Language Routine for Accessing an External Variable Stored as a
Pseudoregister

LRX,12(,R12) Set RX to point to CRABPRV. This
assumes that register 12 has the

60 Sharing External Variables with FORTRAN Programs 4 Chapter 3

CRAB address.
ALRX,=Q(ZZZ) RX now contains the address

of the external variable
USING ZZZ,RX ZZZ. ZZZ is the name of the

variable as defined in the
C program.

MVCZZZ1,=F’2’ Set integer variable to 2.
.
.
.

ZZZ DSECT Identify the dummy section ZZZ.
ZZZ1 DSF

Sharing External Variables with FORTRAN Programs
It is possible for a C program that has been compiled with rent or rentext to share

data with FORTRAN programs. The values to be shared are in one or more FORTRAN
COMMON blocks, where FORTRAN code can access them directly. C code accesses the
COMMON blocks through function pointers. Each COMMON block is described by a C
structure, with the structure tag the same as the name of the COMMON. Each
COMMON block code is declared as a function of the same name. For example, the
following code declares the COMMONs named comona and comonb:

extern comona();
extern comonb();

C code accesses the COMMONs through pointers. Each pointer is set up by invoking
a macro, called COMPTR, in the example below. The complete definition for the comona
structure is assumed to be elsewhere in the program:

#define comptr(block) (*(struct block**)&block)
.
.
.
struct comona *aptr; /* Declare aptr as pointer to comona struct. */

aptr = comptr(comona);
aptr->field1 = 1;
.
.
.

Note that the structure tag, comona, is the same as the name of the COMMON. This
is not required, but it simplifies the macro and makes the data sharing more obvious.

The technique is readily adaptable to other languages that implement shared data as
CSECTs or COMMONs. However, this technique renders an otherwise reentrant
program non-reentrant, by the nature of such implementations. See Chapter 16,
"Implementing ILC with a User-Supported Language," in the {ilc} for more details.

Register Conventions and Patch Writing

The following sections describe register conventions and patch writing.

Code Generation Conventions 4 Register Conventions 61

The Patch Area
By default, the compiler generates a patch area in each compiled module. This patch

area provides space for you to apply maintenance to your modules in object code or load
module form (zaps).

The patch area is generated in the first 4096 bytes of a CSECT known as the
constants CSECT for the compilation. The constants CSECT is permanently addressed
by general register 4, so the patch area is always addressable. The default patch area is
1/64 the size of the generated code for the compilation, rounded up to a multiple of 8
bytes, with a minimum size of 24 bytes and a maximum size of 256 bytes. The patch
area is generated as a series of S-cons (address constants in base-displacement form).
Each SCON contains its own address in base-displacement form, using register 4 as a
base register. This minimizes errors in patch-writing, both for branches to the patch
area and for branches within it.

To find the patch area for a module, look near the end of the OMD listing for the
constants CSECT. (See “Compiler-generated Names” on page 53.) The patch area is
found at the end of the CSECT or just before 4096 bytes if the CSECT exceeds 4096
bytes in size. It is easily recognized by its distinctive S-con format.

It is possible, for very large compilations, or when the zapspace option is specified,
for more patch space to be required than the compiler can generate in the first 4096
bytes of the patch area. In this case, the compiler will generate one or more secondary
patch areas later in the constants CSECT. These areas have the form of S-cons, using
register 0 as the base register. Because these areas are not in the first 4K of the
constants section, they are not directly addressable but can be branched to from the
previous patch area.

The zapspace option
The zapspace compiler option can be used to alter the size of the compiler-generated

patch area. The size of the patch area can be increased or its generation suppressed.
The zapspace option accepts an integer value between 0 and 22, inclusive, that

specifies the factor by which the default patch area size is to be multiplied. If the factor
is 0, then no patch area is generated. For example, if the default patch area is 48 bytes
and the zapspace option specifies a factor of 3, then the patch area actually generated
is 144 bytes long. In no case does the compiler generate more than 512 bytes of patch
area.

The zapmin option
The zapmin compiler option can be used to specify the minimum size of the

compiler-generated patch area.
The zapmin option accepts an integer value that specifies the number of bytes in the

patch area. The default is 24. For example,

zapmin(64)

ensures that the patch area is at least 64 bytes.
In no case does the compiler generate more than 512 bytes of patch area.

Register Conventions
The following list summarizes register conventions. You need this information if you

are writing patches.
� Register 4 (R4) addresses the constants CSECT, including the patch area. R4

always contains this address throughout execution.

62 Register Conventions 4 Chapter 3

� Register 5 (R5) is the base register for the current function.

Unless the function exceeds 4K in size, R5 points to the start of the function. If
the function exceeds 4K in size, examination of some branches near the place to be
zapped allows the actual R5 value to be calculated.

� Register 12 (R12)addresses the CRAB that is required at execution time and can
never be changed.

� Register 13 (R13) addresses the DSA (dynamic save area). The DSA includes
automatic variables and the area for the outgoing parameter list. If the function
uses more than 4095 bytes of auto variables, R13 directly addresses only the first
4095 bytes.

� Other registers are assigned usage dynamically based on need.

The best way to write a zap is to examine other code in the function that does
something similar to what is required and to model the zap on that code.

General register 1 (R1) can be used as a scratch register for zaps unless it is already
directly used in the zapped code or a function call sequence (which sets R1) is being
zapped. The compiler never remembers the value in R1 across statements. If it is not
possible to use R1, you should be aware that values can be kept in registers for a large
number of statements, including conditional branches and function calls. The best
register use for a zap (other than R1) is a register that is set soon after the zap without
being used between the zap and the code that sets the register to a new value (that is,
one in which the existing value is discarded).

63

C H A P T E R

4
Optimization

The optimize Option 63
Optimizations 64

Register allocation 64

Dead store elimination 64

Moving invariant calculations out of loops 65

Constant propagation and folding 65
Merging common subexpressions 66

Dead code elimination 66

Induction variable transformations 66

Very busy expression hoisting 66

Global Optimization Compiler Options 66

Global Optimization and the Debugger 67
The __inline Keyword for Inline Functions 68

Overview 68

Advantages of Using Inline Functions 68

Disadvantages of Using Inline Functions 70

Compiler Options for Inlining 70
Using the inlocal option to control inlining 70

Using the complexity option to control inlining 70

Using the depth option to control inlining 71

Using The rdepth option to control inlining 73

The __actual Keyword for Inline Functions 74
Functions that Cannot Be Inlined 74

Further Benefits of Inline Functions 74

Extending the range of optimization 75

Inline functions as replacements for macros 75

Using inline functions to generate optimized code 76

Efficient Programming with the SAS/C Compiler 79
Using Leaf Functions 79

Taking Advantage of Switch Optimizations 79

Optimization and Far Pointers 79

The optimize Option
The optimize compiler option is used to enable global optimization, which optimizes

the flow of control and data through an entire function.

64 Optimizations 4 Chapter 4

Optimizations
Global optimization includes a wide variety of optimizations. Some of the

optimizations that are performed are discussed below.

Register allocation
The compiler analyzes the function to determine which auto variables, formal

variables, temporary values, and constant values should be assigned to registers at
each point in the function. The compiler uses up to 6 of the 370 general registers and 2
of the floating point registers for this purpose. The remaining registers become either
dedicated registers, as for example, in dedicating R12 as the CRAB pointer, or working
registers during code sequences of medium or less duration.

Generally speaking, the variables that are most used at a given point are selected.
Values occurring in loops are more likely to be chosen.

The compiler attempts to keep a variable assigned to a register for as long as possible.
When 370 BXLE/BXH instructions are issued, the compiler allocates registers in pairs,
resulting in high-quality code for many loops particularly in numerical applications.

Using the ampersand (&) operator with a variable prevents the compiler from
allocating that variable to a register because it cannot predict when the resultant
pointer will be used to read or modify the variable’s value in memory, or the variable
may be used in another function. External variables also cannot be allocated to a
register.

The effect of global optimization’s register allocation is quite different from the use of
the register storage class. In general, a variable declared using register is
associated with a machine register throughout the entire block in which it is declared
(usually the entire function). In most functions, the variable is heavily used in some
places and not used in others. Yet, if a machine register is assigned to the variable,
then the same register cannot be reused even in those sections where the variable is not
used. Therefore, global optimization changes a register’s assigned variable during the
evaluation of each expression to ensure that the most heavily used variables are always
in machine registers.

The compiler overrides the register storage class keyword in the declarations of
integer, double, and pointer variables.

Because of the portability of the C language, it would be difficult for a programmer to
know the number of available registers provided by the target machine and the
compiler. The concept of a register variable is based on the idea that the variable is
kept in a register for the entirety of its scope. Such restrictions no longer apply when a
compiler uses the more advanced registration allocation algorithms in SAS/C software.
Even though the compiler does not have dynamic information about program execution
that would indicate which statements are executed more heavily, it can use the loop
nesting structure to make a reasonable approximation.

Dead store elimination
If a value is assigned to a variable, but the value is not used, then the assignment

can be eliminated as in this example:

o = 23;

code that does not refer to ’o’

o = 12;

The first assignment to o can be removed.

Optimization 4 Optimizations 65

Since the compiler inspects all references to the variable throughout the entire
function, even quite subtle dead stores are eliminated.

Moving invariant calculations out of loops
A calculation in a loop whose value is the same on each iteration can be moved

outside of the loop. For example, the loop

for (i = 0; i < j; i++) {
a[i] = p->q.r[10] ;

}

can be changed to

temp = p->q.r[10] ;
for (i = 0; i < j; i++) {

a[i] = temp;
}

Refer to the explanation for the loop option in “Very busy expression hoisting” on
page 66 for more information about this type of optimization.

Constant propagation and folding
References to a variable whose only definition is a constant are replaced by the

constant. If the variable is used only in expressions with a different type (for example,
if an int variable is only used in a comparison with float variables), global
optimization creates a constant of the correct type. If the variable is used only as a
constant, global optimization eliminates the variable entirely. The following example
demonstrates these optimizations:

void f(double d)
{

i = 10;
for (; d < i; ++d) {

.

.

.
}
return;

}

The code above can be changed to this:

void f(double d)
{

for (; d < 10.0; ++d) {
.
.
.

}
return;

}

Constant propagation is often useful in programs that contain inline functions.

66 Global Optimization Compiler Options 4 Chapter 4

Merging common subexpressions
Global optimization eliminates recalculation of values that have been computed

previously. For example,

x = i / 3;
y = i / 3 + 4;

can be changed to

temp = i / 3;
x = temp;
y = temp + 4;

Dead code elimination
Code that can never be executed is eliminated.

Induction variable transformations
Loops containing multiplications (usually those associated with array indexing) have

the operations changed to addition.

Very busy expression hoisting
If the same expression is computed along all paths from a point in the code, the

expression is moved to a single, common location. For example,

if (expression)
x = i + j;

else
y = (i + j) * 2;

can be changed to

temp = i + j;
if (expression)

x = temp;
else

y = temp * 2;

Global Optimization Compiler Options
The compiler accepts the following options to modify optimization:

loop assumes that loops have multiple iterations when the number of
iterations is variable. This enables the movement of safe code out of
loops. (See “Moving invariant calculations out of loops” on page 65.)
loop is the default.

When a loop is not executed at all, the moved code is executed in
cases where it previously would not have been. For example,

for (i = 0; i < n; ++i)
for (j = 0; j < m; ++j)

p[i * m + j] += 1;

can be changed to

for (i = 0; i < n; ++i) {
temp = i * m;

Optimization 4 Global Optimization and the Debugger 67

for (j = 0; j < m; ++j)
p[temp + j] += 1;

}

In the changed code, i*m can be calculated when m is less than or
equal to 0. When the loop option has been specified, there may be a
small cost in time for every loop that is not executed. There is also a
significant time saving for loops that are executed many times, as
most are.

Some types of code may cause an exception, for example, division
by 0.

For this reason, the SAS/C Compiler restricts moved code to safe
operations, including integral and pointer arithmetic other than
division by 0, but not including floating-point operations. The
compiler avoids incorrect exceptions regardless of the setting of the
loop option.

alias disables type-based aliasing assumptions. If alias is used, the
compiler assumes worst-case aliasing. Use of this option can
significantly reduce the amount of optimization that can be
performed. noalias is the default.

greg controls the number of general registers that the compiler will try to
allocate.

freg controls the number of floating-point registers that the compiler will
try to allocate.

For both greg and freg, the compiler allocates from among the
supported register variable registers. These are R6-R11 and FR4/
FR6. Registers R4, R5, R12, and R13 are dedicated to addressing
various data objects in the function. R1 is used for numerous
specific code sequences.

R0, R2, R3, R14, R15, FR0, and FR2 remain for things like
constants, base registers, VCONs, and nonregisterized variables. In
the case that the user feels that values of these types are being
reloaded too often from memory and can benefit from having more
registers available, then the number of registers allocated with greg
or freg can be reduced.

inline inlines small functions (as defined by the complexity option) and
those with the __inline keyword. inline is the default when the
optimize option is used.

inlocal inlines single-call static (local) functions.

complexity defines the complexity of functions considered small by inline. (See
“Using the complexity option to control inlining” on page 70.)

depth defines the maximum depth of function calls to be inlined. The
range is 0 to 6, and the default value is 3.

rdepth defines the maximum level of recursive function calls to be inlined.
The range is 0 to 6, and the default is 0.

Global Optimization and the Debugger
The compiler does not optimize programs when the debug option is used. To utilize

all the capabilities of the SAS/C Debugger, there must be an accurate correspondence

68 The __inline Keyword for Inline Functions 4 Chapter 4

between object code and source line numbers, and optimizations can alter this
correspondence. Also, the debug option causes the compiler to suppress allocation of
variables to registers, so the resulting code is not completely optimal.

You can, however, use the dbhook option along with the optimize option to generate
optimized object code that can be used with the debugger. The dbhook option generates
hooks in the object code that enable the debugger to gain control of an executing
program.

When using the debugger with optimized object code that has been compiled with the
dbhook option, the source code is not displayed in the debugger’s Source window and
you cannot access variables. Therefore, the debugger’s print command and other
commands that are normally used with variables are not used when debugging
optimized code. You can use commands such as step, goto, and runto to control the
execution of your program. The goto command may cause incorrect results if the
expected register contents at the goto target differ from the actual register contents
when the command was issued. Also, source code line numbers are displayed in the
Source window, providing an indication of your location in the code. You also have the
capability of viewing register values in the debugger’s Register window.

The debugging of optimized code is most effective when used in conjunction with the
Object Module Disassembler (OMD) or your system’s debugger. See Chapter 5,
“Compiling C Programs,” on page 81 for information about using the OMD.

The __inline Keyword for Inline Functions

An inline function is a function for which the compiler replaces a call to the function
with the code for the function itself. The process of replacing a function call with the
function’s code is called inlining. When the compiler performs inlining for a function,
the function has been inlined.

Overview
To define an inline function, add the __inline keyword to the function definition.

The following is an example of a function definition using the __inline keyword:

__inline double square(double x)
{

return x * x;
}

The __inline keyword causes a function to be inlined only if you specify the
optimize option. If optimize is specified, whether or not __inline is honored depends
on the setting of the inline optimizer option. By default, the inline option is in effect
whenever the optimizer is run. If you specify optimize, you must also specify the
noinline option if you want the __inline keyword to be ignored.

There are no restrictions on how an inline function can be coded. An inline function
can declare auto variables and can call other functions, including other inline functions.
Inline functions can also be recursive.

Advantages of Using Inline Functions
Since the call to an inline function is replaced with the function itself, the overhead

of building a parameter list and calling the function is eliminated in the calling

Optimization 4 Advantages of Using Inline Functions 69

function. Since there is no function call, the overhead associated with entering the
function and returning to the caller is eliminated in the called function.

Below is an example of a program that calls an inline function. The program
produces a table of equivalent temperatures using both the Fahrenheit and Celsius
scales. The conversion from Fahrenheit to Celsius scale is done with the ftoc function.

#include <stdio.h>

static double ftoc(double);

void main()
{

double fahr, celsius;
puts("Fahrenheit Celsius");
for (fahr = 0.0; fahr <= 300.0; fahr += 20.0) {

celsius = ftoc(fahr);
printf(" %4.0f %6.1f\n", fahr, celsius);

}
}

static double ftoc(double fahr)
{

return (5.0 / 9.0) * (fahr - 32.0);
}

As written, the program performs the following operations for each of the 16
iterations of the for loop:

1 builds a parameter list containing the value of fahr
2 calls the ftoc function
3 allocates stack storage for ftoc
4 calculates the temperature on the Celsius scale
5 stores the result of the calculation
6 frees the stack storage
7 returns to main

8 assigns the result to celsius.

Suppose ftoc is defined as an inline function by adding the __inline keyword, as
follows:

__inline static double ftoc(double fahr)
{

return (5.0 / 9.0) * (fahr - 32.0);
}

When the program is compiled using the inline option, the compiler replaces the
call to ftoc with the code for the ftoc function, as shown here:

#include <stdio.h>

void main()
{

double fahr, celsius;
puts("Fahrenheit Celsius");
for (fahr = 0.0; fahr <= 300.0; fahr += 20.0) {

celsius = (5.0 / 9.0) * (fahr - 32.0);
printf(" %4.0f %6.1f\ n", fahr, celsius);

70 Disadvantages of Using Inline Functions 4 Chapter 4

}
}

Note that the definition of ftoc has been moved to the main function. The static
definition has been eliminated. Of the eight steps listed above, only two steps remain in
the loop:

� calculate the temperature on the Celsius scale
� assign the result to celsius.

Disadvantages of Using Inline Functions
The compiler generates a copy of the code for an inline function at every call to the

function. If the function is very large or is called in many different places, the size of
the generated code for the program can increase dramatically. In addition, using inline
functions may significantly increase the amount of time required to compile the
program.

Compiler Options for Inlining
Several compiler options are supported to allow control over the amount of inlining

performed by the compiler. These options are discussed in the following sections.

Using the inlocal option to control inlining
The inlocal option can be used to gain some of the benefits of inlining without

using the __inline keyword. This option enables the inlining of all static functions
that are called exactly once in the source program. By limiting inlining to single-call
static functions, the inlocal option guarantees that the generated code for the
program will not increase over the size when inlining is not used. In the preceding
example, the same results can be obtained without using the __inline keyword by
using the inlocal option when the program is compiled.

Using the complexity option to control inlining
The complexity option provides another way to use inlining without using the

__inline keyword. If the inline option is in effect, then the compiler inlines small
static and extern functions automatically even if they are not defined with the
__inline keyword. The complexity option assigns a meaning to the word small and
takes a value between 0 and 20, inclusive. For example, you may specify
complexity(4) (-Kcomplexity=4 under UNIX System Services [USS]). This specifies
that the compiler should automatically inline all functions whose complexity is no
higher than 4.

Complexity is a measure of the number of discrete operations defined by the function.
In general, the larger the value specified for complexity, the larger the functions that
are automatically inlined. The ftoc function, described earlier, has a complexity value
of 1. The following function, which multiplies the two square matrices, a and b, and
returns the result in matrix c, has a complexity value of 8:

void mmult(double c[] [10], double a[] [10] , double b[] [10])
{

int i, j, k;

for (i = 0; i < 10; i++)
for (j = 0; j < 10; j++) {

Optimization 4 Compiler Options for Inlining 71

c[i] [j] = 0.0;
for (k = 0; k < 10; k++)

c[i] [j] = c[i] [j] + a[i] [k] * b[k] [j] ;
}

}

The following function, a simple binary search function, has a complexity value of 11.
This example returns the index of the element in list that has the same value as
target. num_els is the number of elements in the list array. list is sorted
alphabetically. If target is not found, the function returns {minussym}1.

#include <string.h>

int binsrch(char *target, char *list[] , int num_els)
{

int where, hit;
int low, high, current;

low = 0;
high = num_els;
current = num_els / 2; /* Find middle element of array. */
hit = -1; /* Target not found yet. */

do {
where = strcmp(target,list[current]);
if (where < 0) /* Target is in top half of list. */

high = current - 1;
else if (where > 0) /* Target is in bottom half of list. */

low = current + 1;
else

hit = current; /* success */
current = (high + low) / 2;
} while (high >= low && hit < 0);

return hit;
}

The optimizer default is complexity(0), which means that no functions are
considered small enough to inline unless they are defined with the __inline keyword.
Note that using a high value for complexity can lead to a substantial increase in the
size of the generated code for the compilation.

As mentioned earlier, inline functions can call other inline functions or call
themselves recursively. You can control how the compiler generates code for sequences
of calls to inline functions and for recursive inline functions by using the depth and
rdepth options.

Using the depth option to control inlining

The depth option specifies a limit on the number of nested inline function calls. If
inline function f0 calls inline function f1, which calls inline function fn, then a single
call to f0 can result in a significant increase in the size of the function calling f0.

The following program shows how the compiler inlines functions that call other inline
functions. This program computes the length of the hypotenuse of a triangle whose
sides are of lengths a and b. The main function calls hypot, which in turn calls the
square function.

72 Compiler Options for Inlining 4 Chapter 4

#include <stdio.h>
#include <math.h>

static double hypot(double, double);
static double square(double);

void main()
{

double a, b, c;

for (a = 1.0; a < 10.0; a += 1.5) {
b = a + 0.75;
c = hypot(a, b);
printf("a = %f, b = %f, c = %f\ n", a, b, c);

}
}

static double hypot(double a, double b)
{

return sqrt(square(a) + square(b));
}

static double square(double x)
{

return x * x;
}

If both hypot and square are inline functions, then the compiler generates code for
main as if the following program had been used.

#include <stdio.h>
#include <math.h>

void main()
{

double a, b, c;

for (a = 1.0; a < 10.0; a += 1.5) {
b = a + 0.75;
c = sqrt(a * a + b * b);
printf("a = %f, b = %f, c = %f\ n", a, b, c);

}
}

Note that the square function is inlined in hypot, which is then inlined in main. In
this program, the maximum calling depth is 2.

If a long sequence of inline function calls is defined, then the size of the generated
code for a compilation can increase greatly because of the number of functions being
inlined. The depth option can be used to control the calling depth of inline functions. If
the calling depth exceeds the number specified by the depth option, the compiler stops
inlining and generates calls to the functions instead.

By default, the compiler uses a maximum calling depth of 3. The compiler accepts
depth option values between 0 and 6, inclusive.

Optimization 4 Compiler Options for Inlining 73

Using The rdepth option to control inlining
If the rdepth option is used, the compiler inlines recursive inline functions. The

rdepth option specifies a maximum depth of recursive function calls to be inlined. The
following program shows an example of this kind of inlining. The fib function
calculates the Fibonacci function for its argument.

#include <stdio.h>

__inline static int fib(int);

void main()
{

int i;

for (i = 0; i < 10; i++)
printf("fib(%d) = %d\ n", i, fib(i));

}

__inline static int fib(int i)
{

if (i < 2)
return i;

else
return fib(i-1) + fib(i-2);

}

If the program is compiled using rdepth(2), then the compiler generates code as if
the following program had been used:

#include <stdio.h>

static int fib(int);

void main()
{

int i;
int result1, result2, result; /* compiler temporary variables */

for (i = 0; i < 10; i++) {
if (i < 2)

result = i;
else {

if ((i - 1) < 2)
result1 = i - 1;

else
result1 = fib((i - 1) - 1) + fib((i - 1) - 2);

if ((i - 2) < 2)
result2 = i - 2;

else
result2 = fib((i - 2) - 1) + fib((i - 2) - 2);

result = result1 + result2;
}
printf("fib(%d) = %d\ n", i, result);

}
}

74 The __actual Keyword for Inline Functions 4 Chapter 4

static int fib(int i)
{

if (i < 2)
return i;

else
return fib(i-1) + fib(i-2);

}

The compiler has inlined code equivalent to the first two recursive calls to the fib
function. This type of inlining can be very useful with recursive functions that have
limited depth.

The maximum depth that can be specified using the rdepth option is 6. A large depth
value can cause a large increase in the size of the generated code for the compilation.
rdepth(1) is the default; that is, the compiler will not inline recursive functions.

The __actual Keyword for Inline Functions
There is no difference between static and extern functions defined using the

_ _inline keyword. However, keep in mind that the compiler generally does not create
a callable function for an inline function. This is not a problem if the function is
declared static because all calls to the function are replaced with the inlined code for
the function. However, extern inline functions are not callable from other compilations
since no callable copy of the function exists.

The _ _actual keyword can be used in the definition of an inline function. _ _actual
implies _ _inline, but it also specifies that the compiler should create a callable
function as well. An _ _actual extern function is, of course, callable from other
compilations just as any extern function.

Note that an extern _ _inline function in a source file generates no code, whether or
not the optimizer is run, unless the _ _actual keyword is specified. This implies that if
you have an extern _ _inline function declared in a header file, in order to support
unoptimized or debug code, you must provide an _ _actual definition in some source
file linked with the application.

This restriction does not apply to static _ _inline functions. When compiling
without optimization, a static _ _inline function is compiled like any other static
function. If you declare a static _ _inline function in a header file and compile without
optimization, you will have a copy of its code in the object file for each source file that
includes the header file. Thus, there is a tradeoff between declaring such functions
static, which can waste memory on multiple copies of the code, and declaring them
extern, which forces the programmer to add an _ _actual declaration for each such
function to an appropriate source file. Which option is better will depend on the
characteristics and requirements of the application.

Functions that Cannot Be Inlined
The compiler cannot inline a function
� that has its address taken
� that has a variable length argument list
� that is called with an argument list that does not agree with the declared

parameter list.

Further Benefits of Inline Functions
There are additional benefits that occur when functions are inlined.

Optimization 4 Further Benefits of Inline Functions 75

Extending the range of optimization
The value of using inline functions can go far beyond the obvious benefit of reducing

function call overhead. In general, the compiler inlines the function and then optimizes
the resulting code. Inlining often opens up additional possibilities for optimization. For
example, if one or more arguments to an inline function are constant values, the
compiler can often perform some of the computations at compile time.

Here is a simple example. Suppose the following program invokes the inline ftoc
function given earlier:

#include <stdio.h>

void main()
{

double fahr, celsius;

fahr = 212.0;
celsius = ftoc(fahr);
printf("%fF is %fC\ n",fahr, celsius);

}

After inlining, the program looks like this:

#include <stdio.h>

void main()
{

double fahr, celsius;

fahr = 212.0;
celsius = (5.0 / 9.0) * (fahr - 32.0);
printf("%fF is %fC\ n",fahr, celsius);

}

Since the variables are assigned constant values, the compiler can compute the result
of the calculation during compilation to produce code equivalent to the following
program:

#include <stdio.h>

void main()
{

printf("%fF is %fC\ n",212.0, 100.0);
}

Inline functions as replacements for macros
Since temporary auto variables can be defined in inline functions, often an inline

function can be written that is easier to use than a macro.
Consider the problem of writing a function (called strlength) that has almost the

same function as the Standard strlen function. The one difference is that, if the
argument to strlength is NULL, then strlength returns 0. (The strlen function is
not meaningful if called with a NULL argument.) A STRLENGTH macro is easily defined
as follows:

#define strlength(p) ((p == NULL) ? 0 : strlen(p))

This macro works as described, but with one drawback. Its argument is evaluated
twice, once in the test and once in the call to strlen. This is what is known as an

76 Further Benefits of Inline Functions 4 Chapter 4

unsafe macro. If it is used with an argument that has side-effects, the result is usually
incorrect. Suppose that the STRLENGTH macro is called as follows:

p = "A TYPICAL STRING";
n = strlength(p++);

The value assigned to n is 15, which is incorrect. (The intended result is 16.) This is
because the macro expands to the statement shown here. (Note that p is incremented
before being passed to strlen.)

n = ((p++ == NULL) ? 0 : strlen(p++));

However, it is easy to define an inline version of strlength that works correctly, as
shown here:

__inline strlength(char *p)
{

return (p == NULL) ? 0 : strlen(p);
}

Using inline functions to generate optimized code
As mentioned before, inlining often opens up additional possibilities for optimization.

The following example shows how to use inline functions to take advantage of the
compiler’s capability to optimize the program after inlining is done.

The pow function, part of the C library, computes the value of a raised to a power p
as expressed by the relation

r = a

p pow can be called with any real values for a and p. The following inline function,
called power, supplants the pow function by generating inline code for constant,
nonnegative whole number values of p. For p<=16.0, the compiler generates code to
compute the value directly. For p>16.0, the compiler generates a loop to compute the
result. If p is a variable, negative, or contains a nonzero fractional part, the compiler
generates a call to the library pow function. In no case does the compiler generate code
for more than one condition.

#include <lcdef.h> u pos=m;
#include <math.h> v pos=m;
#undef pow w pos=m;
#define pow(x, p) power(x, p, isnumconst(p)) x pos=m;

static __inline double power(double a, double p, int p_is_constant)
{

/* Test the exponent to see if it’s */
/* - a compile-time integer constant */
/* - a whole number */
/* - nonnegative */

if (p_is_constant && (int) p == p && (int) p >= 0) { y pos=m;

int n = p;

/* Handle the cases for 0 <= n <= 4 directly. */
U pos=m; if (n == 0) return 1.0;

else if (n == 1) return a;
else if (n == 2) return a * a;
else if (n == 3) return a * a * a;

Optimization 4 Further Benefits of Inline Functions 77

else if (n == 4) return (a * a) * (a * a);

/* Handle 5 <= n <= 16 by calling power */
/* recursively. */
/* Note that power is invoked directly, specifying */
/* 1 as the value of the p_is_constant argument. */
/* This is because the isnumconst macro returns */
/* "false" for the expressions (n/2) and */
/* ((n+1)/2), which would defeat the optimization. */

V pos=m; else if (n <= 16)
return power(a, (double)(n/2), 1) *

power(a, (double)((n+1)/2), 1);

/* Handle n > 16 via a loop. The loop below */
/* calculates (a ** (2 ** x)) */
/* for 2 <= x <= n and sums the results for each */
/* power of 2 that has the corresponding bit set */
/* in n. */

W pos=m; else {
double prod = 1.0;
for (; n != 0; a *= a, n >>= 1)

if (n & 1) prod *= a;
return prod;

}
}

/* Finally, if p is negative or not a whole number, */
/* call the library pow function. The pow macro */
/* is defeated by surrounding the name "pow" with */
/* parentheses. */

else X pos=m;
return (pow)(a, p);

}

The numbers in circles in the code above key the explanation that follows:
1 <lcdef.h> contains the definition of the isnumconst macro.
2 <math.h> contains the declaration of the pow function.
3 The #undef pow preprocessor directive undefines any macros that may be defined

for the name pow.
4 This macro defines a pow macro that will cause the power inline function to be

used instead of the library pow function. Note that the isnumconst macro is used
to determine whether the second argument to power is a numeric constant. The
result of isnumconst is passed as the third argument to power. (See Chapter 1,
"Introduction to the SAS/C Library," in SAS/C Library Reference, Volume 1 for
more information about isnumconst.)

5 This is a constant expression and will be evaluated at compile time. The
expression checks to determine if p is a numeric constant (as determined by
isnumconst), a whole number, and greater than or equal to 0.

If an if-test is a constant expression (as is this one), the compiler evaluates the
expression and then generates code only for the then branch or the else branch,
depending on the result of the expression. In this example, if the result is false
(that is, p is not a constant whole number greater than or equal to 0) then the
compiler ignores the statements that compose the then branch and does not
generate code to perform them. However, if the result of the expression is true,

78 Further Benefits of Inline Functions 4 Chapter 4

then the compiler ignores the statements in the else branch and does not generate
a call to the library’s pow function.

6 This if-test, as well as the next four, are also constant expressions. As above, the
compiler generates code for the return statement only if the result of the
expression is true. Therefore, if 0≤n≤4, the compiler generates the appropriate
return statement to compute the value of an for n=1, 2, 3, or 4.

7 If 5≤n≤16, power is called recursively to evaluate a
n . Note that a program using

this function should be compiled using the rdepth option with a recursion depth of
6.

8 For n>16, power uses a loop to compute a
n .

9 Finally, if p is nonconstant or is not a whole number, power calls the library’s pow
function to compute the result. Note that parentheses surround the name of the
function. This defeats the macro definition for pow and ensures that a true
function call is generated.

Here are some examples of the use of the power function:
Example 1

r = pow(a, 0);

Since the if-test (n== 0) is true, the compiler generates code to perform the
statement

r = 1.0;

Example 2

r = pow(a, 2);

Since the if-test (n== 2) is true, the compiler generates code to perform the
statement

r = a * a;

Example 3

r = pow(x, y);

Since y is not a constant, the compiler generates code to call the library’s pow
function:

r = (pow)(x, y);

Example 4

r = pow(x, 0.75);

Since y is not a whole number, the compiler again generates code to call the library’s
pow function:

r=(pow) (x,0.75);

Example 5

r = pow(x, 15.0);

Since 15.0> 4, pow calls itself recursively. The compiler generates code equivalent to

r = x * x * x * (x * x) * (x * x) *
(x * x) * (x * x) * (x * x) * (x * x);

The computation above can be performed using only six floating-point
multiplications. The following assembler language code illustrates the machine code
instructions generated to compute x15:

Optimization 4 Optimization and Far Pointers 79

LD 0,X Floating-point register 0 (FPR0) = x.
LD 2,X FPR2 = x, as well.
MDR 0,2 FPR0 = x * x = x

2 MDR 2,0 FPR2 = x * x2 = x3 MDR 0,0 FPR0 = x2 * x2 = x4 MDR 2,0 FPR2 = x3 * x4 = x7

MDR 0,0 FPR0 = x4 * x4 = x8 MDR 2,0 FPR2 = x8 * x7 = x15

Note that programs that use the power function as shown should be compiled using
these options: optimize, rdepth 6, depth 3. Since the function is defined using the
__inline keyword, the complexity option is not required. If the __inline keyword is
not used, you need to specify the complexity option with a value of at least 16.

Efficient Programming with the SAS/C Compiler
This section suggests several ways to write more efficient C code. By taking

advantage of compiler features and the way the compiler generates code for certain C
constructs, you can write programs that execute faster and more efficiently.

Using Leaf Functions
A leaf function is a function that calls no other functions. This property means that

the function is always at the end of a calling sequence. The compiler can tell that a leaf
function calls no other functions and takes advantage of this information. Instead of
needing a fresh allocation of stack space, a leaf function uses a fixed area of storage in
the CRAB for its automatic variables (as long as they do not exceed 128 bytes). This
leads to a much more efficient entry and return sequence for these functions. You
should make heavily used functions leaf functions where possible. Leaf functions are
also known as DSA-less functions because no DSA is required.

Taking Advantage of Switch Optimizations
The compiler chooses from several possible algorithms when generating code for a

switch statement. In some instances, the compiler can generate code for switch
statements by using indexed tables with 1- or 2-byte entries. This ensures quick
execution and also minimizes the amount of dataspace used.

For every switch encountered in the source file, the code generator analyzes the size
and execution time that would result from each algorithm and chooses the best one. For
switches with a small number of cases, one of the nonindexed methods is generally used
since the overhead of the table lookup is not justified. However, for a large number of
cases, an indexed algorithm is used for all but highly sparse switch statements.

Indexed algorithms require one table entry for each value in the switch range (the
difference between the lowest and highest values in case statements). Therefore, it is
advantageous to reduce the range of switch statements if possible because this reduces
table space. If you have one or two case values that are very different from the others,
you may want to test for them separately or handle them at the default label (which is
not part of the range).

Optimization and Far Pointers
Most programs that use far pointers access a small number of address spaces. A

typical design may use only the primary address space and one or two dataspaces.
Because the optimizer and compiler cannot in general tell whether two far pointers

80 Optimization and Far Pointers 4 Chapter 4

reference the same address space, there may be a lot of unnecessary reloading of the
access registers.

A technique that may lead to better generated code is to use only a few far pointers
(one per secondary address space or dataspace) and then to use offsets rather than
pointers to address objects in the dataspaces. For instance, in place of the following
code:

_ _far struct cb *lookup_user(char *);
_ _far struct cb *userptr;

userptr = lookup_user("fred");
userptr->inuse = 1;

You could use the following equivalent code instead:

extern _ _far char *user_data_space;
int lookup_user(char *);
int useroff;

useroff = lookup_user("fred");
((_ _far struct cb *)(user_data_space + useroff))->inuse = 1;

This style allows the optimizer to recognize that the variable user_data_space is
frequently accessed, and should have a register reserved for it. This may in turn mean
that the ALET for the user dataspace will only need to be loaded from memory once
during the execution of a particular function.

This style of coding can be made more readable by using the preprocessor, as shown
in the following example:

#define contents(type, alet, offset) \
((_ _far type *)((alet) + (offset)))

#define offset(alet, addr) \
(((_ _far char *) addr) - alet)

#define cb_contents(offset) \
contents(struct cb, user_data_space, offset)

extern _ _far char *user_data_space;
int lookup_user(char *);
int useroff;

useroff = lookup_user("fred");
cb_contents(useroff)->inuse = 1;

81

C H A P T E R

5
Compiling C Programs

Introduction 81
Compiling C Programs in TSO 82

The LC370 CLIST 82

Sample LC370 CLIST command line with options 82

Compiling C Programs from the USS Shell 83

Compiling C Programs under CMS 84
The LC370 EXEC 84

Sample LC370 EXEC command line with options 85

Compiling C Programs from XEDIT 85

Using Environment Variables to Specify Defaults 85

Specifying Shared File System Directories 86

Other Environment Variables 87
Compiling C Programs under OS/390 Batch 87

The LC370C Cataloged Procedure 87

Sample use of LC370C with options 88

Compiler Options (Short Forms) 88

Compiler JCL Requirements 91
Running the compiler with the global optimization phase 92

Running the compiler without the global optimization phase 93

Running the compiler using the debug option 94

Compiler Return Codes 95

The Object Module Disassembler 95
Using the OMD in TSO 95

The OMD370 CLIST 95

Sample OMD370 CLIST command line with options 96

Running the OMD as an LC370 CLIST option 96

Using the OMD under CMS 96

The OMD370 EXEC 97
Running the OMD as an LC370 EXEC option 97

Using the OMD under OS/390 Batch 98

The LC370D cataloged procedure 98

OMD JCL requirements 98

Running the OMD with LC370C 99
OMD options (short forms) 99

Introduction

The following sections describe how to compile C programs in TSO, under CMS, from
the UNIX System Services (USS) shell, and under OS/390 batch.

82 Compiling C Programs in TSO 4 Chapter 5

Compiling C Programs in TSO
This section explains how to use the LC370 CLIST, which invokes the SAS/C

Compiler. Included are discussions on specifying data sets and compiler options in TSO.
Since the compiler is itself a C program, you must ensure that the transient run-time
library is allocated to the DDname CTRANS or is installed in the system link list before
you use the compiler. Your installation will probably cause it to be allocated
automatically. Consult your SAS Installation Representative for C compiler products to
determine if this has been done. If not, use the TSO ALLOCATE command to associate
the library with the DDname CTRANS.

The LC370 CLIST
Invoke the compiler with the LC370 CLIST as follows:

LC370 dsname [options]

The dsname argument is the name of the data set containing the source to be
compiled. The options arguments are compiler options (see Chapter 6, “Compiler
Options,” on page 101). For the data set specification, you must follow standard TSO
naming conventions; that is, if the data set belongs to another user, you must specify
the full name of the data set and enclose the full name in single quotes. If the source
code is in a member of a partitioned data set, you must specify the member name in
parentheses following the data set name, in the normal TSO manner. For example, a
data set belonging to another user can be specified as follows:

’YOURLOG.PROJ4.C’

If a member name is included, the data set can be specified as follows:

’YOURLOG.PROJ4.C(PART1)’

If you do not enclose the data set name in single quotes, the LC370 CLIST assumes
that the final qualifier of the data set name is C. If you do not specify C, it is added
automatically by the CLIST. (The default qualifier can be changed by your site when
the CLIST is installed.) For example, in the command

LC370 PROJ4(PART1)

the C source is assumed to be in member PART1 of the data set prefix.PROJ4.C, where
prefix is the user’s default prefix. You must separate options with one or more commas,
blanks, or tabs. The only order requirement is that the input source filename must be
the first item on the command line following LC370. You can abbreviate options to the
portion shown in uppercase in Table 6.1 on page 102. To negate an option, precede it
with NO. If you use both the positive and negative form of an option (for example, debug
and nodebug), both options are rejected and the default is in effect.

Sample LC370 CLIST command line with options
The following is a sample command line that invokes the compiler and executes the

OMD:

LC370 PROJ4(PART1) PR(’’’ADMIN.PROJ4.LIST’’’) COMN SO NOX OMD V

The following items discuss the sample command line:
� The command line invokes the CLIST to compile member PART1 of data set

prefix.PROJ4.C, where prefix represents the TSO prefix for the user. (The prefix is
usually the same as the user’s ID.)

Compiling C Programs 4 Compiling C Programs from the USS Shell 83

� Since neither object nor noobject is specified and the source data set is not
enclosed in single quotes, object is the default. Object code is stored by default in
the data set userid.PROJ4.OBJ, member PART1.

� The print option specifies that the listing file should be generated and stored in
data set ADMIN.PROJ4.LIST. This data set belongs to another user and is
therefore set off by three single quotation marks before and after the data set
name.

� The lib option is not present; the default nolib is therefore in effect. No header
file libraries are needed other than the standard include library.

� The compiler options specified are comnest, source, noxref, and omd. The
verbose option for the OMD is also specified.

For information on the OMD, see “The Object Module Disassembler” on page 95.

Compiling C Programs from the USS Shell

This section explains how to invoke the SAS/C Compiler from the MVS/ESA USS
shell. As explained in Chapter 15, “Developing Applications for Use with UNIX System
Services OS/390,” on page 331, the shell provides an operating system interface with
commands and features that are very similar to a UNIX operating system.

The following syntax is used to compile and/or link a program from the USS shell:

sascc370 [options] [filename1 [filename2 ...]]

The options argument is a list of compiler options (see Chapter 6, “Compiler
Options,” on page 101), COOL options and/or OS/390 linkage editor options (see
Chapter 7, “Linking C Programs,” on page 131). The filename arguments may contain
any combination of C source files, object modules, and AR370 archives. Any input
source files are compiled and then linked with the object files and the archives.

sascc370 invokes the compiler if there are any input sources files and then invokes
the COOL processor followed by the linkage editor to link the object files. The COOL
and link-edit steps will be bypassed if you specify the -c option. Note that this behavior
is different from the TSO and CMS behavior, where separate commands are required to
compile and link.

The input files to be compiled may reside either in the USS hierarchical file system
(HFS) or in a standard OS/390 partitioned data set. The use of an HFS file is
illustrated in the following example:

sascc370 proj/sort.c

If the program was located in the OS/390 PDS member named
YOURLOG.PROJ4.C(SORT), the compiler could be invoked from the USS shell as
follows:

sascc370 ’//dsn:yourlog.proj4.c(sort)’

Alternately, assuming the initial qualifier YOURLOG is also your userid, the
command could be shortened to:

sascc370 ’//proj4.c(sort)’

In either case, the compiled and linked output module is stored in the file a.out in
your current directory. To specify another file, use the -o option. For instance, the
following command stores the output module in the file ./proj5/sort.

sascc370 -o ./proj5/sort ./proj5/sort.c

84 Compiling C Programs under CMS 4 Chapter 5

Here is an example of compiling a source program and linking it into an OS/390
PDS. The compiler options -Kcomnest and -Krent are used. Also, the linkage editor
option -Brent is specified:

sascc370 -Kcomnest -Krent -Brent -o ’//proj5.load(sort)’ ./proj5/sort.c

Note that in order to invoke the sascc370 command, you must include the directory
where SAS/C was installed in your PATH environment variable. Probably, your site will
define PATH appropriately for you when you start up the shell. If your site does not do
this, contact your SAS Installation Representative for C compiler products to obtain the
correct directory name and add it to your PATH.

Compiling C Programs under CMS

This section explains how to use the LC370 EXEC, which invokes the SAS/C
Compiler under CMS.

The LC370 EXEC
Invoke the compiler with the LC370 EXEC as follows:

LC370 filename [[.] filetype [[.] filemode]] [(options [)]]

or

LC370 ddn:ddname [(options [)]]

where filename is the name of a C source file. The default filetype is C. If filemode is not
specified, all accessed disks are searched. A DDN: type filename is illustrated in the
following example:

LC370 DDN:SYSIN

where SYSIN is interpreted as a DDname defined by a FILEDEF. The following
example is also acceptable:

LC370 DDN:ddname (member)

where member, which must be enclosed in parentheses, refers to a member of an OS/
390 PDS. The member must immediately follow the DDname.

You can also specify Shared File System (SFS) files as input and output when you
invoke the compiler. Specify SFS files when invoking the compiler as follows:

LC370 sf:filename [filetype [dirname]]

where dirname is the complete directory name or the NAMEDEF that has been
logically assigned to it. If you omit filetype or dirname, the default filetype is C; the
default directory name is a period (.), indicating the top directory.

The compiler writes its output files (LISTING, TEXT, and temporary) to different
places, depending on the form of the input fileid. With the CMS fileid, the compiler
writes output files to the input file minidisk, if that minidisk can be written to.
Otherwise, the compiler writes output files to the A-disk. With the DDN: format, the
compiler uses the DDname as the filename of the output files (with an appropriate
filetype). The output files are written to the input file minidisk if possible. Otherwise,
they are written to the A-disk. With the SFS fileid, the compiler writes the output files
to the input file directory if that directory is writable. Otherwise, the compiler writes
output files to the top directory.

Compiling C Programs 4 Using Environment Variables to Specify Defaults 85

You should issue a GLOBAL command for any MACLIB containing #include files
before invoking LC370. The standard C macro library is in LC370 MACLIB. You also
can set default options and default MACLIBs through a GLOBALV variable. See “Using
Environment Variables to Specify Defaults” on page 85.

Sample LC370 EXEC command line with options

The following is another sample command line that invokes the compiler:

LC370 PROG (COMN PR TRA NOX

In this command, the fileid of the source file is PROG C. The compiler options used
are comnest, print, trans, and noxref. These options are discussed in Chapter 6,
“Compiler Options,” on page 101.

Note: The LC370 EXEC does not accept the short form of the compiler options. 4

Compiling C Programs from XEDIT
LCXED is an XEDIT macro that invokes the compiler from within XEDIT. When you

submit the LCXED command, the file currently being edited is compiled. To use the
LCXED macro, enter the following on the XEDIT command line:

LCXED [(options [)]]

options can be any options acceptable to the LC370 EXEC.

Using Environment Variables to Specify Defaults
The compiler references certain environment variables

� to set default values for LC370 EXEC and LCXED XEDIT options

� to specify a list of directories to be searched for included files

� to create a default list of MACLIBs that need to be GLOBALed when the compiler
is invoked

� to create a default list of TXTLIBs that need to be GLOBALed when COOL is
invoked.

The compiler and COOL query environment variables in the GLOBALV group LC370
to determine if any default options, MACLIBs, or TXTLIBs have been specified. Table
5.1 on page 85 lists the environment variables that can be defined in the LC370 group.

Table 5.1 GLOBALV Group LC370 Variables

Variable Contents

_DB directory list to search for debugger table file

_HEADERS list of directories to search for included files

_INCLUDE list of files in CLINK INCLUDE statement

MACLIBS MACLIB(s) to be GLOBALed when the compiler is invoked

86 Specifying Shared File System Directories 4 Chapter 5

Variable Contents

OPTIONS compiler options

TXTLIBS TXTLIB(s) to be GLOBALed when CLINK is invoked

Specifying Shared File System Directories
If you are using the CMS Shared File System (VM/SP Release 6 and later), you can

use the _HEADERS and _INCLUDE environment variables to indicate a directory list
for the compiler to search.

� The _HEADERS environment variable specifies the directory list to search for files
included with the #include preprocessor directive.

� The _INCLUDE environment variable specifies the directory list to search for
TEXT files included with the COOL INCLUDE control statement.

The syntax of specifying an environment variable is as follows:

GLOBALV SELECT LC370 SETL environment-variable directory-list

where directory-list is the list of directories that you want to be searched. You may
specify either a directory name or a NAMEDEF when listing a directory that you want
to be searched. The directories specified by the environment variable are searched in
the order in which you listed them.

For example,

GLOBALV SELECT LC370 SET _INCLUDE .C.PROJ1 .C.PROJ2

instructs the compiler to search the .C.PROJ1 directory first and the .C.PROJ2
directory second as it looks for TEXT files.

You can also specify additional directory lists by defining other environment
variables in the LC370 group. In this way, you can expand the list of directory names or
NAMEDEFs that you want the compiler to search. An example of defining an
environment variable for this purpose is as follows:

GLOBALV SELECT LC370 SETL MORE .SYSTEM.H .LOCAL.H

This example defines MORE as an environment variable that contains the
.SYSTEM.H and .LOCAL.H directory names. Then, for example, you can specify the
MORE environment variable within the _HEADERS variable by preceding it with an
ampersand (&), as in the following:

GLOBALV SELECT LC370 SETL _HEADERS .PROJECT.H .COMMON.H &MORE

In this example, the compiler searches the .PROJECT.H and .COMMON.H
directories and the .SYSTEM.H and .LOCAL.H directories listed in the MORE
environment variable.

You can mix directory names, NAMEDEFs, and environment variables within an
environment variable. Secondary environment variables, such as MORE in the
preceding example, can specify tertiary environment variable names, and so on, to any
depth. An example of specifying a tertiary environment variable follows:

GLOBALV SELECT LC370 SETL MORE .SYSTEM.H .LOCAL.H &MORE2

In this example, the environment variable MORE lists the .SYSTEM.H and
.LOCAL.H directories and the directories listed in the &MORE2 environment variable.
Note again that the tertiary environment variable defined in MORE must be preceded
by an ampersand (&). The ability to list environment variables in successive levels
circumvents the environment variable limit of 255 characters.

Compiling C Programs 4 The LC370C Cataloged Procedure 87

If the compiler does not find the included file in any directory that an environment
variable specifies, it behaves as though you have not specified an environment variable
at all. The compiler searches the top directory first. If it does not find the included file
in the top directory, the compiler searches the accessed minidisks.

Other Environment Variables
You can specify a list of default compiler options with the OPTIONS environment

variable. If compiler options are specified both by using the OPTIONS variable and on
the command line, the command-line options override those specified by the OPTIONS
variable. You can specify a default list of macros to be searched for header files with the
MACLIBS environment variable. You can specify a default list of TXTLIBs to be used
for autocall in COOL with the TXTLIBS environment variable. The EXECs also retain
the current GLOBALed MACLIBs and TXTLIBs before issuing a new GLOBAL
command, and they restore the status after the compiler or COOL has terminated. All
of the EXECs accept the noglobal option. If this option is used, no MACLIBs or
TXTLIBs are GLOBALed by the EXEC. For example, the following CMS GLOBALV
command creates a list of default options to be used when the compiler is invoked:

GLOBALV SELECT LC370 SETL OPTIONS COMNEST RENT HLIST

The following GLOBALV command specifies that the LC370 MACLIB is to be
GLOBALed when the compiler is invoked:

GLOBALV SELECT LC370 SETP MACLIBS LC370

Compiling C Programs under OS/390 Batch

This section discusses the cataloged procedures and compiler JCL requirements
necessary for executing the compiler under OS/390 batch.

The LC370C Cataloged Procedure
The procedure LC370C runs the compiler and, optionally, runs the object module

disassembler. The object module disassembler can be used as an aid in debugging at
the machine-code level. If you want to execute the OMD by itself, refer to “The LC370D
cataloged procedure” on page 98. See Example Code 5.1 on page 87 for typical JCL to
run LC370C.

Example Code 5.1 Sample JCL for Compiling with Procedure LC370C

//COMPILE JOB job card information
//*---
//* COMPILE A C PROGRAM
//* REPLACE GENERIC NAMES AS APPROPRIATE
//*---
//STEP1 EXEC LC370C,PARM.C=’options’
//C.SYSLIN DD DISP=OLD,DSN=your.object.library(member)
//C.SYSIN DD DISP=SHR,DSN=your.source.library(member)
//C.libddn DD DISP=SHR,DSN=your.macro.library
//

88 Compiler Options (Short Forms) 4 Chapter 5

When you use LC370C, you only need to provide DD cards for SYSIN (your source
data set) and SYSLIN (your object data set). Use the DD statement C.libddn to identify
the macro library for any #include ’member.libddn’ statements in your source code.
Refer to “Include-File Processing” on page 11 for detailed information on #include files.

The LC370C procedure contains the JCL shown in Example Code 5.2 on page 88. This
JCL is correct as of the publication of this guide. However, it may be subject to change.

Example Code 5.2 Expanded JCL for LC370C

//LC370C PROC
//**
//* PRODUCT: SAS/C ***
//* PROCEDURE: COMPILATION ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//C EXEC PGM=LC370B
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&&OBJECT,SPACE=(3200,(10,10)),DISP=(MOD,PASS),
// UNIT=SYSDA
//SYSLIB DD DSN=&MACLIB,
// DISP=SHR STANDARD MACRO LIBRARY
//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
/*

Note the following about this JCL:
� When you override SYSPRINT to reference a disk data set, the data set

disposition must be MOD. The data set must not be a member of a PDS.
� SYSLIN and SYSIN may address files in the Hierarchical File System.
� libddn statements may address an HFS directory containing user include files.

Sample use of LC370C with options
The following is a sample EXEC statement that invokes LC370C and passes compiler

options via the PARM parameter:

// EXEC LC370C,PARM.C=’COMNEST,NOTRANS,PRINT,NOXREF’

Compiler Options (Short Forms)
The SAS/C compile process is divided into several phases. Calls to each phase are

normally controlled by a front-end command processor. These front-end processors

Compiling C Programs 4 Compiler Options (Short Forms) 89

accept what are referred to as long-form options. When invoking the various phases,
the front-end processors convert the options applicable to each phase to a form referred
to as short-form options. Each phase only accepts the short-form versions of its options.

If you write your own JCL to invoke the compiler phases, you must pass short-form
options in place of the options documented elsewhere in this book. You should not pass
short-form options to any of the standard front ends, as the results are unpredictable.

The option string is case insensitive and has the following format:

c: compiler-options p: listing-options x: xref-options
o: optimizer-options

where compiler-options, listing-options, xref-options, and optimizer-options are any or
none of the options listed in Table 5.2 on page 90. Options must be separated by blanks.
You can suppress the production of a source listing by using !p: instead of p:.
Similarly, you can suppress the cross-reference by using !x: instead of x:. (Note that
the not sign () can be used instead of the exclamation point (!). This has the advantage
that prints in your JCL listing even on a printer without the full C character set.) To
suppress global optimization, you omit the LCGO step and specify the quad file produced
by phase 1 as input to LC2370. Following are two examples of an options string.

The first example is as follows:

// EXEC PGM=LC1370,PARM=’p: !t -i -h !x:’

This is equivalent to the following LC370C specification to the LC370B front end:

// EXEC LC370C,PARM.C=’NOTRANS,ILIST,HLIST,NOXREF’

The second example uses uppercase characters and the instead of !":

// EXEC PGM=LC1370,PARM=’C: -RX -SXYZ P: O: -L’

This parameter string is equivalent to the following:

// EXEC LC370C,PARM.C=’RENTEXT,SNAME(XYZ),NOPRINT,OPTIMIZE,LOOP’

Options for the global optimization phase should be supplied both to phase 1 and to
the global optimizer. When passing them to phase 1, they should be preceded with o:.
For example, suppose the following EXEC statement is issued:

// EXEC PGM=LC1370,PARM=’o: -il !l’

This is equivalent to the following LC370C specification to the LC370B front end:

// EXEC LC370C,PARM.C=’OPTIMIZE,INLOCAL,NOLOOP’

However, omit the o: when you pass the options to the global optimization phase.
Remember that phase 1 just prints the global optimization options on the listing. You
must pass them as parms to the global optimization phase for them to take effect.

Table 5.2 on page 90 lists the short-form equivalents for the compiler, listing,
cross-reference, and optimizer options. In general, each option is one or two characters.
Precede the short form of a compiler option with a hyphen (–) for the positive form and
with an exclamation point (!) or not sign () for the negative form. (The negative form
is the equivalent of a long form with the NO prefix.) For simplicity, only the positive
form of each option is shown, even if the default value is negative. For example, -r is
given for rent, even though the default value is norent. See Chapter 6, “Compiler
Options,” on page 101 for a complete explanation of each option.

These compiler long form and short form options are functionally equivalent, but
they are not implemented identically. Compiler long form options can be used only
when invoking the compiler with the LC370B driver, which is called by the standard
SAS/C cataloged procedures. LC370B converts the long form options to short form
options for subsequent processing by LC1370.

90 Compiler Options (Short Forms) 4 Chapter 5

Compiler short form options should be used only when directly calling LC1370.
Passing short form options in the PARM string when using a SAS/C cataloged
procedure produces unpredictable results.

Table 5.2 Compiler Option Equivalents

Long Form Short Form Long Form Short Form

Compiler

armode -ea asciiout -ao

at -ca bitfield(n) -bfn

bytealign -b comnest -cc

cxx -cxx dbgmacro -xp

dbhook -xlo debug -d

define(sym=val) -ddsym=val dollars -cd

enforce(n) -y n extname -n!

files(xxx) -fxxx hmulti -ih

igline -igl indep -i

ipath -i$ japan -j

knobinder none lineno -l

mention(n) -y+n pflocal -4

posix -lp ppix -co

pponly -p redef -cr

refdef -rd rent -r

rentext -rx reqproto -cf

sname(name) -sname stmap -s

strict -ll stringdup -cs

suppress(n) -yn term -t

trigraphs -cg undef -u

usearch -hu vstring -v

zapmin(n) -zmn zapspace(n) -zn

Listing

enxref -n exclude -e

hlist -h ilist -i

maclist/mlist -m options -o

overstrike -to pagesize(nn) -pnn

print :p source -s

trans -t upper -u

warn -w

Cross-Reference

Compiling C Programs 4 Compiler JCL Requirements 91

Long Form Short Form Long Form Short Form

hxref -h ixref -i

xref x:

Optimizer

alias -a complexity(n) -icn

depth(n) -idn freg(n) -rfn

greg(n) -rgn inline -in

inlocal -il loop -l

optimize o: rdepth(n) -irn

Compiler JCL Requirements
This section discusses the data definition statements needed to run the compiler

under OS/390 if you are writing your own JCL. The short forms of the compiler options,
used when invoking the compiler without using the LC370B front end, are given. The
compiler runs in three phases. The first phase, LC1370, reads the source file and
produces an intermediate file (called the quad file) and the optional source listing. The
second phase, LCGO, reads the quad file and produces a new, optimized quad file.
LCGO is the global optimization phase referred to elsewhere in this manual. This
phase is optional (unless you are compiling with debug, in which case it cannot be used
because debug and optimize are not compatible). If LCGO is not used, the quad file
produced by LC1370 can be input directly to the third phase. The third phase, LC2370,
reads the quad file and generates the object module.

All compiler options are processed by LC1370, with the exception of the global
optimization options. These are processed by LCGO but are also accepted by LC1370 so
that they can be printed on the listing. If you are writing your own JCL, be sure that
you supply the same global optimization options to both LC1370 and LCGO to ensure
that the options used by LCGO are the same as the options printed by LC1370.

In summary, you can choose to run the compiler with or without the global
optimization phase. If you run the compiler without the global optimization phase, you
can also use the debug option. Sample JCL for each of these approaches is provided
following Table 5.3 on page 91. You need the data definition (DD) statements shown in
Table 5.3 on page 91 to invoke the compiler.

Note: All of the DDnames shown in Table 5.3 on page 91 can be specified as either
an OS/390 data set or an HFS filename, with the exceptions of SYSLIB, H, SYSTERM,
and SYSDBLIB. SYSLIB and H can be specified as either an OS/390 PDS or an HFS
directory, whereas, SYSTERM and SYSDBLIB must not be HFS files or directories. 4

Table 5.3 Data Definition Statements for Program Compilation

DDname Purpose

LC1370

SYSLIB #include files (implementation-provided)

H (or other) #include files (user-provided)

SYSPRINT compiler listing and error messages

92 Compiler JCL Requirements 4 Chapter 5

DDname Purpose

SYSTERM run-time error messages

SYSUT1 intermediate file (passed to LCGO or LC2370)

SYSUT2 debugger information file (only needed if debug in effect)

SYSIN input source (sequential or PDS member)

LCGO

SYSPRINT global optimization messages

SYSTERM run-time error messages

SYSUT1 intermediate file from phase 1

SYSUT3 optimized intermediate file (passed to LC2370)

LC2370

SYSPRINT compiler messages

SYSTERM run-time error messages

SYSUT1 intermediate file from LCGO or phase 1

SYSUT2 debugger information file from phase 1 (only if debug is in effect)

SYSDBLIB output debugger file (must be a partitioned data set)

SYSLIN output object module (sequential or PDS member)

All files other than SYSTERM can be USS HFS files.

Running the compiler with the global optimization phase
The sample JCL in Example Code 5.3 on page 92 illustrates how to run the compiler

under OS/390 while including the global optimization phase.

Example Code 5.3 Sample JCL for Running the Compiler under OS/390 with the Global Optimization Phase

//COMPILE JOB job card information
//*--
//* EXAMPLE JCL FOR COMPILATION.
//* REPLACE GENERIC NAMES AS APPROPRIATE.
//*--
//* SYNTAX ANALYSIS PHASE
//*--
//STEP1 EXEC PGM=LC1370,REGION=1024K,
// PARM=’-R P: -M !X: O: -IN -IL -IC8’
//STEPLIB DD DISP=SHR,DSN=compiler.library
// DD DISP=SHR,DSN=runtime.library
//SYSLIB DD DISP=SHR,DSN=standard.macro.library
//H DD DISP=SHR,DSN=your.macro.library
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)),
// DISP=(NEW,PASS),
// DSN=&&QUADS
//SYSIN DD DISP=SHR,DSN=your.source.library(member)
//*

Compiling C Programs 4 Compiler JCL Requirements 93

/*
//*--
//* GLOBAL OPTIMIZATION PHASE
//*--
//STEP2 EXEC PGM=LCGO,REGION=2048K,COND=(4,LT),
// PARM=’-IN -IL -IC8’
//STEPLIB DD DISP=SHR,DSN=compiler.library
// DD DISP=SHR,DSN=runtime.library
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class
//SYSUT1 DD DSN=&&QUADS,DISP=(OLD,PASS)
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1)),
// DISP=(NEW,PASS),DSN=&&NEWQ
//*
/*
//*--
//* CODE GENERATION PHASE
//*--
//STEP3 EXEC PGM=LC2370,REGION=1024K,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=compiler.library
// DD DISP=SHR,DSN=runtime.library
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class
//SYSUT1 DD DISP=(OLD,PASS),DSN=&&NEWQ
//SYSLIN DD DISP=OLD,DSN=your.object.library(member)
//

Running the compiler without the global optimization phase
The sample JCL in Example Code 5.4 on page 93 illustrates how to run the compiler

under OS/390 without the global optimization phase.

Example Code 5.4 Sample JCL for Running the Compiler under OS/390 without the Global Optimization Phase

//COMPILE JOB job card information
//*--
//* EXAMPLE JCL FOR COMPILATION.
//* REPLACE GENERIC NAMES AS APPROPRIATE.
//*--
//* SYNTAX ANALYSIS PHASE
//*--
//STEP1 EXEC PGM=LC1370,REGION=1024K,
// PARM=’-R P: -M !X:’
//STEPLIB DD DISP=SHR,DSN=compiler.library
// DD DISP=SHR,DSN=runtime.library
//SYSLIB DD DISP=SHR,DSN=standard.macro.library
//H DD DISP=SHR,DSN=your.macro.library
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)),
// DISP=(NEW,PASS),
// DSN=&&QUADS
//SYSIN DD DISP=SHR,DSN=your.source.library(member)
//*

94 Compiler JCL Requirements 4 Chapter 5

/*
//*--
//* CODE GENERATION PHASE
//*--
//STEP2 EXEC PGM=LC2370,REGION=1024K,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=compiler.library
// DD DISP=SHR,DSN=runtime.library
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class
//SYSUT1 DD DISP=(OLD,PASS),DSN=&&QUADS
//SYSLIN DD DISP=OLD,DSN=your.object.library(member)
//

Running the compiler using the debug option
The sample JCL in Example Code 5.5 on page 94 illustrates how to run the compiler

under OS/390 using the debug option. For more information see the SAS/C Debugger
User’s Guide and Reference.

Example Code 5.5 Sample JCL for Running the Compiler under OS/390 with debug option

//COMPILE JOB job card information
//*--
//* EXAMPLE JCL FOR COMPILATION.
//* REPLACE GENERIC NAMES AS APPROPRIATE.
//*--
//* SYNTAX ANALYSIS PHASE
//*--
//STEP1 EXEC PGM=LC1370,REGION=1024K,
// PARM=’-D -R P: -M !X:’
//STEPLIB DD DISP=SHR,DSN=compiler.library
// DD DISP=SHR,DSN=runtime.library
//SYSLIB DD DISP=SHR,DSN=standard.macro.library
//H DD DISP=SHR,DSN=your.macro.library
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)),
// DISP=(NEW,PASS),
// DSN=&&QUADS
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1)),
// DISP=(NEW,PASS),
// DSN=&&SDIF
//SYSIN DD DISP=SHR,DSN=your.source.library(member)
//*
/*
//*--
//* CODE GENERATION PHASE
//*--
//STEP2 EXEC PGM=LC2370,REGION=1024K,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=compiler.library
// DD DISP=SHR,DSN=runtime.library
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class
//SYSUT1 DD DISP=(OLD,PASS),DSN=&&QUADS

Compiling C Programs 4 Using the OMD in TSO 95

//SYSUT2 DD DISP=(OLD,PASS),DSN=&&SDIF
//SYSDBLIB DD DISP=OLD,DSN=your.debugger.library
//SYSLIN DD DISP=OLD,DSN=your.object.library(member)
//

Compiler Return Codes
The compiler detects syntax and semantic errors during compilation and generates a

return code for error conditions and warnings. These codes are summarized in Table 5.4
on page 95.

Table 5.4 Compiler Return Codes

Code Meaning

0 No errors or warnings found; object code is generated.

4 Warning: object code is generated and will probably execute correctly.

8 Serious error: object code is generated but may not execute correctly.

12 Serious error: no object code is generated, and pass two of the compiler is not
executed.

16 Fatal error: compilation immediately terminates.

20 Fatal error: an abend or internal compiler error occurred. Compilation stops and
a dump may be produced.

Note: Under USS, the -mrc compiler option requests that the compiler return the
same return codes as on OS/390 and CMS. If -mrc is not specified, the compiler
conforms to UNIX conventions and returns 0 if there were no errors and a non-zero
code if errors were detected. 4

The Object Module Disassembler
The object module disassembler (OMD) is a useful debugging tool that provides a

copy of the assembler code generated for a C program. If the object module is created
with a line number-offset table (that is, if the default compiler option lineno is in
effect), then the C source code is merged with the assembler instructions. Refer to
“Object Module Disassembler Options” on page 105 information on OMD options.

Using the OMD in TSO
The following sections describe how to use the OMD in TSO.

The OMD370 CLIST
The OMD370 CLIST runs the object module disassembler independently of

compilation. Invoke the object module disassembler with the OMD370 CLIST as follows:

OMD370 dsname [options]

96 Using the OMD under CMS 4 Chapter 5

dsname is the name of the data set containing the object code to be disassembled and
options are OMD options. For the data set specification, you must follow standard TSO
naming conventions; that is, if the data set belongs to some other user, you must specify
the full name of the data set and enclose the full name in single quotes. If the object
code is in a member of a partitioned data set, you must specify the member name in
parentheses following the data set name, in the normal TSO manner. For example, a
data set belonging to another user can be specified as follows:

’YOURLOG.PROJ4.OBJ’

If a member name is included, the data set can be specified as follows:

’YOURLOG.PROJ4.OBJ(PART1)’

If you do not enclose the data set name in single quotes, the OMD370 CLIST
assumes that the final qualifier of the data set name is OBJ. If you do not specify OBJ,
it is added automatically by the CLIST. For example, in the command

OMD370 PROJ4(PART1)

the C object code is assumed to be in member PART1 of the data set named
prefix.PROJ4.OBJ, where prefix is the user’s default prefix. You must separate options
with one or more commas, blanks, or tabs. The only requirement is that the object data
set name must be the first item on the command line following OMD370. You can
abbreviate options to the portion shown in uppercase in Table 6.1 on page 102. To
negate an option, precede it with NO. If you use both the positive and negative form of
an option (for example, trans and notrans), both options are rejected.

Sample OMD370 CLIST command line with options
Here is a sample command line that invokes the OMD:

OMD370 PROJ4(PART1) MER(’’’ADMIN.PROJ4.SOURCE’’’) NOTRANS

The following items discuss the sample command line:
� The command line invokes the CLIST to disassemble member PART1 of data set

userid.PROJ4.OBJ, where userid represents the ID of the TSO user.
� Since print is not specified and the source data set is not enclosed by single

quotes, the listing is written to the data set userid.PROJ4.LIST.
� The merge option specifies that the source for the object module should be read

from the data set ADMIN.PROJ4.SOURCE and merged with the OMD output.
This data set belongs to another user and is therefore set off by three quotation
marks before and after the data set name.

� The notrans option specifies that special characters in the source should not be
translated or overstruck when they are printed.

Running the OMD as an LC370 CLIST option
The OMD can be executed as an option on the LC370 CLIST. To execute the OMD as

a part of compilation, use the option omd. If the compiler option lineno is allowed to
default, the OMD produces generated assembler output merged with the C source code.
The format is as follows:

LC370 dsname [options] OMD [OMD options]

Using the OMD under CMS
The following sections describe how to use the OMD under CMS.

Compiling C Programs 4 Using the OMD under CMS 97

The OMD370 EXEC
The OMD370 EXEC invokes the object module disassembler without invoking the

compiler. You can invoke the OMD with either a CMS fileid or a SAS/C sf: style file
identifier. The OMD370 EXEC does not accept DDnames. Invoke the OMD using a
CMS fileid with one of the following forms:

OMD370 filename [filetype] [filemode] [(options[)]]
OMD370 filename.filetype[.filemode] [(options[)]]

where filename, filetype and filemode identify the TEXT file to be disassembled, and
options is any of the CMS options for the OMD shown in Table 6.2 on page 105. If you
omit the filetype or filemode, the OMD uses TEXT as the default filetype and an
asterisk (*) as the default filemode.

To disassemble an object file which resides in the shared file system, you can use
OMD370 specifying a SAS/C sf: style file identifier, as follows:

OMD370 sf:filename [filetype] [dirname] [(options[)]]

where dirname is the complete dirname or the NAMEDEF that has been logically
assigned to it, and options is any of the CMS options for the OMD list in Table 6.2 on
page 105. If you omit filetype or dirname, the default filetype is TEXT; the default
dirname is a period (.).

The OMD370 EXEC can also be used to disassemble a module stored as a member of
a TEXT library (TXTLIB). In this case, specify the member name as the filename, and
specify the TXTLIB name using the lib option, as in the following example:

OMD370 myprog (lib mylib

where MYPROG is a member of MYLIB TXTLIB.
Other OMD options allow you to specify the location of the source code for the

disassembled module and how the disassembled output file should be written. By
default, the OMD writes a file called filename ASM on the A-disk.

The me option is used to specify the fileid of the source file which should be merged
into the OMD output. The fileid may be either a CMS fileid or an sf: style file
identifier. The default filetype is C.

If the me option is not used, OMD370 looks for the source file on an accessed
minidisk if the input fileid was a CMS fileid. If the input fileid was a sf: style file
identifier, it looks for the source file in the same directory of the input file. The source
file is assumed to have a filetype of C and the same filename as the input file.

Several OMD370 options allow you to control the location of the OMD output. The
print option can be used to write the output to the virtual printer, and the type option
can be used to write the output to the terminal.

The pr option allows you to specify the fileid of the OMD’s output file. The fileid may
be either a CMS fileid or a SAS/C sf: style file identifier. The default filetype is ASM.
Note that the type and print options are ignored when pr is specified.

If neither print, type, nor pr is specified, OMD370 writes its output file to a file
whose filetype is ASM and whose filename is the same as the input file’s. If the input
file was specified using a CMS fileid, the ASM file is written to the minidisk containing
the input file, or to the A-disk if the input minidisk is not writable. If the input file was
specified using a sf: style file identifier, the ASM file is written to the input file
directory if it is writable, or to the top directory if the input file directory is not writable.

Running the OMD as an LC370 EXEC option
The OMD can be executed as an option on the LC370 EXEC. To execute the OMD as

part of compilation, use the omd option. The option produces generated assembler
language output based on the compiler-produced object code. If the lineno option has

98 Using the OMD under OS/390 Batch 4 Chapter 5

been used, the C source code is merged with the assembler language statements. When
the OMD option to the LC370 EXEC is used, any OMD options also can be used.

Using the OMD under OS/390 Batch
The following sections describe how to use the OMD under OS/390 batch.

The LC370D cataloged procedure
The procedure LC370D runs the OMD independently of compilation. When you use

LC370D, you need DD cards for SYSLIN (your object data set), and if you are running
with the merge option, you need DD cards for SYSIN (your source data set). See
Example Code 5.6 on page 98 for typical JCL. See Chapter 6, “Compiler Options,” on
page 101 for detailed information about the OMD options.

Example Code 5.6 Sample JCL for Running the LC370D Cataloged Procedure

//DISASMBL JOB job card information
//*---
//* EXAMPLE JCL FOR DISASSEMBLY
//* REPLACE GENERIC NAMES AS APPROPRIATE.
//*---
//STEP1 EXEC LC370D,PARM.D=’options ’
//D.SYSLIN DD DISP=SHR,DSN=your.object.library(member)
//D.SYSIN DD DISP=SHR,DSN=your.source.library(member)
//

SYSLIN or SYSIN or both may reference USS HFS files.
Example Code 5.7 on page 98 shows the JCL for the procedure LC370D. This JCL is

correct as of the publication of this guide. However, it may be subject to change. 1ln

Example Code 5.7 Expanded JCL for LC370D

//LC370D PROC
//**
//* PRODUCT: SAS/C ***
//* PROCEDURE: DISASSEMBLY ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//D EXEC PGM=LC370DM
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

OMD JCL requirements
This section discusses the data definition statements needed to run the OMD under

OS/390 if you are writing your own JCL. As is the case with compiler options, OMD

Compiling C Programs 4 Using the OMD under OS/390 Batch 99

options must be given in their short forms when OMD370 is invoked directly. You need
the data definition (DD) statements shown in Table 5.5 on page 99 to invoke the OMD.

Table 5.5 Data Definition Statements Used by the OMD

DDname Purpose

SYSIN C source matching the SYSLIN input

SYSLIN object module to be disassembled

SYSPRINT standard output

SYSTERM error output

SYSIN can be specified as DD DUMMY if the source code is not available or if a
merged listing is not required.

Example Code 5.8 on page 99 illustrates how to invoke the OMD.

Example Code 5.8 Sample JCL for Running the OMD

//JOBNAME JOB job card information
//*
//OMD EXEC PGM=OMD370,PARM=’options ’
//STEPLIB DD DISP=SHR,DSN=compiler.library
// DD DISP=SHR,DSN=runtime.library
//*
//SYSIN DD DSN=your.source.library(member) ,DISP=SHR
//SYSLIN DD DSN=your.object.library(member) ,DISP=SHR
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class

Note that you can easily run the OMD when a module is being compiled using the
LC370C cataloged procedure.

Running the OMD with LC370C
The OMD can be executed as an option in LC370C. To execute the OMD as a part of

compilation, use the option omd. If the compiler option lineno is allowed to default, the
OMD produces generated assembler output merged with the C source code. You can
also use any OMD options, for example:

// EXEC LC370C,PARM.C=’TRANS,PRINT,OMD,VERBOSE’

In this example, trans and print are compiler options, omd invokes the OMD after
the compiler has completed, and verbose is an OMD option. See Chapter 6, “Compiler
Options,” on page 101 for more information on compiler options and OMD options.

OMD options (short forms)
The OMD takes seven short-form options, as summarized in Table 5.6 on page 100.

The options can be in upper- or lowercase. As with the short forms of the compiler
options, precede positive forms of the options with a hyphen (-) as the initial character;
precede negative forms with an exclamation point (!) or a not sign (). For simplicity,
the table indicates only the positive form of the option. Refer to Chapter 6, “Compiler
Options,” on page 101 for complete descriptions of these options.

100 Using the OMD under OS/390 Batch 4 Chapter 5

Table 5.6 OMD Option Equivalents

Long Form Short Form Long Form Short Form

c -c japan -j

merge -s overstrike -to

trans -t upper -u

verbose -v

The following is an example of an EXEC statement that invokes the OMD with the
options notrans and verbose:

// EXEC PGM=OMD370,PARM=’!T -V’

101

C H A P T E R

6
Compiler Options

Introduction 101
Option Summary 101

Object Module Disassembler Options 105

Option Descriptions 105

Listing File Description 126

Interaction between the term, print, disk, and type Options 127
Preprocessor Options Processing 128

Preprocessor Symbols 128

The #pragma options statement 129

Introduction
The SAS/C Compiler accepts a number of options enabling you to alter the way code

is generated, the appearance of listing files, and other aspects of compilation. This
chapter explains what options are available and how to specify them in TSO, under
CMS, and under OS/390.

Since the object module disassembler (OMD) is often executed as part of compilation,
the options accepted by the OMD are also discussed in this chapter.

Option Summary
Table 6.1 on page 102 summarizes all compiler options. The option name is in the

first column. Capital letters indicate the abbreviation for the option. The second
column lists the default for each option. For the default of some options, you are
referred to the description of the option later in the chapter. The third column indicates
how the option is specified from the UNIX System Services (USS) shell. The fourth
column indicates whether the option can be negated. An exclamation point (!) means
that the option can be negated. A plus sign (+) means that the option cannot be
negated. (To negate an option under OS/390 or CMS, precede the option name with NO.
To negate an option under the shell, insert no after the -K beginning the option name.
For instance, to negate the IMULTI option under OS/390 or CMS, use NOIMULTI.
Under USS, use -Knoimulti.) The next three columns list the environment(s) for
which an option is implemented. The Affects Process column names the process that
the option affects as follows:

� C compilation
� O object module disassembler (OMD)
� L listing

102 Option Summary 4 Chapter 6

� X cross-referencing
� M message generation
� G global optimization

An asterisk (*) under the Sys column means that the form or meaning of the option
may differ depending on the environment in which the compiler is running. Detailed
information about the options follows the table.

Note: Under OS/390 batch, the USS shell, and CMS, if you specify contradictory
options, the option specified last is used. In TSO, the options are concatenated and
treated as a single invalid option. 4

Table 6.1 Compiler Options

Option
Name

Default USS Negation OS/
390
Batch

TSO CMS Affects
Process

Sys

ALias NOALias -Kalias ! * * * G

ARlib see description + * C *

ARMode NOARMode -Karmode ! * * * C

ASciiout NOASciiout -Kasciiout ! * * * C

AT NOAT -Kat ! * * * C

AUtoinst NOAUtoinst -Kautoinst ! * * * C

BItfield NOBItfield -Kbitfield=n ! * * * C *

BYtealign NOBYtealign -Kbytealign ! * * * C

C C -c !

+

* * * O

C

COMNest NOCOMNest -Kcomnest ! * * * C

COMPlexity COMPlexity(0) -Kcomplexity=u + * * * G *

CXX NOCXX -cxx ! * * * C

DBHook NODBHook -Kdbhook ! * * * C

DBGLib see description + * C *

DBGMacro NODBGMacro -Kdbgmacro ! * * * C

DBGObj NODBGObj -Kdbgobj ! * * * C

DEBug NODEBug -Kdebug[=filename] ! * * * C

DEFine see description -D[sym=val] ! * * * C *

DEPth DEPth(3) -Kdepth=n ! * * * C *

DIgraph see description -Kdigraph[n] ! * * * C

DIsk see description ! * C *

DOllars NODOllars -Kdollars ! * * * C

ENForce see description -w~n + * * * M *

ENXref NOENXref -Kenxref ! * * * C

EXClude EXClude -Kexclude ! * * * L

Compiler Options 4 Option Summary 103

Option
Name

Default USS Negation OS/
390
Batch

TSO CMS Affects
Process

Sys

EXTname see description -Kextname ! * * * C *

FIles see description + * C, O *

FReg FReg(2) -Kfreg=n ! * * * G *

GLobal GLobal ! * C *

GReg GReg(6) -Kgreg=n + * * * G *

HList NOHList -Khlist ! * * * L

HMulti HMulti -Kmulti ! * * * C

HXref NOHXref -Khxref ! * * * X

IGline NOIGline -Kigline ! * * * C

IList NOIList -Kilist ! * * * L

IMulti IMulti -Kimulti ! * * * C

INDep NOINDep -Kindep ! * * * C

INLine INLine -Kinline ! * * * G

INLOcal NOINLOcal -Kinlocal ! * * * G

IPath see description -Ipathname + * * * C *

IXref NOIXref -Kixref ! * * * X

Japan NOJapan -Kjapan ! * * * C, L,
X, M,
O

-
Knobinder

-Kbinder -Knobinder

LIB NOLIB ! * * C *

LINeno LINeno -Klineno ! * * * C

LOop LOop -Kloop ! * * * G

MAClist,
MList

NOMAClist,
NOMList

-Kmaclist ! * * * L

ME see description + * O *

MEMber see description + * C *

MENtion see description -w+n + * * * M *

MERge MERge -mrc !

+

* * * O

C

*

OBject see description -o filename ! * * C *

OMD NOOMD -Komd[=filename] ! * * * O

OPTIMize NOOPTIMize -Koptimize ! * * * G

OPTIOns OPTIOns -Koptions ! * * * L

OVERStrike NOOVERStrike -Koverstrike ! * * * L, X,
O

104 Option Summary 4 Chapter 6

Option
Name

Default USS Negation OS/
390
Batch

TSO CMS Affects
Process

Sys

PAgesize PAgesize(60) -Kpagesize=nn + * * * L, X *

PFLocal NOPFLocal -Kpflocal ! * * * C

POsix see description -Kposix ! * * C *

PPIx NOPPIx -Kppix ! * * * C

PPOnly NOPPOnly -P ! * * * C *

PR see description + * O *

PRInt see description -
Klisting[=filename]

! * * * L, X,
O

*

RDEpth REDept(1) -Krdepth=n + * * * G *

REDef NOREDef -Kredef ! * * * C

REFDef NOREFDef -Krefdef ! * * * C

RENT NORENT -Krent ! * * * C

RENTExt NORENTExt -Krentext ! * * * C

REQproto NOREQproto -cf ! * * * C

SMPxivec NOSMPxivex -Ksmpxivec ! * * * C

SName see description -Ksname=sname + * * * C *

SOurce SOurce -Ksource ! * * * L

STMap NOSTMap -Kstmap ! * * * X

STRICt NOSTRICt -Kstrict ! * * * M

STRINgdup STRINgdup -Kstringdup ! * * * C

SUppress see description -wn

-temp=directory

+

+

* * * M

C

TErm see description ! * * * M *

TRAns TRAns -Ktrans ! * * * L, X,
O

TRIgraphs NOTRIgraphs -Ktrigraphs ! * * * C

TYpe see description + * C *

UNdef NOUNdef -Kundef ! * * * C *

UPper NOUPper -Kupper ! * * * L, X,
O

USearch see description -Kusearch ! * * * C *

-v + C

VErbose NOVErbose ! * * * O

VString NOVString -Kvstring ! * * * C

Warn Warn -Kwarn ! * * * M

Xref Xref -Kxref ! * * * X

Compiler Options 4 Option Descriptions 105

Option
Name

Default USS Negation OS/
390
Batch

TSO CMS Affects
Process

Sys

ZAPMin ZAPMin(24) -Kzapmin=n + * * * C *

ZAPSpace ZAPSpace(1) -Kzapspace=n + * * * C *

Object Module Disassembler Options

Table 6.2 on page 105 shows OMD options from Table 6.1 on page 102. Not all of
these options are valid for every operating environment.

Table 6.2 OMD Options

Compiler and OMD Options OMD-only Options

disk c

files me

japan merge

overstrike pr

print verbose

trans

type

upper

If you use the OMD option to run the object module disassembler at compile time, the
options in the first column in Table 6.2 on page 105 affect the OMD (and other
processes). For example, used on the command line, overstrike affects any OMD
listing you request, as well as any other listings you ask for.

The options shown in the second column apply to the object module disassembler only.
If you run the OMD independent of compilation, you can use all of the options with

an O in the Affects Process column in Table 6.1 on page 102 and summarized in Table
6.2 on page 105, subject to system dependencies. (For example, the files option is
valid for OS/390 batch only.) For details, refer to each option description on the
following pages and to the description of command lines to invoke the compiler and
OMD for your operating system.

Option Descriptions

alias (-Kalias under USS)
specifies that the compiler should assume worst-case aliasing.

See “The optimize Option” on page 63 for details about this option. This option
can be used only with the optimize option.

106 Option Descriptions 4 Chapter 6

arlib
under TSO, specifies an AR370 archive that is used to store the compiler’s output.
The form of this option is as follows:

arlib(archive)

The archive parameter specifies the data set name of the AR370 archive. If the
data set belongs to another user, the fully qualified name of the data set must be
given, and the name must be preceded and followed by three single quotes. For
example:

’’’userid.archive-name.AR’’’

If the archive name is not quoted and does not have a final qualifier of AR, a
final qualifier of AR is appended. arlib may be used in conjunction with the
member option, which specifies the AR370 library member name. If you do not use
the member option, the LC370 CLIST will use the member name of your source file
if possible or prompt you to enter the member name.

armode
specifies that code that uses the ESA access registers may be generated. This
option is required to compile code that uses far pointers. See “Optimization and
Far Pointers” on page 79 for more information on far pointers and access register
mode.

asciiout (-Kasciiout under USS)
requests ASCII translation of character and string literals. The default is
noasciiout, and the minimum abbreviation is as. When the asciiout option is
used, the compiler generates string literals and character literals using the ASCII
character set instead of the default EBCDIC character set. String literals are
translated from IBM Code Page 1047 to ISO 8559-1, the Latin-1 character set.

Use the asciiout option with extreme care. The run-time library expects all
string and character literals to be in EBCDIC format. Therefore, when using the
asciiout option, you should avoid calls to library functions that pass character or
string literals unless great care is taken. For example, calls to printf, scanf,
and so on that use literal format strings may not produce the intended results
because the functions cannot interpret an ASCII format string.

sprintf(buffer, "Number of %s was %d.\n", things, n);
/* This won’t work if ASCII is used! */

at (-Kat under USS)
allows the use of the call-by-reference operator @.

autoinst (-Kautoinst under UNIX System Services)
The autoinst option controls automatic implicit instantiation of template
functions and static data members of template classes. The compiler organizes the
output object module so that COOL can arrange for only one copy of each template
item to be included in the final program. In order to correctly perform the
instantiation, the autoinst option must be enabled on a compilation unit that
contains both a use of the item and its corresponding template identifier. (See the
SAS/C C++ Development System User’s Guide for information about templates
and automatic instantiation.)

Note: COOL must be used if this option is specified. 4

bitfield n (-Kbitfield=n under USS)
allows bitfields that are not int and specifies an allocation unit. This option
requires that you specify the allocation unit n to be used for plain int bitfields.
The values can be either 1, 2, or 4, which specifies that the allocation unit be a

Compiler Options 4 Option Descriptions 107

char, short, or long, respectively. See “Noninteger bitfields” on page 34 for more
details.

In TSO and under OS/390 batch, the bitfield option is specified as follows:

bitfield(value)

For example, the following indicates that bitfields that are not int are accepted
and that the allocation unit for int bitfields is a short:

bi(2)

Under CMS, the bitfield option is specified as follows:

bitfield value

For example, the following indicates that bitfields that are not int are accepted
and that the allocation unit for int bitfields is a long:

bitfield 4

bytealign (-Kbytealign under USS)
aligns all data on byte boundaries. Most data items, including all those in
structures, are generated with only character alignment. Because formal
parameters are aligned according to normal IBM 370 conventions, even with the
bytealign option, you can call functions compiled with byte alignment from
functions that are not compiled with byte alignment and vice versa.

If functions compiled with and without byte alignment are to share the same
structures, you must ensure that such structures have exactly the same layout.
The layout is not exactly the same if any structure element does not fall on its
usual boundary, for example, an int member’s offset from the start of the
structure is not divisible by 4. You can force such alignment by adding
unreferenced elements of appropriate length between elements, as necessary. If a
shared structure does contain elements with unusual alignment, you must compile
all functions that reference the structure with the byte alignment option.

c
identifies the object code to be disassembled as code generated by the compiler.
The negative (noc) means that the object code to be processed by the OMD was not
generated by the compiler. c is an OMD-only option. See also omd and object.

-c (USS only)
specifies that only the compiler is to be run. After completion of compilation, the
prelink and link steps are bypassed. Normally, these steps follow compilation
under USS.

comnest (-Kcomnest under USS)
allows nested comments.

complexity (-Kcomplexity=n under USS)
specifies the maximum complexity the function can have and remain eligible for
default inlining for functions that have not been defined using the __inline
keyword. Used with optimize only.

Specify the complexity option as follows, where n is a value between 0 and 20
inclusive:

� under OS/390 batch: complexity(n)

� in TSO: complexity(n)

� under CMS: complexity n

See “The optimize Option” on page 63 for more details.

108 Option Descriptions 4 Chapter 6

cxx (-cxx under USS)
specifies that the source code being compiled is generated by the SAS/C++
translator. For more information on the cxx option, refer to the SAS/C C++
Development System User’s Guide.

dbhook (-Kdbhook under USS)
generates hooks in the object code that is generated by the compiler. When you
compile a module with the debug option, the dbhook option is implied. dbhook can
be used with the optimize option to enable limited debugging of optimized object
code. The default is nodbhook. See “The optimize Option” on page 63 for more
details.

dbglib
specifies a debugger file qualifier that provides for customization of the destination
of the debugger file.

For each platform, dbglib specifies something different:

ON MVS:
A SAS/C file specification that denotes a PDS. The filename is constructed
using whatever is supplied, followed by (sname).

On CMS:
If the option specified starts with a ’/’, then it is assumed that this is either a
’//sf:’ file specification or an SFS path. In this case, the specification is
prepended to the filename. For example,

dbglib(//sf:ted/)

will generate the name

//sf:/ted/sname.DB

If the option specified does not start with a ’/’ then it is considered to be a
filemode, and will be appended to the filename. For example,

dbglib(d2)

will generate the name

sname.db.d2

On USS:
The option specified is a path name to be prepended to the filename. For
example,

dbglib(/u/sasc/dbg/)

will generate a filename of

/u/sasc/dbg/sname.dbg370

The option has different defaults on the various platforms:

ON MVS:
dbglib(ddn:sysdblib)

On CMS:
dbglib(A)

On USS:
dbglib()

For the various platforms, the default filename has different forms:

On MVS:
ddn:sysdblib(sname)

Compiler Options 4 Option Descriptions 109

On CMS:
sname.DB.A

On USS:
hfs:sname.dbg370

Note: On USS and UNIX platforms, the sname is capitalized and remains so
for debugger filename generation. 4

The short form of this option is -db.

dbgmacro (-Kdbgmacro under USS)
specifies that definitions of C macro names should be saved in the debugger file.
Note that this substantially increases the size of the file.

dbgobj (-Kdbgobj under OpenEditon)
The dbgobj option causes the compiler to place the debugging information in the
output object file, instead of a separate debugger file. If the debugging information
is not placed in the object file, you cannot debug the automatically instantiated
objects.

If automatic instantiation is specified with the autoinst option, dbgobj is
enabled automatically.

By default, the dbgobj option is off. The short form for the option is -xc. See
the SAS/C C++ Development System User’s Guide for information about templates
and automatic instantiation.

Note: COOL must be used if this option is specified. 4

debug (-Kdebug[=filename] or -g under USS)
allows the use of the debugger to trace the execution of statements at runtime.
For programs not compiled with debug, only calls can be traced. Note that if you
use debug, lineno is implied. Also note that the debug option causes the compiler
to suppress all optimizations as well as store and fetch variables to or from
memory more often.

Under the USS shell, you can supply the name of the debugger symbol table file
by specifying -Kdebug=filename. If -Kdebug without a filename or -g is specified,
the debugger file is stored in an HFS file with a .dbg370 extension. The name of
the default debugging file is derived from the source filename in the same way as
the object file, except for the .dbg370 extension. See the object option for a
description of this process. Note that you should not specify an explicit filename if
you compile more than one source file at a time, since each individual compilation
will overwrite the debugging file.

define (-D[sym=val] under USS)
defines a symbol with an optional value. The following are further instructions for
using define in different environments.

� Under OS/390 batch, the define option is specified as follows:

define(symbol)

or

define(symbol=value)

The following is an example of defining a symbol:

def(USERDATA)

Under OS/390 batch, you can use the define option more than once to
define more than one symbol.

� In TSO, the specification is the following:

define(symbol)

110 Option Descriptions 4 Chapter 6

or

define(symbol=value)

The following is an example of defining a symbol:

define(TSO=1)

In TSO, the define option can be used only once. If you specify this option
more than once, only the last specification is used. Note that the TSO CLIST
language automatically converts both the symbol and the value to uppercase.

� Under CMS, the specification is the following:

define symbol

or

define symbol=value

The following are examples of defining a symbol:

define USERDATA

and

define CMS=1

Under CMS, you can use the define option more than once to define more
than one symbol.

� Under the USS shell, the specification is the following:

-Dsymbol

or

-Dsymbol=value

The following are examples of defining a symbol:

-DUSERDATA

and

-DUNIX=1

Under the shell, you can use the -D option more than once to define more
than one symbol.

depth (-Kdepth=n under USS)
specifies the maximum depth of function calls to be inlined. depth is used with
optimize only. See “The optimize Option” on page 63 for more information.

Specify depth as follows, where n is between 0 and 6 inclusive (the default is 3):

� under OS/390 batch: depth(n)

� in TSO: depth(n)

� under CMS: depth n

digraph (-Kdigraph under UNIX System Services)
Digraph options enable the translation of the International Standard Organization
(ISO) digraphs and/or the SAS/C digraph extensions.

A digraph is a two character representation for a character that may not be
available in all environments. The different options allow you to enable subsets of
the full diagraph support offered collectively by ISO and SAS/C. Table 6.3 on page
111 gives a brief description of the new digraph compiler options.

Compiler Options 4 Option Descriptions 111

Table 6.3 Digraph Descriptions

Digraph

No. Description

0 Turn off all digraph support

1 Turn on New ISO digraph support

2 Turn on SAS/C Bracket digraph support - ’(|’ or ’|)’

3 Turn on all SAS/C digraphs.

Table 6.4 on page 111 provides the default values and an example of how to
negate the options in each of the different environments.

Table 6.4 Digraph Default and Negated Forms

Environment Default Options Negated Options

IBM 370 (Long Form) DI(1),
DI(3)

NODI(1),
NODI(3)

IBM 370 and Cross (Short
Form)

-cgd1,
-cgd3

!cgd1,
!cgd3

Cross Compiler and IBM
370 UNIX System Services

-Kdigraph1,
-Kdigraph3

!Kdigraph1,
!Kdigraph3

Table 6.5 on page 111 lists several of the ISO digraph sequences from the C++
ANSI draft. Basically, the alternative sequence of characters is an alternative
spelling for the primary sequence. Similar to SAS/C digraphs, substitute sequences
are not replaced in either string constants or character constants. SAS/C Release
7.00 supports the left column of pairs of primary and alternative sequences.

Table 6.5 ISO digraph Alternative Tokens

Rel 6.50 Tokens

Primary Alternate

{ <%

} %>

[<:

] :>

%:

%:%:

Note: See “Special Character Support” on page 20 for more information on
digraphs. 4

112 Option Descriptions 4 Chapter 6

disk
writes the listing file on the A-disk. disk is a valid option under CMS only. When
using the disk option, remember the following:

� If you request disk but do not specify term or noterm, the default is term; the
listing file goes to the disk, and error messages are also sent to the terminal.

� If you do not specify print, noprint, or type, the default is disk. (Note that
these options are also mutually exclusive.)

See also print, term, and type, and refer to Table 6.6 on page 126 and Table
6.8 on page 127. If more than one of the type, print, or disk options is specified,
the last one entered is in effect.

dollars (-Kdollars under USS)
allows the use of the dollar sign ($) character in identifiers, except as the first
character.

enforce (-w~n under USS)
treats one or more warning conditions as error conditions. Each warning condition
is identified by its associated message number. Only warnings in the ranges 0-199
and 300-499 are affected. Conditions whose numbers have been specified are
treated as errors, and the compiler return code is set to 12 instead of 4.

The following are further instructions for using enforce in different
environments:

� In TSO, specify the enforce option as follows:

enforce(n)

where n is the number of the message associated with the warning condition.
If more than one warning condition is to be enforced, specify each number in
a comma-delimited list, enclosed by quotes, as follows:

enforce(’n1,n2,...’)

Any number of warning conditions can be specified. If both suppress and
enforce specify the same warning message number, the warning is enforced.

� Under CMS, use the following:

enforce n

or

enforce n1 n2 ...

� Under OS/390 batch, use the following:

enforce(n)

or

enforce(n1,n2,...)

� Under the USS shell, use the following:

-w~n

or

-w~n1 -w~n2 ...

enxref (-Kenxref under USS)
causes the compiler to generate two extended names cross-references. The first
cross-reference is in alphabetical order by C identifier (the name in the source file).
The second cross-reference is in alphabetical order by link id, which is the

Compiler Options 4 Option Descriptions 113

@@xxxxxx form assigned by the compiler. The default is noenxref. See also the
extname option description.

exclude (-Kexclude under USS)
omits listing lines from the formatted source that are excluded by #if, #ifdef,
and so on. For example, in the following sequence

#ifdef MAX_LINE
printf("Line overflow\n");

#endif

the exclude option omits the printf statement from the formatted source
listing if MAX_LINE is not currently defined with the #define command.

extname (-Kextname under USS)
enables the use of extended names. The default is noextname for TSO, CMS, and
OS/390 batch and -Kextname for USS.

The compiler provides extended names support that enables compiler processing
of extended names of up to 64K in length. An extended name is any name that
identifies an extern variable or that identifies an extern or static function and
fits either of the following criteria:

� is greater than eight characters long
� is eight characters or fewer in length but contains uppercase alphabetic

characters and is not the name of an __asm or high-level language (for
example, __pascal) function.

Note: If you specify the extname option, be sure to include the appropriate
header files for any library functions that you use. Some library functions, such as
localtime and setlocale, are more than eight characters in length and therefore
fit the criteria for extended names. The library header files for these functions all
contain #pragma map statements that change the function names to names that
are not extended. For example, <time.h> contains the following statement: 4

#pragma map(localtime, "#LOCALTM")

This statement converts localtime to a shorter name that the compiler does
not treat as extended. If you do not include the appropriate header file for a
library function with a long name, the compiler treats it as an extended name and
generates a reference to the extended name that cannot be resolved from the
standard library. For more information on #pragma map, refer to “The #pragma
map statement” on page 37.

files
replaces SYS in compiler DDnames with the prefix xxx. This option is valid for OS/
390 batch only.

The only DDname in which SYS cannot be replaced is SYSTERM. The xxx
prefix can contain from one to three characters. For example,

files(job)

substitutes the DDnames in column 1 with those in column 2, as follows:

column 1 column 2

SYSIN JOBIN

SYSPRINT JOBPRINT

SYSLIN JOBLIN

114 Option Descriptions 4 Chapter 6

column 1 column 2

SYSLIB JOBLIB

SYSUT1 JOBUT1

SYSUT2 JOBUT2

SYSUT3 JOBUT3

SYSDBLIB JOBDBLIB

SYSPROTO JOBPROTO

SYSPPOUT JOBPPOUT

freg (-Kfreg=n under USS)
specifies the maximum number of floating-point registers that the compiler can
assign to register variables in a function. freg is used with optimize only. The
format is

freg n

where n is 0 to 2 inclusive (the default is 2). Under OS/390 and TSO, freg is
coded as freg(n); under CMS it is coded as freg n. See “The optimize Option” on
page 63 for additional details.

global
invokes default values for MACLIBs set with the CMS GLOBALV command. This
option is valid under CMS only.

If you specify noglobal, automatic reference to the GLOBALV variable
MACLIBs is suppressed. However, the GLOBALV variable OPTIONS is still used.

greg (-Kgreg=n under USS)
specifies the maximum number of registers that the compiler can assign to register
variables in a function. greg is used with optimize only. The format is greg n
where n is 0 to 6 inclusive (the default is 6). Under OS/390 and TSO, greg is
specified as GREG(n). Under CMS, it is specified as greg n. See “The optimize
Option” on page 63 for more details.

hlist (-Khlist under USS)
includes standard header files in the formatted source listing. These are files that
are included using the following syntax:

#include <name.h>

or

#include <name>

hmulti (-Khmulti under USS)
specifies that system header files should be included each time they are referenced
by a #include statement, even if the same file has previously been included. If
nohmulti is specified, the compiler only includes one copy of the header file code
even if the header file is specified by more than one #include <filename>
statement. hmulti is the default.

hxref (-Khxref under USS)
prints references in standard header files in the cross-reference listing. See hlist
for a description of header files.

Compiler Options 4 Option Descriptions 115

igline (-Kigline under USS)
causes the compiler to ignore any #line statements in the input file. The default
is noigline.

ilist (-Kilist under USS)
includes user header files referenced by the #include statement in the formatted
source listing. The #include filename appears in the right margin of each line
taken from the #include file. See also hlist.

imulti (-Kimulti under USS)
specifies that user header files should be included each time they are referenced by
a #include statement, even if the same file has previously been included. If
noimulti is specified, the compiler only includes one copy of the header file code
even if the header file is specified by more than one #include "filename"
statement. imulti is the default.

indep (-Kindep under USS)
generates code that can be called before the C framework is initialized or code that
can be used for interlanguage communication. See Chapter 14, “Systems
Programming with the SAS/C Compiler,” on page 273 and Appendix 6, “Using the
indep Option for Interlanguage Communication,” on page 393 for a detailed
description of the use of this option.

inline (-Kinline under USS)
inlines small functions identified by complexity and those with __inline
keyword. inline is used with optimize only. See “The optimize Option” on page
63 for more details.

inlocal (-Kinlocal under USS)
inlines single-call static functions. inlocal is used with optimize only. See “The
optimize Option” on page 63 for more information.

ipath (-Ipathname under USS)
specifies a location that is to be searched for header files. The pathname may
specify an HFS directory, an OS/390 PDS, or a CMS shared-file system directory.
If you are running under the USS shell, the pathname is assumed to be an USS
HFS directory unless you precede the name with two slashes and possibly a SAS/C
style prefix. If you are running under OS/390 or CMS, a style prefix is required as
part of the pathname unless you are referring to an OS/390 DDname. See
“Include-File Processing” on page 11 for more information on the ipath option.
Note that under TSO you can only specify the ipath option once, and that the
pathname is automatically converted to lowercase.

ixref (-Kixref under USS)
lists references in user #include files.

japan (-Kjapan under USS)
translates keywords and identifiers that are in uppercase to lowercase before they
are processed by the compiler. It prints messages in uppercase. This option is
intended to be used with terminals or printers that support only uppercase
(Roman) characters.

-Knobinder (UNIX System Services only)
Under USS, by default, the Binder is automatically invoked if the output from
COOL was successful. Use the -Knobinder option to prevent the Binder from
executing. If COOL runs successfully, an output file from COOL will be saved.
-Kbinder is the default.

lib
identifies a header file library.

In TSO, the lib option is specified as follows:

116 Option Descriptions 4 Chapter 6

lib(dsname)

where dsname indicates the name of a library that contains header files, that is,
one containing members that are to be included using the #include <member.h>
(or <member>) form of the #include statement. If the library belongs to another
user, the fully qualified name of the data set must be used, and the name must be
preceded and followed by three single quotes (because of CLIST language
requirements). No final qualifier is assumed for a lib data set. nolib is the
default. nolib indicates that no header file libraries are required other than the
standard library provided with the compiler.

lineno (-Klineno under USS)
enables identification of source lines in run-time messages. When lineno is
specified, module size is increased because of the generation of line number and
offset tables. lineno is the default.

loop (-Kloop or -Ol under USS)
specifies that the compiler should perform loop optimizations. Use this option for
multitrip loops. See “The optimize Option” on page 63 for details on this option.
This option can be used only in conjunction with the optimize option.

maclist or mlist (-Kmaclist under USS)
prints macro expansions. Source code lines containing macros are printed before
macro expansion.

me
under CMS, specifies the fileid of the source file used by the object module
disassember. The form of the me option is as follows:

me(source-fileid)

where source-fileid is a CMS fileid or SAS/C sf: style filename. The default
filetype is C. See “Using the OMD under CMS” on page 96.

member
under TSO, the member option is used with the arlib option to specify the output
archive member name. The form of the option is as follows:

ar370(archive) member(member)

where archive specifies the AR370 archive and member specifies the member to
store the output in.

mention (-w+n under USS)
specifies that the warnings whose numbers are specified as n1, n2, and so on, are
not to be suppressed. Only warnings in the ranges 0-199 and 300-499 are affected.
See also suppress.

� In TSO, specify the mention option as follows:

mention(n)

where n is the number of the message associated with the warning condition.
If more than one warning condition is to be mentioned, specify the numbers
in a comma-delimited list, enclosed by quotes, as follows:

mention(’n1,n2,...’)

� Under CMS, use the following:

mention n

or

Compiler Options 4 Option Descriptions 117

mention n1 n2 ...

� Under OS/390 batch, use the following:

mention(n)

or

mention(n1,n2 ...)

� Under the USS shell, use the following:

-w+n

or

-w+n1 -w+n2 ...

Any number of warning conditions can be specified, regardless of the
environment.

merge
merges a copy of the source code into the OMD listing.

Under OS/390 batch, when used as an option with the appropriate PROC,
merge merges the source code into the OMD listing of the object code.

In TSO, this option is specified as follows:

merge(dsname)

where dsname names the data set from which the OMD is to read the source code
for the module to be disassembled. The data set name can be a sequential data set
or a partitioned data set member. If the data set belongs to another user, the fully
qualified name of the data set must be specified, and the name must be preceded
and followed by three single quotes, as in the following example:

OMD370 PROJ4(PART1) MER(’’’YOURLOG.PROJ4.SOURCE(PART1)’’’)

The extra quotes are required for the CLIST language. If the data set name is
not specified within three single quotes, it is assumed to be a data set with a final
qualifier of C.

Note that the merge(dsname) form is used only with the OMD370 CLIST. When
the merge option is used with the LC370 CLIST, no data set name is specified
because the location of the source is always the data set name immediately
following the command name on the command line, that is, the source code to be
compiled.

The following indicates that source code is not to be merged into the OMD’s
output listing:

nomerge

When the LC370 CLIST is run, the default is merge. When OMD370 is used,
the default depends on how the object data set name is specified. If the object data
set name is specified in single quotes, the default is nomerge. Otherwise, the
default is merge. (The source data set name is determined by replacing the final
OBJ qualifier in the source data set name with C.)

Under CMS, the default is merge. By default, source code is merged with the
object code in the OMD output listing.

-mrc (USS only)
requests that the compiler return the same return codes as on OS/390 and CMS,
that is, 4 if there were warnings, 8 if there were errors, and so on. If -mrc is not
specified, the compiler conforms to UNIX conventions and returns 0 if there were
no errors and a non-zero code if errors were detected.

118 Option Descriptions 4 Chapter 6

object (-o filename under USS)
outputs object code.

In TSO, this option is specified as follows:

object(dsname)

where dsname names the data set into which the compiler stores the object code.
The data set name can be a sequential data set or a partitioned data set member.
If the data set belongs to another user, the fully qualified name of the data set
must be specified, and the name must be preceded and followed by three single
quotes, as in the following example:

LC370 PROJ4(PART1)
OB(’’’YOURLOG.PROJ4.OBJ(PART1)’’’)

The extra quotes are required for the CLIST language. If the data set name is
not specified within three single quotes, it is assumed to be a data set with a final
qualifier of OBJ.

The following indicates that no object code is to be stored by the compilation:

noobject

When the object or noobject option is missing, the default depends on how
the source data set name is specified. If the source data set name is specified in
single quotes, the default is noobject. Otherwise, the default is object. (The
object data set name is determined by replacing the final C in the source data set
name with OBJ.)

In TSO, if both noobject and omd are specified, object code is generated but
discarded after the OMD is run.

Under CMS, the default is object. By default, object code is generated in pass
two of the compiler. If you specify noobject, pass two is suppressed and object
code is not generated.

Under CMS, if both noobject and omd are specified, neither pass two nor the
OMD is run.

Under USS, the -o option is used to specify the output file for sascc370. If the
-c option is also specified, the -o option specifies the file where the compiler’s
output (an object module) is to be stored. If -c is not specified, the -o option
specifies the file where the linkage editor’s output (a load module or program
object) is to be stored. Use of -o where -c is not specified is discussed in more
detail in “COOL Options” on page 149 under the load option.

When -o is specified, the syntax is as follows:

-o filename

The filename is assumed to be an absolute or relative HFS pathname. To store
the compiler output in an OS/390 data set, you must use a pathname beginning
with two slashes possibly followed by a SAS/C style prefix. (See SAS/C Library
Reference, Volume 1 for information about style prefixes.) For example, to store
the object file in the PDS member YOURLOG.PROJ4.OBJ(PART1), specify the
following:

-o ’//dsn:yourlog.proj4.obj(part1)’

Note that you should not specify an explicit object filename if you compile more
than one source file at a time, since each individual compilation will overwrite the
object file.

Under the USS shell, if the options -o and -c are not both specified, the
compiler stores its object code output in a default location. If the compiler input
file is an HFS file, the object filename is the same as the source filename with the

Compiler Options 4 Option Descriptions 119

extension changed to .o. If the compiler input file is an OS/390 data set, the object
file is an HFS file whose name is derived from the member name, if the input file
is a PDS member and, otherwise, from the next-to-the-last qualifier of the data set
name. For instance, if you compile the source file //tso:proj4.c(part1), the
default object location is the HFS file part1.o. If you compile the sequential file
//tso:proj4.report.c, the default object location is the HFS file report.o.

Note that unless -c is specified, you cannot override the location where the
object module is stored.

omd (-Komd[=filename] or -S under USS)
invokes the object module disassembler (OMD) after successful compilation.
OMD-only options and selected compilation options are passed to the OMD, as
explained in “Object Module Disassembler Options” on page 105.

Under USS, you can supply the name of the OMD’s output file by specifying
-Komd=filename. If -Komd is specified without a filename, the listing is stored in an
HFS file with a .omd extension. The name of the default OMD output file is
derived from the source filename in the same way as the object file, except for the
.omd extension. See the object option for a description of this process. Note that
you should not specify an explicit filename if you compile more than one source file
at a time, since each individual compilation will overwrite the OMD output file.

optimize (-Koptimize under USS)
causes optimized code to be generated. See “The optimize Option” on page 63 for
details on this option.

options (-Koptions under USS)
generates an options listing. The options listing contains all options in effect for
the compilation.

overstrike (-Koverstrike under USS)
prints special characters in the listing file as overstrikes. This option is useful, for
example, if you do not have a printer that can print the special characters listed in
the fourth column of Table 2.2 on page 22.

pagesize (-Kpagesize=nn under USS)
defines the number of lines per page of source and cross-reference listings. (See
Table 6.6 on page 126.) pagesize is specified as follows:

� under OS/390 batch: pagesize(nn)
� in TSO: pagesize(nn)
� under CMS: pagesize nn

nn lines per page of listing are printed at the location determined by the print
option. The default is 60 lines per page. (The default location is different for each
operating system and is described in the discussion of print.)

pflocal (-Kpflocal under USS)
assumes that all functions are __local unless __remote was explicitly specified in
the declaration. The default is nopflocal. The nopflocal option causes the
compiler to treat all function pointers as __remote unless they are explicitly
declared with the __local keyword.

posix (-Kposix under USS)
informs the compiler that the program is a POSIX oriented program, and that
compile-time and run-time defaults should be changed for maximum POSIX

120 Option Descriptions 4 Chapter 6

compatibility. The default is noposix under TSO, CMS, and OS/390 batch and
-Kposix under USS.

Specifically, the posix option has the following effects on compilation:

� The SAS/C feature test macro _SASC_POSIX_SOURCE is automatically defined.

� The compiler option refdef is assumed if norefdef is not also specified.

� The special POSIX symbols environ and tzname are automatically treated
as __rent unless declared as __norent.

Additionally, if any compilation in a program’s main load module is compiled with
the posix option, it will have the following effects on the execution of the program:

� The fopen function assumes at runtime that all filenames are HFS filenames
unless prefixed by "//".

� The system function assumes at runtime that the command string is a shell
command unless prefixed by "//".

� The tmpfile and tmpnam functions refer to HFS files in the /tmp directory.

Note: Functions that can be used by both POSIX and non-POSIX applications
should be compiled without use of the posix compiler option. 4

ppix (-Kppix under USS)
allows nonstandard use of the preprocessor.

If the ppix option is in effect, the preprocessor allows token-pasting by treating
a comment in macro replacement text as having zero characters. The ISO/ANSI
Standard defines the double pound sign (##) operator to perform token-pasting.

This option also specifies that the preprocessor should replace macro arguments
in string literals. Equivalent functionality can be gained for portability by using
the ISO/ANSI Standard pound sign (#) operator.

pponly (-P under USS)
creates a file containing preprocessed source code for this compilation.
Preprocessed source code has all macros and #include files expanded. If the
pponly option is used, all syntax checking (except in preprocessor directives) is
suppressed, no listing file is produced, and no object code is generated.

In TSO, use the following:

pponly(dsname)

where dsname indicates the name of a data set in which the preprocessed source
file is to be stored. If the library belongs to another user, the fully qualified name
of the data set must be used, and the name must be preceded and followed by
three single quotes because of the CLIST language requirements. No final
qualifier is assumed for a pponly data set.

Under CMS, use pponly. The output file is written to a file with the same
filename as the source file and a filetype of PP.

Under OS/390 batch, use pponly. The output file is written to the data set
allocated to the DDname SYSPPOUT.

In TSO and under OS/390 batch, the output data set should use the DCB
options LRECL=1028, RECFM=VB. The data set can have any block size.

Under the USS shell, if the -o option is specified together with -P, the
preprocessed source code is written to the file specified by -o. If -o is not specified,
the preprocessed source code is written to an HFS file with a .i extension. The
name of the default ouput file is derived from the source filename in the same way
as the object file, except for the .i extension. See the object option for a
description of this process.

Compiler Options 4 Option Descriptions 121

pr
under CMS, specifies the output ASM file for the object module disassembler. The
form of the pr option is as follows:

pr(asm-fileid)

where asm-fileid is a CMS fileid or a SAS/C sf: style filename. The default
filetype is ASM. See “Using the OMD under CMS” on page 96.

print (-Klisting[=filename] under USS)
produces a listing file.

Under OS/390 batch, the print option produces a listing file and sends it to
SYSPRINT. The listing file also includes error messages. If noprint is used, the
listing file is suppressed. Under OS/390 batch, the default is print.

Also see the discussion of term. Table 6.7 on page 127 summarizes the
interaction between term and print.

In TSO, the print option is used with both the LC370 CLIST and the OMD370
CLIST to specify where the listing file is to be stored.

If you specify the following, the listing file is printed at the terminal:

print(*)

If you use print(*), you do not need to use the term option. If you do, error
messages are sent to the terminal twice. See also term.

The following stores the listing file in the named data set:

print(dsname)

This data set must be sequential; a partitioned data set member is not allowed.
If the data set belongs to another user, the fully qualified name of the data set
must be specified, and the name must be preceded and followed by three single
quotes because of the CLIST language requirements. If the data set name is not
specified within three single quotes, it is assumed to be a data set with a final
qualifier of LIST.

The following form specifies that no listing file is to be produced:

noprint

If you use noprint, the compiler ignores all other listing options, such as
pagesize and ilist. The xref option also is ignored.

If the source data set name is enclosed in single quotes, the default is noprint.
Otherwise, the default is print. The listing data set name is determined by
replacing the final C in the source data set name with LIST and ignoring any
member name specification.

You cannot specify noprint when you use the OMD370 CLIST.
If you do not specify print when you use the OMD370 CLIST, the default is

print(*) if the object data set name is enclosed by single quotes. Otherwise, the
listing data set name is determined by replacing the final OBJ qualifier in the
source data set name with LIST, and any member name specification is ignored.

Under CMS, print spools the listing file to the printer. noprint suppresses the
listing file. noprint is an alternative to print, disk, and type.

You can also give the print, disk, and type options to the OMD370 EXEC. If
you use more than one of the options type, print, or disk, the last one entered is
in effect. See Table 6.7 on page 127.

Under USS, by default, no listing file is generated unless you specify the
-Klisting option. You can supply the name of the listing file by specifying
-Klisting=filename. If -Klisting is specified without a filename, the listing is
stored in an HFS file with a .lst extension. The name of the default listing file is
derived from the source filename in the same way as the object file, except for the

122 Option Descriptions 4 Chapter 6

.lst extension. See the object option for a description of this process. Note that
you should not specify an explicit filename if you compile more than one source file
at a time, since each individual compilation will overwrite the listing file.

rdepth (-Krdepth=n under USS)
defines the maximum level of recursion to be inlined (the default is 1). rdepth is
used with optimize only. See “The optimize Option” on page 63 for more details.
rdepth is specified as follows:

� under OS/390 batch: rdepth(n)
� under TSO: rdepth(n)
� under CMS: rdepth n

redef (-Kredef under USS)
allows redefinition and stacking of #define names.

refdef (-Krefdef under USS)
The refdef option forces the use of the strict reference-definition (ref/def) model
for external linkage of __rent identifiers. If you specify norefdef, which is the
default, the compiler uses the common model. The minimum abbreviation of
refdef is ref. This option is useful primarily when used with the rent or rentext
options. (Strict reference-definition is always used for __norent identifiers.)

Note: If you specify the posix option, the compiler option refdef is assumed if
norefdef is not also specified. 4

rent (-Krent under USS)
specifies that all extern and static variables are __rent by defualt.

rentext (-Krentext under USS)
specifies that all extern variables are __rent by default, and all static variables
are __norent by default.

reqproto (-cf under USS)
requires that all functions and function pointers have a prototype in scope. If the
reqproto option is used and a function or function pointer is declared or defined
that does not have a prototype, the compiler issues a warning message.

smpxivec (-Ksmpxivec under USS)
causes the compiler to generate a CSECT with a unique name in the place of
@EXTERN#. The option is provided to accommodate SMP update methods. Refer
to SAS Programmer’s Report: SMP Packaging for SAS/C Based Products for more
information on this option.

sname (-Ksname=name under USS)
defines the section name. The name can be up to seven characters in length.

The section name is assigned by the compiler as follows:
� The section name is the name specified by the user with the sname option.
� In the absence of a specific compile-time sname option, the section name is

the name of the first external function in the module, truncated to seven
characters.

� If no name is specified with the sname option and there is no external
function in the module, the section name is the name of the first external
variable in the function.

� If no name is specified with the sname option, there is no external function in
the module, and there is no external variable in the module (that is, the
module contains only static data or functions, or both), then the section name
is the name @ISOL@.

The following are further instructions for using sname in different environments:
� Under OS/390 batch, the specification is as follows:

Compiler Options 4 Option Descriptions 123

sname(name)

where name defines the section name.
� In TSO, the specification is as follows:

sname(name)

� Under CMS, the specification is as follows:

sname name

source (-Ksource under USS)
outputs a formatted source listing of the program to the listing file. (The default
location of the listing file is different for each operating system and is described in
the discussion of print.)

nosource suppresses only the source listing; the cross-reference listing is still
printed if requested with the xref option.

The source option has no effect on the OMD listing if an OMD listing is
requested. Whether source code is merged into the OMD listing is controlled by
the merge option.

stmap (-Kstmap under UNIX System Services)
requests that a map of structure elements and their offsets be generated in the
cross-reference for each structure tag enclosed. Specifying the stmap option
implies the xref option.

strict (-Kstrict under USS)
enables an extra set of warning messages for questionable or nonportable code.

stringdup (-Kstringdup under USS)
creates a single copy of identical string constants.

suppress n (-wn under USS)
ignores one or more warning conditions. For more information about related
messages, see SAS/C Software Diagnostic Messages.

Each warning condition is identified by its associated message number, n. Only
warnings in the ranges 0-199 and 300-499 are affected. Conditions whose numbers
have been specified are suppressed. No message is generated, and the compiler
return code is changed.

The following are further instructions for using suppress in different
environments:

� In TSO, specify the suppress option as follows:

suppress(n)

where n is the number of the message associated with the warning
condition. If more than one warning condition is to be suppressed, specify the
numbers in a comma-delimited list, enclosed by quotes, as follows:

suppress(’n1,n2,...’)

� Under CMS, use the following:

suppress n

or

suppress n1 n2 ...

� Under OS/390 batch, use the following:

suppress(n)

or

124 Option Descriptions 4 Chapter 6

suppress(n1,n2 ...)

� Under the USS shell, use the following:

-wn

or

-wn1 -wn2 ...

Any number of warning conditions can be specified, regardless of the environment. If
both suppress and enforce specify the same message number, the warning is enforced.

-temp=directory (USS only)
specifies a directory where temporary files created by sascc370 should be stored.

term
directs diagnostic messages to stderr.

In contrast to print, term specifies whether error messages are written to
stderr but does not affect the contents of any listing file.

Under OS/390 batch, CMS, and TSO, stderr is defined as follows:

� under OS/390 batch: the DDname SYSTERM

� in TSO: interactive terminal

� under CMS: interactive terminal

The term option interacts with the print option as summarized in Table 6.7 on
page 127 for OS/390 batch and TSO and in Table 6.8 on page 127 for CMS. Under
the USS shell, diagnostic messages are always sent to stderr.

trans (-Ktrans under USS)
translates special characters to their listing file representations. Default
representations for these characters are in column four of Table 2.2 on page 22. If
you specify notrans, all special characters are written out as they appear in the
source data.

trigraphs (-Ktrigraphs under USS)
enables translation of ANSI Standard trigraphs. If the trigraphs compiler option
is used, all occurrences of the following three-character sequences are replaced
with the corresponding single character:

??= #
??([
??/ \
??)]
??< {
??> }
??’ ^
??! |
??- ~

Unlike digraphs, trigraphs are replaced within comments and character string
literals. (Digraphs are shown in Table 2.1 on page 20.)

type
displays the listing file on the terminal. type is a CMS option only. type implies
noterm.

Note that you cannot use type with either print or disk. If you specify more
than one of the options type, print, or disk, the last one you enter is in effect.
See also print, term, and disk.

Compiler Options 4 Option Descriptions 125

undef (-Kundef under USS)
undefines predefined macros.

Predefined macros are defined as follows:
� under OS/390 batch:

#define DEBUG 1
#define NDEBUG 1
#define _ _I370_ _ 1
#define OSVS 1

� in TSO:

#define DEBUG 1
#define NDEBUG 1
#define _ _I370_ _ 1
#define OSVS 1

� under CMS:

#define DEBUG 1
#define NDEBUG 1
#define _ _I370_ _ 1
#define CMS 1

The definition of the DEBUG or NDEBUG macro depends on whether or not you
have specified the debug or nodebug option.

upper (-Kupper under USS)
outputs all lowercase characters as uppercase in the listing file. upper implies
overstrike.

usearch (-Kusearch under USS)
specifies that UNIX oriented search rules should be used when the compiler
searches for include files rather than mainframe-oriented search rules. This option
may be useful when compiling programs ported from a UNIX environment. The
effect of usearch is described in detail in “Complete include processing” on page
16. -Kusearch is the default when compiling under the USS shell, while
nousearch is the default in all other environments.

-v
specifies verbose mode. In verbose mode, the command line that executes each
phase of the compiler is displayed. -v is valid for UNIX System Services (USS)
only.

verbose (-v under USS)
prints relocation directory and line number and offset tables separately, in
addition to merging them with the generated code. The verbose option applies
only to the OMD listing. OMD370 displays the run-time constants CSECT if the
verbose option is specified. The OMD370 utility also displays the extended names
CSECTs when the verbose option is specified.

vstring (-Kvstring under USS)
generates character string literals with a 2-byte length prefix. This option is used
primarily in conjunction with the interlanguage communication feature. For more
information on the vstring option, refer to Chapter 3, "Communication with
Other Languages," in the SAS/C Compiler Interlanguage Communication Feature
User’s Guide.

126 Listing File Description 4 Chapter 6

warn (-Kwarn under USS)
causes compilation warning messages to be printed. nowarn suppresses warning
messages.

xref (-Kxref under USS)
produces a cross-reference listing.

zapmin (-Kzapmin=n under USS)
specifies the minimum size of the patch area, in bytes. In TSO and under OS/390,
use the following:

zapmin(n)

where n refers to the number of bytes in the patch area. The default is 24 bytes.
Under CMS, use the following:

zapmin n

where n refers to the number of bytes in the patch area. The default is 24 bytes.
For more information about the patch area, refer to “Register Conventions and

Patch Writing” on page 60. For more information about using the zapmin option,
refer to “The zapmin option” on page 61.

zapspace (-Kzapspace=n under USS)
changes the size of the patch area generated by the compiler. Under OS/390 batch
and in TSO, use the following:

zapspace(factor)

Under CMS, use the following:

zapspace factor

For more information about the patch area, refer to “Register Conventions and
Patch Writing” on page 60. For more information about using the zapspace
option, refer to “The zapspace option” on page 61.

Listing File Description
Listing file refers to the file that contains one or more of the types of listings

summarized in Table 6.6 on page 126. The contents of the listing file depend on the
option or options specified. The first column of Table 6.6 on page 126 shows options that
produce different types of listings. The type of listing provided by each option is in the
second column.

Table 6.6 Listing File Contents by Option

Option Type of Listing Written to Listing File

options options listing.

source formatted source listing. The formatted source listing may be
interspersed with error messages.

xref cross-reference listing.

omd object module disassembler listing.

As an example, if you specify source and xref on the command line when you run
the compiler, a formatted source listing and a cross-reference listing are sent to the

Compiler Options 4 Interaction between the term, print, disk, and type Options 127

listing file. The destination of the listing file is system-dependent and is described with
the print option (for OS/390 batch, TSO, and CMS) and the disk and type options (for
CMS) in “Option Descriptions” on page 105.

Interaction between the term, print, disk, and type Options
The term, print, disk, and type options interact as shown in the following tables.

Table 6.7 Interaction between term and print under OS/390 Batch and in TSO

Option or Options Requested Result

term, print A listing file (including any error messages) is
generated.1 Error messages also go to stderr.2

noterm, print A listing file is not generated. Because noterm
is explicitly requested, error messages are not
sent to the terminal.

print (default is noterm) A listing file (including any error messages) is
generated. Error messages are not sent to the
terminal.

noprint (default is term) No listing file is generated. All error messages
go to stderr.

1 See the discussion of print for the destination of the listing file for your environment.
2 Note that even when term is in effect, compiler information banners are not written to stderr.

Table 6.8 Interaction between term, print, disk, and type under CMS

Option or Options Requested Result

term (default is disk) A listing file (including error messages is
generated and sent to the A-disk. Messages also
go to the terminal.

noterm (default is disk) A listing file is generated. Messages are not sent
to the terminal.

disk, print (default is term) A listing file (including error messages) is
generated. Messages also go to the terminal.

type (default is term) A listing file (including any error messages) is
produced and sent to the terminal. Only one
copy of messages is sent to the terminal.

128 Preprocessor Options Processing 4 Chapter 6

Option or Options Requested Result

noprint (default is term) No listing file is produced. By default, all
messages go to the terminal.

noprint, noterm A listing file is not produced. Because noterm is
explicitly requested, messages are not sent to
the terminal.

Preprocessor Options Processing

Preprocessor Symbols
The compiler creates preprocessor symbols for a number of compiler options. The

compiler assigns the preprocessor symbol’s value to correspond to each option’s state.
Table 6.9 on page 128 lists the options and symbols, along with their corresponding
values that the preprocessor creates.

Table 6.9 Preprocessor Symbols

Option Symbol Value

armode _O_ARMODE 1

noarmode _O_ARMODE 0

at _O_AT 1

noat _O_AT 0

bitfield(1) _O_BITFIELD 1

bitfield(2) _O_BITFIELD 2

bitfield(4) _O_BITFIELD 4

nobitfield _O_BITFIELD 0

bytealign _O_BYTEALIGN 1

nobytealign _O_BYTEALIGN 0

comnest _O_COMNEST 1

nocomnest _O_COMNEST 0

cxx _O_CXX 1

nocxx _O_CXX 0

dbhook _O_DBHOOK 1

nodbhook _O_DBHOOK 0

debug _O_DEBUG 1

nodebug _O_DEBUG 0

dollars _O_DOLLARS 1

nodollars _O_DOLLARS 0

Compiler Options 4 The #pragma options statement 129

Option Symbol Value

indep _O_INDEP 1

noindep _O_INDEP 0

inline _O_INLINE 1

noinline _O_INLINE 0

japan _O_JAPAN 1

nojapan _O_JAPAN 0

pflocal _O_PFLOCAL 1

nopflocal _O_PFLOCAL 0

posix _O_POSIX 1

noposix _O_POSIX 0

ppix _O_PPIX 1

noppix _O_PPIX 0

rent _O_RENT 1

norent _O_RENT 0

rentext _O_RENTEXT 1

norentext _O_RENTEXT 0

sname _O_SNAME value of option

stringdup _O_STRINGDUP 1

nostringdup _O_STRINGDUP 0

trigraphs _O_TRIGRAPHS 1

vstring _O_VSTRING 1

novstring _O_VSTRING 0

zapmin _O_ZAPMIN value of option

zapspace _O_ZAPSPACE value of option

The compiler assigns to the _O_SNAME symbol the value of the sname option,
surrounded by quotes. For example, specifying the sname option as MYPROG is
equivalent to the following preprocessor definition:

#define _O_SNAME "MYPROG"

If the sname option has not been specified, the value assigned to _O_SNAME is "".
The _O_ZAPSPACE preprocessor symbol is assigned the value of the zapspace option.

If the zapspace option has not been specified, _O_ZAPSPACE is assigned a value of 1.
The _O_ZAPMIN preprocessor symbol is assigned the value of the zapmin option. If

the zapmin option has not been specified, _O_ZAPMIN is assigned a value of 1.

The #pragma options statement
The #pragma options statement specifies compiler options within program source

code. More than one #pragma options statement can be used in a source file. The
format of the #pragma options statement is as follows:

#pragma options copts(option-1,option-2(n))

130 The #pragma options statement 4 Chapter 6

where option-1 and option-2 are compiler options, and n is the value that an option
takes.

For example, you can specify the bitfield compiler option in the following manner:

#pragma options copts(bitfield(2))

where 2 is the value of the bitfield option.
Separate multiple options with commas or blanks. Both of the following examples

are correct:
� #pragma options copts (bitfield(2),pagesize(60),dollars)

� #pragma options copts (bitfield(2) pagesize(60) dollars)

The following options can be specified in a #pragma options statement:

at hlist ppix

bitfield hmulti redef

comnest hxref reqproto

ctsup ilist source

cwsup imulti strict

dbgmacro ixref suppress

dollars maclist trigraphs

dynamndef mention undef

enforce mlist warn

exclude pagesize xref

Only these options and their negations can be specified, and they must be specified
entirely in lowercase and unabbreviated.

There are two other uses of the #pragma options statement:
� The #pragma options push copts statement pushes the current setting of

compiler options to the top of the stack.
� The #pragma options pop copts statement returns the compiler options to their

values at the time of the last push statement.

The following example suppresses the source listing and then returns it to its
previous state:

#pragma options push copts

#pragma options copts(nosource)

C statements

#pragma options pop copts

The pragma options push copts statement saves the current value of the options.
#pragma options copts (nosource) temporarily suppresses the source listing. The
nosource option remains in effect until the #pragma options pop copts statement
appears in the program. The #pragma options pop copts statement returns the
source listing (and all other options) to their states preceding the push statement. If
the source listing was suppressed before the push statement, it will continue to be
suppressed.

131

C H A P T E R

7
Linking C Programs

Introduction 132
The COOL Object Code Preprocessor 132

When to Use COOL 133

A special case 134

Using COOL to Link Programs 134

Linking Multilanguage Programs 134
Linking Programs under CMS 134

The COOL EXEC 135

The RESET option 135

COOL Listing Output 136

Linking All-Resident Programs 136

Linking Programs in TSO 136
The COOL CLIST 136

Executing COOL with the IBM Linkage Editor 137

Linkage editor options 137

Linking All-Resident Programs 137

Linking Programs from the UNIX System Services Shell 137
Linking Programs under OS/390 Batch 138

Using Cataloged Procedures to Link 138

Link-Editing without COOL 138

Selecting the entry point 139

Selecting the program environment 139
The LC370L Cataloged Procedure 139

The LC370CL Cataloged Procedure 140

Link-Editing with COOL 142

The LC370LR Cataloged Procedure 142

The LC370CLR Cataloged Procedure 144

Linking All-Resident Programs 145
COOL and Linkage Editor JCL Requirements 146

Linking USS Programs 148

COOL Options (Short Forms) 148

COOL Options 149

COOL Control Statements 161
The ARLIBRARY Statement 162

The INCLUDE Statement 162

The INSERT Statement 163

The GATHER Statement 163

Statement format 163
How COOL processes the GATHER statement 163

Gathered names 164

Listing the gathered names 164

132 Introduction 4 Chapter 7

GATHER tables 164
An assembler language view 165

Using GATHER tables 165

Using AR370 Archives 166

Using the ARLIBRARY Control Statement 166

Specifying Archives from the Command Line 167
Specifying the Correct Entry Point 167

SAS/C Library Names 168

Introduction
This chapter describes how to link the C programs that you have compiled. First,

there is a discussion of the COOL object code preprocessor. Following this discussion
are sections that describe linking procedures for each host operating system. Lists and
descriptions of COOL options, keywords, and control statements are at the end of the
chapter. Other topics discussed include the use of AR370 archives, specifying a program
entry point and the names of the various SAS/C Libraries.

The COOL Object Code Preprocessor
COOL (C object-oriented linker) is a utility program that assists in the link-editing of

C programs. COOL merges CSECTs for external or static variables; the IBM linkage
editor does not have this capability. When the rent or rentext compiler option is used,
the compiler creates a separate control section (CSECT) to contain the external variable
initialization data (see “Compiler-generated Names” on page 53) for the current
compilation. Data that are to be used for the initialization of external variables are
copied during program startup from these CSECTs to dynamically allocated memory.
This copy process is necessary to support reentrant execution. If the rentext option is
used, only initialization data for external variables is stored in the initialization data
CSECT. Also, with any compiler option, initialization data for __rent variables is
stored in the initialization data CSECT. (If a compilation contains no initializations of
any of the types described above, no initialization CSECT is created.)

If more than one compilation initializes applicable variables, then all of the
initialization CSECTs must be merged before the program can be linked. If they are not
combined, the linkage editor ignores all but the first compilation’s data since they all
have the same CSECT name. Therefore, some initializations would be skipped during
execution, with unpredictable results.

COOL merges this initialization data by combining all of the object code for a given
program in a manner similar to the CMS loader or OS linkage editor. If any of the
object modules contain an initialization CSECT, COOL retains the initialization data
and then deletes the CSECT from the object module. When all of the object modules are
processed, COOL produces a single object module containing a single merged
initialization CSECT, followed by the preprocessed object files.

COOL also checks for __rent variables with multiple initial values during the
merge. COOL issues a warning for external variables that have multiple initial values.
(See “Reentrant and Non-reentrant Identifiers” on page 57 for more information about
external variables.)

COOL also prepares object files for linking when the extname compiler option is
specified. Under the extname option, the compiler creates special data objects in the
object file that contain the original C identifiers and their associated short forms.
COOL reads these data objects and then creates unique external symbols in the output

Linking C Programs 4 When to Use COOL 133

object file, thus enabling the linkage editor or loader to properly link the output object
file by using these unique external symbols. Refer to “Linking Programs under CMS”
on page 134 for more information about extended names processing.

Under CMS, C programs compiled with the rent or rentext option may exceed the
LOAD pseudoregister limit. By default, COOL changes the pseudoregister definitions in
the object modules to a form that the LOAD command can handle. For more
information on COOL and the CMS LOAD command, refer to “Linking Programs under
CMS” on page 134.

Prior to Release 6.50, a problem frequently encountered was an attempt to process
an object deck with COOL that had already been prelinked by COOL. This caused a
number of problems, not obviously related to the attempt to reprocess an object with
COOL, and usually resulted in an ABEND. In this release, COOL marks each object
deck as it is processed and if an attempt is made to reprocess the marked object, COOL
produces a diagnostic message indicating the condition.

The new processing is divided into two phases. The first phase marks the output
object deck to indicate it has already been processed with COOL. It is controlled by the
allowrecool and noallowrecool options. The second phase detects that an input
object deck has been marked to indicate it was previously processed. The second phase
is controlled by the ignorerecool and noignorerecool options. By default, COOL
marks the object deck to prevent an attempt to reprocess it. Also by default, COOL
detects that the input object deck was previously processed by COOL.

Note: These defaults can cause COOL to indicate an error where it would not detect
such an error in previous releases. Under certain restricted circumstances, it is possible
to generate object code that can be successfully processed by COOL more than once. If
this behavior is desired, the options can be specified such that the output object’s decks
are not marked and/or that such marking be ignored. 4

Note: You may not reprocess COOL output with COOL if any object file was
compiled with the extname option. 4

When to Use COOL
You must use COOL to preprocess your object code if any of the following conditions

apply:

� More than one compilation initializes a __rent variable. There are four ways a
variable is assigned the __rent attribute:

� The variable is external and the compiler option rent or rentext is used.

� The variable is static and the compiler option rent is used.
� The variable is external and the name begins with an underscore.

� The variable is declared __rent.

For more information on the __rent attribute see “Reentrant and
Non-reentrant Identifiers” on page 57.

� More than one compilation was compiled with the extname option.

� Under CMS, the cumulative length of the pseudoregister vector exceeds the
maximum size permitted by the loader.

� At least one C++ function is used.
� The SAS/C All-Resident Library was used.

� Some of the object modules are stored in an AR370 archive.

Under OS/390, if you fail to run COOL in a situation that requires it, the linkage
editor will generate message IEW0461 or IEW2480W referencing the symbol NO_CLINK.

134 Using COOL to Link Programs 4 Chapter 7

This message indicates that use of COOL was required, and that the resulting load
module is unlikely to execute correctly.

Under CMS, if you attempt to load object code that requires the use of COOL and
COOL has not been used to preprocess the object modules, the loader issues message
DMSLIO020W referencing the symbol NO_CLINK. If this situation arises, the use of
COOL is required.

A special case
For most programs compiled with the norent and noextname options, you do not

need to use COOL. The only exception to this rule is if more than one compilation
initializes external variables that begin with an underscore (such as the _options
variable). External variables that begin with an underscore are always stored as
pseudoregisters, even if the norent option is used; therefore, an initialization CSECT is
created.

Using COOL to Link Programs
The design of COOL requires that all input to COOL be in the form of object

modules, including any automatic call libraries. COOL also accepts control statements
similar to those used by the linkage editor (see “COOL Control Statements” on page
161). As stated, the output from COOL is an object module and becomes input to the
linkage editor or loader.

COOL processes object modules in the same order and with the same restrictions as
imposed by the linkage editor. However, there is no guarantee that unresolved
references during autocall processing are reconciled in the same order with COOL as
with the linkage editor because the linkage editor may process the corresponding
compilations in any order. The only time this could cause a problem is if several
members of an autocall library contain copies of the same object module, in which case
the copy that is actually used is unpredictable. Proper autocall library management
should prevent this situation from occurring.

Linking Multilanguage Programs
Object modules produced by an assembler or another compiler do not need to be

preprocessed by COOL. If the C object modules do not require the use of COOL, then
the C object modules and non-C object modules can be linked in the normal manner,
without using COOL. If, however, the C object modules must be preprocessed by COOL,
the non-C object modules should be linked with the COOL output module by the LINK,
LOAD, or LKED command in a separate step.

When you use the ILC feature to mix SAS/C code with code in another language, use
the ILCLINK utility to produce the module. Refer to Chapter 8, "Linking
Multilanguage Programs with the ILCLINK Utility," in the SAS/C Compiler
Interlanguage Communication Feature User’s Guide for details.

Linking Programs under CMS
The CMS LOAD command is limited in the number and size of pseudoregisters it can

handle. The number and length of the pseudoregisters are directly related to the
number and size of external variables in the program. For example, an external int

Linking C Programs 4 The COOL EXEC 135

array with 1000 elements causes a pseudoregister to be created that is
1000*sizeof(int), or 4000 bytes long. C programs that have been compiled with the
rent or rentext options may, in some cases, produce too many pseudoregisters or the
cumulative length of the pseudoregisters may be too large for the LOAD command to
process.

The CMS LOAD command cannot process pseudoregisters that have a cumulative
length of more than 4K. If this length is exceeded, the LOAD command does not
necessarily produce an error message. You can diagnose this situation in a MODULE
by examining the LOAD MAP after the GENMOD command has completed. The
pseudoregister addresses listed in the VALUE column should always be in increasing
order. If they are not, the maximum cumulative length is exceeded.

The maximum number of pseudoregisters that the CMS LOAD command can handle
is indeterminate. The LOAD command typically issues the following error message if
the number is exceeded:

DMSLIO168S: PSEUDO-REGISTER TABLE OVERFLOW

COOL performs pseudoregister removal; it does not affect program execution or
reentrancy in any way. The noprem option suppresses this function. The COOL output
file, COOL370 TEXT, may not be reprocessed by COOL unless the noprem option has
been used.

The COOL EXEC

The COOL EXEC invokes the COOL object code preprocessor and can optionally
invoke the CMS LOAD, START, GENMOD, or LKED command. The format is as
follows:

COOL [filename1 [filename2 ...]] [(options [)]]

where filename1, filename2, and so on are the names of the files that are to be the
primary input to COOL. Each file should have a filetype of TEXT and contain either
object code or COOL/linkage editor control statements. (INCLUDE statements are an
example of control statements, as discussed later in this chapter.) If no filenames are
specified, COOL prompts for the name of a primary input file. At the prompt, enter a
filename. COOL continues to prompt until a null line is entered.

Before invoking COOL, issue the CMS command GLOBAL TXTLIB for any TEXT
libraries that COOL should use for autocall resolution. For standard C programs,
LC370BAS TXTLIB and LC370STD TXTLIB should be GLOBALed before invoking
COOL for any program.

The RESET option

The CMS LOAD command may not select the correct entry point for your program.
It is usually best to use the RESET option of the LOAD command to specify the entry
point explicitly. If the main function is the C main function and you are using the
normal C entry point, specify RESET MAIN. If you are using the LKED command to
link the program, use the ENTRY control statement to specify MAIN as the entry point.

The CMS GENMOD command may not save all of the CSECTs in the program,
especially if you use RESET to specify an entry point. Use the FROM option of the
GENMOD command to specify the name of the initial CSECT. This name can be found
by reading the LOAD MAP file produced by the LOAD command.

See “Specifying the Correct Entry Point” on page 167 for additional information on
defining an entry point.

136 COOL Listing Output 4 Chapter 7

COOL Listing Output
A number of COOL options, such as list, prmap, and enxref, cause output to be

written to the COOL listing file. By default, the COOL listing file is named COOL370
COOLLIST. The print option may be used to direct the listing to a different file.

Linking All-Resident Programs
The all-resident library is LCARES TXTLIB. To link an all-resident program as a

MODULE, issue the CMS GLOBAL TXTLIB command, naming LCARES before
LC370STD and LC370BAS (the normal resident library), and then invoke COOL. For
example, suppose a program is made up of three TEXT files, MAINPROG, SUB1, and
SUB2, and autocalled routines are in MYLIB TXTLIB. The MODULE can be created
with the following commands:

GLOBAL TXTLIB MYLIB LC370STD LC370BAS
COOL MAINPROG SUB1 SUB2 (GENMOD TESTPROG

Note: See Chapter 10, “All-Resident C Programs,” on page 201 for information on
how to modify the source of an existing program to exploit the all-resident library. 4

The CMS LOAD command may issue the following message:

DMSLIO116S LOADER TABLE OVERFLOW

This indicates that there are insufficient virtual machine loader tables to contain the
symbols in the TEXT files. Use the CMS command SET LDRTBLS nn, where nn is an
integer greater than 3, to define additional loader tables. In order to ensure that the
loader tables are allocated successfully, this command should be issued immediately
after IPL. Refer to the CMS Command Reference for more information about the SET
LDRTBLS command.

Linking Programs in TSO
The following sections describe how to link your C program in TSO.

The COOL CLIST
The COOL CLIST invokes the COOL object code preprocessor, followed by the

linkage editor. Optionally, the COOL step can be skipped. The format is as follows:

COOL dsname [keywords]

where dsname is the name of the object data set that is to be the primary input to
COOL or the linkage editor. The data set name should be the name of the data set
containing the object code or the COOL/linkage editor control statements used as input,
or both. (INCLUDE statements are an example of control statements, as discussed
later in this chapter.) Follow standard TSO naming conventions; that is, if the data set
belongs to some other user, the full name of the data set must be specified and the
name must be enclosed in single quotes. If the object code is in a member of a
partitioned data set, the member name must be specified in parentheses following the
data set name, in the normal TSO manner. The final qualifier of the input data set

Linking C Programs 4 Linking Programs from the UNIX System Services Shell 137

name is assumed to be OBJ. If you do not add this qualifier, it is supplied automatically
by the CLIST. keywords (described in the following section) indicate COOL options,
linkage editor options, or the names of other data sets to use during linking.

Executing COOL with the IBM Linkage Editor
COOL accepts the NOCLINK option, which causes the linkage editor to be invoked

directly without use of the COOL utility.

Linkage editor options
COOL allows you to specify any linkage editor options such as LIST, LET, MAP, XREF,

TEST, RENT, OVLY, AMODE, and RMODE. (These options are valid for the linkage editor
whether or not COOL is run.) The IBM MVS/XA Linkage Editor and Loader User’s
Guide discusses these options.

Linking All-Resident Programs
When linking an all-resident program, include an object deck created by compiling a

source file that includes <resident.h> and the appropriate macro definitions. See
Chapter 10, “All-Resident C Programs,” on page 201 for more information. For example,
suppose the PDS member INCNTL contains the following COOL control statements:

INCLUDE OBJLIB(MAINPROG)
INCLUDE OBJLIB(SUB1)
INCLUDE OBJLIB(SUB2)

The program also autocalls other members from MY.PROG.OBJ. Normally, the
COOL command to link this program is

COOL PROG(INCNTL) LIB(’’’MY.PROG.OBJ’’’) ...

INCNTL would contain the following COOL control statements:

INCLUDE OBJLIB(MAINPROG)
INCLUDE OBJLIB(SUB1)
INCLUDE OBJLIB(SUB2)
INCLUDE OBJLIB(RESLIST)

The COOL command to link an all-resident version of this program is as follows:

COOL PROG(INCNTL) LIB(’’’MY.PROG.OBJ’’’) ALLRESIDENT

Linking Programs from the UNIX System Services Shell
Under UNIX System Services (USS), the sascc370 command is used to link SAS/C

programs as well as to compile them. The syntax of sascc370 is as follows:

sascc370 [options] filename1 [filename2 ...]

The options argument is a list of compiler options (see Chapter 6, “Compiler
Options,” on page 101), COOL options, and OS/390 linkage editor options. The filename
arguments may specify any combination of C source files, object modules, and AR370
archives. Any input source files are compiled, after which the compiler’s output is
linked with the object files and the archives. If you call sascc370 with a list of files
which are all object files and archives, the compiler is not invoked. The object files and

138 Linking Programs under OS/390 Batch 4 Chapter 7

archives are passed directly to COOL, and then the output of COOL is passed to the
linkage editor.

An object file passed to sascc370 may also contain COOL control statements. (Note
that the file must have a name ending with .o for an HFS file or .OBJ for an OS/390
data set.) COOL processes its input files in binary mode. For this reason, an HFS file
containing COOL control statements has the following requirements. Each control
statement must appear as an 80-byte blank-padded card image, and the control
statements must not be separated by new-line characters. One way of creating such an
HFS file is to create the control statements in an OS/390 card image data set, and then
use the BINARY option of the OCOPY TSO command to copy it to the HFS.

The USS COOL options are described later in “COOL Options” on page 149. To
specify OS/390 linkage editor options, the sascc370 -B option is used. Multiple -B
specifications can be used, and each -B can specify more than one linkage editor option.
For instance, the following command specifies the linkage editor options RENT, LET,
and RMODE=24 and stores the output module in the OS/390 PDS userid.PROG.LOAD.

sascc370 -Brent,let -Brmode=24 -o ’//prog.load(app4)’ app4.o

Note that sascc370 passes the linkage editor MSGLEVEL=4 unless you specify
-Bmsglevel=n yourself. This option suppresses linkage editor messages that are not
ordinarily wanted. Because this option suppresses the output produced by the linkage
editor LIST option, if you specify -Blist you should also specify -Bmsglevel=0, to
allow the LIST messages to be written.

Linking Programs under OS/390 Batch

The following sections discuss the cataloged procedures provided for linking C
programs. Ask your SAS Software Representative for C compiler products for the
appropriate data set names for your site.

Using Cataloged Procedures to Link
Three cataloged procedures are provided for compiling and linking or simply linking

a C program. LC370L and LC370CL should be used to link programs that do not
require the use of COOL (non-reentrant programs that do not use extname, AR370
archives, or the all-resident library). LC370L and LC370CL do not invoke COOL.
LC370LR should be used to link programs that require the use of COOL. This
procedure runs COOL before invoking the linkage editor.

The resident library data sets are provided in both object module and load module
formats. Those procedures, such as LC370L, which run the linkage editor directly use
the load module format data sets. The procedures, such as LC370LR, which run COOL
and, then the linkage editor, use the object module format data sets. Note that if you
are running COOL, you cannot concatenate libraries in load module format to SYSLIB.
The DDname SYSLDLIB should be used for load module format libraries to be accessed
by the linkage editor when running COOL.

Link-Editing without COOL
The LC370L and LC370CL cataloged procedures are used to link-edit C programs

that do not require COOL. Both procedures link the program with the load module form
of the resident library.

Linking C Programs 4 The LC370L Cataloged Procedure 139

Selecting the entry point
If your program requires an entry point other than the standard MAIN entry, the

entry point must be explicitly specified. See “Specifying the Correct Entry Point” on
page 167 for further information.

Selecting the program environment
The ENV symbolic parameter may be used to specify the environment in which the

program is to run. Valid values are the following:

ENV=STD ENV=SPE

The default is ENV=STD, which specifies the standard OS/390 environment.
ENV=SPE specifies a program that uses the minimal SPE environment. See Chapter
14, “Systems Programming with the SAS/C Compiler,” on page 273 for more
information about SPE.

The LC370L Cataloged Procedure
Typical JCL for running the cataloged procedure LC370L to link-edit a procedure is

shown in Example Code 7.1 on page 139. Both the LC370L and the LC370CL cataloged
procedure listings follow the sample JCL.

Example Code 7.1 Sample JCL for Link-Editing with Procedure LC370L

//JOBNAME JOB job card information
//*---
//* LINK EDIT A C PROGRAM
//*---
//LINK EXEC LC370L,PARM.LKED=’options’
//*---
//* REPLACE GENERIC NAMES AS APPROPRIATE
//*---
//LKED.SYSLMOD DD DISP=SHR,DSN=your.load.library(member)
//LKED.SYSIN DD DSN=your.object.library(member),DISP=SHR
//LKED.libname DD DSN=your.object.library ,DISP=SHR
//

The LKED.libname DD statement is required if you use the linkage editor INCLUDE
libname control statement. SYSIN can be a file of object code or control statements.
(See the IBM OS/390 linkage editor and loader documentation for your particular
installation.) Any linkage editor options can go in the PARM.LKED string. If no options
are provided, LIST and MAP are assumed. The LC370L procedure contains the JCL
shown in Example Code 7.2 on page 139.

Example Code 7.2 Expanded JCL for LC370L

//LC370L PROC ENTRY=MAIN,ENV=STD,
// CALLLIB=’SASC.BASELIB’,
// SYSLIB=’SASC.BASELIB’
//**
//* NAME: LC370L (LC370L) ***
//* PROCEDURE: LINKAGE ***

140 The LC370CL Cataloged Procedure 4 Chapter 7

//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*

//* **
//* ENV=STD: MODULE RUNS IN THE NORMAL C ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS PROGRAMMING ENVIRONMENT
//* ENTRY=MAIN: MODULE IS A NORMAL C MAIN PROGRAM
//* ENTRY=DYN: MODULE IS DYNAMICALLY LOADABLE AND REENTRANT
//* ENTRY=DYNNR: MODULE IS DYNAMICALLY LOADABLE AND NON-REENTRANT
//* ENTRY=OS: MODULE IS AN OS SPE APPLICATION
//* ENTRY=OE: MODULE IS AN USS SPE APPLICATION
//* ENTRY=NONE: ENTRY POINT TO BE ASSIGNED BY USER
//* **
//LKED EXEC PGM=LINKEDIT,PARM=’LIST,MAP’,REGION=1536K
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=A
//SYSLIN DD DSN=C.SASC.BASEOBJ(EP@&ENTRY),
// DISP=SHR
// DD DDNAME=SYSIN
//SYSLIB DD DSN=C.SASC.&ENV.LIB,
// DISP=SHR STDLIB OR SPELIB
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD(MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))

Note the following about this example:

� The symbolic parameter SYSLIB refers to the data set name for the automatic call
library. Do not override this parameter.

� The symbolic parameter ENTRY can be changed to DYN, DYNNR, OS, OE, or
NONE. Refer to “Specifying the Correct Entry Point” on page 167 for a discussion
of these parameters.

� The symbolic parameter ENV= refers to the environment under which the
program is to run. ENV=STD is the default and specifies the standard OS/390
environment. ENV=SPE should be used to link an SPE application.

� The symbolic parameter CALLLIB can be used to specify a load module call
library to be used in addition to the resident library data sets.

The LC370CL Cataloged Procedure
The LC370CL procedure can be used to compile and link-edit a program that does

not require preprocessing by COOL. LC370CL contains the JCL shown in Example
Code 7.3 on page 140. This JCL is correct as of the publication of this guide. However,
it may be subject to change.

Example Code 7.3 Expanded JCL for LC370CL

//LC370CL PROC ENTRY=MAIN,ENV=STD,
// CALLLIB=’SASC.BASELIB’,

Linking C Programs 4 The LC370CL Cataloged Procedure 141

// MACLIB=’SASC.MACLIBC’,
// SYSLIB=’SASC.BASELIB’
//**
//* NAME: LC370CL (LC370CL) ***
//* SUPPORT: C COMPILER DIVISION ***
//* PRODUCT: SAS/C ***
//* PROCEDURE: COMPILATION AND LINKAGE ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//* **
//* ENV=STD: MODULE RUNS IN THE NORMAL C ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS PROGRAMMING ENVIRONMENT
//* ENTRY=MAIN: MODULE IS A NORMAL C MAIN PROGRAM
//* ENTRY=DYN: MODULE IS DYNAMICALLY LOADABLE AND REENTRANT
//* ENTRY=DYNNR: MODULE IS DYNAMICALLY LOADABLE AND NON-REENTRANT
//* ENTRY=OS: MODULE IS AN OS SPE APPLICATION
//* ENTRY=OE: MODULE IS AN USS SPE APPLICATION
//* ENTRY=NONE: ENTRY POINT TO BE ASSIGNED BY USER
//* **
//C EXEC PGM=LC370B
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&&OBJECT,SPACE=(3200,(10,10)),DISP=(MOD,PASS),
// UNIT=SYSDA,DCB=(RECFM=FB,LRECL=80)
//SYSLIB DD DSN=&MACLIB,DISP=SHR STANDARD MACRO LIBRARY
//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//*
//LKED EXEC PGM=LINKEDIT,PARM=’LIST,MAP’,COND=(8,LT,C)
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=*
//SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,PASS),VOL=REF=*.C.SYSLIN
// DD DSN=SASC.BASEOBJ(EP@&ENTRY),
// DISP=SHR
// DD DDNAME=SYSIN
//SYSLIB DD DSN=SASC.&ENV.LIB,
// DISP=SHR STDLIB OR SPELIB
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD(MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))

142 Link-Editing with COOL 4 Chapter 7

Note the following about this example:
� The symbolic parameter ENTRY can be changed to DYN, DYNNR, OS, OE, or

NONE. Refer to “Specifying the Correct Entry Point” on page 167 for a discussion
of these parameters.

� The symbolic parameter MACLIB refers to the data set name chosen by your
installation for the macro library. The symbolic parameter SYSLIB refers to the
data set name for the autocall library. Do not override these parameters.

� When you use LC370CL more than once in a job, provide overriding JCL
(DISP=(OLD,PASS)) to reuse the compiler SYSLIN data set (&&OBJECT) in all
but the first instance.

� When you override SYSPRINT in the compile step to reference a disk data set, the
data set disposition must be MOD. The data set must not be a member of a PDS.

� When overriding the SYSLMOD DD statement, you may want to nullify the
SPACE parameter by coding an explicit SPACE= keyword. In the absence of a
SPACE= specification, the operating system will use the SPACE=value operands
specified in the procedure, and the existing space attributes of the user SYSLMOD
DD may be modified.

Link-Editing with COOL
The LC370CLR and LC370LR cataloged procedures are used to link a program after

invoking the COOL preprocessor. Use of the COOL preprocessor is required for many
programs, as described at the start of this chapter. Both procedures link the program
with the object module form of the resident library.

The LC370LR Cataloged Procedure
Typical JCL for running the cataloged procedure LC370LR to invoke COOL and

link-edit a procedure is shown in Example Code 7.4 on page 142.

Example Code 7.4 Sample JCL for Executing COOL with Procedure LC370LR

//JOBNAME JOB job card information
//*---
//* LINK EDIT A C PROGRAM WITH COOL
//*---
//LINK EXEC LC370LR,PARM.LKED=’options’
//*---
//* REPLACE GENERIC NAMES AS APPROPRIATE
//*---
//LKED.SYSLMOD DD DISP=SHR,DSN=your.load.library(member)
//LKED.SYSIN DD DSN=your.object.library(member) ,DISP=SHR
//LKED.libname DD DSN=your.object.library ,DISP=SHR
//LKED.SYSLDLIB DD DSN=your.autocall.load.library ,DISP=SHR
//

LC370LR does not support the ENTRY symbolic parameter. However, you need to
supply an ENTRY statement when you use LC370LR only if you require an unusual
entry point, such as $MAINC, $MAINO, a function compiled with the indep option, or
a specialized SPE start-up routine. Dynamically loadable modules and SPE modules
that use a standard start-up routine should be linked correctly by LC370LR without an
explicit ENTRY specification.

Linking C Programs 4 The LC370LR Cataloged Procedure 143

The LKED.libname DD statement is required if you use the linkage editor INCLUDE
libname control statement.

SYSIN can be a file of object code or control statements. (See the IBM OS/390
linkage editor and loader documentation for your particular installation.)

Any linkage editor options can go in the PARM.LKED string. If no options are
provided, LIST and MAP are assumed. In addition, COOL accepts the options listed in
Table 7.4 on page 150.

SYSLDLIB includes any user autocall libraries needed in load module form.
References to members of SYSLDLIB are left unresolved by COOL and are resolved by
the linkage editor.

The LC370LR procedure contains the JCL shown in Example Code 7.5 on page 143.
This JCL is correct as of the publication of this guide. However, it may be subject to
change. Note that LC370LR supports ENV=GOS for a program that uses GOS
(generalized operating system interface).

Example Code 7.5 Expanded JCL for LC370LR

//LC370LR PROC ENV=STD,ALLRES=NO,
// CALLLIB=’SASC.BASEOBJ’,
// SYSLIB=’SASC.BASEOBJ’
//**
//* PRODUCT: SAS/C ***
//* PROCEDURE: COOL LINKAGE EDITOR PREPROCESSOR & LINK EDIT ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//* ENV=STD: MODULE RUNS IN THE NORMAL C ENVIRONMENT
//* ENV=CICS: MODULE RUNS IN A CICS C ENVIRONMENT
//* ENV=GOS: MODULE RUNS USING THE GENERALIZED OPERATING
//* SYSTEM INTERFACE
//* ENV=SPE: MODULE USES THE SYSTEMS PROGRAMMING ENVIRONMENT
//* **
//LKED EXEC PGM=COOLB,PARM=’LIST,MAP’,REGION=1536K
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR C COMPILER LIBRARY
// DD DSN=SASC.LINKLIB
// DISP=SHR C RUNTIME LIBRARY
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=A
//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,SPACE=(3200,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIB DD DDNAME=AR#&ALLRES ARESOBJ OR ENVIRONMNENT OBJ FILE
// DD DSN=SASC.&ENV.OBJ,
// DISP=SHR ENVIRONMENT SPECIFIC OBJECT FILE
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD(MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))
//AR#NO DD DSN=SASC..&ENV.OBJ,
// DISP=SHR
//AR#YES DD DSN=SASC.ARESOBJ,

144 The LC370CLR Cataloged Procedure 4 Chapter 7

// DISP=SHR

Note: The symbolic parameter SYSLIB refers to the data set name for the
automatic call library. Do not override this parameter. 4

The LC370CLR Cataloged Procedure
The LC370CLR procedure can be used to compile and link-edit a program, invoking

the COOL linkage editor preprocessor during the linkage step. LC370CLR contains the
JCL shown in Example Code 7.6 on page 144. This JCL is correct as of the publication
of this guide. However, it may be subject to change.

Example Code 7.6 Expanded JCL for LC370CLR

//LC370CLR PROC ENV=STD,ALLRES=NO,
// CALLLIB=’SASC.BASEOBJ’,
// MACLIB=’SASC.MACLIBC’,
// SYSLIB=’SASC.BASEOBJ’
//**
//* NAME: LC370CLR (LC370CLR) ***
//* PRODUCT: SAS/C ***
//* PROCEDURE: COMPILATION, PRELINK (COOL) AND LINKAGE ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//* **
//* ENV=STD: MODULE RUNS IN THE NORMAL C ENVIRONMENT
//* ENV=GOS: MODULE RUNS USING THE GENERALIZED OPERATING
//* SYSTEM INTERFACE
//* ENV=SPE: MODULE USES THE SYSTEMS PROGRAMMING ENVIRONMENT
//* **
//C EXEC PGM=LC370B
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&&OBJECT,SPACE=(3200,(10,10)),DISP=(MOD,PASS),
// UNIT=SYSDA,DCB=(RECFM=FB,LRECL=80)
//SYSLIB DD DSN=&MACLIB,DISP=SHR STANDARD MACRO LIBRARY
//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//*
//LKED EXEC PGM=COOLB,PARM=’LIST,MAP’,COND=(8,LT,C),REGION=1536K
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY

Linking C Programs 4 Linking All-Resident Programs 145

// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=*
//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,SPACE=(3200,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIB DD DDNAME=AR#&ALLRES ARESOBJ OR STDOBJ OR SPEOBJ
// DD DSN=SASC.&ENV.OBJ,
// DISP=SHR STDOBJ OR SPEOBJ
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD(MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))
//AR#NO DD DSN=SASC.&ENV.OBJ,
// DISP=SHR
//AR#YES DD DSN=SASC.ARESOBJ,
// DISP=SHR
//SYSIN DD DSN=*.C.SYSLIN,DISP=(OLD,PASS),VOL=REF=*.C.SYSLIN

Note that the SYSLIB concatenation must contain only object-format data sets. If
you need to autocall routines from load module format libraries, you should specify the
SYSLDLIB DD statement. Members in SYSLDLIB are left unresolved by COOL and
are resolved by the linkage editor.

Linking All-Resident Programs

All-resident programs can be linked with the cataloged procedures that invoke
COOL, LC370LR, or LC370LRG. (Note the ALLRES=YES symbolic parameter is available
for both procedures.)

When linking an all-resident program, use the ALLRES=YES symbolic parameter, and
include an object deck created by compiling a source file that includes <resident.h>
and the appropriate macro definitions. See Chapter 10, “All-Resident C Programs,” on
page 201 for more information.

For example, suppose a program consists of three object files, MAINPROG, SUB1, and
SUB2. The program also includes object code from a PDS named MY.PROG.OBJLIB.
The JCL to normally link this program is shown in Example Code 7.7 on page 145.

Example Code 7.7 Sample LC370LR JCL

//JOBNAME JOB job card information
//LINK EXEC LC370LR,PARM.LKED=’options’
//*
//LKED.SYSLMOD DD DISP=SHR,DSN=MY.PROG.LOAD(TESTPROG)
//LKED.SYSIN DD DSN=MY.PROG.OBJ(MAINPROG),DISP=SHR
// DD DSN=MY.PROG.OBJ(SUB1),DISP=SHR
// DD DSN=MY.PROG.OBJ(SUB2),DISP=SHR
//LKED.OBJLIB DD DSN=MY.PROG.OBJLIB,DISP=SHR
//

To create an all-resident version of the load module, include the object file generated
by compiling a C source file containing <resident.h> and the appropriate macro

146 COOL and Linkage Editor JCL Requirements 4 Chapter 7

definitions, and add the ALLRES=YES JCL parameter, as shown in Example Code 7.8 on
page 146.

Example Code 7.8 Sample LC370LR JCL for Linking an All-Resident Program

//JOBNAME JOB job card information
//LINK EXEC LC370LR,PARM.LKED=’options’,ALLRES=YES
//*
//LKED.SYSLMOD DD DISP=SHR,DSN=MY.PROG.LOAD(TESTPROG)
//LKED.SYSIN DD DSN=MY.PROG.OBJ(MAINPROG),DISP=SHR
// DD DSN=MY.PROG.OBJ(SUB1),DISP=SHR
// DD DSN=MY.PROG.OBJ(SUB2),DISP=SHR
// DD DSN=MY.PROG.OBJ(RESLIST),DISP=SHR
//LKED.OBJLIB DD DSN=MY.PROG.OBJLIB,DISP=SHR
//

Note: Alternately, to create an all-resident version of the load module, you could add
the #include and appropriate #define statements to an existing source file (for
instance, MAINPROG) and recompile that source file. 4

COOL and Linkage Editor JCL Requirements
This section discusses the data definition (DD) statements needed to run COOL and

the linkage editor, if you are writing your own JCL. COOL, like the compiler and OMD,
requires that short-form options be used when COOL is invoked directly.

You need the DD statements shown in Table 7.1 on page 146 to invoke COOL.

Table 7.1 Data Sets Needed for Running COOL

DDname Contents

STEPLIB compiler library and transient library (unless
already in your system libraries).

SYSIN your primary input file. This must include all
the C bject code not autocalled or COOL control
statements (or both) to cause the C object code
to be included.

SYSLIB any SAS/C and user autocall libraries needed,
including at least SASC.BASEOBJ. These
libraries must be in object format.

SYSLIN output object data set produced by COOL.

SYSPRINT standard ouput.

SYSTERM error output.

libname user-defined library for external references not
in SYSLIB (where libname is defined in the
COOL INCLUDE statement). libname is
optional.

You need the DD statements shown in Table 7.2 on page 147 to invoke the linkage editor.

Linking C Programs 4 COOL and Linkage Editor JCL Requirements 147

Table 7.2 Data Sets Needed for Running the Linkage Editor

DDname Contents

SYSUTI temporary work data set as shown in JCL.

SYSLIN C object code produced by COOL.

libname user-defined library for external references not
in SYSLIB (where libname is defined in the
INCLUDE statement). libname is optional.

SYSLIN output object data set produced by COOL.

SYSPRINT standard ouput.

SYSTERM error output.

libname user-defined library for external references not
in SYSLIB (where libname is defined in the
COOL INCLUDE statement). libname is
optional.

SYSLIB one or more autocall libraries. (To use more
than one, use JCL concatenation.) These
libraries can be object code or load libraries, but
they must all be the same type. Subroutine
libraries for other languages or for application
packages like GDDM and ISPF are normally
referenced by SYSLIB. This should not contain
C code if COOL is used because all C code
should be included to COOL.

SYSLMOD the output load module.

SYSPRINT message file.

Example Code 7.9 on page 147 shows sample JCL for running COOL and the linkage
editor.

Example Code 7.9 Sample JCL for Running COOL and the Linkage Editor

//JOBNAME JOB job card information
//*---
//* RUN THE COOL LINKAGE EDITOR PREPROCESSOR
//*---
//COOL EXEC PGM=COOL#,REGION=2048K
//STEPLIB DD DISP=SHR,DSN=compiler.loadlib
// DD DISP=SHR,DSN=sasc.transient.library
//*--
//* REPLACE GENERIC NAMES AS APPROPRIATE
//*--
//SYSIN DD DSN=c.primary.input ,DISP=SHR
//SYSLIB DD DSN=sasc.baseobj ,DISP=SHR
// DD DSN=sasc.stdobj ,DISP=SHR
// DD DSN=c.user.subroutine.library,DISP=OLD
//SYSLIN DD DSN=cool.output.object.dataset,DISP=SHR
//libname DD DSN=user.defined.object,DISP=SHR
//SYSPRINT DD SYSOUT=class

148 Linking USS Programs 4 Chapter 7

//SYSTERM DD SYSOUT=class
//*--
//* RUN LINKAGE EDITOR
//*--
//LINK EXEC PGM=IEWL,PARM=’LIST,MAP,XREF,LET’,COND=(8,LE,COOL)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLIN DD DSN=cool.output.object.dataset,DISP=SHR
//libname DD DSN=user.defined.library,DISP=SHR
//SYSLIB DD DSN=your.autocall.library,DISP=SHR
//SYSLMOD DD DISP=SHR,DSN=output.load.library(member)
//SYSPRINT DD SYSOUT=class
//

Linking USS Programs
It is possible to use a batch cataloged procedure such as LC370L or LC370LR to

generate an executable program stored in the USS hierarchical file system. To do so,
you must override the SYSLMOD DD statement, with a DD statement of the form:

//LKED.SYSLMOD DD PATH=’output-module-path’,
// PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=(SIRWXU)

Note that output-module-path should be replaced by the full pathname where the
executable module is to be stored. The name can be at most 255 characters. Also note
that you may wish to use a different PATHMODE specification. The specification shown
restricts access to the output module to the user who creates it.

COOL Options (Short Forms)
COOL takes short-form options, as summarized in Table 7.3 on page 148. The

options can be in upper- or lowercase. As with the short forms of the compiler and
OMD options, you specify positive forms of the option with a hyphen (–) as the initial
character; specify negative forms with an exclamation point (!) or not sign (). Refer to
“COOL Options” on page 149 for complete descriptions of these options.

Table 7.3 COOL Options Equivalents

Long Form Short Form

auto ---a

clet ---m

clet(all) ---m

clet(noex) ---mn

continue ---zc

cxx ---cxx

dupsname ---zd

endisplaylimit ---ynnnn

enexit ---xt

enexitdate (xxx) --xtxxx

Linking C Programs 4 COOL Options 149

Long Form Short Form

enxref (cid) --xxx

enxref (linked) --xxe

enxref (references) ---xxy

enxref (sname) ---xxs

extname ---xn

file (xxx) ---fxxx

gmap ---yg

inceof ---zi

libe ---b

lineno ---l

list ---yl

noenxref ---!xx

output fileid ---ofileid

pagesize(nn) ---snn

prem ---p

print ---h

prmap ---yp

rtconst ---r

smpjclin ---sj

smponly ---szo

smpxivec ---sx

term ---t

upper ---u

verbose ---zv

warn ---w

xfnmkeep ---xf

xsymkeep ---xe

The following is an example of an EXEC statement that invokes COOL with the
option NOWARN:

// EXEC PGM=COOL#,PARM=’!W’

COOL Options
This following table lists the options available for the COOL utility and the systems

to which these options apply. A description of each option follows the table.

150 COOL Options 4 Chapter 7

Table 7.4 COOL Options

Option TSO CMS OS/390 Batch USS

---Agather X

---Ainsert X

allresident X X X

arlib X

auto X X X

---Bep X

---Blib X

cics X X X

cicsvse X X X

clet X X X X

clet(all) X X X X

clet(noex) X X X X

continue X X X X

cxx X X

dupsname X X X X

endisplaylimit X X X X

enexit X X X X

enexitdata X X X X

entry X

enxref X X X X

extname X X X X

files X

genmod X

global X

gmap X X X X

gos X X

inceof X X X X

---1 X

---L X

lib X

libe X

lineno X X X X

list X X X X

lked X

lkedname X X

Linking C Programs 4 COOL Options 151

Option TSO CMS OS/390 Batch USS

load X X

loadlib X

nocool X X

output X

pagesize X X X X

prem X X X X

print X X X

prmap X X X X

rtconst X X X X

smpjclin X X X X

smponly X X X X

smpxivec X X X X

spe X X X

start X

term X X X

upper X X X X

verbose X X X X

warn X X X X

xfnmkeep X X X X

xsymkeep X X X X

-Agather=prefix (USS only)
specifies a prefix to be used by COOL in creating a table of symbols whose names
begin with the prefix. The effect of this option is the same as if the input
contained a GATHER prefix control statement. See “The GATHER Statement” on
page 163 for more information.

-Ainsert=symbol (USS only)
specifies a symbol which must be resolved during COOL processing. If the symbol
is not defined in a COOL input file, the symbol will be resolved by autocall. The
effect of this option is the same as if the input contained an INSERT symbol
control statement.

allresident (-Tallres under USS)
specifies use of the all-resident library. This option should be specified only when
linking an all-resident program. If the application is intended to run under CICS,
the cics or cicsvse option must also be specified so that the correct version of
the all-resident library is used.

allowrecool
specifies that the output object deck can be reprocessed by COOL. Therefore, the
deck is not marked as already processed by COOL.

The default noallowrecool specifies that the output object cannot be
reprocessed by COOL. A later attempt to reprocess the deck with COOL will
produce an error.

The short form for this option is -rc.

152 COOL Options 4 Chapter 7

Note: COOL does not modify the object deck to enable reprocessing. It is the
user’s responsibility to determine if a particular object is eligible for reprocessing. 4

arlib
in TSO, identifies an AR370 archive containing members that may be included by
COOL to resolve unresolved external references. The form of the arlib option is
as follows:

arlib(archive)

The archive parameter specifies the data set name of the AR370 archive. If the
data set belongs to another user, the fully qualified name of the data set must be
given, and the name must be preceded and followed by three single quotes.

auto
specifies that COOL should resolve external references by searching the SYSLIB
PDS under OS/390 or by searching for TEXT files on an accessible minidisk on
CMS. auto is the default. noauto suppresses resolution of external references
from these sources. Note that when an unresolved reference to the symbol ref is
processed, auto attempts to resolve it from SYSLIB(ref) on OS/390 or from ref
TEXT on CMS. The auto option is similar to the AUTO option of the CMS load
command.

-Bep=entry (USS only)
specifies the entry point required for the output load module. The default
specification is -Bep=MAIN, which assigns the normal C entry point MAIN. The
name specified must be an external symbol defined in the load module. See
“Specifying the Correct Entry Point” on page 167 for more information about entry
point specifications. Note that you can suppress the normal entry point of MAIN
without requesting any other entry-point by specifying -Bnoep. You should do this
only when one of the object files to be linked includes an ENTRY linkage editor
control statement.

-Blib=library (USS only)
specifies the name of an OS/390 library to use as a link-edit autocall library. Any
number of autocall libraries may be specified, in either object module or load
module format. These libraries are not accessed until COOL processing has
completed. This means that any references, which can only be resolved from a
-Blib library, will remain unresolved by COOL. Therefore, the -Aclet option
should also be specified to allow link processing to occur. Note that the library
name should not be preceded by a style prefix such as //dsn:, since only OS/390
libraries can be specified with this option.

cics (-Tcics370 under USS)
specifies that the program should be linked for execution under CICS on OS/390.
This option causes appropriate CICS libraries to be added to COOL’s list of
autocall libraries. The exact libraries that are used depend on whether other
options, such as spe and allresident, were specified.

cicsvse (-Tcicsvse under USS)
specifies that the program should be linked for execution under CICS on VSE.
This option causes appropriate CICS libraries to be added to COOL’s list of
autocall libraries. The exact libraries that are used depend on whether other
options, such as spe and allresident, were specified.

clet(all) (-Aclet or -Acletall under UNIX System Services)
specifies that COOL is to store an output file even if unresolved external reference
errors occur. The unresolved references may be for either extended or
non-extended names. Neither type of unresolved reference will result in an error

Linking C Programs 4 COOL Options 153

return code. Under UNIX System Services, by default, no output file is generated
if any missing symbols or other errors (RC >= 8) are detected by COOL.
clet(noex) is the default in all other environments that COOL runs under.

In UNIX System Services, the -Aclet option is maintained for backward
compatibility. It is equivalent to -Acletall.

Under OS/390 batch and TSO, the clet(all) option takes the following form:

clet(all)

In CMS, the clet(all) option takes the following form:

clet all

clet(noex) (-Acletnoex under UNIX System Services)
specifies that COOL is to store an output file even if unresolved external reference
errors occur. The unresolved references may be for either extended or
non-extended names. Unresolved references to non-extended names do not result
in an error return code. However, unresolved references to extended names result
in an error return code. Under UNIX System Services, by default, no output file is
generated if any missing symbols or errors (RC >= 8) are detected by COOL.
Otherwise, this option is the default.

Under OS/390 batch and TSO, the clet(noex) option takes the following form:

clet(noex)

In CMS, the clet(noex) option takes the following form:

clet noex

continue (-Acontinue under USS)
specifies that processing should continue even if a corrupted AR370 archive is
detected.

cxx
specifies that the program being linked includes one or more C++ modules. This
option makes the C++ library archive available for resolution of external
references. This option should be specified even if the program does not directly
use any C++ library functions.

dupsname (-Adupsname under USS)
causes COOL to permit the same SNAME to be used in more than one input file.
nodupsname is the default. Do not specify dupsname if any input module uses
extended names, or the results will be unpredictable.

enexit (-Aenexit under USS)
causes COOL to invoke a user exit without passing any data to the exit. See “User
Exit Selection of External Symbols” on page 409 for additional information.

endisplaylimit(nnn)
defines the maximum number of characters used to display extended names in
messages and listings. nnn represents the maximum number of characters that
can be used to display extended names. nnn can be an asterisk (*) specifying that
extended names are to be fully displayed regardless of their length, or it can be a
number. The minimum endisplaylimit default value of 91 is set internally and
cannot be overridden. You can set the default value to a larger number, or use the
asterisk to ensure the return of the full-length names, but you cannot set the
default value to a number smaller than 91.

154 COOL Options 4 Chapter 7

OS/390 batch and TSO
endisplaylimit

Under OS/390 batch and TSO, the endisplaylimit option takes the
following form:

endisplaylimit(nnn)

UNIX System Services
Under UNIX System Services, the endisplaylimit option takes the
following form:

-Aendisplaylimit=nnn

CMS
Under CMS, the endisplaylimit option takes the following form:

endisplaylimit nnn

Cross-Platform
See Chapter 6, “Prelinking C and C++ Programs” in the SAS/C
Cross-Platform Compiler and C++ Development System: Usage and Reference
for information on the cross-platform implementation of endisplaylimit.

enexitdata (-Aenexitdata=data under USS)
causes COOL to invoke a user exit and pass one to eight characters of
user-specified data. Under TSO and OS/390 batch, enexitdata has the following
form:

enexitdata(userdata)

Under CMS, the enexitdata option has the following form:

enexitdata userdata

See “User Exit Selection of External Symbols” on page 409 for additional
information.

entry
In TSO, the keyword

entry(name)

identifies the program’s entry point or enables the linkage editor to determine
the entry point. The entry keyword can be specified in the following ways:

entry(main)
for a program containing a main function. The actual entry point is MAIN.

entry(dyn)
for a reentrant dynamically loaded module. The actual entry point is
#DYNAMN.

entry(dynnr)
for a non-reentrant dynamically loaded module. The actual entry point is
#DYNAMNR.

entry(os)
for an OS SPE application with initial function osmain. The actual entry
point is #OSEP.

entry(oe)
for an SPE application with initial function oemain, intended for use under
the USS shell or from the pdscall utility. The actual entry point is #OEEP.

entry(none)
for allowing the linkage editor to select the entry point itself. Use of
entry(none) is recommended only if a linkage editor entry statement is

Linking C Programs 4 COOL Options 155

present in one of the input files. If entry is not specified, entry(main) is
assumed, unless SPE is specified; in that case, entry(none) is assumed.

enxref (-Asnamexref, -Acidxref, or -Alinkidxref under USS)
When producing object files that contain extended names, COOL produces by
default three cross-references that are generated in a table that follows all other
COOL output. These three cross-references are sname, cid, and linkid. sname is
in alphabetical order by the sname that uniquely identifies an object file. cid
displays the extended names in alphabetical order by C identifier. linkid displays
the extended names in alphabetical order by a link id that COOL assigns. The
enxref option controls the production of these cross-references so external symbols
that are declared but not defined will be printed in the cross-references listing.
noenxref suppresses the production of all extended names cross-references.

For Release 6.50, when the references option is specified for enxref,
referenced symbols as well as defined symbols are included in the cross-reference
listing.

You can use the references option (-Areferences under UNIX System
Services) to modify the behavior of the sname, cid, or linkid cross-reference
listing so that cross-references to external symbols that are declared but not
defined are included in the listing. You must use the references option in
conjunction with one or more of these listing options: sname, cid, or linkid. For
example:

enxref(sname references)

specifies an sname cross-reference listing that includes cross-references for
external symbols that are declared but not defined.

In TSO, the enxref option takes the following form:

enxref(’cross-ref ,cross-ref ,cross-ref ’)

where cross-ref is sname, cid, or linkid, or the negation. For example:

enxref(’nosname,cid’)

suppresses the sname cross-reference and enables the CID cross-reference.
Under CMS, the enxref option takes the following form:

enxref [cross-ref] [cross-ref] [cross-ref]

where cross-ref is sname, cid, or linkid, or the negation. For example:

enxref nosname cid

suppresses the sname cross-reference and enables the cid cross-reference.
Under OS/390 batch, the enxref option takes the following form:

enxref(cross-ref ,cross-ref ,cross-ref)

where cross-ref is sname, cid, or linkid, or the negation. For example:

enxref(nosname,cid)

suppresses the sname cross-reference and enables the cid cross-reference.
Under USS, the sname, cid, and linkid cross-references are generated by the

-Asnamexref, -Acidxref, and -Alinkidxref options, respectively.

extname (-Aextname under USS)
specifies that COOL is to process extended names. extname is the default.
noextname specifies that COOL will not process extended names. For more
information on the extname option, refer to Chapter 6, “Compiler Options,” on
page 101.

156 COOL Options 4 Chapter 7

files
under OS/390, specifies the first 1 to 3 characters in DDnames referenced by
COOL. The files option has the following form:

files(xxx)

where xxx is from 1 to 3 characters. The default is SYS.

genmod
causes the COOL EXEC to create a module file using the specified name and
GENMOD options. The genmod option takes the following form:

genmod [filename [options]]

The genmod option must follow the use of any other option on the command
line. The genmod option causes the COOL EXEC to issue the following CMS
commands after COOL has created the COOL370 TEXT file:

LOAD COOL370 (NOAUTO NOLIBE CLEAR
GENMOD filename (options

where filename is either the filename specified following the genmod keyword or
the first name specified in the COOL command. If no filenames are specified in the
command, the COOL EXEC issues an error message.

global
specifies that the COOL EXEC should query the environment variable TXTLIBS
in the GLOBALV group LC370 for the name or names of TXTLIBs that are to be
GLOBALed before COOL begins execution. global is the default. noglobal
suppresses automatic query of the environment variable TXTLIBS: the EXEC does
not issue a GLOBAL TXTLIB command based on the environment variable. (See
“Other Environment Variables” on page 87 for more information.)

gmap (-Agmap under USS)
causes a listing of any gathered names in the listing file. The gmap option causes
the print option to be assumed and a listing file to be generated.

gos
specifies that the program should be linked for execution with the GOS
(generalized operating system) libraries. This option causes the GOS library to be
added to COOL’s list of autocall libraries. Note that in TSO, the output of the
COOL command is a load module, which may not be suitable for execution under
the target operating system.

ignorerecool
specifies that if any marks are detected indicating that COOL has already
processed an input object deck, then the marks are to be ignored. If the
ignorerecool option is specified along with the verbose option, then a diagnostic
message is issued and processing continues.

The default noignorerecool specifies that any mark indicating that COOL has
already processed an input object deck should result in an error message and
process termination.

The short form for this option is -ri.

inceof (-Ainceof under USS)
specifies that when an INCLUDE statement is encountered in an included file, the
specified file is included, but any data following the statement is ignored. The
default is inceof. This is compatible with the behavior of the IBM linkage editor.
noinceof can be specified to allow the use of multiple nested INCLUDE
statements.

Linking C Programs 4 COOL Options 157

-lname (USS only)
specifies that the archive libname.a is to be searched for unresolved external
references. sascc370 looks for the archive in the directories specified by any -L
option specifications before looking in the lib subdirectory of the directory where
SAS/C was installed. Note that there must not be a space between -l and name.
The -l option has no effect unless the -L option is also specified.

-Ldirectory (USS only)
specifies a directory to be searched for archives requested by the -l option. The
directories referenced by -L are searched in the order that the -L options appear on
the command line. Note that there must not be a space between -L and directory.

lib
specifies the data set name of an autocall object library containing functions that
are to be linked automatically into the program if referenced. This option takes
the following form:

lib (dsname)

where dsname is the data set name of an autocall object library. If the library
belongs to another user, the fully qualified name of the data set must be given and
the name must be preceded and followed by three single quotes. No final qualifier
is assumed for a LIB data set. (Note that load module libraries cannot be used.)

libe
under CMS, the libe option causes COOL to search GLOBALed TXTLIBs during
automatic symbol resolution. This option is in effect by default and may be turned
off by specifying nolibe.

lineno (-Alineno under USS)
controls line numbering. The COOL lineno option is similar to the compiler
lineno option. You can specify either lineno or nolineno; the default is lineno.
If you specify nolineno (-Anolineno under USS), COOL deletes all the
line-number and offset table CSECTs from the output object code.

The line-number and offset table CSECTs are generated by the compiler when
the compiler lineno option is used. (This is the default for the compiler.) These
CSECTs are used by the debugger and run-time library to compute the address of
a source line number in a function. If these CSECTs are not present, the debugger

cannot break on a source statement and run-time library ABEND tracebacks do
not contain function line numbers.

list (-Alist under USS)
causes COOL to copy any control statements in its input to the listing file. list
causes the print option to be assumed. The default is nolist.

lked
specifies that the COOL EXEC is to issue an LKED command for COOL370 TEXT,
using the LKED options specified. The lked option must follow the use of all other
COOL options on the command line. The lked option causes the COOL EXEC to
issue the following CMS command after COOL has created the COOL370 TEXT
file:

LKED COOL370 (options

where options are any LKED command options specified following the lked
keyword.

lkedname
specifies the name of the linkage editor to be invoked after COOL has completed.
By default, the standard system linkage editor is invoked. This option is provided

158 COOL Options 4 Chapter 7

to allow sites which run the binder in place of the linkage editor to access the
linkage editor instead.

load (-o name under USS)
in TSO, names the data set in which the linkage editor stores the output load
module. This option takes the form:

load (dsname)

where dsname is the name of the data set in which the linkage editor stores the
output load module. This keyword should specify a partitioned data set member. If
the data set belongs to another user, the fully qualified name of the data set must
be given, and the name must be preceded and followed by three single quotes. If
the data set name is not specified within three single quotes, it is assumed to be a
data set name with a final qualifier of LOAD. Additional considerations follow:

� If the load option is not used, the load module data set is determined by
replacing the final OBJ qualifier in the object data set name with LOAD.

� If a member name is specified for the object data set, the same member name
is assumed for the load module; if the object data set is a sequential data set,
the member name TEMPNAME is assumed for the load module name.

� If the object data set name is specified in single quotes, the terminal user is
prompted to enter the name of the LOAD data set.

Under USS, the -o name option specifies the name of a file where the output
load module is to be stored. This may be specified as either an HFS file or as a
member of an OS/390 PDS. There must be a space between -o and name. If the
output module is stored in an OS/390 PDS, the name should be prefixed with a //
dsn: or //tso: prefix. If no -o option is specified, the linked output module is
stored in the HFS file a.out. Note that if the sascc370 -c option is specified, the
linkage editor is not invoked, and the -o option determines where the compiler’s
output is stored. See the description of the object option in “Option Descriptions”
on page 105 for details about the -c compiler option.

loadlib (also see -Blib)
specifies the data set name of an autocall load library containing modules that are
to be linked automatically into the program if referenced. This option takes the
following form:

loadlib (dsname)

where dsname is the name of an autocall load library. If the library belongs to
another user, the fully qualified name of the data set must be given, and the name
must be preceded and followed by three single quotes. Note that modules in the
loadlib data set are resolved by the linkage editor and not by COOL. COOL
diagnoses any symbols which require resolution from this library as unresolved.
No final qualifier is assumed for a loadlib data set. You must use loadlib,
rather than lib, to reference libraries that are associated with IBM products such
as ISPF and GDDM, since those libraries are stored in load module format.

nocool
specifies that the COOL preprocessor is not to be run. In this case, the input is
processed only by the OS/390 linkage editor.

output
specifies the name of the COOL output file. Under CMS, the default COOL output
file is COOL370 TEXT A1. If specified, the output option must be the last option
on the COOL command line and is followed by all or part of a CMS fileid or
Shared File System fileid.

A CMS fileid is specified as follows:

Linking C Programs 4 COOL Options 159

COOL myprog (OUTPUT filename [[.]filetype [[.]filemode]]

where filename, filetype, and filemode identify the COOL output file. For example,
the following command writes the COOL output file to AOUT TEXT A1:

COOL myprog (output aout text a1

If you omit the filetype or filemode, COOL uses TEXT as the default filetype
and an asterisk (*) as the default filemode.

An SFS fileid is specified as follows:

COOL myprog (output sf:filename [filetype [dirname]]

where dirname is the complete directory name or the NAMEDEF that has been
logically assigned to it. If you omit filetype or dirname, the default filetype is
TEXT and the default directory name is a period (.).

Note: The output option may not be used with the genmod, lked, or start
option. Each of these options, if specified, must be the last option on the COOL
command line. 4

pagesize (-Apagesize=nn under USS)
specifies the number of lines to print per page. Under TSO and OS/390 batch, the
form of this option is as follows:

pagesize(nn)

where nn is the number of lines. By default, pagesize(55) is specified.
Under CMS, the following form is used:

pagesize nn

prem (-Aprem under USS)
specifies that COOL is to remove pseudoregisters from the output object module.
Under CMS, the default is prem; under OS/390, the default is noprem; under USS,
the default is -Anoprem. Under CMS, the prem option allows limitations of the
CMS loader to be bypassed. Under OS/390, this option has little use except in
certain ILC applications. See the SAS/C Compiler Interlanguage Communication
Feature User’s Guide for further information.

print (-Klisting under USS)
causes COOL to create a listing file that contains a list of the options that are in
effect and copies of any diagnostic messages. Under CMS and OS/390, all messages
are directed to the listing file and also to stderr if the term option is specified.
Under USS, messages are always sent to stderr, as well as the listing file.

Under CMS, use the following syntax:

print fileid

The fileid must be specified in compressed form, that is, with periods rather
than spaces separating the components of the name. If print is not specified
under CMS, the listing is produced in the file COOL370 COOLLIST.

In TSO, use the following syntax:

print(filename)

If print is specified in TSO without a filename, the listing is directed to the
terminal.

Note that the use of other options that write to the listing file cause the print
option to be assumed, including list, prmap, gmap, and enxref. In TSO, if

160 COOL Options 4 Chapter 7

noprint is specified or defaulted, no listing is generated regardless of other option
settings.

Under USS, the -Klisting compiler option produces a listing for all phases of
the compilation. It also lets you specify the name of the listing file. When you
specify any of the following COOL options during compilation, -Klisting is
assumed: -Alist, -Aprmap, -Agmap, -Alinkidxref, -Asnamexref, -Aacidxref.
See Chapter 6, “Compiler Options,” on page 101 for details about -Klisting.

prmap (-Aprmap under USS)
causes COOL to include a pseudoregister map in the listing file. If prmap is
specified, print is implied and will produce a list of options in effect and diagnostic
messages, in addition to the output requested by prmap. noprmap is the default.

rtconst (-Artconst under USS)
specifies that COOL is to retain the run-time constants CSECTs in the output
object file. This is the default. nortconst causes COOL to delete these CSECTs.
The resulting object file will be somewhat smaller, but certain information used by
the debugger will not be available.

smpjclin (-Asmpjclin under USS)
generates a list of linkage editor INCLUDE statements for elements resolved as
external references from SMP format libraries. The INCLUDE statements are
written to the file identified by the DDname SYSJCLIN. Under CMS, a FILEDEF
command can be used to define the DDname, and under the USS shell, the
ddn_SYSJCLIN environment variable can be specified.

The list generated by the smpjclin option can be used to build an SMPJCLIN
file that defines the structure of a software product, including its use of SAS/C
Library elements. The SMPJCLIN file is used when an application is to be
distributed in System Modification Program (SMP) format. The smpjclin option
can only be used if you have SMP libraries. For more information, refer to
Programmer’s Report: SMP Packaging for SAS/C Based Products.

smponly (-Asmponly under USS)
causes COOL to build the @EXTVEC# vector described under the spmxivec
option. The remaining portion of the COOL output is suppressed so that the entire
output object file will consist of only the @EXTVEC# CSECT.

smpxivec (-Asmpxivec under USS)
causes COOL to build a vector named @EXTVEC# that references sname@.
CSECTs that are generated when the smpxivec option is specified. This vector
table is prepended to the COOL output file. The smpxivec option is provided to
accommodate SMP update methods. Refer to SAS Programmer’s Report: SMP
Packaging for SAS/C Based Products for more information on this option.

spe (-Tspe under USS)
specifies that the program should be linked for execution with the SPE (Systems
Programming Environment) libraries. This option causes the SPE library to be
added to COOL’s list of autocall libraries.

start
specifies that the COOL EXEC is to issue a LOAD command for COOL370 TEXT,
followed by a START command and any of the START options specified. The
start option must follow the use of all other COOL options on the command line.
The format of the start option is as follows:

start options

The start option causes the COOL EXEC to issue the following CMS
commands after COOL has created the COOL370 TEXT file:

Linking C Programs 4 COOL Control Statements 161

LOAD COOL370 (NOAUTO NOLIBE CLEAR
START options

where options are any START command options specified following the start
keyword.

term
directs COOL error messages to stderr in addition to any other targets. No
attempt is made to prevent a message from being sent to the same target via
multiple files. In most environments, stderr is the user’s terminal. For OS/390
batch, stderr references the DDname SYSTERM. noterm suppresses error
message listing to stderr. The default is term.

upper (-Aupper under USS)
produces all output messages in uppercase.

verbose (-Averbose under USS)
causes COOL to produce extra messages about its processing, both to the terminal
(if term is in effect) and to the listing (if a listing is being produced). These
messages are useful for determining how symbols are resolved. The default is
noverbose.

warn (-Awarn under USS)
specifies that warning messages (associated with return code 4) are to be issued.
warn is the default. nowarn suppresses warning messages.

xfnmkeep (-Axfnmkeep under USS)
specifies that extended function name CSECTs are retained in all input object
files. Note that this makes the resulting prelinked object file somewhat larger. By
default, xfnmkeep is specified.

The extended function name CSECTs may be useful at runtime, if you are using
the SAS/C Debugger. If the CSECT containing the extended function name is
available, the debugger uses the extended name in displays and accepts the
extended name in commands. (Refer to the SAS/C Debugger User’s Guide and
Reference for more information on the debugger.) Also, if the CSECT that contains
the extended name is present, the library abend-handler includes the extended
name in abend tracebacks.

See Appendix 7, “Extended Names,” on page 405 for additional information
about the xfnmkeep option.

xsymkeep (-Axsymkeep under USS)
specifies that the extended external identifier CSECTs in all input files are
retained. Note that this makes the resulting prelinked object file somewhat larger.
By default, noxsymkeep is specified.

See Appendix 7, “Extended Names,” on page 405 for additional information
about the xsymkeep option.

COOL Control Statements
As mentioned, input to COOL can be either an object data set, control statements, or

both. COOL control statements are listed in Table 7.5 on page 162. An explanation of
each statement follows the table.

162 The ARLIBRARY Statement 4 Chapter 7

Table 7.5 COOL Control Statements

Control Statement Explanation

ARLIBRARYlibname(,libname . . .) libname refers to an AR370 archive. Under OS/390,
libname is a DDname allocated to an AR370 archive.
Under CMS, it is the filename of an AR370 archive.

INCLUDE filename filename refers to the sequential data set containing the
object code to be input to COOL.

INCLUDElibname(member) libname refers to a partitioned data set. member is the
member containing the object code to be input to COOL.

INSERTsymbol symbol is an external symbol. If symbol has not been
resolved at the end of primary output processing, the
automatic call-library mechanism attempts to resolve it.
The INSERT statement is also passed to the linkage editor.

GATHERprefix prefix is a one-to-six character symbol.

The ARLIBRARY Statement
The ARLIBRARY statement is used to specify the location of an AR370 archive. The

following syntax is used:

ARLIBRARY name[,name...]

The name parameters are
� under OS/390, a DDname allocated to an AR370 archive
� under CMS, the filename of an AR370 archive.

COOL adds the libraries specified by the name parameters to the list of AR370
archives to be used as autocall input. Refer to “Using AR370 Archives” on page 166 for
additional information about using AR370 archives with COOL.

Note: When the ARLIBRARY control statement is used under the USS OS/390
shell, the filename is interpreted as a DDname. You can use an environment variable to
supply a pseudo-DDname in this case, as described under "USS I/O Considerations" in
Chapter 3 of the SAS/C Library Reference, Volume 1. 4

The INCLUDE Statement
The INCLUDE statement specifies the name of one or more additional files for COOL

to use as input. The INCLUDE statement has two formats. The first is the following:

INCLUDE filename [,...]

In TSO and under OS/390 batch, filename is a DDname that has been allocated to a
sequential data set or member of a PDS. Under CMS, filename is the filename of a CMS
file. The filetype of the file must be TEXT. The file can be on any ACCESSed disk.

The second format of the INCLUDE statement is the following:

INCLUDE libname(member[,member])[,...]

In TSO and under OS/390 batch, libname is a DDname that has been allocated to a
partitioned data set, and member is the name of a member of a PDS. Under CMS,
libname is the name of a TEXT library. The filetype must be TXTLIB. The library can

Linking C Programs 4 The GATHER Statement 163

be on any ACCESSed disk. member is the name of a member in the TEXT library. The
two formats can be combined on the same statement, for example

INCLUDE MAINPROG,MYSUBS(SUB1,SUB2),SYSSUBS(GLBLFNC)

An included object file can contain an INCLUDE statement. The specified modules
are also included, but any data in the including file after the INCLUDE statement is
ignored unless the noinceof option is specified.

On CMS, the _INCLUDE environment variable can be used to specify shared file
system directories to be searched for included files. For information on the _INCLUDE
environment variable, refer to “Specifying Shared File System Directories” on page 86.

Note: When the INCLUDE control statement is used under the USS OS/390 shell,
the filename is interpreted as a DDname. You can use an environment variable to
supply a pseudo-DDname in this case, as described under "USS I/O Considerations" in
Chapter 3 of the SAS/C Library Reference, Volume 1. 4

The INSERT Statement
The INSERT statement specifies one or more external symbols that are to be resolved,

if necessary, via COOL’s autocall mechanism. The format of the INSERT statement is

INSERT symbol [,...]

If the symbol specified by INSERT is not resolved after all primary input has been
processed, COOL attempts to resolve it by using automatic library call.

The GATHER Statement
The COOL object code preprocessor supports the GATHER control statement. Use of

a GATHER control statement in a COOL input file causes COOL to create data tables
based on the GATHER statement operands and append these tables to the COOL
output object code. The capability of the GATHER statement was designed primarily
for the SAS/C++ translator; occasions for using the GATHER statement will be rare.

Statement format
The format of the GATHER control statement is

GATHER prefix [,prefix2...]

where prefix is a one-to-six character symbol. The following statements are examples of
valid GATHER control statements.

GATHER ABC
GATHER INIT,TERM
GATHER I_

How COOL processes the GATHER statement
If at least one GATHER control statement is present in a COOL input file, COOL

gathers the names of certain External Symbol Dictionary (ESD) items in a list. There is
an ESD item for each external defined or referred entry in object code that names an
external symbol. For more information, refer to the IBM OS/VS Linkage Editor and
Loader, GC26-813. If the name of the ESD item begins with one of the prefixes given by
a GATHER control statement, the name is added to a list of names with that prefix.
The lists are used to create tables of pointers to the gathered objects that may be
referenced in a C program.

164 The GATHER Statement 4 Chapter 7

Gathered names
COOL inspects ESD items in the input object module(s) (including autocalled

modules) that have the following types.
� SD (section definition)
� LD (label definition)
� ER (external reference).

Some ESD items are not considered for gathering. An SD or LD whose name ends
with an at sign (@), a colon (:), a dollar sign ($), an equal sign (=), a plus sign (+), a left
angle bracket (<), a right angle bracket (>), or a question mark (?) is not considered
since the compiler creates data objects with those names. An ER whose name matches
a name of a GATHER table (see below) is not considered.

In C, the following objects can create SDs, LDs, and ERs:

LD label definitions, const extern objects, and extern objects when
the norent compiler option is in effect.

ER references to functions, to const extern objects, and to extern
objects when the norent compiler option is in effect.

SD No C source construct can create an SD that may be gathered. Note
that COOL changes any underscore characters (’_’) in a prefix to
pound signs (’#’). This corresponds to the compiler’s changing of
underscore characters in external names to pound signs.

Listing the gathered names
COOL prints the gathered names in its listing file if the gmap option has been

specified. For a prefix with one or more matching gathered names, COOL prints

GATHERED FOR PREFIX "xxxxxx":
xxxxxxx1
xxxxxxx2
xxxxxxx3

where xxxxxxx1, xxxxxxx2, and so on, are the gathered names. For a prefix for which
no matching names were found, COOL prints:

GATHERED FOR PREFIX "xxxxxx": (NONE)

GATHER tables
For each prefix, COOL creates a GATHER table. A GATHER table is a const

extern structure with the following definition:

struct {
int count;
void *entry[N]

} xxxxxx$T;

The count field contains the number of gathered objects. If no names were found
that matched the prefix, the count field is set to 0. entry is an array of (4-byte)
pointers to the gathered objects. These pointers are in no particular order in the array.
N is the number of gathered objects. xxxxxx is the prefix that was used to select the
objects. For example, if the items in the table are __local function pointers whose
names begin with INIT, then the GATHER table can be declared as follows:

const extern struct {
int count;

Linking C Programs 4 The GATHER Statement 165

__local void (*func[0])();
} INIT$T;

Note that func can be declared as an array of length 0, as shown above. This enables
the GATHER table to be declared such that the programmer does not need to know the
number of items in the array at compile-time.

CAUTION:
Use the dollars compiler option if your program contains references to GATHER table
names. Since the name of the GATHER table always contains the dollar sign ($)
character, programs containing references to GATHER table names must be compiled
with the dollars compiler option. Alternately, the table can be given some other
variable name, and the #pragma map directive can be used to assign it the external
name of xxxxxx$T. 4

An assembler language view
Each GATHER table is a separate CSECT (SD). The pointer array is a set of 0 or

more V-type address constants (ERs).
For example, suppose a program contains declarations for four functions whose

names start with init: init0001, init0002, init0003, and init0004 and no
declarations or definitions of functions whose names start with term. Given the

following control statement

GATHER INIT,TERM

COOL creates GATHER tables as if object code from the following assembler
language statements had been included:

INIT$T CSECT
DC F’4’
DC V(INIT0001)
DC V(INIT0002)
DC V(INIT0003)
DC V(INIT0004)

TERM$T CSECT
DC F’0’
END

Using GATHER tables
Suppose a number of functions need to be invoked upon entry to the main function of

a program, and a number of other functions need to be invoked before the main
function returns. The programmer specifies that these functions (and only these
functions) will have names that begin with the characters init or term, depending on
whether they are to be invoked upon program startup or termination, respectively. The
number of functions will be unknown at compile time, as will the complete names. If all
of the functions are located in the primary load module, they can be called via __local
function pointers. The following GATHER control statement causes COOL to produce
GATHER tables for these two sets of functions:

GATHER INIT,TERM

The following program fragment illustrates how the main function might call the
startup and termination functions via the GATHER tables.

const extern struct {
int count;
__local void (*func[0])();

166 Using AR370 Archives 4 Chapter 7

} init$t, term$t;

int main()
{

int i, rc;

for (i = 0; i < init$t.count; i++) (*init$t.func[i])();
.
.
.
for (i = 0; i < term$t.count; i++) (*term$t.func[i])();
return rc;

}

For more information about _ _local function pointers, refer to “Local Function
Pointers” on page 51.

Using AR370 Archives
An AR370 archive is a collection of object modules that can be used by COOL to

resolve external references, including external references to extended names. AR370
archives are created and maintained by the AR370 archive utility.

CAUTION:
Use ar370 to access AR370 archives. Do not attempt to create or modify an AR370
archive using any tools other than AR370 and UPDTE2AR. AR370 archives are
stored in a binary format and will be rendered unusable if modified by a program
unfamiliar with this structure, such as a text editor. 4

COOL enables you to use AR370 archives as follows:
� Under OS/390, the ARLIBRARY control statement specifies a DDname associated

with an AR370 archive. However, instead of using an ARLIBRARY statement, you
can allocate one or more AR370 archives to the DDname SYSARLIB. In TSO, you
should use the arlib option of the CLK370 CLIST to specify additional AR370
archives rather than the DDname SASARLIB.

� Under CMS, the ARLIBRARY control statement specifies the filename of an
AR370 archive. However, instead of using an ARLIBRARY statement, you can
specify the filename of an AR370 archive on the COOL command line.

� Under the USS Shell, you can specify the filename of one or more AR370 archives
on the sascc370 command line. It is also possible to use the ARLIBRARY control
statement to specify an archive to be used under the shell. See “The ARLIBRARY
Statement” on page 162 for more information.

Using the ARLIBRARY Control Statement
The ARLIBRARY control statement is used to add an archive to the list of AR370

archives to be used as autocall input. For example, the following statement adds
ALPHA to the list of archives:

ARLIBRARY ALPHA

ALPHA could be either an OS/390 DDname or a CMS filename. Refer to “The
ARLIBRARY Statement” on page 162 for additional information.

Linking C Programs 4 Specifying the Correct Entry Point 167

Specifying Archives from the Command Line
Under CMS, you can specify AR370 archives from the COOL command line. The

COOL EXEC invokes the COOL object code preprocessor and can optionally invoke the
CMS LOAD, START, GENMOD, or LKED command. The format is as follows:

COOL [filename1 [filename2 ...]] [(options[)]]

where filename1, filename2, and so on are the names of the files that are to be the
primary input to COOL. Each file should have a filetype of TEXT and contain either
object code or COOL/linkage editor control statements.

A filename argument can also be the name of an AR370 archive with a filetype of A.
For example, the following command specifies two AR370 archives named LIB1 and
LIB2:

COOL [filename1 [filename2 ...]] LIB1 LIB2 [(options[)]]

COOL adds the specified AR370 archives to the list of AR370 archives to be used as
autocall input.

When a filename appears on the command line, COOL checks to see if the filename
identifies an AR370 archive before checking for a TEXT file. Thus, in this example, if
both LIB1 A and LIB2 TEXT are found, LIB1 A will be processed and LIB2 TEXT
ignored.

Similarly, under the USS shell, you can specify the names of AR370 archives to be
processed by COOL on the sascc370 command line. For example, the following
command requests prelinking and linking of the object module main.o, resolving
references from the archive named subs.a:

sascc370 -o shgame main.o subs.a

Specifying the Correct Entry Point

Because of the variety of ways a SAS/C program can be constructed, the same entry
point is not appropriate for all programs. This section describes how to determine what
entry point your application requires and then describes how to specify this entry point
when you link the program.

� In the case of a normal, single load module SAS/C application with no special
requirements, the program entry point is the symbol MAIN. In most cases, you need
not take any special action to have this entry point selected.

� The module you are linking may be a dynamically loadable component of a
multi-load-module program. In this case, the entry point name depends on
whether you compiled with the norent option or with one of rent or rentext. In
the norent case, the entry point is #DYNAMNR. In the rent or rentext case, the
entry point is #DYNAMN. Under TSO, OS/390 batch and the shell, you can often
specify a keyword to ensure that the correct entry point is selected.

� You may have written your program to be called from assembler language, as
described in Chapter 11, “Communication with Assembler Programs,” on page 209.
Some of these calls require one of the entry points $MAINC or $MAINO, as
described in this chapter. In this case, you must explicitly specify the correct entry
point.

� You may have compiled your initial function with the indep option. If so, this
function must be specified as the entry point. Since the name of this function is
not fixed, you must explicitly specify the correct entry point.

168 SAS/C Library Names 4 Chapter 7

� You may be linking your application with the SPE library (see Chapter 14,
“Systems Programming with the SAS/C Compiler,” on page 273) and using the
standard front-end for your environment. In this case, the correct entry point will
be either #OSEP, #CMSEP, #CICSEP or #OEEP, depending on whether the
program is intended for execution under OS/390, CMS, CICS, or the USS shell.
Under TSO, OS/390 batch and the shell, you can often specify a keyword to ensure
that the correct entry point is used.

� You may be linking your application with the SPE library and using a custom
front-end. In this case, you must specify your own front-end as the entry point.
Since this name cannot be predicted, you must explicitly specify the entry point.

The correct entry point can always be specified via a linkage editor control card or
the RESET option of the CMS LOAD command. Additionally, when you use most of

the SAS/C batch cataloged PROCs or the COOL TSO CLIST, you can often use the
entry keyword to specify the entry point; when you compile under the USS shell, you
can use the -Bep option of sascc370 for this. To illustrate:

OS/390 batch
// EXEC LC370L,PARM.LKED=’LIST,MAP’,ENTRY=MAIN

TSO
cool example(init) list map rent entry(dyn)

USS
sascc370 -Bep=’#OEEP’ -Tspe example/init.c

The entry keyword may have any of the following values:

MAIN The module is an ordinary C main program.

DYN The module is a rent- or rentext-compiled dynamically loadable
module.

DYNNR The module is a norent-compiled dynamically loadable module

OS The module is an SPE application using the default OS/390 start-up
code

OE The module is an USS SPE application using the default USS
start-up code.

CSPE The module is a CICS SPE application using the default CICS
start-up code. This option is available only with the CICS batch
PROCs (for example, LCCCPCL).

NONE The entry point to the module is specified by an input ENTRY
control statement provided by the user.

If no entry option is specified, the default is always MAIN.

Note: The -Bep option of the sascc370 shell command, unlike the entry keyword
for batch and TSO, requires that the actual entry point be specified, not a code. Thus,
the example above specifies -Bep=’#OEEP’, not -Bep=OE. 4

SAS/C Library Names
Table 7.6 shows the SAS/C Libraries that can be linked with your program, for both

OS/390 and CMS. This information may be valuable if you are linking your program
without using a standard batch PROC or the COOL CLIST or EXEC. Note that in
general, you should define the base run-time library and one other library, depending

Linking C Programs 4 SAS/C Library Names 169

on the intended execution environment, as autocall libraries. Optionally, a version of
the all-resident library can be added. Do not attempt to link using more than one
environmental library at once, as the effects are unpredictable. For instance, never
specify both the standard library and the SPE library together as autocall libraries.

Note that on OS/390 the name shown below must be augmented by a site-assigned
prefix. For instance, the name of the base library is shown as prefix.BASEOBJ. The
prefix part of the filename will be replaced by a prefix chosen by your site. For instance,
if your site uses the prefix VDR.SASC600, then the full name of the base library will be
VDR.SASC600.BASEOBJ.

For OS/390, two library names are shown for some libraries. The names ending in
OBJ are object module libraries. The names ending in LIB or SUB are the equivalent
load module libraries.

Table 7.6 SAS/C Libraries

Library Contents OS/390 Name CMS Name

Base run-time library (modules valid
in all systems)

prefix.BASEOBJ
prefix.BASELIB

LC370BAS TXTLIB

Standard run-time library (normal
system environment)

prefix.STDOBJ
prefix.STDLIB

LC370STD TXTLIB

Standard library (GOS environment) prefix.GOSOBJ LC370GOS TXTLIB

SPE run-time library (SPE
environment)

prefix.SPEOBJ
prefix.SPELIB

LC370SPE TXTLIB

CICS run-time library (OS/390
environment)

prefix.CICSOBJ
prefix.CICSLIB

LC370CIC TXTLIB

CICS run-time library (VSE
environment)

prefix.VSEOBJ LC370VSE TXTLIB

CICS SPE library prefix.CICS.SPEOBJ
prefix.CICS.SPELIB

LC370SPC TXTLIB

All—resident library (non-CICS) prefix.ARESOBJ LCARES TXTLIB

All—resident library (CICS) prefix.CICS.ARESOBJ CICSARES TXTLIB

ILC library prefix.ILCOBJ
prefix.ILCSUB

see notes

Note: The ILC library should not be used as an autocall library. Under CMS these
files are organized as a collection of TEXT files rather than as a TXTLIB. See the SAS/
C Compiler Interlanguage Communication Feature User’s Guide for more information
on linking ILC programs. 4

170 SAS/C Library Names 4 Chapter 7

171

C H A P T E R

8
Executing C Programs

Introduction 171
Executing C Programs in TSO 171

Using the Debugger 172

Executing C Programs from the USS Shell 173

Using pdscall 173

Using the Debugger 174
Executing C Programs under CMS 174

Using the Debugger 174

CMS Parameter Lists 175

Standard file redirections 175

Executing C Programs under OS/390 Batch 175

Using Cataloged Procedures to Execute C Programs 176
The LC370LG Cataloged Procedure 176

The LC370CLG Cataloged Procedure 177

The LC370LRG Cataloged Procedure 179

The LC370CRG Cataloged Procedure 180

Run-Time JCL Requirements 181
Using the GETENV and PUTENV TSO Commands 182

The GETENV Command 183

The PUTENV Command 183

Accessing PUTENV and GETENV via the CALL command 183

Introduction

This chapter contains instructions for running your SAS/C program in TSO, from the
UNIX System Services (USS) shell, under CMS, and under OS/390 batch.

Executing C Programs in TSO

Any C program can be run in TSO by use of the standard TSO CALL command. Note,
however, that when a C program is executed using CALL, certain TSO oriented features
are not available. In particular, the command name is not known to the program.

Alternately, your installation may provide a higher level of support for calling C
programs from TSO. There are two higher levels available:

� calling via the TSO C command

� calling as a standard TSO command.

172 Using the Debugger 4 Chapter 8

The following are examples of how you call a sample program from TSO at each level
of support. In the examples, the library option =w overrides the program’s use of the
quiet function to suppress warnings. <input redirects stdin from the DDname
INPUT. The final parameter, -z, is an argument to the program. See Chapter 9,
“Run-Time Argument Processing,” on page 185 for information about program
parameters.

� Call your C program via the TSO CALL command as follows:

call library.name(tsoexam) ’=w <input -z’

This statement uses the TSO CALL command to execute the program tsoexam. The
data set containing tsoexam is library.name. The program parameters are
surrounded by single quotes.

Note: The CALL command translates program arguments to uppercase unless you
specify the ASIS keyword. 4

Both forms of the optional support (illustrated in the next two examples) require that
your program data set be allocated to the DDname CPLIB. The examples assume that
this has been done before the programs are invoked.

� Call your C program via the C command as follows:

c tsoexam =w <input -z

The C command calls tsoexam, passing the parameters that follow the program
name to the program.

� Call your C program as a standard TSO command as follows:

tsoexam =w <input -z

The tsoexam program is invoked as if it were a standard TSO command. Again,
the parameters that follow the program name are passed to the program.

When you execute any C program in TSO, the transient run-time library must be
allocated to the DDname CTRANS or installed in the system link list. Your installation
will probably cause it to be allocated automatically; if not, you should use the TSO
ALLOCATE command to associate this library with the DDname CTRANS.

Using the Debugger

Before using the SAS/C Debugger, it is recommended that you compile with the
debug option. Debugger access to program source and variables is permitted only if the
C program was compiled with debug. Note that if you compile with dbhook rather than
with debug, debugging is limited to commands that do not involve source or SAS/C
Debugger User’s Guide and Reference variable access. If you compile without specifying
either debug or dbhook, use of the debugger is limited to tracing or stopping execution
at subroutine call and return.

In TSO, the debugger expects the debugger symbol table file to be allocated to the
DDname DBGLIB at the start of execution. Alternately, you can use the debugger set
search command in the debugger profile to inform the debugger of the location of
symbol tables.

Refer to the SAS/C Debugger User’s Guide and Reference for information on running
the debugger in TSO.

Executing C Programs 4 Using pdscall 173

Executing C Programs from the USS Shell
To run a SAS/C program under the USS shell, the program must reside in an

executable HFS file, and its directory must be included in the value of the PATH
environment variable. If these conditions are satisfied, you can execute the program
simply by typing the name and any options at the shell prompt. If the program’s
directory is not in your PATH, you can still run it, but you must give the full pathname.
You can also call a program in a PDS from the shell by using the pdscall utility. See
“Using pdscall” on page 173 for details.

The following is an example of calling a program from the shell.

shlexam =w -z <input

In the example, the library option =w overrides the program’s use of the quiet
function to suppress warnings, and -z is a program option. The redirection, <input, is
processed by the shell, not by the SAS/C Library, and causes the standard input file to
be redirected from the file named INPUT in the current directory.

Note: Because redirections are interpreted by the shell rather than by the library,
you cannot redirect files to nonstandard filenames, such as ones whose names start
with //. 4

Before you can run any SAS/C program under the shell, the SAS/C Transient Library
must be available. Your site may make the library available automatically, by installing
it into the system link list, or by using /etc/profile to make it available when you use
the omvs command to startup the shell. If your site does not make the SAS/C Library
available, then you must do one of the following prior to invoking a SAS/C program:

� Define the environment variable ddn_CTRANS as the data set name of the SAS/C
Transient Library.

� Define the environment variable STEPLIB as a list of data set names, one of
which is the SAS/C Transient Library.

For example, if your site installed the transient library as VDR.SASC.LINKLIB, then
you could specify either of the following:

export ddn_CTRANS=vdr.sasc.linklib
export STEPLIB=’vdr.sasc.linklib:sys1.favorite.linklib’

The latter command defines SYS1.FAVORITE.LINKLIB as a STEPLIB in addition to
the SAS/C Library.

Note that using ddn_CTRANS may improve performance, particularly if you
frequently invoke the standard utilities, which are not written using SAS/C and
therefore do not require transient library access.

Using pdscall
pdscall is an USS shell command that can be used to run SAS/C programs stored in

a PDS. The programs are called using USS exec-linkage, so that their behavior should
be the same as if the program were copied to the hierarchical file system and invoked
as a shell command.

The syntax of pdscall is as follows:

pdscall pgmname options

The pgmname should be a fully qualified OS/390 data set name followed by a
member name in parentheses. If no member name is specified, the member
TEMPNAME is assumed. The pgmname may be specified in either uppercase or

174 Using the Debugger 4 Chapter 8

lowercase, and it should be enclosed in quotes to prevent shell interpretation of the
parentheses around the member name. Following the program name may optionally
appear one or more program options. These are passed to the program unmodified.

The exit status of pdscall is the same as that of the invoked program.
Note that pdscall may produce successful results with programs that are not

written in SAS/C, but that correct results are not guaranteed.

Using the Debugger
Before using the SAS/C Debugger, it is recommended that you compile with the

debug option. Debugger access to program source and variables is permitted only if the
program was compiled with debug. Note that if you compile with dbhook rather than
with debug, debugging is limited to commands that do not involve source or variable
access. If you compile without specifying either debug or dbhook, use of the debugger is
limited to tracing or stopping execution at function call and return.

You should use the set search command in your profile to inform the debugger of
the locations of debugger symbol tables. See SAS/C Software: Changes and
Enhancements, Release 7.00 for information on set search.

Note that use of the sascdbg command is required to debug a program running
under the shell. The run-time option =debug will be ignored if specified for a program
running under the shell.

Executing C Programs under CMS
There are many ways to invoke a C program under CMS. The most frequently used

method is to create a MODULE file with the GENMOD command and then invoke the
program as any other CMS command. The following example shows how a MODULE
file named CMSEXAM can be invoked:

CMSEXAM =w <input.file -z

In the example, the library option =w suppresses the quiet function. <input.file
redirects stdin from the file INPUT FILE. --z is a program argument that is to be
passed to the main function via the argv vector. See Chapter 9, “Run-Time Argument
Processing,” on page 185 for information about the types of program parameters.

C programs in TEXT files can be invoked with the LOAD and START commands, as
follows:

LOAD CMSEXAM
START * =w <input.file -z

The program parameters follow the asterisk (*) in the START command.
When you execute any C program under CMS, the transient run-time library must

be on an accessed disk or in a segment available to your virtual machine. Your
installation probably makes it available automatically; if not, ask your SAS Software
Representative for C compiler products about how to get access to the transient library.

Using the Debugger
Before using the SAS/C Debugger, it is recommended that you compile with the

debug option. Debugger access to program source and variables is permitted only if the
C program was compiled with debug. Note that if you compile with dbhook rather than
with debug, debugging is limited to commands that do not involve source or variable

Executing C Programs 4 Executing C Programs under OS/390 Batch 175

access. If you compile without specifying either debug or dbhook, use of the debugger is
limited to tracing or stopping execution at subroutine call and return. For information
on running the debugger under CMS, refer to the SAS/C Debugger User’s Guide and
Reference.

CMS Parameter Lists
As with any C program, the program parameters are transferred to the main function

via the argv vector. C programs under CMS generally use the untokenized parameter
list to create the argv vector. (See Chapter 9, “Run-Time Argument Processing,” on
page 185 for more information on the argv vector.) The untokenized parameter list
does not alter the program parameters, in case or in length. For example:

cmsexam three very-long parameters

In this invocation of a C program, the main function receives pointers to these strings:

three
very-long
parameters

In some cases, however, CMS provides only a tokenized parameter list. If this occurs,
the C program parameters are converted to uppercase, and each token is truncated to
eight characters. Given the command line above, provided as a tokenized parameter
list, the main function receives pointers to the following strings:

THREE
VERY-LON
PARAMETE

Programs that can be invoked by CMS in such a way should be prepared to accept
tokenized parameters. Note that C programs invoked via the CMS EXEC processor (as
opposed to the EXEC2 processor or REXX) receive tokenized parameters.

Standard file redirections
Under CMS, the standard files stdin and stdout can be redirected to nonterminal

files. (See Chapter 9, “Run-Time Argument Processing,” on page 185 for more
information.) A typical redirection of stdin from a disk file might look like the
following:

cmsexam <data.file.b

If only the tokenized parameter list is available, the redirection parameter is
truncated to <DATA.FI, which probably causes an error to occur when stdin is opened.
Therefore, the library accepts the following alternate redirection form:

cmsexam <(data file b)

The fileid does not use periods and is entirely enclosed by parentheses. Using this
form of redirection parameter does not cause truncation of the fileid in a tokenized
parameter list.

Executing C Programs under OS/390 Batch
The following sections discuss the cataloged procedures provided to execute C

programs immediately after the link-edit step.

176 Using Cataloged Procedures to Execute C Programs 4 Chapter 8

Using Cataloged Procedures to Execute C Programs
You can use one of the cataloged procedures LC370CLG or LC370LG to execute a C

program immediately after it is link-edited. Neither of these procedures runs COOL. If
you need to run COOL before link-editing and executing a program, because it is
reentrant or uses extended names, use the LC370LRG cataloged procedure.

Example Code 8.1 on page 176 shows how to link-edit and execute a C program.
Example Code 8.2 on page 176 and Example Code 8.3 on page 177 show the expanded
JCL for the cataloged procedures that execute non-reentrant C programs LC370LG and
LC370CLG, respectively.

Example Code 8.1 Sample JCL for Linking and Executing a C Program Using the Cataloged Procedure LC370LG

//JOBNAME JOB job card information
//*--
//* LINK AND RUN A C PROGRAM
//*--
//STEP1 EXEC LC370LG
//LKED.SYSLMOD DD DISP=SHR,DSN=your.load.library(member)
//LKED.SYSIN DD DISP=SHR,DSN=your.object.library(member)
/*

The LC370LG Cataloged Procedure
Expanded JCL for the LC370LG procedure is illustrated in Example Code 8.2 on

page 176. This JCL is correct as of the publication of this guide. However, it may be
subject to change.

Example Code 8.2 Expanded JCL for the LC370LG Procedure

//LC370LG PROC ENTRY=MAIN,ENV=STD,
// CALLLIB=’SASC.BASELIB’,
// SYSLIB=’SASC.BASELIB’
//**
//* PRODUCT: SAS/C ***
//* PROCEDURE: LINKAGE AND EXECUTION ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//* **

//* ENV=STD: MODULE RUNS IN THE NORMAL C ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS PROGRAMMING ENVIRONMENT
//* ENTRY=MAIN: MODULE IS A NORMAL C MAIN PROGRAM
//* ENTRY=OS: MODULE IS AN OS SPE APPLICATION
//* ENTRY=NONE: ENTRY POINT TO BE ASSIGNED BY USER
//* **
//LKED EXEC PGM=LINKEDIT,PARM=’LIST,MAP’,REGION=1536K
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=A
//SYSLIN DD DSN=SASC.BASEOBJ(EP@&ENTRY),

Executing C Programs 4 The LC370CLG Cataloged Procedure 177

// DISP=SHR
// DD DDNAME=SYSIN
//SYSLIB DD DSN=SASC.&ENV.LIB,
// DISP=SHR STDLIB OR SPELIB
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD(MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))
//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED)
//STEPLIB DD DSN=SASC.LINKLIB,
// DISP=SHR C TRANSIENT LIBRARY
//SYSPRINT DD SYSOUT=A
//SYSTERM DD SYSOUT=A

//DBGLOG DD SYSOUT=A
//SYSTMPDB DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY

Note: The symbolic parameter SYSLIB refers to the autocall library at your
installation. 4

The LC370CLG Cataloged Procedure
Expanded JCL for the LC370CLG procedure is illustrated in Example Code 8.3 on

page 177. This JCL is correct as of the publication of this guide. However, it may be
subject to change.

Example Code 8.3 Expanded JCL for the LC370CLG Procedure

//LC370CLG PROC ENTRY=MAIN,ENV=STD,
// CALLLIB=’SASC.BASELIB’,
// MACLIB=’SASC.MACLIBH’,
// SYSLIB=’SASC.BASELIB’
//**
//* PRODUCT: SAS/C ***
//* PROCEDURE: COMPILATION, LINKAGE, AND EXECUTION ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//* **

//* ENV=STD: MODULE RUNS IN THE NORMAL C ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS PROGRAMMING ENVIRONMENT
//* ENTRY=MAIN: MODULE IS A NORMAL C MAIN PROGRAM
//* ENTRY=OS: MODULE IS AN OS SPE APPLICATION
//* ENTRY=NONE: ENTRY POINT TO BE ASSIGNED BY USER
//* **
//C EXEC PGM=LC370B
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,

178 The LC370CLG Cataloged Procedure 4 Chapter 8

// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&&OBJECT,SPACE=(3200,(10,10)),DISP=(MOD,PASS),
// UNIT=SYSDA
//SYSLIB DD DSN=&MACLIB,DISP=SHR STANDARD MACRO LIBRARY
//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//LKED EXEC PGM=LINKEDIT,PARM=’LIST,MAP’,COND=(8,LT,C)
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=A
//SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,PASS),VOL=REF=*.C.SYSLIN
// DD DSN=SASC.BASEOBJ(EP@&ENTRY),
// DISP=SHR
// DD DDNAME=SYSIN

//SYSLIB DD DSN=SASC.&ENV.LIB,
// DISP=SHR STDLIB OR SPELIB
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD(MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))
//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,C),(4,LT,LKED))
//STEPLIB DD DSN=SASC.LINKLIB,
// DISP=SHR C TRANSIENT LIBRARY
//SYSPRINT DD SYSOUT=A
//SYSTERM DD SYSOUT=A
//DBGLOG DD SYSOUT=A
//DBGLIB DD DSN=*.C.SYSDBLIB,DISP=(OLD,PASS),VOL=REF=*.C.SYSDBLIB
//SYSTMPDB DD UNIT=SYSDA.,SPACE=(TRK,25) VS1 ONLY

Note the following about this example:

� The symbolic parameter MACLIB refers to the data set name chosen by your
installation for the macro library. The symbolic parameter SYSLIB refers to the
autocall library at your installation. Do not override these parameters.

� When you use LC370CLG more than once in a job, provide overriding JCL
(DISP=(OLD,PASS)) to reuse the compiler SYSLIN data set (&&OBJECT) in all
but the first instance.

� When you override SYSPRINT to reference a disk data set, the data set
disposition must be MOD. The data set cannot be a member of a PDS.

� ENV=STD is the default and specifies the standard OS/390 environment.
ENV=SPE should be used for an SPE application. (See “Selecting the program
environment” on page 139 for more information.)

� See “Linking Programs under OS/390 Batch” on page 138 for information on using
the ENTRY symbolic parameter. Note that the only valid specifications for
LC370CLG are ENTRY=MAIN, ENTRY=OS and ENTRY=NONE, since only these
can produce a separately executable OS/390 load module.

Executing C Programs 4 The LC370LRG Cataloged Procedure 179

The LC370LRG Cataloged Procedure
The LC370LRG cataloged procedure is similar to LC370LR, with the addition of a

GO step. Expanded JCL for the LC370LRG procedure is illustrated in Example Code
8.4 on page 179. This JCL is correct as of the publication of this guide. However, it may
be subject to change.

Example Code 8.4 Expanded JCL for the LC370LRG Procedure

//LC370LRG PROC ENV=STD,ALLRES=NO,
// CALLLIB=’SASC.BASEOBJ’,
// SYSLIB=’SASC.BASEOBJ’
//**
//* PRODUCT: SAS/C ***
//* PROCEDURE: COOL LINKAGE EDITOR PREPROCESSOR, LINK EDIT ***
//* AND EXECUTE ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//* ENV=STD: MODULE RUNS IN THE NORMAL C ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS PROGRAMMING ENVIRONMENT
//* **
//LKED EXEC PGM=COOLB,PARM=’LIST,MAP’,REGION=1536K
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR C COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR C RUNTIME LIBRARY
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=A
//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,SPACE=(3200,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIB DD DDNAME=AR#&ALLRES ARESOBJ OR STDOBJ OR SPEOBJ
// DD DSN=SASC.&ENV.OBJ,
// DISP=SHR STDOBJ OR SPEOBJ
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD(MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))
//AR#NO DD DSN=SASC.&ENV.OBJ,
// DISP=SHR
//AR#YES DD DSN=SASC.ARESOBJ,
// DISP=SHR
//GO EXEC PGM=*.LKED.SYSLMOD,COND=(4,LT,LKED)
//STEPLIB DD DSN=SASC.LINKLIB,
// DISP=SHR C TRANSIENT LIBRARY
//SYSPRINT DD SYSOUT=A
//SYSTERM DD SYSOUT=A
//DBGLOG DD SYSOUT=A
//SYSTMPDB DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY

Note the following about this example:
� The symbolic parameter SYSLIB refers to the autocall library at your installation.

180 The LC370CRG Cataloged Procedure 4 Chapter 8

� ENV=STD is the default and specifies the standard OS/390 environment.
ENV=SPE should be used for an SPE application. (See the section “Selecting the
program environment” on page 139 for more information.)

� A SYSLDLIB DD statement may be provided to define one or more autocall
libraries in load module format. Any references to members of SYSLDLIB are left
unresolved by COOL and are resolved by the linkage editor.

The LC370CRG Cataloged Procedure
The LC370CRG cataloged procedure is similar to LC370CLR, with the addition of a

GO step. Expanded JCL for the LC370CRG procedure is illustrated in Example Code
8.5 on page 180. This JCL is correct as of publication of this guide. However, it may be
subject to change.

Example Code 8.5 Expanded JCL for the LC370CRG Procedure

//LC370CRG PROC ENV=STD,ALLRES=NO,
// CALLLIB=’SASC.BASEOBJ’,
// MACLIB=’SASC.MACLIBC’,
// SYSLIB=’SASC.BASEOBJ’

//**
//* NAME: LC370CRG (LC370CRG) ***
//* PRODUCT: SAS/C ***
//* PROCEDURE: COMPILATION, PRE-LINK, LINKAGE, AND EXECUTION ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//* **
//* ENV=STD: MODULE RUNS IN THE NORMAL C ENVIRONMENT
//* ENV=SPE: MODULE USES THE SYSTEMS PROGRAMMING ENVIRONMENT
//* **
//C EXEC PGM=LC370B
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&&OBJECT,SPACE=(3200,(10,10)),DISP=(MOD,PASS),
// UNIT=SYSDA,DCB=(RECFM=FB,LRECL=80)
//SYSLIB DD DSN=&MACLIB,DISP=SHR STANDARD MACRO LIBRARY
//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//LKED EXEC PGM=COOLB,PARM=’LIST,MAP’,COND=(8,LT,C),REGION=1536K
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,

Executing C Programs 4 Run-Time JCL Requirements 181

// DISP=SHR RUNTIME LIBRARY
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=*
//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,SPACE=(3200,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIB DD DDNAME=AR#&ALLRES ARESOBJ OR STDOBJ OR SPEOBJ
// DD DSN=SASC.&ENV.OBJ,
// DISP=SHR STDOBJ OR SPEOBJ
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50))
//SYSLMOD DD DSN=&&LOADMOD(MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))
//SYSIN DD DSN=*.C.SYSLIN,DISP=(OLD,PASS),VOL=REF=*.C.SYSLIN
//AR#NO DD DSN=SASC.&ENV.OBJ,
// DISP=SHR
//AR#YES DD DSN=SASC.ARESOBJ,
// DISP=SHR
//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,C),(4,LT,LKED))
//STEPLIB DD DSN=SASC.LINKLIB,
// DISP=SHR C TRANSIENT LIBRARY
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//DBGTERM DD SYSOUT=*
//DBGLOG DD SYSOUT=*
//DBGLIB DD DSN=*.C.SYSDBLIB,DISP=(OLD,PASS),VOL=REF=*.C.SYSDBLIB
//SYSTMPDB DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY

Note the following about this example:
� The symbolic parameter SYSLIB refers to the autocall library at your installation.
� ENV=STD is the default and specifies the standard OS/390 environment.

ENV=SPE should be used for an SPE application. (See the section “Selecting the
program environment” on page 139 for more information.)

� A SYSLDLIB DD statement may be provided to define one or more autocall
libraries in load module format. Any references to members of SYSLDLIB are left
unresolved by COOL and are resolved by the linkage editor.

Run-Time JCL Requirements
To run a C program, some or all of the DD statements summarized in Table 8.1 on

page 181 may be required.

Table 8.1 Data Definition Statements for Program Execution under OS/390

DDname Purpose

STEPLIB or JOBLIB Must include the run-time library in the
concatenation unless it is already in your system
libraries or defined by CTRANS.

CTRANS May be used to define the run-time library if not
defined in JOBLIB or STEPLIB or in your
system libraries.

182 Using the GETENV and PUTENV TSO Commands 4 Chapter 8

DDname Purpose

SYSTERM stderr (standard error) output. Highly
recommended since run-time library error
messages go to stderr.

SYSPRINT stdout. Required only if the program writes
tostdout.

SYSIN stdinRequired only if the program reads
fromstdin.

DGBLIB Debugger symbol table file.

DBGSRC Source library data set or data set concatenation.

DBGLOG A log of messages from the debugger.

DBGIN A file containing commands to be read by the
debugger.

CTRANS may be used to define the run-time library if not defined in JOBLIB or
STEPLIB or in your system libraries.

The PARM keyword of the EXEC statement can be used to specify program
arguments, which are passed by the argc/argv interface to the main program. The
PARM string can also contain library arguments, standard file redirections, and
environment variables.

A SYSUDUMP card should be included if a dump is desired.
The DBGLIB, DBGSRC, DBGLOG, and DBGIN DDnames are explained in detail in

the SAS/C Debugger User’s Guide and Reference.
Example Code 8.6 on page 182 illustrates how to execute a C program that writes to

standard output.

Example Code 8.6 Sample JCL for Program Execution

//JOBNAME JOB job card information
//*--
//* RUN A C PROGRAM
//*--
//JOBLIB DD DISP=SHR,DSN=your.load.library
// DD DISP=SHR,DSN=runtime.transient.library
//STEP1 EXEC PGM=MVSEXAM,PARM=’=W <INPUT -z’
//SYSPRINT DD SYSOUT=class
//SYSTERM DD SYSOUT=class
//INPUT DD DSN=your.input.data,DISP=SHR
/*

Using the GETENV and PUTENV TSO Commands
The TSO commands PUTENV and GETENV are provided to enable you to access or

set SAS/C EXTERNAL environment variables. (Also see Chapter 4, "Environment
Variables," in SAS/C Library Reference, Volume 1.) Your site has probably installed
these commands into the system link list, in which case you can use them as you use all
other TSO commands. If your site has not installed these commands, you will get a
COMMAND NOT FOUND message when you attempt to use them. In this case, you can still
access these commands with the TSO CALL command.

Executing C Programs 4 Accessing PUTENV and GETENV via the CALL command 183

The GETENV Command
The GETENV command is used to print the values of environment variables or to

assign the value of an environment variable to a CLIST or REXX variable. The syntax
is as follows:

GETENV
prints the values of all environment variables.

GETENV varname
prints the value of varname.

GETENV varname EXECvar
stores the value of the environment variable varname in the CLIST/REXX variable
EXECvar, or returns nonzero if the environment variable is not defined.

The PUTENV Command
The PUTENV command is used to assign a new value to an environment variable. If

the variable does not exist, it is created. If it does exist, the old value is replaced. Note
that the same variable name can be defined as both PERMANENT and EXTERNAL, in
which case, they are different variables. Only the PERMANENT value is retained at
the end of the session. The syntax for the PUTENV command is as follows:

PUTENV name=value[scope]

The value argument is assigned to name. scope may be either PERMANENT or
EXTERNAL; if scope is omitted, EXTERNAL is assumed. (See Chapter 4,
"Environment Variables," in SAS/C Library Reference, Volume 1 for information about
environment variable scopes.)

Syntax notes:
In addition to the syntax shown, the PUTENV command allows you to omit the
equal sign (=) (so long as there is a space between the name and the value) or to
separate the equal sign (=) from the name and the value using spaces. An
environment variable value containing blanks may be specified by enclosing the
value string in double quotes. Finally, note that if an equal sign (=) is present, the
value can be omitted, in which case the environment variable is assigned a null
value.

Accessing PUTENV and GETENV via the CALL command
If your site has not made the GETENV and PUTENV commands available as TSO

commands, you can still access them with the TSO CALL command as follows:

CALL ’SASC.TSOLOAD(command_name)’’operands’

command_name is either GETENV or PUTENV, and the operands are as described
earlier. The following shows a command-line example, followed by that same command
executed with the CALL command:

PUTENV _LOCALE=DBCS

CALL ’SASC.TSOLOAD(PUTENV)’ ’_LOCALE=DBCS’

When you use the CALL command to invoke the PUTENV command, you must
include the equal sign (=) between the variable name and the value, or the command

184 Accessing PUTENV and GETENV via the CALL command 4 Chapter 8

will be interpreted as a GETENV command. Also, because the CALL command
uppercases its arguments, it cannot be used to assign values containing lowercase
letters, unless you use the ASIS keyword of the CALL command. Your site may have
changed the name of the SASC.TSOLOAD file. Check with your administrator to
determine the name at your site.

185

C H A P T E R

9
Run-Time Argument Processing

Introduction 185
Types of Run-Time Arguments 185

Environment Variables 186

POSIX Considerations 187

Run-Time Options 188

General Run-Time Options 189
Program specification 193

Linkage Run-Time Options 194

Program specification 195

Memory Allocation Options 195

Program specification 196

Program-only Options 196
stkabv and stkrels External Compiler Variables 197

Interleaved SYSOUT 197

Standard File Redirection 198

Alternate CMS Redirection Format 198

Program Standard File Specification 199
Argument Redirection 200

Rules for Using Argument Redirection 200

Introduction

This chapter explains how program arguments can be transferred from the external
environment to the program. The program can receive arguments by accessing the argv
or argc parameters to main or by environment variables.

This chapter also covers how to select certain run-time library parameters, as well as
redirection of the files stdin and stdout.

Types of Run-Time Arguments

When you run a C program under CMS or the UNIX System Services (USS) shell,
data are passed to the C program and the library as the part of the command line that
follows the command name; the command name is used as the program name and is
passed in argv[0]. This is also true in TSO if you use the optional support for invoking
a C program from the DDname CPLIB. (See Chapter 8, “Executing C Programs,” on
page 171.) If you use the TSO CALL command or OS/390 batch JCL to invoke a C
program, the PARM string corresponds to the command line. The command line

186 Environment Variables 4 Chapter 9

normally consists of a number of tokens separated by space such as blanks, tabs, and so
on. The tokens fall into these five classes:

� environment variable assignments, which have the form =x=y

� library options, which have the form =x

� I/O redirections, which begin with < or >
� argument redirections, which have the form =<filename.
� program arguments, which include any other tokens.

Tokens of the various types can be intermixed in the command line.
Arguments containing blanks can be passed to the program by enclosing the

argument in quotation marks, as in the following example:

"abc "

The normal C escape sequences such as \0 and \n can be used within quoted tokens.
(Octal or hexadecimal escape sequences cannot be used.) On terminals without a
backslash character (\), the cents sign (¢) can be substituted for the backslash.

Run-time library options and redirections can also be defined in the program source
code. Subsequent sections provide details on how to do this.

Environment Variables
Environment variables are used to pass variable values that are set outside the

program to be passed into the C program. An environment variable assignment begins
with an equal sign (=) and contains one other equal sign either embedded or trailing, as
in the following example:

=name=value

Environment variables are normally accessed using the standard getenv function or
the POSIX variable environ. Alternately, you can define a third argument to main that
is an array of pointers. You can access the values specified for environment variables by
stepping through this array until you reach an argument that contains a null pointer.
For example, you can specify the TSO or CMS command line

pgm =ABC=DEF =GHI=JKL =PATH=C:/LC

or the OS/390 PARM string

//STEP EXEC PGM=pgm,PARM=’=ABC=DEF =GHI=JKL =PATH=C:/LC’

to invoke the following program:

void main(int argc, char **argv, char **envp)
{

int i;
i=0;
printf("program name is %s\n", *argv);

/* Obtain program arguments. */
while(--argc > 0)

printf("argv[%d] is %s\n", ++i, *++argv);

i=0;
/* Obtain environment variables. */

while(*envp)
printf("envp[%d] is %s\n", i++, *envp++);

Run-Time Argument Processing 4 POSIX Considerations 187

}

The program prints the following:

program name is pgm
envp[0] is ABC=DEF
envp[1] is GHI=JKL
envp[2] is PATH=C:/LC

If an environment variable assignment has no value (for example, =name=), any
previously entered value for that environment variable is removed. For example, if you
invoke the example program under CMS or in TSO with

pgm =ABC=DEF =GHI=JKL =ABC=

or under OS/390 with

//STEP EXEC PGM=pgm,PARM=’=ABC=DEF =GHI=JKL =ABC=’

the program prints the following:

program name is pgm
envp[0] is GHI=JKL

The value portion of an environment variable assignment can be enclosed in
parentheses. The parentheses are removed from the environment variable string before
it is stored. Parentheses enclosing environment variable assignments should balance. If
there are more left parentheses than right, the remainder of the command line is
regarded as part of the environment variable value. If there are more right parentheses
than left, those parentheses become program arguments. No error message is issued if
parentheses do not balance.

The colon (:) is not valid in the name portion of an environment variable entered on
the command line.

Note: Under CMS and in TSO, environment variables can be defined externally to
the program. Under CMS, the GLOBALV command defines environment variables. In
TSO you can use the SAS/C PUTENV command. (See “Using the GETENV and
PUTENV TSO Commands” on page 182 for more information.) These environment
variables are not stored in the envp array in either case. 4

Also note that when you run a SAS/C program under the USS shell, it inherits
environment variables exported from the shell as well as any specific to the command
line. Both sets of variables are stored in the envp array.

POSIX Considerations
For historical reasons, SAS/C environment variable support prior to Release 6.00 did

not treat environment variable names as case-sensitive. That is, getenv("sauce"),
getenv("Sauce"), and getenv("SAUCE") always returned the same result.

With Release 6.00, POSIX support has been added as described in Chapter 19,
"Introduction to POSIX," in SAS/C Library Reference, Volume 2. The POSIX standards
do not permit this case-insensitive behavior. For this reason, the names of environment
variables in a program invoked with exec-linkage are considered case sensitive.
Programs running in other environments, for example, TSO, retain the old behavior.

In the TSO environment, SAS/C supports several scopes of environment variables:
program scope, external scope, and permanent scope. When a TSO program, or a child
of a TSO program that was created by a call to the fork function, invokes an exec
function, only the program scope variables are passed to the executed program. Note
that although the library performs TSO environment variable name comparisons
without reference to case distinctions, it preserves the case of characters in the

188 Run-Time Options 4 Chapter 9

environment variable name for accurate transmission by the exec function. For
instance, if a TSO program calls putenv("Sauce=Bernaise") followed by an exec, the
new process will receive the environment variable Sauce, not sauce or SAUCE.

SAS/C POSIX support also removes the previous limitations on the size of program
scope environment variable names and values. However, these limitations still apply to
external and permanent scope variables.

The values of program scope environment variables can be inspected by the program
without calling getenv. For programs compiled with the posix option, the environment
variables are chained from the extern char **environ, as required by the POSIX.1
Standard. For programs not compiled with the posix option, the variable name
environ is not reserved (as that would be a C Standards violation). However, there is a
SAS/C extern char ***_environ. The pointer *_environ always addresses the
program scope environment variable chain, regardless of whether the program is
compiled with or without the posix option.

Updates to the program scope environment variables can be performed using the
functions putenv, setenv, and clearenv. (setenv and clearenv are defined by the
POSIX.1a Standard; putenv is a SAS/C extension.) Note that alteration of environ to
change the program’s environment variables should not be attempted, since portable
functions to do this are provided.

As nonstandard extensions, SAS/C still supports the specification of environment
variable values on the command line (even for programs invoked by the USS shell). It
also supports supplying a third argument for the main function to receive a pointer to
the program scope environment variables.

Run-Time Options
This section covers the various run-time options you can specify for program

execution. These options can be specified in the following two ways:
� on the program command line
� in the program source code.

Although both forms of the option control the library, options specified on the
command line are usually referred to as command-line options, and options coded in the
program source are referred to as program-specified options. No matter which method
you use to specify options, there is a limit of 1000 characters for the string that
contains run-time options and user parameters. Note that it is possible to circumvent
this limit using argument redirection.

Command-line options have the form =option . Options specified in this way are
only in effect for the current execution of the program.

Program-specified options are specified by an external variable and are in effect for
every execution of the program (unless overridden by an option from the command line).

For example, under CMS the =minimal command-line option is specified on the
program’s command line as follows:

cpgm arg1 =minimal

Specifying the option in this form indicates that you want a minimal form of program
linkage for only this execution of your program. If you wanted always to have the
minimal option in effect, however, you would code it in the program as follows:

char _linkage = _MINIMAL;

Note that program option specification is not portable.
The run-time options can be grouped as follows:
� general options

Run-Time Argument Processing 4 General Run-Time Options 189

� linkage options
� memory allocation options
� program-only options.

Each group of options is discussed in detail in the following sections.

General Run-Time Options
These options control basic actions performed by the SAS/C Library. Most of these

options can be specified either directly on the command line or in the program source.
Command-line options begin with the equal sign (=). Most command-line options can be
negated using the prefix no. For example, the negation of the =warning option can be
specified as =nowarning.

Command-line options can be abbreviated by omitting final characters if no confusion
with another option is possible. The abbreviation for each option is listed later in this
section with the option description. Options can be specified in either upper- or
lowercase.

Each option has a default specification. A program also can specify its own default by
initializing an external variable for the option. A command-line specification always
overrides any program-specified default.

Table 9.1 on page 189 lists sets of general options available for controlling run-time
processing. Each option is discussed in detail following the table. The command-line
specification is covered in the first section, followed by the program-specification form.
General run-time options specified in the program source must be in uppercase.

Table 9.1 General Run-Time Options

Specified on the Command Line Specified in the Program Source

option negation int_options int_negopts

=abdump =noabdump --ABDUMP _NOABDUMP

=btrace =nobtrace _BTRACE _NOBTRACE

=cnftrace =nocnfrace _CNFTRACE _NOCNFTRACE

=debug =nodebug _DEBUG _NODEBUG

=fillmem =nofillmem _FILLMEM _NOFILLMEM

=hcsig =nohcsig _HCSIG _NOHCSIG

=htsig =nohtsig _HTSIG _NOHTSIG

=multitask =nomultitask _MULTITASK _NOMULTITASK

=quit =noquit _QUIT _NOQUIT

=storage =nostorage _STORAGE _NOSTORAGE

=usage =nousage _USAGE _NOUSAGE

=version =noversion _VERSION _NOVERSION

=warning =nowarning _WARNING _NOWARNING

190 General Run-Time Options 4 Chapter 9

Specified on the Command Line Specified in the Program Source

option negation int_options int_negopts

=xtrace =noxtrace _XTRACE _NOXTRACE

=zeromem =nozeromem _ZEROMEM _NOZEROMEM

The meaning of each general run-time option is discussed below. The options are
shown in command-line form; the program specification is discussed following this
section.

=abdump
=a

produces a dump when an ABEND occurs, including an ABEND that is recovered
by a SIGABRT or SIGABND signal handler. Under OS/390, =abdump is only
meaningful in the case that an ABEND is recovered, since a dump is always
produced (if an appropriate DD card is allocated) if the ABEND is not recovered.

Obtaining an ABEND dump under the USS shell can be tedious, because the
mechanism that supports this (defining a SYSMDUMP data set before invoking
the TSO OMVS command to bring up the shell) applies to all descendants of the
shell. The =abdump run-time option overcomes this difficulty. If =abdump is
specified for a program with exec-linkage, the library allocates the OS/390 data
set userid.SASC.DUMP to the DDname SYSUDUMP during program startup. If
the file cannot be allocated (perhaps because it is in use by another process) a
diagnostic is generated and execution proceeds normally. You can use a dump file
other than userid.SASC.DUMP with the =abdump option if you export the
environment variable ddn_SYSUDUMP with the name of an alternate dump data set.

=btrace
=b

causes a traceback to be included with library warning messages. The default is
=nobtrace.

Note: The =btrace name is used to distinguish this option from the =trace
option, which invokes the debugger. 4

=cnftrace
displays TCP/IP configuration information. The display has the following format:

LSCX077 TCP/IP Config Trace: [text]

=debug
=d

requests the use of the SAS/C Debugger, as described in the SAS/C Debugger
User’s Guide and Reference.

If you are executing an all-resident module using the =debug or =trace options,
you must also define the macro name ALLOW_TRANSIENT in the module that
includes <resident.h>.

Note: When you specify this option, =fdump option is also in effect. =fillmem
is in effect unless it is overridden. The default is =nodebug. 4

=fillmem
=fi

specifies that when memory is allocated by the run-time library, it should be filled
with the fill character 0xfc. This causes uninitialized variables to have unusual
values (for example, an uninitialized int has a value of approximately
—48,000,000), which increases the chance that the error will be detected. The

Run-Time Argument Processing 4 General Run-Time Options 191

default is =nofillmem, unless the debugger is used. When the debugger is used,
=fillmem is the default.

Note: The use of =fillmem forces the use of the =fdump linkage option. Also,
the use of =fillmem substantially increases execution time. 4

=hcsig
=hc

specifies that the library is to intercept computational signals (SIGFPE, SIGSEGV,
and SIGILL) using SPIE or ESPIE. The default is =hcsig. Specifying =nohcsig
prevents library handling of these signals. The following characteristics also
pertain to =hcsig:

� When =nohcsig is in effect, these signals cause an immediate abend;
therefore, handling of overflow and underflow by library mathematical
routines is impossible in some cases.

� When the debugger is used, =nohcsig also applies to the debugger; therefore,
the debugger features for recovery from invalid pointer usage are ineffective.

� If =nohcsig and =htsig are used together, the SPIE or ESPIE macro is still
used during ABEND handling in order to protect the ABEND exit from errors
caused by corruption of CONTROL blocks. However, the SPIE or ESPIE in
effect at the time of the ABEND is always restored by the library’s traceback
routine before it returns control to the system.

=htsig
=ht

specifies that the library is to intercept program termination signals (SIGABRT and
SIGABND) using ESTAE under OS/390 or ABNEXIT under CMS. The default is
=htsig. Specifying =nohtsig prevents library handling of these signals.

Note: When =nohtsig is in effect, no traceback can be produced at program
termination. Also, when the system function is used to call a TSO command,
ESTAE is always used to protect TSO from the effects of an ABEND during this
processing. This exit produces no messages and is in effect only during execution
of the system function. Use of =nohtsig should seldom be required. The library’s
ABEND handling routine is written so that it does not interfere with other
ABEND exits established by the caller of the C program or by assembler routines
called from C. 4

=multitask
=mu

specifies an alternate implementation of communication between a C program and
the debugger or between a C program and other high-level languages. =multitask
helps isolate the programs and languages from each other and reduces the chances
that an error in one will cause the other to fail. However, use of =multitask
causes additional overhead, and it is more suited for use during program
development than in a production program. The default is =nomultitask. Refer to
the SAS/C Compiler Interlanguage Communication Feature User’s Guide for more
information on the =multitask option.

Under OS/390, =multitask causes the C program, the debugger, and each
non-C language to run as a separate task. The fork library function may not be
used if =multitask is in effect.

=quit
=q

causes program execution to be abnormally terminated after any library warning
message is generated. This can be useful for obtaining a dump in such a situation.
If warnings are suppressed by the quiet function, the =quit option has no effect
unless the =warning option is also specified. The default is =noquit.

192 General Run-Time Options 4 Chapter 9

=storage
=s

causes the library to create a storage analysis report at program termination or in
the event of an ABEND. The report is identical to the output of the debugger’s
storage command. See the SAS/C Debugger User’s Guide and Reference for
detailed information about how to use the report.

If you are executing an all-resident module using the =storage option, you
must also define the macro name ALLOW_TRANSIENT in the file that includes
<resident.h>.

Under CMS, the report is written to STGRPT LISTING A1. In TSO or under
OS/390 batch, the report is written to DDname STGRPT. Under the USS shell, the
report is written to the file storage.out in the current directory. If the report is
created at normal program termination, it is titled "Normal Termination Storage
Report." If it is created during abnormal termination, it is titled "Abnormal
Termination Storage Report."

=usage
=u

causes a storage usage report to be printed at program termination. This report
can be used to determine the required stack size for a program that is to use the
=minimal option. The default is =nousage.

=version
causes the release numbers associated with the resident and transient libraries to
be displayed at program start-up. The display has the following format:

LSCX056 SAS/C library release n.nnx (resident)
release n.nnx (transient)

where n.nnx is the release number. The release number of the resident library
does not have to be the same as the release number of the transient library. This
information can be helpful in determining library mismatches. See Chapter 1,
"Introduction to the SAS/C Library," in SAS/C Library Reference, Volume 1 for
information about using different releases of the Compiler and Library.

=warning
=w

forces library warning messages to be printed even if the quiet function is used
by the program to suppress them. The =warning option also generates a traceback
even when the program is cancelled, as by an OS/390 operator cancel or a CMS
HX command. The traceback is ordinarily suppressed in this situation. This
option may be useful for getting diagnostic information about a looping program.
The default is =nowarning.

=xtrace
=x

causes a diagnostic to be printed, including a traceback, whenever a C++ exception
is thrown. Only one traceback is printed for an exception, even if the exception is
caught and rethrown.

=zeromem
=z

specifies that when memory is allocated by the run-time library, it should be filled
with 0s. This causes uninitialized variables to be set to 0, which may allow
erroneous programs to execute successfully. The default is =nozeromem.

Note: Using =zeromem forces the use of the =fdump linkage option. Also, using
=zeromem substantially increases execution time. If both =fillmem and =zeromem
are specified, =fillmem is ignored. 4

Run-Time Argument Processing 4 General Run-Time Options 193

Program specification
To specify general run-time options in your program, initialize the integer variable

_options with one or more bit flags to specifically request one or more options. The
_options variable must be an external variable.

Include <options.h> to obtain the names of the flags for assignment to _options.
The currently implemented options are as follows:

_ABDUMP produces a dump when an ABEND occurs.

_BTRACE prints a traceback with each diagnostic.

_DEBUG invokes the debugger.

_FILLMEM fills the memory with 0xfc when allocated.

_HCSIG handles computational signals.

_HTSIG handles abnormal termination signals.

_MULTITASK uses a multitasking debugger interface.

_QUIT terminates execution after a diagnostic.

_STORAGE produces storage corruption report after execution.

_USAGE prints a storage usage report after execution.

_VERSION prints the library version number.

_WARNING always prints the run-time warning messages.

_ZEROMEM indicates zero memory when allocated.

For example, the following code assigns flags to the _options variable:

extern int _options = _BTRACE + _WARNING;
extern int _negopts = _NOHCSIG;

You can initialize the integer variable _negopts to reset (turn off) one or more
options. Do not specify the same option for both the _options and _negopts variables;
if you do, the result is undefined.

Include <options.h> to obtain the names of the flags for assignment to _negopts.
The following are currently implemented options:

_NOABDUMP does not produce a dump when an ABEND occurs.

_NOBTRACE does not print a traceback with each diagnostic.

_NODEBUG does not invoke the debugger.

_NOFILLMEM does not fill the memory with 0xfc when allocated.

_NOHCSIG does not handle computational signals.

_NOHTSIG does not handle abnormal termination signals.

_NOMULTITASK does not use a multitasking debugger interface.

_NOQUIT does not terminate execution after a diagnostic.

_NOSTORAGE does not produce storage corruption report after execution.

_NOUSAGE does not print storage usage report after execution.

_NOVERSION does not print library version number.

_NOWARNING does not force printing of run-time warning messages.

_NOZEROMEM does not indicate zero memory when allocated.

194 Linkage Run-Time Options 4 Chapter 9

For example, the following code prevents the library handling of computational
signals:

int _negopts = _NOHCSIG;

Linkage Run-Time Options
Linkage options are a subset of the library options that specify which prolog and

epilog code should be executed with your program. Even after link-editing your
program, you have some flexibility choosing which prolog and epilog code is executed at
function entry and return. The choice of linkage option can affect considerably how fast
the program executes and how easy it is to debug. Note that the linkage options cannot
be negated. The =inter option is the default linkage option.

Table 9.2 on page 194 summarizes the linkage run-time options. The linkage options
and their effects follow the table.

Table 9.2 Linkage Run-Time Options

Specified on the Command Line Specified in the Program Source

=fdump _FDUMP

=inter _INTER

=minimal _MINIMAL

=optimize _OPTIMIZE

=fdump
=fd

specifies that you want dump formatting support. This option is the most
expensive and significantly increases function call overhead. However, it fully
implements normal save-area chaining conventions and labels each save area with
the name of the corresponding function, thereby improving dump readability.

=inter
=i

specifies that support for communication with assembler language, or other non-C
code, is required. This is the default specification. In addition to providing
interlanguage communication support, this option improves the reliability of the
library’s abend traceback. Use of this linkage option is recommended during
program testing.

=minimal
=mi

specifies that a minimal form of program linkage is desired. Use of minimal
linkage is recommended only for thoroughly tested and reliable programs for which
performance is critical. Refer to =usage in “General Run-Time Options” on page
189 and to =nnn/mmm in “Memory Allocation Options” on page 195 for information
on obtaining the stack size to specify when you use the =minimal option.

When minimal linkage is requested, a single area of memory is allocated for
automatic storage when the program starts up; overflow of this area is not
checked. If overflow occurs, random abends or overlays of the program or other
data are to be expected.

Run-Time Argument Processing 4 Memory Allocation Options 195

Note: Do not use this form of linkage for programs using recursive algorithms
unless you know the upper bound to the amount of recursion required. 4

Use of this option minimizes the overhead of function calls, producing
significant savings. However, all of the restrictions described for optimized linkage
also apply to minimal linkage. Also note that due to the difference in automatic
storage layout when =minimal is specified, storing data outside the bounds of an
array is more likely to overlay other data.

=optimize
=o

specifies that you want an optimized form of program linkage. When this option is
specified, function call overhead is decreased. However, the following restrictions
must be observed. If they are not observed, the effects are unpredictable.

� Only C and assembler language subroutines are permitted.

� When assembler subroutines are used, these routines must not call C
functions unless the assembler CENTRY and CEXIT macros are used.

� Functions compiled with the indep option cannot be used.

� Program checks that occur in assembler language routines cannot be handled
by the C program.

Optimized linkage is recommended for production programs that meet the
restrictions described above.

Note: In some cases, use of optimized linkage may prevent the generation of
an accurate traceback on abnormal termination. 4

Program specification
You can initialize the character variable _linkage to specify a linkage option.

Include <options.h> to obtain the names of the values for assignment to _linkage.
The following are the currently implemented linkage options:

_FDUMP supports dump formatting.

_INTER supports linkage with other languages.

_MINIMAL suppresses stack overflow checking.

_OPTIMIZE supports optimized linkage.

The following is an example of assigning the _FDUMP option to the _linkage
character variable:

extern char _linkage = _FDUMP;

Memory Allocation Options
A run-time option can be specified on the command line to request the initial stack or

heap allocation size, or both. The syntax of this option is as follows:

=nnn/mmm

nnn is the starting stack size and mmm is the starting heap size. (The sizes can be
expressed either as integers or as integers followed by an upper- or lowercase K.) To
specify a stack size only, use =nnn (omit the slash). To specify a heap size only, use =/
mmm (include the slash). The default heap size is 4K. The default starting stack size is
4K unless =minimal is specified, in which case the default is 32K.

196 Program-only Options 4 Chapter 9

Note: If the program initializes the external variable _mneed to a non-zero value to
indicate the use of the obsolete sbrk function, the mmm portion of the statement is
interpreted as the size of the sbrk area rather than as the size of the heap. 4

The following are examples for each operating system of commands that specify
several run-time options:

� Under CMS:

exam =o nolist =/80k =noht "sep(’ ’)"

� In TSO:

call (exam) ’=o nolist =/80k =noht "sep(’’ ’’)"’ asis

� Under the USS shell:

exam =o nolist =/80k =noht "sep(’ ’)"

� Under OS/390:

// EXEC PGM=EXAM,
// PARM=’=o nolist =/80k =noht "sep(’’ ’’)"’

Each example invokes the program exam. The library options =optimize and
=nohtsig are specified, and an initial heap allocation of 80K is requested. Two
arguments, which have the values nolist and sep(’ ’), are passed to exam.

Program specification
These memory allocation options can be specified in the program as follows:

int _stack = value;
int _heap = value;
int _mneed = value;

You can initialize the integer _stack to a numeric value to request a specific initial
allocation of stack space.

You can initialize the integer _heap to a numeric value to request a specific initial
allocation of heap (malloc) space.

You can initialize the integer _mneed to a numeric value to request a specific initial
allocation of sbrk space.

The following is an example of how to force a large heap allocation:

int _heap = 1024000;

Note that you can override a _heap or _mneed specification by using the =nnn/mmm
option for the command line.

Program-only Options
This section describes several additional external variables that can be initialized by

the program to request special library processing. These options are available only by
using these external variables; that is, they cannot be specified at execution time via
the command line.

You can initialize the integer variable _nio to any non-zero value to indicate that the
C program performs no I/O with C library routines. The overhead of opening the
standard files and loading I/O routines can thus be avoided. For example:

int _nio = nonzero ;

You can initialize the integer variable _nlibopt to any non-zero value to suppress
the use of library options or redirection on the command line. If _nlibopt is set, all

Run-Time Argument Processing 4 Interleaved SYSOUT 197

tokens on the command line are passed to the program, even if they resemble run-time
options. For example:

int _nlibopt = nonzero ;

You can initialize the pointer _pgmnm to the address of a string literal to be used as
the program name when no name can be obtained from the operating system. For
example:

char *_pgmnm = string ;

stkabv and stkrels External Compiler Variables
Older versions of OS/390 were limited to running with 24-bit addresses, giving a

maximum virtual address space of 16 megabytes. With the release of MVS/XA the
addresses were increased to 31 bits giving a virtual address space maximum of 2
gigabytes. Certain portions of OS/390 (notably certain I/O subsystems) were not
modified to accept 31-bit addresses, therefore programs wishing to utilize these services
were forced to get storage below the 16M line to use as parameters when calling these
functions. Prior versions of SAS/C allocated all stack memory from the area below the
line to avoid the problems involved in calling old OS/390 services with 31-bit addresses.

In SAS/C Release 6.50, defining the external integer variable _stkabv in the source
program (example: extern int _stkabv = 1;) will indicate to the library to allocate
stack space above the 16M line.

Note: Setting the variable at run time will have no effect; it must be initialized to 1
as shown. 4

However, some SAS/C library functions require their stack space be allocated below
the line due to their use of auto storage for parameter lists and control blocks which
still have a below-the-line requirement. These library routines have been identified,
and either modified to remove the requirement, or changed to request that their own
allocation of stack space be located below the 16M line. Release 6.50 includes a
compiler option (STKBELOW) and a CENTRY macro parameter (STKBELOW=YES) to
allow user code to request that its stack space be allocated below the line even if the
_stkabv variable is defined as non-zero.

A new option allows the library to release stack space that is no longer needed. To
free stack space, define the external integer variable _stkrels (example: extern int
_stkrels = 1;). This tells the library that, on return from a function, if an entire
stack segment becomes unused, the segment should be returned to the operating
system. This option is useful in long running programs that contain code paths that can
occasionally become deeply nested, or in multi-tasking applications. Use of _stkrels
and _stkabv guarantee that no stack space is allocated below the line if none is
required by an executing routine.

Interleaved SYSOUT
Multi-tasking applications that share SYSOUT data sets between tasks may

experience ABENDs when two or more tasks attempt to write to SYSOUT at the same
time. A new external variable, _isysout, has been provided to prevent this type of
ABEND.

_isysout
defining the external integer variable _isysout in the source program (for
example, extern int _isysout = 1;) indicates to the library that access to data

198 Standard File Redirection 4 Chapter 9

sets with a SYSOUT type must be serialized. ABENDs may occur in a
multitasking program (notably, ABEND S02A, reason x’0C’) when more than one
task attempts to write to a SYSOUT data set at the same time. The _isysout
variable must be initialized to 1 in each task of a multitasking SAS/C application
that could potentially write to a common SYSOUT data set.

This support is for OS/390 only, and OS/390 Name/Token services must be
available at run time.

Standard File Redirection
Redirections allow the choice of the standard input and output files to be made at

run-time. Redirections are affected by the _style variable. The _style variable must
be an external variable.

The _style variable can have the value of any valid pathname style and determines
the default style prefix. For example, assume you have a program containing the
following declaration:

char *_style = "tso";

Then, the following TSO program call would request that stdin be opened to
tso:input.data(file5):

call mypgms(simple) ’<input.data(file5)’

Refer to the discussion of _style in “Program Standard File Specification” on page
199 for additional information.

Alternate CMS Redirection Format
The library under CMS allows two forms of fileid specification in a redirection. The

usual specification is of the following form:

simple -x -y <data.file.a >output.listing

The fileid is simply any valid CMS pathname in the no-blanks format. Another
example of this form is the following:

simple -x -y <cms:rdr >printer

This form of fileid specification is subject to truncation, however, if only a CMS
tokenized parameter list is available to the library. If the C program can be invoked so
that only a CMS tokenized parameter list is available to the library, you should use the
alternate form of redirection. In this alternate form, the filename, filetype, and filemode
are specified as separate tokens and surrounded by parentheses, as in the following:

simple -x -y <(data file a) >(output listing)

or

simple -x -y <(rdr) >(printer)

This form of fileid is not subject to truncation in a tokenized parameter list.

Run-Time Argument Processing 4 Program Standard File Specification 199

Program Standard File Specification
A program also can specify an input or output redirection for standard C files.

Options controlling standard file redirection can be specified in the program source as
follows:

char *_stdinm = string ,
*_stdonm = string ,
*_stdenm = string ;

char *_stdiamp = string ,
*_stdoamp = string ,
*_stdeamp = string ;

The _stdxxxx variable must be an external variable. The variables are used as
follows:

� You can initialize the pointer _stdinm to the address of a string literal to name a
specific file to be opened as stdin.

� You can initialize the pointer _stdonm to the address of a string literal to name a
specific file to be opened as stdout.

� You can initialize the pointer _stdenm to the address of a string literal to name a
specific file to be opened as stderr.

� You can initialize the pointer _stdiamp to the address of a string literal to define
access-method parameters (amparms) to be used by the library when opening
stdin. This variable can be used to control whether the program name is used as
a prompt or whether any prompt is issued at all. For example, the following
statement suppresses the prompt:

char *_stdiamp = "prompt=";

The following statement causes the prompt "Enter command" to be issued
whenever stdin is accessed:

char *_stdiamp = "prompt=Enter command\n";

� You can initialize the pointer _stdoamp to the address of a string literal to define
access-method parameters to be used by the library when opening stdout.

� You can initialize the pointer _stdeamp to the address of a string literal to define
access-method parameters to be used by the library when opening stderr.

You can also initialize the character pointer variable _style to address a string that
will be used by the run-time system as a style prefix for all I/O open requests that do
not specify a style prefix. However, note that _style is ignored for a program compiled
with the posix option.

The format for _style is as follows:

char *_style = string ;

The string should be no longer than four characters (not including the optional final
colon and the terminating null). The value specified for _style affects filenames
specified on the command line. For example, under CMS if _style is set to ddn: and
PRINTER is specified on the command line, output is sent to DDname PRINTER and
not to your virtual printer.

Note: Program option specification is not portable. 4

For more information on filenames and styles, and amparms, refer to Chapter 3, "I/O
Functions," in SAS/C Library Reference, Volume 1.

200 Argument Redirection 4 Chapter 9

Argument Redirection
The command-line token =<filename defines an argument redirection. An argument

redirection is processed by opening the file specified, reading it in its entirety, and
replacing the =<filename token with the file contents. The file can contain environment
variable assignment, library option, or program argument tokens. It can also contain
additional argument redirections. However, it cannot contain I/O redirections.

Argument redirection can be used to insert tokens in a command-line argument
string. For instance, if the command line specifies the following:

arg1 =<tso:myargs arg2

and the TSO file userid.MYARGS contains the following:

arg3 arg4 =ENV1=22 =WARN

then the program is called as if the command line specified

arg1 arg3 arg4 =ENV1=22 =WARN arg2

Rules for Using Argument Redirection
Here are some more specific rules about the use of argument redirection:
1 An argument redirection file name is interpreted as if it were a filename passed to

fopen. In particular, if no style prefix is present in the name, the default style
specified by the program using _style applies.

2 Under CMS, the notation =<(filename filetype filemode) can be used to handle
filenames containing blanks.

3 New lines and null characters in the argument redirection file are replaced with
blanks.

4 You cannot use the terminal or a pipe as an argument redirection file.
5 An argument redirection file should not contain an input or output redirection or a

stack/heap size specification. These can only appear on the command line proper.
If either of these is found in an argument redirection file, it is ignored.

6 Recursive use of argument redirection (that is, an argument redirection file that
directly or indirectly respecifies itself) is detected. The same file may be included
twice under different names, but an infinite loop recursively reading the same file
will always be avoided.

7 Although the length of the actual command line is limited by the SAS/C Library to
1000 characters, there is no limit to the size of the command line constructed after
all the argument redirections have been processed. Thus, argument redirection
can be used to circumvent this library limitation.

8 Argument redirection is supported in the run-time options string passed to
$MAINO and other alternate C start-up routines. However, in this case, any
program arguments (as opposed to run-time options or environment variable
assignments) in an argument redirection file will be ignored.

9 An important use of argument redirection is to specify more than one or two
environment variables in batch, where the PARM string is limited to 100
characters.

201

C H A P T E R

10
All-Resident C Programs

Introduction 201
Library Organization 202

The <resident.h> Header File 202

Identifying the Target Operating System 203

Selecting the Routines to Be Included 203

Selecting the Routines to Be Excluded 204
Using Dynamic Loading 205

Using <resident.h> 206

Restrictions 206

Development Considerations 207

Missing Support Routines 207

Warning Messages 207
Subordinate Load Modules 207

UNIX System Services 208

Linking 208

Introduction
Normally, when a C program is linked, the resulting load module does not contain all

of the support routines needed by the program. For example, before the program’s main
function is entered, the command line must be parsed and the argv vector created.
Because the command-line parsing routine is only needed once, during program
start-up, the program initialization routine dynamically loads it from the transient
library and unloads it (freeing the memory it required as well) when it is no longer
needed.

In most programming situations, the dynamic loading and unloading of support
routines makes the best use of available resources. User storage is not occupied by
unused code, and when the support routines are installed in shared memory, many
users can access a single copy of the routine. Also, the load module is much smaller
because it contains only a small percentage of the required code.

However, in certain specialized applications and environments, it may be desirable to
force the program load module to contain a private copy of all the required support
routines. These programs can be characterized as all-resident programs because no
transient library routines need be used. The following sections describe how to create
all-resident programs.

The rest of this chapter is divided into five sections. The first section describes the
organization of the all-resident library, that is, what each collection of support routines
is for and how they are grouped. The second section shows how the <resident.h>
header file can be used to specify which support routines are needed by an all-resident
program. The third section lists some restrictions that apply to all-resident programs.

202 Library Organization 4 Chapter 10

The fourth section discusses several programming considerations. The last section tells
you where information about linking all-resident programs can be found in this book.

Throughout this chapter, support subroutines are referred to as routines rather than
functions in order to prevent confusion with library functions such as strcpy.

Library Organization
It is important to remember that many functions in the C library do not depend on

transient support routines. String functions such as strcmp and math functions such
as cos are examples of such functions. Complex functions or functions that interact
closely and frequently with the operating system are likely to be transient. For
instance, I/O functions such as fopen and signal-handling functions such as alarm are
implemented as calls to transient support routines.

These library support routines do not necessarily form a one-to-one correspondence
with the calling function. Often, support routines can be shared among several callers,
and closely related routines can be packaged together. For example, fopen and afopen
share some support routines, and all of the support routines for performing I/O to
VSAM data sets are packaged as a unit.

Another important point to remember is that it is not possible to identify exactly, at
link time, the smallest set of support routines required by a given program. For
example, the linker can be relied upon to include the strstr function only if the
program contains an external reference for the function, but it is impossible to
determine that no VSAM files will be opened by examining the external reference for
fopen. In many cases, even the programmer cannot predict which support routines will
be required.

The <resident.h> Header File
Given the large number of available library functions and the wide variety of

functionality they provide, it is probable that few C programs make use of all the library
support routines. Even though it is typically very difficult to determine the minimum
number of required support routines, it is usually possible to specify some subset of the
entire library. (For example, programs that do not use coprocesses do not need the
coprocess support routines.) Therefore, an important part of the linking process must
be some way for the programmer to specify the set of support routines required by the
program. This tailoring ability is available via the <resident.h> header file.

Including the <resident.h> header file causes the compiler to generate external
symbols for various groups of support routines. Each external symbol causes a
corresponding group of support routines to be included when the program is linked.
Which external symbols are generated and, therefore, which support routines are linked
into the program, is controlled by defining specific macro names prior to the inclusion of
<resident.h> in the C source file.

For example, defining the macro name RES_VSAM causes <resident.h> to generate
an external symbol for the VSAM I/O support routines when the file including it is
compiled. When the program is linked (including the object code from the <resident.h>
file), the linker includes these routines as part of the program load module.

By confining the all-resident tailoring process to a single source file, it is possible to
create both an all-resident version of the program and a transient version. The
all-resident version is created by including the <resident.h> object code and linking
with the all-resident library. For the transient version, neither of these steps are
necessary.

All-Resident C Programs 4 Selecting the Routines to Be Included 203

Note: An all-resident application should include <resident.h> in one and only one
source module. Errors may occur if <resident.h> is included in several different
modules of the same program. 4

Identifying the Target Operating System
The <resident.h> header file generates external symbols that are specific to CMS,

OS/390, or CICS. You can define the macro name SYS_CMS, SYS_OSVS, or SYS_CICS to
target a specific system. If you do not define one of these macro names, <resident.h>
tests the macro names OSVS and CMS, one of which is automatically generated by the
compiler for each of those two operating systems to determine whether or not to
generate symbols for OS/390 or CMS. If you are developing an all-resident application
for CICS, you must define the macro name SYS_CICS before including the
<resident.h> header file in your program.

Selecting the Routines to Be Included
Table 10.1 on page 203 shows the macro names that can be defined to cause inclusion

of library support routines and describes the associated support routines. By default,
these routines are not included in the program load module. The Operating System
column indicates whether the support routines are used under OS/390, CMS, CICS, or
all three. A number appearing in the Notes column indicates that the support routines
are included automatically if certain functions are used in the program. An explanation
of the numbers used in the Notes column follows Table 10.1 on page 203. (Refer to
“Subordinate Load Modules” on page 207 for more information on when support
routines are included automatically.)

Table 10.1 Macro Names Used with <resident.h> for Inclusion

Macro Names Operating System Notes Includes Support for

RES_SIGNAL all 1 signal-handling functions

RES_COPROC all 2 coprocessing functions

RES_IOUTIL OS/390, CMS 3 remove, rename, access
functions; cmsstat function (CMS
only)

RES_UNIXIO OS/390, CMS 4 UNIX style I/O

RES_UNIXSTDF OS/390, CMS UNIX style I/O to stdin,
stdout, and stderr

RES_TMPFILE OS/390, CMS 5 VSAM I/O

RES_VSAM OS/390, CMS 6 VSAM I/O

RES_DSNAME OS/390 dsn and tso style filenames

RES_DIVIO OS/390 DIV I/O

RES_TSOENVVAR OS/390 TSO environment variable support

RES_VSAM_STDIO OS/390, CMS VSAM I/O using text or binary
access

RES_KEYED_IO OS/390, CMS VSAM I/O using keyed access

204 Selecting the Routines to Be Excluded 4 Chapter 10

Macro Names Operating System Notes Includes Support for

RES_TCPIP all 7 socket library functions

RES_HFS_STDIO OS/390 8 UNIX System Services (USS) HFS
I/O (plus remove, rename, or
access)

RES_FDOPEN OS/390 9 the fdopen function

RES_OE_SYSTEM OS/390 system used to envoke a shell
command

RES_SUBCOM OS/390 10 TSO or USS SUBCOM

RES_FILEDEF CMS ddn style filenames

RES_OSSIM CMS OS/390-simulated I/O

RES_LIBIO CMS MACLIB and TXTLIB member I/O

RES_UNITREC CMS unit record I/O (virtual reader,
printer, and punch)

RES_SHARED_FILE CMS CMS Shared File System I/O

RES_SPLFILE CMS CICS spool file I/O

RES_CICSVSE CICS VSE error handling

RES_FSSLSTD OS/390, CMS FSSL using the direct 3270
interface

RES_FSSLISPF OS/390, CMS FSSL using the ISPF interface

Note: The support routines are included automatically if
� the signal or raise function is used, or if signal support is needed for other

reasons.
� the costart function is used.
� any of the remove, rename, access, or cmsstat functions are used.
� the open or creat function is used.
� the tmpfile function is used.
� RES_VSAM is defined. Support routines for any access (text, binary, or keyed) to

VSAM files will be included. If RES_VSAM is not defined, defining RES_VSAM_STDIO
will include support for text or binary access to VSAM files, and defining
RES_KEYED_IO will include support for keyed access.

� any socket library functions are used. Note that the additional symbols
NO_OE_SOCKETS and ONLY_OE_SOCKETS can be used in OS/390 to control which
kinds of sockets are supported.

� you compile with the posix option.
� the fdopen function is used or you compile with the posix option.
� the execinit function is used. Note that the additional symbols RES_SUBCOM_TSO

and RES_SUBCOM_OE can be used to include only TSO support or only USS support.

4

Selecting the Routines to Be Excluded
In addition to specifying which support routines should be included, <resident.h>

respects a number of macro names that indicate that certain support routines should be

All-Resident C Programs 4 Using Dynamic Loading 205

omitted. By default, these routines are included in the program load module, except for
the subcom and socket routines. For an all-resident program that has specified _nio to
be not equal to zero, the macro name NO_IO must be defined prior to including the
<resident.h> header file in the program. Table 10.2 on page 205 shows these names
and the associated support routines.

Table 10.2 Macro Names Used with <resident.h> for Exclusion

Macro Names Operating System
Excludes Support
for

NO_IO all C I/O functions

NO_WARNING all warning messages

NO_ABEND all ABEND handling

MVS370_ONLY OS/390 MVS/XA ABEND
handling

MVSXA_ONLY OS/390 MVS/370 ABEND
handling

MODE370_ONLY CMS XA-mode ABEND
handling

MODEXA_ONLY CMS 370–mode ABEND
handling

NO_OE_SOCKETS OS/390 nonintegrated
sockets

RES_SUBCOMM_TSO OS/390 USS SUBCOM
support

RES_SUBCOM_OE OS/390 TSO SUBCOM
support

Using Dynamic Loading
<resident.h> allows the programmer to decide whether dynamic loading will be

available to the program. There are three possible choices as follows:
� No dynamic loading is available. In this mode, neither the program nor the library

can dynamically load another load module. The dynamic loading support routines
are not included in the program load module. This is the default.

� The program itself uses dynamic loading, but the library cannot. In this mode, the
program can use the loadm and loadd functions, but the library is prohibited from
using them.

If either the loadm or loadd function is used in the program, then the necessary
support routines are linked with the load module automatically. Also, the macro
name ALLOW_LOADM can be defined to indicate that the dynamic loading support
routines are to be linked into the load module.

� Dynamic loading is allowed. In this mode, if a required support routine is not
linked with the program, then it is loaded from the transient library. This mode is
useful for situations in which certain support routines are used only rarely or
while a program is under development and the set of required routines is still

206 Using <resident.h> 4 Chapter 10

volatile. More importantly, for programs under development, this mode is the only
mode that allows the use of the debugger with all-resident programs because the
debugger requires routines in the transient library. If this mode is selected, define
the macro name ALLOW_TRANSIENT.

Using <resident.h>
Example Code 10.1 on page 206 is an example of using <resident.h>. In this

particular use, signal-handling and UNIX style I/O support routines are linked with the
program. Note that the header file and macro name definitions can be added to another
program source file or confined to a source file by themselves.

Example Code 10.1 Sample Use of <resident.h>

#define RES_SIGNAL /* Include signal handling support. */
#define RES_IOUTIL /* Include access, rename, remove support. */
#define RES_UNIXIO /* Include UNIX style I/O support. */
#define RES_TMPFILE /* Include temporary file I/O support. */

#if defined CMS
#define RES_LIBIO /* If CMS, include support routines for */
#endif /* I/O to MACLIB/TXTLIB members. */

#if defined OSVS
#define MVSXA_ONLY /* If OS, exclude MVS/370 ABEND handling. */
#endif

#define ALLOW_LOADM /* Allow this program to load other load */
/* modules, but no library modules can be */
/* loaded. */

#include <resident.h>

Note: The dollars compiler option must be used when compiling a C++ source file
that contains <resident.h>. 4

Restrictions

Some library functionality is restricted or unavailable when the all-resident library is
used. The following restrictions apply to all-resident programs:

� The interlanguage communication feature described in the SAS/C Compiler
Interlanguage Communication Feature User’s Guide cannot be used. However,
calls to and from assembler language programs are supported.

� The REXX function package support feature cannot be used. An all-resident
program cannot call the cmsrxfn function.

� Socket support cannot be made resident unless the IBM TCP/IP product is used. If
you need the ability to use TCP/IP support from a vendor other than IBM, you
should avoid the all-resident library, or define the ALLOW_TRANSIENT symbol to
allow the necessary code to be loaded at runtime.

All-Resident C Programs 4 Subordinate Load Modules 207

� Under an extended architecture system, all-resident programs cannot be loaded
above the 16-megabyte line. Programs must be linked with RMODE=24. However,
31-bit addressing (AMODE=31) is supported.

� Regardless of reentrancy considerations, all-resident programs must be processed
with the COOL object code preprocessor.

� The <resident.h> header file should only be included in one source module per
load module.

Development Considerations
The following items should be considered when developing all-resident programs.

Missing Support Routines
In a program that does not allow the library to dynamically load support routines, if

a support routine is needed but has not been linked into the program load module, the
library issues warning message LSCX119:

"Transient module name could not be located."

Warning Messages
In a program that does not allow the library to dynamically load support routines, if

a warning message is needed but has not been linked into the program load module, the
library issues the generic message LSCX047:

"Unable to load runtime message texts, errno = EFORBID".

The errno value EFORBID indicates that the library cannot issue the correct message
because ALLOW_TRANSIENT was not defined.

If the macro names NO_WARNING (see Table 10.2 on page 205) and ALLOW_TRANSIENT
are defined in the source file containing <resident.h>, the library diagnostic message
texts are not linked with the program but are loaded by the library, if needed. This
combination may be helpful during program development.

Subordinate Load Modules
As mentioned above, it is possible for an all-resident program to dynamically load

subordinate load modules even though the library is prohibited from doing so itself. The
subordinate load modules use the support routines that have been linked into the
primary load module. The reverse is not true, however. The primary load module
cannot use support routines that are linked in a subordinate load module, even if the
load module has been loaded into storage.

CAUTION:
Link support routines with the primary load module. In an application that uses
subordinate load modules, always link the support routines with the primary load
module. The subordinate load modules should be linked in the normal manner. 4

If a function that usually causes the appropriate support routines to be included
automatically (as indicated in Table 10.1 on page 203) is called only from a subordinate
load module, then those routines are not linked with the load module. The primary load
module must be linked with an object deck that is generated from a source file
containing <resident.h> and that has the required symbol defined.

208 UNIX System Services 4 Chapter 10

For example, suppose a program contains two load modules, MAINPROG and its
subordinate load module, IOFUNC. MAINPROG contains no I/O functions, but IOFUNC
has a call to open. Because IOFUNC is linked normally, the UNIX style I/O support
routines are not linked in this load module. Because MAINPROG has no calls to open,
UNIX style I/O support routines are not linked with MAINPROG either. To include the
UNIX style I/O support routines, define RES_UNIXIO in the source file containing
<resident.h> and include the generated object code when MAINPROG is linked.

If the subordinate load modules do not require preprocessing by COOL due to
reentrancy or extended names considerations, COOL is not required as it is for the
primary load module. Under any extended architecture system, if the primary load
module is linked with AMODE=31, the subordinate load modules can be linked
RMODE=ANY, that is, they can reside above the 16-megabtye line.

UNIX System Services
The use of the all-resident library is recommended for setuid or setgid shell

programs. For security reasons, setuid and setgid programs ignore the ddn_CTRANS
environment variable when executed. If these programs are not linked as all-resident,
the SAS/C Transient Library must be in the system link list or accessible via the
STEPLIB environment variable. Note that if the SAS/C Library is specified by
STEPLIB, it must be present on the site-maintained list of permitted STEPLIBs for
setuid/setgid programs.

Linking

Operating-system-dependent details on the all-resident library and the commands or
control language required when linking an all-resident program can be found in
Appendix 7, “Extended Names,” on page 405. For information on CICS, refer to
Chapter 5, "Preprocessing, Compiling, and Linking," in the SAS/C CICS User’s Guide.

209

C H A P T E R

11
Communication with Assembler
Programs

Introduction 209
Calling Conventions for C Functions 210

C Parameter Lists 210

_ _asm, _ _ref, and _ _ibmos Keywords 211

Linkage Conventions 212

Returning Values from Assembler Routines 213
Adding Assembler Routines to C Programs 214

Adding Existing Assembler Routines to C Programs 214

Adding New Assembler Routines to C Programs 214

Using Macros, Control Blocks, and DSECTs 215

The C Run-Time Anchor Block 215

Cautions 216
The CENTRY and CEXIT Assembler Macros 216

The CENTRY macro 216

The CEXIT macro 217

The CREGS Macro and the CRAB and DSA DSECTs 218

Calling an Assembler Routine from C 219
Calling a C Function from Assembler 223

Calling a C Program from Assembler 224

Introduction
The compiler and library contain a number of features to facilitate the use of the C

language and assembler language in the same program. The features discussed in this
chapter include the following:

� the assembler macros CENTRY and CEXIT, which enable assembler modules to
allocate space on the automatic storage stack

� the extensions to the C language to support call-by-reference and IBM format
varying-length parameter lists so that existing assembler routines can be called
easily

� the library mechanism by which a routine in another language can call a C main
function, passing one or more arguments of any type.

This chapter is oriented towards applications that call assembler from C.
Communicating between C and other high-level languages is discussed in detail in the
SAS/C Compiler Interlanguage Communication Feature User’s Guide.

210 Calling Conventions for C Functions 4 Chapter 11

Calling Conventions for C Functions

The following sections discuss calling conventions for C functions.

C Parameter Lists
Generally, C passes arguments by value rather than by reference. This means that

the parameter list contains the actual argument values instead of pointers to the
arguments. Suppose that the extern function f is called with the following arguments:

int i;
char c;
short s;
double d;
char *p;
f(i, c, s, d, p);

The parameter list generated by the compiler in this case would be mapped in
assembler language as follows:

Example Code 11.1 Typical C Parameter List

PARMBLOK DS 0D
DS F value of i
DS F value of c (promoted to int)
DS F value of s (promoted to int)
DS F uninitialized padding bytes
DS D value of d
DS A value of p

Note that c has been placed in byte 3 of a word, s has been placed in the second
halfword of a word, and d is aligned on a doubleword boundary. The parameter list
itself is always aligned on a doubleword boundary.

Many assembler routines expect their arguments to be passed by reference instead of
by value. In some cases, this type of parameter list can be generated by simply applying
the ampersand (&) operator to each argument. However, this solution is insufficient for
function calls using arguments that are not lvalues, such as constants or expressions.
To support such function arguments, the compiler accepts the (nonstandard) at-sign (@)
operator. The @ operator can be applied only to function arguments. When applied to
an lvalue, the @ operator has the same effect as the & operator. When applied to a
function argument that is not an lvalue (such as a constant), the @ operator returns a
pointer to a temporary copy of the value. (See “The @ operator” on page 31. Note that
the @ operator can be used only in conjunction with the at compiler option.)

Also, many assembler routines accept varying-length parameter lists. These routines
typically expect that the last parameter has the high-order bit (the VL-bit) set to
indicate that it is the final parameter. The compiler can be made to create this sort of
parameter list by using the _ _asm keyword in the function declaration.

To show how the @ operator and the _ _asm keyword can be used, suppose the
function f in the previous example is called as follows:

_ _asm void f();
char c;
short s;
char *p;

Communication with Assembler Programs 4 _ _asm, _ _ref, and _ _ibmos Keywords 211

f(@(2+3), @c, @s, @1.0, @p);

Then the compiler creates a parameter list, as shown in Example Code 11.2 on page
211.

Example Code 11.2 C Parameter List Using Keyword _ _asm and the @ Operator

PARMBLOK DS 0D
DS A pointer to a temporary 5
DS A pointer to c
DS A pointer to s
DS A pointer to a temporary 1.0
DS A pointer, with VL-bit set, to p

An OMD listing may be extremely helpful in determining the exact format of any
parameter block.

_ _asm, _ _ref, and _ _ibmos Keywords
The _ _asm, _ _ref, and _ _ibmos keywords are used to declare functions and pointers

to functions written in assembler language that expect a parameter list in OS format.
If the _ _asm keyword is used in a declaration of a function or function pointer, the

compiler creates a VL-format parameter list for the function. The compiler uses the
following conditions to create a VL-format parameter list:

� If the function has no arguments, general register 1 is set to 0.

� All pointer arguments except the last argument have bit 0 set to 0. If the last
argument is a pointer, bit 0 is set to 1. Bit 0 is a non-address bit, so it is safe for
the compiler to modify its value.

The following declaration causes the compiler to create a VL-format parameter list
for asm_func:

_ _asm int asm_func(void *, void *);

If the _ _asm keyword is used in the declaration of a function pointer, the function
pointer is assumed to be local unless the _ _remote keyword is explicitly used. The
following declaration causes the compiler to create a VL-format parameter list for the
function called via asm_fp:

_ _asm int (*asm_fp)(void *, void *);

The _ _asm keyword does not cause the compiler to generate a call-by-reference
parameter list; that is done by the _ _ref keyword, described below. You can also use
the @ (at sign) operator to pass individual parameters by reference. Refer to “The @
operator” on page 31 for more information on this operator.

The _ _ref keyword can be used in function declarations and function pointer
declarations. This keyword specifies that the called function is an assembler language
function expecting a call-by-reference parameter list in VL format. The effect of using
the _ _ref keyword is similar to using the _ _asm keyword and the @ operator together,
with the @ operator implied for all non-pointer arguments.

The parameter list created for functions declared with the _ _ref keyword, or called
via a function pointer declared with the _ _ref keyword, contains only pointers. In
general, if the argument is already a pointer type, such as char *, the argument is
used directly without further indirection. If the argument is not a pointer type, the
compiler places a pointer to the argument in the parameter list. The parameter list is
in VL format as described above.

212 Linkage Conventions 4 Chapter 11

If the function is declared with a prototype, all arguments are converted to the type
specified by the prototype. If the argument must be converted to match the type
specified in the prototype, the compiler creates a temporary variable, assigns it the
value of the argument, and passes a pointer to the temporary variable. For example,
consider the declaration and call shown here:

_ _ref void myfunc(short);
int i;
i = 2;
myfunc(i);

The compiler creates a temporary short variable, assigns it the value of i, and
places a pointer to the temporary variable in the parameter list.

Since the compiler passes a pointer to a temporary copy of the argument instead of to
the argument itself, the called function cannot change the value of the argument. If
changes to the argument by the called function must be reflected in the calling function,
be sure to use an argument of the same type.

If the argument already has the type specified in the prototype, or if the argument is
an int or long type and the prototype specifies a type that differs only in sign, no
conversion is performed. For example, if the prototype specifies unsigned int and the
argument is signed int, no conversion is performed and a pointer to the argument is
placed in the parameter list.

Like _ _asm, if the _ _ref keyword is used in the declaration of a function pointer,
the function pointer is assumed to be local unless the _ _remote keyword is explicitly
used. See “Remote Function Pointers” on page 50 for more information.

Using the _ _ibmos keyword in a declaration is the same as specifying the name of
the function or function pointer in a #pragma linkage (,OS) statement. Refer to “The
#pragma linkage statement” on page 36 for more information. You may find it easier to
use the _ _ibmos keyword to declare function pointers in certain situations, such as in
the declaration of aggregate types. For example:

struct XYZ {
/* other structure members */
_ _ibmos int (*fp)(int, int);
/* other structure members */

};

Function pointers declared with the _ _ibmos keyword are always local. Specification
of both _ _ibmos and _ _remote results in an error.

The _ _asm, _ _ref, and _ _ibmos keywords may not be used in a declaration with
any ILC function keywords, such as _ _pascal. Unless there is an attempt to convert a
local function pointer to a remote function pointer, _ _asm, _ _ref , and _ _ibmos
function pointers may be freely converted to each other.

Linkage Conventions
The compiler uses standard linkage when calling a function. For example, the

function f is called with the following instructions:

L 15,=V(F) R15 addresses the function.
LA 1,PARMBLOK R1 addresses the function arguments.
BALR 14,15 R14 contains the return address.

Also, R13 points to an 18-word save area.
The register conventions illustrated above are summarized in Table 11.1 on page 213.

Communication with Assembler Programs 4 Returning Values from Assembler Routines 213

Table 11.1 Register Conventions for Function Calls

General Register Contents on Entry to the Function

1 addresses parameter list

13 18–word save area

14 return address

15 entry point address

The called function is expected to restore general registers 2 through 13 before
returning. Restoring other general registers is optional. The compiler generates code
when necessary to save floating-point registers before calling the function and restores
them on return.

If an assembler language routine uses the access registers, and any calling routine
was compiled with the armode compiler option, it is the responsibility of the assembler
code to save the access registers on entry and restore them on exit. Note that any
function called from C is called in primary address space mode.

Note: armode is not supported for C++ code in Release 7.00 4

Returning Values from Assembler Routines
If f returns a scalar value, the compiler expects the value to be in general register 15

unless the value is a double, long double, or float, in which case the value is
expected to be in floating-point register 0. For example, suppose f is declared as a
function returning int; given the call

val = f(i, c, s, d, p);

the compiler may then generate the following code sequence:

L 15,=V(F)
LA 1,PARMBLOK
BALR 14,15 Call f.
ST 15,VAL Store return value in val.

Or, if f is declared as returning double, the compiler may generate the following:

L 15,=V(F)
LA 1,PARMBLOK
BALR 14,15 Call f.
STD 0,VAL Store return value in val.

If function f returns a structure or union value, the linkage is a little more
complicated. In this case, a pointer to an area in which the return value should be
stored is located 4 bytes before the parameter list. This pointer may be 0 if the function
result is discarded as the result of being cast to void. In addition to copying the return
value to the area addressed by the return value pointer, the function must also clear
the pointer before returning, or a later call whose return value is discarded may cause
overlay of the previous return value.

This is an example of generated code for a call to a function S returning a structure:

LA 2,SRET Address return code.
ST 2,PARMBLOK-4 Store before parameter list.
L 15,=V(S)
LA 1,PARMBLOK

214 Adding Assembler Routines to C Programs 4 Chapter 11

BALR 14,15

This is an example of generated code in S to return a structure value:

L 2,DSAPARMS Locate incoming parameter list.
S 2,=F’4’ Back up one word.
ICM 3,B’1111’,0(2) Test for void return.
BZ NOVAL
MVC 0(slen,3),SRET Copy return value.
MVC 0(4,2),CRABZERO Zero return value address.

NOVAL DS 0H

When a function returning a far pointer is called, the compiler expects its value to be
returned in access register 15 and general register 15. An example of
compiler-generated code to call a routine returning a far pointer follows:

L 15,=V(F)
LA 1,PARMBLOK
BALR 14,15 Call f.
STAM 15,15,VAL Store returned ALET in val word 1.
ST 15,VAL+4 Store returned pointer in val word 2.

When a function returns a long long (or unsigned long long value), the result is
returned in registers 15 and 0. Register 15 contains the high-order 4 bytes, and register
0 the low-order 4 bytes.

Adding Assembler Routines to C Programs

Most existing assembler routines can be called from C with little modification, if any.
Furthermore, assembler routines called from C can call other C routines if, when C is
called, register 12 has the same value that it had when the first assembler routine was
entered. (Additional restrictions apply if one of the run-time linkage options =optimize
or =minimal is in use, as described later in this chapter.) In compiled code, general
register 12 always addresses a block of data known as the C Run-Time Anchor Block
(CRAB). The CRAB is explained in detail in “The C Run-Time Anchor Block” on page
215.

Adding Existing Assembler Routines to C Programs

Many existing assembler routines can be called from C without modification. Unless
the routine expects a normal C parameter list, you may need to use one or more of the
@ operators or the _ _asm, _ _ref, or _ _ibmos keywords to cause the compiler to create
the parameter list in the format expected by the assembler routine.

Adding New Assembler Routines to C Programs

Writing an assembler routine for use only by C programs is a relatively simple task.
In general, the routine should expect a normal C parameter list and follow the register
conventions described earlier. Assembler routines can call functions written in C if
general register 12 addresses the CRAB when the C function is called. If the CENTRY
and CEXIT macros are used, C library functions can be called.

Communication with Assembler Programs 4 The C Run-Time Anchor Block 215

Using Macros, Control Blocks, and DSECTs

A number of assembler macros provided on the SAS/C installation tape are useful
when communicating with assembler. These macros, and the control blocks they
describe, are discussed in this section.

The C Run-Time Anchor Block
The C Run-Time Anchor Block (CRAB) is the primary control block for the C library.

Compiled code depends upon general register 12 addressing the CRAB. Among other
things, the CRAB contains the following:

� frequently used constants

� temporary work areas

� addresses of data objects such as the pseudoregister vector

� global data for library functions

� user words.

Some of the fields in the CRAB can be conveniently used in an assembler routine.
Note especially the fields in Table 11.2 on page 215.

Table 11.2 Useful CRAB Fields

Label Hex Decimal Description

CRABZERO 18 24 a double and int 0

CRABDBL1 20 324 a double 1.0

CRAB2P31 28 40 constant for double
<->int conversions

CRABUNMO 30 48 unnormalized double
0.0

CRABDWK 38 56 double <->int
conversion work area

CRABINTI 44 68 an int 1

CRABNEGI 48 72 an int minus 1

CRABEOST 50 80 pointer tostrlen
translation table

CRAB16M 54 84 an int 16777215

CRABTAUT 90 144 a 112-byte work area

CRABUSR1 110 272 user word 1

CRABUSR2 114 276 user word 2

CRABUSR3 118 280 user word 3

CRABTUSR 11C 284 user word 4

216 The CENTRY and CEXIT Assembler Macros 4 Chapter 11

Note: The distributed CRAB macro defines only those library fields associated with
the systems programming environment (SPE). Some of these fields are used for other
purposes when the full SAS/C Library is used. 4

The uses of the CRAB constant fields such as CRABINT1 are obvious. An explanation
of the use of the double to int (and int to double) conversion fields is beyond the scope
of this discussion, but an examination of the generated code for such conversions (via an
OMD listing) shows how the conversions are performed. Similarly, the generated code
for a built-in strlen function call shows the use of the translation table addressed by
CRABEOST. The work area at label CRABTAUT is used by the compiler for functions
with small automatic storage requirements and can be used by any C function.

Cautions
Keep in mind the following concerning the CRAB:
� Since any C function can use this area, the data in CRABTAUT may not be relied

upon across function calls.
� The data in the CRAB, with the exception of those areas specifically intended to be

used as temporary work areas, cannot be changed. Both the compiler and the
library rely on these data items. Modification of CRAB data that are intended to
be constant causes unpredictable results, including incorrect computations and
abends.

The CENTRY and CEXIT Assembler Macros
It is possible for assembler functions to be coded to use run-time facilities such as

stack allocation and inclusion in abend tracebacks. Functions that make use of the C
stack can be made reentrant more easily, and their display in an abend traceback
(which prints the function name and the offset in the function) makes debugging
abends easier. To make use of these facilities in the same way as compiled code, each
function must begin with a CENTRY macro and return via the CEXIT macro.

In a program that runs with the =optimize or =minimal run-time linkage option,
assembler routines must use the CENTRY and CEXIT macros if they call C functions.

When you use CENTRY and CEXIT, you must supply a CSECT statement before the
first entry point; conventionally, the CSECT name should be the name of the first entry
point, followed by the @ operator. (You can use some other name without adverse
consequences if the name is not the same as another external name in the load
module.) Programs that use CENTRY and CEXIT should also issue the CREGS macro
to define symbolic registers and should copy the members CRAB and DSA to obtain
mappings of these C run-time control blocks. Assembler functions that use CENTRY
and CEXIT should ensure that general register 12 addresses the CRAB when entering
and exiting the function (unless the CENTRY INDEP=YES parameter is used).

These macros and members are included in the assembler LCUSER MACLIB (under
CMS) or SASC.MACLIBA (under OS/390).

The CENTRY macro
This is the form of a call to the CENTRY macro:

label CENTRY DSA=dsa-size,
BASE=base-reg,
FNM=function-name,
STATIC=NO/YES,
INDEP=NO/YES,
LASTREG=last-reg

Communication with Assembler Programs 4 The CENTRY and CEXIT Assembler Macros 217

All the keyword parameters are optional. The label of the CENTRY macro is the
name of the entry point. It is defined as an external symbol unless STATIC=YES is
specified. The keyword parameters are described below:

DSA =dsa-size
specifies the size of the routine’s Dynamic Save Area (DSA); if DSA is omitted, a
minimum DSA (120 bytes) is allocated. In addition to providing the save area for
called functions, the DSA can be used as a storage area for auto variables. Specify
DSA=0 to avoid allocation of a DSA. DSA=0 can be used only for routines that

� call no other routines

� do not issue system macros that modify the storage area addressed by
register 13.

BASE=base-reg
specifies a base register for the routine. If BASE is omitted, R9 is assumed.

FNM=function-name
specifies a function name for the assembler routine. This is the name that appears
in an error traceback to identify the function. If no FNM keyword appears on the
macro call, the value of label is assumed.

STATIC=NO|YES
determines whether the function is to be externally defined. The default is
STATIC=NO.

INDEP=NO|YES
determines whether the indep form of function linkage is required. INDEP=NO is
the default. INDEP=YES is required if the assembler routine can be called from a
routine that does not preserve the C execution framework pointer normally
contained in register 12. The INDEP=YES linkage is less efficient than the
INDEP=NO linkage and requires that L$UPREP be linked with the routine that
uses the CENTRY macro. Refer to Appendix 6, “Using the indep Option for
Interlanguage Communication,” on page 393 for more information.

LASTREG=last-reg
specifies the last register to be saved for this routine. You can specify any register
between R6 and R11. If no register is specified, R11 is assumed. All registers
between R14 and the LASTREG value are saved when CENTRY is executed and
restored when CEXIT is executed. If any unsaved registers are modified, the
effects are unpredictable. If INDEP=YES is specified, the value of LASTREG is
ignored, and registers R14 through R12 are always saved.

When the CENTRY macro is expanded, a USING CRAB,R12 statement should be in
effect. You can use the USING positional operand of the CREGS macro to generate
such a USING statement automatically.

The CEXIT macro

The CEXIT macro returns control from a routine that begins with a call to CENTRY.
The form of a CEXIT call is as follows:

label CEXIT RC=return-info/(reg),
DSA=YES/0,
INDEP=NO/YES,
LASTREG=last-reg

The keyword parameters are described below:

218 The CREGS Macro and the CRAB and DSA DSECTs 4 Chapter 11

RC=return-info|(reg)
specifies an integer constant to be returned as the value of the returning function.
In this case, the value is returned in R15.

You can specify any general purpose register except for register 1 (R1). R1 is
used by the CEXIT macro. Specifying R1 as the value for RC will prevent the
return code from being stored correctly.

Alternately, RC=(reg) specifies a register containing the return value. If RC is
omitted, no value is returned unless the assembler routine is declared as returning
double. In this case, do not use the RC keyword; instead load the return value
into floating-point register 0 before issuing the call to CEXIT.

DSA=YES|0
must equal 0 for CEXIT if the corresponding CENTRY macro specifies DSA=0.
Otherwise, DSA can be omitted.

INDEP=YES
should be specified if the corresponding CENTRY macro also specifies INDEP=YES.

INDEP=NO
should be specified (or the INDEP option omitted entirely) if the corresponding
CENTRY macro does not specify INDEP=YES.

LASTREG=last-reg
specifies the last register to be restored on return from this routine. This
specification should always match the LASTREG specification on the
corresponding CENTRY macro.

The CREGS Macro and the CRAB and DSA DSECTs
Another group of facilities useful for the assembler programmer is the CREGS macro

and the DSECTs CRAB and Dynamic Save Area (DSA), which map C run-time control
blocks.

CREGS can be issued in the form CREGS USING to obtain appropriate USING
statements for the CRAB and the DSA.

The CRAB DSECT should be copied because it is required for the proper expansion of
CENTRY and CEXIT.

The DSA DSECT can be copied to obtain a map of the standard part of the DSA.
After the standard part of the DSA, you can define additional DSA fields and then use
the EQU operator to compute a total DSA size for use in CENTRY. The additional fields
can be used as automatic variables. For an example of defining auto variables in an
assembler function, see Example Code 11.3 on page 218.

Example Code 11.3 Defining Auto Variables in the DSA

function body

COPY DSA
TEMPVAR DS F auto int variable
SHORTX DS H auto short variable
STR1 DS CL40 auto array of char
DSALEN EQU *-DSA compute total length of DSA

END

If your assembler function does not define any automatic variables but does call
another function, the size of the minimal DSA needed in this case is defined by the
symbolic name DSAMIN.

Communication with Assembler Programs 4 Calling an Assembler Routine from C 219

Note that CENTRY saves a pointer to the parameter list in the DSA at label
DSAPARMS (offset 80, X’50’).

Calling an Assembler Routine from C

This is a simple example of a C main program that calls an assembler routine named
SUMINT. This example is used as the main driver function for Example Code 11.5 on
page 220 and Example Code 11.8 on page 223.

Example Code 11.4 Sample C main Program

#include <stdio.h>
#include <stdlib.h>
#include <options.h>

/* Function Declaration for the assembler routine */
extern _ _asm int sumint(int *, ...);/* Note: */

/* 1) _ _asm keyword will build */
/* a VL-format parameter list.*/
/* If the last argument is */
/* a pointer, the high order*/
/* bit of byte 0 will be set*/
/* on. SUMINT expects all */
/* arguments to be pointers */
/* to int. */
/* */
/* 2) Usage of the ellipsis */
/* to indicate a variable */
/* length parameter list */
/* should be expected. */

/* The following demonstrates how to specify runtime options in */
/* in source code. They are not required for the proper execution */
/* of the C#ASM sample. */
extern int _options = _VERSION + _BTRACE + _USAGE + _WARNING;

int main ()
{

int h = 1;
int i = 2;
int j = 3;
int k = 4;
int sum = 0; /* Returned value */
int check_sum; /* Check variable */
int retcode = 0;

/*---*/
/* First Time with 2 argument pointers to int */
/*---*/
sum = sumint(&h, &i); /* Note: Args passed by reference. */

printf("\n\nVariable Length with 2 arguments, "

220 Calling an Assembler Routine from C 4 Chapter 11

"the sum of %d and %d is %d\n", h, i, sum);

check_sum = h+i;
if (sum == check_sum) /* Verify Sum is corrrect.*/
{

printf("\nSum of %d was correct.\n", sum);
retcode = 0;

}
else
{

printf("\nSum of %d was NOT CORRECT!.\n", sum);
printf("It should have been %d!\n",check_sum);
retcode = 12;

};

/*---*/
/* Second Time with 4 argument pointers to int */
/*---*/
sum = sumint(&h, &i, &j, &k); /* Note: Args passed by reference. */

printf("\n\nVariable Length with 4 arguments, "
"the sum of %d, %d, %d and %d is %d\n",
h, i, j, k, sum);

check_sum = h+i+j+k;
if (sum == check_sum) /* Verify Sum is correct.*/

{printf("\nSum of %d was correct.\n", sum);}
else
{

printf("\nSum of %d was NOT CORRECT!\n.", sum);
printf("It should have been %d!\n",check_sum);
retcode = 12;

};

exit(retcode);
}

Example Code 11.5 on page 220 is a simple example of an assembler routine that
returns the sum of integers to its caller. Since no functions are called from the
assembler routine and no automatic storage is needed, the CENTRY and CEXIT macro
parameter DSA=0 defines a function with small automatic storage requirements.

Example Code 11.5 Sample Assembler Routine Using CENTRY and CEXIT

EJECT
PRINT ON,GEN

SUMINT@ CSECT
CREGS USING
SPACE

SUMINT CENTRY INDEP=NO,DSA=0

* Make sure we actually got a plist address on the call. *

SR R3,R3 Clear R3 for sum’ing
LTR R1,R1 Is there a plist?

Communication with Assembler Programs 4 Calling an Assembler Routine from C 221

BZ DONE Nope, just leave w/R3=0!
SPACE

* Sum integers passed via VL-format parameter list. *

SR R3,R3 Clear R3 for summing
NEXTADD DS 0H

L R4,0(R1) Load pointer
A R3,0(R4) Add integer to sum
TM 0(R1),X’80’ End of VL-Plist? <---Note This Check
BNZ DONE Yes, finish up and exit
LA R1,4(R1) No, bump to next argument
B NEXTADD Start again

DONE DS 0H Yes, prepare to return
SPACE

* Exit with the sum of the integers provided to CEXIT in R3. *

CEXIT RC=(R3),INDEP=NO,DSA=0
EJECT

* Constants *

LTORG Area for Literal Pool

* Working Storage *

COPY DSA Required for CENTRY/CEXIT

* Dsects *

COPY CRAB Required for CENTRY/CEXIT
END SUMINT

Example Code 11.6 on page 221 and Example Code 11.7 on page 222 are examples of
a C main program calling an assembler routine that issues an EXEC CICS READ
command. The assembler routine is passed a file key as a parameter; it then returns a
pointer to the record that was read. The EXEC CICS command is translated into an
invocation of the DFHECALL macro. This macro uses a work area to build a parameter
list to pass to CICS. Storage for the parameter list is allocated in the DSA.

Example Code 11.6 Sample C main Program Calling a CICS Assembler Application

#pragma options copts(dollars)
#include <stdio.h>
void main()
{
void *readrec();
struct DFH$AFIL {

char filea [0] ;
char filerec [0] ;
char stat;
char numb [6] ;
char name [20] ;
char addrx [20] ;

222 Calling an Assembler Routine from C 4 Chapter 11

char phone [8] ;
char datex [8] ;
char amount [8] ;
char comment [9] ;

} *dfh$afil;

dfh$afil = readrec("111111");

if (!dfh$afil) printf(" read failed\ n");

else printf(" %.20s\ ", dfh$afil->name);
}

Example Code 11.7 CICS Assembler Application Routine

*ASM XOPTS(NOPROLOG NOEPILOG)
READREC@ CSECT

CREGS USING Register equates.
READREC CENTRY DSA=DSALEN Generate C prolog.

SPACE
L R3,0(,R1) Point to passed parameter.
SPACE
EXEC CICS ADDRESS EIB(R4)
SPACE
USING DFHEIBLK,R4 Establish EIB addressability.
SPACE
EXEC CICS READ FILE(’FILEA’) SET(R15) RIDFLD(0(,R3)) RESP(RC)

SPACE
CLC RC,DFHRESP(NORMAL) Check command response code.
BE RETURN Branch if OK.
L R15,CRABZERO Else return null.
SPACE

RETURN CEXIT RC=(15) Return pointer to record or null.
SPACE
DROP R4 end of EIB addressability
EJECT
COPY DSA

DFHEIPL DS 20F used by DFHECALL macro for parm list

DFHEITP1 DS F used by DFHECALL for return info
RC DS F EXEC CICS command response code
DSALEN EQU *-DSA

EJECT
COPY CRAB CRAB control block map
EJECT

DFHEIBR EQU 0
COPY DFHEIBLK EIB map
SPACE 2
END

Communication with Assembler Programs 4 Calling a C Function from Assembler 223

Calling a C Function from Assembler

A function written in C can be called from an assembler function as long as general
register 12 addresses the CRAB when the C function is called. If the function is a
library function, the calling (assembler) function must use the CENTRY and CEXIT
macros to preserve the DSA chain. Most library functions depend upon being called
from a normal C framework, that is, with general register 12 addressing the CRAB and
general register 13 addressing a C DSA.

Example Code 11.8 on page 223 shows the sumint function expanded to call printf
to write the result to stdout. Note that the printf parameter list is created in the
DSA and that the CENTRY parameter DSA now specifies a non-zero DSA size. This
version of sumint is called from the C main program in Example Code 11.4 on page 219.

Example Code 11.8 Calling a C Library Function from Assembler

EJECT
PRINT ON,GEN

SUMINT@ CSECT
CREGS USING
SPACE

SUMINT CENTRY INDEP=NO,DSA=DSALEN

* Make sure we actually got a plist address on the call. *

SR R3,R3 Clear R3 for sum’ing
LTR 1,1 Is there a plist?
BZ DONE Nope, just leave w/R3=0!
SPACE

* Sum integers passed via VL-format parameter list. *

SR R3,R3 Clear R3 for summing
NEXTADD DS 0H

L R4,0(R1) Load pointer
A R3,0(R4) Add integer to sum
TM 0(R1),X’80’ End of VL-Plist? <---Note This Check
BNZ DONE Yes, finish up and exit
LA R1,4(R1) No, bump to next argument
B NEXTADD Start again

DONE DS 0H Yes, prepare to return
SPACE

* Call printf to display the sum of integers *

ST R3,SUMINTS SUM of int’s to Parmlist
MVC FMTPTR,=A(FORMAT) Move format pointer to PRINTF

* Parmlist
L R15,=V(PRINTF) R15 -> PRINTF
LA R1,PARMLIST R1 -> Parmlist Address
BALR R14,R15 Call PRINTF
SPACE

* Exit with the sum of the integers provided to CEXIT in R3. *

224 Calling a C Program from Assembler 4 Chapter 11

CEXIT RC=(R3),INDEP=NO
EJECT

* Constants *

LTORG Area for Literal Pool
FORMAT DC X’15’ New Line Before Output

DC C’Assembler Sum: %d’
DC X’1500’ New line with NULL terminator

* Working Storage *

COPY DSA Required for CENTRY/CEXIT
PARMLIST DS 0D
FMTPTR DS A Address of printf parmlist
SUMINTS DS F Sum of int’s
DSALEN EQU *-DSA Length of DSA

* Dsects *

COPY CRAB Required for CENTRY/CEXIT
END SUMINT

Calling a C Program from Assembler
Before a C program can be executed, the C execution framework must be created.

Normally, the framework is created by the library routine L$CMAIN, which is defined
by the linkage editor to be the first routine executed in a C load module. L$CMAIN
expects to be called by the operating system and therefore expects a standard OS/390 or
CMS format parameter list, consisting of a character string plus various
system-dependent format information. L$CMAIN processes this information,
transforms it into the C standard argc and argv format, and calls the C main function
with the constructed argc and argv. L$CMAIN can be called directly from assembler
to pass control to a main C routine via the normal C entry point, MAIN. However,
invoking a C program via MAIN is rarely convenient because the type of parameter list
required is both inflexible (allowing only character data to be passed) and operating
system dependent.

To avoid this problem, two additional entry points, named $MAINC and $MAINO,
are provided to L$CMAIN.

Note: The behavior of $MAINC and $MAINO in CICS is different than the behavior
of these entry points under OS/390 or CMS. See Example Code 11.11 on page 226. 4

Entry point $MAINC expects to receive a list of addresses in the standard OS
VL-type parameter list format. $MAINC transforms the input parameters into the
standard C argc value (number of arguments plus 1) and the argv vector. Each
element of argv after argv[0] contains the corresponding address from the input
parameter list. (For example, argv[1] contains the first address from the list.)

Entry point $MAINO expects a list of addresses in the standard OS VL-type
parameter list format. The first argument to $MAINO is a pointer to a string
containing run-time options, preceded by a halfword containing the number of
characters in the string. The first word in the argument list should address the prefix,
not the string itself. This information is processed by the run-time library and is not

Communication with Assembler Programs 4 Calling a C Program from Assembler 225

passed to the C main program. Each element of argv after argv[0] contains the
corresponding address from the input parameter list. (For example, argv[1] contains
the second address from the list, which represents the first argument.)

Example Code 11.9 on page 225 shows an assembler program that calls a C function
through $MAINO. The C program using the argument as passed by assembler through
$MAINO is in Example Code 11.10 on page 225.

Example Code 11.9 Calling a C main Function from Assembler via $MAINO

MAINASM CSECT
STM 14,12,12(13) standard OS entry linkage
BALR 9,0
USING *,9
LR 14,13
LA 13,SAVEAREA
ST 14,4(13)
ST 13,8(14) end of standard entry

*
* Assembler segment that calls $MAINO
*

LA 1,PARMLIST
L 15,=V($MAINO)
BALR 14,15

*
* Other processing can go here before exiting
*
MAINXT L 13,4(13) standard exit linkage

LM 14,12,12(13)
BR 14 end of standard exit

*
LTORG ,

SAVEAREA DC 18F’0’
PARMLIST DS 0F

DC A(RNTMPRM)
DC A(ARGV1)
DC A(ARGV2)
DC A(X’80000000’+ARGV3)

ARGV1 DC F’42’
ARGV2 DC D’67.4242’
ARGV3 DC CL4’HELP’
RNTMPRM DC AL2(L’RNTMOPT)
RNTMOPT DC C’=FILLMEM =FDUMP’

END

Example Code 11.10 C main Function Called from an Assembler Driver via $MAINO

#include <options.h>
void main(int argc,char **argv)
{

int i;
double f;
char verb[4];

226 Calling a C Program from Assembler 4 Chapter 11

i = *(int *) argv[1];
f = *(double *) argv[2];
memcpy(verb,argv[3],4);

}

Example Code 11.11 on page 226 shows sample code that calls a C program from
assembler using the entry point $MAINO from CICS. CICS command-level programs
are called with a parameter list of at least two entries: the address of the EXEC
interface block (EIB) and the COMMAREA address. If there is no COMMAREA, a
value of x’ff000000’ is passed in its place.

When you use the $MAINO or $MAINC entry points, a VL-format parameter list
must be passed to the library. Make sure that the last address in the list has the
high-order (VL) bit set. If you are passing parameters other than the EIB and
COMMAREA addresses, you cannot specify the pseudo-null value of X’FF000000’ for
the COMMEAREA address. The library interprets X’FF000000’ as the last parameter
in the list.

Example Code 11.11 Calling a C Program from Assembler via $MAINO in CICS

CALLMNO DFHEIENT CODEREG=(5),
EIBREG=,
DATAREG=(13) base reg = R5, dynamic storage = R13

SPACE
EXEC CICS ADDRESS EIB(R4)
SPACE
LA R1,PGMPARMS Point to program parms.
ST R1,ARGPTR Save in parm list.
ST R4,ARGV1 Save address of EIB.
MVC ARGV2,=X’FF000000’ Indicate no commarea.
LA R1,PARMLIST Point to the parm list.
L R15,=V($MAINO) Call the C program.
BALR R14,R15
SPACE
DFHEIRET
SPACE

PGMPARMS DS 0H
DC AL2(L’ARGSTR) length of run-time argument string

ARGSTR DC C’=56K =storage’
SPACE
DFHEISTG
SPACE

PARMLIST DS 0F
ARGPTR DS A pointer to run-time arguments
ARGV1 DS A argv [1] pointer to the EIB
ARGV2 DS A argv [2] pointer to any commarea

SPACE
DFHEIEND
SPACE
CREGS
SPACE
END

227

C H A P T E R

12
Simple Interlanguage
Communication

Introduction 227
An Overview of Interlanguage Communication 227

Calling a C main Function from Another Language 228

Calling a MAIN Routine in Another Language from C 229

Introduction

This chapter explains how to call a main program in one language from a main
program in another. Additional interlanguage communication information can be found
in the SAS/C Compiler Interlanguage Communication Feature User’s Guide. This
publication describes how to write more complicated multilanguage applications, such
as a COBOL main program that calls C subroutines.

Appendix 6, “Using the indep Option for Interlanguage Communication,” on page 393
contains information on C functions calling or being called by other languages without
the use of the interlanguage communication (ILC) feature. Use of the ILC feature is
highly recommended for new programs. Appendix 6, “Using the indep Option for
Interlanguage Communication,” on page 393 explains the techniques that were required
before this feature was available.

An Overview of Interlanguage Communication

Communication between C and another high-level language such as FORTRAN or
PL/I follows the same principles as communication between C and assembler language.
(See Chapter 11, “Communication with Assembler Programs,” on page 209 for more
information on communicating with assembler language programs.) However, a
high-level language introduces several potential complications into the communication.

First, many high-level languages require their own execution framework, or
environment. (Execution frameworks are also discussed in more detail in Appendix 6,
“Using the indep Option for Interlanguage Communication,” on page 393.) The other
language’s framework must be active when a routine in that language receives control.
This is in contrast to assembler language programs, which can execute with the C
execution framework still active. When control passes to C, the C framework must be
active. Therefore, the appropriate framework must be activated whenever control
passes across a language boundary.

Second, a high-level language may not be able to create parameter blocks in the
format expected by a C program, and C may not be able to create parameter blocks in
the format expected by another language.

228 Calling a C main Function from Another Language 4 Chapter 12

Third, the other high-level language may not support every C data type or may
support additional data types with no corresponding C data types.

Last, error handling can be complex. It is sometimes important to ensure that the
language in which an error occurs is the one that handles the error.

Calling a C main Function from Another Language

Calling a C main function from another high-level language is the easiest case of
interlanguage communication. Provided that the other language’s compiler produces a
call-by-reference parameter list, as the IBM FORTRAN, PL/I, and COBOL Compilers
do, you can simply invoke $MAINC or $MAINO, as appropriate, from the other
language, as described in Chapter 11, “Communication with Assembler Programs,” on
page 209. Calling one of these entry points initializes the C execution framework, and
that framework is accessible when the C program assumes control. Example Code 12.1
on page 228 shows a FORTRAN call to a C main function. (The function called is the
same function shown in Example Code 11.10 on page 225. The FORTRAN call has
exactly the same effect as the assembler call included in that example.)

Example Code 12.1 A FORTRAN Call to a C main Function (via $MAINO)

CHARACTER*17 COPTS
INTEGER*2 OPTLEN
EQUIVALENCE (COPTS, OPTLEN)

C
C CALL A MAIN C ROUTINE, PASSING THE RUN-TIME OPTIONS =FILLMEM AND
C =FDUMP. THE OPTIONS STRING MUST BE PRECEDED BY A HALFWORD
C CONTAINING THE STRING LENGTH.
C

COPTS = ’NN=FILLMEM =FDUMP’
OPTLEN = 15
CALL $MAINO(COPTS, 42, 67.4242D0, ’HELP’)

Your C main function can, in turn, call other C functions or assembler language
routines. However, main cannot call subroutines written in the other language. If you
need to do this, refer to the SAS/C Compiler Interlanguage Communication Feature
User’s Guide or Appendix 6, “Using the indep Option for Interlanguage
Communication,” on page 393.

Your C main function should return to the other language when it has finished by
executing a return statement or by calling exit. Either terminates the C execution
framework and returns control to the other language. The exit or return value is passed
back in register 15, where it can be accessed if the other language provides this
capability (as do COBOL and PL/I). Note that you can use exit in any C function to
return to the calling program.

A C execution framework is created and destroyed (on return) every time you call a C
main function. This could possibly create a significant overhead if the function is called
many times. If this overhead is a problem in your application, you should consider
using the interlanguage communication (ILC) feature.

Note that you can call only one main C function per load module in this manner
because of the need to route all calls through one of the $MAINC or $MAINO entry
points. However, you can call multiple C functions from main, passing main a code so
that it knows which function to call.

Simple Interlanguage Communication 4 Calling a MAIN Routine in Another Language from C 229

Calling a MAIN Routine in Another Language from C

Calling a MAIN routine in another language from a C program is also fairly
straightforward. Call the other language at the entry point described in the
documentation for the other language. For example, PL/I is called at PLISTART,
PLICALLA, or PLICALLB. You must build a parameter list or parameter block in the
format expected by the implementation of the other language and pass its address in
the manner expected by the other language. In most cases, you use the standard OS/
390 parameter list format. For some languages, such as PL/I, you may be able to
handle parameter passing with C code; for others, you may need to write an assembler
stub to do it. Use of the @ operator or the __ref keyword can assist you in building a
call-by-reference parameter list. See Chapter 11, “Communication with Assembler
Programs,” on page 209 for more information on these features.

Because you are calling a MAIN routine, the other language’s execution framework is
set up before the other language program receives control, and it is terminated when
the other language routine ends. You do not need to be concerned with the details of the
other language’s framework. You can call subroutines in the other language from the
other language’s MAIN routine, and you also can call assembler subroutines (subject to
the restrictions imposed by the other language). However, you cannot call C functions
from other languages. If you need to do this, use the ILC feature or the techniques
described in Appendix 6, “Using the indep Option for Interlanguage Communication,”
on page 393.

230 Calling a MAIN Routine in Another Language from C 4 Chapter 12

231

C H A P T E R

13
Inline Machine Code Interface

Introduction 234
Overview 234

Built-in functions 234

_ldregs, _stregs, and _cc 235

_diag, _cms202, and _ossvc 235

_code 235
_label 236

_bbwd and _bfwd 236

_branch, _blabel, and _flabel 236

Code Macros 236

Bit Masks for Using Registers 237

Usage Notes 237
Inline Machine Code Usage Notes 239

Functions 239

_bbwd 239

SYNOPSIS 239

DESCRIPTION 239
CAUTIONS 240

PORTABILITY 240

EXAMPLE 240

RELATED FUNCTIONS 240

_bfwd 240
SYNOPSIS 240

DESCRIPTION 240

CAUTIONS 241

PORTABILITY 241

EXAMPLE 241

RELATED FUNCTIONS 241
_blabel 242

SYNOPSIS 242

DESCRIPTION 242

RETURN VALUE 242

PORTABILITY 242
EXAMPLE 242

RELATED FUNCTIONS 242

_branch 242

SYNOPSIS 242

DESCRIPTION 243
CAUTIONS 243

PORTABILITY 243

RELATED FUNCTIONS 243

232 Calling a MAIN Routine in Another Language from C 4 Chapter 13

_cc 243
SYNOPSIS 243

DESCRIPTION 244

RETURN VALUE 244

CAUTIONS 244

PORTABILITY 244
IMPLEMENTATION 244

EXAMPLE 245

RELATED FUNCTIONS 245

_cms202 245

SYNOPSIS 245

DESCRIPTION 245
RETURN VALUE 245

CAUTIONS 245

PORTABILITY 246

IMPLEMENTATION 246

EXAMPLE 246
RELATED FUNCTIONS 247

_code 247

SYNOPSIS 247

DESCRIPTION 247

RETURN VALUE 247
CAUTIONS 247

PORTABILITY 248

IMPLEMENTATION 248

EXAMPLE 248

RELATED FUNCTIONS 248

_diag 248
SYNOPSIS 248

DESCRIPTION 249

RETURN VALUE 249

CAUTIONS 249

PORTABILITY 249
IMPLEMENTATION 249

EXAMPLE 249

RELATED FUNCTIONS 250

_flabel 250

SYNOPSIS 250
DESCRIPTION 250

RETURN VALUE 250

PORTABILITY 250

EXAMPLE 250

RELATED FUNCTIONS 251

_label 251
SYNOPSIS 251

DESCRIPTION 251

EXAMPLE 251

Related Functions 251

_ldregs 251
SYNOPSIS 251

DESCRIPTION 251

RETURN VALUE 252

CAUTIONS 252

PORTABILITY 252

Inline Machine Code Interface 4 Calling a MAIN Routine in Another Language from C 233

IMPLEMENTATION 252
EXAMPLE 253

RELATED FUNCTIONS 253

_osarmsvc 253

SYNOPSIS 253

DESCRIPTION 253
RETURN VALUE 253

CAUTIONS 253

PORTABILITY 254

IMPLEMENTATION 254

_ossvc 254

SYNOPSIS 254
DESCRIPTION 254

RETURN VALUE 254

CAUTIONS 254

PORTABILITY 254

IMPLEMENTATION 254
EXAMPLE 255

RELATED FUNCTIONS 255

_stregs 255

SYNOPSIS 255

DESCRIPTION 255
RETURN VALUE 256

CAUTIONS 256

PORTABILITY 256

IMPLEMENTATION 256

EXAMPLE 257

RELATED FUNCTIONS 257
SVC202, e_SVC202 257

SYNOPSIS 257

DESCRIPTION 257

RETURN VALUE 258

PORTABILITY 258
IMPLEMENTATION 258

EXAMPLE 258

RELATED FUNCTIONS 259

Macros and Header Files 259

Macros and Header Files for Code Generation 259
<genl370.h> 260

<str370.h> 261

<lsa370.h> 261

<dec370.h> 261

<float370.h> 262

<ctl370.h> 263
<supv370.h> 264

<das370.h> 265

<io370.h> 265

<ioxa.h> 266

<vec370.h> 266
General Header Files 267

<code.h> 267

<regs.h> 268

<svc.h> 269

Example of the Inline Machine Code Interface 270

234 Introduction 4 Chapter 13

Introduction
The SAS/C inline machine code interface feature extends the capabilities of your C

program by enabling you to write more efficient code and to incorporate instructions
that cannot normally be generated with a high-level language. None of the facilities
provided with the inline machine code interface are portable.

The inline machine code interface enables a C program to generate OS/390 and CMS
supervisor calls (SVCs), DIAGNOSE instructions and CMS SVC 202s, and
miscellaneous assembler language instructions. You can use C variables and
expressions as operands for these instructions and store results from them in C
variables or storage locations addressed by C pointers.

Overview
The inline machine code interface consists of the following:
� a series of built-in functions that can be used to generate OS/390 and CMS

assembler language instructions. Note that although your use of these facilities
has the appearance of C function calls, the built-in functions generate only inline
code. No library function is called by any of the built-in functions.

� a series of macros (formatted like assembler language instructions) that can be
used to issue many common assembler language instructions. In the following
example, an assembler language instruction is issued by a C program by using the
CS macro:

CS 14,15,0(1) instruction

CS(14,15,0+b(1)); cs macro

Refer to “Macros and Header Files” on page 259 for a detailed description of this
example.

� three header files (<code.h>, <regs.h>, and <svc.h>) that provide symbolic
definitions used by the built-in functions and macros.

This discussion of the inline machine code interface is intended primarily for
experienced OS/390 and CMS systems programmers. It is assumed that you are already

familiar with the concepts and methodologies involved in using built-in functions,
supervisor calls, and assembler language interfaces.

This chapter provides the following:
� a brief overview of the inline machine code interface
� a detailed description of each built-in function
� a discussion of the macros (formatted like assembler instructions) and a listing of

representative portions of the files containing the macros
� a brief discussion and partial listing of the general header files needed when you

use the inline machine code interface
� an example of how to use the inline machine code interface.

Built-in functions
The SAS/C Compiler provides the following set of built-in functions that enable you

to use machine code in C programming applications:

_ldregs loads register values.

Inline Machine Code Interface 4 _code 235

_stregs stores register values.

_cc tests or saves the hardware condition code.

_diag generates a DIAGNOSE instruction.

_cms202 generates a CMS SVC 202 instruction.

svc202 or
e_svc202

generates a CMS SVC 202 instruction with arguments.

_ossvc generates an OS/390 SVC instruction.

_osarmsvc generates an OS/390 SVC instruction to be issued in AR mode

_code generates a machine instruction or inline data.

_label defines an inline-code branch target.

_bbwd branch backward to a previously defined label.

_bfwd branch forward to a label defined later.

_branch alternate form of _bbwd/_bfwd for use in library code macros.

Each of the built-in functions is discussed in “Functions” on page 239.

_ldregs, _stregs, and _cc
Two framing functions, _ldregs and _stregs, enable you to set register values

before issuing an instruction or series of instructions and then retrieve values from the
registers after the instruction sequence is completed. Between these framing functions,
you can call other built-in functions or issue macros that resemble assembly
instructions. You can use the _cc function to access the condition code set by a
generated DIAGNOSE, SVC, or machine instruction.

_diag, _cms202, and _ossvc
Several built-in functions issue specific supervisor call instructions: _diag, _cms202,

and _ossvc. Access to the DIAGNOSE instruction through the _diag function opens
the way for using the multitude of CMS diagnose codes. With the _diag function, your
program can interact with the console, examine real storage, read the system symbol
table, execute timing functions, and so on. The _ossvc and _osarmsvc built-in
functions can be used to invoke an OS/390 or CMS supervisor call to get access to many
supervisor services that would otherwise be available only through the Assembler
language. The _ossvc built-in function always issues the SVC in primary address
space mode, while the _osarmsvc issues the SVC in access register mode if the
compiler option has been specified.

_code
The inline machine code interface also provides a very flexible method for generating

machine instructions or inline data. The _code function enables you to generate
machine instructions directly from C without the overhead of a subroutine call.

Furthermore, the library provides header files defining macros to assist you in using
_code to generate machine instructions.

236 _label 4 Chapter 13

_label
The _label function defines a location in an inline code block and associates it with a

non-zero unsigned short constant. You can transfer control directly to a label defined
with _label by using the _bbwd, _bfwd, or _branch function, or indirectly by using a
library macro which calls one of these functions. The same label value may be assigned
more than once in a compilation. The _bbwd and _bfwd functions always branch to the
nearest definition of the target label in the appropriate direction. This property allows
_label to be used in macros that are expanded repeatedly in a single compilation.

_bbwd and _bfwd
The _bbwd and _bfwd functions allow you to generate selected 370 branch

instructions to labels defined with _label. The macro specifies the particular branch
operation and any non-target information required by the instruction, for example,
count registers.

All use of these functions and macros must be localized within a single block of inline
code, beginning with an _ldregs call, and containing no C statements other than calls
to inline machine code functions. The results of attempting to branch from one code
block to another are unpredictable.

_branch, _blabel, and _flabel
The _bbwd and _bfwd functions are not convenient for symbolic use. For this reason,

the _branch function and the _blabel and _flabel macros are provided. These are
more complicated than _bbwd and _bfwd, but lend themselves more readily to symbolic
use. _branch is a variant of _code in which the final halfword of an instruction can be
specified in one of two special forms larger than a halfword. One of these forms is
generated by _blabel, and the other by _flabel. To illustrate, the BCT macro defined
in the <genl370.h> header file (after expansion of various inner macros) has the form:

#define BCT(r1,x,s) _branch(0x80000000 >> (r1),
0x4600 | ((r1) << 4) | (x), s)

The following uses of the BCT macro then behave as follows:

BCT(R1, 0, 6+b(3)) /* generates a BCT 1,6(0,3) */
BCT(R1, 0, _blabel(2)) /* same effect as _bbwd(0x4610, 2) */
BCT(R1, 0, _flabel(2)) /* same effect as _bfwd(0x4610, 2) */

The macros in <genl370.h> for instructions supported by _bfwd and _bbwd have all
been defined to use _branch.

Code Macros
Although the _code function provides a very flexible method for generating

instructions, many machine instructions can be more easily generated using code
macros. The macros available for use are provided in the following series of header files:

� <genl370.h>

� <str370.h>

� <dec370.h>

� <float370.h>

Inline Machine Code Interface 4 Usage Notes 237

� <ctl370.h>

� <supv370.h>

� <das370.h>

� <io370.h>

� <ioxa.h>

� <vec370.h>

� <lsa320.h>

These header files provide appropriate macros for all IBM 370 machine instructions
except UPT, SIE, and PC. (These three instructions cannot be supported because of
conflicts in register use between the instructions and the compiled C code.)

Two other header files, <code.h> and <regs.h>, define basic-level macros that are
used by the macros in the header files listed above. You can use the macros in
<code.h> to simplify the arguments to the _code function. All of these header files are
described in detail in “Macros and Header Files” on page 259.

Bit Masks for Using Registers
Several of the built-in functions use a 32-bit mask argument to indicate which

registers the generated machine instructions should use. Starting from the left of the
mask, bits 0 through 15 indicate whether general purpose registers 0 through 15 are
used. Bits 16, 18, 20, and 22 indicate the use of floating-point registers 0, 2, 4, and 6,
respectively. The remaining bits are not currently used and should be specified as 0.

The <regs.h> header file, which is included (via #include) in both <svc.h> and
<code.h>, contains macros named R0 through R15 for general registers 0 through 15,
and F0, F2, F4, and F6 for floating-point registers 0, 2, 4, and 6. These macros enable
you to symbolically specify the register mask. For example, coding the mask argument
in the following way sets the bit mask to 0xc0010000, which requests the use of
registers 0, 1, and 15:

R0+R1+R15

Table 13.1 on page 238 summarizes the use of registers by _code, _ldregs, and
_stregs.

When you compile with the armode option, you can use the inline machine code
functions to execute instructions that modify the access registers (for instance, CPYA).
An access register is considered to have the same register number as the corresponding
general register. For example, the bit mask R2 indicates that general register 2, access
register 2, or both may be modified by the instruction. See Chapter 15, “Developing
Applications for Use with UNIX System Services OS/390,” on page 331 for more
information on register masks.

Usage Notes
Some arguments to the built-in functions must be compile-time constants because the

compiler has to know which registers or values to work with as it compiles the program.

CAUTION:
The compiler must be able to determine where inline machine code sequences begin and
end. During sequences of inline machine code, you control the contents of the
designated registers. In normal C code, the compiler controls the contents of all
registers. Because of this difference, it is essential that the compiler be able to
distinguish where inline machine code sequences begin and end. 4

238 Usage Notes 4 Chapter 13

The following rules enable the compiler to differentiate between inline machine code
and normal C code:

� An inline machine code sequence must begin with a call to _ldregs. If the code
sequence does not require any preloaded registers, begin the sequence with
_ldregs(0), which informs the compiler of the start of a sequence without loading
any registers. Note that _ldregs(0) is not the same as _ldregs(R0).

� An inline machine code sequence is ended by any C code other than a call to a
machine code function, including a control structure such as the ?: operator or an
if statement. After the occurrence of a non-machine-code construct, the contents
of registers are unpredictable and, in general, will not be preserved from any
previous machine code function calls.

� If you are using a call to _stregs or _cc, you must code it last in the sequence. If
you use them both, code _stregs before _cc. The function _stregs will not
change the condition code, but the function _cc may change register contents.

� Do not specify complex expressions as arguments to _stregs. The arguments
should be pointer variables or the addresses of auto variables. If complex
expressions are used, the compiler may be forced to modify values stored in
registers in order to evaluate the expressions.

After the sequence ends, the compiler may again use all the registers and may
generate instructions that would change the condition codes. Be careful that
subsequent sequences do not depend on register values or condition code settings
established in a prior sequence, because these may no longer be retained.

CAUTION:
Do not use general-purpose registers 4 through 13 with the _ldregs function. The compiler
assigns general-purpose registers 6 through 11 and floating-point registers 4 and 6 to
register variables. If your use of registers in _ldregs conflicts with the compiler’s
assignment of registers to register variables, the generated code may be suboptimal.
General-purpose registers 0 through 3 and 14 through 15 may be used freely, as well
as floating-point registers 0 and 2. 4

Note that if you need to use floating-point register 4 or 6 and you specify optimize,
you must use the freg(0) option to inhibit assignment of floating-point register
variables.

Table 13.1 Registers for Use with the _code_stregs, and _idregs Functions

Type of Register Register Number Name of Macro Bit in Mask

general-purpose 0–15 R0–15 0–15

floating-point 0 F0 16

2 F2 18

4 F4 20

6 F6 22

Table 13.1 on page 238 shows the general-purpose and floating-point registers when
they are used with the _code,_stregs, and _ldregs functions. No other registers are
used with these functions.

The _ldregs and _stregs functions cannot be used to load or store long long
values because a long long value requires two registers. You can, however, use the
_ldregs function to put the address of a long long value into a register, and then use
ordinary machine instructions to load or store portions of the long long value.

Inline Machine Code Interface 4 _bbwd 239

Inline Machine Code Usage Notes
Inline machine code sequences execute in access register mode if the compiler option

armode is specified, and in primary address space mode otherwise. You can change
mode within an inline code sequence so long as the mode is restored before returning to
normal C code.

Note: You should be very cautious about using any access register other than access
register 1 in a function not compiled with the armode option. Functions not compiled
with the armode option never save or restore the access registers. As a result, a
modification of an access register by a non-armode function can cause a calling armode
function to behave incorrectly. 4

The _stregs function is defined to return int. This allows the _stregs function to
be used to store an integer or a pointer from a single register. Two alternate forms of
_stregs are available to store other types of data. The function _stfregs returns
double, and the function _stpregs returns _ _far void *. Except for the difference in
return type, these functions behave the same as _stregs. Note that the _stfregs
function stores its return value in the highest floating register in the mask.

Functions
The following pages define the functions for the inline machine code interface.

_bbwd
Branch to a Previously Defined Label

SYNOPSIS

#include <code.h>

void _bbwd(unsigned short op, unsigned short target);

DESCRIPTION
_bbwd causes the compiler to generate a branch instruction whose target is the

previously defined label whose _label number is specified by target. The op
argument specifies the first halfword of the instruction to generate. Both arguments to
_bbwd must be compile-time constants.

The op argument must specify one of the following instructions:

BAL BCT

BAS BXH

BC(except NOP BXLE

The NOP instruction (0x4700) is not supported. Also note that any index register in
the instruction must be specified as 0.

240 _bfwd 4 Chapter 13

Optimizations, such as branch folding, may cause the instructions generated as a
result of _bbwd to differ from those expected. However, any such optimizations will not
change the effects of the instructions.

CAUTIONS
If incorrect arguments are passed to _bbwd, the compiler produces a diagnostic, sets

the return code to 8, and generates an EX 0,* instruction. This instruction causes an
execute exception (OS ABEND code 0C3) if it is actually executed.

Do not use _bbwd to generate instructions that modify registers required by compiled
code. See “_code” on page 247 for a listing of these registers.

The _bbwd function should only be used to transfer control to a label defined in the
same block of machine code as the branch. If this rule is disregarded, the results are
unpredictable.

PORTABILITY
_bbwd is not portable.

EXAMPLE

#include <code.h>

/* this code multiplies the integers i and j by */
/* repeated addition */

_ldregs(R1+R2+R3, i, j, 0);
_label(1); /* LABEL1 EQU * */
_code(R3,0x1a31); /* AR 3,1 */
_bbwd(0x4620,1); /* BCT 2,LABEL1 */

RELATED FUNCTIONS
_code, _ldregs, _bfwd, _branch, _label

_bfwd
Branch to a Label Defined Later

SYNOPSIS

#include <code.h>

void _bfwd(unsigned short op, unsigned short target)

DESCRIPTION
_bfwd causes the compiler to generate a branch instruction with a target that is a

label defined later. The target argument is the _label number of the target label. The
op argument specifies the first halfword of the instruction to generate. Both arguments
to _bfwd must be compile-time constants.

Inline Machine Code Interface 4 _bfwd 241

The op argument must specify one of the following instructions:

BAL BCT

BAS BXH

BC (except NOP BXLE

The NOP instruction (0x4700) is not supported. Also note that any index register in the
instruction must be specified as 0.

Optimizations, such as branch folding, may cause the instructions generated as a
result of _bfwd to differ from those expected. However, any such optimizations will not
change the effects of the instructions.

CAUTIONS
If incorrect arguments are passed to _bfwd, the compiler produces a diagnostic, sets

the return code to 8, and generates an EX 0,* instruction. This instruction causes an
execute exception (OS ABEND code 0C3) if it is actually executed.

Do not use _bfwd to generate instructions that modify registers required by compiled
code. See “_code” on page 247 for a listing of these registers.

The _bfwd function should only be used to transfer control to a label defined in the
same block of machine code as the branch. If this rule is disregarded, the results are
unpredictable.

PORTABILITY
_bfwd is not portable.

EXAMPLE

#include <code.h>

/* this code multiplies the integers i and j by */
/* repeated addition. unlike the _bbwd example,*/
/* it behaves correctly when j is less than or */
/* equal to 0 */

_ldregs(R1+R2+R3, i, j, 0);
_code(0, 0x1222); /* LTR 2,2 */
_bfwd(0x4780, 2); /* BZ LABEL2 */
_bfwd(0x4720, 1); /* BP LABEL1 */
_code(R2, 0x1322); /* LCR 2,2 */
_code(R1, 0x1311); /* LCR 1,1 */
_label(1); /* LABEL1 EQU * */
_code(R3, 0x1a31); /* AR 3,1 */
_bbwd(0x4620, 1); /* BCT 2,LABEL1 */
_label(2); /* LABEL2 EQU * */

RELATED FUNCTIONS
_code, _ldregs, _bbwd, _branch, _label

242 _blabel 4 Chapter 13

_blabel
Reference a Backward Branch Target

SYNOPSIS

#include <code.h>

unsigned _blabel(int n);

DESCRIPTION
_blabel identifies a branch target occurring earlier in the compilation than the point

at which _blabel is called. The argument n specifies the _label number of the branch
target and must be a compile-time constant. A call to _blabel should be used only as an
argument to the _branch function or to a macro that generates a call to this function.

RETURN VALUE
_blabel returns an encoded form of the target label that can be interpreted by the

_branch function.

PORTABILITY
_blabel is not portable.

EXAMPLE

#include <code.h>
#include <genl370.h>

/* this code multiplies the integers i and j by */
/* repeated addition. this code has the same */
/* effect as the _bbwd example, but uses macros */
/* from genl370.h for readability */

_ldregs(R1+R2+R3, i, j, 0);
_label(1); /* LABEL1 EQU * */
AR(3,1);
BCT(2,0,_blabel(1)) /* BCT 2,LABEL1 */

RELATED FUNCTIONS
_bbwd, _branch, _flabel

_branch
Generate a Branch Instruction

SYNOPSIS

Inline Machine Code Interface 4 _cc 243

#include <code.h>

void _branch(unsigned mask, unsigned short op,
unsigned int target);

DESCRIPTION
_branch provides a flexible method for generating branch instructions. All operands

of _branch must be compile-time constants. Depending on the form of the target
argument, the _branch function behaves as follows:

� If the target is a valid unsigned short value, then _branch(mask, op, target)
has the same effect as _code(mask, op, target).

� If the target has the form 0x00BBzzzz, where zzzz represents any hex digits, then
_branch(mask, op, target) has the same effect as _bbwd(op, 0xzzzz). (A
constant of this form is generated by the _blabel macro.)

� If the target has the form 0x00BFzzzz, where zzzz represents any hex digits, then
_branch(mask, op, target) has the same effect as _bfwd(op, 0xzzzz). (A
constant of this form is generated by the _flabel macro.)

CAUTIONS
_branch is not intended for direct programmer use. It is implemented primarily as a

tool for use by the macros in the SAS/C inline code header files.
When a 0x00BBzzzz or 0x00BFzzzz argument is passed to _branch, all restrictions

applying to the use of _bbwd and _bfwd apply to_branch. In particular, only permitted
branch instructions can be specified, and use of an index register is not allowed.

If incorrect arguments are passed to _branch, the compiler produces a diagnostic,
sets the return code to 8, and generates an EX 0,* instruction. This instruction causes
an execute exception (OS ABEND code 0C3) if it is actually executed.

The mask operand of _branch defines the registers that may be modified by the
generated instruction, as with the _code function. If the mask is not specified correctly,
the effects of _branch are unpredictable.

Do not use _branch to generate instructions that modify registers required by
compiled code. See “_code” on page 247 for a listing of these registers.

The _branch function should only be used to transfer control to a label defined in the
same block of machine code as the branch. If this rule is disregarded, the results are
unpredictable.

PORTABILITY
_branch is not portable.

RELATED FUNCTIONS
_bbwd, _bfwd, _blabel, _code, _flabel

_cc
Access Hardware Condition Code

SYNOPSIS

244 _cc 4 Chapter 13

#include <svc.h>

int _cc(void);

DESCRIPTION
_cc enables you to access the condition code set by an SVC, DIAGNOSE, or machine

instruction. The following table shows the hardware condition codes and their most
common meanings, the _cc function codes, and the mnemonic macros that can be used
instead of the actual values.

Table 13.2

Hardware
Condition Code

Most Common Meaning of
Code

_cc Function
Returns

Symbolic Macros for _cc
Function Return Codes

0 equal 0 CC0, CCZ, CCE

1 less - 1 CC1, CCL, CCM

2 greater 2 CC2, CCH, CCP

3 overflow 3 CC3, CCO

.begin.end

Note: Making the _cc condition code {minussym}1 for the less condition (rather
than 1) allows the result of _cc to be compared with 0 in a natural way. 4

The condition code is not modified by the execution of _cc.
Declarations for _cc and the associated macros can be obtained by including (via

#include) either <code.h> or <svc.h>.

RETURN VALUE
_cc returns the current hardware condition code as one of the integers 0,

{minussym}1, 2, or 3.

CAUTIONS
If, after an SVC, DIAGNOSE, or machine instruction, you need to store registers and

also access the condition code, you should use _stregs to store the registers first.
When it is followed by a call to _cc, _stregs does not modify the condition code, but in
some cases, _cc may modify register contents in order to address the area where the
condition code is to be stored.

PORTABILITY
_cc is not portable.

IMPLEMENTATION
In general, five instructions are required to reduce the hardware condition code to an

integer value. However, if the only use of the value returned by _cc is in a comparison
with 0, only a single BC instruction is generated.

Inline Machine Code Interface 4 _cms202 245

EXAMPLE

#include <code.h>
#include <genl370.h>
#include <stdio.h>

/* Add two binary integers together, and print a message */
/* if the sum is negative. */

int sum;
short increment; /* halfword */

_ldregs(R2+R3, sum, &increment);

AH(2,0,0+b(3)); /* AH 2,0(0,3) */

if (_cc() <0)
printf("The sum is negative\n");

RELATED FUNCTIONS
_cms202, _code, _diag, _ldregs, _ossvc, _stregs

_cms202
Generate CMS SVC 202 Instruction

SYNOPSIS

#include <svc.h>

void _cms202(void);

DESCRIPTION
_cms202 generates an SVC 202 instruction. It is intended to be used by programs

executing under nonbimodal CMS. _cms202 takes no arguments. (See _ossvc for
generating OS/390 supervisor calls; also see the descriptions of SVC202 and e_SVC202
for other methods of generating an SVC 202 instruction.)

Note: The _ossvc built-in function may be used to generate an SVC 204 in bimodal
CMS. 4

RETURN VALUE
No value is returned by _cms202. To access values returned in registers, including

any return code, use the _stregs function.

CAUTIONS
Use the _ldregs function to set up registers correctly before issuing the SVC 202.
If your program executes under OS/390, you should use the _ossvc built-in function

rather than _cms202.

246 _cms202 4 Chapter 13

PORTABILITY
_cms202 is not portable.

IMPLEMENTATION
_cms202 first stores any values currently in use from general-purpose registers 0, 1,

and 15 and clears any information the compiler had about the contents of those
registers. It assumes that these registers are, or may be, altered by the SVC 202.
_cms202 then saves the address of the SVC instruction as an aid to traceback
production in case the SVC 202 causes an abend. It then issues an SVC 202 instruction
followed by a fullword (unaligned) 1.

EXAMPLE

Note: Refer to the CMS Command Reference for more details on nucleus
extensions. 4

#include <svc.h>
#include <lcio.h>
#include <stdio.h>
#include <lcstring.h>

/* Use the CMS function NUCEXT to determine if the */
/* GLOBALV command is a nucleus extension. */

struct { /* NUCEXT QUERY parameter list. */
char cmd[8] ; /* ’NUCEXT’ */
char name[8] ; /* Nucleus extension name. */
char *scblock; /* Receives pointer to SCBLOCK. */
char *query; /* 0xffffffff (identify QUERY) */
}nucx;

int rc;

/* Copy in the name of the command, padded to */
/* eight characters. */

memcpyp(nucx.cmd,"NUCEXT",8,6,’ ’);

/* Copy in the name of the nucleus extension to be queried, */
/* again padded to eight characters. */

memcpyp(nucx.name,"GLOBALV",8,7,’ ’);

nucx.query = (char *) -1; /* Identify the QUERY function.*/

_ldregs(R1,&nucx); /* R1 -> struct nucx. */
_cms202(); /* Issue SVC 202. */
rc = _stregs(R15); /* If rc == 0, GLOBALV is a */

/* nucleus extension. */

printf("Globalv %s a nucleus extension\n",
rc == 0 ? "is" : "is not");

Inline Machine Code Interface 4 _code 247

RELATED FUNCTIONS
_diag, _ldregs, _ossvc, _stregs, SVC202, e_SVC202

_code
Generate a Machine Instruction or Inline Data

SYNOPSIS

#include <code.h>

void _code(unsigned mask, unsigned short data1, unsigned short data2,
unsigned short data3, unsigned short data4);

DESCRIPTION
_code provides a flexible method for generating machine instructions or inline data.

_code enables you to issue machine instructions directly from C without the overhead
of a subroutine call. In many cases, you can use either _code or the code macros to
generate machine instructions. In general, the code macros are easier to use, but the
_code function is more flexible. _code generates one to four halfwords of data into the
compiled code instruction stream. Usually this is a machine instruction, but any data
can be specified. _code takes two to five arguments that must all be compile-time
constants. The first argument, mask, is a 32-bit mask. This argument must be a
compile-time constant because the compiler has to know which registers are needed.
General-purpose registers can be specified using the macros R0 through R15, and
floating-point registers 0, 2, 4, and 6 can be specified as F0 through F6, respectively.
Multiple registers can be specified by adding (or logically ORing) the macros, for
example, R0+R1 (or R0|R1). Refer to “Bit Masks for Using Registers” on page 237 for
more information on the mask argument.

After the register mask, the remaining arguments of _code are generated on a
halfword boundary in the instruction stream. They are not validated in any way. Any
bits in an argument that do not fit in a short are ignored.

The inline machine code interface provides macros for naming registers that make
the register arguments to _code more readable when used to generate machine
instructions. Refer to the listing of the <regs.h> header file in “General Header Files”
on page 267 for the macros that can be used with _code.

Use the _ldregs function to load registers used by _code; use the _stregs function
to store instruction results, and use the _cc function to access the condition code.

RETURN VALUE
_code returns no value. To access values returned in registers, use the _stregs

function; to access the condition code, use the _cc function.

CAUTIONS
If you specify incorrect arguments for _code (for example, the wrong number of

arguments or an invalid register mask), pass two of the compiler produces an error
message, sets the return code to 8, and generates an EX 0,* instruction for _code. The
generated instruction causes an execute exception (OS ABEND code 0C3) if it is
actually executed.

248 _diag 4 Chapter 13

Do not use _code to generate instructions that modify registers required by compiled
code, specifically the following:

4 is used to address constants.

5 is the program base register.

12 accesses the C Run-Time Anchor Block (CRAB).

13 addresses the current automatic storage area.

If you modify any of these registers, the results are unpredictable but are likely to
include an abend. See the register usage warning in “Usage Notes” on page 237.

PORTABILITY
_code is not portable.

IMPLEMENTATION
_code first stores any values currently in use from general-purpose registers

specified by the register mask and then generates the requested instructions or data.

EXAMPLE

#include <code.h>

/* Generate a call to the CMS DMSFREE macro, */
/* consisting of an SVC 203 instruction, */
/* followed by a halfword of data. */

unsigned amt;
char *storage;

_ldregs(R0, amt/8);

_code(R1, 0x0acb, /* Issue SVC 203 */
0x1e04); /* specifying DMSFREE function. */

/* store address of allocated memory */
storage =(char *) _stregs(R1);

RELATED FUNCTIONS
_cc, _ldregs, _stregs

_diag
Generate DIAGNOSE Instruction

SYNOPSIS

#include <svc.h>

void _diag(int n);

Inline Machine Code Interface 4 _diag 249

DESCRIPTION
_diag generates a DIAGNOSE instruction, using 0 and 14 as the register arguments

and n as the diagnose code. n must be a compile-time constant. It is intended to be
used by programs executing under CMS or some other operating system running in a
virtual machine under VM/SP, VM/XA, or VM/ESA.

RETURN VALUE
_diag returns no value. To access values returned in registers, including any return

code, use the _stregs function. To access the condition code set by _diag, use the _cc
function.

CAUTIONS
Use the _ldregs function to set up registers correctly before issuing the DIAGNOSE.

Do not use _diag in a real machine or when in virtual problem state.

PORTABILITY
_diag is not portable.

IMPLEMENTATION
_diag first stores any values currently in use from general-purpose registers 0, 1, 14,

and 15 and clears any information the compiler has about the contents of these
registers. It assumes these registers are, or may be, altered by the DIAGNOSE. It then
issues a DIAG 0, 14, n instruction, where n is the specified diagnose code.

EXAMPLE

#include <svc.h>
#include <stdio.h>

/* Issue DIAGNOSE X’24’ to obtain information about the */
/* virtual console. */

unsigned devaddr, vinfo, rinfo;

_ldregs(R0, -1); /* Load -1 to get virtual console information. */

_diag(0x24); /* Ask CP for location and information. */

/* store the results */
_stregs(R0+R14+R15, &devaddr, &vinfo, &rinfo);

switch(_cc()) { /* check condition code */
case CC0:

printf("Console address is %x\n",
(unsigned short) devaddr);

break;
case CC2:

printf("Virtual console at %x, no real console\n",
(unsigned short) devaddr);

250 _flabel 4 Chapter 13

break;
case CC3:

printf("Virtual console does not exist\n");
break;

}

RELATED FUNCTIONS
_cc, _cms202, _ldregs, _ossvc, _stregs

_flabel
Reference a Forward Branch Target

SYNOPSIS

#include <code.h>

unsigned _flabel(int n);

DESCRIPTION
_flabel identifies a branch target occurring later in the compilation than the point

at which _flabel is called. The argument n specifies the _label number of the branch
target and must be a compile-time constant. A call to _flabel should be used only as an
argument to the _branch function, or to a macro that generates a call to this function.

RETURN VALUE
_flabel returns an encoded form of the target label that can be interpreted by the

_branch function.

PORTABILITY
_flabel is not portable.

EXAMPLE

#include <code.h>
#include <genl370.h>

/* this code multiplies the integers i and j by */
/* repeated addition. unlike the _blabel example,*/
/* it behaves correctly when j is less than or */
/* equal to 0. this code has the same effect as */
/* the _bfwd example, but uses macros from */
/* genl370.h for readability */

_ldregs(R1+R2+R3, i, j, 0);
LTR(2,2);
BC(8, 0, _flabel(2)); /* BZ LABEL2 */
BC(2, 0, _flabel(1)); /* BP LABEL1 */
LCR(2,2);

Inline Machine Code Interface 4 _ldregs 251

LCR(1,1);
_label(1); /* LABEL1 EQU * */
AR(3,1);
BCT(2, 0, _blabel(1)); /* BCT 2,LABEL1 */
_label(2); /* LABEL2 EQU * */

RELATED FUNCTIONS
_bbwd, _branch, _blabel

_label
Define an Inline Machine Code Branch Target

SYNOPSIS

#include <code.h>

void _label(unsigned short n);

DESCRIPTION
_label identifies a location in an inline machine code block as a branch target and

associates it with an integer n between 1 and 65535. n must be a compile-time
constant. More than one definition using the same integer in a single compilation is
permitted. The execution of _label has no effect; that is, _label defines a location in
the object code but does not add any instructions there.

EXAMPLE
See the examples for _bbwd, _bfwd, _blabel and _flabel.

Related Functions
_bbwd, _bfwd, _blabel, _flabel.h9e

_ldregs
Load Registers

SYNOPSIS

#include <svc.h>

/* Further arguments are any C expressions - see below. */
void _ldregs(unsigned mask,...);

DESCRIPTION
_ldregs is central to the interface between the SAS/C Compiler and inline machine

code because it enables you to set up values in machine registers that are used by
subsequent machine instructions.

252 _ldregs 4 Chapter 13

The first argument, mask, is a 32-bit mask. This argument must be a compile-time
constant because the compiler has to know which registers are needed.
General-purpose registers can be specified using the macros R0 through R15, and
floating-point registers 0, 2, 4, and 6 can be specified as F0 through F6, respectively.
Multiple registers can be specified by adding (or logically ORing) the macros, for
example, R0+R1 (or R0|R1). Refer to “Bit Masks for Using Registers” on page 237 for
more information on the mask argument.

Remaining arguments specify the values to be placed in the registers (low to high)
specified by mask. Any C expression that has an integer, pointer, or floating-point type
may be used. The number of arguments, excluding mask, must be equal to the number
of one-bits in mask; that is, you must supply an expression for each register. The type of
each expression must be valid for the register in which the value is to be loaded. For
example, the effect of attempting to load a pointer into a floating-point register is
unpredictable.

Each call to _ldregs starts a new inline machine code sequence. After the call, the
contents of any register not explicitly specified in the mask are undefined.

Declarations for _ldregs and the associated macros are provided in <code.h> as
well as <svc.h>; either or both can be used.

RETURN VALUE
_ldregs returns no value.

CAUTIONS
You can safely use the following registers:

0 – 3, 14, 15 are general-purpose registers.

0, 2 are floating-point registers.

In addition, you can use floating-point registers 4 and 6 if they are not currently
assigned to a register variable.

Do not specify any of the following registers:

4 is used to address constants.

5 is the program base register.

6 – 11 are used for register variables.

12 accesses the C Run-Time Anchor Block (CRAB).

13 addresses the current automatic storage area.

See the register usage warning in “Usage Notes” on page 237.
If you specify incorrect arguments for _ldregs (for example, the wrong number of

parameters or an invalid register mask), the compiler produces an error message, sets
the return code to 8, and generates an EX 0,* instruction for _ldregs. The generated
instruction causes an execute exception (OS/390 ABEND code 0C3) if it is actually
executed.

PORTABILITY
_ldregs is not portable.

IMPLEMENTATION
_ldregs first dumps any values currently in use from the specified registers back to

memory. It then clears any information the compiler had about the contents of the

Inline Machine Code Interface 4 _osarmsvc 253

registers. Finally, it loads the registers with the values of the specified C expressions.
The order in which the registers are loaded is chosen by the compiler, and it is not
necessarily the same as the order of the registers in the mask or the same for every
invocation of _ldregs.

EXAMPLE

#include <regs.h>

/* Set register 0 to the value 8 and register 14 */
/* to the address of "field", after first clearing */
/* any values currently in those registers. */

long field;

/* After macro expansion, the final effect of this */
/* expression is: _ldregs(0x80020000,8,&field); */

_ldregs(R0+R14,8,&field);

RELATED FUNCTIONS
_cc, _cms202, _code, _diag, _ossvc, _stregs

_osarmsvc
Generate OS/390 SVC Instruction without Changing Addressing Mode

SYNOPSIS

void _osarmsvc(int n);

DESCRIPTION
_osarmsvc generates a supervisor call (SVC) instruction. _osarmsvc takes one

argument (n) that specifies the number of the SVC to generate; n is an execution-time
constant in the range of 0 to 255. No code is generated to change the addressing mode.
The SVC will be issued in AR mode if the compiler armode option has been specified,
and otherwise will be issued in primary address space mode.

RETURN VALUE
_osarmsvc returns no value. To access values returned in registers, use the _stregs

function.

CAUTIONS
If you specify incorrect arguments for _osarmsvc (such as the wrong number of

arguments or an argument that is not a compile-time constant in the range 0 to 255),
pass two of the compiler produces an error message, sets the return code to 8, and
generates an EX 0,* instruction for _osarmsvc. The generated instruction causes an
execute exception (OS/390 ABEND code 0C3) if it is executed.

254 _ossvc 4 Chapter 13

PORTABILITY
_osarmsvc is not portable.

IMPLEMENTATION
_osarmsvc first stores any values currently in use from general-purpose registers 0,

1, 14, and 15 and clears any information the compiler had about the contents of those
registers. It assumes that these registers are, or may be, altered by the SVC.
_osarmsvc then saves the address of the SVC instruction in the C Run-Time Anchor
Block (CRAB) as an aid to traceback production in case the SVC causes an abend.
Finally, _osarmsvc issues the requested SVC instruction.

_ossvc
Generate OS/390 or CMS SVC Instruction

SYNOPSIS

#include <svc.h>

void _ossvc(int n);

DESCRIPTION
The _ossvc function generates an SVC instruction that is executed in primary

address space mode, even if the armode compiler option was specified. _ossvc takes
one argument (n) that specifies the number of the SVC to generate; n is an
execution-time constant in the range of 0 to 255.

RETURN VALUE
_ossvc returns no value. To access values returned in registers, use the _stregs

function.

CAUTIONS
If you specify incorrect arguments for _ossvc (such as the wrong number of

arguments or an argument that is not a compile-time constant in the range 0 to 255),
pass two of the compiler produces an error message, sets the return code to 8, and
generates an EX 0,* instruction for _ossvc. The generated instruction causes an
execute exception (OS/390 ABEND code 0C3) if it is executed.

If your program executes under CMS, you may want to use the _cms202 or _diag
function or both instead of _ossvc, depending on the service required.

PORTABILITY
_ossvc is not portable.

IMPLEMENTATION
_ossvc first stores any values currently in use from general-purpose registers 0, 1,

14, and 15 and clears any information the compiler had about the contents of those

Inline Machine Code Interface 4 _stregs 255

registers. It assumes that these registers are, or may be, altered by the SVC. If needed,
_ossvc then issues a SAC instruction to enter primary address space mode. _ossvc
then saves the address of the SVC instruction in the C Run-Time Anchor Block (CRAB)
as an aid to traceback production in case the SVC causes an ABEND. _ossvc then
issues the requested SVC instruction. Finally, if the armode compiler option is in effect,
issue a SAC instruction to restore access register mode.

EXAMPLE

#include <svc.h>
#include <stdio.h>

/* Use MVS SVC 11 to obtain the current time as an */
/* HHMMSShh GMT value. Set register 1 to a bit mask */
/* that requests this form. HHMMSShh is returned in */
/* register 0, and a return code is returned in */
/* register 15. */

int rc = 0; /* return code */
char packed[4] ; /* area for time in HHMMSShh format */

_ldregs(R1,0x82); /* Set bit mask in reg 1. */
_ossvc(11); /* Issue SVC 11. */
_stregs(R0+R15,&packed,&rc); /* returned values */

if (rc == 0)
printf("GMT is %2x:%02x:%02x:%02x\n",

packed[0] ,packed[1] ,packed[2] ,packed[3]);

return rc;

RELATED FUNCTIONS
_cms202, _diag, _ldregs, _stregs

_stregs
Store Values from Registers

SYNOPSIS

#include <svc.h>

/* Further arguments are expressions */
/* of pointer type - see below. */

int _stregs(unsigned mask,...);

DESCRIPTION
_stregs enables you to save register values set by an SVC, DIAGNOSE, or machine

instruction into memory accessible to the C program. The call to _stregs terminates
the inline machine code sequence.

256 _stregs 4 Chapter 13

The first argument, mask, is a 32-bit mask. This argument must be a compile-time
constant because the compiler has to know which registers are needed.
General-purpose registers can be specified using the macros R0 through R15, and
floating-point registers 0, 2, 4, and 6 can be specified as F0 through F6, respectively.
Multiple registers can be specified by adding (or logically ORing) the macros, for
example, R0+R1 (or R0|R1). Refer to “Bit Masks for Using Registers” on page 237 for
more information on the mask argument.

Remaining arguments specify where each register is to be stored, in the order (low to
high) specified by mask. These arguments can be either the address of a variable or a C
pointer type. If you specify a pointer, the register is stored in the memory pointed to by
the pointer.

If you specify the address of a C variable, the register is stored in that variable. Note
that to store a register in a C variable, you must specify the address of the variable. If
you specify the variable directly, the variable is treated as a pointer, and the contents of
the register are stored in the area addressed by the pointer.

If you specify one more register in the mask than the number of arguments to the
function, the value in the highest general-purpose register in the mask is not stored.
Instead, it is returned as the value of the _stregs function call.

Declarations for _stregs and the macros for the register mask can be obtained by
including either <code.h> or <svc.h>.

RETURN VALUE
_stregs returns the value contained in the highest numbered general-purpose

register specified in the mask. If no general-purpose register is specified in the mask,
the value returned is unpredictable.

To access the condition code set by an SVC, DIAGNOSE, or machine instruction, use
the _cc function.

CAUTIONS
If you use _stregs to obtain the addresses of run-time control blocks (such as the

CRAB), code, or data areas, and then modify the contents of the control blocks, code, or
data areas, your program is no longer valid C and the results are entirely unpredictable.

Do not use complex expressions, especially ones involving array indexes, as operands
of _stregs because register shortages can occur. If there is a register shortage, a
register whose value was to be stored may be reused. To avoid the problem, assign a
complex expression to a pointer variable and specify the variable as the _stregs
argument. Alternately, you can use the _code function to generate ST (store) or STM
(store multiple) instructions to store values based on one or more previously loaded
addressing registers.

If you specify incorrect arguments for _stregs (for example, the wrong number of
arguments or an invalid register mask), pass two of the compiler produces an error
message, sets the return code to 8, and generates an EX 0,* instruction for _stregs.
The generated instruction causes an execute exception (OS/390 ABEND code 0C3) if it
is actually executed.

PORTABILITY
_stregs is not portable.

IMPLEMENTATION
_stregs stores the values from the specified registers in the places in memory

addressed by the expressions. The sequence in which the registers are stored is

Inline Machine Code Interface 4 SVC202, e_SVC202 257

determined by the compiler and is not necessarily the same as the order of the registers
in the mask. Because the register values are not changed, the compiler retains the
information it has about the contents of each register.

EXAMPLE

#include <svc.h>

/* Store the value in register 1 in the C variable reg1, */
/* store the value in register 15 in the area pointed */
/* to by the variable r15 area, and store the value in */
/* floating-point register 0 in the area pointed to */
/* by the variable dp. */

long reg1;
long r15area;
double * dp;
_ldregs(0);

/* After macro expansion, the final effect of this */
/* expression is: r15area = _stregs(0x40018000,®1,dp); */

r15area = _stregs(R1+R15+F0,®1,dp);

RELATED FUNCTIONS

_cc, _cms202, _code, _diag, _ldregs, _ossvc

SVC202, e_SVC202
Generate CMS SVC 202 Instruction with Arguments

SYNOPSIS

#include <svc.h>

/* macro */
int SVC202(r1plist)

/* macro */
int e_SVC202(r0plist, r1plist)

DESCRIPTION

SVC202 and e_SVC202 (extended SVC 202) generate an SVC 202 instruction. They
are intended to be used by programs executing under nonbimodal CMS. SVC202 takes a
pointer to a tokenized PLIST defined in your program. e_SVC202 takes both a pointer
to an untokenized PLIST and a pointer to a tokenized PLIST, both defined in your
program.

Note: The _ossvc built-in function may be used to generate a SVC 204 in bimodal
CMS. 4

258 SVC202, e_SVC202 4 Chapter 13

RETURN VALUE

If no error occurs, these functions return 0. If an error occurs, the value set by the
SVC 202 (which is stored in register 15) is returned by the function.

PORTABILITY

SVC202 and e_SVC202 are not portable.

IMPLEMENTATION

SVC202 and e_SVC202 are implemented as the following macros:

#define SVC202(r1) (_ldregs(R1,r1),_cms202(),_stregs(R15))
#define e_SVC202(r0,r1)
(_ldregs(R0|R1,r0,0x01000000|(unsigned) (r1)),
_cms202(),_stregs(R15))

EXAMPLE

Refer to the description of _cms202 for an alternate version of this example. The
VM/XA SP CMS Command Reference contains more details on nucleus extensions.

#include <svc.h>
#include <lcstring.h>
#include <stdio.h>

/* Use the CMS function NUCEXT to determine if the GLOBALV */
/* command is a nucleus extension. */

struct { /* NUCEXT QUERY parameter list */
char cmd[8] ; /* ’NUCEXT’ */
char name[8] ; /* nucleus extension name */

char *scblock; /* Receives pointer to SCBLOCK. */
char *query; /* 0xffffffff (identify QUERY) */
nucx;

}

int rc;

/* Copy in the name of the command, padded to */
/* eight characters. */

memcpyp(nucx.cmd,"NUCEXT",8,6,’ ’);

/* Copy in the name of the nucleus extention */
/* to be queried, again padded to eight characters. */

memcpyp(nucx.name,"GLOBALV",8,7,’ ’);

nucx.query = (char *) -1; /* Identify the QUERY function. */

rc=SVC202(&nucx); /* Issue SVC 202. */

printf("Globalv %s a nucleus extension\n",
rc == 0 ? "is" : "is not");

Inline Machine Code Interface 4 Macros and Header Files for Code Generation 259

RELATED FUNCTIONS
_cms202, _ossvc

Macros and Header Files

The inline machine code interface provides several header files to assist in using the
built-in functions. Two of these, <svc.h> and <code.h>, are common to several of the
functions. Others are supplied specifically to help simplify issuing machine instructions
without having to write your own calls to the _code function.

Macros and Header Files for Code Generation
The _code header files define macros that can be used to generate specific machine

instructions. Each file defines a set of related instructions. For most applications, you
need to include only one or two of these files. The header files and a brief description of
their contents follow:

<ctl370.h> problem state program control instructions

<das370.h> dual address space instructions

<dec370.h> decimal instructions

<float370.h> floating-point instructions

<genl370.h> general-purpose instructions

<io370.h> 370-mode I/O instructions

<ioxa.h> XA-mode I/O instructions

<lsa370.h> logical string assist instructions

<str370.h> string-handling instructions

<supv370.h> supervisor control instructions

<vec370.h> vector instructions.

The macros have a format that is similar to assembler language instructions. The
following example simply illustrates how to use these macros.

If your program needs to issue the CS instruction, which has two registers and a
storage area as operands, use the CS macro. Express the register numbers as integers.
Express operands that are storage areas as arithmetic expressions using the macro b,
which stands for base register. For example, the assembler language instruction

CS 14,15,0(1)

is written using the CS macro as

CS(14,15,0+b(1));

The macro expands into the following, which has the same effect as the assembler
instruction but is harder to understand:

_code(0x00030000, 0xbaef, 0x1000);

You should not use register masks in place of register numbers as arguments to these
macros. Doing so generates incorrect code or compiler diagnostics, or both.

260 <genl370.h> 4 Chapter 13

Note that no macros are provided for instructions that modify registers 4, 5, 12, and
13. Modifying these registers causes subsequent code to fail. The missing instructions
are UPT (Update Tree), PC (Program Call), and SIE (Start Interpretive Execution).

The code macros are implemented as calls to other macros, each of which generates a
particular instruction format. (For example, the _RX_ macro generates RX format
instructions.) These macros are easy to use and enable you to add special instructions,
such as emulation instructions, which may be available at your site.

Details on the macros available in each header file are presented on the following
pages. Where header files are too extensive to be shown in their entirety, the beginning
and ending instructions are given to provide examples of their format.

<genl370.h>
General-Purpose Instructions Header
This header file defines the general-purpose IBM 370 (and XA) instruction set, except

for instructions included in <str370.h>, <dec370.h>, and <ctl370.h> and the UPT
instruction, which is omitted because it modifies register 5. This set provides most of
the instructions in Chapter 7, "General Instructions," in IBM System/370 Principles of
Operation.

In general, you do not need to use the instructions in this set because normal C code
can be written to produce identical results with less effort. When you use RX format
instructions, note that the index register must be specified as a separate argument from
the storage base register. (It should be specified as 0 if no index register is required.)

/* ordinary 370 instructions */

#ifndef __Inc_GENL370
#define __Inc_GENL370

#define AR(r1,r2) _RR_(_R(r1), 0x1a, r1, r2)
#define ALR(r1,r2) _RR_(_R(r1), 0x1e, r1, r2)
#define NR(r1,r2) _RR_(_R(r1), 0x14, r1, r2)
#define BALR(r1,r2) _RR_(_R(r1), 0x05, r1, r2)
#define BASR(r1,r2) _RR_(_R(r1), 0x0d, r1, r2)
#define BCR(m,r2) _RR_(0, 0x07, m, r2)
#define BCTR(r1,r2) _RR_(_R(r1), 0x06, r1, r2)
#define CR(r1,r2) _RR_(0, 0x19, r1, r2)
#define CLR(r1,r2) _RR_(0, 0x15, r1, r2)

.

.

.
#define SRL(r1,d) _RS_(_R(r1), 0x88, r1, 0, d)
#define STCM(r1,m,s) _RS_(0, 0xbe, r1, m, s)
#define STM(r1,r2,s) _RS_(0, 0x90, r1, r2, s)
#define CFC(d) _S_(R1+R2+R3, 0xb21a, d)

/* UPT not supported due to use of R5
#define UPT() _E_(R0+R1+R2+R3+R5, 0x0102) */
#define AHI(r1,i2) _R_(_R(r1),0xa7,r1,0xa,i2)

#endif

Inline Machine Code Interface 4 <dec370.h> 261

<str370.h>
String-Handling Instructions Header
This header file defines the instructions CLC, CLCL, CUSE, MVC, MVCIN, MVCL,

NC, OC, TR, TRT, and XC.

/* 370 string instructions */

#ifndef __Inc_STR370
#define __Inc_STR370

#define CLCL(r1,r2) _RR_(_RP(r1)+_RP(r2), 0x0f, r1, r2)
#define MVCL(r1,r2) _RR_(_RP(r1)+_RP(r2), 0x0e, r1, r2)
#define NC(s1,l,s2) _SS1_(0, 0xd4, l, s1, s2)
#define CLC(s1,l,s2) _SS1_(0, 0xd5, l, s1, s2)
#define XC(s1,l,s2) _SS1_(0, 0xd7, l, s1, s2)
#define MVC(s1,l,s2) _SS1_(0, 0xd2, l, s1, s2)
#define MVCIN(s1,l,s2) _SS1_(0, 0xe8, l, s1, s2)
#define OC(s1,l,s2) _SS1_(0, 0xd6, l, s1, s2)
#define TR(s1,l,s2) _SS1_(0, 0xdc, l, s1, s2)
#define TRT(s1,l,s2) _SS1_(R1 + R2, 0xdd, l, s1, s2)
#define CUSE(r1,r2) _RRE_((_R(r1)+_R(r2)), 0xb257, r1, r2)

#endif

<lsa370.h>
Logical String Assist Instructions
This header file defines the instructions SRST, MVST, and CLST.

/* Logical String Assist instructions */
#ifndef __Inc_LSA370
#define __Inc_LSA370

/* SEARCH STRING */
#define SRST(r1,r2) _RRE_((_R(r1)+_R(r2)), 0xb25e, r1, r2)

/* MOVE STRING */
#define MVST(r1,r2) _RRE_((_R(r1)+_R(r2)), 0xb255, r1, r2)

/* COMPARE LOGICAL STRING */
#define CLST(r1,r2) _RRE_((_R(r1)+_R(r2)), 0xb25d, r1, r2)
#endif

<dec370.h>
Decimal Instructions Header
This header file defines the instructions AP, CP, CVB, CVD, DP, ED, EDMK, MP,

MVN, MVO, MVZ, PACK, SP, SRP, UNPK, and ZAP.

/* 370 decimal instructions */
#define CVB(r1,x,s) _RX_(_R(r1), 0x4f, r1, x, s)
#define CVD(r1,x,s) _RX_(0, 0x4e, r1, x, s)
#define MVN(s1,l,s2) _SS1_(0, 0xd1, l, s1, s2)
#define MVZ(s1,l,s2) _SS1_(0, 0xd3, l, s1, s2)
#define ED(s1,l,s2) _SS1_(0, 0xde, l, s1, s2)

262 <float370.h> 4 Chapter 13

#define EDMK(s1,l,s2) _SS1_(R1, 0xdf, l, s1, s2)
#define MVO(s1,l1,s2,l2) _SS2_(0, 0xf1, l1, l2, s1, s2)
#define PACK(s1,l1,s2,l2) _SS2_(0, 0xf2, l1, l2, s1, s2)
#define UNPK(s1,l1,s2,l2) _SS2_(0, 0xf3, l1, l2, s1, s2)
#define AP(s1,l1,s2,l2) _SS2_(0, 0xfa, l1, l2, s1, s2)
#define CP(s1,l1,s2,l2) _SS2_(0, 0xf9, l1, l2, s1, s2)
#define DP(s1,l1,s2,l2) _SS2_(0, 0xfd, l1, l2, s1, s2)
#define MP(s1,l1,s2,l2) _SS2_(0, 0xfc, l1, l2, s1, s2)
#define SP(s1,l1,s2,l2) _SS2_(0, 0xfb, l1, l2, s1, s2)
#define ZAP(s1,l1,s2,l2) _SS2_(0, 0xf8, l1, l2, s1, s2)
#define SRP(s1,l1,s2,i) _SS3_(0, 0xf0, l1, i, s1, s2)

<float370.h>
Floating-Point Instructions Header
This header file defines the floating-point instruction set, as documented in Chapter

9, "Floating-Point Instructions" in IBM System/370 Principles of Operation.
In general, you do not need to use the instructions in this set because normal C code

can be written to produce identical results with less effort. When you use RX format
instructions, note that the index register must be specified as a separate argument from
the storage base register. It should be specified as 0 if no index register is required.

/* This header file defines several esoteric attributes of the */
/* 370 floating-point implementation. */

#define FLT_RADIX 16 /* hardware float radix */
#define FLT_ROUNDS 0 /* float addition does not round */

#define FLT_MANT_DIG 6 /* hex digits in float mantissa */
#define DBL_MANT_DIG 14 /* hex digits in double mantissa */
#define LDBL_MANT_DIG 14 /* hex digits in long double mantissa */

#define FLT_DIG 6 /* float decimal precision */
#define DBL_DIG 15 /* double decimal precision */
#define LDBL_DIG 15 /* long double decimal precision */

#define FLT_MIN_EXP -64 /* minimum exponent of 16 for float */
#define DBL_MIN_EXP -64 /* minimum exponent of 16 for double */
#define LDBL_MIN_EXP -64 /* minimum exponent of 16 for long double */

#define FLT_MIN_10_EXP -78 /* minimum float power of 10 */
#define DBL_MIN_10_EXP -78 /* minimum double power of 10 */
#define LDBL_MIN_10_EXP -78 /* minimum long double power of 10 */

#define FLT_MAX_EXP 63 /* maximum exponent of 16 for float */
#define DBL_MAX_EXP 63 /* maximum exponent of 16 for double */
#define LDBL_MAX_EXP 63 /* maximum exponent of 16 for long double */

#define FLT_MAX_10_EXP 75 /* maximum float power of 10 */
#define DBL_MAX_10_EXP 75 /* maximum double power of 10 */
#define LDBL_MAX_10_EXP 75 /* maximum long double power of 10 */

#define FLT_MAX .7237005e76F /* maximum float */
#define DBL_MAX .72370055773322621e76 /* maximum double */

Inline Machine Code Interface 4 <ctl370.h> 263

#define LDBL_MAX .72370055773322621e76L /* maximum long double */

#define FLT_EPSILON .9536743e-6F /* smallest float x such
that 1.0 + x != 1.0 */

#define DBL_EPSILON .22204460492503131e-15 /* smallest double x such
that 1.0 + x != 1.0 */

#define LDBL_EPSILON .22204460492503131e-15L /* smallest long double x such
that 1.0 + x != 1.0 */

#define FLT_MIN .5397606e-78F /* minimum float */
#define DBL_MIN .53976053469340279e-78 /* minimum double */
#define LDBL_MIN .53976053469340279e-78L /* minimum long double */

<ctl370.h>
Problem Program Control Instructions
This header file defines the instructions BASSM, BSM, CDS, CS, DIAG, EX, IPM,

MC, SPM, STCK, SVC, and TS. Because the DIAG, EX, MC, and SVC instructions may
have varying effects depending on their operands and environment, these macros have
a register mask as an additional final operand. For example, MC(540,0x80,R1+R15)
generates the same code as the assembler instruction MC 540,X’80’ and informs the
compiler that the contents of registers 1 and 15 may be changed. <ctl370.h> also
includes an EX_SS macro, to simplify using the EX instruction to execute an SS-format
instruction. For example, EX_SS(14,TR(0+b(15),0,0+b(2))) generates code
equivalent to the assembler sequence, as shown here:

BALR 1,0
B EXINSTR

TARGET TR 0(0,15),0(2)
EXINSTR EX 14,TARGET

Note that this macro uses register 1 as a work register. To use EX_SS, you must
include <genl370.h> in addition to <ctl370.h> and the header file containing the
target of the EX instruction.

/* program control instructions */

#ifndef __Inc_CTL370
#define __Inc_CTL370

#define BASSM(r1,r2) _RR_(_R(r1), 0x0c, r1, r2)
#define BSM(r1,r2) _RR_(_R(r1) & ~R0, 0x0b, r1, r2)
#define SPM(r1) _RR_(_R(r1), 0x04, r1, 0)
#define EX(r1,x,s,m) _RX_(m, 0x44, r1, x, s)
#define EX_SS(r1,instr) (BAL(1,0,_flabel(0xeeee)),

instr,
_label(0xeeee),
EX(r1,0,0+b(1),0))

#define MC(s,i,m) _SI_(m, 0xaf, i, s)
#define SVC(i,m) _I_(m, 0x0a, i)
#define DIAG(r1,r2,i,m) _RRI_(m, 0x83, r1, r2, i)
#define CS(r1,r2,s) _RS_(_R(r1)+_R(r2), 0xba, r1, r2, s)
#define CDS(r1,r2,s) _RS_((_RP(r1))+_RP(r2),0xbb,r1,r2,s)
#define IPM(r1) _RRE_(_R(r1), 0xb222, r1, 0)
#define STCK(s) _S_(0, 0xb205, s)

264 <supv370.h> 4 Chapter 13

#define TS(s) _S_(0, 0x9300, s)
#define TRAP2() _E_(0,0x01ff)
#define TRAP4() _S_(0, 0xb2ff, s)

#endif

<supv370.h>
Supervisor Control Instructions Header
This header file defines all the instructions defined in Chapter 10, "Control

Instructions" in IBM System/370 Principles of Operation, except those defined in
<ctl370.h> and <das370.h>. Both IBM 370 and XA specific instructions are included.

/* 370 supervisor control instructions */

#ifndef __Inc_SUPV370
#define __Inc_SUPV370

#define ISK(r1,r2) _RR_(_R(r1), 0x09, r1, r2)
#define SSK(r1,r2) _RR_(0, 0x08, r1, r2)
#define LRA(r1,x,s) _RX_(_R(r1), 0xb1, r1, x, s)
#define RDD(s,i) _SI_(0, 0x85, i, s)
#define STNSM(s,i) _SI_(0, 0xac, i, s)
#define STOSM(s,i) _SI_(0, 0xad, i, s)
#define WRD(s,i) _SI_(0, 0x84, i, s)
#define MVCK(s1,r1,s2,r3) _SK_(0, 0xd9, r1, r3, s1, s2)
#define LCTL(r1,r2,s) _RS_(0, 0xb7, r1, r2, s)
#define SIGP(r1,r2,d) _RS_(_R(r1), 0xae, r1, r2, d)
#define STCTL(r1,r2,s) _RS_(0, 0xb6, r1, r2, s)
#define TRACE(r1,r2,s) _RS_(0, 0x99, r1, r2, s)
#define RRBE(r2) _RRE_(0, 0xb22a, 0, r2)
#define ISKE(r1,r2) _RRE_(_R(r1), 0xb229, r1, r2)
#define IVSK(r1,r2) _RRE_(_R(r1), 0xb223, r1, r2)
#define IPTE(r1,r2) _RRE_(0, 0xb221, r1, r2)
#define SSKE(r1,r2) _RRE_(0, 0xb22b, r1, r2)
#define TB(r2) _RRE_(R0, 0xb22c, 0, r2)
#define TPROT(s,d) _SSE_(0, 0xe501, s, d)
#define IPK() _S_(R2, 0xb20b, 0)
#define LPSW(s) _S_(0, 0x8200, s)
#define PTLB() _S_(0, 0xb20d, 0)
#define RRB(s) _S_(0, 0xb213, s)
#define SCK(s) _S_(0, 0xb204, s)
#define SCKC(s) _S_(0, 0xb206, s)
#define SPT(s) _S_(0, 0xb208, s)
#define SPX(s) _S_(0, 0xb210, s)
#define SPKA(d) _S_(0, 0xb20a, d)
#define SSM(s) _S_(0, 0x8000, s)
#define STCKC(s) _S_(0, 0xb207, s)
#define STAP(s) _S_(0, 0xb212, s)
#define STIDP(s) _S_(0, 0xb202, s)
#define STPT(s) _S_(0, 0xb209, s)
#define STPX(s) _S_(0, 0xb211, s)
/* SIE not supported due to use of R4/R5/R12/R13
#define SIE(s) _S_(R0+R1+R2+R3+R4+R5+R6+R7+R8+R9+R10+R11+R12+R13,

Inline Machine Code Interface 4 <io370.h> 265

0xb214, s) */
#define MVPG(r1,r2) _RRE_(0, 0xb254, r1, r2)
#endif

<das370.h>
Dual Address Space Instruction Header
This header file defines the instructions EPAR, ESAR, IAC, LASP, MVCP, MVCS, PT,

SAC, SSAR and SACF. (PC is omitted because it modifies register 4, which is not
permitted by the compiler.)

/* 370 dual address space instructions */

#ifndef __Inc_DAS370
#define __Inc_DAS370

#define MVCP(s1,r1,s2,r3) _SK_(0, 0xda, r1, r3, s1, s2)
#define MVCS(s1,r1,s2,r3) _SK_(0, 0xdb, r1, r3, s1, s2)
#define EPAR(r1) _RRE_(0, 0xb226, r1, 0)
#define ESAR(r1) _RRE_(0, 0xb227, r1, 0)
#define IAC(r1) _RRE_(0, 0xb224, r1, 0)
#define PT(r1,r2) _RRE_(0, 0xb228, r1, r2)
#define SSAR(r1) _RRE_(0, 0xb225, r1, 0)
#define LASP(s,d) _SSE_(0, 0xe500, s, d)
/* PC not supported due to use of R4
#define PC(d) _S_(R3+R4+R14, 0xb218, d) */
#define SAC(d) _S_(0, 0xb219, d)
#define SACF(d) _S_(0, 0xb2719, d)

#endif

<io370.h>
370-Mode I/O Instructions Header
This header file defines all the I/O instructions listed in the "Input/Output

Operations" chapter of IBM System/370 Principles of Operation.

/* 370 I/O instructions */

#define CONCS(d) _S_(0, 0xb200, d)
#define DISCS(d) _S_(0, 0xb201, d)
#define CLRCH(d) _S_(0, 0x9f01, d)
#define CLRIO(d) _S_(0, 0x9d01, d)
#define HDV(d) _S_(0, 0x9e01, d)
#define HIO(d) _S_(0, 0x9e00, d)
#define SIO(d) _S_(0, 0x9c00, d)
#define SIOF(d) _S_(0, 0x9c01, d)
#define RIO(d) _S_(0, 0x9c02, d)
#define STIDC(d) _S_(0, 0xb203, d)
#define TCH(d) _S_(0, 0x9f00, d)
#define TIO(d) _S_(0, 0x9d00, d)

266 <ioxa.h> 4 Chapter 13

<ioxa.h>
XA-Mode I/O Instructions Header
This header file defines all the I/O instructions listed in Chapter 13, "I/O

Instructions" in IBM SYSTEM/370 XA Principles of Operation.

/* XA I/O instructions */

#define CSCH() _S_(0, 0xb230, 0)
#define HSCH() _S_(0, 0xb231, 0)
#define MSCH(s) _S_(0, 0xb232, s)
#define RCHP() _S_(0, 0xb23b, 0)
#define RSCH() _S_(0, 0xb238, 0)
#define SAL() _S_(0, 0xb237, 0)
#define SCHM() _S_(0, 0xb23c, 0)
#define SSCH(s) _S_(0, 0xb233, s)
#define STCPS(s) _S_(0, 0xb23a, s)
#define STCRW(s) _S_(0, 0xb239, s)
#define STSCH(s) _S_(0, 0xb234, s)
#define TPI(s) _S_(0, 0xb236, s)
#define TSCH(s) _S_(0, 0xb235, s)

<vec370.h>
Vector Instructions Header
This header file defines all the vector instructions defined in IBM System/370 Vector

Operations. Note that the compiler never accesses or modifies vector registers, so any
use of these registers must be done using assembler language subroutines, these
macros, or the _code function.

/* 370 vector instructions */

#define VCVM() _RRE_(0, 0xa641, 0, 0)
#define VCZVM(r1) _RRE_(_R(r1), 0xa642, r1, 0)
#define VCOVM(r1) _RRE_(_R(r1), 0xa643, r1, 0)
#define VXVC(r1) _RRE_(_R(r1), 0xa644, r1, 0)
#define VXVMM(r1) _RRE_(_R(r1), 0xa646, r1, 0)
#define VLVCU(r1) _RRE_(_R(r1), 0xa645, r1, 0)
#define VRRS(r1) _RRE_(_RP(r1), 0xa648, r1, 0)
#define VRSVC(r1) _RRE_(_RP(r1), 0xa649, r1, 0)
#define VRSV(r1) _RRE_(_RP(r1), 0xa64a, r1, 0)
#define VTVM() _RRE_(0, 0xa640, 0, 0)
#define VRCL(d) _S_(0, 0xa6c5, d)

.

.

.
#define VMNSE(r1,r3,r2) _VR_(_FR(r3)|(_RP(r2) & ~(R0+R1)),

0xa601, r3, r1, r2)
#define VSPSD(r1,r2) _VR_(_FR(r2), 0xa61a, 0, r1, r2)
#define VZPSD(r1) _VR_(0, 0xa61b, 0, r1, 0)
#define VLBIX(r1,r3,s) _RSE_(_RP(r3), 0xe428, r3, r1, s)
#define VLI(r1,r3,s) _RSE_(0, 0xe400, r3, r1, s)
#define VLID(r1,r3,s) _RSE_(0, 0xe410, r3, r1, s)
#define VLIE(r1,r3,s) _RSE_(0, 0xe400, r3, r1, s)

Inline Machine Code Interface 4 <code.h> 267

#define VSLL(r1,r3,d) _RSE_(0, 0xe425, r3, r1, d)
#define VSRL(r1,r3,d) _RSE_(0, 0xe424, r3, r1, d)
#define VSTI(r1,r3,s) _RSE_(0, 0xe401, r3, r1, s)
#define VSTID(r1,r3,s) _RSE_(0, 0xe411, r3, r1, s)
#define VSTIE(r1,r3,s) _RSE_(0, 0xe401, r3, r1, s)

General Header Files
The header files <code.h>, <regs.h>, and <svc.h> provide symbolic definitions and

condition code values used by the built-in functions. The contents of these files are as
shown on the following pages.

<code.h>
Code Header File The <code.h> header file contains declarations needed by the

macros and the _code function.

#ifndef __IncCode
#define __IncCode

#ifndef __IncRegs
#define __IncRegs
#include <sys370/regs370.h>
#endif

#ifdef __cplusplus
extern "C" {
void __builtin _code(unsigned,...);
void __builtin _label(unsigned);
void __builtin _branch(unsigned,unsigned,unsigned);
void __builtin _bbwd(unsigned,unsigned);
void __builtin _bfwd(unsigned,unsigned);
}
#else
#define _code __builtin_code
#define _label __builtin_label
#define _branch __builtin_branch
#define _bbwd __builtin_bbwd
#define _bfwd __builtin_bfwd
#ifndef _NOLIBCK
void _code(unsigned,...);
void _label(unsigned);
void _branch(unsigned,unsigned,unsigned);
void _bbwd(unsigned,unsigned);
void _bfwd(unsigned,unsigned);
#else
void _code();
void _label();
void _branch();
void _bbwd();
void _bfwd();
#endif
#endif

268 <regs.h> 4 Chapter 13

#define b(n) ((n) << 12)
#define _R(n) (R0 >> (n))
#define _RP(n) ((R0+R1) >> (n))
#define _FR(n) (F0 >> (n))
#define _FRP(n) ((F0+F2) >> (n))
#define _seg(x) ((int) R0 >> (x))
#define _blabel(n) ((unsigned short)(n) + 0x00bb0000)
#define _flabel(n) ((unsigned short)(n) + 0x00bf0000)

#define _RR_(m,o,r1,r2) _code(m, (o)<<8|(r1)<<4|(r2))
#define _RX_(m,o,r1,r2,bd) _code(m, (o)<<8|(r1)<<4|(r2), bd)
#define _BX_(m,o,r1,r2,bd) _branch(m, (o)<<8|(r1)<<4|(r2), bd)
#define _SI_(m,o,i,bd) _code(m, (o)<<8|(i),bd)
#define _SS1_(m,o,l,bd1,bd2) _code(m, (o)<<8|(l?(l)-1:l), bd1, bd2)
#define _SS2_(m,o,l1,l2,bd1,bd2) _code(m, (o)<<8|(l1?(l1)-1:l1)<<4|

(l2?l2-1:l2), bd1, bd2)
#define _SS3_(m,o,l1,i,bd1,bd2) _code(m, (o)<<8|(l1?(l1)-1:l1)<<4|(i),

bd1, bd2)
#define _SK_(m,o,r1,r3,bd1,bd2) _code(m, (o)<<8|(r1)<<4|(r3), bd1, bd2)
#define _I_(m,o,i) _code(m, (o)<<8|(i))
#define _RRI_(m,o,r1,r2,i) _code(m, (o)<<8|(r1)<<4|(r2), i)
#define _RS_(m,o,r1,r2,bd) _code(m, (o)<<8|(r1)<<4|(r2), bd)
#define _BS_(m,o,r1,r2,bd) _branch(m, (o)<<8|(r1)<<4|(r2), bd)
#define _RRE_(m,o,r1,r2) _code(m, o, (r1)<<4|(r2))
#define _S_(m,o,bd) _code(m, o, bd)
#define _E_(m,o) _code(m, o)
#define _VST_(m,o,r3,t2,r1,s2) _code(m, o, (r3)<<12|(t2)<<8|

(r1)<<4|(s2))
#define _VV_(m,o,r3,r1,r2) _code(m, o, (r3)<<12|(r1)<<4|(r2))
#define _QST_(m,o,r3,t2,r1,s2) _code(m, o, (r3)<<12|(t2)<<8|

(r1)<<4|(s2))
#define _QV_(m,o,r3,r1,r2) _code(m, o, (r3)<<12|(r1)<<4|(r2))
#define _VS_(m,o,r2) _code(m, o, r2)
#define _VR_(m,o,r3,r1,r2) _code(m, o, (r3)<<12|(r1)<<4|(r2))
#define _RSE_(m,o,r3,r1,bd) _code(m, o, (r3)<<12|(r1)<<4, bd)

#endif

<regs.h>
Register Values Header File
The <regs.h> header file contains the symbolic definitions and condition codes used

by the _cc, _ldregs, and _stregs functions.

#define R0 0x80000000
#define R1 0x40000000
#define R2 0x20000000
#define R3 0x10000000
#define R6 0x02000000
#define R7 0x01000000
#define R8 0x00800000
#define R9 0x00400000
#define R10 0x00200000

Inline Machine Code Interface 4 <svc.h> 269

#define R11 0x00100000
#define R12 0x00080000
#define R13 0x00040000
#define R14 0x00020000
#define R15 0x00010000
#define F0 0x00008000
#define F2 0x00002000
#define F4 0x00000800
#define F6 0x00000200

#define CC0 0
#define CC1 (-1)
#define CC2 2
#define CC3 3
#define CCZ 0
#define CCE 0
#define CCL (-1)
#define CCM (-1)
#define CCH 2
#define CCP 2
#define CCO 3

#ifdef __cplusplus
extern "C" {
extern void __builtin _ldregs(unsigned,...);
extern int __builtin _stregs(unsigned,...);
extern int __builtin _cc(void);
}
#else
#define _ldregs __builtin_ldregs
#define _stregs __builtin_stregs
#define _cc __builtin_cc

#ifndef _NOLIBCK
extern void _ldregs(unsigned,...);
extern int _stregs(unsigned,...);
extern int _cc(void);
#else
extern void _ldregs();
extern int _stregs();
extern int _cc();
#endif
#endif

<svc.h>
Supervisor Control Header File
The <svc.h> header file contains the symbolic definitions and condition codes used

by the _cms202, _diag, and _ossvc functions.

#ifndef __IncSvc
#define __IncSvc

#ifndef __IncRegs

270 Example of the Inline Machine Code Interface 4 Chapter 13

#define __IncRegs
#include <regs.h>
#endif

#define _ossvc __builtin_ossvc
#define _cms202 __builtin_cms202
#define _diag __builtin_diag

#define SVC202(r1) (_ldregs(R1,r1),_cms202(),_stregs(R15))
#define e_SVC202(r0,r1)
(_ldregs(R0|R1,r0,0x01000000|(unsigned) (r1)),_cms202(),_stregs(R15))

#ifndef _NOLIBCK
extern void _ossvc(int);
extern void _cms202(void);
extern void _diag(int);
#else
extern void _ossvc();
extern void _cms202();
extern void _diag();
#endif

.h9e

Example of the Inline Machine Code Interface

This example is a C implementation of the compare and swap example in IBM
System/370 Principles of Operation. Register conventions have been changed to
conform to C usage. (The original example used registers 6, 7, and 8, which may be
allocated to register variables in C.)

#include <code.h>
#include <genl370.h>
#include <ctl370.h>

int word; /* the flag word */
char flag = 0x80; /* the bit to be turned on */

/* put word in R0, flag in R14 and */
/* &word in R1. word is loaded only */
/* once to avoid inconsistent results */
/* if it is updated by another processor. */
retry:

_ldregs(R0+R1+R14, word, &word, flag << 24);

LR(15,0); /* copy word to R15 */
OR(15,14); /* turn on the flag */
CS(0,15,0+b(1)); /* try to update the word*/

if (_cc() != 0) /* try again if swap failed */
goto retry;

This version of the example performs an unnecessary reload of registers in the
unlikely event that CS returns a non-zero condition code. The unnecessary reload

Inline Machine Code Interface 4 Example of the Inline Machine Code Interface 271

cannot be corrected by attaching the retry label to the LR instruction because
inserting the label between the call to _ldregs and the LR instruction may cause one
of the registers loaded by _ldregs to be updated. However, the following code sequence
does bypass the problem for a slight performance improvement in the event that CS
returns a value other than 0.

#include <code.h>
#include <genl370.h>
#include <ctl370.h>

int word; /* the flag word */
char flag = 0x80; /* the bit to be turned on */

/* Put word in R0, flag in R14 and */
/* &word in R1. word is loaded only */
/* once to avoid inconsistent results */
/* if it is updated by another processor. */

_ldregs(R0+R1+R14, word, &word, flag << 24);

BALR(2,0); /* set up a base register */
LR(15,0); /* copy word to R15 */
OR(15,14); /* turn on the flag */
CS(0,15,0+b(1)); /* try to update the word */
BCR(7,2); /* try again if swap failed */

272 Example of the Inline Machine Code Interface 4 Chapter 13

273

C H A P T E R

14
Systems Programming with the
SAS/C Compiler

Introduction 277
Intended Audience 277

Related Documentation 277

Source Code Files 277

Assembler language macros 278

Code generation for XA and 370 Mode CMS 278
An Overview of SPE 278

The C Language and Systems Programming 278

Adapting SPE 279

The Run-Time Library 279

SPE and the Debugger 279

The SPE Framework: Creating and Terminating 280
The L$UMAIN Routine 280

The L$UEXIT Routine 282

The Standard Start-up Routines 282

The standard OS/390 start-up routine 283

The standard USS OS/390 start-up routine 283
The standard CMS start-up routine 283

The standard CICS start-up routine 284

Using the indep Compiler Option with SPE 284

Writing a start-up routine with the indep option 285

Writing Your Own Start-up Routine 286
Example Start-up Routines 287

Example 1: An OS/390 SVC start-up routine 287

Example 2: A CMS nucleus extension start-up routine 288

SPE Internals 289

L$UPROL: Stack Manipulation 289

Prolog conventions 289
Epilog conventions 290

L$UPROL operation 290

L$UEPIL operation 291

L$UPREP: Framework Creation and Recovery 291

L$UPREP in the full C framework 292
The L$UCENV macro 292

L$UTFPE: Math Error Handling 292

L$UTZON: Local Time Offset Determination 293

L$UWARN: Issue Diagnostic Messages 294

L$UHALT: Terminate Execution Abnormally 295
Interrupt Handling in SPE 295

The bldexit Function 296

The bldretry Function 296

274 Example of the Inline Machine Code Interface 4 Chapter 14

The freeexit Function 297
Issuing CICS commands 297

Writing CICS User Exits 298

SPE and USS 298

USS Interface 298

Timing Functions 299
HFS Access 299

Environment Variables 299

Signal Handling 299

fork Function 300

POSIX Compiler Option 300

The SPE Library 300
301

aleserv 306

SYNOPSIS 306

DESCRIPTION 306

RETURN VALUE 307
IMPLEMENTATION 307

EXAMPLE 307

SEE ALSO 308

atexit 308

SYNOPSIS 308
DESCRIPTION 308

RETURN VALUE 308

PORTABILITY 308

IMPLEMENTATION 308

SEE ALSO 308

bldexit 308
SYNOPSIS 308

DESCRIPTION 308

RETURN VALUE 309

CAUTIONS 309

PORTABILITY 309
USAGE NOTES 310

EXAMPLE 310

SEE ALSO 311

bldretry 311

SYNOPSIS 311
DESCRIPTION 311

RETURN VALUE 311

CAUTIONS 311

EXAMPLE 312

SEE ALSO 312

btrace 312
SYNOPSIS 312

DESCRIPTION 312

RETURN VALUE 312

PORTABILITY 312

IMPLEMENTATION 312
dspserv 312

SYNOPSIS 312

DESCRIPTION 312

RETURN VALUE 315

IMPLEMENTATION 315

Systems Programming with the SAS/C Compiler 4 Example of the Inline Machine Code Interface 275

EXAMPLES 315
SEE ALSO 316

exit 316

SYNOPSIS 316

DESCRIPTION 317

RETURN VALUE 317
PORTABILITY 317

IMPLEMENTATION 317

SEE ALSO 317

falloc 317

SYNOPSIS 317

DESCRIPTION 317
RETURN VALUE 317

IMPLEMENTATION 318

EXAMPLE 318

SEE ALSO 318

ffree 318
SYNOPSIS 318

DESCRIPTION 318

RETURN VALUE 318

IMPLEMENTATION 318

EXAMPLE 318
SEE ALSO 319

format 319

SYNOPSIS 319

DESCRIPTION 319

RETURN VALUE 319

DIAGNOSTICS 319
PORTABILITY 319

IMPLEMENTATION 319

SEE ALSO 319

free 319

SYNOPSIS 320
DESCRIPTION 320

ERRORS 320

PORTABILITY 320

IMPLEMENTATION 320

SEE ALSO 320
freeexit 320

SYNOPSIS 320

DESCRIPTION 320

RETURN VALUE 320

CAUTION 320

PORTABILITY 321
EXAMPLE 321

SEE ALSO 321

getenv 321

SYNOPSIS 321

DESCRIPTION 321
RETURN VALUE 321

CAUTIONS 321

PORTABILITY 321

IMPLEMENTATION 321

SEE ALSO 322

276 Example of the Inline Machine Code Interface 4 Chapter 14

loadm 322
SYNOPSIS 322

DESCRIPTION 322

RETURN VALUE 322

ERRORS 322

CAUTIONS 322
PORTABILITY 322

IMPLEMENTATION 322

malloc 323

SYNOPSIS 323

DESCRIPTION 323

RETURN VALUE 323
ERRORS AND DIAGNOSTICS 323

CAUTIONS 323

PORTABILITY 323

IMPLEMENTATION 323

SEE ALSO 324
oeabntrap 324

SYNOPSIS 324

DESCRIPTION 324

RETURN VALUE 325

CAUTIONS 325
PORTABILITY 325

USAGE NOTES 325

EXAMPLE 325

SEE ALSO 326

putenv 326

SYNOPSIS 326
DESCRIPTION 326

RETURN VALUE 327

PORTABILITY 327

SEE ALSO 327

setenv 327
SYNOPSIS 327

DESCRIPTION 327

RETURN VALUE 327

CAUTION 327

PORTABILITY 327
SEE ALSO 327

unloadm 327

SYNOPSIS 328

DESCRIPTION 328

RETURN VALUE 328

ERRORS 328
CAUTIONS 328

PORTABILITY 328

IMPLEMENTATION 328

SEE ALSO 328

vformat 328
SYNOPSIS 328

DESCRIPTION 328

RETURN VALUE 329

ERRORS AND DIAGNOSTICS 329

PORTABILITY 329

Systems Programming with the SAS/C Compiler 4 Source Code Files 277

IMPLEMENTATION 329
EXAMPLE 329

SEE ALSO 329

Linking for SPE 329

Under OS/390 329

Under CMS 330
Under CICS 330

Caution 330

Introduction
This chapter discusses the C Systems Programming Environment (SPE). SPE is an

implementation of the C execution framework that is designed to be used for IBM 370
operating systems programming.

Intended Audience
This chapter is written for systems programmers experienced with the IBM 370 OS/

390 operating system, the CMS component of VM, or the CICS teleprocessing monitor.
No attempt is made to explain terms and concepts that are generally used in systems
programming. Also, this section assumes that you are familiar with assembler language
programming, programming using the C language in general, and the SAS/C
implementation of the C language, specifically.

Related Documentation
Refer to the following chapters in this book for more information:
� Chapter 3, “Code Generation Conventions,” on page 45 for information about how

the compiler creates object code.
� Chapter 6, “Compiler Options,” on page 101 for information about the indep

compiler option.
� Chapter 11, “Communication with Assembler Programs,” on page 209 for general

information about C assembler language interfaces.
� Chapter 13, “Inline Machine Code Interface,” on page 231 contains information

about the built-in functions used in the SPE library macros.
� Appendix 1, “The DSECT2C Utility,” on page 343 describes DSECT2C, a program

that converts assembler language DSECTs to C structure definitions.

The SAS/C Library Reference, Volume 2 also contains the following related
information:

� Chapter 2, "CMS Low-Level I/O Functions"
� Chapter 3, "OS/390 Low-Level I/O Functions"
� Chapter 4, "OS/390 Multitasking and Other Low-Level System Interfaces"
� Chapter 19, "Introduction to POSIX"

Also, refer to the appropriate IBM documentation for your operating system.

Source Code Files
The programmer can modify the SPE library. Therefore, all of the elements that

interact with the operating system are delivered in both source code and object code

278 An Overview of SPE 4 Chapter 14

format. Also, sample programs are included as part of SPE. These samples are
intended merely to illustrate SPE programming techniques but can in some cases be
useful in particular applications.

The names of the samples and the source and object code files begin with the
characters L$U. The source code can be found in the SASC.SOURCE data set (under
OS/390) or the LSU MACLIB (under CMS). The object code is in SASC.SPEOBJ (under
OS/390) or LC370SPE TXTLIB (under CMS). The object code for CICS is in
SASC.CICS.SPEOBJ (under OS/390) or LC370SPC TXTLIB (under CMS). Ask your SAS
Software Representative for C compiler products for more information about these files.

Assembler language macros
The assembler language macros used in SPE source code files can be found in the

SASC.MACLIBA data set (under OS/390) or in LCUSER MACLIB (under CMS). The
ABORT, GETSTG, FREESTG, LOADM, and UNLOADM macros accept a SYS=
parameter to indicate the target operating system. If SYS=CMS is specified, the macro
expands to use a standard CMS interface (such as DMSFREE). If SYS=BI is specified,
the macro expands to use a CMS XA interface (such as CMSSTOR). If you specify CICS,
the macro expands to use a CICS interface, such as EXEC CICS GETMAIN. Any other
parameter causes the macro to use an OS/390 interface (such as GETMAIN). The
default value depends on the operating system under which the program is assembled,
either OS/390 or CMS. The LOADM and UNLOADM macros are not supported for
CICS. Instead, code the corresponding EXEC CICS LOAD and RELEASE commands;
the SPE loadm and unloadm functions are fully supported for CICS.

Code generation for XA and 370 Mode CMS
Some SPE C header and source files need to generate different code in XA and 370

mode CMS. These files test whether the symbol BIMODAL is defined in order to decide
what code to generate.

An Overview of SPE

The C Language and Systems Programming
The C language was originally designed for general purpose programming under

UNIX operating systems. Although C was used for writing the operating system itself,
the language design allowed C language programs to be relatively portable across
widely disparate operating systems and machine architectures. The portability of C has
recently been enhanced by the efforts of the ANSI X3J11 Committee to standardize the
C language, including the run-time library.

In the systems programming environment, however, portability is not an important
issue. Systems programs cannot restrict themselves to a portable view of the system.
An implementation of C for this environment must provide access to system data and
services without regard for other environments. It must be efficient. Above all, it must
be adaptable to the requirements of the operating system.

SPE is designed to enable the C language to be used as a systems programming
language in the IBM 370 environment. SPE consists of the minimum number of
support routines needed to execute a C program and a small run-time library that is
systems-programming-oriented.

SPE is designed to enable C programs to interface with the operating system in the
same way an assembler language program does. For example, storage can be allocated

Systems Programming with the SAS/C Compiler 4 SPE and the Debugger 279

with a DMSFREE or GETMAIN macro, each of which expands to the appropriate SVC
instruction. SPE programs can access parameter lists like assembler language
programs do. Under CMS, the SPE equivalent of the main function gets pointers to the
tokenized and untokenized PLISTs as arguments, instead of using a portable format
such as argv and argc.

Adapting SPE
All of the SPE routines that interface with the operating system are provided in

source code. Each routine provides basic functionality in a generic manner. However,
given the wide variety of unique SPE applications, no single interface can address all
the conflicting needs efficiently. Therefore, these routines can be (and are expected to
be) adapted as necessary for the needs of the environment. For example, if the
implementation of the stack in L$UPROL is not practical in a particular environment,
then it can be redesigned for that environment.

“The SPE Framework: Creating and Terminating” on page 280 and “SPE Internals”
on page 289 contain detailed information on how each of the major SPE routines
operates and what is expected of them. Each discussion is oriented toward the role the
routine plays in supporting the SPE execution framework and how this framework
interacts with compiler-generated code.

The Run-Time Library
The SPE run-time library is designed to support systems programs in the C language.

The library contains three classes of functions. In the first class are those functions that
interface directly to the operating system. For example, instead of an fopen function,
SPE provides a function to open an OS/390 data set using BSAM and a function to open
a CMS file with FSOPEN. In the second class are those functions that are present in
the full C library but do not interface to the operating system, such as math and string
functions. In the third class are those functions, such as malloc, that are present in
the full C library but have operating system dependencies. The SPE library contains
SPE versions of these functions that differ from the full library functions.

The SPE library also supports many POSIX functions, such as open, chdir, and
fork. Most of the POSIX functions are implemented within the OS/390 control
program, and support for these functions is therefore no different from the SPE support
for BSAM and GETMAIN. POSIX functions that are not supported directly by UNIX
System Services (USS) OS/390, such as fdopen and tzset, are in general not supported
with SPE.

“The SPE Library” on page 300 contains descriptions of all the functions that are
designed for use with SPE. Each description also explains how the function is
implemented. When the function interfaces with the operating system, the description
gives the name of the associated source code file. In many cases, common adaptations
are mentioned, along with suggestions as to how they can be implemented.

One of the most frequent applications in systems programming is interrupt handling.
“Interrupt Handling in SPE” on page 295 describes the bldexit function, which
provides an interface between an operating system interrupt exit and a C program.
bldexit is a prototypical SPE function in that it forsakes portability for adaptability
and efficiency.

SPE and the Debugger
The SPE framework does not include support for the debugger.

280 The SPE Framework: Creating and Terminating 4 Chapter 14

The SPE Framework: Creating and Terminating
When a C program is invoked, the C execution framework is created by a start-up

routine that is executed before the main function is called. When main returns or when
the exit function is called, the framework is destroyed. The full C framework provides
the support environment needed by the full C library, including I/O, command-line
parsing, signal handling, stack and heap storage management, dynamic loading, and
many other services. In ANSI terminology, this is called a hosted environment.

In SPE, the framework is created by a start-up routine that can be modified to allow
a framework to be created in any number of ways. The framework itself can be tailored
to support whatever services are needed by the program. In ANSI terms, this is called
a freestanding environment.

In general, there are three methods that you can use to create an SPE framework:
� Use one of the standard OS/390, CMS, or CICS start-up routines. These start-up

routines are intended to be simple and generic. Their design is heavily biased
toward traditional assembler language concepts. The framework is destroyed
when this routine returns or when exit is called.

These start-up routines are most appropriate for straightforward applications
consisting of a main program and subroutines. The framework can be modified to
be as simple or as complex as necessary.

� Create an INDEP framework. With this type of framework, the framework is
created when the program is first entered but remains in existence even after
control is transferred back to the caller (usually the operating system) by
returning from the initial function. The framework can be destroyed by calling
exit or a special routine called L$UEXIT. See “The L$UEXIT Routine” on page
282 for more information.

This method is most appropriate for applications structured as a package of
subroutines without a main routine. The first subroutine called creates the
framework, which is thereafter shared between all subroutines. Each function
compiled using the indep option can be separately invoked and can return control
independently to the operating system (or whatever program called it) without
destroying the C framework.

� Write your own start-up routine. These start-up routines are tailored to a specific
application or set of applications. Each start-up routine can call a standard
subroutine to create and destroy the C framework. This subroutine can, in turn,
be tailored as necessary to create a framework with the required support.

This method is most appropriate for applications with unusual linkage
requirements, such as having arguments in unusual registers or not having a
valid save area pointer in register 13.

Of course, all three methods can be combined. The needs of the application may be
such that the standard start-up routines can be slightly modified to provide for them.
You may want to write your own start-up routine that creates an INDEP framework.
SPE is designed to be flexible.

No matter which method is chosen, most of the details of creating and destroying
frameworks are handled by a routine called L$UMAIN. In this section, L$UMAIN is
described first because it is used in all of the methods. After this discussion, each of the
three methods of creating an SPE framework is discussed individually.

The L$UMAIN Routine
The compiler generates code that depends on the following conventions. L$UMAIN

ensures that these conventions are met when it calls the initial functions.

Systems Programming with the SAS/C Compiler 4 The L$UMAIN Routine 281

R1 addresses the function’s parameter list.

R12 addresses the CRAB.

R13 addresses a DSA.

R14 contains the function’s return address.

R15 contains the function’s entry point.

CRABPRV addresses the pseudoregister vector.

When L$UMAIN is entered, certain values must be in the general registers, as
follows:

R1 points to a word in which the address of the CRAB will be stored. If
R1 is 0, then the CRAB address will not be stored.

R13 points to a save area in which the registers have already been saved
using a STM 14,12,12(13) instruction. The R15 slot of this save
area (offset X’10’) must address the initial function to be executed
under the C framework. The R1 slot (offset X’18’) must contain the
value that is to be placed in R1 when the initial function is called.
This value will be used as the address of the initial function’s
parameter list. The initial function can be either a C function or an
assembler function that uses the CENTRY and CEXIT macros.

R14 contains the return address.

R15 contains the address of L$UMAIN.

L$UMAIN performs the following steps:
1 allocates storage for the CRAB and initializes it.
2 saves the R13 value on entry in the CRABPENV field of the CRAB.
3 allocates storage for the pseudoregister vector.
4 calls the L$CPRSU routine to initialize the pseudoregister vector with initial

values for extern and static variables.
5 allocates the C stack. The stack size can be specified as the initial value of the

extern variable _stack. (Note that the PRV is initialized before the stack is
created, so the initial value of _stack will be available.)

6 points R13 to the first save area on the stack and chains it to the caller’s save
area. L$UMAIN also saves this address in the CRABMDSA field in the CRAB.

7 calls the function whose address was in the R15 slot of the save area on entry.

Note that you can modify L$UMAIN to add, modify, or remove steps as required by
the application. Creation of a CRAB and a stack is always required.

L$UMAIN calls the initial function using a BALR 5,15 instruction. This places the
return address for L$UMAIN in R5. The return address for L$UMAIN’s caller (the
start-up routine) remains in R14. This enables the first C function to return directly to
the start-up routine.

The start-up routine then has the following options:

Option 1 Branch to the address in R5, thereby returning to L$UMAIN. This
path enables L$UMAIN to terminate the C framework and return to
the start-up routine’s caller.

Option 2 Load R13 from the chain field of L$UMAIN’s save area, restore
registers, and return to the address in R14. This path bypasses C
framework termination. The save area for L$UMAIN remains
allocated, and the C framework continues to exist. You can destroy
the framework later by calling exit or L$UEXIT.

282 The L$UEXIT Routine 4 Chapter 14

The L$UEXIT Routine
Termination of the C framework occurs when control returns to L$UMAIN. In most

frameworks, control returns to L$UMAIN when the initial function returns or when the
exit function is called.

If a program is entered via an INDEP function, L$UEXIT can be called as a function
to terminate the framework. L$UEXIT forces a return to L$UMAIN by loading R13
from the CRABMDSA field (thus addressing L$UMAIN’s save area), reloading
L$UMAIN’s registers from this save area, and branching to the address in R5.

L$UMAIN performs the following steps to terminate the C framework:

1 calls any defined atexit cleanup routines.

2 loads R13 from the CRABPENV field. Normally, this addresses the save area
belonging to the caller of the start-up routine.

3 frees any memory allocated for library control blocks, including heap and stack
storage, the pseudoregister vector, and the CRAB.

4 restores registers and returns. Note that control returns to the caller of the
start-up routine and not to the start-up routine itself.

L$UEXIT can be called from a non-C routine. The exit function calls L$UEXIT, but
the exit function is designed to be called only from a C function. Note that L$UEXIT
can be used only in an INDEP framework.

The Standard Start-up Routines
The standard start-up routines are provided as generic examples. For programs

running under OS/390, the standard start-up routine is named L$UOSEP. For CMS
programs, the standard start-up routine is named L$UCMSE. For USS, the standard
start-up routine is L$UOEEP. The standard start-up routine for CICS is named
L$UCICE. These routines are written to provide a minimal environment with linkage
and parameters that are appropriate for the operating system.

The general flow of control of these routines is shown in Figure 14.1 on page 282.
The start-up routines create the framework by calling L$UMAIN and destroy it by
allowing control to return to L$UMAIN after the initial function returns.

Figure 14.1 Standard Start-up Flow of Control

caller
start-up routine
L$UMAIN

(program executes)

start-up routine
L$UMAIN (framework created)
initial function

start-up routine
start-up routine
caller

initial function
L$UMAIN (framework destroyed)
L$UMAIN

Do the following to use the standard SPE start-up routine:

� Include the appropriate header file:

� <osmain.h> for OS/390

� <oemain.h> for USS OS/390

Systems Programming with the SAS/C Compiler 4 The Standard Start-up Routines 283

� <cmsmain.h> for CMS
� <cicsmain.h> for CICS.

These header files define symbols that force the linkage editor to include the
correct start-up routine (L$UOSEP, L$UOEEP, L$UCMSE, or L$UCICE) and
select the correct entry point. The entry point for OS/390 is #OSEP; for USS OS/
390, #OEEP; for CMS, #CMSEP; for CICS, #CICSEP.

� Define an initial function named oemain, osmain, cmsmain, or cicsmn. This
function is equivalent to the main function in the full C framework. An individual
description for each system’s function is described in the next sections.

The standard OS/390 start-up routine
The standard OS/390 start-up routine L$UOSEP expects to be entered with R1

addressing a standard OS VL-format parameter list containing the addresses of one or
more parameters, with the last address indicated by the presence of the VL bit.
L$UOSEP also accepts a 0 in R1, indicating that there are no parameters.

The osmain function should be declared as follows:

int osmain(int argc, void **argv);

argc is the argument count, that is, the number of pointers in the register 1 argument
list. argv is a pointer to the unchanged list of arguments. Note that none of the
arguments are tokenized, and that, in contrast to the hosted C environment, the first
argument is argv [0], not argv [1].

The standard USS OS/390 start-up routine
The standard USS start-up routine L$UOEEP expects to be entered with R1

addressing a parameter list in the format passed by the USS exec system call. (See the
IBM publication OS/390 UNIX System Services Assembler Callable Services, for
information on this parameter list format.)

The oemain function should be declared as follows:

int oemain(int argc, char **argv);

argc and argv have the same meanings as for a regular C main function: argc is an
argument count, and argv is a list of pointers to arguments as passed by the caller of
exec. The first argument argv[0] will contain a pointer to the program name,
assuming it was set properly by the caller of exec.

The exec system call passes L$UOEEP a list of environment variables specified by
its caller. These environment variables can be accessed by the program using the
standard getenv function.

The standard CMS start-up routine
The standard CMS start-up routine L$UCMSE expects to be entered with R1 and R0

set up by SVC 202 as described in VM/SP CMS for System Programming, or by SVC
204 as described in the VM/XA SP CMS Application Development Guide for CMS. In
370 mode CMS, R1 contains a code in the high-order byte and a pointer to a tokenized
PLIST in the 3 low-order bytes, and R0 may contain a pointer to an extended PLIST. In
XA CMS, R1 addresses a tokenized PLIST, R0 may contain a pointer to an extended
PLIST, and additional information is stored at offset 96 from R13.

The cmsmain function should be declared as follows:

int cmsmain(int ecode, char *plist, char **eplist,
char *userinfo);

284 Using the indep Compiler Option with SPE 4 Chapter 14

ecode is the entry code from the high-order byte of register 1 or from the save area
extension in XA CMS. plist is the tokenized PLIST address from register 1. eplist is
the contents of register 0 on entry to L$UCMSE, which, depending on the value of
ecode, may or may not address an extended PLIST. userinfo addresses the save area
extension at 96 from R13 in XA CMS. (In 370 mode CMS, this argument is not
meaningful.)

The standard CICS start-up routine
The standard CICS start-up routine L$UCICE should be entered with R1 addressing

the standard CICS parameter list that contains the address of the EXEC interface block
and the address of any COMMAREA, or the value X’FF000000’, if no COMMAREA
exists.

Declare the function cicsmn as follows:

int cicsmn (int argc, void **argv);

argc is set to 2. argv is a pointer to the unchanged list of arguments. None of the
arguments is tokenized; the first argument is argv[0], not argv[1].

Using the indep Compiler Option with SPE
The indep compiler option causes the compiler to generate code so that C functions

have the following special properties:
� The functions can be called before a C framework has been created.
� The functions do not expect R12 to address the CRAB at entry.
� There is no requirement on the contents of R13 except that it address a standard

72-byte save area.

When a function compiled with the indep option is called, it immediately transfers
control to a routine named L$UPREP. If R13 addresses a C DSA, L$UPREP takes no
special action. If R13 does not address a DSA, but the framework has been created,
L$UPREP loads the CRAB address into R12 and returns to the function. If the
framework does not yet exist, L$UPREP calls L$UMAIN to create the framework and
save the CRAB address where it can be located on future calls. After L$UPREP has
completed processing, the called function resumes with the same value in R1 (and
therefore the same arguments) as when it was entered.

Because any function compiled with the indep option can cause the framework to be
created or restored, any such function can serve as a program’s initial entry point or as
an entry point for subsequent calls.

The indep compiler option can be used together with the armode compiler option.
The result is a function that can be called before a C framework has been created and
that runs in access register mode. Note that such a function must still be entered in
primary address space mode. Once it completes initialization, the generated code will
zero all the access registers and switch into access register mode. It is possible that an
implementation of L$UPREP could support calls to an indep C function in access
register mode if it was capable of saving the access registers and returning to primary
address space mode before creating or restoring a SAS/C framework.

The flow of control on the first call to the program is shown in Figure 14.2 on page
285.

Systems Programming with the SAS/C Compiler 4 Using the indep Compiler Option with SPE 285

Figure 14.2 Flow Control on the First Call to the INDEP Program

caller
initial function
L$UPREP
L$UMAIN

L$UPREP
caller

initial function (compiled with indep)
L$UPREP
L$UMAIN (framework created)
initial function

(program executes)

initial function
L$UPREP

With one exception, L$UMAIN executes as described in Option 2 under “The
L$UMAIN Routine” on page 280. The exception is that when the SPE framework is
created due to a call to a function compiled with the indep option, the framework is not
destroyed on return from that function. This means that additional calls can be made
to C functions and that external variables, memory allocated with malloc, and so on,
will be available. To destroy the framework, you must call L$UEXIT, either directly or
indirectly with exit. If, however, the first C function is named main, then the C
framework is destroyed when main returns.

Figure 14.3 on page 285 shows the flow of control for a call when the framework
already exists and when L$UEXIT is called to destroy the framework.

Figure 14.3 Flow of Control on Subsequent Calls

caller
entry point
entry point

(program executes)

entry point (compiled with indep)
L$UPREP (framework recovered)
L$UPREP

some function
L$UEXIT
caller

L$UEXIT
L$UPREP (framework destroyed)
L$UMAIN

This method enables SPE programs to be invoked without a start-up routine. In
general, the caller is responsible only for creating a parameter list that can be used in a
C function. If this is not possible, L$UPREP can be modified to create a usable
parameter list. (See “Example 2: A CMS nucleus extension start-up routine” on page
288.) L$UMAIN takes on the entire responsibility for creating the framework.

Writing a start-up routine with the indep option
Of course, frameworks can be created with both a start-up routine and one or more

entry points compiled with the indep option. Again, this means that the framework can
be retained across multiple calls to the program.

Figure 14.4 on page 286 shows the flow of control for the first call to this type of
program. Because the initial function was called from L$UMAIN, L$UPREP does
nothing and returns control to the initial function. Control is not returned to L$UMAIN
after the initial function returns, so the framework is not destroyed.

286 Writing Your Own Start-up Routine 4 Chapter 14

Figure 14.4 Flow of Control in First Call to an INDEP Program Using a Start-up
Routine

caller
start-up routine
L$UMAIN

(program executes)

start-up routine
L$UMAIN (framework created)
initial function

start-up routine
caller

initial function
start-up routine

The flow of control for a subsequent call to this program is shown in Figure 14.5 on
page 286.

Figure 14.5 Flow of Control on Subsequent Calls

caller
INDEP function
INDEP function

(program executes)

entry point (compiled with indep)
L$UPREP (framework recovered)
L$UPREP

caller INDEP function

The framework can be destroyed with L$UEXIT.
If you use a start-up routine, you need to be sure to store the CRAB address in a

location where L$UPREP can locate it on future calls. For example, the CRAB address
can be stored in the user word of an operating system control block associated with the
program. When entered, L$UMAIN expects the address of this location to be in R1. If,
instead, the value in R1 is 0, then L$UMAIN does not store the CRAB address. In this
case, the CRAB address can be recovered from R12 by the start-up routine after
L$UMAIN is complete and then stored at the appropriate location.

L$UPREP uses the L$UCENV macro to locate the CRAB address. Refer to
“L$UPREP: Framework Creation and Recovery” on page 291 for information about how
the L$UCENV macro is used.

Writing Your Own Start-up Routine
Writing your own start-up routine to initialize the C framework may be desirable for

any of several reasons, including the following:

� If an application is invoked with nonstandard linkage (for example, unusual
parameter registers), a specialized start-up routine can process or modify the
argument list for easier processing from C. The sample start-up routine for an OS/
390 SVC illustrates this sort of start-up routine (see “Example 1: An OS/390 SVC
start-up routine” on page 287).

� If an application requires that the framework be retained after the called function
returns but requires initial processing to set up an area for use by L$UCENV, this
also can be handled by a specialized start-up routine. The sample start-up routine
for a CMS nucleus extensionillustrates this sort of start-up routine (see “Example
2: A CMS nucleus extension start-up routine” on page 288).

Systems Programming with the SAS/C Compiler 4 Example Start-up Routines 287

To reiterate, the start-up routine calls L$UMAIN to create the framework. The
framework can be destroyed on return to the start-up routine or left active until
deletion by exit or L$UEXIT.

Example Start-up Routines
The following example start-up routines illustrate several uses for SPE and show a

number of techniques for using SPE efficiently.

Example 1: An OS/390 SVC start-up routine
L$USVCE is a start-up routine that creates the C framework for an OS/390 type 3 or

type 4 SVC written in the C language. To execute C code in this environment, the
following problems must be solved:

� SVC routines receive parameters in registers 15 through 1 and the addresses of
system data in registers 3, 4, 5, and 7. They can return data in registers 15
through 1, thus making accessing parameter and return values difficult.

� R13 cannot be used as a save area pointer for system integrity reasons. Storing
blindly into the save area can cause the system to crash if R13 has been set to
address critical system data.

� Solving the R13 problem requires the start-up routine to issue a GETMAIN for a
usable save area. This save area must be freed before the SVC returns, but the
normal L$UMAIN linkage returns control directly to the SVC caller when exit
occurs.

L$USVCE solves the parameter and return value problems in the following manner.
When the main C program, svcmain, is called, it receives a single argument (declared
void *regs [16]) that defines a 64-byte save area in which the SVC’s input registers
have been saved, in the order 0 through 15. Thus, the contents on register 1 on entry
can be accessed as regs [1]. Return values are specified by modifying the contents of
this array. (Only some modifications will have any effect because the OS/390 SVC
handler always restores registers 2 through 14 itself.)

L$USVCE deliberately ignores any value returned by svcmain. This avoids assigning
a random return code when svcmain returns without specifying a return value.

L$USVCE does not allow the use of exit because the GETMAIN technique is
ineffective if exit is used. A technique could be devised that would allow the use of
exit, but it is easier to assume that SVC writers are disciplined enough to avoid it.

L$USVCE implements this linkage and solves the other problems as well, in the
following manner:

1 L$USVCE saves registers temporarily in the RB extended save area in order to
issue a GETMAIN for two save areas. The memory is obtained from a key 0
subpool to avoid integrity problems.

2 L$USVCE points register 13 to the area created by GETMAIN and copies all
saved registers to the second save area. It then calls L$UMAIN, specifying that
the first C routine to call is #SVCMAIN and that R1 addresses the second save
area created by GETMAIN.

3 L$USVCE contains #SVCMAIN, a static routine which is defined to use the
CENTRY and CEXIT macros. It points R1 to a word containing the address of the
register save area and calls the user’s svcmain function.

4 When #SVCMAIN returns, it bypasses L$UMAIN, returning directly to L$USVCE.
L$USVCE stores the address of the label SVCEXIT in the R14 slot of L$UMAIN’s
save area. Then, L$USVCE branches to R5 to return to L$UMAIN for destruction

288 Example Start-up Routines 4 Chapter 14

of the framework. After the framework has been destroyed, L$UMAIN returns to
SVCEXIT rather than to L$USVCE’s caller.

5 After L$UMAIN returns to the label SVCEXIT, L$USVCE copies registers possibly
modified by the program out of their save area and into the RB. It then frees its
save areas, reloads the necessary registers, and returns.

The techniques used by L$USVCE are applicable to a wide variety of situations in
which a C program must be called with nonstandard linkage conventions.

Example 2: A CMS nucleus extension start-up routine
L$UNUXE is a start-up routine that creates the C framework for a CMS nucleus

extension written in C. L$UNUXP is a specialized version of L$UPREP for the same
environment. To execute C code in this environment, the following problems must be
solved:

� The values in R0 and R1 on entry to the nucleus extension must be passed to the
C entry point in a usable form.

� The C framework should be created only the first time the nucleus extension is
called and reused on subsequent calls. The framework should be destroyed only
when the nucleus extension is dropped.

� Provision should be made for a variety of nucleus extension attributes (for
example, IMMCMD).

Some of these problems can be solved by using an initial function compiled with the
indep option, but the other requirements are best solved by a specialized start-up
routine and L$UPREP.

L$UNUXE solves the problems of defining the necessary nucleus extension attributes
as follows. First, it presumes that the MODULE (that is, its own code) has already
been defined as a nucleus extension via the CMS NUCXLOAD command.

Then, it defines a second, overriding nucleus extension with the same name, whose
entry point is defined as the C function nucxep. This extension is always defined with
the SERVICE attribute so that it gets control when the nucleus extension is dropped.
The environment is not destroyed automatically when this happens. Instead, the
application is expected to detect the RESET call itself (by testing for the RESET
parameter) and call exit to destroy the framework. To allow attributes in addition to
SERVICE, attribute bits from the external variable _nucxopt can be added to the
NUCEXT argument list. (Note that the overriding nucleus extension is defined only
after the C framework has been created because the values of externals are not
available before this time.) The address of the CRAB is stored in the user word of the
SCBLOCK associated with the nucleus extension.

L$UNUXP solves the problem of reaccessing the C framework after it has been
created by the first call. The second and subsequent calls invoke nucxep directly, which,
because it is compiled with the indep option, immediately calls the L$UPREP entry
point of L$UNUXP. L$UNUXP retrieves the CRAB address from the user word of the
SCBLOCK (addressed via register 2 on entry). Because the framework must have
already been created, if this value is 0, L$UNUXP issues a diagnostic abend.

The problem of getting the R0 and R1 values to the first C function is solved jointly
by L$UNUXE and L$UNUXP. In each case, the value of R1 on entry to nucxep is
modified to address a parameter list containing the contents of R0, the original contents
of R1, and the address of the save area extension. On the first call to nucxep, the call is
made from L$UNUXE, and nucxep builds the new argument list. On subsequent calls,
nucxep always calls L$UPREP immediately. L$UNUXP modifies R1 to address the R0
slot of the previous save area before returning to nucxep, stores the save area extension
address in the R2 slot, and updates the DSAPARMS field of the DSA accordingly.

Systems Programming with the SAS/C Compiler 4 L$UPROL: Stack Manipulation 289

The techniques of L$UNUXE and L$UNUXP are applicable to a wide variety of
situations in which the C framework must be retained for a number of separate
invocations and the use of unmodified indep is not adequate.

SPE Internals

The previous section explained how the SPE framework is created and destroyed
with start-up routines and L$UMAIN. This section discusses other SPE framework
routines that are required at execution time.

The first routines discussed are the routines that handle the stack, L$UPROL and
L$UEPIL. Next, the details of L$UPREP are covered. Following this discussion is an
explanation of L$UTFPE, the routine responsible for handling math function
exceptions. Then, L$UTZON, a routine that allows you to define the offset between
local time and Greenwich time, and L$UWARN, the routine that handles conditions
that call for a diagnostic message, are covered. Finally, the routine L$UHALT, which is
called by the library to force abnormal termination, is described.

L$UPROL: Stack Manipulation
Implementation of C under the IBM 370 architecture requires the use of a software

stack for storing auto variables, temporary results, and items of miscellaneous status,
such as saved registers. Each function must obtain stack space on entry and free stack
space on return. Stack management is provided by prolog and epilog routines. The
compiler generates instructions to call these routines on function entry and return.

Because the prolog and epilog are used for every function call, their performance has
a significant impact on the performance of the entire program. But there is a trade-off
between the performance of the prolog and epilog and their functionality. For
convenient debugging, it can be helpful to add instructions to the prolog and epilog to
save additional status information, even though performance is reduced.

While the exact behavior of the prolog and epilog can be changed according to the
needs of the framework, note that many components of the SPE implementation are
interdependent with the prolog and epilog. Notably, L$UEXIT (exit), L$UJUMP
(longjmp), L$UZSIR (USS signal handling), L$UEXLK (bldexit), and L$UBTRC
(btrace) are closely involved with the details of stack management. Any change to the
prolog and epilog has the possibility of some effect on these routines.

The prolog entry point is L$UPROL, which is called when a function that requires a
DSA is entered. The epilog entry point is L$UEPIL, which is called when a function
that requires a DSA returns. Linkage to both routines is indirect. The addresses of
L$UPROL and L$UEPIL are stored in the CRAB (in fields CRABPRLG and
CRABEPLG) by L$UMAIN as part of framework creation. The compiler generates code
to load these addresses and branch to them. (L$UPROL is also called by L$UPREP.)

Prolog conventions
In each C function, the compiler generates code to branch to the prolog, using the

following conventions:

� Registers 14 through 5 are saved in the current R13 save area. Other registers are
saved only if used by the called function.

� R5 contains an address that can be used to return control to the function.

� R14 addresses the prolog entry point.

290 L$UPROL: Stack Manipulation 4 Chapter 14

� R15 addresses the function entry point. The area immediately following this
address is a control block containing such information as the size of the DSA
required by the function. (This area is mapped by the CPROLOG macro.)

� R1 addresses the function’s argument list.

The prolog returns to the function via R5. To return, the prolog branches to offset
X’3E’ (that is, the symbolic name CPROGO) from the address in R5. Usually, when the
prolog is invoked, R5 and R15 have the same value, but this is not necessarily so for
INDEP functions.

When the prolog returns to CPROGO, the code generated by the compiler at this
point expects the following to have been done:

� R13 must address a new DSA of the requested size. The second word of the DSA
must address the previous save area.

� R1 and registers 5 through 12 must be unchanged.
� R4 must address the constant CSECT, which can be loaded from the field labeled

CPROCONS in CPROLOG.

� The value in R1 must have been saved in the DSAPARMS field of the new DSA.

Although not required by compiled code, the epilog requires that the value of R15 on
entry be saved. L$UPROL stores this value in the DSAPRBSV field of the new DSA.

Epilog conventions
The compiler generates code to branch to the epilog, using the following conventions:

� R14 addresses the epilog entry point.

� R13 addresses the DSA for the current function.

� R1 addresses the save area for the previous function.

To return to the function, the epilog branches to offset X’36’ (symbolic name
CPROEXIT) from the function’s entry point. Note that the epilog cannot obtain the
function’s entry point from the R15 slot of the previous save area because the function
may have stored a return value there. R1 and registers 6 through 12 must be
unchanged when the epilog returns. Registers 2 through 5 and R13 are restored as
necessary by compiler-generated instructions in the function.

L$UPROL operation
The SPE version of L$UPROL uses a single block of memory allocated by L$UMAIN

during framework creation as a stack and issues an abend if it overflows. This is a
common way to implement a software stack, representing a compromise between
maximum dependability and maximum performance.

L$UPROL performs the following steps. Certain operations may be useful for
debugging and are marked as optional. In the object code for L$UPROL, optional steps
have been disabled. L$UPROL

1 stores registers 6 through 11 (optional).

2 checks for stack overflow and abends if a new DSA cannot be allocated.
3 updates the stack top pointer.

4 stores the address of the previous save area in the new DSA.

5 stores the address of the new DSA in the previous save area (optional).

6 saves R15 in DSAPRBSV for the epilog.

7 copies an eye-catcher and a flag byte into the first word of the DSA. (Unless the
program is in an INDEP framework, the eye-catcher is useful only for debugging.)

Systems Programming with the SAS/C Compiler 4 L$UPREP: Framework Creation and Recovery 291

8 links the new DSA to the previous DSA (which may not be the same as the
previous save area if there is an intervening non-C routine), and saves the new
DSA address in the CRAB.

9 copies the function name to the DSAOWNER field (optional).

10 saves R1 in the DSAPARMS field.

11 loads R4 with the address of the constant CSECT from the CPROCONS field.

12 returns to the function.

L$UEPIL operation
The L$UEPIL entry point in L$UPROL performs the following steps:

1 updates the stack top and current DSA fields in the CRAB

2 loads R14 with the address of the entry point of the function from the DSAPRBSV
field

3 restores registers 6 through 11 (optional)

4 returns to the returning function at the CPROEXIT offset.

L$UPREP: Framework Creation and Recovery
L$UPREP is mentioned in the preceding section as one of the INDEP framework

support routines. Its function is to determine if the C framework has been created. If it
has been created, then L$UPREP recovers the framework and returns to the calling
function. If not, then L$UPREP calls L$UMAIN to create the framework.

L$UPREP makes a distinction between two types of function calls based on the
register save area (addressed by R13) associated with the caller. The caller may be a C
function, in which case the save area is part of a C DSA, or a non-C function, in which
case the save area is not a C DSA. As mentioned in the L$UPROL discussion, C DSAs
are distinguished by the "CSA" marker at offset 0 from R13. Note that functions
written in assembler using the CENTRY and CEXIT macros are indistinguishable from
functions written in the C language and are therefore considered to be C functions.
Non-C functions include routines written in another high-level language, assembler
routines that do not use CENTRY and CEXIT, and the operating system components.

L$UPREP is used only in an INDEP framework. When the indep compiler option is
used, the code generated by the compiler to call the prolog is changed. The indep
option causes the compiler to generate a branch to the L$UPREP routine. A function
compiled with the indep option takes this branch almost immediately after entry.

L$UPREP takes one of the following three paths:

� If the function was not called from a C function and if the framework does not
exist, it calls L$UMAIN to create the framework.

� If the function was not called from a C function, but the framework does exist, it
restores the framework and returns to the called function.

� If the function was called from a C function, it returns to the called function.

When L$UPREP is entered, it inspects the save area addressed by R13 to determine
whether the caller is a C function. If "CSA" appears at offset 0 (the DSACSA field in
the DSA), then L$UPREP assumes that the caller is a C function.

If L$UPREP does not find "CSA", it invokes the L$UCENV macro to determine if the
framework has already been created. L$UCENV returns the address of a location
where a pointer to the CRAB should be (or has been) stored. If the location contains 0,
then the framework has not been created. If it has been created, then L$UPREP loads
the CRAB address into R12.

292 L$UTFPE: Math Error Handling 4 Chapter 14

If the framework has been created, then, before returning control to the function,
L$UPREP checks to see if the function requires a DSA. If it does, L$UPREP invokes
L$UPROL to create a DSA.

When L$UPROL returns, L$UPREP marks the DSA as one belonging to a function
compiled with the indep option and sets the DSANJUMP flag in the DSAFLGT field.
This flag prohibits a longjmp over the function. This prohibition is established for
functions compiled with the indep option because the caller of such a function may be
written in another language, and most high-level languages do not expect longjmp type
returns. If the caller can handle this sort of branching, the DSANJUMP flag does not
need to be set.

If the framework has not been created, L$UPREP calls L$UMAIN to create it.
L$UPREP loads R1 with the address returned by L$UCENV so that L$UMAIN will
store the CRAB pointer for later recovery. After the framework has been created,
L$UMAIN calls the function directly, placing its own return address in R5. Upon entry,
the function again calls L$UPREP immediately. (Note that this is a recursive call.)
Using the logic described above, L$UPREP determines that the function was called
from a C function.

L$UPREP also enforces a basic convention of the INDEP framework: if the called
function is the main function, the framework is destroyed when main returns by calling
L$UMAIN. However, in the general case, upon return from the function, L$UPREP
restores the registers (including R14) from the save area of its caller’s caller and returns
to the address in R14. This branch transfers control back to the routine that invoked
the function that created the INDEP framework. L$UMAIN’s save area, anchored in
CRABMDSA, is left intact. This leaves the C framework in place for subsequent calls.

L$UPREP in the full C framework

The SPE L$UPREP is identical to the standard C library L$UPREP and can be used
to replace the standard C library L$UPREP. Refer to Appendix 6, “Using the indep
Option for Interlanguage Communication,” on page 393 for more information.

The L$UCENV macro

When the C framework is created, L$UMAIN stores the CRAB address in some
appropriate location. The L$UCENV macro defines a CSECT also named L$UCENV for
this purpose. When the macro is invoked by L$UPREP, L$UCENV returns the address
of the CSECT as the address of the CRAB pointer. Because this implementation forces
the program to be non-reentrant, applications that need to be reentrant should use a
different method of storing the CRAB address.

Under CICS, the L$UCENV macro uses the first word of the CICS transaction work
area (TWA) to store the address of the CRAB pointer. You may need to decide whether
or not this technique is appropriate for your application’s environment. The storage
allocated by the CICS SPE library is CLASS=USER; this storage is released
automatically at task termination.

L$UTFPE: Math Error Handling

L$UTFPE handles floating-point error conditions such as overflow and underflow.
L$UTFPE can be invoked by character to floating-point conversion functions such as
strtod and sscanf. The SPE L$UTFPE uses bldexit and the SPIE/ESPIE SVCs to
handle these conditions. Of course, other implementations may be possible that do not
rely on these SVCs. The sample code for L$UTFPE is not supported in CICS.

Systems Programming with the SAS/C Compiler 4 L$UTZON: Local Time Offset Determination 293

Note that L$UTFPE uses the ESPIE macro only if the program is executing in 31-bit
addressing mode. This means that the ESPIE SVC is never used under 370 mode CMS,
which does not support the ESPIE SVC.

The L$UTFPE source module defines a function named L$CTFPE, which is the name
of the corresponding full library implementation. The full library requires its own
implementation of L$CTFPE and does not execute correctly with the SPE
implementation.

L$CTFPE is called as a normal C function. It is defined as follows:

struct FPE {
union {

char space [12];
int active;

} hdr;
jmp_buf get_away;

};

void L$CTFPE(int func, struct FPE *elt);

The func argument to L$CTFPE is either 1, to define a floating-point error trap, or
0, to cancel a previously defined trap.

When func is 1, elt addresses a trap element containing work space and a jump
buffer. L$CTFPE must set elt->hdr.active to a non-zero value to indicate that the
trap element is active. When a floating-point error occurs, the defined trap should
perform the following:

longjmp(elt->get_away, ic)

ic is the program check interrupt code.
When func is 0, elt addresses the trap element for the trap to be cancelled.

L$CTFPE must reset func->hdr.active to 0 to show that the trap has been cancelled.
Note that the library routines that call L$CTFPE always cancel traps in last-in, first-out
order. Also note that only one trap is ever defined at a time unless a function such as a
math function, is interrupted by a user bldexit routine that also calls a math function.

L$UTZON: Local Time Offset Determination
L$UTZON is called by library timing functions to obtain the difference between

Greenwich time and local time. The timing routines assume that time_t values contain
Greenwich time and use the information returned by L$UTZON to convert them to
local time. L$UTZON supports several return value formats, since some information is
more readily available in some environments than in others.

The L$UTZON routine is also used in the SAS/C Generalized Operating System
(GOS) interface. The linkage conventions for L$UTZON in SPE and GOS are similar
enough that the same routine can be used for both. See SAS Technical Report C-115,
The Generalized Operating System Interface for the SAS/C Compiler Run-Time System,
Release 5.50 for more information.

When L$UTZON is called, register 1 addresses a parameter list in the format shown
in Example Code 14.1 on page 293.

Example Code 14.1 L$UTZON Parameter List Format

TZONPRMS DS 0D
DS A zero (nonzero for GOS)
DS A zero (can be used as a work area)

294 L$UWARN: Issue Diagnostic Messages 4 Chapter 14

DS A address of a doubleword return value

Register 13 addresses a standard save area when L$UTZON is called; however, it is
not necessary to save and restore registers, as this is done by the caller of L$UTZON.

When L$UTZON returns, the value in register 15 indicates the format and meaning
of the data addressed by the third word of the parameter list.

If L$UTZON returns a code of 0, it stores a signed integer in the first word of the
return area, indicating the number of seconds difference between local time and
Greenwich time. For example, if it is 4 p.m. locally when it is 2 p.m. Greenwich time,
+7200 (2 hours in seconds) is stored.

If L$UTZON returns a code of 1, it stores a value in TOD clock format in the return
area, indicating the local time. More precisely, this value represents the number of
seconds since the local midnight of January 1, 1900, where bit 51 of the doubleword
represents a microsecond.

If L$UTZON returns a code of 2, it stores the local date and time in the return area
in the format used by the OS TIME BIN macro. More precisely, the first word of the
doubleword should contain the local time, expressed as the number of hundredths of a
second since midnight, represented as an unsigned binary integer. The second word of
the doubleword should contain the packed decimal local date in the form 00YYDDDF,
where YY is the number of years since 1900, and DDD is the number of days since
January 1.

If L$UTZON cannot determine the local time offset, it should return a code of 8 in
register 15.

L$UWARN: Issue Diagnostic Messages
Some SPE library functions, such as memcpy and sqrt, are designed to issue

diagnostic messages. In the SPE framework, the routine L$UWARN is called whenever
a diagnostic is appropriate. The SPE version of this routine simply stores an appropriate
value in errno and returns. Depending on the needs of the application, some other
action, such as issuing an abend or actually writing a diagnostic, may be preferred.

L$UWARN can be called through either of its entry points, #WARNING or
$WARNING. When it is called, R1 addresses a variable length parameter list in the
format shown in Example Code 14.2 on page 294.

Example Code 14.2 L$UWARN Parameter List Format

WARNPRMS DS 0D
DS F message number
DS F value to be stored in errno
EQU * zero or more replacement values
.
.
.

The first two words in the list are the diagnostic message number and the value to be
stored in errno. Any additional arguments represent values to be inserted into the
message text. (These values can be processed using the va_arg macro.)

Two special errno values should be noted. If the value to be stored in errno is 0, the
diagnostic is a note rather than a warning, and errno should not be changed. If the
value to be stored is negative, it indicates a severe error, and an abend is recommended.

If L$UWARN is to write diagnostic messages, obtain the message texts from the
SASC.ERRMSGS data set (under OS/390) or LSU ERRMSGS (under CMS). Each record
in this file contains a message number in columns 1-8 and the corresponding message

Systems Programming with the SAS/C Compiler 4 Interrupt Handling in SPE 295

text beginning in column 9. The message texts are suitable for use as formats with the
vsprintf function.

L$UHALT: Terminate Execution Abnormally
After certain error conditions, the library needs to abnormally terminate program

execution. For instance, if the program calls the POSIX getpid function, but USS is
not running, execution cannot continue because the function call cannot succeed.
However, the function definition does not provide a way for the function to fail. The
SPE library forces abnormal termination by calling the routine L$UHALT. The supplied
version of this routine simply issues the assembler ABORT macro, which, in all systems
other than CICS, issues an ABEND.

L$UHALT is called via the entry point L$CHALT. When it is called, R1 addresses a
parameter list in the format shown in Example Code 14.3 on page 295.

Example Code 14.3 L$UHALT Parameter List Format

HALTPRMS DS 0D
DS F intended ABEND code
DS F message suppression flag

The first word in the argument list is the intended ABEND code, an integer between
1200 and 1240. The second argument is an integer which, if not zero, requests
suppression of any library messages about the ABEND. Since the SPE library does not
diagnose ABENDs, this argument can be ignored.

Note that if L$UHALT returns to its caller, the effects of further execution are
completely undefined.

Interrupt Handling in SPE
A frequent requirement for systems programming applications is the need to write

synchronous or asynchronous exits, such as SPIE or STIMER exits. A C program
cannot merely issue the appropriate SVC to define an exit, as an assembler language
program does, for the following two reasons:

� The exit routines use a wide variety of inconvenient, inconsistent, and
incompatible linkage conventions.

� The operating system does not provide the environment expected by a C function
to an exit routine.

For example, consider an application that wants to use a C function as a SPIE exit.
The function cannot be called directly by the operating system because R13 will not
address a usable save area and R1 will not address a C format argument list. Even if it
were callable, the C function would not be able to share any data with its caller.

However, it is possible for the exit to call a block of code that establishes (or
re-establishes) the C framework and then transfers control to a C function. The code, of
course, must be tailored to the specific exit so that the exit’s linkage conventions can be
honored. In addition, the code has to handle the transfer of control back from the
function to its caller. Ideally, the code does no more than necessary to transfer control
and does not make any assumptions about the way the calling exit and the called C
function transfer data.

In SPE, the bldexit, freeexit, and bldretry functions provide this service. These
functions can be used to build exit linkage code that can mediate between the operating

296 The bldexit Function 4 Chapter 14

system and the C function. (These functions are exclusive to SPE. The standard signal
handling functions provide similar services, portably, in the full C framework.)

The bldexit Function
The bldexit function creates a sequence of instructions that establishes linkage

between an operating system exit and a C function. bldexit takes two arguments, a
pointer to the C function that is to be called and a flag word that describes the required
linkage. (The flag word is described in detail in the bldexit function description later
in this chapter.) bldexit returns the address of the linkage code, which can then be
passed to the SVC that establishes the exit. For instance, suppose a function tmrexit
is to be called from an STIMER exit. The following statements call bldexit to create
the appropriate linkage and then invoke STIMER:

unsigned intvl = 1000; /* ten second time interval */
void *exit_addr; /* pointer to linkage code */

exit_addr = bldexit(&tmrexit, _ASYNCH+_NOR13);

/* Set up registers for STIMER SVC. */
_ldregs(R0+R1+R15, 0x90000000, &intvl, exit_addr);

/* Issue STIMER. */
_ossvc(47);

When the timer interrupt occurs, the operating system calls the linkage code built by
bldexit. This code saves registers as necessary, re-enters the C framework, and calls
tmrexit. When tmrexit returns, the exit linkage code returns control to the operating
system. An exit function called by bldexit has the following general definition:

void exit_fun(void **sa, char **poi);

The sa argument addresses a save area where the linkage code saves the contents of
all the general registers on entry, in the order 14 through 12. (For example, the
contents of register 1 on entry are accessed as sa[3].) This allows the exit function
access to all data passed to the exit. The exit routine can return data to the operating
system in any register by modifying the corresponding word in the save area. For
example, it can use the following assignment to return 4 in register 15:

sa [1] = (void *) 4;

The poi argument addresses a fullword where the exit can store the point of
interrupt (such as an old PSW), if this is meaningful. This information is used by the
btrace library function to produce a correct backtrace in the presence of interrupts.
There is no reason to store a point of interrupt if you do not call btrace. In some cases,
you may not be able to determine a point of interrupt. You can still call btrace in this
situation, but the resulting output may be incomplete.

The bldretry Function
Some system exit interfaces, such as SPIE and ESTAE, allow the assembler

programmer to request a retry, which causes program execution to resume at a point
other than the point of interruption. The SPIE SVC requires the exit to request a retry.
Just as defining a C function as an exit does not work, using a C label as a retry
address also does not work. bldretry is an interface similar to bldexit, with some
differences due to the special requirements for retry routines.

Systems Programming with the SAS/C Compiler 4 Issuing CICS commands 297

Just as bldexit serves as a mediator between exit linkage and the C function call
mechanism, bldretry serves as a mediator between retry linkage and the C longjmp
interface. You can think of bldretry as a method of issuing longjmp from an exit
function. Of course, the exit must support a retry interface for this to be effective.
bldretry is passed two arguments, a jmp_buf defining the retry location and an
integer jump code. bldretry builds linkage code for the retry and then returns the
address of this code, which can be passed to the operating system to perform the retry.

Example Code 14.4 on page 297 shows two code fragments that define a retry
location using setjmp and request a retry from an ESTAE exit routine.

Example Code 14.4 ESTAE Retry Using setjmp and bldretry

/* 1. Define post-ABEND retry point. */

if (code = setjmp(ESTAE_jmp_buf)) {
/* If ABENDed, retry here. */

}
/* normal execution path */

/* 2. Request retry within the ESTAE exit routine. */
SDWA->SDWARTYA = bldretry(ESTAE_jmp_buf, 1);

/* Store retry address in SDWA. */
SDWA->SDWARCDE = SDWARETY;

/* Tell ABEND to retry. */
return;

In the example, after the return is executed, the retry linkage code is entered. This
code performs the equivalent of the following:

longjmp(ESTAE_jmp_buf, 1)

It returns control to the C program at the point where the setjmp function is called.
Unlike bldexit linkage code, bldretry linkage code can be used only once. The

code is freed before control returns to the C program.

The freeexit Function
The freeexit function frees the memory used for the linkage code created by

bldexit. Obviously, freeexit should not be called until the corresponding exit routine
is no longer defined to the operating system.

A complete example of the use of bldexit and bldretry can be found in the source
code for the L$UTFPE module. This routine uses the SPIE and ESPIE SVCs to handle
computational program checks for the library math functions.

Issuing CICS commands

You can use EXEC CICS commands in SPE applications written in C in exactly the
same way as with the full library. Refer to Chapter 2, "The SAS/C CICS Command
Preprocessor," in the SAS/C CICS User’s Guide for details on using the SAS/C CICS
command preprocessor. The use of the EXEC CICS RETURN or EXEC CICS XCTL

298 Writing CICS User Exits 4 Chapter 14

command in an SPE application terminates the C environment before execution of the
command. Registered atexit routines are also called before execution of the command.

Note the following:
� The HANDLE command is not supported in C code by SPE.
� The _eibptr global variable is set in L$UMAIN to point to the EXEC Interface

Block. The global externs _commptr and _dibptr are not initialized by any SPE
code. No DL/I initialization call is performed.

In addition to using CICS commands in your SPE C code, you may find it necessary
to add CICS commands to library SPE routines in assembler when you modify them.
EXEC CICS commands in assembler programs are translated into invocations of the
DFHECALL macro, which uses EXEC interface storage, mapped by DFHEISTG, to
build parameter lists to pass to CICS. The initial allocation of this storage occurs in
L$UMAIN; its pointer is stored in the CRAB control block field CRABEIS. You can
address this storage in the following manner:

L Rx,CRABEIS
USING DFHEISTG,Rx
EXEC CICS

Alternatively, you can provide a storage area in the DSA of an assembler function for
the DFHECALL macro’s use, as in the following example:

COPY DSA
DFHEIPL DS 20F
DSALEN EQU *-DSA

Writing CICS User Exits
The sample source code issues several EXEC CICS commands:
� GETMAIN
� FREEMAIN
� ADDRESS EIB
� LOAD
� RELEASE

If you want to write CICS exit programs in C, you must modify these commands. For
example, in CICS/ESA, code the corresponding user exit programming interface (XPI)
calls rather than issue EXEC CICS commands. You can modify L$UCENV to save the
CRAB address in a global work area so that the C framework is only created when the
program is first invoked; subsequent invocations restore the C framework.

SPE and USS
This section provides miscellaneous information about systems programming under

USS. Refer to SAS/C Library Reference, Volume 2 for additional information about USS
and SAS/C POSIX support.

USS Interface
All uses of USS system calls in SPE are routed through a single function, L$CUBPX,

with the exception of a few signal-handling calls. In addition to issuing the requested

Systems Programming with the SAS/C Compiler 4 Signal Handling 299

system call, L$CUBPX is responsible for translating USS error codes into SAS/C error
numbers and for detecting failures in USS itself. L$CUBPX is provided in source
(member L$UUBPX in the SPE source library) to allow it to be tailored if necessary.

Timing Functions
The SPE library does not support POSIX time zones. Time zone information is

determined exclusively by the SPE L$UTZON routine.
The support for the _epoch external variable is available in SPE as well as in the

regular library. Note that the SPE default epoch is the UNIX epoch beginning January
1, 1970. This is the same default as for the regular library.

HFS Access
SPE supports access to Hierarchical File System (HFS) files using the low-level

routines such as open, read, write, lseek, and so on. Note that when you use SPE,
these functions can only access the hierarchical file system; that is, you cannot use
these functions to access OS/390 data sets or sockets. Filenames passed to open and
other POSIX functions should always specify a POSIX filename. Style prefixes will be
treated as part of the filename, and a leading "//" prefix will be treated as if it were a
single slash.

When an USS SPE application receives control from the exec system call, file
descriptors 0, 1, and 2 are normally passed by the caller of exec. The SPE library does
not use or require these file descriptors, but they are available for the use of the
application.

Note that HFS I/O can only be performed using low-level POSIX functions, as the
standard I/O functions are not supported in SPE. The POSIX functions fdopen and
fileno are also not available, since they are used in the context of standard I/O.

SPE supports access to USS integrated sockets using the standard UNIX socket
interface functions such as socket, accept, read, write, and so on. Note that only
integrated sockets can be accessed. Also, TCP/IP configuration information functions,
such as gethostbyname and getservent, are not supported because USS does not
provide system calls for these functions.

Environment Variables
Environment variables are now supported by SPE for both USS and other

applications. However, the only way to create an environment variable in SPE is to call
putenv or setenv. That is, there is no library processing to copy environment variables
from any external source. Note that for programs called via the exec system call, the
L$UOEEP start-up routine is responsible for setting up the environment variables
passed by exec.

Environment variable names are always case sensitive when SPE is used.

Signal Handling
SPE supports USS signal handling. Only signals supported by USS can be handled.

(For instance, the SAS/C signal SIGMEM is not supported in an SPE environment.)
Further, only functions defined by the POSIX Standard are supported. For instance,
you can use the sigaction, kill, and sigprocmask functions in an SPE application
but not the signal, raise, and sigsetmask functions, which are defined by ANSI or by
SAS/C, not by POSIX.

300 fork Function 4 Chapter 14

Note that the timing of signal delivery is different under SPE than with the library.
When an USS signal is delivered to an SPE program, the signal handler is invoked
immediately, in contrast to the library case, where the signal is delayed until the signal
can be discovered. Because signal handlers can be called at any time, you may need to
block signals during critical sections to prevent interruptions at inconvenient times.

Note that when you use SPE, the signals SIGILL, SIGSEGV, SIGFPE, SIGABRT,
and SIGABND are not by default associated with program checks and ABENDs, as in
the standard library. Your application will receive one of these signals only if sent by
some program using the kill function. If you want an SPE application to handle
program checks or ABENDs, you can use the SPE-only function oeabntrap, which
issues an ESTAE macro to define an exit that transforms any recoverable ABEND into
an appropriate USS signal. oeabntrap also enables an interface to the USS ptrace
system call, which allows an SPE program to be debugged (as an assembler program)
by the IBM dbx debugger.

A number of SPE signal-handling routines are supplied in source to support user
enhancements. The source modules are

L$UZABN oeabntrap interface

L$UZEST oeabntrap ESTAE exit and retry routine

L$UZOEI initialize and terminate USS signal handling

L$UZSIA define a signal handler

L$UZSIR invoke a signal handler on receipt of an USS signal

L$UZSIR contains both a signal interface routine (SIR), which is called by USS when
a signal occurs, and L$UZRTE, a routine which is given control by the SIR using
bldexit linkage in order to invoke the user’s handler.

fork Function
SPE supports the use of the fork function. The atfork SAS/C extension is not

supported. However, a CRAB field CRABFKCT is defined to allow the application to be
aware of the use of fork. CRABFKCT is initialized to zero. Whenever a fork occurs, it
is incremented by one in the child process. This allows a function to determine whether
the process id has changed as the result of fork. Such checks may be needed due to the
fact that many OS/390 resources (for example, timers) are not copied to a child process.

POSIX Compiler Option
Whether or not the POSIX compiler option is used has no effect at runtime on an

SPE application. It still has its other compile-time effects, such as defining
_SASC_POSIX_SOURCE and implying the refdef option.

The SPE Library

SPE is a minimal C environment. Therefore, the SPE library is a subset of the
library available in the full C library. Many of the SPE library functions are provided
both in source and object code formats. The following functions comprise the SPE
library and may be used in an SPE program. Functions that are not included in this
list cannot be used in an SPE environment.

Systems Programming with the SAS/C Compiler 4 301

Note: A * after the function name indicates that the function is only supported
under USS; a + after the function name indicates that a special SPE version is
supplied; and a # after the function name indicates that the function is only usable with
SPE. An at sign (@) after the function name indicates that the function will accept near
or far pointers if compiled with the armode option. 4

Table 14.1

ABEND abs accept * accept_and_recv *

_access * acos alarm * alarmd *

slrdrtv# asctime asin atan

atan2 atexit + atof atoi

atol atoll ATTACH bind *

bldexit # bldretry # blkjmp + bsearch

btrace + calloc ceil cfgetispeed *

cfgetospeed * cfsetispeed * cfsetospeed * CHAP

chaudit* chdir * chmod * chown *

chpriority * clearenv + close * _close *

closedir * cmsclose cmsdfind cmsdnext

cmserase cmsopen cmspoint cmspush

cmsqueue cmsread cmsshv cmsstack

cmsstate cmswrite cmsxflpt cmsxflrd

cmsxflst cmsxflwr CMSSTOR_OBT CMSSTOR_REL

connect * cos cosh creat *

DEQ DETACH difftime div

DMSFREE DMSFREE_V DMSFRET DOM

DOM_TOK dspserv # dup * dup2 *

ecbsuspend * endgrent * endpwent * ENQ

erf erfc ESTAE # ESTAE_CANCEL #

execl * execle * execlp * execv *

execve * execvp * exit + _exit *

exp extlink * fabs falloc #

fchaudit * fchmod * fchown * fcntl *

_fcntl * ffree # floor fmax

fmin fmod fork * format

fpathconf * free + freeexit # FREEMAIN

frexp fstat * fsync * _fsync *

ftruncate * getclientpid * getcwd * getegid *

getenv + geteuid * getgid * getgrent *

302 4 Chapter 14

getgrgid * getgrnam * getgroups * getgroupsbyname *

gethostid * gethostname * getitimer * getlogin *

GETMAIN_C GETMAIN_U getpeername * getpgid *

getpgrp * getpid * getppid * getpriority *

getpwent * getpwnam * getpwuid * getrlimit *

getrusage * getsid * getsockname * getsockopt *

getuid * getwd * givesocket_pid * gmtime

htoncs hypot initgroups * isalnum

isalpha isascii isatty * iscntrl

iscsym iscsymf isdigit isebcdic

isgraph islower isnotconst isnumconst

isprint ispunct isspace isstrconst

isunresolved isupper isxdigitv j0

j1 jn kill * labs

lchown * ldexp _ldexp ldiv

link listen * llabs lldiv

llmaxllmin loadm + localtim log

log10 longjmp + lseek * _lseek *lstat *

malloc + _matherr max mblen

mbstowcs mbtowc memchr memcmp

memcmpp memcpy memcpyp memfil

memscan memscntb memset memupr

memxlt min mkdir * mkfifo *

mknod * mktime mmap * modf

mount * mprotect * msgctl * msgget *

msgrcv * msgsnd * msgxrcv * msync *

munmap * ntohcs oeabntrap # oeattach *

oeattache * oetaskctl * offsetof onjmp

onjmp open * _open * opendir *

osbclose osbdcb osbldl osbopen

osbopenj oscheck osclose osdcb

osdynalloc osfeov osfind osfindc

osflush osget osnote osopen

osopenj ospoint osput osread

osseek osstow ostclose ostell

oswrite palloc __passwd * pathconf *

pause * pdel pdset pdval

pfree pfscttl * pipe * pool

Systems Programming with the SAS/C Compiler 4 303

POST pow putenv + qsort

rand RDTERM read * _read *

readextlink * readv * readdir * readlink *

realpath * recv * recvfrom * recvmsg *

rename * _rename * rewinddir * rmdir *

select * selectecb * semctl * semget *

semop * send * sendmsg * sendto *

setegid * setenv + seteuid * setgid *

setgrent * setgroups * setitimer * setjmp +

setpgid * setpriority * setpwent * setregid *

setreuid * setrlimit * setsid * setsockopt *

setuid * SETRP_COMPCOD # SETRP_DUMP # SETRP_REASON #

SETRP_RETRY # shmat * shmctl * shmdt *

shmget * shutdown * sigaction * sigaddset *

sigblkjmp *+ sigdelset * sigemptyset * sigfillset *

sigismember * siglongjmp * sigpending * sigprocmask *

sigsetjmp * sigsuspend * sin sinh

sleep * sleepd * snprintf socket *

socketpair * spawn * spawnp * sprintf

sqrt srand sscanf stat *

STATUS stcpm stcpma STIMER #

STIMERM # STIMER_CANCEL # STIMERM_SET # STIMERM_TEST #

strcat strchr strcmp strcpy

strcspn strerror strlen strftime

strlwr strncat strncmp strncpy

strpbrkstrrchr strrcspn strrspn strsave

strscan strscntb strspn strstr

strtod strtok strt ol strtoll

strttoul strttoull strupr strxlt

symlink * sysconf * takesocket_pid * tan

tanh tcdrain * tcflow * tcflush *

tcgetattr * tcgetpgrp * tcgetsid * tcsendbreak *

tcsetattr * tcsetpgrp * TGET time

times * toebcdic tolower toupper

TPUT TPUT_ASID TPUT_USERID truncate *

TTIMER # ttyname * typlin umask *

umount * uname * unlink * _unlink *

unloadm + utime * va_arg va_end

304 4 Chapter 14

va_start vformat vsnprintf vsprintf

w_getmntent * w_getpsent * w_ioctl* w_statfs *

wait * WAIT1 WAITM waitpid *

waitrd WAITT wcstombs wctomb

write * _write * writev * WRTERM

WTO WTOR xedpoint xedread

xedstate xedwrite xltable y0

y1 yn

The SPE library contains functions in the following four categories:

1 functions that have no full library equivalent and can be used exclusively in SPE
(for example, bldexit)

2 functions that mimic full library functions but have been designed for SPE
applications (for example, malloc and free)

3 functions that invoke commonly used SVCs or operating system functions (for
example, waitrd and FREEMAIN)

4 functions that can be used in both the full library and in SPE.

Most of the functions that comprise the SPE library belong to category 4 and are also
considered part of the full SAS/C library. Table 14.2 on page 304 lists the functions in
the other three categories. The Implementation (Source) column shows whether the
function is implemented as a function or as a macro and the name of the corresponding
source file, if any. The functions are divided into groups according to the area of the
SPE library to which they belong. The functions in category 3 would not normally be
used under CICS.

Following Table 14.2 on page 304 are descriptions of the functions in categories 1, 2,
and 3. The format function and vformat functions (category 4) are also documented in
this section. Although these functions can be used in the full C library, sprintf or
vsprintf is usually more useful in that framework.

Table 14.2 SPE Library Functions

Function Category Implementation (Source)

Memory Management

aleserv 1 macro (<osdspc.h>)

CMSSTOR_OBT 3 macro (<cmastor.h>)

CMSSTOR_REL 3 macro (<cmastor.h>)

DMSFREE 3 macro (<dmsfree.h>)

DMSFREE_V 3 macro (<dmsfree.h>)

dspserv 1 macro (<osdspc.h>)

falloc 1 macro (<osdspc.h>)

ffree 1 macro (<osdspc.h>)

free 2 function (L$UHEAP)

GETMAIN_C 3 macro (<getmain.h>)

Systems Programming with the SAS/C Compiler 4 305

Function Category Implementation (Source)

GETMAIN_U 3 macro (<getmain.h>)

GETMAIN_V 3 macro (<getmain.h>)

FREEMAIN 3 macro (<getmain.h>)

malloc 2 macro (L$UHEAP)

Program Control

atexit 2 function (L$UATEX)

exit 2 function (L$UMAIN,L$UEXIT)

oeabntrap 1 function (L$UZABN,L$UZEST)

Diagnostic Control

btrace 2 function (L$UBTRC)

Dynamic Loading

loadm 2 function (L$ULDR)

unloadm 2 function (L$ULDR)

Signal Handling

bldexit 1 function (L$UEXLK)

bldretry 1 function (L$URETR)

freeexit 1 function (L$UEXLK)

sigaction 2 function (L$UZOEI, L$UZSIA,
L$UZSIR)

Environmental Variables

getenv 2 function

putenv 2 function

setenv 2 function

Terminal I/O

RDTERM 3 macro (<wrterm.h>)

TPUT 3 macro (<tput.h>, L$UTPIO)

TPUT_ASID 3 macro (<tput.h>, L$UTPIO)

TPUT_USERID 3 macro (<tput.h>, L$UTPIO)

TGET 3 macro (<tput.h>, L$UTPIO)

typlin 3 macro (<wrterm.h>)

waitrd 3 macro (<wrterm.h>)

WAITT 3 macro (<wrterm.h>)

WRTERM 3 macro (<wrterm.h>)

Other System Interface

CMS low-level I/O 4 function (L$UCMIO)

OS/390 dynamic allocation 4 function (L$UDYNA)

306 aleserv 4 Chapter 14

Function Category Implementation (Source)

OS/390 low-level I/O 4 function (L$UOSIO, L$UBSAM,
L$UDCB)

OS/390 low-level multitasking 4 function (L$UATTA, L$UAEOT)

POSIX system calls 4 function (L$UUBPX)

General Utility

format 4 function

The SPE library functions are described in detail throughout the remainder of this
chapter in alphabetical order.

aleserv
Access list management services

SYNOPSIS
#include <osdspc.h>
int aleserv(char *request, ...);

DESCRIPTION
The aleserv function implements the functionality of the OS/390 assembler

ALESERV macro. The request argument is a null-terminated string. The request
must be one of the following:

“ADD” adds an entry to the access list and return an ALET.

“ADDPASN” adds the primary address space to the DU-AL.

“DELETE” deletes an entry from the DU-AL or PASN-AL.

“EXTRACT” returns the STOKEN associated with a given ALET.

“SEARCH” returns the ALET associated with a given STOKEN.

“EXTRACTH” returns the STOKEN of the HOME address space.

The remainder of the argument list is a list of keywords followed, in most cases, by
an argument specifying a value for the keyword. The list is terminated by the _Lend
keyword. The supported keywords and their associated data are as follows:

� The _Lreason keyword is used to pass back a reason code in the event that the
service fails. The next argument should be a pointer to an int that will contain
the reason code as set in R0 by the ALESERV macro if the ALESERV macro
returns nonzero in R15.

� The _Lstoken keyword is equivalent to the Assembler STOKEN keyword. The
next argument should be the address of an 8-character array. This array is filled
in by the EXTRACT and EXTRACTH service and is required as input to the ADD
and SEARCH services.

� The _Laccess keyword is equivalent to the Assembler ACCESS keyword. The
next argument should be one of the following strings:

“PUBLIC”
The access list entry being added is public.

Systems Programming with the SAS/C Compiler 4 aleserv 307

“PRIVATE”
The access list entry being added is private.

� The _Lal keyword is equivalent to the Assembler AL keyword. The next argument
should be one of the following strings:

“WORKUNIT”
The access list being referenced is a DU-AL.

“PASN”
The access list being referenced is a PASN-AL.

� The _Lalet keyword is equivalent to the Assembler ALET keyword. The next
argument should be a pointer to a 4 byte field containing an ALET that you
provide, or that the system returns.

For ADD and ADDPASN, the system returns the ALET of the added entry.
For the DELETE request, you provide the ALET of the access list entry to be

deleted. Do not specify an ALET of 0, 1, or 2.
For the EXTRACT request, you provide the ALET whose STOKEN you require.
For the SEARCH request, you specify where in the access list the system is to

begin the search.
� The _Lchkpt keyword is equivalent to the Assembler CHKPT keyword. The next

argument should be one of the following strings:

“FAIL”
If a CHKPT macro is issued, reject it.

“IGNORE”
The system processes the CHKPT, but the user must ensure that the
dataspace, ALETs, STOKENs, and so on are restored before a restart is
attempted.

� The _Lend keyword indicates the end of the list of keywords.

The following parms can be used by authorized programs only:
� The _Lchkeax keyword is equivalent to the Assembler DREF keyword. The next

argument should be one of the following strings:

“YES”
Check the EAX authority of caller to the dataspace to be added to or deleted
from the access list.

“NO”
Do not check the EAX authority of caller to the dataspace to be added to or
deleted from the access list.

RETURN VALUE
aleserv returns 0 if the ALESERV macro was successful. If the ALESERV macro

fails, it returns the return code from the macro, which will be a positive value. aleserv
may also return -1 to indicate an unknown or invalid keyword combination.

IMPLEMENTATION
The aleserv function is implemented by the source module L$UDSPC.

EXAMPLE
For an example of the aleserv function, see the examples under dspserv.

308 atexit 4 Chapter 14

SEE ALSO
dspserv, falloc, ffree

atexit
Register Program Cleanup Function in SPE

SYNOPSIS

#include <stdlib.h>

int atexit(_remote void (*func)());

DESCRIPTION
Refer to Chapter 6, "Function Descriptions," in SAS/C Library Reference, Volume 1

for a description of atexit.

RETURN VALUE
atexit returns 0 if successful or a non-zero value if unsuccessful.

PORTABILITY
atexit is portable.

IMPLEMENTATION
The SPE implementation of atexit is in L$UATEX. This version enforces the ANSI

Standard limit of 32 registered functions.

SEE ALSO
exit

bldexit
Build System Exit Linkage in SPE

SYNOPSIS

#include <bldexit.h>

void *bldexit(__remote void (*func)(), unsigned flags);

DESCRIPTION
bldexit builds linkage code enabling a C function to be invoked as a synchronous or

asynchronous exit routine. bldexit is supported only when the SPE framework is
used; it is not supported with the standard C framework.

Systems Programming with the SAS/C Compiler 4 bldexit 309

The func argument is the address of the C function that is called by the operating
system as an exit routine. The flags argument is the sum of zero or more flags
indicating attributes of the required exit routine linkage. Note that the exit is expected
to be entered with register 14 containing a return address and register 15 serving as a
base register.

The following exit attributes can be set:

_ASYNCH
specifies that the exit can be entered asynchronously. This flag should be set if the
exit can be entered while a non-C or system routine is running. This flag also
should be set if the exit can be entered while a C function without a DSA (a leaf
routine) is running or while the C prolog or epilog is running. Failure to specify
ASYNCH when appropriate may lead to abends or stack overlays when the exit
linkage code is called.

_NOR13
specifies that the exit can be entered with register 13 addressing an area that
cannot be used as a save area.

_FLOATSV
specifies that the exit linkage must save and restore floating-point registers.
FLOATSV needs to be specified only if the operating system’s linkage does not
save and restore floating-point registers and if the exit function (or any function it
calls) uses the floating-point registers.

_AMODE
specifies that the exit can be entered in a different addressing mode from the
interrupted program and that the exit linkage must restore the original mode.
This attribute is ignored in a system that does not support 31-bit addressing.

_ACCSV
specifies that the exit linkage must save and restore access registers. _ACCSV
needs be specified only if the operating system’s linkage does not save and restore
access registers, and if the exit function (or any function it calls) is compiled with
the armode option or uses the access registers in some other way.

Note: The old exit attribute names, ASYNCH, NOR13, FLOATSV, and AMODE still work
if your program does not include the header file spetask.h as well as bldexit.h. 4

The linkage code generated by bldexit is stored in an exit element allocated with
GETMAIN or DMSFREE. When the exit is no longer required, you should call the
freeexit routine to release this storage.

RETURN VALUE
bldexit returns the address of the exit linkage code. This address should be passed

as an argument to the system call that defines the operating system exit.

CAUTIONS
The longjmp and exit functions cannot be called from a routine entered via

bldexit linkage code. An attempt to do so results in a user ABEND 1224.
Routines entered via bldexit must be executed as interrupts and cannot execute in

parallel with the interrupted code. For example, bldexit cannot be used for code that
runs under an SRB because if the code takes a page fault, the interrupted C code can
resume execution, causing stack overlays and other disasters.

PORTABILITY
bldexit is not portable.

310 bldexit 4 Chapter 14

USAGE NOTES
See “Interrupt Handling in SPE” on page 295 for argument specifications for

bldexit exit routines.
Source for bldexit is supplied in L$UEXLK. You can modify this source to define

attribute bits to support exits with unusual linkages not already supported.

EXAMPLE
This example shows use of bldexit with the SPIE SVC to define a C function to be

called if a protection or addressing exception occurs. The C function writes a backtrace
using the btrace function and executes a retry in order to terminate the program’s
execution with a failure return code.

#include <osmain.h>
#include <setjmp.h>
#include <bldexit.h>
#include <svc.h>
struct PICA { /* Map the Program Interrupt Control Area. */

char *exit;
unsigned short bits;

};
#define SPIE(pica, addr, mask) \

(pica.bits = mask, pica.exit = addr, \
*(char *) &pica = 0x0f,_ldregs(R1, &pica), \
_ossvc(14), _stregs(R1))

int oldpica; /* previous program’s PICA */
jmp_buf retrybuf;
static void pgmchk();
extern void msgwtr(); /* unshown message writer routine */
osmain()

{
struct PICA my_PICA;
void *exitloc;
int rc = 0; /* success or failure code */
if (setjmp(retrybuf)) goto pgm_check;
exitloc = bldexit(&pgmchk, _ASYNCH+_NOR13);
oldpica = SPIE(my_PICA, exitloc, 0x0c00);

/* Intercept 0C4 and 0C5, */
/* then do some real work. */

goto quit;
pgm_check:

rc = 16; /* Set program failure code. */
quit:

_ldregs(R1, oldpica);
_ossvc(14); /* restore old SPIE */
freeexit(exitloc);
return rc;

}
static void pgmchk(sa, poi)

void **sa;
char **poi;
{

struct { /* the Program Interrupt Element */
struct PICA *pica;
short misc1;

Systems Programming with the SAS/C Compiler 4 bldretry 311

short int_code; /* interrupt code */
char *addr; /* location of interrupt/retry */
char *regs[5]; /* saved registers */

} *PIE;
char msgbuf[40];
PIE = sa[3]; /* R1 addresses PIE on entry */
poi = PIE->addr; / store program check location */

/* for btrace */
format(msgbuf, "Program check %d!", PIE->int_code);
msgwtr(msgbuf);
btrace(msgwtr);
PIE->addr = bldretry(retrybuf, 1);
return;

}

SEE ALSO
freeexit, bldretry, signal

bldretry
Build System Retry Linkage via longjmp in SPE

SYNOPSIS

#include <bldexit.h>

void * bldretry(jmp_buf env, int code);

DESCRIPTION
bldretry is called to build linkage code enabling a program location defined with

setjmp to be used as a retry routine. The env argument is a jmp_buf, which has been
initialized by an earlier call to setjmp. (The jmp_buf type is defined in the header file
<setjmp.h>. See "Program Control Functions" in Chapter 2 of the SAS/C Library
Reference, Volume 1 for further information.) The code argument is an integer value to
be returned by the resumed call to setjmp. If the value of code is 0, 1 is returned.

RETURN VALUE
bldretry returns the address of retry linkage code constructed by bldretry. This

address should be supplied to the operating system as the address at which retry is to
take place.

On completion of a successful retry, the effect is the same as the effect of a
longjmp(env,code).

CAUTIONS
The values in registers on entry to the retry routine are ignored. If you need to pass

information from an exit routine to a retry routine, you should use other mechanisms,
such as extern storage, for this purpose.

The retry linkage code is freed immediately before the longjmp to the location
defined by env is performed. You must call bldretry again to perform another retry.

312 btrace 4 Chapter 14

EXAMPLE
See the example for bldexit.

SEE ALSO
bldexit, setjmp

btrace
Generate Traceback in SPE

SYNOPSIS

void btrace(__remote void(*func)());

DESCRIPTION
Refer to Chapter 6, "Function Descriptions" in SAS/C Library Reference, Volume 1

for more details. Note that SPE does not support a 0 func address.
When btrace is called directly or indirectly from a bldexit exit function, the

traceback will be incomplete unless the exit has stored the point of interrupt. See the
description of bldexit for more information.

RETURN VALUE
btrace returns void.

PORTABILITY
btrace is not portable.

IMPLEMENTATION
The SPE implementation of btrace is in L$UBTRC.

dspserv
Dataspace services

SYNOPSIS
#include <osdspc.h>
int dspserv(char *request, ...);

DESCRIPTION
The dspserv function implements the functionality of the OS/390 assembler

DSPSERV macro. The request argument is a null-terminated string. The request
must be one of the following:

“CREATE” creates a new dataspace.

Systems Programming with the SAS/C Compiler 4 dspserv 313

“RELEASE” returns system resources used to contain user’s data.

“DELETE” deletes a dataspace.

“EXTEND” increases the size of a dataspace.

“LOAD” loads some area of a dataspace into central storage.

“OUT” tells system that it can page some areas of a dataspace out of central
storage.

The remainder of the argument list is a list of keywords followed, in most cases, by
an argument specifying a value for the keyword. The list is terminated by the _Dend
keyword. The supported keywords and their associated data are as follows:

� The _Dreason keyword is used to pass back a reason code in the event that the
service fails. The next argument should be a pointer to an int that will contain
the reason code as set in R0 by the DSPSERV macro if the DSPSERV macro
returns non-0 in R15.

� The _Dstoken keyword is equivalent to the Assembler STOKEN keyword. The next
argument should be the address of an 8-character array. The CREATE service
returns the STOKEN in this array. All other services require the STOKEN as input.

� The _Dname keyword is equivalent to the Assembler NAME keyword. The next
argument should be an 8-character array. This parm is required for the CREATE
service. Depending on the setting of the _Dgenname parm, all or part of this name
will be used to name the dataspace.

� The _Dgenname keyword is equivalent to the Assembler GENNAME keyword. The
next argument should be one of the following strings:

“NO” The name supplied in _Dname must be unique within the
address space and will be used to name the dataspace.

“COND” The name in _Dname will be used to name the dataspace unless
it is already being used, in which case a unique name will be
generated.

“YES” The name in _Dname will be altered to force a unique name for
the dataspace.

� The _Doutname keyword is equivalent to the Assembler OUTNAME keyword. The
next argument should be an 8-character array. If specified, the name of the
dataspace will be returned here if _Dgenname YES or COND was specified on a
CREATE request.

� The _Dstart keyword is equivalent to the Assembler START keyword. The next
argument should be a pointer that contains the beginning address of a block of
storage in a dataspace. This parameter is required on RELEASE, LOAD, and
OUT requests.

� The _Dblkmax keyword is related to the Assembler BLOCKS keyword. The next
argument should be an integer value containing the maximum size in blocks that
a new dataspace can grow to. The limit is 524,287 blocks. This parm should only
be used with the CREATE service. This parm is optional, and if it is omitted, the
default maximum size will be taken from site installation defaults or IBM defaults
(at the time of this writing, 239 blocks.)

� The _Dblkinit keyword is related to the Assembler BLOCKS keyword. The next
argument should be an integer value specifying the initial size (in blocks) of a
dataspace. This parm should be used only with the CREATE service. This parm is
optional, and if omitted, the default initial size will be taken from site installation
defaults or IBM defaults (at the time of this writing, 239 blocks.)

314 dspserv 4 Chapter 14

� The _Dblksize keyword is related to the Assembler BLOCKS keyword. The next
argument should be an integer value containing a size in blocks. This parm should
used with one of the following services: RELEASE, EXTEND, LOAD, or OUT. This
parm indicates the size of storage to be affected by one of these services.

� The _Dttoken keyword is equivalent to the Assembler TTOKEN keyword. The next
argument should be the address of an 16-byte array that has been set to indicate a
TCB. This is usually returned from a call to the TCBTOKEN macro. The CREATE
service will use this field to assign the dataspace to a TCB and the DELETE
service will use it to delete a dataspace owned by another TCB. This parameter is
optional.

� The _Dorigin keyword is equivalent to the Assembler ORIGIN keyword. The next
argument should be the address of a pointer that will be set to either 0 or 4096,
indicating the lowest address of a new address space. This parm is optional for the
CREATE service.

� The _Dnumblks keyword is equivalent to the Assembler NUMBLKS keyword. The
next argument should be the address of an int where one of the following will be
returned:

for “CREATE” the maximum size (in blocks) of the newly created dataspace.

for “EXTEND” the number of blocks by which the dataspace was extended.

� The _Dranglist keyword is equivalent to the Assembler RANGLIST keyword. The
next argument should be the address of a range list. The range list consists of a
number of entries (as specified by _Dnumrange) where each entry is 8 bytes long.
The first four bytes of the entry contain the starting virtual storage address of the
dataspace range to be released, and the second four bytes contain the number of
pages in the dataspace range to be released. _Dranglist is an optional parameter
of the RELEASE service.

� The _Dnumrange keyword is equivalent to the Assembler NUMRANGE keyword. The
next argument should be an integer value representing the number of entries in
the range list. _Dnumrange is an optional parameter of the RELEASE service.

� The _Dvar keyword is equivalent to the Assembler VAR keyword. The next
argument should be one of the following strings:

“YES” If the system cannot extend the dataspace to the requested
size, extend it to limits set by the system.

“NO” ABEND the caller if the size cannot be accommodated. _Dvar
is an optional parameter of the EXTEND service. _Dvar, NO is
the default.

� The _Dend keyword indicates the end of the list of keywords.

The following parms can be used by authorized programs only:

� The _Ddref keyword is equivalent to the Assembler DREF keyword. The next
argument should be one of the following strings:

“YES” Disabled programs can access the dataspace.

“NO” Only enabled programs can access the dataspace. _Ddref is an
optional parameter of the CREATE service.

� The _Dscope keyword is equivalent to the Assembler SCOPE keyword. The next
argument should be one of the following strings:

“SINGLE” The dataspace may only be referenced by the owning address
space.

Systems Programming with the SAS/C Compiler 4 dspserv 315

“ALL” or
“COMMON”

The dataspace may be referenced by many address spaces.

� The _Dkey keyword is equivalent to the Assembler KEY keyword. The next
argument should be a pointer to a byte containing the storage key of the dataspace
to be created. The key should be placed in bits 0-3 of the byte. _Dkey is an
optional parameter of the CREATE service and if it is omitted, the key associated
with the dataspace will be the same as that of the caller.

� The _Dfprot keyword is equivalent to the Assembler FPROT keyword. The next
argument should be one of the following strings:

“YES” The dataspace will be fetch-protected; that is, access is limited
to programs running key 0 or with the storage key with which
the dataspace was created.

“NO” The dataspace will not be fetch-protected.
� The _Ddisabled keyword is equivalent to the Assembler DISABLED keyword. The

next argument should be one of the following strings:

“NO” The caller is enabled for I/O and external interrupts.
_Ddisabled, NO is the default.

“YES” Valid only for RELEASE requests of pages that reside in DREF
storage.

RETURN VALUE
dspserv returns 0 if the DSPSERV macro was successful. If the DSPSERV macro

fails, it returns the return code from the macro, which will be a positive value. dspserv
may also return -1 to indicate an unknown or invalid keyword combination.

IMPLEMENTATION
The dspserv function is implemented by the source module L$UDSPC.

EXAMPLES

Example 1
This example creates a dataspace and initializes some data using mostly system
defaults.

#include <osdspc.h>
#include <string.h>
char stoken[8];
void _ _far * pFar;
int rc;
int alet;
void *origin;

rc = dspserv("CREATE",
_Dstoken, stoken,
_Dname, "LSC",
_Dorigin, &origin,
_Dend);

if (rc != 0)
abend(1);

316 exit 4 Chapter 14

rc = aleserv("ADD",
_Lstoken, stoken,
_Lalet, &alet,
_Lend);

if (rc != 0)
abend(2);

memcpy(&pfar, &alet, 4);
memcpy(((char *) &pfar)+4, &origin, 4);
strcpy(pFar, "DATASPACE STORAGE");

Example 2
This example extends a dataspace by 300 blocks.

#include <osdspc.h>
char stoken[8];
int rc;
int numblks;
int reason;

rc = dspserv("EXTEND",
_Dstoken, stoken,
_Dreason, &reason,
_Dblksize, 300,
_Dnumblks, &numblks,
_Dend);

if (rc != 0)
abend(1);

Example 3
This example deletes a dataspace.

#include <osdspc.h>
char stoken[8];
int rc;

rc = dspserv("DELETE",
_Dstoken, stoken,
_Dend);

if (rc != 0)
abend(1);

SEE ALSO

aleserv, falloc, ffree

exit
Terminate Execution in SPE

SYNOPSIS

Systems Programming with the SAS/C Compiler 4 falloc 317

#include <stdlib.h>

void exit(int code);

DESCRIPTION
exit terminates the program and returns control to its caller. The integer argument

code is returned in register 15. The meaning or value of the exit code is subject to
alteration by a start-up routine.

RETURN VALUE
Control does not return from exit.

PORTABILITY
exit is portable.

IMPLEMENTATION
The SPE implementation of exit is in L$UMAIN and L$UEXIT. If blkjmp is used,

exit is implemented as a call to longjmp. However, exit does not call longjmp if the
longjmp routine is not linked into the load module. In a multiple load module
application, it may be desirable to modify L$UEXIT so that longjmp is always called.

SEE ALSO
atexit

falloc
Create a dataspace, or allocate storage from an existing dataspace

SYNOPSIS
#include <osdspc.h>
void __far * falloc(struct _DSPC ** dspc, size_t size);

DESCRIPTION
falloc allocates memory from a dataspace, optionally creating a new dataspace.

dspc must be the address of a pointer. On first use, this pointer must be initialized to
0. On return, the pointer will contain the address of a _DSPC struct and a new
dataspace will be created. The far pointer returned will address the first byte of this
dataspace and the offset portion of this pointer will contain either 0 or 4096 depending
on hardware. Subsequent calls to falloc that pass the address of a pointer addressing
this _DSPC struct will allocate additional storage from the same dataspace. Each call
will return an offset that is a multiple of the blocksize of the dataspace (4096). The
length requested in size can be any value up to 2G, but should be a multiple of 4K to
make the best use of the dataspace.

RETURN VALUE
falloc returns a far pointer that addresses the first byte of the new block of memory

aligned on a 4K boundry. If falloc fails, the returned pointer will contain all zeros.
Note that a valid far pointer may have zeros in the offset half of the far pointer.

318 ffree 4 Chapter 14

IMPLEMENTATION
The falloc function is implemented by the source module L$UFALC.

EXAMPLE

#include <osdspc.h>
#include <string.h>
void __far * fptr;
pDSPC pdspc = 0;

fptr = falloc(&pdspc, 4096);

if (fptr)
memcpy(fptr, "New dataspace");

SEE ALSO
dspserv, aleserv, ffree

ffree
Release dataspace resources

SYNOPSIS
#include <osdspc.h>
void ffree(void __far * fptr);

DESCRIPTION
ffree releases system resources associated with blocks of memory residing in a

dataspace. The fptr far pointer must have been set by a previous call to falloc. If all
allocations from a dataspace are released, then the DU-AL will be updated to remove
the ALET for the dataspace, and the dataspace will be deleted.

RETURN VALUE
none

IMPLEMENTATION
The ffree function is implemented by the source module L$UFALC.

EXAMPLE

#include <osdspc.h>
#include <string.h>
void __far * fptr;
pDSPC pdspc = 0;

fptr = falloc(&pdspc, 4096);

Systems Programming with the SAS/C Compiler 4 free 319

memcpy(fptr, "New dataspace");

ffree(fptr);

SEE ALSO
dspserv, aleserv, falloc

format
Write Formatted Output to a String

SYNOPSIS

#include <lclib.h>

int format(char *s, const char * form , ...);

DESCRIPTION
format is similar to the sprintf function except that it does not support the

floating-point conversions (e, E, f, g, G). Refer to Chapter 6, "Function Descriptions" in
SAS/C Library Reference, Volume 1 for more information.

RETURN VALUE
format returns the number of characters written to the location addressed by s.

DIAGNOSTICS
If there is an error during output, format returns a negative number. The absolute

value of this number equals the number of characters written up to the point of error or
1, if none are written.

PORTABILITY
format is not portable.

IMPLEMENTATION
format is implemented as a faster, smaller version of sprintf.

SEE ALSO
sprintf

free
Free a Block of Memory in SPE

320 freeexit 4 Chapter 14

SYNOPSIS

#include <stdlib.h>

void free(char *block);

DESCRIPTION
free frees a block of memory previously allocated by the malloc function. block is a

pointer to the memory block.

ERRORS
See the IMPLEMENTATION section for the malloc function.

PORTABILITY
free is highly portable.

IMPLEMENTATION
Any malloc memory that has not been freed at program termination will be

automatically freed.
See the IMPLEMENTATION section for the malloc function for more details about

the implementation of free.

SEE ALSO
malloc, DMSFRET, FREEMAIN

freeexit
Free Exit Linkage Code in SPE

SYNOPSIS

#include <bldexit.h>

void freeexit(void *area);

DESCRIPTION
freeexit frees the memory associated with a bldexit exit routine. The argument to

freeexit is the address returned by the previous call to bldexit.

RETURN VALUE
None.

CAUTION
Do not call freeexit for an exit routine that is defined to the operating system.

Systems Programming with the SAS/C Compiler 4 getenv 321

PORTABILITY
freeexit is not portable.

EXAMPLE
See the example for bldexit.

SEE ALSO
bldexit

getenv
Get Value of Environment Variable in SPE

SYNOPSIS

#include <stdlib.h>

char *getenv(const char *name);

DESCRIPTION
The getenv function searches an environment variable list for a variable name that

matches the string pointed to by the name argument. See the description of the putenv
function for a discussion on altering and creating environment variables.

RETURN VALUE
The getenv function returns a pointer to the string value associated with the

matched name in the environment variable list. If a matching name is not found,
getenv returns the value NULL.

CAUTIONS
A subsequent call to getenv overwrites the array pointed to by the first call.
Note that, in the SPE implementation, the names as well as the values of

environment variables are case sensitive.

PORTABILITY
The getenv function is defined in accordance with the ANSI Standard for C and

POSIX.1.

IMPLEMENTATION
The only environment variables accessible to the SPE getenv are those added by a

previous call to putenv or setenv. Note that if you have a program called with
exec-linkage that uses the oemain start-up routine, the environment variables passed
by the caller of exec are added to the environment using putenv before control is
passed to the initial function.

322 loadm 4 Chapter 14

SEE ALSO
putenv, setenv

loadm
Dynamically Load a Load Module in SPE

SYNOPSIS

#include <dynam.h>

void loadm(char *name, __remote /* type */ **fpp());

DESCRIPTION
loadm loads the module named by the first argument string name and stores a C

function pointer referencing the initial function of the module.

RETURN VALUE
loadm provides an indirect return value in the form of a function pointer that

addresses the entry point of the loaded module. If the module is in the C language,
calling the returned function always transfers control to the _dynamn function of the
module.

If the module to be loaded cannot be found, a NULL pointer is stored in the location
addressed by fpp.

ERRORS
Errors are implementation defined.

CAUTIONS
The second argument must be a pointer to an object declared as pointer to function

returning (some C data type).
Subordinate load modules must be linked with the SPE version of the #DYNAMN

(for reentrant load modules) or #DYNAMNR (for non-reentrant load module) code. This
code is in L$UDYNM and L$UDYNR, respectively. The SPE implementation of loadm
cannot load modules linked with the full library version of #DYNAMN or #DYNAMNR.
Similarly, the full library implementation of loadm cannot load modules linked with the
SPE version of #DYNAMN or #DYNAMNR.

PORTABILITY
loadm is nonportable.

IMPLEMENTATION
The SPE implementation of loadm is in L$ULDR. Under OS/390, loadm is

implemented via SVC 8; under CMS, it is implemented via the NUCXLOAD command;
and under CICS, it is implemented via the EXEC CICS LOAD command. Note that the
SPE loadm is substantially less functional than that of the full library; therefore, this

Systems Programming with the SAS/C Compiler 4 malloc 323

version should be considered as a prototype only. Any serious use of loadm in SPE will
require L$ULDR to be extended or rewritten.

malloc
Allocate Memory in SPE

SYNOPSIS

#include <stdlib.h>

char *malloc(size_t size);

DESCRIPTION
malloc allocates a block of dynamic memory of the size requested by size.

RETURN VALUE
malloc returns the address of the first character of the new block of memory. The

allocated block is suitably aligned for storage of any type of data.

ERRORS AND DIAGNOSTICS
Errors are implementation defined. See IMPLEMENTATION below.
If adequate memory is not available or if 0 bytes were requested, a NULL (0) pointer

is returned.

CAUTIONS
The contents of a block of memory on allocation are random.
The realloc function is not supported, and the full-library realloc function does

not work with L$UHEAP. You may implement this function as a simple extension to the
existing implementation.

PORTABILITY
malloc is highly portable.

IMPLEMENTATION
The SPE version of malloc is supplied in source as L$UHEAP. The following

description of the function is based on this implementation.
The external variable _heap can be used to define the total amount of storage to be

reserved for malloc allocation. By default, the amount reserved is determined by the
start-up routine. Unlike the full-library malloc, this version does not attempt to
allocate more storage if the initial amount is insufficient.

The memory management routines are simpler than those used in the full library
and most suited to applications with simple memory management demands. If the
application requires more complex memory management, modify L$UHEAP
appropriately or consider using the operating system memory management directly
with the DMSFREE or GETMAIN macros, or via EXEC CICS GETMAIN commands.

324 oeabntrap 4 Chapter 14

The malloc implementation in L$UHEAP respects two macros, CHECKING and
SYNCH. If CHECKING is defined, code that checks for overlays of allocated memory is
generated. If an overlay is detected, user ABEND 1206 is issued. If the free function
detects an invalid argument, user ABEND 1208 is issued.

If SYNCH is defined, code is generated that allows malloc to be used in
asynchronous exits. The supplied object code is compiled with SYNCH defined and
CHECKING undefined.

Note that the calloc and the pool allocation functions are compatible with
L$UHEAP. Refer to "Memory Allocation Functions" in Chapter 2 of SAS/C Library
Reference, Volume 1 for more information.

SEE ALSO
free, DMSFREE, GETMAIN

oeabntrap
Trap ABENDs as USS Signals

SYNOPSIS

#include <oespe.h>

int oeabntrap(int code);

DESCRIPTION
oeabntrap is used to intercept OS/390 ABENDs and transform them into an

appropriate USS signal. If the program is being debugged with dbx (or any other
similar debugger), the debugger is informed of the ABEND and is allowed to recover it.
oeabntrap is supported only in SPE programs; similar functionality is defined
automatically when the standard C framework is used.

The code argument is a symbolic value indicating the particular function wanted,
one of TRAP_ON, TRAP_OFF, or TRAP_AUTO. When code is TRAP_ON, the ABEND trapping
functionality is enabled. When code is TRAP_OFF, ABEND trapping functionality is
disabled. When code is TRAP_AUTO, ABEND trapping functionality is enabled, and an
atexit routine is defined to disable ABEND trapping at the end of program execution.

If an ABEND occurs while ABEND trapping is enabled, the following events take
place:

1 The ptrace system call is issued to inform any debugger of the event. If the
debugger requests that the ABEND be recovered, an appropriate ESTAE retry is
issued.

2 If the ABEND is not recoverable or was issued by the library, or if the signal from
a previous ABEND is still pending, the ABEND is allowed to complete.

3 An ESTAE retry is issued.
4 The retry routine sends the ABENDing process a signal using the kill system

call. If a debugger requested the signal, the signal is chosen by the debugger. If
not, an appropriate signal is selected by the retry routine (SIGILL, SIGSEGV, or
SIGFPE for program check ABENDs, SIGABRT for user ABENDs, SIGABND for
system ABENDs).

5 If the signal is unable to be delivered, the process is terminated with a user
ABEND 1225.

Systems Programming with the SAS/C Compiler 4 oeabntrap 325

RETURN VALUE
oeabntrap returns 0 if its function was successful. It returns a positive value if the

call had no effect (for instance, specifying TRAP_OFF before any trap was established). It
returns a negative value if any other error occurred.

CAUTIONS
If you issue your own ESTAE macros in addition to using oeabntrap, it is your

responsibility to make sure that your exits do not interfere with the operation of
oeabntrap.

Note that you should not block any signal that might be generated by the ABEND
trap. The effects of this are unpredictable and are likely to cause recursive ABENDs.

PORTABILITY
oeabntrap is not portable.

USAGE NOTES
Source for oeabntrap is supplied in SPE source modules L$UZABN and L$UZEST.

EXAMPLE
This example uses oeabntrap to catch ABENDs and defines a SIGSEGV handler to

call the btrace function to show the location of the error.

#include <oespe.h>
#include <unistd.h>
#include <lclib.h>
#include <string.h>
#include <setjmp.h>
#include <signal.h>

jmp_buf ABEND_escape;
/* where to run to after an ABEND */

static int ABEND_trapped;

void trace_out(char *line) {
/* this function writes a btrace output line to file

descriptor 2 */
write(2, line, strlen(line));
write(2, "\n", 1);

}

void ABEND_handler(int signum) {
char buf[60];
sprintf(buf, "Interrupted by signal %d!\n", signum);
write(2, buf, strlen(buf));
btrace(&trace_out);
longjmp(ABEND_escape, 1);

}

int ptrvalid(int *ptr) {
/* return whether storage addressed by ptr can be read */

326 putenv 4 Chapter 14

sigaction segv_action, prev_action;
int ok;
volatile int value;

if (ABEND_trapped = 0) {
oeabntrap(TRAP_AUTO);

/* possibility of error ignored */
ABEND_trapped = 1;

}

if (setjmp(ABEND_escape) != 0) goto failed;
/* set up retry from handler */

segv_action.sa_handler = &ABEND_handler;
sigemptyset(segv_action.sa_mask);
segv_action.sa_flags = 0;
struct sigaction(SIGSEGV, &segv_action, &prev_action);

/* we’ll try to access the storage even if
sigaction fails... */

value = *ptr; /* force reference to *ptr */
ok = 1; /* it must be valid */
goto complete;

failed:
ok = 0; /* the pointer is no good */

complete:
sigaction(SIGSEGV, &prev_action, 0);

/* restore previous SIGSEGV handling */
return ok;

}

SEE ALSO
ESTAE, sigaction

putenv
Update Environment Variable in SPE

SYNOPSIS

#include <lclib.h>

int putenv(const char *string);

DESCRIPTION
The putenv function alters an environment variable’s value or creates an

environment variable with a name and value corresponding to the string pointed to by
the string argument. The format of the string argument is

variable-name=value

variable-name
specifies the name of the variable to be created or updated.

Systems Programming with the SAS/C Compiler 4 unloadm 327

=value
specifies a string assigned to the variable. It defaults to a null string "" if it is not
specified. All blanks are significant in the string.

RETURN VALUE
The putenv function returns 0 if successful.

PORTABILITY
The putenv function is not portable. It is a complementary extension to getenv.

SEE ALSO
getenv, setenv

setenv
Modify Environment Variables in SPE

SYNOPSIS

#include <stdlib.h>

int setenv(const char *name, const char *value)

DESCRIPTION
setenv adds or replaces environment variables. name is the name of the environment

variable. value is the new value to be assigned to the environment variable.

RETURN VALUE
setenv returns 0 if it is successful. setenv returns -1 if it is not successful.

CAUTION
If name includes an equal sign (=), setenv will fail.

PORTABILITY
setenv is defined in accordance with POSIX.1a.

SEE ALSO
getenv, putenv

unloadm
Dynamically Unload a Load Module in SPE

328 vformat 4 Chapter 14

SYNOPSIS

#include <dynam.h>

void unloadm(__remote /* type */ (*fp)());

DESCRIPTION
unloadm unloads the executable module containing the function addressed by fp. If

the module is no longer in use, unloadm deletes it from memory.

RETURN VALUE
unloadm does not have a return value.

ERRORS
Errors are implementation defined.

CAUTIONS
Attempting to call a function in an unloaded module is not recommended.
No provision is made for unloading modules at program termination automatically.

However, this sort of functionality can be implemented in a function that is registered
with atexit.

PORTABILITY
unloadm is nonportable.

IMPLEMENTATION
Refer to the IMPLEMENTATION section for loadm.

SEE ALSO
loadm, atexit

vformat
Write Formatted Output to a String

SYNOPSIS

#include <lclib.h>

int vformat(char *s, const char *form, va_list arg);

DESCRIPTION
vformat is equivalent to format with the variable argument list replaced by arg.

The arg parameter has been initialized by a type va_start macro and possibly by

Systems Programming with the SAS/C Compiler 4 Under OS/390 329

va_arg calls. vformat does not change the va_arg list pointers; for example, it does
not use the va_start, va_arg, or va_end macros to process the variable argument list.

RETURN VALUE
vformat returns the number of characters written to the location addressed by s.

ERRORS AND DIAGNOSTICS
If there is an error during output, vformat returns a negative number. The absolute

value of this number equals the number of characters written up to the point of the
error.

PORTABILITY
vformat is not portable.

IMPLEMENTATION
vformat is implemented as a faster, smaller version of vsprintf.

EXAMPLE

#include <lclib.h>
#include <stdarg.h>

/* Format an error message buffer via format */
/* Format the remaining buffer with vformat */

void error (char *msg_buf, char *fname, *format, ...)
va_list args;
int msg_len;
va_start(args, format);
msg_len = format(msg_buf,"ERROR in %s: ", fname);
if (msg_len > 0) msg_buf += msg_len;
else msg_buf -= msg_len;
vformat(msg_buf, format, args);
va_end(args);

}

SEE ALSO
format, sprintf, vsprintf

Linking for SPE

Under OS/390
In general, the autocall (SYSLIB) input data set for SPE programs is a concatenation

of these elements in the following order:
1 your own autocall libraries (including modified versions of SPE routines)

330 Under CMS 4 Chapter 14

2 the data set SASC.SPEOBJ (the SPE object library)

3 the base resident library data set SASC.BASEOBJ.

You can use the SPE operand of the COOL CLIST or the ENV=SPE operand of the
cataloged procedures to define these libraries in the correct order.

Under CMS
To create a MODULE file for a program using the SPE framework, issue the CMS

GLOBAL command for these elements in the following order before issuing the LOAD
and GENMOD commands:

1 your autocall TXTLIB(s) (including modified versions of SPE routines)

2 LC370SPE TXTLIB (the SPE TEXT library)

3 the base resident library LC370BAS TXTLIB.

You can use the SPE operand of the COOL EXEC to make these GLOBAL libraries
in the correct order.

Under CICS
The autocall (SYSLIB) input data set for CICS SPE programs is a concatenation of

these elements in the following order:

1 your own autocall libraries (including modified versions of CICS SPE routines)

2 the data set SASC.CICS.SPEOBJ (the CICS SPE object library)

3 the base resident library data set SASC.BASEOBJ.

You can use the LCCCL cataloged procedure under OS/390 and specify the symbolic
parameters ENV=CICS.SPE and ENTRY=CSPE to define these libraries in the correct
order and to select the correct entry point. You can also use the CICS and SPE
operands in the COOL clist on TSO to perform the same function.

If you are developing your CICS SPE application under CMS, you can specify the
CICS and SPE operands when you invoke the COOL EXEC. The resulting object code
must be shipped to the OS system containing the CICS system on which you plan to
run. The object code must also be link-edited with the CICS command-level stubs.

Use the following linkage editor control statements when you build your load module:

INCLUDE SYSLIB (DFHEAI)
INCLUDE SYSLIB (DFHEAI0)
ORDER DFHEAI

where the DDname SYSLIB points to the CICS load library containing the
command-level stubs.

If your SPE application is targeted for a CICS/VSE system and you are using INDEP,
you must include manually the VSE version of L$UPREP that is named L$UPREPD.

Caution
If your program calls a function that is not supported in the SPE framework and you

use the standard resident library data set as an autocall library, no error occurs when
the program is linked. At execution time, the library may issue a user ABEND 1212 or
there may be other, unpredictable results. Refer to "The SPE Library" earlier in this
chapter for information on the functions that can be used in the SPE framework.

331

C H A P T E R

15
Developing Applications for Use
with UNIX System Services OS/
390

Introduction 331
What is a POSIX Application? 332

POSIX References 332

POSIX Conformance 332

Strictly Conforming POSIX Programs 333

POSIX Programs with Extensions 333
Portability Considerations 333

Compiling POSIX Programs 334

exec-Linkage Programs 334

Using the USS Shell 335

Shell Scripts 335

make Utility 335
File Access 335

Hierarchical File System (HFS) Files 335

OS/390 Data Sets 337

Accessing the Transient Library 337

Processes 338
User and Group Identification 338

Introduction

UNIX System Services (USS) OS/390 provides all the traditional services of the OS/
390 operating system plus many new services. Two prominent features of these new
services are the USS hierarchical file system (HFS) and the MVS/ESA USS Shell and
Utilities. The SAS/C Compiler enables you to develop applications that can be invoked
from either the traditional OS/390 environment or the USS shell.

� Applications that reside in an OS/390 data set are invoked with the CALL
command from the TSO/E environment or with JCL statements and the SUBMIT
command in a batch environment. They can also be invoked from the shell using
the pdscall shell command.

� Applications that reside in an USS HFS file are usually invoked directly from the
USS shell, and can be run either interactively or in the background.

The USS hierarchical file system and shell provide an operating system interface
that complies with the POSIX 1003.1 standard. With Release 6.00, the SAS/C Library
provides a number of functions that give you the capability of exploiting the
functionality of this interface. USS OS/390 and the SAS/C Library also implement
portions of the draft POSIX 1003.1a standard. The support provided for these two
standards is referred to as POSIX.1 and POSIX.1a in this documentation.

332 What is a POSIX Application? 4 Chapter 15

The POSIX.1 standard defines an operating system interface and environment that is
based on the UNIX operating system. Many of the commands and features of the USS
shell will be familiar to you if you have studied UNIX. The portable operating system
interface (POSIX) was designed to support application portability at the source level.

What is a POSIX Application?
A POSIX application can be considered to be any application that takes advantage of

the POSIX.1 and POSIX.1a support provided by the SAS/C Library. As will be
explained later in this chapter, there are various levels of conformance to the POSIX.1
standards, ranging from strict conformance to a rather loose conformance that takes
advantage of the extensions provided by the SAS/C Library. A POSIX application may
have any of these levels of conformance to the POSIX.1 standards.

POSIX References
The SAS/C documentation does not describe the POSIX.1 standard or cover the

general background concepts required to successfully develop a POSIX application. For
information on these topics, please refer to the following publications:

ISO/IEC 9945-1: 1990 (IEEE Std 1003.1-1990)
Information technology–Portable Operating System Interface
(POSIX)–Part 1: System Application Program Interface (API)
[C Language]

Zlotnick, Fred (1991) The POSIX.1 Standard: A Programmer’s guide,
The Benjamin/Cummings Publishing Company, Inc.

POSIX Conformance
The POSIX.1 standard specifies three levels of conformance:

Strictly Conforming POSIX.1 Applications
A strictly conforming C language POSIX.1 application uses only those facilities
described in ISO/IEC 9945 and the ISO C language Standard.

Conforming POSIX.1 Applications
There are two categories for this type of conformance:

� An ISO/IEC conforming C language POSIX application uses only the facilities
described in ISO/IEC 9945 and the approved C language bindings for any
ISO or IEC standard.

� A <National Body> conforming C language POSIX application uses only the
facilities described in ISO/IEC 9945 and the approved C language bindings
for any ISO or IEC standard or the specific standards of a single ISO/IEC
member, such as BSI (British Standards Institute).

Conforming POSIX.1 Applications Using Extensions
This type of application uses documented, nonstandard language extensions that
are consistent with the POSIX.1 standard. An example of this type of application
would be a program that uses the POSIX.1 interface but also uses the SAS/C
Socket Library for TCP/IP.

While SAS/C supports the compilation and execution of strictly conforming POSIX.1
programs, it is also intended to support mixed-mode programming. That is, SAS/C

Developing Applications for Use with UNIX System Services OS/390 4 Portability Considerations 333

Release 6.00 supports the production of applications that combine POSIX functionality,
such as pipes and directories, with traditional OS/390 and SAS/C functionality like
VSAM. SAS/C is also flexible about how POSIX and non-POSIX features can be
combined. UNIX oriented programs can be written with small nonportable sections to
exploit OS/390 features, and OS/390 oriented programs can be written which exploit
POSIX functionality when appropriate.

Strictly Conforming POSIX Programs
A POSIX program is strictly conforming if it uses only ISO/ANSI and POSIX standard

library features and does not depend on any undefined or implementation-defined
behavior. If you want a program to strictly conform to the POSIX.1 standards, you
should define the feature test macro _POSIX_SOURCE before including any standard
header file. (One way to define this symbol is using the define compiler option.) When
_POSIX_SOURCE is defined, the only declarations included in standard header files are
those of standard symbols. This ensures that any symbols defined by your application
will not conflict with any non-POSIX extensions defined in the standard header files.

The symbol _POSIX1_SOURCE can be defined to the value 2 to define a program that
is strictly conforming except for its use of features from the POSIX.1a draft standard. If
_POSIX1_SOURCE is defined to 2, then _POSIX_SOURCE need not be defined.

POSIX Programs with Extensions
Many programs use POSIX functionality but are not intended to be strictly

conforming. For instance, a socket application cannot be strictly conforming, since
sockets are not defined by the POSIX.1 or POSIX.1a standard. If the feature test macro
_POSIX_SOURCE is defined, then critical declarations (for instance, the type fd_set) will
be omitted from headers like <sys/types.h>, which will cause a socket application to
fail to compile.

SAS/C Release 6.00 defines the feature test macro _SASC_POSIX_SOURCE to specify
POSIX functionality plus SAS/C functionality. If the symbol _SASC_POSIX_SOURCE is
defined before inclusion of the first system header file, then ISO/ANSI and POSIX
header files will define ISO/ANSI and POSIX functionality, plus SAS/C extensions. If
you define one of _POSIX_SOURCE or _POSIX1_SOURCE as well as _SASC_POSIX_SOURCE,
the standard feature test macro has precedence, that is, SAS/C extensions will not be
defined.

If you do not define any feature test macro, then POSIX header files may include
definitions of SAS/C extensions. However, ISO/ANSI header files will define only ISO/
ANSI sanctioned symbols. Therefore, if you want to use POSIX functionality defined in
ISO/ANSI header files (for example, the fdopen routine declared in <stdio.h>), you
should define a feature test macro.

Note that the preferred method of defining the _SASC_POSIX_SOURCE feature test
macro is to specify the posix option at compile time.

For more information about feature test macros and the SAS/C Library header files,
refer to Chapter 1, "Introduction to the SAS/C Library," in the SAS/C Library
Reference, Volume 1.

Portability Considerations
The POSIX.1 standard is designed to facilitate the portability of programs in source

form; however, compliance with the standard does not guarantee programs will be
completely portable. Dealing with ASCII to EBCDIC character translation is just one of

334 Compiling POSIX Programs 4 Chapter 15

the many issues you should be familiar with if you are developing POSIX applications
that will be ported to a platform other that the IBM System/370. Refer to the
discussion of data interchange formats in The POSIX.1 Standard: A Programmer’s
Guide for a detailed treatment of this subject.

Compiling POSIX Programs
The posix compiler option modifies compiler behavior in order to establish certain

defaults required by the POSIX.1 standard. A program compiled without the posix
option may not behave completely according to the standard even if the program’s code
is completely conforming.

Some of the effects of the posix option are:
� The feature test macro _SASC_POSIX_SOURCE is automatically defined.
� The refdef option is assumed.

� The special POSIX variable names environ and tzname are made automatically
__rent unless explicitly declared __norent.

� A run-time flag is set defining the object module as POSIX-compiled.

When a load module containing a main function is link-edited, the resulting load
module is considered to be POSIX compiled if any constituent object module was
compiled with the posix option. (For this reason, if you are writing routines that may
be used in both POSIX and non-POSIX programs, you should not compile them with the
posix option, because this would force any load modules that use them to be considered
POSIX.)

If the main load module of a program is defined as POSIX compiled, certain library
defaults are changed in order to bring them into conformance with the POSIX standard.
For instance, in a program that is not POSIX compiled, the function call
fopen("sysin", "r") opens the file associated with the DDname SYSIN. In a POSIX
compiled program, this call opens the USS HFS file "sysin" in the current directory.

exec-Linkage Programs
An executable load module may be stored in either a partitioned data set (PDS) or an

USS hierarchical file system (HFS) file. When a load module is stored in a PDS, it can
be loaded and invoked by standard OS/390 supervisor calls (SVCs), but there is no
POSIX defined way to invoke it. When a load module is stored in the HFS, it is
inaccessible to OS/390 SVCs but can be executed by means of the USS exec system
call. exec is used by the USS shell to call its commands, as well as by other POSIX
applications that need to pass control to other programs. A program that is given
control by exec rather than by an OS/390 SVC is called an exec-linkage program.

Note: A program will have exec-linkage if it is stored in the USS HFS. You can
either direct the output from the linkage editor directly to the HFS or move the load
module from a PDS to the HFS using the USS OPUT, OGET, or OCOPY commands.
Also, the SAS/C pdscall utility can be used to invoke a program stored in a PDS with
exec-linkage. 4

exec-linkage is not required for a program to use POSIX functionality. For instance,
a program that reads the HFS can be run in TSO. However, because TSO is not a
POSIX conforming environment, certain POSIX behavior details are not implemented
in TSO. For instance, the POSIX standards require that when a program is given

Developing Applications for Use with UNIX System Services OS/390 4 Hierarchical File System (HFS) Files 335

control, stdin, stdout, and stderr are defined to be POSIX file descriptors 0, 1, and 2.
TSO does not set up these standard file descriptors, and stdin, stdout, and stderr
reference the TSO terminal instead, in this environment. If this particular behavior is
important to your application, the application load module should be stored in the HFS
and invoked with exec, in order to guarantee the proper behavior.

Whether or not a program has exec-linkage affects a number of details of run-time
library behavior. Specific instances are discussed later in this chapter.

Using the USS Shell
You can compile, link, and run SAS/C applications directly from the USS shell as was

described in the following chapters:
� Chapter 5, “Compiling C Programs,” on page 81
� Chapter 7, “Linking C Programs,” on page 131
� Chapter 8, “Executing C Programs,” on page 171

In addition to this basic information, you should also be familiar with shell scripts
and the make utility if you are developing applications under the USS shell.

Shell Scripts
USS shell scripts provide an efficient means of executing a frequently used series of

commands. For example, you may have a series of commands that you enter frequently
to either compile or back up your SAS/C applications–a shell script can be a very
efficient method of automating this process. See the IBM MVS/ESA OpenEdition MVS
User’s Guide (SC23-3013-01) for information about writing USS shell scripts.

make Utility
The USS make utility is used to manage the software development process. It

enables you to define a makefile that specifies the relationship between the various
source and object files used in your application. The makefile is then used by the make
utility to remake the application as necessary to update the object files after a source
file is changed. See MVS/ESA OpenEdition MVS Advanced Application Programming
Tools (SC23-3017-01) from IBM for more information about the make utility.

File Access
SAS/C POSIX applications can access either HFS files or OS/390 data sets from the

USS shell. This section describes how this is accomplished. For detailed information
about file access and input/output considerations, refer to Chapter 3, "I/O Functions," in
the SAS/C Library Reference, Volume 1. Also refer to the MVS/ESA OpenEdition MVS
User’s Guide (SC23-3013-01) for general information about file access and USS.

Hierarchical File System (HFS) Files
The USS Hierarchical File System (HFS) is patterned after the UNIX file system. All

files are located in directories, and the directories are organized in a hierarchical

336 Hierarchical File System (HFS) Files 4 Chapter 15

manner with each directory being a subdirectory to another directory until you reach
the root directory.

When you start a shell session, a process is created. Each process maintains a
location in the HFS. This location is called the working directory. The initial working
directory you are placed in when you start a shell session is called your home directory.
You can use the USS shell command cd to change the current working directory
location for the shell.

Pathnames are used to specify the location of files within the directory structure. A
pathname starts with the root directory and works its way down the directory
hierarchy, separating each directory name with a single slash (/), until you come to the
name of the file. For example, the following pathname specifies a file named qsort.c
located in the src subdirectory of the userxyz directory.

/u/userxyz/src/qsort.c

Notice that the userxyz directory is a subdirectory of the u directory, which is
located in the root directory. The root directory is signified by the single slash (/) at the
beginning of the pathname. This type of pathname, which shows the complete path
from the root directory to the file, is called an absolute pathname.

There is a second type of pathname, called a relative pathname, that specifies a path
relative to your current working directory. To specify a relative pathname for a file,
simply enter the pathname to the file from your current location in the HFS. For
example, if the current working directory is userxyz, the qsort.c file could specified as
follows:

src/qsort.c

Notice that the beginning slash (/) is not used in a relative pathname.
The following special fields can also be used when specifying a relative pathname:

. is used to specify the current directory.

.. is used to specify the parent directory.

For example, we could have specified the qsort.c file from the userxyz directory in
either of the following ways:

./src/qsort.c

../userxyz/src/qsort.c

To put all this in the context of a SAS/C program, we could open the scrambled.txt
file from our qsort.c program with any of the following statements, provided the
current working directory is /u/userxyz/src.

datafile = fopen("./scrambled.txt", O_RDWR);

datafile = fopen("../scrambled.txt", O_RDWR);

datafile = fopen("../src/scrambled.txt", O_RDWR);

We could also use the following absolute pathname to specify the scrambled.txt file:

datafile = open("./scrambled.txt", O_RDWR);

Note: The exact format of the filename specification depends upon whether or not
the posix option was used at compile time. 4

In this case the scramble.txt file will be found no matter where the working
directory is when the program is executed.

Developing Applications for Use with UNIX System Services OS/390 4 Accessing the Transient Library 337

OS/390 Data Sets
OS/390 data sets can also be accessed from an exec-linkage program running under

the USS shell. If a // precedes a filename, the filename is assumed to be either of the
tso styles. For example, the following statement could be used to reference a PDS
member from the shell:

datafile = fopen("//scramble.text(eggnog)", "r+");

In an exec-linkage program compiled with the posix option, you must precede the
filename with // even if you are using a style prefix such as tso:. If the filename does
not begin with exactly two slashes, it will be interpreted as an HFS file. For example,
the following statement will attempt to open the file named
tso:scramble.text(eggnog) in the current working directory of the HFS:

datafile = fopen("tso:scramble.text(eggnog)", "r+");

Obviously, this is not the desired result. To correctly open the
userid.scramble.text(eggnog) PDS member, you must precede the tso: with two
slashes.

Note: This convention of using two slashes to access OS/390 data sets or CMS files
from your exec-linkage programs cannot be used with USS shell commands. For
example, you cannot use // to concatenate a PDS member with an HFS file using the
cat command. 4

Accessing the Transient Library
In an ordinary (batch/TSO) OS/390 environment, SAS/C Library routines needed at

runtime are loaded from the transient library. This library is located in one of three
ways: it may be allocated to a STEPLIB (or tasklib) data set, it may be allocated to the
DDname CTRANS, or it may reside in linklist/LPALIB.

When an application is called by the shell (or, more generally, invoked by the POSIX
exec system call), it runs in an address space that has no preallocated DD statements.
This creates problems for transient library access under the shell. The SAS/C Library
solves this problem as follows:

1 If the environment variable ddn_CTRANS is defined when a SAS/C program
begins execution, the value of the variable is assumed to be an OS/390 data set
name, which is dynamically allocated to the DDname CTRANS.

2 When a SAS/C program running with an allocated CTRANS calls the fork
function, the same file is allocated to CTRANS in the child before fork returns.

3 When a SAS/C program running with an allocated CTRANS performs an exec, the
environment variable ddn_CTRANS is generated to contain the name of the
CTRANS data set, unless this variable already exists. This variable is passed to
the called program, so that if it is a SAS/C compiled program, it will have access to
the same CTRANS data set.

When a program is linked with the all-resident library, it normally does not access
CTRANS; however, if such a program issues an exec call, the CTRANS data set name
is still recorded in the ddn_CTRANS environment variable, since the called program
might require transient library access.

It is recommended that you update /etc/profile so that ddn_CTRANS is set to an
appropriate value automatically whenever the shell starts up.

USS supports a feature similar to the SAS/C CTRANS support for STEPLIB data
sets, using the environment variable STEPLIB. If the value of STEPLIB is CURRENT,

338 Processes 4 Chapter 15

an existing STEPLIB data set is propagated on exec. Alternately, STEPLIB may name
one or more data sets to be allocated to STEPLIB in the new address space. This
support will also work for access to the SAS/C Transient Library.

Processes
In the USS shell environment, a running program is called a process. Multiple

processes can be executed independently of each other, with each process receiving its
own address space. To facilitate the referencing of these independent processes, each
process is associated with a process identification number (PID).

A process can be used to start other processes. The USS shell is a process itself that
can be used to start multiple processes. At any one time, the shell can have one process
running in the foreground and several processes running in the background. A
foreground process ties up the shell and prevents you from entering additional
commands while it is running. The shell does not wait for the completion of background
processes; they run in the background in a manner similar to an OS/390 batch job. The
ps shell command can be used to display the PID for the shell and all of the processes
running under the shell.

Processes can also be started by SAS/C programs. The exec family of functions and
the fork and atfork functions are commonly used to start a new process. The SAS/C
extension function oeattach can be used to start a new process in the same address
space as the old process, which may offer improved performance over the use of fork
and exec. Refer to the SAS/C Library Reference, Volume 2 for more information about
these functions.

User and Group Identification
The USS shell environment assigns a user identification number (UID) to each user.

A user can also belong to one or more groups of users, each of which is assigned a group
identification number (GID). These identification numbers are used to assign file
ownership and control access privileges. Read, write, and execute permission is
assigned to each file by either the file owner or the system administrator. Access
privileges can be assigned to the user, the user’s groups, and others.

Every process has a real and an effective UID, as well as a real and an effective GID.
When you start a shell session, the real and effective UIDs are set to your user
identification number, and the real and effective GIDs are set to your group
identification number.

The effective UIDs and GIDs are used to control file access, and the real UIDs and
GIDs are used for accounting purposes. File access is determined as follows:

� If the effective UID of a process matches the UID of the file’s owner, then the
process will have user access privileges.

� If the effective GID of a process matches the GID of the file’s owner, then the
process will have group access privileges.

� If neither the effective UID or GID of the process match those of the file’s owner,
then the process will have others access privileges.

If a process executes another process, the access rights are normally determined by
the effective UID and GID of the calling process and not the access privileges of the
owner of the executable. This can create undesirable situations, such as the situation in
which a running program must have the ability to change a file that you do not want
the user who executed the program to be able to modify directly. This problem is

Developing Applications for Use with UNIX System Services OS/390 4 User and Group Identification 339

overcome by allowing a program to be defined to execute with the UID or GID of the
program owner rather than that of the calling process. Also, suitably authorized
programs can use the setuid and setgid functions to change the current process’s
effective UID and GID respectively.

340 User and Group Identification 4 Chapter 15

341

P A R T2

Appendixes

Appendix 1.The DSECT2C Utility 343

Appendix 2.The AR370 Archive Utility 353

Appendix 3.The AR2UPDTE and UPDTE2AR Utilities 367

Appendix 4.The CMS GENCSEG Utility 379

Appendix 5.Sharing extern Variables among Load Modules 389

Appendix 6.Using the indep Option for Interlanguage
Communication 393

Appendix 7.Extended Names 405

Appendix 8.Library Initialization and Termination Exits 415

Appendix 9.SAS/C Redistribution Package 417

342

343

A P P E N D I X

1
The DSECT2C Utility

Introduction 343
How to Use DSECT2C 343

Input and Output 343

Options 345

Usage Notes 346

LENGTH_ZERO_2D macro 347
LENGTH_ZERO_REF macro 347

Invoking DSECT2C 348

In TSO 348

Under CMS 349

Under OS/390 batch 349

typedefs and Macros 350
Converting Assembler Language Types to C Language Types 350

Using Symbol Macros 350

Messages 351

Introduction
This appendix describes the DSECT2C utility program. DSECT2C converts an

assembler language dummy section, known as a DSECT, to an equivalent C structure
definition. DSECT2C can be very helpful when writing C programs that interface with
assembler language programs. The first section of this appendix explains how to use
DSECT2C, including the required operating system commands or control language. The
second section discusses the C typedefs and macro definitions that are generated
along with the structure definition.

How to Use DSECT2C
This section explains how to use the DSECT2C utility. Included are discussions of

input and output files, options, usage notes, and the operating system commands or
control language required to invoke DSECT2C.

Input and Output
The input file to DSECT2C is an assembler listing file (under OS/390, this is the

SYSPRINT data set; under CMS, it is the filetype LISTING file). To generate this file,
create an assembler language program consisting of only the DSECT definition and an

344 Input and Output 4 Appendix 1

END instruction. Example Code 16.1 on page 344 shows a sample assembler language
input file. If the DSECT is in an existing assembler language source library, it can be
included with a COPY instruction, followed by an END instruction. DSECTs in macro
libraries can be allowed to expand in the listing.

Example Code A1.1 Sample Assembler Language Input File

SAMPLECB DSECT
NAME DS CL8
ADDRESS DS A
NUMBER DS F

ORG ADDRESS
DNUM DS D

ORG ,
FLAGS DS XL1
ADDR3 DS AL3

END

Invoke the assembler and produce a listing file. DSECT2C expects stdin to be
redirected to the listing file.

DSECT2C writes the C structure definition to stdout. This file also includes any
typedefs used in the structure, a set of macro definitions for the structure members,
and other output as specified by DSECT2C options.

Example Code 16.2 on page 344 shows the output file produced by DSECT2C for the
DSECT defined in Example Code 16.1 on page 344. There are four distinct parts:

� C typedefs corresponding to assembler language types
� a C structure corresponding to assembler language DSECT
� C macros for each of the fields in the structure
� optional cross-reference information.

Example Code A1.2 Sample DSECT2C Output File

#if !defined(_AL3)
#define _AL3
typedef struct

{
char BF : 24;
} AL3;

#endif

#if !defined(_CL8)
#define _CL8
typedef char CL8(|8|);
#endif

struct SAMPLECB
{
CL8 name;
union

{
struct

{

The DSECT2C Utility 4 Options 345

void *address;
int number;
} _s0;

double dnum;
};

char flags;
AL3 addr3;
};

#define ADDRESS _s0.address
#define ADDR3 addr3
#define DNUM dnum
#define FLAGS flags
#define NAME name
#define NUMBER _s0.number

/*
SYMBOL OFFSET LENGTH TYPE C-TYPE C-NAME
ADDRESS 000008 000004 A void * _s0.address
ADDR3 000011 000003 AL3 AL3 addr3
DNUM 000008 000008 D double dnum
FLAGS 000010 000001 XL1 char flags
NAME 000000 000008 CL8 CL8 name
NUMBER 00000C 000004 F int _s0.number
SAMPLECB 000000 000000
*/

Note: DSECT2C generates identifiers for unnamed fields and inner structures when
necessary. These identifiers always have the format _f or _s followed by an integer
number. 4

Options
DSECT2C accepts six options, as shown in Table A1.1 on page 346.

346 Usage Notes 4 Appendix 1

Table A1.1 DSECT2C Options

Option Explanation

-c Assembler language comments in the input file are included as C comments in
the output file.

-d DSECT2C generates a declaration of the structure, instead of a definition. The
DSECT name in lowercase is used as the identifier. For example, without the -d
option, the format of the structure generated by DSECT2C is
struct CNTLBLOK {
.
.
.
};

If the -d option is used, DSECT2C changes that to
struct CNTLBLOK {
.
.
.
} cntlblok;

-i The assembler language instruction associated with each structure member is
included as a comment in the output file. The -i option automatically enables
the -c option.

-n DSECT2C assigns names to any unions within the output structure. These
names are of the form _un where n is an interger

-u stderr output is in uppercase.

-x DSECT2C adds cross-reference information to the output file.

-z DSECT2C subtitles LENGTH_ZERO or LENGTH_ZERO_REF macros for arrays with
0 elements and LENGTH_ZERO_2D macros for two-dimensional arrays whose
first dimensions are 0.

Usage Notes

1 DSECT2C creates structures that use anonymous unions, nonaligned structures,
and noninteger bitfields. These types are nonstandard extensions to the C
language and may not be supported by other compilers. C source files that include
these structure definitions may need to be compiled with the bitfield option,
using char as the default allocation unit.

For more information about language extensions, see “Language Extensions” on
page 28. For more information on compiler options, see Chapter 6, “Compiler
Options,” on page 101.

2 DSECT2C changes certain national characters to a digraph that is acceptable in a
C identifier. The characters and their associated digraphs are as follows:

@ A_
P_
$ D_

Note that only leading $’s are changed. Use the dollars compiler option if a
structure member identifier contains embedded $’s.

The DSECT2C Utility 4 Usage Notes 347

3 DSECT2C may or may not be able to detect erroneous input. Do not use
DSECT2C on a DSECT that caused the assembler to produce WARNING or
ERROR messages.

4 DSECT2C calculates the offset and alignment required for each DSECT field.
Each field in the DSECT is assumed to be properly aligned for its type.
(Improperly aligned fields cause the assembler to generate a WARNING message.)

5 DSECT2C ignores all instructions in the input file except for those composing the
DSECT itself and EQU statements that precede the DSECT.

6 Any instructions in the DSECT that are prevented from appearing in the
assembler listing file (by the PRINT instruction, for example) will not appear in
the C structure DSECT2C creates.

7 If the assembler used to create the input listing file has been modified to create a
special listing format, DSECT2C may not be able to find the DSECT instruction or
instructions in the DSECT. In this case, use an editor to remove unnecessary
records in the listing before invoking DSECT2C.

8 DSECT2C converts assembler language constructs with a duplication factor of 0 to
an array with 0 elements. For example, consider this assembler language
statement:

BEGINBUF DS 0C

By default, DSECT2C converts this to the following structure member:

char beginbuf(|0|);

The SAS/C Compiler accepts such an array declaration within a structure
definition as a language extension. However, most C compilers do not allow a
declaration of an array with 0 elements. If you attempt to compile a program
containing a structure generated by DSECT2C that contains this kind of
declaration using another compiler, that compiler will probably generate an error
message and refuse to compile the program. The -z option causes DSECT2C to
generate LENGTH_ZERO, LENGTH_ZERO_2D, and LENGTH_ZERO_REF macros, which
can be used to overcome this problem.

The -z option causes DSECT2C to substitute a call to the LENGTH_ZERO macro
instead of generating an array of 0 elements. The LENGTH_ZERO macro accepts two
arguments, the type and name of the member. For example, if the
-z option is used, DSECT2C converts the assembler language statement shown
above (BEGINBUF DS 0C) to the following statement:

LENGTH_ZERO(char, beginbuf);

You must supply a definition of the LENGTH_ZERO macro that generates a
declaration for the member that is acceptable to the target compiler.

LENGTH_ZERO_2D macro
The LENGTH_ZERO_2D macro is used when the member is a two-dimensional array

whose first dimension is 0. As shown here, the LENGTH_ZERO_2D macro accepts three
arguments, the type of the member, its name, and the second dimension:

LENGTH_ZERO_2D(int, nfield, 2);

LENGTH_ZERO_REF macro
The LENGTH_ZERO_REF macro is generated by DSECT2C in the C macro

corresponding to a structure member. By default, the macro for a zero-length array
member is defined as follows:

348 Invoking DSECT2C 4 Appendix 1

#define BEGINBUF beginbuf(|0|)

If the -z option is used, DSECT2C substitutes the following LENGTH_ZERO_REF
macro:

#define BEGINBUF LENGTH_ZERO_REF(beginbuf)

The LENGTH_ZERO_REF macro accepts one argument, the member name.
DSECT2C also generates default definitions of these three macros. These definitions

produce the same member declaration as would be generated if the -z option were not
in effect. Each definition is protected by an #if !defined preprocessor statement, so
any definitions you supply override the default definitions. The default definitions
generated by DSECT2C are

#if !defined(LENGTH_ZERO)
#define LENGTH_ZERO(type, name) type name(|0|)
#endif
#if !defined(LENGTH_ZERO_2D)
#define LENGTH_ZERO_2D(type, name, dim) type name(|0|)(|dim|)
#endif
#if !defined(LENGTH_ZERO_REF)
#define LENGTH_ZERO_REF(name) name(|0|)
#endif

Invoking DSECT2C
DSECT2C is a C program and can be invoked as you would any other C program. In

general, you must specify the name of the DSECT to be converted and any options,
redirect stdin to the assembler listing file, and redirect stdout to the desired output
file.

In TSO
In TSO, you invoke DSECT2C with the CALL command, with the C command, or as

a TSO command. If you use the TSO CALL command, invoke DSECT2C as follows:

CALL ’library.name(DSECT2C)’ ’dsect [listing] output options’

library.name is the name of the data set containing DSECT2C.

dsect is the name of the DSECT to be converted.

listing is either the DDname allocated to the assembler listing or the data
set name of the assembler listing. If a data set name is specified, it
must be prefixed with either tso: or dsn:. The highest level
qualifier of the data set must also be included.

output is either the DDname allocated to the output data set or the data set
name of the output data set.

options are DSECT2C options.

Following is an example:

CALL ’SASC.LOAD(DSECT2C)’
’IHADCB <tso:MYDSECT.LIST(IHADCB) >tso:MYDSECT.H(IHADCB)’

Consult your SAS Software Representative for C compiler products for the correct
library.name.

The DSECT2C Utility 4 Invoking DSECT2C 349

Under CMS
Under CMS, invoke DSECT2C as follows:

DSECT2C dsect [listing]output options

dsect is the name of the DSECT to be converted.

listing is the assembler listing file.

output is the output file.

options are DSECT2C options.

Following is an example:

DSECT2C FSCBD <FSCBD.LISTING >FSCBD.H

Under OS/390 batch
The DSECT2C cataloged procedure can be used to execute DSECT2C under OS/390

batch. This procedure allocates SYSPRINT to a temporary data set, invokes the
assembler, and then invokes DSECT2C to produce the C structure. You should provide
a DD card for the assembler SYSIN data set and a DD card for DSECT2C’s D2COUT
data set. Example Code 16.3 on page 349 shows typical JCL for using the DSECT2C
cataloged procedure.

Example Code A1.3 Sample JCL for Running the DSECT2C Cataloged Procedure

//SAMPD2C JOB job card information
//*--
//* INVOKE ASSEMBLER AND DSECT2C
//*
//* REPLACE GENERIC DATA SET NAMES AS APPROPRIATE
//*--
//STEP1 EXEC DSECT2C,PARM.D2C=’dsect-name options ’
//ASM.SYSIN DD DSN=assembler.source.file ,DISP=SHR
//D2C.D2COUT DD DSN=your.output.file ,DISP=OLD
//

In this example,

dsect-name is the name of the DSECT to be converted.

options are DSECT2C options. Separate options with blanks, not commas.

The ASM step of the DSECT2C procedure contains a SYSLIB DD card for the source
file libraries SYS1.MACLIB and SYS1.AMODGEN. Note that DSECT2C is not invoked
unless the return code from the assembler is 0.

The DSECT2C procedure contains the JCL shown in Example Code 16.4 on page 349.

Example Code A1.4 Expanded JCL for DSECT2C

//DSECT2C PROC
//ASM EXEC PGM=ASMBLR,PARM=TERM
//SYSTERM DD SYSOUT=*
//SYSPUNCH DD DUMMY
//SYSLIN DD DUMMY

350 typedefs and Macros 4 Appendix 1

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(TRK,(5,1))
//SYSUT2 DD DSN=&&SYSUT2,UNIT=SYSDA,SPACE=(TRK,(5,1))
//SYSUT3 DD DSN=&&SYSUT3,UNIT=SYSDA,SPACE=(TRK,(5,1))
//SYSLIB DD DSN=SYS1.MACLIB,DISP=(SHR,KEEP,KEEP)
// DD DSN=SYS1.AMODGEN,DISP=(SHR,KEEP,KEEP)
//SYSPRINT DD DSN=&&LISTING,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1089),
// DISP=(NEW,PASS),UNIT=SYSDA
//D2C EXEC PGM=DSECT2C,COND=(0,NE,ASM)
//STEPLIB DD DSN=SASC.LOAD,DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,DISP=SHR RUNTIME LIBRARY
//SYSIN DD DSN=*.ASM.SYSPRINT,DISP=(OLD,DELETE,DELETE),
// VOL=REF=*.ASM.SYSPRINT
//SYSTERM DD SYSOUT=*
//SYSPRINT DD DDNAME=D2COUT

typedefs and Macros

This section discusses the C typedefs and macro definitions that are generated
along with the structure definition.

Converting Assembler Language Types to C Language Types

Assembler language supports a much larger variety of types than does the C
language. In addition, the best representation of a specific assembler language type
often depends on how the data are accessed or modified. Therefore, conversion of
assembler language types to C types is not always straightforward. For this reason,
DSECT2C constructs typedefs for some types. This allows a clearer definition of
some types, as well as making it easier for the programmer to choose a different C type
if necessary. CL8 and AL3, shown in Example Code 16.2 on page 344, are examples of
such typedefs.

Since the typedef name can only be declared once, DSECT2C encloses each
typedef in preprocessor statements to prevent multiple declarations of the typedef
name from occurring when two or more structures are included in the same source file.

Using Symbol Macros

As part of the conversion, DSECT2C generates a macro for each symbol in the
DSECT. The replacement list for each macro is the member identifier associated with
the symbol. Using these macros to refer to the member is usually easier (and more
readable) than coding the member identifier itself. Example Code 16.2 on page 344
shows examples of such macros.

For example, given the structure SAMPLECB defined in Example Code 16.2 on page
344, you can code the following:

#include "samplecb.h"
int f(struct SAMPLECB *s)

{
return s->NUMBER; /* better than ’s->_s0.number’ */
}

The DSECT2C Utility 4 Messages 351

Messages

The SAS/C Compiler and Library Quick Reference Guide contains a list of all
DSECT2C diagnostic messages. All error conditions cause termination of execution.

352 Messages 4 Appendix 1

353

A P P E N D I X

2
The AR370 Archive Utility

Introduction 353
Using the AR370 Archive Utility under CMS 354

Command Characters 355

Optional Modifier Characters 355

Combinations of command and command modifier characters 356

Using the AR370 Archive Utility in TSO 357
The AR370 CLIST 357

action arguments 357

optional-parms arguments 358

The LC370 CLIST 359

OS/390 File Attributes 359

DCB Characteristics 359
Using the AR370 Archive Utility under OS/390 Batch 360

The AR370 Cataloged Procedure 360

AR370 JCL requirements 360

AR370 PARM String 361

AR370 INCLUDE Statements 361
The LC370CA Cataloged Procedure 362

The LCCCPCA Cataloged Procedure 363

Introduction

The AR370 archive utility is a program that is used to create or maintain a collection
of object modules called an AR370 archive. AR370 archives have a file organization that
permits them to be used as COOL autocall libraries, supporting autocall of extended
names.

Logically speaking, an AR370 archive is organized as a collection of members,
identified by a member name that resembles a filename. The member names serve only
to identify the members to the AR370 utility. Otherwise, member names are not
significant and do not affect the autocall process. For each object module contained in
an AR370 archive, the AR370 utility records the names of external symbols defined or
referenced in the member (including external objects with extended names). This allows
COOL to find the member that defines a particular symbol. No connection is needed
between an AR370 member name and the external symbol names defined by the
member.

Physically, each AR370 archive is composed of three parts:

header
contains information such as the date of the last modification and the release
number of the AR370 utility that made the modification.

354 Using the AR370 Archive Utility under CMS 4 Appendix 2

member archive
contains a copy of each file added to the library. (For AR370 archives, unlike OS/
390 partitioned data sets, the order of members may be significant.)

symbol table
contains a list of each external symbol defined or referred to by any member of the
archive.

When adding or replacing members, the AR370 utility inserts a copy of each input
file into the member archive. The utility also searches the external symbol dictionary
(ESD) of each input file, creates a sorted list of ESD entries, and inserts the list in the
library symbol table. The library symbol table is used by COOL to search an archive
efficiently for ESD symbols and extended names.

Using the AR370 Archive Utility under CMS

Under CMS, the AR370 archive utility is invoked directly with the following
command:

AR370 cmds [posname] arcname [fname...]

The cmds argument must be specified and consists of an optional hyphen (-),
followed by one of the command characters d, m, r, x, or t. (t may be specified in
combination with any other command.) Optionally, you can concatenate the command
character with one or more of the command modifier characters a, b, e, f, j,q, or v. The
command and command modifier characters are described later in this section.

The optional posname argument specifies the name of a specific archive member and
is required only if one of the relative positioning command modifiers is specified.

The arcname argument specifies the archive fileid and must be present. The default
filetype is A. If filetype is specified, it must be joined to the filename with a period (.).
The default filemode is *. If a filemode is specified it must also be joined to the filetype
with a period (.).

Each fname argument specifies the fileid of a file to be added or replaced or the name
of an archive member to be manipulated. When used to specify fileids, the filename and
filetype must be joined with a period (.). The default filemode is *. If a filemode is
specified, it must also be joined to the filetype with a period (.). Member names must be
specified exactly as they appear in the archive. When a file is added or replaced in the
archive, the input archive member name is the filename.filetype translated to upper case.

One common use of the AR370 archive utility is to replace or add files to an archive.
In the following example, the utility is invoked to replace the members RUN.TEXT and
WALK.TEXT in the AR370 archive named ZOOM A, and verbose output is requested.

AR370 RV ZOOM RUN.TEXT WALK.TEXT

If either RUN.TEXT or WALK.TEXT does not exist in the ZOOM archive, they are
added to the archive by the r command character.

When performing an add or replace, the CMS wildcard character, an asterisk (*),
may be used in the filename or filetype for CMS style pattern matching; that is, all files
matching the pattern are added or replaced. If you need a member name other than the
filename, you can use the following syntax:

filename.filetype.filemode=membername

All of the filename, filetype, and filemode must be specified, and wildcards cannot be
used. The new membername may be any name, but it is strongly recommended that it
be a valid CMS filename, as members whose names are not valid CMS filenames are

The AR370 Archive Utility 4 Optional Modifier Characters 355

difficult to manipulate with the AR370 utility. Here is an example of the use of
replace-as:

AR370 R MYLIB THIS.TEXT.A=THAT.OBJECT

This command stores the file THIS.TEXT.A in the archive MYLIB with member
name THAT.OBJECT.

Command Characters
The following command characters are recognized:

d deletes the specified members from the archive.

m moves the specified members. By default, the members are moved to
the end of the archive. If an optional positioning character (a or b) is
used, the posname argument must be present to specify that the
named members are to be placed after (a) or before (b) posname.
Note that the members are moved in the order of their appearance
in the archive, not in the order specified on the command line. This
means that when a number of members are moved, they remain in
the same order relative to each other as before the move.

r replaces the specified files in the archive, creating new members for
any that are not already present. If an optional positioning
character (a or b) is used, the posname argument must be present to
specify that the new members are to be placed after (a) or before (b)
posname. In the absence of a positioning character, new members
are appended at the end. When the r command character is used,
the AR370 archive utility creates an archive file if it does not
already exist. If no files are specified by fname arguments, the
utility creates an empty archive.

t types a description of the contents of the archive. If no member
names are specified, all members in the archive are described by
name. If any member names are specified, information appears
about those members only. Additional information is produced when
either the (v) or (e) command modifiers is specified.

x extracts the named archive members. If no names are specified, all
members of the archive are extracted. The member name is used as
the name of each extract output file. The extract command does not
alter or delete entries from the library.

Optional Modifier Characters
The following optional modifier characters are recognized:

a After: Positions the members to be moved or replaced after the
member specified by the posname argument. If you specify a, you
must specify posname.

b Before: Positions the members to be moved or replaced before the
member specified by the posname argument. If you specify b, you
must specify posname.

e Enumerate: Lists the defined symbols for the members specified for
the type command. This modifier is meaningful only when used with

356 Optional Modifier Characters 4 Appendix 2

the type (t) command. When used with the verbose (v) command
modifier, all defined and referenced symbols in the specified
members are displayed.

f Files: On OS/390, specifies the use of a DDname prefix by the
AR370 utility. Refer to the files option in Chapter 6, “Compiler
Options,” on page 101 for more information.

j Japan or uppercase: Produces all terminal output in uppercase
(japan).

q Quick: Processes members of existing archives more quickly. This
option keeps AR370 from reprocessing every member in the archive.
It greatly reduces the amount of I/O needed to add, replace, delete,
and move members in an archive, since no work file is used. You
should use this option with care, however, because an existing
library containing data could be destroyed if space in the data set
runs out. Prior to using AR370 with the q option, it is recommended
that you back up the archive so that you will not lose your data in
the event that the original data set is destroyed.

The q option causes the member order to be maintained only in
the symbol table. This avoids the I/O needed to reposition the actual
objects within the archive. Only the order of members in the symbol
table is relevant to the linker. Therefore, the order of the actual
object files in the archive does not always have to be maintained. If
an archive has been modified by AR370 and is subsequently changed
without the q option, the actual order of the objects within the
archive is changed to match the order of the members in the symbol
table.

v Verbose: When used with the type (t) command, the v command
modifier produces a long listing of information for each specified
member in the form of name, date, size, and number of symbols. If
no members are specified, a listing is produced for all members in
the archive.

When used with the d, m, or x operations, the v modifier causes
the AR370 archive utility to print each command operation character
and the member name associated with that operation. For the r
operation, the AR370 archive utility shows an a if it adds a new file
or an r if it replaces an existing member. The verbose modifier also
produces the AR370 archive utility’s title and copyright notice.

y Yes: List the mangled name along with the demangled name. The y
modifier is meaningful only when used with the e (enumerate)
optional modifier.

Combinations of command and command modifier characters
Only the combinations of commands and command modifiers shown in the following

table are meaningful.

Table A2.1 Command and Command Modifier Combinations

Command Accepted Modifiers and Commands

d e, f, j, q, t, v

m e, f, j, q, t, v and a | b

The AR370 Archive Utility 4 The AR370 CLIST 357

Command Accepted Modifiers and Commands

r e, f, j, q, t, v and a | b

t d, e, f, j, m, r, v, x

x e, f, j, t, v

Using the AR370 Archive Utility in TSO

This section describes the LC370 and AR370 CLISTs, which allow you to use the
AR370 Archive Utility in TSO. It also describes the OS/390 file attributes and DCB
characteristics of AR370 archives.

The AR370 CLIST
The AR370 CLIST invokes the AR370 archive utility in TSO. The syntax is as follows:

AR370 archive action target [optional-parms]

The archive argument specifies the name of the AR370 archive. The action and
optional-parms arguments are listed in the following sections.

action arguments
The action argument can be any of the following:

DELETE
deletes the AR370 archive member specified by the target argument.

DISPLAY
displays information about the AR370 archive member specified by the target
argument.

EXTRACT
extracts the AR370 archive member specified by the target argument into the data
set specified with the parameter INTO. For example, the following command
extracts member GREEN from userid.SPECTRUM.A into the OS/390 file
userid.COLOR.OBJ(GREEN).

AR370 SPECTRUM EXTRACT GREEN INTO(COLOR.OBJ(GREEN))

INCLUDE
uses the file specified by the target argument as a list of INCLUDE statements.

MOVE
moves the AR370 archive member specified by the target argument.

QUICK
processes members of existing archives more quickly. This option keeps AR370
from reprocessing every member in the archive. It greatly reduces the amount of I/
O needed to add, replace, delete, and move members in an archive, since no work
file is used. You should use this option with care, however, because an existing
library containing data could be destroyed if space in the data set runs out. Prior
to using AR370 with the QUICK option, it is recommended that you back up the
archive so that you will not lose your data in the event that the original data set is
destroyed.

358 The AR370 CLIST 4 Appendix 2

REPLACE
adds or replaces the file specified by the target argument in the AR370 archive.

The target argument specifies the AR370 archive member or OS/390 data set to
perform the action on. If the action is REPLACE or INCLUDE, the target argument is the
name of a data set containing the replacement member or INCLUDE statements. When
the AR370 utility adds or replaces a member on OS/390, the archive member name is
determined by the input filename. If the input file is a PDS member, the archive
member name is the same as the PDS member name. If the input file is a sequential
data set, the member name is formed from the final two qualifiers of the input data set
name. If the action is MOVE, EXTRACT, DELETE, or DISPLAY, the target name is an
AR370 archive member name. For the DISPLAY action, you can use an asterisk (*) to
specify all AR370 archive members.

optional-parms arguments
The optional-parms argument can be any of the following:

AFTER(member-name)
specifies the AR370 archive member after which the moved or replaced member is
to be stored.

BEFORE(member-name)
specifies the AR370 archive member before which the moved or replaced member
is to be stored.

DBCLIST
allows debugging of the AR370 CLIST.

INTO(dataset-name)
specifies the name of a TSO data set in which to store the extracted member. If
the data set belongs to another user, the fully qualified name of the data set must
be specified, and the name must be preceded and followed by three single quotes
as follows:

INTO(’’’FRED.EXTRACT.OBJ’’’)

OTHER(parameters)
allows miscellaneous parameters to be passed to the AR370 archive utility.

PRINT(dataset-name)
specifies the name of a TSO data set in which to store the printed output from the
AR370 archive utility. If the data set belongs to another user, the fully qualified
name of the data set must be specified, and the name must be preceded and
followed by three single quotes, for example, PRINT(’’’PROJECT.AR.LIST’’’).

SYMBOLS
requests display of the symbols that are defined in the members listed by the
DISPLAY action. When used with the VERBOSE parameter, a listing of all symbols
(both defined and referenced) is produced.

UPPER
specifies that the output from the AR370 archive utility is to be uppercase.

VERBOSE
specifies verbose information. Refer to the verbose (v) command modifier under
“Optional Modifier Characters” on page 355 for more details.

WORKSPC(’primary secondary’)
specifies the workfile space allocation. The primary argument specifies the
primary allocation, and the secondary argument specifies the secondary allocation.

The AR370 Archive Utility 4 DCB Characteristics 359

WORKUNIT(storage-unit)
specifies the workfile allocation unit: track, cylinder, or block.

The LC370 CLIST
The LC370 CLIST has been enhanced to allow the compiler’s object code output to be

stored in an AR370 archive. The name of the archive in which the object code is to be
stored is specified using the arlib compiler option. If the archive belongs to another
user, its name must be given in full, and the name must be preceded and followed with
three single quotes. For example:

’’’userid.archive-name.AR’’’

If the archive name is not quoted and does not have a final qualifier of AR, a final
qualifier of AR is appended.

The member compiler option is used with the LC370 CLIST to specify the output
archive member name, which must also be a valid OS/390 partitioned data set member
name. If member is omitted and the input file is a partitioned data set member, the
same member name will be used in the AR370 archive. If member is omitted and the
input file is not a partitioned data set member, you will be required to enter a member
name. Note that you may specify only one of the OBJECT and ARLIB keywords.

Here is an example of the use of the arlib and member compiler options:

LC370 RECIPE(BROIL) ARLIB(KITCHEN) MEMBER(BROILING)

In this example, the object code resulting from the compilation of
userid.RECIPE.C(BROIL) is stored as member BROILING of userid.KITCHEN.AR.

OS/390 File Attributes
AR370 creates archives with RECFM FBS file attributes. In earlier releases, AR370

created archives with RECFM U file attributes. If you process an archive with RECFM
U file attributes, it obtains an F record format. This record format allows a single,
nonconcatenated archive to be processed by COOL without creating virtual copies of the
archive members, thus improving prelinker performance.

To concatenate old archives with RECFM U with new archives having an F or FBS
record format, specify the DCB characteristics of the concatenation to be RECFM=U.

If the concatenation is not RECFM U and it contains files with RECFM U and
RECFM F and/or RECFM FBS, the following error message may be issued:

IEC024I INCONSISTENT RECORD FORMATS F AND U, ddn-n,dsname

You can also convert old style archives to new style archives by performing an add,
move, or delete operation on the old archive with AR370.

DCB Characteristics
AR370 archives on OS/390 have the following DCB characteristics:

"RECFM=FBS,RECLEN=4080,BLOCKSIZE=4080"

360 Using the AR370 Archive Utility under OS/390 Batch 4 Appendix 2

Using the AR370 Archive Utility under OS/390 Batch

This section describes how to use the AR370 archive utility in batch mode under OS/
390.

The AR370 Cataloged Procedure
The AR370 cataloged procedure is used to run the AR370 utility under OS/390 batch.

The job shown in Example Code 17.1 on page 360 adds four object files from two OS/390
data sets to an AR370 archive and displays the archive information on the new
members on SYSPRINT.

Example Code A2.1 Sample AR370 Archive Utility Batch Job

//RUNAR370 JOB job card information...
//GO EXEC AR370,PARM.AR=’RTV’
//AR.SYSARLIB DD DISP=OLD,DSN=userid.PROJ.AR
//AR.SYSIN DD *
INCLUDE MYOBJ(mem1,mem2,mem3)
INCLUDE HEROBJ
//MYOBJ DD DISP=SHR,DSN=userid.PROJ.OBJ
//HEROBJ DD DISP=SHR,DSN=group.LEADER.OBJ(mem)

The JCL for the AR370 procedure shown in Example Code 17.2 on page 360 is
correct as of the publication of this guide. However, it may be subject to change.

Example Code A2.2 JCL for AR370 Cataloged Procedure

//AR370 PROC
//**
//* NAME: AR370 (AR370) ***
//* PRODUCT: SAS/C ***
//* PROCEDURE: OBJECT CODE ARCHIVAL ***
//* DOCUMENTATION: TECHNICAL REPORT C-112 ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//AR EXEC PGM=AR370#
//STEPLIB DD DISP=SHR, COMPILER LIBRARY
// DSN=SASC.LOAD
// DD DISP=SHR, RUNTIME LIBRARY
// DSN=SASC.LINKLIB

//SYSPRINT DD SYSOUT=A
//SYSTERM DD SYSOUT=A
//SYSARWRK DD UNIT=SYSDA,SPACE=(CYL,(2,1))

AR370 JCL requirements
If you choose to write your own JCL to run AR370 under OS/390, some or all of the

following data definitions are required.

The AR370 Archive Utility 4 AR370 INCLUDE Statements 361

SYSARLIB AR370 archive

SYSIN INCLUDE cards used to specify new archive members

SYSPRINT standard output

SYSARWRK alternate data set for work space

SYSPUNCH where extracted archive members are to be written

SYSTERM standard error output

Additional DD statements are required if referenced by SYSIN INCLUDE statements.

AR370 PARM String
Under OS/390 batch, the syntax for the AR370 PARM string is as follows:

cmds [files_prefix] [posname] [memname ...]

cmds must be present. It is specified as a string of command characters and modifier
characters. These specifications are the same as for the AR370 utility under CMS, as
described previously in “Command Characters” on page 355 and “Optional Modifier
Characters” on page 355 with the following exception:

CAUTION:
Specify the Member Name Under OS/390 batch, if you specify x without also specifying
the member names, the members are extracted to the same flat file. Each extracted
member is overwritten by the following extracted member, and at completion, the flat
file will contain only the last extracted member. 4

Additionally, OS/390 supports a command modifier character of f, which specifies the
use of a DDname prefix by the AR370 utility.

files_prefix is required only if the f command modifier character is specified. The
prefix can contain from one to three characters. The prefix then replaces the string SYS
in all AR370 DDnames (except for SYSTERM, which is defined by the C library as the
standard error file).

posname specifies the name of a specific archive member and is required only if one
of the relative positioning command modifiers (a or b) is specified.

memname specifies the members of the archive to be processed. Member names must
be specified exactly as they appear in the archive.

AR370 INCLUDE Statements
When the r command character is specified, AR370 reads SYSIN for INCLUDE

statements that specify the locations of new or replacement archive members. The
format of the INCLUDE statement is the following:

INCLUDE ddname [(member [,member])]

where the ddname may be allocated to a sequential data set, a PDS, or a member of a
PDS. For example:

INCLUDE COBJ
may refer to a sequential data set or one specific member of a PDS.

INCLUDE COBJ(MEM)
refers to member MEM of a PDS.

INCLUDE COBJ(MEM1,MEM2)
refers to members MEM1 and MEM2 of a PDS.

362 The LC370CA Cataloged Procedure 4 Appendix 2

In OS/390 when a member is added to (or replaced in) an AR370 archive, the archive
member name is determined from the name of the input file. If the input file is a PDS
member, the archive member name is the same as the PDS member name. Otherwise,
the archive member name is formed from the last two qualifiers of the input data set
name.

If you need an archive member name different from the name that the AR370 utility
would select by default, you can use the "replace as" feature of AR370. This feature lets
you attach an archive member name to a DDname or member specification using the
equal sign (=). For example:

INCLUDE COBJ:MEM2.OBJ
INCLUDE COBJ(MEM1=#BAZ,QUUX=*WOBBLE*)

The first of these statements stores the contents of the COBJ DDname as member
MEM2.OBJ of the archive. The second of these two statements stores member MEM1
of the COBJ PDS as archive member #BAZ and PDS member QUUX as archive
member *WOBBLE*.

The LC370CA Cataloged Procedure
The OS/390 JCL procedure LC370CA runs the compiler and stores the resulting

object module in an AR370 archive. This procedure is useful if you are using extended
names and want to have references to the compiled module resolved automatically by
COOL. See Example Code 17.3 on page 362 for typical JCL to run LC370CA.

Example Code A2.3 Sample JCL for Compiling with Procedure LC370CA

//COMPILE JOB job card information
//*--------------------------------
//* COMPILE A C PROGRAM AND STORE OBJECT IN AR-LIBRARY
//* REPLACE GENERIC NAMES AS APPROPRIATE
//*--------------------------------
//STEP1 EXEC LC370CA,PARM.C=’options’,
// MEMBER=ar-member
//C.SYSIN DD DISP=SHR,DSN=your.source.library(member)
//C.libddn DD DISP=SHR,DSN=your.macro.library
//A.SYSARLIB DD DISP=OLD,DSN=your.ar.archive
//

When you use LC370CA, you only need to provide DD cards for SYSIN (your source
data set) and SYSARLIB (your output AR370 archive). You must also specify the
MEMBER= option to specify the member name under which the object code should be
stored in the output archive. This name must be a valid OS/390 PDS member name.

The LC370CA procedure contains the JCL shown in Example Code 17.4 on page 362.
This JCL is correct as of the publication of this report. However, it may be subject to
change.

Example Code A2.4 Expanded JCL for LC370CA

//LC370CA PROC MEMBER=DO.NOT.OMIT
//**
//* PRODUCT: SAS/C ***
//* PROCEDURE: COMPILATION ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***

The AR370 Archive Utility 4 The LCCCPCA Cataloged Procedure 363

//**
//*
//C EXEC PGM=LC370B
//STEPLIB DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
// DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSLIN DD DSN=&&OBJECT(&MEMBER),SPACE=(3200,(10,10,1)),
// DISP=(NEW,PASS),
// UNIT=SYSDA,DCB=(RECFM=FB,LRECL=80,DSORG=PO)
//SYSLIB DD DSN=SASC.MACLIBC,
// DISP=SHR STANDARD MACRO LIBRARY
//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//A EXEC PGM=AR370#,PARM=R,
// COND=(4,LT,C)
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSARLIB DD DSN=&&AR,SPACE=(4080,(10,10)),
// DISP=(NEW,PASS),UNIT=SYSDA
//OBJECT DD DSN=*.C.SYSLIN,VOL=REF=*.C.SYSLIN,DISP=(OLD,PASS)
//SYSIN DD DSN=SASC.BASEOBJ(AR@OBJ),
// DISP=SHR

The LCCCPCA Cataloged Procedure
The procedure LCCCPCA preprocesses and compiles a C program for CICS and

stores the resulting object module in an AR370 archive. This procedure is useful if you
are using extended names and want to have references to the compiled module resolved
automatically by COOL. See Example Code 17.5 on page 363 for typical JCL to run
LCCCPCA.

Example Code A2.5 Sample JCL for Compiling with Procedure LCCCPCA

//COMPILE JOB job card information
//*--------------------------------
//* PREPROCESS AND COMPILE A C PROGRAM FOR CICS
//* AND STORE OBJECT IN AR-LIBRARY
//* REPLACE GENERIC NAMES AS APPROPRIATE
//*--------------------------------
//STEP1 EXEC LCCCPCA,PARM.C=’options’,
// MEMBER=ar-member

364 The LCCCPCA Cataloged Procedure 4 Appendix 2

//CCP.SYSIN DD DISP=SHR,DSN=your.source.library(member)
//C.libddn DD DISP=SHR,DSN=your.macro.library
//A.SYSARLIB DD DISP=OLD,DSN=your.ar.archive
//

When you use LCCCPCA, you only need to provide DD cards for SYSIN (your source
data set) and SYSARLIB (your output AR370 archive). You must also use the
MEMBER= option to specify the member name under which the object code should be
stored in the output archive. This name must be a valid OS/390 PDS member name.

The LCCCPCA procedure contains the JCL shown in Example Code 17.6 on page
364. This JCL is correct as of the publication of this report. However, it may be subject
to change.

Example Code A2.6 Expanded JCL for LCCCPCA

//LCCCPCA PROC MEMBER=DO.NOT.OMIT
//**
//* NAME: LCCCPCA (LCCCPCA) ***
//* SUPPORT: C COMPILER DIVISION ***
//* PRODUCT: SAS/C ***
//* PROCEDURE: CICS TRANSLATION/COMPILATION ***
//* DOCUMENTATION: SAS/C CICS USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//CCP EXEC PGM=LCCCP0,REGION=1536K
//STEPLIB DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
// DD DSN=SASC.LOAD,
// DISP=SHR TRANSLATOR LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSPUNCH DD UNIT=SYSDA,DSN=&&CPPOUT,DISP=(NEW,PASS),
// SPACE=(TRK,(5,5)),DCB=(RECFM=VB,LRECL=259)
//C EXEC PGM=LC370B,PARM=’RENT’,COND=(8,LT,CCP)
//STEPLIB DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
// DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

//SYSLIN DD DSN=&&OBJECT(&MEMBER),SPACE=(3200,(10,10,1)),
// DISP=(NEW,PASS),
// UNIT=SYSDA,DCB=(RECFM=FB,LRECL=80,DSORG=PO)
//SYSLIB DD DSN=SASC.MACLIBC,
// DISP=SHR STANDARD MACRO LIBRARY
//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)
//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1 ONLY
//SYSIN DD DSN=*.CCP.SYSPUNCH,DISP=(OLD,DELETE,DELETE),

The AR370 Archive Utility 4 The LCCCPCA Cataloged Procedure 365

// VOL=REF=*.CCP.SYSPUNCH
//A EXEC PGM=AR370#,PARM=R,
// COND=((4,LT,CCP),(4,LT,C))
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSARLIB DD DSN=&&AR,SPACE=(4080,(10,10)),
// DISP=(NEW,PASS),UNIT=SYSDA
//OBJECT DD DSN=*.C.SYSLIN,VOL=REF=*.C.SYSLIN,DISP=(OLD,PASS)
//SYSIN DD DSN=SASC.BASEOBJ(AR@OBJ),
// DISP=SHR

366 The LCCCPCA Cataloged Procedure 4 Appendix 2

367

A P P E N D I X

3
The AR2UPDTE and UPDTE2AR
Utilities

Introduction 367
AR2UPDTE Utility 367

Using AR2UPDTE under CMS 368

Using AR2UPDTE in TSO 369

Using AR2UPDTE under OS/390 Batch 369

Default Member Translation Rules 370
AR2UPDTE Diagnostics 370

UPDTE2AR Utility 373

Using UPDTE2AR under CMS 373

Using UPDTE2AR in TSO 374

Using UPDTE2AR under OS/390 Batch 374

UPDTE2AR Diagnostics 375

Introduction
The utilities AR2UPDTE and UPDTE2AR transform an AR370 archive into a file

that is suitable for input to the IBM IEBUPDTE utility and vice versa. These utilities
can be useful for converting an existing object code PDS into an AR370 archive and for
creating an OS/390 PDS from an existing archive.

AR2UPDTE Utility
AR2UPDTE is a utility program that converts an AR370 archive to an IEBUPDTE

input format data file. AR2UPDTE reads in the archive and creates a new file of
IEBUPDTE input format data. The AR2UPDTE output file can be used as input to the
IBM IEBUPDTE utility to build an OS/390 partitioned data set that approximates the
AR370 archive provided as input to AR2UPDTE. Together AR2UPDTE and IEBUPDTE
can be used to copy every member of an AR370 format archive into a corresponding
member of a partitioned data set.

Archives built on a non-OS/390 system may have member names that are not
acceptable as member names to IEBUPDTE. AR2UPDTE offers a translation feature
that permits the user to specify how archive member names should be translated to
PDS member names. Default translation rules are always applied unless the user
specifies that no translation should be performed.

368 Using AR2UPDTE under CMS 4 Appendix 3

Using AR2UPDTE under CMS

Under CMS, the AR2UPDTE utility is invoked directly with the following command:

ar2updte [options] infile outfile

options specifies one or more options, each of which is a single character preceded by a
hyphen (-). Some options (for example, -t) must be followed by an option argument.
The argument may be separated from the option by white space, but this is not a
requirement. Note that the case of option characters is not significant, but that case is
significant for most option arguments.

The following options are recognized:

-t c:s
specifies a translation rule to be used by AR2UPDTE when deriving a PDS
member name from an archive member name. More than one -t option can be
specified. The option argument c:s indicates that if the string ’c’ (which can be
longer than a single character) occurs in an archive member name, it is to be
replaced by the string ’s’ in the output PDS member name.

Unless -x is specified, default member translation rules are used. See the
section “Default Member Translation Rules” on page 370 for details.

-x
specifies that no character translations will be applied to the member names
during the archive to IEBUPDTE conversion. The -x argument is optional. The
-x option can be used to preserve the original input archive’s member names, even
if they do not conform to the IEBUPDTE rules for acceptable PDS member names.
The resulting output may not be usable as input to IEBUPDTE, but it can be used
as input to UPDTE2AR to build a copy of the input archive.

The infile and outfile arguments must be specified. The infile argument specifies the
archive file identifier. It must be a valid archive. The outfile argument specifies the file
identifier of the resulting output file, which is in IEBUPDTE input format.

Note: Under CMS, the default filetype for the infile argument is A. If filetype is
specified, it must be joined to the filename with a period (.). The default filemode for the
infile argument is *. The outfile argument specifies the file identifier of the resulting
output file which is in IEBUPDTE input format. The default filetype for the outfile
argument is IEBUPDTE. If filetype is specified, it must be joined to the filename with a
period (.). The default filemode for the outfile argument is *. 4

The following examples show typical AR2UPDTE command lines under CMS:

ar2updte testlib.a test.iebupdte
Create a new IEBUPDTE input format file named test.iebupdte from the
archive testlib.a.

ar2updte -x testlib.a test2.iebupdte
Create a new IEBUPDTE input format file named test2.iebupdte from the
archive testlib.a without performing any translations on the names of object
members in the archive.

ar2updte -t ?:QU -t x:$ testlib.a test3.iebupdte
Create a new IEBUPDTE input format file named test3.iebupdte from the
archive testlib.a. Convert all question marks to the letters QU, and convert all
x’s to the dollar sign.

The AR2UPDTE and UPDTE2AR Utilities 4 Using AR2UPDTE under OS/390 Batch 369

Using AR2UPDTE in TSO
This section describes calling AR2UPDTE in TSO using the TSO CALL command.

Use the following syntax:

CALL ’library.name(AR2UPDTE)’ ’[options] infile outfile’ ASIS

Here, library.name is the name of the library containing AR2UPDTE. Consult your
SAS/C Software Representative for C compiler products for the correct library name.

See the section “Using AR2UPDTE under CMS” on page 368 for a description of the
options. Note that infile and outfile will be interpreted as DDnames unless a SAS/C
style prefix is used.

The following example shows a typical use of AR2UPDTE in TSO:

CALL ’SASC.LOAD(AR2UPDTE)’ ’tso:testlib.a tso:testpds.data’ ASIS

Using AR2UPDTE under OS/390 Batch
This section describes how to run AR2UPDTE under OS/390 batch using the

AR2UPDTE cataloged procedure.
The AR2UPDTE cataloged procedure is used to execute AR2UPDTE under OS/390

batch. You must provide a SYSARLIB DD statement defining the input AR370 archive
and a SYSPUNCH DD statement defining the output file. The output file must be
defined to have fixed-record format with 80-byte records. If you need to pass special
AR2UPDTE options, specify the OPTS keyword in the EXEC statement, as shown
below. See the section “Using AR2UPDTE under CMS” on page 368 for information on
the AR2UPDTE options and their meanings.

Example Code 18.1 on page 369 shows typical JCL for using the AR2UPDTE
cataloged procedure, followed by calling IEBUPDTE to generate a PDS.

Example Code A3.1 Sample JCL for Running the AR2UPDTE Cataloged Procedure

//SAMPAR2U JOB job card information
//*--

//* INVOKE AR2UPDTE FOLLOWED BY IEBUPDTE
//*
//* REPLACE GENERIC DATA SET NAMES AS APPROPRIATE
//*--

//STEP1 EXEC AR2UPDTE,OPTS=’options’
//U2A.SYSARLIB DD DSN=input.ar370.archive,DISP=SHR
//U2A.SYSPUNCH DD DSN=updte.format.output,DISP=(OLD,PASS)
//STEP2 EXEC PGM=IEBUPDTE,COND=(0,NE),PARM=’NEW’
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD DSN=output.pds,DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(your-space-values),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=your-blksize)
//SYSIN DD DSN=updte.format.output,DISP=OLD
//

In this example, options is any required AR2UPDTE options (for example, ’-t
?:QU’).

The AR2UPDTE procedure contains the JCL shown in Example Code 18.2 on page
370.

370 Default Member Translation Rules 4 Appendix 3

Example Code A3.2 Expanded JCL for AR2UPDTE

//AR2UPDTE PROC OPTS=’’
//**
//* NAME: AR2UPDTE (AR2UPDTE) ***
//* PRODUCT: SAS/C ***
//* PROCEDURE: CONVERT AR370 ARCHIVE TO IEBUPDTE INPUT ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//U2A EXEC PGM=AR2UPDTE,PARM=’&OPTS DDN:SYSARLIB DDN:SYSPUNCH’
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

Default Member Translation Rules
Unless the -x option is specified, some translations are automatically performed by

the AR2UPDTE utility:
� If a period (.) is in a member name and it is not the first character, it is removed,

and the rest of the member name is truncated (that is, MEMBER.NAME becomes
MEMBER in the resulting IEBUPDTE file).

� If a period (.) is the first character of a member name, it is translated to an at sign
(@).

� If blank ()is the first character of a member name and it is not a translate
character, then it is translated to a dollar sign ($).

� All member names are truncated to 8 characters since IEBUPDTE will not allow
member names longer than 8.

� All member names are uppercased.

Note: Translations specified by the user occur prior to the default translations.
Interactions between the user specified translations and the default translations may
cause unexpected behavior. For example, if the -t option is invoked with .:per, then
the default translation which converts a leading period (.) to the at sign (@) will not
occur. The leading period (.) will be converted to "per". Also, if the -t option is invoked
with b:_, then the b’s will be converted to underscores (_) first and then to pound signs
(#), by default. 4

AR2UPDTE Diagnostics
The following diagnostic messages are generated by the AR2UPDTE utility.

Diagnostic messages from the run-time library that further describe the problem may
appear in conjunction with the AR2UPDTE diagnostics.

LSCAU1 Error: opening input file, "[filename]".
An attempt to open the file filename failed. Under OS/390 this error occurs when
the filename is a DDname and the DDname is not defined; but any file system
problem or failure that might cause an open to fail could also cause this message.

The AR2UPDTE and UPDTE2AR Utilities 4 AR2UPDTE Diagnostics 371

LSCAU2 Error: opening output file, "[filename]".
An attempt to open the file filename failed. Under OS/390 this error occurs when
filename is a DDname and the DDname is not defined; but any file system problem
or failure that might cause an open to fail could also cause this message.

LSCAU3 Error: reading file, "[filename]".
An error occurred when attempting to read from the archive named filename. This
diagnostic may be produced if the archive has been modified by any utility other
than AR370 or UPDTE2AR; but any file system problem or failure that might
cause a read to fail could also cause this message. Check all input files for validity
and integrity.

LSCAU4 Error: writing file, "[filename]".
An attempt to write one or more items to the output file stream has been
unsuccessful. Usually this is caused by having insufficient space available for all
the output; but any file system problem or failure that might cause a write to fail
could also be the cause. Make sure the space available for the output file is large
enough to hold all the output.

LSCAU5 Error: creating CMS-style file identifier from filename,
"[filename] ".

Files in CMS are named using a file identifier. The file identifier consists of three
fields: filename, filetype, and filemode. An error occurred when attempting to
create a valid CMS file identifier with the filename specified on the command line.
All input and output files must have valid CMS-style file identifiers.

LSCAU6 Error: Wrong number of command line arguments.
Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]]
filein fileout

The command line requires a minimum of two arguments, an input archive and
an output filename.

LSCAU7 Error: loading list of translate characters.
Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]]
filein fileout

The program failed while attempting to parse the options and translate
characters in the command line. Be sure the command line is formatted correctly.

LSCAU9 Error: Option -t needs to be followed by an argument.
Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]]
filein fileout

The -t option must be followed by an argument.

LSCAU10 Error: Unrecognized option -"option".
Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]]
filein fileout

The only valid options in AR2UPDTE are: -x and -t c:s.

LSCAU11 Error: The argument "argument" that follows the -t option
must be in the form c:s where c is the string to be translated and s
is the resulting string.

Correct usage: ar2updte [-x | -t c1:s1 [-t c2:s2...]]
filein fileout

The -t option must be followed immediately with an argument in the form c:s.
All strings ‘c’ in the member names of the archive will then be translated to the
string ‘s’ in the resulting IEBUPDTE input file.

LSCAU12 Error: Unable to identify AR370 archive, "[filename]".
An AR370 archive cannot be located from the filename specified in the command
line. The input file specified on the command line must be a valid archive file.

372 AR2UPDTE Diagnostics 4 Appendix 3

LSCAU13 Error: reading AR370 archive members in "[filename]".
An error occurred when attempting to read the members in the archive filename.
This diagnostic may be produced if the archive has been modified by any utility
other than AR370 or UPDTE2AR; but any file system problem or failure that
might cause a read to fail could also cause this message. Check all input files for
validity and integrity.

LSCAU14 Error: "[filename]" is not an AR370 archive.
This file filename is not an archive. It cannot be processed as an archive. The
input for AR2UPDTE must be an archive created by AR370 or UDPTE2AR.

LSCAU15 Error: File is not recognized as an archive. Cannot process
file "[filename]".

A file filename specified as an archive does not contain a valid archive header.
Data read from the file is checked to verify that it is an archive. If the archive has
been modified by any utility other than AR370 or UPDTE2AR, data could be lost
or corrupted.

LSCAU16 Error: archive format unrecognized. Cannot process file
"[filename] ".

The file filename is an archive, but it contains an error in the symbol table. If the
archive has been modified by any utility other than AR370 or UPDTE2AR, data
could be lost or corrupted.

LSCAU17 Error: archive format unrecognized. Cannot process file
"[filename] ".

The file filename is an archive, but it contains an error in the string table. If the
archive has been modified by any utility other than AR370 or UPDTE2AR, data
could be lost or corrupted.

LSCAU18 Error: writing to output file, "[filename]".
An attempt to write one or more items to the output file has been unsuccessful.
Usually this is caused by having insufficient space available for all the output but
any file system problem or failure that might cause a write to fail could also be the
cause.

LSCAU28 Warning: The number of aliases for the member "[member
name]" excee ds 16.

The member member name is defined with more than 16 aliases. All of these
aliases have been included in the resulting IEBUPDTE input format data file.
However, IEBUPDTE cannot process members defined with more than 16 aliases.
The excess alias cards should be removed before running IEBUPDTE.

LSCAU29 Warning: Duplicate member name "[member name]" has been
generated i n output.

member name is the identifier for more than one member in the archive. This
name has been included more than once in the resulting IEBUPDTE input format
file. However, the name of each PDS member must be unique, so before a
partitioned data set is created, the IEBUPDTE input format file should be edited,
or the archive should be manipulated using AR370 so that all members have
unique names.

LSCAU30 Warning: Symbol "[symbol name]" was previously defined and
has been omitted from output.

Aliases are created for all symbols defined in each member of the archive. A
symbol definition for symbol name appears in more than one member of the
archive. Since PDS member and alias names must be unique, symbols that conflict
with previous definitions have been omitted from the output. Linking

The AR2UPDTE and UPDTE2AR Utilities 4 Using UPDTE2AR under CMS 373

characteristics of the partitioned data set should still be preserved since only the
first symbol defined by an archive is linked when using the archive.

UPDTE2AR Utility

The UPDTE2AR utility is a program that is used to create an AR370 archive by
reading in the contents of a file in IEBUPDTE input format. The IEBUPDTE input file
must contain 80-byte records in the format accepted by the OS/390 IEBUPDTE utility
and described in the IBM manual MVS/DFP Utilities (SC26-4559). The file is divided
into segments by IEBUPDTE "./ ADD" control records: each segment represents a
single PDS member. A file can be generated in this format from an OS/390 card-image
partitioned data set using the SAS System’s SOURCE procedure. UPDTE2AR reads in
this data and creates an AR370 archive. This archive can then be manipulated by the
AR370 utility to delete, move, replace, view, or extract members.

UPDTE2AR options allow you to control the translation of PDS member names to
archive member names. They also specify whether the archive’s symbol table should
mimic the source PDS directory or include all external symbols defined in members of
the PDS.

Using UPDTE2AR under CMS
Under CMS, the UPDTE2AR utility is invoked directly with the following command:

updte2ar [options] infile outfile

options specifies one or more options, each of which is a single character preceded by a
hyphen (-). Some options (for example, -t) must be followed by an option argument.
The argument may be separated from the option by white space, but this is not a
requirement. Note that the case of option characters is not significant, but that case is
significant for most option arguments.

The following options are recognized:

-a ending appends the specified ending to the input member name to produce
the output archive member name. The ending is limited to 8
characters.

-l Converts the member names to lowercase.

-s specifies that all external symbols defined in any input member are
to be included in the archive symbol table. An archive produced
with the -s option of UPDTE2AR has the same linking
characteristics as an archive produced directly with AR370. If -s is
omitted, then the archive symbol table references only the member
names and aliases referenced by ./ control statements in the input
file. An archive produced without -s has the linking characteristics
of the source PDS.

-t c:s specifies a translation rule to be used by UPDTE2AR when deriving
an archive member name from a PDS member name. More than one
-t option can be specified. The option argument c:s indicates that if
the string c (which can be longer than a single character) occurs in
an input member name, it is to be replaced by the string s in the
output archive member name.

374 Using UPDTE2AR in TSO 4 Appendix 3

The infile and outfile arguments must be specified. The infile argument specifies the
input file, which must be in valid IEBUPDTE input format. The outfile argument
specifies the file identifier of the resulting output archive.

Note: Under CMS, the default filetype for the infile argument is IEBUPDTE. If
filetype is specified, it must be joined to the filename with a period (.). The default
filemode for the infile argument is *. The outfile argument specifies the file identifier of
the resulting output archive. The default filetype for the outfile argument is A. If
filetype is specified, it must be joined to the filename with a period (.). The default
filemode for the outfile argument is *. 4

The following examples show typical UPDTE2AR command lines on CMS.

updte2ar test.iebupdte testlib.a
Create a new archive named testlib.a using the IEBUPDTE input format file
named test.iebupdte.

updte2ar -t QU:? -t $:x test3.iebupdte testlib3.a
Create a new archive named testlib3.a using the IEBUPDTE input format file
named test3.iebupdte. Convert all letters QU to question marks and then
convert all dollar signs to x’s.

updte2ar -l -a .o test.iebupdte testlib4.a
Create a new archive named testlib4.a using the IEBUPDTE input format file
named test.iebupdte. Put all the member names in lowercase and append a .o
to each member name. For example, the input member BUILD would be
translated to the archive member build.o.

Using UPDTE2AR in TSO
This section describes calling UPDTE2AR in TSO using the TSO CALL command.

Use the following syntax:

CALL ’library.name(UPDTE2AR)’ ’[options] infile outfile’ ASIS

Here, library.name is the name of the library containing UPDTE2AR. Consult your
SAS/C Software Representative for C compiler products for the correct library name.

See the section “Using UPDTE2AR under CMS” on page 373 for a description of the
options. Note that the infile and outfile names will be interpreted as DDnames unless a
SAS/C style prefix is used.

The following example shows a typical use of UPDTE2AR in TSO:

CALL ’SASC.LOAD(UPDTE2AR)’ ’tso:testpds.data tso:testlib.a’ ASIS

Using UPDTE2AR under OS/390 Batch
This section describes how to run UPDTE2AR under OS/390 batch using the

UPDTE2AR cataloged procedure.
The UPDTE2AR cataloged procedure is used to execute UPDTE2AR under OS/390

batch. You must provide a SYSIN DD statement defining the IEBUPDTE format input
file and a SYSARLIB DD statement defining the output AR370 archive. If you need to
pass special UPDTE2AR options, specify the OPTS keyword in the EXEC statement, as
shown below. See the section “Using UPDTE2AR under CMS” on page 373 for
information on the UPDTE2AR options and their meanings.

Example Code 18.3 on page 375 shows typical JCL for using the UPDTE2AR
cataloged procedure.

The AR2UPDTE and UPDTE2AR Utilities 4 UPDTE2AR Diagnostics 375

Example Code A3.3 Sample JCL for Running the UPDTE2AR Cataloged Procedure

//SAMPU2AR JOB job card information
//*--

//* INVOKE UPDTE2AR
//*
//* REPLACE GENERIC DATA SET NAMES AS APPROPRIATE
//*--

//STEP1 EXEC UPDTE2AR,OPTS=’options’
//U2A.SYSARLIB DD DSN=output.ar370.archive,DISP=OLD
//U2A.SYSIN DD DSN=updte.format.input,DISP=SHR
//

In this example, options is any required UPDTE2AR options (for example, ’-t
QU:?’).

The UPDTE2AR contains the JCL shown in Example Code 18.4 on page 375.

Example Code A3.4 Expanded JCL for UPDTE2AR

//UPDTE2AR PROC OPTS=’’
//**
//* NAME: UPDTE2AR (UPDTE2AR) ***
//* PRODUCT: SAS/C ***
//* PROCEDURE: CONVERT IEBUPDTE INPUT TO AR370 ARCHIVE ***
//* DOCUMENTATION: SAS/C COMPILER AND LIBRARY USER’S GUIDE ***
//* FROM: SAS INSTITUTE INC., SAS CAMPUS DRIVE, CARY, NC ***
//**
//*
//U2A EXEC PGM=UPDTE2AR,PARM=’&OPTS DDN:SYSIN DDN:SYSARLIB’
//STEPLIB DD DSN=SASC.LOAD,
// DISP=SHR COMPILER LIBRARY
// DD DSN=SASC.LINKLIB,
// DISP=SHR RUNTIME LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

UPDTE2AR Diagnostics
The following diagnostic messages are generated by the UPDTE2AR utility.

Diagnostic messages from the run-time library that further describe the problem may
appear in conjunction with the UPDTE2AR diagnostics.

LSCAU3 Error: Reading file, "[filename]".
An error occurred when attempting to read from the input file filename. Check all
input files for validity and integrity. Input files should be fixed-length record
format with 80-byte records.

LSCAU4 Error: writing file, "[filename]".
An attempt to write one or more items to the output file stream has been
unsuccessful. Usually this is caused by having insufficient space available for all
the output; but any file system problem or failure that might cause a write to fail

376 UPDTE2AR Diagnostics 4 Appendix 3

could also be the cause. Make sure the space available for the output file is large
enough to hold all the output.

LSCAU5 Error: creating CMS-style file identifier from filename,
"[filename] ;".

Files under CMS are named using a file identifier. The file identifier consists of
three fields: filename, filetype, and filemode. An error occurred when attempting
to create a valid CMS file identifier with the filename specified on the command
line. All input and out put files must have valid CMS-style file identifiers.

LSCAU6 Error: Wrong number of command-line arguments.
Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1
[-t c2:s2...]] filein fileout

The command line requires a minimum of two arguments, an input archive and
an output filename.

LSCAU7 Error: loading list of translate characters.
Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1
[-t c2:s2...]] filein fileout

The program failed while attempting to parse the options and translate
characters specified on the command line. Be sure the command line is formatted
correctly.

LSCAU8 Error: Argument following -a cannot be longer than 8
characters.

Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1
[-t c2:s2...]] file-in file-out

The -a option specified a suffix that was more than 8 characters.

LSCAU10 Error: Unrecognized option -option .
Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1
[-t c2:s2...]] filein fileout

The only valid options in UPDTE2AR are: -l, -s, -a ending, -t c:s.

LSCAU11 Error: The argument "argument" that follows the -t option
must be in the form c:s where c is the string to be translated and s
is the resulting string.

Correct usage: updte2ar [-l] [-s] [-a ending] [-t c1:s1
[-t c2:s2...]] filein fileout

The -t option must be followed immediately with an argument in the form c:s.
All strings c in the member names of the IEBUPDTE file will then be translated to
the string s in the resulting AR370 archive.

LSCAU19 Error: invalid name for symbol, "symbolname" specified in a
SYMDEF control st atement.

SYMDEF symbols must be 1 to 8 characters in length. The symbol name
symbolname is too long. Symbols specified via SYMDEF control statements must
be at least 1 character and not more than 8 characters in length. Check the
SYMDEF cards in the input object files.

LSCAU20 Error: invalid SYMDEF control card in file "filename".
An AR370 SYMDEF control statement in the input file filename contained invalid
syntax. Check the SYMDEF control statement in the specified input file to make
sure it conforms to the general form and syntax of linkage editor control
statements. Make sure the symbol names are between 1 and 8 characters in
length.

The AR2UPDTE and UPDTE2AR Utilities 4 UPDTE2AR Diagnostics 377

LSCAU21 Error: Unable to write object to AR370 archive file,
"filename".

An attempt to write one or more items to the output file stream has been
unsuccessful. Usually this is caused by having insufficient space available for all
the output; but any file system problem or failure that might cause a write to fail
could also be the cause. Make sure the space available for the output file is large
enough to hold all the output.

LSCAU22 Error: Encountered EOF in continued SYMDEF card in file,
"filename".

An AR370 SYMDEF control statement in the file filename is invalid. An End of
File was encountered in place of the continuation of the SYMDEF card. Check the
SYMDEF cards in the input file.

LSCAU23 Error: Unable to open IEBUPDTE file, "filename".
An attempt to open the file filename failed. Under OS/390, this error occurs when
the filename is a DDname and the DDname is not defined; but any file system
problem or failure that might cause an open to fail could also cause this message.

LSCAU24 Error: Unable to open AR370 archive file, "filename".
An attempt to open the file filename failed. Under OS/390, this error occurs when
the filename is a DDname and the DDname is not defined, but any file system
problem or failure that might cause an open to fail could also cause this message.

LSCAU25 Error: Read of input file, "[filename]" failed.
When attempting to read the input file named filename, UPDTE2AR was unable
to read 80 bytes. The IEBUPDTE utility requires the input file to be 80-byte
records, blocked or unblocked. Check the input file for validity and integrity.

LSCAU26 Error writing library header to output file, "filename".
An attempt to write one or more items to the output file stream has been
unsuccessful. Usually this is caused by having insufficient space available for all
the output, but any file system problem or failure that might cause a write to fail
could also cause this message. Make sure the space available for the output file is
large enough to hold all the output.

LSCAU27 Error in seeking to offset in file, "filename".
An error occurred when attempting to position to an offset in the file filename.

378 UPDTE2AR Diagnostics 4 Appendix 3

379

A P P E N D I X

4
The CMS GENCSEG Utility

Introduction 379
How Dynamic Loading Uses a Segment 380

The Segment Installation Process 380

GENCSEG Parameters 381

Load Parameters 381

The Segment Name Parameter 382
The LOADLIB Parameter: -l 382

Alias entries in LOADLIBs 382

The ALIGN Parameter: -a 383

The PAGE Parameter: -p 383

The SPACE Parameter: -s 383

Calculating the Total Segment Size 383
Option Parameters 383

The EDIT Option: -e 383

The JAPAN Option: -j 384

The LOADALL Option: -r 384

The GENCSEG Listing File 384
Virtual Machine Requirements when Using GENCSEG to Save a Segment 384

Renaming the Default Run-Time Library Segment 385

Sample GENCSEG Listings 385

Introduction

GENCSEG is a utility program for VM and CMS users that installs LOADLIB
members in a Discontiguous Saved Segment (DCSS), hereafter referred to as a
segment. Once installed, these members may be dynamically loaded by using the
addsrch and loadm functions.

There are several reasons for using the GENCSEG utility. For example, programs
that reside in a segment can be attached outside of the virtual machine’s address range
and, therefore, do not occupy memory within the virtual machine. Also, several users
can share a copy of the segment. Further, since dynamic loading from a segment uses
CP to fetch load modules, this type of installation is useful for programs that rely
heavily on dynamic loading.

The GENCSEG utility operates as follows. First, GENCSEG accumulates a list of
LOADLIB members. The next step is to determine the address range of the segment.
Next, GENCSEG allocates a directory space and then begins to load the members in
sequential order. As the members are loaded, their names are added to the directory.
By default, the members are added sequentially, but GENCSEG provides parameters to
specify load order, alignment, and spacing. The load address for the first member

380 How Dynamic Loading Uses a Segment 4 Appendix 4

always begins immediately following the directory. The load address is then updated
according to requested alignment and other options.

How Dynamic Loading Uses a Segment
The loadm function is used to dynamically load external load modules. Under CMS,

loadm searches for the load module in several locations. The search is controlled by the
addsrch function, which defines a set of locations where dynamically loaded modules
can be found. The CMS_DCSS argument to addsrch specifies that modules can be
found in a segment that has been created by GENCSEG.

The Segment Installation Process
A user with CP class E privileges can create and maintain new segments. Once a

segment is defined or available, you can use GENCSEG to install members of one or
more LOADLIBs into a single segment. The installation can be controlled by
GENCSEG parameters that specify which members are to be installed, the names of
the LOADLIBs to be used, and the order in which the members are to be installed.

GENCSEG always loads the members in your virtual machine, creating an image of
the segment to be saved. This means that GENCSEG must be invoked in a virtual
machine that has enough virtual storage defined to contain the entire segment, plus the
memory required by GENCSEG to operate and the memory required by CMS. Before
installing any members, GENCSEG initializes the segment image by writing binary 0s
into the entire image area.

GENCSEG always assumes that the segment is designated as shared and protected
under VM/SP. In a VM extended architecture system, this implies that the SR
parameter is used in the DEFSEG command. After the image area has been set to 0,
GENCSEG performs the equivalent of the SETKEY command, setting all storage keys
in the segment image to key 0. This ensures that the code and data in the segment do
not become corrupted during use. Since the code and data will reside in protected
memory, the code must be reentrant. Non-reentrant code in a shared segment causes
protection exceptions when executed. Use the SAS/C Compiler option rent to allow
reentrant modification of static and external variables. See Chapter 6, “Compiler
Options,” on page 101.

The loadm function searches for modules in a segment by reading a directory in the
segment itself. This directory is created by GENCSEG during the installation process
and begins at the first address in the segment. There is one entry in the directory for
each member or alias installed in the segment.

GENCSEG saves the segment name and the current date and time in the first 16
bytes of the directory. The directory is terminated by an entry containing all binary 1s.
Each directory entry is four words long. The first two words contain the name of the
member or alias. The third word contains the address of the module entry point. The
fourth word is all binary 0s and is reserved for use by the library.

The GENCSEG load parameters LOADLIB, ALIGN, PAGE, and SPACE control the
installation process. These parameters are processed from left to right in the order they
are entered on the command line. Upon invocation, GENCSEG initializes the segment
and then begins processing the load parameters.

As members are loaded, GENCSEG maintains the value of the next available
address in the segment. This value, called the load address or loadaddr, has an initial
value equal to the first address following the segment directory. After each member is
loaded, loadaddr is incremented by the size of the member. The ALIGN, PAGE, and
SPACE parameters can be used to modify the value of loadaddr. However, loadaddr
cannot be decremented, and at no time can the value of loadaddr become larger than

The CMS GENCSEG Utility 4 Load Parameters 381

the last address defined in the segment. If this occurs, GENCSEG terminates with a
diagnostic message, and the segment is not saved.

GENCSEG installs a LOADLIB member by relocating the code and data based on
loadaddr and creating a segment directory entry for the member. This process is
repeated until all the members specified are installed. GENCSEG then issues a
SAVESYS command for the segment.

As the installation proceeds, GENCSEG types a variety of diagnostic messages to the
terminal. These messages report on the parameters being used, the state of the virtual
machine, where the members are being loaded, and how many pages are used.
GENCSEG also issues diagnostics when something unexpected occurs or when it is
unable to continue the installation.

When all of the load parameters are processed (and no errors have occurred),
GENCSEG invokes the CP SAVESYS (under VM/SP) or SAVESEG (under VM/XA or
VM/ESA) command to save the segment image into DASD storage. The SAVESYS
command must be issued from a userid with a CP privilege class of E. If the userid does
not have CP class E privileges, the command fails and the segment is not saved.

GENCSEG Parameters

Table A4.1 on page 381 lists all GENCSEG parameters. A description of each
parameter follows the table. In the Type column, an L indicates load parameter, an O
indicates option parameter.

Table A4.1 GENCSEG Parameters

Parameter Name Format Type Explanation of Format

segment name name L name is the name of the segment
to be created.

LOADLIB —1name[(mem1[,mem2...])
]

L name is the name of the
LOADLIB to be installed; mem1,
mem2, and so on are optional
LOADLIB members.

ALIGN -a<n> L n is an integer.

PAGE -p<n> L n is an integer.

SPACE -s<n> L n is an integer.

EDIT -e O See description.

JAPAN -j O See description.

LOADALL -r O See description.

Load Parameters

With the exception of the segment name parameter, all GENCSEG parameters are
designated by a hyphen (-) followed by a letter. For example, -a designates the ALIGN
parameter. In general, use of any single load parameter causes all of the default load
parameters to be overridden.

382 The Segment Name Parameter 4 Appendix 4

The Segment Name Parameter
The name of the segment to be created must appear as the first parameter on the

command line. Do not prefix the name with a hyphen. The name must match the name
used in the segment definition. Specifying a segment name does not override any other
default load parameters. For example, the following command indicates that
GENCSEG should create a segment named MYDCSS:

GENCSEG MYDCSS

CAUTION:
Do not invoke GENCSEG without entering a segment name and the name of at

least one LOADLIB following the LOADLIB (-l) option. By default, if you do not
specify a segment name and the name of a LOADLIB, GENCSEG attempts to install
the compiler and run-time library into the LSCRTL segment. 4

The LOADLIB Parameter: -l
The LOADLIB parameter (-l) specifies the name of a LOADLIB file from which

members are to be installed. For example, the following causes GENCSEG to install all
the members of PROJECT LOADLIB:

GENCSEG MYDCSS -lPROJECT

GENCSEG searches for PROJECT LOADLIB on any ACCESSed minidisk, using the
normal CMS search order. All of the members in PROJECT LOADLIB are installed in
the order they are found in the LOADLIB directory, beginning at the address pointed to
by the load address.

If you do not want all the members of the LOADLIB to be installed or if you want to
specify a different order, append a list of member names to the LOADLIB filename. The
member name list must be enclosed in parentheses, and member names must be
separated with a comma. For example, the following command causes GENCSEG to
install MEM1 first, followed by MEM2 and MEM4:

GENCSEG MYDCSS -lPROJECT(MEM1,MEM2,MEM4)

This command causes GENCSEG to install MEM4 first, followed by MEM2 and
MEM1:

GENCSEG MYDCSS -lPROJECT(MEM4,MEM2,MEM1)

Any other members in PROJECT LOADLIB are ignored.

Alias entries in LOADLIBs
LOADLIB directories can have alias entries. Aliases are created by the LKED

command and are used to specify alternative names and possibly alternative entry
points to a member known as the parent member. GENCSEG does not install a new
copy of the parent for an alias name. Instead, it adds an entry in the segment directory
for the alias name, where the entry point given in the segment directory refers to a
location in the installed parent member. You can specify an alias name in a member
name list either before or after the occurrence of the parent member name. GENCSEG
creates the directory accordingly.

However, if you specify an alias name in the member name list, you must also specify
the name of the parent member. If GENCSEG encounters an alias name and does not
find the corresponding parent name, the installation is terminated.

The CMS GENCSEG Utility 4 The EDIT Option: -e 383

The ALIGN Parameter: -a
Use the ALIGN parameter (-a) to indicate that loadaddr should be increased to the

next address that is a multiple of n K, where n is an integer immediately following the
parameter. n can be 2, 4, 8, or 64, as in the following example:

GENCSEG MYDCSS -lPROJECT -a2 -lPROJECT2

In this example, all the members of LOADLIB PROJECT are installed starting at
the next address after the end of the directory. loadaddr is then aligned to the next 2K
address, and the members of LOADLIB PROJECT2 are installed. If ALIGN is not
specified, then loadaddr is the next available address.

The PAGE Parameter: -p
Use the PAGE parameter (-p) to cause members to be aligned to a page offset from

the beginning of the segment. The following example requests alignment to the
beginning of the fifteenth 4K page from the beginning of the segment:

GENCSEG MYDCSS -p15

Each page of memory requested by the PAGE parameter equals 4K bytes. Note that the
PAGE option cannot make loadaddr point to a lower address.

The SPACE Parameter: -s
Use the SPACE parameter (-s) to add an n K value to loadaddr, where n can be

between 1 and 256 inclusive. The following example indicates that loadaddr should be
incremented by 1K after installing LOADLIB PROJECT and before installing
PROJECT2:

GENCSEG MYDCSS -lPROJECT -s1 -lPROJECT2

If you do not specify SPACE, loadaddr is incremented only by the size of the member
being loaded.

Calculating the Total Segment Size
Upon completion, GENCSEG reports the total size of the segment in bytes. This

value includes the total size of the directory, the members installed, and the amount
added by the SPACE, PAGE, and ALIGN parameters.

Option Parameters
GENCSEG has three option parameters, EDIT, JAPAN, and LOADALL. Use of these

options does not override the default load parameters.

The EDIT Option: -e
The EDIT option (-e) allows trial invocations of GENCSEG. You can use the EDIT

option to see what happens when various combinations of load parameters are used

384 The JAPAN Option: -j 4 Appendix 4

without actually having to load and save the segment. The following example indicates
that the installation of the members of PROJECT and PROJECT2 LOADLIBs is only to
be simulated:

GENCSEG MYDCSS -e -lPROJECT -s1 -lPROJECT2

When the EDIT option is in effect, you can specify the name of a segment that has
not yet been defined. GENCSEG initializes loadaddr to 0 and allows it to be as large as
necessary to complete the segment creation.

The EDIT option also suppresses initialization of the image to binary 0s and storage
key initialization. GENCSEG does not check the virtual machine size. Relocation of
code and data is suppressed. Of course, the SAVESYS or SAVESEG command is not
issued.

The JAPAN Option: -j
If the JAPAN option (-j) is used, GENCSEG types all diagnostic messages in

uppercase. This option is intended for use with printers and terminals that have only
uppercase roman characters.

The LOADALL Option: -r
The LOADALL option (-r) forces GENCSEG to attempt to load all of the members of

a specified LOADLIB without regard to the location of the segment or to the RMODE of
a member. The LOADALL option causes GENCSEG to behave as it did in releases
prior to 5.50C.

If you specify LOADALL, then, as the list of LOADLIB members is made, GENCSEG
inspects each member’s RMODE and compares that to the location of the segment. If
the LOADALL option has been specified, then GENCSEG attempts to load every
member in the list. An error will occur if the segment has been defined to have an
ending address greater than 16 megabytes and at least one member in the list is found
to have RMODE=24.

If the LOADALL option is not specified, then GENCSEG will do the following:

� If the ending address of the segment is greater than 16 megabytes, only members
with RMODE=ANY are loaded.

� If the ending address of the segment is less than 16 megabytes, only members
with RMODE=24 are loaded.

The GENCSEG Listing File

As it executes, GENCSEG creates a file on your A-disk called GENCSEG LISTING.
This file contains a copy of the diagnostic messages typed on the terminal. GENCSEG
never erases the current copy of GENCSEG LISTING; instead, it appends the new
output to the end of any existing copy.

Virtual Machine Requirements when Using GENCSEG to Save a Segment

When GENCSEG is invoked to create and save the segment, it must be executed in a
virtual machine with CP privilege class E so that the user can issue the SAVESYS or
SAVESEG command. The virtual machine also must have enough storage defined to

The CMS GENCSEG Utility 4 Sample GENCSEG Listings 385

contain the segment image, and it must have the storage required by CMS and
GENCSEG itself.

Renaming the Default Run-Time Library Segment
One method of installing a program in a segment is to include a copy of the SAS/C

transient run-time library LOADLIB in the same segment. You can, for example,
invoke GENCSEG with the following load parameters:

GENCSEG MYDCSS -lLSCRTL -lPROJECT

Since all C programs use the name LSCRTL as the default name of the run-time
segment, you need to modify the default value to use MYDCSS instead. All C main load
modules (that is, those with a main function) include a CSECT that contains the
default run-time library name LSCRTL at offset 0. The CSECT name is LCSEGC.
Use the CMS ZAP command to alter the default name in the main load module. Both
the old (VER) name and the new (REP) name must be uppercase, left-adjusted, and
padded with blanks to eight characters. For example, if the main load module is in
MYPROG MODULE, the following zap changes the default segment name from
LSCRTL to MYDCSS:

NAME MYPROG LCSEGC
VER 00 D3E2C3D9E3D34040 "LSCRTL "
REP 00 D4E8C4C3E2E24040 "MYDCSS "

Note: Data in quotes are not to be included in the zap. 4

After the zap is applied, MYPROG MODULE and any load modules loaded by it will
use the run-time library in MYDCSS.

Sample GENCSEG Listings
The sample GENCSEG listing in Example Code 19.1 on page 386 shows the output

produced by GENCSEG under these conditions:
� GENCSEG is executing under VM/ESA.

� The userid invoking the program is SASCUSER. Two LOADLIBs are involved,
both of which are on minidisk labeled PROJEC.

� The segment named MYDCSSA is defined with the following defseg command,
which causes the segment to attach at virtual address ’1000000’X:

DEFSEG MYDCSSA 1100-11FF SR

� The highest address defined in MYDCSSA is ’11FFFFF’X.

� The LOADALL(-r) option is not specified, so only members with RMODE=ANY are
loaded.

The GENCSEG command line in Example Code 19.1 on page 386 has been entered
as follows:

GENCSEG MYPROJB -e -lPROJECT -lPROJECT2(PHASE3,PHASE5,PHASE6)

PROJECT LOADLIB has three members, PHASE1, PHASE2, and PHASE4, plus an
alias for PHASE1 named STARTUP. Only members PHASE3, PHASE5, and PHASE6

386 Sample GENCSEG Listings 4 Appendix 4

are to be installed from PROJECT2 LOADLIB. Since the LOADALL option was not
specified, only the members with RMODE=24 are loaded.

Example Code A4.1 GENCSEG Listing

GENCSEG Release 6.00C Page 1
Copyright(c) 1996 by SAS Institute Inc., Cary, NC USA

LSCG022 Note: GENCSEG invoked by userid: SASCUSER

LSCG013 Note: Using ’MYPROJA ’ as the segment name.

LSCG035 Note: ’MYPROJA ’ segment loads from address ’1100000’X
to address ’011FFFFF’X.

LSCG043 Note: Edit mode.

LSCG071 Note: Only members having an RMODE = ANY will be
loaded.

LSCG069 Note: The LOADALL (-r) option may be used to load all
members of a LOADLIB (if possible) regardless of a
members RMODE.

LSCG070 Note: 7 total members/aliases processed.

LSCG037 Note: 3 members/aliases to be loaded.

LSCG038 Note: Directory size: ’50’X (80) bytes.

Wed May 06 10:40:40 1992 --- MYPROJA --- Page 2

Loading from: PROJECT LOADLIB A1 on PROJEC

Member/Alias Entry Point Origin Size Alias of Loaded? RMODE
PHASE1 01100264 01100050 0000B0E8 Y ANY
STARTUP 01100264 01100050 0000B0E8 PHASE1 Y ANY
PHASE2 ******** ******** ******** N 24
PHASE4 ******** ******** ******** N 24

Wed May 06 10:40:40 1992 --- MYPROJA --- Page 3

Loading from: PROJECT2 LOADLIB A1 on PROJEC

Member/Alias Entry Point Origin Size Alias of Loaded? RMODE
PHASE3 ******** ******** ******** N 24
PHASE5 ******** ******** ******** N 24
PHASE6 0110B34C 0110B138 0000B0E8 Y ANY

Wed May 06 10:40:40 1992 --- MYPROJA --- Page 4

The CMS GENCSEG Utility 4 Sample GENCSEG Listings 387

LSCG050 Note: Total size (including directory): ’16220’X bytes.

LSCG053 Note: 23 page(s) used. Hexadecimal page number range:
1100-1117.

LSCG039 Note: Processing completed.

388 Sample GENCSEG Listings 4 Appendix 4

389

A P P E N D I X

5
Sharing extern Variables among
Load Modules

Global extern Variables 389
L$UGLBL 389

Cautions 391

Global extern Variables
If the rent or rentext compiler option is used, the compiler generates an object code

data type called a pseudoregister for each extern variable. If the norent compiler
option is used, the compiler generates a pseudoregister only for extern variables
declared as __rent or whose names begin with an underscore (such as _options).
When the program is linked, the linker assigns an offset to each pseudoregister and
accumulates the total length. At execution time, storage is dynamically allocated for all
the pseudoregisters in the load module. This storage is known as the pseudoregister
vector.

In a program consisting of several load modules, each load module has its own
pseudoregister vector that is independent of the pseudoregister vector of any other load
module. This means that, in general, extern variables cannot be shared between load
modules.

However, certain extern variables need to be available in all the load modules in a
multi-load-module program. An extern variable of this sort is known as a global
extern. During dynamic loading, the loadm function copies the values of the global
extern from the pseudoregister vector of the main load module to the psuedoregister
vector of the newly loaded module. Of course, loadm must be able to determine the
length and offset of each global extern both in the calling and called load modules.
This copy takes place only when the load module is loaded. Changes in the value of the
global extern after that point are not reflected back to any other load module.

L$UGLBL
L$UGLBL is an assembler language program that contains the list of global extern

variables. The object code generated by L$UGLBL must be linked with every C load
module. By default, this list contains only those global extern variables that are
required by the library, such as a pointer to errno. Table A5.1 on page 390 is a list of
global extern variables that are defined by default.

All default global extern variables are defined as pointers. This allows a single copy
of the variable to be defined in the primary load module. Because references to its value
are always made via the pointer, all load modules that refer to the global extern refer
to the current value. For example, the global extern __en points to an extern named

390 L$UGLBL 4 Appendix 5

errno in the primary load module. In <errno.h>, errno is a macro defined as
(*__en). Therefore, any reference to errno will always refer to errno in the primary
load module.

Note: Because the compiler changes underscores in external identifiers to pound
signs (#), the # characters in these names correspond to underscores in the C identifier.
For example, ##EN in L$UGLBL corresponds to __en in <errno.h>. 4

Table A5.1 Default Global extern Variables

Name Points to

##IO global I/O information

##CT ctype table

##EN errno

##MN _msgno

##MG miscellaneous information

#ENVIRON POSIX environment pointer address

For CICS applications only, there are three additional global extern variables in the
L$UGLBL list. They are listed in Table A5.2 on page 390. These additional global
extern variables appear immediately after the default global extern variables in the
L$UGLBL list.

Table A5.2 Default CICS Global extern Variables

Name Points to

#EIBPTR CICS EXEC interface block

#COMMPTR CICS COMMAREA

#DOBPTR DL/I interface block

Another global extern variable has been added for users of the Generalized
Operating System (GOS) feature. This new extern variable appears after the other
default global extern variables; it only exists for users of GOS. The name of this
extern is ##GA. ##GA points to the GOS anchor block.

The list in L$UGLBL can be extended to include those variables that are required by
a specific site or application. The GLOBAL assembler macro, defined in L$UGLBL, is
used to define additional entries. This macro adds a pseudoregister to the L$UGLBL
list. This is the format of the GLOBAL macro instruction:

GLOBAL name,CUST=(YES|NO)

name is the name of the global extern. If the C identifier contains
underscores, the corresponding characters in name must be pound
signs (#).

CUST=YES indicates that name is a custom addition to the list. All additions to
the global list must use this operand.

CUST=NO is reserved. This is the default.

For example, use the following code to add a global extern named gcb:

GLOBAL GCB,CUST=YES

Sharing extern Variables among Load Modules 4 Cautions 391

All custom global extern variables must be defined at the end of the default list.
Global extern variables are aligned on a doubleword boundary. Each global extern
must be no more than 4 bytes long.

L$UGLBL is in SASC.SOURCE(L$UGLBL) under OS/390 and is member L$UGLBL
of LSU MACLIB under CMS. Consult your SAS Software Representative for C compiler
products for more information.

Cautions
The following cautions should be noted in sharing extern variables among load

modules:
� To ensure that the compiler creates a pseudoregister for global extern variables

even if the norent option is in effect, declare the variable __rent, or use an
underscore as the first character of the identifier.

� Names of extern variables that differ only in case are treated as identical. extern
identifiers that differ only after the first eight characters are treated as identical.

� External identifiers beginning with two underscores or a single underscore
followed by an uppercase character are reserved for the implementation, according
to the ANSI Standard.

� The default list must not be changed, either in number or order. Such a change
prevents the library from operating correctly and will probably cause an abend.

� The default list may change from release to release as necessary.
� If the L$UGLBL list is modified, all non-C-library load modules that have been

linked with the list must be relinked with the modified version.
� L$UGLBL is not supported in SPE.

For more information about external identifiers, refer to “External Variables” on page
55.

392 Cautions 4 Appendix 5

393

A P P E N D I X

6
Using the indep Option for
Interlanguage Communication

Introduction 393
Simple Multilanguage Programs 394

Execution Frameworks 394

The C Execution Framework 394

C Execution Framework Creation with indep 395

Specifying Run-Time Library Options 395
C Execution Framework Access 398

C Execution Framework Termination 398

Interlanguage Communication Considerations 399

Initialization Considerations 399

Using the longjmp Function in a Multilanguage Program 399

Reentrancy 399
main Function Considerations 400

Using Interlanguage Communication 400

Calls to C 400

Calls from C 401

Data Sharing 402
Sample Interlanguage Calls 402

Link-Editing Multilanguage Programs 404

Location of indep Libraries 404

Introduction

This appendix explains how to use the indep compiler option to generate code that
can be used in both simple and complex multilanguage programs.

The indep compiler option has two quite distinct uses. The first is to allow C code to
be called directly from other high-level languages. The second is to avoid the repeated
creation and destruction of the C framework when the SPE feature is used. This
appendix describes the first use of the indep option. The second use is described in
Chapter 14, “Systems Programming with the SAS/C Compiler,” on page 273.

Unless your multilanguage application is simple, you need to understand execution
frameworks in order to use the indep option for interlanguage communication. This
appendix describes what an execution framework is and then describes how to use
indep to create the C execution framework and to switch between frameworks. A
complete example, which uses indep to switch between the C and the PL/I frameworks,
follows the description.

Most interlanguage applications use the normal C framework, which supports the
entire SAS/C run-time library. In many cases, the techniques described in this appendix
also can be used with the minimal SPE framework described in Chapter 14, “Systems

394 Simple Multilanguage Programs 4 Appendix 6

Programming with the SAS/C Compiler,” on page 273. SPE is explicitly mentioned here
only for exceptional cases where the SPE behavior differs from the full library behavior.

It is recommended that new multilanguage applications use the facilities described in
the SAS/C Compiler Interlanguage Communication Feature User’s Guide, rather than
using indep directly, as described here. In most cases, these facilities are easier to use
than using indep and are equally powerful.

Simple Multilanguage Programs

You can use the indep option for simple multilanguage programs without reading
the rest of this appendix. Simple multilanguage programs are programs in which the
other language calls C functions but C never calls the other language. (Even simpler
types of multilanguage programs are discussed in Chapter 12, “Simple Interlanguage
Communication,” on page 227.)

For this type of program, compile all of the C functions that can be called from the
other language with indep, and link-edit normally. A non-reentrant load module is
produced. If reentrancy is required, you need to read the description of the L$UPREP
exit routine later in this appendix. Also, in order to close files and free memory
allocated by the C program, you may want to call the library routine L$UEXIT (CEXIT
in COBOL or FORTRAN) from the other language after all calls to C have completed.
(L$UEXIT is described in more detail later in this appendix.)

If you plan to pass arguments to C functions, also read “Calls to C” on page 400.

Execution Frameworks

In general, successful execution of code written in a high-level language requires the
accessibility of an appropriate execution framework. An execution framework (also
called an environment) is a collection of data and routines supporting the execution of
code. (For example, memory allocation tables and error-handling routines are
frequently components of an execution framework.) Note that for code to execute
successfully, it is not sufficient for the execution framework to exist; it also must be
accessible and available to the program. This means, in general, that machine registers
must be set up to address components of the framework.

Since each language has its own conventions for access to its framework, it is usually
impossible for more than one framework to be accessible at once. Therefore, a call from
one language to another must switch frameworks, that is, make the new language’s
framework accessible (or active) before performing the call and restore the calling
framework after the call is complete.

The C Execution Framework
The C execution framework includes the stack from which save areas and auto

storage are allocated, the pseudoregister vector that contains extern and static data
for reentrant programs, and the C Run-Time Anchor Block (CRAB). The CRAB contains
constants and other information used by both compiled code and the library. The C
framework also includes the default signal handlers set up by the library. When the C
framework is active, register 12 addresses the CRAB. C functions compiled without the
indep option expect register 12 to address the CRAB on entry; if it does not, the results
are unpredictable.

Using the indep Option for Interlanguage Communication 4 Specifying Run-Time Library Options 395

When a C program compiled without the indep option is executed, the C framework
is created by the L$CMAIN library routine. The execution of this routine precedes
execution of the main function. L$CMAIN obtains storage for the CRAB, the
pseudoregister vector, and the initial stack and heap and sets register 12 to address the
CRAB.

C Execution Framework Creation with indep
The C framework is created when the first (or initial) C function is called. (This

function is not necessarily named main.) Because this function is called before the C
framework is created, it must be compiled with indep. (See “main Function
Considerations” on page 400 for one exception.)

When a C source file is compiled with the indep option, all the functions in the
resulting object file have the following properties:

� The function can be entered before the C execution framework has been created.
� The function does not depend on the contents of register 12 on entry.
� On entry, the compiled code for the function invokes an exit routine, L$UPREP, to

make the C execution framework available.
� The function expects to be called with standard IBM 370 linkage (that is, with

register 13 addressing a 72-byte save area).

Therefore, a function compiled by indep can be called directly from outside of the C
execution framework (for example, with another high-level language’s framework
active).

The primary characteristic of the object code generated when the indep compiler
option is used is that the L$UPREP routine is invoked whenever a function compiled
with the indep option is called. L$UPREP determines whether the C execution
framework has been created. If the C framework has been created, the CRAB address
is loaded into register 12 and execution of the called function proceeds normally. If not,
L$UPREP invokes L$UMAIN, an initialization routine in the run-time library, to create
the C framework. After the C framework is created (and the CRAB address is stored in
register 12), execution of the initial function proceeds normally.

L$UPREP is provided in source code on the SAS/C installation tape. Therefore, you
can modify its check for the existence of the C execution framework as necessary to suit
your application. L$UPREP uses an assembler macro named L$UCENV to locate a
word in which the CRAB pointer is to be saved for future reference. The L$UCENV
macro sets R12 to the address of this word. As provided, L$UCENV defines a CSECT
named L$UCENV to be used to hold the CRAB address.

Because all functions compiled with indep invoke L$UPREP, it does not matter
which of these functions is called first. Whichever function is called first creates the C
framework.

Specifying Run-Time Library Options
Normally, when a C program is invoked by the operating system, run-time library

options are specified as part of the argument list passed by the operating system.
However, when the initial function is compiled with the indep option, the arguments
can have any type and therefore cannot be modified, or even inspected, by the library.
For this reason, another mechanism must be used in such an application to specify
run-time options.

One method is the normal technique of initializing external int variables named
_optionsand _negopts and the external char variable named _linkage to specify the
options required. (Refer to Chapter 9, “Run-Time Argument Processing,” on page 185

396 Specifying Run-Time Library Options 4 Appendix 6

for more details.) However, this technique can be used only when the options required
are constant and known at compile time.

To support varying options (that is, options that can vary between executions), you
can provide a routine named L$URTOP. This is an optional routine. If L$URTOP is not
included in the load module, only default options (or those specified by external
variables) are used. If L$URTOP is present in the load module, it is called during the
initialization of the C framework, using standard linkage. No arguments are passed to
it, and it should return the address of a run-time options string in register 15. The
string should contain a halfword length field, followed by the required options. Note
that the length contains the number of characters in the string, not the number of
characters plus two. During later initialization processing, the string is tokenized
exactly as if it came from a normal command line. However, if any of the tokens in the
string are not run-time library options, diagnostic messages are generated.

Because SPE does not support run-time options, L$URTOP is not used with the SPE
framework.

The following example shows a typical L$URTOP routine:

Example Code A6.1 Sample L$URTOP Routine

**
* *
* L$URTOP is an optional routine to provide runtime arguments to *
* Indep applications. *
* *
* In this example, the normal action is to specify a minimal set of *
* run-time options. However by zapping the location DEBUGOPT, two *
* completely different sets of options can be provided. *
* *
* When DEBUGOPT is set to 1 a different set options more suitable *
* for limited debugging is specified. This set of options also *
* define environment variables (APL1) meaningful to the application. *
* Additionally, the runtime options at label ALTOPTST can be zapped *
* to provide an entirely different set of runtime options when *
* DEBUGOPT is set to 1. *
* *
* When DEBUGOPT is set to 2 a different set of options provide the *
* information necessary to start the SAS/C Remote Debugger. *
* *
**
L$URTOP CSECT

SPACE
**
* Ensure AMODE/RMODE match those of the SAS/C Library Default *
**
L$URTOP RMODE ANY
L$URTOP AMODE 31

SPACE
USING *,15 Tell Assembler
B SETARGS Branch around eye-catcher
DC AL1(L’EYECATCH)

EYECATCH DC C’ L$URTOP - Sample’
DC XL1’00’ Filler
SPACE

* Switch to determine which set of runtime options will be used
SPACE

Using the indep Option for Interlanguage Communication 4 Specifying Run-Time Library Options 397

DEBUGOPT DC XL1’00’
SPACE

SETARGS DS 0H
STM 14,12,12(13) Save entry regs in callers area
SPACE
LA 1,STDOPTS Default to standard runtime
CLI DEBUGOPT,0 Has switch been set for alternate?
BE RETARGS No, return standard runtime
SPACE

* Alternate has been requested, set as indicated or take the default
CHKALT DS 0H Check for Alternate runtime

CLI DEBUGOPT,1 Has switch been set for alternate?
BNE CHKRMT No, check for Remote Debugger
LA 1,ALTOPTS Yes, return optional runtime
B RETARGS

CHKRMT DS 0H Check for Remote Debugger Setup
CLI DEBUGOPT,2 Has switch been set for Debug Rmt?
BNE RETARGS No, return standard runtime
LA 1,DBGRMT Yes, return Debugger Remote runtime
SPACE

RETARGS LR 15,1 Point R15 at runtime arguments
DROP 15
SPACE
L 14,12(,13) Restore R14
LM 0,12,20(13) Restore other registers
BR 14 Return to caller
LTORG ,

**
* Minimal Options *
**
STDOPTS DC AL2(L’STDOPTST)
STDOPTST DC C’=VERSION’ Standard - runtime

SPACE
**
* Alternate options providing additional information *
**
ALTOPTS DC AL2(L’ALTOPTST) Alternate- runtime
ALTOPTST DC CL80’=BTRACE =WARNING =FDUMP =APL1=DEBUG =STORAGE’

DC 0D’0’ Filler
SPACE

**
* Alternate options which provide setup information for the SAS/C *
* Remote Debugger. *
**
DBGRMT DC AL2(DBGLEN) RmtDebug - runtime
RMTOPTS DC C’=_DB_COMM=TCPIP ’

DC C’=_DB_HOST=124.383.1.2 ’
DC C’=_DB_PORT=3123 ’
DC CL80’=DEBUG =VERSION’
DC 0D’0’ Filler

DBGLEN EQU *-RMTOPTS
SPACE
END

398 C Execution Framework Access 4 Appendix 6

C Execution Framework Access

Once L$UMAIN has created the C execution framework, it is necessary to ensure
that it is accessible when any C function executes. For a function compiled with indep,
L$UPREP is responsible for making the C framework accessible by loading the CRAB
address into register 12. Functions compiled with indep can thus be invoked from
outside the C framework (for example, from another high-level language).

Functions compiled with indep can also be invoked from other C functions. In this
case, the C framework is already accessible. L$UPREP is responsible for determining
whether a function compiled with the indep option was called from C or from a non-C
routine and for avoiding unnecessary or incorrect processing if the call is from C. If you
modify the supplied L$UPREP routine only by replacing the L$UCENV macro, this
check is performed automatically, and the code to find the C framework generated by
L$UCENV is executed only for a call from non-C code.

C functions compiled without indep also can be used in a multilanguage
environment. Because such functions do not invoke L$UPREP, they can be called only
from other C functions. Calls to these functions execute slightly faster because
L$UPREP is not invoked, so you may want to compile only functions that are called
from C without using the indep option.

C Execution Framework Termination

After all C functions have completed execution and before the current task or
command returns to the operating system, the C framework should be terminated. This
enables memory to be freed, output buffers to be flushed, files to be closed, operating
system exits such as ABNEXITs and ESTAEs to be cleared, and so on. When a C
program that was compiled without indep terminates, the C framework is terminated
automatically. When you use indep for calling C from another language, it usually is
your responsibility to terminate the C framework after all calls to C functions have
completed.

Unless the initial C function is named main, the C framework created by the initial
call to C exists indefinitely. (See “main Function Considerations” on page 400 for
information on this special case.) Therefore, subsequent C functions can access external
variables set by previous functions, read and write opened files, and so on. In this case,
you should ensure that the C execution framework is terminated when all C functions
have completed.

To terminate the C execution framework, call the termination routine L$UEXIT. Be
sure to call L$UEXIT only after all non-C routines called from C have returned;
premature termination of the C framework causes errors on return from such routines.
Failure to call L$UEXIT can cause incomplete file output (if files have not been closed)
or can waste system resources or both. Note that you can avoid the problem of
incomplete file output by closing all files yourself, including the standard files.

The execution framework may also be terminated by calling the standard exit
function, but exit can be called only by a C routine, while L$UEXIT can be called by
either C or non-C code.

Note that both L$UEXIT and exit return to the program that called the first
currently active C function. Since L$UEXIT is a C function, L$UEXIT returns to the
routine that called it, assuming no other C routine was active at the time of the call.
Because exit must be called by a C function, exit never returns to its caller.

The name L$UEXIT cannot be referenced in FORTRAN and COBOL because of
restrictions in these languages. For the convenience of users of these languages, the
name CEXIT can be used instead of L$UEXIT.

Using the indep Option for Interlanguage Communication 4 Reentrancy 399

Interlanguage Communication Considerations
This section discusses some programming conventions you need to consider when

using interlanguage communication.

Initialization Considerations
In a sophisticated application, you may need to do additional processing after the C

execution framework has been created. For example, you may need to initialize values
in one or more of the user words in the CRAB. If you do this, you need to know details
of the initialization process implemented by L$UMAIN.

After L$UMAIN has created the C execution framework, it calls the initial C function
(the function that invoked L$UPREP) again. That function in turn passes control to
L$UPREP again. Normally, at this point L$UPREP determines that the C framework is
already accessible and allows the initial function to begin execution. However, you can
modify L$UPREP to detect this second call and to complete its own initialization at
that time. (Inspection of the sample L$UPREP source code is recommended.)

To recognize this second call and distinguish it from other calls, compare the address
of the caller’s DSA (R13 on entry to L$UPREP) with the contents of CRABMDSA. If
they are equal, L$UPREP was invoked from L$UMAIN. This is the most reliable test
because CRABMDSA usage is not expected to change in future releases of the compiler
and library.

Using the longjmp Function in a Multilanguage Program
When you have a multilanguage program compiled with the indep option, you

ordinarily cannot use longjmp to transfer control from one routine to another if this
would terminate a non-C routine. If you attempt this, a user ABEND 1224 results.
This restriction is imposed because longjmp cannot guarantee that bypassing the
normal return from the non-C routine will not cause random failures in non-C code.

If your application requires the use of longjmp in this fashion, you can modify the
L$UPREP routine to remove this restriction. However, if you do so, be aware that this
may cause unpredictable results later in execution, depending on the implementation of
function linkage in the other language.

Reentrancy
L$UPREP uses an assembler macro named L$UCENV to locate the area where the

CRAB address is saved. The L$UCENV macro sets R12 to the address where the CRAB
address should be saved. As provided, the L$UCENV macro uses a CSECT named
L$UCENV to store the CRAB address. For this reason, programs that use L$UPREP as
provided are self-modifying and, therefore, are non-reentrant.

If your application requires reentrancy, you need to modify L$UPREP to save the
CRAB address in a different manner. For example, if the language that calls C provides
a user word, as PL/I does, L$UPREP can be made reentrant by modifying it to save the
CRAB address in the user word. In most cases, a modification to L$UCENV is all that
is required to achieve reentrancy.

Note that the version of L$UPREP provided by CICS stores the CRAB address in the
first word of the Transaction Work Area (TWA) so that CICS application programs
compiled when the indep option is specified will be reentrant; this is a CICS
requirement. A transaction which invokes a C program compiled with the indep option
must be defined with a TWA.

400 main Function Considerations 4 Appendix 6

Note: Programs that modify external data such as FORTRAN COMMONs or PL/I
STATIC EXTERNAL variables are inherently non-reentrant. There is no point in
making L$UCENV reentrant in such programs. 4

main Function Considerations
Ordinarily, when you call C functions from another language, there is no C main

routine because the program is composed of a main routine in the other language
combined with C and other subroutines. Sometimes it is necessary to have a C main
function, usually because an existing C program is being modified to be called from
another language. This section describes the special considerations in such a case.

When you link code compiled with indep with a C function named main, the main
function normally must also be compiled with indep. This means that L$UPREP is
called to create the C execution framework if it does not exist and to save the CRAB
address for later access by the L$UCENV macro. In this special case, the C execution
framework is terminated when main returns. Therefore, you do not need to call
L$UEXIT after a call to a main function.

When the compiler processes a function named main, the corresponding external
symbol is named @MAIN. When you call a main function compiled with indep from
another language, you must use this entry point name. Use of the name MAIN (without
@) passes control directly to the run-time library on program entry, bypassing
L$UPREP and L$UCENV for framework initialization. This means that necessary
information is not stored for use by later non-C calls to C.

One difficulty that can arise when you call a main function from another language is
that storage referenced by L$UCENV may not always exist at the time that main is
called. This situation can occur, for example, if L$UCENV references a user word
provided by another language and C code is invoked before any code in the other
language. In this case, if possible, you should change the processing order so that
required storage can be allocated before main is called (by calling the other language
before C).

If it is not possible to change the processing order, an alternative technique can be
used in which you compile the main function without indep. Then, the C execution
framework is created by L$CMAIN when the C main function is invoked. The fact that
storage may not be available does not matter because a main routine that is not
compiled with the indep option does not invoke L$UPREP. In addition, you must store
the CRAB address yourself before any C function compiled with indep is called so that
it can be accessed by L$UCENV. To do this, you need to write an assembler routine and
invoke it after the other storage is accessible (for example, after the other language’s
execution framework has been created) and before any C functions compiled with indep
are called.

Note: The technique above is not directly applicable to SPE. 4

Using Interlanguage Communication
This section explains how to create programs that use interlanguage calls in more

than one direction as well as how to share data between languages.

Calls to C
C code compiled with indep can be called from FORTRAN, COBOL, PL/I, or any

other language that uses standard IBM 370 linkage conventions, provided that the

Using the indep Option for Interlanguage Communication 4 Calls from C 401

differences between C parameter passing conventions and those of other languages are
understood. Briefly, most languages use call by reference, while C uses call by value.
For example, if a FORTRAN routine calls a C program, passing an INTEGER value,
the corresponding C parameter must be declared to have type int * (pointer to int),
not int.

Calls from C
In the simple case where C is called from another high-level language and no

interlanguage calls are made by C, the use of indep is often the only special
requirement. Sometimes, however, there is a need to support calls in both directions. If
direct calls from C to the other language cause no problems, you do not need to read the
rest of this section.

For many languages, direct calls from C to subroutines in the other language fail to
work because the called language requires access to its own execution framework. For
example, PL/I code requires that register 12 address the PL/I TCA rather than the
CRAB. For such languages, before calling the subroutine, you must arrange for the
creation of an execution framework for the other high-level language. When the
subroutine is invoked, you must arrange for the other language’s framework to be in
effect. When you are finished with subroutines in the other language, you must arrange
to terminate the other language framework. You may need to write assembler stubs to
perform some or all of these functions.

The exact details depend on the implementation of the other language and its
execution framework and on any restrictions it imposes. You should read the section or
sections on interlanguage communication in the appropriate manual for the other
language. C is like assembler for many purposes, so you should also study the
discussion on communication with assembler. The steps required are outlined here.

First, create an execution framework for the other language. The best way to do this
is to call a MAIN routine written in the other language, unless the language provides a
specific call to accomplish this function. The other language’s framework can be created
before or after the C framework. If you create it after the C framework, calling a C
function compiled with indep returns to the C execution framework if provision has
been made for this as described under “main Function Considerations” on page 400.

C functions compiled with indep can be called from the other language exactly as
described under “Calls to C” on page 400.

You cannot call other language subroutines directly from C functions, unless the
other language implementation has a facility similar to indep. Instead, you must call
an assembler routine to switch execution frameworks. After saving the registers from
C, the stub must reactivate the framework for the other language and call the
appropriate subroutine. To assist you with this, a sample macro named L$UPENV is
provided. This macro is in some ways the inverse of the L$UCENV macro: it
determines whether the C framework is active and, if so, switches to the framework
from which C was called. L$UPENV has a single argument, REG=, that specifies the
register that is to contain the framework pointer. This register is restored from the save
area of the routine that called the first active C routine. If this procedure is not
adequate for the particular language in use, you can modify L$UPENV as necessary.

Your assembler routine should invoke the L$UPENV macro (modified as necessary)
and then invoke the other language routine. Example Code 21.3 on page 403 may be
helpful. You may want to write one stub per subroutine or have one stub handle
multiple subroutines, as in Example Code 21.1 on page 396.

You may need to pass on parameters from the C caller to the other language
subroutine. The @ operator and the __ref function modifier (language extensions) can
be helpful in passing parameters to another language. These extensions are described
in Chapter 2, “Source Code Conventions,” on page 9.

402 Data Sharing 4 Appendix 6

The other language subroutines can call other subroutines in the other language, C
functions compiled with indep, and assembler subroutines.

When you are through calling all other language subroutines, you need to terminate
the execution framework of the other language. You should terminate the frameworks
in the opposite order in which they were created. (That is, the framework created last
should be terminated first.) If you terminate C first, simply call L$UEXIT from the other
language as described above. To terminate the other language’s framework first, return
from the other language’s MAIN routine. When you do this, control is returned to the
point in C from which you originally invoked the MAIN routine in the other language.

Data Sharing

In general, data belonging to another language that are to be referenced from C must
be accessed via pointers. FORTRAN and PL/I provide exceptions to this. If your C
program is compiled with the norent compiler option, it can access FORTRAN
COMMONs (except for dynamic COMMONs) and PL/I STATIC EXTERNAL variables
as extern data. For details, see “Sharing External Variables with FORTRAN
Programs” on page 60.

Sample Interlanguage Calls

The following paragraphs discuss an example of calling C indep code from PL/I. The
C code in turn calls PL/I. Example Code 21.1 on page 396 manipulates bits in PL/I save
areas to prevent inspection of C save areas for ON-units. Although this manipulation
keeps PL/I from getting confused in most cases, it cannot be guaranteed to work in all
cases or with all versions of the PL/I library.

First, the L$UCENV macro is modified to locate the user word of the PL/I TCA
(TUSR). The address of TUSR is returned in register 12, which, after completion of
L$UCENV, is expected to contain the address of the word in which L$UPREP should
store the CRAB address. This modified version of L$UCENV also performs a secondary
function, namely, storing the address of the most recent PL/I save area in a CRAB user
word so it can be used later when reentering the PL/I execution framework.

Example Code 21.2 on page 402 shows this version of L$UCENV.

Example Code A6.2 L$UCENV Macro for PL/I to C

MACRO
&L L$UCENV
&L LA R12,X’11C’(,R12) Access TCA user word.

CLC 0(4,R12),=F’0’ CRAB address known yet?
BE CENV&SYSNDX If NO, no place

to save SAVE area
ST R12,8(,R13) Save R12 for a moment.
L R12,0(,R12) Find the CRAB.
USING CRAB,R12
ST R13,CRABUSR1 Save SAVE area addr in CRAB.
DROP R12
L R12,8(,R13) Restore CRAB pointer address.

CENV&SYSNDX DS 0H
MEND

Using the indep Option for Interlanguage Communication 4 Sample Interlanguage Calls 403

Second, the L$UPENV macro must be provided. The example L$UPENV works fine
in this context since L$UPENV REG=12 retrieves the PL/I TCA address.

Finally, an assembler routine must be written to allow calls from C to PL/I. A sample
routine to perform this service, PLISUB, is shown in Example Code 21.3 on page 403.
The first argument to the procedure is the address of the PL/I routine; the remaining
arguments are those to be passed to PL/I. The PLISUB routine must

1 locate the PL/I routine’s actual entry point
2 switch to the PL/I execution framework by using L$UPENV

3 build a save area for itself that looks enough like a PL/I DSA to avoid confusing
the PL/I library.

When the PL/I routine returns, PLISUB must put everything back before returning.
A sample call to PLISUB to perform the equivalent of the PL/I call CALL TRANS(I, 2);
follows:

extern trans();
plisub(&trans, @i, @2);

Example Code A6.3 Sample PLISUB Routine

PLISUB@ CSECT
CREGS
USING CRAB,R12

PLISUB CENTRY DSA=DSALEN
L R2,0(,R1) Address PL/I "function pointer."
L R2,0(,R2) Address PL/I entry point.
LA R3,4(,R1) Address PL/I program’s parms.
LR R4,R12 Save CRAB address.
DROP R12
USING CRAB,R4
L$UPENV REG=12 Find the PL/I TCA.
LR R6,R13 Save our DSA address.
USING DSA,R6 Establish DSA addressability.
MVC 0(2,R6),=X’8200’ Mark it as a dummy PL/I DSA.
LA R13,PLIDSA Find a save area for PL/I to use.
XC 0(96,R13),0(R13)
ST R6,4(,R13) Link to our SAVE area.
MVC 0(4,R13),=X’80000000’ INIT SAVE area for PL/I
MVC 86(2,R13),=X’91C0’ as described in PL/I doc
ICM R7,15,CRABUSR1 Find last PL/I SAVE area
BNZ OK
L R7,CRABPENV or save area on entry to C.

OK DS 0H
MVC 72(8,R13),72(R7) Copy PL/I storage management O
LR R15,R2 Set up regs for call.
LR R1,R3 Put address of parms where

PL/I expects.
BALR R14,R15 Call PL/I.
LR R13,R6 Restore our own SAVE area
LR R12,R4 and R12.
ST R7,CRABUSR1 Restore CRAB PL/I SAVE area ptr.
CEXIT , Return to C.
SPACE

404 Link-Editing Multilanguage Programs 4 Appendix 6

LTORG
COPY CRAB
SPACE
COPY DSA
SPACE

PLIDSA DS CL96 Space for PL/I SAVE area.
SPACE

DSALEN EQU *-DSA
END

Link-Editing Multilanguage Programs
If your program is to be executed using the normal C framework, use the normal C

resident library files as your autocall libraries (SASC.BASEOBJ and SASC.STDOBJ
under OS/390, LC370BAS TXTLIB and LC370STD TXTLIB under CMS). These
libraries include versions of L$UMAIN, L$UEXIT, and so on, suitable for use with the
full execution framework. For example, this version of L$UMAIN creates a complete C
execution framework, allowing the full use of all library functions.

Do not use the SPE object library when link-editing a program that is to execute
with the normal C framework because you then obtain versions of L$UMAIN and
L$UEXIT that are incompatible with the normal C framework.

Note that when you use the normal C framework, L$UPREP is the only
interlanguage communication routine that can be modified. If you have modified
L$UPREP, you can either replace the copy in the base library, as described earlier, or
you can store the modified version in a separate library and include that library in the
GLOBAL TXTLIB list (CMS) or SYSLIB concatenation (OS/390) before any other
autocall libraries. (The latter is recommended for safety.) The sample L$UPREP can be
used with either the full framework or with SPE. If you modify L$UPREP so that it
depends on one of these two frameworks, be careful to always link with the version that
is appropriate for your application.

If you write an L$URTOP routine, its object code also can be stored in the base
resident library. However, usually this routine is highly application-specific, so it is
probably more appropriate to store it in a separate library.

Location of indep Libraries
The sample source code for L$UPREP can be found in LSU MACLIB (CMS) or

SASC.SOURCE (OS/390). The object code is in LC370SPE TXTLIB (CMS) or
SASC.SPEOBJ (OS/390). The macro library is LCUSER MACLIB (CMS) and
SASC.MACLIBA (OS/390). The library contains macros such as L$UCENV and
L$UPENV. The macro library also contains members CRAB, DSA, and CPROLOG,
which provide mappings of the minimal CRAB, the DSA (Dynamic Save Area), and the
compiler-generated prolog code, respectively, which may be helpful in understanding the
sample routines or in coding new ones.

405

A P P E N D I X

7
Extended Names

Introduction 405
Extended Names Processing 405

Extended Names CSECTs 406

CSECT Format 406

Extended external identifiers CSECT 407

Extended function names CSECT 407
The enxref Compiler Option 408

COOL Extended Names Processing 408

COOL Selection of External Symbols 408

User Exit Selection of External Symbols 409

ENEXIT and ENEXITDATA options 409

The enxref COOL Option 410
The SNAME Cross-Reference 410

The CID Cross-Reference 411

The LINKID Cross-Reference 411

The xfnmkeep Option 411

The xsymkeep Option 412
Determining the Extended Function Name at Execution Time 412

The PRTNAME Function 412

Using #pragma map to Create Constant External Symbols 414

Extended Names Processing by the GATHER Statement 414

Introduction
This appendix explains how the compiler and the COOL utility work together to

allow extended names to be used in C programs. An extended name is a C identifier
with external linkage that is either more than eight characters in length or that
contains uppercase characters.

Extended Names Processing
The extname compiler option specifies that the compiler encode extended names in

eight-character, uppercase external symbols and save the original extended names in
generated object code. When the COOL utility processes object modules that contain
extended names, it uses the saved extended names to create external symbols that
allow the linker to link object files correctly. If extname is not specified, the compiler
creates external symbols for extended names by converting and truncating each name
to a maximum of eight uppercase characters.

406 Extended Names CSECTs 4 Appendix 7

The extname option directs the compiler to allow all identifiers, whether internal or
external, to be up to 65,535 characters in length. The compiler refers to internal
identifiers by their full names. During object code generation, the compiler examines
the identifier of each extern variable and each extern or static function and
determines if the identifier meets one or both of the following criteria:

� It is more than eight characters in length.
� It contains at least one uppercase alphabetic character. This criterion ensures that

the compiler will distinguish between identifiers that differ only in case, for
example, between the function names gets and Gets.

A name is an extended name if either of these conditions is true, and it is not the
name of a function declared with the _ _asm, _ _ref, or _ _ibmos keyword or one of the
high-level language keywords, such as _ _pascal.

Note that all function names, either static or extern, may be considered extended
names. Even though the name of a static function is not visible externally, the
extended function name is retained for use in commands to the debugger.

If the name is an extended name, the compiler assigns to it an eight-character
external symbol that represents it in object code. A unique extended name is always
assigned the same symbol, no matter how often it occurs within a compilation. The
external symbol is in the following form:

@@nnnnnn

where nnnnnn is a decimal number. The COOL utility uses this number to find the
extended name associated with the external symbol.

When the extname option is in effect, the compiler is sensitive to case with regard to
the special function names main and _dynamn. In other words, a program can have both
a main and a MAIN function. The compiler will treat only the main function as the main
entry point. When the noextname option is specified, the compiler is case insensitive
with regard to the special function names main and _dynamn. That is, the compile r will
accept MAIN as the main entry point and _DYNAMN as the dynamically loaded entry point.

When the norent compiler option is specified, the compiler may also create external
symbols in the form of &@nnnnnn. These symbols represent a pointer to a function with
an extended name.

Extended Names CSECTs
The compiler stores each extended name in one of two extended names CSECTs in

the output object module. One of the extended names CSECTs contains the extended
names of all of the static and extern functions defined in the compilation. The other
extended names CSECT contains the extended names of all other external identifiers.
The names of both CSECTs are formed from the compilation section name. The suffix
character for the extended function name CSECT is a right angle bracket (>). The
suffix character for the extended external identifier CSECT is a left angle bracket (<).
Refer to “Control Section Names” on page 53 for more information on CSECT names
and how they are formed.

CSECT Format
Both extended names CSECTs have the same format. A representation of the

extended names CSECT format in assembler language follows:

SNAME@> CSECT
DC F’nnnn’

Extended Names 4 CSECT Format 407

DC XL2’length-1 ’,C’name-1’
DC XL2’length-2 ’,C’name-2’
.
.
.
DC XL2’0’
END

The CSECT begins with a fullword value. Following this value is the length of the
first extended name, length-1, represented as an unsigned halfword. The extended
name, name-1, follows the length. The next extended name, name-2, follows the same
format. The extended names are not terminated by nulls. Following all of the extended
names is a halfword with all bits set to 0.

Extended external identifiers CSECT
The fullword field at the beginning of the extended external identifiers CSECT

contains the minimum external symbol value, that is, the smallest value of external
symbol nnnnnn used to create the external symbols for the extended external identifiers.
The compiler assigns external symbols beginning with 750000 and increments by 1 for
each extended external identifier. For example, the compiler assigns @@750000 to the
first extended external identifier, @@750001 to the second, and @@750002 to the third.
Because the maximum value for nnnnnn is 999999, there can be no more than 250,000
extended external identifiers, excluding function names, in a single compilation. This is
also the maximum number of extended external identifiers in a load module.

Extended function names CSECT
In the extended function names CSECT, the fullword field contains a number created

by hashing the compilation section name. The hash value is in the range from 0
through 749999. For a given external function name, the compiler determines an
identifying number n for the function by adding the hash value to the offset of the
length field of the external name in the CSECT. If n is greater than 749999, the
compiler uses the offset in the CSECT as n, ignoring the hash value. In either case, the
external name assigned by the compiler is @@NNNNNN, where NNNNNN is the
decimal expansion of n, padded on the left with zeroes if necessary.

The following example illustrates the process of deriving external symbols for
extended function names:

SNAME@> CSECT
DC F’2456’
DC XL2’22’,C’My_Structure_Type_Copy’
DC XL2’26’,C’My_Structure_Type_Allocate’
DC XL2’24’,C’My_Structure_Type_Delete’
DC XL2’0’
END

The external symbol for My_Structure_Type_Copy is the offset of the length field in
the CSECT, 2456+4, or @@002460. The external symbol for My_Structure_Type_Allocate
is 2456+26, or @@002482. The external symbol for My_Structure_Type_Delete is
2456+52, or @@002508. The total number of extended function names in a compilation
depends on the cumulative length of the function names; no extended function name
can begin at a location greater than 750000 bytes from the start of the CSECT.
However, this is not the limit of extended function identifiers in a load module.

The compiler also stows the external symbol in the function name field of the
function prolog. This copy of the external symbol can be used at runtime to associate a
function entry point with the original extended function name.

408 The enxref Compiler Option 4 Appendix 7

The enxref Compiler Option
When the enxref compiler option is specified, the compiler creates two extended

name cross-references. Both of these cross-references are in two-column format. The
first cross-reference is sorted according to extended name, or C identifier. The second
cross-reference is sorted according to external symbol, or Link ID. Both cross-references
include only the extended names of objects that were defined in the compilation; a
__rent external variable is considered to be defined even if its only usage in the
compilation is as a reference. Both of these cross-references are of limited value because
the COOL utility can assign different external symbols to extended names during object
code processing. The cross-references produced by COOL are more meaningful.

COOL Extended Names Processing
The external symbol that the compiler assigns for an extended name is different for

each compilation in which the name appears. For example, the external symbol for the
definition of the my_structure_allocate function is based on the sum of the section
name hash value and the offset of the extended name in the extended function names
CSECT. The external symbol for a call to the same function in another compilation uses
a number between 750000 and 999999.

The COOL object code preprocessor collects all the extended names in all the object
files for a load module and assigns a unique external symbol to each extended name.
The COOL utility preprocesses all object files that contain extended names CSECTs.

When the extname option has been specified and COOL detects an extended names
CSECT in an input object file, COOL creates a table of external symbols and associated
external names. COOL selects a unique external symbol for each extended name after
all of the input files have been processed and then uses this external symbol to replace
the compiler-assigned external symbol in the object code. Extended names processing is
the default. Specify noextname to suppress extended names processing.

This paragraph gives an example of the way COOL assigns external symbols. In the
object file for compilation A, the compiler uses the external symbol @@750078 to refer to
Instance_Number. In the object file for compilation B, the compiler uses @@750012 to
refer to the same name. While processing the two object files, COOL selects a third
external symbol, @@750341, to represent Instance_Number and replaces all instances
of @@750078 in compilation A and all instances of @@750012 in compilation B with this
selection. The linkage editor can then link the load module correctly because the
preprocessed object code contains a unique eight-character monocase external symbol
for each extended name.

Note: If the ability to autocall a function with an extended name is a requirement
and you cannot store the object code in an AR370 archive, you can use the #pragma
map directive to map the symbol to an eight-character name. (See Appendix 2, “The
AR370 Archive Utility,” on page 353.) 4

COOL Selection of External Symbols
COOL selects external symbols differently, depending on the type of extended name.

For all extended names other than function names, COOL assigns external symbols by
starting with @@750000 and incrementing by 1 for each new name. COOL changes all
of the external symbols for all extended names, other than function names, that were
assigned during compilation. There can be no more than 250,000 extended external
identifiers in a load module.

Extended Names 4 User Exit Selection of External Symbols 409

For extended function names, COOL attempts to use the external symbol that the
compiler assigns to the function definition. Because this symbol has been stored in the
function prolog, all references to the function can use the same symbol. In the unlikely
event that the compiler has assigned the same external symbol to more than one
function, COOL selects the next higher unassigned value as the external symbol.

This paragraph gives an example of the way in which COOL assigns external
symbols in this instance. The compiler has assigned @@189676 as the external symbol
for both function_A in compilation A and funct ion_B in compilation B. COOL
assigns a new external symbol for the second of these two functions that it finds in the
object code. If it has not already been used, COOL assigns the next higher symbol,
@@189677, to the second function.

User Exit Selection of External Symbols
COOL can call a user exit to create the external symbols instead of creating them

itself. The exit supplies the numerical part of the external symbol in the form of an
integer. The exit may choose the numbers using any algorithm, although it is assumed
that in most cases it will reference a database of extended names. This functionality
may be useful if the same external symbol is to be assigned to the same extended name
in multiple load modules.

ENEXIT and ENEXITDATA options
The exit is enabled by one of two options. The first option is the enexit option. This

option causes COOL to invoke the exit. The second is the enexitdata option. This
option causes COOL to invoke the exit and pass one to eight characters of user-specified
data. In TSO and OS/390 batch, this option has the following form:

enexitdata(userdata)

Under UNIX System Services (USS), the option is specified as follows:

-Aenexitdata=userdata

Under CMS, the option is specified as follows:

enexitdata userdata

The data are intended to give the exit a way to identify the object files that COOL is
processing. For example, the userdata could be a load module name.

If either option is used, COOL tries to dynamically load a module named CLKEXIT.
In TSO or OS/390 batch, this module must be located in STEPLIB, a task library, or the
system link list. Under CMS, the module must be a member of a LOADLIB named
DYNAMC LOADLIB. If the load module cannot be loaded, COOL terminates with an
error message.

The exit is called once for each unique extended name in the COOL input files. The
exit must return a valid value for every extended name. It is not possible for the exit to
elect to return values for a proper subset of the extended names.

The exit itself takes the form of a dynamically loadable function having the prototype
shown here:

int _dynamn(char UserData[8],
const char *ExtendedName, int ExtendedNameLength,
int FunctionFlag, int OldId, unsigned *NewId);

UserData is a pointer to an eight-byte array containing the one to eight characters of
user data specified by the enexitdata option. Unused characters in the array are set
to blanks. The exit can change the values in the UserData array. COOL always passes

410 The enxref COOL Option 4 Appendix 7

a pointer to the same array, so any changes made during a call to the exit are carried
over to the next call. ExtendedName is a pointer to the extended (long) name.
ExtendedNameLength is the length (1 to 65,535) of the extended name. FunctionFlag
is set to a non-zero value if the name is an extended function name and is 0 otherwise.
If FunctionFlag is nonzero, then OldId contains the integer part of the
compiler-assigned external symbol. If FunctionFlag is 0, then the value in OldId has
no meaning. NewId is a pointer to an unsigned int, into which the exit should store
the integer part of the external symbol to be assigned by COOL. The value stored in

NewId must be between 0 and 999999 inclusive. If the exit returns a value that is
not in this range, COOL terminates. The return code values are as follows:

0 indicates normal return. The exit supplied a value for NewId.

4 if returned on the first call to the exit, indicates that CLINK should
continue normal extended names processing and not call the exit
again.

Any other return code causes COOL to terminate immediately.
The exit runs as a function called from COOL; therefore, if the exit cannot continue

execution, it can call the exit or abort functions. The exit can issue diagnostic
messages by writing to STDERR. The exit should not write to STDOUT or any other
file that may write to the DDname SYSPRINT because this may interfere with COOL’s
use of this DDname.

The enxref COOL Option

COOL can optionally produce three extended names cross-references: SNAME, CID,
and LINKID. The enxref option controls these three cross-references. The SNAME
cross-reference is the most informative.

The SNAME Cross-Reference
The extended names in the SNAME cross-reference are sorted by compilation

SNAME. The extended names are in alphabetical order within each SNAME. The
SNAME cross-reference is displayed in two columns. Example Code 22.1 on page 410
shows one column of a sample SNAME cross-reference.

Example Code A7.1 Sample SNAME Cross-Reference

C IDENTIFIER (SNAME=PROGRAM) LINK ID WAS
Get_Option_String. @@002512 (same)
Initialize_Printer (static) @@002488
Instance_Number @@750321 @@750017
My_Structure_Type_Allocate . . . @@002460 @@750012

The three fields in this example show, from left to right, the original extended name
in the C IDENTIFIER field, the external symbol assigned by COOL in the LINK ID
field, and the external symbol assigned by the compiler in the WAS field. If the
extended name is the name of a static function, that is, a function that is not called
from any compilation other than the one in which it is defined, (static) is placed in
the LINK ID field. If COOL used the external symbol assigned by the compiler for an
extended function name, (same) is placed in the WAS field.

Extended Names 4 The xfnmkeep Option 411

The SNAME cross-reference includes only those extended names that are defined in
the compilation. As in the extended name cross-references for the compiler, a reentrant
external variable is considered to be defined in every compilation that references it.

The CID Cross-Reference
The second cross-reference is the CID cross-reference. In this cross-reference, the

extended names are shown in alphabetical order by original extended name. The CID
cross-reference is also displayed in two columns. Example Code 22.2 on page 411 shows
one column of a sample CID cross-reference.

Example Code A7.2 Sample CID Cross-Reference

C IDENTIFIER LINK ID
Get_Option_String. @@002512
Instance_Number @@750321
My_Structure_Type_Allocate . . . @@002460

Each column of the CID cross-reference contains two fields. The C IDENTIFIER field
contains the original extended name. The LINK ID field contains the external symbol
assigned by COOL. The names of static functions are not listed in the CID
cross-reference.

The LINKID Cross-Reference
The third cross-reference is the LINKID cross-reference. It is also displayed in two

columns. The entries are sorted by external symbols that COOL assigns. Example Code
22.3 on page 411 shows one column of a sample LINKID cross-reference.

Example Code A7.3 Sample LINKID Cross-Reference

LINK ID C IDENTIFIER
@@002460 My_Structure_Type_Allocate
@@002512 Get_Option_String
@@750321 Instance_Number

Each column of the LINKID cross-reference contains two fields. The LINK ID field
contains the external symbol assigned by COOL. The C IDENTIFIER field contains the
original extended name. The names of static functions are not listed in the LINKID
cross-reference. See for more information on C IDENTIFIER lengths.

The xfnmkeep Option
The xfnmkeep option retains the extended function names CSECTs in all input object

files. The extended function names CSECT may be useful at runtime if you are using
the SAS/C Debugger to debug your program. If the CSECT containing the extended
function name is available, the debugger uses the extended name in displays and
accepts the extended name in commands. Refer to the SAS/C Debugger User’s Guide
and Reference for more information on the debugger. Also, if the CSECT that contains
the extended function name is present, the library ABEND-handler includes the
extended name in abend tracebacks.

412 The xsymkeep Option 4 Appendix 7

The xfnmkeep option is the default. If noxfnmkeep is specified, COOL deletes the
extended function names CSECTs after the input files are processed. These CSECTs
will not appear in the output object file.

The xsymkeep Option
The xsymkeep option specifies that the extended external identifier CSECTs in all

input files are retained. The default is noxsymkeep. The noxsymkeep option specifies
that the extended external identifier CSECTs are not retained in the output object
module.

Note that retaining the extended function names CSECT or the extended external
identifier CSECT makes the resulting load module somewhat larger.

Determining the Extended Function Name at Execution Time
You can determine the extended name of a function at execution time by taking the

following steps. Note that all offsets are in decimal.
1 Find the external symbol name, stored at offset 5 in the function prolog (except in

a very large function). During execution, general register 5 points to the start of
the function prolog. Alternately, you can access the function entry point via the
register 15 value stored at offset 16 in the previous save area. This technique is
effective regardless of function size.

2 Get the address of the constants CSECT from offset 32 in the function prolog or
from general register 4.

3 Determine the address of the run-time constants CSECT. This address is located
at offset 8 in the constants CSECT.

4 Determine the address of the extended function names CSECT. This address is
located at offset 12 in the run-time constants CSECT.

5 Retrieve the fullword value (the SNAME hash value) located at offset 0 in the
extended function names CSECT.

6 Convert the six digits of the external symbol to binary.
7 If the result of this conversion is greater than the SNAME hash value, subtract

the hash value. The result is the offset of the extended name in the CSECT. The
first halfword at this offset is the length of the extended name followed by the
extended name itself.

To get a clearer picture of the content of these CSECTs, examine an OMD370 listing.
Use the verbose option to include the extended names CSECTs in the disassembly. For
more information about the constants CSECT and the run-time constants CSECT, refer
to “Compiler-generated Names” on page 53. Chapter 3, “Code Generation Conventions,”
on page 45 also contains more information about CSECT addressing at execution time.

The PRTNAME Function
The PRTNAME function is an assembler language function that prints the name of

the function pointed to by its argument. This function illustrates the process explained
above. The prototype for PRTNAME is the following:

void prtname(_remote void (*) (void));

Extended Names 4 The PRTNAME Function 413

If the argument points to a function with an extended name, the extended name is
printed. Otherwise, the name stored in the function prolog is printed.

Example Code 22.4 on page 413 shows the PRTNAME function.

Example Code A7.4 The PRTNAME Function

PRTNAME@ CSECT
CREGS USING
USING CPROLOG,R2

PRTNAME CENTRY DSA=DSALEN
L R2,0(,R1) R2 -> function pointer
L R2,0(,R2) R2 -> function prolog
LA R3,CPROFNM R3 -> function name
CLC =C’@@’,CPROFNM Start with @@?
BNE NOTEXTND No - not an extended name
L R4,CPROCONS R4 -> constant CSECT
L R4,8(,R4) R4 -> run-time constants CSECT
L R4,12(,R4) R4 -> extended function names CSECT
LTR R4,R4 Set to 0 if CSECT not present.
BZ NOTEXTND
L R0,0(,R4) R0 = SNAME hash value
PACK EXTSYM(8),CPROFNM+2(6) Convert 6 digits in external
CVB R5,EXTSYM symbol name to binary.
CR R5,R0 Is symbol less than hash value?
BNH FOUND If so, don’t subtract.
SR R5,R0 If not, subtract hash value.

FOUND DS 0H
AR R5,R4 R5 -> length of extended name
LH R0,0(,R5) R0 = length
ST R0,NAMELEN Store in printf parm list.
LA R5,2(,R5) R5 -> extended name
ST R5,NAME Store in printf parm list.
B CALLPRTF Go call printf.

*
* Handle function names that aren’t extended.
*
NOTEXTND DS 0H

MVC NAMELEN,=F’8’ Store length in plist.
ST R3,NAME Store pointer to name in plist.

*
* Call printf to print the function name.
*
CALLPRTF DS 0H

MVC FORMAT,=A(FMTSTR)
LA R1,PARMLIST
L R15,=V(PRINTF)
BALR R14,R15
CEXIT DSA=DSALEN,RC=0
DROP R2
LTORG

FMTSTR DC C’"%.*s"’,X’1500’ printf format
COPY DSA

EXTSYM DS 8C decimal-to-binary conversion area
PARMLIST DS 0F printf parameter list

414 Using #pragma map to Create Constant External Symbols 4 Appendix 7

FORMAT DS A
NAMELEN DS A
NAME DS A
DSALEN EQU *-DSA

COPY CPROLOG
COPY CRAB

Two tests are performed to discover if the function has an extended name. The first
test determines if the name stored in the function prolog begins with @@. The second
test determines if the address of the extended function names CSECT is nonzero. If the
NOXFNMKEEP COOL option is specified, this address is set to 0, and the extended
function names CSECT is deleted from the output object file.

Using #pragma map to Create Constant External Symbols

It is impossible to predict what external symbol the compiler or COOL will create for
an extended name. This unpredictability can cause problems when a constant,
predictable symbol is required for a name.

For example, the ANSI Standard function name localtime is nine characters in
length. The extname compiler option would treat this name as an extended name. The
program that calls localtime must have a predictable symbol for the name or it will
not be possible to link the localtime function into the program properly.

The #pragma map statement assigns an external symbol name to an extended name.
For example, the following statement assigns the external symbol name #LOCALTM to
the localtime extended name:

#pragma map (localtime, "#LOCALTM")

In the object file generated by the compiler, the external symbol for localtime is
#LOCALTM, not @@xxxxxx. For more information on #pragma map, refer to Chapter 2,
“Source Code Conventions,” on page 9.

Note: Use of the enexit option, described in “COOL Options” on page 149 may be a
more useful technique than #pragma map for very large applications or for applications
where the external names in use are not easily predictable. 4

Extended Names Processing by the GATHER Statement

In addition to normal GATHER processing, COOL inspects extended names when it
gathers external symbols under the direction of the GATHER control statement. If
COOL encounters a name that matches a GATHER prefix exactly, including case,
COOL gathers the external symbol for the extended name.

For example, suppose an input object file contains the extended name Step_Into,
which has an associated external symbol @@024561, and the following GATHER
statement is used:

GATHER Step

When COOL processes the object file, @@024561 will be gathered because the prefix
of Step_Into exactly matches Step. The external symbol associated with a function
named stepOver would not be gathered because the function name does not begin with
the exact prefix specified in the GATHER statement.

415

A P P E N D I X

8
Library Initialization and
Termination Exits

Introduction 415
Location of Exits 415

Exit Linkage Conventions 415

L$XSTRT 416

L$XFINI 416

Introduction

You can instruct the SAS/C Library to call a site exit routine while the C framework
is being created and before the initial user function is called; the library can also call a
site exit routine during destruction of the C framework after normal program
completion. These exit routines can be used for accounting, to define user-signal
processing, or for other special purposes. They can be written in either C or assembler
language and can use any C facilities. The library uses dummy exits if you do not
provide any.

Note: Initialization and termination exits are not supported in the minimal SPE
framework. 4

Location of Exits

Copies of L$XSTRT and L$XFINI reside in SASC.STDOBJ/STDLIB, SASC.GOSOBJ,
and SASC.CICSOBJ/CICSLIB under OS/390 and in LC370STD TXTLIB, LC370GOS
TXTLIB, and LC370CIC TXTLIB under CMS. To install site versions of the exits,
replace the members L$XSTRT and L$XFINI with the object code for your routines.
You must replace both L$XSTRT and L$XFINI if you replace either one.

Because the standard library, the GOS library, and the CICS library are independent
of one another, you can replace the exits in one or more of these libraries without
replacing the exits in all of them. You can also install different exits in each library to
target different systems.

Exit Linkage Conventions

The following sections describe the linkage conventions for the library initialization
and termination exits.

416 L$XSTRT 4 Appendix 8

L$XSTRT
The SAS/C initialization exit, L$XSTRT, is called by library initialization shortly

before control is passed to main. If the indep compiler option is specified, the library
calls this exit before control is passed to the first user function.

Linkage for L$XSTRT is defined as follows:

void L$XSTRT(void *user_words [4]);

user_words is a pointer to four words that can be modified to contain information
that you specify. On return from L$XSTRT, these words are copied to the four user
words in the CRAB that are available to the user and the installation. The program can
access these CRAB user words during execution. Refer to “The C Run-Time Anchor
Block” on page 215 for more information on the CRAB.

L$XFINI
The SAS/C termination exit, L$XFINI, is called by library termination after all

atexit routines have been called but before files are closed or signal handling is
terminated. L$XFINI receives the program’s exit code as a parameter and can change it.

Linkage for L$XFINI is defined as follows:

int L$XFINI(void *user_words [4] , int rc);

user_words is a pointer to four words that contain the current contents of the CRAB
user area. These values are the same as those stored by L$XSTRT, unless the CRAB
user words were modified during program execution. The rc parameter contains the
program’s exit code. The library takes the return value from L$XFINI library as an
overriding exit code, replacing the exit code specified by the program. If you do not
want the program’s exit code to be changed, specify return (rc); within the program
so that L$XFINI will return the value of rc. The library calls L$XFINI only once
during program termination regardless of the number of times that exit is called from
the program.

Note that L$XFINI is called only when execution is terminated normally, due to a
call to exit or L$UEXIT or due to return from the main function. It is not called if the
program is terminated by an ABEND or an unhandled UNIX System Services (USS)
signal.

417

A P P E N D I X

9
SAS/C Redistribution Package

Introduction 417
Limited Distribution Library 417

SAS/C Redistribution Package 417

OS/390 Components 418

CMS Components 419

Introduction
To facilitate the distribution of your SAS/C applications, you may need to redistribute

certain files provided by SAS Institute. The files provided by the SAS/C Limited
Distribution Library are redistributable on an "as is" basis. You may also want to
redistribute files that are included in the SAS/C®; Redistribution Package. Licensing
the SAS/C Redistribution Package allows you to redistribute a selection of SAS/C
programs and libraries to your customers, above and beyond the files provided by the
SAS/C Limited Distribution Library. Available for OS/390 and CMS, the SAS/C
Redistribution Package may only be licensed by current SAS/C Compiler sites.

Limited Distribution Library
The SAS/C Limited Distribution Library files are redistributable on an "as is" basis.

These files are copied to tape by running one of the following batch jobs:
� Under OS/390, run the JCL contained in sasc.cntl (DUMPRLDB).
� Under CMS, run the DUMPRLDB EXEC.

The files copied to tape by these batch jobs contain all of the SAS/C programs and
libraries that are redistributable at no charge. To redistribute other SAS/C programs
and libraries you must license the SAS/C Redistribution Package.

To obtain a list of the files that are written to tape by your job, print a listing of the
JCL or EXEC. On OS/390, the JCL can be found in sasc.CNTL(DUMPRLDB), where
the sasc qualifier is site-specific. If you cannot locate the JCL or EXEC, please see your
SAS Support Consultant or Installation Representative for site-specific information.

SAS/C Redistribution Package
This section lists the programs and libraries that comprise the SAS/C Redistribution

Package. This list is subject to change at any time. For more information about

418 OS/390 Components 4 Appendix 9

redistribution, have your SAS/C Software Consultant or Representative call the
Institute’s Technical Support Division. For additional information regarding the terms
and conditions under which these programs and libraries may be redistributed, please
refer to the SAS/C Compiler Supplement to your Master License Agreement.

OS/390 Components
The following table lists the programs that comprise the OS/390 components of the

SAS/C Redistribution Package:

Table A9.1 OS/390 Components of the SAS/C Redistribution Package

File Description

sasc.BASELIB Base resident library, load module format

sasc.BASEOBJ Base resident library, object module format

sasc/bin/binder USS binder front-end

sasc/bin/pdscall USS program call utility

sasc/bin/sascc370 USS COOL/binder front-end

sasc.CICS.SPELIB CICS SPE resident library, load module format

sasc.CICS.SPEOBJ CICS SPE resident library, object module format

sasc.CICSLIB CICS resident library, load module format

sasc.CICSOBJ CICS resident library, object module format

sasc.CLIST CLIST for compiler, other utilities

sasc.CNTL Installation JCL, DUMPRLDB job

sasc.EXEC REXX EXECs for compiler, other utilities

sasc.GOSOBJ Generalized Operating System library

sasc.HELP TSO help files for CLISTs

sasc.ILCOBJ Interlanguage Communication library, object
module format

sasc.ILCSUB Interlanguage Communication library, load module
format

sasc.LIBCXX.A C++ resident library

sasc.LOAC(AR370#) AR370 utility

sasc.LOAD(ILCL) ILCLINK utility

sasc.LOAC(CLINK) CLINK utility

sasc.LOAD(CLK370B) CLINK batch fron-end

sasc.LOAD(COOL#) COOL utility

sasc.LOAD(COOLB) COOL batch front-end

sasc.LOAD(SHELLER) C++ template utility

sasc.PROCLIB JCL for compiler, other utilities

sasc.SOURCE Library source code

sasc.SPELIB SPE resident library, load module format

SAS/C Redistribution Package 4 CMS Components 419

File Description

sasc.STDLIB Standard resident library, load module format

sasc.SPEOBJ SPE resident library, object module format

sasc.STDOBJ Standard resident library, object module format

sasc.VSEOBJ CICS/VSE resident library

Note: Under OS/390, the first level qualifier, sasc in Table A9.1 on page 418, is
site-specific. See your SAS/C Software Consultant or Representative for the qualifier
used at your site. 4

CMS Components
The following table lists the programs that comprise the CMS components of the

SAS/C Redistribution Package:

Table A9.2 CMS Components of the SAS/C Redistribution Package

Filename Filetype Description

LC370BAS TXTLIB Base resident library

LC370CIC TXTLIB CICS resident library

LC370GOS TXTLIB Generalized Operating System Library

LC370SPC TXTLIB CICS SPE resident library

LC370SPE TXTLIB CICS SPE resident library

LC370STD TXTLIB Standard resident library

LC370VSE TXTLIB CICS/VSE resident library

L$I* TEXT Interlanguage Communication TEXT
files

LCXX370 A C++ resident library

SHELLER MODULE C++ template utility

LSU MACLIB Library source code

ARLIST

ARLIST

$PROFAR$

$PROFSL$

AR370

EXEC

HELPC

XEDIT

XEDIT

MODULE

AR370 utility

ILCLINK

ILCLINK

ILCLINK

EXEC

HELPLC

MODULE

ILCLINK utility (370 mode CMS)

ILCLINK

ILCLINK

ILCLINK

EXEC

HELPLC

MODULE

ILCLINK utility (CMS)

420 CMS Components 4 Appendix 9

Filename Filetype Description

COOL

COOLS

COOL

LC370

EXEC

MODULE

HELPLC

LOADLIB, members

COOL and CLINK

COOL utility

CLINK

CLINK

CLINK

EXEC

MODULE

HELPLC

CLINK utility

Index 421

Index

Special Characters
{ } (braces), customizing 21
[] (brackets), customizing 21
// (slashes), in OS/390 filenames 337
* (asterisk), pseudoregister suffix 55
@ (at sign)

and assembler routines 210
assembler routines and 210
call-by-reference operator 31, 106

\ (backslash)
alternative representation of 21
customizing 21

: (colon), in environment variable names 187
$ (dollar sign)

in external variable names 55
in GATHER table names 165
in identifiers 28, 112

= (equal sign), in environment variables 186
! (exclamation point)

in compiler options 89
in OMD options 99

- (hyphen)
in compiler options 89
in OMD options 99

. (period), in AR370 archive member names 354
(pound sign)

comment indicator 14
customizing 21
in external variable names 55, 390
in include-file names 12

(pound signs), token pasting 120
/ (slash), in HFS pathnames 336
_ (underscore)

as overstrike character 22
in external variable names 55
in include-file names 12

| (vertical bar), customizing 21

Numbers
31-bit addressing 197

A
-a (ALIGN) parameter 383
a modifier character 355
-a option 373

A qualifier 37
=abdump option 190
_ABDUMP option 193
ABENDs, trapping as USS signals 324
access list management 306
access register mode 48
-Acidxref, COOL option 155
-Aclet, COOL option 152
-Acontinue, COOL option 153
__actual keyword 74
__actual storage class modifier 36
-Adupsname, COOL option 153
-Aenexit, COOL option 153
-Aenexitdata, COOL option 154
-Aextname, COOL option 155
-Agather, COOL option 151
-Ainceof, COOL option 156
-Ainsert, COOL option 151
aleserv function 306
alias, compiler option 67, 105
aliasing 67, 105
ALIGN (-a) parameter 383
__alignmem keyword 35
-Alineno, COOL option 157
-Alinkidxref, COOL option 155
-Alist, COOL option 157
all-resident c programs

resident.h header file 420
all-resident C programs

dynamic loading 205
library organization 202
missing support routines 207
resident.h header file 202
restrictions 206
routines, excluding 204
routines, including 203
subordinate load modules 207
target operating system, identifying 202
USS 208
warning messages 207

all-resident C programs, linking
CMS 136
OS/390 batch 145
TSO 137

all-resident libraries 151
allresident, COOL option 151
ampersand

address operator 49
assembler routines and 210
call-by-reference operator 32

CMS environment variables and 86
in function names 55
optimization and 64
pseudoregister suffix 55

-Anocidxref, COOL option 155
-Anodupsname, COOL option 153
-Anoextname, COOL option 155
-Anoinceof, COOL option 156
-Anolineno, COOL option 157
-Anolinkidxref, COOL option 155
-Anolist, COOL option 157
anonymous unions 25, 33
-Anoprem, COOL option 159
-Anoprmap, COOL option 160
-Anortconst, COOL option 160
-Anosnamexref, COOL option 155
-Anoverbose, COOL option 161
-Anowarn, COOL option 161
-Anoxsymkeep, COOL option 161
ANSI standard compatibility 4
-Apagesize, COOL option 159
-Aprem, COOL option 159
-Aprmap, COOL option 160
AR2UPDTE utility 367

CMS 368
diagnostic messages 370
member translation rules 370
OS/390 batch 369
TSO 369

AR370 archive utility 353
AR370 archive utility, CMS

command characters 355
invoking 354
modifier characters 355

AR370 archive utility, OS/390 batch
AR370 PARM string 361
AR370 procedure 360
INCLUDE statements 361
invoking 360
JCL requirements 360
LC370CA procedure 362
LCCCPCA procedure 363

AR370 archive utility, TSO
AR370 CLIST 357
DCB characteristics 359
invoking 357
LC370 CLIST 359
OS/390 file attributes 359

AR370 archives 166
corruption, ignoring 153

422 Index

creating 166
input, specifying 152, 162
modifying 166
specifying from the command line 167
specifying output member name 116
specifying with arlib option 106
specifying with ARLIBRARY 166

AR370 archives, converting to IEBUPDTE format
See AR2UPDTE utility

AR370 CLIST 357
AR370 PARM string 361
AR370 procedure 360
arguments

redirecting 200
run-time 185

arithmetic exceptions 47
arlib, compiler option 106
arlib, COOL option 152
ARLIBRARY, COOL statement 162, 166
armode, compiler option 106
array initializers, multibyte character support 20
arrays

implementation-defined behavior 40
zero-length 34, 347

-Artconst, COOL option 160
ASCII/EBCDIC conversion 37, 106
asciiout, compiler option 106
__asm keyword

assembler language functions 31, 211
declaring non-C functions 35
in function pointers 30

-Asmpjclin, COOL option 160
-Asmponly, COOL option 160
-Asmpxivec, COOL option 160
-Asnamexref, COOL option 155
assembler language macros 278
assembler programs

__asm keyword 211
C parameter lists 210

assembler programs, calling C programs
C execution framework 224
example 223
function pointers, declaring 211
functions, declaring 211
__ibmos keyword 211
linkage conventions 212
__ref keyword 211
returning values from 212

assembler routines, in C programs
adding 214
calling 219
CENTRY macro 216, 217
CEXIT macro 216, 217
control blocks 215
CRAB (C Run-Time Anchor Block) 215, 218
CREGS macro 218
DSA DSECTs 218
DSECTs 215
entry point 216
macros 215

asterisk (*), pseudoregister suffix 55
at, compiler option 106
at sign (@)

assembler routines and 210
call-by-reference operator 31, 106

atexit function 308
-Aupper, COOL option 161

auto, COOL option 152
autocall load libraries, specifying 158
autocall object libraries, specifying 157
autoinst, compiler option 106
automatic symbol resolution 157
-Averbose, COOL option 161
-Awarn, COOL option 161
-Axfnmkeep, COOL option 161
-Axsymkeep, COOL option 161

B
b modifier character 355
background processes 338
backslash (\)

alternative representation of 21
customizing 21

backtraces 190, 193
BASE= keyword 217
_bbwd function 239
-Bep, COOL option 152
_bfwd function 240
Binder, executing 115
bit masks for using registers 237
bitfield, compiler option 106
bitfields

implementation-defined behavior 40
noninteger 26, 34, 106

bitwise operations, on signed integers 39
bldexit function 296, 308
bldretry function 296, 311
-Blib, COOL option 152
-Bnoep, COOL option 152
braces ({ }), customizing 21
brackets ([]), customizing 21
_branch function 242
branch instructions, generating 242
branch targets, defining 251
branch to a label 239, 240
btrace function 312
=btrace option 190
_BTRACE option 193
bytealign, compiler option 107

C
-c, compiler option 107
c, compiler option 107
C execution framework 394

access 398
creating 224
termination 398
with indep option 395

C functions, calling from other languages 228
C++ input modules, specifying 153
-c option 345
C parameter lists 210
C Run-Time Anchor Block 215, 218
C Systems Programming Environment

See SPE
CALL command 171
case sensitivity

external variables 55
OMD options 99

_cc function 243
Celsius from Fahrenheit conversion 68
CENTRY macro 216, 217
CEXIT macro 216, 217
#chain command 15
chaining files 15
changes and enhancements 7
character constants, multibyte character sup-

port 19
character control by locale 18
character qualifiers 37
characters, implementation-defined behavior 39
cics, COOL option 152
CICS environment 4

commands, in SPE 297
compiler support for 4
compiling for 152
SPE framework, start-up routines 284
user exits, in SPE 298

CICS VSE environment, compiling for 152
cicsvse, COOL option 152
CID cross-reference 411
CMS environment

compiler support for 4
parameter lists 175
SVC instructions, generating 245, 254, 257
XA and 370 mode in SPE 278

_cms202 function 245
=cnftrace option 190
__cobol keyword 35
_code function 247
code.h header file 267
colon (:), in environment variable names 187
comments

C++ style 29
include files 14
nested, enabling 107
nesting 28

common ref/def model 56
comnest, compiler option 107
compiler 3

See also SPE
bypassing prelink and link steps 107
changes and enhancements 7
CICS environment 4
CMS environment 4
cross platform environments 5
current release number, getting 26
DDnames, replacing SYS prefix 113
lexical processing, multibyte character sup-

port 19
object code output, specifying 118
OS/390 environment 4
quick-start, CMS 6
quick-start, TSO 6
quick-start, USS 6
return codes 95, 117
SAS/C++ code, specifying 108
TSO environment 4
USS environment 4
version compatibility 5
XA CMS support 4

compiler-generated names
const type qualifiers 55
CSECTs 53
extended functions 55
extended identifiers 55

Index 423

pseudoregister suffixes 55
run-time constants 54

compiler language extensions 28
See also implementation-defined behavior
A qualifier 37
__actual storage class modifier 36
__alignmem keyword 35
anonymous unions 25, 33
arrays, zero-length 34
ASCII/EBCDIC conversion 37
__asm keyword, assembler language func-

tions 31
__asm keyword, declaring non-C functions 35
__asm keyword, in function pointers 30
at sign (@), call-by-reference operator 31
bitfields, noninteger 26, 34
character qualifiers 37
__cobol keyword 35
comments, C++ style 29
comments, nesting 28
compiler options, specifying 36
declaring non-C functions 35
#define statements, nesting 32
E qualifier 37
__far keyword 29
far pointer support 29
floating point constants, in hexadecimal 29
__foreign keyword 35
__fortran keyword 35
function pointer formats 29
__ibmos keyword, assembler language func-

tions 31
__ibmos keyword, in function pointers 30
__inline storage class modifier 36
__local keyword 29
mapping external names 37
__near keyword 29
__noalignmem keyword 35
__pascal keyword 35
__pli keyword 35
#pragma linkage statement 36
#pragma map statement 37
#pragma options statement 36
__ref keyword, assembler language func-

tions 31
__ref keyword, in function pointers 30
__remote keyword 29
string qualifiers 37
structure alignment 35
__weak storage class modifier 31

__COMPILER__ macro 27
compiler options

specifying 36
summary table 101

compiling C programs, CMS
defaults specification 85, 87
environment variables 85
GLOBALV variables 85
_HEADERS environment variable 86
_INCLUDE environment variable 86
LC370 EXEC 84
LCXED macro 85
_OPTIONS environment variable 87
quick-start 6
shared directories specification 86
XEDIT 85

compiling C programs, OS/390
compiler options 88
debug, compiler option 94
global optimization phase 92
JCL requirements 91
LC370C procedure 87

compiling C programs, preprocessed code
only 120

compiling C programs, TSO
LC370 CLIST 82
quick-start 6

compiling C programs, USS
from USS shell 83
quick-start 6

complexity, compiler option 67, 70, 107
computational signals, intercepting 191, 193
const type qualifiers, compiler-generated

names 55
constants

decimal 1 26
propagating and folding 65
removing duplicates 123
SAS/C considerations 24

constants, run-time
See run-time constants

continue, COOL option 153
conversions 25
COOL CLIST 136
COOL control statements

ARLIBRARY 162, 166
GATHER 163
INCLUDE 162
INSERT 163

COOL EXEC 135
COOL options

short forms 148
summary table 149

COOL preprocessor 132
all-resident libraries, specifying 151
AR370 archive corruption, ignoring 153
AR370 archive input 152, 162
autocall load libraries 158
autocall object libraries 157
automatic symbol resolution 157
bypassing 158
C++ input modules 153
CICS output 152
CICS VSE output 152
COOL370 TEXT, linking 157
COOL370 TEXT, starting 160
duplicate SNAMEs 153
errors, ignoring 152
extended external identifier CSECTs, retain-

ing 161
extended name cross-references 155
extended names, processing 155
external references, resolving 152
external symbol resolution 163
@EXTVEC# vector, building 160
function name CSECTs, retaining 161
GATHER tables 164
gathering names 163
GENMOD options 156
GLOBAL variables 156
GOS linkage 156
include files 162
input files, DDname prefixes 156

line numbering 157
link-edit autocall library 152
linkage editor name 157
linkage editor output 158
linking programs 134
nesting INCLUDE statements 156
OS/390 batch 138
output file 158
output module entry point 152
program entry point 154
pseudoregister maps, generating 160
pseudoregisters, removing 159
run-time constants, retaining 160
SPE output 160
symbol prefix 151
symbols, defining 151
symbols, gathering 151
term 161
under OS/390 batch 142
unresolved external references 157
user exits, invoking 153
verbose mode 161
warning messages, enabling 161
when to use 133

COOL370 TEXT
linking 157
starting 160

CRAB 215, 218
CREGS macro 218
cross platform environments 5
cross-references

CID 411
extended names 112, 155, 408
generating 126
LINKID 411
reentrancy 59
SNAME 410

CSECT names, in place of @EXTERN# 122
CSECTs, compiler-generated names 53
ctl370.h header file 263
Customer Information Control System

See CICS environment
cxx, compiler option 108
cxx, COOL option 153

D
d command character 355
-d option 345
das370.h header file 265
data alignment 107
data pointers 48
data types

arithmetic 46
long long 27

dataspace resources, releasing 318
dataspace services 312
dataspaces, creating 317
date and time

C locale conversions 44
current date, specifying 26

__DATE__ macro 26
implementation-defined behavior 41

DBCS
See multibyte character support

dbglib, compiler option 108

424 Index

dbgmacro, compiler option 109
dbgobj, compiler option 109
dbhook, compiler option 108

optimization and 67
_Dblkinit keyword 313
_Dblkmax keyword 313
_Dblksize keyword 314
DCSS

See GENCSEG utility
dead store elimination 64
debug, compiler option 109

enabling the debugger 94
optimization and 67

=debug option 190
_DEBUG option 193
debugger

CMS 174
executing 109
invoking 190, 193
multitasking interface 191, 193
optimizer and 67
SPE support 279
TSO 172
USS 174

debugger file
saving macro names in 109
specifying 108

debugging 108
See also OMD
hooks, generating 108
information, saving in object file 109

dec370.h header file 261
declaration agreement 59
declarations, SAS/C considerations 25
declarators, implementation-defined behavior 41
define, compiler option 109
#define names, redefinition and stacking 122
#define statements, nesting 32
_Dend keyword 314
depth, compiler option 67, 71, 110
_Dfprot keyword 315
_Dgenname keyword 313
_diag function 248
DIAGNOSE instructions, generating 248
diagnostics, printing 192
digraph, compiler option 110
digraphs 20, 110
Discontinuous Saved Segments

See GENCSEG utility
disk, compiler option 112, 127
distributing applications

See SAS/C Limited Distribution Library
_Dkey keyword 315
_Dname keyword 313
_Dnumblks keyword 314
_Dnumrange keyword 314
dollar sign ($)

in external variable names 55
in GATHER table names 165
in identifiers 28, 112

dollars, compiler option 112
_Dorigin keyword 314
dot (.), in AR370 archive member names 354
double-byte character set

See multibyte character support
_Doutname keyword 313
_Dranglist keyword 314

_Dreason keyword 313
_Dref keyword 314
_dregs function 251
DSA DSECTs 218
DSA= keyword

CENTRY macro 217
CEXIT macro 218

DSECT2C utility 343
arrays with zero elements 347
input 343
invoking, CMS 349
invoking, OS/390 batch 349
invoking, TSO 348
LENGTH_ZERO_2D macro 347
LENGTH_ZERO_REF macro 347
macros 350
messages 351
options 345
output 343
typedefs 350
usage notes 346

DSECTs 215
DSECTs, converting to C structures

See DSECT2C utility
dspserv function 312
_Dstart keyword 313
_Dstoken keyword 313
_Dttoken keyword 314
dumps

formatting 194, 195
generating 190, 193

dupsname, COOL option 153
_Dvar keyword 314
dynamic loading 205

E
-e (EDIT) parameter 383
e modifier character 355
E qualifier 37
EBCDIC, alternative representations 20
EBCDIC/ASCII conversion 37, 106
EDIT (-e) parameter 383
enexit, COOL option 153
ENEXIT option 409
enexitdata, COOL option 154
ENEXITDATA option 409
enforce, compiler option 112
entry, COOL option 154
entry points

for assembler programs 216
OS/390 batch 139
TSO 154

enumerations, implementation-defined behav-
ior 40

environment, implementation-defined behav-
ior 38

environment variables 186
assigning values 182
CMS 85
getting values of 321
modifying 327
POSIX considerations 187
printing 182
scopes 187
SPE and USS 299

updating 326
enxref, compiler option 112, 408
enxref, COOL option 155, 410
equal sign (=), in environment variables 186
error handling

messages to stderr 124
printing warning messages 126
strict warning messages 123
warnings, suppressing 116, 123
warnings, treating as errors 112

escape sequences 22
e_SVC202 function 257
exclamation point (!)

customizing 21
in compiler options 89
in OMD options 99

exclude, compiler option 113
exec-linkage programs 334
executing C programs 171
executing C programs, CMS

CMS parameter lists 175
GENMOD command 174
quick-start 6
standard files, redirecting 175
with debugger 174

executing C programs, OS/390 batch
LC370CLG procedure 177
LC370CRG procedure 180
LC370LG procedure 176
LC370LRG procedure 179
procedures 176
run-time JCL 181

executing C programs, TSO
quick-start 6
with debugger 172

executing C programs, USS
from USS shell 173
pdscall command 173
quick-start 6
with debugger 174

exit function 316
exit linkage, building 308
exit on error 296, 308
expressions

busy expression hoisting 66
merging subexpressions 66

extended external identifier CSECTs, retain-
ing 161

extended names
cross-references 112, 155, 408
enabling 56, 113
enxref compiler option 408
external identifiers 407
function names 407
processing 155, 405
storage location 406

extended names, COOL 408
CID cross-reference 411
constant external symbols, creating 414
ENEXIT option 409
ENEXITDATA option 409
enxref option 410
extended external identifiers, retaining 412
external symbols 408
function names, determining at execution

time 412
function names, printing 412

Index 425

function names, retaining 411
GATHER statement 414
LINKID cross-reference 411
#pragma map 414
PRTNAME function 412
SNAME cross-references 410
xfnmkeep option 411
xsymkeep option 412

extern variables, reentrancy 122
extern variables, sharing

cautions 391
global extern variables 389
L$UGLBL routine 389
pseudoregister vectors 389
pseudoregisters 389

external identifiers, extended name process-
ing 407

external references, resolving 152
external symbols

extended name processing 408
resolving 163

external variables
case sensitivity 55
common ref/def model 56
extended names 56
extname, compiler option 56
naming conventions 55
reentrant modification 56
ref/def models 56
sharing with assembler programs 59
sharing with FORTRAN programs 60
strict ref/def model 57

extname, compiler option 56
description 113
processing extended names 405

extname, COOL option 155
@EXTVEC# vector, building 160

F
f modifier character 356
Fahrenheit to Celsius conversion 68
falloc function 317
__far keyword

declaring pointers 49
language extensions 29

far pointers 48
access register mode 106
__far keyword 29
__near keyword 29
optimization and 79

=fdump option 194
_FDUMP option 195
feature test macro 333
ffree function 318
file access, HFS 335
__FILE__ macro 26
filenames

getting current 26
long 13

files, compiler option 113
files, COOL option 156
=fillmem option 190
_FILLMEM option 193
_flabel function 250
float370.h header file 262

floating point constants, in hexadecimal 29
floating-point numbers

exceptions 48
implementation-defined behavior 40

floating-point registers 67, 114
FNM= keyword 217
foreground processes 338
__foreign keyword 35
fork function 300
format function 319
formatting output 319, 328
__fortran keyword 35
forward branch targets, referencing 250
free function 319
freeexit function 297, 320
freeing memory on exit 297
freg, compiler option 67, 114
ftoc function, example 68
function call depth, defining 67, 71
function complexity, defining 67, 70
function name CSECTs, retaining 161
function names

determining at execution time 412
extended name processing 407
printing 412
retaining 411

function pointers 50
__asm keyword 30
converting 52
declaring 211
formats 29
__ibmos keyword 30
local 51
__ref keyword 30
remote 50

function prototypes 25
function recursion level, defining 67, 73
functions

See also inline functions
ANSI standard compatibility 4
assuming as local 119
call depth, specifying 110
complexity, defining 107
declaring 211
extended, compiler-generated names 55
ISO standard compatibility 4
non-C, declaring 35
prototype in scope, requiring 122
recursion level, specifying 122

G
GATHER, COOL statement 163, 414
GATHER tables 164
gathering names 163, 414
GENCSEG parameters 381
GENCSEG utility 379

address alignment 383
alias entries 382
ALIGN (-a) parameter 383
aligning on page offsets 383
dynamic loading 380
EDIT (-e) parameter 383
GENCSEG parameters 381
JAPAN (-j) option 384
load address, incrementing 383

load parameters 381
LOADALL (-r) option 384
LOADLIB, loading all members 384
LOADLIB source 382
option parameters 383
PAGE (-p) parameter 383
run-time library segment, renaming 385
segment installation 380
segment name 381
segment size, calculating 383
SPACE (-s) parameter 383
trial invocations 383
uppercasing messages 384
virtual machine requirements 384

general registers 67
genl370.h header file 260
genmod, COOL option 156
GENMOD command 135, 174
GENMOD options 156
GETENV command 183
getenv function 321
GIDs 338
global, compiler option 114
global, COOL option 156
global extern variables 389
global optimization

See optimization
GLOBALV variables 85, 156
gmap, COOL option 156
gos, COOL option 156
GOS linkage 156
greg, compiler option 67, 114
group identification numbers 338

H
hardware condition codes 243
=hcsig option 191
_HCSIG option 193
$$HDRMAP file 14
header file libraries, identifying 115
header file mapping 13
header filenames, multibyte character support 20
header files

_code 259
general 267
inline machine code interface 259, 267
search path 115
standard, reincluding 114
user, reincluding 115

header map
example 14
format 14
locating 14

_HEADERS environment variable 86
_heap option 196
HFS 299

SPE 299
USS OS/390 applications 335

Hierarchical File System
See HFS

hlist, compiler option 114
hmulti, compiler option 114
home directories 335
=htsig option 191
_HTSIG option 193

426 Index

hxref, compiler option 114
hyphen (-)

in compiler options 89
in OMD options 99

I
-i option 345
IBM linkage editor 137
__ibmos keyword 211
__ibmos keyword, assembler language func-

tions 31
__ibmos keyword, in function pointers 30
identifiers

extended, compiler-generated names 55
implementation-defined behavior 38

IEBUPDTE format, converting to AR370 archives
See UPDTE2AR utility

igline, compiler option 115
ilist, compiler option 115
implementation-defined behavior 38

See also compiler language extensions
arrays 40
bitfields 40
bitwise operations on signed integers 39
characters 39
__DATE__ macro 41
declarators 41
enumerations 40
environment 38
floating-point numbers 40
identifiers 38
integers 39
library functions 41
locale-specific behavior 43
pointers 40
preprocessing directives 41
qualifiers 41
registers 40
statements 41
structures 40
__TIME__ macro 41
translation 38
unions 40

imulti, compiler option 115
inceof, COOL option 156
_INCLUDE environment variable 86
include files 11, 16

#chain command 15
chaining files 15
CMS 12
comments 14
$$HDRMAP file 14
header file mapping 13
header map, locating 14
header map example 14
header map format 14
ipath, compiler option 16
long filenames 13
mapping lines 14
order of processing 16
OS/390 12
search rules 16
search rules, UNIX 125
search rules, UNIX versus SAS/C 17
specifying 162

usearch, compiler option 16
USS 13

INCLUDE statements, AR370 361
INCLUDE statements, COOL 162

nesting 156
indep, compiler option 115

interlanguage communication 393
SPE 284

INDEP= keyword
CENTRY macro 217
CEXIT macro 218

induction variable transformations 66
initialization, and reentrancy 58
initialization, libraries

See library initialization/termination
inline, compiler option 67, 115
inline data, generating 247
inline functions 68

__actual keyword 74
advantages of 68, 74
as replacements for macros 75
callable copies 74
disadvantages of 70
extending optimization 75
generating optimized code 76
nesting 67, 71
prohibited functions 74

__inline keyword, example 68
inline machine code interface 234

access register mode 239
_bbwd function 239
_bfwd function 240
bit masks for using registers 237
_branch function 242
branch instructions, generating 242
branch targets, defining 251
branch to a label 239, 240
built-in functions 234
_cc function 243
CMS SVC instructions, generating 245, 254,

257
_cms202 function 245
_code function 247
code macros 236
code.h header file 267
ctl370.h header file 263
das370.h header file 265
dec370.h header file 261
_diag function 248
DIAGNOSE instructions, generating 248
distinguishing from normal C code 237
_dregs function 251
e_SVC202 function 257
example 270
_flabel function 250
float370.h header file 262
forward branch targets, referencing 250
genl370.h header file 260
hardware condition codes, accessing 243
header files, _code 259
header files, general 267
inline data, generating 247
io370.h header file 265
ioxa.h header file 266
_label function 251
_ldregs function 238
loading registers 251

lsa370.h header file 261
machine instructions, generating 247
macros 259
OS/390 SVC instructions, generating 253,

254
_osarmsvc function 253
_ossvc function 254
registers, storing values of 255
regs.h header file 268
str370.h header file 261
_stregs function 255
supv370.h header file 264
SVC202 function 257
svc.h header file 269
vec370.h header file 266

__inline storage class modifier 36
inlining 68
inlining functions

compiler options 70
inline, compiler option 67
__inline keyword, example 68
inlocal, compiler option 67, 70
single-call static functions 115
small functions 115

inlocal, compiler option 67, 70, 115
input files, DDname prefixes 156
INSERT, COOL statement 163
instruction set 46
integers, implementation-defined behavior 39
=inter option 194
_INTER option 195
interlanguage communication 227

C execution framework 394
C execution framework access 398
C execution framework termination 398
C execution framework with indep option 395
calling C functions from other languages 228
calling other language MAIN routines in

C 229
calls from C 401
calls to C 400
data sharing 402
enabling 115, 194, 195
execution frameworks 394
indep compiler option 393
indep libraries, location of 404
initialization 399
link-editing 404
longjmp function 399
main function 400
reentrancy 399
run-time library options 395
sample calls 402
simple programs 394
SPE 284
special keywords 35
switch frameworks 394

io370.h header file 265
ioxa.h header file 266
ipath, compiler option 16, 115
ISO/ANSI Standard

See compiler language extensions
See implementation-defined behavior

ISO standard compatibility 4
_isysout external variable 197
ixref, compiler option 115

Index 427

J
-j (JAPAN), GENCSEG option 384
j modifier character 356
japan, compiler option 115
JAPAN (-j), GENCSEG option 384
Japanese language support

See multibyte character support

K
-Kalias, compiler option 105
-Karmode, compiler option 106
-Kasciiout, compiler option 106
-Kat, compiler option 106
-Kautoinst, compiler option 106
-Kbinder, compiler option 115
-Kbitfield, compiler option 106
-Kbytealign, compiler option 107
-Kcomnest, compiler option 107
-Kcomplexity, compiler option 107
-Kdbgmacro, compiler option 109
-Kdbgobj, compiler option 109
-Kdbhook, compiler option 108
-Kdebug, compiler option 109
-Kdepth, compiler option 110
-Kdigraph, compiler option 110
-Kdollars, compiler option 112
-Kenxref, compiler option 112
-Kexclude, compiler option 113
-Kextname, compiler option 113
-Kfreg, compiler option 114
-Kgreg, compiler option 114
-Khlist, compiler option 114
-Khmulti, compiler option 114
-Khxref, compiler option 114
-Kigline, compiler option 115
-Kilist, compiler option 115
-Kimulti, compiler option 115
-Kindep, compiler option 115
-Kinline, compiler option 115
-Kinlocal, compiler option 115
-Kixref, compiler option 115
-Kjapan, compiler option 115
-Klineno, compiler option 116
-Kloop, compiler option 116
-Kmaclist, compiler option 116
-Knoalias, compiler option 105
-Knoarmode, compiler option 106
-Knoasciiout, compiler option 106
-Knoat, compiler option 106
-Knoautoinst, compiler option 106
-Knobinder, compiler option 115
-Knobitfield, compiler option 106
-Knobytealign, compiler option 107
-Knocomnest, compiler option 107
-Knocomplexity, compiler option 107
-Knodbgmacro, compiler option 109
-Knodbgobj, compiler option 109
-Knodbhook, compiler option 108
-Knodebug, compiler option 109
-Knodepth, compiler option 110
-Knodigraph, compiler option 110
-Knodollars, compiler option 112
-Knoenxref, compiler option 112
-Knoexclude, compiler option 113

-Knoextname, compiler option 113
-Knofreg, compiler option 114
-Knogreg, compiler option 114
-Knohlist, compiler option 114
-Knohmulti, compiler option 114
-Knohxref, compiler option 114
-Knoigline, compiler option 115
-Knoilist, compiler option 115
-Knoimulti, compiler option 115
-Knoindep, compiler option 115
-Knoinline, compiler option 115
-Knoinlocal, compiler option 115
-Knoixref, compiler option 115
-Knojapan, compiler option 115
-Knolineno, compiler option 116
-Knoloop, compiler option 116
-Knomaclist, compiler option 116
-Knoomd, compiler option 119
-Knooptimize, compiler option 119
-Knooptions, compiler option 119
-Knooverstrike, compiler option 119
-Knopagesize, compiler option 119
-Knopflocal, compiler option 119
-Knoposix, compiler option 119
-Knoppix, compiler option 120
-Knordepth, compiler option 122
-Knoredef, compiler option 122
-Knorefdef, compiler option 122
-Knorent, compiler option 122
-Knorentext, compiler option 122
-Knosmpxivec, compiler option 122
-Knosname, compiler option 122
-Knosource, compiler option 123
-Knostmap, compiler option 123
-Knostrict, compiler option 123
-Knostringdup, compiler option 123
-Knotrans, compiler option 124
-Knotrigraphs, compiler option 124
-Knoundef, compiler option 125
-Knoupper, compiler option 125
-Knousearch, compiler option 125
-Knovstring, compiler option 125
-Knowarn, compiler option 126
-Knoxref, compiler option 126
-Knozapmin, compiler option 126
-Knozapspace, compiler option 126
-Komd, compiler option 119
-Koptimize, compiler option 119
-Koptions, compiler option 119
-Koverstrike, compiler option 119
-Kpagesize, compiler option 119
-Kpflocal, compiler option 119
-Kposix, compiler option 119
-Kppix, compiler option 120
-Krdepth, compiler option 122
-Kredef, compiler option 122
-Krefdef, compiler option 122
-Krent, compiler option 122
-Krentext, compiler option 122
-Ksmpxivec, compiler option 122
-Ksname, compiler option 122
-Ksource, compiler option 123
-Kstmap, compiler option 123
-Kstrict, compiler option 123
-Kstringdup, compiler option 123
-Ktrans, compiler option 124
-Ktrigraphs, compiler option 124

-Kundef, compiler option 125
-Kupper, compiler option 125
-Kusearch, compiler option 125
-Kvstring, compiler option 125
-Kwarn, compiler option 126
-Kxref, compiler option 126
-Kzapmin, compiler option 126
-Kzapspace, compiler option 126

L
-l, COOL option 157
-L, COOL option 157
-l option 373
_label function 251
_Laccess keyword 306
_Lal keyword 307
_Lalet keyword 307
language extensions

See compiler language extensions
LASTREG= keyword

CENTRY macro 217
CEXIT macro 218

LC370 CLIST 82, 359
LC370 EXEC 84
LC370C procedure 87
LC370CA procedure 362
LC370CL procedure 140
LC370CLG procedure 177
LC370CLR procedure 144
LC370CRG procedure 180
LC370D procedure 98
LC370L procedure 139
LC370LG procedure 176
LC370LR procedure 142
LC370LRG procedure 179
LCARES.TXTLIB 136
LCCCPCA procedure 363
_Lchkeax keyword 307
_Lchkpt keyword 307
LCXED macro 85
_ldregs function 238
leaf functions 79
_Lend keyword 307
LENGTH_ZERO_2D macro 347
LENGTH_ZERO_REF macro 347
lib, compiler option 115
lib, COOL option 157
libe, COOL option 157
library initialization/termination 415

location of exits 415
L$XFINI routine 416
L$XSTRT routine 416

library organization 202
library version numbers, printing 192, 193
Limited Distribution Library

See SAS/C Limited Distribution Library
__LINE__ macro 26
line numbering 157
#line statements, ignoring 115
lineno, compiler option 116
lineno, COOL option 157
link-edit autocall library 152
link-editing multi-language programs 404
linkage, minimal 194, 195
linkage conventions for assembler programs 212

428 Index

linkage editor name 157
linkage editor output 158
LINKID cross-reference 411
linking C programs

See also COOL preprocessor
entry points 167
SAS/C libraries 168

linking C programs, CMS
all-resident programs 136
COOL EXEC 135
GENMOD command 135
LOAD command 134, 135
quick-start 6
RESET option 135

linking C programs, OS/390 batch
all-resident programs 145
COOL options (short forms) 148
entry point, selecting 139
environment, selecting 139
JCL requirements 146
LC370CL procedure 140
LC370CLR procedure 144
LC370L procedure 139
LC370LR procedure 142
procedures 138
USS programs 148
with COOL 142
without COOL 138

linking C programs, TSO
all-resident programs 137
COOL CLIST 136
IBM linkage editor 137
quick-start 6

linking C programs, USS
from USS shell 137
quick-start 6

linking programs, multilanguage 134
list, COOL option 157
listing files

compiler 126
GENCSEG utility 384

listings
See reports

lked, COOL option 157
lkedname, COOL option 157
load, COOL option 158
LOAD command 134, 135
load modules

dynamic loading 322
dynamic unloading 327
subordinate 207

LOADALL (-r) option 384
loading registers 251
loadlib, COOL option 158
LOADLIB members, installing in DCSS

See GENCSEG utility
loadm function 322
local function pointers 51
__local keyword 29
local time offset 293
localization

See multibyte character support
longjmp function 399
loop, compiler option 66, 116
loop optimization 116
loops, moving invariant calculations 65, 66
_Lreason keyword 306

lsa370.h header file 261
_Lstoken keyword 306
L$UCENV routine 292
L$UEPIL routine 291
L$UEXIT routine 282
L$UGLBL routine 389
L$UHALT routine 295
L$UMAIN routine 280
L$UPREP routine 291
L$UPROL routine 289
L$UTFPE routine 292
L$UTZON routine 293
L$UWARN routine 294
L$UZABN routine 300
L$UZEST routine 300
L$UZOEI routine 300
L$UZSIA routine 300
L$UZSIR routine 300
L$XFINI routine 416
L$XSTRT routine 416

M
m command character 355
machine instructions, generating 247
MACLIBs, default values 114
maclist, compiler option 116
macro expansions, printing 116
macros

assembler 215
assembler, converting to C 350
inline machine code interface 236, 259
predefined 26
replacing with inline functions 75
undefining 26, 125

main function 400
maintenance

See patches
make utility 335
makefiles 335
malloc function 323
mapping external names 37
mapping lines 14
math error handling 292
me, compiler option 116
member, compiler option 116
memory, allocating

filling with zeros 190, 192, 193
heap space 196
malloc function 323
sbrk space 196
stack space 196

memory, freeing 319, 320
mention, compiler option 116
merge, compiler option 117
messages

See also uppercasing messages
AR2UPDTE utility diagnostics 370
DSECT2C utility 351
including source line numbers 116
lowercasing 115
UPDTE2AR utility diagnostics 375

=minimal option 194
_MINIMAL option 195
mlist, compiler option 116
_mneed option 196

-mrc, compiler option 117
multibyte character support 18

array initializers 20
character constants 19
character control by locale 18
compiler lexical processing 19
header filenames 20
japan compiler option 115
-Kjapan compiler option 115
string literals 20

=multitask option 191
_MULTITASK option 193

N
-n option 345
__near keyword

declaring pointers 49
language extensions 29

near pointers 49
nesting inline functions 67, 71
_nio external variable 196
_nlibopt external variable 196
_NOABDUMP option 193
noalias, compiler option 105
__noalignmem keyword 35
noarmode, compiler option 106
noasciiout, compiler option 106
noat, compiler option 106
noauto, COOL option 152
noautoinst, compiler option 106
nobitfield, compiler option 106
_NOBTRACE option 193
nobytealign, compiler option 107
nocomnest, compiler option 107
nocool, COOL option 158
nocxx, compiler option 108
nodbgmacro, compiler option 109
nodbgobj, compiler option 109
nodbhook, compiler option 108
nodebug, compiler option 109
_NODEBUG option 193
nodisk, compiler option 112
nodollars, compiler option 112
nodupsname, COOL option 153
noenxref, compiler option 112
noenxref, COOL option 155
noextname, compiler option 113
noextname, COOL option 155
_NOFILLMEM option 193
noglobal, COOL option 156
_NOHCSIG option 193
nohlist, compiler option 114
nohmulti, compiler option 114
_NOHTSIG option 193
nohxref, compiler option 114
noigline, compiler option 115
noilist, compiler option 115
noimulti, compiler option 115
noinceof, COOL option 156
noinlocal, compiler option 115
noixref, compiler option 115
nojapan, compiler option 115
nolib, compiler option 115
nolibe, COOL option 157
nolineno, COOL option 157

Index 429

nolist, COOL option 157
nomaclist, compiler option 116
nomerge, compiler option 117
_NOMULTITASK option 193
non-reentrant identifiers 57
noninteger bitfields 26, 34
noobject, compiler option 118
noomd, compiler option 119
nooptimize, compiler option 119
nooverstrike, compiler option 119
nopflocal, compiler option 119
noposix, compiler option 119
noppix, compiler option 120
nopponly, compiler option 120
noprem, COOL option 159
noprint, compiler option 121
noprint, COOL option 159
noprmap, COOL option 160
_NOQUIT option 193
noredef, compiler option 122
norefdef, compiler option 122
norent, compiler option 122

reentrant identifiers 57
__norent keyword 57
norentext, compiler option 122
noreqproto, compiler option 122
nortconst, COOL option 160
nosmpxivec, compiler option 122
nosource, compiler option 123
nostmap, compiler option 123
_NOSTORAGE option 193
nostrict, compiler option 123
not sign

customizing 21
in compiler options 89
in OMD options 99

noterm, COOL option 161
notrans, compiler option 124
notrigraphs, compiler option 124
noundef, compiler option 125
noupper, compiler option 125
_NOUSAGE option 193
nousearch, compiler option 125
noverbose, compiler option 125
noverbose, COOL option 161
_NOVERSION option 193
novstring, compiler option 125
nowarn, compiler option 126
nowarn, COOL option 161
_NOWARNING option 193
noxsymkeep, COOL option 161
_NOZEROMEM option 193
numerical limits 24

O
-o, COOL option 158
object, compiler option 118
object module disassembler

See OMD
oeabntrap function 324
OMD 95

See also debugging
ASM output file 121
invoking 119
object code input 107

source file 116
OMD, CMS

as LC370 EXEC option 97
OMD370 EXEC 97

omd, compiler option 119
OMD, OS/390

as LC370C option 98
JCL requirements 98
LC370D procedure 98
options 99

OMD, TSO
as LC370 CLIST option 96
OMD370 CLIST 95

OMD options
case sensitivity 99
summary table 105

OMD370 CLIST 95
OMD370 EXEC 97
optimization 63

aliasing, worst case 67
busy expression hoisting 66
compiler options 66
constants, propagating and folding 65
dead code elimination 66
dead store elimination 64
debugger and 67
extending with inline functions 75
far pointers 79
floating-point registers 67
function call depth, defining 67, 71
function complexity, defining 67, 70
function recursion level, defining 67, 73
general registers 67
induction variable transformations 66
inlining functions 67
invoking 119
loops, moving invariant calculations 65, 66
OS/390 batch compiles 92
register allocation 64
subexpressions, merging 66
switches 79

optimize, compiler option 119
=optimize option 195
_OPTIMIZE option 195
optimizing linkage 195
options, compiler option 119
_OPTIONS environment variable 87
OS/390 applications, linking 148
OS/390 applications, running under USS

See USS OS/390 applications
OS/390 environment

compiler support for 4
data sets 337
SVC instructions, generating 253, 254

_osarmsvc function 253
_ossvc function 254
output, COOL option 158
output module entry point, specifying 152
overstrike, compiler option 119

P
-p (PAGE) parameter 383
PAGE (-p) parameter 383
pagesize, compiler option 119
pagesize, COOL option 159

__pascal keyword 35
patch area 61, 126
patches 60

register conventions 61
zapmin, compiler option 61
zapspace, compiler option 61

pdscall command 173
period (.), in AR370 archive member names 354
pflocal, compiler option 119
_pgmnm external variable 197
__pli keyword 35
pointer conversion 25
pointers, function

See function pointers
pointers, implementation-defined behavior 40
posix, compiler option 119
POSIX applications 332

compatibility 119
compiling 334
conformance to standards 332
strictly conforming 333
with extensions 333

POSIX compiler option 300
POSIX functions, SPE 279
pound sign (#)

comment indicator 14
customizing 21
in external variable names 55, 390
in include-file names 12

pound signs (##), token pasting 120
ppix, compiler option 120
pponly, compiler option 120
pr, compiler option 121
#pragma linkage statement 36
#pragma map 414
#pragma map statement 37
#pragma options statement 36, 129
prem, COOL option 159
preprocessing C programs

See COOL preprocessor
preprocessing directives, implementation-defined

behavior 41
preprocessor symbols 128
print, compiler option 121, 127
print, COOL option 159
printing

See reports
prmap, COOL option 160
processes 338
program cleanup 308
PRTNAME function 412
pseudoregister maps 160
pseudoregister suffixes 55
pseudoregister vectors 389
pseudoregisters 389

removing 159
PUTENV command 183
putenv function 326

Q
q modifier character 356
qualifiers, implementation-defined behavior 41
=quit option 191
_QUIT option 193

430 Index

R
r command character 355
-r (LOADALL) option 384
RC= keyword 218
rdepth, compiler option 67, 73, 122
redef, compiler option 122
reentrancy

cross-references 59
declaration agreement 59
extern variables 122
external variables, ref/def models 56
external variables, sharing with assembler pro-

grams 59
external variables, sharing with FORTRAN

programs 60
initialization 58
interlanguage communication 399
non-reentrant identifiers 57
norent, compiler option 57
__norent keyword 57
placement of data 58
reentrant identifiers 57
rent, compiler option 57
__rent keyword 57
rentext, compiler option 57
static variables 122

reentrant identifiers 57
__ref keyword 211

assembler language functions 31
in function pointers 30

refdef, compiler option 122
register allocation 64
register conventions 61
registers

implementation-defined behavior 40
specifying number of 114
storing values of 255

regs.h header file 268
remote function pointers 50
__remote keyword 29
rent, compiler option 122

reentrant identifiers 57
__rent keyword 57
rentext, compiler option 122

reentrant identifiers 57
reports 121

compiler options 119
controlling with #pragma directives 32
cross-reference 126
diagnostics 192
directing to terminal 124
environment variables 182
excluding lines from 113
formatted source, generating 123
formatting 32
function names 412
GENCSEG utility, samples 385
generating 114, 159
header file references 114, 115
header files, including in source listings 114
#include file references 115
including header files 114
-Klisting, compiler option 121
library version numbers 192, 193
line spacing 32
lines per page 119

macro expansions 116
OMD source code 117
page eject 32
pagesize 159
storage analysis 192, 193
storage corruption 193
storage usage 192, 193
titles 32
uppercasing 125, 161
warning messages 126, 192, 193
writing to A disk 112

reports, COOL
control statements 157
gathered names 156
generating 159
INCLUDE statements 160
-Klisting, COOL option 159
-Knolisting, COOL option 159
output 136
pagesize 159
uppercasing 161

reqproto, compiler option 122
RESET option 135
resident.h header file 202, 420
retry linkage, building 311
retry on error 296, 311
return codes, compiler 95
routines

excluding 204
including 203
missing 207

rtconst, COOL option 160
run-time arguments 185
run-time constants 54

compiler-generated names 54
retaining 160

run-time library, SPE 279
run-time options 188

external compiler variables 197
general options 189
linkage options 194
memory allocation options 195
program-only options 196

running C programs
See executing C programs

S
-s option 373
-s (SPACE) parameter 383
SAS/C compiler

See compiler
SAS/C Limited Distribution Library 417

CMS components 419
OS/390 components 418

__SASC__ macro 26
sascc370, temporary file location 124
_SASC_POSIX_SOURCE macro 333
section names, defining 122
segments

See GENCSEG utility
setenv function 327
signal handling, SPE 299
slash (/), in HFS pathnames 336
slashes (//), in OS/390 filenames 337
smpjclin, COOL option 160

smponly, COOL option 160
smpxivec, compiler option 122
smpxivec, COOL option 160
sname, compiler option 122
SNAME cross-references 410
SNAMEs, duplicate 153
source, compiler option 123
source code

current line number, getting 26
sequence numbering 11

source code files, SPE 277
SPACE (-s) parameter 383
SPE 278

ABENDs, trapping as USS signals 324
access list management 306
adapting routines 279
assembler language macros 278
CICS commands 297
CICS user exits 298
CMS, XA and 370 mode 278
dataspace resources, releasing 318
dataspace services 312
dataspaces, creating 317
debugger support 279
environment variables, getting values of 321
environment variables, modifying 327
environment variables, updating 326
exit linkage, building 308
formatting output 319, 328
load modules, dynamic loading 322
load modules, dynamic unloading 327
memory, allocating 323
memory, freeing 319, 320
POSIX functions 279
program cleanup 308
retry linkage, building 311
run-time library 279
source code files 277
storage allocation 317
terminate execution 316
tracebacks, generating 312

spe, COOL option 160
SPE, linking for

calls to unsupported functions 330
CICS 330
CMS 330
OS/390 329

SPE and USS
environment variables 299
fork function 300
HFS access 299
POSIX compiler option 300
signal handling 299
timing functions 299
USS interface 298

SPE framework
creating 280
creation, verifying 291
L$UCENV routine 292
L$UEXIT routine 282
L$UMAIN routine 280
recovery 291
termination 282

SPE framework, start-up routines
CICS 284
CMS 283
example, CMS nucleus extension 288

Index 431

example, OS/390 SVC 287
flow of control 282
indep compiler option 284
interlanguage communication 284
OS/390 283
user-written 286
USS OS/390 283

SPE internals
abnormal termination 295
epilog conventions 290
local time offset, determining 293
L$UEPIL routine 291
L$UHALT routine 295
L$UPREP routine 291
L$UPROL routine 289
L$UTFPE routine 292
L$UTZON routine 293
L$UWARN routine 294
math error handling 292
prolog conventions 289
stack manipulation 289
warning messages, enabling 294

SPE interrupt handling 295
bldexit function 296
bldretry function 296
exit on error 296
freeexit function 297
freeing memory on exit 297
retry on error 296

SPE library functions
aleserv 306
atexit 308
bldexit 308
bldretry 311
btrace 312
dspserv 312
exit 316
falloc 317
ffree 318
format 319
free 319
freeexit 320
getenv 321
loadm 322
malloc 323
oeabntrap 324
putenv 326
setenv 327
summary tables of 300, 304
unloadm 327
vformat 328

SPE output 160
special characters

digraphs 20
EBCDIC alternatives 20
printing as overstrikes 119
translate table 21
translating 124
trigraphs 20

stack manipulation 289
_stack option 196
standard files, redirecting

CMS redirection 175, 198
program redirection 199
_style variable 198

start, COOL option 160
statements, implementation-defined behavior 41

static data members, automatic instantiation 106
STATIC= keyword 217
static variables, reentrancy 122
__STDC__ macro 26
_stdeamp external variable 199
_stdenm external variable 199
_stdiamp external variable 199
_stdinm external variable 199
_stdoamp external variable 199
_stdonm external variable 199
_stkabv external variable 197
_stkrels external variable 197
stmap, compiler option 123
storage, allocating 317
storage class limits 23
storage class modifiers

__actual 36
__inline 36
__weak 31

=storage option 192
_STORAGE option 193
str370.h header file 261
_stregs function 255
strict, compiler option 123
strict ref/def model 57, 122
string literals 24

2-byte length prefix 125
multibyte character support 20

string qualifiers 37
stringdup, compiler option 123
structure alignment 35
structure element maps, generating 123
structures

anonymous unions 25, 33
implementation-defined behavior 40

_style external variable 198, 199
subexpressions, merging 66
subordinate load modules 207
suppress, compiler option 123
supv370.h header file 264
SVC instructions, generating

CMS 245, 254, 257
OS/390 253, 254

SVC202 function 257
svc.h header file 269
switches, optimizing 79
symbols

defining 109, 151
gathering 151
prefix specification 151

SYS prefix, replacing 113
SYSOUT file, sharing 197
systems programming

See SPE

T
t command character 355
-t option 368, 373
-Tallres, COOL option 151
Tcics370, COOL option 152
-Tcicsvse, COOL option 152
TCP/IP configuration, displaying 190
-temp, compiler option 124
template functions, automatic instantiation 106
term, compiler option 124, 127

term, COOL option 161
terminating execution

run-time arguments for 191, 193
SPE 295, 316

termination, libraries
See library initialization/termination

termination signals, intercepting 191, 193
time, specifying current 26
__TIME__ macro 26

implementation-defined behavior 41
timing functions 299
token pasting 120
tracebacks, generating in SPE 312
trans, compiler option 124
transient library access 337
translation, implementation-defined behavior 38
translation limits 23
trigraph translation, enabling 124
trigraphs 20
trigraphs, compiler option 124
TSO environment 4
-Tspe, COOL option 160
type, compiler option 124, 127
typedefs, converting from assembler to C 350

U
-u option 345
UIDs 338
undef, compiler option 125
underscore (_)

as overstrike character 22
in external variable names 55
in include-file names 12

unions
anonymous 25, 33
implementation-defined behavior 40

UNIX System Services
See USS environment

unloadm function 327
unresolved external references 157
UPDTE2AR utility 373

CMS 373
diagnostic messages 375
OS/390 batch 374
TSO 374

upper, compiler option 125
upper, COOL option 161
uppercasing messages 125

-Aupper, COOL option 161
GENCSEG utility 384
in reports 125, 161
-Knoupper, compiler option 125
-Kupper, compiler option 125
noupper, compiler option 125
upper, compiler option 125
upper, COOL option 161

=usage option 192
_USAGE option 193
usearch, compiler option 16, 125
user exits, invoking 153
user identification numbers 338
USS applications, linking under OS/390 batch

See USS OS/390 applications
USS applications, running under OS/390 batch

See USS OS/390 applications

432 Index

USS environment 4
all-resident library 208
compiler support for 4

USS interface to SPE 298
USS OS/390 applications 331

background processes 338
compiling POSIX programs 334
exec-linkage programs 334
feature test macro 333
file access 335
foreground processes 338
GIDs 338
HFS 335
home directories 335
make utility 335
makefiles 335
OS/390 data sets 337
portability 333
POSIX applications 332
POSIX conformance 332
POSIX programs with extensions 333
POSIX references 332
processes 338
_SASC_POSIX_SOURCE macro 333
shell scripts 335
strictly conforming POSIX programs 333
transient library access 337
UIDs 338
USS shell 335
working directories 335

V
-v, compiler option 125
v modifier character 356
vec370.h header file 266
verbose, compiler option 125
verbose, COOL option 161
verbose mode 125, 161
version compatibility 5
=version option 192
_VERSION option 193
vertical bar (|), customizing 21
vformat function 328
vstring, compiler option 125

W
warn, compiler option 126
warn, COOL option 161
warning messages

all-resident programs 207
enabling 161, 294
printing 192, 193

=warning option 192
_WARNING option 193
__weak storage class modifier 31
wide characters

See multibyte character support

working directories 335

worst case aliasing 67

X
x command character 355

-x option 345, 368

XA CMS support 4

XEDIT, compiling C programs 85

xfnmkeep, COOL option 161

xfnmkeep option 411

xref, compiler option 126

xsymkeep, COOL option 161

xsymkeep option 412

=xtrace option 192

Z
-z option 345

zapmin, compiler option 61, 126

zaps

See patches

zapspace, compiler option 61, 126

=zeromem option 192

_ZEROMEM option 193

Your Turn

If you have comments or suggestions about SAS/C Compiler and Library User’s
Guide, Release 7.00, please send them to us on a photocopy of this page, or send us
electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

Welcome * Bienvenue * Willkommen * Yohkoso * Bienvenido

SAS Publishing Is Easy to Reach

Visit our Web page located at www.sas.com/pubs

You will find product and service details, including

• sample chapters

• tables of contents

• author biographies

• book reviews

Learn about

• regional user-group conferences
• trade-show sites and dates
• authoring opportunities

• custom textbooks

Explore all the services that SAS Publishing has to offer!

Your Listserv Subscription Automatically Brings the News to You
Do you want to be among the first to learn about the latest books and services available from SAS Publishing?
Subscribe to our listserv newdocnews-l and, once each month, you will automatically receive a description of the
newest books and which environments or operating systems and SAS® release(s) each book addresses.

To subscribe,

1. Send an e-mail message to listserv@vm.sas.com.

2. Leave the “Subject” line blank.

3. Use the following text for your message:

subscribe NEWDOCNEWS-L your-first-name your-last-name

For example: subscribe NEWDOCNEWS-L John Doe

Create Customized Textbooks Quickly, Easily, and Affordably

SelecText® offers instructors at U.S. colleges and universities a way to create custom textbooks for courses that
teach students how to use SAS software.

For more information, see our Web page at www.sas.com/selectext, or contact our SelecText coordinators by
sending e-mail to selectext@sas.com.

You’re Invited to Publish with SAS Institute’s User Publishing Program
If you enjoy writing about SAS software and how to use it, the User Publishing Program at SAS Institute
offers a variety of publishing options. We are actively recruiting authors to publish books, articles, and sample
code. Do you find the idea of writing a book or an article by yourself a little intimidating? Consider writing with
a co-author. Keep in mind that you will receive complete editorial and publishing support, access to our users,
technical advice and assistance, and competitive royalties. Please contact us for an author packet. E-mail us at
sasbbu@sas.com or call 919-531-7447. See the SAS Publishing Web page at www.sas.com/pubs for complete
information.

Book Discount Offered at SAS Public Training Courses!
When you attend one of our SAS Public Training Courses at any of our regional Training Centers in the U.S., you
will receive a 20% discount on book orders that you place during the course.Take advantage of this offer at the
next course you attend!

SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513-2414
Fax 919-677-4444

* Note: Customers outside the U.S. should contact their local SAS office.

E-mail: sasbook@sas.com
Web page: www.sas.com/pubs
To order books, call Fulfillment Services at 800-727-3228*
For other SAS business, call 919-677-8000*

