
The FCMP Procedure

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2003. The FCMP Procedure.
Cary, NC: SAS Institute Inc.

The FCMP Procedure

Copyright © 2003, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise,
without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, September 2003

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The FCMP Procedure

Contents

USING THE FCMP PROCEDURE . 3
Introduction . 3
Function/Subroutine Declarations. 4

SAS GLOBAL OPTION CMPLIB . 5

FCMP SYNTAX . 6
PROC FCMP Statement. 6
Declaration Statements. 8
Program Statements. .13

SPECIAL FUNCTIONS .15
SOLVE .15
DYNAMIC –ARRAY .20
C Helper Functions .21

FUNCTION/SUBROUTINE PACKAGE VIEWER 24
Getting Started. .24
Function/Subroutine Package Viewer Details. 26
Subroutine Finder. .29
Function/Subroutine Reader. .30

EXAMPLES .32
Example 1 - Creating a Subroutine and a Function. 32

2 � The FCMP Procedure

The FCMP Procedure
Using the FCMP Procedure

Introduction

The SAS Function Compiler (FCMP) Procedure allows users to create, test, and store
SAS functions and subroutines for use by other SAS procedures.

The following SAS procedures allow the use of the functions and subroutines created
by FCMP:

• CALIS

• COMPILE

• DISTANCE

• GA

• GENMOD

• MODEL

• NLIN

• NLMIXED

• NLP

• PHREG

• RISK DIMENSIONS

• ROBUSTREG

• SIMILAR

• SYLK

The FCMP procedure accepts a slight variant of the SAS DATA step language. Most
features of the SAS programming language can be used in functions and subroutines
processed by PROC FCMP. Additionally, this procedure enables the user to test func-
tions and subroutines before using them in other procedures.

4 � The FCMP Procedure

Function/Subroutine Declarations

Functions are equivalent to “routines” as used in any other programming language.
They are independent computational blocks that require zero or more arguments. The
subroutine is a special type of function that has no return value. All variables de-
clared (created) within a function/subroutine block are local to that subroutine. PROC
FCMP enables the user to declare, compile, and save subroutines and/or functions to
SAS catalogs. Multiple subroutines and functions can be declared in a single usage
of PROC FCMP.

For example, the following program defines a subroutine calledinverse, which cal-
culates a simple inverse; and the functionday–date, which converts a date to a nu-
meric day of the week. The subroutine begins with the SUBROUTINE statement, the
FUNCTION begins with the FUNCTION statement, and each is completed with an
ENDSUB statement.

proc fcmp outlib= sasuser.MySubs.MathFncs;

subroutine inverse(in, inv);
outargs inv;
if in = 0 then inv = .;
else inv = 1/in;

endsub;

function day_date(indate, type $);
if type = "DAYS" then wkday = weekday(indate);
if type = "YEARS" then wkday = weekday(indate*365);
return(wkday);

endsub;

run;

These routines follow the SAS DATA step syntax. Any functions/subroutines already
defined in the current FCMP procedure step as well as most SAS Datastep functions
can be called from within these routines as well. In this case, the SAS Datastep
functionweekdayis called byday–date.

In this example, the routines are saved to the catalogsasuser.MySubs, inside a pack-
age calledMathFncs. A package is any collection of related routines as specified by
the user. It is simply a way of grouping related functions/subroutines within the cat-
alog. The OUTLIB= option in the PROC FCMP statement tells PROC FCMP where
to store the subroutines it compiles, the LIBRARY= option tells it where to read in
libraries (C or SAS) for use.

Note: Subroutine and function names must be unique within a package. However,
different packages can have subroutines and functions with the same names. To select
a specific subroutine when there is ambiguity, prefix the subroutine name with the
package name and a period (.) For example, to get theMthFncs version ofinverse,
useMthFncs.inverse

SAS Global Option CMPLIB � 5

SAS Global Option CMPLIB

The SAS Global optionCMPLIB specifies where to look for previously compiled
functions and subroutines. All procedures (including FCMP) that supports the use of
FCMP functions and subroutines utilize this global option.

Instead of specifying theLIBRARY= option on every procedure statement that sup-
port subroutines and functions, the global option can be set and used by all proce-
dures. This option follows the same syntax as the procedureLIBRARY= option:

CMPLIB = library
CMPLIB = (lib1 lib2 lib3 ...)
CMPLIB = listn-listn2

Example of setting the CMPLIB option is as follows:

cmplib = sasuser.funcs;
cmplib = (sasuser.funcs work.functions mycat.funcs);
cmplib = sasuser.func1 - sasuser.func10;

In the following example, PROC FCMP is used to compile and store the
transform–log andsimple–scalesubroutines in thesasuser.similarcatalog. Then
the CMPLIB global option is set and the functions are used by PROC SIMILAR:

proc fcmp outlib=sasuser.similar.simple;

subroutine simple_normalize(sequence[*]);
datalen = DIM(sequence);
do i = 1 to datalen;

sequence[i] = sequence[i] / 2;
sequence[i] = .;

end;
endsub;

subroutine simple_scale(targ[*], input[*]);
datalen = DIM(targ);
do i = 1 to datalen;

input[i] = input[i] / targ[i];
end;

endsub;
run;

options cmplib= sasuser.similar;

proc similarity data=workers out=out;
id date interval=month;
input electric masonry / normalize=simple_normalize

scale=simple_scale;
target e_target m_target / normalize=simple_normalize

measure=simple_measure;

6 � The FCMP Procedure

run;

FCMP Syntax

The statements used within the PROC FCMP step are

PROC FCMP options;

declaration statements;

program statements;

PROC FCMP Statement

PROC FCMP options;

The following options can be used in the PROC FCMP statement:

LIBRARY | INLIB = library
LIBRARY | INLIB = (lib1 lib2 lib3 ...)
LIBRARY | INLIB = listn-listn2

specifies that previously compiled libraries are to be linked in for use. These libraries
are created by a previous PROC FCMP step or by using PROC PROTO (for external
C routines). Libraries are created by the OUTLIB= option and stored as members of
a SAS catalog that have the type specified as CMPSUB. Currently, only subroutines
and functions are read in when the LIBRARY= option is used.

Use thelibref.catalogformat to specify the two-level name of a library. Thelibref and
catalognames must be valid SAS names that are not longer than 8 characters. (The
catalogname is restricted to 7 characters or less on some operating environments,
such as CMS.)

You can specify a list of files in the LIBRARY= option, and you can specify a range
of names by using numeric suffixes. When you specify more than one file, you must
enclose the list in parenthesis, except in the case of a single range of names.

Examples:
proc fcmp library= sasuser.exsubs;
proc fcmp library= (sasuser.exsubs work.examples);
proc fcmp library= lib1-lib10;

OUTLIB | OUTCAT = libname.catalog.package
specifies the name of an output catalog package to which the compiled subroutines
and functions are written when the PROC FCMP step ends. You specify the three-
level name of a library entry using the formatslibref.catalog.paackage. This option
is mandatory when you use the OUTLIB= option and subroutines or functions are to
be saved.

PROC FCMP Statement � 7

Note that only those subroutines that are declared inside the current PROC FCMP
step are saved to the output file. Those loaded by using the LIBRARY= option are
not saved to the output file. If no OUTLIB= option is specified, no subroutines that
are declared in the current PROC FCMP step are saved.

Examples:
proc fcmp outlib= sasuser.fcmpsubs.pkt1;
proc fcmp outlib= sasuser.mysubs.math;

LISTCODE
requests that the compiled program code be printed. LISTCODE lists the chain of
operations generated by the compiler. The LISTCODE output is somewhat difficult to
read. For a more readable listing of the compiled program code, use the LISTPROG
option.

LISTPROG
specifies that the compiled program be printed. The listing for assignment state-
ments is generated from the operation chain. The source statement text is printed
for other statements. Note that the expressions printed by the LISTPROG option do
not necessarily represent the way that the expression is actually calculated because
intermediate results for common subexpressions may be re-used, but they are printed
in expanded form by the LISTPROG option. To see how the expression is actually
evaluated, refer to the listing from the LISTCODE option.

LISTSOURCE
requests the printing of the source statements for the program.

LIST
specifies both the LISTSOURCE and LISTPROG options. Printing both the source
and the compiled code and comparing the two listings of assignment statements is
one way to verify that the assignments were compiled correctly.

LISTALL
specifies LISTCODE, LISTPROG, and LISTSOURCE.

8 � The FCMP Procedure

Declaration Statements

ARRAY Statement

ARRAY arrayname [dimensions] < /NOSYMBOLS | variables | constants
| (initial-values) >;

The ARRAY statement is similar to, but is not the same as the ARRAY statement in
the SAS DATA step. The ARRAY statement associates a name with a list of variables
and constants. The array name can then be used with subscripts in the program to
refer to the items in the list.

The ARRAY statement that is used in PROC FCMP does not support all the features
of the ARRAY statement in the DATA step. Implicit indexing of variables cannot be
used; all array references must have explicit subscript expressions. Only simple array
dimensions are allowed; lower-bound specifications are not supported. A maximum
of six dimensions is allowed.

However, the ARRAY statement that is used in PROC FCMP does allow both vari-
ables and constants to be used as array elements. (Constant array elements cannot be
assigned to). Although dimension specification and the list of elements are optional,
one of them must be given. When the list of elements is not specified, or fewer el-
ements than the size of the array are listed, array variables are created by suffixing
element numbers to the array name to complete the element list.

Initial values for the array can be specified inside paranthesis.

The /NOSYMBOLS options specifies that the array of numeric values should be cre-
ated without the associated element variables. In this case the only way to access
elements is through array sunscripting. This can save a lot of memory if the user does
not need to accesss the indivual array element varibles by name.

Examples:
array spot_rate[3] 1 2 3;
array spot_rate[3] (1 2 3);
array y[4] y1-y4;
array xx[2,3] x11 x12 x13 x21 x22 x23;
array pp p1-p12;
array q[1000] /nosymbols;

ATTRIB Statement

ATTRIB variables FORMAT= format LABEL= ’label’ LENGTH= n . . .;

The ATTRIB statement (like the ATTRIB statement in the SAS DATA step) specifies
format, label, and length information for variables. The ATTRIB statement supports
a list of variables and their attribute definitions.

Examples:
attrib x1 format= date7. label= ’variable x1’ length= 5;
attrib

x1 format= date7. label= ’variable x1’ length= 5

Declaration Statements � 9

x2 length= 5
x3 label= ’var x3’ format= 4.
x4 length= $2 format= $4.;

10 � The FCMP Procedure

FORMAT Statement

FORMAT variables format . . . DEFAULT= format;

The FORMAT statement operates like the FORMAT statement in the SAS DATA
step. The FORMAT statement controls the format that is used when printing vari-
ables.

Examples:
format date monyy.;
format gen 10.6 bignum e7.2 mychar $8.;

FUNCTION Statement

FUNCTION funcname(arg1, arg2, ..., argn)

OUTARGS outarg1, outarg2 ... outargN;

program-statements;

RETURN(expression);

ENDSUB;

The FUNCTION statement is a special case of the subroutine declaration that returns
a value. The definition of a function begins with a FUNCTION statement and ends
with an ENDSUB statement. Note that the CALL statement is not used to call a
function.

Use the OUTARGS option to specify arguments from the argument list that the func-
tion should update.

Use the RETURN statement to specify the returned value of the function.

Example:
function inverse(in);

if in = 0 then inv = .;
else inv = 1/in;
return(inv);

endsub;

LABEL Statement

LABEL variable= ’label’ . . .;

The LABEL statement specifies a label of up to 255 characters for variables used in
the program.

Examples:
label date=’Maturity Date’;
label bignum=’Very very large numeric value’;

Declaration Statements � 11

LENGTH Statement

LENGTH variables $ n . . . DEFAULT= n;

The LENGTH statement operates like the LENGTH statement in the SAS DATA
step. The LENGTH statement controls the number of bytes that are used to store
variables and specifies the length of the character variables.

Examples:
length zzzz $ 200 zz $ 50;
length c1a $3 c1b c1c $12 c1d $3 c1e c1f $12;
length x14-x21 7;

12 � The FCMP Procedure

STRUCT Statement

STRUCT structure-name variable;

The STRUCT statement declares (creates) structure types. The structures are defined
in the C Language packages and when used, are declared in PROC FCMP.

Examples:
struct DATESTR matdate;
matdate.month = 3;
matdate.day = 22;
matdate.year = 1999;

SUBROUTINE Statement

SUBROUTINE subr–name(arg1, arg2, ..., argn)

OUTARGS outarg1, outarg2 outargN;

program-statements;

ENDSUB ;

The SUBROUTINE statement enables you to declare (create) an independent com-
putational block of code that is callable from any program statement. To call a sub-
routine use the CALL statement.

Use the OUTARGS option to specify arguments from the argument list that the sub-
routine should update.

Example:
subroutine inverse(in, inv) group= "generic";

outargs inv;
if in = 0 then inv = .;
else inv = 1/in;

endsub;

Program Statements � 13

Program Statements

Program statements are used in the main body of the PROC FCMP step to test the
subroutine and functions declared. They are also used within the subroutine and
function.

Most of the program statements that can be used in the SAS DATA step can be used
in PROC FCMP. The following program statements are supported. Refer toSAS
Language: Referencefor the basic documentation of SAS program statements.

variable = expression ;

variable + expression ;

arrayvar[subscript] = expression ;

CALL subroutine-name (expression, expression, . . .) ;

STOP ;

ABORT ;

IF expression THEN program-stmt; <ELSE program-stmt; >

DO program-statements; END;

DO variable = expression TO expression <BY expression> ;
program-statement ; END;

DO WHILE expression ;
program-statement ; END;

DO UNTIL expression ;
program-statement ; END;

GOTO statement-label ;

RETURN ;

DELETE ;

SELECT <(expression)> ;
WHEN (expr-1 <, expr-2, . . .>) program-statement ;
<WHEN (expr-1 <, expr-2, . . .>) program-statement ; >
<OTHERWISE program-statement ;>

PUT < variable(s) > < @ | @@ > ;

14 � The FCMP Procedure

Most of the preceding program statements work the same as they do in the SAS
DATA step (as documented inSAS Language: Reference). However, there are some
differences that should be noted.

• The DO statement does not allow a character index variable, and the IF state-
ment does not allow a character test. Therefore, the following forms of state-
ments are supported.

do i=1,2,3;
if ’this’ < ’that’ then ... ;

But the following forms of statements are not supported.

do i=’one’,’two’,’three’;
if ’this’ then ...;

• The PUT statement, which is typically used for program debugging in PROC
FCMP, supports only some of the features of the PUT statement in the DATA
step, and it has some new features that the DATA step PUT statement does not.

– The PUT statement in PROC FCMP does not support line pointers, fac-
tored lists, iteration factors, overprinting,–INFILE– , the colon (:) format
modifier, or the special character $.

– The PUT statement in PROC FCMP does not support subscripted array
names are not supported unless they are enclosed in parenthesis. For
example, the statement PUT (A[i]); prints the i-th element of the array A,
but the statement PUT A[i]; results in an error message.

– The PUT statement in PROC FCMP does not allow the asterisk (*) sub-
script, but an array name can be used in a PUT statement without sub-
scripts. Therefore, the statement PUT A =; (when A is an array) is ac-
ceptable, but the statement PUT A* =; is invalid. The statement PUT A;
prints all the elements of the array A. The statement PUT A=; prints all
the elements of the array A with each value labeled with the name of the
element variable.

– The PROC FCMP PUT statement does support expressions inside of
parentheses. For example, the statement PUT (SQRT(X)); prints the
square root of X.

– The PROC FCMP PUT statement does support the print item–PDV– to
print a formatted listing of all the variables in the program data vector.
The statement PUT–PDV– ; prints a much more readable listing of the
variables than is printed by the statement PUT–ALL – ;.

• The ABORT statement does not allow any arguments.

• The WHEN and OTHERWISE statements allow more than one target state-
ment. That is, DO/END groups are not necessary for multiple WHEN state-
ments, for example, SELECT; WHEN(exp1) stmt1; stmt2; WHEN(exp2)
stmt3; stmt4; END;

SOLVE � 15

Special Functions

There are a few special purpose functions automatically provided by the FCMP
Procedure for convenience.

SOLVE

The SOLVE function computes implicit values of a function. The general form for
using the SOLVE function is

answer = solve("function_name",
options_array,
expected_value,
arg1, arg2, ..., argn);

where

function–name is the name of the function of interest.

options–array is the array of options to the solve functions (See details be-
low).

expected–value is the expected value of the function of interest.

arg1, arg2, ..., argn is a list of arguments.

Thesolvefunction finds the value of the specified argument that makes the expres-
sions of the following form equal to zero.

expected_value - function_name (arg1, arg2, ..., argn)

The argument of interest is indicated by a missing value (.), which appears in place of
that argument in the parameter list. If successful, the returned value for this function
is the implied value.

16 � The FCMP Procedure

Options Array

The options array is used to control and monitor the root finding process. The options
array can be missing (.) or can have up to five elements. The five elements in order
are

initial value What to use as a starting value for the implied value. The de-
fault for first call is 0.001. If the same line of code is executed
again, the previously found implied value is used.

absolute criterion The absolute value of the difference between the expected
value and the predicted value must be less than this value for
convergence. The default is 1.0e-12.

relative criterion When the change in the computed implied value is less than
this criterion, then convergence is assumed. The default is
1.0e-6.

maximum iterations The maximum number of iterations to use to find the solu-
tion. The default is 100.

solve status • 0 - Successful

• 1 - Could not decrease the error

• 2 - Could not compute a change vector

• 3 - Max number of iterations exceeded

• 4 - Initial objective function missing

An example of options array is as follows:

array opts[5] initial abconv relconv maxiter (.5 .001 1.0e-6 100);

where

• initial value (“initial”) = .5

• absolute criterion (“abconv”) = .001

• relative criterion (“relonv”) = 1.0e-6

• maximum iterations (“maxiter”) = 100

The solve status is the fifth element in the array, which can be displayed by specifying
opts[5] in the output list.

Note: The names of the elements do not have to be those that were used in this
example. For example, instead of “initial”, you could use “a”.

SOLVE � 17

SOLVE Function Examples

This first SOLVE function example computes thex that satisfies the equation
y = 1/sqrt(x).

proc fcmp;

/* define the function */
function inversesqrt(x);

return(1 / sqrt(x));
endsub;

y = 20;
x = solve("inversesqrt", {.}, y, .);

put x;
run;

Note: Functions and subroutines must be defined, then they can be used in the
SOLVE function. In this example, the functioninversesqrt is defined and then used
in the SOLVE function.

18 � The FCMP Procedure

In this second SOLVE function example, the subroutinegkimpvol calculates the
Garman-Kohlhagen implied volatility for FX options by using the SOLVE func-
tion on thegarkhprc function.

• The options–array isSOLVOPTS, which requires an initial value.

• The expected value is the price of the FX option.

• The missing argument in the subroutine is the volatility (sigma).

subroutine gkimpvol(n, premium[*], typeflag[*], amt_lc[*],
strike[*], matdate[*], valudate, xrate,
rd, rf, sigma);

outargs sigma;

array solvopts[1] initial (0.20) ;
sigma = 0;
do i = 1 to n;

maturity = (matdate[i] - valudate) / 365.25;
stk_opt = 1./strike[i];
amt_opt = amt_lc[i] * strike[i];
price = premium[i] * amt_lc[i];

if typeflag[i] eq 0 then type = "Call";
if typeflag[i] eq 1 then type = "Put";

/*--- solve for volatility -------------------*/
sigma = sigma + solve("GARKHPRC", solvopts, price,

type, "Buy", amt_opt, stk_opt,
maturity, xrate, rd, rf, .);

end;
sigma = sigma / n;

endsub;

SOLVE � 19

This third SOLVE function example defines the functionblksch, by using the built-in
SAS function,blkshclprc. The SOLVE function uses theblksch function to calculate
the Black-Scholes implied volatility of an option.

• The options–array isOPTS.

• The missing argument in the function is the volatility (VOLTY).

• PUT statements are used to print the implied volatility (BSVOLTY), the initial
value, and the solve status.

proc fcmp;
opt_price = 5;
strike = 50;
exp = ’01jul2001’d;
eq_price = 50;
intrate = .05;
time = exp - date();
array opts[5] initial abconv relconv maxiter

(.5 .001 1.0e-6 100) ;
function blksch(strike, time, eq_price, intrate, volty);

return (blkshclprc(strike, time/365.25,
eq_price, intrate, volty));

endsub;
bsvolty = solve("blksch", opts, opt_price, strike,

time, eq_price, intrate, .);

put ’Option Implied Volatility:’ bsvolty
’Initial value: ’ opts[1]
’Solve status: ’ opts[5];

run;

Note: SAS functions and external C functions cannot be used directly in the SOLVE
function. They must be enclosed in a PROC FCMP function. In this example,
the built-in SAS function BLKSHCLPRC is enclosed in the PROC FCMP function
blksch, thenblksch is called in the SOLVE function.

20 � The FCMP Procedure

DYNAMIC–ARRAY

The DYNAMIC–ARRAY subroutine allows an array declared within a function to
change size in a efficient manner:

array scratch[1];
length = 200;
call DYNAMIC_ARRAY(scratch, length);

This is very useful if a function needs a scratch area to do work in, but the size of
that area depends on parameters passed to the function. In the following example a
scratch array is created calledtemp:

function avedev_wacky(data[*]);

length = DIM(data);
array temp[1];
call DYNAMIC_ARRAY(temp, length);

mean = 0;
do i=1 to datalen;

mean += data[i];
if i > 1 then temp[i] = data[i-1];
else temp[i] = 0;

end;
mean = mean/length;

avedev = 0;
do i = 1 to length;

avedev += abs((data[i]-temp[i])/2-mean);
end;
avedev = avedev/datalen;

return(avedev);

endsub;

C Helper Functions � 21

C Helper Functions

Several helper functions are provided to handle C-language constructs in PROC
FCMP. Most C-language constructs must be defined in a catalog package created
in PROC PROTO before the constructs are referenced or used in PROC FCMP.

The following helper functions have been added to extend the SAS language to handle
C language constructs that do not fit naturally into the SAS language.

ISNULL C Helper Function

ISNULL determines whether or not a pointer element of a structure is NULL.

double ISNULL (pointer-element);

For example, the LINKLIST structure and functionget–list are defined using PROC
PROTO as shown below. Theget–list function is an external C routine that generates
a linked list with as many elements as requested.

struct LINKLIST {
double value;
struct LINKLIST * next;

};

struct LINKLIST * get_list(int);

The following FCMP code segment demonstrates using the ISNULL() helper func-
tion to loop over the linked list created by get–list() and print out the elements:

struct LINKLIST list;

list = get_list(3);
put list.value=;

do while (^ISNULL(list.next));
list = list.next;
put list.value=;

end;

The following output is produced by this run:

The SAS System
FCMP Procedure

LIST.value=0
LIST.value=1
LIST.value=2

22 � The FCMP Procedure

SETNULL C Helper Function

SETNULL sets a pointer element of a structure to NULL.

call SETNULL (pointer-element);

Assuming that the same LINKLIST structure described above is defined using PROC
PROTO, the SETNULL subroutine could be used to set the ’next’ element to NULL:

struct LINKLIST list;
call SETNULL(list.next);

STRUCTINDEX C Helper Function

STRUCTINDEX enables access to each structure element in an array of structures.

call STRUCTINDEX (struct–array, index, struct–element);

The indexparameter is a 1-based index as in most other SAS arrays.

Given that the following structures and function are defined using PROC PROTO:

struct POINT {
short s;
int i;
long l;
double d;

};

struct POINT_ARRAY {
int length;
struct POINT * p;
char name[32];

};

struct POINT * struct_array(int);

The following FCMP code segment demonstrates using the STRUCTINDEX() helper
function to get and set each ’POINT’ structure element of an array ’p’ in the
’POINT–ARRAY’ structure:

struct POINT_ARRAY pntarray;
struct POINT pnt;

/* call struct_array() to allocate array of 2 ’POINT’ structs */
pntarray.p = struct_array(2);
pntarray.length = 2;
pntarray.name = "My funny structure";

C Helper Functions � 23

/* get each element using the STRUCTINDEX() call and set values */
do i = 1 to 2;

call STRUCTINDEX(pntarray.p, i, pnt);
put "Before setting the" i "element: " pnt=;
pnt.s = 1;
pnt.i = 2;
pnt.l = 3;
pnt.d = 4.5;
put "After setting the" i "element: " pnt=;

end;

The output produced by this run is:

The SAS System
FCMP Procedure

Before setting the 1 element: PNT {s=0, i=0, l=0, d=0}
After setting the 1 element: PNT {s=1, i=2, l=3, d=4.5}
Before setting the 2 element: PNT {s=0, i=0, l=0, d=0}
After setting the 2 element: PNT {s=1, i=2, l=3, d=4.5}

24 � The FCMP Procedure

Function/Subroutine Package Viewer

SAS Language functions and subroutines created in PROC FCMP are stored in SAS
catalogs inpackage declarations(entry type FUNDCL). Each package declaration
contains any number of functions and/or subroutines (entry type CMPSUB) as spec-
ified by the user. The Package Declaration Viewer displays all the routines in a pack-
age.

Getting Started

This example explains how to view a Function/Subroutine Package Declaration.

To view the routines in a function/subroutine package declaration, open the SAS
Explorer to the SAS Catalog that contains the package you want to view. Then,
select the package (catalog entry type FUNDCL) you want to open.

In this example, SASHELP.SLKWXL.FINANCE package is selected as shown in the
figure below.

Double-click the package declarartion you want to view or right-click the package
and selectOpenas shown in the figure below.

Getting Started � 25

The Package Declaration Viewer opens. The viewer displays a list of routines con-
tained in the package on the left. On the right, the selected (first) routine is displayed.
Other routines can be displayed by selecting the routine name from the routines listed
on the left.

In this example, the routine ACCRINTM–WXL is selected as shown in the figure
below.

26 � The FCMP Procedure

Function/Subroutine Package Viewer Details

SAS Language functions and subroutines (routines) are stored in packages (SAS cat-
alog entry type FUNDCL). The Function/Subroutine Package Viewer allows you to
browse this package.

The following sections discuss the selections of the pull-down menus for the
Windows NT version of SAS. If you are using a different operating environment,
then the pull-down menus and their selections might vary.

The Function/Subroutine Package Viewer has the following pull-down menus:File
Menu, View Menu, Windows Menu, Help Menu.

Function/Subroutine Package Viewer Details � 27

File Menu

TheFile pull-down menu contains the following selections that enable you to manip-
ulate the contents of the viewer.

• Open Package Declaration - This selection enables you to replace the contents
of the viewer with an existing function declaration.

• Save Selected Subroutines as File - This selection enables you to save the con-
tents of the selected routine to a text file.

• Save All Subroutines as File - This selection enables you to save the contents
of all routines to a text file.

• Find Subroutine - This selection enables you to search for existing routines
using the Subroutine Finder.

• Print Preview - This selection is used to preview the contents of the selected
routine.

• Print - This selection is used to print the contents of the selected routine.

• Page Setup - This selection is used to specify the page setup for printing the
contents of the viewer. For example, to print the pages in portrait or landscape
orientation.

• Print Setup - This selection is used to specify the print setup. For example, to
select a printer.

• Print Utilities - This selection is used to set the printing options.

• Close - This selection closes the viewer.

• Exit - This selection closes the SAS session.

28 � The FCMP Procedure

View Menu

This menu contains selections for accessing and viewing windows of the SAS
System.

• Refresh - This selection is used to refreshes the contents of the viewer. The
viewer should be refreshed whenever the Function Declaration is updated in
order to view the most recent version.

Window Menu

This menu contains selections that enable you to control the display of windows and
to access windows. To control the display of windows, you can minimize, cascade,
and re-size windows, as well as tile the windows vertically or horizontally.

Help Menu

This menu enables you to access online help files.

Function/Subroutine Reader � 29

Subroutine Finder

The Subroutine Finder Window searches for Package Declarations and SAS sub-
routines and functions. When the window is opened, all current SAS Libraries are
searched for SAS Catalogs that contain Package Declarations (FUNDCL). The SAS
Catalogs found to contain FUNDCL entries are listed in theCatalogs to Searchlist
box. The FUNDCL entries are listed in thePackage Entrieslist box. TheFunction
to Find text box is initialized to the last viewed routine and thePackage Entrieslist
box is selected to the FUNDCL entry that declares this routine.

To subset the search to a particular SAS Catalog(s), select the catalog(s) in the
Catalogs to Searchlist box. ThePackage Entrieslist box reflects this selection.

To further subset the search to a particular routine, type the routines name in the
Function to Findtext entry and hit the return key or click theFind button. The
Package Entrieslist box reflects this selection.

Select the desiredPackage Entrieslist box entry the click theOpenbutton to view
the selected package entry or double click the package entry that you want to open in
the viewer. BUG: when there is more than on FUNDCL in the catalog the FUNDCL
is not selected.

30 � The FCMP Procedure

Select theCancelbutton to cancel the search.

Function/Subroutine Reader

Indiviual SAS Language functions and/or subroutines (routines) are stored in SAS
catalog entry type CMPSUB. The Subroutine Reader (reader) displays an individual
CMPSUB catalog entry.

Getting Started

This example explains how to view CMPSUB catalog entries.

To view the routine in a CMPSUB catalog entry, open the SAS Explorer to the SAS
Catalog that contains the entry you want to view. Then select the CMPSUB catalog
entry you want to open.

In this example, SASHELP.SLKWXL.FINANCE.SUBR3 is selected as shown in the
figure below.

Double-click the CMPSUB entry you want to view or Right-click the subroutine entry
and select Open as shown in the figure below.

Function/Subroutine Reader � 31

The Function/Subroutine Reader opens. The reader displays the selected routine.

In this example, the routine FACTDOUBLE–SLK is selected as shown in the figure
below.

32 � The FCMP Procedure

Examples

Example 1 - Creating a Subroutine and a Function

This example demonstrates how to use PROC FCMP to create and store subroutines
and functions.

First, a generic subroutine calledcalc–years is declared to calculate the number of
years to maturity, given that date variables are stored in days.

A second, more complicated functiongarkhprc is also declared, which calculates
Garman-Kohlhagen pricing for FX options. Notice that it makes use of the SAS
functionsgarkhclprc andgarkhptprc .

proc fcmp outlib= sasuser.exsubs.pkt1;

/*-- subroutine to calculate ----------*/
/*-- years to maturity ----------------*/
subroutine calc_years(maturity, current_date, years);

outargs years;
years = (maturity - current_date) / 365.25;

endsub;

/*-- function for Garman-Kohlhagen ----*/
/*-- pricing for FX options -----------*/
function garkhprc(type$, buysell$, amount,

E, t, S, rd, rf, sig);

if buysell = "Buy" then sign = 1.;
else do;

if buysell = "Sell" then sign = -1.;
else sign = . ;

end;

if type = "Call" then
garkhprc = sign * amount

* garkhclprc(E, t, S, rd, rf, sig);
else do;

if type = "Put" then
garkhprc = sign * amount

* garkhptprc(E, t, S, rd, rf, sig);
else garkhprc = . ;

end;

return(garkhprc);
endsub;

run;

	Using the FCMP Procedure
	Introduction
	Function/Subroutine Declarations

	SAS Global Option CMPLIB
	FCMP Syntax
	PROC FCMP Statement
	Declaration Statements
	Program Statements

	Special Functions
	SOLVE
	DYNAMIC_ARRAY
	C Helper Functions

	Function/Subroutine Package Viewer
	Getting Started
	Function/Subroutine Package Viewer Details
	Subroutine Finder
	Function/Subroutine Reader

	Examples
	Example 1 - Creating a Subroutine and a Function

