
SAS/C® 7.50:
Changes and
Enhancements

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS/C ® 7.50: Changes and Enhancements. Cary, NC: SAS Institute Inc.

SAS/C® 7.50: Changes and Enhancements
Copyright © 2004 by SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, March 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at www.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � SAS/C Compiler Changes in Release 7.50 1
Introduction 2

Release 7.50 Enhancements to the SAS/C Compiler 2

Floating-Point Changes for SAS/C Release 7.50 2

64-Bit Support 5

New Options 10

Release 7.50 Changes to the SAS/C Compiler and Library User’s Guide 17

Chapter 2 � SAS/C Library Changes in Release 7.50 41
Introduction 42

Release 7.50 Enhancements to the SAS/C Library 42

Updates to Mathematical Functions 43

Update to float.h Header File 95

New nan, nanf, and nanl Functions 98

Updates to the SIGFPE Signal 100

New Multiple Heap Functions 102

Huge Pointer Functions 104

Updates to the fprintf Function 120

Updates to the fscanf Function 124

Updates to the strtod Function 129

New Library Functions 130

New Message Exit Facility 141

New hstrerror Function 150

New oe2errno Function 151

New String Functions 152

New I/O Functions 156

New opcmd Function 162

New Coverage Support Feature 164

Release 7.50 Changes to the SAS/C Library Reference, Volume 1 173

Release 7.50 Changes to the SAS/C Library Reference, Volume 2 180

Chapter 3 � SAS/C Cross-Platform Changes for Release 7.50 199
Introduction 199

Release 7.50 Enhancements to the SAS/C Cross-Platform Compiler 199

Release 7.50 Changes to the SAS/C Cross-Platform Compiler User’s Guide 206

Chapter 4 � SAS/C C++ Translator Changes in Release 7.50 211
Introduction 211

Release 7.50 Changes and Enhancements to the C++ Translator 211

Chapter 5 � SAS/C Debugger Changes for Release 7.50 231
Introduction 231

iv

Incompatibility with Previous Releases of SAS/C 231

Release 7.50 Enhancements to the SAS/C Debugger 231

Release 7.50 Updates to the SAS/C Debugger User’s Guide 235

Chapter 6 � SAS/C Diagnostic Messages Changes in Release 7.50 237
LSCC Compiler Messages 237

LSCD Messages 239

LSCL COOL Messages 240

Updated LSCT C++ Translator Messages 245

Deleted LSCT C++ Translator Messages 253

New LSCT C++ Translator Messages 254

LSCX Run-time Messages 263

Index 273

1

C H A P T E R

1
SAS/C Compiler Changes in
Release 7.50

Introduction 2
Release 7.50 Enhancements to the SAS/C Compiler 2

Floating-Point Changes for SAS/C Release 7.50 2

IEEE Floating-Point Support 3

Advantages of IEEE Floating-Point 3

Advantages of the Traditional Mainframe Floating-Point 3
SAS/C IEEE Support 4

SAS/C and Mainframe Floating-Point Extensions 4

SAS/C C99 Support 5

64-Bit Support 5

Compile-Time Support for 64-bit Addressing 6

64-bit Support and Access Register Mode 8
64-bit Support and Inline Machine Code 8

64-bit Support and Communication with Other Languages 8

64-Bit Support and the SAS/C Library 9

64-Bit Support and ANSI/ISO Conformance 10

New Options 10
New Compiler Options 10

New Options Summary 11

New Options 12

New Preprocessor Symbols 14

New COOL Options 15
COOL Options Summary 15

COOL Options 15

New DSECT2C Options 15

New Run-Time Option 16

Release 7.50 Changes to the SAS/C Compiler and Library User’s Guide 17

IEEE and 64-Bit Updates to the Inline Machine Code Interface 17
Update to Built-in functions 17

Updates to _diag, _cms202 and _ossvc 17

Updates to Code Macros 17

Updates to Inline Machine Code Usage Notes 17

Updates to the _bbwd Function 18
Updates to the _bfwd Function 19

Updates to the _branch Function 19

Updates to the _ldregs Function 19

New _ospc Function 20

Update to the _osarmsvc Function 21
Update to the _ossvc Function 22

Update to the _stregs Function 22

Updates for Floating-Point Support 22

2 Introduction � Chapter 1

Updates to Numerical Limits 22
Updates to Language Extensions 23

Using Both IBM and IEEE Floating-Point Formats 24

Updates to Floating Point (G.3.6) 25

Update to Registers (G.3.8) 25

Update to Library Functions (G.3.14) 25
Updates to Arithmetic Data Types 25

Updates to Arithmetic Exceptions 27

Updates to Register Conventions 28

Updates to the CENTRY Macro 28

Updates to the CEXIT Macro 29

Updates to the AR370 Archive Utility 30
Updates to AR370 Command Modifiers 30

Update to the AR370 INCLUDE Statements 30

Update to Optional Modifier Characters 30

Update to the SYSARWRK Data Definition 31

Enhancements to the All-Resident C Programs 31
Update to the _branch, _bbwd, and _bfwd Functions 31

Update to the oeabntrap Function Description 31

Updates to the pow Function Example 33

Update to the description of the long long Data Type 34

Update to the rtconst Option Description 34
Update to the enforce, mention, and suppress Option Descriptions 34

Updates to the #pragma Options 35

Update to the ENXREF COOL Option Description 35

Updates to the COOL Options Tables 35

COOL Options (Short Forms) 35

COOL Options 36
Update to the _O_SNAME Symbol 38

Update to the <resident.h> Documentation 38

Updates to the SPE Functions 38

Introduction
This chapter provides a complete description of the changes and enhancements to the

SAS/C Compiler and Library User’s Guide for Release 7.50.

Release 7.50 Enhancements to the SAS/C Compiler
The following enhancements to the SAS/C Compiler have been implemented with

Release 7.50:
� IEEE floating-point support and C99 floating-point extensions
� z/Architecture support, include 64-bit addressing
� Compile-time options that target specific S/390 or z/Architecture processors.

Floating-Point Changes for SAS/C Release 7.50
The SAS/C compiler and library’s floating-point support has been extensively

changed and improved for Release 7.50. The changes are concentrated in three distinct,
but overlapping areas:

� IEEE Floating-Point Support 3

� In recent years, the 390 Architecture has been augmented by the addition of
support for IEEE standard floating-point. Programs can now be written in SAS/C
to exploit this support. Traditional mainframe floating-point continues to be
supported. See “IEEE Floating-Point Support” on page 3 for more information.

� The same architectural extensions that introduced IEEE floating-point support
also introduced enhancements that can significantly improve the performance of
traditional floating-point applications. For instance, the number of floating-point
registers has increased. SAS/C now provides a compiler option to generate code
targeting the extended floating-point architecture. See “SAS/C IEEE Support” on
page 4 and “SAS/C and Mainframe Floating-Point Extensions” on page 4 for more
information.

� The ANSI/ISO C99 standard mandates a great deal of floating-point support
beyond that required by the 1989 C Standard, including new math functions and
new pragmas. SAS/C now supports many of these C99 features, for both IEEE and
traditional mainframe floating-point. See “SAS/C C99 Support” on page 5 for more
information.

IEEE Floating-Point Support
The ISO standards document IEC 60559 defines a portable standard for

floating-point computation known informally as IEEE floating-point. This standard is
implemented by almost all computer systems presently in use. Until recently, the major
exception to this statement was the IBM mainframe, which offered a different
floating-point implementation defined by IBM in the 1960’s. In the last decade, IBM
has remedied this situation by offering an implementation of IEEE floating-point
parallel to traditional IBM floating-point. Depending on their requirements, mainframe
programs can choose to use traditional IBM floating-point, the more portable IEEE
floating-point, or, for very advanced applications, both floating-point implementations.

There are advantages and limitations to the use of IEEE floating-point by
applications, and the choice between traditional mainframe floating-point and IEEE
floating-point is not always obvious.

Advantages of IEEE Floating-Point
The following list contains a few of the reasons that you might prefer to use IEEE

floating-point:
� IEEE floating-point is far more portable. If an application needs to produce exactly

the same answers for the same inputs on all platforms, it should use IEEE
floating-point.

� A number of the IEEE features make it more flexible for dealing with errors and
inaccuracies than IBM traditional floating-point. Examples of such features
include not-a-numbers (NaNs), infinities, rounding modes, and the use of status
flags rather than trapping for error handling.

� IEEE double precision enables a wider range of exponents than traditional
mainframe floating-point. The range of positive IEEE double precision values is
approximately from 5E–324 to 2E308. The corresponding range for traditional
mainframe floating-point is about 5E-79 to 7E75.

� IEEE floating-point is more uniform in its handling of inaccuracy because it uses
base 2 instead of base 16.

Advantages of the Traditional Mainframe Floating-Point
The following list contains a few of the reasons that you might prefer to use

traditional mainframe floating-point:

4 SAS/C IEEE Support � Chapter 1

� On present mainframe models, the traditional floating-point hardware runs
significantly faster than the IEEE hardware to perform the same computation.
This could change in future hardware.

� For a single double-precision computation, traditional mainframe floating-point is
never less accurate than the corresponding IEEE computation (assuming the
result is within the range of both), and can be up to 3 bits more accurate. It is not
possible to generalize this statement to more complex calculations due to the
effects of accumulated rounding.

� Traditional floating-point uses a simpler conceptual model than does IEEE
floating-point. This can make analysis of the characteristics of a particular
algorithm more manageable.

IBM’s traditional floating-point format uses a base-16 representation, that is, the
exponent represents a power of sixteen. IEEE floating-point uses a binary
representation, with the exponent representing a power of two. For this reason, IBM
calls its traditional floating-point format HFP (hexadecimal floating-point), and its IEEE
format BFP (binary floating point). HFP and BFP are used as synonyms for traditional
mainframe floating-point and IEEE floating-point in the rest of this document.

SAS/C IEEE Support
When you compile a SAS/C program, you can specify the BFP or NOBFP option to

specify whether the default floating-point format is BFP or HFP. HFP is the default.
SAS/C enables programs to use both floating-point formats. This is a useful option

for programs such as debuggers, and for subroutine libraries whose users want a choice
of format. To support the use of both formats, SAS/C provides the _ _binfmt and
_ _hexfmt type modifiers, which can be used to specify the floating-point format
independently of whether the BFP option is used. Similarly, H and B suffixes can be
used with floating-point constants to indicate the format.

“Using Both IBM and IEEE Floating-Point Formats” on page 24 contains detailed
rules on mixing the two formats, but the basic premise you should keep in mind is: You
can use casts to convert between the two formats, but mixed-mode expressions are, in
general, not supported. In other words, if you try to add a _ _binfmt double to a
_ _hexfmt double, the compiler cannot determine which kind of addition operation it
should perform. You therefore have to code a cast of one operand to the format of the
other.

The SAS/C library of mathematical functions is completely supported for both
traditional and IEEE floating-point. However, some functions (such as isinf, which
tests to see if its argument is an infinite number) are not meaningful for hexadecimal
floating point, and return dummy results of little utility.

SAS/C has added format modifiers to the printf and scanf series of functions to
enable either format of floating-point number to be read or written. If a format specifier
does not have a floating-point type, the corresponding argument is assumed to have the
default floating-point format. Use of the extensions is not required for programs which
use only one kind of floating-point.

SAS/C and Mainframe Floating-Point Extensions
The most recent generations of IBM mainframes have included extensions to the

floating-point hardware which enable improved performance for traditional
floating-point as well as for IEEE support. The SAS/C compiler option ARCHLEVEL(C)
can be specified to cause the compiler to generate code that targets the newer
floating-point hardware. If you specify the BFP option, ARCHLEVEL(C) is the default
ARCHLEVEL setting.

� 64-Bit Support 5

The two main advantages of ARCHLEVEL(C) for traditional floating-point code are:
� With the floating-point extensions, processors support sixteen floating-point

registers rather than four. This feature enables much more data to be kept in
registers. The global optimizer with ARCHLEVEL(C) will assign up to eight double
or float register variables. Without ARCHLEVEL(C), only two register variables are
supported.

� The floating-point extensions offer single instructions to convert between integer
types and floating-point types. Without the floating-point extensions, the compiler
would have to generate a much longer and more complex sequence of instructions.

SAS/C C99 Support
SAS/C Release 7.50 supports many elements of the ISO C99 standard relating to

floating-point. Some of these elements are oriented specifically to IEEE floating-point,
but most apply to both formats.

The most significant SAS/C enhancements in support of C99 are:
� Support for a new hexadecimal exponential format for floating-point constants.
� Support for several C99 standard pragmas to enable a program to control the

extent of the optimization of floating-point operations.
� Augmentation of the header file, float.h, with further information about the

floating-point implementation.
� Support in the printf and scanf functions for a new %a format for hexadecimal

input and output of floating-point data.
� Addition of a new header file, fenv.h, that defines functions which enable you to

test IEEE status flags, specify the rounding mode, raise IEEE exceptions, and so
forth. There are dummy implementations of these functions for traditional
mainframe floating point. Also, the header file fenvtrap.h (which is a SAS/C
extension) defines functions which let you control IEEE exception trapping.

� Addition of a number of new math functions defined by C99. Some of these are
low-level IEEE functions, such as isinf (to test whether a number is infinite) and
nextafter (which returns the next floating-point number in a particular direction
from its argument). Others are more traditional mathematical operations like
remainder and log2 (logarithm base 2). All of these functions are supported for
BFP and HFP inputs. Functions specific to IEEE such as isinf will return
degenerate results when called for _ _hexfmt arguments. See SAS/C Library
Reference, Volume 1 for a full list of the supported math functions.

� Adding versions of mathematical functions using the data type float. The C99
standard defines a set of math functions similar to the traditional set, with float
arguments and return values. For example, C99 requires the exp function to have
a float version named expf. While most functions, such as exp, have a differently
named variant function for use with float, a few functions (for instance, the
signbit function) are defined as macros that can be passed as an argument of any
floating-point type.

� Addition of a new header file, tgmath.h, that is defined by the C99 standard to
provide generic versions of math functions. For instance, tgmath.h defines an exp
macro which can accept any numeric argument, and returns a result of the correct
type.

64-Bit Support
Release 7.50 of the SAS/C Compiler and Library includes support for execution in

64-bit addressing mode under Release 1.2 or higher of z/OS.

6 Compile-Time Support for 64-bit Addressing � Chapter 1

This support is intended to allow SAS/C customers to gain experience with 64-bit
support, and to write applications which allocate and access memory above the bar.
However, note that SAS/C 7.50 does not actively exploit 64-bit addressing. While it is
possible to allocate 64-bit addressable memory via the SAS/C multiple heap support,
the SAS/C library continues to allocate all its other storage in 31-bit addressable
memory. A limited number of library functions have been modified to accept 64-bit
pointers, and the remainder of the library will never be executed in AMODE 64. For
Release 7.50 of SAS/C, the design permits AMODE 31 and AMODE 64 code to coexist
within the same application, provided that care is taken in linkages.

A design goal for a future release of the SAS/C library will be to exploit the
capabilities of 64-bit addressing. In order to exploit 64-bit addressing SAS/C library
control blocks will need to be changed to reflect the larger pointer size, which will
prevent previously compiled SAS/C code from working in a future release. In other
words, in a future version of SAS/C, it will be impossible to combine old AMODE 31
compiled code with new AMODE 64 compiled code, and old applications will require
recompilation if they are to be used in a 64-bit addressing environment. Because
Release 7.50 does allow old and new code to be mixed, it may be a useful tool for
migrating existing applications gradually to 64-bit addressing, rather than having to
modify all components of an application simultaneously.

Compile-Time Support for 64-bit Addressing
SAS/C support for 64-bit addressing is enabled by use of the HUGEPTRS option. When

this option is specified, the generated code targets the z/Architecture, and uses 64-bit
pointers for all memory references. As one would expect, the HUGEPTRS option implies
the ARCHLEVEL(D) option, which informs the compiler that z/Architecture instructions
may be generated, and that 64-bit general purpose registers exist.

Implementations of the C language on systems with 64-bit pointers have made
various choices about the sizes of integers. One popular choice is LLP64, in which the
integer type long remains a 32-bit type, like the type int, and the only 64-bit integer
type is long long. Another popular choice is LP64, in which the type long has 64 bits,
like long long. There are advantages to either choice. SAS/C has chosen to adopt the
LP64 model, in which a long is a 64-bit type. Thus, use of the HUGEPTRS option will not
only enable 64-bit pointers, but will also change the size of long from 4 bytes to 8.

When you compile with HUGEPTRS, pointers are by default 8 bytes in size. You can
declare a pointer as a 32-bit (fullword) pointer by using the type modifier _ _near. You
can also use the modifier _ _huge to explicitly declare a 64-bit pointer. The _ _near and
_ _huge keywords follow roughly the same placement rules as the const and volatile
keywords. For instance, the declaration

int _ _near * _ _huge *myaddr;

declares the variable myaddr as being a huge (8-byte) pointer to a near (4-byte) pointer
to an int.

When you use _ _near pointers, you need to be aware of an important difference
between 31-bit addressing and 64-bit addressing. In 31-bit addressing, the high-order
bit of a pointer is ignored. For this reason, the high-order bit of pointers is frequently
used in assembler applications as a flag. This usage is prevalent in older system control
blocks. In 64-bit addressing mode, the high order bit of a _ _near pointers is not
ignored. Attempting to derefence a _ _near pointer with the high-order bit set will
cause a paging exception and an 0C4 ABEND. If your application processes such
pointers, before dereferencing them, you must clear the high-order bit. The bit can be
cleared either by casting to an integral type and using the "and" operator, or by casting
the _ _near pointer to a _ _huge pointer, which also clears the bit. The following code
example illustrates both techniques:

� Compile-Time Support for 64-bit Addressing 7

_ _near char *impure;
_ _near char *purified;
_ _huge char *purehuge;
purified = (_ _near char *)(((unsigned int) impure) & ~0x80000000);
purehuge = (_ _huge char *) impure;

The change in pointer size for 64-bit support also means that certain standard types
defined by C header files will change. The two most important such types are size_t
and ptrdiff_t. Without the HUGEPTRS option, size_t continues to be defined as
unsigned int, and ptrdiff_t as int. When HUGEPTRS is specified, size_t is
unsigned long and ptrdiff_t is signed long, both of which are 64-bit types.

The table below shows the effect of HUGEPTRS on the sizes of objects of various types.
Types which are not derived from one of these types can be assumed to be the same
regardless of the HUGEPTRS setting. For instance, the sizes of function pointers and
enums are not changed.

Type NOHUGEPTRS
Size

HUGEPTRS
Size

long 4 8

size_t 4 8

ptrdiff_t 4 8

unqualified
pointer

4 8

You can use the _ _huge keyword in a program which you compile without the
HUGEPTRS option, but the generated code will be unable to dereference or return a
_ _huge pointer. If you do not compile with the HUGEPTRS option, uses of 8-byte pointers
should be limited to use as unreferenced structure elements, or as arguments which are
passed directly to other functions. This limited support is sufficient to allow AMODE 31
functions to manipulate data structures which include 64-bit pointers, so long as no
attempt is made to dereference them.

It is possible to call AMODE 64 functions from AMODE 31 functions and vice versa.
In SAS/C Release 7.50 all function calls are made in AMODE 31. A function compiled
with HUGEPTRS will switch into AMODE 64 using the SAM64 instruction after the
function prolog has executed, and will switch back to AMODE 31 using the SAM31
instruction before calling any other function, and before returning to its caller. This
allows AMODE 31 and AMODE 64 functions to be arbitrarily mixed in the calling
chain, while assuring that the prolog need not execute additional instructions to avoid
use of the high-order parts of the general purpose registers. This technique does
introduce a performance penalty which would not be present in an environment which
was completely 64-bit enabled.

When developing an application in which some code is compiled with HUGEPTRS to
execute in AMODE 64, and some is compiled without HUGEPTRS to execute in AMODE
31, there is significant risk associated with shared data. Any type and data declarations
used by both AMODE 31 and AMODE 64 code must be carefully constructed to have
the same size and mapping in both AMODEs. Following are some guidelines which
may be helpful here. Do not declare data items as long or unsigned long, or as
size_t or ptrdiff_t. Declare them as signed int or unsigned int if they should be
32-bit integers, or as signed long long or unsigned long long if they should be
64-bit integers. Alternatively, use types defined by the header file <stdint.h> such as
intfast32_t, which do not change when HUGEPTRS is specified. Similarly, pointers

8 64-bit Support and Access Register Mode � Chapter 1

should be explicitly declared as _ _near or _ _huge, as appropriate. In particularly
tricky or complex cases, you may need to code a #if _O_HUGEPTRS == 1 test to define
distinct data mappings for 31-bit and 64-bit components.

The above considerations also apply to function prototypes. Functions which can be
called from both HUGEPTRS and NOHUGEPTRS callers should avoid the use of types like
long, size_t and ptrdiff_t, and define any pointer arguments as explicitly _ _huge
or _ _near.

Note: In Release 7.50, function pointers continue to be 4-byte pointers, regardless of
whether HUGEPTRS is specified. �

64-bit Support and Access Register Mode
With the Systems Programming Environment (SPE), you can specify both the

HUGEPTRS option and the ARMODE option. In this case, the code will execute in both
access-register mode and AMODE 64. With Release 7.50, _ _far pointers continue to be
8 bytes in size, containing a four-byte address and a four-byte ALET value.

In 31-bit addressing, the high-order bit of the second word of a _ _far pointer is not
significant. In 64-bit addressing, this bit is significant. If the bit is set, a dereference of
the pointer will result in an 0C4 ABEND. If your 64-bit application has to process
_ _far pointers which may have this bit set, you can clear the flag using code similar to
that below:

_ _far char *impure;
__far char *purified;
purified = (_ _far char *)(((unsigned long long) impure) &

~0x80000000ULL);

64-bit Support and Inline Machine Code
The SAS/C inline machine code feature is supported for programs compiled with

HUGEPTRS. Inline machine code has access to all 64 bits of the general purpose registers.
When the _ossvc, _osarmsvc, or _ospc function is used to perform a system call, the
compiler generates code to leave AMODE 64 before the system call and to restore it
afterwards. See Chapter 13, “Inline Machine Code Interface,” of the SAS/C Compiler
and Library User’s Guide and “IEEE and 64-Bit Updates to the Inline Machine Code
Interface” on page 17 in this document for more information on the inline machine code
facility.

64-bit Support and Communication with Other Languages
In general, the SAS/C features for communication with assembler language or with

other high-level languages should be used with care by programs compiled with the
HUGEPTRS option. Specific caveats are as follows:

� All calls, including calls to assembler routines, are performed in 31-bit mode. If a
called function uses the high-order four bytes of the general registers, it must save
and restore them. An assembler function may enter AMODE 64 if it wishes, but it
must restore 31-bit mode before returning. Also, if assembler code calls any C
functions or C library functions, it must be in 31-bit mode at the time.

� If a function is called from assembler in situations where a _ _near pointer
argument may have the high-order bit set (as to indicate the end of a VL
argument list), you cannot dereference the pointer without clearing the bit. See
“Compile-Time Support for 64-bit Addressing” on page 6 for further information.

� 64-Bit Support and the SAS/C Library 9

� The _ _asm keyword may be used in code compiled with HUGEPTRS. However, note
that if the last argument in an _ _asm argument list is a _ _huge pointer, the
high-order bit will not be set, and the called function will have no indication of the
end of the argument list.

� A call to a function declared using the _ _ref keyword always passes _ _near
pointers in the argument list. If a _ _huge pointer argument is specified, it will be
converted to a _ _near pointer, which is passed in its place. Similarly, if an
argument is accessible only via a _ _huge pointer, its address will be truncated to
31 bits in the argument list.

� The linkage(OS) pragma and the _ _ibmos keyword are not supported for
programs compiled with HUGEPTRS.

� Use of the SAS/C ILC feature in programs compiled with HUGEPTRS is strongly
discouraged. The effect of attempting to pass a _ _huge pointer, or data
addressable only using a _ _huge pointer, is both unpredictable and futile because
no IBM language implementation other than assembler presently supports 64-bit
addressing.

64-Bit Support and the SAS/C Library
SAS/C Release 7.50 provides interim 64-bit addressing support. A significant subset

of the SAS/C library supports _ _huge pointer arguments and execution in 64-bit mode,
but many important areas still have no such support. For example, there is no way in
this release to read data from a socket into a storage area allocated above the bar.

This is similar to the operating system support (z/OS 1.3) at the time this level of the
product was released. While it is possible in z/OS 1.3 to allocate 64-bit addressable
memory, z/OS does not yet support reading or writing directly from such memory. In
the long run, such support is necessary, but we are able to provide meaningful 64-bit
support earlier by delaying such features until a later release of the operating system.

SAS/C library support for AMODE 64 and huge pointers in this release can be
summarized as follows:

� The standard string functions are supported with _ _huge arguments, and lengths
greater than 2 gigabytes.

� The malloc function, the palloc function, and the new multiple heap allocation
functions can be used to allocate memory requiring a _ _huge pointer for
addressibility. Also, the header file <iarv64.h> provides a low-level interface to
the z/OS IARV64 service, which is used to allocate memory “above the bar”.

� The printf family of functions has been extended to format _ _huge pointer
values, and strings accessible via _ _huge pointers. Similarly, the scanf family
can read values into areas addressed via a _ _huge pointer. New format modifiers
allow the program to completely control such formatting.

The following table contains a list of the library functions that accept _ _huge pointer
arguments. Attempts to pass _ _huge pointers to library functions not in the table will
result in their conversion to _ _near pointers, with possible data loss. A warning
message will be generated by the compiler whenever this occurs.

afread afreadh afread0 afwrite afwriteh

afwrite0 atoi atol atoll bsearch

calloc fgets format fprintf fputs

fread fscanf fwrite gets hpalloc

hpcalloc hpfree hppoolcreate hprealloc IARV64

10 64-Bit Support and ANSI/ISO Conformance � Chapter 1

malloc memcasecmp memchr memcmp memcpy

memfil memlwr memmove memscan memscntb

memset memupr memxlt nan nanf

nanl nanl pdel pfree pool

printf puts qsort realloc scanf

snprintf sprintf sscanf stcpm stcpma

strcasecmp strcat strchr strcmp strcpy

strcspn strlen strlwr strncasecmp strncat

strncmp strncpy strpbrk strrchr strrcspn

strrpbrk strrspn strscan strscntb strspn

strstr strtod strtof strtok strtol

strtold strtoll strtoull strupr strxlt

TPUT TPUT_ASID TPUT_USERID TGET vformat

vsnprintf vsprintf vsscanf WTO WTOR

WTP

64-Bit Support and ANSI/ISO Conformance
When the HUGEPTRS compiler option is specified, the SAS/C Compiler and Library are

not completely conformant to the ANSI/ISO standard. The primary reason for this has
to do with data types. For example, the C standard specifies that the second argument
to the fseek function should be a long. When the HUGEPTRS option is specified, a long
is a 64-bit integer. However, the actual implementation of fseek in SAS/C Release 7.50
continues to expect a 32-bit integer. The prototype for fseek therefore specifies int for
the second argument, which does not conform to the standard. Similar problems can
arise when functions accept arguments of type size_t or ptrdiff_t. For example, the
second argument to the fread function is defined as having type size_t. When
HUGEPTRS is specified, size_t is defined as unsigned long, which is a 64-bit type.
Nevertheless, the actual implementation of fread continues to expect this argument to
be a 32-bit integer, requiring a non-standard prototype for fread.

One implication of the above is that functions compiled with HUGEPTRS should not
provide their own prototypes for library functions. Such functions should always
include the appropriate header files to obtain the SAS/C prototypes to avoid passing an
incorrect argument list.

Note that the SAS/C product remains fully ANSI/ISO compliant for applications
which execute in 31-bit mode and do not use the HUGEPTRS compiler option.

New Options

New Compiler Options
The SAS/C Compiler accepts a number of options enabling you to alter the way code

is generated, the way listing files appear, as well as other aspects of the compilation.

� New Compiler Options 11

This section describes the new compiler options available with Release 7.50 and how
they are implemented in various IBM operating systems.

New Options Summary
The following table contains the long and short forms of the new compiler options.

This table is an extension of the table labeled, “Compiler Option Equivalents,” in
Chapter 5, “Compiling C Programs.”

Table 1.1 Compiler Option Equivalents

Long Form Short Form

archlevel(1*) -arl*

asynsig -asy

bfp -mi

coverage -ec

c99subset -c9

hugeptrs -mh

mpsafe -mp

stkbelow -mb

* Where l is one of the letters a, b, c, or d.
The following table summarizes all the new compiler options. This table is an

extension of the table labeled, “Compiler Options” in Chapter 6, “Compiler Options.”
The first column lists the new options in long form for the IBM 370. Capital letters

indicate the abbreviation for the option. The second column indicates the default for
each option. For the default value of the option, you are referred to the description of
the option later in the chapter. The third column indicates how the option is specified
from the UNIX System Services (USS) shell. The fourth column indicates whether the
option can be negated. An exclamation point (!) means the option can be negated, and a
plus sign (+) means it cannot be negated. The description of the digraph option
identifies the negated form of the option. The next three columns represent the
environments for which an option is implemented. An asterisk (*) indicates the option
affects this environment. The Affects Process column names the process that is affected
by the option. The C in the Affects Process column indicates that compilation is affected
by the option. An asterisk in the Sys column warns that the form or meaning of the
option may differ depending on the environment in which the compiler is running.

Note: If you specify contradictory options under MVS batch, the OpenEdition shell,
and CMS, the option specified last is used. �

Table 1.2 Compiler Options

Option
Name Default USS Negation

OS/390
Batch TSO CMS

Affects
Process Sys

ARChlevel see description -Karchlevel=let + * * * C

ASYnsig ASYnsig -Kasynsig ! * * * C

BFp NOBFp -Kbfp ! * * * C

COVerage NOCOVerage -Kcoverage ! * * * C

12 New Compiler Options � Chapter 1

Option
Name Default USS Negation

OS/390
Batch TSO CMS

Affects
Process Sys

C99Subset NOC99Subset -Kc99subset ! * * * C

HUgeptrs NOHUgeptrs -Khugeptrs ! * * * C

MPsafe MPsafe -Kmpsafe ! * * * C

STKbelow NOSTKbelow -Kstkbelow ! * * * C

STMap STMap -Kstmap ! * * *

New Options
archlevel (-Karchlevel=let under USS)

allows you to request code generation for a specific level of the 390 architecture.
By specifying this option, you can exploit newer features of recent processors, but
you should be aware that the generated code will fail if you run it on a processor
that does not have the indicated feature.

The archlevel option specifies an architectural level by a single-letter code.
Four codes are supported currently, with the following meanings.

a The processor supports the logical string assist facility.
This facility allows the compiler to generate better code for
string.h built-in functions such as strlen, strcpy, and
strcmp.

b The processor supports the immediate and relative instruction
set, as well as the compare and move extended facility. This
allows the compiler to generate improved code in many areas.

c The processor supports the floating-point extensions feature.
This feature allows the compiler to generate improved code for
floating-point computations, and is required to use IEEE
floating-point. Note that use of archlevel(c) is advantageous
for programs which use the traditional 390 hex format for
floating-point as well as for IEEE applications.

d The processor supports the z/Architecture. This feature allows
the compiler to exploit 64-bit registers for programs which use
the long long data type, and is a prerequisite for 64-bit
addressing support.

Note: The codes are cumulative so that, for instance, specifying an architecture
level of c indicates presence of all features defined for levels a and b,as well as c. �

If no architecture level is specified, the compiler assumes that none of the above
architectural features can be used. However, if the bfp option is specified, an
archlevel of c is assumed by default, and if the hugeptrs option is specified, the
archlevel is assumed to be d.

In TSO and under MVS batch, the archlevel option is specified as follows:

archlevel(let)

For example, the following indicates that the compiler can assume the presence
of the floating-point extensions:

archlevel(c)

asynsig (-Kasynsig under USS)
specifies that extra code should be generated when necessary to detect
asynchronous signals on exit from a function. If the program does not use any

� New Compiler Options 13

asynchronous signals (such as SIGINT, SIGALRM, or any POSIX signal), you can
improve performance slightly by specfying noasynsig.

If noasynsig is specified but the program responds to asynchronous signals,
detection of these signals by the program may be delayed, which causes the
handler to be called later than otherwise would be expected.

bfp (-Kbfp under USS)
specifies that the default floating point format is binary (IEEE). Note that the BFP
option implies the ARCHLEVEL(C) option.

coverage (-Kcoverage under USS)
activates the COVERAGE feature of the compiler, which provides information on
which lines of code written in C were executed at runtime. Use of the coverage
option increases code size and execution time in order to support tracking of the
executed code. Note that the effective use of the coverage option requires the user
to provide a _ _cvgtrm routine to output the accumulated coverage data.

c99subset (-Kc99subset under USS)
enables the following new features of the ISC C99 standard:

� Variable declarations may occur anywhere within a compound block and in
the first clause of a FOR statement.

� The treatment of large unsuffixed decimal constants is C99 compliant in the
determination of type, for example, 4000000000 is a 64-bit signed integer
instead of a 32-bit unsigned integer.

� The predefined identifier _ _func_ _ is made available for each function.
When it is referenced, _ _func_ _ is treated as if it were declared at the
beginning of the function, for example:

static const char __func__[] = "function-name";

If the identifier is not used, the declaration will be deleted and no space will
be wasted.

� Preprocessor macros may have a variable number of arguments, for example:

#define LOGIT(...) fprintf(logfile, _ _VA_ARGS_ _)
LOGIT("x was %d, but y was %d", x, y);

� inline is a keyword. This is equivalent to the SAS/C _ _inline keyword
except for the following:

� Only one definition may occur in a compilation unit.
� An actual external definition will be created if the function is declared

with external linkage.

� restrict is a keyword. The optimizer does not use the information provided
by the use of this qualifier; consequently, its use will not result in better code
generation. The keyword is enabled as a convenience for porting code written
for C99 to SAS/C.

hugeptrs (-Khugeptrs under USS)
specifies that the object code is intended to execute in 64-bit addressing mode.
When hugeptrs is specified, the default pointer type is _ _huge, and the size of
signed and unsigned long data is 8 bytes. Note that the hugeptrs option implies
the ARCHLEVEL(D) option.

Though the hugeptrs option is valid under CMS, the object code generated with
this option cannot be executed under CMS because of operating system limitations.

mpsafe (-Kmpsafe under USS)
specifies that extra code should be generated to assure correct behavior when a
SAS/C asynchronous signal is detected on a different processor in an MP

14 New Compiler Options � Chapter 1

configuration than the one executing the SAS/C program. An example would be a
user-added asynchronous signal which is generated by a subtask of the SAS/C
program. mpsafe causes a slight performance penalty in the function epilog, so it
should be used only when the object code may be used in the presence of such
asynchronous signals.

If nompsafe is specified or defaulted, an asynchronous signal generated on
another processor may be ignored or may cause an ABEND if it occurs while the
function is returning.

stkbelow (-Kstkbelow under USS)
causes the stack frame for functions to be allocated below the 16M line. If the
_stkabv external variable has been set to indicate the the program wants to have
the stack above the line, but certain functions cannot tolerate this (for example,
stack variables will be passed to system services that run only AMODE=24), then
stkbelow can be specified to force the auto variables of such functions to be
allocated below the line. For assembler routines, the STKBELOW=YES option of the
CENTRY macro will accomplish the same result. For best results, use stkbelow
to compile only those functions that require a stack below the line.

STMap (-Kstmap under USS
requests that a map of structure elements and their offsets be generated in the
cross-reference for each structure tag enclosed. Specifying the -Kstmap option
implies the -Kxref option.

New Preprocessor Symbols
The following table contains the new option names, symbols, and corresponding

values for those new options that are assigned preprocessor symbols by the compiler.
This table is an extension of the table labeled “Preprocessor Symbols” in Chapter 6,
“Compiler Options.”

Table 1.3 Preprocessor Symbols

Option Symbol Value

archlevel unspecified _O_ARCHLEVEL 0

archlevel(a) _O_ARCHLEVEL 1

archlevel(b) _O_ARCHLEVEL 2

archlevel(c) _O_ARCHLEVEL 3

archlevel(d) _O_ARCHLEVEL 4

bfp _O_BFP 1

nobfp _O_BFP 0

c99subset _O_C99SUBSET 1

noc99subset _O_C99SUBSET 0

� New DSECT2C Options 15

Option Symbol Value

hugeptrs _O_HUGEPTRS 1

nohugeptrs _O_HUGEPTRS 0

New COOL Options

COOL Options Summary
The following table contains the long and short forms of the new compiler options.

This table is an extension of the table labeled, “COOL Options Equivalents,” in Chapter
7, “Linking C Programs.”

Table 1.4 COOL Options Equivalents

Long Form Short Form

coverage none

severe -we

The following table lists the new options available for the COOL utility and the
systems to which these options apply. This table is an extension of the table labeled,
“COOL Options,” in Chapter 7, “Linking C Programs.”

Table 1.5 Compiler Options

Option
Name TSO CMS

OS/390
Batch USS

coverage X X X X

severe X X X X

COOL Options
coverage (-Kcoverage under USS)

activates the COVERAGE feature of the compiler, which provides information on
which lines of code written in C were executed at runtime. Use of the coverage
option increases code size and execution time in order to support tracking of the
executed code. Note that the effective use of the coverage option requires the user
to provide a _ _cvgtrm routine to output the accumulated coverage data.

severe (-Asevere under USS)
causes COOL to assign the same level of importance to warnings as it does to
errors. If COOL returns a warning, the COOL return code will be the same as if
COOL had returned an error; however, the message the user receives for a
warning will remain the same as before. It will indicate only that COOL has
returned a warning, not an error.

New DSECT2C Options
In Appendix 1, “The DSECT2C Utility,” add the following options to the table labeled,

“DSECT2C Options.”

16 New Run-Time Option � Chapter 1

Table 1.6 DSECT2C Options

Option Explanation

-mh DSECT2C generates output that explicitly specifies the _ _near qualifier when
declaring object pointer types. This allows such types to be compiled correctly
without depending on the setting of the HUGEPTRS compiler option. The
_ _huge keyword is always used for 64-bit pointer types.

-mi DSECT2C generates output that explicitly specifies the _ _hexfmt keyword on
floating point types. This allows such types to be compiled correctly when the
BFP compile option is specified. The _ _binfmt keyword is always used for
binary floating-point types.

New Run-Time Option
The run-time option, =rsntrace is new for Release 7.50. Add the following

information for =rsntrace to Chapter 9, “Run-Time Argument Processing.”
Add the following entry to the table labeled, “General Run-Time Options:”

option negation int _options int _negopts

=rsntrace =norsntrace _RSNTRACE _NORSNTRACE

Add the following entry to the list of options that follows the table labeled, “General
Run-Time Options:”

=rsntrace
=r

requests that library diagnostics include infomation about failing operating system
calls. If =rsntrace is specified, whenever a library diagnostic message is printed,
the library’s system macro information (see the SAS/C Library Reference, Volume
1) is checked to see whether a system macro failure has been recorded. If so,
information about the failure is added to the message. It is possible that the
failure is not related to the contents of the message; however, in many cases it will
be, and the additional information may be helpful in problem determination. In
particular, this option can be useful in debugging applications such as socket
programs, which are often sensitive to configuration problems that manifest
themselves as unusual or misleading failure conditions.

In the section titled, “Program specification,” add the following entry to the list of
currently implemented options:

_RSNTRACE annotates library messages with system macro information.

In the section titled, “Program specification,” add the following entry to the list of
currently implemented options for _negopts:

_NORSNTRACE does not annotate library messages with system macro information.

� IEEE and 64-Bit Updates to the Inline Machine Code Interface 17

Release 7.50 Changes to the SAS/C Compiler and Library User’s Guide

IEEE and 64-Bit Updates to the Inline Machine Code Interface
The SAS/C support for IEEE Floating-Point computation and 64-Bit processing

requires several changes to the documentation for the inline machine code interface.
The following sections contain details about these changes. All of the following section
names refer to sections in Chapter 13, “Inline Machine Code Interface.”

Update to Built-in functions
In the section titled “Overview,” add the following entry to the table under “Built-in

functions:”

_ospc generate an OS/390 PC instruction

Updates to _diag, _cms202 and _ossvc
� The section title should read “_diag, _cms202, _ossvc, and _ospc.”
� The first sentence in this section should read:

Several built-in functions issue specific supervisor call instructions: _diag ,
_cms202 , _ossvc, and _ospc.

Updates to Code Macros
� In the section titled, “Code Macros,” add the following item to the list of header

files:
� <gen164.h>

� The first paragraph after the list of header files should read:
These header files provide appropriate macros for all IBM 370 machine

instructions except UPT, SIE, and PC. These three instructions cannot be
supported because of conflicts in register use between the instructions and the
compiled C code. Note that most uses of the PC instruction in OS/390 can be
generated using the _ospc function.

Updates to Inline Machine Code Usage Notes
� The second Caution should read:

CAUTION:
Do not use general-purpose registers 4 through 13 with the _ldregs function. The
compiler assigns general-purpose registers 6 through 11 and floating-point
registers 4 and 6 to register variables. If your use of registers in _ldregs
conflicts with the compiler’s assignment of registers to register variables, the
generated code might be less than optimal. General-purpose registers 0 through
3 and 14 through 15 can be used freely, as well as floating-point registers 0 and
2. If the compiler option ARCHLEVEL(C) is specified, you can use floating-point
registers 0 through 7 in inline machine code. �

18 IEEE and 64-Bit Updates to the Inline Machine Code Interface � Chapter 1

� The table labeled, “Registers for Use with the _code_stregs, and _idregs Functions”
can be simplified to the following:

Table 1.7 Registers for Use with the _code_stregs and _idregs Functions

Type of Register Register Number Name of Macro Bit in Mask

general-purpose 0-15 R0-R15 0-15

floating-point 0-15 F0-F15 16-31

� The paragraph at the end of the section should read:
The _stregs function is defined to return int. This allows the _stregs

function to be used to store an integer or a pointer from a single register. Three
alternate forms of _stregs are available to store other types of data. The function
_stfregs returns double, the function _stpregs returns _ _far void * and the
function _stllregs returns long long. Except for the difference in return type,
these functions behave the same as _stregs.

Note:

� The _stfregs function stores its return value in the highest floating register
in the mask.

� The _stllregs function is only available if the ARCHLEVEL(D) option has
been specified.

� The _stllregs function, through use of a cast, can be used to store a _ _huge
pointer value as well as a long long.

�

Updates to the _bbwd Function
� The following changes should be made to the _bbwd function description:

� The code example in the “Synopsis” section should be:

#include <code.h>
void _bbwd(unsigned short op, unsigned short target,...);

� The first paragraph in the “Description” section should read:
_bbwd causes the compiler to generate a branch instruction whose target is
the previously defined label whose _label number is specified by target.
The op argument specifies the first halfword of the instruction to generate.
Both arguments to _bbwd must be compile-time constants. If _bbwd is used to
generate a 6-byte branch instruction (BCTG, BXHG or BXLEG), a third
unsigned short argument must be passed to _bbwd specifying the last 2 bytes
of the instruction. For other branch operations, this argument must be
omitted.

� In the “Description” section, add the following arguments to the list of
supported arguments:

BCTG

BXHG

BXLEG

� The last paragraph in the “Description” section should read:
Optimizations, such as branch folding, may cause the instructions

generated as a result of _bbwd to differ from those expected. However, any

� IEEE and 64-Bit Updates to the Inline Machine Code Interface 19

such optimizations will not change the effects of the instructions. Also, if
ARCHLEVEL(B) or higher has been specified, the compiler may generate a
relative branch instruction equivalent to the branch specified.

Updates to the _bfwd Function
The following changes should be made to the _bfwd function description:
� The code example in the “Synopsis” section should be:

#include <code.h>
void _bfwd(unsigned short op, unsigned short target,...);

� The first paragraph in the “Description” section should read:
_bfwd causes the compiler to generate a branch instruction whose target is the
previously defined label whose _label number is specified by target. The op
argument specifies the first halfword of the instruction to generate. Both
arguments to _bfwd must be compile-time constants. If _bfwd is used to generate
a 6-byte branch instruction (BCTG, BXHG or BXLEG), a third unsigned short
argument must be passed to _bfwd specifying the last 2 bytes of the instruction.
For other branch operations, this argument must be omitted.

� In the “Description” section, add the following arguments to the list of supported
arguments:

BCTG

BXHG

BXLEG

� The last paragraph in the “Description” section should read:
Optimizations, such as branch folding, may cause the instructions generated as

a result of _bfwd to differ from those expected. However, any such optimizations
will not change the effects of the instructions. Also, if ARCHEVEL(B) or higher has
been specified, the compiler may generate a relative branch instruction equivalent
to the branch specified.

Updates to the _branch Function
The following changes should be made to the _branch function description:
� The code example in the “Synopsis” section should be:

#include <code.h>
void _branch(unsigned mask, unsigned short op, unsigned short target,...);

� Add the following text after the list in the “Description” section:
Note that if _branch is used to generate a 6-byte branch instruction (operation

code BCTG, BXLEG or BXHG), a third unsigned short argument must be specified
to complete the instruction.

Updates to the _ldregs Function
� The second paragraph of the “Descriptions” section should read:

The first argument, MASK, is a 32-bit mask. This argument must be a
compile-time constant because the compiler has to know which registers are
needed. General purpose registers can be specified using the macros R0 through
R15, and floating point registers 0 through 15 can be specified using the macros F0

20 IEEE and 64-Bit Updates to the Inline Machine Code Interface � Chapter 1

through F15. (Only F0, F2, F4 and F6 can be used if the ARCHLEVEL option is not
C or greater.) Multiple registers can be specified by adding (or logically ORing) the
macros, for example, R0+R1 (or R0|R1). Refer to the “Bit Masks for Using
Registers” section in the “Inline Machine Code Interface” chapter of the SAS/C
Compiler and Library User’s Guide for more information on the MASK argument.

� The third paragraph of the “Descriptions” section should read:
Remaining arguments specify the values to be placed in the registers (low to

high) that are specified by MASK. Any C expression that has an integer, pointer,
or floating-point type may be used. The number of arguments, excluding MASK,
must be equal to the number of one-bits in MASK; that is, you must supply an
expression for each register. The type of each expression must be valid for the
register in which the value is to be loaded. For example, the effect of attempting to
load a pointer into a floating-point register is unpredictable. If the ARCHLEVEL(D)
option has been specified, you can load an 8-byte value (long, long long, or
_ _huge pointer) into a 64-bit register. If the ARMODE option has been specified,
you can load a _ _far pointer into a 32-bit general register and the corresponding
access register. All other loads of a general register will load only the low-order 32
bits.

� In the “Cautions” section, replace the text that reads:
You can safely use the following registers:

0 - 3, 14, 15 are general-purpose registers.

0, 2 are floating-point registers.
With text that reads:
You can safely use the following registers:

0 - 3, 14, 15 are general-purpose registers.

0, 2 are floating-point registers, if the ARCHLEVEL option is less than
C.

0 - 7 are floating-point registers, if the ARCHLEVEL option is C or
greater.

� Also in the “Cautions” section, replace the text that reads:
In addition, you can use floating-point registers 4 and 6 if they are not currently

assigned to a register variable.
With text that reads:
In addition, if the ARCHLEVEL specification is less than C, you can use

floating-point registers 4 and 6 if they are not currently assigned to a register
variable.

New _ospc Function
Add the new function, _ospc, to the “Functions” section.

_ospc
Generate an MVS PC Instruction

SYNOPSIS

#include <svc.h>
void _ospc(void);

DESCRIPTION
_ospc generates a program call (PC) instruction, specifically, PC 0(14). This
PC instruction is used to link to several MVS services. It is the caller’s

� IEEE and 64-Bit Updates to the Inline Machine Code Interface 21

responsibility to set up arguments for the program call appropriately, using
_ldregs or inline code functions.

Note: The generated code assumes that the program call will not modify
registers other than 14 through 1. This function should not be used to invoke
system calls which do not honor this restriction. �

CAUTIONS
If you call _ospc incorrectly (for instance, if you pass any arguments), the
second pass of the compiler produces an error message, sets the MVS return
code to 8, and generates an EX 0,* instruction for _ospc. The generated
instruction causes an execute exception (MVS ABEND code 0C3) if it is
executed.

PORTABILITY
_ospc is not portable.

IMPLEMENTATION
_ospc first stores any values currently in use from general-purpose registers
0, 1, 14 and 15 and clears any information the compiler had about the
contents of those registers. It assumes these registers may be altered by the
program call. If necessary, _ospc then issues a SAM31 instruction to exit
64-bit mode. _ospc then saves the address of the PC instruction in the C
Run-Time Anchor Block (CRAB) as an aid in traceback production in case the
PC causes an ABEND. Next, _ospc issues the PC instruction. Finally, if the
HUGEPTRS option was specified, _ospc issues the SAM64 instruction to
resume 64-bit mode execution.

EXAMPLE
The following macro is a C macro with approximately the same functionality
as the assembler macro:

STORAGE OBTAIN,LENGTH=len,ADDR=addr,SP=sp,COND=YES

#include <code.h>
#include <genl370.h>
#include <svc.h>

#define STORAGE_OBTAIN(len,sp,addr) \
(_ldregs(R0+R14+R15, (len), 16, (sp) << 8), \
L(14, 0+b(14)), \
L(14, 772+b(14)), \
L(14, 160+b(14)), \
_ospc(), \
_stregs(R1+R15, (addr)))

RELATED FUNCTIONS
_ldregs, _ossvc, _stregs

Update to the _osarmsvc Function
The description of _osarmsvc should read:
_osarmsvc generates a supervisor call (SVC) instruction. _osarmsvc takes one

argument (n) that specifies the number of the SVC to generate; n is an execution-time
constant in the range of 0 to 255. No code is generated to change the addressing mode.
The SVC will be issued in AR mode if the compiler armode option has been specified,
and otherwise will be issued in primary address space mode. If _osarmsvc is issued in a

22 Updates for Floating-Point Support � Chapter 1

program compiled with the HUGEPTRS option, execution is switched to 31-bit addressing
before the SVC is issued, and restored to 64-bit addressing after the SVC completes.

Update to the _ossvc Function
The implementation section of the _ossvc function should read:
_ossvc first stores any values currently in use from general-purpose registers 0, 1,

14, and 15 and clears any information the compiler had about the contents of those
registers. It assumes that these registers are, or may be, altered by the SVC. If needed,
_ossvc then issues a SAC instruction to cancel access-register mode and/or a SAM31
instruction to cancel 64-bit addressing mode. _ossvc then saves the address of the SVC
instruction in the C Run-Time Anchor Block (CRAB) as an aid to traceback production
in case the SVC causes an ABEND. _ossvc then issues the requested SVC instruction.
Finally, _ossvc issues a either a SAC or a SAM64 instruction, or both, to restore the
program’s original addressing mode.

Update to the _stregs Function
Add the following paragraph after the fourth paragraph of the description of the

_stregs function:
Each argument other than the mask to _stregs must have a type of pointer. The

pointer must address a data type which is appropriate to the register being stored. For
instance, it is erroneous to attempt to store a general purpose register via a pointer to
double. In access register mode, you can store both a general register and the
corresponding access register if the argument is a pointer to a _ _far pointer. Similarly,
if ARCHLEVEL(D) has been specified you can store all 64-bits of a general purpose
register if the corresponding _stregs argument is a pointer to long, long long, or a
_ _huge pointer. It is permitted but not recommended for an argument to _stregs to
have type void *. In this case, the amount of data stored is determined by the size of
the register.

Updates for Floating-Point Support
The following sections contain information about specific changes to the SAS/C

Compiler and Library User’s Guide for floating-point support.

Updates to Numerical Limits
In Chapter 2, “Source Code Conventions,” under the section titled, “Numerical

Limits,” replace the tabled labeled “Integral Type Sizes” with the following table:

Table 1.8 Integral Type Sizes

Type Length in Bytes Range

char 1 0 to 255 (EBCDIC character set)

signed char 1 -128 to 127

short 2 -32768 to 32767

unsigned short 2 0 to 65535

int 4 -2147483648 to 2147483647

unsigned int 4 0 to 4294967295

long (NOHUGEPTRS) 4 -2147483648 to 2147483647

� Updates for Floating-Point Support 23

Type Length in Bytes Range

unsigned long (NOHUGEPTRS) 4 0 to 4294967295

long (HUGEPTRS) 8 -9223372038854775808 to
9223372036854775807

unsigned long (HUGEPTRS) 8 0 to 18446744073709551615

long long 8 -9223372038854775808 to
9223372036854775807

unsigned long long 8 0 to 18446744073709551615

In Chapter 2, “Source Code Conventions,” under the section titled, “Numerical
Limits,” replace the tabled labeled “Float and Double Type Sizes” with the following
table:

Table 1.9 Float and Double Type Sizes

Type Length in Bytes Range

float 4 +/-5.4E-70 to +/-7.2E75 (_ _hexfmt)
+/-1.4E-45 to +/-3.4E38 (_ _binfmt)

double 8 +/-5.4E-70 to +/-7.2E75 (_ _hexfmt)
+/-4.9E-324 to +/-1.8E308 (_ _binfmt)

long double 8 +/-5.4E-70 to +/-7.2E75 (_ _hexfmt)
+/-4.9E-324 to +/-1.8E308 (_ _binfmt)

Updates to Language Extensions
In Chapter 2, “Source Code Conventions,” under the section titled, “Language

Extensions,” the section titled, “Specifying floating-point constants in hexadecimal,”
should read:

SAS/C now supports the C99 hexadecimal format for floating-point numbers. The
syntax is

0x<hexdecimal-digits>.<hexdecimal digits>P<binary exponent><suffixes>

A simple example of a C99 hexadecimal floating point constant is 1.AP-12. This
constant has the value of 1+(10/16) times two to the minus twelfth power. The
hexadecimal point is optional in the format, and only one of the two sequences of digits
shown is required. For instance, 0xABCP14, 0xABC.P14 and 0x.ABCP14 are all valid
hexadecimal floating-point constants. The hexadecimal digits and the letter P can
appear in either upper or lower case. A suffix of F or L can follow a constant to indicate
a float or long double constant. As a SAS/C extension, a suffix of B or H can also be
used to indicate a _ _binfmt or _ _hexfmt constant. You can use both a C99 suffix
and a SAS/C suffix on the same constant, for example, 0x0.C04P0FB.

Note: If you use both suffixes, the SAS/C suffix must appear after the C99 suffix. �

Additionally, SAS/C continues to support its previous format for specifying
floating-point numbers in hexadecimal. This format enables specification of the exact
bit pattern of a floating-point constant. Unlike the C99 format, this format can be used
to describe NaNs and infinities. The syntax is

0.x<hexadecimal digits>[.<suffixes>]

The indicated digits are stored exactly as specified in memory. If there are fewer
than eight digits (for a float) or fewer than sixteen digits (for a double or long double),

24 Updates for Floating-Point Support � Chapter 1

the remaining digits are considered to be zero. If any suffixes are present, they must be
preceded by a period. A suffix of B or H can be used to specify the floating point format,
and one of F or L can be used to specify float or long double. As with the C99 format, if
both suffixes are used, the format suffix must come last. If there are no suffixes, the
constant is assumed to be of type double, and to have the default format. A simple
example of a SAS/C-format floating-point constant is 0.x7ff8.B, which represents the
binary floating-point default quiet NaN.

Using Both IBM and IEEE Floating-Point Formats

In Chapter 2, “Source Code Conventions,” under the section titled, “Language
Extensions,” following the section titled, “The #pragma map statement,” add a new
section titled “Using both IBM and IEEE floating-point formats” that contains the
following text:

Most SAS/C programs will use only one format of floating-point number, either the
traditional IBM mainframe format or the IEEE format. The choice between formats is
made by specifying or omitting the BFP option. However, advanced programs and
libraries might need to use both formats in a single compilation, or to support callers
that use either format. This section describes the rules and special considerations
required to use both floating-point formats.

The type modifiers _ _binfmt and _ _hexfmt can be used in floating-point type
specifiers to indicate the floating-point format. Floating-point types without an explicit
format specification have the default format, as determined by whether the BFP option
was specified.

Floating-point constants can be specified with an H or B suffix to indicate
hexadecimal or binary format respectively. Constants without a suffix are assumed to
have the default format. A format suffix can appear in combination with a type suffix
(F or L), but the format suffix must always come last.

A floating-point value can be converted from one format to another using a cast,
assignment, or initialization. Conversion can also occur when an argument is passed to
a function with a prototype, or when a function value is returned. Format conversions
do not otherwise occur. For instance, adding a _ _binfmt double to a _ _hexfmt double
is invalid. You should use a cast to clarify such expressions.

Conversions from hexadecimal format to binary format are performed according to
the current IEEE rounding mode. Conversions from binary to hexadecimal format are
exact for doubles, and for floats they are rounded according to the normal hexadecimal
format rules. If the conversion cannot be performed, for example, the source is out of
range or a NaN, the results are undefined and no signal or exception is raised.

When a function can be used from both BFP and NOBFP programs, its prototype
should specify _ _binfmt or _ _hexfmt for each floating-point argument or for a
floating-point return type. This will force a conversion to occur when the function is
called from a compilation with the incorrect default.

The SAS/C math library is compatible with both formats. When a mathematical
function such as exp is called, the version of the function used is the one specified by
the BFP or NOBFP option. This is true whether or not math.h is included. If math.h is
included, each floating-point function argument will be converted to the default format.
If math.h is not included, it is the programmer’s responsibility to pass data of the
correct floating-point format. For a few low-level functions that are not particularly
meaningful for hexadecimal floating point, such as isnan, if math.h is not included, the
binary version is always called. Because C99 defines these functions as macros, it is
technically undefined what happens if you attempt to use them without including the
corresponding header file.

The symbols defined by the float.h header file always reference the default
floating-point format, as determined by the presence or absence of the BFP option.

� Updates for Floating-Point Support 25

Updates to Floating Point (G.3.6)
In Chapter 2, “Source Code Conventions,” under the section titled,

“Implementation-defined Behavior,” add the following updates to the section titled,
“Floating Point (G.3.6).

� The second item in the list should read:
When an integer is converted to a floating-point type that cannot accurately

represent every value of the source type (for instance, int to float or long long
to double), the result depends on the floating-point format. For binary floating
point, the result is rounded according to the current rounding mode. For
hexadecimal floating point, the result is rounded. In the latter case, if the value is
exactly halfway between two possible results, the result is the one that is larger in
magnitude.

� The third item in the list should read:
When a floating-point number is converted to a narrower number, the result

depends on the format. For binary format, the result is rounded according to the
current rounding mode. For hexadecimal floating point, the result is rounded,
rounding away from 0 when the wider number is equally distant from the two
nearest numbers of the narrower format.

Update to Registers (G.3.8)
In Chapter 2, “Source Code Conventions,” under the section titled,

“Implementation-defined Behavior,” the first sentence in the section titled, “Registers
(G.3.8)” should read:

There can be up to six integer or pointer register variables, and up to two
floating-point register variables (up to eight if the ARCHLEVEL(C) compiler option is in
effect).

Update to Library Functions (G.3.14)
In Chapter 2, “Source Code Conventions,” under the section titled,

“Implementation-defined Behavior,” under the section titled, “Library Functions
(G.3.14),” make the following changes to the list:

� Change the first item in the list to read:
The null pointer constant to which the macro NULL expands is 0L if HUGEPTRS

is specified. Otherwise, it is 0.
� Change the sixth item in the list to read:

When the second argument of the fmod function is 0, fmod returns 0 for
hexadecimal floating point, and a NaN for binary floating point.

Updates to Arithmetic Data Types
In Chapter 3, “Code Generation Conventions,” in the section titled, “Arithmetic Data

Types,” change the table labeled, “Data Type Characteristics,” to the following:

Table 1.10 Data Type Characteristics

Type Length Alignment Range

char 1 byte 0 to 255 (EBCDIC character set)

signed char 1 byte - 128 to 127

unsigned char 1 byte 0 to 255 (EBCDIC character set)

26 Updates for Floating-Point Support � Chapter 1

Type Length Alignment Range

short 2 halfword - 32768 to 32767

unsigned short 2 byte 0 to 65535

int 4 word - 2147483648 to 2147483647

unsigned int 4 word 0 to 4294967295

long (NOHUGEPTRS) 4 word - 2147483648 to 2147483647

unsigned long
(NOHUGEPTRS)

4 word 0 to 4294967295

long (HUGEPTRS) 8 doubleword -9223372038854775808 to 9223372036854775807

unsigned long
(HUGEPTRS)

8 doubleword 0 to 18446744073709551615

long long 8 doubleword -9223372038854775808 to 9223372036854775807

unsigned long long 8 doubleword 0 to 18446744073709551615

float 4 word =/ - 5.4E - 79 to =/ - 7.2E75

double 8 doubleword =/ - 5.4E - 79 to =/ - 7.2E75

long double 8 doubleword =/ - 5.4E - 79 to =/ - 7.2E75

char

unsigned char

defines an 8-bit unsigned integer

signed char

short

short int

defines an 8-bit signed integer

defines a 16-bit signed integer

unsigned short

unsigned short int

defines a 16-bit unsigned integer

int defines a 32-bit signed integer

long

long int

defines a 32-bit signed integer if the HUGEPTRS option is not specified, or a 64-bit signed
integer if HUGEPTRS is specified.

unsigned

unsigned int

defines a 32-bit unsigned integer

unsigned long
unsigned long int

defines a 32-bit unsigned integer if the HUGEPTRS option is not specified, or a 64-bit
unsigned integer if HUGEPTRS is specified.

unsigned unsigned
int

defines a 32-bit unsigned integer

long long defines a 64-bit unsigned integer

unsigned long long defines a 64-bit unsigned integer

� Updates for Floating-Point Support 27

Type Length Alignment Range

_ _hexfmt float defines a 32-bit signed floating-point number in the standard 370 representation, that is,
a sign bit, a 7-bit biased hexadecimal exponent, and a 24-bit fractional part. The
exponent bias is 64. All constants and results generated by compiled code are
normalized (except for constants specified in hexadecimal notation). This representation
is equivalent to approximately 6 or 7 decimal digits of precision.

_ _binfmt float defines a 32-bit signed floating-point number in IEEE binary format, that is, a sign-bit,
an 8-bit biased binary exponent, and a 23-bit fractional part with an implied leading 1.
The exponent bias is 127. See the IBM 390 Principles of Operation for details on the
representation of NaNs, infinities, denormalized numbers, etc. This representation is
equivalent to approximately 6 or 7 decimal digits of precision.

_ _binfmt double
_ _binfmt long
double

defines a 64-bit signed floating-point number in IEEE binary format, that is, a sign bit,
an 11-bit biased binary exponent, and a 52-bit fractional part with an implied leading 1.
The exponent bias is 1023. See the IBM 390 Principles of Operation for details on the
representation of NaNs, infinities, denormalized numbers, etc. This representation is
equivalent to approximately 16 decimal digits of precision.

_ _hexfmt double
_ _hexfmt long
double

defines a 64-bit signed floating-point number in the standard 370 representation, that is,
a sign bit, a 7-bit biased hexadecimal exponent, and a 56-bit fractional part. The
exponent bias is 64. All constants and results generated by compiled code are
normalized (except for constants specified in hexadecimal notation). This representation
is equivalent to approximately 16 or 17 decimal digits of precision

In the same section, the two paragraphs following the table labeled, “Data Type
Characteristics,” should read:

Note that in contrast to the signed integer representations, negative floating-point
numbers are not represented in two’s complement notations; positive and negative
numbers differ only in the sign bit.

In both floating-point formats, there are multiple representations of 0; in hexadecimal
floating point, any value with a 0 fractional part is treated as zero, regardless of the
exponent. Code that checks float or double objects for 0 by means of type punning (that
is, examining the objects as if they were a nonfloating-point type such as int) might fail
when the value is an unusual representation of 0, such as an IEEE negative zero.

Updates to Arithmetic Exceptions

In Chapter 3, “Code Generation Conventions,” under the section titled, “Arithmetic
Exceptions,” add the following updates:

� The first sentence of the second paragraph should read:

Hexadecimal floating-point exceptions produce a program interrupt that causes
abnormal program termination (program interruption codes 000D or 000F) if no
arithmetic signal handler is defined.

� Add the following paragraph at the end of the section:

Usually, binary floating-point exceptions do not cause program interrupts. The
library function fesettrapenable can be used to cause certain binary
floating-point exceptions to trap with a program interrupt. Any such trap will
indicate program interruption code 0007. See the SAS/C Library Reference,
Volume 1 for more information on fesettrapenable. See the IBM Principles of
Operation manual for more information about binary floating-point exception
handling.

28 Updates to the CENTRY Macro � Chapter 1

Updates to Register Conventions
In Chapter 3, “Code Generation Conventions,” under the section titled, “Register

Conventions,” the second item in the list should read:
If the compiler option ARCHLEVEL(B) (or greater) is not specified, register 5 is the

base register for the current function. If ARCHLEVEL(B) is in effect, register 5 is not
reserved by the compiler, except during the prolog, and is assigned usage dynamically.

Updates to the CENTRY Macro
In Chapter 11, “Communication with Assembler Programs,” add the following

information to the section titled, “The CENTRY macro.”
Change the form of a call to the CENTRY macro to:

label CENTRY DSA=dsa-size,
BASE=base-reg,
FNM=function-name,
STATIC=NO/YES,
INDEP=NO/YES,
LASTREG=last-reg,
STKBELOW=YES/NO,
BFP=YES/NO,
HUGEPTR=YES/NO,
AFPSAVE=afp-save-area,
AFPLAST=last-afp-reg,
HGRSAVE=hgr-save-area,
HGRLAST=last-hgr-reg

Add the following entries to the list of keywords:

STKBELOW=YES/NO
specifies whether the assembler routine requires its DSA be allocated below the
16-megabyte line. The default is STKBELOW=NO.

BFP=YES/NO
indicates whether the assembler routine should be marked as using BFP as the
default floating-point format. The setting of the BFP keyword matters only if the
assembler routine calls a C library function whose behavior depends on how its
caller was compiled, such as printf or sqrt.

HUGEPTR=YES/NO
indicates whether the assembler routine should be marked as running in 64-bit
addressing mode. The setting of the HUGEPTR keyword matters only if the
assembler routine calls a C library function whose behavior depends on how its
caller was compiled, such as printf or strtol. Note that CENTRY does not
change the program’s addressing mode. If your assembler code requires 64-bit
addressing, you should change addressing mode yourself after completion of
CENTRY.

AFPSAVE=afp-save-area
specifies the location of a save area where non-volatile auxiliary floating point
registers used by the assembler routine are to be stored. (These are floating point
registers 8 through 15.) If your assembler code modifies any of them, you must
code the AFPSAVE keyword. The save area must be specified by a symbolic name,
and must be allocated on a fullword boundary in the first 1024 bytes of the DSA. (If
CENTRY specifies DSA=0, the save area must be located within the CRABTAUT
work area.) The area must be large enough to save all the registers specified by

� Updates to the CENTRY Macro 29

the AFPLAST keyword. If you modify any of the non-volatile AFP registers, but do
not specify the AFPSAVE keyword, ABENDs or floating-point errors are likely in
any C code which executes after the assembler routine has returned.

AFPLAST=last-afp-reg
specifies the last non-volatile AFP register used by the assembler routine. The
AFP registers are stored in order, starting with register 8. Thus, if you specify
AFPLAST=10, floating point registers 8, 9 and 10 will be saved by CENTRY.

HGRSAVE=hgr-save-area
specifies the location of a save area where the high-order portions of the 64-bit
general registers are to be stored. If your assembler code modifies any of them,
you must code the HGRSAVE keyword. The save area must be specified by a
symbolic name, and must be allocated on a fullword boundary in the DSA. (If
CENTRY specifies DSA=0, the save area must be located within the CRABTAUT
work area.) The area must be large enough to save the high-order portions of all
the registers specified by the HGRLAST keyword. If you modify the high-order part
of any register, but do not specify the HGRSAVE keyword, ABENDs are likely in any
C code which executes after the assembler routine has returned.

HGRLAST=last-hgr-reg
specifies the last general register whose high-order portion is modified by the
assembler routine. The high-order parts of the general registers are stored in
order, starting with register 14. Thus, if you specify AFPLAST=6, the high-order
portion of registers 14, 15 and 0 through 6 will be saved by CENTRY.

Updates to the CEXIT Macro
In Chapter 11, “Communication with Assembler Programs,” add the following

information to the section titled, “The CEXIT macro.”
Change the form of a call to the CEXIT macro to:

label CEXIT RC=return-info/(reg),
DSA=YES/0,
INDEP=NO/YES,
LASTREG=lastreg,
MPSAFE=NO/YES,
AFPSAVE=afp-save-area,
AFPLAST=last-afp-reg,
HGRSAVE=hgr-save-area,
HGRLAST=last-hgr-reg,
HUGERC=NO/YES

Add the following entries to the list of keywords:

MPSAFE=NO/YES
specifies whether or not the application requires support for asynchronous signals
in a multiprocessor environment. The default is MPSAFE=NO. MPSAFE=YES
guarantees correct results even in the presence of asynchronous signals, but
increases the overhead of CEXIT.

AFPSAVE=afp-save-area
specifies the location of the save area in which the CENTRY macro stored
non-volatile AFP registers. See the description of the AFPSAVE keyword of
CENTRY for more information.

AFPLAST=last-afp-reg
specifies the last non-volatile AFP register to be restored by CEXIT. The value
must be the same as specified by the corresponding CENTRY call. See the
CENTRY macro description for further information.

30 Updates to the AR370 Archive Utility � Chapter 1

HGRSAVE=hgr-save-area
specifies the location of the save area in which the CENTRY macro stored the
high-order portions of general purpose registers. See the description of the
HGRSAVE keyword of CENTRY for more information.

HGRLAST=last-hgr-reg
specifies the last general register whose high-order portion is to be restored by
CEXIT. The value must be the same as specified by the corresponding CENTRY
call. See the CENTRY macro description for further information.

HUGERC=NO/YES
indicates whether the RC value is a huge (64-bit) pointer. If HUGERC=YES is
specified, the HGRSAVE and HGRLAST keywords must also be specified.

Note: The CEXIT macro does not change addressing modes. CEXIT cannot be
executed in 64-bit addressing mode. It is the responsibility of the assembler routine to
return to 31-bit addressing before issuing the CEXIT macro. Failure to observe this
restriction is likely to cause difficult to diagnose ABENDs. �

Updates to the AR370 Archive Utility

Updates to AR370 Command Modifiers
In Appendix 2, “The AR370 Archive Utility,” in the section titled, “Combinations of

command and command modifier charecters,” update the table labeled “Command and
Command Modifier Combinations” with the -y command modifier as indicated below:

Table 1.11 Command and Command Modifier Combinations

Command Accepted Modifiers and Commands

d e, f, j, q, t, v, y

m e, f, j, q, t, v, y and a | b

r e, f, j, q, t, v, y and a | b

t d, e, f, j, m, r, v, x, y

x e, f, j, t, v, y

Update to the AR370 INCLUDE Statements
In the section titled “AR370 INCLUDE Statements,”add the following caution at the

end of the text.

CAUTION:
The new member name may be any name up to a maximum of 18 characters. It is strongly
recommended that the name be a valid MVS PDS member name or data set name. Other
names may be difficult to manipulate with the AR370 utility. �

Update to Optional Modifier Characters
In the section titled “Optional Modifier Characters,” add the following entry to the

list of characters:

w Used in conjunction with the replace (r) command to allow
truncation of member names at 18 characters.

� Update to the oeabntrap Function Description 31

Update to the SYSARWRK Data Definition
In Appendix 2, “The AR370 Archive Utility,” under the section titled, “AR370 JCL

requirements,” add the following text at the end of the section:
If SYSARWRK is not specified, a temporary work data set will be used that is defined

with the minimum size that is allowed. To avoid running out of space in this temporary
data set, allocate SYSARWRK with adequate space to handle your data set.
SYSARWRK will be used then instead of the default work data set.

Enhancements to the All-Resident C Programs
In Chapter 10, “All-Resident C Programs,” update the the section titled,

“Restrictions,” with the following information:
� Replace the fourth item in the list of restrictions with text that reads:

Under an extended architecture system, all-resident programs may not be
linked with RMODE(ANY). However, they may be linked RMODE(SPLIT), in
which case all of the load module except for certain portions of the run-time
library can be loaded above the 16-megabyte line. Note that RMODE(SPLIT) is
suitable only for AMODE(31) applications.

� Add the following item to the list of restrictions.
The use of the NOSMPXIVEC link-time (COOL) option is not permitted.

Update to the _branch, _bbwd, and _bfwd Functions
In Chapter 13, “Inline Machine Code Interface,” in the section titled, “Functions,”

update the CAUTIONS sections of the _branch, _bbwd, and _bfwd functions with the
text indicated for each function.

_branch
Note: The _branch function should not be used to branch to a label defined in

a different built-in code sequence, especially one in a different block. This action
may cause a compiler error or incorrect results at execution time. �

_bbwd
Note: The _bbwd function should not be used to branch to a label defined in a

different built-in code sequence, especially one in a different block. This action
may cause a compiler error or incorrect results at execution time. �

_bfwd
Note: The _bfwd function should not be used to branch to a label defined in a

different built-in code sequence, especially one in a different block. This action
may cause a compiler error or incorrect results at execution time. �

Update to the oeabntrap Function Description
In Chapter 14, “Systems Programming with the SAS/C Compiler,” in the section

titled, “The SPE Library,” replace the oeabntrap example with the following example:

#include <oespe.h>
#include <unistd.h>
#include <lclib.h>
#include <string.h>
#include <setjump.h>

32 Update to the oeabntrap Function Description � Chapter 1

#include <signal.h>

jmp_buf ABEND_escape;
/* where to run to after an ABEND */

static int ABEND_trapped;

void trace_out(char *line) {
/* this function writes a btrace output line to file

descriptor 2 */
write(2, line, strlen(line));
write(2, "\n", 1);

}

void ABEND_handler(int signum) {
char buf[60];
sprintf(buf, "Interrupted by signal %d!\n", signum);
write(2, buf, strlen(buf));
btrace(&trace_out);
longjmp(ABEND_escape, 1);

}

int ptrvalid(int *ptr) {
/* return whether storage addressed by ptr can be read */
struct sigaction segv_action, prev_action;
int ok;
volatile int value;

if (ABEND_trapped == 0) {
oeabntrap(TRAP_AUTO);

/* possibility of error ignored */
ABEND_trapped = 1;

}

if (setjmp(ABEND_escape) != 0) goto failed;
/* set up retry from handler */

segv_action.sa_handler = &ABEND_handler;
sigemptyset(&segv_action.sa_mask);
segv_action.sa_flags = 0;
sigaction(SIGSEGV, &segv_action, &prev_action);

/* we’ll try to access the storage even if
sigaction fails... */

value = *ptr; /* force reference to *ptr */
ok = 1; /* it must be valid */
goto complete;

failed:
ok = 0; /* the pointer is no good */

complete:
sigaction(SIGSEGV, &prev_action, 0);

/* restore previous SIGSEGV handling */
return ok;

}

� Updates to the pow Function Example 33

Updates to the pow Function Example

In Chapter 4, “Optimization,” in the section titled, “Using inline functions to generate
optimized code,” replace the example code for the pow function with the following code:

#include <lcdef.h> u

#include <math.h> v

#undef pow w

#define pow(x, p) power(x, p, isnumconst(p)) x

static __inline double power(double a, double p, int p_is_constant)
{

/* Test the exponent to see if it’s */
/* - a compile-time integer constant */
/* - a whole number */
/* - nonnegative */

if (p_is_constant && (int) p == p && (int) p >= 0) { y

int n = p;

/* Handle the cases for 0 <= n <= 4 directly. */
U if (n == 0) return 1.0;

else if (n == 1) return a;
else if (n == 2) return a * a;
else if (n == 3) return a * a * a;
else if (n == 4) return (a * a) * (a * a);

/* Handle 5 <= n <= 16 by calling power */
/* recursively. */
/* Note that power is invoked directly, specifying */
/* 1 as the value of the p_is_constant argument. */
/* This is because the isnumconst macro returns */
/* "false" for the expressions (n/2) and */
/* ((n+1)/2), which would defeat the optimization. */

V else if (n <= 16)
return power(a, (double)(n/2), 1) *

power(a, (double)((n+1)/2), 1);

/* Handle n > 16 via a loop. The loop below */
/* calculates (a ** (2 ** x)) */
/* for 2 <= x <= n and sums the results for each */
/* power of 2 that has the corresponding bit set */
/* in n. */

W else {
double prod = 1.0;
for (; n != 0; a *= a, n >>= 1)

if (n & 1) prod *= a;
return prod;

}
}

/* Finally, if p is negative or not a whole number, */
/* call the library pow function. The pow macro */

34 Update to the description of the long long Data Type � Chapter 1

/* is defeated by surrounding the name "pow" with */
/* parentheses. */

else X

return (pow)(a, p);
}

Update to the description of the long long Data Type
In Chapter 2, “Source Code Conventions,” replace the tenth and eleventh paragraghs

of the section titled, “Description of the long long Data Type,” with the following text.
One way in which the SAS/C long long implementation differs from the C99

standard is in the interpretation of decimal constants. According to C99, a decimal
constant that is too large to fit into a long, such as 3000000000 on the mainframe,
should be assumed to be a long long. According to the 1989 ANSI/ISO standard, the
type of this constant is unsigned long. SAS/C continues to treat any such constant
within the range of unsigned long as unsigned long, to avoid changing the meaning
of existing programs. This behavior is compatible with most compilers for other
platforms that support a long long type.

The C99SUBSET option will cause unsuffixed decimal constants to be interpreted with
C99 rules, that is, they can never be unsigned. You can use the standard C language
suffixes to control the type of a decimal constant. For example, 3000000000UL will have
a type of unsigned long regardless of compiler options, but 3000000000 will have a
type that depends on compiler option settings: long long (C99SUBSET, NOHUGEPTRS),
long (HUGEPTRS), or unsigned long (default options).

Update to the rtconst Option Description
In Chapter 7, “Linking C Programs,” under the section titled, “COOL Options,” add

the following text to the description of the rtconst option.
Usually the run-time constant section can be removed without affecting normal

program execution. However, a very large function compiled with the archlevel(b)
option (or greater) may require the run-time constant CSECT to be present to execute
correctly. COOL will preserve the run-time constant section for a compilation including
such a function, even if rtconst has been specified.

Update to the enforce, mention, and suppress Option Descriptions
In Chapter 6, “Compiler Options,” in the section titled, “Option Descriptions,” the

descriptions of the enforce, mention, and suppress options need to be updated to
remove the information stating that “Only warnings in the range 0–199 and 300–499
are affected.”

� Replace the first paragraph of the description of enforce with the following text:
treats one or more warning conditions as error conditions. Each warning

condition is identified by its associated message number. Conditions whose
numbers have been specified are treated as errors, and the compiler return code is
set to 12 instead of 4.

� Replace the first paragraph of the description of mention with the following text:
specifies that the warnings whose numbers are specified as n1, n2, and so on,

are not to be suppressed. See also suppress.
� Replace the second paragraph of the description of suppress with the following

text:

� Updates to the COOL Options Tables 35

Each warning condition is identified by its associated message number, n.
Conditions whose numbers have been specified are suppressed. No message is
generated, and the compiler return code is changed.

Updates to the #pragma Options
In Chapter 6, “Compiler Options,” in the section titled, “The #pragma options

statement,” add the following options to the list of #pragma options:
armode

indep

sname(value)

Update to the ENXREF COOL Option Description
In Chapter 7, “Linking C Programs,” in the section titled, “COOL Options,” replace

the third paragraph of the enxref description with the following text.
You can use the references option (-Areferences under USS) to modify the

behavior of the sname, cid, or linkid cross-reference listing so that unresolved
external references are included in the cross-references listing. You must use the
references option in conjunction with one or more of these listing options: sname, cid,
or linkid. For example:

enxref(sname references)

specifies an sname cross-reference listing that includes cross-references for external
symbols that are declared but not defined.

Updates to the COOL Options Tables

COOL Options (Short Forms)
The following table contains corrections to the table labeled, “COOL Options

Equivalents,” in Chapter 7, “Linking C Programs.”

Table 1.12 COOL Options Equivalents

Long Form Short Form

auto -a

clet -m

clet(all) -m

clet(noex) -mn

continue -zc

cxx -cxx

dupsname -zd

endisplaylimit -ynnnn

enexit -xt

enexitdate (xxx) -xtxxx

36 Updates to the COOL Options Tables � Chapter 1

Long Form Short Form

enxref (cid) -xxx

enxref (linked) -xxe

enxref (references) -xxy

enxref (sname) -xxs

extname -xn

files(xxx) -fxxx

gmap -yg

inceof -zi

libe -b

lineno -l

list -yl

noenxref -!xx

output fileid -ofileid

pagesize(nn) -snn

prem -p

print -h

prmap -yp

rtconst -r

smpjclin -sj

smponly -sxo

smpxivec -sx

term -t

upper -u

verbose -zv

warn -w

xfnmkeep -xf

xsymkeep -xe

COOL Options
The following table contains corrections to the table labeled, “COOL Options,” in

Chapter 7, “Linking C Programs.”

Table 1.13 COOL Options

Option TSO CMS OS/390 Batch USS

-Agather X

-Ainsert X

allresident X X X

arlib X

� Updates to the COOL Options Tables 37

Option TSO CMS OS/390 Batch USS

auto X X X

-Bep X

-Blib X

cics X X X

cicsvse X X X

clet X X X X

clet(all) X X X X

clet(noex) X X X X

continue X X X X

cxx X X

dupsname X X X X

endisplaylimit X X X X

enexit X X X X

enexitdata X X X X

entry X

enxref X X X X

extname X X X X

files X

genmod X

global X

gmap X X X X

gos X X

inceof X X X X

-1 X

-L X

lib X

libe X

lineno X X X X

list X X X X

lked X

lkedname X X

load X X

loadlib X

nocool X X

output X

pagesize X X X X

prem X X X X

38 Update to the _O_SNAME Symbol � Chapter 1

Option TSO CMS OS/390 Batch USS

print X X X

prmap X X X X

rtconst X X X X

smpjclin X X X X

smponly X X X X

smpxivec X X X X

spe X X X

start X

term X X X

upper X X X X

verbose X X X X

warn X X X X

xfnmkeep X X X X

xsymkeep X X X X

Update to the _O_SNAME Symbol
In Chapter 6, “Compiler Options,” in the section titled, “Preprocessor Symbols,” add

the following text to the explanation of the _O_SNAME option that follows the table
labeled, “Preprocessor Symbols.”

If you use the compiler sname option to set the _O_SNAME preprocessor symbol, it has
an affect similar to using a #define preprocessor directive to define the symbolic name
_O_SNAME. You cannot actually use a #define directive to define _O_SNAME. You must
use the compiler sname option. Attempting to set the _O_SNAME symbol with a #define
preprocessor directive will result in an LSCC133 error.

Update to the <resident.h> Documentation
In Chapter 10, “All-Resident C Programs,” in the section titled, “Using

<resident.h>,” remove the note at the end of the section that reads,

Note: The dollars compiler option must be used when compiling a C++ source file
that contains <resident.h>. �

and replace it with the following text.
The dollars compiler option is no longer required when compiling a C++ source file

that includes <resident.h>.

Updates to the SPE Functions
In Chapter 14, “Systems Programming with the SAS/C Compiler,” in the section

titled “The SPE Library,” add the following functions to the table of SPE functions.

� Updates to the SPE Functions 39

gethostbyaddr* gethostbyname* htonl

htons IARV64 inet_addr

inet_lnaof inet_makeaddr inet_netof

inet_network inet_ntoa ntohl

ntohs osdltok osgttok

ossttok WTP

After the section titled “HFS Access,” create a new section titled “TCP/IP Access,”
and move the last paragraph of the section titled “HFS Access” into the new section.
The paragraph to be moved reads:

SPE supports access to USS integrated sockets using the standard UNIX socket
interface functions such as socket, accept, read, write, and so on. Note that only
integrated sockets can be accessed. Starting with z/OS 1.2, the TCP/IP resolver
functions; gethostbyname and gethostbyaddr are supported. However, other resolver
type functions such as res_init and getservbyname are not supported because USS
does not provide system calls for these functions.

40

41

C H A P T E R

2
SAS/C Library Changes in
Release 7.50

Introduction 42
Release 7.50 Enhancements to the SAS/C Library 42

Floating-Point Support 42

64-Bit Support 43

Updates to Mathematical Functions 43

Math Header Files 44
Preprocessor Symbols 44

Type Definitions 47

Function Categories 48

Floating-point Environment Functions 48

Type Classification Functions 49

Comparison Functions 49
Low-level Functions 50

Transcendental Functions 51

Math Function Error Handling 52

Float and Long Double Functions 53

New Math Functions 53
Update to float.h Header File 95

New nan, nanf, and nanl Functions 98

Updates to the SIGFPE Signal 100

New Multiple Heap Functions 102

_heap_attr 103
Huge Pointer Functions 104

Updates to the fprintf Function 120

Updates to the fscanf Function 124

Updates to the strtod Function 129

New Library Functions 130

New Message Exit Facility 141
New hstrerror Function 150

New oe2errno Function 151

New String Functions 152

New I/O Functions 156

New opcmd Function 162
New Coverage Support Feature 164

The Compiler Part of the Coverage Feature 164

The COOL Part of the Coverage Feature 166

The Coverage Feature Application 166

Extracting Coverage Data 166
JCL for Coverage Sample 167

Sample MAIN (cvgmain.c); 168

Sample Subroutine called by MAIN (cvgmain2.c); 169

42 Introduction � Chapter 2

Sample Dynamically-Loaded Module (cvgdynm.c); 169
Sample Coverage Routine (cvgdump.c); 169

cvg.h Header 171

Sample Output 172

Release 7.50 Changes to the SAS/C Library Reference, Volume 1 173

Updates to Function Categories 173
Math Functions 173

String Utility Functions 174

Timing Functions 174

Updates to the SAS/C Functions 174

llmax 174

SYNOPSIS 174
EXAMPLE 174

llmin 175

SYNOPSIS 175

EXAMPLE 175

storck 175
Updates to Multi-Volume Seeks Support 175

New WTP Function 176

Updates to SAS/C I/O Questions and Answers 176

Updates to Signal-Handling Functions 177

Update to USS Supported Signals 177
Updates to Information on Signals 177

New SIGBFPE and SIGOPER Signals 178

Release 7.50 Changes to the SAS/C Library Reference, Volume 2 180

Updates to Header Files in Function Examples 180

chpriority 180

getpgid 189
getsid 190

chown 191

New oeattach Example 192

Update to loadm Function Description 193

Updates to the osdynalloc Function 193
Updates to the Socket Functions 196

Update to getdtablesize Example 196

New <sys/un.h> Header File 197

Introduction

This chapter provides a complete description of the changes and enhancements to the
SAS/C Library Reference, Volume 1 and SAS/C Library Reference, Volume 2 for Release
7.50.

Release 7.50 Enhancements to the SAS/C Library

Floating-Point Support
SAS/C 7.50 has enhanced its support of floating-point in two ways. It has added

support for IEEE (binary) floating-point arithmetic, and it has implemented new

SAS/C Library Changes in Release 7.50 � Updates to Mathematical Functions 43

floating-point functions from the C99 standard. An overview of IEEE floating-point
support can be found in “Floating-Point Changes for SAS/C Release 7.50” on page 2.

Floating-point support affects a number of different areas in the run-time library,
which are documented in a number of sections of this chapter. Sections of this chapter
relevant to floating-point processing are as follows:

� “Updates to Mathematical Functions” on page 43 gives an overview of using the
mathematical library in release 7.50, including ways in which the processing of
functions from previous releases has changed.

� “New Math Functions” on page 53 describes the mathematical functions that have
been added to SAS/C for this release.

� “New nan, nanf, and nanl Functions” on page 98 describes new functions that can
be used to generate IEEE NaNs (not a number) values.

� “Updates to the SIGFPE Signal” on page 100 describes changes to the processing
of the SIGFPE signal to support IEEE and the C99 math library.

� “Update to float.h Header File” on page 95 lists the SAS/C 7.50 float.h header
file, which has been enhanced to support IEEE floating-point.

� “Updates to the fprintf Function” on page 120 and “Updates to the fscanf Function”
on page 124 describe new format modifiers for the printf and scanf families of
functions to allow a program to specify whether floating-point arguments are
hexadecimnal or binary. These sections also describe changes and enhancements
to the output of the printf family, and the valid input to the scanf family.

� “Updates to the strtod Function” on page 129 describes changes to the processing
of strtod and related functions to support IEEE floating-point.

� “Updates to Function Categories” on page 173 gives information on how various
library functions have changed due to IEEE support.

� “Updates to Signal-Handling Functions” on page 177 describes the new SIGBFPE
signal, which has been added for errors occurring in IEEE computations.

64-Bit Support
SAS/C 7.50 supports programs which execute in the z/Architecture 64-bit addressing

mode. An overview of this support can be found in “64-Bit Support” on page 5.
64-bit support affects a number of different areas in the run-time library, which are

documented in a number of sections of this chapter. Sections of this chapter relevant to
floating-point processing are as follows:

� “New Multiple Heap Functions” on page 102 describes new functionality in heap
management to support allocation of 64-bit addressable memory.

� “Huge Pointer Functions” on page 104 describes functions that have been
enhanced to support 64-bit pointers.

� “Updates to the fprintf Function” on page 120 and “Updates to the fscanf
Function” on page 124 describe new format modifiers for the printf and scanf
families of functions to allow a program to specify whether pointer arguments are
31-bit or 64-bit.

� “New Library Functions” on page 130 describes the IARV64 function, which allows
64-bit addressible memory to be allocated directly from the operating system.

Updates to Mathematical Functions
In Chapter 2, “Function Categories,” replace the section titled, “Mathematical

Functions,”with the following text.

44 Math Header Files � Chapter 2

The SAS/C library of mathematical functions includes the full complement of math
functions from the ANSI/ISO C standard, plus additional functions commonly
implemented on UNIX systems. It also includes the math functions defined by the ISO
C99 standard. All functions are provided for both hexadecimal and binary floating point
inputs. Some functions are not applicable to hexadecimal floating point, and may
return meaningless results when called in that environment.

When a math function is called, the version called is determined by the manner in
which the calling function was compiled. If the bfp option was used, the IEEE function
is called; otherwise, the traditional mainframe function is called. If necessary, the
argument is converted to the proper format first, assuming an appropriate header file
was included.

Math Header Files
The following header files are useful to users of the mathematical library:

fenv.h
defines symbols, types, and functions supporting inspection and modification of the
floating-point environment. These facilities are generally useful only with binary
floating point. This is a standard C99 header file.

fenvtrap.h
defines functions supporting control of floating-point trapping. These facilities are
generally useful only with binary floating point.

float.h
defines preprocessor symbols specifying the characteristics of System/390 floating
point. This is an ANSI/ISO standard header file.

lcfloat.h
defines non-standard preprocessor symbols defining constants, such as infinities
and NaNs, of various types.

lcmath.h
defines non-standard mathematical preprocessor symbols and library functions.

math.h
defines preprocessor symbols and functions supporting the standard mathematical
library. The is a standard ANSI/ISO header file. It includes symbols and function
prototypes from C99. These can be removed by defining the preprocessor symbol
_SASC_HIDE_C99MATHLIB before including math.h.

tgmath.h
defines macro versions of most of the mathematical functions. The macros are
type-generic, that is, the same function name can be used for float, double, or
long double arguments. See “Float and Long Double Functions” on page 53 for
further information.

Preprocessor Symbols
The following lists contain the preprocessor symbols defined by the math-related

header files.
The fenv.h header file contains the following preprocessor symbols:

Exception bits
FE_INVALID

FE_DIVBYZERO

SAS/C Library Changes in Release 7.50 � Preprocessor Symbols 45

FE_OVERFLOW

FE_UNDERFLOW

FE_INEXACT

FE_ALL_EXCEPT

Rounding modes
FE_TONEAREST

FE_TOWARDZERO

FE_UPWARD

FE_DOWNWARD

Default floating point environment
FE_DFL_ENV

Note: If the bfp option is not used, FE_DFL_ENV is the only symbol that is defined. �

The float.h header file contains the following preprocessor symbols:
FLT_EVAL_METHOD

FLT_RADIX

FLT_ROUNDS

FLT_MANT_DIG

FLT_DIG

FLT_MIN_EXP

FLT_MIN_10_EXP

FLT_MAX_EXP

FLT_MAX_10_EXP

FLT_MAX

FLT_EPSILON

FLT_MIN

DBL_MANT_DIG

DBL_DIG

DBL_MIN_EXP

DBL_MIN_10_EXP

DBL_MAX_EXP

DBL_MAX_10_EXP

DBL_MAX

DBL_EPSILON

DBL_MIN

LDBL_MANT_DIG

LDBL_DIG

LDBL_MIN_EXP

LDBL_MIN_10_EXP

LDBL_MAX_EXP

LDBL_MAX_10_EXP

LDBL_MAX

LDBL_EPSILON

LDBL_MIN

46 Preprocessor Symbols � Chapter 2

Note: See the C standards documents for details on the meanings of these
symbols. �

The lcfloat.h header file contains the following preprocessor symbols:

FLT_INFINITY
specifies a float infinity.

FLT_QNAN
specifies a float quiet not-a-number (NaN).

FLT_SNAN
specifies a float signaling NaN.

DBL_INFINITY
specifies a double infinity.

DBL_QNAN
specifies a double quiet NaN.

DBL_SNAN
specifies a double signaling NaN.

LDBL_INFINITY
specifies a long double infinity.

LDBL_QNAN
specifies a long double quiet NaN.

LDBL_SNAN
specifies a long double signaling NaN.

Note: Since hexadecimal floating-point does not support NaNs or infinities, these
symbols have little utility in a hexadecimal floating-point environment. �

The lcmath.h header file contains the following constant representations:

Table 2.1 Constant Values Declared in lcmath.h

Constant Representation

DOMAIN matherr exception code - domain error

SING exception - singularity

OVERFLOW exception - overflow

UNDERFLOW exception - underflow

TLOSS exception - total loss of significance

PLOSS exception - partial loss of significance

M_PI The constant �

M_PI_2 �/2

M_PI_4 �/4

M_1_PI 1/�

M_2_PI 2/�

M_E The constant e

HUGE The largest finite double

TINY The smallest non-zero positive double

SAS/C Library Changes in Release 7.50 � Type Definitions 47

Constant Representation

LOGHUGE log(HUGE)

LOGTINY log(TINY)

The math.h header file contains the following preprocessor symbols:

HUGE_VALF
the largest float, possibly infinite

HUGE_VAL
the largest double, possibly infinite

HUGE_VALL
the largest long double, possibly infinite

INFINITY
positive infinity (compile-time error if not BFP)

NAN
a float quiet NaN (not defined for HFP)

FP_ZERO
number classification macro

FP_NORMAL
number classification macro

FP_SUBNORMAL
number classification macro

FP_INFINITE
number classification macro

FP_NAN
number classification macro

FP_FAST_FMA
fast multiply and add double support - BFP only

FP_FAST_FMAF
fast multiply and add float support - BFP only

FP_FAST_FMAL
fast multiply and add long double support - BFP only

FP_ILOGB0
result of ilogb(0)

FP_ILOGBNAN
result of ilogb(NaN)

MATH_ERRNO
math function error handling constant

MATH_ERREXCEPT
math function error handling constant

math_errhandling
math function error handling constant

Type Definitions
The math header files include definitions of the following types:

48 Function Categories � Chapter 2

<fenv.h>
fenv_t /* represents a floating-point environment */
fexcept_t /* represents floating-point exception information */

<lcmath.h>
struct exception /* A structure containing error information */

<math.h>
float_t /* effective type of float (see C99) */
double_t /* effective type of double (see C99) */

Function Categories
Because of the size of the math library, it is useful to divide it into several

sublibraries of functions with similar characteristics. The categories and the functions
they contain are listed below. Each function name may be followed by a notation
indicating whether the function is defined for arguments of type float or long
double. The notations are as follows:

(f) A variant function accepts float arguments. The name is formed
by adding an f to the end of the base function name.

(g) A type-generic version of the function is defined in tgmath.h.

(l) A variant function accepts long double arguments. The name is
formed by adding an l to the end of the base function name.

(m) The function is a macro, and accepts arguments of any floating-point
type.

Floating-point Environment Functions
These functions enable you to access and manipulate the floating- point environment,

such as exception flags and rounding modes. In general, these functions are useful only
when IEEE floating-point is used. If you do not use the bfp option in your compilation,
these functions have no effect and do not return meaningful results.

Any compilation which uses these functions must include a pragma of the following
form

#pragma STDC FENV_ACCESS ON

in an enclosing scope. If this pragma is not used, the effects of accessing or modifying
the floating-point environment via these functions is undefined. The FENV_ACCESS
pragma may reduce optimization, and therefore should be used only when necessary.

These functions are defined in the header file fenv.h except for fegettrapenable
and fesettrapenable, which are defined in fenvtrap.h. None of these functions
should be used without including the appropriate header file.

The floating-point environment functions are:

feclearexcept clear floating-point exception flags

fegetenv extract the floating-point environment

fegetexceptflag extract floating-point exception flags

fegetround get the floating-point rounding mode

fegettrapenable get the floating-point trap status

SAS/C Library Changes in Release 7.50 � Comparison Functions 49

feholdexcept clear and hold floating-point exceptions

feraiseexcept raise a floating-point exception

fesetenv modify the floating-point environemnt

fesetexceptflag set floating-point exception flags

fesetround set the floating-point rounding mode

fesettrapenable set the floating-point trap status

fetestexcept test for floating-point exceptions

feupdateenv update the floating-point environment

Type Classification Functions
These functions are defined in the header file math.h. With the exception of

copysign, all of these functions are defined as macros that accept any floating-point
argument type. These functions have limited utility with traditional mainframe floating
point.

The type classification functions are:

copysign
(f,g,l)

propagate sign from one value to another

fpclassify
(m)

classify a floating-point value

isfinite (m) test for finite floating-point value

isinf (m) test for infinite floating-point value

isnan (m) test for NaN

isnormal (m) test for normal (non-zero, normalized) floating-point value

signbit (m) return the sign of a floating-point number

Comparison Functions
These functions are defined in the header file math.h. They are defined as generic

macros, and they take any floating-point type for arguments. They differ from the
standard C comparison operators because they do not raise the invalid floating-point
exception if an argument is a NaN. Thus, for traditional mainframe floating-point, which
has no NaNs, they are completely equivalent to the standard operators. Because these
functions are implemented as macros, it is necessary to include math.h to use them.

The comparison functions are:

isgreater (m)
compare for greater than

isgreaterequal (m)
compare for greater than or equal

isless (m)
compare for less than

islessequal (m)
compare for less than or equal

islessgreater (m)

50 Low-level Functions � Chapter 2

compare for less or greater than

isunordered (m)
test for unordered

Low-level Functions
These functions are defined in math.h or lcmath.h. Unlike the transcendental

functions, these functions perform low-level floating-point operations that are often
closely connected with their representation in memory. All of these functions are
defined in the C99 standard except for _ldexp, whose prototype is in the non-standard
header file lcmath.h.

The low-level functions are:

_ldexp fast ldexp implementation

ceil (f,g,l) floating-point ceiling

fabs (f,g,l) floating-point absolute value

fdim (f,g,l) floating-point positive difference

floor (f,g,l) floating-point floor

fma (f,g,l) floating-point multiply and add

fmax (f,g,l) floating-point maximum

fmin (f,g,l) floating-point minimum

fmod (f,g,l) floating point modulus

frexp (f,g,l) split into fraction and exponent

ilogb (f,g,l) integer floating-point exponent

ldexp (f,g,l) scale by power of 2

llrint
(f,g,l)

convert floating-point to long long

llround
(f,g,l)

round floating-point to long long

logb (f,g,l) floating-point exponent

lrint (f,g,l) convert floating-point to long

lround
(f,g,l)

round floating-point to long

modf (f,l) split into integer and fraction

nearbyint
(f,g,l)

return nearest integer

nextafter
(f,g,l)

return next floating-point value

nexttoward
(f,g,l)

return next floating-point value

remainder
(f,g,l)

floating-point remainder

remquo
(f,g,l)

floating-point remainder and partial quotient

SAS/C Library Changes in Release 7.50 � Transcendental Functions 51

rint (f,g,l) convert to floating-point integer

round (f,g,l) round to floating-point integer

scalbln
(f,g,l)

scale by power of radix (long exponent)

scalbn
(f,g,l)

scale by power of radix (int exponent)

trunc (f,g,l) truncate to floating-point integer

Transcendental Functions
These functions are the functions traditionally known as math functions. They have

mathematical definitions with no direct relationship to their hardware representations.
Most of these functions are defined in the C99 standard. The functions, gamma, j0,

j1, jn, y0, y1, and yn are non-standard functions frequently implemented in UNIX
systems. The prototypes for these functions are in the non-standard header file
lcmath.h.

acos (f,g,l) arc cosine

acosh (f,g,l) arc hyperbolic cosine

asin (f,g,l) arc sine

asinh (f,g,l) arc hyperbolic sine

atan (f,g,l) arc tangent

atan2 (f,g,l) arc tangent of quotient

atanh (f,g,l) arc hyperbolic tangent

cbrt (f,g,l) cube root

cos (f,g,l) cosine

cosh (f,g,l) hyperbolic cosine

erf (f,g,l) error function

erfc (f,g,l) complementary error function

exp (f,g,l) exponential

exp2 (f,g,l) binary exponential (2 ** x)

expm1 (f,g,l) exponential minus 1

gamma log gamma function

hypot (f,g,l) hypoteneuse

j0 Bessel function of the first kind, order 0

j1 Bessel function of the first kind, order 1

jn Bessel function of the first kind, order n

lgamma
(f,g,l)

log gamma function

log (f,g,l) logarithm base e

log10 (f,g,l) logarithm base 10

52 Math Function Error Handling � Chapter 2

log1p (f,g,l) logarithm of argument plus 1

log2 (f,g,l) logarithm base 2

pow (f,g,l) power function

sin (f,g,l) sine

sinh (f,g,l) hyperbolic sine

sqrt (f,g,l) square root

tan (f,g,l) tangent

tanh (f,g,l) hyperbolic tangent

tgamma
(f,g,l)

gamma function

y0 Bessel function of the second kind, order 0

y1 Bessel function of the second kind, order 1

yn Bessel function of the second kind, order n

Math Function Error Handling
Most of the transcendental math functions are subject to errors. Errors may be

broadly characterized as domain errors, where a function is called in a way that is not
mathematically meaningful, for example, sqrt(-5.0), and range errors, where the
function result cannot be represented, for example, exp(10000.0). The transcendental
math library handles these errors in a uniform way that the following list provides
details for.

� The transcendental functions will not trap, even if fesettrapenable has been
used to enable trapping. When IEEE floating-point is used, the function
feupdateenv can be used after a math function call to cause error trapping if that
is what you want.

� When hexadecimal floating point is used, an error in a math function is indicated
by setting errno. The function return value will depend on the function and the
error, but will often be HUGE_VAL or -HUGE_VAL.

� When binary floating point is used, an error in a transcendental math function is
indicated by setting the IEEE status flags appropriately. errno is also set. The
function return value will depend on the function, the error and the rounding
mode, and will often be a NaN or an infinity.

� If an error occurs in a transcendental math function, a library diagnostic message
will generally be written to stderr. This can be controlled by defining an exit
routine which can optionally suppress the message and change the function return
value. The exit routine is called _matherr for hexadecimal floating point, and
_matherb for binary floating point. See the descriptions of these functions in
SAS/C Library Reference, Volume 1 for more details.

� Passing a NaN to a math function will generally cause a NaN to be returned. No
diagnostic message will be written in this case.

� An IEEE mathematical function may set the IEEE inexact bit, but this is not
considered an error. The bit may be set even when the result is exact, for example,
for log10(1000.0).

The above rules apply specifically to the transcendental functions. The low-level
functions are oriented towards performance rather than error detection, and may not
abide by all these rules. In particular, a low-level function might trap, might fail

SAS/C Library Changes in Release 7.50 � New Math Functions 53

without producing a diagnostic or setting errno, and might produce a diagnostic without
calling _matherr or _matherb. For IEEE floating-point, these low-level functions will
set the floating-point status bits correctly, even when they do not write a diagnostic or
set errno.

Float and Long Double Functions
For most of the functions discussed above, the most commonly used form is one that

accepts double arguments and returns double results. Depending on the function, the
C99 standard defines two different ways that these functions may be generalized to
accept float or long double arguments.

Some functions are defined as macros, which can accept any floating-point type. For
example,

float fl;
double d;
long double ld;

if (isnormal(fl) /* float argument */ &&
isnormal(d) /* double argument */ &&
isnormal(ld)) /* long double argument */ ...

The macros produce undefined results if they are passed an argument that does not
have floating-point type. A call such as isnormal(4) is not valid.

The remaining functions are defined as families of functions. They comprise a base
function accepting double arguments and related functions accepting float arguments
and long double arguments. For example,

ld = asinf(fl) /* float argument */ +
acos(d) /* double argument */ +
atan2l(ld, ld+1); /* long double arguments */

Because these are functions defined by prototypes in math.h, they can be called with
arguments which fail to match the expected type; such arguments will be converted, or
diagnosed as incorrect if conversion is impossible. For example, the following expression

sqrt(fl) /* argument converted to double */ *
cbrtf(6) /* argument converted to float */

is valid and well-defined.
Because use of the traditional function names without any suffixes can add clarity

and readability to code, C99 also added the tgmath.h header file. When this header file
is included, most of the mathematical functions are redefined as type-generic macros,
which select the proper function based on the type of their arguments. Thus, if
tgmath.h is included, the expression acos(f) will invoke the float arc-cosine function,
acosf, without converting the argument to double.

Note that, in many cases, the float and long double versions of a function can call the
double version. If a call to a float or long double function version is incorrect, the
generated diagnostic might reference the double function name, depending on where
the error was detected.

New Math Functions
Add the following function descriptions to Chapter 6, “Function Descriptions” in

SAS/C Library Reference, Volume 1.
The C99 portability term indicates that the function is defined by C99, not by C89.

54 acosh � Chapter 2

acosh

Compute the inverse hyperbolic cosine

Portability: C99

SYNOPSIS
#include <math.h>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

DESCRIPTION
acosh computes the inverse hyperbolic cosine of the argument x, expressed by the
following relation:

� � ������ ���

x must not be less than 1.0.
The function name acoshf should be used for float arguments, and acoshl for

long double arguments. Alternately, if the header file tgmath.h is included, acosh
may be used with any numeric argument type.

RETURN VALUE
acosh returns the inverse hyperbolic cosine of the argument x, provided that this value
is defined and expressible. The value returned will be positive or zero, except in the
case of a domain error.

DIAGNOSTICS
An error message is written to the standard error file (stderr) by the runtime library if
x is less than 1.0. In this case, acosh returns 0.0 for HFP, or a NaN for BFP.

RELATED FUNCTIONS
asinh, atanh, _matherb, _matherr

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

asinh

Compute the inverse hyperbolic sine

SAS/C Library Changes in Release 7.50 � atanh 55

Portability: C99

SYNOPSIS
#include <math.h>

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

DESCRIPTION
asinh computes the inverse hyperbolic sine of the argument x, expressed by the
following relation:

� � ������ ���

The function name asinhf should be used for float arguments, and asinhl for long
double arguments. Alternately, if the header file tgmath.h is included, asinh may be
used with any numeric argument type.

RETURN VALUE
asinh returns the inverse hyperbolic sine of the argument x.

RELATED FUNCTIONS
acosh, atanh

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

atanh

Compute the inverse hyperbolic tangent

Portability: C99

SYNOPSIS
#include <math.h>

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

56 cbrt � Chapter 2

DESCRIPTION
atanh computes the inverse hyperbolic sine of the argument x, expressed by the
following relation:

� � ������ ���

The function name atanhf should be used for float arguments, and atanhl for long
double arguments. Alternately, if the header file tgmath.h is included, atanh may be
used with any numeric argument type.

RETURN VALUE
atanh returns the inverse hyperbolic tangent of the argument x, provided that this
value is defined and expressible.

DIAGNOSTICS
An error message is written to the standard error file (stderr) by the runtime library if
x is outside the valid domain. In this case, atanh returns plus or minus HUGE_VAL for
HFP, or a NaN for BFP. In BFP, atanh(-1.0) evaluates to negative infinity, and
atanh(+1.0) to positive infinity.

If an error occurs in atanh, the _matherr or _matherb routine is called. You can
supply your own version of_matherr or _matherb to suppress the diagnostic message or
modify the value returned.

RELATED FUNCTIONS
acosh, asinh, _matherb, _matherr

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

cbrt

Compute the Cube Root

Portability: C99

SYNOPSIS
#include <math.h>

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

DESCRIPTION
The cbrt function takes the cube root of its argument x.

SAS/C Library Changes in Release 7.50 � copysign 57

The function name cbrtf should be used for float arguments, and cbrtl for long
double arguments. Alternately, if the header file tgmath.h is included, cbrt may be
used with any numeric argument type.

RETURN VALUE
cbrt returns the cube root of its argument.

RELATED FUNCTIONS
sqrt, pow

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

copysign

Propagate the sign of a floating-point number to another

Portability: C99

SYNOPSIS
#include <math.h>

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

DESCRIPTION
The copysign function generates a floating-point result with the magnitude of the first
argument and the sign of the second argument. In other words, it propagates the sign
bit of the second argument to the first.

The function name copysignf should be used for float arguments, and copysignl
for long double arguments. Alternately, if the header file tgmath.h is included,
copysign may be used with any numeric argument type.

RETURN VALUE
The value of the first argument, with the sign of the second.

RELATED FUNCTIONS
signbit

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

58 exp2 � Chapter 2

exp2

Compute the base 2 exponential function

Portability: C99

SYNOPSIS

#include <math.h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

DESCRIPTION

exp2 computes the the base 2 exponential function of its argument x. This function is
expressed by the following relation:

� � �
�

The function name exp2f should be used for float arguments, and exp2l for long
double arguments. Alternately, if the header file tgmath.h is included, exp2 may be
used with any numeric argument type.

RETURN VALUE

exp2 returns the base 2 exponential function of its argument, provided this value is
expressible.

DIAGNOSTICS

If the result of exp2 is too large to represent, it returns HUGE_VAL in hexadecimal
floating point, and either infinity or the largest finite value in binary floating point,
depending on the rounding mode. In this case, the run-time library writes an error
message to the standard error file (stderr).

If an error occurs in exp2, the _matherr or _matherb routine is called. You can
supply your own version of _matherr or _matherb to suppress the diagnostic message
or modify the value returned.

RELATED FUNCTIONS

exp, log2, _matherb, _matherr

SEE ALSO

“Mathematical Functions” in Chapter 2, “Function Categories”

SAS/C Library Changes in Release 7.50 � expm1 59

expm1

Compute the exponential function minus 1

Portability: C99

SYNOPSIS
#include <math.h>

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

DESCRIPTION

exmp1 computes the exponential function of its argument x. This function is expressed
by the relation:

� � �
�
� �

where e is the base of natural logarithms, 2.7128...
The function name expm1f should be used for float arguments, and expm1l for

long double arguments. Alternately, if the header file tgmath.h is included, expm1
may be used with any numeric argument type.

RETURN VALUE
expm1 returns the exponential function of its argument minus 1, provided this value is
expressible.

DIAGNOSTICS
If the result of expm1 is too large to represent, it returns HUGE_VAL in hexadecimal
floating point, and either infinity or the largest finite value in binary floating point,
depending on the rounding mode. In this case, the run-time library writes an error
message to the standard error file (stderr).

If an error occurs in expm1, the _matherr or _matherb routine is called. You can
supply your own version of _matherr or _matherb to suppress the diagnostic message
or modify the value returned.

RELATED FUNCTIONS

exp, log1p, _matherb, _matherr

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

60 fdim � Chapter 2

fdim

Compute the floating point positive difference

Portability: C99

SYNOPSIS
#include <math.h>

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

DESCRIPTION
fdim computes the positive difference of its arguments x and y. The positive difference
is defined as x-y if x is greater than y, and 0 otherwise, unless either argument is a
NaN, in which case the result is a NaN.

The function name fdimf should be used for float arguments, and fdiml for long
double arguments. Alternately, if the header file tgmath.h is included, fdim may be
used with any numeric argument type.

RETURN VALUE
fdim returns the positive difference of x and y, as defined above.

IMPLEMENTATIONS
For binary floating-point, fdim is implemented as a built-in function unless it is
undefined by a #undef statement.

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

feclearexcept

Clear floating point exceptions

Portability: C99

SYNOPSIS
#include <fenv.h>

void feclearexcept(int excepts);

SAS/C Library Changes in Release 7.50 � fegetenv 61

DESCRIPTION
feclearexcept is used to clear specified exception flags in the current floating-point
environment. The argument specifies the flags to be cleared as the sum of one or more
of the exception names defined in fenv.h.

RETURN VALUE
feclearexcept has no return value.

CAUTIONS
feclearexcept has no effect when called from a function whose default floating-point
format is hexadecimal, that is, one compiled without the bfp option.

A program which calls feclearexcept must use the standard FENV_ACCESS
pragma in an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
fegetexceptflag, feraiseexcept, fesetexceptflag, fetestexcept

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

fegetenv
Store the current floating point environment

Portability: C99

SYNOPSIS
#include <fenv.h>

void fegetenv(fenv_t *envp);

DESCRIPTION
fegetenv is used to store the current floating-point environment in the location
addressed by the envp argument. The floating-point environment includes the
exception bits, the rounding mode, and the definition of the exceptions for which
trapping is enabled.

RETURN VALUE
fegetenv has no return value.

CAUTIONS
fegetenv stores a dummy value as the environment when called from a function whose
default floating-point format is hexadecimal, that is, one compiled without the bfp
option.

62 fegetexceptflag � Chapter 2

A program which calls fegetenv must use the standard FENV_ACCESS pragma in
an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
feholdexcept, fesetenv, feupdateenv

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

fegetexceptflag

Extract floating point exception flags

Portability: C99

SYNOPSIS
#include <fenv.h>

void fegetexceptflag(fexcept_t *flags, int excepts);

DESCRIPTION
fegetexceptflag is used to extract the exception flag settings in the current
floating-point environment. The flags argument points to the location where the flags
should be stored; the excepts argument is the sum of one or more floating-point
exception names indicating which flags are to be extracted.

For SAS/C, the flags pointer addresses a character which contains the sum of the
requested flags which were set in the current environment. If you depend on this
format, it will make your program non-portable.

RETURN VALUE
fegetexceptflag has no return value.

CAUTIONS
fegetexceptflag has no effect when called from a function whose default
floating-point format is hexadecimal, that is, one compiled without the bfp option.

A program which calls fegetexceptflag must use the standard FENV_ACCESS
pragma in an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
feclearexcept, feraiseexcept, fesetexceptflag, fetestexcept

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

SAS/C Library Changes in Release 7.50 � fegettrapenable 63

fegetround

Get the floating point rounding mode

Portability: C99

SYNOPSIS
#include <fenv.h>

int fegetround(void);

DESCRIPTION
fegetround is used to obtain the rounding mode from the current floating-point
environment.

RETURN VALUE
fegetround returns an integer representing the current rounding mode. The integer
will have one of the values FE_TONEAREST, FE_TOWARDZERO, FE_UPWARD or
FE_DOWNWARD, defined in fenv.h. If the rounding mode cannot be meaningfully
determined, a negative value is returned.

CAUTIONS
fegetround returns -1 when called from a function whose default floating-point format
is hexadecimal, that is, one compiled without the bfp option.

A program which calls fegetround must use the standard FENV_ACCESS pragma
in an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
fsetround

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

fegettrapenable

Extract floating point trap enablement flags

Portability: C99

SYNOPSIS
#include <fenvtrap.h>

64 feholdexcept � Chapter 2

int fegettrapenable(void);

DESCRIPTION
fegettrapenable is used to extract the trap enablement flags from the current
floating-point environment.

RETURN VALUE
fegettrapenable returns an integer, which is the sum of the floating-point flags for
which traps are enabled.

CAUTIONS
fegettrapenable returns -1 when called from a function whose default floating-point
format is hexadecimal, that is, one compiled without the bfp option.

A program which calls fegettrapenable must use the standard FENV_ACCESS
pragma in an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
fesettrapenable

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

feholdexcept

Install a non-trapping floating point environment

Portability: C99

SYNOPSIS
#include <fenv.h>

int feholdexcept(fenv_t *envp);

DESCRIPTION
feholdexcept is used to save the current floating-point environment and establish a
new environment in which no floating-point exceptions are indicated, and in which
trapping is not enabled. The existing floating-point environment is stored in the
location addressed by the ENVP argument. The floating-point environment includes the
exception bits, the rounding mode, and the definition of the exceptions for which
trapping is enabled.

RETURN VALUE
feholdexcept returns zero if it was successful, or a non-zero value if it was unable to
establish a non-trapping environment.

SAS/C Library Changes in Release 7.50 � feraiseexcept 65

CAUTIONS
feholdexcept returns -1 when called from a function whose default floating-point
format is hexadecimal, that is, one compiled without the bfp option.

A program which calls feholdexcept must use the standard FENV_ACCESS
pragma in an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
fegetenv, fesetenv, feupdateenv

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

feraiseexcept

Raise floating point exception

Portability: C99

SYNOPSIS
#include <fenv.h>

void feraiseexcept(int excepts);

DESCRIPTION
feraiseexcept raises the floating-point exceptions indicated by the excepts argument,
which should be the sum of one or more of the exception names defined by fenv.h. An
exception is raised by setting the exception bit in the floating-point status. If trapping
is enabled for that exception, the exception will be trapped and a signal will be raised.

RETURN VALUE
feraiseexcept has no return value.

CAUTIONS
feraiseexcept returns -1 when called from a function whose default floating-point
format is hexadecimal, that is, one compiled without the bfp option.

A program which calls feraiseexcept must use the standard FENV_ACCESS
pragma in an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
feclearexcept, fegetexceptflag, fesetexceptflag, fetestexcept

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

66 fesetenv � Chapter 2

fesetenv

Set floating point exception flags

Portability: C99

SYNOPSIS
#include <fenv.h>

void fesetenv(const fenv_t * envp);

DESCRIPTION
fesetenv is used to replace the current floating-point environment by one stored in the
location addressed by the ENVP argument. All elements of the floating-point
environment are replaced, including the exception bits, the rounding mode, and the
exceptions for which trapping is enabled.

RETURN VALUE
fesetenv has no return value.

CAUTIONS
fesetenv has no effect when called from a function whose default floating-point format
is hexadecimal, that is, one compiled without the bfp option.

A program which calls fegetenv must use the standard FENV_ACCESS pragma in
an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
fegetenv, feholdexcept, feupdateenv

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

fesetexceptflag

Set floating point exception flags

Portability: C99

SYNOPSIS
#include <fenv.h>

void fesetexceptflag(const fexcept_t *flags, int excepts);

SAS/C Library Changes in Release 7.50 � fesetround 67

DESCRIPTION
fesetexceptflag is used to set the exception flag settings in the current floating-point
environment. The excepts argument is the sum of one or more floating-point exception
names indicating which flags are to be set. The flags argument addresses the location
from which the new settings of the flags should be taken. In normal usage, the memory
addressed by flags will have been initialized by a previous call to fegetexceptflag.

For SAS/C, the flags pointer addresses a character which contains the sum of the
requested flags which were set in the current environment. If you depend on this
format, it will make your program non-portable.

RETURN VALUE
fesetexceptflag has no return value.

CAUTIONS
fesetexceptflag has no effect when called from a function whose default
floating-point format is hexadecimal, that is, one compiled without the bfp option.

A program which calls fesetexceptflag must use the standard FENV_ACCESS
pragma in an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
feclearexcept, fegetexceptflag, feraiseexcept, fetestexcept

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

fesetround

Set the floating point rounding mode

Portability: C99

SYNOPSIS
#include <fenv.h>

int fesetround(int mode);

DESCRIPTION
fesetround is used to change the rounding mode in the current floating-point
environment. The mode argument must be one of the values FE_TONEAREST,
FE_TOWARDZERO, FE_UPWARD or FE_DOWNWARD, defined in fenv.h.

RETURN VALUE
fesetround returns zero if the request was successful, or a non-zero value if the
request could not be honored.

68 fesettrapenable � Chapter 2

CAUTIONS
fesetround returns -1 when called from a function whose default floating-point format
is hexadecimal, that is, one compiled without the bfp option.

A program which calls fesetround must use the standard FENV_ACCESS pragma
in an enclosing scope, or the effects are unpredictable. The pragma must also be present
in any code with runs with a rounding mode other than the default, FE_TONEAREST.

RELATED FUNCTIONS
fegetround

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

fesettrapenable

Define floating point trap enablement

Portability: C99

SYNOPSIS
#include <fenvtrap.h>

int fesettrapenable(int traps);

DESCRIPTION
fesettrapenable is used to define which floating-point exceptions will cause trapping.
The traps argument should be zero for no trapping or the sum of one or more of the
exception names defined in fenv.h.

RETURN VALUE
fesettrapenable has no return value.

CAUTIONS
fesettrapenable returns -1 when called from a function whose default floating-point
format is hexadecimal, that is, one compiled without the bfp option.

A program which calls fesettrapenable must use the standard FENV_ACCESS
pragma in an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
fegettrapenable

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

SAS/C Library Changes in Release 7.50 � feupdateenv 69

fetestexcept

Test floating point exception flags

Portability: C99

SYNOPSIS
#include <fenv.h>

int fetestexcept(int excepts);

DESCRIPTION
fetestexcept is used to test the exception flag settings in the current floating-point
environment. The excepts argument is the sum of one or more floating-point exception
names indicating which flags are to be tested.

RETURN VALUE
fetestexcept returns the sum of the exception names for the subset of the requested
exceptions which are set in the current environment.

CAUTIONS
fetestexcept has no meaning when called from a function whose default floating-point
format is hexadecimal, that is, one compiled without the bfp option. If called, it returns
zero.

A program which calls fegetenv must use the standard FENV_ACCESS pragma in
an enclosing scope, or the effects are unpredictable.

RELATED FUNCTIONS
feclearexcept, fegetexceptflag, feraiseexcept, fesetexceptflag

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

feupdateenv

Restore floating point environment and propagate exceptions

Portability: C99

SYNOPSIS
#include <fenv.h>

70 fma � Chapter 2

void feupdateenv(const fenv_t * envp);

DESCRIPTION
feupdateenv temporarily saves the floating-point status from the current floating-point
environment. It then establishes a new floating-point environment from the location
addressed by envp, and raises the exceptions saved from the previous environment. An
exception is raised by setting the exception bit in the floating-point status. If trapping
is enabled for that exception, the exception will be trapped and a signal will be raised.
If multiple exceptions are raised, the order in which they are raised is undefined, except
that overflow or underflow must precede inexact.

RETURN VALUE
feupdateenv has no return value.

CAUTIONS
feupdateenv returns -1 when called from a function whose default floating-point
format is hexadecimal, that is, one compiled without the bfp option.

A program which calls feupdateenv must use the standard FENV_ACCESS pragma
in an enclosing scope, or the effects are unpredictable.

USAGE NOTES
A typical scenario for use of this function would be to call feholdexcept to reset the
exception flags and prevent trapping, then to perform a calculation with assurance that
trapping will not occur, and then to call feupdateenv to restore the previous
environment, possibly trapping for exceptions which occurred during the calculation.

RELATED FUNCTIONS
fegetenv, feholdexcept, fesetenv

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

fma

Compute floating-point multiply and add functions

Portability: C99

SYNOPSIS
#include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

SAS/C Library Changes in Release 7.50 � fpclassify 71

DESCRIPTION
fma computes x*y+z as if it was a single operation rounded according to the current
rounding mode. For binary floating point, the performance of fma will be better than
the performance of the equivalent expression, so long as a #undef is not used to
undefine fma. For hexadecimal floating point, fma performs considerably worse than
the defining expression above. The symbol FP_FAST_FMA can be tested to portably
determine if the use of fma is advantageous.

The function name fmaf should be used for float arguments, and fmal for long
double arguments. Alternately, if the header file tgmath.h is included, fma may be
used with any numeric argument type.

RETURN VALUE
fma returns x*y+z, computed as a single operation, if it is expressible in the return type.

IMPLEMENTATIONS
For binary floating-point, fma is implemented as a built-in function unless it is
undefined by a #undef statement.

DIAGNOSTICS
For binary floating point, if the fma function is not undefined, any floating-point
exceptions produced during its execution will be raised in the normal fashion, perhaps
with trapping. No diagnostic message will be generated, and errno will not be set. If
the built-in fma is undefined, overflow or underflow will cause a diagnostic message to
be generated, and trapping will not occur.

The error behavior for hexadecimal floating point is the same as for binary when the
built-in function is undefined, that is, errors will be diagnosed, and errno will be set.

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

fpclassify

Classify floating-point number

Portability: C99

SYNOPSIS
#include <math.h>

int fpclassify(floating x);

DESCRIPTION
fpclassify determines the class of numbers to which its argument belongs. The
argument may be of any floating point type.

72 ilogb � Chapter 2

RETURN VALUE
fpclassify returns one of the values FP_ZERO, FP_INFINITE, FP_NORMAL,
FP_SUBNORMAL, or FP_NAN to indicate a zero, infinite, normal, subnormal (or
denormalized), or invalid (NaN) value.

USAGE NOTES
When called from a function compiled without the bfp option, fpclassify will always
return either FP_ZERO or FP_NORMAL.

RELATED FUNCTIONS
isfinite, isinf, isnan, isnormal

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

ilogb

Extract the floating-point exponent

Portability: C99

SYNOPSIS
#include <math.h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

DESCRIPTION
ilogb extracts the exponent of a floating-point number. For hexadecimal floating point,
the exponent represents a power of sixteen; for binary, it represents a power of two.

The function name ilogbf should be used for float arguments, and ilogbl for
long double arguments. Alternately, if the header file tgmath.h is included, ilogb
may be used with any numeric argument type.

RETURN VALUE
ilogb returns the exponent of the argument as an integer. ilogb(0.0) returns the
value FP_ILOGB0, and ilogb(NaN) returns FP_ILOGBNAN. ilogb(infinity) returns
the largest integer value.

RELATED FUNCTIONS
frexp, logb

SAS/C Library Changes in Release 7.50 � isgreater 73

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

isfinite

Test for finite floating-point number

Portability: C99

SYNOPSIS
#include <math.h>

int isfinite(floating x);

DESCRIPTION
isfinite tests whether its argument is a finite number, that is, not infinite, and not a
NaN.

RETURN VALUE
isfinite returns zero if its argument is not finite, and a non-zero value otherwise.

USAGE NOTES
When called from a compilation compiled without the bfp option, isfinite always
returns non-zero.

RELATED FUNCTIONS
fpclassify, isinf, isnan, isnormal

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

isgreater

Floating-point greater than comparison

Portability: C99

SYNOPSIS
#include <math.h>

74 isgreaterequal � Chapter 2

int isgreater(floating x, floating y);

DESCRIPTION
isgreater returns whether its first argument, x, is greater than its second argument,
y. No floating point exception is raised if an argument is a NaN.

RETURN VALUE
1 if x is greater than y, and zero otherwise.

RELATED FUNCTIONS
isgreaterequal, isless, islessequal, islessgreater, isunordered

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

isgreaterequal
Floating-point greater than or equal to comparison

Portability: C99

SYNOPSIS
#include <math.h>

int isgreaterequal(floating x, floating y);

DESCRIPTION
isgreaterequal returns whether its first argument, x, is greater than or equal to its
second argument, y. No floating point exception is raised if an argument is a NaN.

RETURN VALUE
1 if x is greater than or equal to y, and zero otherwise.

RELATED FUNCTIONS
isgreater, isless, islessequal, islessgreater, isunordered

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

isinf
Test for infinite floating-point number

SAS/C Library Changes in Release 7.50 � isless 75

Portability: C99

SYNOPSIS
#include <math.h>

int isinf(floating x);

DESCRIPTION
isinf tests whether its argument is a infinite number, that is, plus or minus infinity.

RETURN VALUE
isinf returns zero if its argument is not infinite, and a non-zero value otherwise.

USAGE NOTES
When called from a compilation compiled without the bfp option, isinf always returns
zero.

RELATED FUNCTIONS
fpclassify, isfinite, isnan, isnormal

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

isless

Floating-point less than comparison

Portability: C99

SYNOPSIS
#include <math.h>

int isless(floating x, floating y);

DESCRIPTION
isless returns whether its first argument, x, is less than its second argument, y. No
floating point exception is raised if an argument is a NaN.

RETURN VALUE
1 if x is less than y, and zero otherwise.

76 islessequal � Chapter 2

RELATED FUNCTIONS
isgreater, isgreaterequal, islessequal, islessgreater, isunordered

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

islessequal

Floating-point less than or equal to comparison

Portability: C99

SYNOPSIS
#include <math.h>

int islessequal(floating x, floating y);

DESCRIPTION
islessequal returns whether its first argument, x, is less than or equal to its second
argument, y. No floating point exception is raised if an argument is a NaN.

RETURN VALUE
1 if x is less than or equal to y, and zero otherwise.

RELATED FUNCTIONS
isgreater, isgreaterequal, isless, islessgreater, isunordered

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

islessgreater

Floating-point less than or greater than comparison

Portability: C99

SYNOPSIS
#include <math.h>

int islessgreater(floating x, floating y);

SAS/C Library Changes in Release 7.50 � isnan 77

DESCRIPTION
islessgreater returns whether its first argument, x, is greater than or less than its
second argument, y. No floating point exception is raised if an argument is a NaN.

RETURN VALUE
1 if x is greater than or less than y, and zero otherwise.

RELATED FUNCTIONS
isgreater, isless, islessequal, islessgreater, isunordered

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

isnan

Test for floating-point NaN

Portability: C99

SYNOPSIS
#include <math.h>

int isnan(floating x);

DESCRIPTION
isnan tests whether its argument is a NaN.

RETURN VALUE
isnan returns zero if its argument is not a NaN, and a non-zero value otherwise.

USAGE NOTES
When called from a compilation compiled without the bfp option, isnan always returns
zero.

RELATED FUNCTIONS
fpclassify, isfinite, isinf, isnormal

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

78 isnormal � Chapter 2

isnormal
Test for normal floating-point number

Portability: C99

SYNOPSIS
#include <math.h>

int isnormal(floating x);

DESCRIPTION
isnormal tests whether its argument is a normal floating-point number, that is, not
zero, not infinite, not denormalized, and not a NaN.

RETURN VALUE
isnormal returns zero if its argument is a normal floating-point number, and a
non-zero value otherwise.

USAGE NOTES
When called from a compilation compiled without the bfp option, isnormal always
returns zero for a zero argument and non-zero otherwise.

RELATED FUNCTIONS
fpclassify, isfinite, isinf, isnan

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

isunordered
Floating-point unordered comparison

Portability: C99

SYNOPSIS
#include <math.h>

int isunordered(floating x, floating y);

DESCRIPTION
isunordered returns whether its two arguments, x and y, may be compared. It returns
non-zero if either argument is a NaN (Nan’s cannot be compared), or returns zero if

SAS/C Library Changes in Release 7.50 � llrint 79

neither argument is a NaN. No floating point exception is raised if an argument is a
NaN.

RETURN VALUE
1 if x and y are unordered, and zero otherwise.

RELATED FUNCTIONS
isgreater, isgreaterequal, isless, islessequal, islessgreater

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

llrint

Convert floating-point to long long integer

Portability: C99

SYNOPSIS
#include <math.h>

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

DESCRIPTION
llrint converts its argument to an integral value using the current rounding mode
and returns it as a long long integer.

The function name llrintf should be used for float arguments, and llrintl for
long double arguments. Alternately, if the header file tgmath.h is included, llrint
may be used with any numeric argument type.

RETURN VALUE
llrint returns its argument converted to a long long integer. If the result is outside
the range of long long integer, the return value is unpredictable.

IMPLEMENTATION
llrint is implemented as a built-in function unless it is undefined by a #undef
statement.

RELATED FUNCTIONS
ceil, floor, llround, lrint, lround, nearbyint, rint, round, trunc

80 llround � Chapter 2

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

llround

Round floating-point to long long integer

Portability: C99

SYNOPSIS
#include <math.h>

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

DESCRIPTION
llround rounds its argument to the nearest integral value and returns it as a long
long integer. If two results are equally near, lround rounds away from zero.

The function name llroundf should be used for float arguments, and llroundl for
long double arguments. Alternately, if the header file tgmath.h is included, llround
may be used with any numeric argument type.

RETURN VALUE
llround returns its argument rounded to the nearest integer.

IMPLEMENTATION
llround is implemented as a built-in function unless it is undefined by a #undef
statement.

RELATED FUNCTIONS
ceil, floor, llrint, lrint, lround, nearbyint, rint, round, trunc

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

log1p

Logarithm plus 1 function

Portability: C99

SAS/C Library Changes in Release 7.50 � log2 81

SYNOPSIS
#include <math.h>

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

DESCRIPTION
log1p computes the natural logarithm of one plus its argument x. This function is
expressed by the relation:

y = ln(1 + x)

x must be greater than -1.0.
The function name log1pf should be used for float arguments, and log1pl for

long double arguments. Alternately, if the header file tgmath.h is included, log1p
may be used with any numeric argument type.

RETURN VALUE
log1p returns the natural logarithm of one plus its argument, provided this value is
defined and expressible.

DIAGNOSTICS
If the argument of log1p is invalid, it returns -HUGE_VAL in hexadecimal floating point,
or a NaN in binary floating point. In this case, the run-time library writes an error
message to the standard error file stderr. log1p(-1.0) returns negative infinity in
binary floating point.

RELATED FUNCTIONS
expm1, log, log1p, _matherb, _matherr

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

log2

Compute the logarithm base 2

Portability: C99

SYNOPSIS
#include <math.h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

82 logb � Chapter 2

DESCRIPTION
log2 computes the binary (base 2) logarithm of its argument x. x must be greater than
zero.

The function name log2f should be used for float arguments, and log2l for long
double arguments. Alternately, if the header file tgmath.h is included, log2 may be
used with any numeric argument type.

RETURN VALUE
log2 returns the binary (base 2) logarithm of its argument, provided this value is
defined and expressible.

DIAGNOSTICS
If the argument of log2 is invalid, it returns -HUGE_VAL in hexadecimal floating point,
or a NaN in binary floating point. In this case, the run-time library writes an error
message to the standard error file stderr. log2(0.0) returns negative infinity in
binary floating point.

If an error occurs in log2, the _matherr or _matherb routine is called. You can
supply your own version of _matherr or _matherb to suppress the diagnostic message
or modify the value returned.

RELATED FUNCTIONS
exp2, log, _matherb, _matherr

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

logb

Extract the floating-point exponent

Portability: C99

SYNOPSIS
#include <math.h>

double logb(double x);
float logbf(float x);
long double logbl(long double x);

DESCRIPTION
logb extracts the exponent of a floating-point number. For hexadecimal floating point,
the exponent represents a power of sixteen; for binary, it represents a power of two.

Note: The value returned by logb is an exact integer, even though its type is
double. �

SAS/C Library Changes in Release 7.50 � lrint 83

The function name logbf should be used for float arguments, and logbl for long
double arguments. Alternately, if the header file tgmath.h is included, logb may be
used with any numeric argument type.

RETURN VALUE
logb returns the exponent of the argument as a floating-point value. logb(0.0)
returns minus infinity (or -HUGE_VAL for HFP), and logb(NaN) returns a NaN.
logb(infinity) returns positive infinity.

RELATED FUNCTIONS
frexp, ilogb

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

lrint
Convert floating-point to long integer

Portability: C99

SYNOPSIS
#include <math.h>

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

DESCRIPTION
lrint uses the current rounding mode to convert its argument to an integral value and
returns it as a long integer.

The function name lrintf should be used for float arguments, and lrintl for
long double arguments. Alternately, if the header file tgmath.h is included, lrint
may be used with any numeric argument type.

RETURN VALUE
lrint returns its argument converted to a long integer. If the result is outside the
range of long integer, the return value is unpredictable.

IMPLEMENTATION
lrint is implemented as a built-in function unless it is undefined by a #undef
statement.

RELATED FUNCTIONS
ceil, floor, llrint, llround, lround, nearbyint, rint, round, trunc

84 lround � Chapter 2

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

lround

Round floating-point to long integer

Portability: C99

SYNOPSIS
#include <math.h>

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

DESCRIPTION
lround rounds its argument to the nearest integral value and returns it as a long
integer. If two results are equally near, lround rounds away from zero.

The function name lroundf should be used for float arguments, and lroundl for
long double arguments. Alternately, if the header file tgmath.h is included, lround
may be used with any numeric argument type.

RETURN VALUE
lround returns its argument rounded to the nearest integer.

IMPLEMENTATION
lround is implemented as a built-in function unless it is undefined by a #undef
statement.

RELATED FUNCTIONS
ceil, floor, llrint, llround, lrint, nearbyint, rint, round, trunc

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

_matherb

Handle Math Function Error (Binary Floating Point)

Portability: C99

SAS/C Library Changes in Release 7.50 � _matherb 85

SYNOPSIS
#include <lcmath.h>

int _matherb(struct exception *x);

DESCRIPTION
_matherb is called whenever an IEEE transcendental function detects an error.
_matherb receives an exception block as an argument describing the error. This
structure is defined in <lcmath.h>:

struct exception {
int type; /* error type */
_ _near char *name; /* name of failed function */
double arg1; /* first argument */
double arg2; /* second argument */
double retval; /* proposed return value */
int flterr; /* if non-0, failing function returns float */

};

The error type names defined in <lcmath.h> are:

Error Type Definition

DOMAIN domain error

SING singularity

OVERFLOW overflow

UNDERFLOW underflow

TLOSS total loss of significance

PLOSS partial loss of significance

RETURN VALUE
If _matherb returns 0, a diagnostic message is written to the standard error file
(stderr). If _matherb returns a nonzero value, the diagnostic message is suppressed,
and the calling function will return the value stored in retval to its caller.

PORTABILITY
Traditional UNIX C compilers support the functionality of _matherb using the name
matherr. Unfortunately, using the name matherr conflicts with the ANSI Standard.
However, the header file lcmath.h contains the following macro:

#define matherr _matherb

If you include this header file, use the name that is compatible with traditional UNIX C
compilers.

IMPLEMENTATION
The standard version of _matherb supplied in the library places the appropriate error
number into the external integer errno and returns zero. When _matherb is called, the

86 nearbyint � Chapter 2

function that detected the error places its proposed return value into the exception
structure. The zero return code indicates that the proposed return value should not be
changed.

Supply your own version of _matherb if desired. On particular errors, it may be
desirable to cause the function detecting the error to return a value other than its usual
default. You can accomplish this by storing a new return value in retval of the
exception structure and then returning a nonzero value from _matherb, which forces
the function to pick up the new value from the exception structure. If a nonzero value
is returned, a diagnostic message is not printed for the error.

RELATED FUNCTIONS
_matherr, quiet

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

nearbyint
Convert to floating-point integer

Portability: C99

SYNOPSIS
#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

DESCRIPTION
nearbyint converts its argument to an integral value using the current rounding mode,
and returns it as a floating-point value. The inexact floating-point exception is not
raised.

The function name nearbyintf should be used for float arguments, and
nearbyintl for long double arguments. Alternately, if the header file tgmath.h is
included, nearbyint may be used with any numeric argument type.

RETURN VALUE
nearbyint returns its argument converted to an integer.

IMPLEMENTATION
nearbyint is implemented as a built-in function unless it is undefined by a #undef
statement.

USAGE NOTES
For hexadecimal floating-point, the nearbyint function is identical to the rint function.

SAS/C Library Changes in Release 7.50 � nexttoward 87

RELATED FUNCTIONS
ceil, floor, llrint, llround, lrint, lround, rint, round, trunc

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

nextafter

Compute the next floating-number in a specific direction

Portability: C99

SYNOPSIS
#include <math.h>

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

DESCRIPTION
nextafter returns the next representable value after x in the direction of y. That is, if
y > x, then the value returned is the next double greater than x; if y < x, the the
value returned is the next double less than x; and if y == x, the value returned is y.

The function name nextafterf should be used for float arguments, and
nextafterl for long double arguments. Alternately, if the header file tgmath.h is
included, nextafter may be used with any numeric argument type.

RETURN VALUE
nextafter returns the next value after x (see DESCRIPTION).

RELATED FUNCTIONS
nexttoward

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

nexttoward

Compute the next floating-number in a specific direction

Portability: C99

88 remainder � Chapter 2

SYNOPSIS
#include <math.h>

double nexttoward(double x, double y);
float nexttowardf(float x, float y);
long double nexttowardl(long double x, long double y);

DESCRIPTION
nexttoward returns the next representable value after x in the direction of y. That is,
if y > x, then the value returned is the next double greater than x; if y < x, the the
value returned is the next double less than x; and if y == x, the value returned is y.

The function name nexttowardf should be used for float arguments, and
nexttowardl for long double arguments. Alternately, if the header file tgmath.h is
included, nexttoward may be used with any numeric argument type.

RETURN VALUE
nexttoward returns the next value after x. See DESCRIPTION.

RELATED FUNCTIONS
nextafter

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

remainder

Compute the floating-point remainder function

Portability: C99

SYNOPSIS
#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

DESCRIPTION
remainder produces the remainder when the first argument, x, is divided by the second
argument, y. Both arguments are assumed to be exact, and the division is performed
exactly. The remainder is computed using a rounded integer quotient. If the fractional
part of the quotient is 0.5, the quotient is rounded to an even value.

The function name remainderf should be used for float arguments, and
remainderl for long double arguments. Alternately, if the header file tgmath.h is
included, remainder may be used with any numeric argument type.

SAS/C Library Changes in Release 7.50 � remquo 89

RETURN VALUE
remainder returns the remainder resulting from division of x by y, if it is defined and
representable.

RELATED FUNCTIONS
fmod, remquo

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

remquo

Compute the floating-point remainder and a partial quotient

Portability: C99

SYNOPSIS
#include <math.h>

double remquo(double x, double y, int *q);
float remquof(float x, float y, int *q);
long double remquol(long double x, long double y, int *q);

DESCRIPTION
remquo produces the remainder when the first argument, x, is divided by the second
argument, y. Both arguments are assumed to be exact, and the division is performed
exactly. The remainder is computed using a rounded integer quotient. If the fractional
part of the quotient is 0.5, the quotient is rounded to an even value.

The initial bits of the rounded integer quotient are stored in the integer addressed by
the argument, q. The sign of the value stored is the correct sign of the quotient, and at
least the last three bits of the quotient are correct.

Note: With SAS/C, all 31 quotient bits are correct, but the C99 specification only
guarantees three bits. �

The function name remquof should be used for float arguments, and remquol for
long double arguments. Alternately, if the header file tgmath.h is included, remquo
may be used with any numeric argument type.

RETURN VALUE
remquo returns the remainder resulting from division of x by y, if it is defined and
representable.

RELATED FUNCTIONS
fmod, remainder

90 rint � Chapter 2

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

rint

Convert to floating-point integer

Portability: C99

SYNOPSIS
#include <math.h>

double rint(double x);
float rintf(float x);
long double rintl(long double x);

DESCRIPTION
rint converts its argument to an integral value using the current rounding mode, and
returns it as a floating-point value. For binary floating point, The inexact floating-point
exception is raised if the argument differs from the result.

The function name rintf should be used for float arguments, and rintl for long
double arguments. Alternately, if the header file tgmath.h is included, rint may be
used with any numeric argument type.

RETURN VALUE
rint returns its argument, converted to an integer.

IMPLEMENTATION
rint is implemented as a built-in function unless it is undefined by a #undef statement.

RELATED FUNCTIONS
ceil, floor, llrint, llround, lrint, lround, nearbyint, round, trunc

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

round

Round to floating-point integer

Portability: C99

SAS/C Library Changes in Release 7.50 � scalbn 91

SYNOPSIS
#include <math.h>

double round(double x);
float roundf(float x);
long double roundl(long double x);

DESCRIPTION
round rounds its argument to the nearest integral value, and returns it as a
floating-point value. If two results are equally near, round rounds away from zero.

The function name roundf should be used for float arguments, and roundl for
long double arguments. Alternately, if the header file tgmath.h is included, round
may be used with any numeric argument type.

RETURN VALUE
round returns its argument, rounded to the nearest integer.

IMPLEMENTATION
round is implemented as a built-in function unless it is undefined by a #undef
statement.

RELATED FUNCTIONS
ceil, floor, llrint, llround, lrint, lround, nearbyint, rint, trunc

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

scalbn

Scale a floating point number

Portability: C99

SYNOPSIS
#include <math.h>

double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);

DESCRIPTION
scalbn is used to scale a floating-point number by a power of the floating-point base (16
for hexadecimal floating point, 2 for binary floating point). The result is:

92 scalbln � Chapter 2

� � �
�

where b is the floating-point base.
The function name scalbnf should be used for float arguments, and scalbnl for

long double arguments. Alternately, if the header file tgmath.h is included, scalbn
may be used with any numeric argument type.

RETURN VALUE
scalbn returns the argument, x, scaled by the floating-point base raised to the power n,
if that value is expressible.

IMPLEMENTATION
For binary floating-point, scalbn is implemented as a built-in function unless it is
undefined by a #undef statement.

USAGE NOTES
scalbn resembles the ldexp function, but differs in using a power of the floating-point
base rather than the constant 2 as the scale factor.

RELATED FUNCTIONS
ilogb, ldexp, logb, scalbln

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

scalbln

Scale a floating point number

Portability: C99

SYNOPSIS
#include <math.h>

double scalbln(double x, long n);
float scalblnf(float x, long n);
long double scalblnl(long double x, long n);

DESCRIPTION
scalbln is used to scale a floating-point number by a power of the floating-point base
(16 for hexadecimal floating point, 2 for binary floating point). The result is:

SAS/C Library Changes in Release 7.50 � signbit 93

� � �
�

where b is the floating-point base.
The function name scalblnf should be used for float arguments, and scalblnl for

long double arguments. Alternately, if the header file tgmath.h is included, scalbln
may be used with any numeric argument type.

RETURN VALUE
scalbln returns the argument, x, scaled by the floating-point base raised to the power
n, if that value is expressible.

IMPLEMENTATION
For binary floating-point, scalbln is implemented as a built-in function unless it is
undefined by a #undef statement.

USAGE NOTES
scalbln resembles the scalbn function, but differs in using the type long for the
exponent.

RELATED FUNCTIONS
ilogb, ldexp, logb, scalbn

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

signbit

Test sign of floating-point number

Portability: C99

SYNOPSIS
#include <math.h>

int signbit(floating x);

DESCRIPTION
signbit determines whether its argument is positive or negative by testing the sign
bit. Note that zeroes and NaNs may have the sign bit set.

RETURN VALUE
signbit returns 0 if its argument is positive (the sign bit is off), or non-zero if its
argument is negative (the sign bit is on).

94 tgamma � Chapter 2

RELATED FUNCTIONS
copysign

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

tgamma

Compute the gamma function

Portability: C99

SYNOPSIS
#include <math.h>

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

DESCRIPTION
tgamma computes the gamma function of its argument, x. The value returned by tgamma
is defined by this equation:

������ ��� �

��

�

���� ��� ��

The function name tgammaf should be used for float arguments, and tgammal for
long double arguments. Alternately, if the header file tgmath.h is included, tgamma
may be used with any numeric argument type.

RETURN VALUE
tgamma returns the gamma function of its argument, if it is defined and representable.

DIAGNOSTICS
If the argument of tgamma is invalid, it returns HUGE_VAL in hexadecimal floating point,
or a NaN in binary floating point. If the result of tgamma overflows, it returns
HUGE_VAL in hexadecimal floating point, and either an infinity or the maximum finite
value, depending on the rounding mode in binary floating-point. In these cases, the
run-time library writes an error message to the standard error file (stderr).

RELATED FUNCTIONS
gamma, lgamma

SAS/C Library Changes in Release 7.50 � Update to float.h Header File 95

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

trunc

Truncate to floating-point integer

Portability: C99

SYNOPSIS
#include <math.h>

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

DESCRIPTION
trunc converts its argument to an integral value, rounding towards zero, and returns it
as a floating-point value.

The function name truncf should be used for float arguments, and truncl for
long double arguments. Alternately, if the header file tgmath.h is included, trunc
may be used with any numeric argument type.

RETURN VALUE
trunc returns its argument converted to an integer.

IMPLEMENTATION
trunc is implemented as a built-in function unless it is undefined by a #undef
statement.

RELATED FUNCTIONS
ceil, floor, llrint, llround, lrint, lround, nearbyint, rint, round

SEE ALSO
“Mathematical Functions” in Chapter 2, “Function Categories”

Update to float.h Header File
In Chapter 2, “Function Categories,” in the section titled, “Mathematical Functions,”

replace the contents of the float.h header file with the following information:

/*
*

96 Update to float.h Header File � Chapter 2

* This header file defines several esoteric attributes of the
* 370 floating-point implementation. The attributes apply to
* the default floating-point format, as specified by a compiler
* option.
*
*/

#if _O_BFP == 0

#define FLT_RADIX 16 /* hardware float radix */
#ifndef _SASC_HIDE_C99MATHLIB
#define DECIMAL_DIG 17 /* precision of decimal<->hex conversion */
#define FLT_EVAL_METHOD 0 /* expressions evaluated as requested type */
#endif
#define FLT_ROUNDS 0 /* float addition does not round */

#define FLT_MANT_DIG 6 /* hex digits in float mantissa */
#define DBL_MANT_DIG 14 /* hex digits in double mantissa */
#define LDBL_MANT_DIG 14 /* hex digits in long double mantissa */

#define FLT_DIG 6 /* float decimal precision */
#define DBL_DIG 15 /* double decimal precision */
#define LDBL_DIG 15 /* long double decimal precision */

#define FLT_MIN_EXP -64 /* minimum exponent of 16 for float */
#define DBL_MIN_EXP -64 /* minimum exponent of 16 for double */
#define LDBL_MIN_EXP -64 /* minimum exponent of 16 for long double */

#define FLT_MIN_10_EXP -78 /* minimum float power of 10 */
#define DBL_MIN_10_EXP -78 /* minimum double power of 10 */
#define LDBL_MIN_10_EXP -78 /* minimum long double power of 10 */

#define FLT_MAX_EXP 63 /* maximum exponent of 16 for float */
#define DBL_MAX_EXP 63 /* maximum exponent of 16 for double */
#define LDBL_MAX_EXP 63 /* maximum exponent of 16 for long double */

#define FLT_MAX_10_EXP 75 /* maximum float power of 10 */
#define DBL_MAX_10_EXP 75 /* maximum double power of 10 */
#define LDBL_MAX_10_EXP 75 /* maximum long double power of 10 */

#define FLT_MAX .7237005e76F /* maximum float */
/* == 0x.FFFFFFp252F */

#define DBL_MAX .72370055773322621e76 /* maximum double */
/* == 0x.FFFFFFFFFFFFFFp252 */

#define LDBL_MAX .72370055773322621e76L /* maximum long double */

#define FLT_EPSILON .9536743e-6F /* smallest float x such
that 1.0 + x != 1.0 */

/* == 0x1.0p-20F */
#define DBL_EPSILON .22204460492503131e-15 /* smallest double x such

that 1.0 + x != 1.0 */
/* == 0x1.0p-52 */

#define LDBL_EPSILON .22204460492503131e-15L /* smallest long double x such
that 1.0 + x != 1.0 */

SAS/C Library Changes in Release 7.50 � Update to float.h Header File 97

#define FLT_MIN .5397606e-78F /* minimum float */
/* == 0x1.0p-260F */

#define DBL_MIN .53976053469340279e-78 /* minimum double */
/* == 0x1.0p-260 */

#define LDBL_MIN .53976053469340279e-78L /* minimum long double */

#else

#ifndef FLT_ROUNDS
int __builtin_fltrnds(void);
#endif

#define FLT_RADIX 2 /* hardware float radix */
#ifndef _SASC_HIDE_C99MATHLIB
#define DECIMAL_DIG 17 /* precision of decimal<->bin conversion */
#define FLT_EVAL_METHOD 0 /* expressions evaluated as requested type */
#endif
#define FLT_ROUNDS __builtin_fltrnds() /* actual runtime round mode */

#define FLT_MANT_DIG 24 /* binary digits in float mantissa */
#define DBL_MANT_DIG 53 /* binary digits in double mantissa */
#define LDBL_MANT_DIG 53 /* binary digits in long double mantissa */

#define FLT_DIG 6 /* float decimal precision */
#define DBL_DIG 15 /* double decimal precision */
#define LDBL_DIG 15 /* long double decimal precision */

#define FLT_MIN_EXP -125 /* minimum exponent of 2 for float */
#define DBL_MIN_EXP -1021 /* minimum exponent of 2 for double */
#define LDBL_MIN_EXP -1021 /* minimum exponent of 2 for long double */

#define FLT_MIN_10_EXP -37 /* minimum float power of 10 */
#define DBL_MIN_10_EXP -307 /* minimum double power of 10 */
#define LDBL_MIN_10_EXP -307 /* minimum long double power of 10 */

#define FLT_MAX_EXP 128 /* maximum exponent of 2 for float */
#define DBL_MAX_EXP 1024 /* maximum exponent of 2 for double */
#define LDBL_MAX_EXP 1024 /* maximum exponent of 2 for long double */

#define FLT_MAX_10_EXP 38 /* maximum float power of 10 */
#define DBL_MAX_10_EXP 308 /* maximum double power of 10 */
#define LDBL_MAX_10_EXP 308 /* maximum long double power of 10 */

#define FLT_MAX 3.402823466e38F /* maximum float */
/* == 0x1.FFFFFEp127F */

#define DBL_MAX 1.7976931348623157e308 /* maximum double */
/* == 0x1.FFFFFFFFFFFFFp1023 */

#define LDBL_MAX 1.7976931348623157e308L /* maximum long double */

#define FLT_EPSILON 1.1920929e-7F /* smallest float x such that
1.0 + x != 1.0 */

/* == 0x1.0p-23F */
#define DBL_EPSILON 2.2204460492503131e-16 /* smallest double x such

98 New nan, nanf, and nanl Functions � Chapter 2

that 1.0 + x != 1.0 */
/* == 0x1.0p-52 */

#define LDBL_EPSILON 2.2204460492503131e-16L /* smallest longdbl x such
that 1.0 + x != 1.0 */

#define FLT_MIN 1.17549435e-38F /* minimum normalized float */
/* == 0x1.0p-126 */

#define DBL_MIN 2.2250738585072014e-308 /* minimum normalized double*/
/* == 0x1.0p-1022 */

#define LDBL_MIN 2.2250738585072014e-308L /* minimum normalized ldbl */

#endif

New nan, nanf, and nanl Functions
In Chapter 6, “Function Descriptions,” add the following entry to the list of functions.

nan, nanf, nanl

Return NaN

Portability: C99

SYNOPSIS
#include <math.h>
double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

DESCRIPTION
The functions nan, nanf, and nanl convert a character sequence pointed to by tagp to
double, float, and long double NaN representation, respectively. The character sequence
is an array of chars that indicates the bit pattern for the NaN. Valid values differ
depending on whether one is using Binary (IEEE) floating point numbers (that is,
compiled with the bfp option) or the traditional, IBM hexadecimal floating point (HFP)
numbers. See “Implementation” for more information.

RETURN VALUE
For Binary floating point (BFP) the functions, nan, nanf, and nanl return a double,
float, and long double NaN representation, respectively, with a fractional bit pattern
based on the character sequence pointed to by the tagp argument. If tagp points to a
NULL string, then the default quiet NaN is returned. If the first character in the
character sequence string is invalid, a diagnostic is issued, errno is set to EARG, and
the default quiet NaN is returned. If the character sequence begins with a quiet or
signaling NaN prefix letter, then any following hex digits in the character sequence
must be valid for that type of NaN. That is, the most significant fraction bit must be

SAS/C Library Changes in Release 7.50 � nan, nanf, nanl 99

represented correctly. Otherwise, a diagnostic is issued, errno is set to EARG, and the
default quiet or signaling NaN as indicated by the prefix letter is returned. If any other
characters in the character sequence string is not valid, the conversion stops at that
point and a diagnostic is issued, errno is set to EARG, and a NaN whose fraction bits
have been described by the string argument up to the point of the invalid character is
returned. See “Implementation” for a description of the character sequence string.

For Hexadecimal floating point (HFP) the functions, nan, nanf, and nanl return a
double, float, and long double zero representation, respectively, with the bits set in the
sign and exponent fields based on the character sequence pointed to by the tagp
argument. If tagp points to a NULL string, then the default negative zero value, only
sign bit set, is returned. If the first character in the character sequence string is
invalid, a diagnostic is issued, errno is set to EARG, and the default negative zero is
returned. If any other characters in the character sequence string is not valid, the
conversion stops at that point and a diagnostic is issued, errno is set to EARG, and a
zero value whose sign and exponent bits that have been described by the string
argument up to the point of the invalid character is returned. See “Implementation” for
a description of the character sequence string.

IMPLEMENTATION
A binary NaN is represented by all Exponent bits being set to one and at least one
Fraction bit set to one. The most significant fraction bit determines whether the NaN is
a signaling NaN or a quiet NaN. If the most significant fraction bit is set, then it is a
quiet NaN. The value of the character sequence for a binary floating point NaN can be:

� "" equals a NULL string, the default quiet NaN.
� "Q" or "q" equals the default quiet NaN.
� "S" or "s" equals the default signaling NaN.
� "xxxxxxxx" equals hex digits representing the fraction bits starting with the most

significant bit. Trailing zeros maybe omitted. The hex digits may be prefixed
optionally by "0x".

� "l_xxxxxx" equals where l is either a "Q" or "q", for a quiet NaN or a "S" or "s",
for a signaling NaN, followed by an underscore and hex digits representing the
fraction bits starting with the most significant bit. Trailing zeros maybe omitted.

Technically, the traditional Hex Floating Point does not support NaNs. However, there
are certain bit patterns that are not valid numbers, or rather are treated as if they had
the value of zero, that have traditionally been used to represent missing or invalid
values. These missing values have one or more bits set in the sign and/or exponent
fields and all zeros in the fraction field. The nan, nanf, and nanl functions have been
implemented for HFP to return these values. Therefore, the value of the character
sequence for Hexadecimal floating point numbers is a string consisting of two
hexadecimal characters, optionally prefixed by 0x, that represent the bit values for the
sign and exponent of the return value. By default, that is, when the nan, nanf, or nanl
functions are called with a NULL string, a missing value of negative zero is returned,
that is, only the sign bit is set. Otherwise, these functions will return a value based on
the hex string pointed to by tagp. For example, calling nan("0xaa") will return a
floating point zero value with the bit pattern 0xaa00000000000000.

Note: Because these values are equivalent to zero for HFP, that is,
0.0 == nan("0xaa") is TRUE, this does not violate the ANSI C99 standard, which
states that any implementations of these functions that do not support NaNs must
return zero. �

EXAMPLE
Some results from calling BFP nan:

100 Updates to the SIGFPE Signal � Chapter 2

call bit pattern returned (hex)
_________ ____________________

nan("") = 0x7ff8000000000000
-nan("") = 0xfff8000000000000
nan("Q") = 0x7ff8000000000000
-nan("Q") = 0xfff8000000000000
nan("q") = 0x7ff8000000000000
-nan("q") = 0xfff8000000000000

nan("S") = 0x7ff4000000000000
-nan("S") = 0xfff4000000000000
nan("s") = 0x7ff4000000000000
-nan("s") = 0xfff4000000000000

nan("q_8fff") = 0x7ff8fff000000000
-nan("q_8fff") = 0xfff8fff000000000
nan("8fff") = 0x7ff8fff000000000
-nan("8fff") = 0xfff8fff000000000
nan("0x8fff") = 0x7ff8fff000000000
-nan("0x8fff") = 0xfff8fff000000000

nan("s_7fff") = 0x7ff7fff000000000
-nan("s_7fff") = 0xfff7fff000000000
nan("7fff") = 0x7ff7fff000000000
-nan("7fff") = 0xfff7fff000000000
nan("0x7fff") = 0x7ff7fff000000000
-nan("0x7fff") = 0xfff7fff000000000

Some results from calling HFP nan:

call bit pattern returned (hex)
_________ ____________________

nan("") = 0x8000000000000000
nan("0x03") = 0x0300000000000000
nan("03") = 0x0300000000000000
nan("0xff") = 0xff00000000000000
nan("ff") = 0xff00000000000000

RELATED FUNCTIONS

strtod, strtof, strtold

SEE ALSO

“Mathematical Functions” in Chapter 2, “Function Categories.”

Updates to the SIGFPE Signal

In Chapter 5, “Signal-Handling Functions,” replace the SIGFPE description with the
following entry.

SAS/C Library Changes in Release 7.50 � SIGFPE 101

SIGFPE

General Computational Error

The SIGFPE signal is raised whenever a computational error occurs. These errors
include hexadecimal floating-point overflow or underflow, integer or hexadecimal
floating point division by zero, and binary floating-point traps such as overflow and
inexact. Note that integer overflow never causes a signal; when integer overflow occurs,
the result is reduced to 32 bits or 64 bits, depending on type, by discarding the most
significant bits and is then interpreted as a signed integer.

Default handling
The default handling for SIGFPE is to raise a more specific signal. One of the signals
SIGBFPE, SIGFPDIV, SIGFPOFL, SIGFPUFL or SIGIDIV is raised. Note that SIGBFPE is
raised for any binary floating-point (IEEE) trap. SIGFPDIV, SIGFPOFL and SIGFPUFL
are raised only for hexadecimal floaating point. Handling of the more specific signal
depends on whether a handler has been defined for it. Refer to the descriptions of each
of these signals for more details.

Ignoring the signal
If your program ignores SIGFPE, the result of the computation that raises SIGFPE is
undefined, unless the computation causes an underflow. For hexadecimal floating-point
underflows, the result is set to zero.

Information returned by siginfo
If you call siginfo after a SIGFPE signal occurs, siginfo returns a pointer to a
structure of type FPE_t. This structure is defined as:

typedef struct {
int int_code; /* interrupt code */
union {

_ _near int *intv; /* 4-byte integer result */
_ _near long long *llongv; /* 8-byte integer result */
_ _near _ _hexfmt float *floatv; /* hex format float result */
_ _near _ _hexfmt double *doublev; /* hex format double result */
_ _near _ _binfmt float *bfloatv; /* bin format float result */
_ _near _ _binfmt double *bdoublev;/* bin format double result */

} result;
_ _near char *EPIE: /* pointer to hardware program check info */
_ _near double *fpregs; /* contents of floating regs 0,2,4,6 */
_ _near double *fpregs16; /* contents of all floating regs */
int res_size; /* size of result (0, 4 or 8) */
int bfptrap; /* BFP exception bits for trap */

} FPE_t;

The int_code field contains the number of the more specific signal associated with
this error, which will be one of SIGBFPE, SIGFPDIV, SIGFPOFL, SIGFPUFL, or SIGIDIV.
The result field is a pointer to the result of the computation that raises the signal. If
you want to continue processing, you can change the value that result points to. Note

102 New Multiple Heap Functions � Chapter 2

that the result field may be zero if a floating-point exception occurs in an instruction
which has no result or an integer result.

The EPIE field is a pointer to a control block containing hardware information
available at the time the signal occurs. (This information includes program status word
and registers.) For information on the EPIE format, see the IBM publication MVS/XA
Supervisor Services and Macro Instructions. The EPIE pointer always addresses a
memory block mapped like an OS/390 EPIE, even in environments such as CICS where
a different format is used internally.

The fpregs field is a pointer to an array of four doubles, containing the contents of
floating point registers 0, 2, 4 and 6 at the time of the signal. The fpregs16 field is a
pointer to an array of doubles containing the contents of all 16 floating point registers.
(On systems with only 4 floating-point registers, the undefined registers are stored as
zeroes.) Note that the register contents may be either in hexadecimal or binary format,
and that a cast may possibly be needed to interpret them correctly.

The reg_size field indicates the size of the result, 4 for an int or float result, 8 for
a long long or double result, and 0 for a case where no result pointer was stored.

he bfptrap field is meaningful only when int_code is SIGBFPE. Then, it contains
one or more of the floating-point bits defined in fenv.h. For instance, if bfptrap is
FE_OVERFLOW+FE_INEXACT, it indicates that the error was a combination of an overflow
condition with the inexact condition.

Notes on defining a handler
If you define a handler for SIGFPE , you can determine what type of error caused the
signal by testing the int_code field of the information returned by siginfo. You can
also use this information to reset the result of the computation by changing the value
that result points to. Refer to the example in the description of the siginfo function
for an illustration of this technique.

USS Considerations
When SIGFPE is managed by USS, the default action for SIGFPE is abnormal process
termination, and SIGFPE is never converted into another signal. If you want to handle
one or more of the SIGBFPE, SIGFPDIV, SIGFPOFL, SIGFPUFL, or SIGIDIV signals
specific to SAS/C, you must define SIGFPE as a signal managed by SAS/C.

New Multiple Heap Functions
Several new functions have been added allow a program to make use of more than

one heap. All programs contain at least 2 heaps; a library heap and a standard heap.
Library routines that need dynamic memory will allocate from the library heap.
Normally, this memory is internally used and not accessable to the user. The standard
heap is where memory will be allocated from by calls to malloc, pool, calloc etc. This
heap can be predefined with attributes other than the default. At program start, the
standard heap is also the default heap. Additional heaps can be created and declared as
the default heap by pushing the new heap onto the heap stack. Calls to malloc calloc,
free, pool, realloc (For brevity, the rest of this description will use malloc as the
general term for getting heap memory.) will allocate memory from whatever is the
current default heap. Additional functions are available to get memory from a specific
heap without making it the default heap.

A heap is represented by a heap ID, which is an opaque token returned by the
hpcreate function. hpcreate is passed a heap attribute structure, which defines the
required behavior and properties of the heap. multheap.h defines the various

SAS/C Library Changes in Release 7.50 � _heap_attr 103

attributes that can be set for a heap. These include location in memory (that is, above
or below the bar/line) subpool number, initial and overflow sizes, whether the heap can
be shared between subtasks and more. For above the bar heaps (heaps with virtual
addresses greater than 2G), the maximum guaranteed size of the heap is 2G, although
the heap may reach a hard limit of 4G. If more than 2G of contiguous memory is
needed, then the IARV64 function should be used.

The attributes of the standard heap can be set by defining an external variable
_heapdef and initializing it with the required attributes. For example, to have the
standard heap be placed above the 2G bar, specify:

extern _heap_attr _heapdef = {0, 0, 0, 0, 0, 0, HPLOC_64}

Attributes specified in this way override those set through previous methods (the _heap
variable and the =/mmm runtime option).

_heap_attr
The _heap_attr structure in multheap.h defines the attributes of a heap. This

structure is passed to hpcreate to create a new heap with these characteristics.

int version;
version number set by call to hpattr.

int flags;
Miscellaneous flags to represent heap attributes.

HPATTR_SHARED
Indicates that the heap can be shared between cooperating subtasks.
Memory can be passed from one subtask to another and the receiver can then
free the memory. Care must be taken however to serialize access to the
memory. If more than one subtask updates the memory at the same time,
results are unpredictable. The library serializes the allocation and
deallocation of this memory.

HPATTR_ZERO
Indicates that the heap will be initialized to all zeros before it is passed to
the user program.

HPATTR_NOUSAGE
Indicates that the heap will not be included in any usage report. See =usage
for more information.

HPATTR_NOABEND
Indicates that eyecatchers in heap control blocks will not be checked.
Normally, if the eyecatchers are overlayed or storage pointers are corrupted,
the library will an ABEND in the range of U1205-U1209. Setting this
attribute will let the program proceed without abending in the event of a
storage overlay. This option should only be used for programs where an
ABEND would have a significantly worse consequence than running with bad
data.

HPATTR_RETAIN
Indicates that the heap will not be returned to the operating system until a
call is made to hpdestroy.

HPATTR_SIGOK
Indicates that the heap will be eligible for use in signal handling code. If
malloc is called from a signal handler and the default heap does not have
this indication, then the most recent heap created with this indication will be

104 Huge Pointer Functions � Chapter 2

used for allocation. The non-shared heap list is searched before looking at the
shared heaps.

char *area;
If not NULL, then initial allocations will be taken from the memory addressed by
area. This in effect allows a heap within a heap. There is no protection against
the owner of this area freeing the storage so care must be taken when using this
field. The envisioned use of this would be for a number of callers to be able to use
separate heaps without the overhead of getting the memory directly from the
operating system. Rather, a large allocation would be done for all of the callers
and multiple virtual heaps would be created from that area.

unsigned int initial;
Size of the initial heap allocation. It must be greater than 0.

unsigned int overflow;
Size for needed additional allocations. The default is 4K. If it is set to 0, then no
secondary allocations will be performed. That is, any mallocs beyond the initial
amount will fail.

int subpool;
In MVS, the subpool (if it is below the bar) to allocate from. If it is not specified,
13 will be assumed unless the heap is to be shared, in which case the default
subpool is 131.

char amode;
Intended addressing mode of the user. Determines the location of the allocated
memory in the address space. Only HPLOC_64 will get memory above the 2G bar.

HPLOC_BELOW
Memory will be allocated below the 16M line.

HPLOC_ANY
Memory will be allocated above the 16M line if possible, otherwise from below
the 16M line.

HPLOC_64
Memory will be above the 2G bar.

HPLOC_RES
Memory will be allocated below the 16M line for callers running AMODE24.
And above the line for callers running AMODE31 or AMODE64. If memory is
not available above the line, an attempt will be made to allocate memory
below the line.

Huge Pointer Functions
The following library functions accept _ _huge pointer arguments from or return

_ _huge pointers to callers compiled with the HUGEPTRS option. Note that while many
stdio.h functions are on the list, only pointer arguments which address input or
output data are _ _huge. Arguments which are FILE pointers, or pointers to control
data such as fpos_t remain _ _near.

afread afreadh afread0 afwrite afwriteh

afwrite0 atoi atol atoll bsearch

calloc fgets format fprintf fputs

fread fscanf fwrite gets hpalloc

SAS/C Library Changes in Release 7.50 � hpalloc 105

hpcalloc hpfree hppoolcreate hprealloc IARV64

malloc memcasecmp memchr memcmp memcpy

memfil memlwr memmove memscan memscntb

memset memupr memxlt nan nanf

nanl nanl pdel pfree pool

printf puts qsort realloc scanf

snprintf sprintf sscanf stcpm stcpma

strcasecmp strcat strchr strcmp strcpy

strcspn strlen strlwr strncasecmp strncat

strncmp strncpy strpbrk strrchr strrcspn

strrpbrk strrspn strscan strscntb strspn

strstr strtod strtof strtok strtol

strtold strtoll strtoull strupr strxlt

TPUT TPUT_ASID TPUT_USERID TGET vformat

vsnprintf vsprintf vsscanf WTO WTOR

WTP

hpalloc

Allocate Memory from Heap

SYNOPSIS

#include <multheap.h>
void *hpalloc(_heap_id heapid, size_t size);

DESCRIPTION

hpalloc allocates a block of dynamic memory of the size specified by size from a heap
indicated by heapid, which was returned by hpcreate when it was initialized.

RETURN VALUE

hpalloc returns the address of the first character of the new block of memory. The
allocated block is suitably aligned for storage of any type of data.

ERRORS

User ABEND 1205 or 1206 may occur if memory management data areas are overlaid.

106 hpattr � Chapter 2

DIAGNOSTICS
If adequate memory is not available, the heapid is invalid, or if 0 bytes are requested,
NULL is returned.

IMPLEMENTATION
See malloc for a description of normal memory allocation. hpalloc is, in effect, the
same as calling hppush(heapid), malloc(size), hppop().

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>
char *source, *copy;
main()
{

source = "A simple line for the hpalloc example ";

/* Allocate space for a copy for source. */
copy = hpalloc(_HEAP_STD, strlen(source) + 1);

/* Copy if there is space. */
if (copy)
{

strcpy(copy,source);
puts(copy);

}
else puts("hpalloc failed to allocate memory for copy.");

}

RELATED FUNCTIONS
malloc, pool, hppoolcreate

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hpattr

Initialize _heap_attr Structure

SYNOPSIS
#include <multheap.h>
void hpattr(_heap_attr _ _near *attr);

SAS/C Library Changes in Release 7.50 � hpattr 107

DESCRIPTION
hpattr initializes a _heap_attr structure. After initialization, members of the
structure should be set to indicate qualities of the heap to be created. By default, the
version, subpool and overflow members are set to default values. At Version 1, the
subpool default is 13 and the overflow size is 4K. See “_heap_attr” on page 103 for more
information on the flags and fields of the _heap_attr structure.

RETURN VALUE
hpattr does not return a value.

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>
_heap_attr attr;
main()
{

_heap_id id1, id2;

// create a user heap

hpattr(&attr);
attr.amode = HPLOC_BELOW;
attr.subpool = 14;
attr.flags = HPATTR_SIGOK + HPATTR_NOABEND;
attr.initial = 1000;
id1 = hpcreate(&attr, "first");
if (!id1)
{

WTP("error in hpcreate.\n");
return -1;

}
WTP("id1 = %04hX\n", id1);

// create second heap with slightly different
// parms.

attr.amode = HPLOC_ANY;
attr.subpool = 15;
attr.initial = 3000;
id2 = hpcreate(&attr, "second");
if (!id2)
{

WTP("error in hpcreate.\n");
return -1;

}
WTP("id2 = %04hX\n", id2);

}

RELATED FUNCTIONS
hpcreate

108 hpcalloc � Chapter 2

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hpcalloc

Allocate and Clear Memory from Heap

SYNOPSIS
#include <multheap.h>
void *hpcalloc(_heap_id heapid, size_t n,
size_t size);

DESCRIPTION
hpcalloc allocates a block of dynamic memory from the heap indicated by heapid to
contain n elements of the size specified by size . The block is cleared to binary zeroes
before return.

RETURN VALUE
hpcalloc returns the address of the first character of the new block of memory. The
allocated block is suitably aligned for storage of any type of data.

ERRORS
User ABEND 1205 or 1206 may occur if memory management data areas are overlaid.

DIAGNOSTICS
If adequate memory is not available, the heapid is invalid, or if 0 bytes are requested,
NULL is returned.

IMPLEMENTATION
See calloc for a description of normal memory allocation. hpcalloc in effect is the same
as calling hppush(heapid), calloc(size), hppop().

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>

double *identity(_heap_id heapid, int size) {
double *matrix;
int i;

SAS/C Library Changes in Release 7.50 � hpcreate 109

matrix = hpcalloc(heapid, sizeof(double), size*size);
if (matrix == NULL) return(NULL);
for (i = 0; i < size; ++i)

matrix[size*i + i] = 1.0;
return matrix;

}

RELATED FUNCTIONS
calloc, pool, hppoolcreate

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hpcreate
Create New Heap

SYNOPSIS
#include <multheap.h>
_heap_id hpcreate(_heap_attr _ _near *ha,

char _ _near *name);

DESCRIPTION
hpcreate creates a new heap based on attributes from the structure pointed to by ha.
name can either be NULL or point to a unique null-terminated string (truncated to 16
bytes) that will name the heap for diagnostic purposes.

RETURN VALUE
hpcreate returns the ID of the newly created heap. This ID is used to specify the heap
to be used by other multi-heap functions.

DIAGNOSTICS
If the heap attribute structure pointed to by ha is invalid, NULL is returned. Possible
reasons for rejecting a heap attribute structure include the following: the version
number was invalid (possibly indicating an uninitialized structure), a subpool other
than 131 was specified for a shared heap, or the name was associated with another
heap. NULL may also be returned if hpcreate was unable to allocate memory for
control information.

IMPLEMENTATION
Only control information is allocated during hpcreate. Heap storage will not be
allocated from the heap until hpalloc, hpcalloc, or another multiheap storage
function is invoked.

110 hpdestroy � Chapter 2

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>
_heap_attr attr;
main()
{

_heap_id id1;

// create a user heap - shared and above
// the bar

hpattr(&attr);
attr.flags = HPATTR_SHARED;
attr.amode = HPLOC_64;
attr.subpool = HPSUBPOOL_DEFAULT;
attr.initial = 1000000000;
attr.overflow = 0;
id1 = hpcreate(&attr, "Above The Bar1");
if (!id1)
{

WTP("error in hpcreate.\n");
return -1;

}
WTP("id1 = %04hX\n", id1);

}

RELATED FUNCTIONS
hpalloc, hpcalloc, hppoolcreate

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hpdestroy
Destroy Heap

SYNOPSIS
#include <multheap.h>
void *hpdestroy(_heap_id heapid);

DESCRIPTION
hpdestroy destroys a heap and returns all its memory back to the operating system.
Any further use of memory allocated from the heap will be invalid.

SAS/C Library Changes in Release 7.50 � hpdestroy 111

RETURN VALUE
hpdestroy returns a code indicating success (0) or failure (-1) of the operation.

IMPLEMENTATION
The control information assocated with the heap is freed. Be sure not to call hpdestroy
for a shared heap that may be in use by another task.

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>
main()
{
_heap_attr attr;
_heap_id id1;
DCB_t *input, *output;
DECB_t input_DECB, output_DECB;
char *buf;
int count = 0;
int err;

input = osbdcb(0);
memcpy(input->DCBDDNAM, "INPUT ", 8);
if (osbopen(input, "input")) {

puts("Input open failed.");
exit(16);

}
output = osbdcb(out_exlst);

/* Copy output file characteristics from input. */
output->DCBRECFM = input->DCBRECFM;
output->DCBLRECL = input->DCBLRECL;
output->DCBBLKSI = input->DCBBLKSI;
memcpy(output->DCBDDNAM, "OUTPUT ", 8);
if (osbopen(output, "output")) {

puts("Output open failed.");
osbclose(input, "", 1);
exit(16);

}

// Get a below the line heap for use in BSAM I/O

hpattr(&attr);
attr.amode = HPLOC_BELOW;
attr.flags = HPATTR_SIGOK + HPATTR_NOABEND;
attr.initial = 4000;
id1 = hpcreate(&attr, "heap below");
if (!id1) {

Log("error in hpcreate.\n");
return -1;

}

112 hpextract � Chapter 2

buf = hpalloc(id1, input->DCBBLKSI);

for (;;) {
buf = hpalloc(id1, input->DCBBLKSI);
osread(input_DECB, input, buf, 0);
if ((err = oscheck(input_DECB)) != 0) {

if (err != -1) puts("Input error.");
break;

}
oswrite(output_DECB, output, buf, 0);
if (oscheck(output_DECB) != 0) {

if (full) puts("Output file full.");
else puts("Output error.");
break;

}
++count;

}

/* Rather than freeing all the records, just free the
entire heap. */

hpdestroy(id1);
}

RELATED FUNCTIONS
hpcreate, hppoolcreate

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hpextract

Retrieve Heap ID

SYNOPSIS
#include <multheap.h>
_heap_id hpextract(void);

DESCRIPTION
hpextract returns the ID of the current (default) heap. This ID can be used to verify
which heap is about to be used for malloc or free.

RETURN VALUE
hpextract returns the ID of the current (default) heap. If this ID is the same as
_HEAP_STD, then the default heap is the same as the standard heap. This is always

SAS/C Library Changes in Release 7.50 � hpfree 113

true at entry to the main function. The default heap can be changed by calls to hppush
and hppop.

IMPLEMENTATION
For a program using more than one coprocess, it is possible that the default heap can be
different for each coprocess. Whenever a coprocess switch occurs, if the new coprocess is
using a different heap than the old coprocess, then the default heap is switched as well.

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>
main()
{
_heap_id id1;

...

id1 = hpextract();
// if the default heap has been changed
if (id != _HEAP_STD)
{

hppush(_HEAP_STD); // switch to standard heap
}

link = calloc(1, 20);

if (id != _HEAP_STD)
{

hppop; // restore current heap
}

...
>
}

RELATED FUNCTIONS
hpalloc, hpcalloc, hpfree, hpdestroy, hppush

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hpfree

Free a Block of Memory from Heap

114 hpfree � Chapter 2

SYNOPSIS
#include <multheap.h>
void hpfree(_heap_id heapid, void *block);

DESCRIPTION
hpfree frees a block of dynamic memory from a heap indicated by heapid.

RETURN VALUE
hpfree has no return value.

ERRORS
User ABEND 1206, 1207, or 1208 may occur if memory management data areas are
overlaid. User ABEND 1208 will probably occur if the block pointer is invalid; that is, if
it does not address a previously allocated area of memory that has not already been
freed.

IMPLEMENTATION
In most cases if an entire page of memory is unused after a free call, the page is
returned to the operating system (unless the pointer is in the heap’s initial allocation).
For memory above the bar, the memory is not returned until the heap is freed by a call
to hpdestroy.

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>
main()
{
char *source, *copy;

source = "A simple line for the hpfree example ";
/* Allocate space for a copy for source. */
copy = hpalloc(_HEAP_STD, strlen(source) + 1);
/* Copy if there is space. */
if (copy)
{
strcpy(copy,source);
puts(copy);

}
else puts("hpalloc failed to allocate memory for copy.");

hpfree(_HEAP_STD, copy);
}

RELATED FUNCTIONS
hpalloc, hpcalloc, hppoolcreate

SAS/C Library Changes in Release 7.50 � hppoolcreate 115

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hppoolcreate

Allocate a Storage Pool from Heap

SYNOPSIS
#include <multheap.h>
int hppoolcreate(_heap_id heapid, POOL_t *p,

unsigned eltsize, unsigned initial,
unsigned extend)

DESCRIPTION
hppoolcreate creates a storage pool from which elements of a given size can be quickly
allocated and freed. hppoolcreate differs from pool, in that it will allocate it’s
elements from a given heap. The arguments are as follows:

heapid is an ID returned from a call to hpcreate.

p is a pointer to a POOL_t structure.

eltsize is the size of the elements to be allocated.

initial is the number of elements the pool is to contain initially.

extend is the number by which the pool is extended if all elements are
allocated.

If initial is 0, the hppoolcreate routine computes a convenient initial number of
elements. If extend is 0, it is set equal to initial.

In a situation that requires allocation of many items of the same size, using a storage
pool is more efficient than using malloc in terms of execution time. It also can be more
efficient in terms of storage usage if the initial and extend values are reasonably
chosen.

RETURN VALUE
The return value is 1 if a pool is successfully created, or 0 if it is not. If a pool is
created, its address and other information is stored in the area addressed by the second
argument to hppoolcreate.

ERRORS
User ABEND 1205 or 1206 may occur if memory management data areas are overlaid.

DIAGNOSTICS
The POOL_t pointer is set to 0 if there is no storage available for the new pool.

116 hppoolcreate � Chapter 2

IMPLEMENTATION
See pool for a description of normal pool allocation. hppoolcreate is identical except
for the fact that the heap can be chosen to be other than the current (default) heap.

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>

static POOL_t word_pool;

main()
{

_heap_id id1;
_heap_attr attr;
int success;

// create a user heap ¼ shared and above
// the bar

hpattr(&attr);
attr.flags = HPATTR_SHARED;
attr.amode = HPLOC_64;
attr.subpool = HPSUBPOOL_DEFAULT;
attr.initial = 1000000000;
attr.overflow = 0;
id1 = hpcreate(&attr, "Above The Bar1");
if (!id1)
{

WTP("error in hpcreate.\n");
return -1;

}
WTP("id1 = %04hX\n", id1);

/* Allocate a pool of binary tree elements */
/* to hold some "words". */

success = hppoolcreate(id1, &word_pool, sizeof(word_t), 100, 100)
if (!success) {

puts("Can’t allocate word pool.");
exit(4);

}
}

RELATED FUNCTIONS
malloc, pool, hppoolcreate

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

SAS/C Library Changes in Release 7.50 � hppush 117

hppop

Restore Previous Heap as Current Heap

SYNOPSIS
#include <multheap.h>
int hppop(void);

DESCRIPTION
hppop removes the heap specified by the previous call to hppush from the heap stack,
restoring the previous default heap. If no heaps are on the heap stack, a warning will
be produced.

RETURN VALUE
hppop returns 0 if the prior heap is restored and -1 if there are no currently pushed
heaps.

IMPLEMENTATION
Each coprocess (including the implicit coprocess that represents the main program) has
its own heap stack, which is maintained independently.

EXAMPLE
See the example for “hpextract” on page 112.

RELATED FUNCTIONS
hppush, hpcreate

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hppush

Save and Change Current Heap

SYNOPSIS
#include <multheap.h>
int *hppush(_heap_id heapid, int autopop);

118 hprealloc � Chapter 2

DESCRIPTION
hppush changes the default heap to the heap identified by heapid. If
autopop = HPPUSH_AUTOPOP, when the function that calls hppush returns, the heap
will be reset to its state on entry to the calling function.

RETURN VALUE
hppush returns 0 if the function succeeds, -1 if the heapid was invalid, or -2 if
insufficient memory was available to complete the operation.

ERRORS
User ABEND 1205 or 1206 may occur if memory management data areas are overlaid.

IMPLEMENTATION
Using hppush to change the default heap allows code that calls malloc, calloc, and so
forth to make use of a different heap than that which is provided as the standard heap.
The autopop specification HPPUSH_AUTOPOP may be useful in specifying a default
heap to be used only for the duration of a specific function and its descendants. It is
especially useful if the function has many different return statements, or if it may be
terminated by longjmp from a signal handler.

EXAMPLE
See the example for “hpextract” on page 112.

RELATED FUNCTIONS
hppop, hpcreate

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

hprealloc

Change the Size of an Allocated Memory Block in Heap

SYNOPSIS
#include <multheap.h>
void *hprealloc(_heap_id heapid, void *p,
size_t size);

DESCRIPTION
hprealloc decreases or increases the size of a memory block previously allocated,
possibly moving it to another location and heap, or to another heap. The new storage

SAS/C Library Changes in Release 7.50 � hprealloc 119

will be allocated from the heap specified by heapid. p points to the previously allocated
memory block. size is the size of the new block. The contents of the old block are
preserved in the new block after reallocation, unless the old size is greater than the
new size. If the old size is greater, the unwanted extra bytes are lost. When the new
size is larger than the old size, the contents of the new block that follow the data from
the old block are unpredictable.

RETURN VALUE
hprealloc returns the address of the first character of the new block of memory. The
allocated block is suitably aligned for storage of any type of data. If a new memory
block cannot be allocated, the contents of the location that p points to are not changed,
and hprealloc returns NULL.

ERRORS
User ABEND 1205 or 1206 may occur if memory management data areas are overlaid.

DIAGNOSTICS
If adequate memory is not available, the heapid is invalid, or if 0 bytes are requested,
NULL is returned.

IMPLEMENTATION
See hpalloc for a description of normal memory allocation.

EXAMPLE
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <multheap.h>

char **table, **temp, *item;
unsigned table_size, max_elem;
_heap_id id1;
_heap_attr attr;

hpattr(&attr);
attr.initial = 4000;
id1 = hpcreate(&attr, "realloc heap");

/* Determine if table size is too small. */
if (max_elem >= table_size) {

table_size *= 2; /* Double table size. */

/* Allocate more space for table. */
temp = hprealloc(id1, (char*)table, table_size*sizeof(char*));

/* If reallocation is successful, copy address of */
/* new area to table. */

if (temp)
table = temp;

120 Updates to the fprintf Function � Chapter 2

else {
puts("Item table overflow");
exit(16);

}
}

RELATED FUNCTIONS
hpalloc, hpcreate

SEE ALSO
“Memory Allocation Functions” in Chapter 2, “Function Categories” of the SAS/C
Library Reference, Volume 1.

Updates to the fprintf Function
In Chapter 6, “Function Descriptions,” replace the fprintf function description with

the following entry.

fprintf

Write Formatted Output to a File

SYNOPSIS
#include <stdio.h>
int fprintf(FILE *f, const char *format, var1, var2, ...);

DESCRIPTION
fprintf writes output to the stream associated with the FILE object addressed by f
under the control of the string addressed by format. The argument list following
format may contain one or more additional arguments whose values are to be
formatted and transmitted.

format points to a string that contains ordinary characters (not including %) that are
sent without modification to the file and 0 or more conversion specifications. Conversion
specifications begin with the % character. The % character may be followed by these
specifications:

� zero or more modifier flags
� an optional minimum field width specified by a decimal integer

� an optional precision in the form of a period (.) followed by a decimal integer
� a conversion modifier (~b, ~h, ~n, ~f, ~l)
� an optional hh, h, l, ll, j, z, t, or L

� one of the characters d, i, o, u, x, X, f, e, E, g, G, c, s, n, p, or V that specifies the
conversion to be performed.

SAS/C Library Changes in Release 7.50 � fprintf 121

Here are the modifier flags:

− left-justifies the result of the conversion within the field.

+ always precedes the result of a signed conversion with a plus sign or
minus sign.

space precedes the result of a signed conversion with a space or a minus
sign. (If both space and + are used, the space flag is ignored.)

uses an alternate form of the conversion. This flag affects the o and
x (or X) integer-conversion specifiers and all of the floating-point
conversion specifiers.

For o conversions, the # flag forces the result to have a leading 0.
For x (or X) conversion, the result of the conversion is prefixed with
0x (or 0X).

For e, E, f, g, and G conversions, the # flag causes the result of
the conversion to always have a decimal indicator. For g and G
conversions, the # indicates that trailing 0s are not to be removed.

0 for d, i, o, u, x, X, e, E, f, g, and G conversions, leading 0s are used to
pad the field width. (If both - and 0 are used, the 0 flag is ignored.)

For d, i, o, u, x, and X conversions, the 0 flag is ignored if a
precision is specified.

@ for conversions that specify or dereference a pointer (p, s, n, V), treat
pointers as _ _far.

The field width specifies the minimum number of characters in the converted value.
If the value has fewer characters than that specified by the field width, it is padded on
the left (or right, if the − flag is used). By default, the pad character is a blank.

The precision specifies the minimum number of digits to appear for the d, i, o, u, p,
x, and X conversions. For the e, E, and f conversions, the precision specifies the
number of digits to appear after the decimal indicator. For the g and G conversions, the
precision specifies the maximum number of significant digits to appear. Finally, the
precision specifies the maximum number of characters to be used in the s conversion.

If the precision is explicitly given as 0 and the value to be converted is 0, no
characters are written. If no precision is specified, the default precision is 0. The actual
width of the field is the wider of that specified by the field width and that specified by
the precision.

Precision might be followed by the conversion modifer specified as a tilde (~) followed
by a character. The following are acceptable conversion modifier values:

~b argument is binary floating point (IEEE), _ _binfmt.

~h argument is hex floating point, _ _hexfmt.

~n argument pointer is a _ _near pointer.

~f argument pointer is a _ _far pointer.

~l argument pointer is a _ _hugeptr pointer.

An * may be used for either the field width, the precision, or both. If used, the value
of the field width or precision is supplied by an int argument. This argument appears
in the argument list before the argument to be converted. A negative value for the field
width is taken as a - (left-justify) flag followed by a positive field width. A negative
value for the precision is ignored.

An hh before a d, i, o, u, x, or X conversion specifier indicates that the conversion
applies to a char or unsigned char. An hh before an n conversion specifier indicates
that the conversion applies to a pointer to a char.

122 fprintf � Chapter 2

An h before a d, i, o, u, x, or X conversion specifier indicates that the conversion
applies to a short int or unsigned short int. An h before an n conversion specifier
indicates that the conversion applies to a pointer to a short int.

An l, z, or t before a d, i, o, u, x, or X conversion specifier indicates that the
conversion applies to a long int or an unsigned long int. An l before an n
conversion specifier indicates that the conversion applies to a pointer to a long int.
An L before an e, E, f, g, or G conversion specifier indicates that the conversion applies
to a long double.

An ll, or j before a d, i, o, u, x, or X conversion specifier indicates that the
conversion applies to a long long int or unsigned long long int. An ll, or j
before an n conversion specifier indicates that the conversion applies to a pointer to a
long long int.

An L before an e, E, f, g, or G conversion specifier indicates that the conversion
applies to a long double.

The type of conversion to be performed is specified by one of these characters:

a, A converts the corresponding double argument to hexadecimal
notation in the style [-]0x.hhhp+dd, where there is one
hexadecimal digit (which is nonzero if the argument is a normalized
floating-point number and is otherwise unspecified) before the
decimal-point character and the number of hexadecimal digits after
it is equal to the precision. If the precision is zero and the # flag is
not specified, no decimal point character appears. The exponent
always contains at least one digit, and only as many additional
digits as necessary to represent the decimal exponent of 2. If the
value is zero, the exponent is zero.

c converts the corresponding int argument to unsigned char and
writes the character.

d, i converts the corresponding int argument to decimal notation.

e, E converts the corresponding double argument to the form [-]
d.ddde± dd or [-] d.dddE± dd. The precision has the same
effect as with the f conversion. The exponent will be a minimum of
two digits.

f converts the corresponding double argument to the form [-]
ddd.ddd. The precision indicates the number of digits after the
decimal indicator. If no precision is given, the default is 6. If the
precision is given as 0, a decimal indicator is not used. If a decimal
indicator is used, at least one digit appears before it.

g, G converts the double argument using the f or e (or E) format. The
precision specifies the number of significant digits in the converted
result. An e conversion is used if the exponent is greater than the
precision or is less than −3. Unless the # (alternate form) flag is
used, trailing 0s are removed. The decimal indicator appears only if
followed by a digit.

n writes a number into the string addressed by the corresponding int
* argument. The number written is the number of characters
written to the output stream so far by this call to fprintf.

o converts the corresponding unsigned int argument to octal
notation.

p converts the void * argument to a sequence of printable characters.
In this implementation, p is converted as if x were specified.

SAS/C Library Changes in Release 7.50 � fprintf 123

s writes characters from the string addressed by the corresponding
char * argument until a terminating null character (‘\0’) is
encountered or the number of characters specified by the precision
have been copied. The null character, if encountered, is not written.

u converts the corresponding unsigned int argument to decimal
notation.

V is the same as the %s conversion specifier, except that it expects the
corresponding argument to be a pointer to a PL/I or Pascal format
varying-length character string. See the SAS/C Compiler
Interlanguage Communication Feature User’s Guide for more
information on this conversion specifier.

x, X converts the corresponding unsigned int argument to hexadecimal
notation. The letters abcdef are used for x conversion and ABCDEF
for X conversion.

A % character can be written by using the sequence %% in the format string. The
fprintf formats are described in more detail in the ISO/ANSI C standard.

In support of installations that use terminals with only uppercase characters, this
implementation of fprintf accepts any of the lowercase format characters in
uppercase. Use of this extension renders a program nonportable.

CAUTION
Binary floating point (BFP) NaN values will always have a minimum of 10 characters
with a maximum of 22 characters. Trailing zeros are stripped. The following are two
examples of maximum output:

Negative Quiet
NaN

-nan(q_0fffffffffffff)

Positive
Signaling NaN

+nan(S_00000000000001)

RETURN VALUE
fprintf returns the number of characters transmitted to the output file.

DIAGNOSTICS
If there is an error during output, fprintf returns a negative value.

PORTABILITY
The %V format is an extension and is not portable. The

~ and @ modifiers are not portable, either.

IMPLEMENTATION
The format string can also contain multibyte characters. For details on how fprintf
handles multibyte characters in the format string and in conversions, see Chapter 11,
"Multibyte Character Functions," in the SAS/C Library Reference, Volume 2.

fprintf can only produce up to 512 characters per conversion specification, except
for %s and %V conversions, which are limited to 16 megabytes.

124 Updates to the fscanf Function � Chapter 2

EXAMPLE
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

int i;
double x;
FILE *sysout;

/* Print a columnar table of logs and square roots to an */
/* MVS SYSOUT data set. */

sysout = fopen("dsn:sysout=a", "w");
if (!sysout) abort();
fprintf(sysout, " x %10s log(x) %10s sqrt(x)\n\n", " ", " ");

/* Print heading. */
for(i = 1; i <= 20; ++i {

x = i;
fprintf(sysout, "%3d%10s%10.5f%10s%10.5f\n",

i, " ", log(x), " ", sqrt(x));
}
exit(EXIT_SUCCESS);

}

RELATED FUNCTIONS
fscanf, printf, sprintf, vfprintf

SEE ALSO
� Chapter 3, “I/O Functions” in SAS/C Library Reference, Volume 1
� “I/O Functions” in Chapter 2, “Function Categories,” in SAS/C Library Reference,

Volume 1

Updates to the fscanf Function
In Chapter 6, “Function Descriptions,” replace the fscanf function description with

the following entry.

fscanf
Read Formatted Input from a File

Portability: ISO/ANSI C conforming, UNIX compatible

SYNOPSIS
#include <stdio.h>

SAS/C Library Changes in Release 7.50 � fscanf 125

int fscanf(FILE *f, const char *format, loc1, loc2, ...);

DESCRIPTION
fscanf reads formatted input from the FILE designated by f according to the format
specified by the string format. Following the format in the argument list may be one or
more additional pointers (loc1, loc2,..., locn), addressing storage where the input
values are stored.

format points to a string that contains zero or more of the following:

� white-space characters
� regular characters (not including %)

� conversion specifications.

The format string contains format specifiers or characters to be matched from the
input. Format items have the following form:

%[*][width][~type] [h | l | L | hh | z | t | ll | j]form

The specifiers have the following meanings:

� An asterisk (*) indicates that an input item is processed according to the format,
but its value is not stored.

� If a value for width is present, width specifies the maximum width of the input
item.

� A tilde (~) indicates a non-portable, SAS/C argument type specifier (type). The
following argument type specifiers are supported:

� ~b specifies that the corresponding argument is a default pointer to a binary
floating point (BFP) number.

� ~h specifies that the corresponding argument is a default pointer to a
hexadecimal floating point (HFP) number.

� ~n specifies that the corresponding argument is a near pointer. This specifier
may optionally be followed by a period and one of the following letters, b, h,
n, f, or l to indicate that the corresponding argument is a near pointer to a
binary or hexadecimal floating point number, that is, ~n.b or ~n.h, or a near
pointer to a near, far, or huge pointer, that is, ~n.n, ~n.f, or ~n.l. Note that
the latter three specifiers are valid only with the p form. See the list item for
form below.

� ~f specifies that the corresponding argument is a far pointer. This specifier
may optionally be followed by a period and one of the following letters, b, h,
n, f, or l to indicate that the corresponding argument is a far pointer to a
binary or hexadecimal floating point number, that is , ~f.b or ~f.h, or a far
pointer to a near, far, or huge pointer, that is , ~f.n, ~f.f, or ~f.l. Note that
the latter three specifiers are valid only with the p form. See the list item for
form below.

� ~l specifies that the corresponding argument is a huge (long) pointer. This
specifier may optionally be followed by a period and one of the following
letters, b, h, n, f, or l to indicate that the corresponding argument is a huge
pointer to a binary or hexadecimal floating point number, that is , ~l.b or
~l.h, or a far pointer to a near, far, or huge pointer, that is , ~l.n, ~l.f, or
~l.l. Note that the latter three specifiers are valid only with the p form. See
the list item for form below.

� ~.{n | f | l} specifies that the corresponding argument is a default
pointer to one of the pointer types indicated by the letter following the period.
The letters, n, f, and l, following the period indicate that the corresponding

126 fscanf � Chapter 2

argument is a default pointer to a near, far, or huge pointer. This is valid
only with the p form. See the list item for form below.

� An optional letter has the following meanings:
� An hh before a d, i, or n conversion specifier indicates that the corresponding

argument is a pointer to char instead of int.
� An h before a d, i, or n conversion specifier indicates that the corresponding

argument is a pointer to short int instead of int.
� An l, z, or t before a d, i, or n conversion specifier indicates that the

corresponding argument is a pointer to long int instead of int.
� An ll, or j before a d, i, or n conversion specifier indicates that the

corresponding argument is a pointer to long long int instead of int.
� An hh before an o, u, or x conversion specifier indicates that the corresponding

argument is a pointer to unsigned char instead of unsigned int.
� An h before an o, u, or x conversion specifier indicates that the corresponding

argument is a pointer to unsigned short int instead of unsigned int.
� An l, z, or t before an o, u, or x conversion specifier indicates that the

corresponding argument is a pointer to unsigned long int instead of
unsigned int.

� An ll, or j before an o, u, or x conversion specifier indicates that the
corresponding argument is a pointer to unsigned long long int instead of
unsigned int.

� An l before an a, e, f, or g conversion specifier indicates that the
corresponding argument is a pointer to double instead of float.

� An L before an a, e, f, or g conversion specifier indicates that the
corresponding argument is a pointer to long double instead of float.

� form is one of the following characters, defining the type of the corresponding
target object and the expected format of the input:

a, A, e, E,
g, or G

matches a floating-point number. The corresponding argument
should be float *.

c matches a sequence of characters specified by width. If no
width is specified, one character is expected. A null character is
not added. The corresponding argument should point to an
array large enough to hold the sequence.

d matches an optionally signed decimal integer whose format is
the same as expected for the subject sequence of strtol with
base=10. The corresponding argument should be int *.

i matches an optionally signed decimal integer, which may be
expressed in decimal, in octal with a leading 0, or in
hexadecimal with a leading 0x. The corresponding argument
should be int *.

n indicates that no input is consumed. The number of characters
read from the input stream so far by this call to fscanf is
stored in the object addressed by the corresponding int *
argument.

o matches an optionally signed octal integer. The corresponding
argument should be unsigned int *.

p matches a pointer in the format written by the %p printf
format. This implementation treats %p like %x. The
corresponding argument should be void **.

SAS/C Library Changes in Release 7.50 � fscanf 127

s matches a sequence of nonwhite-space characters. A
terminating null character is automatically added. The
corresponding argument should point to an array large enough
to hold the sequence plus the terminating null character.

u matches an optionally signed integer. The corresponding
argument should be unsigned int *.

x, X matches a hexadecimal integer. The corresponding argument
should be unsigned int *.

[] or < > matches a string comprised of a particular set of characters. A
terminating-null character is automatically added. The
corresponding argument should point to an array large enough
to hold the sequence plus the terminating-null character. Note
that you cannot use the two-character sequences ([] and < >)
to replace the brackets in a fscanf format.

The format string is a C string. With the exception of the c and [or < specifiers,
white-space characters in the format string cause white-space characters in the input to
be skipped. Characters other than format specifiers are expected to match the next
nonwhite-space character in the input. The input is scanned through white space to
locate the next input item in all cases except the c and [] specifiers, where the initial
scan is bypassed. The s specifier terminates on any white space.

The fscanf formats are described in more detail in the ISO/ANSI C standard. As an
extension, uppercase characters may also be used for the format characters specified in
lowercase in the previous list.

RETURN VALUE
fscanf returns EOF if end of file (or an input error) occurs before any values are stored.
If values are stored, it returns the number of items stored; that is, the number of times
a value is assigned with one of the fscanf argument pointers.

DIAGNOSTICS
EOF is returned if an error occurs before any items are matched.

IMPLEMENTATION
The format string can also contain multibyte characters. For details on how fscanf
treats multibyte characters in the format string and in conversions, see Chapter 11 in
the SAS/C Library Reference, Volume 2.

Because square brackets do not exist on some 370 I/O devices, the library allows the
format %[xyz] to be replaced by the alternate form %<xyz>. This is not a portable
format.

EXAMPLE
This example writes out the data stored in lines to a temporary file and reads them
back with fscanf:

#include <stdio.h>
#include <stdlib.h>

static char *lines[] = {
"147.8 pounds\n"

128 fscanf � Chapter 2

"51.7 miles\n",
"4.3 light-years\n",
"10000 volts\n",
"19.5 gallons\n"

};

main()
{

FILE *tmpf;
int i;
_ _binfmt float amount; // Declare a binary floating point number
char unit[20];
int count;

tmpf = tmpfile();
if (!tmpf){

puts("Couldn’t open temporary file.");
exit(EXIT_FAILURE);

}

for (i = 0; i < sizeof(lines)/sizeof(char *); ++i){
fputs(lines[i], tmpf);

}
rewind(tmpf);
for(;;){

// Note: auto variables (stack allocated) are always 31-bit addressable.
// As such the use of ’~n’ and the cast to a _ _near pointer are
// not really necessary but are shown here as an example of
// combining two SAS/C specifiers; i.e., near(~n) and binary(~b)

count = fscanf(tmpf, "%~n.bf %s",
(_ _binfmt float _ _near *)&amount, unit);

if (feof(tmpf)) break;
if (count < 2){

puts("Unexpected error in input data.");
exit(EXIT_FAILURE);

}
printf("amount = %~bf, units = \"%s\"\n", amount, unit);

}
fclose(tmpf);

}

RELATED FUNCTIONS
fprintf, scanf, sscanf

SEE ALSO
� Chapter 3, “I/O Functions” in the SAS/C Library Reference, Volume 1

� “I/O Functions” in Chapter 2, “Function Categories” in the SAS/C Library
Reference, Volume 1

SAS/C Library Changes in Release 7.50 � strtod, strtof, strtold 129

Updates to the strtod Function

In Chapter 6, “Function Descriptions,” replace the strtod function description with
the following entry.

strtod, strtof, strtold

Convert a String to Double

Portability: ISO/ANSI C conforming, UNIX compatible

SYNOPSIS
#include <stdlib.h>
double strtod(const char *str, char **end);
float strtof(const char *str, char **end);
long double strtold(const char *str, char **end);

DESCRIPTION
strtod, strtof, and strtold, expect a floating-point number in C syntax, with these
specifications:

� a decimal point may be omitted

� a + or - sign may precede the number

� no type suffix (F or L) is allowed

� can include one of the character sequences INF or INFINITY, ignoring case

� can include one of the character sequences NAN or NAN(character sequence),
ignoring case in the NAN part. See the nan function description for information
about character sequence.

If the end value is not NULL, *end is modified to address the first character of the string
that is not consistent with the floating-point syntax above. However, if no initial
segment of the string can be interpreted as a floating-point number, str is assigned to
*end.

RETURN VALUE
strtod, strtof, and strtold functions return the floating-point value (double, float,
and long double) represented by the character string up to the first unrecognized
character. If no initial segment of the string can be interpreted as a floating-point
number, 0.0 is returned.

DIAGNOSTICS
If the floating-point value is outside the range of valid floating-point numbers, errno is
set to ERANGE. In this case, ±HUGE_VAL (defined in <math.h>) is returned if the
correct value is too large, or 0.0 if the correct value is too close to 0.

130 New Library Functions � Chapter 2

EXAMPLE
#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>

main()
{

double number;
char *input, *stopchar;
char string[20];

puts("Enter a string to be converted to double:");
input = gets(string);

/* Skip space characters. */
while(isspace(*input)) ++input;

/* Convert from character to double. */
number = strtod(input, &stopchar);

/* Determine if string is valid. */
if (stopchar == input)

printf("Invalid float number: %s\n", input);

/* Check for characters afterwards. */
else if (*stopchar && !isspace(*stopchar))

printf("Extra characters after value ignored: %s\n", stopchar);
printf("The entered string was converted to: %g\n", number);

}

RELATED FUNCTIONS
nan, strtol

SEE ALSO
“String Utility Functions” in Chapter 2, “Function Categories.”

New Library Functions

IARV64
64-Bit Virtual Storage Allocation

Portability: SASC

SYNOPSIS
#include <osiarv64.h>
int IARV64(char _ _near *request, ...);

SAS/C Library Changes in Release 7.50 � IARV64 131

DESCRIPTION
The IARV64 function implements the functionality of the IARV64 assembler macro. The
request argument is the address of a null-terminated string. The remainder of the
argument list is a list of keywords followed, in most cases, by an argument specifying a
value for the keyword. The list is terminated by the _Iend keyword. The request
argument must be one of the following:

GETSTOR
Create a memory object.

DETACH
Free one or more memory objects.

PAGEFIX
Fix physical pages within one or more memory objects.

PAGEUNFIX
Unfix physical pages within one or more memory objects.

PAGEOUT
Notify the system that data within physical pages of one or more memory objects
will not be used in the near future.

PAGEIN
Notify the system that data within physical pages of one or more memory objects
are needed in the near future.

DISCARDDATA
Discard data within physical pages of one or more memory objects.

CHANGEGUARD
Request that a specified range in a memory object be changed from guard area to
usable area or from usable area to guard area.

LIST
Requests a list of memory objects.

The supported keywords and their associated data are as follows. All references to
pointer operands should be considered _ _near unless specifically stated as being
_ _huge.

� The _Ireason keyword is equivalent to the Assembler RSNCODE=, which identifies
an optional output parameter to hold the reason code from register 0. The next
argument should be a pointer to an int where the reason code will be placed.

� The _Icond keyword is equivalent to the Assembler COND=, which specifies
whether the request is conditional or uncoditional. The next argument should be
the string YES for a conditional request, or NO for an unconditional request.

� The _Isegments keyword is equivalent to the Assembler SEGMENTS=, which
specifies the size of the memory object in megabytes. The next argument should be
a long long integer.

� The _Ikey keyword is equivalent to the Assembler KEY=, which specifies the
storage key to be assigned to the memory object. The next argument should be a
unsigned character with bits 0-3 containing the key to be used. Bits 4-7 are
ignored.

� The _Ifprot keyword is equivalent to the Assembler FPROT=, which idicates
whether the memory should be fetch-protected. The next argument should be the
string YES to fetch-protect memory, or NO to indicate that the memory will not be
fetch-protected.

� The _Isvcdumprgn keyword is equivalent to the Assembler SVCDUMPRGN=, which
idicates whether the memory object should be included in an SVC dump or LIST

132 IARV64 � Chapter 2

request. The next argument should be the string YES to include the memory object
(SDATA=RGN must be set in the dump options), or NO to indicate that the memory
object will not be included in an SVC dump or LIST request.

� The _Icontrol keyword is equivalent to the Assembler CONTROL=, which indicates
whether the memory object must be freed by an authorized caller. The next
argument should be the string AUTH to indicate that only an authorized caller can
free the object (and that the object is eligible for PAGEFIX and PAGEUNFIX), or
UNAUTH to indicate that the object cannot be freed by an unauthorized caller.

� The _Iusertkn keyword is equivalent to the Assembler USERTKN=, which identifies
a user token to be identified with a memory object. The next argument should be a
long long integer.

� The _Iguardsize keyword is equivalent to the Assembler GUARDSIZE=, which
specifies the length in megabytes of the guard area to be created at the high or low
end of the memory object. The next argument should be an unsigned int.

� The _Iguardloc keyword is equivalent to the Assembler GUARDLOC=, which
indicates at which end of the memory object the guard area should be placed. The
next argument should be the string HIGH to place the guard area at the top of the
memory object, or LOW to place the guard area at the bottom of the memory object.

� The _Ittoken keyword is equivalent to the Assembler TTOKEN=, which identifies a
task to be assigned ownership of the memory object. The next argument should be
a pointer to a 16 byte array. The array should be set from the result of a call to
the assembler TCBTOKEN macro.

� The _Iorigin keyword is equivalent to the Assembler ORIGIN=, which identifies
where the address of a returned memory object will be placed. The next argument
should be a _ _near pointer to a _ _huge pointer (type _ _huge * _ _near *)
where the address should be stored. Note that the caller does not have to be
compiled with the hugeptrs option. The returned _ _huge pointer is not
dereferenced by this function. If the _Iguardloc parameter indicates that the
guard area is LOW, then the returned _ _huge pointer must be bumped past the
guard area before it is dereferenced.

� The _Imatch keyword is equivalent to the Assembler MATCH=, which specifies
whether an operation should be performed on a single memory object or all
memory objects associated with a given usertoken. The next argument should be
the string SINGLE to indicate only one memory object, or USERTOKEN to indicate all
memory objects matching the usertoken indicated in the _Iusertkn parameter.

� The _Imemobjstart keyword is equivalent to the Assembler MEMOBJSTART=, which
identifies the address of the first byte of a memory object. The next argument
should be a _ _huge pointer to a memory object.

� The _Iowner keyword is equivalent to the Assembler OWNER=, which specifies
whether a task other than the owning task (or a task specifying the correct
TTOKEN) may free a memory object. The next argument should be the string YES to
indicate that the task freeing the memory object must be the owner, or specify the
correct TTOKEN for the memory object, or NO to indicate that the task freeing the
memory object doesn not have to be the owner or provide the correct TTOKEN. Only
supervisor state programs or programs running with a PSW key between 0-7
inclusive may use this parameter.

� The _Iranglist keyword is equivalent to the Assembler RANGLIST=, which points
to a list of 16 byte entries describing memory ranges. The number of entries is
specified by _Inumrange. The next argument should be a _ _huge pointer to an
array of entries consisting of starting address (itself a _ _huge pointer which must
address a byte on a physical page boundry) and a long long containing the
number of pages for a range.

SAS/C Library Changes in Release 7.50 � IARV64 133

� The _Inumrange keyword is equivalent to the Assembler NUMRANGE=, which
identifies the number of entries contained in the associated Iranglist list. The
next argument should be an int containing the number of entries.

� The _Iclear keyword is equivalent to the Assembler CLEAR=, which indicates
whether the storage specified in a DISCARDDATA request will be cleared to binary
zeros. The next argument should be the string YES to indicate that the memory
should be cleared, or NO to indicate that the memory will be indeterminate after
the DISCARDDATA request has completed.

� The _Iconvert keyword is equivalent to the Assembler CONVERT=, which specifies
in the CHANGEGUARD request whether the memory will be converted from or to a
guard area. The next argument should be the string TOGUARD to indicate that
memory should be converted from virtual storage to guard area, or FROMGUARD to
indicate that the memory should be converted to virtual storage from the guard
area. How the memory object was created determines whether the guard area is
at the top or bottom of the memory object.

� The _Iconvertsize keyword is equivalent to the Assembler CONVERTSIZE=, which
specifies the size in megabytes of memory to be transferred to or from the guard
area. The next argument should be an int containing the number of megabytes to
be transferred.

The following parameters may only be specified in an authorized program.

� The _Ilong keyword is equivalent to the Assembler LONG=, which indicates
whether the expected duration of a PAGEFIX is long or short. If the time is expected
to be more than a few seconds, then YES should be used. The next argument
should be the string YES to indicate that the PAGEFIX is expected to be of long
duration, or NO to indicate that the PAGEFIX is expected to be of short duration.

� The _Ialetvalue keyword is equivalent to the Assembler ALETVALUE=, which
specifies an ALET for the address space to be pagefixed. The only valid ALETs are 0
(primary) and 2 (home). The next argument should be an int containing either 0
or 2.

� The _Iv64listptr keyword is equivalent to the Assembler V64LISTPTR=, which
points to a buffer to hold the returned information from a LIST request. The next
argument should be a _ _near pointer to a buffer where the list information will
be returned. osiarv64.h contains C structures converted from the IAXV64WA
assembler DSECT that can be used to map the returned list.

� The _Iv64listlength keyword is equivalent to the Assembler V64LISTLENGTH=,
which specifies the size of the buffer to contain the results from a LIST request.
The next argument should be an int containing the length of the buffer.

� The _Iv64select keyword is equivalent to the Assembler V64SELECT=, which
indicates whether the LIST request is for all or just a subset of the allocated
memory objects. The next argument should be the string YES to indicate that the
LIST request is only for a subset of the allocated memory objects, or NO to indicate
that the LIST request should return all allocated memory object data.

� The _Iend keyword indicates the end of the list of keywords.

RETURN VALUE
IARV64 returns the value in R15 after calling the IARV64 OS macro. If the parms are in
error though, it returns -1.

IMPLEMENTATION
The IARV64 function is implemented by the source module L$UIARV.

134 IARV64 � Chapter 2

EXAMPLE 1
This SPE example gets one megabyte of above the bar memory (compile with the
HUGEPTRS option):

#include <osmain.h>
#include <osiarv64.h>
#include <oswto.h>

char *string1; //(this pointer is _ _huge due to compile option)
int rc;

void osmain()
{

rc = IARV64("GETSTOR", _Isegments, 1ll,
_Iorigin, (__near *) &string1, _Iend);

WTP("GETSTOR rc = %i", rc);
strcpy(string1, "hello world.");

WTP("string1 = %~hpX, ’%s’", string1, string1);
}

EXAMPLE 2
This example gets some storage in system keys and then displays a list of memory
objects via the LIST request. This example is valid only if it is compiled with hugeptrs.

int num, x, reason;
long long adr;
char list[255];
struct V64WAHEADER *pHeader;
struct V64WAENTRY *pEntry;
char *string1;

_ldregs(R1, 0x0000000C);
_ossvc(107); // switch to supervisor state
rc = IARV64("GETSTOR", _Isegments, 1ll,

_Ikey, 0x20,
Iorigin, (_near *) &string1, _Iend);

WTP("GETSTOR rc = %i", rc);
rc = IARV64("GETSTOR", _Isegments, 5000ll,

_Ikey, 0,
Iorigin, (_near *) &string1, _Iend);

rc = IARV64("LIST", _Iv64listptr, (_ _near *) list,
Ireason, (_near *) &reason,
_Iv64listlength, sizeof(list), _Iend);

_ldregs(R1, 0x00000004);
_ossvc(107); // return to problem state
if (rc == 0)
{

pHeader = list;
WTP("V64WARETURNCODE = %i", pHeader->V64WARETURNCODE);

SAS/C Library Changes in Release 7.50 � osdltok 135

WTP("V64WANUMDATAAREAS = %i", pHeader->V64WANUMDATAAREAS);
pEntry = (struct V64WAENTRY *)

((char *) pHeader + V64WAHEADER_LEN);
x = 1;
memcpy(&num, &pHeader->V64WANUMDATAAREAS, 4);
while (num--)
{

WTP("x = %i", x++);
WTP(" Storage key = %02hhX", pEntry->v64waflag);
memcpy(&adr, &pEntry->v64wastart64, 8);
WTP(" Start: %016llX", adr);
memcpy(&adr, &pEntry->v64waend64, 8);
WTP(" End: %016llX", adr);
pEntry++;

}
}

RELATED FUNCTIONS
hpcreate, hpalloc

osdltok

Delete a token associated with a given name

Portability: SASC

SYNOPSIS
#include <osnamtok.h>
int osdltok(char _ _near *name);

DESCRIPTION
The osdltok function uses a name (up to 16 characters) to delete the associated token.
Although IEANTDL can be called in assembler with the bytes of the name consisting of
any value, this function expects the name to be a null-terminated character string. The
actual name passed to the IEANTDL service will consist of the character string truncated
to 16 bytes, or padded with blanks. IBM has reserved names starting with the letters A
through I (uppercase) and the null character (’\0’). The level of the name/token will be
2 (home).

RETURN VALUE
osdltok returns either -1 if the service cannot be called or the return value from the
service.

IMPLEMENTATION
The osdltok function is implemented by the source module L$UNMTK.

136 osdltok � Chapter 2

EXAMPLE

This SPE example retrieves the address of storage that had previously been allocated in
another task and then frees it.

#include <osnamtok.h>
#include <getmain.h>
#include <oswto.h>

char *name = "Z Global";

typedef struct
{

char eye[16]; // eyecatcher
long long lock; // lockword
char *data; // data chain

} GLOBAL, *PGLOBAL;

void osmain()
{

PGLOBAL pGlobal;
char token[16];
int rc;

if ((rc = osgttok(name, token)) != 0)
{

WTP("osgttok failed.");
return;

}
memcpy(&pGlobal, token, 4); // only the first 4 bytes of

// the token are used.
if (strcmp(pGlobal->eye, "Z Global EYE")
{

WTP("Global storage corrupt.");
return;

}

// now delete the token

if ((rc = osdltok(name)) != 0)
{

WTP("osdltok failed.");
return;

}

// and free the common storage

FREEMAIN(pGlobal, sizeof(GLOBAL), 131, UNCOND);

}

RELATED FUNCTIONS

ossttok, osgttok

SAS/C Library Changes in Release 7.50 � osgttok 137

osgttok

Retrieve a token associated with a given name

Portability: SASC

SYNOPSIS
#include <osnamtok.h>
int osgttok(char _ _near *name, char _ _near *token);

DESCRIPTION
The osgttok function uses a name (up to 16 characters) to retrieve a token (16 bytes
binary) using the IEANTRT service. Although IEANTRT can be called in assembler with
the bytes of the name consisting of any value, this function expects the name to be a
null-terminated character string. The actual name passed to the IEANTRT service will
consist of the character string truncated to 16 bytes, or padded with blanks. IBM has
reserved names starting with the letters A through I (uppercase) and the null character
(even though this function cannot create a name beginning with the null character.)
The token parameter should be the address of an array of 16 bytes. This array will be
overlaid by the call to osgttok with the token retrieved. The level of the name/token will
be 2 (home).

RETURN VALUE
osgttok returns either -1 if the service cannot be called or the return value from the
service.

IMPLEMENTATION
The osgttok function is implemented by the source module L$UNMTK.

EXAMPLE
This SPE example retrieves the address of storage that had previously been allocated in
another task and then frees it.

#include <osnametok.h>
#include <getmain.h>
#include <oswto.h>

char *name = "Z Global";

typedef struct
{

char eye[16]; // eyecatcher
long long lock; // lockword
char *data; // data chain

} GLOBAL, *PGLOBAL;

void osmain()

138 ossttok � Chapter 2

{
PGLOBAL pGlobal;

char token[16];
int rc;

if ((rc = osgttok(name, token)) != 0)
{

WTP("osgttok failed.");
return;

}
memcpy(&pGlobal, token, 4); // only the first 4 bytes of

// the token are used.
if (strcmp(pGlobal->eye, "Z Global EYE")
{

WTP("Global storage corrupt.");
return;

}

// now delete the token

if ((rc = osdltok(name)) != 0)
{

WTP("osdltok failed.");
return;

}

// and free the common storage

FREEMAIN(pGlobal, sizeof(GLOBAL), 131, UNCOND);

}

RELATED FUNCTIONS
ossttok, osdltok

ossttok

Save a token associated with a given name

Portability: SASC

SYNOPSIS
#include <osnamtok.h>
int ossttok(char __near *name, char __near *token);

DESCRIPTION
The ossttok function associates a name (up to 16 characters) with a token (16 bytes
binary) using the IEANTCR service. Although IEANTCR can be called in assembler with

SAS/C Library Changes in Release 7.50 � ossttok 139

the bytes of the name consisting of any value, this function expects the name to be a
null-terminated character string. The actual name passed to the IEANTCR service will
consist of the character string truncated to 16 bytes, or padded with blanks. IBM has
reserved names starting with the letters A through I (uppercase) and the null character
(even though this function can not create a name beginning with the null character.)
The token parameter should be the address of an array of 16 bytes. The level of the
name/token will be 2 (home) and the persistence will be 0 (IEANT_NOPERSIST).

RETURN VALUE
ossttok returns either -1 if the service cannot be called or the return value from the
service.

IMPLEMENTATION
The ossttok function is implemented by the source module L$UNMTK.

EXAMPLE
This SPE example gets some memory from subpool 131 and creates a name/token pair
for use in other tasks accessing the memory.

#include <osnamtok.h>
#include <getmain.h>
#include <oswto.h>

char *name = "Z Global";

typedef struct
{

char eye[16]; // eyecatcher
long long lock; // lockword
char *data; // data chain

} GLOBAL, *PGLOBAL;

void osmain()
{
PGLOBAL pGlobal;

char token[16];
int rc;

if ((rc = GETMAIN_U(sizeof(GLOBAL), 131, LOC_ANY, &pGlobal)) != 0)
{

WTP("Getmain error.");
return;

}

memset(pGlobal, 0, sizeof(GLOBAL);

strcpy(pGlobal->eye, "Z Global EYE");

memset(token, 0, 16);
memcpy(token, &pGlobal, 4); // copy address as token

// remaining 12 bytes of token

140 WTP � Chapter 2

// are currently unused.

if ((rc = ossttok(name, token)) != 0)
{

WTP("ossttok failed.");
return;

}

}

RELATED FUNCTIONS
osgttok, osdltok

WTP

Write to Programmmer

Portability: SASC

SYNOPSIS
#include <oswto.h>
int WTP(char *format, ...);

DESCRIPTION
The WTP function implements the functionality of the OS/390 assembler WTO macro with
options set to indicate routing to the programmer. The format argument is the address
of a null-terminated string. This can optionally be followed by one or more variables to
be output according to the format characters in the input string. The vformat function
is used to convert the variable list. See vformat for a list of acceptable conversion
characters.

RETURN VALUE
WTP returns 0 if the WTP macro was successful. If the WTP macro fails, it returns the
return code from the macro, which will be a positive value. WTP might return -2 if there
was not enough memory to perform the WTP.

IMPLEMENTATION
The WTP function is implemented by the source module L$UWTO.

EXAMPLE
This example uses WTP to send two single-line programmer’s messages:

#include <oswto.h>
int iLine;

iLine = 20;

SAS/C Library Changes in Release 7.50 � wmi_del 141

WTP("Error discovered at line: %i", iLine);
WTP("Aborting...");

New Message Exit Facility
In Chapter 2, “Function Categories,” in the section titled, “Diagnostic Control

Functions,” add the following text after the first paragraph.
Additionally, the functions wmi_set and wmi_del allow you to define exits which

control the processing of library diagnostics. You can define an exit to selectively
suppress messgaes, to add text to messages, and to capture messages for your own
processing, for example, writing them to a log file. Additionally, the functions wmifilte
and wmifiltn are simple message exits to suppress specific messages, either by
message number or by errno value. See the function writeups for more detailed
information on writing library message exits.

Add the following diagnostic control functions to the existing list:

wmi_del cancel a previously requested message exit

wmi_set specify a message exit

wmifilte filter library messages by errno value

wmifiltn filter library messages by message number.

Add the following functions, wmi_del, wmifilte, wmifiltn, and wmi_set, to Chapter
6, “Function Descriptions.”

wmi_del

Delete a message exit

Portability: SAS/C

SYNOPSIS
#include <wmi.h>
int wmi_del(wmi_token token);

DESCRIPTION
wmi_del is called to cancel a message exit defined by wmi_set. The token argument
should contain the value returned by wmi_set when the exit was defined.

RETURN VALUE
wmi_del returns 0 if the exit was successfully deleted, or a non-zero value if there was
an error, for instance, if the token value does not represent a defined exit.

EXAMPLE
See the example for wmi_add.

142 wmifilte, wmifiltn � Chapter 2

RELATED FUNCTIONS
wmi_set, wmifilte, wmifiltn

SEE ALSO
“Diagnostic Control Functions” in Chapter 2, “Function Categories.”

wmifilte, wmifiltn

Selectively suppress diagnostic messages

Portability: SAS/C

SYNOPSIS
#include <wmi.h>
enum wmi_outcome wmifilte(int msgnum, int errnoval,

struct wmi_msg_info *info, void *arg);
enum wni_outcome wmifiltn(int msgnum, int errnoval,

struct wmi_msg_info *info, void *arg);

DESCRIPTION
wmifilte and wmifiltn are two message exit routines supplied by the library to allow
selective suppression of library messages by errno value or by message number. These
functions are not intended to be called directly by the application program. Rather, they
are intended to be defined (with the wmi_set function) as message exits with an
argument specifying the messages to be suppressed. A typical use of msgfiltn or
msgfilte in this way might look like the following:

int errorlist[] = { /* list of error or message numbers */ };
wmi_token filter;

filter = wmi_set(&wmifiltn, (void *) &errorlist);
/* perform processing */
wmi_del(filter);

The second argument passed to wmi_set for these functions should point to an array of
integers, terminated by a zero entry. For wmifilte, the list contains one or more errno
values. For wmifiltn, it should contain one or more message numbers.

IMPLEMENTATION
These functions are very simple applications of the SAS/C message exit facility. Their
source code is as follows:

enum wmi_outcome wmifilte(int msgnum, int errnoval, struct wmi_msg_info *info,
void *arg)

{
int *list;

list = (int *) arg;

SAS/C Library Changes in Release 7.50 � wmifilte, wmifiltn 143

while(*list)
if (*list++ == errnoval)

return WMI_SUPPRESS;
return WMI_PASS;

}

enum wmi_outcome wmifiltn(int msgnum, int errnoval, struct wmi_msg_info *info,
void *arg)

{
int *list;

list = (int *) arg;
while(*list)

if (*list++ == msgnum)
return WMI_SUPPRESS;

return WMI_PASS;
}

EXAMPLE
The following code calls the fopen function, suppressing any message for the errno
ENFOUND.

#include <wmi.h>
#include <stdio.h>
#include <errno.h>

char *filename;
int ENFOUND_list[] = { ENFOUND, 0 };
wmi_token filt_token;

filt_token = wmi_set(&wmifilte, &ENFOUND_list);
fopen(filename, "r");
wmi_del(filt_token);

The following is similar code that is specific to OS/390, and which deletes messages
indicating file not found by message number.

#include <wmi.h>
#include <stdio.h>

char *filename;
int not_found_list[] = { 500, 503, 504, 509, 544, 557, 878, 0 };
wmi_token filt_token;

filt_token = wmi_set(&wmifiltn, &_found_list);
fopen(filename, "r");
wmi_del(filt_token);

RELATED FUNCTIONS
wmi_set, wmi_del

SEE ALSO
“Diagnostic Control Functions” in Chapter 2, “Function Categories.”

144 wmi_set � Chapter 2

wmi_set

Establish a warning message exit

Portability: SAS/C

SYNOPSIS
#include <wmi.h>

typedef enum wmi_outcome (*wmi_exittype)
(int msgtnum, int errnoval, struct wmi_msg_info *info,
void *arg); /* This typedef is in wmi.h */

wmi_token wmi_set(wmi_exittype exitptr, void *arg);

DESCRIPTION
wmi_set is called to define a warning message exit. The exit will be called, with a few
exceptions, whenever the library begins processing a runtime warning message. The
exit may request that the message be suppressed or that it be forced to print. It may
also augment the message with additional text, or request that the message be
captured, which means that the lines of the message will be passed to another routine
(a capture exit) for further processing such as logging. Once established, a message exit
remains in effect until wmi_del is called to delete it.

The exitptr argument to wmi_set is a function pointer specifying the message exit.
The arg parameter is an arbitrary pointer value (which may be NULL) that is passed
to the message exit each time it is called. wmi_set returns a value of type wmi_token,
which identifies this specific exit request. This value should be passed to wmi_del to
delete the exit. If wmi_set fails, it returns 0.

The rules for how message exits are called are as follows:
When a message is generated, any message exits are called in the reverse order of

their definition, that is, the most recently defined exit is called first. Message exits are
not called in any of the following situations:

� The message number is between 000 and 099 (these numbers are reserved for
messages with special requirements).

� The message has been suppressed due to use of the quiet function, or previous
failures in message processing indicate possible damage to the C environment.

In general, a message is passed to each defined exit in turn. However, as described
below, once an exit is able to completely suppress a message, the message is not passed
to any other pending exits.

When a message exit is called, it is passed four parameters:

� The SAS/C message number (msgnum)

� The SAS/C errno value (errnoval)

� The argument value specified when the exit was defined (arg)

� A pointer to additional information about the message (info)

Note that errnoval may be 0, indicating an informational message that does not set
errno, or it may be -1, indicating an error-level condition that will cause program
termination after processing of the message is complete.

SAS/C Library Changes in Release 7.50 � wmi_set 145

The info argument is a pointer to a structure of type wmi_msg_info, which is
defined in wmi.h as follows:

struct wmi_msg_info {
char *newtext;
wmi_captype capture;
void *captarg;
enum { WMI_INFO = 1, WMI_WARN = 2, WMI_ERR = 4, WMI_HUSH = 256,

WMI_SUPPRESSED = 512, WMI_FORCED = 1024 }
msgtype;

char recursion;
};

The meaning and usage of the fields of the info structure are as follows:
newtext may be set by the exit to request that text be added to the message. This

can be useful for adding information such as time of day or transaction ID to the
message. The maximum length of the additional text is 110 characters. If the text
begins with a new line character, it is printed on a separate line after the library’s
description of the problem. If the text does not start with a new line, it is printed on the
first message line printed by the library unless it does not fit, in which case it appears
on the next line. Except for an initial new line, the new text must not contain any
control characters, including new lines.

The capture field may be set by the exit to a function pointer defining a routine
which is to capture the message. Each line of the message will be passed to the capture
routine after other library processing of the message has completed. Note that it is
possible to both suppress and capture a message. In this case, the message will not be
printed by the library, but will be passed to the capture routine. If a message is
captured but not suppressed, the message is both printed by the library and passed to
the capture exit.

The captarg field may be set by the exit to a value of type void* to be passed to the
capture routine. If a capture routine is specified but no argument is required, captarg
should be set to NULL.

The msgtype field of the info structure provides additional information about the
message. This field contains one or more flag bits, each of which is associated with a
symbolic name. The bits and their meanings are as follows:

WMI_INFO
The message is informational, that is, it does not set errno, and the program is
not informed of the associated condition.

WMI_WARN
The message is a warning message that sets errno, and after which execution will
continue.

WMI_ERR
The message is an error message. After processing the message the program will
be terminated.

WMI_HUSH
The message has been suppressed internally by the library. Unless an exit forces
the message to be printed, it will be suppressed. Messages for which this flag is
set indicate situations for which a message is not usually required.

WMI_SUPPRESSED
The message has been suppressed by the library or by another exit.

WMI_FORCED
The message has been forced to print by the library or by another exit. If both
WMI_SUPPRESSED and WMI_FORCED are set, WMI_FORCED has precedence.

146 wmi_set � Chapter 2

The recursion field is an integer which is set to either 0 or 1. If recursion is set to
1, the diagnostic message was generated during capture of a message requested by this
exit. When recursion is set to 1, an exit may want to avoid capture processing to
prevent infinite loops.

When a message exit has completed processing, it must return a value of type enum
wmi_outcome, which specifies the disposition of the message. One of the following
values must be returned:

WMI_PASS
The exit makes no change in the disposition of the message. That is, it neither
suppresses it nor forces it to print. Returning WMI_PASS does not prevent either
augmenting the message with additional text or capturing it.

WMI_SUPPRESS
The exit wants to suppress the message. The request may not be honored, if the
library or another exit has forced processing. Note that an exit is permitted to
both capture and suppress a message. If a message is suppressed by an exit, has
not been forced to print, and has not been captured, the message will not be
passed to any remaining exits.

WMI_FORCE
The exit wants to force the message to print.

A message exit should be careful not to generate any library diagnostics itself. To
prevent infinite loops, a message exit is never called for a message which was generated
while it was running. If a diagnostic message is generated, and not completely
suppressed, during the execution of a message exit, the exit is terminated via longjmp,
and does not complete. Because the use of longjmp with C++ is problematic, you should
avoid writing message exits in C++ if there is any chance of generating a diagnostic
within the exit.

Unlike message exits, capture exits are called at the end of library message
processing. If a message is to be printed as well as captured, it will have been written
to stderr before the capture routine is called.

A capture exit should have the following prototype:

enum wmi_capture_outcome capture_name(char *text,
struct wmi_capture_info *info,
void *arg);

The text argument is a line of the message that ends with a new line character. A
library message normally generates at least three lines of output, and a capture routine
is called separately for each line. The arg argument contains the value specified for the
captarg field of the wmi_msg_info structure by the message exit which requested
capture. The info argument addresses a structure of type wmi_captype_info which
contains additional information about the message and the situation, as described below.

The text passed to a capture exit for a message includes any text inserted by
message exits. It does not include a traceback, even if the runtime option =btrace is
specified. The capture exit can generate a traceback itself using the btrace() function
if necessary. Note that normally a traceback generated from a capture exit will be the
same as one at the time the message was generated, but it can be different for
messages which are generated by a message exit routine.

It is possible that a capture exit might itself generate a diagnostic. For instance, if a
capture exit’s purpose is to keep a log of messages, the log might fill up, or suffer an
output error. Because of the timing of calls to capture exits, the library can be more
tolerant of messages generated there than of ones from message exits. For a message
generated from a capture exit, when a message exit is called, the exit’s recursion flag is
set, which allows the exit to choose not to capture this message. However, even if the
exit chooses to capture this message, the message is placed on a capture queue rather

SAS/C Library Changes in Release 7.50 � wmi_set 147

than causing a recursive call to the capture routine. This allows the capture exit to
possibly recover from the condition and process the recursive message normally.

To allow a capture exit to deal with having generated a message itself, the
wmi_capture_info structure passed to the exit contains a field named recursion. The
field is initialized to zero. If a diagnostic is generated from the capture exit, and is not
completely suppressed, the recursion flag is set to 1. This allows the capture exit to be
aware of the situation. Whether or not the recursion flag has been set changes the
effect of some of the return values from a capture exit. This is intended to protect the
library from problems caused by capture exits which do not test for recursions.

When a capture exit has completed processing, there are three basic actions it can
request. It can inform its caller that it has failed, in which case no more lines of this
message will be captured. It can inform its caller that it was successful, in which case it
wil be called again for each remaining line of the message. Finally, it can request a
restart from its caller. In this case, it is called again for each line of the message,
starting with the first line. This is useful if, for instance, due to an error, a capture exit
opens a new log file, and wants all lines of the message to appear in that file.

The mapping of the wmi_capture_info structure addressed by the info argument
to the capture exit is as follows:

struct wmi_capture_info {
unsigned char recursion;
unsigned char recovering;
unsigned char fatal;

};

The recursion flag is zero on entry to the capture exit, but is set to 1 if an unsuppressed
diagnostic message is generated while the capture exit is executing. The recovering flag
indicates whether or not the previous call to the exit for this message generated a
recursive diagnostic, 0 for the normal case, or 1 where the previous call generated a
diagnostic. The recovering flag can allow an exit to detect cases where it is generating
warnings repeatedly, and avoid looping in this situation. The fatal flag is used to
indicate whether the current message represents a fatal error, after which program
execution will terminate. If the capture routine generates a diagnostic processing a
fatal error, further capture processing may be bypassed to avoid the possibility of
further errors.

A capture exit must return to its caller a value of type enum wmi_capture_outcome.
One of the following four symbolic values must be returned:

WMIC_FAIL
indicates that the capture exit has failed. No further lines of this message will be
captured.

WMIC_OK
indicates the capture exit has succeeded. If WMIC_OK is returned when the
recursion flag has been set, the return value is treated as WMIC_FAIL.

WMIC_RECOVER
indicates that, although a diagnostic was generated from the capture exit, the
problem has been recovered, and capture processing for this message should
continue. If WMIC_RECOVER is returned and the recursion flag has not been set, the
return value is treated as WMIC_FAIL.

WMIC_RESTART
requests that processing of this message resume with the first line of the message.
WMIC_RESTART may be returned whether or not the recursion flag is set.

Note: Although the library attempts to prevent infinite loops in exit processing, they
can still occur. Some caution is recommended in dealing with problems which occur in
message or capture exits to prevent loops from taking place. �

148 wmi_set � Chapter 2

RETURN VALUE
wmi_add returns a token which represents the exit request. The token can be passed to
wmi_del to delete the exit. wmi_add returns a zero token to indicate that the exit could
not be defined.

EXAMPLES
This example shows how to define a message exit to add the date and time of day to
each library diagnostic.

Note: In this example the buffer containing the message must be static or external.
If the buffer is defined as auto, the memory for the text will be deallocated when the
exit returns to its caller, with unpredictable results. �

#include <stdio.h>
#include <time.h>
#include <assert.h>
#include <wmi.h>

static enum wmi_outcome time_exit(int, int, struct wmi_msg_info *, void *);

main() {
wmi_token time_exit_token;

time_exit_token = wmi_set(&time_exit, NULL);
assert(time_exit_token != 0);
/* perform main program processing */
wmi_del(time_exit_token);
exit(0);

}

static enum wim_outcome time_exit(
int msgnum,
int errnoval,
struct wmi_msg_info *info,
void *arg)

{
static char timebuf[111];
time_t now;
int result;

time(&now);
result = strftime(timebuf, 111, "Date=%d%b%Y Time=%H:%M:%S",

localtime(&now));
if (result > 0)

info->newtext = timebuf;
return WMI_PASS;

}

The next example shows how to use a message exit to capture message lines and
write them to a log file. If an error occurs writing to the log, a new log file is opened.
Most of the management of the log file is encapsulated as subroutines.

The following example assumes that if a message is generated in the
write_to_log() function, but the function does not indicate an error, then the

SAS/C Library Changes in Release 7.50 � wmi_set 149

message did not indicate a significant problem. Whether this is a reasonable
assumption or not would depend on the code in write_to_log.

#include <stdio.h>
#include <assert.h>
#include <wmi.h>

static enum wmi_outcome msgexit(int, int, struct wmi_msg_info *, void *);
static enum wmi_capture_outcome capture_line(char *,

struct wmi_capture_info *,
void *);

FILE *logfile;

main() {
wmi_token token;

open_log_file();
token = wmi_set(&msgexit, NULL);
assert(token != 0);
/* perform main program processing */
wmi_del(token);
exit(0);

}

static enum wmi_outcome msgexit(
int msgnum,
int errnoval,
struct wmi_msg_info *info,
void * arg)

{
if (info->recursion)

return WMI_PASS; /* don’t capture msg from exit */
if (info->msgtype & WMI_HUSH)

return WMI_PASS; /* don’t capture insiginificant messages */
info->capture = &capture_line;
info->captarg = 0;
if (info->msgtype & WMI_ERR) return WMI_PASS;
else WMI_SUPPRESS; /* don’t print message unless fatal */

}

static enum wmi_capture_outcome capture_line(
char *text,
struct wmi_capture_info *info,
void *arg)

{
int error_flag;
int restart = 0;

error_flag = write_to_log(text);
if (error_flag != 0) {

/* don’t try to recover in perilous situations */
if (info->recovering || info->fatal)

return WMIC_FAIL;
error_flag = open_new_log();

150 New hstrerror Function � Chapter 2

/* give up if we can’t open a good log file */
if (error_flag != 0)

return WMIC_FAIL;
else restart = 1;

}
if (restart) return WMIC_RESTART;
else if (info->recursion) return WMIC_RECOVER;
else return WMIC_OK;

}

See the examples for the wmifilte and wmifiltn functions, which are generalized
exit functions that can be used to suppress specific library messages, for more
information.

RELATED FUNCTIONS
wmi_del, wmifilte, wmifiltn, quiet, longjmp

SEE ALSO
“Diagnostic Control Functions” in Chapter 2, “Function Categories.”

New hstrerror Function
Add the following function description to Chapter 18, “Socket Function Reference,” in

SAS/C Library Reference, Volume 2.

hstrerror

Map h_error number to Message String

Portability: SASC

SYNOPSIS
#include <netdb.h>
char *hstrerror(int errnum);

DESCRIPTION
hstrerror maps the h_error number in errnum to an error message string.

RETURN VALUE
hstrerror returns a pointer to a message describing the h_error number.

EXAMPLE
#include <sys/types.h>
#include <stdlib.h>

SAS/C Library Changes in Release 7.50 � oe2errno 151

#include <sys/socket.h>
#include <netinet.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>

main(int argc, char *argv[])
{

struct hostent *hp;
struct in_addr ip_addr;
/* Verify a "hostname" parameter was supplied */
if (argc <1 || *argv[1] == ’\0’)
exit(EXIT_FAILURE);

/* call gethostbyname() with a host name. */
/* gethostbyname() returns a pointer */
/* to a hostent struct or NULL. */
hp = gethostbyname(argv[1]);
if (!hp)
{

printf("gethostbyname failed. \"%s\"\n", hstrerror(h_errno));
printf("%s was not resolved\n", argv[1]);
exit(EXIT_FAILURE);

}
}

RELATED FUNCTIONS
herror, perror, strerror

New oe2errno Function

oe2errno

Convert USS errno value to SAS/C errno value

Portability: SASC

SYNOPSIS
#include <lclib.h>
#include <errno.h>

int oe2errno(int ussrc);

DESCRIPTION
oe2errno converts an IBM UNIX System Services (USS) errno value to the equivalent
SAS/C errno value.

152 New String Functions � Chapter 2

RETURN VALUE
oe2errno returns the equivalent SAS/C errno value, if applicable. Otherwise it
returns -1.

RELATED FUNCTIONS
perror, strerror

New String Functions

memcasecmp, strcasecmp, and strncasecmp are new string functions for Release
7.50. The following updates and additions need to be made to SAS/C Library Reference,
Volume 1.

� Add memcasecmp, strcasecmp, and strncasecmp to the table labeled, “String
Utility Functions.”In Chapter 2, “Function Categories.”

� Add the following function descriptions to Chapter 6, “Function Descriptions.”

memcasecmp

Compare Two Blocks of Memory, ignoring differences in case

Portability: SASC

SYNOPSIS
#include <lcstring.h>

int memcasecmp(const void *ptr1, const void *ptr2, size_t n);

DESCRIPTION
memcasecmp compares, while ignoring differences in case, two blocks of memory
specified by ptr1 and ptr2. The number of bytes to be compared is n. The null
character is treated like any other character and participates in the comparison. The
comparison is performed using the standard EBCDIC collating sequence with the
exception that differences in case are ignored. Note that case differences are
determined in a locale- specific manner.

RETURN VALUE
memcasecmp returns 0 if the two blocks are equal, an integer less than 0 if the first
block is less than the second, or an integer greater than 0 if the first block is greater
than the second.

IMPLEMENTATION
memcasecmp is functionally equivalent to memcmp, except that each byte is converted to
lowercase before the comparison is made.

SAS/C Library Changes in Release 7.50 � strcasecmp 153

EXAMPLE
#include <lcstring.h>

int main(void)
{

int ch;
int num;
char lwr_alpha[] = "abcdefghijklmnopqrstuvwxyz";
char upr_alpha[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char mix_alpha[] = "AbCdEfGhIjKlMnOpQrStUvWxYz";

for (num = 1; num <= strlen(lwr_alpha); num++)
{
ch = memcasecmp(lwr_alpha, mix_alpha, num);
if (ch != 0)
{

exit(EXIT_FAILURE);
}

}
for (num = 1; num <= strlen(upr_alpha); num++)
{
ch = memcasecmp(upr_alpha, mix_alpha, num);
if (ch != 0)
{

exit(EXIT_FAILURE);
}

}
exit(EXIT_SUCCESS);

}

RELATED FUNCTIONS
memcmp, strcasecmp, strcmp, strncasecmp, strncmp

SEE ALSO
“String Utility Functions” in Chapter 2, “Function Categories.”

strcasecmp

Compare Two Null-Terminated strings, ignoring differences in case

Portability: SAS/C

SYNOPSIS

#include <strings.h>

int strcasecmp(const char *str1, const char *str2);

154 strcasecmp � Chapter 2

DESCRIPTION
strcasecmp compares, while ignoring differences in case, two character strings
specified by str1 and str2. The comparison is performed using the standard EBCDIC
collating sequence with the exception that differences in case are ignored. The return
value has the same relationship to 0 as str1 has to str2. If the two strings are equal
up to the point at which one terminates (that is, contains a null character), the longer
string is considered greater. Note that case differences are determined in a locale-
specific manner.

RETURN VALUE
strcasecmp returns 0 if the two strings are equal, an integer less than 0 if str1
compares less than str2, or an integer greater than 0 if str1 compares greater than
str2. No other assumptions should be made about the value returned by strcasecmp.

CAUTION
If one of the arguments of strcasecmp is not properly terminated, a protection or
addressing exception may occur.

IMPLEMENTATION
strcasecmp is functionally equivalent to strcmp, except that each byte is converted to
lowercase before the comparison is performed.

EXAMPLE
#include <strings.h>
int main(void)
{

int ch;
char lwr_alpha[] = "abcdefghijklmnopqrstuvwxyz";
char upr_alpha[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char mix_alpha[] = "AbCdEfGhIjKlMnOpQrStUvWxYz";

ch = strcasecmp(lwr_alpha, mix_alpha);
if (ch != 0)
{

exit(EXIT_FAILURE);
}

ch = strcasecmp(upr_alpha, mix_alpha);
if (ch != 0)
{

exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

RELATED FUNCTIONS
strcmp, memcasecmp, memcmp, strncasecmp, strncmp

SAS/C Library Changes in Release 7.50 � strncasecmp 155

SEE ALSO
“String Utility Functions” in Chapter 2, “Function Categories.”

strncasecmp

Compare Portions of two strings, ignoring differences in case

Portability: SAS/C

SYNOPSIS
#include <strings.h>

int strncasecmp(const char *str1, const char *str2, size_t maxlen);

DESCRIPTION
strncasecmp compares, while ignoring differences in case, two character strings
specified by str1 and str2. The comparison is performed using the standard EBCDIC
collating sequence with the exception that differences in case are ignored. The return
value has the same relationship to 0 as str1 has to str2. If the two strings are equal
up to the point at which one terminates, that is, contains a null character, the longer
string is considered greater. If maxlen characters are inspected from each string and no
inequality is detected, the strings are considered equal. Note that case differences are
determined in a locale- specific manner.

RETURN VALUE
strncasecmp returns 0 if the two strings are equal, an integer less than 0 if str1
compares less than str2, or an integer greater than 0 if str1 compares greater than
str2, within the first maxlen characters. No other assumptions should be made about
the value returned by strncasecmp.

CAUTION
If the maxlen value is specified as 0, a result of 0 is returned. If the value is a negative
integer, it is interpreted as a very large unsigned integer value. This may cause a
protection or addressing exception, but this is unlikely because comparsion ceases as
soon as unequal characters are found.

IMPLEMENTATION
strncasecmp is functionally equivalent to strncmp, except that each byte is converted
to lowercase before the comparison is performed.

EXAMPLE
#include <strings.h>

int main(void)
{

156 New I/O Functions � Chapter 2

int ch;
size_t num;
char lwr_alpha[] = "abcdefghijklmnopqrstuvwxyz";
char upr_alpha[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
char mix_alpha[] = "AbCdEfGhIjKlMnOpQrStUvWxYz";

for (num = 1; num <= strlen(lwr_alpha); num++)
{
ch = strncasecmp(lwr_alpha, mix_alpha, num);
if (ch != 0)
{

exit(EXIT_FAILURE);
}

}
for (num = 1; num <= strlen(upr_alpha); num++)
{
ch = strncasecmp(upr_alpha, mix_alpha, num);
if (ch != 0)
{

exit(EXIT_FAILURE);
}

}
exit(EXIT_SUCCESS);

}

RELATED FUNCTIONS
strcmp, memcasecmp, memcmp, strcasecmp, strcmp

SEE ALSO
“String Utility Functions” in Chapter 2, “Function Categories.”

New I/O Functions

vfscanf, vscanf, and vsscanf are new I/O functions for Release 7.50. The following
updates and additions need to be made to SAS/C Library Reference, Volume 1.

� Add vfscanf, vscanf, and vsscanf to the list of I/O functions in Chapter 2,
“Function Categories.”

� Add vfscanf, vscanf, and vsscanf to the table labeled, “I/O Functions”in the
section titled, “Formatted I/O Functions,” in Chapter 3, “I/O Functions.”

� Add the following function descriptions to Chapter 6, “Function Descriptions.”

vfscanf

Read Formatted Input from file

Portability: C99

SAS/C Library Changes in Release 7.50 � vfscanf 157

SYNOPSIS
#include <stdarg.h>
#include <lcio.h>

int vfscanf(FILE *f, const char *format, va_list arg);

DESCRIPTION
vfscanf reads formatted input from the FILE designated by f according to the format
specified by the string format. Following the format in the argument list is a pointer to
a list of arguments, designated by arg, of type va_list as defined in the header
<stdarg.h>.

The string pointed to by format is in the same form as that used by fscanf. See the
fscanf description for detailed information concerning the formatting conventions.

RETURN VALUE
vfscanf returns EOF if end of file (or an input error) occurs before any values are
stored. If values are stored, it returns the number of items stored; that is, the number
of times a value is assigned to a member of the variable argument list.

IMPLEMENTATION
vfscanf is functionally equivalent to fscanf, except that the argument list has been
replaced by a variable argument list, va_list, as defined in the header <stdarg.h>.

EXAMPLE
#include <stdarg.h>
#include <lcio.h>
#include <stdlib.h>

int DoScan(FILE *f, const char *fmt, ...);

static char *lines[] = {
"147.8 pounds\n"
"51.7 miles\n",
"4.3 light-years\n",
"10000 volts\n",
"19.5 gallons\n"

};

main()
{

FILE *tmpf;
int i;
__binfmt float amount; // Declare a binary floating point number
char unit[20];
int count;

tmpf = tmpfile();
if (!tmpf)
{

158 vscanf � Chapter 2

puts("Couldn’t open temporary file.");
exit(EXIT_FAILURE);

}
for (i = 0; i < sizeof(lines)/sizeof(char *); ++i)
{

fputs(lines[i], tmpf);
}
rewind(tmpf);

for(;;)
{

count = DoScan(tmpf, "%~bf %s", &amount, unit);
if (feof(tmpf)) break;
if (count < 2)
{

puts("Unexpected error in input data.");
exit(EXIT_FAILURE);

}
printf("amount = %.1~bf, units = \"%s\"\n", amount, unit);

}
fclose(tmpf);

}

int DoScan(FILE *f, const char *fmt, ...)
{

int n = 0;
va_list args;

va_start(args, fmt);
n = vfscanf(f, fmt, args);
va_end(args);

return n;
}

RELATED FUNCTIONS
vfprintf, fscanf, va_arg, va_start, va_end

SEE ALSO
� “I/O Functions” in Chapter 2, “Function Categories”
� Chapter 3, "I/O Functions"

vscanf
Read Formatted Input from the Standard Input Stream

Portability: C99

SYNOPSIS
#include <stdarg.h>
#include <lcio.h>

SAS/C Library Changes in Release 7.50 � vscanf 159

int vscanf(const char *format, va_list arg);

DESCRIPTION
vscanf reads formatted input from stdin according to the format specified by the
string format. Following the format in the argument list is a pointer to a list of
arguments, designated by arg, of type va_list as defined in the header <stdarg.h>.

The string pointed to by format is in the same form as that used by fscanf. See the
fscanf description for detailed information concerning the formatting conventions.

RETURN VALUE
vfscanf returns EOF if end of file (or an input error) occurs before any values are
stored. If values are stored, it returns the number of items stored; that is, the number
of times a value is assigned to a member of the variable argument list.

IMPLEMENTATION
vscanf is functionally equivalent to scanf, except that the argument list has been
replaced by a variable argument list, va_list, as defined in the header <stdarg.h>.

EXAMPLE
#include <stdarg.h>
#include <lcio.h>
#include <stdlib.h>

int DoScan(const char *fmt, ...);

double point[40];

main()
{

int index = 0;
double sum = 0.0;
double avg;
int nopoints;
int stdn_fn = 0;

/* If stdin is the terminal, fileno(stdin) is always 0. */
if (isatty(stdn_fn))

/* Tell user to enter data points; maximum = 39. */
puts("Enter data points (EOF to indicate end of list).");

for(;;)
{

/* Read number; check for end of file. */
if (DoScan("%le", &point[index]) == EOF)

break;
sum += point[index];
++index;

}
nopoints = index;
avg = sum / nopoints;

160 vsscanf � Chapter 2

printf("%d points read.\n", nopoints);
printf("%lf = average.\n", avg);

}

int DoScan(const char *fmt, ...)
{

int n = 0;
va_list args;

va_start(args, fmt);
n = vscanf(fmt, args);
va_end(args);

return n;
}

RELATED FUNCTIONS
vfprintf, scanf, va_arg, va_start, va_end

SEE ALSO
� “I/O Functions” in Chapter 2, “Function Categories”

� Chapter 3, "I/O Functions"

vsscanf

Read Formatted Input from a String

Portability: C99

SYNOPSIS
#include <stdarg.h>
#include <lcio.h>

int vsscanf(const char *source, const char *format, va_list arg);

DESCRIPTION
vsscanf reads formatted input text from the string addressed by source. No file input
is performed. Following the format in the argument list is a pointer to a list of
arguments, designated by arg, of type va_list as defined in the header <stdarg.h>.

The string pointed to by format is in the same form as that used by fscanf. See the
fscanf description for detailed information concerning the formatting conventions.

RETURN VALUE
vfscanf returns EOF if end of file (or an input error) occurs before any values are
stored. If values are stored, it returns the number of items stored; that is, the number
of times a value is assigned to a member of the variable argument list.

SAS/C Library Changes in Release 7.50 � vsscanf 161

IMPLEMENTATION
vsscanf is functionally equivalent to sscanf, except that the argument list has been
replaced by a variable argument list, va_list, as defined in the header <stdarg.h>.

EXAMPLE
#include <stdarg.h>
#include <lcio.h>
#include <stdlib.h>

int DoScan(const char *s, const char *fmt, ...);

static char *lines[] =
{

"147.8 pounds\n",
"51.7 miles\n",
"4.3 light-years\n",
"10000 volts\n",
"19.5 gallons\n",
""

};

int main()
{

int i;
float amount;
char unit[20];
int count;

for (i = 0 ;; i++)
{

count = DoScan(lines[i], "%f %s", &amount, unit);

if (count == EOF)
break;

if (count < 2)
{

puts("Unexpected error in input data.");
exit(EXIT_FAILURE);

}

printf("amount = %.1f, units = \"%s\"\n", amount, unit);
}
exit(EXIT_SUCCESS);

}

int DoScan(const char *s, const char *fmt, ...)
{

int n = 0;
va_list args;

162 New opcmd Function � Chapter 2

va_start(args, fmt);
n = vsscanf(s, fmt, args);
va_end(args);

return n;
}

RELATED FUNCTIONS
vsprintf, sscanf, va_arg, va_start, va_end

SEE ALSO
� “I/O Functions” in Chapter 2, “Function Categories”
� Chapter 3, "I/O Functions"

New opcmd Function
Add the following entry for opcmd to the list of descriptions in Chapter 6, “Function

Descriptions.”

opcmd

Initialize Operator Command Interface

Portability: SASC

SYNOPSIS
#include <lcsignal.h>
void opcmd(unsigned int cibctr);

DESCRIPTION
opcmd requests that a SIGOPER signal be generated whenever the MVS operator
issues a modify or stop command for the program. The SIGOPER signal will also be
raised if the operator included a parameter in the start command that started the
program. This is in addition to any parm that may have been placed in the started task
PROC which is handled as usual by passing as an argument to main. It is not
necessary for the program to be run as a started task to use this facility, but only
started tasks will receive start parms.

cibctr specifies the number of Command Input Buffers (CIBs) to be chained before
rejecting modify commands. This value can be from 0 to 255. If set to 0, no modify
commands will be accepted, but STOP commands will still be processed.

The SIGOPER signal is asynchronous, so it is discovered only when a function is
called or returns.

RETURN VALUE
None.

SAS/C Library Changes in Release 7.50 � opcmd 163

PORTABILITY
opcmd is not portable.

EXAMPLE
This example waits for operator commands and shuts down when the stop command is
received:

#include <oswto.h>
#include <stdlib.h>
#include <signal.h>
#include <lcsignal.h>
static void OperMsg(int);
static int shutdown = 0;

void main(void)
{

signal(SIGOPER, &OperMsg); /* Catch SIGOPER signal. */
opcmd(5); /* enable operator command service */
while(!shutdown)
sigpause(0);

}

/*---+
| SIGOPER handler |
+---*/
static void OperMsg(int signum)
{
OPER_t *info;

info = siginfo();
switch (info->type)
{
case OPER_start:

WTP("Start parm received: %s\n", info->request);
break;

case OPER_stop:
WTP("Stop received.\n");
shutdown = 1;
break;

case OPER_modify:
WTP("Modify received: %s\n", info->request);
break;

}
signal(SIGOPER, &OperMsg); /* Catch SIGOPER signal. */
return;

}

SEE ALSO
SIGOPER in Chapter 5, “Signal-Handling Functions”

164 New Coverage Support Feature � Chapter 2

New Coverage Support Feature
The coverage feature provides information about which lines of source code written

in C (C source code) were executed during a given compilation. The coverage feature
has four parts:

� Part one is implemented by the compiler.

� Part two is implemented by COOL.
� Part three is the application itself.

� Part four is the data extraction routine.

The compiler provides the first part of the coverage feature by generating additional
inline code that flags each line of code when it is executed. The flag is located in a data
element that is also created by the compiler and added to the generated object.

COOL implements the second part of the line coverage feature by producing a global
list that addresses all the compiler-generated coverage data elements encountered in its
input.

The third part of the coverage feature is the application upon which coverage
analysis is to be performed.

The fourth part of the coverage feature is a C routine that you provide, named
_ _cvgtrm, that extracts and processes the coverage data elements at the end of
program execution.

The Compiler Part of the Coverage Feature
When the coverage option is specified, the compiler activates the coverage feature

by creating an internal data element that is used to track which lines of C source code
are executed. You must also specify the compiler’s extended name option, extname, for
COOL to correctly process the data element created by the compiler.

Note: The object created by the compiler when the coverage option is specified will
not be reentrant, regardless of whether you specify the rent option. �

The following table describes the nine components in the data element that are
created by the compiler.

Table 2.2

Field Name Type Boundary Description

Reserved int Fullword

FELNO int Fullword Line number of first
line of executable C
source code.

LELNO int Fullword Line number of last
line of executable C
source code.

Reserved int Fullword

SOURCE_FN_SIZE int Fullword Number of characters
in the SOURCE_FN.

Reserved int Fullword

SAS/C Library Changes in Release 7.50 � The Compiler Part of the Coverage Feature 165

Field Name Type Boundary Description

EXE_INDICATOR char[?] Fullword Variable Length; each
element represents a
C souce code line.

Element 0 is FELNO,
and the last character
is LELNO.

SOURCE_FN char[?] Fullword A string that contains
the input C source
filename. It starts on
the first fullword
boundary that follows
the EXE_INDICATOR.

SNAME char[8] Char Section name of the
compilation unit.

SOURCE_COMPDATE char[17+1] Char A string containing
the creation date of
the object.

SOURCE_SNAME char[7+1] Char A string containing
the section name of
the compilation unit.
The maximum length
is 7 bytes.

The header file cvg.h defines structure type USAGE_DATA which maps the line coverage
table. Because fields SOURCE_FN, SOURCE_COMPDATE and SOURCE_SNAME are at variable
offsets from the start of the structure, they are accessed through macros rather than as
structure members. For instance, if ptr is the address of the line coverage table,
ptr->FELNO addresses the FELNO field, but SOURCE_SNAME(ptr) is used to reference
the SOURCE_SNAME data.

When the coverage option is specified, the compiler searches for the first C source
code line (or any portion of a C source code line) in the compilation unit that generates
executable code and flags it as the first line of C source code. All previous lines are
ignored. All subsequent lines (including white space and comment lines) are flagged as
lines that generate executable code or lines that do not generate executable code.

The EXE_INDICATOR is an array of characters. Each element of the array represents
a C source code line. The first element of the array (FELNO) represents the first C source
code line that has been flagged as a line that generates executable code within the
compilation unit. Each subsequent element represents a C source code line, regardless
of whether it has been flagged as a line that generates executable code or not. The last
element (LELNO) represents the last C source code line that has been flagged as a line
that generates executable code.

At compile time, elements of the array are initialized to 0x01 if the line has been
flagged as a line that generates executable code and 0x02 if not. At run-time, the 0x01
elements are changed to 0x00 when the corresponding line is executed.

The C source filename is provided in SOURCE_FN, which follows the EXE_INDICATOR
array and starts on the next fullword boundary. The length of the filename that
contains the C source code is in SOURCE_FN_SIZE. The section name for the compilation
unit immediately follows the SOURCE_FN and is an 8-byte null-terminated string.

Immediately following SOURCE_FN is SOURCE_COMPDATE, which is the date and time
on which the object was created. SOURCE_COMPDATE is a null terminated string which is
a total of 18 bytes long (including null terminator). The format is mm/dd/yy hh:mm:ss.

166 The COOL Part of the Coverage Feature � Chapter 2

Following SOURCE_COMPDATE is the SOURCE_SNAME, which is a null-terminated string,
with a maximum length of 8 bytes (including the null-terminator).

The COOL Part of the Coverage Feature
Objects compiled with the coverage option must be prelinked with COOL by using

COOL’s coverage option. COOL constructs the line coverage table pointer lists that are
used by the data extraction routine. See “Extracting Coverage Data” on page 166 for
more information on the data extraction routine. The data extraction routine object
should be prelinked with the object module that contains the application’s primary
entry point, along with any other application objects.

COOL creates a list of pointers to line coverage tables found in each object. A pointer
to this list will be passed to the data extraction routine as an argument.

Note: The object created by COOL will not be reentrant, even if you specify the
RENT option at link time. �

The Coverage Feature Application
With the exception of the data extraction routine, all routines that require coverage

data must be compiled with the coverage and extname options. There are no special or
unique coding requirements for the coverage feature.

Extracting Coverage Data
To extract coverage data, create a replacement for the dummy library routine called

_ _cvgtrm. The routine you write should be in a source file separate from the
application, and it must be coded in C because _ _cvgtrm is called after destructors
have been called for all C++ objects. _ _cvgtrm should not be compiled with the
coverage option because any data that is generated will not be correct.

As noted in “The COOL Part of the Coverage Feature” on page 166, _ _cvgtrm
should be linked with the application’s object that contains the primary entry point. It
should not be included with any objects that are part of dynamically loaded modules. A
dynamically loadable module is one that contains a _dynamn function.

_ _cvgtrm is called once for the primary entry-point module during library
termination. For dynamically-loaded modules, _ _cvgtrm is called when the module is
explicitly unloaded (by using unloadm), or during library termination when the module
is unloaded by the library.

The library will pass the following three parameters on each call to _ _cvgtrm:

void _ _cvgtrm (char *sname_ep,
char *load_module,

struct USAGE_DATA *** cvg_list
);

Where the parameters have the characteristics described in the following table.

SAS/C Library Changes in Release 7.50 � JCL for Coverage Sample 167

Table 2.3

Data Name Description

char * pgmname Pointer to the string with the name of the
application program, if it can be determined. This
is the same value that is passed to main as the
first element of the argv array.

char * load_module Pointer to the name of the load module to which
this coverage data applies. For the initial load
module of an application (the one containing the
main function), load_module will be the string "".

struct USAGE_DATA *** cvg_list Pointer to a list of pointers to line coverage tables.

JCL for Coverage Sample
The following JCL builds the application which produced the sample output in

“Sample Output” on page 172:

//* Compile the Sample C Main cvgmain.c
//* Note: ’coverage’ option specified
//CVGMAIN EXEC LC370C,
// PARM.C=’EXTNAME,SNAME(CVGSAMP),COVERAGE’
//C.SYSIN DD DISP=SHR,DSN=COVERAGE.C(CVGMAIN)
//C.SYSLIN DD DISP=SHR,DSN=COVERAGE.OBJ(CVGMAIN)
//* Compile the subroutine called by the C main
//* Note: ’coverage’ option specified
//CVGMAIN2 EXEC LC370C,
// PARM.C=’EXTNAME,SNAME(CVGMN2),COVERAGE’
//C.SYSIN DD DISP=SHR,DSN=COVERAGE.C(CVGMAIN2)
//C.SYSLIN DD DISP=SHR,DSN=COVERAGE.OBJ(CVGMAIN2)
//* Compile the module dynamically loaded by the C Main
//* Note: ’coverage’ option specified
//CVGDYNM EXEC LC370C,
// PARM.C=’EXT,SNAME(CVGDYNM),COVERAGE’
//C.SYSIN DD DISP=SHR,DSN=COVERAGE.C(CVGDYNM)
//C.SYSLIN DD DISP=SHR,DSN=COVERAGE.OBJ(CVGDYNM)
//* Compile the Data Extraction function called by the library
//* as _ _cvgrtm() Note: NO ’coverage’ option specified!
//CVGDUMP EXEC LC370C,
// PARM.C=’EXTNAME,SNAME(CVGDUMP)’
//C.SYSIN DD DISP=SHR,DSN=COVERAGE.C(CVGDUMP1)
//C.SYSLIN DD DISP=SHR,DSN=COVERAGE.OBJ(CVGDUMP1)
//* Linkedit the sample application
//* Note: ’coverage’ option specified
//LKED EXEC LC370LR,PARM.LKED=(’LIST,MAP,COVERAGE’)
//LKED.OBJINPT DD DISP=SHR,DSN=COVERAGE.OBJ
//LKED.SYSLMOD DD DISP=SHR,DSN=COVERAGE.LOAD
//LKED.SYSIN DD *
INCLUDE OBJINPT(CVGDUMP1)
INCLUDE OBJINPT(CVGMAIN)
INCLUDE OBJINPT(CVGMAIN2)
ENTRY MAIN Standard Entry Point

168 Sample MAIN (cvgmain.c); � Chapter 2

NAME CVGMAIN(R) Member Name
/*
//* Linkedit the dynamically loaded module
//* Note: ’coverage’ option specified
//LKED EXEC LC370LR,PARM.LKED=(’LIST,MAP,COVERAGE’)
//LKED.SYSLIN DD DISP=SHR,DSN=COVERAGE.OBJ(CVGDYNM)
//LKED.OBJINPT DD DISP=SHR,DSN=COVERAGE.OBJ
//LKED.SYSLMOD DD DISP=SHR,DSN=COVERAGE.LOAD
//LKED.SYSIN DD *

INCLUDE OBJINPT(CVGDYNM)
ENTRY #DYNAMNR Standard Entry Point
NAME CVGDYNM(R) Member Name

/*

Sample MAIN (cvgmain.c);
#include <stdio.h>
int main()
{ /* Executed, start up. */

/*================================== Non-Executable.
’coverage’ defines two types of C source code
lines, executable, and all others. All others
can be white-space lines, comment lines, or lines
of code that do not result in executable code. ============*/

int exitrc =0; /* Executed, initialized.*/
int notableentry; /* Non-executable. */
int (*ep)(void); /* Non-executable. */
/* No doubt this is a comment line. Non-executable. */
notableentry=1; /* Executed. */
if (notableentry = 1) printf("=1\n");/* Executed. */
if (notableentry = 1) /* Executed. */

printf("=1\n"); /* Executed. */
if (notableentry > 1) printf(">3\n");/* Executed, if () only. */
if (notableentry > 1) /* Executed. */
{ /* Non-executable. */
printf(">1\n"); /* Not executed. */
notableentry=3; /* Not executed. */
printf("notableentry = 3\n"); /* Not executed. */

}; /* Non-executable. */
Label: /* Non-executable */
printf("Hello World\n"); /* Executed. */
loadm("CVGDYNM", &ep); /* Executed. */
if (ep != NULL) /* Executed. */
{ /* Non-executable. */
(*ep)(); /* Executed. */
unloadm(ep); /* Executed. */

}; /* Non-executable. */
cvgmain2(); /* Executed. */
exit(exitrc); /* Executed. */
} /* Not executed. A */

/* return was added by */
/* the compiler because */

SAS/C Library Changes in Release 7.50 � Sample Coverage Routine (cvgdump.c); 169

/* exit() was called */
/* instead of return(). */

Sample Subroutine called by MAIN (cvgmain2.c);
int cvgmain2()
{ /* Executed, start up. */
printf("main2\n"); /* Executed. */
return(0); /* Executed. */
}

Sample Dynamically-Loaded Module (cvgdynm.c);
int _dynamn()
{ /* Executed, start up. */
printf("_dynamn is here\n"); /* Executed. */
return(0); /* Executed. */

} /* Non-executable. */

Sample Coverage Routine (cvgdump.c);
#include <stdio.h>
#include <string.h>
#include <cvg.h>

/*---+
| Track number of data elements processed. |
+---*/
static int ndx = 0;
static void rewind_usage(){
ndx = 0;

}
/*---+
| Extract pointer to line coverage data |
+---*/
static USAGE_DATA * next_usage(USAGE_DATA **CVGTBL[]){

USAGE_DATA * result = 0;
if (CVGTBL[ndx]) {

result = *CVGTBL[ndx];
ndx++;

}
return result;

}
/*---+
| Open the source file for a given data element. |
+---*/
static FILE *opnf(char *name){

FILE *fp;
quiet(1);
fp = fopen(name,"r");
quiet(0);
return fp;

170 Sample Coverage Routine (cvgdump.c); � Chapter 2

}
/*---+
| Process data elements. |
+---*/
void _ _cvgtrm (char * pgm_name, char * load_module,

USAGE_DATA *** cvg_list){
FILE *fp;
char buffer[4096];
int i, j, data_size;
USAGE_DATA *udp;
fprintf(stderr,"\n\npgm_name: %s load_module: %s\n",

pgm_name, load_module);
fprintf (stderr,"\nLegend: "

"(*=executed; .=not_executed, blank=comment/white space"
"/non-executable)\n\n");

rewind_usage();
while (udp = next_usage(cvg_list)) {

data_size = DATA_SIZE(udp);
fprintf(stderr,

"SOURCE_FN : %s SOURCR_FN_SIZE : %d \n"
"SOURCE_COMPDATE: %s \nSOURCE_SNAME : %s \n",
SOURCE_FN(udp), udp->SOURCE_FN_SIZE,
SOURCE_COMPDATE(udp),SOURCE_SNAME(udp));

fp = opnf(SOURCE_FN(udp));
if (fp == NULL) {

strcpy (buffer, "Unavailable\n");
return;

}
fprintf (stderr, " Line Covered Source \n");
fprintf (stderr, " --------------------\n");
/* Print source up to FELNO */
for (i = 1; i < udp->FELNO; i++){

if (fp)
fgets (buffer, sizeof buffer, fp);

fprintf (stderr, "%5d: ", i);
fputs (buffer, stderr);

}
/* Print source from FELNO through LELNO */
for (j = 0; j < DATA_SIZE(udp); j++) {

if (fp)
fgets (buffer, sizeof buffer, fp);

switch (udp->EXE_INDICATOR[j]) {
case 0:

fprintf (stderr, "%5d: * ", i + j);
break;

case 1:
fprintf (stderr, "%5d: . ", i + j);
break;

case 2:
fprintf (stderr, "%5d: ", i + j);
break;

default:
printf ("ERROR: illegal code %d\n",

SAS/C Library Changes in Release 7.50 � cvg.h Header 171

udp->EXE_INDICATOR[j]);
return;

}
fputs (buffer, stderr);

}
/* Print source from LELNO+12 through EOF O */
if (fp) {

while (fgets (buffer, sizeof buffer, fp)) {
fprintf (stderr, "%5d: ", i + j);
fputs (buffer, stderr);
i++;

}
fclose (fp);

}
}

}

cvg.h Header
#ifndef _ _IncCVG
#define _ _IncCVG
#include <string.h>
/*---+
| SAS/C Line Coverage Feature |
| |
| Structure mapping data elements through first byte of coverage |
| data, after that point the length is variable. |
| |
| There are 3 elements that are not defined in the structure, |
| source filename, object creation date, and sname. There are |
| macros below to assist with locating each of them correctly. |
+---*/
typedef struct usage_data {

int reserved0;
int FELNO; /* First executable line number */
int LELNO; /* Last executable line number */
int reserved1;
int SOURCE_FN_SIZE; /* Length of source filename */
int reserved2;
char EXE_INDICATOR[1]; /* Variable length character array */

}USAGE_DATA;

#define DATA_SIZE(udp) ((udp->LELNO - udp->FELNO) + 1)

#define SOURCE_FN(udp) \
(udp->EXE_INDICATOR+((DATA_SIZE(udp) + 3) & ~ 3))

#define SOURCE_COMPDATE(udp) \
(SOURCE_FN(udp) + (udp->SOURCE_FN_SIZE))

#define SOURCE_SNAME(udp) \
(SOURCE_FN(udp) + udp->SOURCE_FN_SIZE + \

strlen(SOURCE_COMPDATE(udp)) + 1 \
)

172 Sample Output � Chapter 2

#endif

Sample Output
pgm_name:,cvgsamp load_module: CVGDYNM

Legend: (*=executed; .=not_executed, blank=comment/white space/non-executable)

SOURCE_FN : //DSN:USER.DEV.C(CVGDYNM) SOURCR_FN_SIZE : 28
SOURCE_COMPDATE: 10/09/02 10:05:31
SOURCE_SNAME : CVGDYNM

Line Covered Source

1: int _dynamn()
2: * { /* Executed, start up. */
3: * printf("_dynamn is here\n"); /* Executed. */
4: * return(0); /* Executed. */
5: } /* Non-executable. */

pgm_name: cvgsamp ,load_module:,

Legend: (*=executed; .=not_executed, blank=comment/white space/non-executable)

SOURCE_FN : //DSN:USER.DEV.C(CVGMAIN) SOURCR_FN_SIZE : 28
SOURCE_COMPDATE: 10/09/02 10:05:28
SOURCE_SNAME : CVGSAMP

Line Covered Source

1: #include 2: int main()
3: * { /* Executed, start up. */
4:
5: /*================================== Non-Executable.
6: ’coverage’ defines two types of C source code
7: lines, executable, and all others. All others
8: can be white-space lines, comment lines, or lines
9: of code that do not result in executable code. ============*/
10:
11: * int exitrc =0; /* Executed, initialized.*/
12: int notableentry; /* Non-executable. */
13: int (*ep)(void); /* Non-executable. */
14: /* No doubt this is a comment line. Non-executable. */
15: * notableentry=1; /* Executed. */
16: * if,(notableentry,= 1) printf("=1\n");/* Executed. */
17: * if (notableentry = 1) /* Executed. */
18: * printf("=1\n"); /* Executed. */
19: * if (notableentry > 1) printf(">3\n");/* Executed, if () only. */
20: * if (notableentry > 1) /* Executed. */
21: { /* Non-executable. */
22: . printf(">1\n"); /* Not executed. */
23: . notableentry=3; /* Not executed. */
24: . printf("notableentry = 3\n"); /* Not executed. */
25: }; /* Non-executable. */
26: Label: /* Non-executable */
27: * printf("Hello World\n"); /* Executed. */
28: * loadm("CVGDYNM", &ep); /* Executed. */

SAS/C Library Changes in Release 7.50 � Updates to Function Categories 173

29: * if (ep != NULL) /* Executed. */
30: { /* Non-executable. */
31: * (*ep)(); /* Executed. */
32: * unloadm(ep); /* Executed. */
33: }; /* Non-executable. */
34: * cvgmain2(); /* Executed. */
35: * exit(exitrc); /* Executed. */
36: . } /* Not executed. A */
37: /* return was added by */
38: /* the compiler because */
39: /* exit() was called */
40: /* instead of,return()., */

SOURCE_FN : //DSN:USER.DEV.C(CVGMAIN2) SOURCR_FN_SIZE : 29
SOURCE_COMPDATE: 10/09/02 10:05:29
SOURCE_SNAME : CVGMN2
Line Covered Source

1: int cvgmain2()
2: * { /* Executed, start up. */
3: * printf("main2\n"); /* Executed. */
4: * return(0); /* Executed. */
5: }

Release 7.50 Changes to the SAS/C Library Reference, Volume 1

Updates to Function Categories
In Chapter 2, “Function Categories,” update the information for the different types of

functions with the following text.

Math Functions
Update the math functions, for example, exp, atan, with the following enhancements.
� All of the math functions support calls from functions compiled with the bfp option.
� All of the math functions support float and long double callers if the name is

suffixed with the letter f or l.
� All of the math functions other than fmod are declared as macros in tgmath.h,

and can be used in a type-generic fashion if that header file is included.
� Math functions which are documented as calling _matherr in case of errors will

call _matherb instead if invoked from a caller compiled with the bfp option.
� The values returned for domain and range errors may differ for bfp callers from

the documented values. In general, a NaN will be returned for domain errors.
Overflow will produce an infinity or the largest possible finite number, depending
on the rounding mode. Underflow will produce a denormalized result or a zero
depending on the magnitude of the correct answer and the rounding mode. A
singularity will produce an infinite result.

� Except in a few degenerate cases, for example, pow(1.0, NaN), any function
called with an argument that is a NaN will return a NaN.

Other changes or enhancements to existing functions worth noting are:

174 Updates to the SAS/C Functions � Chapter 2

� The sqrt function is now built-in if binary floating point is used, or if the compiler
option archlevel(c) is used.

� The function name lgamma is provided as a synonym for gamma. The lgamma name
is preferred because it more accurately describes the function.

� The function prototypes for fmax, fmin, hypot, erf and erfc were previously
defined only in lcmath.h. Because these functions are defined by the C99
standard, their prototypes are now also in math.h.

String Utility Functions
Add the following functions to the list of string functions.

nan convert a string to an IEEE double NaN

nanf convert a string to an IEEE float NaN

nanl convert a string to an IEEE long double NaN

Timing Functions
The following paragraph:
The resolution and accuracy of time values vary from implementation to

implementation. Timing functions under traditional UNIX C compilers return a value
of type long. The library implements time_t as a double to allow more accurate time
measurement. Keep this difference in mind for programs ported among several
environments.

Should read:
The resolution and accuracy of time values vary from implementation to

implementation. Timing functions under traditional UNIX C compilers return a value
of type long. The library implements time_t and clock_t as hex format doubles to
allow more accurate time measurement. This is permitted by the ANSI/ISO standards,
but is unusual, as most systems define these types as integral types. This can lead to
problems in programs ported from other environments. Also note that programs which
use the bfp option may receive diagnostics if they attempt to evaluate expressions with
both a time_t or clock_t operand and one or more double operands. Casting the
time_t or clock_t value to a _ _binfmt double is recommended to solve such problems.

Updates to the SAS/C Functions
The following sections contain updates to the SAS/C functions in Chapter 6,

“Function Descriptions.”

llmax
Replace the SYNOPSIS and EXAMPLE sections with the following new sections:

SYNOPSIS
#include <lclib.h>

long long int llmax(long long int s, long long int r);

EXAMPLE
#include <lclib.h>
#include <stdio.h>

SAS/C Library Changes in Release 7.50 � Updates to Multi-Volume Seeks Support 175

main()
{
long long int num1, num2; /* numbers to be compared */
long long int result; /* holds the larger of num1 and num2 */

puts("Enter num1 & num2 : ");
scanf("%lld %lld", &num1, &num2);
result = llmax(num1, num2);
printf("The larger number is %lld\n", result);
}

llmin
Replace the SYNOPSIS and EXAMPLE sections with the following new sections:

SYNOPSIS
#include <lclib.h>

long long int llmin(long long int s, long long int r);

EXAMPLE
#include <lclib.h>
#include <stdio.h>

main()
{
long long int num1, num2; /* numbers to be compared */
long long int result; /* holds the smaller of num1 and num2 */

puts("Enter num1 & num2 : ");
scanf("%lld %lld", &num1, &num2);
result = llmin(num1, num2);
printf("The smaller number is %lld\n", result);
}

storck
In the “DESCRIPTION” section of the storck function entry, make the following

changes:
� Change the last list-item term, STROCK_STACK_REPT, to

STORCK_STACK_REPT.
� Change the OS/390 Batch default value, DDN:DBGSTG, to DDN:STGRPT.

Updates to Multi-Volume Seeks Support
In Chapter 3, “I/O Functions,” add the following information for multi-volume seeks

support.
� In the section titled, “Library access methods,” in the information on the rel

access method Under OS/390, add the following text after the list:

176 New WTP Function � Chapter 2

Under OS/390, datasets are allowed to extend to multiple volumes.
� In the section titled, “File positioning with standard I/O (fseek and ftell),” add the

following entry to the table labeled, “OS/390 Files with Restricted Positioning:”

Table 2.4 OS/390 Files with Restricted Positioning

File Type Restrictions

multivolume disk or tape
file

For non-rel datasets: only rewind supported if not opened for
append; only seek to the end of file supported if opened for append

New WTP Function
In Release 7.50, the WTP macro has been changed to a function. Because of this

change, several modifications need to be made to the SAS/C Library Reference, Volume
1.

� In Chapter 1, “Introduction to the SAS/C Library,” in the section titled
“Implementation of Functions,” delete WTP from the list of SAS/C functions
implemented as macros.

� In Chapter 6, “Function Descriptions,” in the wto function description, delete the
reference to the WTP macro, delete the sample showing the WTP macro, and add WTP
to the list of related functions.

� In Chapter 6, “Function Descriptions,” add the function description for WTP at
“WTP” on page 140 to the list of functions.

Updates to SAS/C I/O Questions and Answers
In Chapter 3, “I/O Functions,” in the section titled, “SAS/C I/O Questions and

Answers,” replace the section titled, “Sharing an Output PDS” with the following text.

Q. When I open a PDS member for output, the fopen call fails if
another user has the PDS allocated, even if it is allocated as SHR.
How can I write to the PDS if it shared with another user?

A. If more than one user writes to the same PDS at the same time, the
results are unpredictable. Generally, both members will be
damaged. For this reason, when a PDS member, or any other
OS/390 data set, is opened for output, the library allocates the data
set to OLD to make sure that no one else writes to it at the same
time. In some cases, this may be overprotective, but it prevents file
damage from unintended simultaneous access. In cases where the
PDS will only be updated via SAS/C or ISPF, or other applications
that conform to the ISPF enqueing mechanism, you can specifiy
share=ispf as an amparm when you open the member to force the
library to open the dataset as shared.

Note: With a PDSE, it is possible to simultaneously write to
distinct members. Even with a PDSE, the effects are unpredictable
if the same member is opened by more than one user for output at
the same time. �

SAS/C Library Changes in Release 7.50 � Updates to Signal-Handling Functions 177

Updates to Signal-Handling Functions

Update to USS Supported Signals
In Chapter 5, “Signal-Handling Functions,” in the section titled “Supported Signals,”

add the following entry to the list of signals managed exclusively by USS:

SIGDUMP request for SYSMDUMP

Updates to Information on Signals
In Chapter 5, “Signal-Handling Functions,” add the following information for the new

SIGBFPE and SIGOPER signals and for updates to other signals.
� In the section titled, “Synchronous Signals,” add SIGBFPE to the list of sychronous

signals.
� In the section titled, “Asynchronous Signals,” add SIGOPER to the list of signals.
� In the section titled, “Supported Signals,” add SIGBFPE and SIGOPER to the list of

signals managed exclusively by SAS/C.
� Add the following entries to the table labeled, “Summary of Information from

siginfo.”

Table 2.5 Summary of Information from siginfo

Signal
Information Returned by siginfo for Signals Raised
Naturally

SIGBFPE pointer to structure of type FPE_t

SIGOPER pointer to structure of type OPER_t

� In the section titled, “Default Signal Handling,” add the following entries to the
table labeled, “Summary of Default Actions.”

Table 2.6 Summary of Default Actions

Signal
SAS/C Library Default Action
(SIG_DFL Handler)

USS Default Action
(SIG_DFL Handler)

SIGBFPE ABEND with 0C7 not supported

SIGOPER ABEND with user code 1225 ends the process

� In the section titled, “Ignoring Signals,” add the following entry to the table
labeled, “Summary of Ignoring Signals.”

Table 2.7 Summary of Ignoring Signals

Signal
SAS/C Library Ignored Signals
(SIG_IGN Handler)

USS Ignored Signals
(SIG_IGN Handler)

SIGBFPE program continues; result of
computation undefined

not supported

� In the section titled, “Signal Descriptions,” add the following updates:

178 SIGBFPE � Chapter 2

� Change the first sentence of the SIGFPDIV description to read:
The SIGFPDIV signal is raised when the second operand of a hexadecimal

format floating point division is zero, and default handling is in effect for
SIGFPE.

� Change the first sentence of the SIGFPOFL description to read:
The SIGFPOFL signal is raised when the magnitude of the result of a

hexadecimal format floating-point computation exceeds the maximum
supported by the hardware and default handling is in effect for SIGFPE .

� Change the first sentence of the SIGFPUFL description to read:
The SIGFPUFL signal is raised when the magnitude of the result of a

hexadecimal format floating-point computation exceeds the maximum
supported by the hardware and default handling is in effect for SIGFPE .

New SIGBFPE and SIGOPER Signals
In the section titled, “Signal Descriptions,” add the following entries for SIGBFPE and

SIGOPERto the list of descriptions.

SIGBFPE

Binary Floating Point Error

The SIGBFPE signal is raised when a binary floating-point exception occurs for which
trapping is enabled, and default handling is in effect for SIGFPE. If you have specified a
handler for SIGFPE (either SIG_IGN or a function you define), SIGBFPE is not raised.

Default handling
If the SIGBFPE signal is raised, and default handling is in effect, the program
abnormally terminates with an ABEND code of 0C7.

Ignoring the Signal
If your program ignores SIGBFPE, program execution continues, but the results of the
failed expression are unpredictable. Note that the exception bits for the failure may not
be reflected in the floating-point environment.

Information returned by siginfo
If you call siginfo after a SIGBFPE signal occurs, siginfo returns a pointer to a
structure of type FPE_t. Refer to the description of SIGFPE for a discussion of this
structure.

Notes on defining a handler
If you define a handler for SIGBFPE, you can change the result of the computation by
using the information returned by siginfo. Refer to the example in the descrption of
the siginfo function for an illustration of this technique.

SAS/C Library Changes in Release 7.50 � SIGOPER 179

SIGOPER

Operator Communication

Portability: SASC

Description
SIGOPER is an asynchronous signal. The SIGOPER signal is raised when the operator
issues a STOP or MODIFY command or if a parm was included in a START command
that initiated program execution.

Note: Operator commands will only raise the SIGOPER signal after a program call
to the opcmd function to enable this interface. If the SAS/C program was invoked from
an operator START command, the signal for the START command will generally be raised
on return from the call to opcmd. �

Because SIGOPER is an asynchronous signal, the SAS/C library discovers the signal
only when you call a function, when a function returns, or when you issue a call to
sigchk.

Default handling
By default, SIGOPER causes the program to abnormally terminate with a user ABEND
code of 1225.

Ignoring the signal
It is possible, but not particularly useful, to ignore SIGOPER.

Information returned by siginf
When siginfo is called in a handler for SIGOPER, it returns a pointer to an OPER_t
structure. It is defined as:

typedef struct {
unsigned char type; /* Type of request */

#define OPER_start 0x01 /* START */
#define OPER_stop 0x02 /* STOP */
#define OPER_modify 0x03 /* MODIFY */

char request[105]; /* text from operator - null terminated */
char unused[22]; /* future use */
} OPER_t;

type contains an indicator showing which operator command was issued. For START
and MODIFY, the request field will contain a null-terminated string containing the
parameter the operator entered.

180 Release 7.50 Changes to the SAS/C Library Reference, Volume 2 � Chapter 2

Release 7.50 Changes to the SAS/C Library Reference, Volume 2

Updates to Header Files in Function Examples
In Chapter 20, “POSIX Function Reference,” replace the examples for the

chpriority, getpgid, and getsid functions with the examples that are provided here.

chpriority
/*---------------------------+
| POSIX/UNIX header files |
+----------------------------*/
#include <sys/types.h>
#include <unistd.h>
#include <sys/resource.h>
/*---------------------------+
| ISO/ANSI header files |
+----------------------------*/
#include <stdio.h>
#include <stdlib.h>
/*---------------------------+
| Name: main |
| Returns: exit(EXIT_SUCCESS)|
| or exit(EXIT_FAILURE) |
+----------------------------|
+---------------------------*/
int main()
{
/* generic return code */

int rc;
/* which kind of process */
/* id to use */

int kind;
/* process id */

pid_t id;
/* is oeprty relative or */
/* absolute */

int form;
/* process priority */
/* (version 1) */

int prty1;

/* process priority */
/* (version 2) */

int prty2;

/* process id from getpid() */
pid_t pid;

/* process group id from */
/* getpgid() */

pid_t pgid;

SAS/C Library Changes in Release 7.50 � Updates to Header Files in Function Examples 181

/* process user id from */
/* getuid() */

uid_t uid;
/* get the user id for this */
/* process */

uid = getuid();
/* get the process id for */
/* this process */

pid = getpid();
/* get the group process id */
/* for this process */

pgid = getpgid(pid);
if (pgid == -1)
{
perror("Call to getpgid failed");
exit(EXIT_FAILURE);
}
printf(" The process id: %d\n",
(int)pid);

printf("The process group id: %d\n",
(int)pgid);

printf(" The process user id: %d\n",
(int)uid);

/*------------------------------*/
/* Get the process priority */
/* using the process id */
/*------------------------------*/
printf("\nGet the Process Priority using the Process ID\n");

/* the id arg is the pid of a process */
kind = PRIO_PROCESS;
/* version 1 */
id = (id_t)pid;

/* Set errno to zero for */
/* error handling */

errno = 0;
prty1 = getpriority(kind, id);

/* ---------------------------------*/
/* Test for Error */
/* Note: */
/* getpriority() may return a ’-1’ */
/* return code for either a */
/* failure rc, or when the priority */
/* is in-fact ’-1’. To distinguish */
/* between the two conditions, */
/* check the errno */
/* value for a non-zero value. */
/*----------------------------------*/
if (prty1 == -1 && errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);
}
else

182 Updates to Header Files in Function Examples � Chapter 2

{
printf("The process priority (pid:version 1): %d\n", prty1);

}

/* version 2 */
/* 0 implies current processs id */

id = (id_t)0;
/* Reset errno to zero for */
/* error handling */

errno = 0;
prty2 = getpriority(kind, id);

/* Test for Error */
if (prty2 == -1 && errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
else
{
printf("The process priority (pid:version 2): %d\n", prty2);

}
/*-----------------------------*/
/* Get the process priority */
/* using the group process id */
/*-----------------------------*/

printf("\nGet the Process Priority using the Group Process ID\n");

/* the id arg is the group process id */
kind = PRIO_PGRP;

/* version 1 */
id = (id_t)pgid;

/* Set errno to zero for error handling */
errno = 0;
prty1 = getpriority(kind, id);

/* Test for Error */
if (prty1 == -1 && errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
else
{

printf("The process priority (gpid:version 1): %d\n", prty1);

}
/* version 2 */
/* 0 implies current group processs id */

id = (id_t)0;
/* Reset errno to zero for error handling */

errno = 0;
prty2 = getpriority(kind, id);

/* Test for Error */

SAS/C Library Changes in Release 7.50 � Updates to Header Files in Function Examples 183

if (prty2 == -1 && errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
else
{

printf("The process priority (gpid:version 2): %d\n", prty2);
}

/*---*/
/* Get the process priority using the */
/* process User id */
/*---*/
printf("\nGet the Process Priority of the User ID\n");

/* the id arg is the user id of the process */
kind = PRIO_USER;

/* version 1 */
id = (id_t)uid;

/* Set errno to zero for error handling */
errno = 0;
prty1 = getpriority(kind, id);
/* Test for Error */
if (prty1 == -1 && errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
else
{

printf("The process priority (uid:version 2): %d\n", prty1);
}

/* version 2 */
/* Reset errno to zero for error handling */

errno = 0;

/* 0 implies current process user id */
id = (id_t)0;
prty2 = getpriority(kind, id);
/* Test for Error */
if (prty2 == -1 && errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
else
{

printf("The process priority (uid:version 2): %d\n", prty2);
}

/*---*/
/* Set the process priority using the */
/* process id */
/*--*/

184 Updates to Header Files in Function Examples � Chapter 2

printf("\nSet the Process Priority using the Process ID\n");
/* the id arg is the pid of a process */

kind = PRIO_PROCESS;
/* an id of 0 implies current processs id */

id = (id_t)0;
/* Reset errno to zero for error handling */

errno = 0;
/* Set process priority to 5 */

prty1 = 5;
rc = setpriority(kind, id, prty1);
/*--*/
/* Test for Error */
/* Note: UNIX System Services sites must enable */
/* the use of the setpriority() function. */
/* If the use of setpriority() has not */
/* beenenabled, any use of setpriority() */
/* will fail with errno set to ENOSYS. */
/* */
/*--*/
if (rc == -1)
{

perror("Call to setpriority failed");
exit(EXIT_FAILURE);

}
else
{

prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
printf("The process priority is now (pid): %d\n", prty2);

}
/*--*/
/* Set the process priority using the group */
/* process id */
/*--*/

printf("\nSet the Process Priority using the Group Process ID\n");
/* the id arg is the group id of the process */

kind = PRIO_PGRP;
/* 0 implies current group processs id */

id = (id_t)0;
/* Reset errno to zero for error handling */

errno = 0;
/* Set process priority to 10 */

prty1 = 10;
rc = setpriority(kind, id, prty1);
/* Test for Error */
if (rc == -1)
{

perror("Call to setpriority failed");
exit(EXIT_FAILURE);

SAS/C Library Changes in Release 7.50 � Updates to Header Files in Function Examples 185

}
else
{

prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
printf("The process priority is now (gpid): %d\n", prty2);

}
/*---*/
/* Set the process priority using the */
/*process User id */
/*---*/
printf("\nSet the Process Priority of the User ID\n");

/* the id arg is the user id of the process */
kind = PRIO_USER;

/* an id of 0 implies current user id */
id = (id_t)0;

/* Reset errno to zero for error handling */
errno = 0;

/* Set process priority to 15 */
prty1 = 15;
rc = setpriority(kind, id, prty1);

/* Test for Error */
if (rc == -1)
{

perror("Call to setpriority failed");
exit(EXIT_FAILURE);

}
else
{

prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
printf("The process priority is now (uid): %d\n", prty2);

}
/*---*/
/* Change the process priority using the */
/* process id */
/*---*/
printf("\nChange the Process Priority using the Process ID\n");
/* the id arg is the pid of a process */

kind = PRIO_PROCESS;
/* an id of 0 implies current processs id */

id = (id_t)0;

/* Reset errno to zero for error handling */

186 Updates to Header Files in Function Examples � Chapter 2

errno = 0;
/* change using "absolute" */
/* priority - equivalent to setpriority() */

form = CPRIO_ABSOLUTE;
printf("\tChange using CPRIO_ABSOLUTE\n");

/* Change process priority to 3 */
prty1 = 3;
rc = chpriority(kind, id, form, prty1);

/*--*/
/* Test for Error */
/* Note: UNIX System Services sites must enable */
/* the use of the chpriority() function. */
/* If the use of chpriority() has not been */
/* enabled, any use of chpriority() will */
/* fail with errno set to ENOSYS. */
/* */
/*--*/

if (rc == -1)
{

perror("Call to chpriority failed");
exit(EXIT_FAILURE);

}
else
{

prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
printf("The process priority is now (pid): %d\n", prty2);
}

/* change using "relative" priority */
form = CPRIO_RELATIVE;
printf("\tChange using CPRIO_RELATIVE\n");

/* Bump process priority up by 2 */
prty1 = 2;
rc = chpriority(kind, id, form, prty1);
/* Test for Error */
if (rc == -1)
{

perror("Call to chpriority failed");
exit(EXIT_FAILURE);

}
else
{

prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)
{
perror("Call to getpriority failed");
exit(EXIT_FAILURE);
}

SAS/C Library Changes in Release 7.50 � Updates to Header Files in Function Examples 187

printf("The process priority is now (pid): %d\n", prty2);
}

/*---*/
/* Change the process priority using the */
/* group process id */
/*---*/
printf("\nChange the Process Priority using the Group Process ID\n");
/* the id arg is the group id of the process */

kind = PRIO_PGRP;
/* 0 implies current group processs id */

id = (id_t)0;
/* Reset errno to zero for error handling */

errno = 0;
/* change using "absolute" */
/* priority - equivalent to setpriority() */
form = CPRIO_ABSOLUTE;
printf("\tChange using CPRIO_ABSOLUTE\n");

/* Change process priority to 7 */
prty1 = 7;
rc = chpriority(kind, id, form, prty1);
/* Test for Error */
if (rc == -1)
{

perror("Call to chpriority failed");
exit(EXIT_FAILURE);

}
else
{

prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)
{

perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
printf("The process priority is now (gpid): %d\n", prty2);
}

/* change using "relative" priority */
form = CPRIO_RELATIVE;
printf("\tChange using CPRIO_RELATIVE\n");

/* Bump process priority up by 3 */
prty1 = 3;
rc = chpriority(kind, id, form, prty1);
/* Test for Error */
if (rc == -1)
{

perror("Call to chpriority failed");
exit(EXIT_FAILURE);

}
else
{

prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)

188 Updates to Header Files in Function Examples � Chapter 2

{
perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
printf("The process priority is now (gpid): %d\n", prty2);

}
/*--------------------------------------*/
/* Change the process priority using */
/* the process User id */
/*--------------------------------------*/
printf("\nChange the Process Priority of the User ID\n");
/* the id arg is the user id of the process */

kind = PRIO_USER;
/* 0 implies current group processs id */

id = (id_t)0;
/* Reset errno to zero for error handling */

errno = 0;
/* change using "absolute" */
/* priority - equivalent to setpriority() */

form = CPRIO_ABSOLUTE;
printf("\tChange using CPRIO_ABSOLUTE\n");

/* Change process priority to 11 */
prty1 = 11;
rc = chpriority(kind, id, form, prty1);
/* Test for Error */
if (rc == -1)
{

perror("Call to chpriority failed");
exit(EXIT_FAILURE);

}
else
{

prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)
{
perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
printf("The process priority is now (uid): %d\n", prty2);

}
/* change using "relative" priority */

form = CPRIO_RELATIVE;
printf("\tChange using CPRIO_RELATIVE\n");

/* Bump process priority up by 4 */
prty1 = 4;
rc = chpriority(kind, id, form, prty1);
/* Test for Error */
if (rc == -1)
{

perror("Call to chpriority failed");
exit(EXIT_FAILURE);

}
else

SAS/C Library Changes in Release 7.50 � Updates to Header Files in Function Examples 189

{
prty2 = getpriority(kind, id);
/* Test for Error */
if (errno != 0)
{
perror("Call to getpriority failed");
exit(EXIT_FAILURE);

}
printf("The process priority is now (uid): %d\n", prty2);

}
exit(EXIT_SUCCESS);

} /* end of main() */

getpgid
/*------------------------------------+
| POSIX/UNIX header files |
+-------------------------------------*/
#include <sys/types.h>
#include <unistd.h>
/*------------------------------------+
| ISO/ANSI header files |
+-------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
/*------------------------------------+
| Name: main |
| Returns: exit(EXIT_SUCCESS) or
| exit(EXIT_FAILURE) |
+-------------------------------------*/
int main()
{
/* current process id from getpid() */

pid_t pid;

/* process group id from getpgid() */
pid_t pgid;

/*--*/
/* Get the group process id of the current */
/* process */
/* Note: Both version 1 and version 2 are */
/* equivalent to calling the */
/* getpgrp() function */
/*--*/
printf("\nGet the Group Process ID of the Current Process\n");
/* version 1 */
/* Set errno to zero for error handling */

errno = 0;
/* get the process id for this process */

pid = getpid();
/* get the group process id for this process */

pgid = getpgid(pid);
/* Test for Error */

if (pgid == -1)
{

190 Updates to Header Files in Function Examples � Chapter 2

perror("Call to getpgid failed");
exit(EXIT_FAILURE);

}
else
{

printf(" The process id: %d\n", (int)pid);
printf("The process group id:%d\n", (int)pgid);

}

/* version 2 */
/* Reset errno to zero for error handling */

errno = 0;
/* 0 implies current processs id */

pid = 0;
/* get the group process id for this process */

pgid = getpgid(pid);
/* Test for Error */

if (pgid == -1)
{

perror("Call to getpgid failed");
exit(EXIT_FAILURE);

}
else
{

printf("The process group id: %d\n", (int)pgid);
}
exit(EXIT_SUCCESS);

} /* end of main() */

getsid
/*------------------------------------+
| POSIX/UNIX header files |
+-------------------------------------*/
#include <sys/types.h>
#include <unistd.h>
/*------------------------------------+
| ISO/ANSI header files |
+-------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
/*--------------------------------------+
| Name: main |
| Returns: exit(EXIT_SUCCESS) |
| or exit(EXIT_FAILURE) |
+ -------------------------------------*/
int main()
{
/* current process id from getpid() */

pid_t pid;
/* process group id from getsid() */

pid_t sid;
/*---------------------------------------*/
/* Get the Session Leader id for the */
/* Current Process */

SAS/C Library Changes in Release 7.50 � Updates to Header Files in Function Examples 191

/*---------------------------------------*/
printf("\nGet the Session Leader ID of the Current Process\n");
/* version 1 */
/* Set errno to zero for error handling */

errno = 0;
/* get the process id for this process */

pid = getpid();
/* get the session leader id for */
/* this process */

sid = getsid(pid);
/* Test for Error */

if (sid == -1)
{

perror("Call to getsid failed");
exit(EXIT_FAILURE);

}
else
{

printf(" The process id: %d\n", (int)pid);
printf("The Session Leader id: %d\n", (int)sid);

}

/* version 2 */
/* Reset errno to zero for error handling */

errno = 0;
/* 0 implies current processs id */

pid = 0;
/* get the session leader id for */
/* this process */

sid = getsid(pid);
/* Test for Error */

if (sid == -1)
{

perror("Call to getsid failed");
exit(EXIT_FAILURE);

}
else
{

printf(" The process id: %d\n",
(int)pid);
printf("The Session Leader id: %d\n",
(int)sid);
}

exit(EXIT_SUCCESS);
} /* end of main() */

chown

Replace the #include statements in the chown example with the #include
statements that are provided here.

#include <sys/types.h>
#include <grp.h>
#include <stdlib.h>

192 New oeattach Example � Chapter 2

#include <stdio.h>
#include <unistd.h>

New oeattach Example
In Chapter 20, “POSIX Function Reference,” replace the oeattach sample code

under the “Example” heading with the following code:

#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <lclib.h>
main()
{

int pipefds[2];
pid_t pid;
char *const parmList[] = {"/bin/ls", "-l", "/u/userid/dirname",

NULL };
char lsout[200]; /* buffer for out ls output */
int amt;
int status; /* status code from ls */
fclose(stdout); /* avoid stdio interfering with fd 1 */
fclose(stdin); /* avoid stdio interfering with fd 0 */
close(STDOUT_FILENO); /* make sure fd’s 0 & 1 are avail */
close(STDIN_FILENO);
pipe(pipefds); /* create both ends of a pipe */
if (pipefds[0] == STDOUT_FILENO) {

fprintf(stderr,
"Warning: Input fileno is 1, should not occur.\n");

pipefds[0] = dup(pipefds[0]);
close(STDOUT_FILENO);

}
if (pipefds[1] != STDOUT_FILENO) {

fprintf(stderr,
"Warning: Output fileno is not 1, should not occur.\n");

dup2(pipefds[1],STDOUT_FILENO);
/* make write end of pipe fd 1 */

close(pipefds[1]); /* close write end */
}
pid = oeattach("/bin/ls", parmList);

/* run ls command as subtask */
close(STDOUT_FILENO); /* close write end of pipe in parent */
for(;;) { /* read from the pipe */

amt = read(pipefds[0], lsout, sizeof(lsout));
if (amt <= 0) break;
fwrite(lsout, 1, amt, stderr); /* write ls output to stderr */

}
wait(&status); /* wait for ls to complete */
close(pipefds[0]); /* close pipe input end */
if (WIFEXITED(status)) exit(WEXITSTATUS(status));
else /* if ls failed, use kill to fail the same way */

kill(0, WTERMSIG(status));

SAS/C Library Changes in Release 7.50 � Updates to the osdynalloc Function 193

}

Update to loadm Function Description
In Chapter 1, “Dynamic-Loading Functions,” in the loadm function description, in the

section titled, “Example 1.2 dynamic loading modules with multiple functions,” replace
the example code in “STEP I. Put the following declarations a common header file and
name it DYNTABLE:” with the following example:

int func1(void)
int func2(void)

struct funcdef { /* structure definition for functions */
int (*func1)();
int (*func2)();

/* More functions can go here. */
};

typedef struct funcdef *fptrtable; /* pointer to list of funcdefs */

Updates to the osdynalloc Function
In Chapter 3, “MVS Low-Level I/O Functions,” update the osdynalloc function

description with the following information.
Replace the corresponding lines in the table labeled, “SVC 99 Request Block

Keywords,” with the following entries:

Table 2.8 SVC 99 Requst Block Keywords

Identifier RB Field Value Description Notes

msgbelow
elsto

S99LSTO none Allocate SVC 99 messages below
the 16 meg line

msgerror
msgrc

none int* Message processing error code
(returned in register 15 by
IEFDB476)

Replace the corresponding lines in the table labeled, “Dynamic Allocation Keywords,”
with the following entries:

Table 2.9 Dynamic Allocation Keywords

Identifier JCL Equiv
SVC
99Key Value Format Description Notes

subsysattr
ssattr
ssatt

none DALSSATT char* Res Word Subsystem
attributes

(6)

subsysparm
ssparm
ssprm

SUBSYS=
(,parm...)

DALSSPRM char[68] Multiple Subsystem
Parameters

(4)

Add the following lines to the table labeled, “Dynamic Allocation Keywords:”

194 Updates to the osdynalloc Function � Chapter 2

Table 2.10 Dynamic Allocation Keywords

Identifier JCL Equiv SVC 99Key Value Format Description Notes

bufl
buflen
bufln
dcbbufl
dcbbuflen
dcbbufln

DCB=BUFL= DALBUFL int Buffer
length

fdat
filedata

FILEDATA= DALFDAT char* Res Word TEXT/
BINARY
for HFS file

ovaff
overaff
overrideaff

DALOVAFF none Override
affinity

retclienttok
retctk
rtctoken
rtctk
rtctoken

none DALRTCTK char(*) [81] Return
JES client
token

ssreq none DALSSREQ char[5] Subsystem
request

uncnt
unitcount

none DALUNCNT int Device
count

unit UNIT= DALUNIT char[9] Unit name

Replace the corresponding lines in the table labeled, “Dynamic Allocation Inquiry
Keywords,” with the following entries:

SAS/C Library Changes in Release 7.50 � Updates to the osdynalloc Function 195

Table 2.11 Dynamic Allocation Inquiry Keywords

Identifier JCL Equiv SVC 99Key Value Format Description Notes

path PATH= DINRPATH char[256] HFS
filename for
which
information
is needed

(1)

retpathcdisp
rtpathcdisp
rpathcdisp
retpcdisp
rtpcdisp
rpcdisp
retpcds
rtpcds
rpcds
retcnds
rtcnds
rcnds

return
PATHDISP=(n,c)

DINRPCDS int* Encoded Return HFS
file
abnormal
disposition

Add the following lines to the table labeled, “Dynamic Allocation Inquiry Keywords:”

Table 2.12 Dynamic Allocation Keywords

Identifier JCL Equiv
SVC
99Key Value Format Description Notes

retfdat
retfiledata
rtfdat
rfiledata
rtfdat
rtfiledata

return
FILEDATA=

DINRFDAT int* Encoded Return TEXT/
BINARY attribute
of HFS file

rettyp
rettype
rttyp
rttype

none DINRTTYP char* Encoded Return data set
type

196 Updates to the Socket Functions � Chapter 2

Identifier JCL Equiv
SVC
99Key Value Format Description Notes

retpathndisp
retpndisp
retpnds
rpathndisp
rpndisp
rpnds
rtpathndisp
rtpndisp
rtpnds

return
PATHDISP=
(n,)

DINRPNDS int* Encoded Return HFS file
disposition

retvolume
retvolser
retvol
rtvolume
rtvolser
rtvol

return
VOL=SER=

DINRTVOL char(*) [7] Return first volume
serial

Updates to the Socket Functions
In Chapter 18, “Socket Function Reference,” update the following sections as

indicated:
� Update the second paragraph of the selectecb description to read:

The ecblist argument is the address of an array of structures, each of which
represents one or more contiguous _ecblist structures. Each structure contains
two members, a count of the number of ECBs, and the address of an array of
ECBs. The count may be zero, in which case the ECB array address is ignored.

� Add the following note after the last paragraph of the setsocketopt description:

Note: TCP_NODELAY is not supported for non-integrated sockets. This is an
IBM restriction, and is not a SAS/C restriction. However, TCP_NODELAY is
supported for OE (integrated) sockets, which is the default for SAS/C Release 7.00.
For releases prior to 7.00, you can use the setsockimp("OE") function to get
integrated sockets. �

Update to getdtablesize Example
In Chapter 18, “Socket Function Reference,” replace the code in the “Example”

section with the following code:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>

main()
{

int maxsockets;
fd_set *readset, *writeset, *exceptset);
int ready;

SAS/C Library Changes in Release 7.50 � New <sys/un.h> Header File 197

/* get maximum number of sockets */
maxsockets = getdtablesize();

/* allocate storage for fd sets (8 bits per byte, 4 byte int) */
readset = calloc((maxsockets+31)/32, 4);
writeset = calloc((maxsockets+31)/32, 4);
exceptset = calloc((maxsockets+31)/32, 4);

/* allocate storage for fd sets (8 bits per byte) */
.
.
.
ready = select(maxsockets, readset, writeset, exceptset, NULL);

/* wait for socket activity */
.
.
.

}

New <sys/un.h> Header File
In Chapter 15, “The BSD UNIX Socket Library,” add the following information for

the <sys/un.h> header file:

� In the section titled, “Header Files,” add the following entry for the <sys/un.h>
header file to the list of header files:

17 <sys/un.h>

� After the section titled “<sys/socket.h>” add a section titled “<sys/un.h>” that
contains the following text:

The <sys/un.h> header file contains the definitions for UNIX domain sockets.
<sys/socket.h> must be included in your code before <sys/un.h>.
sockaddr_un as illustrated in the following example, is the UNIX domain socket
address structure.

struct sockaddr_un {
unsigned char sun_len; /* sockaddr len including null */
sa_family_t sun_family; /* AF_UNIX / AF_LOCAL */
char sun_path[104]; /* path name */

};

The family type constant AF_LOCAL has replaced the equivalent, historical
constant AF_UNIX in more recent practice. However, both constants are defined
in the header file <sys/socket.h>, and either one may be used.

198

199

C H A P T E R

3
SAS/C Cross-Platform Changes
for Release 7.50

Introduction 199
Release 7.50 Enhancements to the SAS/C Cross-Platform Compiler 199

New Cross-Platform Compiler Options 199

New Options Summary 199

New Options 200

New cool Options 203
cool Options Summary 203

cool Options Description 204

New Alternative Code Page Feature 204

Release 7.50 Changes to the SAS/C Cross-Platform Compiler User’s Guide 206

Updates to Compiler Options 206

Updates to the ar370 Archive Utility 206
Update to the Introduction 207

Update to Optional Modifier Characters 207

Update to Combinations of Command and Modifiers 207

Update to Optional Modifier Characters 207

Update to the -Aenexit and -Aenexitdata COOL Options 208

Introduction
This chapter provides a complete description of the changes and enhancements to the

SAS/C Cross-Platform Compiler and C++ Development System User’s Guide for Release
7.50.

Release 7.50 Enhancements to the SAS/C Cross-Platform Compiler

New Cross-Platform Compiler Options

New Options Summary
Table 3.1 on page 200 summarizes all the new cross-platform compiler options. This

table is an extension of the table labeled, “Compiler Options” in Chapter 3, “Compiling
C and C++ Programs.”

The option specifications are listed in the first column of the table. The second
column indicates whether the option can be negated. An exclamation point (!) means
that the option can be negated. A plus sign (+) means that the option cannot be negated.

200 New Cross-Platform Compiler Options � Chapter 3

Table 3.1 Compiler Options

Option Negation Default Description

-Karchlevel=let ! -Knoarchlevel Specifies 390 architecture.

-Kasynsig ! -Kasynsig Specifies the detection of
asynchronous signals when
exiting from a function.

-Kbfp ! -Knobfp Specifies IEEE floating point
format.

-Kcoverage ! -Knocoverage Activates the COVERAGE
feature of the compiler.

-Kc99subset ! -Knoc99subset See description.

-Khugeptrs ! -Knohugeptrs Specifies 64-bit addressing.

-Khxref ! -Knohxref Prints references in standard
header files in the
cross-reference listing.

-Kiccp ! Call the CICS traslator before
compiling.

-Kixref ! -Knoixref Prints references in user header
files in the cross-reference listing.

-Kmpsafe ! -Knompsafe Specifies safe asynchronous
signals for nonMP configurations.

-Knofriendinject ! -Kfriendinject For C++ compilations: Disable
the creation of visible names for
friend class and function
declarations.

-Koptions ! -Koptions Specifies options listing.

-Koldforscope ! -Knooldforscope For C++ compilations: Use the
old scoping rules for variables
declared in the initialization
clause of a for statement.

-Kstkbelow ! -Knostkbelow Allocates stack below the 16M
line.

-Kstmap ! Requests a map of structure
elements.

-Kwarn ! -Knowarn Causes the compiler warning
messages to be printed.

New Options

-Karchlevel
allows you to request code generation for a specific level of the 390 architecture.
By specifying this option, you can exploit newer features of recent processors, but
you should be aware that the generated code will fail if you run it on a processor
that does not have the indicated feature.

The archlevel option specifies an architectural level by a single-letter code.
Four codes are supported currently, with the following meanings.

� New Cross-Platform Compiler Options 201

a The processor supports the logical string assist facility.
This facility allows the compiler to generate better code for
string.h built-in functions such as strlen, strcpy, and
strcmp.

b The processor supports the immediate and relative instruction
set, as well as the compare and move extended facility. This
allows the compiler to generate improved code in many areas.

c The processor supports the floating-point extensions feature.
This feature allows the compiler to generate improved code for
floating-point computations, and is required to use IEEE
floating-point. Note that use of archlevel(c) is advantageous
for programs which use the traditional 390 hex format for
floating-point as well as for IEEE applications.

d The processor supports the z/Architecture. This feature allows
the compiler to exploit 64-bit registers for programs which use
the long long data type, and is a prerequisite for 64-bit
addressing support.

Note: The codes are cumulative so that, for instance, specifying an architecture
level of c indicates presence of all features defined for levels a and b,as well as c. �

If no architecture level is specified, the compiler assumes that none of the above
architectural features can be used. However, if the bfp option is specified, an
archlevel of c is assumed by default, and if the hugeptrs option is specified, the
archlevel is assumed to be d.

-Kasynsig
specifies that extra code should be generated when necessary to detect
asynchronous signals on exit from a function. If the program does not use any
asynchronous signals (such as SIGINT, SIGALRM, or any POSIX signal), you can
improve performance slightly by specfying noasynsig.

If noasynsig is specified but the program responds to asynchronous signals,
detection of these signals by the program may be delayed, causing the handler to
be called later than would otherwise be expected.

-Kbfp
specifies that the default floating point format is binary (IEEE). Note that the BFP
option implies the ARCHLEVEL(C) option.

-Kcoverage
activates the COVERAGE feature of the compiler, which provides information on
which lines of code written in C were executed during a compilation. This adds
additional code and a data element for tracking execution to the object. The
information about which lines of code were executed are made available at
runtime by the _ _cvgtrm routine, which the user can provide.

-Kc99subset
-Kc99subset enables the following new features of the ISO C99 standard:

� Variable declarations may occur anywhere within a compound block and in
the first clause of a for statement.

� The treatment of large unsuffixed decimal constants is C99 compliant in the
determination of type, for example, 4000000000 is a 64 bit signed integer
instead of a 32 bit unsigned integer.

� The predefined identifier _ _func_ _ is made available for each function.
Whenever referenced _ _func_ _ is treated as if it were declared at the
beginning of the function as follows:

202 New Cross-Platform Compiler Options � Chapter 3

static const char _ _func_ _[] = function-name;

If the identifier is not used, the declaration will be deleted and no space will
be wasted.

� Preprocessor macros may have a variable number of arguments, for example,

#define LOGIT(...) fprintf(logfile, _ _VA_ARGS_ _)
LOGIT("x was %d, but y was %d", x, y);

� inline is a keyword. This is equivalent to the SAS/C _ _inline keyword
except that

� Only one definition may occur in a compilation unit.
� An actual external definition will be created if the function is declared

with external linkage.

� restrict is a keyword. The optimizer does not use the information provided
by the use of this qualifier; consequently, its use will not result in better code
genration. The keyword is enabled as a convenience for porting code written
for C99 to SAS/C.

Note: -Kc99subset is ignored for C++ compilations. �

-Khugeptrs
specifies that the object code is intended to execute in 64-bit addressing mode.
When hugeptrs is specified, the default pointer type is _ _huge, and the size of
signed and unsigned long data is 8 bytes. Note that the hugeptrs option implies
the ARCHLEVEL(D) option.

Though the hugeptrs option is valid under CMS, the object code generated with
this option cannot be executed under CMS because of operating system limitations.

-Khxref
prints references in standard header files in the cross-reference listing. See hlist
for a description of header files.

-Kiccp
calls the CICS translator before compiling. When -Kiccp is specified, the CICS
translator is called regardless of the file extension.

Prior to the implementation of the -Kiccp option, it was necessary to use a
.ccp extension to indicate that the CICS translator should be called. Now that the
-Kiccp is available, you can use one of the following commands to call the CICS
translator:

sascc370 -Kiccp test.cxx
sascc370 -Kiccp test.c

where:
� The .cxx extension causes the C++ translator to be called after the CICS

translator.
� The .c extension causes the C compiler to be called after the CICS translator.

The old behavior is still functional, and you can use the .ccp extension to
indicate that the CICS translator should be called.

-Kixref
lists references in user #include files.

-Kmpsafe
specifies that extra code should be generated to assure correct behavior when a
SAS/C asynchronous signal is detected on a different processor in an MP
configuration than the one executing the SAS/C program. An example would be a

� New cool Options 203

user-added asynchronous signal which is generated by a subtask of the SAS/C
program. mpsafe causes a slight performance penalty in the function epilog, so it
should be used only when the object code may be used in the presence of such
asynchronous signals.

If nompsafe is specified or defaulted, an asynchronous signal generated on
another processor may be ignored or may cause an ABEND if it occurs while the
function is returning.

-Knofriendinject
specifies that the translator should make the names of of friend class and
function names visible in the enclosing non-class scope of the class containing the
declaration. This is called friend name injection. The C++ standard requires that
friend names not be injected. However older code may require name injection. The
-Kfriendinject option is the default for compatability with older code. However
this default may change in a future release.

The -Knofriendinject option is equivalent to the SAS/C C++ Development
System’s nofriendinject option.

-Koldforscope
specifies that the scope of a variable defined in the initialization clause of a for
statement will follow the old C++ rules concerning scoping. The new scoping rules
in the C++ standard specify that the scope of a variable defined in the for loop
initialization clause only includes the for statement and its associated loop body.

The -Koldforscope option is equivalent to the SAS/C C++ Development
System’s oldforscope option.

-Koptions
generates an options listing. The options listing contains all options in effect for
the compilation.

-Kstkbelow
causes the stack frame for functions in this compilation to be allocated below the
16M line. If the _stkabv external variable has been set to indicate the the
program wants to have the stack above the line, but certain functions cannot
tolerate this (for example, stack variables will be passed to system services that
run only AMODE=24), then stkbelow can be specified to force the auto variables
of such functions to be allocated below the line. For assembler routines, the
STKBELOW=YES option of the CENTRY macro will accomplish the same result. For
best results, compile only those functions that require a stack below the line with
stkbelow.

-Kstmap
requests that a map of structure elements and their offsets be generated in the
cross-reference for each structure tag enclosed. Specifying the -Kstmap option
implies the -Kxref option.

-Kwarn
causes compilation warning messages to be printed. nowarn suppresses warning
messages.

New cool Options

cool Options Summary
Table 3.2 on page 204 lists the new cool options. This table is an extension of the

table labeled, “cool Options,” in Chapter 6, “Prelinking C and C++ Programs.”

204 New Alternative Code Page Feature � Chapter 3

Table 3.2 cool Options

sascc370 Option Negation Default
cool
Option Description

-Aenexitdata=dll + -xtdll Under Windows, specifies the
name of a DLL that generates
external symbols that are used
by COOL for extended
processing.

-Asevere ! -Anosevere -we Causes COOL to assign the same
level of importance to warnings
as it does to errors.

cool Options Description
-Aenexitdata=dll

Under Windows, specifies the name of a Dynamic-Link Library that generates
external names that are used by COOL to resolve extended names. See “COOL
Extended Names Processing” in Appendix 7, “Extended Names” of the SAS/C
Compiler and Library User’s Guide.

severe (-Asevere under USS)
causes COOL to assign the same level of importance to warnings as it does to
errors. If COOL returns a warning, the COOL return code is the same as if COOL
had returned an error; however, the message the user receives for a warning
remains the same as before. It indicates only that COOL has returned a warning,
not an error.

New Alternative Code Page Feature
In Chapter 3, “Compiling C and C++ Programs,” following the section titled,

“External Compiler Variables,” add a new heading of the same level with the title,
“Alternative Code Page Feature,” that contains the following text.

With release 7.50, the SAS/C and C++ cross-platform compiler allows you to specify
alternative codepages for the translation of characters used in your source code. Two
codepage tables are required: one giving the ASCII to EBCDIC translation and a second
giving the EBCDIC to ASCII translation. The codepage tables must be placed in files
named atoe.codepage and etoa.codepage. The location of the directory containing
these files is specified with the _SASC_CODEPAGE_PATH environment variable.

The alternative codepages enable you to control the way the ASCII characters in
your source code are translated into EBCDIC by the compiler. For example, you can use
them to control the way the ASCII ‘$’ is translated in the following example:

#include <stdio.h>
void main(void)
{
int ascii_char = ’$’;

printf("ebcdic_char = %c\n", ascii_char);
printf("ebcdic_char = %d\n", ascii_char);
}

If you compile this on the cross-platform compiler, the ASCII ‘$’ 0x24 will be
translated into the EBCDIC ‘$’ 0x5B. By default the ‘$’ will be displayed at run-time on
your EBCDIC mainframe even though you compiled it on an ASCII machine.

� New Alternative Code Page Feature 205

This default behavior is what you usually require; however, there are situations in
which you want to control the ASCII to EBCDIC translation performed by the compiler.
You do this by supplying alternative codepages.

The following figures, atoe.codepage and etoa.codepage, provide examples of
alternative codepages. Note that the codepage tables consist of a 16X16 array of
hexadecimal digits where position determines the replacement value and comments are
delineated by semicolons.

Example Code 3.1 atoe.codepage

00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F ; 00 ;
10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F ; 10 ;
40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61 ; 20 ;
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F ; 30 ;
7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6 ; 40 ;
D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D ; 50 ;
79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 ; 60 ;
97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07 ; 70 ;
20 21 22 23 24 25 06 17 28 29 2A 2B 2C 09 0A 1B ; 80 ;
30 31 1A 33 34 35 36 08 38 39 3A 3B 04 14 3E FF ; 90 ;
41 AA 4A B1 9F B2 6A B5 BB B4 9A 8A B0 CA AF BC ; A0 ;
90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB ; B0 ;
64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77 ; C0 ;
AC 69 ED EE EB EF EC BF 80 FD FE FB FC BA AE 59 ; D0 ;
44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57 ; E0 ;
8C 49 CD CE CB CF CC E1 70 DD DE DB DC 8D 8E DF ; F0 ;

Example Code 3.2 etoa.codepage

00 01 02 03 9C 09 86 7F 97 8D 8E 0B 0C 0D 0E 0F ; 00 ;
10 11 12 13 9D 0A 08 87 18 19 92 8F 1C 1D 1E 1F ; 10 ;
80 81 82 83 84 85 17 1B 88 89 8A 8B 8C 05 06 07 ; 20 ;
90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A ; 30 ;
20 A0 E2 E4 E0 E1 E3 E5 E7 F1 A2 2E 3C 28 2B 7C ; 40 ;
26 E9 EA EB E8 ED EE EF EC DF 21 24 2A 29 3B 5E ; 50 ;
2D 2F C2 C4 C0 C1 C3 C5 C7 D1 A6 2C 25 5F 3E 3F ; 60 ;
F8 C9 CA CB C8 CD CE CF CC 60 3A 23 40 27 3D 22 ; 70 ;
D8 61 62 63 64 65 66 67 68 69 AB BB F0 FD FE B1 ; 80 ;
B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA E6 B8 C6 A4 ; 90 ;
B5 7E 73 74 75 76 77 78 79 7A A1 BF D0 5B DE AE ; A0 ;
AC A3 A5 B7 A9 A7 B6 BC BD BE DD A8 AF 5D B4 D7 ; B0 ;
7B 41 42 43 44 45 46 47 48 49 AD F4 F6 F2 F3 F5 ; C0 ;
7D 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC F9 FA FF ; D0 ;
5C F7 53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5 ; E0 ;
30 31 32 33 34 35 36 37 38 39 B3 DB DC D9 DA 9F ; F0 ;

These sample codepages use the same default translations that are used by the
SAS/C library. Note that the library’s translation is not affected by the alternative
codepage feature described here. The library’s translation is controlled by the tables
found in prefix.SOURCE(L$USKCS). The alternative codepages will affect only the
compiler’s translation of ASCII to EBCDIC characters.

The set command can be used to set the value of the _SASC_CODEPAGE_PATH
environment variable. For example, the following command can be used to specify the
fully qualified path to the directory containing the alternative codepages under
Windows:

206 Release 7.50 Changes to the SAS/C Cross-Platform Compiler User’s Guide � Chapter 3

set _SASC_CODEPAGE_PATH=C:\codepages

This command will set the _SASC_CODEPAGE_PATH environment variable to the
\codepages directory on your C drive.

Note: Under UNIX, you have to export the _SASC_CODEPAGE_PATH as well as set
it. �

If the alternative codepages are properly formatted and found in the location
specified by the _SASC_CODEPAGE_PATH environment variable, the following notes will
be displayed when you compile:

NOTE: Environment variable "_SASC_CODEPAGE_PATH" found.
NOTE: Alternative codepages will be loaded from the "C:\codepages" directory

If errors are detected while processing the codepages, cautions will be displayed.

Release 7.50 Changes to the SAS/C Cross-Platform Compiler User’s
Guide

Updates to Compiler Options
In Chapter 3, “Compiling C and C++ Programs,” in the section titled “Option

Summary,” in the table labeled “Compiler Options,” make the following changes to the
indicated entries:

� Add the following text to the description of the -Knoinline option:
When used with the C++ translator this option also disables translator inlining.

� Delete the text “For C compilations:” from the descriptions of the following options:
-Kexclude

-Khlist

-Kilist

-Klisting

-Kmaclist

-Kpagesize

-Ktrigraphs

-Kxref

-Ksource

Update the following entries in the list of options in the section titled “Option
Descriptions:”

� Add the following text to the end of the first paragraph in the description of
-Knoinline:

When used with the C++ translator, this option also disables translator inlining.
Translator inlining is always disabled with the -g or -Kdebug options.

� Delete the text “for C compilations only” from the end of the descriptions of the
-Kpagesize, -Kstrict, and -Ktrigraphs options.

Updates to the ar370 Archive Utility
In Chapter 7, “ar370 Archive Utility,” add the following updates to the specified

sections.

� Updates to the ar370 Archive Utility 207

Update to the Introduction

In the “Introduction,” replace the second paragraph with the following text:
An ar370 archive is organized as a collection of members, identified by a member

name that resembles a filename. Member names are limited to 18 characters total
length. Member names are not significant as far as resolving external references;
however, the member name is important for maintaining the archive. For each object
file contained in an ar370 archive, the ar370 utility records the names of external
symbols defined or referenced in the member (including external objects with extended
names). This allows cool to find the member that defines a particular symbol. No
connection is required between an ar370 member name and the external symbol names
defined by the member.

Update to Optional Modifier Characters

In the section titled “Optional Modifier Characters,” add the -y command modifier to
the table.

Table 3.3

Modifier
Characters Description

y Yes: List the mangled name along with the demangled name. The y
modifier is meaningful only when used with the e (enumerate)
optional modifier.

Update to Combinations of Command and Modifiers

In the section titled, “Combinations of Command and Modifiers,” update the table
labeled “Command and Command Modifier Combinations” with the -y command
modifier as indicated below:

Table 3.4 Command and Command Modifier Combinations

Command Accepted Modifiers and Commands

d e, f, j, q, t, v, y

m e, f, j, q, t, v, y and a | b

r e, f, j, q, t, v, y and a | b

t d, e, f, j, m, r, v, x, y

x e, f, j, t, v, y

Update to Optional Modifier Characters

In the section titled “Optional Modifier Characters,” add the following entry to the
list of characters:

w Used in conjunction with the replace (r) command to allow
truncation of member names at 18 characters.

208 Update to the -Aenexit and -Aenexitdata COOL Options � Chapter 3

Update to the -Aenexit and -Aenexitdata COOL Options
The following text and example code should be added to the information for the

enexit and enexitdata options in Chapter 6, “Prelinking C and C++ Programs,” under
the section titled, “Cool Options.”

For Release 7.50, support for the -Aenexit and -Aenexitdata options has been
enhanced to allow you to use a DLL to create external symbols for extended names
when running under Windows.

Note: The way COOL selects external symbols for extended names is explained in
Appendix 7, "Extended Names," of the SAS/C Compiler and Library User’s Guide. �

The following userexitdll.cxx and StdAfx.cxx source files provide a shell for a
DLL that functions as the user exit for the -Aenexit option. You can use this example
source to develop a DLL that generates external symbols that meet the specific needs of
your build system. The DLL entry point clkexit is defined here in the
userexitdll.cxx file.

Example Code 3.3 userexitdll.cxx

#include <string.h>
#include <iostream.h>
#include "stdafx.h"
#include "userexitdll.h"

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved

)
{

switch (ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:
break;
}
return TRUE;

}

extern "C" {

USEREXITDLL_API int clkexit(const char UserData[8],
const unsigned char *ExtendedName,
int ExtendedNameLength, int FunctionFlag,
int OldId, unsigned int *NewId)

{
int retcode = 0;

/* Replace code from here ... */
if (!strcomp(Userdata, "TESTDATA"))
*NewId = OldIs +1;
else
*NewId = OldId;
/* ... to here. */

� Update to the -Aenexit and -Aenexitdata COOL Options 209

return(retcode);
}

}

The ifdef block in userexitdll.h is the standard way of creating macros that make
exporting from a DLL simpler. All files within this DLL are compiled with the
USEREXITDLL_EXPORTS symbol defined on the command line. This symbol should not be
defined on any project that uses this DLL. Any other project whose source files include
this file see USEREXITDLL_API functions as being imported from a DLL, whereas this
DLL sees symbols defined with this macro as being exported.

Example Code 3.4 userexitdll.h

// userexitdll.h
//
#ifdef USEREXITDLL_EXPORTS
#define USEREXITDLL_API __declspec(dllexport)
#else
#define USEREXITDLL_API __declspec(dllimport)
#endif

extern "C" {
USEREXITDLL_API int clkexit(const char UserData[8],

const unsigned char *Name, int NameLength,
int FunctionFlag, int OldId, unsigned int *NewId);

}

stdafx.cxx is the source file that includes just the standard include files.

Example Code 3.5 stdafx.cpp

// userexitdll.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

// TODO: reference any additional headers you need in STDAFX.H
// and not in this file

stdafx.h is the include file for standard system include files or project specific include
files that are used frequently, but are changed infrequently.

Example Code 3.6 stdafx.h

#if !defined(AFX_STDAFX_H__453C6E62_806B_11D5_87B6_00C04F38FCF0__INCLUDED_)
#define AFX_STDAFX_H__453C6E62_806B_11D5_87B6_00C04F38FCF0__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

// Insert your headers here
#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers

#include <windows.h>
// TODO: reference additional headers your program requires here

210 Update to the -Aenexit and -Aenexitdata COOL Options � Chapter 3

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately

before the previous line.

#endif // !defined(AFX_STDAFX_H__453C6E62_806B_11D5_87B6_00C04F38FCF0__INCLUDED_)

You should modify the *NewId = OldId assignment statement in userexitdll.cpp
to assign the new symbols as required for your application. The example DLL will
function as written, but it merely assigns the old value to the new value.

The function parameters for the user exit are described in Appendix 7, "Extended
Names," of the SAS/C Compiler and Library User’s Guide.

To compile the DLL you should create a Win32 Dynamic-Link Library Project with
Microsoft Visual C++. You will need to define the USEREXITDLL_EXPORTS symbol in the
preprocessor definitions for the Project Settings of the compilation for the DLL.

The syntax for the -Aenexit and -Aenexitdata options is as follows:

-Aenexit=dllname

-Aenexitdata=userdata

For example:

-Aenexit=C:\bin\userexit.dll

tells cool to use the userexit.dll located at C:\bin to process the external symbols
for extended names.

And

-Aenexitdata=PKGA

passes the string PKGA to the userexit.dll as the UserData parameter.
Refer to the SAS/C Compiler and Library User’s Guide and the SAS/C

Cross-Platform Compiler and C++ Development System User’s Guide for more
information about the -Aenexit and -Aenexitdata options and extended names
processing.

211

C H A P T E R

4
SAS/C C++ Translator Changes in
Release 7.50

Introduction 211
Release 7.50 Changes and Enhancements to the C++ Translator 211

Updates to Introduction to the SAS/C C++ Development System 212

Updates to C++ Language Definition 212

Updates to Improved Conformance with the C++ Standard 212

Updates to Environmental Elements 213
Updates to Predefined Constants 213

Updates to Language Extensions 214

Additions to Language Extensions 214

Updates to Implementation-Defined Behavior 215

Update to the Anachronisms Section 215

Updates to Translator Options 216
Updates to the Translator Options Table 216

Updates to the Translator Options Descriptions 216

Updates to Standard Libraries 218

Updates to Header Files 218

Update to C++ Complex Library 219
Updates to I/O Class Descriptions 219

Updates to Buffer Class Descriptions 225

Updates to Header Files, Classes, and Functions 226

Update to Stream Classes 226

Updates to Templates 226
Update to Template Parameters 226

Update to Template Arguments 227

Updates to Template Declarations and Definitions 227

Updates to Function Templates 227

Updates to Interpreting C++ Demangled Names 227

New Appendix on ARMODE, HUGEPTRS, and Pointer Kinds 228

Introduction

This chapter provides a complete description of the changes and enhancements to the
SAS/C C++ Development System User’s Guide for Release 7.50.

Release 7.50 Changes and Enhancements to the C++ Translator

The following updates apply to SAS/C C++ Development System User’s Guide.

212 Updates to Introduction to the SAS/C C++ Development System � Chapter 4

Updates to Introduction to the SAS/C C++ Development System
The following updates apply to Chapter 1, “Introduction to the SAS/C C++

Development System.”

Updates to C++ Language Definition
Make the following changes to the section titled “C++ Language Definition:”
� Delete the following items:

� Number 8.3.6
� Number 10.3
� All the items with numbers beginning with 14.5
� All the items with numbers beginning with 14.6 except for item 14.6.2
� All the items with numbers beginning with 14.7.

� Add the following items:

9.6
By default bitfields with widths greater than the field unit size are handled
as SAS/C non-integer bitfields instead of treating the extra bits as padding.
Also widths greater than 32 are not allowed. Use the NOBITFIELD option to
handle bitfield widths as specified in the C++ standard.

15.4
Exception specifications are not allowed on parameter or return types.

� Replace the text of item 7.3.1.2 with the following text:
Friend names are injected into the enclosing namespace unless the

NOFRIENDINJECT option is specified.

Updates to Improved Conformance with the C++ Standard
Make the following changes to the section titled “Improved Conformance with the

C++ Standard.”
� Add the following items:

9.6
The NOBITFIELD option can be used to enforce C++ standard rules about bitfield
widths.

10.3
Virtual function overrides can have covariant return types.

14.5
Nested templates are now fully supported. Members, including templates, of
class templates can be defined outside the body of the enclosing template.
Template member friend declarations are allowed.

14.5.4
Partial specializations of class templates can be declared and used.

14.5.5
Template conversion functions are now supported.

14.5.5.2
Template partial ordering rules are applied to function overload resolution.

� Replace the note under item 3.4.2 with the following note:

SAS/C C++ Translator Changes in Release 7.50 � Updates to Introduction to the SAS/C C++ Development System 213

Note: The C++ translator injects the names from friend declarations into the
containing namespace when defining a class unless the NOFRIENDINJECT option is
specified. Friend declarations are always visible to name lookups that are
argument dependent when the arguments use matching namespaces and classes. �

Updates to Environmental Elements
Make the following changes to the section titled “Environmental Elements:”
Replace the table labeled “Integral Type Sizes” with the following table:

Table 4.1 Integral Type Sizes

Type Length in Bytes Range

bool 1 false, true

char 1 0 to 255 (EBCDIC character set)

signed char 1 -128 to 127

short 2 -32768 to 32767

unsigned short 2 0 to 65535

int 4 -2147483648 to 2147483647

unsigned int 4 0 to 4294967295

long (NOHUGEPTRS) 4 -2147483648 to 2147483647

unsigned long (NOHUGEPTRS) 4 0 to 4294967295

long (HUGEPTRS) 8 -9223372038854775808 to
9223372036854775807

unsigned long (HUGEPTRS) 8 0 to 18446744073709551615

long long 8 -9223372038854775808 to
9223372036854775807

unsigned long long 8 0 to 18446744073709551615

wchar_t 2 0 to 65535

Replace the table labeled “Float and Double Type Sizes” with the following table:

Table 4.2 Float and Double Type Sizes

Type Length in Bytes Range

float 4 +/-5.4E-70 to +/-7.2E75 (_ _hexfmt)
+/-1.4E-45 to +/-3.4E38 (_ _binfmt)

double 8 +/-5.4E-70 to +/-7.2E75 (_ _hexfmt)
+/-4.9E-324 to +/-1.8E308 (_ _binfmt)

long double 8 +/-5.4E-70 to +/-7.2E75 (_ _hexfmt)
+/-4.9E-324 to +/-1.8E308 (_ _binfmt)

Updates to Predefined Constants
In the section titled “Language Elements,” make the following changes to the section

titled “Predefined Constants:”

214 Updates to Introduction to the SAS/C C++ Development System � Chapter 4

� Delete the entries for c_plusplus from the list of predefined constants and the
list of macro descriptions.

� Before the note at the end of the section add the following text:
The translator also defines the preprocessor option symbols described in the

SAS/C Compiler and Library User’s Guide in Chapter 6, “Compiler Options,” in
the section titled “Preprocessor Symbols.”

Updates to Language Extensions
Make the following changes in the section titled “Language Extensions:”
� Replace the first sentence, which reads:

This section describes SAS/C extensions to the language described in The C++
Programming Language.
With the following text:
This section describes SAS/C extensions to the language described in the ISO C++
standard.

� In the section titled “long long Type Support” delete the last sentence, which reads,
“Also, the preprocessor does not yet support long long values in #if expressions.”

� In the section titled “SAS/C extension keywords,” add the following items to the
list of keywords:

_ _binfmt _ _huge _ _norent
_ _far _ _multireturn _ _rent
_ _hexfmt _ _near _ _setjmp

� In the section titled “Floating-point constants in hexadecimal,” add the following
note at the end of the existing text:

Note: The translator also supports the C99 hexadecimal floating point
format. �

� In the section titled “signed long long Support,” replace the existing text with text
that reads:

Decimal constants like 4000000000 that are too large to represent as signed
long, and that do not have a U or u suffix, are treated as unsigned long. This is
the same treatment that these large decimal constants would receive under the
C89 rule. Octal, hexadecimal, and explicitly unsigned constants are not affected.

Additions to Language Extensions
Add the following sections to the “Language Extensions” section after the subsection

titled “C++ iostream Library Constructors:”

Pragma options directive
The tranlator supports the #pragma options copts(...) directive, in a manner
comparable to the C compiler. The following is a sample directive:

#pragma options copts(sname(ABC123))

Most of the options that the C compiler allows to be changed through #pragma
options can also be specified for C++. Options like PPIX that are not supported for
C++ compilations are also not supported through #pragma options in C++.

C99-style floating point constants
The translator supports the C99 hexadecimal floating-point constant format. This
provides an alternative way to specify exact values for constants that have
floating-point type. The syntax is:

SAS/C C++ Translator Changes in Release 7.50 � Updates to Introduction to the SAS/C C++ Development System 215

0x<hexdecimal-digits>.<hexdecimal digits>P<binary exponent><suffixes>

For more details, see the section titled “Specifying floating-point constants in
hexadecimal” in Chapter 2, “Source Code Conventions,” of the SAS/C Compiler
and Library User’s Guide .

Explicit _ _binfmt and _ _hexfmt constant qualifiers
The translator allows a suffix of B or H to explicit specify that a floating point
constant is in _ _binfmt or _ _hexfmt respectively. These suffixes can be used
with all the floating point constant formats and follow any F or L suffixes. Note
suffixes must be preceded by a period when they are used with the SAS/C
hexadecimal format. For example 0.x4110.FH is a valid _ _hexfmt constant.

Updates to Implementation-Defined Behavior
Make the following changes to the section titled “C++ specific behaviors” In the

section titled “Implementation-Defined Behavior:”
� Replace the text of the first list item with text that reads:

There are three accepted linkage strings: C, C++, and OS. C linkage for functions
means that type information is not encoded in the function’s identifier. C linkage
does not affect the linkage for non-functions. OS is like C except that _ _ibmos is
implicitly applied to non-member function declarators. Remember that the linkage
for main is always C.

� Add the following items to the list:
� The dynamic type of the object returned by a typeid expression is const

std::type_info.
� The representation of member pointers is unchanged by reinterpret_cast.

Otherwise for valid casts the reinterpret_cast operator has semantics
matching the cast operator in C code. The reinterpret_cast operator does
not perform adjustments based on class inheritance.

� The underlying type of an enumeration is signed int if all the enumeration
constant values fit. Otherwise the underlying type is unsigned int.

� Plain char bitfields are unsigned. A bool bitfield has the same layout as an
unsigned char field. A wchar_t bitfield has the same layout as an unsigned
short field. An enumeration bitfield has the same layout as a bitfield of the
underlying type of the enumeration except that the field will be unsigned if
all declared enumeration constant values are non-negative.

� When binding a class rvalue to a compatible const reference, the reference
is bound directly to the rvalue object if the class has a nontrivial destructor
or nontrivial copy constructor. Otherwise the rvalue is copied to a temporary
and the reference is bound to the temporary. The temporary copy, however,
can be elided by the rules in section 12.8 of the C++ standard.

� The maximum depth for recursive template instantiations is 50.
� When an exception is unhandled, the stack is unwound before the call to

std::terminate().
� The C++ standard library is safe for multi-tasking. However the routines are

not guaranteed to be reentrant for interrupt handling purposes.

Update to the Anachronisms Section
Add the following item to the list in the section titled “Anachronisms:”
� For compatibility, the names for friend class and function declarations are made

visible in an enclosing scope of the class containing the friend declaration. This

216 Updates to Translator Options � Chapter 4

name injection was eliminated in the C++ standard and can be disabled with the
NOFRIENDINJECT option.

Updates to Translator Options
The following updates apply to Chapter 3, “Translator Options.”

Updates to the Translator Options Table
In Chapter 3, “Translator Options,” in the section titled, “Option Summary,” replace

the entries for asciiout, INLIne, and tronly in the table labeled, “Translator
Options,” with the following entries.

Table 4.3 Translator Options

Option
Name Default USS Environment Affects Process

ASCiiout NOASCiiout -Kasciiout all T,C

INLIne see description -Kinline all G

TROnly see description -Ktronly all T

Add the following entries to the table labeled, “Translator Options.”

Table 4.4 Translator Options

Option
Name Default USS Environment Affects Process

ARChlevel see description -
Karchlevel=let

all T,C

ARMode NOARMode -Karmode all T,C

BFp NOBFp -Kbfp all T,C

FRIendinject NOFRIendinject -
Kfriendinject

all T

HUgeptrs NOHUgeptrs -Khugeptrs all T,C

OPTIOns OPTIOns -Koptions all L

TErm see description -Kterm all M

Updates to the Translator Options Descriptions
Make the following changes to the list of option descriptions in the section titled

“Option Descriptions:”
� Update the entry for the tronly with the following information:

� Change the tronly list-entry term to the following:
tronly (-Ktronly) under USS

� Add the following information to the tronly description:
Under USS, the following command sends the tronly output to hello..c:

sascc370 -v -c -Ktronly hello.cpp

SAS/C C++ Translator Changes in Release 7.50 � Updates to Translator Options 217

Note the two periods (..) between the file’s basename and extension. This
is to prevent accidental overwriting of a hello.c source file. Also note that
you have to specify the -c option to prevent the binder from being called.

The following example specifies an output filename for the -Ktronly
option:

sascc370 -v -c -Ktronly=test.c hello.cpp

� Replace the last sentence of the bitfield option description that reads:
This option cannot be negated.
with text that reads:
By default the SAS/C rules are used for the interpretation of bitfield widths.

The NOBITFIELD option can be used to enforce the bitfield rules from the C++
standard instead of applying the SAS/C bitfield rules. With NOBITFIELD option,
bitfield widths that are larger than the field unit type have a different layout. For
example an unsigned char bitfield that is 12 bits wide has 12 data bits by the
SAS/C rules. With the NOBITFIELD option there are 8 data bits, the width of an
unsigned char, and 4 padding bits.

� Replace the description text of the inline option with text that reads:
controls inlining in the C++ translator as well as the optimizer. The translator

performs inlining by default unless the DEBUG option is used. The use of the DEBUG
option forces NOINLINE. The translator can inline functions that require exception
handling support, unlike GO. Translator inlining can be explicitly disabled with the
NOINLINE option.

� Add the following entries to the list of option descriptions:

archlevel (-Karchlevel=let under USS)
allows you to request code generation for a specific level of the 390
architecture. See the option description in the SAS/C Compiler and Library
User’s Guide Guide for more information. The default level is ARCHLEVEL(D)
if the HUGEPTRS option is specified and ARCHLEVEL(C) if the BFP option is
specified. Otherwise the default is unspecfied and no new architecture
features are assumed.

armode (-Karmode under USS
specifies that code that uses the ESA access registers may be generated. This
option is required to compile code that uses far pointers. See “Optimization
and Far Pointers” in the SAS/C Compiler and Library User’s Guidefor more
information on far pointers and access register mode.

bfp (-Kbfp under USS)
specifies that the default floating point format is binary (IEEE). Note that the
BFP option implies the ARCHLEVEL(C) option.

friendinject (-Kfriendinject under USS)
specifies that the translator should make the names of of friend class and
function names visible in the enclosing non-class scope of the class containing
the declaration. This is called friend name injection. The C++ standard
requires that friend names not be injected. However older code may require
name injection. The FRIENDINJECT option is the default for compatility with
older code; however, this default may change in a future release.

hugeptrs (-Khugeptrs under USS)
specifies that the object code is intended to execute in 64-bit addressing
mode. When hugeptrs is specified, the default pointer type is _ _huge, and
the size of signed and unsigned long data is 8 bytes. Note that the
hugeptrs option implies the ARCHLEVEL(D) option.

218 Updates to Standard Libraries � Chapter 4

options (-Koptions under USS)
generates an options listing. The options listing contains all options in effect
for the compilation.

term (-Kterm under USS)
directs diagnostic messages to stderr. The messages appear in addition to
the messages in the listing file, if any.

By default the term option is enabled only when no listing is created.

Updates to Standard Libraries
The following updates apply to Chapter 4, “Standard Libraries.”

Updates to Header Files
� Update “The <exception> header file” with the following changes:

� In the section titled “class std::exception,” under “VIRTUAL MEMBER
FUNCTIONS,” change the sentence that reads:

Unless overridden in a derived class this string is std::exception or
derived class.

to the following:
Unless overridden in a derived class this string is “std::exception or

derived class”.
Also change the prototype of xtrace under “STATIC MEMBER

FUNCTIONS (SAS/C EXTENSION)” to the following:

static void xtrace(_ _remote void (*writer)(const _ _near char *line) = 0);

� In the section titled “class std::bad_exception,” under “VIRTUAL MEMBER
FUNCTIONS,” change the text that reads:

Unless overridden in a derived class, this string is as follows:

std::bad_exception

or

derived class

to the following:
Unless overridden in a derived class, this function returns the string

“std::bad_exception or derived class”.

� Update “The <new> header file” with the following changes:
In the section titled “class std::bad_alloc,” under “VIRTUAL MEMBER

FUNCTIONS,” change the text that reads:
Unless overridden in a derived class this string is std::bad_alloc or derived

class.
to the following:
Unless overridden in a derived class this string is “std::bad_alloc or derived

class”.
� Update “The <typeinfo> header file” with the following changes:

� In the section titled “class std::type_info,” under “NONVIRTUAL MEMBER
FUNCTIONS,” change the second sentence of the description of const char*
name() const; to read:

The function calls a library allocator to allocate working storage.

SAS/C C++ Translator Changes in Release 7.50 � Updates to Standard Libraries 219

� In the section titled “class std::bad_cast,” under “VIRTUAL MEMBER
FUNCTIONS,” change the text that reads:

Unless overridden in a derived class this string is std::bad_cast or
derived class.

to the following:
Unless overridden in a derived class this string is “std::bad_cast or

derived class”.
� In the section titled “class std::bad_typeid,” under “VIRTUAL MEMBER

FUNCTIONS,” change the text that reads:
Unless overridden in a derived class this string is std::bad_typeid or

derived class.
to the following:
Unless overridden in a derived class this string is “std::bad_typeid or

derived class”.
� In the section titled “class std::_ _non_rtti,” under “VIRTUAL MEMBER

FUNCTIONS,” change the text that reads:
Unless overridden in a derived class this string is std::_ _non_rtti or

derived class.
to the following:
Unless overridden in a derived class this string is “std::_ _non_rtti or

derived class”.

Update to C++ Complex Library
In the section titled “C++ Complex Library,” add the following note after the first

paragraph.

Note: This library performs all computations using _ _hexfmt floating-point and
expects its operands to be in this format. �

Updates to I/O Class Descriptions
Update “I/O Class Descriptions” with the following changes:
� In the section titled “class bsamstream, ibsamstream, and obsamstream,” in the

“DESCRIPTION,” add the following note after the last paragraph:

Note: These classes are not supported with the HUGEPTRS option. �
� In the section titled “class fstream, ifstream, and ofstream,” replace the

SYNOPSIS with the following code:

#include <fstream.h>
class ifstream : public istream
{
public:

ifstream();
ifstream(const char _ _near *name,

int mode = ios::in,
const char _ _near *amparms = "",
const char _ _near *am = "");

virtual ~ifstream();
void open(const char _ _near *name,

int mode = ios::in,

220 Updates to Standard Libraries � Chapter 4

const char _ _near *amparms = "",
const char _ _near *am = "");

void close();
void setbuf(char *p, int len);
filebuf* rdbuf();

};
class ofstream : public ostream
{
public:

ofstream();
ofstream(const char _ _near *name,

int mode = ios::out,
const char _ _near *amparms = "",
const char _ _near *am = "");

virtual ~ofstream();
void open(const char _ _near *name,

int mode = ios::out,
const char _ _near *amparms = "",
const char _ _near *am = "");

void close();
void setbuf(char *p, int len);
filebuf* rdbuf();

};
class fstream : public iostream
{
public:

fstream();
fstream(const char _ _near *name, int mode,

const char _ _near *amparms = "",
const char _ _near *am = "");

virtual ~fstream();
void open(const char _ _near *name, int mode,

const char _ _near *amparms = "",
const char _ _near *am = "");

void close();
void setbuf(char *p, int len);
filebuf* rdbuf();

};

In CONSTRUCTORS, replace the second group of prototypes for constructors with
arguments with the following code:

ifstream::ifstream(const char _ _near *name,
int mode = ios::in,
const char _ _near *amparms = " ",
const char _ _near *am = " ")

ofstream::ofstream(const char _ _near *name,
int mode = ios::out,
const char _ _near *amparms = "",
const char _ _near *am = "")

fstream::fstream(const char _ _near *name,
int mode, const char _ _near *amparms = "",
const char _ _near *am = "")

SAS/C C++ Translator Changes in Release 7.50 � Updates to Standard Libraries 221

In MEMBER FUNCTIONS replace the group of prototypes for open functions with
the following code:

void ifstream::open(const char _ _near *name,
int mode = ios::in,
const char _ _near *amparms = " ",
const char _ _near *am = " ")

void ofstream::open(const char _ _near *name,
int mode = ios::out,
const char _ _near *amparms = " ",
const char _ _near *am = " ")

void fstream::open(const char _ _near *name,
int mode,
const char _ _near *amparms = "",
const char _ _near *am = "")

� Make the following changes to the section titled “class ios.”
� Update the SYNOPSIS with the following changes.

� After the line of code that reads #include <iostream.h>, add the
following two lines of code:

typedef unsigned long _ulong; // for NOHUGEPTRS compilations
typedef unsigned int _ulong; // for HUGEPTRS compilations

� Change the entry for static unsigned long ios::bitalloc() to

static _ulong ios::bitalloc()
returns an unsigned long (unsigned int with the HUGEPTRS option)
with a single, previously unallocated, bit set. This allows you to create
additional format flags. This function returns 0 if there are no more bits
available. Once the bit is allocated, you can set it and clear it using the
flags() , setf(), and unsetf() functions.

� Make the following changes to the section titled “enum format_state.”
� Replace the SYNOPSIS with the following code:

#include <iostream.h>
typedef unsigned long _ulong; // for NOHUGEPTRS compilations
typedef unsigned int _ulong; // for HUGEPTRS compilations

class ios
{
public:

/* See the class ios, enum io_state,
enum open_mode, and enum seek_dir
descriptions for more definitions. */

enum {skipws,

left,
right,
internal,

dec,
oct,

222 Updates to Standard Libraries � Chapter 4

hex,

showbase,
showpoint,
uppercase,
showpos,

scientific,
fixed,

unitbuf,
stdio
};

static const _ulong basefield;
static const _ulong adjustfield;
static const _ulong floatfield;

_ulong flags();
_ulong flags(_ulong f);

_ulong setf(_ulong mask);
_ulong setf(_ulong setbits,

_ulong mask);
_ulong unsetf(_ulong mask);

};

� Replace the FORMATTING FUNCTIONS section with the following text:
The following functions can be used to switch format flags on and off:

_ulong ios::flags()
returns an unsigned long (unsigned int with HUGEPTRS) representing
the current format flags.

_ulong ios::flags (_ulong f)
turns on all of the format flags specified by f and returns an unsigned
long (unsigned int with HUGEPTRS) representing the previous flag values.

_ulong ios::setf (_ulong mask)
turns on only those format flags that are set in mask and returns an
unsigned long (unsigned int with HUGEPTRS) representing the previous
values of those flags. You can accomplish the same task by using the
parameterized manipulator, setiosflags.

_ulong ios::setf (_ulong setbits, _ulong mask)
turns on or off the flags marked by mask according to the corresponding
values specified by setbits and returns an unsigned long (unsigned
int with HUGEPTRS) representing the previous values of the bits specified
by mask. The EXAMPLES section provides an example of using this
function.

Using setf(0, mask) clears all the bits specified by field. You can
accomplish the same task by using the parameterized manipulator
resetiosflags.

_ulong ios::unsetf (_ulong mask)
clears the format flags specified by mask and returns an unsigned long
(unsigned int with HUGEPTRS) representing the previous flag values.

� Make the following changes to the section titled “class istream.”

SAS/C C++ Translator Changes in Release 7.50 � Updates to Standard Libraries 223

� Update the SYNOPSIS with the following changes:

� After the line of code that reads istream& operator >>(unsigned long&
l);, add the following two lines of code:

istream& operator >>(long long& ll);
istream& operator >>(unsigned long long& ll);

� Change the three declarations that read:

istream& operator >>(float& f);
istream& operator >>(double& d);
istream& operator >>(long double& ld);

to

istream& operator >>(_ _hexfmt float& f);
istream& operator >>(_ _hexfmt double& d);
istream& operator >>(_ _hexfmt long double& ld);

istream& operator >>(_ _binfmt float& f); // if ARCHLEVEL>=C
istream& operator >>(_ _binfmt double& d); // if ARCHLEVEL>=C
istream& operator >>(_ _binfmt long double& ld); // if ARCHLEVEL>=C

� Update the FORMATTED INPUT FUNCTIONS with the following changes:

� After the line of code that reads
istream& istream::operator >>(unsigned long& l), add the following
two lines of code:

stream& istream::operator >>(long long& l)
istream& istream::operator >>(unsigned long long& l)

� Change the following lines of code

istream& istream::operator >>(float& f)
istream& istream::operator >>(double& d)
istream& istream::operator >>(long double& ld)

to

istream& istream::operator >>(_ _hexfmt float& f)
istream& istream::operator >>(_ _hexfmt double& d)
istream& istream::operator >>(_ _hexfmt long double& ld)
istream& istream::operator >>(_ _binfmt float& f)
istream& istream::operator >>(_ _binfmt double& d)
istream& istream::operator >>(_ _binfmt long double& ld)

� Add the following note to the end of the “class istream” DESCRIPTION section:

Note: The _ _binfmt input functions are only available if the ARCHLEVEL
option is C or greater. �

� Make the following changes to the section titled “class ostream.”

� Update the SYNOPSIS with the following changes:

� After the line of code that reads
ostream& operator <<(unsigned long l);, add the following two lines of
code:

ostream& operator <<(long long ll);
ostream& operator <<(unsigned long long ll);

� Change the lines of code that read:

224 Updates to Standard Libraries � Chapter 4

ostream& operator <<(float f);
ostream& operator <<(double d);

to

ostream& operator <<(_ _hexfmt float f);
ostream& operator <<(_ _hexfmt double d);
ostream& operator <<(_ _hexfmt long double d);
ostream& operator <<(_ _binfmt float f); // if ARCHLEVEL>=C
ostream& operator <<(_ _binfmt double d); // if ARCHLEVEL>=C
ostream& operator <<(_ _binfmt long double d); // if ARCHLEVEL>=C

� Update the FORMATTED OUTPUT FUNCTIONS section with the following
changes:
� After the lines of code that read:

ostream& ostream::operator <<(unsigned
long l)

add the following two lines of code:

ostream& ostream::operator <<(long long ll)
ostream& ostream::operator <<(unsigned long long ll)

� Change the lines of code that read:

ostream& ostream::operator <<(float f)

ostream& ostream::operator <<
(double d)

to

ostream& ostream::operator <<(_ _hexfmt float f)

ostream& ostream::operator <<(_ _hexfmt double d)

ostream& ostream::operator <<(_ _hexfmt long double d)

ostream& ostream::operator <<(_ _binfmt float f)

ostream& ostream::operator <<(_ _binfmt double d)

ostream& ostream::operator <<(_ _binfmt long double d)

� Add the following note to the end of the “class ostream” DESCRIPTION
section:

Note: The _ _binfmt output functions are only available if the ARCHLEVEL
option is C or greater. �

� Make the following changes to the section titled “class stdiostream.”
� Replace the SYNOPSIS with the following code:

#include <stdiostream.h>
class stdiostream : public iostream
{
public:

stdiostream(_ _near FILE *file);

stdiobuf* rdbuf();

SAS/C C++ Translator Changes in Release 7.50 � Updates to Standard Libraries 225

};

� Replace the prototype in the CONSTRUCTORS section that reads:

stdiostream::stdiostream(FILE *file)

with the following prototype:

stdiostream::stdiostream(_ _near FILE *file)

� Delete the entry for stdiofile() from the MEMBER FUNCTIONS section.
� Add the following note at the end of the DESCRIPTION:

Note: Although streampos supports 64-bit integer offsets when the
HUGEPTRS option, only offsets in the 32-bit range are supported by the I/O
library. �

Updates to Buffer Class Descriptions
Update “Buffer Class Descriptions” with the following changes:
� Add the following note between the two existing notes at the end of the

introductory section of text:

Note: None of the classes defined in <bsamstr.h> are supported by the
HUGEPTRS option. �

� Make the following changes to the section titled “class filebuf.”
� Replace the prototype for open() in the SYNOPSIS with the following code:

filebuf* open(const char _ _near *name,
int mode,
const char _ _near *amparms = "",
const char _ _near *am = "");

� Replace the prototype for filebuf::open in the NONVIRTUAL MEMBER
FUNCTIONS section with the following code:

filebuf* filebuf::open(const char _ _near *name,
int mode,
const char _ _near *amparms = "",
const char _ _near *am = "")

� Add the following note in the VIRTUAL MEMBER FUNCTIONS section after
the description of virtual streambuf* filebuf::setbuf

Note: In Release 7.50, the value of len must be less or equal to 2^32-1
bytes. �

� Make the following changes to the section titled “class stdiobuf.”
� Replace the SYNOPSIS with the following code:

#include <stdiostream.h
>
class stdiobuf : public streambuf
{
public:

stdiobuf(_ _near FILE *file);

virtual ~stdiobuf();

int is_open();

226 Updates to Header Files, Classes, and Functions � Chapter 4

_ _near FILE* stdiofile();

streampos seekoff(streamoff offset,
seek_dir place,
int mode =
ios::in|ios::out);

streampos seekpos(streampos pos,
int mode =
ios::in|ios::out);

virtual int sync();
};

� Change the CONSTRUCTOR prototype

stdiobuf::stdiobuf(FILE *file)

to

stdiobuf::stdiobuf(__near FILE *file)

� Change the NONVIRTUAL MEMBER FUNCTIONS prototype

FILE* stdiofile()

to

_ _near FILE* stdiofile)

Updates to Header Files, Classes, and Functions
The following updates apply to Appendix 2, “Header Files, Classes, and Functions.”

Update to Stream Classes
In the section titled “Stream Classes,” in the table labeled “Header Files, Classes,

and Functions for Streams,” in the entry for stdiostream.h, delete the term
stdiofile() from the Functions column.

Updates to Templates
The following updates apply to Appendix 3, “Templates.”

Update to Template Parameters
Make the following changes to the section titled “Template Paremeters:”
� Change the list item that reads:

data member pointers
to
data or function member pointers

� Replace the text and example after the list with the following text and example:
Nontype template parameters can use previously declared template parameters

in their declaration type. For example,

template <class T, T* someObject>
class C { };

SAS/C C++ Translator Changes in Release 7.50 � Updates to Interpreting C++ Demangled Names 227

int p;
C <int, &p> c;
template <int I, int (*pArray[I])> class C2; // ok
template <int I, int (*pBigArray[I*100])> // ok
class C3;

Update to Template Arguments
In the section titled “Template Arguments,” change the last list item to read:
� member pointer constants for nonstatic data or function members specified as:

&class_name::member

Updates to Template Declarations and Definitions
Make the following changes In the section titled “Template Declarations and

Definitions,” in the section titled “Declaration Rules.”
� Remove the note that reads:

Note: Template friend declarations of template class members are not
supported in this release of the SAS/C C++ Development System. �

� In the paragraph that follows the note, change the sentence that reads:
However, friend template declarations may not be definitions.
to
However, friend template class declarations may not be definitions.

� Remove the note that reads:

Note: Beginning with Release 6.50, template parameters may not have default
arguments. �

Updates to Function Templates
In the section titled “Function Templates,” in the section titled “Deducing

Arguments,” add the following item at the end of the bulleted list:
� derived to base conversions

When the parameter type is a template ID or pointer to a template ID then
deduction will consider derived-to-base conversions to match the template ID.

Updates to Interpreting C++ Demangled Names
The following updates apply to Appendix 5, “Interpreting C++ Demangled Names.”
In the section titled “Special Conventions Used in Demangled Names,” add the

following entries to the table labeled “Keywords and Their Abbreviations.”

228 New Appendix on ARMODE, HUGEPTRS, and Pointer Kinds � Chapter 4

Table 4.5 Keywords and Their Abbreviations

Keyword Abbreviation

_ _binfmt _B

_ _far _F

_ _huge _H

New Appendix on ARMODE, HUGEPTRS, and Pointer Kinds
After Appendix 5, “Interpreting C++ Demangled Names,” add a new appendix titled

“ARMODE, HUGEPOINTERS, and Pointer Kinds” that contains the following
information.

The C++ translator supports the HUGEPTRS and ARMODE options as well as the
_ _near, _ _far, and _ _huge keywords in pointer and reference declarations. This
appendix describes some of the special considerations for use of these SAS/C features
with C++.

Pointer operations generally behave the same way with the C++ translator that they
do with the C compiler. However the C++ translator is more restrictive about implicit
pointer conversions in order to facilitate overloading and avoid unsafe conversions. Far
and huge pointers cannot be converted to a different pointer kind without an explicit
cast. As a special case pointers to strings and simple pointer expressions that can be
determined at compile time to address auto, formal, static, or external objects can be
implictly converted to near pointers.

References can be _ _near, _ _far, or _ _huge. By default object references are
_ _near unless HUGEPTRS is specified, in which case they are _ _huge. Dereferencing a
_ _huge reference requires the HUGEPTRS option. Dereferencing a _ _far reference
requires ARMODE. With the HUGEPTRS option, only huge const references can bind to
non-lvalues.

C++ specific pointer operations have their own restrictions. Conversion of a far
pointer to a base class pointer requires the ARMODE option. Conversion of a huge pointer
to a base class pointer requires the HUGEPTRS option. Applying dynamic_cast to far
pointers or references requires the ARMODE option. Similarly, applying dynamic_cast to
huge pointers or references requires the HUGEPTRS option.

Class object layout does not depend on the HUGEPTRS or ARMODE option except for
differences due to user nonstatic data members. However a nonstatic member function
always has a default sized this pointer. That is, in a HUGEPTRS compilation the this
parameter will be a 64-bit huge pointer instead of a 32 bit near pointer. ARMODE does
not affect the this pointer type. Virtual function calls to objects created in a different
mode will cause unexpected results. Mixing HUGEPTRS and non-HUGEPTRS code is not
generally recommended.

The new operator always returns a default sized pointer. The return type for an
operator new function and the first argument for a delete function must be a default
void pointer. The leftmost array size in an array allocation type can be a 64-bit quantity
when HUGEPTRS is specified.

Enumeration constants and array sizes are limited to 32 bit values, except for the
leftmost array size in a declarator for a new expression.

The std::bad_exception object thrown by the C++ library when a mismatched
exception is encountered expects virtual function calls with 64-bit or 32-bit object
pointers according to the mode (HUGEPTRS or NOHUGEPTRS) of the routine which included
std::bad_exception in its exception specification.

The AT&T compatible streams and complex library supports HUGEPTRS. Note the
cin, cout, cerr, and clog streams refer to different objects (with different layouts) in

SAS/C C++ Translator Changes in Release 7.50 � New Appendix on ARMODE, HUGEPTRS, and Pointer Kinds 229

64 and 32-bit modes. The Rogue Wave Standard C++ Library and Tools Library do not
support HUGEPTRS.

230

231

C H A P T E R

5
SAS/C Debugger Changes for
Release 7.50

Introduction 231
Incompatibility with Previous Releases of SAS/C 231

Release 7.50 Enhancements to the SAS/C Debugger 231

Support for Namespaces 231

namespc 232

234
Support for IEEE Floating-Point 234

Support for 64-Bit Addressing 234

Release 7.50 Updates to the SAS/C Debugger User’s Guide 235

Updates to the storage Command 235

Introduction
This chapter provides a complete description of the changes and enhancements made

to the SAS/C Debugger for Release 7.50.

Incompatibility with Previous Releases of SAS/C
The debugging information produced by Release 7.50 of the SAS/C Compiler has been

redesigned. Because of this change, Release 7.50 of the SAS/C Debugger is not
compatible with debugging files generated by any releases of the SAS/C Compiler prior
to Release 7.00.

Release 7.50 Enhancements to the SAS/C Debugger
The following enhancements to the SAS/C Debugger have been implemented with

Release 7.50:
� Namespace support
� IEEE floating-point support
� 64-bit addressing support.

Support for Namespaces
A new debugger command, namespc, has been added for SAS/C Release 7.50. In

Chapter, 14, “Command Directory,” add the following entry to the list in the section
titled “List of Commands:”

232 Support for Namespaces � Chapter 5

n{amespc} display namespaces encountered in the source code.

Add the following entry for namespc to the section that contains the descriptions of
the commands:

namespc
Display Namespaces

ABBREVIATION
n{amespc}

FORMATS
Format 1: namespc
Format 2: namespc full
Format 3: namespc NAMESPACE-NAME
Format 4: namespc NAMESPACE-NAME TYPE-INTEGER

DESCRIPTION
The namespc command produces a listing of all namespaces or selected
namespaces. The listing includes a list of identifier, class/struct/union and
function names within each namespace.

Format 1: produces only an abbreviated list of all namespaces without any
details.

Format 2: produces a sorted listing of all namespaces with detailed contents of
each listed namespace. These details include all entries recorded in each
namespace scope such as Identifier/Variable Name, Function Name, and Class/
Struct/Union Name.

Format 3: produces a listing of the defined namespace with detailed contents.
These details include all entries recorded in this namespace scope such as
Identifier/Variable Name, Function Name, and Class/Struct/Union Name.

The NAMESPACE-NAME argument represents a valid namespace name
implemented within the source code that is being debugged.

Format 4: produces a listing of the defined namespace with the defined detailed
contents. These details include all entries of the same type recorded in this
namespace scope such as Identifier/Variable Name, Function Name, and Class/
Struct/Union Name where Class/Struct/Union Name is of type 0, Function Name
is of type 1, and Identifier/Variable Name is of type 2.

The NAMESPACE-NAME argument represents a valid namespace name
implemented within the source code that is being debugged. The argument
TYPE-INTEGER represents one of the following:

0 - Class/Struct/Union names found in the scope of the namespace
1 - Function names found in the scope of the namespace
2 - Identifier/variable names found in the scope of the namespace.

EXAMPLES
Format 1: namespc displays the following namespaces listing in the Log window:

Namespace(s)
=============
1 <<unnamed>>
2 moreStuff
3 myStuff
4 myStuff::nested
5 myStuff::nested::nestagain
6 std

� Support for Namespaces 233

Format 2: namespc full displays the following namespaces listing in the Log
window:

Namespace(s) Entries recorded in this namespace scope
============= ==
<<unnamed>>

Class/Struct/Union XYZ
Variable count
Variable cpanon

Namespace(s) Entries recorded in this namespace scope
============= ==
moreStuff

Class/Struct/Union XYZ
Function swapargs

Namespace(s) Entries recorded in this namespace scope
============= ==
myStuff

Class/Struct/Union XYZ
Variable count
Variable cpanon
Function swapargs
Function argswap

Namespace(s) Entries recorded in this namespace scope
============= ==
myStuff::nested

Class/Struct/Union XYZ
Variable count
Variable cpanon
Function swapargs

Namespace(s) Entries recorded in this namespace scope
============= ==
myStuff::nested::nestagain

Class/Struct/Union XYZ
Variable count
Variable cpanon
Function swapargs

Namespace(s) Entries recorded in this namespace scope
============= ==
std

Class/Struct/Union __siocb
Function fopen
Function fflush
Variable __io
Function main

Format 3: namespc myStuff displays the following namespace listing in the
Log window:

Namespace(s) Entries recorded in this namespace scope
============= ==
myStuff

Class/Struct/Union XYZ
Variable count
Variable cpanon
Function swapargs
Function argswap

234 � Chapter 5

Format 4: namespc myStuff 2 displays the following namespace listing in the
Log window:

Namespace(s) Entries recorded in this namespace scope
============= ==
myStuff

Variable count
Variable cpanon

Support has been added to several commands to accept namespace expressions,
including assign, break, browse, disable, drop, enable, goto, ignore, list,
monitor, on, print, query, resume, runto, scope, trace, watch, and whatis.

SEE ALSO
scope command in Chapter 14, “Command Directory.”

Support for IEEE Floating-Point
The 390 Architecture has been augmented in recent years by the addition of support

for IEEE standard floating-point. Programs can now be written using the SAS/C
Compiler and the SAS/C Debugger to exploit this support. Traditional mainframe
floating-point continues to be supported.

Support has been added to several commands to accept IEEE floating-point
expressions, including assign, copy, dump, monitor, print, transfer, watch, and
whatis. With this support, all unary and binary C operators are available for use with
IEEE floating-point expressions including the cast operator.

You can use the cast operator to convert from a hexadecimal floating-point type to a
binary floating-point type using the _ _binfmt type-name modifier. Similarly, you can
convert from a binary floating-point type to a hexadecimal floating-point type using the
_ _hexfmt type-name modifier. You cannot mix binary and hexadecimal floating point
operands in the same expression. You must use the cast operator to ensure that all
floating-point operands are converted to the same format.

The following example illustrates how to convert from binary floating-point to
hexadecimal floating-point using the print command:

print (_ _hexfmt float)binaryFloatVariable;

When using floating-point constants or displaying the floating-point values in the
register window, the SAS/C Debugger will use the compilation options in effect for the
module in the current scope. For example, if the module was compiled to use the binary
floating-point by using either the SAS/C Compiler BFP or ARCHLEVEL(C) options, then
the SAS/C Debugger will convert floating-point constants or register values into binary
floating-point format before using or displaying them.

The SAS/C Debugger will check for exceptions that occur in IEEE floating-point
expressions. The following exceptions will be checked for:

underflow
overflow
divide by zero.

Support for 64-Bit Addressing
In Release 7.50, support has been added to the following debugger commands to

accept 64-bit pointers and their use in expressions:

� Updates to the storage Command 235

assign monitor storage

copy print watch

dump return whatis

The Dump, Print, Register, and Watch windows have also been updated to support
64-bit addressing:

Note: When you compile with the HUGEPTRS option, all pointers are 64-bit and longs
become 8 bytes in size. The debugger will honor these rules when using constants in
expressions in a module compiled with HUGEPTRS. �

The Register window displays 64-bit general purpose register values and all sixteen
of the floating-point registers if they are available. The Register window also indicates
AMODE64. The Dump and Watch windows will accept 64-bit pointer expressions. Note
that the Dump window displays only the bottom 8 bytes of the address when Rel: is
set to N (no). It is best to set Rel: to Y (yes) when dumping memory above the bar.

You can use the cast operator to convert from a 31-bit pointer type to a 64-bit pointer
type using the _ _huge type-name modifier. Similarly, you can convert from a 64-bit
pointer type to a 31-bit pointer type using the _ _near type-name modifier.

See “64-Bit Support” on page 5 and “64-Bit Support” on page 43 for more information
on the 64-bit support that has been added to SAS/C for Release 7.50.

Release 7.50 Updates to the SAS/C Debugger User’s Guide

Updates to the storage Command
In Chapter 14, “Command Directory,” make the following changes to the description

of the storage command.
� Change all of the instances of message LSCD612 to the following:

LSCD458 WARNING: The storage command has found corruptions in a header
for a storage block in either the stack, heap, or free heap, as indicated
by messages which follow.

� Change all of the instances of message LSCD622 to the following:

LSCD459 WARNING: The storage command has found corruptions in a storage
block in either the stack, heap, or free heap, as indicated by messages
which follow.

236

237

C H A P T E R

6
SAS/C Diagnostic Messages
Changes in Release 7.50

LSCC Compiler Messages 237
LSCD Messages 239

LSCL COOL Messages 240

Updated LSCT C++ Translator Messages 245

Deleted LSCT C++ Translator Messages 253

New LSCT C++ Translator Messages 254
LSCX Run-time Messages 263

Updates to Library Message Processing 263

Updates to Message Types 263

LSCC Compiler Messages

088

WARNING: Argument type incorrect. Expecting arg-type, found arg-type.
ERROR: Argument type incorrect. Expecting arg-type, found arg-type.

Explanation
Although a prototype is in scope for this function, the type of the argument does not
match the type in the prototype. The argument is converted to the correct type. This
message does not appear if only a simple widening conversion, such as char to int, is
needed.

204

WARNING: Item is wrong size for conversion to pointer.

238 240 � Chapter 6

EXPLANATION
An integer was converted to a pointer type whose size did not match the pointer type.
For examplee, a char, short or long long was converted to a _ _near pointer. If the
integer is a char or short, the result is unlikely to address valid data. If the integer is
longer than the pointer, the results of the conversion will be correct only if all the extra
bits are zeroes.

240
ERROR: _stllregs is not supported by the 32-bit code generator.

Explanation
The _stllregs function can only be used in a source file that is compiled with the
ARCHLEV(D) or the HUGEPTRS option.

241
ERROR: Attempt to load 8 byte value into a 4 byte register.

Explanation
An attempt was made to use the _ldregs function to load an 8 byte integer (signed or
unsigned long long) into a register, and neither the ARCHLEVEL(D) option nor the
HUGEPTRS option was specified.

242
ERROR: __label is not defined: [decimal] ([hex])

Explanation
A label that was referenced as the target of a call to one of the built-in branch functions
was never defined.

243
WARNING: Dubious branch between machine code blocks.

SAS/C Diagnostic Messages Changes in Release 7.50 � 458 239

Explanation
One of the built-in branch functions was used to transfer control between one inline
machine code block and another. It is possible that the generated code will fail to
preserve one or more registers that is used by the target code sequence. In this case,
the results could be incorrect.

244

ERROR: Incorrect number of arguments for branch operation code.

Explanation
A call to one of the built-in branch instructions specifies an incorrect number of
arguments. _ _builtin_branch has three arguments for most operations, but four for
BCTG, BXHG or BXLEG.

245

ERROR: _stregs pointer type is not compatible with the corresponding register.

Explanation
The _stregs builtin function attempted to store

� a general register by using a pointer to a floating-point type
� a floating point register by using a pointer to a non-floating-point type
� any register by using a pointer to an object of the wrong size (for example,

attempting to store a general purpose register by using a pointer to a 16-byte
structure).

LSCD Messages

458

WARNING: The storage command has found corruptions in a header for a storage block in either
the stack, heap, or free heap, as indicated by messages which follow.

240 459 � Chapter 6

Explanation
The storage command has found corruption in a header for a storage block on the stack,
heap, or free heap. A dump of the corrupted storage follows. See the storage command
in the SAS/C Debugger User’s Guide and Reference for an explanation of the message
content.

459

WARNING: The storage command has found corruptions in a storage block in either the stack,
heap, or free heap, as indicated by messages which follow.

Explanation
The storage command has found corruption in a storage block in the stack, heap, or free
heap. A dump of the corrupted storage follows. See the storage command in the
SAS/C Debugger User’s Guide and Reference for an explanation of the message content.

LSCL COOL Messages

1013

ERROR: There is a duplicated definition of "symbol" in input object files "file-1" and "file-1."

Explanation
Both of the named input object files or CSECTs contain a definition of the external
symbol symbol. This is usually caused by defining an external symbol in more than one
compilation in a program that is not re-entrant. Only one compilation in a program
should define an external symbol.

Action
Correct the problem and re-run COOL.

1017

WARNING: The reference to "symbol" in "file-name" is unresolved.

SAS/C Diagnostic Messages Changes in Release 7.50 � 1051 241

Explanation
COOL completed autocall processing but did not find a definition for the external
reference symbol found in file file-name. This does not necessarily indicate a problem if
the definition will be supplied during subsequent linking, or if the reference is never
used when the program executes. Otherwise, the reference may be misspelled, or the
object file that contains the definition was omitted from the COOL input files.

1049

ERROR: The \"%\" option must specify a length >= \"%\".

Explanation

The length that is given to this listing option is less than the minimum required length.
To correct this error, give the option a large enough length or omit the option.

1050

ERROR: The reference to extended name \"%\" in \"%\" is unresolved.

Explanation
COOL completed autocall processing but did not find a definition for the extended name
external reference symbol found in file file-name. The reference might be misspelled, or
the object file that contains the definition might have been omitted from the COOL
input files.

1051

ERROR: Cannot fork a new process for user exit: %.

Valid in: UNIX environment only

Explanation

COOL attempted to create a new process to execute the user exit, but the attempt
failed. Your machine might be too busy or you might have reached the limit for the
maximum number of processes that can run on your login.

242 1052 � Chapter 6

1052

ERROR: Cannot open pipes for communication with user exit: %.

Valid in: UNIX environment only

Explanation
COOL attempted to create the pipes necessary for communication with the user exit,
but the attempt failed. You might have reached the limit for the maximum number of
open files for your login, or there might be too many open files on your machine.

1053

ERROR: User exit may only return status 4 on first invocation.

Explanation
A user exit that does not want to be called can return a return code of 4 the first time it
is called. In all other cases a return code of 4 from the user exit is an error. This is a
programming error in your user exit.

1054

ERROR: Empty line from user exit.

Explanation
The user exit returned a blank line instead of a properly formed response to an
extended name. This is a programming error in your user exit.

1055

ERROR: The output from the user exit process is invalid: \"%\".

Explanation
The user exit returned a line with data in it in response to an extended name, but the
line is improperly formed. This is a programming error in your user exit.

SAS/C Diagnostic Messages Changes in Release 7.50 � 1060 243

1056
ERROR: User exit reports failure with exit code %.

Explanation
The user exit has exited but with a nonzero return code.

1057
ERROR: Error communicating with the user exit process.

Explanation
An unknown error occurred while COOL was communicating with the user exit.

1058
ERROR: User exit was killed by signal %.

Explanation
The user exit did not exit normally and was instead terminated by a signal. This may
be due to a programming error in the user exit.

1059
ERROR: User exit returned ID out of range: %.

Explanation
A user exit can only return a symbol ID between 0 and 999999.

1060
ERROR: -Xt option must be followed by the path to the User Exit.

244 1061 � Chapter 6

Explanation
When specifying the use of a user exit, the -Xt option must be given a valid path to the
desired user exit.

1061

ERROR: Unable to do dynamic load of User Exit: %.

Explanation
COOL attempted to load the user exit, but failed. On Windows this can also mean the
loaded DLL did not have a clkexit function present. Additional status information is
available only on Windows.

1062

ERROR: Internal error in file % line %.

Explanation
COOL has experienced a fatal error. Call SAS/C technical support.

1063

NOTE: Treating warnings as errors.

Explanation
A warning condition has occurred and the -we option has been given. Warnings are
treated as severely as errors.

1064

Output object is empty.

SAS/C Diagnostic Messages Changes in Release 7.50 � 371 245

Explanation
After COOL has finished processing any and all input objects, no object was emitted.
This may caused by a problem with your input.

1065

Library “libraryname” not found.

Explanation
You specified an archive library for COOL to find objects in, but that archive could not
be located. Make sure the directory containing the archive is in the search path.

Updated LSCT C++ Translator Messages

Replace the following messages in Chapter 8, “LSCT C++ Translator Messages,” with
the text provided.

355

ERROR: Value of an undefined class cannot be used.

Explanation
An expression with undefined class type was used by value. For example the
expression might be an argument passed by value to a function with a formal of
undefined class type, it might be a call to a function returning an undefined class type,
or it might be an operand to an operator. This error could be resolved by providing a
definition of the class prior to the use.

371

ERROR: Cannot dereference pointer to undefined class.

246 382 � Chapter 6

Explanation
A class must be defined before a pointer to an object of its type can be dereferenced
with the -> operator.

382

ERROR: Missing array size expression.

Explanation
One or more dimensions of the given array have not been specified.

415

ERROR: Functions cannot return undefined classes.

Explanation
If a function is intended to return a class, that class must be defined before the function
definition.

430

ERROR: Conversion function ‘operator type’ CONSTRAINT.

Explanation
A declaration for a conversion function was found but it violates one of the constraints
on conversions. Declarations of conversion functions do not specify the return type in
the usual way. The return type is part of the name of the function. Also, conversion
functions cannot take arguments.

431

ERROR: Constructor function ‘class-name’ CONSTRAINT.

SAS/C Diagnostic Messages Changes in Release 7.50 � 513 247

Explanation

A declaration for a constructor function was found but it violates one of the contraints
on constructors. Perhaps you have specified a return type for a constructor, or the name
used in the declaration of the constructor is not the same as the name of the class.
Declarations of constructors cannot specify a return type, not even void.

460

ERROR: Constructor function ‘class-name’ CONSTRAINT.

Explanation

A declaration for a constructor function was found but it violates one of the contraints
on constructors. Perhaps you have specified a return type for a constructor, or the name
used in the declaration of the constructor is not the same as the name of the class.
Declarations of constructors cannot specify a return type, not even void.

504

WARNING: Constant expression contains a division by zero (0).
ERROR: Constant expression contains a division by zero (0).

Explanation

Constant expressions cannot contain division by zero. This is an error if a compile-time
constant was expected.

513

ERROR: Overriding virtual function ‘function-name’ has different return type.

Explanation

An overriding virtual function cannot change the return type unless the new return
type is a covariant class pointer or class reference. See section 10.3 in the C++ standard
for more details.

248 517 � Chapter 6

517

ERROR: Function declared ‘_ _builtin’ after first use.

Explanation
The function must be declared _ _builtin before it is used.

522

ERROR: Keyword ‘keyword-name’ can only be used on functions.

Explanation
A keyword that can be used only in function declarations has been used in a declaration
of some other type. For example, the virtual and inline keywords can be used only
in function declarations.

525

WARNING: Function declared ‘inline’ after first use.

Explanation
A function was used prior to its declaration as an inline function. The translator might
not be able to inline the previous uses.

595

ERROR: Floating point value out of range.

Explanation
The value of a floating point constant or an operation on floating point constants is
either too large or too small to be represented. Frequently this is caused by a
multiplication or division of two floating point constants. This message is also

SAS/C Diagnostic Messages Changes in Release 7.50 � 631 249

generated when an IEEE floating point constant representing NaN (not a number) is
used in a constant expression.

599

ERROR: The function declaration ‘function-name’ requires an explicit parameter list.

Explanation
This error can be diagnosed when a function is defined using a function typedef name.
The named function was defined with just a function typedef name. This is erroneous
because the parameter list is not explicitly stated in the function definition. For
example, the following would produce this message:

typedef int F(int);
F foo

{
return 10;
}

This error can also be diagnosed for a member declaration in a specialization of a class
template when the declaration has function type but the original template declaration
is not a function declaration. See the C++ standard, 14.3.1 paragraph 3.

628

WARNING: Template function not deducible.

Explanation
Not all template argument types and values can be determined from the function
parameter types. References to this template function in calls must explicitly specify the
non-deducible template arguments. This message is diagnosed with the STRICT option.

631

ERROR: Scope for ‘name’ does not match a class template.

Explanation
The scope for the name being declared in a template must match a class template or
partial specialization. For example:

250 643 � Chapter 6

template <class T, class U> class C {
class Nested { ... };
...

}; // primary template for C
template <class T> class <T, int> { ... }; // partial specialization

template <class X, class Y> int C<X, Y>::i = 1; // OK
template <class X, class Y> int C<X, Y>::Nested::i = 1; // OK
template <class X, class Y> int C<Y, X>::j = 0; // Error
template <class X, class Y> int C<Y, int>::k = 7; // Error
template <class X> int C<X, int>::j = 2; // OK
template <class X> int C<X, double>::k = 3; // Error

In other words, to define a member of the primary class template, the template
parameters in effect must match the parameters from the template class declaration
and the the argument list for the template scope must use the template parameters in
the original order. To define a member of a partial specialization the template
parameters in effect must match the parameters from the class partial specialization
declaration and the the argument list for the template scope must match the class
argument list from the partial specialization,

643

ERROR: Invalid explicit template specialization.

Explanation

An explicit template specialization declaration, which begins with template <>, must
refer to a specialization of

� a previously declared function template

� a previously declared class template

� a member function or static data member of a specialization of class template (or a
class nested in such a specialization) where the enclosing specialization is not
explicitly specialized.

644

ERROR: Template function was explicitly specialized after its first use.

Explanation

An explicit template specialization refers to a function or function template that has
been previously used. The explicit specialization should be moved before the first use.

SAS/C Diagnostic Messages Changes in Release 7.50 � 668 251

646

ERROR: Template class was specialized after it was implicitly instantiated.

Explanation
An explicit specialization of an instance of a template class or an explicit specialization
of the member class template for the instance was provided after a use of the instance
which would have caused it to be implicitly generated from its template. The explicit
specialization should be moved before the first use of the specialized class that would
cause the class to be implicitly instantiated.

662

ERROR: Name ‘name’ does not resolve to a (type | scope | class template)name.

Explanation
The template definition for a specialization used a template formal dependent name in
a context where a scope, type, or class template name was expected. However the
corresponding name in the specialization was not found or did not have the correct
type. For example:

template <class T>
class C { public: int Z; };

template <class T>
void f(typename C<U>::Z* p);

void testit()
{

f<int>(0); // Error, C<int>::Z is not a type
}

This error may also be detected in the template definition.

668

ERROR: Default arguments are not allowed on template redeclaration ‘template-name’.

252 670 � Chapter 6

Explanation
Function templates must declare all their default arguments on their first declaration.

670
WARNING: Missing type specifier.

Explanation
The C++ standard requires that declarations (except for constructors, destructors, and
type conversion operators) include a type specifier other than const or volatile. The
implicit int rule of C is considered obsolete. Also the _ _binfmt and _ _hexfmt
keywords must be used in combination with the float or double keywords.

696
ERROR: Default template arguments allowed only for unspecialized class templates.

Explanation
Default template arguments are only allowed on the declaration or definition of a
primary class template, not on function templates, template member definitions, or
class template partial specializations.

705
ERROR: ‘declaration-name’ not previously declared.

Explanation
A declaration with a scoped declarator was found. Such a declaration must refer to a
previous declaration, but no such declaration was found. The message may also be
issued if all the previous declarations where friend declarations and the
NOFRIENDINJECT option is active.

738
ERROR: Missing or ambiguous delete operator ‘operator-name’.

SAS/C Diagnostic Messages Changes in Release 7.50 � 490 253

Explanation
A new expression was encountered and there were either zero or multiple corresponding
delete operators found for handling cleanup in cases where the new object initialization
throws an exception. operator delete will not be called to release the memory for the
object during exception handling. This message indicates a potential memory leak.
Note that the operator delete name is looked up by the same method used for
delete expressions, so the name may be found in a different scope than the operator
new name. This message is diagnosed with the STRICT option.

Deleted LSCT C++ Translator Messages

Delete the following messages from Chapter 8, “LSCT C++ Translator Messages.”

361

ERROR: Cannot take the address of a member of virtual base class.

441

ERROR: Static members ‘member-name’ of a local class may not be initialized.

461

ERROR: Destructor function ‘destructor-name’ not correctly declared.

490

ERROR: Missing function name in function declaration.

254 624 � Chapter 6

624

ERROR: Cannot instantiate incomplete template class ‘template-class’.

625

ERROR: Recursive template instantiation of ‘template-class’.

627

ERROR: Template instantiation failed for ‘template-name’.

636

ERROR: Multiple definitions for ‘symbol’.

657

ERROR: Elaborated name depends on a template parameter.

New LSCT C++ Translator Messages
Add the following messages to Chapter 8, “LSCT C++ Translator Messages.”

135

ERROR: Cannot redefine macro ‘macro-name’.

SAS/C Diagnostic Messages Changes in Release 7.50 � 746 255

Explanation
A #define or #undef preprocessor directive specified one of the special predefined
symbols such as _ _FILE_ _. These symbols may not be changed directly in source code.

189
WARNING: Archlevel reset to ‘option-name’ because of the ‘option-name’ option.

Explanation
An ARCHLEVEL option was specified that was too low to support another requested
option, such as BFP. The ARCHLEVEL option is reset to the specified value.

746

WARNING: Friend declaration does not declare a template specialization.

Explanation
A friend declaration in a template class uses the names of template type formals, but
the declaration designates a non-template function. When used with older compilers,
such a construct was generally used to refer to a specialization of a template function.
However the C++ standard treats the construct as a declaring a non-template function
unless the function declarator has explicit template arguments or has an explicit scope
specifier. With an explicit scope specifier, a template specialization is found if there was
not a previous non-template declaration. For example:

template <class T> class C;
template <class T> C<T> operator+(const C<T>&, const C<T>&);
template <class T> C <T> operator-(const C<T>&, const C<T>&);
template <class T> class C {

// non-template declaration, the warning is issued
friend C<T> operator+(const C<T>&, const C<T>&);
// scoped declaration finds a template specialization
friend C<T> (::operator+)(const C<T>&, const C<T>&);
// template specialization, using explicit template arguments
friend C<T> operator-<>(const C<T>&, const C<T>&);

private:
// . . .

};

The warning is not issued if the friend is defined in the template class body. With the
NOTMPLFUNC option, the old interpretation of the first friend declaration is used and the
warning will not be issued.

256 747 � Chapter 6

747

ERROR: Friend declaration may not declare a partial specialization.

Explanation
A friend declaration may not declare a partial specialization of a class template.

748

ERROR: Primary class template must be declared first.

Explanation
A primary class template must be declared before any partial specializations of the
template.

749

ERROR: Partial specialization matches original class template.

Explanation
The arguments for class template partial specialization may not match the arguments
for the template. The original class template implicitly has arguments corresponding to
the order of its parameter list. For example:

template <typename T, typename U>
class C; // implicitly C<T, U>
template <typename T, typename U>
class C<T*, U>; // partial specialization, OK
template <typename T, typename U>
class C<T, U>; // error, same as primary template

750

ERROR: Complex partial specialization argument ‘argument-name’ depends on a template
parameter.

SAS/C Diagnostic Messages Changes in Release 7.50 � 753 257

Explanation
A nontype argument expression for a class template partial specialization must either
not use template parameters unless it is the identifier of a template parameter. See the
C++ standard, Section 14.5.4, paragraph 9.

751

ERROR: Template formal type ‘type-name’ for specialized argument ‘argument-name’ depends on
partial specialization parameters.

Explanation
The type of the class template formal (of the original template) corresponding to a
nontype argument of a class template partial specialization must be determined at the
time the partial specialization is declared unless the argument is the name of a
template parameter. Otherwise the formal type cannot depend on specialization
parameters. See the C++ standard, Section 14.5.4 , paragraph 9.

752

ERROR: Ambiguous partial specialization for ‘class-name’.

Explanation
The class template specialization corresponds to multiple partial specializations and the
partial ordering rules can not identify the best specialization.

753

WARNING: Partial specialization is not deducible.

Explanation
No specializations can be generated using the class template partial specialization
because not all of the partial specialization template formals are used in a way in the
argument list that allows them to be deduced. For example:

template <typename T, typename U>
class C;

258 754 � Chapter 6

template <typename T, typename U>
class C <T, int> // does not use formal U
{ ...
};

Note that template formals also cannot be deduced when they are used inside
expressions or as part of the scope of a qualified type name.

754

ERROR: Default arguments may not be declared for specializations of template functions.

Explanation
Friend declarations of specializations of function templates, explicit specialization
declarations, and explicit instantiation declarations may not declare default arguments.
The default arguments used for calls to such functions come from the template
declaration.

755

ERROR: Declaration is not a template specialization.

Explanation
An explicit specialization declaration was found for a function that was not an instance
of a function template or member of an unspecialized class generated from a template, or
a function or class template that was not a member of an unspecialized class generated
from a template. Note that the explicit specialization syntax is not used for members of
explicitly specialized classes. See the C++ standard, section 14.7.3, paragraphs 1 and 5.

756

ERROR: Static data members may not be declared inside an unnamed class.

Explanation
Static data members may not be declared in an unnamed class or a class nested in such
a class. See the C++ standard, section 9.4.2, paragraph 5.

SAS/C Diagnostic Messages Changes in Release 7.50 � 760 259

757

ERROR: Class templates may not declare template members as friends.

Explanation
Only classes that are not templates may declare a member of a template class as a
friend. See the C++ standard, section 14.5.3, paragraph 6.

758

ERROR: Invalid using declaration.

Explanation
The using declaration specified an invalid name, such as a destructor name.

759

ERROR: Type of destructor name does not match its scope: ‘type_name1::~type_name2’.

Explanation
When a destructor name is specified with a qualified name (for example,
type_name1::~type_name2) the type of the name specified by the scope must match
the type specified by the name following the ~.

760

WARNING: Non-placement operator delete is hidden in <class-name>.
ERROR: Non-placement operator delete is hidden in <class-name>.

Explanation
The deallocation function selected by a delete expression or a virtual destructor
definition was a placement delete. A placement delete may not be used in such
contexts. See section 12.5, paragraph 4 in the C++ standard. Note that template

260 761 � Chapter 6

deallocation functions are always considered to be placement declarations and a
member placement delete will hide the global default non-placement delete declaration.

This message is issued when a placement delete class member has been declared, no
corresponding non-placement delete member has been declared, and a delete expression
using the class is found or a virtual destructor for the class is defined. This message is
a warning for virtual destructor definitions but may become an error in the future.
Attempting to delete via a virtual destructor which generates the warning could result
in no deallocation function being called. The message can be corrected by declaring a
non-placement member operator delete.

761

ERROR: The AT option is required to use the ‘@’ operator.

Explanation
The @ operator was found in an expression but the AT compiler option was not specified.
The @ operator is a SAS/C extension that supports call by reference for interlanguage
communication

762

ERROR: Use of ‘feature-name’ requires the archlevel(option-name) option.

Explanation
The compiler found a use of a feature, such as binary floating point, that is not
supported by the architecural level determined from the compiler options. The code
must be changed or a higher ARCHLEVEL option must be specified.

763

ERROR: Mixed _ _binfmt and _ _hexfmt floating point.

Explanation
A binary operator was found where both operands have floating point types but
different modes (hexadecimal versus binary). The mode for the operation cannot be
determined. The operands need to be adjusted so that they have the same format.

SAS/C Diagnostic Messages Changes in Release 7.50 � 767 261

764
ERROR: Invalid use of cv-qualified function type.

Explanation
A const or volatile qualified function type can be used only as the top level type of a
typedef declaration or nonstatic member declation or as the target of a member
pointer declarator. Also const and volatile qualifiers cannot be applied to a typedef
name of function type.

765
ERROR: Ambiguous base class initializer.

Explanation
A base class designated in the member initializer list for a constructor is both a direct
non-virtual base and an indirect virtual base. Such a base cannot be explicitly
initialized.

766
ERROR: Operation ‘*’ is not supported on a far pointer without the ARMODE option.

Explanation
An operation, such as unary ‘*’, was applied to a far or huge pointer or reference. This
is not supported either due to the current option settings or to the limitations of the
current release.

767
WARNING: Expression requires ARMODE.

Explanation
Generally this means that an expression references a default argument that used
operations requiring ARMODE but the current function was not defined ARMODE. Note

262 768 � Chapter 6

that default arguments are evaluated in the context of the function that uses them. The
function current being defined will be marked ARMODE so that correct code can be
generated.

768

ERROR: Multiple member initializers for a union.

Explanation
At most one member of a union or anonymous union can be initialized in the initializer
list of a constructor function.

769

ERROR: Object size limit exceeded.

Explanation
The object size exceeded the limit for its storage class. For objects allocated by a new
expression, the limit is 2**32-1 bytes (2**64-1 bytes with the HUGEPTRS option).

770

WARNING: Bitfield width larger than type.

Explanation
A bitfield declaration specified a field width larger than required by the specified type.
For example a char bitfield was specified with more than 8 bits. The extra bits are not
used to store the value and are treated as padding. This warning is only issued with
the NOBITFIELD option. Otherwise the SAS/C bitfield rules are applied and all bits are
used for the value.

SAS/C Diagnostic Messages Changes in Release 7.50 � Updates to Message Types 263

LSCX Run-time Messages

Updates to Library Message Processing
In Chapter 9, “LSCX Run-time Messages,” in the section titled, “Library Message

Processing,” replace the last paragraph and the list that follows it with the following
text.

You can control the generation and verbosity of library diagnostic messages using
any of the following:

� the quiet function to suppress these messages, as described in SAS/C Library
Reference, Volume 1

� the =warning run-time option to force library diagnostics to be displayed, even if
suppressed by quiet

� the =btrace run-time option to get a list of the active functions (a traceback) at
the time a diagnostic is generated

� the =rsntrace run-time option to print information about recent failures in
operating system calls with library messages

� the wmi_add function to define one or more exit routines to control the printing of
diagnostic messages.

Updates to Message Types
In Chapter 9, “LSCX Run-time Messages,” make the following changes in the section

titled, “Message Types:”

1 Replace the example of the form of the library messages with the following
example:

LSCX[num] **** [severity] **** ERRNO = [errno value]
[info added by message exit]

Generated in function-name called from line line-number of function-name,
offset hex-value

[C++/Extended] name: full-name
message-text
Last failing system call: [name], return code [code], reason code [code],

info [code]
[info added by message exit]
Interrupted while: context

2 Add the following text after the list of severities.

Note that some of the text above will not appear for every message. The C++/
extended name line appears only if the error occurred in a C++ function or one
with an extended name. The Last failing system call line appears only if the
=rsntrace run-time option is in effect, and a system call has failed since the last
run-time diagnostic message. info added by message exit indicates optional
text which could be added by a library message exit (defined with the wmi_add
function).

Replace Message 025 with the following message

264 025 � Chapter 6

025

ERROR: Program terminated due to [name] signal.

ABEND code: 1225

Explanation
A signal occurred for which the default action is termination, and no signal handler was
defined. These signals include SIGALRM, SIGIUCV, SIGOPER and most of the UNIX
Systems Services signals.

Action
If abnormal termination is not desired, modify the program to define a handler for the
signal.

153

WARNING: SAS/C [function] format string [string] is not supported on this system.

Errno value: ESYS

Explanation
A printf or scanf family function was called with a SAS/C type specifier that is not
supported by the system environment.

Action
Change the type specifier.

154

WARNING: Memory allocation failed, floating conversion not performed.

Errno value: ENOMEM

Explanation
scanf was unable to allocate memory to perform an accurate conversion of an input field
to floating-point representation because the input field contains too many digits. The
conversion returns a NaN for binary floating-point, or a very small negative number for
hexadecimal floating-point.

SAS/C Diagnostic Messages Changes in Release 7.50 � 210 265

Action
Either increase the region size, or specify fewer digits in the floating-point input data.

155

WARNING: The conversion modifier ~l (hugeptr) is not available in your environment.

Errno value: EARG

Explanation
A printf family function was called with a conversion specifier of ~l or ~L, indicating a
huge pointer. The environment does not support huge pointers. Huge pointers are not
supported for callers linked with AMODE24.

Action
Re-link the application AMODE31 or remove the huge pointer specification.

208

WARNING: [error] occured during computation of [expression].

Errno value: ERANGE

Explanation
Floating-point overflow or underflow (as indicated in the message) occurred during
computation of a mathematical function. The errno variable is set to ERANGE and an
appropriate value (+/-HUGE_VAL for overflow or 0.0 for underflow) is returned.

ACTION
If possible, correct the program or the data. The message can be suppressed using the
_matherr function, as described in the SAS/C Library Reference, Volume 1.

210

WARNING: [error] occured during computation of [expression].

Errno value: ERANGE

266 211 � Chapter 6

Explanation
Floating-point overflow or underflow, as indicated in the message, occurred during
computation of a mathematical function. errno is set to ERANGE, and appropriate flags
are set in the floating-point environment. The function returns an appropriate value,
determined by the specific error which occurred and the current rounding mode. (For
the default rounding mode, plus or minus infinity is returned for overflow, and a
denormalized result or 0 is returned for underflow.)

Action
If possible, correct the program or the data. The message can be suppressed using the
_matherb function, as described in the SAS/C Library Reference, Volume 1.

211

WARNING: [error] occured during comutation of [expression].

Errno value: ERANGE

Explanation
Floating-point overflow or underflow, as indicated in the message, occurred during
computation of a mathematical function. errno is set to ERANGE, and appropriate flags
are set in the floating-point environment. The function returns an appropriate value,
determined by the specific error which occurred and the current rounding mode. For
the default rounding mode, plus or minus infinity is returned for overflow, and a
denormalized result or 0 is returned for underflow.

Action
If possible, correct the program or the data. The message can be suppressed using the
_matherb function, as described in the SAS/C Library Reference, Volume 1.

212

WARNING: [value] is a singularity of the [name] function. The result is infinite.

Errno value: ERANGE

Explanation
The indicated value is a singularity of the indicated function. That is, the function
value approaches infinity as the argument approaches the singularity. errno is set to
ERANGE, and the divide by 0 flag is set in the floating-point environment. The
function returns an infinite value with an appropriate sign.

SAS/C Diagnostic Messages Changes in Release 7.50 � 215 267

Action
If possible, correct the program or the data. The message can be suppressed using the
_matherb function, as described in the SAS/C Library Reference, Volume 1.

213

WARNING: [value] is not a valid argument to the [name] function.

Errno value: EDOM

Explanation
The indicated function is mathematically undefined for the given argument. errno is
set to EDOM, and the invalid flag is set in the floating-point environment. The function
returns a NaN.

Action
If possible, correct the program or the data. The message can be suppressed using the
_matherb function, as described in the SAS/C Library Reference, Volume 1.

214

WARNING: [expression] is not mathematically meaningful.

Errno value: EDOM

Explanation
The indicated function is mathematically undefined for the given arguments. errno is
set to EDOM, and the invalid flag is set in the floating-point environment. The function
returns a NaN.

Action
If possible, correct the program or the data. The message can be suppressed using the
_matherb function, as described in the SAS/C Library Reference, Volume 1.

215

NOTE: [Total | Partial] loss of significance occurred during evaluation of [expression].

Errno value: unchanged

268 216 � Chapter 6

Explanation
The function result is less accurate than the arguments. If the message indicates total
loss of significance, the result may be completely inaccurate. If it indicates partial loss
of significance, the result is approximately correct, but considerably less precise than its
input arguments.

ACTION
If possible, correct the program or the data. Output of this message may indicate
serious problems with the correctness of program results, which should be evaluated
carefully. The message can be suppressed using the _matherb function, as described in
the SAS/C Library Reference, Volume 1.

216

WARNING: [error] occurred during computation of [expression].

Errno value: ERANGE

Explanation
Floating-point overflow or underflow, as indicated in the message, occurred during
computation of a mathematical function. errno is set to ERANGE, and appropriate flags
are set in the floating-point environment. The function returns an appropriate value,
determined by the specific error which occurred and the current rounding mode. For
the default rounding mode, plus or minus infinity is returned for overflow, and a
denormalized result or 0 is returned for underflow.

Action
If possible, correct the program or the data. The message can be suppressed using the
_matherb function, as described in the SAS/C Library Reference, Volume 1.

217

NOTE: [Total/Partial] loss of significance occurred during evaluation of [expression].

Errno value: unchanged

Explanation
The function result is less accurate than the arguments. If the message indicates total
loss of significance, the result may be completely inaccurate. If it indicates partial loss
of significance, the result is approximately correct, but considerably less precise than its
input arguments.

SAS/C Diagnostic Messages Changes in Release 7.50 � 220 269

ACTION
If possible, correct the program or the data. Output of this message may indicate
serious problems with the correctness of program results, which should be evaluated
carefully. The message can be suppressed using the _matherb function, as described in
the SAS/C Library Reference, Volume 1.

218

WARNING: [error] occurred during computation of [expression].

Errno value: ERANGE

Explanation
Floating-point overflow or underflow, as indicated in the message, occurred during
computation of a mathematical function. errno is set to ERANGE, and appropriate flags
are set in the floating-point environment. The function returns an appropriate value,
determined by the specific error which occurred and the current rounding mode. For
the default rounding mode, plus or minus infinity is returned for overflow, and a
denormalized result or 0 is returned for underflow.

Action
If possible, correct the program or the data. The message can be suppressed using the
_matherb function, as described in the SAS/C Library Reference, Volume 1.

219

WARNING: ([value],[value]) is a singularity of the [name] function. Result is infinite.

Errno value: ERANGE

Explanation
The indicated pair of values is a singularity of the indicated function. That is, the
function approaches infinity as the arguments approach the singularity. errno is set to
ERANGE, and the divide by 0 flag is set in the floating-point environment. The
function returns an infinite value with an appropriate sign.

220

WARNING: [value] is not a valid argument to the [function] function.

Errno value: EARG

270 221 � Chapter 6

Explanation
A string argument value containing an invalid floating-point number was passed to the
function function.

221

WARNING: [error] occured during computation of [expression].

Errno value: ERANGE

Explanation
The function result is less accurate than the arguments. If the message indicates total
loss of significance, the result may be completely inaccurate. If it indicates partial loss
of significance, the result is approximately correct, but considerably less precise than its
input arguments.

ACTION
If possible, correct the program or the data. Output of this message may indicate
serious problems with the correctness of program results, which should be evaluated
carefully. The message can be suppressed using the _matherr function, as described in
the SAS/C Library Reference, Volume 1.

231

WARNING: [error] occurred during computation of [expression].

Errno value: ERANGE

Explanation
Floating-point overflow or underflow, as indicated in the message, occurred during
computation of a mathematical function. errno is set to ERANGE, and appropriate flags
are set in the floating-point environment. The function returns an appropriate value,
determined by the specific error which occurred and the current rounding mode. For
the default rounding mode, plus or minus infinity is returned for overflow, and a
denormalized result or 0 is returned for underflow.

Action
If possible, correct the program or the data. The message can be suppressed using the
_matherb function, as described in the SAS/C Library Reference, Volume 1.

SAS/C Diagnostic Messages Changes in Release 7.50 � 969 271

728

ERROR: Alarm subtask has abended with code [code].

Errno value: ESYS

Explanation
During processing of the sleep or alarm functions the subtask unexpectedly abended
with the indicated code.

Action
Look up the ABEND code in the IBM documentation, OS/390 V2R10.0 MVS System
Codes and take appropriate action.

968

WARNING: [name] syscall failed: [text].

Errno value: various

Explanation
An error occurred in a UNIX System Services system call. The error was of a sort that
does not ordinarily require a diagnostic message. This message is written only if the
=warning runtime option is in effect, or if a diagnostic message exit directs it to be
printed. The text portion of the message is a brief synopsis of the meaning of the errno
value.

Action
Ordinarily, none is required. However, in the event of mysterious problems with UNIX
System Services facilities (especially TCP/IP), this information might clarify the nature
of the problem.

969
NOTE: querydub syscall returned [text].

Errno value unchanged

Explanation
The library called the UNIX System Services querydub system call to determine
whether UNIX System Services could be used. While the system call did not fail, it

272 969 � Chapter 6

returned an unusual return code which might represent an environmental problem.
The "text" portion of the message is the symbolic name of the querydub return code,
which can be looked up in the IBM publication UNIX System Services Assembler
Callable Services. This message is written only if the =warning runtime option is in
effect, or if a diagnostic message exit directs it to be printed.

Action
Ordinarily, none is required. However, in the event of mysterious problems with UNIX
Systems Services facilities (especially TCP/IP), this information might clarify the nature
of the problem.

Your Turn

If you have comments or suggestions about SAS/C® 7.50: Changes and
Enhancements, please send them to us on a photocopy of this page, or send us electronic
mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	SAS/C Compiler Changes in Release 7.50
	Introduction
	Release 7.50 Enhancements to the SAS/C Compiler
	Floating-Point Changes for SAS/C Release 7.50
	IEEE Floating-Point Support
	SAS/C IEEE Support
	SAS/C and Mainframe Floating-Point Extensions
	SAS/C C99 Support

	Bit Support
	Compile-Time Support for 64-bit Addressing
	bit Support and Access Register Mode
	bit Support and Inline Machine Code
	bit Support and Communication with Other Languages
	Bit Support and the SAS/C Library
	Bit Support and ANSI/ISO Conformance

	New Options
	New Compiler Options
	New COOL Options
	New DSECT2C Options
	New Run-Time Option

	Release 7.50 Changes to the SAS/C Compiler and Library User’s Guide
	IEEE and 64-Bit Updates to the Inline Machine Code Interface
	Updates for Floating-Point Support
	Updates to the CENTRY Macro
	Updates to the AR370 Archive Utility
	Update to the SYSARWRK Data Definition
	Enhancements to the All-Resident C Programs
	Update to the _branch, _bbwd, and _bfwd Functions
	Update to the oeabntrap Function Description
	Updates to the pow Function Example
	Update to the description of the long long Data Type
	Update to the rtconst Option Description
	Update to the enforce, mention, and suppress Option Descriptions
	Updates to the #pragma Options
	Update to the ENXREF COOL Option Description
	Updates to the COOL Options Tables
	Update to the _O_SNAME Symbol
	Update to the <resident.h> Documentation
	Updates to the SPE Functions

	SAS/C Library Changes in Release 7.50
	Introduction
	Release 7.50 Enhancements to the SAS/C Library
	Floating-Point Support
	Bit Support

	Updates to Mathematical Functions
	Math Header Files
	Preprocessor Symbols
	Type Definitions
	Function Categories
	Floating-point Environment Functions
	Type Classification Functions
	Comparison Functions
	Low-level Functions
	Transcendental Functions
	Math Function Error Handling
	Float and Long Double Functions
	New Math Functions

	Update to float.h Header File
	New nan, nanf, and nanl Functions
	Updates to the SIGFPE Signal
	New Multiple Heap Functions
	_heap_attr

	Huge Pointer Functions
	Updates to the fprintf Function
	Updates to the fscanf Function
	Updates to the strtod Function
	New Library Functions
	New Message Exit Facility
	New hstrerror Function
	New oe2errno Function
	New String Functions
	New I/O Functions
	New opcmd Function
	New Coverage Support Feature
	The Compiler Part of the Coverage Feature
	The COOL Part of the Coverage Feature
	The Coverage Feature Application
	Extracting Coverage Data
	JCL for Coverage Sample
	Sample MAIN (cvgmain.c);
	Sample Subroutine called by MAIN (cvgmain2.c);
	Sample Dynamically-Loaded Module (cvgdynm.c);
	Sample Coverage Routine (cvgdump.c);
	cvg.h Header
	Sample Output

	Release 7.50 Changes to the SAS/C Library Reference, Volume 1
	Updates to Function Categories
	Updates to the SAS/C Functions
	llmax
	llmin
	storck
	Updates to Multi-Volume Seeks Support
	New WTP Function
	Updates to SAS/C I/O Questions and Answers
	Updates to Signal-Handling Functions

	Release 7.50 Changes to the SAS/C Library Reference, Volume 2
	Updates to Header Files in Function Examples
	New oeattach Example
	Update to loadm Function Description
	Updates to the osdynalloc Function
	Updates to the Socket Functions
	Update to getdtablesize Example
	New <sys/un.h> Header File

	SAS/C Cross-Platform Changes for Release 7.50
	Introduction
	Release 7.50 Enhancements to the SAS/C Cross-Platform Compiler
	New Cross-Platform Compiler Options
	New cool Options
	New Alternative Code Page Feature

	Release 7.50 Changes to the SAS/C Cross-Platform Compiler User’s Guide
	Updates to Compiler Options
	Updates to the ar370 Archive Utility
	Update to the -Aenexit and -Aenexitdata COOL Options

	SAS/C C++ Translator Changes in Release 7.50
	Introduction
	Release 7.50 Changes and Enhancements to the C++ Translator
	Updates to Introduction to the SAS/C C++ Development System
	Updates to Translator Options
	Updates to Standard Libraries
	Updates to Header Files, Classes, and Functions
	Updates to Templates
	Updates to Interpreting C++ Demangled Names
	New Appendix on ARMODE, HUGEPTRS, and Pointer Kinds

	SAS/C Debugger Changes for Release 7.50
	Introduction
	Incompatibility with Previous Releases of SAS/C
	Release 7.50 Enhancements to the SAS/C Debugger
	Support for Namespaces
	Support for IEEE Floating-Point
	Support for 64-Bit Addressing

	Release 7.50 Updates to the SAS/C Debugger User’s Guide
	Updates to the storage Command

	SAS/C Diagnostic Messages Changes in Release 7.50
	LSCC Compiler Messages
	LSCD Messages
	LSCL COOL Messages
	Updated LSCT C++ Translator Messages
	Deleted LSCT C++ Translator Messages
	New LSCT C++ Translator Messages
	LSCX Run-time Messages
	Updates to Library Message Processing
	Updates to Message Types

