

1

The Action Provider Framework
Flavio Ubaldini, SAS Institute, Heidelberg, Germany,

Neil Bell, SAS Institute Inc., Cary, NC

ABSTRACT
Introduced with SAS® AppDev Studio™ Version 3.0, the Action Provider Framework
(APF) is a set of Java classes which give application developers the ability to easily
customize the functionality and appearance of the Actions presented by both Swing and
Java Server Pages (JSP) viewer components.

The purpose of this document is to provide an introduction to the APF, including:

 An introduction to the key pieces of the framework.
 An overview of the framework’s three operational phases.
 Examples: how to remove or override a component’s default Actions and how to

register a new Action for a component.
 A comparison of the APF to the Struts application framework.

INTRODUCTION
When writing Web applications with server-side Java (JSP files and Servlets) or client-
side java (applets) the default functionality surfaced by a component viewer may not
meet your requirements to one degree or another.

Traditionally, your only course of action would be to begin the time consuming task of
extending the existing component, or even worse, writing a new component. Further, if
multiple types of component viewers in your application require customizing, each type
often implement their functionality in very different ways. This lack of consistency makes
implementation of the new or modified components an ad-hoc affair. The solution that
SAS offers to solve this problem is the Action Provider Framework (APF).

The APF makes customizing component Actions simpler for application developers by
providing the following:

 A common template for Actions in the form of a few Action classes.
 Methods to acquire and modify a component’s default Actions.
 Methods to register new Actions for a component.
 Methods to acquire and modify the data structures that determine how

Actions are ordered and grouped when presented by the viewer component.

The general concepts outlined in this document are applicable in both Swing and
JSP/Servlet environments; however, there are differences in some of the details.
Important differences will be explained in each of the applicable topics discussed later.
However, for the sake of keeping things as simple as possible in an introductory level
document, this paper will use only JSP/Servlet examples.

2

INTRODUCTION TO THE MAIN EXAMPLE
This document will present many APF concepts in the context of a simple Web
application project that may be built using webAF. The steps required to build the
application will be presented in detail later, but for now, lets just take a look at a
snapshot from the initial phase of the example.

 Figure 1

The image shows a default TableViewComposite component displaying data from a
JDBC data source. The examples in the paper will demonstrate how to change some of
this component’s default functionality and appearance. The last example will show how
to add new functionality to the data cells of the component.

Before we get to the examples, however, an overview of the various pieces of the APF
and how they relate to each other is needed.

THE KEY PIECES OF THE FRAMEWORK
The primary types of objects in the APF are:

• Actions
• Commands
• Viewer components
• Action Providers
• Viewer-specific support classes

Each type is described in the sections that follow.

 ACTIONS
In general, actions may be thought of as the elements presented by viewers that enable
users to perform distinct functions. Some examples of actions:

• sorting or filtering the data in a relational table view component
• viewing the contents of a folder in a file system
• navigating between application views or states.

3

In the APF, Actions are Objects that are acquired by viewer components from the
framework. For example, the TableView component in our sample Web application
acquires and presents a number of Actions for each of its column header cells.

Figure 2

The figure above shows some of the Actions acquired by the TableView for its
EMPLOYEE column header cell. They include:

• Ascending, Descending and Remove All Sorting which all perform a specific
function related to sorting on the viewer’s model.

• Employee, Sort Column and Move Column which function only as labels and
submenu choices.

• Export to Excel which launches a separate dialog for specifying various export
options.

If you clicked on the other column header, HRSWORKD, you would see the same types
of Actions in its menus. Each set of Actions is acquired separately by the TableView for
use within specific header cells.

All acquired Actions actually begin as copies of registered instances. For example, the
Ascending Actions that are present beneath the EMPLOYEE and HRSWORKD columns
were originally created as copies of the same registered instance.

If necessary, these copies are then modified by the framework so that they work for the
specific area they will be presented by the viewer. For example, an Action acquired for
the EMPLOYEE column might have a dynamic columnIndex attribute with value of 0
while the HRSWORKD version of the Action would have a value of 1 for that attribute.

Dynamic attributes often play a role when an Action is being performed. When a user
selects an Action, the APF can pass these attributes to a separate command object
which is responsible for carrying out the operation. For example, the task of sorting the
model gets delegated to a sort command that needs the value of the columnIndex
attribute to know which column to sort.

COMMANDS
Commands are the Objects that contain the logic to perform an action. A command may
be associated with an Action by simply setting the Action’s command attribute. As a
result, developers may easily change the behavior of a default Action by simply
replacing the command object with an overridden or entirely new command object.

4

A single instance of a command object can be shared between multiple actions. For
example, the sort ascending Actions in each column of the TableView component share
the same instance of a sort command.

This is possible because the framework sets the dynamic, area-dependent information
(such as the columnIndex attribute described above) on Actions, not commands, as they
are acquired by a viewer component. Those dynamic attributes are set on commands
only after a user has activated an action to perform some function.

VIEWER COMPONENTS
Viewer components are the objects that are responsible for acquiring Actions from the
APF and then presenting them to the user. They query the APF with information
describing the part of their view for which they want Actions. For example, the
TableView component might specify the following as part of their query:

• General area: areaType equal to COLUMN_HEADER_AREA
• Specific area: columnIndex equal to 1.

The return value for a single query for Actions is a list containing all the Actions,
separators and, possibly, other nested lists that satisfy the parameters of that particular
query. The viewer then presents the contents of the list in the same order and structure
as the returned list.

Examples found later in this document will demonstrate how to control the order and
grouping of Actions via the com.sas.actionprovider.ActionOrderList object.

You will find a list of Viewer Components that use the APF in the documentation of the
com.sas.actionprovider package:
http://support.sas.com/rnd/gendoc/bi/api/Components/com/sas/actionprovider/package-
summary.html

ACTION PROVIDERS
The Action Provider plays the most central role of the APF. In addition to being the
object that viewer components query for Actions, developers also interact directly with
this object whenever they want to:

 Acquire a default Action.
 Register a new Action.
 Affect Action visibility, order and structure.

There are two different types of Action Providers:

• com.sas.actionprovider.HttpActionProvider
• com.sas.actionprovider.SwingActionProvider

Both serve similar purposes in their respective environments, except that the
HttpActionProvider also contributes to the execution of Action commands. More details
on this subject can be found in the Execution Phase section below.

In the JSP/Servlet environment, developers must instantiate an HttpActionProvider and
set it on the viewer component. One HttpActionProvider may be shared by different
viewer components. Swing component viewers typically create their own

5

SwingActionProvider if one is not given to them. However, they also can be forced to
share the same ActionProvider via the setActionProvider() method.

Sharing an Action Provider among viewers of different types is possible because all
interactions with an Action Provider are actually delegated to viewer-specific APF
support classes. The next section contains more details on support classes.

APF SUPPORT CLASSES
APF support classes do the majority of work related to the registration and acquisition of
individual Actions. An Action Provider instantiates these objects and, as mentioned
above, delegates many of its methods to the appropriate support class. They should
never be instantiated by the application developer.

There are different support classes for different viewer/model relationships. For
example, there is a relational TableViewSupport class just for the TableView component
and its relational model.

Each type of support class is responsible for defining the general areas to which Actions
may be registered. The support class declares a unique areaType key for every area it
defines. For example, on the com.sas.actionprovider.HttpTableViewSupport class:

HttpTableViewSupport.COLUMN_HEADER_AREA

Secondly, the support class is responsible for defining which default types of Actions are
registered to the various areaTypes. For each type of Action, the support class
declares a unique actionType key. For example:

HttpTableViewSupport.SORT_COLUMN_ASCENDING_ACTION

Most efforts to customize Actions for a particular viewer require that the developer use
these types of keys which are documented on each support class. For example, the
call to acquire the registered version of the default sort ascending Action for a relational
TableView component would be:

 actionProvider.getDefaultAction(

ActionProviderSupportTypes.TABLEVIEW_SUPPORT,
HttpTableViewSupport.COLUMN_HEADER_AREA,
HttpTableViewSupport.SORT_COLUMN_ASCENDING_ACTION);

The first argument is an actionSupportType key that identifies the support class. The
keys of all APF support classes may be found in the documentation of the
ActionProviderSupportTypes class located here:
http://support.sas.com/rnd/gendoc/bi/api/Components/com/sas/actionprovider/support/A
ctionProviderSupportTypes.html

The documentation of the com.sas.actionprovider package details the names and
actionSupportType keys of support classes.
http://support.sas.com/rnd/gendoc/bi/api/Components/com/sas/actionprovider/package-
summary.html

11

As a convenience, you may set the Action Provider at the composite level and it will
assign it to the proper sub-components.

In the browser, if you navigate down through one of the column header menus and
hover over the Ascending action, you will see that the URL looks something like this:

http://localhost:8082/MasterDetail/JDBCTableViewExample?CMDID=sas_
TableView1_JDBCTableViewExample_tv_c1_SCA&APNAME=sas_actionProvider_JDBC
TableViewExample

Once the action is activated, the client puts the CMDID and APNAME parameters on a
request object and sends it to the JDBCTableViewExampleControllerServlet which is
specified in the base part of the URL.

The JDBCTableViewExampleControllerServlet calls the HttpActionProvider’s
executeCommand() method and that method will lookup the sort ascending command
based on the value of CMDID, apply any dynamic attributes that is has stored for that
command and then call the command’s execute() method.

EXTENDING THE MAIN EXAMPLE
Now that you have an application with a default TableView component working, it is time
to start making some customizations. The next couple of examples demonstrate how to
affect Action visibility and order via interactions with an ActionOrderList.

CUSTOMIZING THE VISIBILITY OF ACTIONS
The ActionOrderList is a mechanism for defining the order of Actions and
SEPARATORS as well as nested lists containing those items. By modifying or
replacing an ActionOrderList, a user may customize the order and structure of those
items that are returned to the viewer component during the acquisition phase. Further,
a user is able to hide unwanted Actions, SEPARATORS or sub-lists by removing their
respective entries from the appropriate ActionOrderList.

There is a default ActionOrderList for each areaType that an APF support class defines.
This list is used for all viewers that have the same Action Provider. However, an
ActionOrderList for a specific viewer instance may also be registered with the framework
when required.

This example will demonstrate how to hide the ExportToExcel Action, the SEPARATOR
and all the Actions related to Move operations. Add the following import statements to
the existing import section in JDBCTableViewExampleControllerServlet.java.

import com.sas.actionprovider.ActionOrderList;
import com.sas.actionprovider.ActionList;
import com.sas.actionprovider.HttpAction;
import com.sas.actionprovider.support.ActionProviderSupportTypes;
import com.sas.actionprovider.support.tableview.HttpTableViewSupport;
import com.sas.servlet.tbeans.tableview.html.TableView;
import com.sas.servlet.tbeans.tableview.html.TableViewComposite;

12

All the example code below should be added to
JDBCTableViewExampleControllerServlet.java within the block of code shown
here:

 if (adapter == null){

 try{
 ...

 }
 catch(Exception e){
 throw new RuntimeException(e);

 }

/* Add all example code here */
}

Example code:

 TableViewComposite sas_TableView1 = null;
 if (session != null){

sas_TableView1 =
(TableViewComposite)session.getAttribute("sas_TableView1_JDBCTable
ViewExample");

 }
 if (sas_TableView1 == null){
 sas_TableView1 = new TableViewComposite();
 sas_TableView1.setModel(adapter);
 sas_TableView1.setActionProvider(sas_actionProvider);

session.setAttribute("sas_TableView1_JDBCTableViewExample",
sas_TableView1);

 /* Get the TableView sub-component from the TableViewComposite */

TableView table =
(TableView)sas_TableView1.getComponent(sas_TableView1.TABLEVIEW_TA
BLEDATA);

 /* Get the table’s ActionOrderList for the COLUMN_HEADER_AREA */

ActionOrderList columnHeaderList =
sas_actionProvider.getActionOrderList(

 ActionProviderSupportTypes.TABLEVIEW_SUPPORT,
 table,
 HttpTableViewSupport.COLUMN_HEADER_AREA);

 /* Get the sub-list for the first drop down menu */

ActionOrderList actionSubList
=(ActionOrderList)columnHeaderList.get(0);

 /* Hide the Export Action and the SEPARATOR */
 actionSubList.remove(HttpTableViewSupport.EXPORT_TO_ACTION);
 actionSubList.remove(ActionList.SEPARATOR);

 /* Hide the entire sublist of move-type Actions */
 actionSubList.remove(1);
 }

Since the code that customizes the ActionOrderList needs the instance of TableView
component (table), we also need to add code that sets up the TableViewComposite
bean in this file so that we can get a handle to this object.

13

Consequently, we no longer need the TableViewComposite tag in index.jsp to create
the bean and apply some of the attributes. This is accomplished by using the ref
attribute instead of the id attribute. We should also add a title for the
TableViewComposite. Replace the tag in that file with following:

<sas:TableViewComposite ref="sas_TableView1_JDBCTableViewExample"
scope="session">

 <sas:TableTitle text="Employee Time Card Data" />
</sas:TableViewComposite>

After adding these customizations, choose Build Rebuild All to compile your changes.
Then select Build Execute in browser. You should see the following in your
browser.

Figure 7

CHANGING THE ORDER OF ACTIONS
The code below will change the order of the Actions in the sorting submenu such that
Remove All Sorting is at the top. Add it right after the last line:

actionSubList.remove(1);

that was added to JDBCTableViewExampleControllerServlet.java in the previous
example.

 /* Get sorting sublist and re-order so that ClearSort is first */
 ActionOrderList sortingSubList = (ActionOrderList)actionSubList.get(0);
 sortingSubList.clear();
 sortingSubList.add(HttpTableViewSupport.CLEAR_SORT_ACTION);
 sortingSubList.add(HttpTableViewSupport.SORT_COLUMN_ASCENDING_ACTION);
 sortingSubList.add(HttpTableViewSupport.SORT_COLUMN_DESCENDING_ACTION);

14

Compile these changes and execute in your browser. You will see the following:

Figure 8

OVERRIDING DEFAULT ACTION ATTRIBUTES
The code below demonstrates how to obtain a default Action and override its attributes
to change its displayed text and give it tool tip text. Add this code right after the line:

sortingSubList.add(HttpTableViewSupport.SORT_COLUMN_DESCENDING_ACT
ION);

that was added to JDBCTableViewExampleControllerServlet.java in the
previous example.

 /* Get the registered version of the sort ascending Action */
HttpAction sortAscendingAction =
(HttpAction)sas_actionProvider.getDefaultAction(

 ActionProviderSupportTypes.TABLEVIEW_SUPPORT,
 HttpTableViewSupport.COLUMN_HEADER_AREA,
 HttpTableViewSupport.SORT_COLUMN_ASCENDING_ACTION);

/* Change the Action's text from "Ascending" to "Sort ascending" */
sortAscendingAction.putValue(HttpAction.NAME, "Sort ascending");

/* Give the Action tool-tip text. */
sortAscendingAction.putValue(HttpAction.SHORT_DESCRIPTION, "Sort in
Ascending Order");

Note that the Action acquired here is the default registered instance. Changes made to
it will affect all versions of this actionType (SORT_COLUMN_ASCENDING_ACTION) acquired
by all TableView components using this ActionProvider.

If you want to make changes that affect only the Actions acquired by a specific instance
of a viewer, you would register you own copy of the default Action instance via the
Action Provider’s setAction() method. You may acquire a copy of any default Action via
the ActionProvider’s newActionInstance() method. Refer to the next section on

15

Registering New Actions for more information on the setAction() method.

Compile these changes and execute in your browser. You will see the following:

Figure 9

You will have to hover over Sort ascending in your browser to see the new tool tip text.

REGISTERING NEW ACTIONS
This example demonstrates how to use the APF to add new functionality for a TableView
component. Specifically, it shows how to setup and register a new Action for the data
cells of the EMPLOYEE column as seen in the image below.

Figure 10

16

When a user clicks on an employee number they will be taken to the detail view for that
employee. The detail view will be presented by a different TableView component as
demonstrated by figure 11.

Figure 11

The first task is to write a command class that can perform a subset operation on the
employee detail data. The BaseCommand class is a good choice as the subclass for
the new command because it implements the com.sas.commands.
DynamicAttributeCommandInterface which is required of all Action commands.

Follow these steps to add the command to your webAF project.

• Select File New to open the New window and on the Files tab select Java
Source File.

• Name it SubsetCommand.java and specify commands for the package name.
• Choose the Blank Java File option on the second page of the wizard.
• Enter the following code into the java source file.

package commands;
import com.sas.commands.BaseCommand;
import com.sas.storage.jdbc.JDBCToTableModelAdapter;

public class SubsetCommand extends BaseCommand {
 private JDBCToTableModelAdapter model;
 private String subsetValue;

 public SubsetCommand(JDBCToTableModelAdapter adapter) {
 this.model = adapter;}

 public void setSubsetValue(String subsetValue) {
 this.subsetValue = subsetValue;}

 public String getSubsetValue() {
 return subsetValue;}

 public void execute(Object o) {

17

String newQuery = "SELECT * FROM sasuser.empdata WHERE
employee = '"+subsetValue+"'";

 model.setQueryStatement(newQuery);
}

}

Note that the command’s subsetValue attribute is the dynamic piece of information
needed to perform the operation. The new Action you set up will need an attribute for
that information so that it can be passed to the command during the execution phase.

The next step, though, is to create a separate JSP that uses a TableViewComposite to
present the employee detail data.

• Select File New to open the New window.
• In the Files tab select Java Server Page.
• Name the file index2.jsp and then enter the following code:

<%@ taglib uri="http://www.sas.com/taglib/sas" prefix="sas" %>
<%@ page pageEncoding="UTF-8"%>
<html>
<head>

<link href="styles/sasComponents.css" rel="STYLESHEET"
type="text/css">

</head>
<body>
 <sas:TableViewComposite ref="sas_TableView2" scope="session">

<sas:TableTitle text="<%="Detail Viewer For Employee #" +
request.getParameter("sas_actionProvider_subsetValue")%>" />

 </sas:TableViewComposite>

<sas:Label id="label1" text="Back To Employee View" URL="
JDBCTableViewExample"/>

</body>
</html>

Now you are ready to begin the final customizations to
JDBCTableViewExampleControllerServlet.java. In this file, you will add code
that does the following:

• Create another JDBC adapter for the employee detail data.
• Create a new TableViewComposite bean for presenting the detail data.
• Create and register the new Action for the first TableView component.

First, add these import statements to the existing import section of the file:

import commands.SubsetCommand;
import com.sas.actionprovider.Area;
import com.sas.entities.AttributeDescriptorInterface;
import com.sas.servlet.tbeans.StyleInfo;
import com.sas.servlet.tbeans.menubar.html.MenuBar;
import java.util.HashMap;
import java.util.Map;
import java.util.Vector;

Next, add the code section below right after the line:

18

sortAscendingAction.putValue(HttpAction.SHORT_DESCRIPTION, "Sort
in Ascending Order");

that was added to JDBCTableViewExampleControllerServlet.java in the previous
example:

 String jdbcQuery2 = "select * from sasuser.empdata";
 JDBCToTableModelAdapter adapter2 = null;
 if (session != null) {

adapter2 =
(JDBCToTableModelAdapter)session.getAttribute("sas_model2");

 }
 if (adapter2 == null){
 try{

adapter2 = new JDBCToTableModelAdapter(sas_JDBCConnection,
jdbcQuery2);

 if (session != null)
 session.setAttribute("sas_model2", adapter2);
}
catch(Exception e){throw new RuntimeException(e);}

 /* Create the second TableViewComposite bean */
 TableViewComposite sas_TableView2 = null;
 if (session != null){

sas_TableView2 =
(TableViewComposite)session.getAttribute("sas_TableView2");

 }

 if (sas_TableView2 == null){
 sas_TableView2 = new TableViewComposite();
 sas_TableView2.setModel(adapter2);
 sas_TableView2.setActionProvider(sas_actionProvider);
 session.setAttribute("sas_TableView2", sas_TableView2);
 }
 }

 HttpAction subsetAction = new HttpAction(new SubsetCommand(adapter2));
 subsetAction.setActionType("SUBSET_ACTION");

 subsetAction.putValue(subsetAction.NAME,
 "%"+HttpTableViewSupport.AREA_VALUE_ATTRKEY);

 subsetAction.putValue("employee", null);

AttributeDescriptorInterface adi =
subsetAction.getAttributeDescriptor("employee");

 adi.setSupplementalProperty(subsetAction.CUSTOM, Boolean.TRUE);
 adi.setLabel(null,"subsetValue");

 subsetAction.putValue(ComponentKeys.FORWARD_LOCATION, "/index2.jsp");
 adi = subsetAction.getAttributeDescriptor(ComponentKeys.FORWARD_LOCATION);
 adi.setSupplementalProperty(subsetAction.DYNAMIC, Boolean.FALSE);
 adi.setSupplementalProperty(subsetAction.EXTERNAL, Boolean.TRUE);

 Map styleMap = new HashMap();
 styleMap.put(MenuBar.MENU_LINK,new StyleInfo("menuItemLink"));
 subsetAction.putValue(subsetAction.STYLE_MAP, styleMap);

 Vector viewers = new Vector(1);

viewers.add(
sas_TableView1.getComponent(sas_TableView1.TABLEVIEW_TABLEDATA));

 sas_actionProvider.setAction(subsetAction, viewers,
 new Area(HttpTableViewSupport.DATA_CELL_AREA, "EMPLOYEE"));

19

EXAMPLE CODE EXPLAINED

Section 1:
 In this section, you are adding code to create and setup the second
TableViewComposite and the adapter it needs to connect to the employee detail data.
Notice that the second TableViewComposite shares the Action Provider with the first
TableViewComposite.

Section 2:
 These lines instantiate the new Action, give it an instance of your new Command
and assign it a unique actionType. The actionType may be any String of your own
choosing as long as it does not match any of the existing actionTypes defined by the
support class (HttpTableViewSupport, in this case).

Section 3:
 This section is where we setup the Action’s NAME attribute so that it gets
generated dynamically. The APF uses the NAME attribute as the displayed text for an
Action. In this case, the text should be the data cell value.

The code is building a template pattern for use as the Action’s dynamic value.

Wherever the APF sees the ‘%’ symbol in an attribute value, the subsequent token is
expected to be a reserved key that the support class knows how to determine
dynamically. The APF will substitute the dynamic value for the token during the Action
acquisition phase. Here, we are using the AREA_VALUE_ATTRKEY token which is
available on most support classes for acquiring the default value for a specific area.

This key is also useful for use as the name of a dynamic Action attribute.

Whenever the APF sees a reserved key as the name of an Action attribute, it will set the
attribute’s value with the dynamically determined value. For example, you could get the
name of a column passed as a request parameter if you used the
AREA_VALUE_ATTRKEY as an attribute name for an Action in the
COLUMN_HEADER_AREA.

Section 4:
 In this section we are setting up the dynamic Action attribute that the command
will need during the execution phase. First, notice that the code is getting an
AttributeDescriptorInterface for the attribute. These objects contain important metadata-
type information with respect to how the APF treats individual Action attributes. Refer to
the More on Action Attributes And Their Descriptors section below for more information.

Here the code is setting the CUSTOM property to true so that the APF knows this
is a special type of attribute that is handled differently by individual support classes. In
this case, the HttpTableViewSupport expects that CUSTOM Action attributes have
names that match column names. When that is so, the attribute is set with the data cell
value in that column.

We want the data values from the first column so we specify employee as the

attribute name. However, we also need the Action attribute name to match the

20

command’s subsetValue attribute. We can give the attribute an alias via the line that
sets the AttributeDescriptorInterface label attribute.

Section 5:
Here the code is setting up a non-dynamic attribute that will enable the

JDBCTableViewExampleControllerServlet to forward control to the right jsp (index2.jsp)
when this particular Action is performed.

The attribute is marked as not DYNAMIC so that the APF does not attempt to

determine the attribute’s value during the acquisition phase. It is also marked as an
EXTERNAL attribute which indicates to the framework that it may be ignored by the
HttpActionProvider during the execution phase. The framework does not prefix the
names of external attributes on the request with the HttpActionProvider’s
parameterPrefix.

 Section 6:

The default style class used for an Action link on the first level of a query is
viewerSpecificPrefix + menuLink. However, that resolves to tableviewmenuLink for
this viewer which is not currently defined in sasComponents.css. This code tells
the APF to use tableviewmenuItemLink instead.

 Section 7:

This section registers the new Action with the framework. The code specifies
the TableView sub-component of the TableViewComposite as the only viewer it wants to
affect.

It also specifies which area to register the Action via the Area object. The first

argument to this object’s constructor is the areaType key. If we wanted the Action to
appear in all data cells, the code would not need to specify a second argument to the
constructor. However, we want the Action to only appear in one column so the code
must specify a particular area value. Additional values may be specified via the Area’s
addValue() method.

After adding these customizations, choose Build Rebuild All to compile your changes.
Then select Build Execute in browser. You should see the TableViewComposite
presenting timecard data for all employees in the first view as shown in Figure 12 and be
able to click on an employee number to be transitioned to the detail view for an
employee as shown in Figure 13.

MORE ON ACTION ATTRIBUTES AND THEIR DESCRIPTORS
There are two basic types of Action attributes:

• Class-based: These are attributes defined by the Action class. These include
the common attributes you will find documented in the API for the
com.sas.actionprovider.SwingAction and com.sas.actionprovider.HttpAction
classes.

• Instance-based: These are attributes that are not defined by any Action class.
Instead, these attributes are added to an Action after it is instantiated to serve a
unique purpose for the particular type of Action. These include the employee

21

and ComponentKeys.FORWARD_LOCATION attributes you added in the
example above.

Every attribute (class or instance-based) has an AttributeDescriptor object that stores
metadata-type information in the form of properties.

The first of these is the visible property. When set to true, the attribute is included on
the URL generated for the Action and is passed on the request object during the
execution phase. Unless also marked as EXTERNAL (see below), the APF adds a
parameter prefix to the name of the request parameter. By default, the parameter prefix
is the name of the Action Provider followed by the underscore character. This is done so
that the Action Provider can distinguish APF request parameters from non-APF
parameters during the execution phase.

When the visible property is false, the HttpActionProvider stores the attribute until it is
needed during the next execution phase. Attributes whose values can not be
transformed to a meaningful String value must be stored (visible=false) since all request
parameters have String values. The default visible property value for instance-based
attributes is true.

The visible property may be set via the following:

AttributeDescriptorInterface.setVisible(true/false);

The remaining properties are all supplemental properties and are set via the following:

 AttributeDescriptorInterface.setSupplementalProperty(
Action.PropertyKey, Boolean.TRUE/Boolean.FALSE);

Where PropertyKey is one of the following:

• DYNAMIC: When true, the APF attempts to determine the value of the attribute
during the Action acquisition phase. The default for instance-based attributes is
true.

• EXTERNAL: When true, the APF will include the attribute on the Action’s URL
but will not prefix the parameter name with the HttpActionProvider’s
parameterPrefix. This allows the HttpActionProvider to ignore the parameter
during the execution phase. The default for instance-based attributes is false.

• CUSTOM: When true, the APF expects that the support class has special rules
for determining a dynamic value for the attribute based on its name. The
support classes for the relational TableView components are the only ones that
currently support this feature. They expect the attribute name will match the
name of a column and will set the attributes value to that of data cell value in that
column. The default for instance-base attributes is false.

For more information on these and other supplemental property keys, refer to
documentation in the API specification for the com.sas.actionprovider.BaseAction class
found here:
http://support.sas.com/rnd/gendoc/bi/api/Components/com/sas/actionprovider/BaseActio
n.html

22

APF VERSUS STRUTS
Struts is web application development framework that is based on the MVC architecture.
It simplifies many application scope issues for developers so that they may focus on
developing just the business logic and presentation layers.

In contrast, the APF is a framework that simplifies component scope issues for
developers. It is a complementary framework that integrates easily with Struts based
applications.

Integration is simple because of the options the developer has to affect the URLs of APF
Actions so that they may be handled via one or multiple custom Struts Actions. For
example,

• Action Provider level: HttpActionProvider.controllerURL
• Viewer component level: URLTemplateViewInterface.URLTemplate
• Action level: HttpAction.URLBase and URLTemplate

The developer may choose (via the controllerURL attribute) to have a single Struts
Action for handling all APF Action executions like the
JDBCTableViewExampleControllerServlet does in the examples above. Alternatively,
the developer may choose to handle APF Actions on a per-Viewer or per-Action basis
via the attributes at the other levels.

The useReferringURI property on the HttpActionProvider may also be used to force all
APF Actions to include the URI of the viewer component that presents the Action as a
request parameter. This makes it possible for Struts Action to forward control back to
the presentation JSP when appropriate.

See the documentation of these attributes and others on the HttpActionProvider,
HttpAction and URLTemplateViewInterface classes in the com.sas.actionprovider
package at the AppDevStudio API.
http://support.sas.com/rnd/gendoc/bi/api/

CONCLUSION
The APF is an integrated set of Java classes introduced with AppDev Studio ® 3. We
saw how the APF simplifies the work involved in customizing or defining new actions for
viewers in client side and server side Java applications. We saw how the key pieces of
the framework work and proposed some simple examples. The developer who would
like to know more about the APF can read the documentation which is referenced in the
section below.

ADDITIONAL RESOURCES AVAILABLE
At http://support.sas.com/rnd/gendoc/bi/api/ you will find the SAS Business Intelligence
API documentation.

The following sections are important ones with respect to the APF:

• The package documentation of the com.sas.actionprovider package.
• The introductory documentation for each of the following classes:

o com.sas.actionprovider.HttpAction

23

o com.sas.actionprovider.SwingAction
o com.sas.actionprovider.HttpActionProvider
o com.sas.actionprovider.SwingActionProvider
o com.sas.actionprovider.ActionOrderList.

At: http://support.sas.com/rnd/appdev/examples/index.html you will find the SAS
AppDevStudio Developer examples site with some interesting examples about the APF.

ACKNOWLEDGMENTS
We would like to thank Tammy Gagliano, Anton Fuchs, Chris Barrett, Brian Durham and
Corey Benson for the valuable information and examples they provided for this
document.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Flavio Ubaldini
SAS Institute
Neuenheimer Landstr. 28-30
69120 Heidelberg, Germany
Work Phone: (+49) (0)6221 416 - 0
Email: Flavio.Ubaldini@eur.sas.com

Neil Bell
SAS Institute Inc
100 SAS Campus Dr
Cary NC 27513-8617, USA
Email: Neil.Bell@sas.com

