SAS/C® CICS User’s Guide, Release 7.00

The Power to Know.,

JSaS ‘ SAS Publishing

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/C® CICS User’s Guide, Release 7.00, Cary, NC: SAS Institute Inc., 2001.

SAS/C’ CICS User’s Guide, Release 7.00
Copyright © 2001 by SAS Institute Inc., Cary, NC, USA.
1-58025-728-3

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, April 2001

SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, CD-ROM, hard copy books, and Web-based training, visit the SAS Publishing
Web site at www.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

IBM® and all other International Business Machines Corporation product or service
names are registered trademarks or trademarks of International Business Machines
Corporation in the USA and other countries.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 A Overview of the SAS/C and CICS Environments
Introduction 1

Overview of SAS/C CICS Command Language Translator
CICS Background 2

Basic Considerations for C and CICS 4

Chapter 2 A The SAS/C CICS Command Translator 7
Introduction 7

CICS Command Coding Conventions 7

How CICS Commands Are Translated 11

Specifying Translator Options 13

Translator Option Descriptions 14

Chapter 3 A Using C for CICS Application Programs 17
Introduction 17

SAS/C Considerations 17

CICS Considerations 20

Chapter 4 A Tutorial: Creating a Simple Transaction 29
Introduction 29

Overview of Processing 29

The Example Program 30

Preparing the Example Program 32

CICS and the Sample Program 33

Running the Example under CICS 34

Chapter 5 A Preprocessing, Compiling, and Linking 35
Introduction 36

Preprocessing, Compiling, and Linking under TSO 36
Creating C++ CICS Applications under TSO 40
Preprocessing, Compiling, and Linking under OS/390 Batch
Creating C++ CICS Applications under OS/390 Batch 47
Preprocessing, Compiling, and Linking under CMS 50
Creating C++ CICS Applications under CMS 54

COOL Options 55

COOL Messages and CICS Applications 60

Linking for VSE 61

Using the External CICS Interface 62

Using SQL and C 64

Diagnostics 66

1

41

Chapter 6 A Running and Debugging SAS/C Programs in the CICS Environment

67

Introduction 67

Running SAS/C Programs under CICS 67
Using Run-Time Options 68

Suggestions for Efficiency 69

Debugging Your SAS/C CICS Application 69
Abend Codes 70

Chapter 7 A Terminal Control and Basic Mapping Support
Introduction 71

Terminal Control 71

Basic Mapping Support 72

Chapter 8 A Handling Files 77

Introduction 77

Specifying Filenames and Access Methods 78
Working with Transient Data 80

JES Spool File /O 82

DL/T Database Support 85

SQL Database Support 89

n

Chapter 9 A TCP/IP Socket Library Support for the CICS and Environment

Overview of TCP/IP 91

Overview of the BSD UNIX Socket Library 91

SAS/C Socket Library for TCP/IP 92

TCP/IP Socket Library Support for CICS 92

I/O Functions 96

Unsupported Configuration Information Functions 96

Appendix 1 A Examples 99

Introduction 99

SASCMNU: Display the Main Menu 100

SASCALL: Perform Inquiry and Update Functions 100
SASCBRW: Perform Browse Function 109

Index 119

91

CHAPTER

Overview of the SAS/C and CIGS
Environments

Introduction 1
Overview of SAS/C CICS Command Language Translator 2
CICS Releases Supported 2
CICS Background 2
Data-Communication Functions 3
Data-Handling Functions 4
Application Program Services 4
System Services and Monitoring Functions 4
Basic Considerations for C and CICS 4
CICS Control Tables and Programs 4
Re-entrancy 5
System Architecture 5
Location of Transient Library 5
SAS/C Libraries 6
Systems Programming Environment (SPE) 6
All-Resident C Programs 6
Application Design Considerations 6

Introduction

This book describes the SAS/C CICS Command Language Translator and explains
how you can develop CICS command-level application programs in C using the SAS/C
Command Language Translator, the SAS/C Compiler, and run-time library.

CICS (Customer Information Control System) is a popular database/data
communication (DB/DC) control system offered by International Business Machines
Corporation. SAS/C application programs can be developed to take advantage of various
CICS services that enable online, real-time transaction processing. Banking and
reservation systems are examples of such real-time transaction processing
environments. Using the SAS/C Translator, you can develop C programs for a wide
range of CICS applications for any system requiring this type of processing.

The SAS/C Compiler is a portable implementation of the high-level C programming
language. Using C with CICS is possible because the SAS/C Compiler and Library
support the CICS run-time environment-the collection of data and routines that
provide interaction with CICS.

This documentation is directed toward experienced C programmers who are familiar
with CICS concepts. Experience in applications programming for CICS is helpful, but
not required.

2

Overview of SAS/C CICS Command Language Translator A Chapter 1

Overview of SAS/C CICS Command Language Translator

The SAS/C CICS Command Language Translator enables you to develop application
programs under OS/390 or VM and target them to run under CICS. This
application-programming interface enables you to request CICS services by placing
CICS commands anywhere within your C source code. The SAS/C CICS translator
translates these commands into appropriate function calls for communication with
CICS.

After the translator translates the CICS commands within your C program, you then
compile and link-edit your program as you would any SAS/C program. When you run
your SAS/C program, the function calls inserted by the translator invoke the services
requested by calling the appropriate CICS control program using the CICS EXEC
Interface program.

Chapter 5, “Preprocessing, Compiling, and Linking,” on page 35 describes the
cataloged procedures, TSO CLISTs, and CMS EXECs that are provided to invoke the
translator, compiler, and linker. Chapter 2, “The SAS/C CICS Command Translator,” on
page 7 describes the compiler and run-time options that are pertinent to the translator.

CICS Releases Supported
Support for both CICS/OS and CICS/DOS from Version 1, Release 7 onward is
provided. Currently, this includes the following releases:
o CICS/OS/VS 1.7
CICS/MVS 2.1
CICS/ESA 3.1
CICS/ESA 3.2
CICS/ESA 3.3
CICS/ESA 4.1
CICS Transaction Server for OS/390 1.1
CICS Transaction Server for OS/390 1.2
CICS Transaction Server for OS/390 1.3
CICS/DOS/VSE 1.7
CICS/DOS/VSE 2.1
CICS/VSE 2.2
CICS/VSE 2.3
The SAS/C CICS Command Language Translator has been updated to fully support
all new and changed commands through CICS TS for OS/390 Version 1.3, including
support for Distributed Program Link and the Front End Programming Interface.
At this time, the SAS/C translator and compiler provides access to CICS only under
the 0S/390 and VSE family of operating systems. However, you can also prepare SAS/C

applications under the VM/SP environment and then run these applications under
CICS for the OS/390 or VSE operating systems.

OO oO0o0ooooogo o g

CICS Background

The use of online systems is common today. However, in the past, developing an
online system required customized programming involving calls to the operating

Overview of the SAS/C and CICS Environments /A Data-Communication Functions 3

system, telecommunication access methods, and data access methods, in addition to
application program development.

To free the programmer from concerns about hardware and other components outside
the realm of the application itself, Database/Data Communication (DB/DC) control
systems were developed. In the late 1960s, CICS was introduced by IBM as one such
DB/DC control system. CICS is considered a control system for DB/DC because it
provides the control environment for a DB/DC application. That is, an application
program that uses databases and data communications in a real-time manner can work
with CICS to form a complete DB/DC system.

CICS has evolved from a macro-based DB/DC system to a high-level, command-based
language. Early versions of CICS required the programmer to use macros whenever
system services were required. Presently, CICS is command-based: one CICS command
now accomplishes what used to require a series of macro-based calls. Coding CICS
commands in application programs makes requesting CICS services much easier than
using earlier macro-based versions. These commands are coded in your SAS/C program
using the following general format:

EXEC CICS <command>

The details of coding commands are discussed in Chapter 2, “The SAS/C CICS
Command Translator,” on page 7.

As noted earlier, coding CICS commands means that you are requesting CICS
services to handle various details of operating system tasks, such as communicating
with terminals and storage management. The following components of CICS provide
such services to your application program:

O data-communications functions

0 data-handling functions

O application program services

O system services

O monitoring functions.

These functions are described in more detail in the following sections. The
relationship between the operating system, CICS, and your application programs is
illustrated in Figure 1.1 on page 3.

Figure 1.1 SAS/C CICS Environment

CICS
0 Data-communication
functions
Ovperatin O Data-handling functions SAS/C
P £ le—> [Application program <+—>»| Application
System services Program
O System services

[0 Monitoring functions

Data-Communication Functions

The CICS services for data communication provide communication interfaces.
Communication interfaces can be between other systems and CICS or between
terminals and CICS. Data-communication functions include the provision of Basic

4

Data-Handling Functions A Chapter 1

Mapping Support (BMS), which frees the application program from concerns with
specifics of devices and formats when you are working with displays. Considerations for
Basic Mapping Support are discussed in Chapter 7, “Terminal Control and Basic
Mapping Support,” on page 71.

Data-Handling Functions

This component of CICS provides an interface between CICS and the data needed by
your application program, including interfaces with data access methods, such as VSAM,
and interfaces with database access methods, such as DL/I. Also, provisions are made
for assuring data protection and integrity. Aspects of file handling that are pertinent to
your application programs are covered in Chapter 8, “Handling Files,” on page 77.

Application Program Services

CICS provides an interface with your program through screen definitions, command
interpretation (CECI), debugging facilities, and so forth. These services are described in
Chapter 3, “Using C for CICS Application Programs,” on page 17.

System Services and Monitoring Functions

The system-service component of CICS provides an interface with the operating
system. Functions are provided for program, storage, and task control. Topics related to
system services are included in Chapter 3, “Using C for CICS Application Programs,” on
page 17.

Monitoring functions are provided in the CICS environment for system tuning and
performance considerations. Chapter 6, “Running and Debugging SAS/C Programs in
the CICS Environment,” on page 67 suggests ways of improving performance using C.
Refer to the CICS documentation appropriate for your site for additional details.

Basic Considerations for C and CICS

In the chapters that follow, these system components are discussed in terms of steps
involved in setting up a SAS/C application program for use under CICS. These steps
are discussed in detail in the tutorial in Chapter 4, “Tutorial: Creating a Simple
Transaction,” on page 29, and again in the comprehensive example in Appendix 1,
“Examples,” on page 99.

CICS Control Tables and Programs

Developing a basic application program for CICS might consist of writing code to
coordinate the flow of control between a terminal, the task at hand, files, and your
program. The structure and control necessary for this kind of coordination is provided
via CICS system control programs and their associated tables. Files, programs, and
transactions must all be defined in the appropriate CICS tables (that is, the FCT, PPT,
PCT). For example, providing links to remote systems requires working with a terminal
control table (TCT), which is then used by the CICS terminal control program to set up
intercommunication.

Whenever appropriate, references may be made to CICS control tables with respect
to particular aspects of your SAS/C application program. Examples and discussion of

Overview of the SAS/C and CICS Environments /A Location of Transient Library 5

structuring your program to take advantage of CICS interfaces are found throughout
this user’s guide.

Re-entrancy

CICS is a multitasking, multithreading system environment. Multitasking means
that CICS provides an environment where more than one CICS task runs concurrently.
Multithreading means that tasks share the same program in a multitasking
environment. CICS is characterized as multitasking and multithreading because it
provides an environment in which multiple CICS tasks, using the same program, can
run concurrently.

To make this type of environment possible, SAS/C programs running under CICS
must be re-entrant. Since, by definition, re-entrant programs do not modify themselves,
they can continue processing after an interruption by the operating system. This
includes continuing processing after an interruption during which other tasks
controlled by the same program may have been executed.

To comply with CICS requirements for re-entrancy, SAS/C programs must be compiled
using the rent (or rentext) compiler option. Chapter 5, “Preprocessing, Compiling,
and Linking,” on page 35 provides more information on how to specify options.

System Architecture

You can fully exploit 31-bit addressability. If your program is link-edited as AMODE
31, the library will request that stack, heap, and PRV storage be allocated above the
16-M line. (The PRV, or pseudoregister vector, contains all external and static data for
re-entrant programs.) The CICS release and the size of a storage allocation request
determine whether the storage is actually allocated above the line. For example, an
initial stack size of 3072 bytes is allocated below the line in CICS Version 2, but it is
allocated above the line in CICS Version 3. Consult one of the following CICS
Application Programmer’s Reference manuals for exact details on storage allocation:

CICS/0S/VS, Version 1

CICS/MVS, Version 2

CICS/ESA, Version 3

CICS/ESA, Version 4

CICS Transaction Server for OS/390

SAS/C programs that are link-edited with the specification of AMODE(31) and
RMODE(ANY) can be loaded above the 16M line by CICS. The ability for SAS/C
programs to reside above the 16M line provides virtual storage constraint relief for
storage-constrained CICS systems. That is, programs are not restricted to sharing what

below-the-line storage is left over after that used by tables and other components
related to CICS.

Location of Transient Library

Most of the SAS/C transient library for CICS can reside above the 16M line.
Application programs linked with a release earlier than 6.00 of the resident library will
continue to work correctly if they are link-edited as AMODE 31. Programs linked as
AMODE 24 must be relinked or have one or more zaps applied. Contact SAS/C
Technical Support for information about these zaps. Unless you have a specific reason
for doing so, you do not need to link-edit SAS/C CICS applications as AMODE 24.

6

SAS/C Libraries A Chapter 1

SAS/C Libraries

The run-time library is freely redistributable, so you can develop your applications
and distribute them without interaction with SAS Institute.

Systems Programming Environment (SPE)

The Systems Programming Environment is designed to enable the C language to be
used as a systems programming language in the IBM S/390 environment. SPE consists
of the minimum number of support routines needed to execute a C program, and a
small run-time library that is systems-programming oriented. For complete details on
using SPE with CICS, see Chapter 14, "Systems Programming with the SAS/C
Compiler," in the SAS/C Compiler and Library User’s Guide.

All-Resident C Programs

Normally, when a C program is linked, the resulting load module does not contain all
of the support routines needed by the program. These support routines are dynamically
loaded from the transient library and released (freeing the memory required as well)
when they are no longer needed.

In certain specialized applications and environments, it may be desirable to force the
program load module to contain a private copy of all the required support routines.
These programs can be characterized as all-resident programs because no transient
library routines need to be used. For more information on creating all-resident CICS
programs, see Chapter 10, "All-Resident C Programs," in the SAS/C Compiler and
Library User’s Guide.

Application Design Considerations

Developing application programs for CICS requires attention to design issues
involving user-friendliness, system security, and performance.

CHAPTER

The SAS/C CIGS Command
Translator

Introduction 7
CICS Command Coding Conventions 1
Command Format 8
Coding Conventions 8
Commonly Used Data Types 9
Less Common Data Types 9
name 10
label 10
hhmmss 10
cvda 10
Doubleword, Fullword, and Halfword Arguments 10
Character Arguments 11
Prototype Generation 11
How CICS Commands Are Translated 11
Taking Advantage of Prototypes 13
Specifying Translator Options 13
Using the #pragma options Statement 13
Translator Option Descriptions 14

Introduction

The translator accepts and supports all EXEC CICS commands. This includes
commands for DL/I, GDS (generalized data stream), DPL (distributed program link),
FEPI (front-end programming interface), and BTS (business transaction services). After
the initial preprocessing step, the output from the translator is compiled and linked in
a way similar to any C program.

This chapter introduces the syntax and conventions for coding CICS commands,
explains how the SAS/C CICS Command Translator handles CICS commands coded in
your C program, and describes options available for the translator.

CICS Command Coding Conventions

The translator accepts any command or command option that can be used in CICS
Transaction Server V1R3. However, the translator does not check to see if a particular
command is valid for any given release of CICS. Therefore, if you are programming for
an earlier version of CICS, you should be careful to use only those commands that are
defined in the version of CICS under which you plan to run your program.

8

Command Format A Chapter 2

Command Format

The general format of a CICS command is EXEC CICS (or EXECUTE CICS),
followed by the name of the function (which may be one, two, or three words), and
possibly one or more command options. The entire command must be in uppercase
letters. Options may require arguments, or may accept optional arguments. For C
applications, CICS commands are terminated by a semicolon.

For example, the original CICS command syntax for the CICS READ command is as
follows:

EXEC CICS READ
DATASET(name)
FILE(name)
INTO(data-area)
SET(prt-ref)
[LENGTH(data-area)]
RIDFLD(data-area)
[KEYLENGTH(data-value) [GENERIC]]
[SYSID(name)]

[RBA | RRN]
[GTEQ | EQUAL]

[UPDATE]
In your C program, this command can be coded as follows:

EXEC CICS READ
DATASET ("MASTER")
INTO(record) LENGTH((short) sizeof(struct INPUT))
RIDFLD(key) KEYLENGTH(keylen);

If you are unfamiliar with the parameters for the CICS READ command, you may
want to consult the IBM CICS application programmer’s reference appropriate for your
site.

Coding Conventions

Observe the following conventions as you write your SAS/C CICS code:

o CICS commands can appear anywhere a left brace can appear.

0 The words EXEC CICS (or EXECUTE CICS) must be coded on the same line.
There can be no tokens between EXEC and CICS.

0 A command can be continued on subsequent lines; however, an option or function
name cannot be split across lines (even with a backslash).

0 Option arguments can be separated from the option by white space, comments, or
new-line characters.

0 Option arguments can contain any C expression of the correct type, and may
contain C comments. The arguments may be continued on subsequent lines.

The SAS/C CICS Command Translator /A Less Common Data Types 9

0 C comments can be used within CICS commands any place white space can appear.

Note: The translator will not recognize a CICS command in a comment, string
literal, or character literal. You should also refrain from coding other constructs
the translator would try to translate, such as the following statement:

typedef EXEC CICS READ ... ;

A

Commonly Used Data Types

Most often, you will use one of these data types, which can follow the options in CICS
commands: data-value, data-area (and CICS-value data area), pointer-value, and
pointer-ref. In the context of the C language, these types are used as follows:

data-value
is an expression. Data-value arguments provide input only to the command, so
they can be constants, expressions, or variables. The expression must have the
expected type; that is, if CICS expects a halfword data-value, then the expression
must be of signed or unsigned short type.

data-area
is an lvalue (specifically, a modifiable lvalue, as specified by the ANSI Standard).
Data-area arguments may be updated by the CICS command. Therefore, these
arguments must be valid objects, for example, variables or storage allocated by the
malloc function.

pointer-value
is any expression of pointer type.

pointer-ref
is a pointer-type lvalue where CICS can store an address. The translator prefixes
pointer-ref arguments with an ampersand (&). Only pointer-ref arguments are
modified by the translator.

Pointer-ref
is coded as shown in the following example:

EXEC CICS ADDRESS CSA(csa_ptr);
The argument csa_ptr should be declared as a pointer variable, for example:
struct CSA *csa_ptr;

In this example, the translator will pass &csa_ptr to CICS. On return from the
ADDRESS command, esa_ptr points to the CSA.

Less Common Data Types
Some less commonly used data types are name, label, hhmmss, and cvda:

name
is either a string literal or a pointer (presumably to a string).

label
is always the name of a function (in SAS/C CICS applications).

hhmmss
is an argument for which CICS expects a packed decimal value.

10

Doubleword, Fullword, and Halfword Arguments A Chapter 2

cvda
is a fullword (int or long int) value always used in the SET and INQUIRE
commands.

Usually a CICS name is required to be of some prescribed length (such as BMS map
names, which must be seven characters long). If the name is too short, it must be
padded on the right with blanks. If you pass a string literal as a name argument, the
translator will compute the length of the string and add padding as necessary, as in the
following example:

EXEC CICS SEND MAP("ABC") ... ;
The translator will pass the following string to the command:
"ABC""

By virtue of C string concatenation, this string is equivalent to "ABC". However, if
you pass a pointer to the name, then you are responsible for seeing that the name is
blank-padded correctly. Of course, CICS always ignores the trailing ’\0’ byte at the end.
(Because it’s past the seventh character, CICS doesn’t recognize the trailing ’\0’.)

The following example uses label as the name of a function:
EXEC CICS HANDLE CONDITION ERROR(err_ func);

In this example, err_func defines an error handling routine in your C program. See
Chapter 3, “Using C for CICS Application Programs,” on page 17 for more details.

hhmmss

For hhmmss, the translator expects a pointer to an aggregate object, such as a
character array or structure, because C has no equivalent to packed decimal data. (See
the descriptions for pdset and pdval in SAS/C Library Reference, Volume 1.)

cvda

The cvda data type expects a fullword argument; therefore, you can use an int or a
long, signed or unsigned. In the SET command, you can use a constant integer or the
result of the DFHVALUE function, although using one of the command options is a
more likely choice. In the INQUIRE command, use an lvalue.

Doubleword, Fullword, and Halfword Arguments

CICS sometimes describes arguments as doubleword, fullword or halfword. In C
terms, a doubleword is a signed or unsigned long long. A fullword is a signed or
unsigned int, or a signed or unsigned long. A halfword is a signed short. You
can use unsigned shorts, but the compiler will copy it to a temporary and pass the
address of the temporary to CICS. This could cause a problem if the variable in question
is passed to CICS and then assigned a value (for example, record length). In such a case,
CICS will update the temporary, which is probably not what the program is expecting.

Also, if a CICS argument accepts a string literal (names, output lines, and so on), the
translator accepts the same string literals that the compiler does. This means that you
can use concatenated string literals (for example, "ABC" "DEF") and strings with escape
sequences (for example, "\xcl \xc2 \xc3").

The SAS/C CICS Command Translator /A How CICS Commands Are Translated 1

Character Arguments

When a CICS command option expects a single character as an argument, you must
use a char pointer argument rather than a character variable. If the argument is a
data value, you can also use a string literal. For example, the DATESEP option of the
FORMATTIME command expects a character to be used to separate the parts of a
formatted date. The methods used in either of the following examples can be used to
code this correctly:

Example Code 2.1 Example 1
char *separator = ":";
EXEC CICS FORMATTIME ... DATESEP(separator);
Example Code 2.2 Example 2

EXEC CICS FORMATTIME ... DATESEP(":");

When you use the PROTO translator option (the default) with a char variable or
char literal, a prototype mismatch message results.

Prototype Generation

By default, the translator generates a prototype for each CICS command. If the
translator expects a C pointer argument, it uses void* in that argument’s place in the
function prototype. Since void* is the generic pointer type, you can use any pointer
type you want for the argument. For instance, a character pointer and a structure
pointer are equally acceptable when writing to transient data queues with the WRITEQ
TD command using the FROM option, as in the following example:

char *output_buffer;
struct FORMATTED LINE *1line;

EXEC CICS WRITEQ TD FROM(output buffer) ... ;
EXEC CICS WRITEQ TD FROM(line) ... ;

How CIGS Commands Are Translated

CICS C programs generally do not call a C library function to request operating
system services. Instead, the programmer codes a CICS command to issue the request.
The translator translates these commands into calls to the CICS EXEC interface
program. This program provides the requested service by invoking the appropriate
CICS control program.

The translator performs the following actions when it begins translating the CICS
commands in your program:

O it includes the <cics.h> header file at the top of the output file.

O the original CICS commands remain in the file, but they are surrounded with #if
0 / #endif.

O the command is translated into
O a left brace

12 How CICS Commands Are Translated A Chapter 2

0 a function pointer that is declared for prototype generation
O a right brace.

For example, the following program fragment illustrates how a call to read a record
in a VSAM file would be coded using the READ CICS command:

/* before translation */
void readin(struct INPUT *record,

char *key, short keylen)

EXEC CICS READ DATASET("MASTER")
INTO(record) LENGTH(sizeof(struct INPUT))
RIDFLD(key) KEYLENGTH(keylen);

}

During translation, the READ command is converted into the following C statements:

/* after translation */
#include <cics.h>

void readin(struct INPUT *record,

char *key, short keylen)

#if 0
EXEC CICS READ DATASET("MASTER")
INTO(record) LENGTH(sizeof(struct INPUT))
RIDFLD(key) KEYLENGTH(keylen);
#endif
{
__ref void (*_ccp_exec_cics)(char *,
const char *,void *,short,void *,
short)= (__ref void (*)(char *,const char ¥,
void *,short,void *,short))
_ccpexec;_ccp_exec_cics
("\x06\x02\x£8\x00\x09\x00\x00\x80\x00"
"00000006",
"MASTER" " ",record,sizeof(struct INPUT),
key,keylen);

}

First, the cics.h header file is included at the top of the output file. Next, the
original command remains in the source file, but is surrounded with the #if 0/ #endif.
CICS commands are then translated into the following sequence (assuming the PROTO
option is in effect):

The SAS/C CICS Command Translator /A Using the #pragma options Statement 13

1 a left brace.

2 a function pointer declaration, ccp_exec_cics. (This pointer is assigned a
pointer to the EXEC command interface function _cecpexec that is declared in
cics.h. This declaration generates a prototype. Because the translator is not able
to determine whether the types of the function arguments are correct, the
prototypes allow the compiler to check them.)

3 a call to the EXEC interface function.
4 a right brace.

The first argument to the EXEC command interface (\x06\x02 . . .) is a bit string
containing encoded information about the type of command, the number of arguments,
and whether or not the arguments are dummy arguments. The "00000006" sequence is
the number of the line on which the command started. The remaining arguments are
the C variables and constants specified in the command. The entry point to the EXEC
command interface function used and the bits set in the first argument change
according to the command and the options in effect.

Taking Advantage of Prototypes

The translator automatically generates prototypes for CICS command arguments.
Prototype generation is useful because it helps determine whether the argument types
are correct. For example, this feature enables you to catch mistakes such as specifying
an int type variable instead of a short.

The translator also pads short strings in commands. CICS doesn’t recognize
null-terminated strings, which helps to prevent errors such as incorrectly identifying a
program. For example, the EXEC CICS LOAD command could be coded as follows:

EXEC CICS LOAD PROGRAM("FTOC");
After translation, the command appears as the following:

EXEC CICS LOAD PROGRAM("FTOC" " ")

Specifying Translator Options

You can specify options to modify the way the translator handles your program, just
as you can specify compile-time and linkage options. Specify translator options as you
would regular compiler options, except there are no short-form options. For example,
this means you cannot code -p for PAGESIZE.

Using the #pragma options Statement

A subset of translator options may be used in a special options statement embedded
in the source file. The options, described in the next section, are specified by using the
#pragma options statement. For example, you can code the following preprocessing
directive:

#pragma options xopts(dli,cics)

The #pragma options statement may appear anywhere a #pragma statement can
appear. The set of current option settings may be saved and restored by using the
#pragma options push xopt and #pragma options pop xopts statements, as in the
following example:

14 Translator Option Descriptions A Chapter 2

/* Save the current setting of */
/* the PROTO option. */
#pragma options push xopts

/* Suppress prototype generation */
/* for this command. */
#pragma options xopts(noproto)

EXEC CICS ... ;
/* Restore the previous setting */
/* of the PROTO option. */

#pragma options pop xopts

Chapter 5, “Preprocessing, Compiling, and Linking,” on page 35 provides additional
information on specifying options for the translator.

Translator Option Descriptions

The following is a list of the options that are accepted by the translator. If the option
may be specified with #pragma options xopts, it is marked with an asterisk (¥).

CICS*
is the default. It processes EXEC CICS commands.

CBMSMAPS
tells LCCCPO that the BMS maps were generated specifically for C language
programs, which is supported in CICS/ESA 3.3 and later. The translator generates
different default values for the FROM option of the SEND MAP command and the
TO option of the RECEIVE MAP command depending on the presence (or absence)
of this option. If the TO and FROM options are always explicitly coded, this option
has no effect. The default is NOCBMSMAPS.

COMNEST*
accepts nested comments.

DEBUG*
is the default. It produces code for the Execution Diagnostic Facility (EDF).

DLI*
processes EXEC DLI commands.

EDF*
allows interception of all commands by the EDF.

Note: Even when you use the EDF option, you will not see the library’s
issuance of any of the commands issued by the library on your behalf because the
library uses NOEDF. A

EXPAND*
shows C code generated for commands in the source listing.

FILES(xxx)
(OS/390 only) replaces the SYS prefix in translator DD names with xxx. The value
of xxx may be no more than three characters in length. The first character must be
alphabetic or either @, #, or $. The second and third characters must be
alphanumeric or either @, #, or $.

The SAS/C CICS Command Translator /A Translator Option Descriptions 15

FLAG(x)*
emits messages only of level x and above. The value of x may be either I (notes), W
(warnings), E (errors), or S (severe errors). FLAG (I) is the default.

JAPAN*
results in uppercased C keywords (VOID, INT, and so on) in the command
translations. This is intended for use with the compiler’s japan option.

OPTIONS
is the default. It lists the translator options in effect.

OUTLRECL(nnn)
(CMS only) specifies the LRECL of the translator output file. The value of nnn
may range from 40 to 255, inclusive. The default is 255.

OUTRECFM(x)
(CMS only) specifies the RECFM of the translator output file. The value of x may
be either F or V. The default is V.

OUTSEQ(n,m)
adds sequence numbers to the output file. The value of n specifies the first
sequence number and m the incrementing value. If both n and m are 0, then the
output file is not sequenced. The default is OUTSEQ(0,0).

OVERSTRIKE
prints special characters in the listing file as overstrikes.

PAGESIZE(n)*
defines the number of lines per page in the listing file. The default is
PAGESIZE(60).

PRINT
produces a listing file. Under TSO, the PRINT option specifies the data set name
of the listing file. Under 0S/390, the listing file is written to SYSPRINT. Under
CMS, the listing fileid is specified by the PR(fileid) option of the LCCCP EXEC.

PROTO*
is the default. It generates a prototype for _ccp exec_cies for each call to the
EXEC command interface function.

SOURCE*
is the default. It includes a formatted source listing in the listing file.

TERM
directs diagnostic messages to the terminal. TERM is the default under CMS and
under TSO. Under 0S/390 NOTERM is the default in batch mode.

TRANS
translates special characters to their listing file representations.

TRIGRAPHS*
accepts ANSI Standard trigraphs in the input file and uses them in the translated
output.

UPPER
prints lowercase letters as uppercase in the listing file, and uses uppercase letters
in diagnostic messages. UPPER implies OVERSTRIKE.

XREF*
includes in the listing file a cross-reference of all the commands used in the input
file.

For details on all standard options provided with the SAS/C compiler, consult the
SAS/C Compiler and Library User’s Guide.

17

CHAPTER

Using C for CICS Application
Programs

Introduction 17
SAS/C Considerations 17
Header Files for SAS/C CICS Applications 18
Indep Compiler Option 18
SAS/C Library Functions 18
CICS Considerations 20
Data Declarations for CICS 21
Using Global External Variables 21
BMS Definitions 23
Supplying Arguments to main() 23
Handle Condition and Handle AID 24
HANDLE CONDITION 24
HANDLE CONDITION and recursion 25
HANDLE AID 25
Abend and Error Handling 25
SAS/C 1/0 Functions and CICS 26
Environment Variable Support 26
Program Control 26
Interval and Task Control 26
Debugging SAS/C CICS Applications 26

Introduction

This chapter provides information you need to begin writing SAS/C programs for
execution in the CICS environment. There are two main sections: SAS/C considerations
(for example, header files and library support) and CICS considerations (for example,
how CICS sees your application program).

SAS/C Considerations

This section discusses header files and library functions supported for SAS/C
applications under CICS.

18 Header Files for SAS/C CICS Applications A Chapter 3

Header Files for SAS/C CICS Applications

Several header files are associated with a SAS/C CICS application. These header
files are contained in SASC.MACLIBC under OS/390, and LC370 MACLIB under CMS.
The following header files are included automatically by the translator:

cics.h
contains constants and declarations needed by the translator.

dib.h
maps the DL/I interface block.

eiblk.h
maps the execution interface block (EIB).

The following header files are also available for inclusion by the programmer:

dfhaid.h
provides the standard attention identifier definitions.

dfhbmsca.h
lists the standard attribute and printer control character definitions.

dfhcdblk.h
maps the conversation data areas for EXEC CICS GDS commands.

dfhmsrca.h
lists the magnetic slot reader control value constant definitions.

dfh2980.h
maps the CICS 2980 General Banking Terminal System constants.

dliuib.h
maps the DL/ user interface block (UIB).

Indep Compiler Option

SAS/C programs can be compiled freely with the indep compiler option. Use of this
option causes the generation of code that can be called before the C framework is
initialized, or code that can be used for interlanguage communication.

When the indep option is used, the LSUPREP provided by SAS/C stores the CRAB
address in the first word of the Transaction Work Area (TWA) so that CICS application
programs will be re-entrant; this is a CICS requirement. A transaction that invokes a C
program compiled with the indep option must be defined with a TWA. See Appendix 6,
"Using the indep Option for Interlanguage Communication," and Chapter 14, "Systems
Programming with the SAS/C Compiler" in the SAS/C Compiler and Library User’s
Guide for more details.

SAS/C Library Functions

The majority of the functions in the SAS/C Library are supported. The following
categories of functions are supported (any exceptions are noted):

O

input/output

O dynamic loading

o signal handling (synchronous only)
O coprocessing

Using C for CICS Application Programs /A SAS/C Library Functions

memory allocation

diagnostic control

compatibility

inline machine code

program control

timing functions (except clock)

general utility

localization/multibyte character functions
math functions

string utility functions

character type macros

system interface functions (except oslink and system).
varying-length argument list functions

OO0 oOoooooooood

TCP/IP socket library (except for configuration information functions)

The library functions in the following categories are not supported:
file management functions

UNIX style I/O functions (except isatty)
IUCV functions

CMS low-level I/O

0S/390 low-level I/O

SUBCOM interfaces to CLISTs and EXECs
REXX interface functions

ILC functions

05/390 multitasking

APPC/VM

other SAS/C POSIX functions

Table 3.1 on page 19 contains a complete listing of all functions that are not
supported under CICS.

O 0o oooooo o g

Table 3.1 Functions Not Supported by CICS

19

Function Category Unsupported Function Names
Timing clock
System Interface getlogin

oslink

system

20 CICS Considerations A Chapter 3

Function Category Unsupported Function Names

/0 aopen
close
closedir
creat
ctermind
dup
dup2
_fentl
fdopen
fsync
ftruncate
getdtablesize
kdelete
kgetpos
kinsert
kreplace
kretrv
ksearch
kseek
ktell
lseek
_lseek
open
_open
opendir
pclose
pipe
popen
read
_read
readdir
rewinddir
tmpfile
tmpname
ttyname
write
_write

Signal Handling alarm
alarmd
ecbpause
kill
oesigsetup
pause
sigpause
sigsuspend

Note: See Table 9.1 on page 97 for a list of the unsupported functions in the TCP/IP
socket category. A

CICS Considerations

This section provides a quick, overall look at how C interfaces with commonly used
CICS components and features. Additional information is provided in subsequent
chapters. In general, CICS sees SAS/C programs as assembler language programs.
Therefore, SAS/C application programs are defined as assembler language programs to
CICS in the processing program table (PPT).

Using C for CICS Application Programs /\ Data Declarations for CICS 21

Data Declarations for CICS

The following declarations may be needed, depending on your application:
O execution interface block (EIB) definitions

O basic mapping support (BMS) attribute definitions

0 DL/I support (DIB, DL/ header files).

When you use the SAS/C CICS Translator, the EIB and DIB are automatically
included in your program. Include the header files for BMS and DL/I only if you are
using those functions.

The header files necessary for these declarations were noted earlier in “Header Files
for SAS/C CICS Applications” on page 18. The following sections introduce you to
working with these components using C.

Using Global External Variables

CICS application programs typically require access to various CICS control blocks,
notably the EIB, so that the programs can check return code values and so on. The
SAS/C implementation provides several global external variables to address the most
commonly referenced areas. This means you can bypass using either the ADDRESS
EIB or the ADDRESS command to obtain control block information.

Note: In this context, global means these external variables are also shared with
dynamically loaded modules. A

The following global external variables are provided:

commptr

points to the CICS COMMAREA (otherwise NULL).

__dibptr
points to the DL/I interface block.

eibptr

points to the EIB.

The following examples illustrate how to use these variables.

Example Code 3.1 Using __eibptr

switch(_eibptr->EIBRESP){
case DFHRESP(NORMAL) :
break;
case DFHRESP (NOTOPEN) :
return -1;
default:

22

Data Declarations for CICS A Chapter 3

Example Code 3.2 Defining your own __eibptr

struct EIBLK *my_eib ptr;
EXEC CICS ADDRESS EIB(my__eib ptr);
switch(my_eib ptr->EIBRESP) {

}

Example Code 3.3 Using __commptr

if (__commptr) {
/* Because __ commptr was not null,
/* a COMMAREA was passed
/* Perform "second" pass
/* processing.

EXEC CICS RECEIVE MAP...
}
else {
/* Because __ commptr was null,
/* no COMMAREA was passed;
/* therefore, this must be
/* the "first" pass.
/* Display the main menu.

EXEC CICS SEND MAP...

Example Code 3.4 Using __dibptr

#define STATUS(code)

(memcmp (__dibptr->DIBSTAT,code,2)==

*/
*/
*/
*/

*/
*/
*/
*/

*/

0)

Using C for CICS Application Programs /A Supplying Arguments to main() 23

BMS Definitions

The BMS map language must be specified as assembler. The symbolic map (DSECT)
must be processed by DSECT2C using this special compiler option: -d. To assist with
this process under 0S/390, the SAS/C Compiler and Library provides a DSECT2C
cataloged procedure. Chapter 7, “Terminal Control and Basic Mapping Support,” on
page 71 provides complete documentation for SAS/C BMS considerations.

Supplying Arguments to main()

The C main function can be passed arguments optionally. For CICS, the default
arguments to main are similar to other traditional high-level languages under CICS,
that is, a pointer to the execution interface block and a pointer to any COMMAREA (or
a NULL pointer, if no COMMAREA exists). These arguments are supplied by the
run-time library to main as an alternative to using the CICS global external variables
described earlier in this chapter. To use this technique, code your program as follows:

main(struct EIBLK *eib pointer,
void *COMMAREA pointer)

{

}

This is the default behavior by the run-time library if the linkage editor control
statement ENTRY MAIN is used when linking your program. If a SAS/C program is
invoked via a CALL statement to the MAIN entry point from another language, the
CALL statement must pass pointers to the EIB and COMMAREA as the two
parameters.

Alternatively, if you need to pass other parameters besides those of the EIB and
COMMAREA, you can use the alternate entry points $MAINC and $MAINO. These
entry points are primarily for use if your main program is invoked via a CALL statement
from another language. When you use these entry points, the arguments to main are
the more traditional arge and argv values. The argv vector is defined as follows:

/* pointer to transaction id */
argv [0] char *tranid

/* pointer to the EIB */
argv [1l] struct EIB *ptr
/* pointer to any COMMAREA */

argv [2] void *COMMAREA
/* pointer to optional parm 1 */
argv [3] void *parml

/* pointer to optional parm n */
argv [n] void *parmn

When coding the CALL statement from another language, you can code the CALL
statement specifying $MAINC or $MAINO directly. Again, the CALL statement must
pass the EIB and COMMAREA pointers as the first two parameters followed,

24

Handle Condition and Handle AID A Chapter 3

optionally, by other parameters. Note that the C run-time library processes this
parameter list as a VL-style parameter list and does not convert the CICS pseudo-null
COMMAREA pointer value of x’ff000000’ to a NULL pointer. A pointer value of
x’ff000000’ always indicates the end of the parameter list. If you are passing optional
parameters, you must pass a value of 0 if no COMMAREA is being passed to the called
program. Because the library expects a VL-style parameter list when called through
the entry points $MAINC/$MAINO, failing to pass one could cause the arge value to be
incorrect or lead to other program failures.

For example, here is a short piece of COBOL code that calls the statically linked C
routine named calledl:

PROCEDURE DIVISION.

CALL 'CALLED1’ USING DFHEIBLK DFHCOMMAREA.
EXEC CICS RETURN END-EXEC.

GOBACK.

And the following is representative of the way you can code the C routine calledl:

void calledl()
{

EXEC CICS ASKTIME;
}

The entry points $MAINC and $MAINO can also be used when a main program is
invoked directly by CICS (either as the first program of a transaction or via a LINK or
XCTL command). Select the entry point via the linkage editor control statement
ENTRY $MAINC or ENTRY $MAINO. Note that ESA versions of CICS do not always
construct VL-style parameter lists when calling programs directly; thus, you may get
unpredictable results.

For more information about the entry points $MAINC and $MAINO, see Chapter 11,
"Communication with Assembler Programs," in the SAS/C Compiler and Library User’s
Guide.

When the initial C function invoked by CICS is compiled with the indep compiler
option, the arguments can have any type and, therefore, cannot be modified, or even
inspected, by the library. In this case, commptr is always set to NULL, arge is 0, and
argv is NULL. For more information, see the SAS/C Compiler and Library User’s Guide.

Handle Condition and Handle AID

Under CICS, your SAS/C program is responsible for handling conditions raised by
CICS for each CICS command executed from your application. This means your
program should test for a normal response; otherwise, a default system action occurs.
You can test for a normal response by coding the RESP option on any CICS command,
thereby testing the response code directly. Alternatively, you can code the HANDLE
CONDITION and HANDLE AID commands as illustrated in the following sections.

HANDLE CONDITION

The standard syntax for this command is

EXEC CICS HANDLE CONDITION condition(label) ...

The SAS/C implementation is
EXEC CICS HANDLE CONDITION condition(function-name) ...

Here is an example:

Using C for CICS Application Programs /\ Abend and Error Handling 25

EXEC CICS HANDLE CONDITION ERROR(errfunc);

void errfunc(int errcode)

{

/* errcode is EIBRESP */
}
Normal return from the function is to the instruction immediately after the EXEC

command that raised the condition. Note that your program can freely execute a
longjmp () from the error handler.

HANDLE CONDITION and recursion

When you code the error-handling function, be careful not to issue a CICS command
that could possibly raise an error condition. This could lead to recursion, for example,
to an infinite loop or short-on-storage condition.

To avoid the possibility of recursion within the error-handling function, you can
revert the error handling back to CICS with the following CICS command:

EXEC CICS HANDLE CONDITION ERROR;

Because no function is specified, you avoid the potential for recursion.

HANDLE AID

The syntax for this command is

EXEC CICS HANDLE AID option(label) ... ;

The SAS/C implementation is

EXEC CICS HANDLE AID option(function-name) ... ;
Here is an example:

EXEC CICS HANDLE AID PF1(help);

void help(int aid)
{

/* AID values are mapped in <dfhaid.h> */

}

Standard return from the function is to the instruction immediately after the EXEC
command that caused the AID to be transmitted to CICS.

Abend and Error Handling

All the error-handling, tracebacks, and messages you expect from the SAS/C Library
are fully supported, including

26

SAS/C 1/0 Functions and CICS A Chapter 3

o signal handling
O tracebacks
O warning and error messages.

However, the label option of the EXEC CICS HANDLE ABEND command, coded as
follows, is not supported:

EXEC CICS HANDLE ABEND LABEL(label);

If the label option is coded, the message LSCP038 is generated.

If your program issues any other variant of the command, it will completely override
the run-time library’s abend handling. In other words, any of the three following
commands would override the run-time library’s abend handling:

EXEC CICS HANDLE ABEND PROGRAM (name) ;
EXEC CICS ABEND CANCEL;
EXEC CICS PUSH HANDLE;

All abnormal termination messages are written to the transient data destination
SASE. The output is prefixed with standard terminal and transaction identifier
information.

SAS/C 1/0 Functions and CICS

Except for UNIX style I/O functions, all other SAS/C Library I/O functions for
sequential input and output are supported for CICS applications. C also provides
features for working with transient data and JES Spool File input and output, as well
as support for DL/I and SQL. Chapter 8, “Handling Files,” on page 77 provides details.

Environment Variable Support

With Release 6.00 of SAS/C, certain functions have been enhanced to support
environment variables under CICS. Consult Chapter 4, "System Interface Functions
and Environment Variables," and the function descriptions for getenv and putenv in
SAS/C Library Reference, Volume 1 for details on this support.

Program Control

The CICS commands LOAD, RELEASE, LINK, RETURN, and XCTL are fully
supported. COMMAREA is also fully supported and may be allocated anywhere that is
convenient: the stack or the heap. Note that use of the XCTL or RETURN commands
will terminate the C environment before execution of the command. This means that
control will not return to the C program.

Interval and Task Gontrol

The only SAS/C consideration in this area is to note that the sleep function is fully
supported and recommended instead of DELAY. This is because sleep accepts an int
argument rather than a packed decimal.

Debugging SAS/C CICS Applications

You can use the SAS/C Debugger with CICS in a remote session to debug your SAS/C
application programs. This is documented in the SAS/C Debugger User’s Guide and

Using C for CICS Application Programs /A Debugging SAS/C CICS Applications 27

Reference. Also, the Execution Diagnostic Facility (EDF) is fully supported. Facilities
such as CA-INTERTEST are also available, but no symbolic debugging is currently
supported; that is, all debugging is done in assembler language mode.

29

CHAPTER

Tutorial: Creating a Simple
Transaction

Introduction 29

Overview of Processing 29

The Example Program 30

Preparing the Example Program 32
Using TSO under OS/390 32
Using OS /390 Batch 32

CICS and the Sample Program 33

Running the Example under CICS 34

Introduction

Read this chapter if you are familiar with the CICS environment but not with C as
the application program language, or if you are familiar with both CICS and C and
would like a quick introduction to using C under CICS.

After reading this chapter, you should be able to preprocess the example program
using the SAS/C CICS Command Language Translator, compile and link the example,
and then initiate the example transaction under CICS.

Note: This program, and more extensive examples of how to code SAS/C programs
for use under CICS (see Appendix 1, “Examples,” on page 99) can be found in the
programs contained in the SASC.SAMPLE library under OS/390 and LCSAMPLE
MACLIB under CMS. See your site representative for details on how to access these
programs at your installation. A

Although an overview of the CICS processing involved in the example is provided,
this chapter assumes you understand the basics of CICS applications.

Overview of Processing

CICS enables online, real-time processing of requests for work, called ¢transactions.
These transactions can work with a database, or they can be requests for information,
such as system information supplied by CICS. The sample program in this chapter
focuses on how to use the SAS/C Translator. The CICS portion of the example defines a
transaction that requests information from CICS. The system used to process the
example is 0OS/390; however, the steps are similar whether you use TSO, 0S/390 batch,
CMS, or the SAS/C Cross-Compiler product (see Chapter 5, “Preprocessing, Compiling,
and Linking,” on page 35).

30 The Example Program A Chapter 4

The Example Program

The example program (SASCSAMP) is designed to produce a formatted report of the
SAS/C transient programs used within CICS. The CICS INQUIRE command is used to
identify all programs beginning with LSH (the default identifier for SAS/C transient
programs). The CICS SEND TEXT command is used to output the report to the CICS
terminal screen. Screen details and paging are processed automatically by the SEND
command. Because the SEND TEXT command is used, no mapping steps are needed.
An error-handling routine is also coded to illustrate how C employs the CICS HANDLE
CONDITION command.

The example program follows:

SAS/C SAMPLE

/
| |
| |
| |
| NAME: SASCSAMP |
| PURPOSE: Sample program used in CICS |
| Tutorial chapter |
| INSTALLATION: Follow the instructions in |
| the Tutorial chapter of the |
| SAS/C CICS User'’s Guide. |
| |
| |
| |
| |
| |
/

COMPILE:
EXECUTE:
USAGE:
SYSTAEM NOTES:
d o o o o o o o o m m M e M e e e M- == - *
[/*= = = =& & - m e e - - - - - - - - - = * /

/* This sample program produces a list */
/* of all the CICS programs that begin */
/* with the string ‘‘lsh’’. */

#pragma options xopts(xref)
#include <string.h>

#include <stdio.h>
#include <stdlib.h>

main()
{
int next _resp = 0;
char header [] = "This is a list of SAS/C

transient programs\n";
short hdrlen = sizeof(header) - 1;
char pgmname [8];
extern char msg [80];
extern short msglen;
void errhndlr();

EXEC CICS HANDLE CONDITION ERROR(errhndlr);

EXEC CICS SEND TEXT FROM(header)

Tutorial: Creating a Simple Transaction /A The Example Program

LENGTH (hdrlen) ACCUM PAGING;
EXEC CICS INQUIRE PROGRAM START;

while(next_resp == 0){
EXEC CICS INQUIRE PROGRAM (pgmname)
NEXT RESP(next_resp);
if (memcmp(pgmname, "LSH", 3))
continue;
msglen = sprintf(msg, " $.8s\n", pgmname);
EXEC CICS SEND TEXT FROM(msg)
LENGTH (msglen) ACCUM PAGING;

EXEC CICS INQUIRE PROGRAM END;
EXEC CICS SEND PAGE;

/* Something has gone wrong.*/

/* Send a message to give a clue why. */
void errhndlr(int errcode)
{

char savefn [2]; /* area for saving EIBFN */

memcpy (savefn, _eibptr->EIBFN, 2);

/* Make sure there’s no recursion. */
EXEC CICS HANDLE CONDITION ERROR;
/* Purge any partial messages. */
EXEC CICS PURGE MESSAGE;

msglen = sprintf(msg,
"CICS Function %02x%02x received
error code %d",
savefn[0], savefn[l], errcode);

EXEC CICS SEND TEXT FROM(msg)
LENGTH(msglen) ERASE;
exit(-1);

}

If you are familiar with other application languages under CICS, you’ll notice after
looking over this code that C function names are given as arguments to EXEC
command options instead of as program labels. For example, in the following code,
errhndlr refers to a SAS/C error-handling function:

EXEC CICS HANDLE CONDITION ERROR(errhndlr);

For more details on this and other SAS/C coding conventions see “CICS Command
Coding Conventions” on page 7. The program also provides an example of including
options by using #pragma options.

The main function defines variables for the output heading, program name, and
message, as well as a prototype for the error-handling routine.

CICS commands are then used to do the following:

0 handle attention identifiers (HANDLE CONDITION ...)

o send data without mapping (SEND TEXT ...)

O begin query of CICS system’s data (INQUIRE PROGRAM START ...).

31

32

Preparing the Example Program A Chapter 4

As long as there are transient programs to be listed, the program continues,
requesting CICS to display the results on the terminal. The program terminates by
ending the query process INQUIRE PROGRAM END ...) and sending the last page of
data (SEND PAGE ...).

The error-handling function errhndlr () is used to catch processing errors and print
a message instead of relying on default CICS processing. See Chapter 3, “Using C for
CICS Application Programs,” on page 17 for more details on handling error conditions.

Preparing the Example Program

To run the example under CICS, you must first use the SAS/C CICS translator and
the SAS/C Compiler and Library to preprocess, compile, and link-edit the source code.
You can perform these steps under 0S/390, VM, or with the SAS/C Cross-Compiler
product under UNIX. In this section, we use TSO under OS/390 and 0OS/390 batch to
illustrate how to prepare the example so you can run it under CICS.

Using TSO under 0S/390

Using T'SO, you execute a CLIST that invokes the translator, then proceed with
compilation and linking as you would with any SAS/C program.

Because the translator is itself a C program, you must ensure that the transient
run-time library is allocated to the DDname CTRANS or is installed in the system link
list. Your installation will probably cause it to be allocated automatically. Consult your
SAS Software Representative for SAS/C software products to determine if this has been
done. If not, use the TSO ALLOCATE command to associate the library with the
CTRANS DDname, as shown in the following example:

ALLOC FI(CTRANS) DA('SASC.LINKLIB’) SHR

To translate the SAS/C example program, you execute the LCCCP CLIST. Specify the
input data set as the SAS/C sample library, and specify the output data set as one of
your own user data sets, as shown in the following example:

LCCCP ’'SASC.SAMPLE (SASCSAMP)’ OUTPUT (your.data-set)

Next, you execute the regular SAS/C compilation CLIST, LC370. Specify as input the
same data set as the one used for OUTPUT in the previous step. If you are not familiar
with these steps using the SAS/C compiler, see the SAS/C Compiler and Library User’s
Guide for additional information on executing SAS/C CLISTs. In particular, see the
sections on TSO execution styles.

After you have preprocessed and compiled the example program, you are ready to
execute the regular SAS/C link-edit CLIST, CLK370. Specify as input the data set that
contains the output from the LC370 CLIST. Specify, via the LOAD option, the name of
your CICS program library. Specify the CICS option so that CICS resident-routines are
included at link time.

Refer to Chapter 5, “Preprocessing, Compiling, and Linking,” on page 35 and to the
SAS/C Compiler and Library User’s Guide for more information on how to execute
SAS/C CLISTs.

Using 0S/390 Batch

Under OS/390 batch, you first build a job stream that executes the cataloged
procedure LCCCPCL. Allocate the SASC.SAMPLE library to the SYSIN DD of the

Tutorial: Creating a Simple Transaction /A CICS and the Sample Program 33

translator step (CCP). The PDS member name of the example program is SASCSAMP.
Allocate your CICS program library to the SYSLMOD DD of the link-edit step (LKED).
An example follows:

//jobname JOB ...

// EXEC LCCCPCL

//CCP.SYSIN DD DSN=SASC.SAMPLE (SASCSAMP),DISP=SHR

//LKED.SYSLMOD DD DSN=your.cics.loadlib(SASCSAMP),
DISP=SHR

You’re now ready to submit the job stream for execution. All return codes will be 0 if
the translation, compilation, and link-edit have been successful. Refer to Chapter 5,
“Preprocessing, Compiling, and Linking,” on page 35 and to the SAS/C Compiler and
Library User’s Guide for more information on how to execute SAS/C cataloged
procedures.

CICS and the Sample Program

CICS sees the example program as follows:
1 Terminal control reads the data entered and passes control to task control.
2 A task is created and validated against the program control table (PCT).

3 If all is valid, program control then loads the associated example application
program to process the task.

4 Control is then passed to the example application program.

5 The example application program terminates when processing is complete, and
CICS passes control back to task control.

To prepare the example program to run under CICS you must first ensure that the
library in which the executable load modules were stored is available on the CICS
DFHRPL DD. The local CICS system programmer or the SAS Software Representative
for SAS/C software products can be of help in locating this library.

Next, you need to define a transaction ID in the PCT for the example program. This
may be accomplished by using RDO (resource definition online, transaction CEDA) or
DFHCSDUP. For older releases of CICS, table-generation macros may be used. The
DFHCSDUP input is used here because it is easiest to understand. Contact your local
CICS system programmer for assistance. Example DFHCSDUP input follows:

DEFINE TRANSACTION(SASC) GROUP(your-group-name)
DESCRIPTION(SAS/C Example transaction)
PROGRAM (SASCSAMP)

Finally, you need to define a program name in the PPT for the example program in a
manner similar to the way you defined the transaction. Example DFHCSDUP input
follows:

DEFINE PROGRAM(SASCSAMP) GROUP(your-group-name)
DESCRIPTION(SAS/C Example Program)
LANGUAGE (ASSEMBLER)

SAS/C application programs are defined as assembler language programs to CICS.
After defining the transaction and program (using RDO or DFHCSDUP), you must
make them known to CICS by installing them (using the INSTALL command) with the
CEDA transaction. If you have used the older table-generation method, then CICS will

need to be restarted so that the definitions will be recognized.

34 Running the Example under CICS A Chapter 4

Running the Example under CICS

After you complete the SAS/C and CICS steps discussed in the previous sections, you
will be ready to run the example under CICS. To try the sample transaction, type the
transaction identifier SASC in the upper left corner of the display and press ENTER.

35

CHAPTER

Preprocessing, Compiling, and
Linking

Introduction 36
Preprocessing, Compiling, and Linking under TSO 36
Files Used by the Translator 36
The LCCCP CLIST 31
Compiling SAS/C Programs for CICS under TSO 38
Linking SAS/C Programs for CICS under TSO 39
When to Use COOL 39
Linking All-Resident Programs 39
Using TSO CLISTs to Link 39
Executing CLK370 without the IBM Linkage Editor 40
Creating C++ CICS Applications under TSO 40
The LCCCP CLIST 40
The LCXX CLIST 40
The COOL CLIST &
Preprocessing, Compiling, and Linking under OS/390 Batch 41
Using LCCCP to Translate C Programs 41
Using LCCCPC to Compile C Programs 42
Using Cataloged Procedures to Compile and Link C Programs 43
Selecting the Entry Point 43
Selecting the Program Environment 43
Creating All-Resident Load Modules 44
Using LCCCPCL to Preprocess, Compile, and Link C Programs 44
Using LCCCL to Link SAS/C Programs 45
Creating C++ CICS Applications under OS/390 Batch 47
LCCPCXX 41
LCCCXXL 49
LCCPCXXL 50
LCCPCXXA 50
Preprocessing, Compiling, and Linking under CMS 50
The Translator Input File 51
The Translator Output File 51
The Listing File 51
Terminal Output 51
The LCCCP EXEC 51
Compiling SAS/C Programs for CICS under CMS 52
Linking SAS/C Programs for CICS under CMS 52
When to Use COOL 52
Linking All-Resident Programs 53
Using CMS EXECs to Link 53
Creating C++ CICS Applications under CMS 54
The LCCCP EXEC 54

36

Introduction A Chapter 5

The LCXX EXEC 54
COOL Options 55
COOL Messages and CICS Applications 60
Linking for VSE 61
Linking CICS/VSE Applications under CMS 61
Linking CICS/VSE Applications under OS/390 62
Creating the VSE Phase 62
Using the External CICS Interface 62
The EXEC CICS Interface 63
Running your CICS Application with the External CICS Interface 63
Translating, Compiling, and Linking under OS/390 63
Using TSO 63
Using OS /390 Batch 64
Translating, Compiling, and Linking under CMS 64
Using SQL and C 64
Diagnostics 66

Introduction

This chapter describes how to preprocess, compile, and link your SAS/C CICS
application program under the following environments:

o TSO
o 0OS/390 batch
o VM/CMS.

COOL options and messages relevant to CICS applications are also described.
Additional sections include guidelines for linking applications that will be ported to a
VSE environment, and a sample cataloged procedure for using the SAS/C CICS
translator with the SQL preprocessor. The types of diagnostics provided by the
translator are also described. Chapter 6, “Running and Debugging SAS/C Programs in
the CICS Environment,” on page 67 explains how to run, test, and debug your program.

Preprocessing, Compiling, and Linking under TS0

The following sections describe how to use the translator (LCCCP) interactively
under T'SO. The translator alone may be invoked by using the LCCCP CLIST.
Alternatively, you can choose to run the translator with the compiler, with the compiler
and the linkage editor, or with the compiler with COOL and the linkage editor.

Files Used by the Translator

Depending on which options you specify, you will need two or more of the following
files to use the translator under OS/390:

o SYSIN

o SYSPUNCH
o SYSPRINT
o SYSTERM.

Preprocessing, Compiling, and Linking /A The LCCCP CLIST 37

Following are descriptions of each of these files and when they are required. Under
TSO, you specify the data set by using CLIST options.

SYSIN
is always required; it describes a C source file containing embedded CICS
commands. The input data set can have either fixed-length or variable-length
records, blocked or unblocked. LCCCP places no restriction on the LRECL of this
data set.

The input data set may have sequence numbers. The translator checks the first
record in the source file to determine whether the source file has sequence
numbers. If the source file has varying length records, the translator inspects
columns 1 through 8; otherwise, it inspects the last eight columns. If the
translator finds a sequence number in the first record, the corresponding columns
of all subsequent records are ignored.

SYSPUNCH
is always required; it describes the output data set that contains the translated C
source file. The output data set can have either fixed-length or variable-length
records, blocked or unblocked.

LCCCP places no restriction on the LRECL of this data set, but the LRECL
should be at least that of the input data set. If the input data set has fixed-length
records and the output data set has variable-length records, then the output
LRECL should be at least four characters longer. If the OUTSEQ option is used
and the input data set does not have sequence numbers, the output LRECL should
be at least eight characters longer.

Note: The compiler will not accept an input file containing records longer than
1024 characters. A

SYSPRINT
is required if the PRINT option is used; it describes the data set to which the
listing will be printed. The listing data set should have a logical record length of
121 and a record format of FBA, and should be a sequential data set.

The listing contains a list of the LCCCP options in effect (if the OPTIONS
option is used), a source listing (if the SOURCE option is in effect), and a
cross-reference listing (if the XREF option is in effect). Diagnostic messages are
also written to the listing. If the EXPAND option is used, the translation of each
CICS command is shown.

SYSTERM
is optional; it describes a data set that is used for LCCCP diagnostic messages (if
the TERM option is used) and for C library warning messages. The DCB
requirements are supplied by LCCCP. This file is automatically allocated by
default under TSO.

The LCCCP CLIST

When you use T'SO to prepare a SAS/C application program to run in the CICS
environment, you invoke a CLIST for the translator before continuing with SAS/C
CLISTs for compiling and linking. For information on the SAS/C CLISTs for compiling
and linking, see the SAS/C Compiler and Library User’s Guide.

To begin the preprocessing step under TSO, invoke the LCCCP CLIST. Because the
translator is itself a C program, you must ensure that the transient run-time library is
allocated to the DDname CTRANS or is installed in the system link list. Your
installation will probably cause it to be allocated automatically. Consult your SAS
Software Representative for SAS/C software products to determine if this has been

38 Compiling SAS/C Programs for CICS under TSO A Chapter 5

done. If not, use the TSO ALLOCATE command to associate the library with the
CTRANS DDname as shown in the following:

ALLOC FI(CTRANS) DA('SASC.LINKLIB’) SHR

The format of the LCCCP CLIST is
LCCCP in-dsname [OUTPUT(out-dsname)]
[PRINT(print-file)] options
where

in-dsname
is the name of the SYSIN data set. If the data set belongs to another user, the
fully qualified name of the data set must be enclosed in three apostrophes. If the
data set name is not fully qualified, the LCCCP CLIST adds the user’s prefix and
a final qualifier of CCP, if necessary.

out-dsname
is the name of the SYSPUNCH data set. If the data set belongs to another user,
the fully qualified name of the data set must be specified and enclosed in three
apostrophes. If the data set name is not fully qualified, the LCCCP CLIST adds
the user’s prefix and a final qualifier of C.
If out-dsname is specified and is not fully qualified, the CLIST will use
out-dsname with a final qualifier of C.

print-file
is the name of the SYSPRINT data set. This data set must be sequential. If not
fully qualified, the CLIST adds the user’s prefix and a final qualifier of CCPLIST.

options
are any LCCCP options, as shown in “Specifying Translator Options” on page 13.

The following is an example of this command:

lccep 'userid.cics.source(example)’
output (cout (example))

In this example, the C source code is contained in the PDS referenced by
‘userid.cics.source(example)’. The output data set SYSPUNCH is referred to by
output (cout (example)). Because no options are specified, the default values will be
used in the translation.

Compiling SAS/C Programs for CICS under TSO

When you execute the SAS/C compilation CLIST, LC370, specify as input the same
data set as the one you used for output in the preprocessing step. If you are not
familiar with the SAS/C Compiler, see the SAS/C Compiler and Library User’s Guide
for additional information on executing SAS/C CLISTs. In particular, consult the
sections on TSO execution styles.

Note: CICS requires that all programs be compiled so that they are re-entrant. You
must specify the compiler options rent or rentext to cause the compiler to generate
re-entrant code because the compiler default for re-entrancy is norent. A

For example, to compile the file FTOC.C.A, you issue the following command:

LC370 ftoc (rent)

Preprocessing, Compiling, and Linking /A Using TSO CLISTs to Link 39

Linking SAS/C Programs for CICS under TSO

After you have preprocessed and compiled your program, you are ready to execute
the SAS/C link-edit CLIST, CLK370. Specify as input the data set that contains the
output from the LC370 CLIST. Use the LOAD option to specify the name of your CICS
program library, and use the CICS option so that CICS resident routines will be
included at link time.

Regardless of the linking method you use, you must always

0 include the CICS Execution Interface stub routines in each load module

O arrange for the stub to be the very first thing in the load module.

The CLISTs distributed by SAS Institute have been written to automate this process
by using the following linkage-editor control statements in one form or another:

LIBRARY DFHLIB(DFHEAI,DFHEAIO)
ORDER DFHEAT

The DDname DFHLIB points to the CICS load library that contains the execution
interface stub routines.

When to Use GOOL

You must use COOL to preprocess your object code if one or more of the following
conditions apply:
O two or more compilations in the program are compiled using either of the compiler
options (rent or rentext)
O the program initializes external variables in two or more re-entrant compilations
O you use the all-resident library
O you specify the EXTNAME option for more than one compilation.

See “Using TSO CLISTs to Link” on page 39 and the SAS/C Compiler and Library
User’s Guide for more information on COOL.

Linking All-Resident Programs

The default name of the all-resident library is SASC.CICS.ARESOBJ. (Ask your SAS
Software Representative for SAS/C software products for the name of the library at
your site.) When linking an all-resident program, concatenate the all-resident library in
front of any other autocall data sets, and include the object deck created by compiling a
source file that includes <resident.h> and the appropriate macro definitions. See SAS/
C Compiler and Library User’s Guide for more information on linking all-resident
programs. The process of linking all-resident programs is automated through the use of
keywords and parameters in the cataloged procedures, CLISTs, and EXECs.

Using TSO CLISTs to Link

The CLK370 CLIST invokes the COOL object code translator, followed by the linkage
editor. Optionally, you can skip the COOL step by specifying the NOCOOL option. The
format is as follows:

CLK370 dsname <keywords>

where dsname is the name of the object data set that is to be the primary input to
COOL or the linkage editor. The data set name should be the name of the data set
containing the object code, or the COOL/linkage-editor control statements used as input,
or both. Follow standard TSO naming conventions; that is, if the data set belongs to

40

Creating C++ CICS Applications under TSO A Chapter 5

another user, the full name of the data set must be specified, and the name must be
enclosed in three apostrophes. If the object code is in a member of a partitioned data
set, the member name must be specified in parentheses following the data set name in
the normal TSO manner. The final qualifier of the input data set name is assumed to
be OBJ. If you do not add this qualifier, it is supplied automatically by the CLIST.
Keywords indicate COOL options, linkage-editor options, or the names of other data
sets to use during linking. You must specify either the c1cs or the cICSVSE keyword
when linking CICS applications. See “COOL Options” on page 55 for more information.

Note: The resident library for the SAS/C compiler is divided into a base resident
library and the resident library for standard environments. The base resident library,
SASC.BASEOBJ, contains system-independent code. The standard CICS resident
library, SASC.CICSOBJ, contains system-dependent code. For more details about using
the CLK370 CLIST, consult the SAS/C Compiler and Library User’s Guide. A

Executing CLK370 without the IBM Linkage Editor

CLK370 accepts a NOCOOL option that causes the linkage editor to be invoked
directly without using the COOL utility. CLK370 allows you to specify any
linkage-editor options, such as LIST, LET, MAP, XREF, TEST, RENT, OVLY, AMODE, and
RMODE. (These options are valid for the linkage editor whether or not COOL is run.) The
IBM linkage editor and loader manual discusses these options.

Creating C++ CICS Applications under TS0

You must execute these three separate CLISTs to create a C++ CICS application
under TSO:

LCCCP invokes the CICS translator.

LCXX invokes the C++ translator and compiler.

COOL invokes the SAS/C prelinker and linkage editor to generate a load
module.

The LCCCP CLIST

In the LCCCP CLIST, use an input data set with a final qualifier of CPP. The output
data set name is specified with the output option; the final qualifier should be C. In the
following example, the output data set name is fully qualified because the data set
name has a different final qualifier (CXX) than the one expected by the LCXX CLIST.
Use standard TSO naming conventions to specify all data set names.

Assuming an input data set named USERID.CICS.CPP and an output data set
named USERID.CICS.CXX, the LCCCP CLIST can be invoked as follows:

LCCCP CICS(SAMPLE)
OUTPUT('’ 'USERID.CICS.CXX(SAMPLE) '’ ")

The LCXX CLIST

In the LCXX CLIST, the final qualifier of the input and output data sets should be
CXX and OBJ, respectively. Assuming an input data set named USERID.CICS.CXX

Preprocessing, Compiling, and Linking A Using LCCCP to Translate C Programs 41

and an output data set named USERID.CICS.OBJ, the LCXX CLIST can be invoked as
follows using the object option:

LCXX CICS(SAMPLE) OBJECT(CICS(SAMPLE)) RENT

The object option specifies the data set in which the output from the C++ translator
will reside. Use standard TSSO naming conventions to specify the data set names if
qualifiers other than those noted are used.

Note: Always compile CICS applications with the RENT compiler option.
For additional information on the LCXX CLIST, refer to SAS/C Cross-Platform
Compiler and C++ Development System User’s Guide. A

The COOL CLIST

The COOL CLIST invokes the SAS/C prelinker and the linkage editor; the final
qualifier of the input data set should be OBJ. Use the LOAD option to specify the data
set in which the linkage editor stores the output load module. If the LOAD option is not
specified, various rules apply as to how this data set will be determined. Consult
Chapter 7, "Linking C Programs," in the SAS/C Compiler and Library User’s Guide for
additional information on these rules.

Assuming an input data set of USERID.CICS.OBJ and an output data set name of
USERID.CICS.LOAD, the COOL CLIST can be invoked as follows:

COOL CICS(SAMPLE) CICS CXX RENT LOAD(CICS(SAMPLE))

The cxx and cIcs options are needed to add the required libraries to COOL’s
autocall list. Use standard TSO naming conventions to specify the data set names if
qualifiers other than those noted here are used.

Note: CICS applications must always be link-edited with the RENT option. A

Preprocessing, Compiling, and Linking under 0S/390 Batch

Under 0S/390 batch, you use the following cataloged procedures to compile and link
your program under CICS:

LCCCP
to preprocess

LCCCPC
to preprocess and compile

LCCCPCL
to preprocess, compile, and link.

Using LCCCP to Translate C Programs

The LCCCP cataloged procedure may be used to execute the translator. The JCL
contained in this procedure is similar to that shown in the following:

// EXEC LCCCP,PARM.CCP='options’
//SYSPUNCH DD DISP=SHR,DSN=your.translated.source(member)
//SYSIN DD DISP=SHR,DSN=your.source.library(member)

When you use LCCCP, you need to provide DD cards for only SYSIN (your C source
program containing EXEC CICS commands) and SYSPUNCH (where the translated C

42 Using LCCCPC to Compile C Programs A Chapter 5

source file is placed). The LCCCP procedure contains the JCL shown in Example Code
5.1 on page 42.

Example Code 5.1 Expanded JCL for LCCCP

//LCCCP PROC

//*

//CCP EXEC PGM=LCCCPO,REGION=1536K
//STEPLIB DD DSN=SASC.LINKLIB,DISP=SHR
// DD DSN=SASC.LOAD,DISP=SHR

//SYSTERM DD SYSOUT=A

//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSPUNCH DD UNIT=SYSDA,DSN=&&CCPOUT,DISP=(,PASS),SPACE=(TRK, (5,5)),
// DCB=(RECFM=VB,LRECL=259)

Using LCCCPC to Compile C Programs

You can use the LCCCPC procedure to preprocess and then compile your C program.
(Under TSO and CMS, preprocessing, compiling, and linking are typically done
separately.) Complete details about compiler options and running the compiler in
different environments are given in the SAS/C Compiler and Library User’s Guide.

Note: CICS requires that all programs be compiled so that they are re-entrant. You
must specify the compiler options rent or rentext to cause the compiler to generate
re-entrant code because the compiler default for re-entrancy is norent. Static variables
cannot be modified if you compile with the rentext option. A

The procedure LCCCPC for OS/390 batch runs the translator in one step, followed by
an invocation of the compiler. The JCL for preprocessing and then compiling C
programs using LCCCPC is as follows:

// EXEC LCCCPC, PARM.C='RENT'’
//CCP.SYSIN DD DISP=SHR,DSN=your.source.library(member)
//C.SYSLIN DD DISP=SHR,DSN=your.object.library (member)

When you use LCCCPC, you need to provide DD statements for only SYSIN (your C
source program containing EXEC CICS commands) and SYSLIN (your object data set).
The LCCCPC procedure contains the JCL shown in Example Code 5.2 on page 42.

Example Code 5.2 Expanded JCL for LCCCPC

//LCCCPC PROC

//*

//CCP EXEC PGM=LCCCPO0,REGION=1536K
//STEPLIB DD DSN=SAS.LINKLIB,

// DISP=SHR RUNTIME LIBRARY

// DD DSN=SASC.LOAD,

// DISP=SHR TRANSLATOR LIBRARY

//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSPUNCH DD UNIT=SYSDA,DSN=&&CPPOUT,DISP=(NEW,PASS),

// SPACE=(TRK, (5,5)),DCB=(RECFM=VB, LRECL=259)
//C EXEC PGM=LC370B,PARM='RENT’,COND=(8,LT,CCP)
//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR RUNTIME LIBRARY

// DD DSN=SASC.LOAD,

// DISP=SHR COMPILER LIBRARY

Preprocessing, Compiling, and Linking A Using Cataloged Procedures to Compile and Link C Programs 43

//SYSTERM DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSLIN DD DSN=&&0BJECT, SPACE=(3200,(10,10)),DISP=(MOD,PASS),
// UNIT=SYSDA

//SYSLIB DD DSN=SASC.MACLIBC,

// DISP=SHR STANDARD MACRO LIBRARY

//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)

//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1l ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1l ONLY

//SYSIN DD DSN=*.CCP.SYSPUNCH,DISP=(OLD,DELETE,DELETE),

// VOL=REF=*.CCP.SYSPUNCH

Using Cataloged Procedures to Compile and Link C Programs

Two cataloged procedures are provided for preprocessing, compiling, and linking, or
simply linking a C program for CICS: LCCCPCL and LCCCL. The LCCCPCL procedure
invokes the linkage editor; the LCCCL procedure invokes COOL before invoking the
linkage editor.

Selecting the Entry Point

You must explicitly specify the entry point of the program in a linkage-editor ENTRY
control statement. When using either LCCCPCL or LCCCL, you can specify (via the
ENTRY parameter) an ENTRY control statement to be added to the input
automatically. Valid values of the ENTRY parameter are as follows:

ENTRY=MAIN
links a program whose entry is a C main program. MAIN is the default value.

ENTRY=CSPE
links CICS SPE applications. It specifies the standard CICS start-up routine as
the entry point.

ENTRY=DYN
links subordinate load modules (which are dynamically loaded by some other
module at run-time via the loadm function).

ENTRY=NONE
is used in any situation where a special entry point is needed. This value inhibits
the inclusion of an ENTRY control statement. You must add an ENTRY control
statement to the input that specifies the correct entry point.

Selecting the Program Environment

The ENV symbolic parameter may be used to specify the environment in which the
program is to run. Valid values of the ENV parameter are as follows:

ENV=CICS
specifies the default CICS environment.

ENV="CICS.SPF’
specifies that this application will run in the CICS Systems Programming
Environment.

44

Using LCCCPCL to Preprocess, Compile, and Link C Programs A Chapter 5

ENV=VSE
specifies that this application should be linked with code to enable it to run in a
CICS/VSE environment. This parameter is used only with the LCCCCL procedure.
For further information, see “Linking for VSE” on page 61.

Creating All-Resident Load Modules

The ALLRES symbolic parameter may be used to force the program load module to
contain a private copy of all the required transient library routines. This is a
special-use feature not normally specified by applications developers. This parameter is
used only with the LCCCCL procedure. For more information, see Chapter 10,
"All-Resident C Programs," in the SAS/C Compiler and Library User’s Guide. Valid
values of the ALLRES parameter are as follows:

ALLRES=NO
specifies that normally transient library routines will not be included in the load
module. This is the default.

ALLRES=YES
forces the transient library routines to be included in the load module.

Using LCCCPCL to Preprocess, Compile, and Link C Programs

The procedure LCCCPCL invokes the translator and the compiler, followed by the
linkage editor. The following is the JCL for preprocessing, compiling, and then linking
C programs using LCCCPCL:

// EXEC LCCCPCL,PARM.CCP='options’, PARM.C='RENT’
//CCP.SYSIN DD DISP=SHR,DSNAME=your.source.library (member)
//LKED.SYSLMOD DD DISP=SHR,DSNAME=your.cics.loadlib (member)

When you use LCCCPCL, you need to provide DD statements for only SYSIN (your C
source program) and SYSLMOD (your CICS application load module library). See
“Using Cataloged Procedures to Compile and Link C Programs” on page 43 for a
complete description of the ENV= and ENTRY= JCL parameters. The LCCCPCL
procedure contains the JCL shown in Example Code 5.3 on page 44.

Example Code 5.3 Expanded JCL for LCCCPCL

//LCCCPCL PROC ENTRY=MAIN,ENV=CICS,

// CALLLIB='SASC.BASELIB',

// SYSLIB='SASC.BASELIB',

// CICSLIB='CICS17.LOADLIB’

//*
//**
//* ENV=CICS: MODULE RUNS IN A CICS C ENVIRONMENT *
//* ENV='CICS.SPE’: MODULE RUNS IN A CICS C SPE ENVIRONMENT *
//* ENTRY=MAIN: MODULE IS A NORMAL C MAIN PROGRAM *
//* ENTRY=DYN: MODULE IS DYNAMICALLY LOADABLE AND REENTRANT *
//* ENTRY=NONE: ENTRY POINT TO BE ASSIGNED BY USER *
//* ENTRY=CSPE: MODULE IS A CICS SPE APPLICATION *
//**
//*

//CCP EXEC PGM=LCCCPO0,REGION=1536K

//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY

// DD DSN=SASC.LOAD,

Preprocessing, Compiling, and Linking A Using LCCCL to Link SAS/C Programs

// DISP=SHR C COMPILER LIBRARY
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=%*,

// DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210)
//SYSPUNCH DD UNIT=SYSDA,DSN=&&CPPOUT,DISP=(NEW,PASS),
// SPACE=(TRK, (5,5)),DCB=(RECFM=VB, LRECL=259)
//C EXEC PGM=LC370B,PARM='RENT’,COND=(8,LT,CCP)
//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY

// DD DSN=SASC.LOAD,

// DISP=SHR C COMPILER LIBRARY

//SYSTERM DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSLIN DD DSN=&&OBJECT, SPACE=(3200,(10,10)),DISP=(MOD,PASS),
// UNIT=SYSDA

//SYSLIB DD DSN=SASC.MACLIBC,

// DISP=SHR STANDARD MACRO LIBRARY

//SYSDBLIB DD DSN=&&DBGLIB,SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)

//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1l ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1l ONLY

//SYSIN DD DSN=*.CCP.SYSPUNCH,DISP=(OLD,DELETE,DELETE),

// VOL=REF=%*.CCP.SYSPUNCH

//*

//LKED EXEC PGM=LINKEDIT,PARM='LIST,MAP,RENT’,

// COND=((8,LT,C), (8,LT,CCP))

//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=*
//SYSLIN DD DSN=*.C.SYSLIN,DISP=(OLD,PASS),VOL=REF=*.C.SYSLIN

// DD DSN=SASC.CICSOBJ(EPQ@&ENTRY),

// DISP=SHR

// DD DDNAME=SYSIN

//SYSLIB DD DSN=SASC.&ENV.LIB,

// DISP=SHR CICSLIB

// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY
// DD DSN=&CALLLIB,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,

// SPACE=(1024,(200,50))

//SYSLMOD DD DSN=&&LOADMOD (MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))

//DFHLIB DD DSN=&CICSLIB,DISP=SHR CICS APPLICATION STUBS

45

Using LCCCL to Link SAS/C Programs

LCCCL invokes COOL and the linkage editor. Typical JCL for running this cataloged

procedure is shown in the example that follows. This example shows two separate
process/compilation steps, followed by the step to link the application together.

//STEP1 EXEC LCCCPC
//CCP.SYSIN DD DISP=SHR,DSN=your.source.library(mainpgm)
//C.SYSLIN DD DSIP=SHR,DSN=your.object.library(mainpgm)

46

Using LCCCL to Link SAS/C Programs A Chapter 5

//STEP2 EXEC LCCCPC
//CCP.SYSIN DD DISP=SHR,DSN=your.source.library(subpgm)
//C.SYSLIN DD DSIP=SHR,DSN=your.object.library (subpgm)

//LINKSTEP EXEC LCCCL

//SYSLMOD DD DSIP=SHR,DSN=your.cics.loadlib(applname)
//SYSIN DD DISP=SHR,DSN=your.object.library(mainpgm)
// DD DISP=SHR,DSN=your.object.library(subpgm)

The JCL steps (STEP1 and STEP2) shown must specify only two DD statements:
SYSIN (the C source program) and SYSLIN (the resulting object code library). These
steps can be run independently from any of the others.

The LINKSTEP JCL step specifies the DD statements for SYSLMOD (the CICS
application load module library) and SYSIN (the collective object code to be processed).
This step lets the ENV= and ENTRY= parameters take their default values (of CICS
and MAIN, respectively).

The LCCCL procedure specifies the DD statement for SYSLKCTL. This DD
statement is used to pass input to the linkage editor from the COOL batch monitor,
CLK370B. The statement also contains linkage-editor control statements needed by
applications running under CICS. The LCCCL procedure contains the JCL shown in
Example Code 5.4 on page 46.

Example Code 5.4 Expanded JCL for LCCCL

//LCCCL PROC ENV=CICS,ALLRES=NO,ENTRY=MAIN,

// CALLLIB='SASC.BASEOBJ’,

// SYSLIB='SASC.BASEOBJ’

//*

//* EE R R R R R R R R R S S o
//* ENV=CICS: MODULE RUNS IN A CICS C ENVIRONMENT *
//* ENV=VSE: MODULE RUNS IN A CICS/VSE ENVIRONMENT *
//* ENV='CICS.SPE’: MODULE RUNS IN A CICS C SPE ENVIRONMENT *
//* ENTRY=MAIN: MODULE IS A NORMAL C MAIN PROGRAM *
//* ENTRY=DYN: MODULE IS DYNAMICALLY LOADABLE *
//* ENTRY=CSPE: MODULE IS A CICS SPE APPLICATION *
//* ENTRY=NONE: ENTRY POINT TO BE ASSIGNED BY USER *

//* hhkhhhkhkhhhhhdhdhhhhdhdhhdhhddhdhdhdddhdddddddhddddhdddddrddddrddddrdrdssx

//LKED EXEC PGM=CLK370B,PARM='LIST,MAP,RENT’,REGION=1536K
//STEPLIB DD DSN=SASC.LOAD,

// DISP=SHR C COMPILER LIBRARY

// DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY

//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//SYSTERM DD SYSOUT=*
//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,SPACE=(3200,(20,20)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSLKCTL DD DSN=SASC.CICSOBJ(EP@&ENTRY),

// DISP=SHR

// DD DSN=*.SYSLIN,VOL=REF=*.SYSLIN,

// DISP=(SHR,PASS)

//SYSLIB
//

//

//

//
//8SYSUT1
//
//SYSLMOD
//
//AR#NO
//
//AR#YES
//
//DFHLIB
//

DD
DD

DD

DD

DD

DD

DD

DD

DD

Preprocessing, Compiling, and Linking A LCCPCXX

DDNAME=AR#&ALLRES
DSN=SASC.&ENV.OBJ,
DISP=SHR
DSN=&SYSLIB,DISP=SHR
DSN=&CALLLIB,DISP=SHR
DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
SPACE=(1024,(200,50))
DSN=&&LOADMOD (MAIN) ,DISP=(,PASS),UNIT=SYSDA,
SPACE=(1024,(50,20,1))

DSN=SASC.&ENV.OBJ,

DISP=SHR

DSN=SASC.CICS.ARESOBJ,

DISP=SHR

DSN=CICS17.LOADLIB,

DISP=SHR

ARESOBJ OR ENVIRONMENT OBJ FILE

ENVIRONMENT SPECIFIC OBJECT FILE
COMMON RESIDENT LIBRARY

LY

Creating C++ CICS Applications under 0S/390 Batch

This release of the SAS/C CICS command language translator provides four

cataloged procedures to facilitate the creation of C++ CICS applications under OS/390:

LCCPCXX

invokes the CICS translator, C++ translator, and compiler.

LCCCXXL

invokes COOL (SAS/C’s prelinker) and the linkage editor.

LCCPCXXL

invokes the CICS translator, the C++ translator, the compiler, COOL, and the
linkage editor in a single step.

LCCPCXXA

invokes the CICS translator, the C++ translator, the compiler, and the AR370
archive utility in a single step.

Here’s an example of the JCL necessary to invoke the first two cataloged procedures

listed above:

//COMPILE

//CCP.SYSIN
//%X.SYSLIN

//*
//LINK

EXEC
//LKED.SYSLMOD DD

//LKED.SYSIN

EXEC

LCCPCXX,PARM.CCP='CICS options’,PARM.X='C++ options’
DD DSN=your.source.library(member),DISP=SHR
DD DSN=your.object.library(member),DISP=SHR

LCCCXXL,PARM.LKED='COOL and LINK EDIT options’
DSN=your.cics.load(member) ,DISP=SHR
DD DSN=your.object.library(member),DISP=SHR

LCCPCXX

You must provide two DD statements when you invoke the LCCPCXX cataloged

procedure:
SYSIN
SYSLIN

your C++ source program that contains EXEC CICS commands.

your object library.

48 LCCPCXX A Chapter 5

Note: You must always compile CICS applications with the RENT option; you can
specify this option in the PARM.X option list. A

The LCCPCXX procedure contains the JCL shown in Example Code 5.5 on page 48.
Example Code 5.5 Expanded JCL for LCCPCXX

//LCCPCXX PROC

//**

//* NAME: LCCPCXX (LCCPCXX) * %k
//* PRODUCT: SAS/C++ * ok *
//* PROCEDURE: INVOKE CICS/VS COMMAND LANGUAGE TRANSLATOR, *kx
//* C++ TRANSLATOR, COMPILER *okok
//* DOCUMENTATION: SAS/C++ TRANSLATOR USER’S GUIDE * k%
//* TFROM: SAS INSTITUTE INC. * ok %
//* SAS CAMPUS DRIVE * %%
//* CARY, NC 27513 * k%
//**
//*

//CCP EXEC PGM=LCCCPO0,REGION=1536K

//STEPLIB DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY

// DD DSN=SASC.LOAD,

// DISP=SHR C COMPILER LIBRARY

//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=%*,

// DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210)
//SYSPUNCH DD UNIT=SYSDA,DSN=&&CCPOUT,DISP=(,PASS),
// DCB=(RECFM=VB, LRECL=259),

// SPACE=(TRK, (5,5))

//*

//X EXEC PGM=LC370CX, PARM=’'RENT’

//STEPLIB DD DSN=SASC.LOAD,

// DISP=SHR TRANSLATOR LIBRARY

// DD DSN=SASC.LINKLIB,

// DISP=SHR RUNTIME LIBRARY

//SYSTERM DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSTROUT DD DSN=&&TROUT,SPACE=(6160,(10,10)),DISP=(NEW,PASS),

// UNIT=SYSDA

//SYSIN DD DSN=*.SYSTROUT, VOL=REF=*.SYSTROUT,DISP=(OLD, PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//SYSLIN DD DSN=&&OBJECT, SPACE=(3200,(10,10)),DISP=(MOD,PASS),

// UNIT=SYSDA,DCB=(RECFM=FB,LRECL=80)

//SYSLIB DD DSN=SASC.MACLIBC,

// DISP=SHR C/C++ STANDARD HEADER FILES

//SYSDBLIB DD DSN=&&DBGLIB, SPACE=(4080,(20,20,1)),DISP=(,PASS),
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=4080)

//SYSTMP01 DD UNIT=SYSDA,SPACE=(TRK,25) VS1l ONLY
//SYSTMP02 DD UNIT=SYSDA,SPACE=(TRK,25) VS1l ONLY

//SYSTRIN DD DSNAME=*.CCP.SYSPUNCH,DISP=(OLD,DELETE,DELETE),
// VOL=REF=*.CCP.SYSPUNCH

Preprocessing, Compiling, and Linking /A LCCCXXL

49

LCCCXXL

You must provide two DD statements when you invoke the LCCCXXL cataloged

procedure:

SYSIN
your object library.

SYSLMOD
your CICS application load module library.

Note: CICS applications must always be link-edited with the RENT option; you can

specify this option in the PARM.LKED option list. A

The LCCCXXL procedure contains the JCL shown in Example Code 5.6 on page 49.

Example Code 5.6 Expanded JCL for LCCCXXL

//LCCCXXL PROC ENV=CICS,ALLRES=NO,ENTRY=MAIN,

// CALLLIB='SASC.BASEOBJ’,

// SYSLIB='SASC.BASEOBJ',

// CICSLIB='CICS330.SDFHLOAD’,
// CXXLIB='SASC.A’

//**

//* NAME: LCCCXXL
//* PRODUCT: SAS/C++
//* PROCEDURE: CICS C++ APPLICATION CLINK

//* DOCUMENTATION: SAS/C++ TRANSLATOR USER'S GUIDE

//* TFROM: SAS INSTITUTE INC.
//* SAS CAMPUS DRIVE
//* CARY, NC 27513

* k%

* k%

* k%

* k%

* k%

* k%

* k%

//**

//**

//* ENV=CICS: MODULE RUNS IN A CICS ENVIRONMENT

//* ENV=VSE: MODULE RUNS IN A CICS/VSE ENVIRONMENT

//* ENV='CICS.SPE’: MODULE RUNS IN A CICS SPE ENVIRONMENT

//* ENTRY=MAIN: MODULE IS A NORMAL C MAIN PROGRAM

//* ENTRY=DYN: MODULE IS DYNAMICALLY LOADABLE

//* ENTRY=CSPE: ENTRY POINT IS CICS SPE STANDARD START-UP ROUTINE
//* ENTRY=NONE: ENTRY POINT TO BE ASSIGNED BY USER
//**
//*

//LKED EXEC PGM=COOLB, PARM='RENT,LIST,MAP’,REGION=1536K
//STEPLIB DD DSN=SASC.LOAD,

// DISP=SHR C COMPILER LIBRARY

// DD DSN=SASC.LINKLIB,

// DISP=SHR C RUNTIME LIBRARY

//SYSPRINT DD SYSOUT=%*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)

//SYSTERM DD SYSOUT=*

//SYSLIN DD UNIT=SYSDA,DSN=&&LKEDIN,SPACE=(3200,(20,20)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//SYSLKCTL DD DSN=SASC.CICSOBJ(EP@&ENTRY),

// DISP=SHR

// DD DSN=*.SYSLIN,VOL=REF=*.SYSLIN,

// DISP=(SHR,PASS)

50 LCCPCXXL A Chapter 5

//SYSLIB DD DDNAME=AR#&ALLRES ARESOBJ OR ENVIRONMENT OBJ FILE
// DD DSN=SASC.&ENV.OBJ,

// DISP=SHR ENVIRONMENT SPECIFIC OBJECT FILE
// DD DSN=&SYSLIB,DISP=SHR COMMON RESIDENT LIBRARY

// DD DSN=&CALLLIB,DISP=SHR

//SYSARLIB DD DSN=&CXXLIB,DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,

// SPACE=(1024,(200,50))

//SYSLMOD DD DSN=&&LOADMOD (MAIN),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(1024,(50,20,1))

/ /AR#NO DD DSN=SASC.&ENV.OBJ,

// DISP=SHR

//AR#YES DD DSN=SASC.CICS.ARESOBJ,

// DISP=SHR

//DFHLIB DD DSN=&CICSLIB,DISP=SHR CICS APPLICATION STUBS

LCCPCXXL

This cataloged procedure invokes the CICS translator, the C++ translator, the
compiler, COOL, and the linkage editor in one step. Input to this step is provided by
the CCP.SYSIN DD statement and the link-edited load module is placed in the data set
referred to on the LKED.SYSLMOD DD statement, as follows:

//PCL EXEC LCCPCXXL,PARM.CCP='CICS options’,
// PARM.X='C++ options’,PARM.LKED='COOL and Link Edit options’
//CCP.SYSIN DD DSN=your.source.library(member) ,DISP=SHR

//LKED.SYSLMOD DD DSN=your.cics.load(member),DISP=SHR

LCCPCXXA

This cataloged procedure invokes the CICS translator, the C++ translator, the
compiler, and the AR370 archive utility in a single step. Input to this step is provided
by the CCP.SYSIN DD statement, and the object code generated by the compiler is
placed in the archive referred to on the A.SYSARLIB DD statement, as follows:

//PCA EXEC LCCPCXXA,PARM.CCP='CICS options’,
// PARM.X='C++ options’,PARM.A='AR370 options’
//CCP.SYSIN DD DSN=your.source.library(member),DISP=SHR

//A.SYSARLIB DD DSN=your.ar.library,DISP=SHR

Preprocessing, Compiling, and Linking under CMS

CICS applications can also be developed under CMS. You can preprocess, compile,
and link your application under CMS before shipping the resulting object module to an
0S/390 or VSE system for final link-editing with the CICS Execution Interface stub
routines. For complete details on compiling C programs under CMS, consult the SAS/C
Compiler and Library User’s Guide.

Before you run the translator, compiler, or COOL under CMS, verify that the
transient library is available on an accessed minidisk, or that it is installed in a
segment available to your virtual machine. Your SAS Software Representative for
SAS/C software products can tell you if this has been done for you.

Preprocessing, Compiling, and Linking A The LCCCP EXEC 51

The Translator Input File

The input file is a C source file containing one or more EXEC CICS commands. The
file may be in any format acceptable to the compiler. Thus, it can contain either
variable-length or fixed-length records, with a logical record length less than or equal to
1024 characters.

The input file may have sequence numbers. The translator checks the first record in
the source file to determine if the source file has sequence numbers. If the source file
has variable-length records, the translator inspects columns 1 through 8; otherwise, it
inspects the last eight columns. If the translator finds a sequence number in the first
record, it ignores the corresponding columns of all subsequent records.

Note: The compiler will not accept an input file containing lines longer than 1024
characters. 2

The Translator Output File

The output of the translator is subsequently used as input to the compiler. If the
OUTSEQ option is used and the input data set does not have sequence numbers, the
LRECL of the output file will be eight characters longer than the input file.

The Listing File

A listing file is created unless the NOPRINT option is used. It will have fixed-length
records and a logical record length of 121. The listing contains a list of the LCCCP
options in effect (unless the NOOPTIONS option is used), a source listing (unless the
NOSOURCE option is used), and a cross-reference listing (unless the NOXREF option
is used). Diagnostic messages are also written to the listing. If the EXPAND option is
used, the translation of each CICS command is shown following the command in the
source listing.

Terminal Output

LCCCP prints all diagnostic messages to the terminal unless the NOTERM option is
in effect.

The LCCCP EXEC
The LCCCP EXEC invokes the translator in CMS. The format of the LCCCP EXEC
follows:

LCCCP filename (filetype (filemode)) [OUT(out-fileid)] [PR(print-fileid)] ((options()))

where

filename
is the filename of the input file.

filetype
is the filetype of the input file. If filetype is not specified, CCP is the default.

filemode
is the filemode of the input file. If filemode is not specified, A is the default.

52

Compiling SAS/C Programs for CICS under CMS A Chapter 5

out-fileid
is the fileid of the output file. If this option is not specified, the default fileid is
filename C Al. If the OUT()option is used, the filetype and filemode of the output
file may be omitted. The default filetype is C and the default filemode is Al.

print-fileid
is the fileid of the listing file. If this option is not specified, the default fileid is
filename CCPLIST Al. If the PR()option is used, the filetype and filemode of the
listing file may be omitted. The default filetype is CCPLIST and the default
filemode is Al.

options
are any of the LCCCP options described in “Specifying Translator Options” on
page 13.

Compiling SAS/C Programs for CICS under CMS

When you invoke the compiler with the LC370 EXEC, specify as input the same
filename you used for output in the preprocessing step. If you are not familiar with the
SAS/C Compiler, refer to SAS/C Compiler and Library User’s Guide for additional
information.

Note: CICS requires that all programs be compiled so that they are re-entrant. You
must specify the compiler options rent or rentext to cause the compiler to generate
re-entrant code, because the compiler default for re-entrancy is norent. 2

For example, to compile the file FTOC.C.A, you issue the following command:

LC370 ftoc (rent)

Linking SAS/C Programs for CICS under CMS

Regardless of the linking method you use, you must always

0 include the CICS Execution Interface stub routines in each load module

O arrange for the stub to be the very first thing in the load module.

The CLISTs and cataloged procedures distributed by SAS Institute have been written

to automate this process by using the following linkage-editor control statements in one
form or another:

LIBRARY DFHLIB(DFHEAI,DFHEAIO)
ORDER DFHEAT

The DDname DFHLIB points to the CICS load library that contains the execution
interface stub routines.

When to Use GOOL

You must use COOL to preprocess your object code if

O two or more compilations in the program are compiled using either of the compiler
options (rent or rentext)

O the program initializes external variables in two or more re-entrant compilations
O you use the all-resident library
O you specify the EXTNAME option for more than one compilation.

See “Using CMS EXECs to Link” on page 53 and the SAS/C Compiler and Library
User’s Guide for more information on COOL.

Preprocessing, Compiling, and Linking A Using CMS EXECs to Link 53

Linking All-Resident Programs

The default name of the all-resident library is CICSARES TXTLIB. (Ask your SAS
Software Representative for SAS/C software products for the name of the library at
your site.) When linking an all-resident program, concatenate the all-resident library in
front of any other autocall data sets, and include the object deck created by compiling a
source file that includes <resident.h> and the appropriate macro definitions. See the
SAS/C Compiler and Library User’s Guide for more information on linking all-resident
programs. The process of linking all-resident programs is automated through the use of
keywords and parameters in the cataloged procedures, CLISTs, and EXECs.

Using CMS EXECs to Link
The COOL EXEC invokes the COOL object code translator. The format is as follows:
COOL [filenamellfilename2 . . . 1l[(options|)]]

where filenamel, filename2, and so on are the names of the files that are the primary
input to COOL. Each file should have a filetype of TEXT and contain either object code
or COOL/linkage-editor control statements. If no filenames are specified, COOL
prompts for the name of a primary input file. At the prompt, enter a filename. COOL
continues to prompt until a null line is entered. See “COOL Options” on page 55 for a
list of options.

Several different techniques can be used to run COOL on applications for CICS on
CMS. Each technique is just a different way of specifying which text libraries COOL
should use for autocall resolution.

The simplest technique is to specify the CICS option to COOL. The CICS option
directs COOL to use the LC370CIC TXTLIB and the LC370BAS TXTLIB as autocall
libraries. An example invocation would be:

COOL ftoc (CICS)

A second technique is to use the CMS GLOBAL TXTLIB command to explicitly
specify which TXTLIBs are to be used by COOL, and not to specify any COOL options.
For example

GLOBAL TXTLIB LC370CIC LC370BAS
COOL ftoc

If you have your own library of routines to be used for autocall, then you could issue
a GLOBAL TXTLIB command that specifies your TXTLIB before invoking COOL with
the CICS option. For example

GLOBAL TXTLIB yourlib
COOL ftoc (CICS)

Alternatively, you could specify all the libraries to be used for autocall:

GLOBAL TXTLIB yourlib LC370CIC LC370BAS
COOL ftoc

You can also use the CMS GLOBALV command to create a default list of TXTLIBs
that need to be global when COOL is invoked. The COOL EXEC queries the TXTLIBS
variable in the group LC370 to determine whether any default TXTLIBs have been
specified. The EXEC retains the current GLOBAL TXTLIBs before issuing a new
GLOBAL command to be used during the invocation of COOL. It then restores the
saved global TXTLIBs after COOL has terminated.

54

Creating C++ CICS Applications under CMS A Chapter 5

For example, the following CMS GLOBALV command specifies that the yourlib
TXTLIB be made global when COOL is invoked. Because the CICS option is specified,
the LC370CIC and LC370BAS TXTLIBs are also made global.

GLOBALV SELECT LC370 SETL TXTLIBS yourlib
CLIN ftoc (CICS)

The COOL EXEC accepts the NOGLOBAL option. If this option is used, the EXEC
does not query the GLOBALYV variable TXTLIBS for the names of TXTLIBs that are to
be global before COOL begins execution.

Creating C++ CICS Applications under CMS

You must execute three separate EXECs to create a C++ CICS application under
CMS:

LCCCP invokes the CICS translator.
LCXXC invokes the C++ translator and compiler.
COOL invokes the SAS/C prelinker.

Output from COOL must be ported to the target operating system for final
link-editing.

The LCCCP EXEC

The LCCCP EXEC requires an input file with a filetype of CPP. An output file will be
created with the same filename as the input file and a filetype of C unless the ouT
option is used to specify an alternate fileid. The following example uses the oUT option
to specify a fileid with the filetype (CXX) expected by the LCXX EXEC.

Assuming an input file named SAMPLE CCP A and an output file named SAMPLE
CXX A, the LCCCP EXEC can be invoked as follows:

LCCCP SAMPLE OUT(SAMPLE CXX A

The LCXX EXEC

The LCXX EXEC requires the filetype of the input file to be CXX. By default, an
output file with the same filename as the input file and a filetype of TEXT will be
created. Before executing the LCXX EXEC, the LC370 and LCXX370 MACLIBs must
be made globally available.

Note: The RENT compiler option must always be specified for CICS applications.
Assuming an input fileid of SAMPLE CXX A and an output fileid of SAMPLE TEXT
A, the LCXX EXEC can be invoked as follows: A

LCXX SAMPLE (RENT

Consult the SAS/C Cross-Platform Compiler and C++ Development System User’s
Guide for additional information on the LCXX EXEC.
At this point, you can do one of the following:

o use COOL to prelink the SAMPLE TEXT A file on CMS and then port it to the
target operating system for final link-editing

Preprocessing, Compiling, and Linking /A COOL Options 55

O port to the target operating system and then prelink (using COOL) and link-edit.
To prelink the output file on CMS, enter the following command:
COOL SAMPLE (CXX CICS

An output file named COOL370 TEXT A is created and ready for porting to the
target operating system. You must use the ¢xx and cICS options to add the required
libraries to COOL’s autocall list.

If the target operating system is 0S/390, you can invoke the LCCCXXL cataloged
procedure with the NOCOOL option.

Note: You must always link-edit the application with the RENT option.
Here’s an example that invokes the LCCCXXL cataloged procedure: »

//LINK EXEC LCCCXXL,PARM.LKED='NOCOOL,RENT’

//LKED.SYSLMOD DD DSN=your.cics.load(member),DISP=SHR

//*

//* Note that input must be provided via the SYSLIN DD statement
//* instead of the SYSIN DD statement when using the NOCOOL option.
//LKED.SYSLIN DD DSN=your.object.library(member),DISP=SHR

Alternatively, you can directly invoke the linkage editor program, IEWL:

//LINK EXEC PGM=IEWL,PARM='RENT’

//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//SYSLMOD DD DSN=your.cics.load(member),DISP=SHR
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,

// SPACE=(1024,(200,50))
//DFHLIB DD DSN=your.cicsrel.SDFHLOAD,DISP=SHR Command-level stubs
//OBJIN DD DSN=your.object.library(member),DISP=SHR

//SYSLIN DD *
LIBRARY DFHLIB(DFHEAI,DFHEAIO)
ORDER DFHEAI
ENTRY MAIN
INCLUDE OBJIN (member)
NAME SAMPLE (R)
/*
//
If you choose to port the application to OS/390 for prelinking (using COOL) and

link-editing, use the LCCCXXL cataloged procedure, as described in “Creating C++
CICS Applications under OS/390 Batch” on page 47.

COOL Options

Table 5.1 on page 56 lists the options available for the COOL utility and the systems
to which these options apply. A description of each option follows the table.

56 COOL Options A Chapter 5

Table 5.1 COOL Options

Option TSO CMS 0S/390 Batch

ALLRESIDENT X
AUTO
cics

CICSVSE

o T T B

CXX

ENTRY

ENXREF

T T B B

EXTNAME
GLOBAL
LIB X

LKED X

LOAD X X
LOADLIB

PREM

PRINT
SPE
TERM

UPPER

T B
o T T B B

WARN

ALLRESIDENT
specifies use of the all-resident library. Under CMS, this option issues GLOBAL
TXTLIB commands for LCARES, LC370BAS, and LC370STD TXTLIBs. Under
TSO, the following keyword, when used with either the cICs or cICSVSE
keywords, names SASC.CICS.ARESOBJ, SASC.CICSOBJ, and SASC.BASEOBJ to
be used automatically as call libraries:

ALLRESIDENT

This option should be specified when linking all-resident programs. See also the
cIcs and CICSVSE options.

AUTO
specifies that COOL should resolve external references by searching for object files
whose filenames match the external reference. This is the default. NoauTO
suppresses resolution of external references by object files. The AUTO option is
similar to the AUTO option of the CMS LOAD command. When AUTO is in effect,
COOL attempts to resolve external references by searching for files named ref
TEXT, where ref is the name of the external reference. If no TEXT file with that

Preprocessing, Compiling, and Linking /A COOL Options 57

name can be found, COOL attempts to resolve the reference from the GLOBAL
TXTLIBs.

CICS
under CMS, makes the required TEXT libraries global for linking programs that
execute in CICS. Usually, the LC370BAS and LC370CIC TXTLIBs are global. If
you specify this option with the ALLRESIDENT option, the CICSARES, L.C370CIC,
and LC370BAS TXTLIBs are global. If you specify this option with the SPE option,
the LC370BAS and LC370SPC TXTLIBs are global.

Under TSO, by default, this option specifies that SASC.BASEOBJ and
SASC.CICSOBJ are to be used automatically as call libraries. If you specify this
option with the ALLRESIDENT option, the SASC.CICS.ARESOBJ data set is also
used as an autocall library. If you specify this option with the SPE option, the
SASC.CICS.SPEOBJ and SASC.BASEOBJ data sets are used automatically as call
libraries.

CICSVSE
under CMS, makes the required TEXT libraries global for linking programs that
execute in CICS under VSE. Usually, the LC370BAS and LC370VSE TXTLIBs are
global. If you specify this option with the ALLRESIDENT option, the CICSARES,
LC370VSE, and LC370BAS TXTLIBs are global. If you specify this option with
the SPE option, the LC370BAS and LC370SPC TXTLIBs are global.

Under TSO, by default, this option specifies that SASC.BASEOBJ and
SASC.VSEOBJ are to be used automatically as call libraries. If you specify this
option with the ALLRESIDENT option, the SASC.CICS.ARESOBJ data set is also
used as an autocall library. If you specify this option with the SPE option, the
SASC.CICS.SPEOBJ and SASC.BASEOBJ data sets are used automatically as call
libraries.

CXX
specifies that the object code being linked is produced by compiling output from
the C++ translator. This option must be used when linking C++ translator output.
NocxXx specifies that the object code being linked is not produced by compiling
output from the C++ translator. NOCXX is the default.

ENTRY
under TSO, identifies the program’s entry point, or allows the linkage editor to
determine the entry point when written in the following format:
ENTRY (name)
The ENTRY keyword can be specified in the following ways:

ENTRY (MAIN)
for a program containing a main function. The actual entry point is MAIN.

ENTRY (DYN)
for a re-entrant, dynamically loaded (via 1loadm) module. The actual entry
point is #DYNAMN.

ENTRY (CSPE)

for a CICS SPE application with initial function cicsmain. The actual entry
point is #CICSEP.

ENTRY (NONE)
to allow the linkage editor to select the entry point itself. Use of
ENTRY (NONE) is recommended only if a linkage-editor ENTRY statement is
present in one of the input files.
If ENTRY is not specified, ENTRY (MAIN) is assumed, unless SPE is specified; in
that case, ENTRY (NONE) is assumed.

58

COOL Options A Chapter 5

ENXREF

controls the production of one or more of the three cross-references generated by
COOQL in a table that follows all other COOL output. These three cross-references
are SNAME, CID, and LINKID. The cross-reference SNAME is in alphabetic order by
the sNAME that uniquely identifies an object file. cID displays the extended names
in alphabetic order by the C identifier. LINKID displays the extended names in
alphabetic order by a linkid that COOL assigns. NOENXREF suppresses the
production of all extended names cross-references.

Under TSO, the ENXREF option takes the following form:

ENXREF (' NOSNAME, NOCID,NOLINKID')
For example, the following option suppresses the SNAME cross-reference:
ENXREF (' NOSNAME ')

Under CMS, the ENXREF option takes the following form: 9pt

ENXREF <NOSNAME> <NOCID> <NOLINKID>

For example, the following option suppresses the SNAME cross-reference:
ENXREF NOSNAME

Under OS/390 batch, the ENXREF option takes the following form:
ENXREF (NOSNAME , NOCID, NOLINKID)

For example, the following option suppresses the SNAME cross-reference:

ENXREF (NOSNAME)

EXTNAME

specifies that COOL is to process extended names. This is the default. NOEXTNAME
specifies that COOL will not process extended names.

The SAS/C Compiler provides extended names support that enables compiler
processing of extended names of up to 64K in length. An extended name is any
name that identifies an external variable, or that identifies an external or static
function and fits either of the following criteria:

0 It is more than eight characters long.

o It is eight characters or fewer in length, contains uppercase alphabetic
characters, and is not the name of an _asm or HLL (for example, _pascal)
function.

Note: If you specify the EXTNAME option, be sure to include the appropriate
header files for library functions that you use. Some library functions, such as
localtime and setlocale, are more than eight characters long and, therefore, fit
the criteria for extended names. The library header files for these functions all
contain #pragma map statements that change the function names to names that
are not extended. A

If you do not include the appropriate library header file for a library function,
the compiler creates unpredictable external symbols that cannot be resolved from
the standard library. For more information on #pragma map, refer to Chapter 2,
"Source Code Conventions," in the SAS/C Compiler and Library User’s Guide.

GLOBAL

specifies that the COOL EXEC should query the GLOBALV variable TXTLIBS in
the group LC370 for the name or names of TXTLIBs that are to be global before
COOL begins execution. This is the default. NOGLOBAL suppresses automatic

Preprocessing, Compiling, and Linking /A COOL Options 59

query of the GLOBALV variable TXTLIBS: the EXEC does not issue a GLOBAL
TXTLIB command based on the GLOBALV variable.

LIB
specifies the data set name of an autocall object library containing functions that
are to be linked automatically into the program if referenced. (Load module
libraries cannot be used.) Here is the form of the keyword:

LIB (dsname)

If the library belongs to another user, the fully qualified name of the data set must
be given, and the name must be preceded and followed by three apostrophes. No
final qualifier is assumed for a LIB data set.

LKED
specifies that the COOL EXEC is to issue an LKED command for COOL370 TEXT
using the LKED options specified. The LKED option must follow any use of any other
option on the command line. The LKED option causes the COOL EXEC to issue the
following CMS command after COOL has created the COOL370 TEXT file:

LKED COOL370 (options)

where options are any LKED command options specified following the LKED keyword.

LOAD
names the data set into which the linkage editor stores the output load module.
Typically, this will be the name of an application load library appearing in the
CICS DFHRPL DDname concatenation of libraries. Here is the form of the
keyword:

LOAD (dsname)

This keyword should specify a partitioned data set member. If the data set
belongs to another user, the fully qualified name of the data set must be given,
and the name must be preceded and followed by three apostrophes. If the data set
name is not specified within three apostrophes, it is assumed to be a data set
name with a final qualifier of LoAD. Additional considerations follow:

o If the Loap keyword is not used, the load module data set is determined by
replacing the final oBJ qualifier in the object data set name with LOAD.

o If a member name is specified for the object data set, the same member name
is assumed for the load module; if the object data set is a sequential data set,
the member name TEMPNAME is assumed for the load module name.

o If the object data set name is specified in apostrophes, the terminal user is
prompted to enter the name of the LoAD data set.

LOADLIB
specifies the data set name of an autocall load library containing functions that
are to be linked automatically into the program if referenced. Here is the form of
the keyword:

LOADLIB(dsname)

If the library belongs to another user, the fully qualified name of the data set
must be given, and the name must be preceded and followed by three apostrophes.
Functions in the LOADLIB data set are resolved by the linkage editor, not by
COOL. COOL diagnoses these functions as unresolved. No final qualifier is
assumed for a LOADLIB data set. You must use LOADLIB, rather than LIB, to
reference libraries that are associated with IBM products such as ISPF and
GDDM because those libraries are stored in load module format.

60

COOL Messages and CICS Applications A Chapter 5

PREM

specifies that COOL is to remove pseudoregisters from the output object module.
COOQL creates a pseudoregister map. NOPREM specifies that COOL is not to
remove pseudoregisters from the output object module. PREM is the default under
CMS; NOPREM is the default under OS/390. The PREM option is rarely used in TSO
or under OS/390. However, if you are linking programs for CICS/VSE, you must
specify this option.

PRINT

indicates the destination for COOL and linkage editor output listings. The
following keyword indicates that the COOL and linkage editor output listings
should be printed at the terminal:

PRINT (*)

The following keyword specifies that the COOL and linkage editor listings
should be stored in the named data set:

PRINT (dsname)

This data set must be sequential; a partitioned data set member is not allowed.
If the data set belongs to another user, the fully qualified name of the data set
must be given, and the name must be preceded and followed by three apostrophes.
If the data set name is not specified within three apostrophes, it is assumed to be
a data set name with a final qualifier of LINKLIST.

The following keyword specifies that no linkage editor or COOL listing is to be
produced:

NOPRINT

If you use the NOPRINT operand with CLK370, COOL and linkage-editor output
(except for diagnostic messages) is suppressed.
If neither PRINT nor NOPRINT is used, the default is NOPRINT.

SPE

When sPE is used while also specifying the CICS or CICSVSE keywords, the CICS
SPE libraries are used to link the application. Under CMS, the GLOBAL TXTLIB
command is issued for the LC370SPC and LC370BAS TXTLIBs. Under TSO, the
GLOBAL TXTLIB command causes the SASC.CICS.SPEOBJ and SASC.BASEOBJ
data sets to be used automatically as call libraries.

TERM

specifies that COOL error messages be written to stderr (SYSTERM) in addition
to stdout. NOTERM suppresses the error message listing to stderr. This is the
default.

UPPER

produces all output messages in uppercase.

WARN

specifies that warning messages (which are associated with RC=4) be issued. This
is the default. NOWARN suppresses warning messages.

COOL Messages and CICS Applications

When you use COOL to link a CICS application, you receive COOL messages noting
the missing CICS Execution Interface stubs. Under CMS, you receive the following
messages:

Preprocessing, Compiling, and Linking A Linking CICS/VSE Applications under CMS 61

LSCL102 Warning: Can’t open file during autocall: $TXTLIB(DFHEI1)
LSCL102 Warning: Can’t open file during autocall: $TXTLIB(DFHEAI)
LSCL102 Warning: Can’t open file during autocall: $TXTLIB(DFHEAIO)

Under 0S/390, you receive similar messages that refer to members of the SYSLIB
library (instead of the CMS TXTLIB library). These messages are expected; the output
object file from COOL must subsequently be linked with the CICS Execution Interface
stubs. This subsequent link must be performed under 0OS/390, which means that if you
are running under CMS, your output file (COOL370 TEXT) must be transmitted to an
0S/390 system before it can be linked with the CICS Execution Interface stubs.

Note: Because final link-editing with the CICS execution interface stubs must be
performed on the target operating system, if your application is targeted for a CICS/
VSE system, refer to the next section. A

Linking for VSE

CICS application programs that are intended to be run under CICS and VSE may be
developed on CMS or OS/390 systems. Generally, the technique is to preprocess,
compile, and link your application under CMS or OS/390 before shipping the resulting
object module to a VSE system for final link-editing with the CICS Execution Interface
stub routines. Your applications are preprocessed and compiled in the normal manner
under CMS or 0S/390.

Note: The VSE linkage editor does not support pseudoregisters. Therefore, the
COOL PREM option should be used to remove pseudoregisters from the object code. This
change does not affect program execution or re-entrancy in any way. 2o

Linking CICS/VSE Applications under CMS

The CICS/VSE resident library is contained in the LC370VSE TXTLIB and
LC370BAS TXTLIB libraries. The simplest method of linking applications for CICS and
VSE is to specify the cICSVSE option to COOL. Here is an example:

COOL ftoc (CICSVSE)

You can also use any of the alternate COOL processing techniques described earlier
in “Using CMS EXECs to Link” on page 53. For example

GLOBAL TXTLIB LC370VSE LC370BAS

COOL ftoc

GLOBAL TXTLIB yourlib
COOL ftoc (CICSVSE)

GLOBALV SELECT LC370 SETL TXTLIBS yourlib
COOL ftoc (CICSVSE)

Note: Pseudoregister removal is the default option on CMS. 2

The resulting object file, COOL370 TEXT, must be transmitted to the destination
VSE system for final link-editing. You can ignore any LSCL102 warning messages that
reference the CICS Execution Interface stub routines.

62

Linking CICS/VSE Applications under 08/390 A Chapter 5

Linking CICS/VSE Applications under 0S/390

Under 0S/390, the CICS and VSE resident library is contained in SASC.VSEOBJ
and SASC.BASEOBJ. You can use the cataloged procedure LCCCL to create an object
file for subsequent link-editing on a VSE system. You must code the ENV=VSE
keyword in the JCL you use to invoke the procedure, and you must specify the COOL
option PREM to remove pseudoregisters from the resulting object file. An example
invocation of the cataloged procedure follows:

// EXEC LCCCL,ENV=VSE,PARM='PREM’
//SYSLIN DD DISP=SHR,DSN=your.object.library(outmem)
//SYSIN DD DISP=SHR,DSN=your.object.library (inputobj)

The SYSLIN DD statement points to the data set that contains the resulting object
file. The SYSIN DD statement points to any input object files. You may ignore any
COOL LSCL102 warning messages that reference the CICS Execution Interface stub
routines.

Creating the VSE Phase

After you have linked your application on your development system, the resulting
object file must be transmitted to the destination VSE system for final link-editing with
the CICS Execution Interface stubs to create an executable phase. Example Code 5.7 on
page 62 shows how this can be done.

Example Code 5.7 Sample VSE Linking JCL

// JOB

// LIBDEF *,...

PHASE load module name, *
INCLUDE DFHEAT

INCLUDE DFHEAIO

INCLUDE
. /* object code produced by COOL */
/*
// EXEC LNKEDT
/*

Using the External CICS Interface

The CICS translator now supports the external CICS interface. By using this
feature, a non CICS program running on OS/390 can call a CICS program running in a
CICS region. This is sometimes referred to as a Distributed Program Link (DPL). You
can use one of two programming interfaces to enable the external CICS interface:

o0 the EXCI CALL interface
o the EXEC CICS interface.

Consult the CICS/ESA External CICS Interface Manual for more information on the
EXCI CALL interface.

Preprocessing, Compiling, and Linking /A Translating, Compiling, and Linking under 0S/390 63

The EXEC CICS Interface

You invoke the EXEC CICS interface by using new options in the EXEC CICS LINK
PROGRAM command: RETCODE (data-area), and APPLID (name). These options are valid
only when you specify the external call interface option.

When you specify the external call interface, the following options for the EXEC c1cs
LINK PROGRAM command are not valid:

INPUTMSG (data-area)
INPUTMSGLEN (data-value)
SYSID(data-area)

Running your CICS Application with the External CICS Interface

The following three steps are required to run your CICS application with the
external CICS interface:

1 The CICS command translator must translate your program.
2 You must compile the program with SAS/C.
3 You must link-edit the program on OS/390.

Note: Your program must be linked with the standard resident library, STDOBJ,
rather than the CICS library. A

Translating, Compiling, and Linking under 0S/390

Use the EXCI option to specify the external call interface on 0S/390. To resolve the
external CICS interface stub when linking, you must specify the CICS41.SDFHEXCI
library. Ask your CICS system administrator for the exact name of the SDFHEXCI
data set at your site.

Note: You can use this feature of the CICS command translator in the UNIX
environment. See SAS/C Cross-Platform Compiler and C++ Development System User’s
Guide for details. A

Using TSO
To translate the program, run the LCCCP CLIST:
LCCCP 'your.ccpinput.ccp(member)’ OUTPUT(’''ccp.output.c(member)’’’)
EXCI

Next, compile the program:

LC370 ’'ccp.output.c(member)’ OBJECT(’’’ccp.output.load(member)’’'’)
RENT

Link the program:

COOL 'ccp.output.obj(member)’ LOADLIB('’’CICS41.SDFHEXCI'’')
LOAD('’'ccp.output.load(member)’’’) LET

To execute the program under TSO, you must allocate the CICS41.SDFHEXCI
library in one of the following ways:

64 Translating, Compiling, and Linking under CMS A Chapter 5

Example Code 5.8 Method 1

ALLOC FILE(ISPLLIB) DATASET(’CICS41.SDFHEXCI’) SHR
To run the program using Method 1, type the following:

CALL 'ccp.output.load(member)’

Example Code 5.9 Method 2

ALLOC FILE(CPLIB) DATASET('ccp.output.load’ ’'CICS41.SDFHEXCI’) SHR
To run the program using Method 2, type the following:

member

Using 0S/390 Batch

You can use one of three procedures (LCCCP, LCCCPC, or LCCCPCL) to invoke the
CICS translator. If you use either LCCCP or LCCCPC when translating for the external
CICS interface, you can invoke the linker separately and specify the correct libraries.

For example, to translate and compile the program, run the LCCCPC procedure:

// EXEC LCCCPC,PARM.CCP='EXCI’
//SYSPUNCH DD DISP=SHR,DSN=your.object.library(member)
//SYSIN DD DISP=SHR,DSN=your.source.library(member)

Then link and execute the program:

//STEP1 EXEC LC370LRG

//LKED.SYSLMOD DD DISP=SHR,DSN=your.load.lib(member)
//LKED.SYSIN DD DISP=SHR,DSN=your.object.lib(member)
//LKED.SYSLDLIB DD DISP=SHR,DSN=CICS41.SDFHEXCI
//GO.STEPLIB DD

// DD DISP=SHR,DSNAME=CICS41.SDFHEXCI

Translating, Compiling, and Linking under CMS

Use the EXCI option to specify the external call interface on CMS. First, translate the
program using the LCCCP EXEC:

LCCCP filename (filetype (filemode)) (EXCI
Next, compile the program:
LC370 filename (filetype (filemode)) (RENT

Finally, the object must be moved to OS/390 to execute the link step. This step is
illustrated in “Translating, Compiling, and Linking under OS/390” on page 63.

Using SQOL and C

As noted in Chapter 8, “Handling Files,” on page 77, the SAS/C Compiler supports
development of C language application programs that contain Structured Query
Language (SQL) statements. Such programs must first be precompiled with an SQL
preprocessor (not provided by SAS Institute) that translates the EXEC SQL statements

Preprocessing, Compiling, and Linking A Using SQL and C

to valid C code. Example Code 5.10 on page 65 provides a sample of JCL for such
applications.

Example Code 5.10 Sample JCL for SQL

//JOB CARD INFO
//JOBLIB DD DISP=SHR,DSN=db2.library.DSNLOAD

//**

//* STEP 1 : PRECOMPILE *
//**
//PC EXEC PGM=DSNHPC,

// PARM='HOST(C),STDSQL(NO), SOURCE, XREF,MARGINS(1,72)"
//DBRMLIB DD DSN=db2.dataset.DBRMLIB.DATA (member),DISP=SHR
//STEPLIB DD DSN=db2.library.DSNEXIT,DISP=SHR

// DD DSN=db2.library.DSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA
// SPACE=(800, (500,500))

//SYSLIB DD DSN=db2.library.SRCLIB.DATA,DISP=SHR
//SYSUT1 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
//SYSUT2 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA

//SYSIN DD DSN=your.sample.program(member) ,DISP=SHR
//***
//* STEP 2 : TRANSLATE, COMPILE AND LINK *

//***

//TCL EXEC LCCCPCL

//CCP.SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//LKED.SYSLIB DD

// DD

// DD

// DD DSN=db2.library.DSNLOAD,DISP=SHR

//LKED.SYSLMOD DD DSN=your.cics.application.loadlib(member),DISP=SHR
//LKED.SYSIN DD *
INCLUDE SYSLIB(DSNCLI)

//***

//* STEP 3 : BIND *
//***
//BIND EXEC PGM=IKJEFTO01l,DYNAMNBR=20,COND=(4,LT)

//DBRMLIB DD DISP=SHR,DSN=db2.dataset.DBRMLIB.DATA
//SYSTSPRT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
/ /CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

//SYSOUT DD SYSOUT=*
/ /REPORT DD SYSOUT=*
//SYSIN DD *

//SYSTSIN DD *

DSN SYSTEM(yoursystem)

BIND PLAN(yourplan) MEMBER (member) ACT(REP) ISOLATION(CS)
END

//

66 Diagnostics A Chapter 5

Diagnostics

The translator produces diagnostic messages with four levels of severity. Diagnostic
messages usually change the return code set by LCCCPO. The levels of severity are
explained here:

Note
provides information about expected behavior. The return code is not changed.

Warning
provides information about conditions that will not prevent translation from
completing successfully. The return code is set to 4.

Error
provides information about conditions that will prevent translation from
continuing. If an error occurs before translation begins (such as a file I/O error),
LCCCP will terminate immediately. If an error occurs after translation has begun,
LCCCP will stop translating but will check all the remaining commands in the
input file for correct syntax. The return code is set to 8.

Severe Error
provides information about conditions that will cause immediate termination. The
return code is set to 12.

A complete listing and explanation of translator diagnostic messages can be found in
SAS/C Software Diagnostic Messages.

67

CHAPTER

Running and Debugging SAS/C
Programs in the CICS
Environment

Introduction 67

Running SAS/C Programs under CICS 67

Using Run-Time Options 68
Specifying Run-Time Options Using External Variables 68
Specifying Run-Time Arguments with $MAINO 69
Environment Variable Support 69

Suggestions for Efficiency 69

Debugging Your SAS/C CICS Application 69

Abend Codes 10

Introduction

This chapter describes what you need to know to run your SAS/C program in the
CICS environment. The SAS/C Library includes the function iscics (), which returns
an indication to the program about whether the program is running in a CICS
environment. Consult the SAS/C Library Reference, Volume 1 for more details.

Running SAS/C Programs under CICS

Before you can run SAS/C applications under CICS, you must perform the following
steps. Step 1 involves the SAS/C Command Language Translator and Compiler; the
remaining steps are required by CICS, regardless of the application language.

1 Before you can run your program under CICS, you must have successfully
translated, compiled, and linked your program using the SAS/C Translator and
Compiler. Chapter 5, “Preprocessing, Compiling, and Linking,” on page 35
explains this process in detail.

2 The load module resulting from Step 1 must be stored in a load library that is
contained in the CICS load module library concatenation (DDname DFHRPL). Ask
your CICS system administrator for information on how to store the load library
at your site.

3 To identify the program to CICS, you must define the program name (load module
name) in the processing program table (PPT). Remember that SAS/C load modules
(programs) should be specified as assembler language programs, not as C
programs. You must also define in the PPT (with the appropriate language
specified) any other programs that will be dynamically loaded by the SAS/C
application program. You must also define any basic mapping support (BMS) maps.

68

Using Run-Time Options A Chapter 6

4 Define the initiating CICS transaction code in the program control table (PCT).
You must specify on the PCT entry the name of the module to be loaded and
executed when the transaction is initiated.

5 If your program reads or writes to any files, you must define those files in the file
control table (FCT).

6 Just as you defined FCT entries in the previous step, you must define any
extrapartition or intrapartition destinations in the destination control table (DCT).

7 You must define the BMS maps (if any) used by your application. For CICS, this
usually involves the following steps:

a Code the maps with macros.
b Assemble the maps to create a physical map.
¢ Create a logical map.

Note: In addition to these steps, for C programs on pre-ESA versions of CICS, you
must process the symbolic assembly output using the DSECT2C utility. Chapter 7,
“Terminal Control and Basic Mapping Support,” on page 71 describes how to use this
utility. A

After you have defined everything, you can initiate the program as you would any
other CICS application. The usual method is to enter the transaction identifier in the
upper left corner of the screen, and then to press ENTER.

Using Run-Time Options

Because CICS applications communicate with the user via full-screen panels or
displays, there is no command line in the CICS environment. This environmental
restriction prohibits the normal specification of run-time library options and
environment variables as well as any application parameters. However, using C, you
can still use run-time options by specifying them using external variables, by using the
$MAINO entry point, or by using environment variables.

Specifying Run-Time Options Using External Variables

You can code run-time options in your source code by using any of the following
external variables:

__options
__negopts
__linkage
__stack
__heap

O 0o oo o

__mneed

Initialize the integer variable _ options to specify general run-time options in your
program. Use the integer variable _ negopts to reset or turn off one or more options.

Use the character variable __linkage to specify linkage options that control which
prolog and epilog code should be executed with your program. Specify initial stack or
heap allocation, or both, by using the options __stack, __heap, and __mneed.

Note: Pre-ESA versions of CICS do not allow an EXEC CICS GETMAIN request for
greater than 65,504 bytes below the 16-megabyte line. In such an environment, for

Running and Debugging SAS/C Programs in the CICS Environment /A Debugging Your SAS/C CICS Application 69

AMODE 24 programs, specifying an initial stack allocation size equal to or greater than
60K using the option __stack will result in a CICS ASCR abend. In other words, you
can have more than 60K of stack allocated, but the initial stack allocation must be
smaller than 60K. A

Besides these external variables, all run-time arguments available with the SAS/C
compiler can be used in your application program under CICS. For more information on
using run-time arguments in your SAS/C programs, see Chapter 8, "Run-Time
Argument Processing" in the SAS/C Compiler and Library User’s Guide.

Specifying Run-Time Arguments with $SMAINO

Run-time arguments can also be passed from a calling program if you use the $MAINO
entry point. The $MAINO entry point processes library run-time options and parameters.
Consult Chapter 11, "Communication with Assembler Programs," in the SAS/C
Compiler and Library User’s Guide for details on how to communicate using $MAINO
and other C entry points.

Environment Variable Support

By using SAS/C, it is possible to specify run-time options under CICS by using
environment variables. Consult Chapter 4, "Environment Variables," and the function
descriptions for getenv and putenv in the SAS/C Library Reference, Volume 1 for
details on this support.

Suggestions for Efficiency

In general, the following guidelines will help your SAS/C program run more
efficiently:

0 Run with the =usage run-time option to help you calculate heap and stack size
allocations during testing.

0 Evaluate selecting faster prologs.

0 Use inlined functions wherever possible.

You may find it helpful to review relevant sections in the SAS/C Compiler and
Library User’s Guide. You may also want to review sections on optimizing your SAS/C
program. For CICS application design considerations, additional information is
available in IBM’s CICS Performance Guide.

Debugging Your SAS/C CICS Application

SAS/C programs fully support the command-level Execution Diagnostic Facility
(EDF). EDF views a SAS/C application program as an assembler language program.
When debugging your application using EDF, you may see the message R13 does not
address DFHEISTG. For SAS/C CICS applications, you can ignore this message.

Note: The run-time library may issue CICS commands on behalf of an application,
but because the library uses the NOEDF option, these commands will never be
displayed. A

70 Abend Codes A Chapter 6

For details on debugging CICS applications, consult the following documents:
0 IBM CICS-Supplied Transactions

IBM Application Programmer’s Reference Manual (Command Level)
SAS/C Debugger User’s Guide and Reference

SAS/C C++ Development System User’s Guide.

O o o

Abend Codes

If your program does not check for exceptional conditions (either via the RESP option
in CICS commands, by establishing HANDLE CONDITION error handlers, or by
synchronous signal handlers), CICS will either attempt to continue execution, or it will
abnormally terminate execution of the program. If the execution is abnormally
terminated, CICS will terminate the task with the abend code associated with the
exceptional condition. However, if SAS/C library handling is in effect, the library will
attempt to issue a diagnostic and a traceback, if appropriate.

SAS/C traceback information is directed to the stderr function. By default, this is
the CICS transient data destination SASE. Output to stderr can be redirected to other
files. See Chapter 8, “Handling Files,” on page 77 for additional information.

The following abend codes are specific to SAS/C processing under CICS:

1229 No storage available for unconditional
GETMAIN request.

1239 Unexpected internal error during abnormal
termination processing.

12xx Unable to locate
TWA (Transaction Work Area) for
lndep-compiled applications.

A complete listing of abend codes can be found in SAS/C Software Diagnostic
Messages.

n

CHAPTER

Terminal Gontrol and Basic
Mapping Support

Introduction 11
Terminal Control 11
Basic Mapping Support 12
Using LANG=C 172
Using DSECT2C 173
DSECT2C-generated Variable and Macro Names 714
Example of Using BMS with C 75
BMS Input/Output Operations 16

Introduction

Input/output operations in the Customer Information Control System (CICS)
environment can be provided in two ways: terminal control, and basic mapping support
(BMS). Terminal control provides commands for unformatted communication. With
BMS, you can define screens and communication with the terminal in a formatted
manner. For more information on terminal control and BMS, consult the IBM
documentation appropriate for your site.

Terminal Gontrol

Your application program communicates with the terminal via the CICS terminal
control program (TCP) using information defined in the terminal control table (TCT).
Terminal control implies use of unformatted screens, as described in Chapter 4,
“Tutorial: Creating a Simple Transaction,” on page 29. The following commands are
commonly used:

o HANDLE AID

o ISSUE COPY

o ISSUE PRINT

o RECEIVE

o SEND

Of these commands, only HANDLE AID has SAS/C product dependencies. HANDLE

AID is implemented by specifying a function name for the error handler, rather than
specifying a label, as in this example:

EXEC CICS HANDLE AID option(function-name) ... ;

See “Handle Condition and Handle AID” on page 24 for more information on this
command.

12

Basic Mapping Support A Chapter 7

Basic Mapping Support

BMS is provided by CICS to help you define and format screens. Using BMS frees
the applications programmer from many lower-level details of screen definition,
particularly details associated with device dependence and I/O operations.

When you define a screen using BMS, the screen is called a map. A collection of
screens is called a mapset. Both physical (used primarily by CICS) and logical or
symbolic maps (used primarily by the application program) must be created.

To create the original map definition, CICS provides assembler-language macros for
use under BMS. For more information about defining maps and using these macros,
consult the IBM CICS Application Programmer’s Reference appropriate for your site.

Commonly used macros include the following:

DFHMDF
defines a field in a map and its characteristics.

DFHMDI
defines a map and its characteristics within a mapset.

DFHMSD
defines a mapset and its characteristics and ends a definition.

After you finish creating a map, the map definition must be assembled and
link-edited. This is done once for the physical map, and once for the symbolic map. The
final destination for the physical map is the CICS load module library; the symbolic
map goes into the header file library. Your site probably provides cataloged procedures
that simplify this process.

You can use either of the following techniques to generate symbolic maps that are
suitable for use in your C application:

o0 You can specify LANG=C in the DFHMSD macro.

O You can specify LANG=ASM and convert the generated DSECT to a C structure
using the DSECT2C utility. For systems prior to CICS/ESA, this technique is the
only one available.

Using LANG=C

If you use symbolic maps generated by specifying LANG=C in the DFHMSD macro,
you must either specify the CBMSMAPS option to the CICS translator, or you must use
the FROM option of the SEND MAP command and the INTO option of the RECEIVE
MAP command. This example of code for BMS macros illustrates the use of the
LANG=C option:

MO DFHMSD TYPE=MAP,
LANG=C,
MAPATTS=(COLOR, HILIGHT),
EXTATT=YES,
MODE=INOUT,
CTRL=FREEKB,
STORAGE=AUTO,
TIOAPFX=YES

MO1 DFHMDI SIZE=(3,80),LINE=1

DFHMDF ...

M02 DFHMDI SIZE=(3,80),LINE=4

Terminal Control and Basic Mapping Support /A Using DSECT2C 73

DFHMDF ...

DFHMSD TYPE=FINAL
END

Here’s an example of C code that uses the CBMSMAPS option and a symbolic map
named "mapmm0":

#pragma options xopts(cbmsmaps)
#include "mapmO.h"

void main()
{
EXEC CICS SEND MAP("mO1")
MAPSET("m0")
ERASE
}

Here’s what the equivalent command would look like if you did not specify the
CBMSMAPS option:

#pragma options xopts(cbmsmaps)
#include "mapmO.h"

void main()
{
EXEC CICS SEND MAP("mO1")
MAPSET("m0")
ERASE
FROM (M01.MMOlo)

r

Using DSECT2C

When using C as the application programming language, create physical and logical
maps for your mapset as described earlier. However, in addition to these steps, you
must also process the assembler-language output listing for the symbolic assembly
through the SAS/C utility, DSECT2C. This utility creates a C structure that must be
included into the SAS/C application program source. It is recommended that you use
#include, but you may also in-line the C structure into the source.

The DSECT2C utility, provided as part of the SAS/C product, converts
assembler-language dummy sections, known as DSECTs, to equivalent C structure
definitions. (For details on using this utility, refer to the SAS/C Compiler and Library
User’s Guide.) The SAS/C translator expects DSECT2C to generate the structure used
to represent a map.

The -4 option for the DSECT2C utility facilitates BMS map generation. By default,
DSECT2C generates a structure definition only, as shown in the following example:

struct XYZ {

74

Using DSECT2C A Chapter 7

}i
When you specify the -d option, DSECT2C adds an identifier to the definition,

thereby declaring a variable of the structure type. The identifier name is the structure
tag in lowercase, as shown here:

struct XYZ {

} xyz;

When you use the SEND MAP or RECEIVE MAP commands with string literal map
names, the FROM/INTO options for these commands are optional. The translator will
generate a default FROM/INTO argument that is the map name in lowercase. For
example, the following commands are equivalent:

SEND MAP("MAP1");

SEND MAP("MAP1") FROM(mapl)...;

Therefore, a simple way to use BMS maps is to use -d with DSECT2C to generate
the structure declaration in a header file. When you include the header file (outside of
any function), you are, in effect, declaring an extern variable of the structure type.
When you use SEND MAP or RECEIVE MAP and allow the FROM/INTO options to
default, the map will be sent from, or received into, the external structure.

The translator also generates a default length for the SEND command. BMS map
generation always assigns the map length to a symbol whose name is the map name (in
uppercase) followed by an E. In C, this symbol is a macro name. For example, if the
length of MAP1 is 28, then the DSECT2C-created structure will include the following
statement:

#define MAP1E 28

The translator uses this symbol as the default LENGTH value. Therefore, the
following commands are equivalent:

SEND MAP("MAP1");

SEND MAP("MAP1") FROM(mapl) LENGTH(MAPIE);

DSECT2C-generated Variable and Macro Names

The following characters, when used as the first character, are legal in a map name
but not in a C variable name or a macro name: @, #, and $. For example, #MAP1 is a
legal BMS map name, but #map1 is not valid as a C variable name. DSECT2C replaces
these unacceptable characters with a digraph when it generates a variable name or a
macro name. The character @ is replaced by A_, # with P_, and $ with D_. For
example, the length of "MAP#1" will be defined via a macro named MAPP_1E, and the
length of "$MAP1" will be defined via D_MAP1E.

Because the translator is aware of these changes, the correct defaults are generated.
For example, the command SEND MAP("MAP#1"); causes the translator to emit default
values equivalent to the following:

SEND MAP("MAP#1") FROM(mapp_ 1) LENGTH(MAPP_lE);

Terminal Control and Basic Mapping Support A Example of Using BMS with C 75

Example of Using BMS with C

Example Code 7.1 on page 75 uses one of the maps specified for the sample
application found in Appendix 1, “Examples,” on page 99. Map SASCAGA is created in
mapset MAPSETA. The BMS definition for the map follows the display.

Example Code 7.1 Sample Map

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER SMNU

+FILE INQUIRY - ENTER SINQ AND NUMBER
+FILE BROWSE - ENTER SBRW AND NUMBER
+FILE ADD - ENTER SADD AND NUMBER
+FILE UPDATE - ENTER SUPD AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+ +NUMBER+ +

The BMS map definition for this map is shown here:

TITLE 'FILEA - MAP FOR OPERATOR INSTRUCTIONS - SAS/C’
MAPSETA DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), *
LANG=ASM, TIOAPFX=YES , EXTATT=MAPONLY , COLOR=BLUE
SASCAGA DFHMDI SIZE=(12,40)
DFHMDF POS=(1,10),LENGTH=21, INITIAL='OPERATOR INSTRUCTIONS’, *
HILIGHT=UNDERLINE
DFHMDF POS=(3,1),LENGTH=29,INITIAL='OPERATOR INSTR - ENTER*

SMNU

DFHMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY - ENTER*
SINQ AND NUMBER'’

DFHMDF POS=(5,1),LENGTH=38, INITIAL='FILE BROWSE - ENTER*
SBRW AND NUMBER'’

DFHMDF POS=(6,1),LENGTH=38, INITIAL='FILE ADD - ENTER*
SADD AND NUMBER'’

DFHMDF POS=(7,1),LENGTH=38, INITIAL='FILE UPDATE - ENTER*
SUPD AND NUMBER'’

MSG DFHMDF POS=(11,1),LENGTH=39,INITIAL='PRESS CLEAR TO EXIT'
DFHMDF POS=(12,1),LENGTH=18,INITIAL='ENTER TRANSACTION: '
DFHMDF POS=(12,20),LENGTH=4,ATTRB=IC,COLOR=GREEN, *

HILIGHT=REVERSE
DFHMDF POS=(12,25),LENGTH=6, INITIAL='NUMBER’
KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM, COLOR=GREEN, *
HILIGHT=REVERSE
DFHMDF POS=(12,39),LENGTH=1
DFHMSD TYPE=FINAL
END

After the map has been defined by using assembler-language macros, the map is
assembled, and the DSECT2C utility is invoked to create the C header defining the map.

Under 0S/390, the following JCL illustrates how a BMS map definition can be
converted to a C structure:

//SASCAMA JOB ...(your job accounting info)...
/1/*

76

BMS Input/Output Operations A Chapter 7

//* EXECUTE THE IBM-SUPPLIED BMS CATALOGED PROCEDURE
//* TO CREATE A LOGICAL MAP FOR USE BY CICS AND A
//* SYMBOLIC MAP TO BE USED DURING DSECT2C PROCESSING

//* // EXEC DFHMAPS,
// DSCTLIB='your.symbolic.map.library ',
// MAPNAME=SASCAGA

//SYSUT1 DD DISP=SHR,DSNAME=SASC.SAMPLE (SASCAMA) INPUT MAP SOURCE //*
//* EXECUTE THE SAS/C DSECT2C CATALOGED PROCEDURE

//* USING THE PREVIOUSLY CREATED SYMBOLIC MAP TO CREATE

//* A C STRUCTURE

//*

// EXEC DSECT2C,PARM.D2C='SASCAGA -D'’
//SYSLIB DD DISP=SHR,DSN=your.symbolic.map.library
//SYSIN DD *
SASCAGA DSECT
COPY SASCAGA
END
//D2C.D2COUT DD DISP=SHR,DSN=your.c.header.library(SASCAGA)

To use this map, the program would specify the following:

#include <sascaga.h>

main()

{
EXEC CICS SEND MAP("SASCAGA") MAPONLY ERASE;
EXEC CICS RETURN;

}

For additional information on this application, see the example in Appendix 1,
“Examples,” on page 99.

BMS Input/Output Operations

Use I/0O commands (such as SEND MAP, RECEIVE MAP, SEND CONTROL, SEND
TEXT, and SEND PAGE) to send the map, receive the map, handle text, and so on.
These commands have no special SAS/C considerations. For details on using these
commands in your program, see the IBM CICS Application Programmer’s Reference
appropriate for your site.

7

CHAPTER

Handling Files

Introduction 17
Specifying Filenames and Access Methods 18
General Filename Specification 18
Access Method Parameters 18
File Characteristics Amparms 18
File Usage Amparms 19
Working with Transient Data 80
Positioning Transient Data Queues 80
Specifying Transient Data Filenames 80
Amparms for Transient Data 81

recfm 81
reclen 81
blksize 82

Default Values 82
JES Spool File I/O 82
JES Spool Filename Specification 83
Specifying Amparms for JES Spool Files 83

recfm 83
reclen 83
blksize 84

Default Values 84
Support for CICS File Control 84
RID Field in ISSUE Commands 84
DL/I Database Support 85
SQL Database Support 89

Introduction

This chapter provides more details on input/output operations and file handling for
SAS/C CICS application programs. Topics covered include transient data control, JES
(Job Entry Subsystem for OS/390) spool file support, and database support.

These items are of primary importance to the SAS/C programmer who is already
familiar with CICS file-handling conventions. If you are not familiar with these
conventions, refer to the relevant IBM documentation noted in the inside back cover of
this book. It may also be useful to review Chapter 3, "I/O Functions," in the SAS/C
Library Reference, Volume 1.

78

Specifying Filenames and Access Methods A Chapter 8

Specifying Filenames and Access Methods

SAS/C library I/O functions for sequential I/O are supported for CICS, except for
UNIX style I/O functions. This set of SAS/C I/O functions is supported for transient
data queues (both intrapartition and extrapartition) and JES spool files. Certain
conventions must be observed for filenames and access methods when using transient
data queues and JES spool files for SAS/C CICS applications.

General Filename Specification

The general form of a SAS/C filename is style:name, where the portion of the name
before the colon defines the filename style, and the portion after the colon is the name
of the file. For example, a style of td indicates the filename is a transient data queue
name; the style spl indicates the filename is a JES spool file.

The style: part of the filename is optional. If no style is specified, the style is chosen
by the compiler as follows:

o If you define the external variable __style with an initial value, then that value
is used as the style. For example, if the initial value of __style is td, then the
filename logf is interpreted as td:logf.

0 If no initial value for __style is defined, the default is td.

For more information on the __style external variable, see Chapter 9, "Run-Time
Argument Processing," in the SAS/C Compiler and Library User’s Guide.

Access Method Parameters

When you open a file with afopen, afreopen, or aopen, you can optionally specify
one or more access method parameters (amparms). These system-dependent options
supply information about how the file will be processed or allocated. Amparms are
character strings containing one or more specifications of the form amparm=value,
separated by commas (for example, "recfm=v,reclen=100"). Amparms can be
specified in any order and in uppercase or lowercase letters.

Amparms relevant to CICS describe file processing. This is a subset of the amparms
supported by the library in other environments. Whenever reasonable, inapplicable
amparms are ignored rather than rejected. The function descriptions for afopen,
afreopen, and aopen in the SAS/C Library Reference, Volume 1 provide examples of
typical usage.

File Characteristics Amparms

The file-processing amparms for CICS may be classified into two categories: file
characteristics amparms and file usage amparms. The following amparms define file
characteristics:

recfm=£f|v]|u
operating system record format

reclen=nnn|x
operating system record length

blksize=nnn
operating system block size

Handling Files A Access Method Parameters 79

These amparms are used to specify a program’s expectations for record format,
maximum record length, and block size. If the file is not compatible with the program’s
specifications, the file is still opened, but a warning message is directed to the standard
error file. recfm defines the file’s expected record format.

0 recfm=f indicates fixed-length records.

0 recfm=v and recfm=u indicate varying-length records.

Note: The values of recfm must be specified exactly as shown (£, v, or u). No other
characteristics are valid. A

reclen defines the maximum record length the program expects to read or write.
The specification reclen=x (which is not permitted with recfm specifications other
than v) indicates that there is no maximum record length. blksize specifies the
maximum block size for the file, as defined by the operating system.

File Usage Amparms
The following amparms define file usage:

print=yes|no

file destined to be printed

page=nnn
maximum lines per page (with print=yes)

pad=no|null|blank
file padding permitted

These amparms allow a program to specify how a file will be used. A specification
that cannot be honored may cause the open to fail, generate a warning message, or
cause a failure later in execution, depending on the circumstances. print=yes or
print=no is used to indicate whether the file is destined to be printed. If print=yes is
specified, ANSI carriage-control characters are written to the first column of each
record of the file to produce page formatting, if the file format permits this. In your C
program, you can write the ' \f’ character to go to a new page and the "\r’ character
to perform overprinting. print=yes is allowed only for files accessed as text streams
and whose open mode is "w"or "a". If these conditions are satisfied, but the file
characteristics do not support page formatting, a warning message is generated, and no
page formatting occurs.

If print=no is specified, then the '\f’ and ’\r’ characters in output data are
treated as normal characters, even if the file characteristics will permit page formatting
to take place.

page=nnn specifies the maximum number of lines that will be printed on a page. It is
meaningful only for those files opened with print=yes, or for those for which
print=yes is the default. It is ignored if it is specified for any other file. pad specifies
how file padding is to be performed. pad=blank requests padding with blanks,
pad=null requests padding with null characters, and pad=no requests no padding. If
pad=no is specified, a record that requires padding is not written, and a diagnostic
message is generated. pad is meaningful only for files with fixed-length records. For
files accessed as text, pad characters are added as necessary to each output record, and
removed from the end of each input record. For output files accessed as binary, padding
only applies to the last record. For input files accessed as binary, padding is never
performed.

80

Working with Transient Data A Chapter 8

Working with Transient Data

Transient data files can be either intrapartition or extrapartition data queues.
Intrapartition queues are maintained by CICS in a VSAM data set and consist of
varying-length records; output to intrapartition queues can also be used to
automatically initiate transactions. The default record length for CICS intrapartition
transient data queues is 480 bytes (the minimum possible VSAM control interval size of
512, minus 32 bytes of CICS control information).

Extrapartition queues are sequential data sets. They may have fixed- or
varying-length records, and they may be blocked and contain ASA control characters.
The format of output to extrapartition queues is the following:

CC terminal ID transaction_ID data . ..

CC is any ASA carriage control (if the file is defined as recfm=a).

For high-level programming languages running on CICS, the standard files (stderr
and stdout) are usually directed to extrapartition transient data queues. Attempts to
read from stdin will fail unless the default name is redirected.

Positioning Transient Data Queues

Although transient data queues cannot be positioned, certain input and output
operations are still possible for both extrapartition and intrapartition queues.
Extrapartition queues used for output can be positioned to EOF (end of file) because
output to such files always adds new records to the end of the data set. Thus, these files
are always positioned at EOF, which is the only valid position for extrapartition queues.
Similarly, input extrapartition queues can be rewound, but only because they are
always positioned at the start of the file.

Intrapartition queues can be used for both read and write operations. Records are
logically read in the sequence they were written, and output always adds records to the
end of the queue. This means that, in effect, intrapartition queues can be rewound
because they are always positioned at the start of the file for input, and they can also
be positioned to EOF because output always adds new records to the end of the file.

Note: Transient data reads are always destructive; that is, after a record has been
read, it cannot be read again. A

Specifying Transient Data Filenames

A transient data filename is a four-character symbolic name associated with a
specific destination, as defined in the CICS destination control table (DCT). The name
can be in uppercase or lowercase, but it is translated to uppercase during processing.
The name may refer to an indirect data destination but not to a remote destination.
The default destinations associated with the standard files are

Handling Files /A Amparms for Transient Data 81

File Destination
stdout td:saso
stderr td:sase
stgrpt td:sasr

stgrpt is used for run-time storage analysis and usage reports when the =storage
run-time argument is specified. Some examples of specifying transient data filenames
follow:

o Print "hello world" on stdout:
printf("hello world");
o Open TD queue "logf":
f ptr = fopen("td:logf", "a+");
0 Open and read from TD queue "logf":

f ptr = fopen("logf", "a+");
fread(string, 1, count, f ptr);

0 Redirect stdout to the TD queue "cssl":

char *_stdonm = "td:cssl";

Amparms for Transient Data

Extrapartition transient data files always exist with predefined file characteristics as
they are preallocated and defined to CICS in the DCT. Specifying an amparm will not
change the characteristics of an external file; rather, amparms are used to state a
program’s expectation of the file.

recfm

When using this amparm, consider these points:

O An open operation will fail if recfm=f is specified, but the file does not have
fixed-length records.

O An open operation will fail if recfm=v or recfm=u is specified for an
extrapartition file that is opened for output but is actually an F-format file.

o0 No diagnostic is generated if recfm=v or recfm=u is specified for a read-only file.

O recfm=u is ignored for intrapartition queues and is treated as recfm=v for
extrapartition queues.

0 Intrapartition queues are always treated as RECFM V files.

reclen

When using this amparm, consider these points:

O An open operation will fail for RECFM F files and for RECFM V output files if, for
extrapartition queues, reclen=nnn is specified but the actual file’s LRECL does
not match this specification.

O An open operation will fail for RECFM V input files if the specified record length
is greater than the actual LRECL of the file.

82

JES Spool File 1/0 A Chapter 8

O reclen=x is not supported for transient data queues.

O A program’s reclen specification is compared to the value of LRECL—4 for a
V-format file, not to the LRECL itself. For a file with carriage-control characters,
the reclen specification is compared to LRECL-1. Furthermore, extrapartition
queues (which are prefixed with four-character terminal and transaction
identifiers) are compared to LRECL-8. For example, an extrapartition VBA file
with an LRECL of 133 can have at most a reclen specification of 120 (120 from
the application + 8 for termid/tranid + 4 for V-format control information + 1 for
carriage control).

blksize

When using this amparm, remember that if the actual block size of an extrapartition
queue is greater than the size specified by blksize=nnn, a warning will be generated;
otherwise, this specification will be ignored.

Default Values

For extrapartition queues, default values for file characteristics amparms (recfm,
reclen, and blksize) are derived from the values defined in the CICS DCT. For
intrapartition queues, the following default values are assigned to the file
characteristics amparms:

recfm A%
reclen 480
blksize 480

JES Spool File 1/0

A SAS/C program can retrieve files from the JES spool, write a file directly to the
JES spool, and send a file to a remote destination via systems connected to a JES/RSCS
network. This feature makes it easy for you to generate and review output because you
don’t have to locate and then browse the sequential data set where extrapartition
transient data output is usually sent.

Spool files consist of variable-length records up to 32K-8 bytes long. They do not
have record format, record length, and block size characteristics. Spool files may have a
JES class designation, and they may contain carriage-control characters. Spool file I/O
is strictly sequential access. Like transient data files, essentially no positioning is
available (output files are always positioned to EOF; input files are always positioned to
the start of the file).

Input from JES is single-threaded; that is, only one transaction at a time in a CICS
region may use the CICS input interface. However, many transactions can concurrently
create output spool files. Input spool files are closed with a disposition of DELETE,
unless an error occurs during processing, in which case the file is closed with a
disposition of KEEP. If an input file is closed with the disposition of KEEP, the file
remains on the spool and can be retrieved on a subsequent input operation.

Any open spool files are automatically closed by the EXEC CICS SYNCPOINT
command. To avoid problems, issue the fclose function for any open spool file before
issuing this command. Consult the IBM documentation on the CICS interface to JES
for more details.

Handling Files A Specifying Amparms for JES Spool Files 83

JES Spool Filename Specification

A spool filename is of the form userid.node<.class>, where userid and node are one to
eight alphanumeric or national ($, #, or @) characters. An asterisk (*) may be specified
for userid and node to direct an output file to the local spool. class is an optional
alphanumeric character; the default is class A. For input spool files, userid is an
external writer name that must begin with the same first four characters as the VTAM
APPLID of the CICS system. See the IBM JCL reference manual for more information
about specifying external writer names, userids, and node names. The following are
examples of how to specify spool filenames:

O Redirect stdout to a userid at another node:

char *_stdonm = "spl:sascuser.vm";
printf("hello from CICS");

0 Read a record from a spool file:

FILE *fptr;
fptr = fopen("spl:cicstest.*", "rb");
len = afread(record, 1, 255, fptr);

0 Submit a job for execution at the node named 0s/390:

fptr = afopen("spl:intrdr.0S/390.a", "w",

"seq", "recfm=f,reclen=80");
fprintf
(fptr, "%s\n", "//BR14 JOB (acct),pgmr_name");
fprintf
(fptr, "%s\n", "// EXEC PGM=IEFBR14");
fprintf (fptr, "%s\n", "/*EOF");

Specifying Amparms for JES Spool Files

The file characteristics amparms provide advice to the library about what file
characteristics to expect. JES spool files may have either fixed- or varying-length
records; however, files on the spool are actually formatted as variable-length records.
The library will process a spool file according to the specifications of the file
characteristics amparms.

Note: The defaults of recfm=v/reclen=255 allow a program to read and write
equal-length records just as easily as variable-length records. A

recfm

Consider the following points when using this amparm:
0 If recfm=f is specified, the program expects records of equal length.
0 If recfm=v is specified, the program expects records of variable length.

O recfm=u is treated as recfm=v.

reclen

Consider the following points when using this amparm:

84

Support for CICS File Control A Chapter 8

0 The value of this amparm tells the library the maximum input or output record
length to expect; this value is used internally by the library as a buffer size.
Record length cannot exceed the CICS maximum of 32,760.

0 For ESA versions of CICS, reclen=x is supported, which means that records can
be of any length up to the CICS maximum.

0 You cannot specify both reclen=x and recfm=£.

hiksize
Block size can be specified, but it is ignored for JES spool files.

Default Values

Default values for JES spool file characteristics amparms are

recfm v
reclen 255
blksize not applicable

Support for CICS File Control

Traditional CICS commands for random access (such as READ, WRITE, and
DELETE) and commands for sequential access (such as STARTBR and READNEXT)
are supported. The only area for special consideration is the record identification (RID)
field for certain commands.

RID Field in ISSUE Commands

In the ISSUE REPLACE, ISSUE ADD, ISSUE ERASE, and ISSUE NOTE
commands, if the record identification field is a relative record number, the RIDFLD
option is expected to be an unsigned int type. Otherwise, the option is expected to be
a pointer type (presumably a pointer to a key).

For the READ, WRITE, DELETE, STARTBR, READNEXT, READPREYV, and
RESETBR commands, the RIDFLD option is generally expected to be a pointer type,
that is, a pointer to a key.

Each command has a set of options that, if used, specifies whether the argument will
be either a relative byte address or a relative record number and, therefore, will be an
unsigned int type. Here’s the list of options for each command:

Command Options

READ RBA, RRN, GENERIC, GTEQ
READNEXT RBA, RRN

READPREV RBA, RRN

RESETBR RBA, RRN

STARTBR RBA, RRN

WRITE RBA, RRN, MASSINSERT

Handling Files A DL/l Database Support 85

Note: When the MASSINSERT option of the WRITE command is used, the RIDFLD
option is expected to be of type void *, rather than of the unsigned int type. A

DL/I Database Sup

port

SAS/C programs can use the DL/I call-level interface to process IMS/VS databases.
No special interfaces are required, and DL/I applications written using SAS/C code are
not restricted from using any C language features or library functions. The DL/I user

interface bl

struct D
void
struc

ch
ch
} uib
unsig

}i

ock (UIB) is defined in the dliuib.h header file, which looks like this:

LIUIB { /* user interface block */
uibpcbal; / PCB address list */
t{ /* */
ar uibfctr; /* return codes */
ar uibdltr; /* additional information */
rcode; /* DL/I return codes */
ned short _; /* (reserved) */

The EXEC DLI command-level interface to DL/I databases is also fully supported on
CICS. EXEC DLI commands can be freely interspersed in your C program. The
run-time library automatically performs a DL/I initialization call on your program’s
behalf the first time an EXEC DLI command is executed. This permits DL/I calls to
occur in dynamically loaded C routines. A DL/I interface block (DIB) is also
automatically allocated by the library, and can be addressed via the global external

variable

dibptr. The header file containing the DIB definition is included in your

program by the SAS/C command translator. The DIB is defined as follows:

struct D
char
char
char
char
char
char
short
char

} *__dib

IB {
DIBVER[2];
DIBSTAT[2];
DIBSEGM[8];
DIBFILOL;
DIBFILO02;
DIBSEGLV[2];
DIBKFBL;
DIBFILO3[6];
ptr;

For special considerations on using the DI/I command-level interface in CICS, see
the IBM CICS Programmer’s Reference Manual. For additional information on using C
with DL/I and the call-level interface, see the SAS/C Programmer’s Report Developing
IMS-DL/I Applications in C with the SAS/C Compiler. A complete example follows:

#include
#include
#include
#include
#include

typedef
char
char
char
char

<stdio.h>
<ctype.h>
<packed.h>
<signal.h>
<options.h>

struct {
ssn[1ll];
name[40];
address1[30];
address2[30];

86

DL/I Database Support A Chapter 8

char city[28];
char state[2];
char country[20];
char zipcode[10];
char home_phone[12];
char work_phone[12];
char _1[30];

} Customer_ Segment;

typedef struct {
char number[12];
char balance[5];
char date[8];
char stmt_bal[5];
char _3[8];

} Account_Segment;

typedef struct {

int amount;

char _1[2];

char date[4];

char time[4];

char description[66];
} Debit_Segment;

typedef struct {

int amount;

char _1[2];

char date[4];

char time[4];

char description[66];
} Credit_Segment;

static void print DIB();

static void dump(char *, int);

static void print_customer(const Customer_Segment *);
static void print_account(const Account_Segment *);

static char ioarea[sizeof(Customer_Segment)];

#define STATUS(code)
(memcmp (_dibptr->DIBSTAT, code, 2) == 0)

main()

{

/* Schedule a PSB with the name: ACCTRCOB. */
EXEC DLI SCHEDULE PSB(ACCTRCOB) ;

/* unqualified SSA... */
printf("\n\n -Get All Customer Segments-\n");

EXEC DLI GET UNIQUE USING PCB(1)
SEGMENT ("CUSTOMER ") INTO(ioarea);

Handling Files A DL/l Database Support

#if defined(DUMPS)
print_DIB();

#endif
while (STATUS(" "))
{
print_customer((Customer_Segment *)ioarea);
EXEC DLI GET NEXT USING PCB(1)
SEGMENT ("CUSTOMER ") INTO(ioarea);
#if defined(DUMPS)
print_DIB();
#endif }
/* qualified SSA... */
printf("\n\n -Get Specific Customer Segment-\n");
EXEC DLI GET UNIQUE USING PCB(1)
SEGMENT ("CUSTOMER ") WHERE (CUSTZIP="26001-0000")
SEGMENT ("CHCKACCT ") INTO(ioarea);
#if defined(DUMPS)
print_DIB();
dump (ioarea, sizeof(Account_Segment));
#endif
print_account((Account_Segment *) ioarea);
exit(0);
}

static void print_customer(const Customer Segment *ioarea)

{

puts("Customer Segment Dump:\n");

printf (" SSN: %.11s\n", ioarea->ssn);

printf (" Name: %.40s\n", ioarea->name);

printf (" Address 1: %.30s\n", ioarea->addressl);
printf (" Address 2: %.30s\n", ioarea->address2);
printf (" City: %.28s\n", ioarea->city);

printf (" State: %.2s\n", ioarea->state);

printf (" Country: %.20s\n", ioarea->country);
printf (" Zip code: %.10s\n", ioarea->zipcode);
printf (" Home phone: %.12s\n", ioarea->home_phone);
printf (" Work phone: %.12s\n", ioarea->work_phone);
printf (" Filler: %.30s\n\n", ioarea-> 1);

static void print_account(const Account_ Segment *ioarea)

{
double d;

puts("Account Segment Dump:\n");

87

88

DL/I Database Support A Chapter 8

printf (" Number: ’%.12s’\n", ioarea->number);
d = _pdval((char (*)[])ioarea->balance, 5, 2);
printf (" Balance: %g\n", d);

printf (" Date: ’%.8s’\n", ioarea->date);

d = pdval((char (*)[])ioarea->stmt_bal, 5, 2);

printf ("

Statement Balance: %g\n\n", d);

static void print_ DIB()

{

puts("DIB Dump:\n");

printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("
printf ("

Version :
Status
Statusl :
Status2 :
Seg name:
Fil #1 :
Fil #2 :
Seg ver :
Key leng:
Fil #3 :

"%,

'Y

"%,
"%,

"%
'Y
'Y

"%,

"%
"%

2s'\n", _dibptr->DIBVER);

.2s’\n", _dibptr->DIBSTAT);

2x’'\n", _dibptr->DIBSTAT[0]);
2x’'\n", _dibptr->DIBSTAT[1]);

.8s’\n", _dibptr->DIBSEGM);
.c’\n", _dibptr->DIBFIL01);
.c’\n", _dibptr->DIBFIL02);

2s’'\n", _dibptr->DIBSEGLV);

.d’\n", _dibptr->DIBKFBL);
.c’\n", _dibptr->DIBFIL03);

static void dump(char *area,

{

}

int c, 1;
#define BYTES_PER LINE 16

printf("Data Dump - Length

length

int length)

= %d\n\n", length);
if (length % BYTES_PER LINE)
((length + BYTES PER LINE-1) / BYTES_PER LINE)

for (1 = 0; 1 < length; 1 += BYTES_PER LINE)O

printf ("

+%0.4X

%0

’

1);

for (¢ = 0; ¢ < BYTES_PER LINE;
printf("%0.2X", area<l+c>);
fputs("* *", stdout);
for (¢ = 0; ¢ < BYTES_PER _LINE;
putchar (isprint(area[l+c]) ?

puts("*");

} putchar(’\n’);

Here is the JCL for this example:

//CICS

//
//
/7

EXEC LCCCPCL,

PARM.CCP='DLI ',
PARM.C='NOEXC SNAME (DLISAMP) RENT '
PARM.LKED='LIST MAP RENT REUS XREF

//CCP.SYSIN

/1%

’

ct++)

ct++)

area[l+c]

* BYTES_PER_LINE

DD DSN=userid.SASC.CCP(DLI$SAMP),DISP=SHR
//LKED.SYSLMOD DD DSN=system.CICSAPPL.LOADLIB,DISP=SHR

’

Handling Files A $SQL Database Support 89

SQL Database Support

The SAS/C CICS translator supports development of C language application
programs containing embedded Structured Query Language (SQL) statements. For
information describing linkage conventions used by SQL functions, useful C macros
that should be used in SQL programs, and detailed instructions on running a sample
SAS/C program, see the Programmer’s Report Developing SQL Applications in C with
the SAS/C Compiler.

91

CHAPTER

TCP/IP Socket Library Support
for the CICS and Environment

Overview of TCP/IP 9N

Overview of the BSD UNIX Socket Library 91

SAS/C Socket Library for TCP/IP 92

TCP/IP Socket Library Support for CICS 92
Resident Functions Supported under CICS 92
Communications Functions 93
takesocket Function 94
takesocket Example 94

1/0 Functions 96

Unsupported Configuration Information Functions 96

Overview of TCP/IP

The Transmission Control Protocol/Internet Protocol (TCP/IP) provides a means of
connecting existing computer networks of computers that run different operating
systems and that are manufactured by different vendors. TCP/IP is designed to
accommodate a large number of host computers and local networks.

The open, nonproprietary nature of TCP/IP and its global scope have made it popular
among users of the UNIX environment. Standards for writing communications
programs in C have also become widespread. The two most common standards are the
BSD UNIX socket library interface and the UNIX System V Transport Layer Interface
(TLI). The SAS/C Library currently implements the BSD UNIX socket library interface
because it is somewhat more common than TLI and it has better support from the
underlying communications software on OS/390 and CMS systems.

Overview of the BSD UNIX Socket Library

BSD UNIX communications programming is based on the original UNIX framework,
with some additions and elaborations to account for the greater complexity of
interprocess communications. In traditional UNIX file I/O, an application issues an
open call, which returns a file descriptor (a small integer) bound to a particular file or
device. The application then issues a read or write call that causes the transfer of
stream data. At the end of communications, the application issues a close call to
terminate the interaction. Because interprocess communication often occurs over a
network, the BSD UNIX socket library accounts for the numerous variables of network
I/0, such as network protocols, and for the semantics of the UNIX file system.

A socket is an end point for interprocess communication, in this case, over a network
running TCP/IP. Using semantics that depend on the type of socket, sockets can

92

SAS/C Socket Library for TCP/IP A Chapter 9

simultaneously transmit and receive data from another process. The socket interface
can support a number of underlying transport mechanisms. Ideally, a program written
with socket calls can be used with different network architectures and different local
interprocess communication facilities with few or no changes. The SAS/C Compiler
supports TCP/IP and the AF_INET Internet addressing family.

SAS/C Socket Library for TCP/IP

The SAS/C Socket Library is integrated with SAS/C support for UNIX file I/O to
provide the same type of integration between file and network I/O that is available on
BSD UNIX systems.

The SAS/C Socket Library for TCP/IP supports socket function calls for the CICS
environment except for:

0 socket functions used to access network configuration files, such as the
/etc/hosts or /etc/service format files

O socket functions that use the resolver.

Socket function calls do not require any special link-editing considerations.

The SAS/C Socket Library relies on an underlying layer of TCP/IP communications
software, such as IBM TCP/IP Version 2 for VM and 0S/390. TCP/IP communications
software handles the actual communications. The SAS/C Library adds a higher level of
UNIX compatibility and provides integration with the SAS/C run-time environment.

The open architecture of the SAS/C Socket Library permits the use of TCP/IP
products from different vendors. If a vendor provides the appropriate SAS/C transient
library module, existing socket programs can communicate using the TCP/IP
implementation specified during configuration of the system. A program compiled and
linked with the SAS/C Socket Library at one site can be distributed to sites running
different TCP/IP implementations. Also, any site can change TCP/IP vendors without
recompiling or relinking its SAS/C applications. Refer to SAS/C Compiler and Library
User’s Guide for details on the SAS/C Socket Library.

TCP/IP Socket Library Support for CICS

The SAS/C Socket Library for TCP/IP supports all socket function calls for CICS.
Socket function calls do not require any special link-editing considerations. Refer to the
SAS/C Compiler and Library User’s Guide for detailed information on compiling and
linking CICS applications.

To use these socket function calls, you must have the CICS to TCP/IP Socket
Interface feature available with TCP/IP Version 2, Release 2 for OS/390 from
International Business Machines Corporation.

Resident Functions Supported under CICS

The following TCP/IP resident functions are supported under CICS without
restrictions:

_getlong
_getshort

htoncs

TCP/IP Socket Library Support for the CICS and Environment /A Communications Functions 93

htonl

htons
inet_addr
inet_lnaof
inet_makeaddr
inet_network
inet_netof
inet_ntoa
ntohcs

ntohl

ntohs
putlong
putshort

setsockimp

Communications Functions
The following TCP/IP communications functions are supported under CICS:
accept
bind
close
connect
fentl
getclientid
gethostbyaddr
gethostbyname
gethostid
gethostname
getpeername
getsockname
getsockopt
givesocket
ioctl
listen
select
setsockopt
shutdown

socket

94

takesocket Function A Chapter 9

takesocket

takesocket Function

The takesocket function takes a socket descriptor from a donor process. The socket
descriptor must be a SAS/C socket descriptor. If the descriptor is obtained directly from
a donor process that is not part of the SAS/C socket library, the function may require
TCP/IP vendor-dependent transformation.

Specifically for CICS, when the CICS TCP/IP listener task (CSKL) passes a socket
descriptor as member give_take_socket of the TCPSOCKET_PARM data, use a
#define statement to define the symbol __1BM_TCPIP within the program or in the
compilation parameters. This definition makes available the macro
FD_FROM_IBM_TCPIP(s) to convert an IBM socket descriptor to the equivalent SAS/C
descriptor for takesocket to use. The inverse macro FD_TO_IBM_TCPIP(s) is also
available.

The following structure maps out the TCPSOCKET_PARM that the CICS listener
(supplied by IBM) passes as FROM data in the EXEC CICS START command when it
initiates a SAS/C TCP/IP CICS transaction application program. These data may be
obtained by coding an EXEC CICS RETRIEVE command in the program.

struct TCPSOCKET_PARM{

int give take_socket; /* socket number given by listener */
char lstn_name[8]; /* listener name */
char lstn_subname[8]; /* listener subname */
char client_in data[36]; /* client passed data */

struct sockaddr_in
sockaddr_in parm; /* Internet socket address */

}i

If takesocket succeeds, it returns a nonnegative SAS/C socket descriptor. If it fails,
it returns a —1 and sets errno to indicate the type of error. For more information, see
SAS/C Library Reference, Volume 2 and the IBM publication TCP/IP Sockets Interface
for CICS.

takesocket Example

This program acts as a Server to take a socket from the CICS listener transaction
that is supplied by IBM; then it writes date/time information to the socket. The SAS/C
CICS translator is required to translate this source before compilation.

#define __ IBM TCPIP 1

#include <cics.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <string.h>
#include <time.h>

main()

{
int cs; /* client socket returned by takesocket */
int s; /* socket passed by the listener */

TCP/IP Socket Library Support for the CICS and Environment / takesocket Example 95

struct clientid clientid; /* return struct for clientid */
/* information */

char *cl info;

/* variables used to obtain the time */

char *p;

int len;

time_t t;

int n_times; /* loop count */

char outbuf[128]; /* buffer for outgoing time string */
/* Map of parms passed to program by CICS listener via */

/* "EXEC CICS START" and picked up by "EXEC CICS RETRIEVE". */
struct TCPSOCKET_PARM{

int give_ take_socket;

char lstn name[8];

char lstn_subname[8];

char client_in data[36];

struct sockaddr_in sockaddr_in_parm;
} csp; /* cics_socket parm */

short csp _len = (short) sizeof(csp);
EXEC CICS RETRIEVE INTO(&csp) LENGTH(csp_len); /* Get parms. */

/* Build required CICS format clientid for takesocket. */
memset (clientid, 0, sizeof(clientid)); /* zero out clientid */
clientid.domain=AF_INET;
memcpy(clientid.name, csp.lstn_name, 8);
memcpy(clientid.subtaskname, csp.lstn_subname, 8);

printf ("Passed clientid info: "
"Domain=%d, Name=<%.8s>, Task=<%.8s>, Resv=<%.20s>\n",
clientid.domain, clientid.name, clientid.subtaskname);

/* Convert IBM socket number to SAS/C socket number base. */
s = FD_FROM_IBM TCPIP(csp.give_take_ socket);

/* Take the passed client socket; takesocket returns a local */
/* socket number enabling us to write to the client. */
cs = takesocket(&clientid, s);

/* Check takesocket rc. */

if (cs == -1){
perror ("takesock() call failed");
exit (EXIT FAILURE);

96 1/0 Functions A Chapter 9

n_times = 2;
while (n_times--){
/* Send the time to the client. Clients */
/* expect the string to be in ASCII. */
time(&t); /* machine-readable time */
p = ctime(&t); /* human-readable time */

/* Convert to ASCII if necessary. */
for (len=0; p[len] && len<sizeof(outbuf); len++)

outbuf[len] = htoncs(p[len];
outbuf[len+l] = htoncs(’\n’); /* Send a new line. */
if (write(cs, outbuf, len)==-1)({

perror("write() failed");

printf("Client IP address: %s\n",
inet_ntoa(csp.sockaddr_in parm.sin_addr));
return EXIT FAILURE;

}
close(cs);
return EXIT SUCCESS; /* Avoid compilation warnings. */

I/0 Functions
For the following I/O functions, IBM CICS TCP/IP imposes a 32768-byte limit for
data transmission:
read
readv
recv
recvfrom
recvmsg
send
sendmsg
sendto
write

writev

The library does not check to see if the 32768-byte limit is exceeded, but the
underlying CICS API socket rejects the request if the limit is exceeded. The IBM
interface requires the vector I/O functions readv, writev, sendmsg, and recvmsg to
allocate (using malloc) a buffer equal in size to the combined sum of the vector lengths.

Unsupported Configuration Information Functions

The following TCP/IP configuration information functions are presently not
supported under CICS. Dummy placeholder functions exist for them that return either

TCP/IP Socket Library Support for the CICS and Environment /\ Unsupported Configuration Information Functions 97

NULL, -1, or no return value, in keeping with the function’s return value declaration of
pointer, int, or void.

Table 9.1 Unsupported Functions under CICS

Function Return Value
gethostent NULL
sethostent -1
endhostent void
herror void
getservbyname NULL
getservbyport NULL
getservent NULL
setservent void
endservent void
getprotobyname NULL
getprotobynumber NULL
getprotoent NULL
setprotoent void
endprotoent void
getnetbyname NULL
getnetbyaddr NULL
getnetent NULL
setnetent void
endnetent void
res_mkquery -1
res_init -1
res_send -1
dn_comp -1
dn_expand -1

herrno and _res are not supported under CICS. The use of these functions will
probably cause an ASRA error. socketpair is also unsupported.

99

APPENDIX

Examples

Introduction 99

SASCMNU: Display the Main Menu 100

SASCALL: Perform Inquiry and Update Functions 100
SASCBRW: Perform Browse Function 109

Introduction

This appendix discusses and provides source listings for some of the example
programs available in the SASC.SAMPLE data sets under 0OS/390 and the LCSAMPLE
MACLIB under CMS.

The sample programs comprise an application that shows a main selection menu on
the display enabling the user to inquire, add, update, and browse records.

The example application is provided in source code only. Before executing the sample
programs, you need to construct and install executable load modules. Also, you need to
define the maps, programs, and transactions to the CICS environment.

Basic Mapping Support (BMS) maps are an integral part of this application. The
source code for these maps is also supplied in the SASC.SAMPLE library under OS/390
and the LCSAMPLE MACLIB under CMS. These maps are called SASCAMA,
SASCAMB, and SASCAMC. Chapter 7, “Terminal Control and Basic Mapping Support,”
provides additional information about creating BMS maps for SAS/C applications.

The examples assume that the traditional CICS FILEA data set has been installed at
your site. Please consult your CICS systems manager or the CICS Installation and
Operations manual if the FILEA example is not installed.

Perform the following tasks to construct the sample application. After these tasks
are complete, you can execute the sample application by keying the transaction
identifier SMNU in the top-left corner of the CICS terminal screen and pressing the EN
TER key. From there, follow the instructions presented on the menu to direct you
through the rest of the example.

1 Assemble the BMS maps and link-edit them into your CICS application map
library. You also need to create C language structures that define those maps. The
C structures can be stored in your C application header files, or they can be placed
in the standard header file library. To accomplish this, you can use the IBM
cataloged procedure DFHMAPS and the SAS Institute cataloged procedure
DSECT2C. See Chapter 7, “Terminal Control and Basic Mapping Support,” on
page 71 for more information on these steps.

2 Translate, compile, and link-edit the example programs. The resulting load
modules need to be available to CICS on the DFHRPL DD concatenation. The SAS
Institute cataloged procedure LCCCPCL, CLIST’s LCCCP and CLK370, or CMS
EXEC’s LCCCP and CLINK can be used to accomplish this task. See Chapter 5,

100 SASCMNU: Display the Main Menu A Appendix 1

“Preprocessing, Compiling, and Linking,” on page 35 for more information on
translating, compiling, and linking.

3 Define the programs, maps, and transactions to CICS. Sample CICS table-entry
macros for these resources are provided in the SASC.SAMPLE library as member
name SASCTBLS. These macros can be copied into your own tables, then
reassembled and reinstalled; or the macros can serve as information when using
Resource Definition Online (RDO, transaction identifier CEDA) to define and
install the resources.

As you look over these examples, note the way exceptional conditions are handled. In
C, functions are executed when a HANDLE CONDITION request is raised rather than
using branches that depend on response code values.

SASCMNU: Display the Main Menu

The display program, SASCMNU, corresponds to the IBM DFH$xMNU programs
(where x is A for Assembler, P for PL/I, and C for COBOL). It displays the main
selection menu for the FILEA application example on the terminal. From this menu, all
other functions can be selected.

SAS/C SAMPLE

|

| |
| |
| NAME: SASCMNU |
| PURPOSE: Traditional CICS FILEA sample program |
| INSTALLATION: Assemble the associated BMS map (SASCAMA) |
| and then use DSECT2C to create a C header that |
| defines the map. Use the sample PPT input |
| (SASCTBLS) to define the resource CICS. |
| COMPILE: Use the CICS translator procedure LCCCPCL |
| EXECUTE: Via transaction SMNU |
| USUAGE: |
| SYSTEM NOTES: |
| |
/

#include <sascaga.h>

void main()

main()

{
EXEC CICS SEND MAP("SASCAGA") MAPONLY ERASE;
EXEC CICS RETURN;

SASCALL: Perform Inquiry and Update Functions

The SASCALL program corresponds to the IBM programs DFH$xALL (where x has
the same values as discussed in the previous section). It is the program that does the
individual record inquiry, adds new records, and updates old ones.

Examples /A SASCALL: Perform Inquiry and Update Functions 101

SAS/C SAMPLE

I

I

NAME: SASCALL |

PURPOSE: Traditional CICS FILEA sample program |

INSTALLATION: Assemble the associated BMS maps |

(SASCAMA, SASCAMB) and then use DSECT2C to |

create C headers that define those maps. |

Use the sample PPT input (SASCTBLS) to |

define the resources to CICS. |

COMPILE: Use the CICS translator procedure LCCCPCL |

EXECUTE: Via transaction SMNU |

USAGE: |
SYSTEM NOTES:

I

#include <dfhbmsca.h> /* useful BMS definitions */

/* C struct defining Map A, produced by DSECT2C */

#include <sascaga.h>
/* C struct defining Map B, produced by DSECT2C */
#include <sascagb.h>

#include <string.h> /* standard string header file */

/* general-purpose variables */
char messages[39]; /* message-holding area */

/* The following two strings are used to validate input data. */

char *valid_name_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ .-'";
char *valid amount_chars = "0123456789.s5";

short comlen; /* length of the CICS COMMAREA */
char keynum[6]; /* record key, the account number */
int i;

/* FILEA record layout */
struct FILEA{

char stat;

char numb[6];

char name[20];

char addrx[20];

char phone[8];

char datex[8];

char amount[8];

char comment[9];
} filea;

struct FILEA commarea; /* definition of the COMMAREA */

/* function prototypes */
void data_error(void);
void map_build(void);
void map_send(void);

102

SASCALL: Perform Inquiry and Update Functions A Appendix 1

void
void
void
void
void
void
void
void
void

/*

cics_control(void);
notmodf (void);
duprec (void);
badleng(void);
badchars(void);
notfound(void);
mfail (void);
errors(void);

smnu (void);

The main function begins here. */

main(struct EIBLK *eib pointer, void *commarea_ pointer)

/*
/*
/*
/*
/*

if

/*

Note that __ commptr, _ eibptr, and __ dibptr are
implementation-provided global external variables available
to all SAS/C CICS programs. You can also, as demonstrated
in this program, define your own pointers to these commonly
used areas.

/* Second time through? */
(commarea pointer) goto read_input;

If first time through, present the initial screen. */

EXEC CICS HANDLE CONDITION ERROR(errors) MAPFAIL(mfail);

EXEC CICS RECEIVE MAP("SASCAGA");

if

/* A key must be provided. */
(memcmp (sascaga.keyl,"\0 \0",2) == 0){
badleng(); /* no return from badleng() */

/* Verify that all six digits of the key are numeric. */

for(i=0;i<=5;i++){

if (isdigit((int) sascaga.KEYI[i]) == 0){
strcpy(messages, "ACCOUNT NUMBER MUST BE NUMERIC");
smnu() ; /* There is no return from smnu(). */

}

/* Save the key. */

memcpy (keynum, sascaga.KEYI,sizeof (sascaga.KEYI));
memset (&sascagb, '\0’,SASCAGBE); /* Clear the map. */

if

/* Is this an add? */
(memcmp (eib_pointer->EIBTRNID, "SADD",4) == 0)({

/* Set up Map B for an add operation. */
strcpy(sascagb.titleo, "FILE ADD");
strcpy(sascagb.msg3o0, "ENTER DATA AND PRESS ENTER KEY");
memcpy (&sascagb.numbo,sascaga.KEYI,sizeof (sascaga.KEYI));
memcpy (&commarea.numb,sascaga.KEYI,sizeof (sascaga.KEYI));
sascagb.amounta = DFHBMUNN;

*/
*/
*/
*/
*/

Examples /A SASCALL: Perform Inquiry and Update Functions

/* The COMMAREA contains only status and account no. */
comlen = 7;
/* Display Map B. */
/* Pass control back to CICS. */

map_send();
cics_control();

}
else
/* Is this a query? */
if (memcmp(eib_pointer->EIBTRNID, "SINQ",4) == 0){

/* Try to read the record specified, but be */

/* prepared if it is not found. */
EXEC CICS HANDLE CONDITION NOTFND(notfound);

EXEC CICS READ DATASET("FILEA") INTO(&filea)
RIDFLD (keynum) LENGTH(sizeof(struct FILEA))
KEYLENGTH (sizeof (keynum));

/* The record was found, so set up Map B for a query. */
strcpy(sascagb.titleo,"FILE INQUIRY");
strcpy(sascagb.msg30,"PRESS ENTER TO CONTINUE");

/* Move the data from the record */

/* area into the map fields. */
map_build();

/* Protect all the fields. */
sascagb.namea DFHBMPRO;
sascagb.addra DFHBMPRO;
sascagb.phonea DFHBMPRO;
sascagb.datea DFHBMPRO;
sascagb.amounta DFHBMPRO;
sascagb.commenta DFHBMPRO;
map_send(); /* Display Map B. */

/* Return to CICS and display the main menu again. */
EXEC CICS RETURN TRANSID("SMNU");

}
else

/* Is this an update? */
if (memcmp(eib pointer->EIBTRNID, "SUPD",4) == 0){

/* Try to read the record specified, but be */
/* prepared if it is not found. */
EXEC CICS HANDLE CONDITION NOTFND(notfound);

EXEC CICS READ DATASET("FILEA") INTO(&filea)
RIDFLD (keynum) LENGTH((short) sizeof(struct FILEA))
KEYLENGTH((short) sizeof (keynum));

/* The record was found, so set up Map B for an update. */
strcpy(sascagb.titleo,"FILE UPDATE");

103

104 SASCALL: Perform Inquiry and Update Functions A Appendix 1

strcpy(sascagb.msg30, "CHANGE FIELDS AND PRESS ENTER");

/* Save the record in the COMMAREA for later comparison. */
memcpy (&commarea, &filea,sizeof (struct FILEA));

map_build(); /* Move the data from the record */
/* area into the map fields. */
map_send(); /* Display Map B. */
comlen = 80; /* The COMMAREA contains the entire record. */
cics_control(); /* Pass control back to CICS. */
}
else{
errors(); /* The transaction ID was not recognized. */
/* There is no return from errors(). */
}

/* Things begin to happen the second time through. */

read_input:

/* Retrieve the COMMAREA. */
memcpy (&commarea,commarea_pointer,sizeof (commarea)) ;

/* Prepare to handle error conditions. */
EXEC CICS HANDLE CONDITION MAPFAIL(notmodf) DUPREC (duprec)
ERROR(errors) NOTFND(notfound);

/* Read the input map. */
EXEC CICS RECEIVE MAP("SASCAGB");

/* Is this an update? */
if (memcmp(eib_pointer->EIBTRNID, "SUPD",4) == 0)({

/* Try to read the specified record with intent to update. */
EXEC CICS READ UPDATE DATASET("FILEA") INTO(&filea)
RIDFLD (commarea.numb)
LENGTH((short) sizeof(struct FILEA))
KEYLENGTH((short) sizeof(commarea.numb));

/* If the record just read does not exactly match the */
/* one read during the first pass, another user must */
/* have updated the record while this transaction was */
/* rolled out. If so, refuse to update the record. */

if (memcmp(&filea,&commarea,sizeof(struct FILEA))){

/* Refuse to update and prepare screen for another attempt. */
strcpy(sascagb.msglo, "RECORD UPDATED BY OTHER USER, TRY AGAIN");
sascagb.msgla DFHBMASB;
sascagb.msg3a = DFHPROTN;

/* Move the data from the record area into the map fields. */

map_build();

Examples /A SASCALL: Perform Inquiry and Update Functions 105

/* Resend only the data portion of the map. */
EXEC CICS SEND MAP("SASCAGB") DATAONLY;

/* Make sure that the same record is used */
/* during the next pass. */
commarea = filea;

comlen = 80;
cics_control(); /* Pass control back to CICS. */
}
else{
/* It is OK to update the record. Note on the next screen. */
filea.stat = 'U’;
strcpy(messages, "RECORD UPDATED") ;
}
}
/* Is this an add? */
else
if (memcmp(eib pointer->EIBTRNID, "SADD",4) == 0) {
/* Yes, it’s an add. Note on the next screen. */
filea.stat = 'A’;
strcpy(messages, "RECORD ADDED");
}
else{
/* The transaction ID was not recognized. There is */
/* no return from errors(). */
errors();
}
/* Check to see if any of the fields were modified. */
if (memcmp(sascagb.namel,"\0 \0",2) == 0 &&
memcmp (sascagb.addrl,"\0 \0",2) == 0 &&
memcmp (sascagb.phonel,"\0 \0",2) == 0 &&
memcmp (sascagb.datel,"\0 \0",2) == 0 &&
memcmp (sascagb.amountl,"\0 \0",2) == 0 &&
memcmp (sascagb.commentl,"\0 \0",2) == 0){
/* No fields were modified, so take no action. */
notmodf () ; /* There is no return from notmodf(). */
}
/* Is this an add? */
if (memcmp(eib_pointer->EIBTRNID, "SADD",4) == 0){

/* It’'s an add, so validate the name field. */
for(i=0;i < *(short *) sascagb.namel ;i++){
if (strchr(valid_name chars,sascagb.NAMEI[i]) == 0){
data_error(); /* There is no return from data_error. */

106 SASCALL: Perform Inquiry and Update Functions A Appendix 1

else
/* Is this an update? */
if (memcmp(eib_pointer->EIBTRNID, "SUPD",4) == 0)({
/* It’s an update, so validate the name */
/* field if it was changed. */
if (memcmp(sascagb.namel,"\0 \0",2) != 0){
for(i=0;i < *(short *) sascagb.namel ;i++){
if (strchr(valid_name chars,sascagb.NAMEI[i]) == 0){
data_error(); /* There is no return from data_error.
}
}
}
/* Also, validate the amount field if it was changed. */
if (memcmp(sascagb.amountl,"0",2) != 0){
for(i=0;i < *(short *) sascagb.amountl ;i++){
if (strchr(valid_amount_ chars,sascagb.AMOUNTI[]= 0){
data_error(); /* There is no return from data_error.
}
}
}
}
/* Update the record area with any fields that */
/* were changed on screen. */
if (memcmp(sascagb.namel,"\0 \0",2) != 0){
memcpy (&filea.name, sascagb.nameo,sizeof (sascagb.nameo));
}
if (memcmp(sascagb.addrl,"\0 \0",2) !=0){
memcpy (&filea.addrx,sascagb.addro,sizeof (sascagb.addro));
}
if (memcmp(sascagb.phonel,"\0 \0",2) !=0){
memcpy (&filea.phone, sascagb.phoneo,sizeof (sascagb.phoneo));
}
if (memcmp(sascagb.datel,"\0 \0",2) !=0){
memcpy (&filea.datex,sascagb.dateo,sizeof (sascagb.dateo));
}
if (memcmp(sascagb.amountl,"\0 \0",2) !=0){
memcpy (&filea.amount,sascagb.amounto,sizeof (sascagb.amounto));
}
else{
/* For an add, fill in the default amount. */
if (memcmp(eib pointer->EIBTRNID, "SADD",4) == 0)({
strcpy(filea.amount,"$0000.00");
}
}
if (memcmp(sascagb.commentl,"\0 \0",2) !=0){

/* Enforce the account number to be what */
/* was originally stated. */
memcpy (&filea.numb, &commarea.numb,sizeof (commarea.numb));

}

*/

*/

Examples /A SASCALL: Perform Inquiry and Update Functions

memcpy (&filea.comment,sascagb.commento,sizeof (sascagb.commento));

}
/* If this is an update, rewrite the record to the file. */
/* 1f this is an add, write the record to the file for */
/* the first time. */
if (memcmp(eib_pointer->EIBTRNID, "SUPD",4) == 0){
EXEC CICS REWRITE DATASET("FILEA") FROM(&filea)
LENGTH((short) sizeof(filea));
}
else{
EXEC CICS WRITE DATASET("FILEA") FROM(&filea)
RIDFLD(commarea.numb) LENGTH((short) sizeof(filea));
}
smnu() ; /* There is no return from smnu(). */
} /* End of main() */
/* The data_error function is called when invalid */
/* data is entered in one of the Map B fields. */
/* The data error message is added, and the */
/* screen is refreshed for another attempt. */
void data_error()
{
sascagb.msg3a = DFHBMASB;
strcpy(sascagb.msg30, "DATA ERROR - CORRECT AND PRESS ENTER");
sascagb.amounta = DFHUNNUM;
sascagb.namea = DFHBMFSE;
sascagb.addra = DFHBMFSE;
sascagb.phonea = DFHBMFSE;
sascagb.datea = DFHBMFSE;
sascagb.commenta = DFHBMFSE;
EXEC CICS SEND MAP("SASCAGB") DATAONLY;
/* Note that in the following statement, the */
/* implementation-defined global external */
/* variable _eibptr is used instead of the */
/* application-defined local variable */
/* eib pointer from main(). */
if (memcmp(_eibptr->EIBTRNID,"SADD",4) == 0)({
comlen = 7; /* If it’s an add, only the account number is passed. */
}
else{
comlen = 80; /* Otherwise, the entire record is passed. */
}
cics_control(); /* Pass control back to CICS. */

}

/* end of data_error() */

/* This function moves all the fields from the */

/*

record area into the map areas.

void map_build(void)

{

*/

memcpy (sascagb.numbo,filea.numb,sizeof (filea.numb));

memcpy (sascagb.nameo,filea.name,sizeof(filea.name));

107

108

SASCALL: Perform Inquiry and Update Functions A Appendix 1

memcpy (sascagb.addro,filea.addrx,sizeof (filea.addrx));
memcpy (sascagb.phoneo,filea.phone,sizeof (filea.phone));
memcpy (sascagb.dateo,filea.datex,sizeof (filea.datex));
memcpy (sascagb.amounto,filea.amount,sizeof(filea.amount));
memcpy (sascagb.commento,filea.comment,sizeof(filea.comment));
return;

} /* end of map build() */

/* This function displays Map B on the screen. */
void map_send(void)

{
EXEC CICS SEND MAP("SASCAGB") ERASE;

return;

} /* end of map_send() */
/* This function returns control to CICS. It causes */
/* the same transaction to be reinitiated with a */
/* COMMAREA. This is commonly known as a */
/* pseudo-conversational rollout. */

void cics_control(void)

{

/* Note that in the following statement, the */

/* implementation-defined global external */
/* variable _eibptr is used instead of the */
/* application-defined local variable */
/* eib_pointer from main()/ */

EXEC CICS RETURN TRANSID(_ eibptr->EIBTRNID) COMMAREA (&commarea)
LENGTH (comlen) ;
} /* end of cics_control() */

/* This function prepares an error message and calls smnu().
void notmodf (void)

{

strcpy(messages, "RECORD NOT MODIFIED");

smnu () ; /* There is no return from smnu(). */
} /* end of notmodf() */

/* This function prepares an error message and calls smnu().
void duprec(void)

{

strcpy(messages, "DUPLICATE RECORD");

smnu () ; /* There is no return from smnu(). */
} /* end of duprec() */

/* This function prepares an error message and calls smnu().
void badleng(void)
{

strcpy(messages, "PLEASE ENTER AN ACCOUNT NUMBER");

smnu () ; /* There is no return from smnu(). */
} /* end of badleng() */

*/

*/

*/

Examples /A SASCBRW: Perform Browse Function 109

/* This function prepares an error message and calls smnu(). */
void badchars(void)
{

strcpy(messages, "ACCOUNT NUMBER MUST BE NUMERIC");

smnu () ; /* There is no return from smnu(). */
} /* end of badchars() */
/* This function prepares an error message and calls smnu(). */

void notfound(void)

{
strcpy(messages, "INVALID NUMBER - PLEASE REENTER");
smnu () ; /* There is no return from smnu(). */

} /* end of notfound() */

/* This function prepares an informational message */
/* and calls smnu(). */
void mfail(void)
{
strcpy(messages, "PRESS CLEAR TO EXIT");
smnu () ; /* There is no return from smnu(). */
} /* end of mfail() */

/* This function prepares an error message and calls smnu(). */
void errors(void)

{

EXEC CICS DUMP DUMPCODE("ERRS"); /* Cause a transaction dump. */
strcpy(messages, "TRANSACTION TERMINATED");
smnu () ; /* There is no return from smnu(). */

} /* end of errors() */

/* This function displays the main menu on the screen. */
void smnu(void)
{

memset (&sascaga, ' ,SASCAGAE); /* Clear Map A. */

/* Set the message attribute byte. */
sascaga.msga = DFHBMASB;

/* Move the message. */

memcpy (&sascaga.msgo, &messages,strlen(messages));
/* Send the map and return to CICS.*/
EXEC CICS SEND MAP("SASCAGA") ERASE;

EXEC CICS RETURN;

} /* end of smnu() */

SASCBRW: Perform Browse Function

The SASCBRW program corresponds to the IBM programs DFH$xBRW (where x has
the same values as mentioned earlier). It is the program that does the browse
operation. It will start with the first record, or you can specify a starting place. The
program can page forward and backward through the file.

110

SASCBRW: Perform Browse Function A Appendix 1

#include <dfhbmsca.h> /* useful BMS definitions */

/* C struct defining Map A, produced by DSECT2C */

#include <sascaga.h>

/* C struct defining Map C, produced by DSECT2C */
#include <sascagc.h>
#include <ctype.h> /* standard C type header */
#include <string.h> /* standard C string handling header */

/* general-purpose variables */

short 1i;

char rid[6] = "000000"; /* record key, the account number */
char ridb[6] = "000000"; /* record key, for backward paging */
char ridf[6] = "000000"; /* record key, for forward paging */

/* indicates in which direction the browsing */
/* is currently moving: F or B */
char currop;

/* indicates the previous browsing direction */

char lastop;

char status; /* file status: 'H’, 'L’', or ' ' */
char messages[39]; /* message holding area */

short comlen; /* length of CICS commarea */

char keynum[6]; /* record key, the account number */

/* FILEA record layout */
struct FILEA{

char stat;

char numb[6];

char name[20];

char addrx[20];

char phone[8];

char datex[8];

char amount[8];

char comment[9];
} filea;

/* function prototypes */
void errors(void);
void smnu(void);
void smsg(void);
void not_found(void);
void build next(void);
void build prev(void);
void page_forward(void);
void page_backward(void);
void receive(void);
void too_high(void);
void too_low(void);

/* The main function begins here. */

main()

Examples /A SASCBRW: Perform Browse Function

/* Prepare to handle paging requests via PF keys. */
EXEC CICS HANDLE AID CLEAR(smsg)
PF1l(page_forward)
PF2 (page_backward);

/* Prepare to handle error conditions. */
EXEC CICS HANDLE CONDITION ERROR(errors)
MAPFAIL(smsqg)

NOTFND (not_found);

/* Read the initial screen. */
EXEC CICS RECEIVE MAP("SASCAGA");

/* Was a starting account number provided? */
if (memcmp(sascaga.keyl,"\0 \0",2) == 0){

/* No, so default to zero. */
strcpy(rid,"000000");
strcpy(rid£f,"000000");

}
else{
/* Yes, so validate all of its digits. */
for(i=0;i<=5;i++){
if (isdigit((int) sascaga.KEYI[i]) == 0){
strcpy(messages, "ACCOUNT NUMBER MUST BE NUMERIC");
smnu () ; /* There is no return from smnu(). */
}
}
/* Save the starting account number for */
/* use in either direction. */
memcpy (rid, sascaga.keyi,6);
memcpy (ridf,sascaga.keyi,6);
memcpy (ridb,sascaga.keyi,6);
}

/* Initiate the VSAM browse file operation. */
EXEC CICS STARTBR DATASET("FILEA") RIDFLD(rid);

/* Is the current account number 999999 */
/* (the absolute maximum)? */
if (memcmp(rid,"999999",6) != 0){

/* No, so page forward. */
page_forward();

}

else{

/* Yes, so set the status to HIGH and page backward.
status = 'H’;
page_backward();

11

112

SASCBRW: Perform Browse Function A Appendix 1

receive(); /* There is no return from receive(). */
} /* end of main function */

/* This function processes a forward paging request. */
void page_forward()

{

currop = 'F’; /* Set the indicator to forward paging mode. */

/* Prepare to handle reading past the end of the file. */
EXEC CICS HANDLE CONDITION ENDFILE(tOO_high);

memset (&sascagc, '\0’,SASCAGCE) ; /* Clear Map C. */
memcpy (rid,ridf,6);
build next(); /* Read more records. */

memcpy (ridf,rid, 6);

EXEC CICS SEND MAP("SASCAGC") ERASE; /* Display Map C. */
} /* end of page forward function */

/* This function processes a backward paging request. */
void page_backward()
{

currop = 'B’; /* Set the indicator to backward paging mode. */

/* Prepare to handle reading before the beginning of the file. */
EXEC CICS HANDLE CONDITION ENDFILE(tOO_lOW);

memset (&sascagc, ' ,SASCAGCE) ; /* Clear Map C. */
memcpy (rid,ridb,6);
memcpy (ridf,ridb,6);

/* READPREV commands will reread the last record read by a */

/* READNEXT command, so perform an extra READPREV to account */

/* for this behavior. */
if ((lastop == 'F’) && (status != 'H')){

EXEC CICS READPREV DATASET("FILEA") INTO(&filea) RIDFLD(rid)
LENGTH (sizeof (struct FILEA)) KEYLENGTH(sizeof(rid));
}
build prev(); /* Read more records. */

memcpy (ridb,rid, 6);

EXEC CICS SEND MAP("SASCAGC") ERASE; /* Display Map C. */

} /* end of page_backward function */
/* This function controls the continual processing of */
/* page requests. Remember that the user can decide to */
/* press PFl or PF2 at any time. Pressing these keys */
/* is an implicit request for forward or backward paging, */
/* respectively. When a PF key is pressed, the */
/* appropriate function is driven; then control */
/* returns to the next executable statement within the */
/* for(;;) loop. From that point, normal FORWARD/BACKWARD */
/* <ENTER> key processing continues. */

void receive()

Examples /A SASCBRW: Perform Browse Function 113

{
/* Continue to process page requests until the CLEAR key is */
/* pressed or the user does not enter a direction indicator. */
for(;;){
/* Remember which direction the reading is going. */
lastop = currop;
/* Read the latest screen. */
EXEC CICS RECEIVE MAP ("SASCAGC");
/* When the MAPFAIL condition occurs here, the browse */
/* operation ends, and smsg() will be driven. */
status = ' ';
/* Did the user enter a forward page request by keying an F ? */
if (memcmp(sascagc.diri,"F",1) == 0){
/* Yes, so cause forward paging to occur. */
page_forward();
}
/* Did the user enter a backward page request by keying a B ? */
else
if (memcmp(sascagc.diri,"B",1) == 0){
/* Yes, so cause backward paging to occur. */
page_backward();
}
else{
/* Neither F nor B was keyed, so resend the map. This */
/* eventually results in a MAPFAIL condition and, */
/* therefore, the end of the browse operation. */
EXEC CICS SEND MAP("SASCAGC");
}
} /* end of for(;;) loop */
} /* end of receive() */
/* This function is called when a read is attempted past */
/* the end of file. */
void too_high()
{

/* Set status so that further reads are prevented. */
status = 'H’;
memcpy (ridf,rid, 6);
memcpy (ridb,rid, 6);

/* Indicate that forward paging has ceased. */
sascagc.diro = ' ’;

/* Prepare an informative message. */
strcpy(sascagc.msglo, "Hi-End of File");

114 SASCBRW: Perform Browse Function A Appendix 1

sascagc.msgla= DFHBMASB;
} /* end of too_high() */

/* This function is called when a read is attempted */
/* before the beginning of the file. */
void too_low()
{
/* Set status so that further reads are prevented. */
status = 'L’;
strcpy(rid£f,"000000");
strcpy(ridb,"000000");

/* Indicate that backward paging has ceased. */

sascagc.diro = ' ’;

/* Prepare an informative message. */
strcpy(sascagc.msg2o0, "Lo-End of File");
sascagc.msg2a = DFHBMASB;

} /* end of too_low */

/* This function is called when the specified starting */
/* account number is not found. The VSAM browse */
/* operation is ended and appropriate messages are prepared. */

void not_found()

{

strcpy(messages, "End of File - Please Restart");

EXEC CICS ENDBR DATASET("FILEA");

smnu () ; /* There is no return from smnu() */
} /* end of not_found() */

/* This function prepares an informative */
/* message and calls smnu(). */
void smsg()

{

strcpy(messages, "Press CLEAR to Exit");

smnu () ; /* There is no return from smnu(). */
} /* end of smsg() */

/* This function is called when a severe and */

/* unrecoverable error is detected. It */

/* causes a CICS transaction dump to be taken, */

/* and prepares an error message. */
void errors()

{
EXEC CICS DUMP DUMPCODE ("ERRS");

strcpy(messages, "Transaction Terminated");
smnu () ; /* There is no return from smnu(). */
} /* end of errors() */

Examples /A SASCBRW: Perform Browse Function

/* This function displays the main menu on */
/* the screen and returns control to CICS. */
void smnu()
{ memset (&sascaga, '\0’,SASCAGAE) ; /* Clear Map A. */

sascaga.msga = DFHBMASB; /* Move the message to the map.

memcpy (sascaga.msgo,messages,strlen(messages));

memset (messages, '\0’,39); /* Clear the message variable. */

EXEC CICS SEND MAP("SASCAGA") ERASE;
EXEC CICS RETURN;
/* end of smnu() */

/* This function performs up to four READNEXT */
/* commands to fill the screen in a forward paging mode. */
void build_next()
0
int i;
/* It takes four iterations to fill the screen. */
for(i=1; i<= 4; i++){

EXEC CICS READNEXT DATASET("FILEA") INTO(&filea) RIDFLD(rid)
LENGTH(sizeof (struct FILEA)) KEYLENGTH(sizeof(rid));

/* If you read past the end of the file, STOP. */
if (status == 'H')
break;
switch(1i){
case 1l:{
/* Move the record fields to line 1 of the map. */

memcpy (sascagc.numberlo,filea.numb,sizeof (filea.numb));
memcpy (sascagc.namelo,filea.name,sizeof (filea.name));
memcpy (sascagc.amountlo,filea.amount,sizeof (filea.amount));
memcpy (ridb,rid, 6);

break;
}
/* end of case: 1 */
case 2:0
/* Move the record fields to line 2 of the map. */
memcpy (sascagc.number2o,filea.numb,sizeof (filea.numb));
memcpy (sascagc.name2o0,filea.name,sizeof (filea.name));
memcpy (sascagc.amount2o,filea.amount,sizeof (filea.amount));
break;
} /* end of case: 2 */
case 3:0
/* Move the record fields to line 3 of the map. */
memcpy (sascagc.number3o,filea.numb,sizeof (filea.numb));
memcpy (sascagc.name3o,filea.name,sizeof (filea.name));
memcpy (sascagc.amount3o,filea.amount,sizeof(filea.amount));
break;
} /* end of case: 3 */
case 4:0

/* Move the record fields to line 4 of the map. */
memcpy (sascagc.number4o,filea.numb,sizeof (filea.numb));

115

116 SASCBRW: Perform Browse Function A Appendix 1

memcpy (sascagc.name4o,filea.name,sizeof (filea.name));

memcpy (sascagc.amount4o,filea.amount,sizeof (filea.amount));

break;
} /*
} /*
} /*
} /*

/* This function performs up to four READPREV commands

/* to £ill the
void build_prev()
0

int 1i;

/*

for(i=1; i <= 4; i++)0

screen in a backward paging mode.

It takes 4 iterations to fill the screen.

4 */

of switch(i) *

of for loop */ }
of build next() */

end of case:
end
end

end

*/
*/

*/

EXEC CICS READPREV DATASET("FILEA") INTO(&filea) RIDFLD(rid)
LENGTH(sizeof (struct FILEA)) KEYLENGTH(sizeof(rid));

/* 1f we read before the beginning of the file, STOP. */
if (status == 'L’)
break;
/* The records will be displayed in ascending order, */
/* so put the last one read at the top of the screen. */
switch(i)0
case 4:0
/* Move the record fields to line 1 of the map. */

memcpy (sascagc
memcpy (sascagc

memcpy (sascagc.

break;
} /*
case 3:0
/* Move the
memcpy (sascagc
memcpy (sascagc

memcpy (sascagc.

break;
} /*
case 2:0
/* Move the
memcpy (sascagc
memcpy (sascagc

memcpy (sascagc.

break;
}
/* end of case:
case 1l:{

.numberlo,filea.numb,sizeof(filea.numb));
.namelo,filea.name,sizeof (filea.name));

amountlo, filea.amount,sizeof(filea.amount));

end of case: 4 */

*/

record fields to line 2 of the map.

.number2o,filea.numb,sizeof (filea.numb));
.name20,filea.name,sizeof (filea.name));

amount2o,filea.amount,sizeof(filea.amount));

end of case: 3 */

*/

record fields to line 3 of the map.

.number3o,filea.numb,sizeof (filea.numb));
.name3o,filea.name,sizeof (filea.name));

amount3o,filea.amount,sizeof (filea.amount));

2 */

/* Move the record fields to line 4 of the map. */

memcpy (sascagc.number4o,filea.numb,sizeof (filea.numb));

memcpy (sascagc.name4o,filea.name,sizeof (filea.name));

Examples /A SASCBRW: Perform Browse Function 117

memcpy (sascagc.amount4o,filea.amount,sizeof (filea.amount));
break;

/* end of case: 1 */

/* end of switch(i) */

/* end of for loop */

/* end of build_prev() */

Index

Index 119

A

abend handling 26, 70
access method parameters

See amparms
all-resident C programs 6
all-resident libraries

COOL option for 56

SAS/C programs under CMS 53

SAS/C programs under OS/390 TSO 39
all-resident load modules, creating 44
ALLRES parameter 44
ALLRESIDENT, COOL option 56
amparms 78

file characteristics 78

file usage 79

for transient data 81

JES spool files 83
ANSI Standard trigraphs, accepting 15
application program services, CICS 4
applications, C language

See SAS/C programs

See SAS/C programs under CMS

See SAS/C programs under OS/390
applications, C++ language

See C++ programs under CMS

See C++ programs under OS/390
AUTO, COOL option 56
autocall libraries 59

B

Basic Mapping Support
See BMS (Basic Mapping Support)
blksize amparm 78
for JES spool files 84
for transient data 82
BMS (Basic Mapping Support) 72
DSECT2C utility 73
example 75
I/O operations 76
LANG=C option 72
maps and command translation 14
mapsets 72
SAS/C programs 23
symbolic maps 72
BSD UNIX Socket Library 91

Cc

C++ input, specifying 57
C programs
See SAS/C programs
See SAS/C programs under CMS
See SAS/C programs under OS/390
C++ programs under CMS 54
compiling 54
COOL options 55
LCCCP EXEC 54
LCXX EXEC 54
linking 54
preprocessing 54
C++ programs under OS/390 40
all-resident load modules, creating 44
compiling in batch mode 41, 47
compiling with TSO 40
COOL CLIST 41
entry point, specifying 43
LCCCL procedure 43
LCCCP CLIST 40
LCCCP procedure 41
LCCCPC procedure 42
LCCCPCL procedure 43
LCCCXXL procedure 49
LCCPCXX procedure 47
LCCPCXXA procedure 50
LCCPCXXL procedure 50
LCXX CLIST 40
linking in batch mode 41, 47
linking with TSO 40
preprocessing in batch mode 41, 47
preprocessing with TSO 40
program environment, specifying 43
translating from C programs 41
CBMSMAPS option 14
character arguments 11
CICS, COOL option 57
CICS (Customer Information Control System) 2
all-resident C programs 6
application program services 4
character arguments 11
coding conventions 8
command format 8
components of 3
control programs 4
control tables 4
cvda data type 10
data-communication functions 3

data-handling functions 4
definition 1
doubleword arguments 10
fullword arguments 10
halfword arguments 10
hhmmss data type 10
history of 2
label data type 10
monitoring functions 4
multitasking 5
multithreading 5
name data type 10
prototype generation 11
re-entrancy 5
releases supported by Command Language
Translator 2
SAS/C libraries 6
SPE (Systems Programming Environment) 6
system architecture 5
system services 4
transient library location 5
CICS file control 84
CICS option 14
cics.h header file 18
CICSVSE, COOL option 57
CLK370 CLIST 39
coding conventions 8
command format 8
Command Language Translator
See SAS/C CICS Command Language Transla-
tor
command translation 11
enabling 14
COMMAREA command 26
comments, nesting 14
_commptr variable 21
COMNEST option 14
compiling, transaction creation tutorial 32
compiling C++ programs
CMS 54
0S/390 batch 41, 47
0S/390 TSO 40
compiling external CICS interface 63
compiling SAS/C programs
CMS 52
0OS/390 batch 44, 45
0S/390 TSO 38
control programs, CICS 4
control tables, CICS 4

120 /ndex

COOL utility
C++ programs under OS/390 TSO 41
messages 60
options 55
SAS/C programs under CMS 52

SAS/C programs under OS/390 TSO 39

cross-reference listings 15
cross-references, generating 58
Customer Information Control System

See CICS (Customer Information Control Sys-

tem)
cvda data type 10
CXX, COOL option 57

D

data-communication functions, CICS 3
data declarations 21
data-handling functions, CICS 4
database support

DL/I databases 85

IMS/VS databases 85

SQL databases 89
DEBUG option 14
debugging

Command Language Translator 14

DEBUG option 14

SAS/C programs 27, 69
dfh2980.h header file 18
dfhaid.h header file 18
dfhbmsca.h header file 18
dfhcdblk.h header file 18
dfhmsrca.h header file 18
DFH$XALL program

See SASCALL program
DFH$xBRW program

See SASCBRW program
DFH$xMNU program

See SASCMNU program
dib.h header file 18
_dibptr variable 21
DL/I database support 85
DLI option 14
dliuib.h header file 18
doubleword arguments 10
DPL Distributed Program Link 62
DSECT2C utility 73

E

EDF command interception 14
EDF option 14

eiblk.h header file 18

_eibptr variable 21

ENTRY, COOL option 57

ENTRY parameter 43

entry point, specifying 57

ENV parameter 43

environment variable support 26, 69
ENXREF, COOL option 58

error handling 24

EXEC CICS interface 63

EXEC DLI command processing 14
EXPAND option 14

extended name processing 58
external CICS interface 62
CMS 64
compiling 63
EXEC CICS interface 63
linking 63
0S/390 batch 64
0S/390 TSO 63
translating 63
external references, resolving 56
EXTNAME, COOL option 58

F

file access method, specifying 78
file characteristic amparms 78
file usage amparms 79
filename specification 78

JES spool files 83

transient data 80
files

See JES spool file I/O

See header files

See input files

See output, file
FILES option 14
FLAG option 15
fullword arguments 10

G

GLOBAL, COOL option 58
global external variables 21
global TXTLIBs 57, 58

H

halfword arguments 10

HANDLE AID command 24
HANDLE CONDITION command 24
header files 18

_heap option 68

hhmmss data type 10

I/0 functions

JES spool files 82

SAS/C 26

TCP/IP Socket Library 96
IMS/VS database support 85
indep compiler option 18
input files 37

JES spool files 82

SYSIN files 37
interval control 26

J

JAPAN option 15

JES spool file /O 82
amparms 83
blksize amparm 84
CICS file control 84
filename specification 83
input files 82
ISSUE commands, record ID 84
output files 82
recfm amparm 83
reclen amparm 83

L

label data type 10
LANG=C option 72
LC370 CLIST 38
LC370 EXEC 52
LCCCL procedure 43, 45
LCCCP CLIST 37, 40
LCCCP EXEC 51, 54
LCCCP procedure 41
LCCCPC procedure 42
LCCCPCL procedure 43, 44
LCCCXXL procedure 49
LCCPCXX procedure 47
LCCPCXXA procedure 50
LCCPCXXL procedure 50
LCXX CLIST 40
LCXX EXEC 54
LIB, COOL option 59
LINK command 26
link-editing, transaction creation tutorial 32
linkage editor, invoking 59
_linkage option 68
linking all-resident libraries

COOL option for 56

SAS/C programs under CMS 53

SAS/C programs under OS/390 TSO 39
linking C++ programs

CMS 54

0S/390 batch 41, 47

0S/390 TSO 40
linking external CICS interface 63
linking SAS/C programs

CMS, for VSE 61

CMS, with CMS EXECs 53

08/390, for VSE 62

0S/390 batch 44

0S/390 TSO 39

0S8/390 TSO, all-resident programs 39

0S8/390 TSO, CLK370 CLIST 39

0S8/390 TSO, with TSO CLISTs 39
linking with CMS EXECs 53
listings

See output, printed
LKED, COOL option 59
LOAD, COOL option 59
LOAD command 26
LOADLIB, COOL option 59

M

main() function, passing arguments to 23
$MAINO entry point 69

mapsets 72

message levels, setting 15
messages

COOL 60

diagnostic 66
directing to a terminal
enabling 60
uppercasing 60
_mneed option 68
monitoring functions, CICS 4
multitasking 5
multithreading 5

15, 60

N

name data type 10
_negopts option 68

(o)

_options option 68
OPTIONS option 15
OUTLRECL option 15
output, file 82
JES spool files 82
load module name, specifying 59
record format 15
record length 15
sequence numbers 15
SYSPUNCH files 37
SYSTERM files 37
translator output files 51
output, printed 15
cross-reference listings 15
destination, specifying 60
formatted source listings 15
generating 15
lines per page 15
SAS/C programs under CMS 51
SYSPRINT files 37
uppercasing text 15
output, terminal 15, 51, 60
OUTRECFM option 15
OUTSEQ option 15
OVERSTRIKE option 15

P

page amparm 79

PAGESIZE option 15
#pragma options statement 13
PREM, COOL option 60

preprocessing, transaction creation tutorial

preprocessing C++ programs
CMS 54
0S/390 batch 41, 47
0S/390 TSO 40
preprocessing SAS/C programs
0S/390 batch 44
0S/390 TSO 37, 39
PRINT, COOL option 60
print amparm 79
PRINT option 15

printed output
See output, printed
program control 26
program environment, specifying 43
programs, C language
See SAS/C programs
See SAS/C programs under CMS
See SAS/C programs under OS/390
programs, C++ language
See C++ programs under CMS
See C++ programs under OS/390
PROTO option 15
prototype generation 11
enabling 15
uses for 13
pseudoregisters, removing 60

R

re-entrancy 5
recfm amparm 78
for JES spool files 83
for transient data 81
reclen amparm 78
for JES spool files 83
for transient data 81
record format, translator output files
record length, translator output files
RELEASE command 26
reports
See output, printed
RETURN command 26
run-time options 68

S

SAS/C CICS Command Language Translator

ANSI Standard trigraphs, accepting

15

15

BMS maps and command translation

C code, displaying 14

C code, uppercasing 15
CBMSMAPS option 14
character arguments 11

CICS option 14

CICS releases supported 2
coding conventions 8
command format 8

command translation 11
command translation, enabling 14
comments, nesting 14
COMNEST option 14

cvda data type 10

DEBUG option 14

debugging 14

DLI option 14

doubleword arguments 10
EDF command interception 14
EDF option 14

EXEC DLI command processing
EXPAND option 14

FILES option 14

FLAG option 15

fullword arguments 10
halfword arguments 10

14

15
14

2

hhmmss data type 10
JAPAN option 15

label data type 10
message levels, setting 15

Index 121

messages, directing to a terminal 15

name data type 10
OPTIONS option 15
OUTLRECL option 15
OUTRECFM option 15
OUTSEQ option 15
OVERSTRIKE option 15
PAGESIZE option 15
#pragma options statement 13
PRINT option 15
PROTO option 15
SOURCE option 15

special characters, printing as overstrikes

special characters, translating
SYS file prefix, replacing 14
TERM option 15
TRANS option 15
translator options, descriptions
translator options, listing 15
translator options, specifying
TRIGRAPHS option 15
UPPER option 15
XREF option 15
SAS/C libraries, and CICS 6
SAS/C library functions 18
SAS/C programs 17
abend handling 26, 70
BMS definitions 23
data declarations 21
debugging 27
displaying code 14
efficiency 69
environment variable support
error handling 24
global external variables 21
HANDLE AID command 24

HANDLE CONDITION command 24

header files 18

1/O functions 26

indep compiler option 18
interval control 26

main() function, passing arguments to 23

$MAINO entry point 69

preparing for CICS 67

program control 26

run-time options 68

SAS/C library functions 18

SQL statements 64

task control 26

translating to C++ 41

uppercasing code 15
SAS/C programs under CMS 50

compiling 52

COOL utility 52

LC370 EXEC 52

LCCCP EXEC 51

15

14

13

26, 69

linkage editor control statements 52
linking all-resident programs 53

linking for VSE 61

linking with CMS EXECs 53
listing files 51

translator input files 51

15

122 Index

SAS/C programs under OS/390 36
all-resident programs 39
CLK370 CLIST 39
compiling in batch mode 44, 45
compiling with TSO 38
LC370 CLIST 38
LCCCL procedure 45
LCCCP CLIST 37
LCCCPCL procedure 44
linking for VSE 62
linking in batch mode 44
linking with COOL 39
linking with TSO 39
linking with TSO CLISTs 39
linking without COOL 39
preprocessing in batch mode 44
preprocessing with TSO 37, 39
TSO CLISTs 39

SAS/C Socket Library 92

SASCALL program 100

SASCBRW program 109

SASCMNU program 100

screen definition 72
See also BMS (Basic Mapping Support)
browse function 109
inquiry functions 100
main menu 100
SASCALL program 100
SASCBRW program 109
SASCMNU program 100
update functions 100

sequence numbers, translator output files 15

socket libraries
BSD UNIX Socket Library 91
SAS/C Socket Library 92
TCP/IP Socket Library 92

source listings
See output, printed

SOURCE option 15

SPE, COOL option 60

SPE libraries 60

SPE (Systems Programming Environment) 6
special characters
printing as overstrikes 15
translating 15
SQL database support 89
SQL statements in SAS/C programs 64
_stack option 68
symbolic maps 72
SYS file prefix, replacing 14
SYSIN files 37
SYSPRINT files 37
SYSPUNCH files 37
system services, CICS 4
Systems Programming Environment (SPE) 6
SYSTERM files 37

T

takesocket function 94

task control 26

TCP/IP Socket Library
communication functions 93
1/0O functions 96
resident functions 92
takesocket function 94
unsupported functions 96

TCP/IP (Transport Control Protocol/Internet Pro-

tocol) 91

TERM, COOL option 60

TERM option 15

terminal control
See BMS (Basic Mapping Support)

terminals, directing messages to
See output, terminal

TRANS option 15

transaction creation tutorial 29
CICS and the example code 33
compiling source code 32
example code 30

link-editing source code 32

preprocessing source code 32
transient data 80

amparms 81

filename specification 80

positioning queues 80
transient library location 5
translator options

descriptions 14

listing 15

specifying 13
Transport Control Protocol/Internet Protocol

(TCP/IP) 91

TRIGRAPHS option 15

U

UPPER, COOL option 60
UPPER option 15
uppercasing text 15

V'

VSE
CICSVSE, COOL option 57
linking SAS/C programs under CMS 61
linking SAS/C programs under OS/390 62

w

WARN, COOL option 60

X

XCTL command 26
XREF option 15

Your Turn

If you have comments or suggestions about SAS/C® CICS User’s Guide, Release 7.00,
please send them to us on a photocopy of this page, or send us electronic mail.
For comments about this book, please return the photocopy to

SAS Publishing

SAS Campus Drive
Cary, NC 27513

email: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive

Cary, NC 27513

email: suggest@sas.com

Welcome * Bienvenue * Willkommen * Yohkoso * Bienvenido

SAS Publishing Is Easy to Reach

Visit our Web page located at www.sas.com/pubs

You will find product and service details, including

» sample chapters
» tables of contents
» author biographies

* book reviews

Learn about

* regional user-group conferences
e trade-show sites and dates

* authoring opportunities

* custom textbooks

Explore all the services that SAS Publishing has to offer!

Your Listserv Subscription Automatically Brings the News to You

Do you want to be among the first to learn about the latest books and services available from SAS Publishing?
Subscribe to our listserv newdocnews-l and, once each month, you will automatically receive a description of the
newest books and which environments or operating systems and SAS® release(s) each book addresses.

To subscribe,

1. Send an e-mail message to listserv@vm.sas.com.
Leave the “Subject” line blank.

3. Use the following text for your message:
subscribe NEWDOCNEWS-L your-first-name your-last-name
For example: subscribe NEWDOCNEWS-L John Doe

Create Customized Textbooks Quickly, Easily, and Affordably

SelecText® offers instructors at U.S. colleges and universities a way to create custom textbooks for courses that
teach students how to use SAS software.

For more information, see our Web page at www.sas.com/selectext, or contact our SelecText coordinators by
sending e-mail to selectext@sas.com.

You're Invited to Publish with SAS Institute’s User Publishing Program

If you enjoy writing about SAS software and how to use it, the User Publishing Program at SAS Institute

offers a variety of publishing options. We are actively recruiting authors to publish books, articles, and sample
code. Do you find the idea of writing a book or an article by yourself a little intimidating? Consider writing with
a co-author. Keep in mind that you will receive complete editorial and publishing support, access to our users,
technical advice and assistance, and competitive royalties. Please contact us for an author packet. E-mail us at
sasbbu@sas.com or call 919-531-7447. See the SAS Publishing Web page at www.sas.com/pubs for complete
information.

Book Discount Offered at SAS Public Training Courses!

When you attend one of our SAS Public Training Courses at any of our regional Training Centers in the U.S., you
will receive a 20% discount on book orders that you place during the course.Take advantage of this offer at the
next course you attend!

SAS Institute Inc. E-mail: sasbook@sas.com

SAS Campus Drive Web page: www.sas.com/pubs

Cary, NC 27513-2414 To order books, call Fulfillment Services at 800-727-3228*
Fax 919-677-4444 For other SAS business, call 919-677-8000*

* Note: Customers outside the U.S. should contact their local SAS office.

The Power to Know.. JsaS® ‘ SAS Publishing

