
SAS/OR® 9.1.3 User’s Guide: Project Management 2.1

Copyright © 2006, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

1st printing, March 2006

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.
Contents

Chapter 1. Introduction to Project Management .. 1
Chapter 2. The CPM Procedure ... 47
Chapter 3. The PM Procedure ... 281
Chapter 4. The Microsoft Project Conversion Macros 333
Chapter 5. The DTREE Procedure ... 341
Chapter 6. The GANTT Procedure ... 445
Chapter 7. The NETDRAW Procedure ... 613
Chapter 8. The Projman Application .. 723
Chapter 9. The Earned Value Management Macros ... 795
Appendix A. Glossary of Project Management Terms 879
Appendix B. Glossary of Earned Value Management Terms 893
Subject Index .. 899
Syntax Index ... 925
Acknowledgments

Credits

Documentation

Writing
Gehan A. Corea, Charles B. Kelly, Radhika V. Kulkarni, Michelle Opp, Tien-yi D. Shaw, Keqi Yan

Editing
Virginia Clark, Donna Sawyer

Documentation Support
Tim Arnold, Michelle Opp, Girish Ramachandra, Richard Liu

Technical Review
Marc-david Cohen, Phil Gibbs, Tao Huang, Edward P. Hughes, John Jasperse, Charles B. Kelly, Michelle Opp, Bengt Pederson, Rob Pratt, Marianne Bohinski, Donna Fulenwider, Barbara J. Hoopes

Software

The procedures in SAS/OR software were implemented by the Operations Research and Development Department. Substantial support was given to the project by other members of the Analytical Solutions Division. Core Development Division, Display Products Division, Graphics Division, and the Host Systems Division also contributed to this product.

In the following list, the names of the developers currently supporting the procedure are listed first. Other developers previously worked on the procedure.
Acknowledgments

Many people have been instrumental in the development of SAS/OR software. The individuals acknowledged here have been especially helpful.

<table>
<thead>
<tr>
<th>Software</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPM</td>
<td>Radhika V. Kulkani, Marc-david Cohen</td>
</tr>
<tr>
<td>DTREE</td>
<td>Tien-Yi D. Shaw</td>
</tr>
<tr>
<td>GANTT</td>
<td>Gehan A. Corea, Radhika V. Kulkarni</td>
</tr>
<tr>
<td>NETDRAW</td>
<td>Radhika V. Kulkarni</td>
</tr>
<tr>
<td>PM</td>
<td>Gehan A. Corea, Radhika V. Kulkarni</td>
</tr>
<tr>
<td>PROJMAN</td>
<td>Charles B. Kelly, Marc-david Cohen</td>
</tr>
<tr>
<td>EVM Macros</td>
<td>Lindsey Puryear</td>
</tr>
<tr>
<td>Microsoft Conversion macros</td>
<td>Gehan Corea, Keqi Yan</td>
</tr>
</tbody>
</table>

Support Groups

- **Software Testing**: Tao Huang, John Jasperse, Bengt Pederson, Rob Pratt, Nitin Agarwal, Marianne Bohinski, Edward P. Hughes, Charles B. Kelly, Tugrul Sanli
- **Technical Support**: Tonya Chapman
Acknowledgments

Lance Broad
New Zealand Ministry of Forestry

Richard Brockmeier
Union Electric Company

Ken Cruthers
Goodyear Tire & Rubber Company

Patricia Duffy
Auburn University

Richard A. Ehrhardt
University of North Carolina at Greensboro

Paul Hardy
Babcock & Wilcox

Don Henderson
ORI Consulting Group

Dave Jennings
Lockheed Martin

Vidyadhar G. Kulkarni
University of North Carolina at Chapel Hill

Wayne Maruska
Basin Electric Power Cooperative

Bruce Reed
Auburn University

Charles Rissmiller
Lockheed Martin

David Rubin
University of North Carolina at Chapel Hill

John Stone
North Carolina State University

Keith R. Weiss
ICI Americas Inc.

The final responsibility for the SAS System lies with SAS Institute alone. We hope that you will always let us know your opinions about the SAS System and its documentation. It is through your participation that SAS software is continuously improved.
What’s New in SAS/OR 9.1.3, Release 2

Overview

SAS/OR software, version 9.1.3, release 2 contains several new and enhanced features. Brief descriptions of the new features appear in the following sections. For more information, refer to the SAS/OR documentation, which is now available in the following six volumes:

- SAS/OR User’s Guide: Bills of Material Processing
- SAS/OR User’s Guide: Constraint Programming
- SAS/OR User’s Guide: Local Search Optimization
- SAS/OR User’s Guide: Mathematical Programming
- SAS/OR User’s Guide: The QSIM Application

The online help can also be found under the corresponding classification.

The NETFLOW Procedure

The NETFLOW procedure in SAS/OR User’s Guide: Mathematical Programming contains a new experimental feature in SAS 9.1.3 release 2, which enables you to specify and solve generalized network problems. A new option, GENNET, is available in the call to PROC NETFLOW. This option is used to explicitly indicate that the network is generalized. With the new EXCESS= option, the NETFLOW procedure is now capable of solving an even wider variety of problems. These include:

- networks with excess supply or demand
- networks containing nodes with unknown supply and demand values
- maximum flow problems
- networks with nodes having range constraints on supply and demand

The OPTLP Procedure (Experimental)

The new OPTLP procedure in SAS/OR User’s Guide: Mathematical Programming is an experimental linear programming solver for problems that are submitted in an MPS-format SAS data set.
The MPS-format SAS data set, which corresponds closely to the commonly used MPS-format file, is newly introduced in SAS 9.1.3 release 2.

PROC OPTLP provides three solvers to solve the LP: primal simplex, dual simplex, and interior point. The simplex solvers implement a two-phase simplex method, and the interior point solver implements a primal-dual predictor-corrector algorithm.

The OPTMODEL Procedure (Experimental)

The new OPTMODEL procedure in SAS/OR User’s Guide: Mathematical Programming provides a modeling environment tailored to building, solving, and maintaining optimization models. This makes the process of translating the symbolic formulation of an optimization model into OPTMODEL virtually transparent since the modeling language mimics the symbolic algebra of the formulation as closely as possible. OPTMODEL also streamlines and simplifies the critical process of populating optimization models with data from SAS data sets. All of this transparency produces models that are more easily inspected for completeness and correctness, more easily corrected, and more easily modified, whether through structural changes or through the substitution of new data for old.

The OPTMODEL procedure comprises the powerful OPTMODEL modeling language and state-of-the-art solvers for several classes of mathematical programming problems. In SAS 9.1.3 release 2, four experimental solvers are available to OPTMODEL:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Programming</td>
<td>LP</td>
</tr>
<tr>
<td>Nonlinear Programming, Linearly Constrained</td>
<td>NLPC</td>
</tr>
<tr>
<td>Nonlinear Programming, Unconstrained</td>
<td>NLPUE</td>
</tr>
<tr>
<td>General Nonlinear Programming</td>
<td>SQP</td>
</tr>
</tbody>
</table>

The OPTQP Procedure (Experimental)

The new OPTQP procedure in SAS/OR User’s Guide: Mathematical Programming is an experimental quadratic programming solver for problems that are submitted in a QPS-format SAS data set.

The QPS-format SAS data set, which corresponds closely to the QPS-format file, is newly introduced in SAS 9.1.3 release 2.
The Earned Value Management Macros (Experimental)

The set of earned value management macros is a supplement to the current procedures in SAS/OR User’s Guide: Project Management to meet your need in earned value management. Two distinct types of macros are included: one for analysis and one for reporting. The former is used to analyze schedule and cost data and to derive earned value metrics. The latter is used to graphically represent the results from the analysis.

Microsoft Project Conversion Macros (Experimental)

The SAS macros %MDBTOPM and %MP2KTOPM are used for converting MDB files saved by Microsoft Project 98 and Microsoft Project 2000 (and later), respectively. These two macros are now wrapped into the macro %MSPTOSAS in SAS 9.1.3 release 2. The %MSPTOSAS macro converts Microsoft Project 98 (and later) data. The macro generates the necessary SAS data sets, determines the values of the relevant options, and enables you to invoke an instance of the PM procedure with the converted project data. Execution of this macro requires SAS/ACCESS software.
Using This Book

Purpose

SAS/OR User's Guide: Project Management provides a complete reference for the project management procedures in SAS/OR software. This book serves as the primary documentation for the CPM, DTREE, GANTT, NETDRAW, and PM procedures, the earned value management macros, the Microsoft Project conversion macros, and the Projman application.

“Using This Book” describes the organization of this book and the conventions used in the text and example code. To gain full benefit from using this book, you should familiarize yourself with the information presented in this section and refer to it when needed. “Additional Documentation” at the end of this section provides references to other books that contain information on related topics.

Organization

Chapter 1 contains a brief overview of the project management procedures in SAS/OR software and provides an introduction to project management methodology and the use of the project management tools in the SAS System. The first chapter also describes the flow of data between the procedures and how the components of the SAS System fit together.

After the introductory chapter, the next chapters describe the CPM, DTREE, GANTT, NETDRAW, and PM procedures. Each procedure description is self-contained; you need to be familiar with only the basic features of the SAS System and SAS terminology to use most procedures. The statements and syntax necessary to run each procedure are presented in a uniform format throughout this book.

The following list summarizes the types of information provided for each procedure:

- **Overview** provides a general description of what the procedure does. It outlines major capabilities of the procedure and lists all input and output data sets that are used with it.

- **Getting Started** illustrates simple uses of the procedure using a few short examples. It provides introductory *hands-on* information for the procedure.
constitutes the major reference section for the syntax of the procedure. First, the statement syntax is summarized. Next, functional summary tables list all the statements and options in the procedure, classified by function. In addition, the online version includes a Dictionary of Options, which provides an alphabetical list of all options. Following these tables, the PROC statement is described, and then all other statements are described in alphabetical order. The mode-specific options (line-printer, full-screen, and graphics options) for the DTREE, GANTT, and NETDRAW procedures are described alphabetically under appropriate subheadings.

Details describes the features of the procedure, including algorithmic details and computational methods. It also explains how the various options interact with each other. This section describes input and output data sets in greater detail, with definitions of the output variables, and explains the format of printed output, if any.

Examples consists of examples designed to illustrate the use of the procedure. Each example includes a description of the problem and lists the options highlighted by the example. The example shows the data and the SAS statements needed, and includes the output produced. You can duplicate the examples by copying the statements and data and running the SAS program. The SAS Sample Library contains the code used to run the examples shown in this book; consult your SAS Software representative for specific information about the Sample Library. Cross-reference tables in each chapter list all the options and statements illustrated by the different examples in that chapter.

References lists references that are relevant to the chapter.

Typographical Conventions

The printed version of SAS/OR User’s Guide: Project Management uses various type styles, as explained by the following list:

roman is the standard type style used for most text.
Conventions for Examples

Most of the output shown in this book is produced with the following SAS System options:

\[
\text{options linesize=80 pagesize=60 nonumber nodate;}
\]

In addition, most of the graphics output shown in this book is produced with the following options:

Printed Version
\[
\text{goptions hpos=80 vpos=32;}
\]

Online Version
\[
\text{goptions hpos=80 vpos=32 ypixels=800;}
\]

The remaining graphics options used in this book depend on the type of output, as well as the procedure used to create the output. The general options for half-page portrait, full-page portrait, and full-page landscape output are as follows:
Half-page Portrait

```
goptions hsize=5.75 in vsize=4.0 in;
```

Full-page Portrait

```
goptions hsize=5.75 in vsize=8.0 in;
```

Full-page Landscape

```
goptions hsize=8.0 in vsize=5.75 in
border rotate=landscape;
```

Additional Graphics Options by Procedure

GANTT Procedure

The following PATTERN statements are used to create the online (color) output from PROC GANTT.

```
pattern1 c=green  v=s;
pattern2 c=green  v=e;
pattern3 c=red    v=s;
pattern4 c=magenta v=e;
pattern5 c=magenta v=s;
pattern6 c=cyan   v=s;
pattern7 c=black  v=e;
pattern8 c=blue   v=s;
pattern9 c=brown  v=s;
```

The following PATTERN statements are used to create the black-and-white output from PROC GANTT, which appears in the printed version of the manual.

```
pattern1 v=x1 c=black;
pattern2 v=l1 c=black;
pattern3 v=s  c=black;
pattern4 v=r1 c=black;
pattern5 v=x2 c=black;
pattern6 v=x4 c=black;
pattern7 v=e  c=black;
pattern8 v=x3 c=black;
pattern9 v=12 c=black;
```

NETDRAW Procedure

The following GOPTIONS and PATTERN statements are used to create the online (color) output from PROC NETDRAW.

```
goptions cback=ligr;
pattern1 v=e c=green;
pattern2 v=e c=red;
pattern3 v=e c=magenta;
pattern4 v=e c=blue;
pattern5 v=e c=cyan;
```
The following GOPTIONS and PATTERN statements are used to create the black-and-white output from PROC NETDRAW, which appears in the printed version of the manual.

```
pattern1 c=black v=e r=5;
```

DTREE Procedure

The following GOPTIONS statement is used to create the online (color) output from PROC DTREE.

```
goptions cback=ligr ctext=black ftext=swissu;
```

The following GOPTIONS statement is used to create the black-and-white output from PROC DTREE, which appears in the printed version of the manual.

```
goptions ftext=swissu;
```

Accessing the SAS/OR Sample Library

The SAS/OR sample library includes many examples that illustrate the use of SAS/OR software, including the examples used in this documentation. To access these sample programs, select Learning to Use SAS->Sample SAS Programs from the SAS Help and Documentation window, and then select SAS/OR from the list of available topics.

Online Help System and Updates

You can access online help information about SAS/OR software in two ways, depending on whether you are using the SAS windowing environment in the command line mode or the pull-down menu mode.

If you are using a command line, you can access the SAS/OR help menus by typing `help` on the command line. If you are using the pull-down menus, you can select SAS Help and Documentation->SAS Products from the Help pull-down menu, and then select SAS/OR from the list of available topics.
Additional Documentation for SAS/OR Software

In addition to SAS/OR User’s Guide: Project Management, you may find these other documents helpful when using SAS/OR software:

SAS/OR User's Guide: Bills of Material Processing
provides documentation for the BOM procedure and all bill-of-material post-processing SAS macros. The BOM procedure and SAS macros provide the ability to generate different reports and to perform several transactions to maintain and update bills of material.

SAS/OR User's Guide: Constraint Programming
provides documentation for the constraint programming procedure in SAS/OR software. This book serves as the primary documentation for the CLP procedure, an experimental procedure new to SAS/OR software.

SAS/OR User's Guide: Local Search Optimization
provides documentation for the local search optimization procedure in SAS/OR software. This book serves as the primary documentation for the GA procedure, an experimental procedure that uses genetic algorithms to solve optimization problems.

SAS/OR User's Guide: Mathematical Programming
provides documentation for the mathematical programming procedures in SAS/OR software. This book serves as the primary documentation for optimization procedures, such as the ASSIGN, LP, INTPOINT, NETFLOW, NLP, and TRANS procedures, and the new procedure, QP, for solving quadratic programming problems.

SAS/OR User's Guide: The QSIM Application
provides documentation for the QSIM Application, which is used to build and analyze models of queueing systems using discrete event simulation. This book shows you how to build models using the simple point-and-click graphical user interface; how to run the models; and how to collect and analyze the sample data to give you insight into the behavior of the system.

SAS/OR Software: Project Management Examples, Version 6
contains a series of examples that illustrate how to use SAS/OR software to manage projects. Each chapter contains a complete project management scenario and describes how to use PROC GANTT, PROC CPM, and PROC NETDRAW, in addition to other reporting and graphing procedures in the SAS System, to perform the necessary project management tasks.

SAS/IRP User's Guide: Inventory Replenishment Planning
provides documentation for SAS/IRP software. This book serves as the primary documentation for the IRP procedure for determining replenishment policies, as well as the %IRPSIM SAS programming macro for simulating replenishment policies.
Chapter 1
Introduction to Project Management

Chapter Contents

OVERVIEW ... 3
DATA FLOW ... 3
 The CPM Procedure ... 4
 The GANTT Procedure ... 5
 The NETDRAW Procedure 6
 The PM Procedure ... 7
 Communication between Procedures 8
DECISION SUPPORT SYSTEMS 9
DECISION ANALYSIS .. 10
 The DTREE Procedure 10
EXAMPLES ... 11
 Example 1.1. Project Definition 11
 Example 1.2. Work Breakdown Structure 13
 Example 1.3. Project Scheduling and Reporting 15
 Example 1.4. Summary Report 17
 Example 1.5. Resource-Constrained Scheduling 18
 Example 1.6. Multiple Projects 23
 Example 1.7. Sequential Scheduling of Projects 31
 Example 1.8. Project Cost Control 34
 Example 1.9. Subcontracting Decisions 41
PROJECT MANAGEMENT SYSTEMS 44
THE PROJMAN APPLICATION 45
WEB-BASED SCHEDULING SYSTEMS 45
MICROSOFT PROJECT CONVERSION MACROS 46
REFERENCES .. 46
Chapter 1
Introduction to Project Management

Overview

This chapter briefly describes how you can use SAS/OR software for managing your projects. This chapter is not meant to define all the concepts of project management; several textbooks on project management explain the basic steps involved in defining, planning, and managing projects (for example, Moder, Phillips, and Davis 1983). Briefly, a project is defined as any task comprising a set of smaller tasks that need to be performed, either sequentially or in parallel. Projects can be small and last only a few minutes (for instance, running a set of small computer programs), or they can be mammoth and run for several years (for example, the construction of the Channel Tunnel).

SAS/OR software has four procedures that can be used for planning, controlling, and monitoring projects: the CPM and PM procedures for scheduling project activities subject to precedence, time, and resource constraints; the GANTT procedure for displaying the computed schedule; and the NETDRAW procedure for displaying the activity network. These procedures integrate with the SAS System so that you can easily develop a customized project management system. The Projman application, a user-friendly graphical user interface included as part of SAS/OR software, is one such system.

This chapter gives a brief introduction to the CPM, GANTT, NETDRAW, and PM procedures and shows how you can use the SAS System for project management.

In addition to these four procedures and the Projman application, which are the major tools for the traditional functions associated with project management, SAS/OR software also contains a procedure for decision analysis, the DTREE procedure. Decision analysis is a tool that attempts to provide an analytic basis for management decisions under uncertainty. It can be used effectively as an integral part of project management methods. A brief introduction to PROC DTREE is provided in the “Decision Analysis” section on page 10.

Data Flow

This section provides an overview of how project information is stored in the SAS System in data sets and how these data sets are used by the CPM, GANTT, NETDRAW, and PM procedures. Maintaining the project information in SAS data sets enables you to merge project information easily from several sources, summarize information, subset project data, and perform a wide variety of other operations using any of the many procedures in SAS software. Each of the SAS/OR procedures also defines a SAS macro variable that contains a character string indicating whether
or not the procedure terminated successfully. This information is useful when the procedure is one of the steps in a larger program.

The CPM Procedure

PROC CPM does the project scheduling and forms the core of the project management functionality in SAS/OR software. It uses activity precedence, time, and resource constraints, and holiday and calendar information to determine a feasible schedule for the project. The precedence constraints between the activities are described using a network representation, either in Activity-On-Arc (AOA) or Activity-On-Node (AON) notation, and input to PROC CPM in an Activity data set. The two different representations are described in Chapter 2, “The CPM Procedure.” The Activity data set can also specify time constraints on the activities and resource requirement information. The Activity data set is required. Resource availability information can be specified using another data set, referred to here as the Resource data set. Holiday, workday, and other calendar information is contained in the Holiday, Workday, and Calendar data sets; each of these data sets is described in detail in Chapter 2, “The CPM Procedure.” The schedule calculated by PROC CPM using all the input information and any special scheduling options is saved in an output data set, referred to as the Schedule data set. For projects that use resources, individual resource schedules for each activity can be saved in a Resource Schedule output data set. Resource usage information can also be saved in another output data set, referred to as the Usage data set. Figure 1.1 illustrates all the input and output data sets that are possible with PROC CPM. In the same figure, _ORCPM_ is the SAS macro variable defined by PROC CPM.

Figure 1.1. Input and Output Data Flow in PROC CPM

The three output data sets produced by PROC CPM contain all the information about the schedule and the resource usage; these data sets can be used as input to either PROC GANTT or PROC NETDRAW or to any of the several reporting, charting, or plotting procedures in the SAS System.

The Schedule data set can also contain additional project information such as project ID, department and phase information, accounting categories, and so on, in the form of ID variables passed to it from the Activity input data set with the ID statement.
These variables can be used to produce customized reports by reordering, subsetting, summarizing, or condensing the information in the Schedule data set in various ways.

The GANTT Procedure

PROC GANTT draws, in line-printer, high-resolution graphics, or full-screen mode, a bar chart of the schedules computed by PROC CPM. Such a bar chart is referred to as a Gantt chart in project management terminology. In addition to the Schedule data set, PROC GANTT can also use the Calendar, Workday, and Holiday data sets (that were used by PROC CPM when scheduling the activities in the project) to mark holidays and weekends and other nonwork periods appropriately on the Gantt chart. You can indicate target dates, deadlines, and other important dates on a Gantt chart by adding CHART variables to the Schedule data set. Furthermore, the GANTT procedure can indicate milestones on the chart by using a DURATION variable in the Schedule data set.

Precedence information can be used by PROC GANTT in either Activity-on-Node or Activity-on-Arc format to produce a Logic bar chart that shows the precedence relationships between the activities. The precedence information, required for drawing the network logic, can be conveyed to PROC GANTT using the Activity data set or a Logic data set, as described in Chapter 6, “The GANTT Procedure.”

The Gantt procedure also supports an automatic text annotation facility, using the Label data set, which is designed specifically for labeling Gantt charts independently of the SAS/GRAPH Annotate facility. The specifications in this data set enable you to print label strings with a minimum of effort and data entry while providing the capability for more complex chart labeling situations.

The Gantt procedure is Web-enabled. The HTML= option enables you to specify a variable in the Schedule data set that defines a URL for each activity. If you route the Gantt chart to an HTML file using the Output Delivery System, then you can click on a schedule bar and browse text or other descriptive information about the associated activity. You also use this information to create custom HTML files with drill-down graphs. PROC GANTT also produces an Imagemap data set that contains the outline coordinates for the schedule bars used in the Gantt chart that can be used to generate HTML MAP tags.

As with PROC CPM, PROC GANTT also defines a macro variable named _ORGANNT that has a character string indicating if the procedure terminated successfully. Figure 1.2 illustrates the flow of data in and out of PROC GANTT.
Chapter 1. Introduction to Project Management

The NETDRAW Procedure

PROC NETDRAW draws project networks. The procedure automatically places the nodes in the network and draws the arcs connecting them, using the (activity, successor) relationship as specified by the Network data set described in Chapter 7, “The NETDRAW Procedure.” The Network data set, used as input to PROC NETDRAW, can be an Activity data set, a Schedule data set, or a Layout data set, as described in Chapter 7. If a Schedule data set, output by PROC CPM, is used as the Network data set, the network diagram also contains all the schedule times calculated by PROC CPM. The procedure can draw the diagram in line-printer mode as well as in high-resolution graphics mode. Further, you can invoke the procedure in full-screen mode, which enables you to scroll around the network to view different parts of it; in this mode, you can also modify the layout of the network by moving the nodes of the network.

By default, PROC NETDRAW uses the topological ordering of the activity network to determine the X coordinates of the nodes. In a time-based network diagram, the nodes can be ordered according to any SAS date, time, or datetime variable in the Network data set. In fact, PROC NETDRAW enables you to align the nodes according to any numeric variable in this data set, not just the start and finish times.

You can produce a zoned network diagram by identifying a ZONE variable in the input data set, which divides the network into horizontal bands or zones. This is useful in grouping the activities of the project according to some appropriate classification. The NETDRAW procedure also draws tree diagrams. This feature can be used to draw work breakdown structures or other organizational diagrams (see Example 1.2).

PROC NETDRAW produces an output data set (Layout data set), which contains the positions of the nodes and the arcs connecting them. This output data set can also be used as an input data set to PROC NETDRAW; this feature is useful when the same project network is drawn several times during the course of a project.
may want to see the updated information drawn on the network every week; you can save computer resources by using the same node placement and arc routing, without having the procedure recompute it every time. PROC NETDRAW defines the macro variable _ORNETDR, which contains a character string indicating if the procedure terminated successfully.

The NETDRAW procedure is also Web-enabled (like PROC GANTT), and it supports the HTML= and IMAGEMAP= options.

Figure 1.3 illustrates the flow of data in and out of PROC NETDRAW.

The PM Procedure

PROC PM is an interactive procedure that can be used for planning, controlling, and monitoring a project. The syntax and the scheduling features of PROC PM are virtually the same as those of PROC CPM; there are a few differences, which are described in Chapter 3, “The PM Procedure.” As far as the flow of data is concerned (see Figure 1.4), the PM procedure supports an additional data set that can be used to save and restore preferences that control the project view. The scheduling engine used by the PM procedure is the same as the one used by PROC CPM; the same macro variable, _ORCPM_, is used to indicate if the schedule was computed successfully.
Communication between Procedures

Figure 1.1, Figure 1.2, Figure 1.3, and Figure 1.4 illustrate the data flow going in and out of each of the four procedures: CPM, GANTT, NETDRAW, and PM, respectively. The data sets described in the previous sections store project information and can be used to communicate project data between the procedures in the SAS System. Figure 1.5 shows a typical sequence of steps in a project management system built around these procedures.

Figure 1.5. Using the SAS System for Project Management
Of course, this is only one possible scenario of the use of these procedures. In addition, you may want to use PROC NETDRAW to check the logic of the network diagram before scheduling the project using PROC CPM. Further, the data flow shown in Figure 1.5 may represent only the first iteration in a continuous scheme for monitoring the progress of a project. As the project progresses, you may update the data sets, including actual start and finish times for some of the activities, invoke PROC CPM again, produce updated Gantt charts and network diagrams, and thus continue monitoring the project.

For example, a project management system designed for scheduling and tracking a major outage at a power plant may include the steps illustrated in Figure 1.6. In the sequences of steps illustrated in both these figures, you can use PROC PM to update most of the activity information using the procedure’s graphical user interface.

Thus, SAS/OR software provides four different procedures designed for performing many of the traditional project management tasks; these procedures can be combined in a variety of ways to build a customized comprehensive project management system. The “Examples” section beginning on page 11 illustrates several applications of the procedures in typical project management situations.

Figure 1.6. Scheduling a Power Plant Outage

Decision Support Systems

In addition to the CPM, GANTT, NETDRAW, and PM procedures, which are the major tools for the traditional functions associated with project management, SAS/OR software has several procedures that can be used to create a many-faceted Decision Support System. Traditional CPM/PERT techniques form only one part of effective project management and may be considered as a specialized application of Decision Support Systems (Williams and Boyd 1990). SAS/OR software contains several mathematical programming procedures that can be used to design effective systems for solving inventory control, transportation, network flow, transshipment, product-mix, cutting stock problems, and so on. These procedures are discussed in detail in the *SAS/OR User’s Guide: Mathematical Programming*.
Decision analysis is another important tool that is receiving recognition as a component of project management. The next section briefly describes PROC DTREE and the role it can play in making important decisions in project management.

Decision Analysis

There are several stages in the course of a project when critical decisions are to be made regarding the future path that is to be followed. In fact, the most crucial decision might be to decide at the beginning whether to embark on the project or not. Other important decisions that could benefit from using decision analysis tools may be subcontract awarding, subproject termination in a research and development (R&D) environment, what-if analysis, and so on. Decision analysis techniques can be used effectively in such situations to help make decisions under uncertainty.

The DTREE Procedure

PROC DTREE interprets a decision problem represented in SAS data sets, finds the optimal decisions, and plots on a line printer or a graphics device the decision tree showing the optimal decisions. A decision tree contains two types of nodes: decision nodes and chance nodes. A decision node represents a stage in the problem where a decision is to be made that could lead you along different paths through the tree. A chance node represents a stage in the problem where some uncertain factors result in one of several possible outcomes, once again leading you to different branches of the tree, with associated probabilities.

The structure of a decision model is given in the STAGEIN= data set. This data set, described in detail in Chapter 5, “The DTREE Procedure,” specifies the name, type, and attributes of all outcomes for each stage in your model. This is the only data set that is required to produce a diagrammatic representation of your decision problem. To evaluate and analyze your decision model, you need to specify the PROBIN= and PAYOFFS= data sets. The PROBIN= data set specifies the conditional probabilities for every event in your model. The PAYOFFS= data set specifies the value of each possible scenario (sequence of outcomes). The objective is to use the information summarized in these data sets to determine the optimal decision based on some measure of performance. One common objective is to maximize the expected value of the return. Figure 1.7 illustrates the data flow for PROC DTREE.
Example 1.1. Project Definition

Suppose you want to prepare and conduct a market survey (Moder, Phillips, and Davis 1983) to determine the desirability of launching a new product. As a first step, you need to identify the steps involved. Make a list of the tasks that need to be performed and obtain a reasonable estimate of the length of time needed to perform each task. Further, you need to specify the order in which these tasks can be done. The following DATA step creates a SAS data set, survey, representing the project. This Activity data set contains a representation of the Survey project in Activity-On-Node format; a brief discussion of the two types of representations is given in Chapter 2, “The CPM Procedure.” The data set contains a variable activity listing the basic activities (tasks) involved, a variable duration specifying the length of time in days needed to perform the tasks, and, for each task, the variables succ1–succ3, which indicate the immediate successors. An ID variable is also included to provide a more informative description of each task. Thus, the activity ‘Plan Survey’ takes four days. Once the planning is done, the tasks ‘Hire Personnel’ and ‘Design Questionnaire’ can begin. The Activity data set also contains a variable named phase associating each activity with a particular phase of the project.
data survey;
 format id $20. activity $8. succ1-succ3 $8. phase $9. ;
 input id & activity & duration succ1 & succ2 & succ3 & phase $;
 label phase = 'Project Phase'
 id = 'Description';
 datalines;
Plan Survey plan sur 4 hire per design q . Plan
Hire Personnel hire per 5 trn per . . Prepare
Design Questionnaire design q 3 trn per select h print q Plan
Train Personnel trn per 3 cond sur . . Prepare
Select Households select h 3 cond sur . . Prepare
Print Questionnaire print q 4 cond sur . . Prepare
Conduct Survey cond sur 10 analyze . . Implement
Analyze Results analyze 6 . . . Implement
;

The data set survey can be input to PROC CPM, which calculates how long the project will take given the current estimates of the durations. As a first step, you may want to graph the project network using PROC NETDRAW. In the initial stages of defining the tasks in a project, it is useful to see how the tasks relate to each other and perhaps modify some of the relationships. The following program invokes PROC NETDRAW; the ZONE= option is used to create a zoned network diagram with the activities grouped according to the phase of the project to which they correspond. The network diagram is shown in Output 1.1.1.

 title ' ';
 title2 h=3 c=black f=swiss 'Conducting a Market Survey';

 goptions hpos=100 vpos=65 border;

 proc netdraw data=survey graphics;
 actnet/act=activity font=swiss
 succ=(succ1-succ3)
 separatearcs
 xbetween=3
 id=(id)
 nodefid
 nolabel
 zone=phase
 zonemat
 frame;
 run;
Example 1.2. Work Breakdown Structure

A tree diagram is a useful method of visualizing the work breakdown structure (WBS) of a project. For the survey project, the activities are divided into three phases. In this example, the NETDRAW procedure is used to represent the work breakdown structure of the project. The following program saves the data in a Network data set that is input to PROC NETDRAW. The TREE option is used to draw the WBS structure in the form of a tree (Output 1.2.1).
data wbs;
 format parent $10. child $10. ;
 input parent & child & style;
 datalines;
Survey Plan Plan 1
Survey Prepare Prepare 1
Survey Implement Implement 1
Plan Plan S. Plan S. 2
Plan Design Q. Design Q. 2
Prepare Hire P. Prepare Hire P. 3
Prepare Train P. Prepare Train P. 3
Prepare Select H. Prepare Select H. 3
Prepare Print Q. Prepare Print Q. 3
Implement Conduct S. Implement Conduct S. 4
Implement Analyze R. Implement Analyze R. 4
Plan S. Plan S. . 2
Design Q. Design Q. . 2
Hire P. Hire P. . 3
Train P. Train P. . 3
Select H. Select H. . 3
Print Q. Print Q. . 3
Conduct S. Conduct S. . 4
Analyze R. Analyze R. . 4
;

goptions vsize=5.75 in hsize=4.0 in border;

title a=90 h=1 f=swiss 'Conducting a Market Survey';
title2 a=90 h=.8 f=swiss 'Work Breakdown Structure';

proc netdraw data=wbs graphics;
 actnet/act=parent succ=child tree
 rotate rotatetext coutline=black
ctext=white font=swiss rectilinear
 htext=2 compress
 xbetween=15 ybetween=3 pattern=style
centerid;
run;
Example 1.3. Project Scheduling and Reporting

Having defined the project and ensured that all the relationships have been modeled correctly, you can schedule the activities in the project by invoking PROC CPM. Suppose the activities can occur only on weekdays, and there is a holiday on July 4, 2003. Holiday information is passed to PROC CPM using the Holiday data set holidata. The following statements schedule the project to start on July 1, 2003. The early and late start schedules and additional project information are saved in the output data set survschd. The output data set produced by PROC CPM can then be used to generate a variety of reports. In this example, the data set is first sorted by the variable _E–START and then displayed using the PRINT procedure (see Output 1.3.1).

```
data holidata;
  format hol date7.;
  hol = '4jul03'd;
run;
```

```
proc cpm data=survey date='1jul03'd out=survschd
  interval=weekday holidata=holidata;
  activity activity;
  successor succ1–succ3;
  duration duration;
  id id phase;
  holiday hol;
```
run;
proc sort;
 by e_start;
run;
proc print;
 run;

Output 1.3.1. Project Schedule: Listing

The schedule produced by PROC CPM is then graphed by invoking PROC GANTT, as shown in the following code. The CALENDAR procedure or NETDRAW procedure can also be used to display the schedule. The Gantt chart produced is shown in **Output 1.3.2**. Note that the precedence relationships are displayed on the Gantt chart.

goptions hpos=80 vpos=43;

title c=black f=swiss 'Conducting a Market Survey';
title2 c=black f=swiss h=1.5 'Early and Late Start Schedule';
proc gantt graphics data=survschd holidata=holidata;
 chart / holiday=(hol) interval=weekday
 font=swiss skip=2 height=1.2 nojobnum
 compress noextrange
 activity=activity succ=(succ1-succ3)
 cprec=blue caxis=black;
 id id phase;
run;
Example 1.4. Summary Report

As mentioned in the “Data Flow” section beginning on page 3, the output data set can be manipulated in several different ways. You can subset the project data to report progress on selected activities, or you can produce reports sorted by a particular field or grouped according to a natural division of the project activities. For large projects, you may want to get a summarized view of the schedule, with the start and finish times of only the major phases of the project.

For the survey project, suppose that you want a condensed report, containing only information about the start and finish times of the three different phases of the project. The following program summarizes the information in the data set `survschd` and produces a Gantt chart of the summarized schedule (shown in Output 1.4.1).

```plaintext
proc sort data=survschd;
   by phase;
run;

proc summary data=survschd;
   by phase;
   output out=sumsched min(e_start)= max(e_finish)=;
   var e_start e_finish;
run;

proc sort data=sumsched;
   by e_start;
```

Output 1.3.2. Gantt Chart of SURVEY Project

![Gantt Chart of SURVEY Project](chart.png)

Example 1.4. Summary Report

The Gantt chart above shows the early and late start schedule for the survey project. Each phase is represented by a colored bar, with the start and finish dates indicated. The chart visualizes the duration of normal and critical jobs, as well as any breaks due to holidays.
Example 1.5. Resource-Constrained Scheduling

The previous two examples illustrated some of the reports that can be generated using the Schedule output data set produced by PROC CPM. This section illustrates the use of PROC CPM to perform resource-constrained scheduling and to obtain a resource Usage output data set for generating reports of resource utilization during the course of a project. A primary concern in data processing centers is the number of processors

Output 1.4.1. Summary Gantt Chart of SURVEY Project
needed to perform various tasks. Given a series of programming tasks, a common question faced by a data center operator is how to allocate computer resources to the various tasks.

Consider a simple job that involves sorting six data sets A, B, C, D, E, and F, merging the first three into one master data set, merging the last three into another comparison data set, and then comparing the two merged data sets. The precedence constraints between the activities (captured by the variables task and succ), the time required by the activities (the variable dur), and the resource required (the variable processor) are shown in the following code:

```plaintext
data program;
  format task $8. succ $8. ;
  input task & succ & dur processor;
datalines;
  Sort A    Merge 1    5    1
  Sort B    Merge 1    4    1
  Sort C    Merge 1    3    1
  Sort D    Merge 2    6    1
  Sort E    Merge 2    4    1
  Sort F    Merge 2    6    1
  Merge 1   Compare 5    1
  Merge 2   Compare 4    1
  Compare  .    5    1
;
```

If the programming project is scheduled (in absolute units) without any resource constraints, it will take 15 time units for completion and will require a maximum availability of six processors. Suppose now that only two processors are available. The resin data set limits the availability of the resource to 2, and PROC CPM is invoked with two input data sets (Activity data set program and Resource data set resin) to produce a resource-constrained schedule.

PROC CPM produces two output data sets. The Schedule data set (progschd) contains the resource-constrained schedule (S_START and S_FINISH variables) in addition to the early and late start unconstrained schedules. The Usage data set (progrout) shows the number of processors required at every unit of time, if the early start schedule or the late start schedule or the resource-constrained schedule were followed, in the variables eprocessor, lprocessor, and rprocessor, respectively; the variable aprocessor shows the number of processors remaining after resource allocation. The two output data sets are displayed in Output 1.5.1.

```plaintext
data resin;
  input per processor;
datalines;
  0 2
;

proc cpm data=program resin=resin
  out=progschd resout=progrout;
```
Chapter 1. Introduction to Project Management

The Schedule and Usage data sets, displayed in Output 1.5.1, can be used to generate any type of report concerning the schedules or processor usage. In the following program, the unconstrained and constrained schedules are first plotted using PROC GANTT (see Output 1.5.2).
Output 1.5.1. Data Sets PROGSCHD and PROGROUT

Scheduling Programming Tasks

Data Set PROGSCHD

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>succ</th>
<th>dur</th>
<th>processor</th>
<th>S_START</th>
<th>S_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sort A</td>
<td>Merge 1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Sort B</td>
<td>Merge 1</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Sort C</td>
<td>Merge 1</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Sort D</td>
<td>Merge 2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Sort E</td>
<td>Merge 2</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Sort F</td>
<td>Merge 2</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Merge 1</td>
<td>Compare</td>
<td>5</td>
<td>1</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Merge 2</td>
<td>Compare</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>Compare</td>
<td></td>
<td>5</td>
<td>1</td>
<td>19</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Data Set PROGROUT

<table>
<thead>
<tr>
<th>Obs</th>
<th>TIME</th>
<th>Eprocessor</th>
<th>Lprocessor</th>
<th>Rprocessor</th>
<th>Aprocessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

goptions hpos=80 vpos=43;
title f=swiss 'Scheduling Programming Tasks';
title2 f=swiss h=1.5 'Comparison of Schedules';
proc gantt data=progschd graphics;
 chart / font=swiss increment=2 caxis=black;
 id task;
run;
Next, the GPLOT procedure is invoked using the Usage data set to compare the unconstrained and the constrained usage of the resource (see Output 1.5.3).

```sas
/* Create a data set for use with PROC GPLOT */
data plotout;
  set progrout;
  label _time_ = 'Time of Usage';
  label processor = 'Number of Processors';
  label resource = 'Type of Schedule Followed';
  resource = 'Constrained';
  processor = rprocessor; output;
  resource = 'Early Start';
  processor = eprocessor; output;
  run;

axis1 minor=none width=3;
axis2 length=80 pct;
symbol1 i=steplj;
symbol2 i=steplj l=3;

options ftext=swiss;
title2 h=1.5 'Comparison of Processor Usage';
proc gplot data=plotout;
  plot processor * _time_ = resource/ vaxis=axis1
                        haxis=axis2
                        caxis=black;
  run;
```
Example 1.6. Multiple Projects

Often a project is divided into several subprojects, each of which is then broken into activities with precedence constraints. For reporting or accounting purposes, it may be essential to group activities or to aggregate the information pertaining to activities in a given group. Sometimes, totally different projects use a common pool of resources and you may want to schedule all the projects using the common pool; you may want to vary the priority with which the resources are allotted to the activities on the basis of the projects to which they belong. Often, you have several projects that are essentially the same, with only a few minor differences; these projects may also share a common pool of resources. In such cases, you may want to have a project template listing all the activities and their precedence relationships; for each specific project you can copy the template, make any modifications that are necessary for the given scenario, and determine the project schedule accordingly.

This example illustrates some of these possibilities for a multiproject scenario. The project is first scheduled using PROC CPM, and then the PM procedure is used with the same input data set to illustrate the project displayed in the PM Window.
Consider a publishing company that accepts manuscripts from different authors for publication. The publication of each book can be treated as a project. Thus, at a given point in time, several projects, almost identical in nature, may be in progress. Some of the resources that may be needed are a technical editor, a copyeditor, and a graphic artist. All the books that are currently being worked on share a common pool of these resources. This example uses a simplified version of such a scenario to illustrate some of the ways in which you can handle multiple projects competing for the same pool of resources.

The network in Output 1.6.1 represents some of the tasks required to publish one book and the precedence constraints among these tasks; the durations in the diagram are in weeks. Suppose that the *generic* project data are in the data set *book*, which is displayed in Output 1.6.2. This data set is used as a *template* for creating the Activity data set for any book publishing project.

Suppose that the company is working on two books simultaneously. The editor and artist must now allocate their time between the two books. The following program uses the *template* data set *book* to create Activity data sets *book1* and *book2* corresponding to the publication of each book. Any modifications to the generic project data can be made in the DATA step or by using PROC PM. In this example, the duration for the first activity, ‘Preliminary Edit,’ is changed to two weeks for the second book. The two Activity data sets *book1* and *book2* are also displayed in Output 1.6.2.

```plaintext
data book1;
  length act $6. succ $6.;
```
Example 1.6. Multiple Projects

set book;
subproj = "Book 1";
act = "B1"||task;
if succ ^= " " then succ = "B1"||succ;
run;

title 'Publishing Book 1';
proc print data=book1;
 var subproj task act succ id dur editor artist;
run;

data book2;
 length act $6. succ $6.;
 set book;
 subproj = "Book 2";
 act = "B2"||task;
 if act = "B2PEDT" then dur = 2;
 if succ ^= " " then succ = "B2"||succ;
run;

title 'Publishing Book 2';
proc print data=book2;
 var subproj task act succ id dur editor artist;
run;
Chapter 1. Introduction to Project Management

Output 1.6.2. Template and Activity Data Sets for Book Publishing Example

Publishing a Book

Template Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>id</th>
<th>task</th>
<th>dur</th>
<th>succ</th>
<th>editor</th>
<th>artist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preliminary Edit PEDT 1 REV 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Preliminary Edit PEDT 1 GRPH 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Revise Book REV 2 CEDT 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Graphics GRPH 3 CEDT . 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Copyedit Book CEDT 1 PRF 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Proofread Book PRF 1 PRNT 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Print Book PRNT 2 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publishing Book 1

<table>
<thead>
<tr>
<th>Obs</th>
<th>subproj</th>
<th>task</th>
<th>act</th>
<th>succ</th>
<th>id</th>
<th>dur</th>
<th>editor</th>
<th>artist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Book 1</td>
<td>PEDT</td>
<td>B1PEDT</td>
<td>B1REV Preliminary Edit 1 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Book 1</td>
<td>PEDT</td>
<td>B1PEDT</td>
<td>B1GRPH Preliminary Edit 1 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Book 1</td>
<td>REV</td>
<td>B1REV</td>
<td>B1CEDT Revise Book 2 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Book 1</td>
<td>GRPH</td>
<td>B1GRPH</td>
<td>B1CEDT Graphics 3 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Book 1</td>
<td>CEDT</td>
<td>B1CEDT</td>
<td>B1PRF Copyedit Book 1 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Book 1</td>
<td>PRF</td>
<td>B1PRF</td>
<td>B1PRNT Proofread Book 1 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Book 1</td>
<td>PRNT</td>
<td>B1PRNT</td>
<td>Print Book 2 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Publishing Book 2

<table>
<thead>
<tr>
<th>Obs</th>
<th>subproj</th>
<th>task</th>
<th>act</th>
<th>succ</th>
<th>id</th>
<th>dur</th>
<th>editor</th>
<th>artist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Book 2</td>
<td>PEDT</td>
<td>B2PEDT</td>
<td>B2REV Preliminary Edit 2 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Book 2</td>
<td>GRPH</td>
<td>B2GRPH</td>
<td>B2CEDT Graphics 3 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Book 2</td>
<td>CEDT</td>
<td>B2CEDT</td>
<td>B2PRF Copyedit Book 1 1 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Book 2</td>
<td>PRNT</td>
<td>B2PRNT</td>
<td>Print Book 2 .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As a next step, the data sets for the two subprojects are combined to form an Activity data set for the entire project. A variable priority is assigned the value ‘1’ for activities pertaining to the first book and the value ‘2’ for those pertaining to the second one. In other words, Book 1 has priority over Book 2. The Resource data set specifies the availability for each of the resources to be 1. The input data sets, books and resource, are displayed in Output 1.6.3.

data books;
 set book1 book2;
 if subproj = "Book 1" then priority = 1;
 else priority = 2;
 run;

title ’Publishing Books 1 and 2’;
proc print data=books;
 var subproj priority task act succ id dur editor artist;
 run;

data resource;
 input avdate & date7. editor artist;
 format avdate date7.;
 datalines;

2023-01-01
John Doe
Jane Smith
2023-02-01
Mary Brown
Mike Johnson
2023-03-01
Sarah Green
Tom Wilson
Example 1.6. Multiple Projects

```
1jan03 1 1
;

title 'Resources Available';
proc print data=resource;
run;
```

Output 1.6.3. Input Data Sets for Book Publishing Example

<table>
<thead>
<tr>
<th>Publishing Books 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resources Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

PROC CPM is then invoked to schedule the project to start on January 1, 2003. The PROJECT statement is used to indicate the subproject to which each activity belongs. The data set `bookschd` (displayed in **Output 1.6.4**) contains the schedule for the entire project. The ADDACT option on the PROC CPM statement adds observations for each of the subprojects, ‘Book 1’ and ‘Book 2,’ as well as one observation for the entire project. These observations are added at the end of the list of the observations corresponding to the observations in the input data set. The Usage data set `booksout` is also displayed in **Output 1.6.4**.

```
proc cpm data=books resin=resource
  out=bookschd resout=booksout
  date='1jan03'd interval=week
  addact;
  act act;
  dur dur;
  succ succ;
  resource editor artist / per=avdate avp rcp
    rule=actprty actprty=priority
    delayanalysis;
  id id task;
```
Compare the E_START and S_START schedules (in the data set bookschd) and note that on January 1, the activity ‘B1PEDT’ for Book1 is scheduled to start while the preliminary editing of book 2 (activity B2PEDT) has been postponed, due to subproject ‘Book 1’ having priority over subproject ‘Book 2.’ On January 22, there is no activity belonging to subproject ‘Book 1’ that demands an editor; thus, the activity ‘B2PEDT’ is scheduled to start on that day. As a result, the editor is working on an activity in the second project for two weeks starting from January 22, 2003; when ‘B1CEDT’ is ready to start, the editor is not available, causing a delay in this activity. Thus, even though the first book has priority over the second book, the scheduling algorithm does not keep a resource waiting for activities in the first project. However, if you enable activity splitting, you can reclaim the resource for the first book by allowing activities in the second project to be split, if necessary. For details regarding the scheduling algorithm allowing splitting of activities, see Chapter 2, “The CPM Procedure.”

Note: The entire project finishes on April 1, 2003; resource constraints have delayed project completion by four weeks. The variable R_DELAY in the Schedule data set bookschd indicates the amount of delay in weeks caused by resource constraints. The value of R_DELAY does not include any delay in the activity that is caused by a resource delay in one of its predecessors. See Example 2.15 in Chapter 2, “The CPM Procedure,” for more details about the R_DELAY variable.
Output 1.6.4. Data Sets BOOKSCHD and BOOKSOUT

Schedule for Project BOOKS

<table>
<thead>
<tr>
<th>Book 1.2 B1PEDT</th>
<th>B1REV</th>
<th>Preliminary Edit PEDT</th>
<th>01JAN03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book 1.2 B1PEDT</td>
<td>B1GRPH</td>
<td>Graphics GRPH</td>
<td>08JAN03</td>
</tr>
<tr>
<td>Book 1.2 B1PEDT</td>
<td>B1CEDT</td>
<td>Revise Book CEDT</td>
<td>05FEB03</td>
</tr>
<tr>
<td>Book 1.2 B1PEDT</td>
<td>B1PRF</td>
<td>Proofread Book PRF</td>
<td>05FEB03</td>
</tr>
<tr>
<td>Book 1.2 B1PEDT</td>
<td>B1PRNT</td>
<td>Print Book PRNT</td>
<td>19FEB03</td>
</tr>
<tr>
<td>Book 2.2 B2PEDT</td>
<td>B2REV</td>
<td>Preliminary Edit PEDT</td>
<td>22JAN03</td>
</tr>
<tr>
<td>Book 2.2 B2PEDT</td>
<td>B2GRPH</td>
<td>Graphics GRPH</td>
<td>05MAR03</td>
</tr>
<tr>
<td>Book 2.2 B2PEDT</td>
<td>B2CEDT</td>
<td>Revise Book CEDT</td>
<td>05MAR03</td>
</tr>
<tr>
<td>Book 2.2 B2PEDT</td>
<td>B2PRF</td>
<td>Proofread Book PRF</td>
<td>05MAR03</td>
</tr>
<tr>
<td>Book 2.2 B2PEDT</td>
<td>B2PRNT</td>
<td>Print Book PRNT</td>
<td>19MAR03</td>
</tr>
</tbody>
</table>

Resource Usage for Project BOOKS

<table>
<thead>
<tr>
<th>Obs</th>
<th>TIME</th>
<th>Editor</th>
<th>Artist</th>
<th>Artist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01JAN03</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>08JAN03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>15JAN03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>22JAN03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>29JAN03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>05FEB03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>12FEB03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>19FEB03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>26FEB03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>05MAR03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>12MAR03</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>19MAR03</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>26MAR03</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>02APR03</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The output data sets `bookschd` and `booksout` can be used to produce graphical reports of the schedule and the resource usage. In particular, the Schedule data set can be used to produce a zoned, time-scaled network diagram as shown in Output 1.6.5. The program used to produce the network diagram is shown in the following code. In this example, only the leaf tasks (those without any subtasks) are used to draw the network diagram. Further, the activities are aligned according to the resource-constrained start times and grouped according to the subproject.

```plaintext
goptions hpos=98 vpos=60;
pattern1 v=e c=green;
pattern2 v=e c=red;
title c=black f=swiss h=4 'Schedule for Project Books';
proc netdraw data=bookschd(where=(proj_dur=.) graphics;
   actnet / act=task succ=succ font=swiss
      id=(task) nodefid nolabel
      xbetween=8 htext=3 pcompress
      zone=subproj zonepat zonespace
      align=s_start separatearcs;
      label subproj = 'Subproject';
run;
```

Output 1.6.5. Resource Constrained Schedule for Project Books

The same project can also be scheduled using the PM procedure, as shown in the following statements. The resulting PM Window is shown in Output 1.6.6. The advantage with using PROC PM is that you can use the PM Window to edit the activity information, such as the durations, resource requirements, and so forth.
Example 1.7. Sequential Scheduling of Projects

Suppose the schedule displayed in Output 1.6.4 is not acceptable; you want the first book to be finished as soon as possible and do not want resources to be claimed by the second book at the cost of the first book. One way to accomplish this is to enable activities related to the second book to be split whenever the first book demands a resource currently in use by the second book. If you do not want activities to be split, you can still accomplish your goal by sequential scheduling. The structure of the input and output data sets enables you to schedule the two subprojects sequentially.

This example illustrates the sequential scheduling of subprojects ‘Book 1’ and ‘Book 2.’ The following program first schedules the subproject ‘Book 1’ using the resources
available. The resulting schedule is displayed in Output 1.7.1. The Usage data set bk1out is also displayed in Output 1.7.1.

/* Schedule the higher priority project first */
proc cpm data=book1 resin=resource
 out=bk1schd resout=bklout
date='1jan03'd interval=week;
 act act;
dur dur;
succ succ;
 resource editor artist / per=avdate avp rcp;
id id;
run;

Output 1.7.1. Sequential Scheduling of Subprojects: Book 1

<table>
<thead>
<tr>
<th>Obs</th>
<th>act</th>
<th>succ</th>
<th>dur</th>
<th>id</th>
<th>editor</th>
<th>artist</th>
<th>S_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B1PEDT</td>
<td>B1REV</td>
<td>1</td>
<td>Preliminary Edit</td>
<td>1</td>
<td>01JAN03</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B1PEDT</td>
<td>B1GRPH</td>
<td>1</td>
<td>Preliminary Edit</td>
<td>1</td>
<td>01JAN03</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B1REV</td>
<td>B1CEDT</td>
<td>2</td>
<td>Revise Book</td>
<td>1</td>
<td>08JAN03</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B1GRPH</td>
<td>B1CEDT</td>
<td>3</td>
<td>Graphics</td>
<td>1</td>
<td>08JAN03</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B1CEDT</td>
<td>B1PRF</td>
<td>1</td>
<td>Copyedit Book</td>
<td>1</td>
<td>29JAN03</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B1PRF</td>
<td>B1PRNT</td>
<td>1</td>
<td>Proofread Book</td>
<td>1</td>
<td>05FEB03</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B1PRNT</td>
<td>2</td>
<td>Print Book</td>
<td>.</td>
<td>12FEB03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>S_FINISH</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>07JAN03</td>
<td>01JAN03</td>
<td>07JAN03</td>
<td>01JAN03</td>
<td>07JAN03</td>
</tr>
<tr>
<td>2</td>
<td>07JAN03</td>
<td>01JAN03</td>
<td>07JAN03</td>
<td>01JAN03</td>
<td>07JAN03</td>
</tr>
<tr>
<td>3</td>
<td>28JAN03</td>
<td>08JAN03</td>
<td>28JAN03</td>
<td>08JAN03</td>
<td>28JAN03</td>
</tr>
<tr>
<td>4</td>
<td>28JAN03</td>
<td>25FEB03</td>
<td>25FEB03</td>
<td>25FEB03</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>05FEB03</td>
<td>05FEB03</td>
<td>05FEB03</td>
<td>05FEB03</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12FEB03</td>
<td>12FEB03</td>
<td>12FEB03</td>
<td>12FEB03</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25FEB03</td>
<td>25FEB03</td>
<td>25FEB03</td>
<td>25FEB03</td>
<td></td>
</tr>
</tbody>
</table>

Resource Usage for sub-project BOOK1

<table>
<thead>
<tr>
<th>Obs</th>
<th>TIME</th>
<th>Reditor</th>
<th>Aeditor</th>
<th>Rartist</th>
<th>Aartist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01JAN03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>08JAN03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>15JAN03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>22JAN03</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>29JAN03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>05FEB03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>12FEB03</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>19FEB03</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>26FEB03</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The Usage data set produced by PROC CPM has two variables, Aeditor and Aartist, showing the availability of the editor and the artist on each day of the project, after scheduling subproject ‘Book 1.’ This data set is used to create the data set remres, listing the remaining resources available, which is then used as the Resource input data set for scheduling the subproject ‘Book 2.’ The following program shows the DATA step and the invocation of PROC CPM.

The schedule for publishing ‘Book 2’ is displayed in Output 1.7.2. The Usage data set bk2out is also displayed in Output 1.7.2. Note that this method of scheduling has
ensured that ‘Book 1’ is not delayed; however, the entire project has been delayed by two more weeks, resulting in a total delay of six weeks.

```/* Construct the Resource availability data set */
/* with proper resource names */
data remres;
set bk1out;
avdate=_time_;
editor=aeditor;
artist=aartist;
keep avdate editor artist;
format avdate date7.;
run;
```

```proc cpm data=book2 resin=remres
   out=bk2schd resout=bk2out
date='1jan03'd interval=week;
act act;
dur dur;
succ succ;
resource editor artist / per=avdate avp rcp;
id id;
run;
```

Output 1.7.2. Sequential Scheduling of Subprojects: Book 2

<table>
<thead>
<tr>
<th>Obs</th>
<th>act</th>
<th>succ</th>
<th>dur</th>
<th>id</th>
<th>editor</th>
<th>artist</th>
<th>S_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B2PEDT</td>
<td>B2REV</td>
<td>2</td>
<td>1</td>
<td>Preliminary Edit</td>
<td>1</td>
<td>12FEB03</td>
</tr>
<tr>
<td>2</td>
<td>B2PEDT</td>
<td>B2GRPH</td>
<td>2</td>
<td>1</td>
<td>Preliminary Edit</td>
<td>1</td>
<td>12FEB03</td>
</tr>
<tr>
<td>3</td>
<td>B2REV</td>
<td>B2CEDT</td>
<td>2</td>
<td>1</td>
<td>Revise Book</td>
<td>1</td>
<td>26FEB03</td>
</tr>
<tr>
<td>4</td>
<td>B2GRPH</td>
<td>B2CEDT</td>
<td>3</td>
<td>1</td>
<td>Graphics</td>
<td>1</td>
<td>26FEB03</td>
</tr>
<tr>
<td>5</td>
<td>B2CEDT</td>
<td>B2PRF</td>
<td>1</td>
<td></td>
<td>Copyedit Book</td>
<td>1</td>
<td>19MAR03</td>
</tr>
<tr>
<td>6</td>
<td>B2PRF</td>
<td>B2PRNT</td>
<td>1</td>
<td></td>
<td>Proofread Book</td>
<td>1</td>
<td>26MAR03</td>
</tr>
<tr>
<td>7</td>
<td>B2PRNT</td>
<td></td>
<td></td>
<td></td>
<td>Print Book</td>
<td></td>
<td>02APR03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>S_FINISH</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25FEB03</td>
<td>01JAN03</td>
<td>14JAN03</td>
<td>01JAN03</td>
<td>14JAN03</td>
</tr>
<tr>
<td>2</td>
<td>25FEB03</td>
<td>01JAN03</td>
<td>14JAN03</td>
<td>01JAN03</td>
<td>14JAN03</td>
</tr>
<tr>
<td>3</td>
<td>11MAR03</td>
<td>15JAN03</td>
<td>28JAN03</td>
<td>22JAN03</td>
<td>04FEB03</td>
</tr>
<tr>
<td>4</td>
<td>1MAR03</td>
<td>15JAN03</td>
<td>04FEB03</td>
<td>15JAN03</td>
<td>04FEB03</td>
</tr>
<tr>
<td>5</td>
<td>25MAR03</td>
<td>05FEB03</td>
<td>11FEB03</td>
<td>05FEB03</td>
<td>11FEB03</td>
</tr>
<tr>
<td>6</td>
<td>01APR03</td>
<td>12FEB03</td>
<td>18FEB03</td>
<td>12FEB03</td>
<td>18FEB03</td>
</tr>
<tr>
<td>7</td>
<td>15APR03</td>
<td>19FEB03</td>
<td>04MAR03</td>
<td>19FEB03</td>
<td>04MAR03</td>
</tr>
</tbody>
</table>

Resource Usage for sub-project BOOK2

<table>
<thead>
<tr>
<th>Obs</th>
<th>TIME</th>
<th>Reditor</th>
<th>Aeditor</th>
<th>Rartist</th>
<th>Aartist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12FEB03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>19FEB03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>26FEB03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>05MAR03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>12MAR03</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>19MAR03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>26MAR03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>02APR03</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>09APR03</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>16APR03</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example 1.8. Project Cost Control

Cost control and accounting are important aspects of project management. Cost data for a project may be associated with activities or groups of activities, or with resources, such as personnel or equipment. For example, consider a project that consists of several subprojects, each of which is contracted to a different company. From the contracting company’s point of view, each subproject can be treated as one cost item; all the company needs to know is how much each subproject is going to cost. On the other hand, another project may contain several activities, each of which requires two types of labor, skilled and unskilled. The cost for each activity in the project may have to be computed on the basis of how much skilled or unskilled labor that activity uses. In this case, activity and project costs are determined from the resources used. Further, for any project, there may be several ways in which costs need to be summarized and accounted for. In addition to determining the cost of each individual activity, you may want to determine periodic budgets for different departments that are involved with the project or compare the actual costs that were incurred with the budgeted costs.

It is easy to set up cost accounting systems using the output data sets produced by PROC CPM, whether costs are associated with activities or with resources. In fact, you can even treat cost as a consumable resource if you can estimate the cost per day for each of the activities (see Chapter 2, “The CPM Procedure,” for details on resource allocation and types of resources). This example illustrates such a method for monitoring costs and shows how you can compute some of the standard cost performance measures used in project management.

The following three measures can be used to determine if a project is running on schedule and within budget (see Moder, Phillips, and Davis 1983, for a detailed discussion on project cost control):

- **Actual cost of work performed** (*ACWP*) is the actual cost expended to perform the work accomplished in a given period of time.
- **Budgeted cost of work performed** (*BCWP*) is the budgeted cost of the work completed in a given period of time.
- **Budgeted cost of work scheduled** (*BCWS*) is the budgeted cost of the work scheduled to be accomplished in a given period of time (if a baseline schedule were followed).

Consider the survey example described earlier in this chapter. Suppose that it is possible to estimate the cost per day for each activity in the project. The following data set `survcost` contains the project data (activity, succ1–succ3, id, duration) and a variable named `cost` containing the cost per day in dollars. In order to compute the BCWS for the project, you need to establish a baseline schedule. Suppose the early start schedule computed by PROC CPM is chosen as the baseline schedule. The Resource data set `costavl` establishes `cost` as a consumable resource, so that the CPM procedure can be used to accumulate costs (using the CUMUSAGE option).

The following program invokes PROC CPM with the RESOURCE statement and saves the Usage data set in `survrout`. The variable `ecost` in this Usage data set
contains the cumulative expense incurred for the baseline schedule; this is the same as the budgeted cost of work scheduled (or BCWS) saved in the data set basecost.

```plaintext
data survcost;
  format id $20. activity $8. succ1-succ3 $8. ;
  input id & activity & duration succ1 & succ2 & succ3 & cost;
datalines;
Plan Survey       plan sur 4 hire per design q . . 300
Hire Personnel    hire per 5 trn per . . . 350
Design Questionnaire design q 3 trn per select h print q 100
Train Personnel   trn per 3 cond sur . . . 500
Select Households select h 3 cond sur . . . 300
Print Questionnaire print q 4 cond sur . . . 250
Conduct Survey    cond sur 10 analyze . . . 200
Analyze Results   analyze 6 . . . . . . 500
;

data holidata;
  format hol date7.;
  hol = ’4jul03’d;
  run;

data costavl;
  input per & date7. otype $ cost;
  format per date7.;
datalines;
  . 2
  1jul03 reslevel 12000
;

proc cpm date=’1jul03’d interval=weekday
  data=survcost resin=costavl holidata=holidata
  out=sched resout=survrout;
  activity activity;
  successor succ1-succ3;
  duration duration;
  holiday hol;
  id id;
  resource cost / period = per
  obstype = otype cumusage;
  run;

data basecost (keep = _time_ bcws);
  set survrout;
  bcws = ecost;
  run;
```

Suppose that the project started as planned on July 1, 2003, but some of the activities took longer than planned and some of the cost estimates were found to be incorrect. The following data set, actual, contains updated information: the variables `as` and `af` contain the actual start and finish times of the activities that have been completed or are in progress. The variable `actcost` contains the revised cost per day for each activity. The following program combines this information with the existing project
data and saves the result in the data set update, displayed in Output 1.8.1. The Resource data set costavl2 (also displayed in Output 1.8.1) defines cost and actcost as consumable resources.

```sas
data actual;
  format id $20. ;
  input id & as & date9. af & date9. actcost;
  format as af date7.;
datalines;
Plan Survey 1JUL03 8JUL03 275
Hire Personnel 9JUL03 15JUL03 350
Design Questionnaire 10JUL03 14JUL03 150
Train Personnel 16JUL03 17JUL03 800
Select Households 15JUL03 17JUL03 450
Print Questionnaire 15JUL03 18JUL03 250
Conduct Survey 21JUL03 . 200
;

data update;
  merge survcost actual;
  run;

title 'Activity Data Set UPDATE';
proc print;
  run;

data costavl2;
  input per & date7. otype $ cost actcost;
  format per date7.;
datalines;
  . restype 2 2
  1jul03 reslevel 12000 12000
;

title 'Resource Data Set COSTAVL2';
proc print;
  run;
```
Next, PROC CPM is used to revise the schedule by using the ACTUAL statement to specify the actual start and finish times and the RESOURCE statement to specify both the budgeted and the actual costs. The resulting schedule is saved in the data set `updsched` (displayed in Output 1.8.2) and the budgeted and the actual cumulative costs of the project (until the current date) are saved in the data set `updtrout`. These cumulative costs represent the budgeted cost of work performed (BCWP) and the actual cost of work performed (ACWP), respectively, and are saved in the data set `updtcost`. The two data sets `basecost` and `updtcost` are then merged to create a data set that contains the three measures: `bcws`, `bcwp`, and `acwp`. The resulting data set is displayed in Output 1.8.3.

```
proc cpm date='1jul03'd interval=weekday
  data=update resin=costavl2
  out=updsched resout=updtrout
  holdata=holidata;
activity activity;
successor succ1-succ3;
duration duration;
holiday hol;
id id;
resource cost actcost / per = per
  obstype = otype
  maxdate = '21jul03'd cumusage;
actual / a_start=a_start=af;
run;
```

title 'Updated Schedule: Data Set UPDSCHED';
proc print data=updsched;
run;

data updtcost (keep = _time_ bcwp acwp);
 set updtrout;
 bcwp = ecost;
 acwp = eactcost;
run;

/* Create a combined data set to contain the BCWS, BCWP, ACWP */
/* per day and the cumulative values for these costs. */
data costs;
 merge basecost updtcost;
run;
title 'BCWS, BCWP, and ACWP';
proc print data=costs;
run;

Output 1.8.2. Project Cost Control: Updated Schedule

Updated Schedule: Data Set UPDSCHED

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
<th>t</th>
<th>i</th>
<th>s</th>
<th>s</th>
<th>s</th>
<th>s</th>
<th>v</th>
<th>u</th>
<th>u</th>
<th>t</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>S</td>
<td></td>
<td></td>
<td>a</td>
<td>T</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
<td></td>
<td>i</td>
<td>T</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
<td></td>
<td>o</td>
<td>U</td>
<td>U</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>n</td>
<td>S</td>
<td>R</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 plan sur hire per design q 4 Completed 5 Plan Survey
2 hire per trn per 5 Completed 5 Hire Personnel
3 design q trn per select h print q 3 Completed 3 Design Questionnaire
4 trn per cond sur 3 Completed 2 Train Personnel
5 select h cond sur 3 Completed 3 Select Households
6 print q cond sur 4 Completed 4 Print Questionnaire
7 cond sur analyze 10 In Progress Conduct Survey
8 analyze 6 Pending Analyze Results

<table>
<thead>
<tr>
<th>A</th>
<th>S</th>
<th>E</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>A</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>T</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>t</td>
<td>T</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>o</td>
<td>A</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>b</td>
<td>s</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>s</td>
<td>t</td>
<td>T</td>
<td>H</td>
</tr>
</tbody>
</table>

1 300 275 01JUL03 08JUL03 01JUL03 08JUL03 01JUL03 08JUL03 01JUL03 08JUL03
2 350 350 09JUL03 15JUL03 09JUL03 15JUL03 09JUL03 15JUL03 09JUL03 15JUL03
3 100 150 10JUL03 14JUL03 10JUL03 14JUL03 10JUL03 14JUL03 10JUL03 14JUL03
4 500 800 16JUL03 17JUL03 16JUL03 17JUL03 16JUL03 17JUL03 16JUL03 17JUL03
5 300 450 15JUL03 17JUL03 15JUL03 17JUL03 15JUL03 17JUL03 15JUL03 17JUL03
6 250 250 15JUL03 18JUL03 15JUL03 18JUL03 15JUL03 18JUL03 15JUL03 18JUL03
7 200 200 21JUL03 21JUL03 21JUL03 01AUG03 21JUL03 01AUG03 21JUL03 01AUG03
8 500 0 0 04AUG03 11AUG03 04AUG03 11AUG03 04AUG03 11AUG03
Output 1.8.3. Project Cost Control: BCWS, BCWP, ACWP

<table>
<thead>
<tr>
<th>Obs</th>
<th>TIME</th>
<th>bcws</th>
<th>bcwp</th>
<th>acwp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01JUL03</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>02JUL03</td>
<td>300</td>
<td>300</td>
<td>275</td>
</tr>
<tr>
<td>3</td>
<td>03JUL03</td>
<td>600</td>
<td>600</td>
<td>550</td>
</tr>
<tr>
<td>4</td>
<td>07JUL03</td>
<td>900</td>
<td>900</td>
<td>825</td>
</tr>
<tr>
<td>5</td>
<td>08JUL03</td>
<td>1200</td>
<td>1200</td>
<td>1100</td>
</tr>
<tr>
<td>6</td>
<td>09JUL03</td>
<td>1650</td>
<td>1500</td>
<td>1375</td>
</tr>
<tr>
<td>7</td>
<td>10JUL03</td>
<td>2100</td>
<td>1850</td>
<td>1725</td>
</tr>
<tr>
<td>8</td>
<td>11JUL03</td>
<td>2550</td>
<td>2300</td>
<td>2225</td>
</tr>
<tr>
<td>9</td>
<td>14JUL03</td>
<td>3450</td>
<td>2750</td>
<td>2725</td>
</tr>
<tr>
<td>10</td>
<td>15JUL03</td>
<td>4350</td>
<td>3200</td>
<td>3225</td>
</tr>
<tr>
<td>11</td>
<td>16JUL03</td>
<td>5400</td>
<td>4100</td>
<td>4275</td>
</tr>
<tr>
<td>12</td>
<td>17JUL03</td>
<td>6150</td>
<td>5150</td>
<td>5775</td>
</tr>
<tr>
<td>13</td>
<td>18JUL03</td>
<td>6650</td>
<td>6200</td>
<td>7275</td>
</tr>
<tr>
<td>14</td>
<td>21JUL03</td>
<td>6850</td>
<td>6450</td>
<td>7525</td>
</tr>
<tr>
<td>15</td>
<td>22JUL03</td>
<td>7050</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>16</td>
<td>23JUL03</td>
<td>7250</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>17</td>
<td>24JUL03</td>
<td>7450</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>18</td>
<td>25JUL03</td>
<td>7650</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>19</td>
<td>28JUL03</td>
<td>7850</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>20</td>
<td>29JUL03</td>
<td>8050</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>21</td>
<td>30JUL03</td>
<td>8250</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>22</td>
<td>31JUL03</td>
<td>8450</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>23</td>
<td>01AUG03</td>
<td>8650</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>24</td>
<td>04AUG03</td>
<td>9150</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>25</td>
<td>05AUG03</td>
<td>9650</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>26</td>
<td>06AUG03</td>
<td>10150</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>27</td>
<td>07AUG03</td>
<td>10650</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>28</td>
<td>08AUG03</td>
<td>11150</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>29</td>
<td>11AUG03</td>
<td>11650</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

The data set costs, containing the required cost information, is then used as input to PROC GPLOT to produce a plot of the three cumulative cost measures. The plot is shown in Output 1.8.4.

Note: BCWS, BCWP, and ACWP are three of the cost measures used as part of Earned Value Analysis, which is an important component of the Cost/Schedule Control Systems Criteria (referred to as C/SCSC) that was established in 1967 by the Department of Defense (DOD) to standardize the reporting of cost and schedule performance on major contracts. Refer to Fleming (1988) for a detailed discussion of C/SCSC. Similar methods, such as the ones described in this example, can be used to calculate all the relevant measures for analyzing cost and schedule performance.

```bash
/* Plot the cumulative costs */
data costplot (keep=date dollars id);
set costs;
format date date7.;
date = _time_;
if bcws ^= . then do;
dollars = BCWS; id = 1; output;
end;
if bcwp ^= . then do;
dollars = BCWP; id = 2; output;
end;
```
if acwp ^= . then do;
 dollars = ACWP; id = 3; output;
end;
run;

legend1 frame
 value=(f=swiss c=black j=l f=swiss 'BCWS' 'BCWP' 'ACWP')
 label=(f=swiss c=black);

axis1 width=2
 order=('1jul03’d to ’1aug03’d by week)
 length=60 pct
 value=(f=swiss c=black)
 label=(f=swiss c=black);

axis2 width=2
 order=(0 to 12000 by 2000)
 length = 55 pct
 value=(f=swiss c=black)
 label=(f=swiss c=black);

symbol1 i=join v=none c=green w=4 l=1;
symbol2 i=join v=none c=blue w=4 l=2;
symbol3 i=join v=none c=red w=4 l=3;
title f=swiss c=black 'Comparison of Costs';

proc gplot data=costplot;
 plot dollars * date = id / legend=legend1
 haxis=axis1
 vaxis=axis2;
run;
Example 1.9. Subcontracting Decisions

Making decisions about subcontracting forms an important part of several medium-to-large scale projects. For example, in the pharmaceutical industry, the analysis of clinical trials may be a part of the drug development project that could either be accomplished by the company’s statistical group or be subcontracted to a statistical consulting firm. The decision may hinge upon how busy the local statistical group is with other projects that may delay the results of the analysis for the drug in question. Further, there may be more than one firm that is a likely candidate for performing the analysis. As a prerequisite for deciding whether to assign the analysis subproject to an external firm, you need to obtain a bid in the form of estimates of the cost and project duration from the competing firms as well as a corresponding estimate from the in-house team.

The cost corresponding to each possible subcontracting firm may be a combination of the actual costs (consulting fees and so on) and the tardiness of the project (tardiness being measured as the time difference between when the results are expected to be available and the target date for the availability of the results). The information required could be provided in terms of Gantt charts and cost analysis charts. Using this information, the project manager for the drug development project can use the principles of decision analysis to determine whether to do the analysis in-house or assign it to an outside consulting firm and to pick the firm to which the subcontract is to be assigned. Some of these ideas are illustrated in the following example.
The stages of the decision problem are identified by the STAGEIN= data set, stage, displayed in Output 1.9.1. As a first step, the drug company needs to decide whether to perform the analysis in-house or to assign it to one of two consulting firms. If the in-house team is chosen, the resulting stage is a chance node, called ‘Complete,’ with two possible outcomes: ‘On-Time’ or ‘Delay’; if there is a delay, the resulting cost to the drug company is $10,000. For each of these two outcomes, there is a second chance event corresponding to the cost of the analysis. For each of the two consulting firms, the outcome can be one of three possibilities: ‘Early,’ ‘Late,’ or ‘Delay2’; if there is a delay, the drug company imposes a delay penalty of $9,000 on the firm, resulting in a net reward of $1,000 (penalty of $9,000 minus the cost of $10,000).
The PROBIN= data set, prob, identifies the various probabilities associated with the different possible outcomes at each of the chance events. The prob data set is also displayed in Output 1.9.1.

The rewards (or payoffs) associated with each of the end stages are listed in the PAYOFFS= data set, payoff (also listed in Output 1.9.1). For example, for the in-house team, the high (low) cost associated with completing the analysis on time is $12,000 ($9,500), and so on.

The following program invokes PROC DTREE to solve the decision problem. The complete decision tree, displayed in Output 1.9.2, represents the various stages and outcomes of the problem and identifies the optimal decision. In this example, the drug company should award the consulting contract to the second consulting firm as indicated by the dashed line for the corresponding branch of the tree.


```sql
title f=swiss "Subcontracting Decision";
goptions ftext=simplexu;
symbol1 f=marker v=P;
symbol2 f=marker v=U;
symbol3 f=marker v=A;

/* PROC DTREE statements */
proc dtree stagein=stage
    probin=prob
    payoffs=payoff
    nowarning;
evaluate;
treeplot / graphics
    compress ybetween=1 cell
    lwidth=1 lwidthb=2 lstyleb=20
    hsymbol=2 symbolc=1
    symbold=2 symbole=3;
quit;
```
Output 1.9.2. Decision Analysis

Project Management Systems

As illustrated in the “Data Flow” section on page 3 and the “Examples” section on page 11, the procedures of SAS/OR software, when combined with the other parts of the SAS System, provide a rich environment for developing customized project management systems. Every company has its own set of requirements for how project data should be handled and for how costs should be accounted. The CPM, GANTT, NETDRAW, and PM procedures, together with the other reporting, summarizing, charting, and plotting procedures, are the basic building blocks that can be combined in several different ways to provide the exact structure that you need. The interactive PM procedure can be used as the primary editing interface for entering all activity information for your projects. Further, the application building tools in the SAS System can be used to cement the pieces together in a menu-driven application. You can create easy-to-use applications enabling the user to enter information continually and to obtain progress reports periodically.
The Projman Application

The Projman application is a user-friendly graphical user interface for performing project management with the SAS System. Through the use of an interactive Gantt chart window provided by the PM procedure, you can easily create and manage multiple projects.

Projman is accessed by invoking the projman command in the SAS windowing environment or by selecting Solutions->Analysis->Project Management from the primary SAS menu. Projman enables you to define multiple projects, information about which are stored in a project dictionary data set. This project dictionary provides a convenient way to manage all the data sets associated with each project.

Projman also provides a variety of project reports. These reports include Gantt charts, network diagrams, calendars, and tabular listings as well as resource usage and cost reports. You can modify these reports to add your own personalized reports to the application.

For details about the Projman application, see Chapter 8, “The Projman Application.”

Web-Based Scheduling Systems

The examples in this chapter describe several scenarios that illustrate the different ways in which the project management procedures can be used to define, manage, and monitor projects. As described in the previous sections, the SAS System can be used to create comprehensive Decision Support systems or project management systems, in particular, using the procedures described in this book. With the availability of SAS/IntrNet software, you can also create Web-based project management or scheduling systems where the browser is used to display schedules and resource usage information that is updated using the CPM procedure’s scheduling engine.

Examples of such Web-based applications are available at SAS Institute’s external Web site at the following url: http://support.sas.com/sassamples/demos/supplychain/demos. In particular, the “Enterprise-Wide Resource Management” (EWRM) demo uses several of the ideas described in this chapter and illustrated in the examples throughout this book to create an application that schedules the tasks required for the maintenance of aircraft engines at a hypothetical service facility.

Note: The EWRM Web demo is a client-server application driven from your desktop and running at SAS Institute in Cary, NC. You can access the demo from SAS Institute’s Supply Chain Web site (http://support.sas.com/sassamples/demos/supplychain/demos/ewrm/ewrm–index.html). The graphs and reports in the demo have not been saved, but are calculated on demand; this means that they change dynamically as the data used to calculate them change. This demo requires Internet Explorer, version 5.0 or later.
Microsoft Project Conversion Macros

MDBTOPM and MP2KTOPM are two SAS macros that convert Microsoft® Project data to a form that is readable by the PM procedure. MDBTOPM converts Microsoft Project 98 data, and MP2KTOPM converts Microsoft Project 2000 data. These two macros are wrapped into the macro MSPTOSAS. The macros generate the necessary SAS data sets, determine the values of the relevant options, and invoke an instance of the PM procedure with the converted project data. For details about the macros, see Chapter 4, “The Microsoft Project Conversion Macros.”

References

Chapter 2
The CPM Procedure

Overview

The CPM procedure can be used for planning, controlling, and monitoring a project. A typical project consists of several activities that may have precedence and time constraints. Some of these activities may already be in progress; some of them may follow different work schedules. All of the activities may compete for scarce resources. PROC CPM enables you to schedule activities subject to all of these constraints.

PROC CPM enables you to define calendars and specify holidays for the different activities so that you can schedule around holidays and vacation periods. Once a project has started, you can monitor it by specifying current information or progress data that is used by PROC CPM to compute an updated schedule. You can compare the new schedule with a baseline (or target) schedule.

For projects with scarce resources, you can determine resource-constrained schedules. PROC CPM enables you to choose from a wide variety of options so that you can control the scheduling process. Thus, you may choose to delay project completion time or use supplementary levels of resources, or alternate resources, if they are available.

All project information is contained in SAS data sets. The input data sets used by PROC CPM are as follows:

- The Activity data set contains all activity-related information such as activity name, precedence information, calendar used by the activity, progress information, baseline (or target schedule) information, resource requirements, time constraints, and any other information that you want to identify with each activity.
- The Resource data set specifies resource types, resource availabilities, resource priorities, and alternate resources.
- The Workday data set and the Calendar data set together enable you to specify any type of work pattern during a week and within each day of the week.
- The Holiday data set enables you to associate standard holidays and vacation periods with each calendar.

The output data sets are as follows:

- The Schedule data set contains the early, late, baseline, resource-constrained, and actual schedules and any other activity-related information that is calculated by PROC CPM.
• The **Resource Schedule** data set contains the schedules for each resource used by an activity.
• The **Usage** data set contains the resource usage for each of the resources used in the project.

See Chapter 3, “The PM Procedure,” for an interactive procedure that enables you to use a Graphical User Interface to enter and edit project information.

Getting Started

The basic steps necessary to schedule a project are illustrated using a simple example. Consider a software development project in which an applications developer has the software finished and ready for preliminary testing. In order to complete the project, several activities must take place. Certain activities cannot start until other activities have finished. For instance, the preliminary documentation must be written before it can be revised and edited and before the Quality Assurance department (QA) can test the software. Such constraints among the activities (namely, activity B can start after activity A has finished) are referred to as **precedence constraints**. Given the precedence constraints and estimated durations of the activities, you can use the **critical path method** to determine the shortest completion time for the project.

![Software Project](image)

Figure 2.1. Activity-On-Arc Network

The first step in determining project completion time is to capture the relationships between the activities in a convenient representation. This is done by using a network diagram. Two types of network diagrams are popular for representing a project.
• Activity-On-Arc (AOA) or Activity-On-Edge (AOE) diagrams show the activities on the arcs or edges of the network. Figure 2.1 shows the AOA representation for the software project. This method of representing a project is known also as the arrow diagramming method (ADM). For projects represented in the AOA format, PROC CPM requires the use of the following statements:

```plaintext
PROC CPM options;
  TAILNODE  variable ;
  HEADNODE  variable ;
  DURATION  variable ;
```

• Activity-On-Node (AON) or Activity-On-Vertex (AOV) diagrams show the activities on nodes or vertices of the network. Figure 2.2 shows the AON representation of the project. This method is known also as the precedence diagramming method (PDM). The AON representation is more flexible because it enables you to specify nonstandard precedence relationships between the activities (for example, you can specify that activity B starts five days after the start of activity A). PROC CPM requires the use of the following statements to schedule projects that are represented using the AON format:

```plaintext
PROC CPM options;
  ACTIVITY  variable ;
  SUCCESSOR variables ;
  DURATION  variable ;
```

Figure 2.1 Activity-On-Arc Network

Figure 2.2 Activity-On-Node Network
The AON representation of the network is used in the remainder of this section to illustrate some of the features of PROC CPM. The project data are input to PROC CPM using a SAS data set. The basic project information is conveyed to PROC CPM through the `ACTIVITY`, `SUCCESSOR`, and `DURATION` statements. Each observation of the Activity data set specifies an activity in the project, its duration, and its immediate successors. PROC CPM enables you to specify all of the immediate successors in the same observation, or you can have multiple observations for each activity, listing each successor in a separate observation. (Multiple variables in the `SUCCESSOR` statement are used here.) PROC CPM enables you to use long activity names. In this example, shorter names are used for the activities to facilitate data entry; a variable, `Descrpt`, is used to specify a longer description for each activity.

Among other things, the procedure determines

- the minimum time in which the project can be completed
- the set of activities that is critical to the completion of the project in the minimum amount of time

No displayed output is produced. However, the results are saved in an output data set (the Schedule data set) that is shown in Figure 2.3.

The code for the entire program is as follows.

```sas
data software;
  input Descrpt & Duration Activity $ Succesr1 $ Succesr2 $ ;
datalines;
Initial Testing  20  TESTING  RECODE .
Prel. Documentation  15  PRELDOC  DOCEDREV  QATEST
Meet Marketing  1  MEETMKT  RECODE .
Recoding  5  RECODE  DOCEDREV  QATEST
QA Test Approve  10  QATEST  PROD .
Doc. Edit and Revise  10  DOCEDREV  PROD .
Production  1  PROD . .
;
proc cpm data=software
  out=intro1
  interval=day
  date='01mar04'd;
  id descrpt;
  activity activity;
  duration duration;
  successor succesr1 succesr2;
run;

title 'Project Schedule';
proc print data=intro1;
run;
```
Project Schedule

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>Successor1</th>
<th>Successor2</th>
<th>Duration</th>
<th>Descrpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TESTING</td>
<td>RECODE</td>
<td></td>
<td>20</td>
<td>Initial Testing</td>
</tr>
<tr>
<td>2</td>
<td>PRELDOC</td>
<td>DOCEDREV</td>
<td>QATEST</td>
<td>15</td>
<td>Prel. Documentation</td>
</tr>
<tr>
<td>3</td>
<td>MEETMKT</td>
<td>RECODE</td>
<td></td>
<td>1</td>
<td>Meet Marketing</td>
</tr>
<tr>
<td>4</td>
<td>RECODE</td>
<td>DOCEDREV</td>
<td>QATEST</td>
<td>5</td>
<td>Recoding</td>
</tr>
<tr>
<td>5</td>
<td>QATEST</td>
<td>PROD</td>
<td></td>
<td>10</td>
<td>QA Test Approve</td>
</tr>
<tr>
<td>6</td>
<td>DOCEDREV</td>
<td>PROD</td>
<td></td>
<td>10</td>
<td>Doc. Edit and Revise</td>
</tr>
<tr>
<td>7</td>
<td>PROD</td>
<td></td>
<td></td>
<td>1</td>
<td>Production</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>01MAR04</td>
<td>15MAR04</td>
<td>11MAR04</td>
<td>25MAR04</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>20MAR04</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>05APR04</td>
<td>05APR04</td>
<td>05APR04</td>
<td>05APR04</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2.3. Software Project Plan

In addition to the variables specified in the ACTIVITY, SUCCESSOR, DURATION, and ID statements, the output data set contains the following new variables.

E_START

specifies the earliest time an activity can begin, subject to any time constraints and the completion time of the preceding activity.

E_FINISH

specifies the earliest time an activity can be finished, assuming it starts at E_START.

L_START

specifies the latest time an activity can begin so that the project is not delayed.

L_FINISH

specifies the latest time an activity can be finished without delaying the project.

T_FLOAT

specifies the amount of flexibility in the starting of a specific activity without delaying the project:

\[
T_{FLOAT} = L_{START} - E_{START} = L_{FINISH} - E_{FINISH}
\]

F_FLOAT

specifies the difference between the early finish time of the activity and the early start time of the activity’s immediate successors.

In **Figure 2.3** the majority of the tasks have a total float value of 0. These events are *critical*; that is, any delay in these activities will cause the project to be delayed. Some of the activities have slack present, which means that they can be delayed by that amount without affecting the project completion date. For example, the activity MEETMKT has a slack period of 19 days because there are 19 days between 01MAR04 and 20MAR04.
The INTERVAL= option in the PROC CPM statement enables you to specify the durations of the activities in one of several possible units including days, weeks, months, hours, and minutes. In addition, you can schedule activities around weekends and holidays. (To skip weekends, you specify INTERVAL=WEEKDAY.) You can also choose different patterns of work during a day or a week (for example, holidays on Friday and Saturday) and different sets of holidays for the different activities in the project. A calendar consists of a set of work schedules for a typical week and a set of holidays. PROC CPM enables you to define any number of calendars and associate different activities with different calendars.

In the previous example, you saw that you could schedule your project by choosing a project start date. You can also specify a project finish date if you have a deadline to be met and you need to determine the latest start times for the different activities in the project. You can set constraints on start or finish dates for specific activities within a given project as well. For example, testing the software may have to be delayed until the testing group finishes another project that has a higher priority. PROC CPM can schedule the project subject to such restrictions through the use of the ALIGNDATE and ALIGNTYPE statements. See Example 2.12 for more information on the use of the ALIGNDATE and ALIGNTYPE statements.

For a project that is already in progress, you can incorporate the actual schedule of the activities (some activities may already be completed while others may still be in progress) to obtain a progress update. You can save the original schedule as a baseline schedule and use it to compare against the current schedule to determine if any of the activities have taken longer than anticipated.

Quite often the resources needed to perform the activities in a project are available only in limited quantities and may cause certain activities to be postponed due to unavailability of the required resources. You can use PROC CPM to schedule the activities in a project subject to resource constraints. A wide range of options enables you to control the scheduling process. For example, you can specify resource or activity priorities, set constraints on the maximum amount of delay that can be tolerated for a given activity, enable activities to be preempted, specify alternate resources that can be used instead of scarce resources, or indicate secondary levels of resources that can be used when the primary levels are insufficient.

When an activity requires multiple resources, it is possible that each resource may follow a different calendar and each may require varying amounts of work. PROC CPM enables you to define resource-driven durations for the activities. You can also specify calendars for the resources. In either of these situations it is possible that each resource used by an activity may have its own individual schedule. PROC CPM enables you to save the resource schedules for the different activities in a Resource Schedule data set, the RESOURCESCHED= data set.

In addition to obtaining a resource-constrained schedule in an output data set, you can save the resource utilization summary in another output data set, the RESOURCEOUT= data set. Several options enable you to control the amount of information saved in this data set.

The CPM procedure enables you to define activities in a multiproject environment
with multiple levels of nesting. You can specify a PROJECT variable that identifies the name or number of the project to which each activity belongs.

All the options available with the CPM procedure are discussed in detail in the following sections. Several examples illustrate most of the features.

Syntax

The following statements are used in PROC CPM:

```
PROC CPM options;
   ACTIVITY variable;
   ACTUAL / actual options;
   ALIGNDATE variable;
   ALIGNTYPE variable;
   BASELINE / baseline options;
   CALID variable;
   DURATION / duration options;
   HEADNODE variable;
   HOLIDAY variable / holiday options;
   ID variables;
   PROJECT variable / project options;
   RESOURCE variables / resource options;
   SUCCESSOR variables / lag options;
   TAILNODE variable;
```

Functional Summary

The following tables outline the options available for the CPM procedure classified by function.

Table 2.1. Activity Splitting Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>split in-progress activities at TIMENOW</td>
<td>ACTUAL</td>
<td>TIMENOWSPLIT</td>
</tr>
<tr>
<td>max. number of segments variable</td>
<td>RESOURCE</td>
<td>MAXNSEGMT=</td>
</tr>
<tr>
<td>min. segment duration variable</td>
<td>RESOURCE</td>
<td>MINSEGMTDUR=</td>
</tr>
<tr>
<td>enable splitting</td>
<td>RESOURCE</td>
<td>SPLITFLAG</td>
</tr>
</tbody>
</table>

Table 2.2. Baseline or Target Schedule Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline finish date variable</td>
<td>BASELINE</td>
<td>B_FINISH=</td>
</tr>
<tr>
<td>baseline start date variable</td>
<td>BASELINE</td>
<td>B_START=</td>
</tr>
<tr>
<td>schedule to compare with baseline</td>
<td>BASELINE</td>
<td>COMPARE=</td>
</tr>
<tr>
<td>schedule to use as baseline</td>
<td>BASELINE</td>
<td>SET=</td>
</tr>
<tr>
<td>schedule to update baseline</td>
<td>BASELINE</td>
<td>UPDATE=</td>
</tr>
</tbody>
</table>
Chapter 2. The CPM Procedure

Table 2.3. Calendar Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>calendar variable</td>
<td>CONV</td>
<td></td>
</tr>
<tr>
<td>holiday variable</td>
<td>HOLIDAY</td>
<td></td>
</tr>
<tr>
<td>holiday duration variable</td>
<td>HOLIDUR=</td>
<td></td>
</tr>
<tr>
<td>holiday finish variable</td>
<td>HOLIFIN=</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.4. Data Set Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>calendar input data set</td>
<td>PROC CPM</td>
<td>CALEDATA=</td>
</tr>
<tr>
<td>activity input data set</td>
<td>PROC CPM</td>
<td>DATA=</td>
</tr>
<tr>
<td>holiday input data set</td>
<td>PROC CPM</td>
<td>HOLIDATA=</td>
</tr>
<tr>
<td>schedule output data set</td>
<td>PROC CPM</td>
<td>OUT=</td>
</tr>
<tr>
<td>resource availability input data set</td>
<td>PROC CPM</td>
<td>RESOURCEIN=</td>
</tr>
<tr>
<td>resource schedule output data set</td>
<td>PROC CPM</td>
<td>RESOURCESCHED=</td>
</tr>
<tr>
<td>resource usage output data set</td>
<td>PROC CPM</td>
<td>RESOURCEOUT=</td>
</tr>
<tr>
<td>workday input data set</td>
<td>PROC CPM</td>
<td>WORKDATA=</td>
</tr>
</tbody>
</table>

Table 2.5. Duration Control Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>workday length</td>
<td>PROC CPM</td>
<td>DAYLENGTH=</td>
</tr>
<tr>
<td>workday start</td>
<td>PROC CPM</td>
<td>DAYSTART=</td>
</tr>
<tr>
<td>duration unit</td>
<td>PROC CPM</td>
<td>INTERVAL=</td>
</tr>
<tr>
<td>duration multiplier</td>
<td>PROC CPM</td>
<td>INTPER=</td>
</tr>
<tr>
<td>treatment of milestone</td>
<td>PROC CPM</td>
<td>SETFINISHMILESTONE</td>
</tr>
<tr>
<td>duration variable</td>
<td>DURATION</td>
<td></td>
</tr>
<tr>
<td>finish variable</td>
<td>DURATION</td>
<td>FINISH=</td>
</tr>
<tr>
<td>override specified duration</td>
<td>DURATION</td>
<td>OVERRIDEDUR</td>
</tr>
<tr>
<td>start variable</td>
<td>DURATION</td>
<td>START=</td>
</tr>
<tr>
<td>work variable</td>
<td>RESOURCE</td>
<td>WORK=</td>
</tr>
</tbody>
</table>

Table 2.6. Lag Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>alphanumeric lag duration calendar</td>
<td>SUCCESSOR</td>
<td>ALAGCAL=</td>
</tr>
<tr>
<td>lag variables</td>
<td>SUCCESSOR</td>
<td>LAG=</td>
</tr>
<tr>
<td>numeric lag duration calendar</td>
<td>SUCCESSOR</td>
<td>NLAGCAL=</td>
</tr>
</tbody>
</table>

Table 2.7. Miscellaneous Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>suppress warning messages</td>
<td>PROC CPM</td>
<td>SUPPRESSOBSWARN</td>
</tr>
<tr>
<td>fix L..FINISH for finish tasks to E..FINISH</td>
<td>PROC CPM</td>
<td>FIXFINISH</td>
</tr>
</tbody>
</table>
Table 2.8. Network Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>AON format activity variable</td>
<td>ACTIVITY</td>
<td></td>
</tr>
<tr>
<td>AOA format headnode variable</td>
<td>HEADNODE</td>
<td></td>
</tr>
<tr>
<td>project variable</td>
<td>PROJECT</td>
<td></td>
</tr>
<tr>
<td>AON format successor variables</td>
<td>SUCCESSOR</td>
<td></td>
</tr>
<tr>
<td>AOA format tailnode variable</td>
<td>TAILNODE</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.9. Multiproject Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>project variable</td>
<td>PROJECT</td>
<td>AGGREGATEPARENTRES</td>
</tr>
<tr>
<td>aggregate parent resources</td>
<td>PROJECT</td>
<td>IGNOREPARENTRES</td>
</tr>
<tr>
<td>ignore parent resources</td>
<td>PROJECT</td>
<td>SEPCRIT</td>
</tr>
<tr>
<td>compute separate critical paths</td>
<td>PROJECT</td>
<td>USEPROJDUR</td>
</tr>
<tr>
<td>use specified project duration</td>
<td>PROJECT</td>
<td>WBSCODE</td>
</tr>
<tr>
<td>compute WBS Code</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.10. OUT= Data Set Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>include percent complete variable</td>
<td>ACTUAL</td>
<td>ESTIMATEPCTC</td>
</tr>
<tr>
<td>add an observation for missing activities</td>
<td>PROC CPM</td>
<td>ADDACT</td>
</tr>
<tr>
<td>single observation per activity</td>
<td>PROC CPM</td>
<td>COLLAPSE</td>
</tr>
<tr>
<td>copy relevant variables to Schedule data set</td>
<td>PROC CPM</td>
<td>XFERVARS</td>
</tr>
<tr>
<td>variables to be copied to Schedule data set</td>
<td>ID</td>
<td>DESCENDING</td>
</tr>
<tr>
<td>include descending sort variables</td>
<td>PROJECT</td>
<td>ORDERALL</td>
</tr>
<tr>
<td>include all sort order variables</td>
<td>PROJECT</td>
<td>ESORDER</td>
</tr>
<tr>
<td>include early start sort order variable</td>
<td>PROJECT</td>
<td>LSORDER</td>
</tr>
<tr>
<td>include late start sort order variable</td>
<td>PROJECT</td>
<td>SSORDER</td>
</tr>
<tr>
<td>include resource start order variable</td>
<td>PROJECT</td>
<td>WBSCODE</td>
</tr>
<tr>
<td>include WBS Code</td>
<td>PROJECT</td>
<td>WBSCODE</td>
</tr>
<tr>
<td>include information about resource delays</td>
<td>RESOURCE</td>
<td>DELAYANALYSIS</td>
</tr>
<tr>
<td>include early start schedule</td>
<td>RESOURCE</td>
<td>E__START</td>
</tr>
<tr>
<td>include free float</td>
<td>RESOURCE</td>
<td>F__FLOAT</td>
</tr>
<tr>
<td>set unscheduled S__START and S__FINISH</td>
<td>RESOURCE</td>
<td>FILLUNSCHED</td>
</tr>
<tr>
<td>include late start schedule</td>
<td>RESOURCE</td>
<td>L__START</td>
</tr>
<tr>
<td>exclude early start schedule</td>
<td>RESOURCE</td>
<td>NOE__START</td>
</tr>
<tr>
<td>exclude free float</td>
<td>RESOURCE</td>
<td>NOF__FLOAT</td>
</tr>
<tr>
<td>exclude late start schedule</td>
<td>RESOURCE</td>
<td>NOL__START</td>
</tr>
<tr>
<td>exclude resource variables</td>
<td>RESOURCE</td>
<td>NORESOURCEVARS</td>
</tr>
<tr>
<td>exclude total float</td>
<td>RESOURCE</td>
<td>NOT__FLOAT</td>
</tr>
<tr>
<td>include resource variables</td>
<td>RESOURCE</td>
<td>RESOURCEVARS</td>
</tr>
<tr>
<td>exclude total float</td>
<td>RESOURCE</td>
<td>T__FLOAT</td>
</tr>
<tr>
<td>set unscheduled S__START and S__FINISH to missing</td>
<td>RESOURCE</td>
<td>UNSCHEDMISS</td>
</tr>
<tr>
<td>update unscheduled S__START, S__FINISH</td>
<td>RESOURCE</td>
<td>UPDTUNSCHED</td>
</tr>
</tbody>
</table>
Chapter 2. The CPM Procedure

Table 2.11. Problem Size Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of precedence constraints</td>
<td>PROC CPM</td>
<td>NADJ=</td>
</tr>
<tr>
<td>number of activities</td>
<td>PROC CPM</td>
<td>NACTS=</td>
</tr>
<tr>
<td>number of distinct node or activity names</td>
<td>PROC CPM</td>
<td>NNODES=</td>
</tr>
<tr>
<td>number of resource requirements</td>
<td>PROC CPM</td>
<td>NRESREQ=</td>
</tr>
<tr>
<td>do not use utility data set</td>
<td>PROC CPM</td>
<td>NOUTIL</td>
</tr>
</tbody>
</table>

Table 2.12. Progress Updating Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual finish variable</td>
<td>ACTUAL</td>
<td>A_FINISH=</td>
</tr>
<tr>
<td>actual start variable</td>
<td>ACTUAL</td>
<td>A_START=</td>
</tr>
<tr>
<td>assume automatic completion</td>
<td>ACTUAL</td>
<td>AUTOUPDT</td>
</tr>
<tr>
<td>enable actual time to fall in a non-work period</td>
<td>ACTUAL</td>
<td>FIXASTART</td>
</tr>
<tr>
<td>do not assume automatic completion</td>
<td>ACTUAL</td>
<td>NOAUTOUPDT</td>
</tr>
<tr>
<td>percentage complete variable</td>
<td>ACTUAL</td>
<td>PCTCOMP=</td>
</tr>
<tr>
<td>remaining duration variable</td>
<td>ACTUAL</td>
<td>REMDUR=</td>
</tr>
<tr>
<td>show float for all activities</td>
<td>ACTUAL</td>
<td>SHOWFLOAT</td>
</tr>
<tr>
<td>current date</td>
<td>ACTUAL</td>
<td>TIMENOW=</td>
</tr>
</tbody>
</table>

Table 2.13. Resource Variable Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource variables</td>
<td>RESOURCE</td>
<td>OBSTYPE=</td>
</tr>
<tr>
<td>observation type variable</td>
<td>RESOURCE</td>
<td>PERIOD=</td>
</tr>
<tr>
<td>resource availability date/time variable</td>
<td>RESOURCE</td>
<td>RESID=</td>
</tr>
<tr>
<td>alternate resource specification variable</td>
<td>RESOURCE</td>
<td>WORK=</td>
</tr>
<tr>
<td>work variable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.14. Resource Allocation Control Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>delay variable</td>
<td>RESOURCE</td>
<td>ACTDELAY=</td>
</tr>
<tr>
<td>activity priority variable</td>
<td>RESOURCE</td>
<td>ACTIVITYPRTY=</td>
</tr>
<tr>
<td>use alternate resources before supplementary levels</td>
<td>RESOURCE</td>
<td>ALTBEFORESSUP</td>
</tr>
<tr>
<td>wait until LSTART + DELAY</td>
<td>RESOURCE</td>
<td>AWAITDELAY</td>
</tr>
<tr>
<td>delay specification</td>
<td>RESOURCE</td>
<td>DELAY=</td>
</tr>
<tr>
<td>schedule even if insufficient resources</td>
<td>RESOURCE</td>
<td>INFEASDIAGNOSTIC</td>
</tr>
<tr>
<td>independent allocation</td>
<td>RESOURCE</td>
<td>INDEPENDENTALLOC</td>
</tr>
<tr>
<td>milestones can consume resources</td>
<td>RESOURCE</td>
<td>MILESTONERESOURCE</td>
</tr>
<tr>
<td>milestones can not consume resources</td>
<td>RESOURCE</td>
<td>MILESTONENORESOURCE</td>
</tr>
<tr>
<td>use multiple alternates for a single resource</td>
<td>RESOURCE</td>
<td>MULTIPLEALTERNATES</td>
</tr>
<tr>
<td>resource calendar intersect</td>
<td>RESOURCE</td>
<td>RESCALINTERSECT</td>
</tr>
<tr>
<td>scheduling priority rule</td>
<td>RESOURCE</td>
<td>SCHEDRULE=</td>
</tr>
<tr>
<td>secondary scheduling priority rule</td>
<td>RESOURCE</td>
<td>SCHEDRULE2=</td>
</tr>
</tbody>
</table>
stop date for resource constrained scheduling | RESOURCE | STOPDATE=

Table 2.15. RESOURCEOUT= Data Set Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>include all types of resource usage</td>
<td>RESOURCE</td>
<td>ALL</td>
</tr>
<tr>
<td>append observations for total usage</td>
<td>RESOURCE</td>
<td>APPEND</td>
</tr>
<tr>
<td>alphanumeric calendar for TIME</td>
<td>RESOURCE</td>
<td>ROUTCAL=</td>
</tr>
<tr>
<td>include availability profile for each resource</td>
<td>RESOURCE</td>
<td>AVPROFILE</td>
</tr>
<tr>
<td>cumulative usage for consumable resources</td>
<td>RESOURCE</td>
<td>CUMUSAGE</td>
</tr>
<tr>
<td>include early start profile for each resource</td>
<td>RESOURCE</td>
<td>ESPROFILE</td>
</tr>
<tr>
<td>exclude unscheduled activities in profile</td>
<td>RESOURCE</td>
<td>EXCLUNSCHED</td>
</tr>
<tr>
<td>include unscheduled activities in profile</td>
<td>RESOURCE</td>
<td>INCLUNSCHED</td>
</tr>
<tr>
<td>save observations for total usage</td>
<td>RESOURCE</td>
<td>TOTUSAGE</td>
</tr>
<tr>
<td>include late start profile for each resource</td>
<td>RESOURCE</td>
<td>LSPROFILE</td>
</tr>
<tr>
<td>maximum value of TIME</td>
<td>RESOURCE</td>
<td>MAXDATE=</td>
</tr>
<tr>
<td>maximum number of observations</td>
<td>RESOURCE</td>
<td>MAXOBS=</td>
</tr>
<tr>
<td>minimum value of TIME</td>
<td>RESOURCE</td>
<td>MINDATE=</td>
</tr>
<tr>
<td>numeric calendar for TIME</td>
<td>RESOURCE</td>
<td>NROUTCAL=</td>
</tr>
<tr>
<td>include resource constrained profile</td>
<td>RESOURCE</td>
<td>RCPROFILE</td>
</tr>
<tr>
<td>unit of difference between consecutive TIME values</td>
<td>RESOURCE</td>
<td>ROUTINTERVAL=</td>
</tr>
<tr>
<td>difference between consecutive TIME values</td>
<td>RESOURCE</td>
<td>ROUTINTPER=</td>
</tr>
<tr>
<td>use a continuous calendar for TIME</td>
<td>RESOURCE</td>
<td>ROUTNOBREAK</td>
</tr>
</tbody>
</table>

Table 2.16. RESOURCESCHED= Data Set Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>add activity or resource calendar</td>
<td>RESOURCE</td>
<td>ADDDCAL</td>
</tr>
<tr>
<td>include WBS Code</td>
<td>PROJECT</td>
<td>RSCHEDWBS</td>
</tr>
<tr>
<td>include order variables</td>
<td>PROJECT</td>
<td>RSCHEDORDER</td>
</tr>
<tr>
<td>id variables</td>
<td>RESOURCE</td>
<td>RSCHEDID=</td>
</tr>
</tbody>
</table>

Table 2.17. Time Constraint Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>alignment date variable</td>
<td>ALIGNDATE</td>
<td>DATE=</td>
</tr>
<tr>
<td>alignment type variable</td>
<td>ALIGNTYPE</td>
<td></td>
</tr>
<tr>
<td>project start date</td>
<td>PROC CPM</td>
<td>FBDATE=</td>
</tr>
<tr>
<td>project finish date</td>
<td>PROC CPM</td>
<td>FINISHBEFORE</td>
</tr>
</tbody>
</table>
PROC CPM Statement

```sas
PROC CPM options ;
```

The following options can appear in the PROC CPM statement.

- **ADDACT**
- **ADDALLACT**
- **EXPAND**

indicates that an observation is to be added to the Schedule output data set (and the Resource Schedule output data set) for each activity that appears as a value of the variables specified in the SUCCESSOR or PROJECT statements without appearing as a value of the variable specified in the ACTIVITY statement. If the PROJECT statement is used, and the activities do not have a single common parent, an observation is also added to the Schedule data set containing information for a single common parent defined by the procedure.

CALEDATA=SAS-data-set

CALENDAR=SAS-data-set

identifies a SAS data set that specifies the work pattern during a standard week for each of the calendars that are to be used in the project. Each observation of this data set (also referred to as the Calendar data set) contains the name or the number of the calendar being defined in that observation, the names of the shifts or work patterns used each day, and, optionally, a standard workday length in hours. For details on the structure of this data set, see the “Multiple Calendars” section on page 98. The work shifts referred to in the Calendar data set are defined in the Workday data set. The calendars defined in the Calendar data set can be identified with different activities in the project.

COLLAPSE

creates only one observation per activity in the output data set when the input data set for a network in AON format contains multiple observations for the same activity. Note that this option is allowed only if the network is in AON format.

Often, the input data set may have more than one observation per activity (especially if the activity has several successors). If you are interested only in the schedule information about the activity, there is no need for multiple observations in the output data set for this activity. Use the COLLAPSE option in this case.

DATA=SAS-data-set

names the SAS data set that contains the network specification and activity information. If the DATA= option is omitted, the most recently created SAS data set is used. This data set (also referred to in this chapter as the Activity data set) contains all of the information that is associated with each activity in the network.

DATE=date

specifies the SAS date, time, or datetime that is to be used as an alignment date for the project. If neither the FINISHBEFORE option nor any other alignment options are specified, then the CPM procedure schedules the project to start on date. If date is a SAS time value, the value of the INTERVAL= parameter should be HOUR, MINUTE, or SECOND; if it is a SAS date value, interval should be DAY, WEEKDAY,
WORKDAY, WEEK, MONTH, QTR, or YEAR; and if it is a SAS datetime value, interval should be DTWRKDAY, DTDAY, DTHOUR, DTMINUTE, DTSECOND, DTWEEK, DTMONTH, DTQTR, or DTYEAR.

DAYLENGTH=daylength
specifies the length of the workday. On each day, work is scheduled starting at the beginning of the day as specified in the DAYSTART= option and ending daylength hours later. The DAYLENGTH= value should be a SAS time value. The default value of daylength is 24 if the INTERVAL= option is specified as DTDAY, DTHOUR, DTMINUTE, or DTSECOND, and the default value of daylength is 8 if the INTERVAL= option is specified as WORKDAY or DTWRKDAY. If INTERVAL=DAY or WEEKDAY and the value of daylength is less than 24, then the schedule produced is in SAS datetime values. For other values of the INTERVAL= option, the DAYLENGTH= option is ignored.

DAYSTART=daystart
specifies the start of the workday. The DAYSTART= value should be a SAS time value. This parameter should be specified only when interval is one of the following: DTDAY, WORKDAY, DTWRKDAY, DTHOUR, DTMINUTE, or DTSECOND; in other words, this parameter should be specified only if the schedule produced by the CPM procedure is in SAS datetime values. The default value of daystart is 9 a.m. if INTERVAL is WORKDAY; otherwise, the value of daystart is equal to the time part of the SAS datetime value specified for the DATE= option.

FBDATE=fbdate
specifies a finish-before date that can be specified in addition to the DATE= option. If the FBDATE= option is not given but the FINISHBEFORE option is specified, then fbdate = date. Otherwise, fbdate is equal to the project completion date. If fbdate is given in addition to the DATE= and FINISHBEFORE options, then the minimum of the two dates is used as the required project completion date. See the “Scheduling Subject to Precedence Constraints” section on page 88 for details on how the procedure uses the date and fbdate to compute the early and late start schedules.

FINISHBEFORE
specifies that the project be scheduled to complete before the date given in the DATE= option.

FIXFINISH
specifies that all finish tasks are to be constrained by their respective early finish times. In other words, the late finish times of all finish tasks do not float to the project completion time.

HOLIDATA=SAS-data-set
HOLIDAY=SAS-data-set
identifies a SAS data set that specifies holidays. These holidays can be associated with specific calendars that are also identified in the HOLIDATA= data set (also referred to as the Holiday data set). The HOLIDATA= option must be used with a HOLIDAY statement that specifies the variable in the SAS data set that contains the start time of holidays. Optionally, the data set can include a variable that specifies the length of each holiday or a variable that identifies the finish time of each holiday (if
the holidays are longer than one day). For projects involving multiple calendars, this data set can also include the variable specified by the `CALID` statement that identifies the calendar to be associated with each holiday. See the “Multiple Calendars” section on page 98 for further information regarding holidays and multiple calendars.

`INTERVAL=interval`

requests that each unit of duration be measured in `interval` units. Possible values for `interval` are DAY, WEEK, WORKDAY, MONTH, QTR, YEAR, HOUR, MINUTE, SECOND, DTDAY, DTWRKDAY, DTWEEK, DTMONTH, DTQTR, DTYEAR, DT HOUR, DT MINUTE, and DT SECOND. The default value is based on the format of the DATE= parameter. See the “Using the INTERVAL= Option” section on page 90 for further information regarding this option.

`INTPER=period`

requests that each unit of duration be equivalent to `period` units of duration. The default value is 1.

`NACTS=nacts`

specifies the number of activities for which memory is allocated in core by the procedure. If the number of activities exceeds `nacts`, the procedure uses a utility data set for storing the activity array. The default value for `nacts` is set to `nobs`, if the network is specified in AOA format, and to `nobs×(nsucc+1)`, if the network is specified in AON format, where `nobs` is the number of observations in the Activity data set and `nsucc` is the number of variables specified in the SUCCESSOR statement.

`NADJ=nadj`

specifies the number of precedence constraints (adjacencies) in the project network. If the number of adjacencies exceeds `nadj`, the procedure uses a utility data set for storing the adjacency array. The default value of `nadj` is set to `nacts` if the network is in AON format, and it is set to `nacts×2` if the network is in AOA format.

`NNODES=nnodes`

specifies the size of the symbolic table used to look up the activity names (node names) for the network specification in AON (AOA) format. If the number of distinct names exceeds `nnodes`, the procedure uses a utility data set for storing the tree used for the table lookup. The default value for `nnodes` is set to `nobs×2` if the network is specified in AOA format and to `nobs×(nsucc+1)` if the network is specified in AON format, where `nobs` is the number of observations in the Activity data set and `nsucc` is the number of variables specified in the SUCCESSOR statement.

`NOUTIL`

specifies that the procedure should not use utility data sets for memory management. By default, the procedure resorts to the use of utility data sets and swaps between core memory and utility data sets as necessary if the number of activities or precedence constraints or resource requirements in the input data sets is larger than the number of each such entity for which memory is initially allocated in core. Specifying this option causes the procedure to increase the memory allocation instead of using a utility data set; if the problem is too large to fit in core memory, PROC CPM will stop with an error message.
NRESREQ=nres

specifies the number of distinct resource requirements corresponding to all activities and resources in the project. The default value of nres is set to nobs \times nresvar \times 0.25, where nobs is the number of observations in the Activity data set, and nresvar is the number of RESOURCE variables in the Activity data set.

OUT=SAS-data-set

specifies a name for the output data set that contains the schedule determined by PROC CPM. This data set (also referred to as the Schedule data set) contains all of the variables that were specified in the Activity data set to define the project. Every observation in the Activity data set has a corresponding observation in this output data set. If PROC CPM is used to determine a schedule that is not subject to any resource constraints, then this output data set contains the early and late start schedules; otherwise, it also contains the resource-constrained schedule. See the “OUT= Schedule Data Set” section on page 95 for information about the names of the new variables in the data set. If the OUT= option is omitted, the SAS system creates a data set and names it according to the DATA\n naming convention.

RESOURCEIN=SAS-data-set
RESIN=SAS-data-set
RIN=SAS-data-set
RESLEVEL=SAS-data-set

names the SAS data set that contains the levels available for the different resources used by the activities in the project. This data set also contains information about the type of resource (replenishable or consumable), the calendar associated with each resource, the priority for each resource, and lists, for each resource, all the alternate resources that can be used as a substitute. In addition, this data set indicates whether or not the resource rate affects the duration. The specification of the RESIN= data set (also referred to as the Resource data set) indicates to PROC CPM that the schedule of the project is to be determined subject to resource constraints. For further information about the format of this data set, see the “RESOURCEIN= Input Data Set” section on page 109.

If this option is specified, you must also use the RESOURCE statement to identify the variable names for the resources to be used for resource-constrained scheduling. In addition, you must specify the name of the variable in this data set (using the PERIOD= option in the RESOURCE statement) that contains the dates from which the resource availabilities in each observation are valid. Furthermore, the data set must be sorted in order of increasing values of this period variable.

RESOURCEOUT=SAS-data-set
RESOUT=SAS-data-set
ROUT=SAS-data-set
RESUSAGE=SAS-data-set

names the SAS data set in which you can save resource usage profiles for each of the resources specified in the RESOURCE statement. This data set is also referred to as the Usage data set. In the Usage data set, you can save the resource usage by time period for the early start, late start, and resource-constrained schedules, and the surplus level of resources remaining after resource allocation is performed.
By default, it provides the usage profiles for the early and late start schedules if re-
source allocation is not performed. If resource allocation is performed, this data set
also provides usage profiles for the resource-constrained schedule and a profile of the
level of remaining resources.

You can control the types of profiles to be saved by using the ESPROFILE (early
start usage), LSPROFILE (late start usage), RCPROFILE (resource-constrained us-
ge), or AVPROFILE (resource availability after resource allocation) options in the
RESOURCE statement. You can specify any combination of these four options.
You can also specify the ALL option to indicate that all four options (ESPROFILE,
LSPROFILE, RCPROFILE, AVPROFILE) are to be in effect. For details about
variable names and the interpretation of the values in this data set, see the section
“RESOURCEOUT= Usage Data Set” on page 124.

RESOURCESCHED=SAS-data-set
RESSCHED=SAS-data-set
RSCHEDULE=SAS-data-set
RSCHED=SAS-data-set
names the SAS data set in which you can save the schedules for each resource used
by any activity. This option is valid whenever the RESOURCE statement is used to
specify any resource requirements. The resulting data set is especially useful when
resource-driven durations or resource calendars cause the resources used by an activ-
ity to have different schedules.

SETFINISHMILESTONE
specifies that milestones (zero duration activities) should have the same start and fin-
ish times as the finish time of their predecessor. In other words, this option enables
milestones that mark the end of the preceding activity to coincide with its finish time.
By default, if a milestone M is a successor to an activity that finishes at the end of
the day (say 15Mar2004), the start and finish times for the milestone are specified
as the beginning of the next day (16Mar2004). This corresponds to the definition of
start times in the CPM procedure: all start times indicate the beginning of the date
specified. For zero duration activities, the finish time is defined to be the same as
the start time. The SETFINISHMILESTONE option specifies that the start and finish
times for the milestone M should be specified as 15Mar2004, with the interpretation
that the milestone’s schedule corresponds to the end of the day. There may be excep-
tions to this definition if there are special alignment constraints on the milestone. For
details, see the “Finish Milestones” section on page 94.

SUPPRESSOBSWARN
turns off the display of warnings and notes for every observation with invalid or miss-
ing specifications.

WORKDATA=SAS-data-set
WORKDAY=SAS-data-set
identifies a SAS data set that defines the work pattern during a standard working day.
Each numeric variable in this data set (also referred to as the Workday data set) is
assumed to denote a unique shift pattern during one working day. The variables must
be formatted as SAS time values and the observations are assumed to specify, alternately, the times when consecutive shifts start and end. See the “Multiple Calendars” section on page 98 for a description of this data set.

XFERVARS

indicates that all relevant variables are to be copied from the Activity data set to the Schedule data set. This includes all variables used in the ACTUAL statement, the ALIGNEDATE and ALIGNTYPE statements, the SUCCESSOR statement, and the RESOURCE statement.

ACTIVITY Statement

ACTIVITY variable;

ACT variable;

The ACTIVITY statement is required when data are input in an AON format; this statement identifies the variable that contains the names of the nodes in the network. The activity associated with each node has a duration equal to the value of the DURATION variable. The ACTIVITY variable can be character or numeric because it is treated symbolically. Each node in the network must be uniquely defined.

The ACTIVITY statement is also supported in the Activity-on-Arc format. The ACTIVITY variable is used to uniquely identify the activity specified between two nodes of the network. In the AOA format, if the ACTIVITY statement is not specified, each observation in the Activity data set is treated as a new activity.

ACTUAL Statement

ACTUAL / options ;

The ACTUAL statement identifies variables in the Activity data set that contain progress information about the activities in the project. For a project that is already in progress, you can describe the actual status of any activity by specifying the activity’s actual start, actual finish, remaining duration, or percent of work completed. At least one of the four variables (A_START, A_FINISH, REMDUR, PCTCOMP) needs to be specified in the ACTUAL statement. These variables are referred to as *progress variables*. The TIMENOW= option in this statement represents the value of the current time (referred to as TIMENOW), and it is used in conjunction with the values of the progress variables to check for consistency and to determine default values if necessary.

You can also specify options in the ACTUAL statement that control the updating of the project schedule. Using the ACTUAL statement causes four new variables (A_START, A_FINISH, A_DUR, and STATUS) to be added to the Schedule data set; these variables are defined in the “OUT= Schedule Data Set” section on page 95. See the “Progress Updating” section on page 105 for more information.

The following options can be specified in the ACTUAL statement after a slash (/).

- **A_FINISH=variable**
- **AF=variable**

identifies a variable in the Activity data set that specifies the actual finish times of
activities that are already completed. The actual finish time of an activity must be less than TIMENOW.

\textbf{A_START=} \texttt{variable}
\textbf{AS=} \texttt{variable}

identifies a variable in the Activity data set that specifies the actual start times of activities that are in progress or that are already completed. Note that the actual start time of an activity must be less than TIMENOW.

\textbf{AUTOUPDT}

requests that PROC CPM should assume automatic completion (or start) of activities that are predecessors to activities already completed (or in progress). For example, if activity B is a successor of activity A, and B has an actual start time (or actual finish time or both) specified, while A has missing values for both actual start and actual finish times, then the AUTOUPDT option causes PROC CPM to assume that A must have already finished. PROC CPM then assigns activity A an actual start time and an actual finish time consistent with the precedence constraints. The AUTOUPDT option is the default.

\textbf{ESTIMATEPCTC}
\textbf{ESTPCTC}
\textbf{ESTPCTCOMP}
\textbf{ESTPROG}

indicates that a variable named PCT_COMP is to be added to the Schedule output data set (and the Resource Schedule output data set) that contains the percent completion time for each activity (for each resource used by each activity) in the project. Note that this value is 0 for activities that have not yet started and 100 for completed activities; for activities in progress, this value is computed using the actual start time, the value of TIMENOW, and the revised duration of the activity.

\textbf{FIXASTART}

specifies that the actual start time of an activity should not be overwritten if it is specified to be on a non-work day. By default, none of the start or finish times of an activity can occur during a non-work period corresponding to the activity’s calendar. If the actual start time is specified on a non-work day, it is moved to the nearest work day. The FIXASTART option specifies that the actual start and finish times be left unchanged even if they coincide with a non-working time. Thus, if the actual start time is specified to be sometime on Sunday, it is left unchanged even if Sunday is a non-working day in the activity’s calendar.

\textbf{NOAUTOUPDT}

requests that PROC CPM should not assume automatic completion of activities. (The NOAUTOUPDT option is the reverse of the AUTOUPDT option.) In other words, only those activities that have nonmissing actual start or nonmissing actual finish times or both (either specified as values for the A_START and A_FINISH variables or computed on the basis of the REMDUR or PCTCOMP variables and TIMENOW) are assumed to have started; all other activities have an implicit start time that is greater than or equal to TIMENOW. This option requires you to enter the progress information for all the activities that have started or are complete; an activity is assumed to be pending until one of the progress variables indicates that it has started.
identifies a variable in the Activity data set that specifies the percentage of the work that has been completed for the current activity. The values for this variable must be between 0 and 100. A value of 0 for this variable means that the current activity has not yet started. A value of 100 means that the activity is already complete. Once again, the value of the TIMENOW= option is used as a reference point to resolve the values specified for the PCTCOMP variable. See the “Progress Updating” section on page 105 for more information.

remdur=variable
rduration=variable
rdur=variable

identifies a variable in the Activity data set that specifies the remaining duration of activities that are in progress. The values of this variable must be nonnegative: a value of 0 for this variable means that the activity in that observation is completed, while a value greater than 0 means that the activity is not yet complete (the remaining duration is used to revise the estimate of the original duration). The value of the TIMENOW parameter is used to determine an actual start time or an actual finish time or both for activities based on the value of the remaining duration. See the “Progress Updating” section on page 105 for further information.

showfloat

This option in the ACTUAL statement indicates that PROC CPM should allow activities that are completed or in progress to have nonzero float. By default, all activities that are completed or in progress have the late start schedule set to be equal to the early start schedule and thus have both total float and free float equal to 0. If the SHOWFLOAT option is specified, the late start schedule is computed for in-progress and completed activities using the precedence and time constraints during the backward pass.

timenow=timenow
currdate=timenow

specifies the SAS date, time, or datetime value that is used as a reference point to resolve the values of the remaining duration and percent completion times when the ACTUAL statement is used. It can be thought of as the instant at the beginning of the specified date, when a snapshot of the project is taken; the actual start times or finish times or both are specified for all activities that have started or have been completed by the end of the previous day. If an ACTUAL statement is used without specification of the TIMENOW= option, the default value is set to be the time period following the maximum of all the actual start and finish times that have been specified; if there are no actual start or finish times, then TIMENOW is set to be equal to the current date. See the “Progress Updating” section on page 105 for further information regarding the TIMENOW= option and the ACTUAL statement.

TIMENOWSPLT

indicates that activities that are in progress at TIMENOW can be split at TIMENOW if they cause resource infeasibilities. During resource allocation, any activities with
values of E_START less than TIMENOW are scheduled even if there are not enough resources (a warning message is printed to the log if this is the case). This is true even for activities that are in progress. The TIMENOWSPLT option permits an activity to be split into two segments at TIMENOW, allowing the second segment of the activity to be scheduled later when resource levels permit. See the “Activity Splitting” section on page 118 for information regarding activity segments. Note that activities with an alignment type of MS or MF are not allowed to be split; also, activities without resource requirements will not be split.

ALIGNDATE Statement

ALIGNDATE variable ;
DATE variable ;
ADATE variable ;

The ALIGNDATE statement identifies the variable in the Activity data set that specifies the dates to be used to constrain each activity to start or finish on a particular date. The ALIGNDATE statement is used in conjunction with the ALIGNTYPE statement, which specifies the type of alignment. A missing value for the variables specified in the ALIGNDATE statement indicates that the particular activity has no restriction imposed on it.

PROC CPM requires that if the ALIGNDATE statement is used, then all start activities (activities with no predecessors) have nonmissing values for the ALIGNDATE variable. If any start activity has a missing ALIGNDATE value, it is assumed to start on the date specified in the PROC CPM statement (if such a date is given) or, if no date is given, on the earliest specified start date of all start activities. If none of the start activities has a start date specified and a project start date is not specified in the PROC CPM statement, the procedure stops execution and returns an error message. See the “Time-Constrained Scheduling” section on page 92 for information on how the variables specified in the ALIGNDATE and ALIGNTYPE statements affect the schedule of the project.

ALIGNTYPE Statement

ALIGNTYPE variable ;
ALIGN variable ;
ATYPE variable ;

The ALIGNTYPE statement is used to specify whether the date value in the ALIGNDATE statement is the earliest start date, the latest finish date, and so forth, for the activity in the observation. The values allowed for the variable specified in the ALIGNTYPE statement are specified in Table 2.18.
Table 2.18. Valid Values for the ALIGNTYPE Variable

<table>
<thead>
<tr>
<th>Value</th>
<th>Type of Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ</td>
<td>Start equal to</td>
</tr>
<tr>
<td>SGE</td>
<td>Start greater than or equal to</td>
</tr>
<tr>
<td>SLE</td>
<td>Start less than or equal to</td>
</tr>
<tr>
<td>FEQ</td>
<td>Finish equal to</td>
</tr>
<tr>
<td>FGE</td>
<td>Finish greater than or equal to</td>
</tr>
<tr>
<td>FLE</td>
<td>Finish less than or equal to</td>
</tr>
<tr>
<td>MS</td>
<td>Mandatory start equal to</td>
</tr>
<tr>
<td>MF</td>
<td>Mandatory finish equal to</td>
</tr>
</tbody>
</table>

If an ALIGNDATE statement is specified without an ALIGNTYPE statement, all of the activities are assumed to have an aligntype of SGE. If an activity has a nonmissing value for the ALIGNDATE variable and a missing value for the ALIGNTYPE variable, then the aligntype is assumed to be SGE. See the “Time-Constrained Scheduling” section on page 92 for information on how the ALIGNDATE and ALIGNTYPE variables affect project scheduling.

BASELINE Statement

`BASELINE / options ;`

The BASELINE statement enables you to save a specific schedule as a baseline or target schedule and compare another schedule, such as an updated schedule or resource constrained schedule, against it. The schedule that is to be saved as a baseline can be specified either by explicitly identifying two numeric variables in the input data set as the B_START and B_FINISH variables, or by indicating the particular schedule (EARLY, LATE, ACTUAL, or RESOURCE constrained schedule) that is to be used to set the B_START and B_FINISH variables. The second method of setting the schedule is useful when you want to set the baseline schedule on the basis of the current invocation of PROC CPM.

Note that the BASELINE statement needs to be specified in order for the baseline start and finish times to be copied to the Schedule data set. Just including the B_START and B_FINISH variables in the Activity data set does not initiate baseline processing.

The following options can be specified in the BASELINE statement after a slash (/).

- `B_FINISH=variable`
- `BF=variable`
 specifies the numeric-valued variable in the Activity data set that sets B_FINISH.

- `B_START=variable`
- `BS=variable`
 specifies the numeric-valued variable in the Activity data set that sets B_START.

- `COMPARE=schedule`
 compares a specific schedule (EARLY, LATE, RESOURCE or ACTUAL) in the Activity data set with the baseline schedule. The COMPARE option is valid only
if the input data set already has a B_.START and a B_.FINISH variable or if the SET= option is also specified. In other words, the COMPARE option is valid only if there is a baseline schedule to compare with. The comparison is specified in two variables in the Schedule data set, S_VAR and F_VAR, which have the following definition:

\[
\begin{align*}
S_VAR &= \text{Compare Start} - \text{B_START}; \\
F_VAR &= \text{Compare Finish} - \text{B_FINISH};
\end{align*}
\]

where Compare Start and Compare Finish refer to the start and finish times corresponding to the schedule that is used as a comparison.

Note that the values of the variables S_VAR and F_VAR are calculated in units of the INTERVAL= parameter, taking into account the calendar defined for the activity.

SET=schedule

specifies which of the four schedules (EARLY, LATE, RESOURCE, or ACTUAL) to set the baseline schedule equal to. The SET= option causes the addition of two new variables in the Schedule data set; these are the B_.START and B_.FINISH variables. The procedure sets B_.START and B_.FINISH equal to the start and finish times corresponding to the EARLY, LATE, ACTUAL, or RESOURCE schedules. If the Activity data set already has a B_.START and B_.FINISH variable, it is overwritten by the SET= option and a warning is displayed. Note that the value RESOURCE is valid only if resource-constrained scheduling is being performed, and the value ACTUAL is valid only if the ACTUAL statement is present.

Note: The values ACTUAL, RESOURCE, and so on cause the B_.START and B_.FINISH values to be set to the computed values of A_.START, S_.START, . . . , and so on. They cannot be used to set the B_.START and B_.FINISH values to be equal to, say, A_.START and A_.FINISH or S_.START and S_.FINISH, if these variables are present in the Activity data set; to do that you must use B_.START=A_.START, B_.FINISH=A_.FINISH, and so on.

UPDATE=schedule

specifies the name of the schedule (EARLY, LATE, ACTUAL, or RESOURCE) that can be used to update the B_.START and B_.FINISH variables. This sets B_.START and B_.FINISH on the basis of the specified schedules only when the values of the baseline variables are missing in the Activity data set. The UPDATE option is valid only if the Activity data set already has B_.START and B_.FINISH. Note that if both the UPDATE= and SET= options are specified, the SET= specification is used.

CALID Statement

CALID variable;

The CALID statement specifies the name of a SAS variable that is used in the Activity, Holiday, and Calendar data sets to identify the calendar to which each observation refers. This variable can be either numeric or character depending on whether the different calendars are identified by unique numbers or names. If this variable is not found in any of the three data sets, PROC CPM looks for a default variable named _CAL_ in each data set (a warning message is then printed to the log). In the
Activity data set, this variable specifies the calendar used by the activity in the given observation. Each calendar in the project is defined using the Workday, Calendar, and Holiday data sets. Each observation of the Calendar data set defines a standard work week through the shift patterns as defined by the Workday data set and a standard day length; these values are associated with the calendar identified by the value of the calendar variable in that observation. Likewise, each observation of the Holiday data set defines a holiday for the calendar identified by the value of the calendar variable.

If there is no calendar variable in the Activity data set, all activities are assumed to follow the default calendar. If there is no calendar variable in the Holiday data set, all of the holidays specified are assumed to occur in all the calendars. If there is no calendar variable in the Calendar data set, the first observation is assumed to define the default work week (which is also followed by any calendar that might be defined in the Holiday data set), and all subsequent observations are ignored. See the “Multiple Calendars” section on page 98 for further information.

The DURATION statement identifies the variable in the Activity data set that contains the length of time necessary to complete the activity. If the network is input in AOA format, then the variable identifies the duration of the activity denoted by the arc joining the TAILNODE and the HEADNODE. If the network is input in AON format, then the variable identifies the duration of the activity specified in the ACTIVITY statement. The variable specified must be numeric. The DURATION statement must be specified. The values of the DURATION variable are assumed to be in interval units, where interval is the value of the INTERVAL= option.

If you want the procedure to compute the durations of the activities based on specified start and finish times, you can specify the start and finish times in the Activity data set, identified by the variables specified in the START= and FINISH= options. By default, the computed duration is used only if the value of the DURATION variable is missing for that activity. Note that the duration is computed in units of the INTERVAL= parameter, taking into account the calendar defined for the activity.

In addition to specifying a fixed duration for an activity, you can specify the amount of work required (in units of the INTERVAL parameter) from each resource for a given activity. The WORK variable enables you to specify resource-driven durations for an activity; these (possibly different) durations are used to calculate the length of time required for the activity to be completed.

The following options can be specified in the DURATION statement after a slash (/).

FINISH=variable
specifies a variable in the Activity data set that is to be used in conjunction with the START variable to determine the activity’s duration.

START=variable
specifies a variable in the Activity data set that is to be used in conjunction with the
FINISH variable to determine the activity’s duration.

OVERRIDEDUR

specifies that if the \texttt{START=} and \texttt{FINISH=} values are not missing, the duration computed from these values is to be used in place of the duration specified for the activity. In other words, the computed duration is used in place of the duration specified for the activity.

HEADNODE Statement

\texttt{HEADNODE \texttt{variable ;}}

\texttt{HEAD \texttt{variable ;}}

\texttt{TO \texttt{variable ;}}

The HEADNODE statement is required when data are input in AOA format. This statement specifies the variable in the Activity data set that contains the name of the node on the head of an arrow in the project network. This node is identified with the event that signals the end of an activity on that arc. The variable specified can be either a numeric or character variable because the procedure treats this variable symbolically. Each node must be uniquely defined.

HOLIDAY Statement

\texttt{HOLIDAY \texttt{variable / options;}}

\texttt{HOLIDAYS \texttt{variable / options;}}

The HOLIDAY statement specifies the names of variables used to describe non-workdays in the Holiday data set. PROC CPM accounts for holidays only when the \texttt{INTERVAL=} option has one of the following values: \texttt{DAY}, \texttt{WORKDAY}, \texttt{WEEKDAY}, \texttt{DTDAY}, \texttt{DTWRKDAY}, \texttt{DTHOUR}, \texttt{DTMINUTE}, or \texttt{DTSECOND}. The HOLIDAY statement must be used with the \texttt{HOLIDATA=} option in the PROC CPM statement. Recall that the \texttt{HOLIDATA=} option identifies the SAS data set that contains a list of the holidays and non-workdays around which you schedule your project. Holidays are defined by specifying the start of the holiday (the \texttt{HOLIDAY} variable) and either the length of the holiday (the \texttt{HOLIDUR} variable) or the finish time of the holiday (the \texttt{HOLIFIN} variable). The \texttt{HOLIDAY} variable is mandatory with the \texttt{HOLIDAY} statement; the \texttt{HOLIDUR} and \texttt{HOLIFIN} variables are optional.

The \texttt{HOLIDAY} and \texttt{HOLIFIN} variables must be formatted as SAS date or datetime variables. If no format is associated with a \texttt{HOLIDAY} variable, it is assumed to be formatted as a SAS date value. If the schedule of the project is computed as datetime values (which is the case if \texttt{INTERVAL} is \texttt{DTDAY}, \texttt{WORKDAY}, and so on), the holiday variables are interpreted as follows:

- If the \texttt{HOLIDAY} variable is formatted as a date value, then the holiday is assumed to start at the value of the \texttt{DAYSTART=} option on the day specified in the observation and to end \texttt{d} units of \texttt{interval} later (where \texttt{d} is the value of the \texttt{HOLIDUR} variable and \texttt{interval} is the value of the \texttt{INTERVAL=} option).
• If the HOLIDAY variable is formatted as a datetime value, then the holiday is assumed to start at the date and time specified and to end d units of interval later.

The HOLIDUR and HOLIFIN variables are specified using the following options in the HOLIDAY statement:

HOLIDUR= variable
HDURATION= variable

identifies a variable in the Holiday data set that specifies the duration of the holiday. The INTERVAL= option specified on the PROC CPM statement is used to interpret the value of the holiday duration variables. Thus, if the duration of a holiday is specified as 2 and the value of the INTERVAL= option is WEEKDAY, the length of the holiday is interpreted as two weekdays.

HOLIFIN= variable
HOLIEND= variable

identifies a variable in the Holiday data set that specifies the finish time of the holiday defined in that observation. Note that if a particular observation contains both the duration as well as the finish time of the holiday, only the finish time is used; the duration is ignored.

ID Statement

ID variables ;

The ID statement identifies variables not specified in the TAILNODE, HEADNODE, ACTIVITY, SUCCESSOR, or DURATION statements that are to be included in the Schedule data set. This statement is useful for carrying any relevant information about each activity from the Activity data set to the Schedule data set.

PROJECT Statement

PROJECT variable / options;
PARENT variables / options;

The PROJECT statement specifies the variable in the Activity data set that identifies the project to which an activity belongs. This variable must be of the same type and length as the variable defined in the ACTIVITY statement. A project can also be treated as an activity with precedence and time constraints. In other words, any value of the PROJECT variable can appear as a value of the ACTIVITY variable, and it can have specifications for the DURATION, ALIGNEDATE, ALIGNTYPE, ACTUAL, RESOURCE, and SUCCESSOR variables. However, some of the interpretations of these variables for a project (or supertask) may be different from the corresponding interpretation for an activity at the lowest level. See the “Multiproject Scheduling” section on page 129 for an explanation.

The following options can be specified in the PROJECT statement after a slash (/).
AGGREGATEPARENTRES
AGGREGATEP_RES
AGGREGPR
indicates that the resource requirements for all supertasks are to be used only for aggregation purposes and not for resource-constrained scheduling.

DESCENDING
DESC
indicates that, in addition to the ascending sort variables (ES_ASC, LS_ASC, and SS_ASC) that are requested by the ESORDER, LSORDER, and SSORDER options, the corresponding descending sort variables (ES_DESC, LS_DESC, and SS_DESC, respectively) are also to be added to the Schedule output data set.

ESORDER
ESO
indicates that a variable named ES_ASC is to be added to the Schedule output data set; this variable can be used to order the activities in such a way that the activities within each subproject are in increasing order of the early start time. Note that this order is not necessarily the same as the one that would be obtained by sorting all the activities in the Schedule data set by E_START.

IGNOREPARENTRES
IGNOREP_RES
IGNOREPR
indicates that the resource requirements for all supertasks are to be ignored.

LSORDER
LSO
indicates that a variable named LS_ASC is to be added to the Schedule output data set; this variable can be used to order the activities in such a way that the activities within each subproject are in increasing order of the late start time.

ORDERALL
ALL
is equivalent to specifying the ESORDER and LSORDER options (and the SSORDER option when resource constrained scheduling is performed).

RSCHEDORDER
RSCHDORD
RSORDER
indicates that the order variables that are included in the Schedule output data set are also to be included in the Resource Schedule output data set.

RSCHEDWBS
RSCHDWBSS
RSWBS
indicates that the WBS code is also to be included in the Resource Schedule data set.

SEPCRIT
computes individual critical paths for each project. By default, the master project’s early finish time is treated as the starting point for the calculation of the backward pass (which calculates the late start schedule). The late finish time for each sub-
project is then determined during the backward pass on the basis of the precedence constraints. If a time constraint is placed on the finish time of a subproject (using the ALIGNDATE and ALIGNTYPE variables), the late finish time of the subproject is further constrained by this value.

The SEPCRIT option, on the other hand, requires the late finish time of each subproject to be less than or equal to the early finish time of the subproject. Thus, if you have a set of independent, parallel projects, the SEPCRIT option enables you to compute separate critical paths for each of the subprojects.

SSORDER

SSO

indicates that a variable named SS_ASC is to be added to the Schedule output data set; this variable can be used to order the activities in such a way that the activities within each subproject are in increasing order of the resource-constrained start time.

USEPROJDUR

USEPROJDURSPEC

USESPECDUR

uses the specified subproject duration to compute the maximum allowed late finish for each subproject. This is similar to the SEPCRIT option, except that the specified project duration is used to set an upper bound on each subproject’s late finish time instead of the project span as computed from the span of all the subtasks of the project. In other words, if E START and E FINISH are the early start and finish times of the subproject under consideration, and the subproject duration is PROJ_DUR, where

\[
\text{PROJ}_-\text{DUR} = \text{E}_-\text{FINISH} - \text{E}_-\text{START}
\]

then the SEPCRIT option sets

\[
\text{L}_-\text{FINISH} \leq \text{E}_-\text{START} + \text{PROJ}_-\text{DUR}
\]

while the USEPROJDUR option sets

\[
\text{L}_-\text{FINISH} \leq \text{E}_-\text{START} + \text{DUR}
\]

where DUR is the duration specified for the subproject in the Activity data set.

WBSCODE

WBS

ADDWBS

indicates that the CPM procedure is to compute a WBS code for the activities in the project using the project hierarchy structure specified. This code is computed for each activity and stored in the variable WBS_CODE in the Schedule output data set.

RESOURCE Statement

```
RESOURCE variables / resource options ;
RES variables / resource options ;
```

The RESOURCE statement identifies the variables in the Activity data set that contain the levels of the various resources required by the different activities. This state-
ment is necessary if the procedure is required to summarize resource utilization for various resources.

This statement is also required when the activities in the network use limited resources and a schedule is to be determined subject to resource constraints in addition to precedence constraints. The levels of the various resources available are obtained from the RESOURCEIN= data set (the Resource data set.) This data set need not contain all of the variables listed in the RESOURCE statement. If any resource variable specified in the RESOURCE statement is not also found in the Resource data set, it is assumed to be available in unlimited quantity and is not used in determining the constrained schedule.

The following options are available with the RESOURCE statement to help control scheduling the activities subject to resource constraints. Some control the scheduling heuristics, some control the amount of information to be output to the RESOURCEOUT= data set (the Usage data set), and so on.

ACTDELAY= variable
specifies the name of a variable in the Activity data set that specifies a value for the maximum amount of delay allowed for each activity. The values of this variable should be greater than or equal to 0. If a value is missing, the value of the DELAY= option is used instead.

ACTIVITYPRTY= variable
ACTPRTY= variable
identifies the variable in the Activity data set that contains the priority of each activity. This option is required if resource-constrained scheduling is to be performed and the scheduling rule specified is ACTPRTY. If the value of the SCHEDRULE= option is specified as the keyword ACTPRTY, then all activities waiting for resources are ordered by increasing values of the ACTPRTY= variable. Missing values of the activity priority variable are treated as +INFINITY. See the “Scheduling Method” section on page 114 for a description of the various scheduling rules used during resource constrained scheduling.

ADDCAL
requests that a variable, _CAL_, be added to the Resource Schedule data set that identifies the resource calendar for each resource used by each activity. For observations that summarize the activity’s schedule, this variable identifies the activity’s calendar.

ALL
is equivalent to specifying the ESPROFILE and LSPROFILE options when an unconstrained schedule is obtained and is equivalent to specifying all four options, AVPROFILE (AVP), ESPROFILE (ESP), LSPROFILE (LSP), and RCPROFILE (RCP), when a resource-constrained schedule is obtained. If none of these four options are specified and a Usage data set is specified, by default the ALL option is assumed to be in effect.

ALTBEBORESUP
indicates that all alternate resources are to be checked first before using supplementary resources. By default, if supplementary levels of resources are available, the
procedure uses supplementary levels first and uses alternate resources only if the supplementary levels are not sufficient.

APPEND
APPENDINTXRATE
APPENDRATEXINT
APPENDUSAGE

indicates that the Usage data set is to contain two sets of observations: the first set indicates the rate of usage for each resource at the beginning of the current time period, and the second set contains the total usage of each resource for the current time period. In other words, the Usage data set appends observations indicating the total usage of each resource to the default set of observations. If the APPEND option is specified, the procedure adds a variable named OBS_TYPE to the Usage data set. This variable contains the value ‘RES_RATE’ for the observations that indicate rate of usage and the value ‘RES_USED’ for the observations that indicate the total usage.

AROUTCAL=calname

specifies the name of the calendar to be used for incrementing the _TIME_ variable in the Usage data set.

AVPROFILE
AVP
AVL

creates one variable in the Usage data set corresponding to each variable in the RESOURCE statement. These new variables denote the amount of resources remaining after resource allocation. This option is ignored if resource allocation is not performed.

AWAITDELAY

forces PROC CPM to wait until L_START+delay, where delay is the maximum delay allowed for the activity (which is the value of the ACTDELAY= variable or the DELAY= option), before an activity is scheduled using supplementary levels of resources. By default, even if an activity has a nonzero value specified for the ACTDELAY= variable (or the DELAY= option), it may be scheduled using supplementary resources before L_START+delay. This happens if the procedure does not see any increase in the resource availability in the future. Thus, if it appears that the activity will require supplementary resources anyway, the procedure may schedule it before L_START+delay. The AWAITDELAY option prohibits this behavior; it will not use supplementary resources to schedule an activity before L_START+delay. This option can be used to force activities with insufficient resources to start at L_START by setting DELAY=0.

CUMUSAGE

specifies that the Usage data set should indicate the cumulative usage of consumable resources. Note that by default, for consumable resources, each observation in the Usage data set contains the rate of usage for each resource at the start of the given time interval. See the “RESOURCEOUT= Usage Data Set” section on page 124 for a definition of the variables in the resource usage output data set. In some applications, it may be useful to obtain the cumulative usage of these resources. The CUMUSAGE
option can be used to obtain the cumulative usage of consumable resources up to the
time specified in the _TIME_ variable.

DELAY=delay
specifies the maximum amount by which an activity can be delayed due to lack of
resources. If E_.START of an activity is 1JUN04 and L_.START is 5JUN04 and
delay is specified as 2, PROC CPM first tries to schedule the activity to start on June
1, 2004. If there are not enough resources to schedule the activity, the CPM procedure
postpones the activity’s start time. However, it does not postpone the activity beyond
June 7, 2004 (because delay=2 and L_.START=5JUN04).

If the activity cannot be scheduled even on 7JUN04, then PROC CPM tries to sched-
ule it by using supplementary levels of resources, if available, or by using alternate re-
sources, if possible. If resources are still not sufficient, the procedure stops with an er-
ror message. The default value of the DELAY= option is assumed to be +INFINITY.

DELAYANALYSIS

SLIPINF
causes the addition of three new variables to the Schedule data set. The variables
are R_.DELAY, DELAY_.R and SUPPL_.R. The R_.DELAY variable indicates the
number of units (in interval units) by which the activity’s schedule has slipped due
to resource unavailability, and the DELAY_.R variable contains the name of the re-
source, the delaying resource, that has caused the slippage.

The R_.DELAY variable is calculated as follows: it is the difference between
S_.START and the time when an activity first enters the list of activities that are
available to be scheduled. (See the “Scheduling Method” section on page 114 for
a definition of this waiting list of activities.) Note that R_.DELAY is not necessarily
the same as S_.START − E_.START.

If several resources are insufficient, causing a delay in the activity, DELAY_.R is the
name of the resource that first causes an activity to be postponed.

The variable SUPPL_.R contains the name of the first resource that is used above the
primary level in order for an activity to be scheduled at S_.START.

ESPROFILE

ESP

ESS
creates one variable in the Usage data set corresponding to each variable in the
RESOURCE statement. Each new variable denotes the resource usage based on the
early start schedule for the corresponding resource variable.

E_.START
requests that the E_.START and E_.FINISH variables, namely the variables specifying
the early start schedule, be included in the Schedule data set in addition to the
S_.START and S_.FINISH variables. This option is the default and can be turned off
using the NOE_.START option.

EXCLUNSCHED
excludes the resource consumption corresponding to unscheduled activities from the
daily resource usage reported for each time period in the Usage data set. Note that
the Usage data set contains a variable named \textit{R resname} for each resource variable \textit{resname}. For each observation in this data set, each such variable contains the total amount of resource (rate of usage for a consumable resource) used by all the activities that are active at the time period corresponding to that observation. By default, this calculation includes even activities that are still unscheduled when resource constrained scheduling is stopped either by the STOPDATE= option or due to resource infeasibilities. The EXCLUNSCHED option enables the exclusion of activities that are still unscheduled. Note that the unscheduled activities are assumed to start as per the early start schedule (unless the UPDTUNSCHED option is specified).

FILLUNSCHED

fills in S_START and S_FINISH values for activities that are still unscheduled when resource constrained scheduling is stopped either by the STOPDATE= option or due to resource infeasibilities. By default, the Schedule data set contains missing values for S_START and S_FINISH corresponding to unscheduled activities. If the FILLUNSCHED option is on, the procedure uses the original E_START and E_FINISH times for these activities. If the UPDTUNSCHED option is also specified, the procedure uses updated values.

F_FLOAT

requests that the Schedule data set include the F_FLOAT variable computed using the unconstrained early and late start schedules. Note that if resource allocation is not performed, this variable is always included in the output data set.

INCLUNSCHED

enables the inclusion of activities that are still unscheduled in the computation of daily (or cumulative) resource usage in the Usage data set when resource-constrained scheduling is stopped either by the STOPDATE= option or due to resource infeasibilities. This option is the default and can be turned off by the EXCLUNSCHED option.

INDEPENDENTALLOC

enables each resource to be scheduled independently for each activity during resource-constrained scheduling. Consider the basic resource scheduling algorithm described in the “Scheduling Method” section on page 114. When all the precedence requirements of an activity are satisfied, the activity is inserted into the list of activities that are waiting for resources using the appropriate scheduling rule. An activity in this list is scheduled to start at a particular time only if all the resources required by it are available in sufficient quantity. Even if the resources are required by the activity for different lengths of time, or if the resources have different calendars, all resources must be available to start at that particular time (or at the beginning of the next work period for the resource’s calendar).

If you specify the INDEPENDENTALLOC option, however, each resource is scheduled independently of the others. This may cause an activity’s schedule to be extended if its resources cannot all start at the same time.
INFEASDIAGNOSTIC

requests PROC CPM to continue scheduling even when resources are insufficient. When PROC CPM schedules the project subject to resource constraints, the scheduling process is stopped when the procedure cannot find sufficient resources for an activity before the activity’s latest possible start time (accounting for the DELAY= or ACTDELAY= options and using supplementary or alternate resources if necessary and if allowed). The INFEASDIAGNOSTIC option can be used to override this default action. (Sometimes, you may want to know the level of resources needed to schedule a project to completion even if resources are insufficient.) This option is equivalent to specifying infinite supplementary levels for all the resources under consideration; the DELAY= value is assumed to equal the default value of +INFINITY, unless otherwise specified.

LSPROFILE

creates one variable in the Usage data set corresponding to each variable in the RESOURCE statement. Each new variable denotes the resource usage based on the late start schedule for the corresponding resource variable.

L_START

requests that the L_START and L_FINISH variables, namely the variables specifying the late start schedule, be included in the Schedule data set in addition to the S_START and S_FINISH variables. This option is the default and can be turned off using the NOL_START option.

MAXDATE=maxdate

specifies the maximum value of the _TIME_ variable in the Usage data set. The default value of maxdate is the maximum finish time for all of the schedules for which a usage profile was requested.

MAXNSEGMENT=variable

specifies a variable in the Activity data set that indicates the maximum number of segments that the current activity can be split into. A missing value for this variable is set to a default value that depends on the duration of the activity and the value of the MINSEGMENTDUR variable. A value of 1 indicates that the activity cannot be split. By default, PROC CPM assumes that any activity, once started, cannot be stopped until it is completed (except for breaks due to holidays or weekends). Thus, even during resource-constrained scheduling, an activity is scheduled only if enough resources can be found for it throughout its entire duration. Sometimes, you may want to allow preemption of activities already in progress; thus, a more critical activity could cause another activity to be split into two or more segments.

However, you may not want a particular activity to be split into too many segments, or to be split too many times. The MAXNSEGMENT= and MINSEGMENTDUR= options enable you to control the number of splits and the length of each segment.
MAXOBS= \(\text{max} \)

specifies an upper limit on the number of observations that the Usage data set can contain. If the values specified for the ROUTINTERVAL= and ROUTINTERP= options are such that the data set will contain more than \(\text{max} \) observations, then PROC CPM does not create the output data set and stops with an error message.

The MAXOBS= option is useful as a check to ensure that a very large data set (with several thousands of observations) is not created due to a wrong specification of the ROUTINTERVAL= option. For example, if \(\text{interval} \) is DTYEAR and \(\text{routinterval} \) is DTHOUR and the project extends over 2 years, the number of observations would exceed 15,000. The default value of the MAXOBS= option is 1000.

MILESTONERESOURCE

specifies that milestone activities consume resources. If a nonzero requirement is specified for a milestone, the corresponding consumable resources are used at the scheduled time of that milestone.

MILESTONENORESOURCE

specifies that milestone activities do not consume resources. This implies that all resource requirements are ignored for milestone activities. This is the default behavior.

MINDATE= \(\text{mindate} \)

specifies the minimum value of the _TIME_ variable in the Usage data set. The default value of \(\text{mindate} \) is the minimum start time for all of the schedules for which a usage profile is requested. Thus, the Usage data set has observations containing the resource usage and availability information from \(\text{mindate} \) through \(\text{maxdate} \).

MINSEGMTDUR= \(\text{variable} \)

MINSEGD= \(\text{variable} \)

specifies a variable in the Activity data set that indicates the minimum duration of any segment of the current activity. A missing value for this variable is set to a value equal to one fifth of the activity’s duration.

MULTIPLEALTERNATES

MULTALT

indicates that multiple alternate resources can be used to substitute for a single resource. In other words, if one of the alternate resources is not sufficient to substitute for the primary resource, the procedure will use other alternates, as needed, to fulfill the resource requirement. For example, if an activity needs 1.5 programmers and the allowed alternates are JOHN and MARY, the procedure will use JOHN (at rate 1) and MARY (at rate 0.5) to allocate a total of 1.5 programmers. See the “Specifying Multiple Alternates” section on page 121 for details.

NOE-_START

requests that the E-_START and E-_FINISH variables, namely the variables specifying the early start schedule, be dropped from the Schedule data set. Note that the default is E-_START. Also, if resource allocation is not performed, the NOE_-_START option is ignored.

NOF-_FLOAT

requests that the F-_FLOAT variable be dropped from the Schedule data set when resource-constrained scheduling is requested. This is the default behavior. To in-
clude the F_FLOAT variable in addition to the resource-constrained schedule, use the F_FLOAT option. Note that if resource allocation is not performed, F_FLOAT is always included in the Schedule data set.

NOL_START
requests that the Schedule data set does not include the late start schedule, namely, the L_START and L_FINISH variables. Note that the default is L_START. Also, if resource allocation is not performed, the NOL_START option is ignored.

NORESOURCEVARS
requests that the variables specified in the RESOURCE statement be dropped from the Schedule data set. By default, all of the resource variables specified on the RESOURCE statement are also included in the Schedule data set.

NOT_FLOAT
requests that the T_FLOAT variable be dropped from the Schedule data set when resource-constrained scheduling is requested. This is the default behavior. To include the T_FLOAT variable in addition to the resource-constrained schedule, use the T_FLOAT option. Note that if resource allocation is not performed, T_FLOAT is always included in the Schedule data set.

NROUTCAL=calnum
specifies the number of the calendar to be used for incrementing the _TIME_ variable in the Usage data set.

OBSTYPE=variable
specifies a character variable in the Resource data set that contains the type identifier for each observation. Valid values for this variable are RESLEVEL, RESTYPE, RESUSAGE, RESPRTY, SUPLEVEL, ALTRATE, ALTPRTY, RESRCDUR, CALENDAR, MULTALT, MINARATE, and AUXRES. If OBSTYPE= is not specified, then all observations in the data set are assumed to denote the levels of the resources, and all resources are assumed to be replenishable and constraining.

PERIOD=variable
identifies the variable in the RESOURCEIN= data set that specifies the date from which a specified level of the resource is available for each observation with the OBSTYPE variable equal to ‘RESLEVEL’. It is an error if the PERIOD= variable has a missing value for any observation specifying the levels of the resources or if the Resource data set is not sorted in increasing order of the PERIOD= variable.

RCPROFILE
creates one variable in the Usage data set corresponding to each variable in the RESOURCE statement. Each new variable denotes the resource usage based on the resource-constrained schedule for the corresponding resource variable. This option is ignored if resource allocation is not performed.
RESCALINTERSECT
RESCALINT
RCI

specifies that an activity can be scheduled only during periods that are common working times for all resource calendars (corresponding to the resources used by that activity) and the activity’s calendar. This option is valid only if multiple calendars are in use and if calendars are associated with individual resources. Use this option with caution; if an activity uses resources that have mutually disjoint calendars, that activity can never be scheduled. For example, if one resource works a night shift while another resource works a day shift, the two calendars do not have any common working time.

Note that only primary resources are included in the intersection; any alternate or auxiliary resources are not included when determining the common working calendar for the activity.

If you do not specify the RESCALINTERSECT option, and resources have independent calendars, then the procedure schedules each resource using its own calendar. Thus, an activity can have one resource working on a five-day calendar, while another resource is working on a seven-day calendar.

RESID=variable

specifies a variable in the RESOURCEIN= data set that indicates the name of the resource variable for which alternate resource information or auxiliary resource information is being specified in that observation.

Observations that indicate alternate resources are identified by the values ‘ALTRATE’ and ‘ALTPRTY’ for the OBSTYPE variable. These values indicate whether the observation specifies a rate of substitution or a priority for substitution; the value of the RESID variable in such an observation indicates the particular resource for which alternate resource information is specified in that observation. Note that the specification of the RESID= option triggers the use of alternate resources. See the “Specifying Alternate Resources” section on page 120 for further information.

Observations indicating auxiliary resources are identified by the value ‘AUXRES’ for the OBSTYPE variable. Such observations specify the name of the primary resource as the value of the RESID variable and the rate of auxiliary resources needed for every unit of the primary resource as values of the other resource variables. See the “Auxiliary Resources” section on page 123 for further information.

RESOURCEVARS
RESVARSOUT

requests that the variables specified in the RESOURCE statement be included in the Schedule data set. These include the RESOURCE variables identifying the resource requirements, the activity priority variable, the activity delay variable, and any variables specifying activity splitting information. This option is the default and can be turned off by the NORESVARSOUT option.

ROUTINTERVAL=routinterval
STEPINT=routinterval

specifies the units to be used to determine the time interval between two successive values of the _TIME_ variable in the Usage data set. It can be used in conjunction
with the ROUTINTPER= option to control the amount of information to be included in the data set. Valid values for routinterval are DAY, WORKDAY, WEEK, MONTH, WEEKDAY, QTR, YEAR, DTDAY, DTWRKDAY, DTWEEK, DTMONTH, DTQTR, DTYEAR, DTSECOND, DTMINUTE, DTHOUR, SECOND, MINUTE, or HOUR. The value of this parameter must be chosen carefully; a massive amount of data could be generated by a bad choice. If this parameter is not specified, a default value is chosen depending on the format of the schedule variables.

ROUTINTPER= routintper

STEPSIZE= routintper

STEP= routintper

specifies the number of routinterval units between successive observations in the Usage data set where routinterval is the value of the ROUTINTERVAL= option. For example, if routinterval is MONTH and routintper is 2, the time interval between each pair of observations in the Usage data set is two months. The default value of routintper is 1. If routinterval is blank (‘’), then routintper can be used to specify the exact numeric interval between two successive values of the _TIME_ variable in the Usage data set. Note that routintper is only allowed to have integer values when routinterval is specified as one of the following: WEEK, MONTH, QTR, YEAR, DTWEEK, DTMONTH, DTQTR, or DTYEAR.

ROUTNOBREAK

ROUTCONT

specifies that the _TIME_ variable is to be incremented using a calendar with no breaks or holidays. Thus, the Usage data set contains one observation per unit routinterval from mindate to maxdate, without any breaks for holidays or weekends. Note that, by default, the _TIME_ variable is incremented using the default calendar; thus, if the default calendar follows a five-day work week, the Usage data set skips weekends.

RSCHEDID=(variables)

RSID=(variables)

identifies variables not specified in the TAILNODE, HEADNODE, or ACTIVITY statements that are to be included in the Resource Schedule data set. This option is useful for carrying any relevant information about each activity from the Activity data set to the Resource Schedule data set.

SCHEDRULE= schedrule

RULE= schedrule

specifies the rule to be used to order the list of activities whose predecessor activities have been completed while scheduling activities subject to resource constraints. Valid values for schedrule are LST, LFT, SHORTDUR, ACTPRTY, RESPRTY, and DELAYLST. (See the “Scheduling Rules” section on page 116 for more information.) The default value of SCHEDRULE is LST. If an invalid specification is given for the SCHEDRULE= option, the default value is used, and a warning message is displayed in the log.
SCHEDRULE2=schedrule2
RULE2=schedrule2

specifies the rule to be used to break ties caused by the SCHEDRULE= option. Valid values for schedrule2 are LST, LFT, SHORTDUR, ACTPRTY, RESPRTY, and DELAYLST. Note that ACTPRTY and RESPRTY cannot be specified at the same time for the two scheduling rules; in other words, if schedrule is ACTPRTY, schedrule2 cannot be RESPRTY and vice versa.

SPLITFLAG

indicates that activities are allowed to be split into segments during resource allocation. This option can be used instead of specifying either the MAXNSEGMT= or the MINSEGMDUR= variable; PROC CPM assumes that the activity can be split into no more than five segments.

STOPDATE=stdate

specifies the cutoff date for resource-constrained scheduling. When such a date is specified, S_START and S_FINISH are set to missing beyond the cutoff date. Options are available to set these missing values to the original E_START and E_FINISH times (FILLUNSCHED) or to updated values based on the scheduled activities (UPDTUNSCHED).

T_FLOAT

requests that the Schedule data set include the T_FLOAT variable computed using the unconstrained early and late start schedules. Note that if resource allocation is not performed, this variable is always included in the Schedule data set.

TOTUSAGE
INTXRATE
INTUSAGE
RATEXINT

specifies that the Usage data set is to indicate the total usage of the resource for the current time period. The current time period is the time interval from the time specified in the _TIME_ variable for the current observation to the time specified in the _TIME_ variable for the next observation. The total usage is computed taking into account the relevant activity and resource calendars. Note that, by default, the observations in the Usage data set specify the rate of usage for each resource at the beginning of the current time period. The TOTUSAGE option specifies the product of the rate and the time interval between two successive observations. To get both the rate and the product, use the APPEND option.

UNSCHEDMISS

sets the S_START and S_FINISH values to missing for activities that are still unscheduled when resource constrained scheduling is stopped either by the STOPDATE= option or due to resource infeasibilities. This is the default and can be turned off by specifying the FILLUNSCHED option.

UPDTUNSCHED

causes the procedure to use the S_START and S_FINISH times of scheduled activities to update the projected start and finish times for the activities that are still unscheduled when resource constrained scheduling is stopped either by the
STOPDATE= option or due to resource infeasibilities. These updated dates are used as the S_START and S_FINISH times.

WORK=variable

identifies a variable in the Activity data set that specifies the total amount of work required by one unit of a resource. This work is represented in units of the INTERVAL parameter. The procedure uses the rate specified for the resource variable to compute the duration of the activity for that resource. Thus, if the value of the WORK variable is 10, and the value of the resource variable R1 is 2, then the activity requires 5 interval units for the resource R1. For details, see the “Resource-Driven Durations and Resource Calendars” section on page 108.

SUCCESSOR Statement

SUCCESSOR variables / lag options;
SUCC variables / lag options;

The SUCCESSOR statement is required when data are input in an AON format. This statement specifies the variables that contain the names of the immediate successor nodes (activities) to the ACTIVITY node. These variables must be of the same type and length as those defined in the ACTIVITY statement.

If the project does not have any precedence relationships, it is not necessary to use the SUCCESSOR statement. Thus, you can specify only the ACTIVITY statement without an accompanying SUCCESSOR statement.

If the precedence constraints among the activities have some nonstandard relationships, you can specify these using the LAG options. The following is a list of LAG options.

ALAGCAL=calname

specifies the name of the calendar to be used for all lags. The default value for this option is the DEFAULT calendar.

LAG=variables

specifies the variables in the Activity data set used to identify the lag relationship (lag type, duration, and calendar) between the activity and its successor. The LAG variables must be character variables. You can specify as many LAG variables as there are SUCCESSOR variables; each SUCCESSOR variable is matched with the corresponding LAG variable. You must specify the LAG variables enclosed in parentheses. In a given observation, the ith LAG variable specifies the type of relation between the current activity (as specified by the ACTIVITY variable) and the activity specified by the ith SUCCESSOR variable. If there are more LAG variables than SUCCESSOR variables, the extra LAG variables are ignored; conversely, if there are fewer LAG variables, the extra SUCCESSOR variables are all assumed to indicate successors with a standard (finish-to-start) relationship.

In addition to the type of relation, you can also specify a lag duration and a lag calendar in the same variable. The relation_lag_calendar information is expected to be specified as

```
keyword _ duration _ calendar
```
where *keyword* is one of ‘ ’, FS, SS, SF, or FF, *duration* is a number specifying the duration of the lag (in interval units), and *calendar* is either a calendar name or number identifying the calendar followed by the lag duration. A missing value for the *keyword* is assumed to mean the same as FS, which is the standard relation of finish-to-start. The other three values, SS, SF, and FF, denote relations of the type start-to-start, start-to-finish, and finish-to-finish, respectively. If there are no LAG variables, all relationships are assumed to be of the type finish-to-start with no lag duration. Table 2.19 contains some examples of lag specifications.

Table 2.19. Lag Specifications

<table>
<thead>
<tr>
<th>Activity</th>
<th>Successor</th>
<th>LAG</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>SS_3</td>
<td>Start to start lag of 3 units</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>_5.5</td>
<td>Finish to start lag of 5.5 units</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>FF_4</td>
<td>Finish to finish lag of 4 units</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>_SS</td>
<td>Invalid and ignored (with warning)</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>SS_3</td>
<td>Ignored</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>SS_3_1</td>
<td>Start to start lag of 3 units w.r.t. calendar 1</td>
</tr>
</tbody>
</table>

NLAGCAL=calnum

specifies the number of the calendar to be used for all lags. The default value for this option is the DEFAULT calendar.

TAILNODE Statement

```
TAILNODE variable;
TAIL variable;
FROM variable;
```

The TAILNODE statement is required when data are input in AOA (arrow notation) format. It specifies the variable that contains the name of each node on the tail of an arc in the project network. This node is identified with the event that signals the start of the activity on that arc. The variable specified can be either a numeric or character variable since the procedure treats this variable symbolically. Each node must be uniquely defined.

Details

This section provides a detailed outline of the use of the CPM procedure. The material is organized in subsections that describe different aspects of the procedure. They have been placed in increasing order of functionality. The first section describes how to use PROC CPM to schedule a project subject only to precedence constraints. The next two sections describe some of the features that enable you to control the units of duration and specify nonstandard precedence constraints. In the “Time-Constrained Scheduling” section on page 92, the statements needed to place time constraints on the activities are introduced. The “Finish Milestones” section on page 94 describes some options controlling the treatment of milestones.
The “OUT= Schedule Data Set” section on page 95 describes the format of the schedule output data set (the Schedule data set). The “Multiple Calendars” section on page 98 deals with calendar specifications for the different activities.

The “Baseline and Target Schedules” section on page 104 describes how you can save specific schedules as baseline or target schedules. The “Progress Updating” section on page 105 describes how to incorporate the actual start and finish times for a project that is already in progress. The “Resource-Driven Durations and Resource Calendars” section on page 108 describes how the WORK variable can be used to specify resource-driven durations and the effect of resource calendars on the activity schedules.

Next, the “Resource Usage and Allocation” section on page 109 pertains to resource usage and resource-constrained scheduling and describes how to specify information about the resources and the resource requirements for the activities. The scheduling algorithm is also described in this section and some advanced features such as alternate resources, auxiliary resources, negative resource requirements, and so on, are discussed under separate subsections.

The “RESOURCEOUT= Usage Data Set” section on page 124 describes the format of the resource usage output data set (the Usage data set) and explains how to interpret the variables in it.

When resource-driven durations are specified or resource calendars are in effect, each resource used by an activity may have a different schedule. In this case, the Resource Schedule data set, described in the “RESOURCESCHED= Resource Schedule Data Set” section on page 128, contains the individual resource schedules for each activity.

The “Multiproject Scheduling” section on page 129 describes how you can use PROC CPM when there are multiple projects that have been combined together in a multiproject structure.

PROC CPM also defines a macro variable that is described in the “Macro Variable _ORCPM_” section on page 132. Table 2.24 in the “Input Data Sets and Related Variables” section on page 133 lists all the variables used by the CPM procedure and the data sets that contain them. Table 2.25 in the “Missing Values in Input Data Sets” section on page 135 lists all of the variables in the different input data sets and describes how PROC CPM treats missing values corresponding to each of them. Finally, the “FORMAT Specification” section on page 136 underlines the importance of associating the correct FORMAT specification with all the date-type variables, and the “Computer Resource Requirements” section on page 136 indicates the storage and time requirements of the CPM procedure.

Scheduling Subject to Precedence Constraints

The basic function of the CPM procedure is to determine a schedule of the activities in a project subject to precedence constraints among them. The minimum amount of information that is required for a successful invocation of PROC CPM is the network information specified either in AON or AOA formats and the duration of each activity in the network. The INTERVAL= option specifies the units of duration, and the DATE= option specifies a start date for the project. If a start date is not specified for
the project, the schedule is computed as unformatted numerical values with a project start date of 0. The DATE= option can be a SAS date, time, or datetime value (or a number) and can be used to specify a start date for the project. In addition to the start date of the project, you can specify a desired finish date for the project using the FBDATE= option.

PROC CPM computes the early start schedule as well as the late start schedule for the project. The project start date is used as the starting point for the calculation of the early start schedule, while the project completion date is used in the computation of the late start schedule. The early start time (E_START) for all start activities (those activities with no predecessors) in the project is set to be equal to the value of the DATE parameter (if the FINISHBEFORE option is not specified). The early finish time (E_FINISH) for each start activity is computed as E_START + dur, where dur is the activity’s duration (as specified in the Activity data set). For each of the other activities in the network, the early start time is computed as the maximum of the early finish time of all its immediate predecessors.

The project finish time is computed as the maximum of the early finish time of all the activities in the network. The late finish time (L_FINISH) for all the finish activities (those activities with no successors) in the project is set to be equal to the project finish time. The late start time (L_START) is computed as L_FINISH – dur. For each of the other activities in the network, the late finish time is computed as the minimum of the late start time of all its immediate successors. If the FIXFINISH option is specified, the late finish time for each finish activity is set to be equal to its early finish time. In other words, the finish activities are not allowed to float to the end of the project.

Once the early and late start schedules have been computed, the procedure computes the free and total float times for each activity. Free float (F_FLOAT) is defined as the maximum delay that can be allowed in an activity without delaying a successor activity. Total float (T_FLOAT) is calculated as the difference between the activity’s late finish time and early finish time; it indicates the amount of time by which an activity can be delayed without delaying the entire project. The values of both the float variables are calculated in units of the INTERVAL parameter.

An activity that has zero T_FLOAT is said to be critical. As a result of the forward and backward pass computations just described, there is at least one path in the project network that contains only critical activities. This path is called the critical path. The duration of the project is equal to the length of the critical path.

If the FBDATE= option is also specified, the project finish time is set equal to the value of the FBDATE= option. The backward pass computation is initiated by setting the late finish time for all the finish activities in the project to be equal to FBDATE. If the project finish time, as computed from the forward pass calculations, is different from FBDATE, the longest path in the network may no longer have 0 total float. In such a situation, the critical path is defined to be the path in the network with the least total float. Activities with negative T_FLOAT are referred to as supercritical activities.

Note: An important requirement for a project network is that it should be acyclic (cycles are not allowed). A network is said to contain a cycle (or loop) if the precedence
relationships starting from an activity loops back to the same activity. The forward and backward pass computations cannot be performed for a cyclic network. If the project network has a cycle, the CPM procedure stops processing after identifying the cycle.

Using the INTERVAL= Option

The INTERVAL= option enables you to define the units of the DURATION variable; that is, you can indicate whether the durations are specified as hours, minutes, days, or in terms of workdays, and so on. In addition to specifying the units, the INTERVAL= option also indicates whether the schedule is to be output as SAS time, date, or datetime values, or as unformatted numeric values.

The prefix DT in the value of the INTERVAL= option (as in DTDAY, DTWEEK, and so on) indicates to PROC CPM that the schedule is output as SAS datetime values, and the DATE= option is expected to be a SAS datetime value. Thus, use DTYEAR, DTMONTH, DTQTR, or DTWEEK instead of the corresponding YEAR, MONTH, QTR, or WEEK if the DATE= option is specified as a SAS datetime value.

The start and finish times for the different schedules computed by PROC CPM denote the first and last day of work, respectively, when the values are formatted as SAS date values. If the times are SAS time or datetime values, they denote the first and last second of work, respectively.

If the INTERVAL= option is specified as WORKDAY, the procedure schedules work on weekdays and nonholidays starting at 9 a.m. and ending at 5 p.m. If you use INTERVAL=DTWRKDAY, the procedure also schedules work only on weekdays and nonholidays. In this case, however, the procedure expects the DATE= option to be a SAS datetime value, and the procedure interprets the start of the workday from the time portion of that option. To change the length of the workday, use the DAYLENGTH= option in conjunction with INTERVAL=DTWRKDAY.

The procedure sets the default value of the INTERVAL= option on the basis of the units of the DATE= option. Table 2.20 lists various valid combinations of the INTERVAL= option and the type of the DATE= option (number, SAS time, date or datetime value) and the resulting interpretation of the duration units and the format type of the schedule variables (numbers, SAS time, date or datetime format) output to the Schedule data set. For each DATE type value, the first INTERVAL value is the default. Thus, if the DATE= option is a SAS date value, the default value of the INTERVAL= option is DAY, and so on.

For the first five specifications of the INTERVAL= option in the last part of Table 2.20 (DTDAY, . . . , DTHOUR), the day starts at daystart and is daylength hours long.

Note that the procedure may change the INTERVAL= specification and the units of the schedule variables to be compatible with the format specification of the ALIGNDATE variable, or the A_START or A_FINISH variables in the Activity data set, or the PERIOD variable in the Resource data set. For example, if interval is specified as DAY, but the ALIGNDATE variable contains SAS datetime values, the schedule is computed in SAS datetime values. Similarly, if interval is specified as
DAY or WEEKDAY, but some of the durations are fractional, the schedule is computed as SAS datetime values.

Table 2.20. INTERVAL= and DATE= Parameters and Units of Duration

<table>
<thead>
<tr>
<th>DATE Type</th>
<th>INTERVAL</th>
<th>Units of Duration</th>
<th>Format of Schedule</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS time</td>
<td>HOUR</td>
<td>period</td>
<td>unformatted</td>
<td>SAS time</td>
</tr>
<tr>
<td></td>
<td>MINUTE</td>
<td>hour</td>
<td></td>
<td>SAS time</td>
</tr>
<tr>
<td></td>
<td>SECOND</td>
<td>minute</td>
<td></td>
<td>SAS time</td>
</tr>
<tr>
<td></td>
<td>DAY</td>
<td>second</td>
<td></td>
<td>SAS time</td>
</tr>
<tr>
<td></td>
<td>WEEK</td>
<td>day (5-day week)</td>
<td></td>
<td>SAS date</td>
</tr>
<tr>
<td></td>
<td>WORKDAY</td>
<td>day (5-day week:</td>
<td></td>
<td>SAS date</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-5 day)</td>
<td></td>
<td>SAS datetime</td>
</tr>
<tr>
<td>SAS date</td>
<td>WEEK</td>
<td>week</td>
<td>SAS date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MONTH</td>
<td>month</td>
<td>SAS date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QTR</td>
<td>quarter</td>
<td>SAS date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YEAR</td>
<td>year</td>
<td>SAS date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTDAY</td>
<td>day (7-day week)</td>
<td>SAS datetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTWRKDAY</td>
<td>day (5-day week)</td>
<td>SAS datetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTSECOND</td>
<td>second</td>
<td>SAS datetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTMINUTE</td>
<td>minute</td>
<td>SAS datetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTHOUR</td>
<td>hour</td>
<td>SAS datetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTWEEK</td>
<td>week</td>
<td>SAS datetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTMONTH</td>
<td>month</td>
<td>SAS datetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTQTR</td>
<td>quarter</td>
<td>SAS datetime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTYEAR</td>
<td>year</td>
<td>SAS datetime</td>
<td></td>
</tr>
</tbody>
</table>

Nonstandard Precedence Relationships

A *standard* precedence constraint between two activities (for example, activity A and an immediate successor B) implies that the second activity is ready to start as soon as the first activity has finished. Such a relationship is called a *finish-to-start* relationship with zero lag. Often, you want to specify other types of relationships between activities; for example,

- activity B can start five days after activity A has started: start-to-start lag of five days
- activity B can start three days after activity A has finished: finish-to-start lag of three days.

The AON representation of the network enables you to specify such relationships between activities: use the LAG= option in the SUCCESSOR statement. This enables you to use variables in the Activity data set that specify the type of relationship between two activities and the time lag between the two events involved; you can also
specify the calendar to be used in measuring the lag duration. See the “SUCCESSOR Statement” section on page 86 for information on the specification. Example 2.11, “Nonstandard Relationships,” in the “Examples” section illustrates a nonstandard precedence relationship.

This section briefly discusses how the computation of the early and late start schedules, described in the “Scheduling Subject to Precedence Constraints” section on page 88, changes in the presence of nonstandard relationships.

For each (predecessor, successor) pair of activities, the procedure saves the lag type, lag duration, and lag calendar information. Suppose that the predecessor is A, the immediate successor is B, the durations of the two activities are \(\text{dur}_A \) and \(\text{dur}_B \), respectively, and the activity’s early start and finish times are \(\text{pes} \) and \(\text{pef} \), respectively. Suppose further that the lag type is \(\text{lt} \), lag duration is \(\text{ld} \), and lag calendar is \(\text{lc} \). Recall that the basic forward and backward passes described in the “Scheduling Subject to Precedence Constraints” section on page 88 assume that all the precedence constraints are standard of the type finish-to-start with zero lag. Thus, in terms of the notation just defined, the early start time of an activity is computed as the maximum of \(\text{pef} \) for all the preceding activities. However, in the presence of nonstandard relationships, the predecessor’s value used to compute an activity’s early start time depends on the lag type and lag value. Table 2.21 lists the predecessor’s value that is used to determine the successor’s early start time.

Table 2.21. Effect of Lag Duration and Calendar on Early Start Schedule

<table>
<thead>
<tr>
<th>Lag Type</th>
<th>Definition</th>
<th>Value Used to Compute Successor’s E–START</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>finish-to-start</td>
<td>(\text{pef} + \text{ld})</td>
</tr>
<tr>
<td>SS</td>
<td>start-to-start</td>
<td>(\text{pes} + \text{ld})</td>
</tr>
<tr>
<td>SF</td>
<td>start-to-finish</td>
<td>(\text{pes} + \text{ld} - \text{dur}_B)</td>
</tr>
<tr>
<td>FF</td>
<td>finish-to-finish</td>
<td>(\text{pef} + \text{ld} - \text{dur}_B)</td>
</tr>
</tbody>
</table>

Note that the addition of the lag durations (\(\text{ld} \)) is in units following the lag calendar \(\text{lc} \); the subtraction of \(\text{dur}_B \) is in units of the activity B’s calendar. The backward pass to determine the late start schedule is modified in a similar way to include lag durations and calendars.

Time-Constrained Scheduling

You can use the DATE= and FBDATE= options in the PROC CPM statement (or the DATE= option in conjunction with the FINISHBEFORE option) to impose start and finish dates on the project as a whole. Often, you want to impose start or finish constraints on individual activities within the project. The ALIGNDATE and ALIGNTYPE statements enable you to do so. For each activity in the project, you can specify a particular date (as the value of the ALIGNDATE variable) and whether you want the activity to start on or finish before that date (by specifying one of several alignment types as the value of the ALIGNTYPE variable). PROC CPM uses all these dates in the computation of the early and late start schedules.

The following explanation best illustrates the restrictions imposed on the start or finish times of an activity by the different types of alignment allowed. Let \(\text{d} \) denote
the value of the ALIGNDATE variable for a particular activity and let \(\text{dur} \) be the activity’s duration. If \(\text{minsdate} \) and \(\text{maxfdate} \) are used to denote the earliest allowed start date and the latest allowed finish date, respectively, for the activity, then Table 2.22 illustrates the values of \(\text{minsdate} \) and \(\text{maxfdate} \) as a function of the value of the ALINGTYPE variable.

Once the \(\text{minsdate} \) and \(\text{maxfdate} \) dates have been calculated for all of the activities in the project, the values of \(\text{minsdate} \) are used in the computation of the early start schedule and the values of \(\text{maxfdate} \) are used in the computation of the late start schedule.

Table 2.22. Determining Alignment Date Values with the ALINGTYPE Statement

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Alignment Type</th>
<th>(\text{minsdate})</th>
<th>(\text{maxfdate})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ</td>
<td>start equal</td>
<td>(d)</td>
<td>(d + \text{dur})</td>
</tr>
<tr>
<td>SGE</td>
<td>start greater than or equal</td>
<td>(d)</td>
<td>(d + \infty)</td>
</tr>
<tr>
<td>SLE</td>
<td>start less than or equal</td>
<td>(- \infty)</td>
<td>(d + \text{dur})</td>
</tr>
<tr>
<td>FEQ</td>
<td>finish equal</td>
<td>(d - \text{dur})</td>
<td>(d)</td>
</tr>
<tr>
<td>FGE</td>
<td>finish greater than or equal</td>
<td>(d - \text{dur})</td>
<td>(+ \infty)</td>
</tr>
<tr>
<td>FLE</td>
<td>finish less than or equal</td>
<td>(- \infty)</td>
<td>(d)</td>
</tr>
<tr>
<td>MS</td>
<td>mandatory start</td>
<td>(d)</td>
<td>(d + \text{dur})</td>
</tr>
<tr>
<td>MF</td>
<td>mandatory finish</td>
<td>(d - \text{dur})</td>
<td>(d)</td>
</tr>
</tbody>
</table>

For the first six alignment types in Table 2.22, the value of \(\text{minsdate} \) specifies a lower bound on the early start time and the value of \(\text{maxfdate} \) specifies an upper bound on the late finish time of the activity. The early start time (\(E_\text{START} \)) of an activity is computed as the maximum of its \(\text{minsdate} \) and the early finish times (\(E_\text{FINISH} \)) of all its predecessors (\(E_\text{FINISH} = E_\text{START} + \text{dur} \)). If nonstandard relationships are present in the project, the predecessor’s value that is used depends on the type of the lag and the lag duration; Table 2.21 in the previous section lists the values used as a function of the lag type. If a target completion date is not specified (using the FBDATE or FINISHBEFORE options), the project completion time is determined as the maximum value of \(E_\text{FINISH} \) over all of the activities in the project. The late finish time (\(L_\text{FINISH} \)) for each of the finish activities (those with no successors) is computed as the minimum of its \(\text{maxfdate} \) and the project completion date; late start time (\(L_\text{START} \)) is computed as \(L_\text{FINISH} - \text{dur} \). The late finish time (\(L_\text{FINISH} \)) for each of the other activities in the network is computed as the minimum of its \(\text{maxfdate} \) and the \(L_\text{START} \) times of all its successors.

It is important to remember that the precedence constraints of the network are always respected (for these first six alignment types). Thus, it is possible that an activity that has an alignment constraint of the type SEQ, constraining it to start on a particular date, say \(d \), may not start on the specified date \(d \) due to its predecessors not being finished before \(d \). During resource-constrained scheduling, a further slippage in the start date could occur due to insufficient resources. In other words, the precedence constraints and resource constraints have priority over the time constraints (as imposed by the ALIGNDATE and ALINGTYPE statements) in the determination of the schedule of the activities in the network.
Chapter 2. The CPM Procedure

The last two alignment types, MS and MF, however, specify mandatory dates for the start and finish times of the activities for both the early and late start schedules. These alignment types can be used to schedule activities to start or finish on a given date disregarding precedence and resource constraints. Thus, an activity with the ALIGNTYPE variable’s value equal to MS and the ALINGDATE variable’s value equal to \(d \) is scheduled to start on \(d \) (for the early, late, and resource-constrained schedules) irrespective of whether or not its predecessors are finished or whether or not there are enough resources.

Note that it is possible for the L..START time of an activity to be less than its E..START time if there are constraints on the start times of certain activities in the network (or constraints on the finish times of some successor activities) that make the target completion date infeasible. In such cases, some of the activities in the network have negative values for T..FLOAT, indicating that these activities are supercritical. See Example 2.12, “Activity Time Constraints,” for a demonstration of this situation.

Finish Milestones

By default, the start and finish times for the different schedules computed by PROC CPM denote the first and last day of work, respectively, when the values are formatted as SAS date values. All start times are assumed to denote the beginning of the day and all finish times are assumed to correspond to the end of the day. If the times are SAS time or datetime values, they denote the first and last second of work, respectively. However, for zero duration activities, both the start and the finish times correspond to the beginning of the date (or second) specified.

Thus, according to the preceding definitions, the CPM procedure assumes that all milestones are scheduled at the beginning of the day indicated by their start times. In other words, the milestones can be regarded as start milestones since they correspond to the beginning of the time period indicated by their scheduled times.

However, in some situations, you may want to treat the milestones as finish milestones.

Consider the following example:

Activity ‘A’ has a 2-day duration and is followed by a milestone (zero duration) activity, ‘B’. Suppose that activity ‘A’ starts on March 15, 2004. The default calculations by the CPM procedure will produce the following schedule for the two activities:

<table>
<thead>
<tr>
<th>OBS</th>
<th>Activity</th>
<th>Duration</th>
<th>E.START</th>
<th>E_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>15MAR2004</td>
<td>16MAR2004</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>17MAR2004</td>
<td>17MAR2004</td>
</tr>
</tbody>
</table>

The start and finish times of the milestone activity, ‘B’, are interpreted as the beginning of March 17, 2004. In some situations, you may want the milestones to start and finish on the same day as their predecessors. For instance, in this example, you may want the start and finish time of activity ‘B’ to be set to March 16, 2004, with the
interpretation that the time corresponds to the *end* of the day. Such milestones will be referred to as *finish milestones*.

The SETFINISHMILESTONE option in the PROC CPM statement indicates that a milestone that is linked to its predecessor by a *Finish-to-Start* or a *Finish-to-Finish* precedence constraint should be treated as a *finish milestone*. In other words, such a milestone should have the start and finish time set to the *end* of the day that the predecessor activity finishes. There are some exceptions to this rule:

- There is an alignment constraint on activity ‘B’ that requires the milestone to start on a later day than the date dictated by the precedence constraint.
- Activity ‘B’ has an actual start or finish time specified that is inconsistent with the predecessor’s finish date.

Note that the alignment constraint that affects the early schedule of the project may not have any impact on the late schedule. Thus, a milestone may be treated as a finish milestone for the late schedule even if it is not a finish milestone according to the early schedule. See Example 2.28 for an illustration of this situation. In addition, while computing the resource-constrained schedule, a start milestone (according to the early schedule) may in fact turn out to be a finish milestone according to the resource-constrained schedule.

Since the same milestone could be treated as either a start or a finish milestone depending on the presence or absence of an alignment constraint, or depending on the type of the schedule (early, late, resource-constrained, or actual), the CPM procedure adds extra variables to the Schedule data set corresponding to each type of schedule. These variables, **EFINMILE**, **LFINMILE**, **SFINMILE**, and **AFINMILE**, indicate for each milestone activity in the project whether the corresponding schedule times (early, late, resource-constrained, or actual) are to be interpreted as finish milestone times. These variables have a value of ‘1’ if the milestone is treated as a finish milestone for the corresponding schedule; otherwise, the value is missing. In addition to providing an unambiguous interpretation for the schedule times of the milestones, these variables are useful in plotting the schedules correctly using the Gantt procedure. (See Example 2.28).

OUT= Schedule Data Set

The Schedule data set always contains the variables in the Activity data set that are listed in the **TAILNODE**, **HEADNODE**, **ACTIVITY**, **SUCCESSOR**, **DURATION**, and **ID** statements. If the INTPER= option is specified in the PROC CPM statement, then the values of the **DURATION** variable in the Schedule data set are obtained by multiplying the corresponding values in the Activity data set by **intper**. Thus, the values in the Schedule data set are the durations used by PROC CPM to compute the schedule. If the procedure is used without specifying a **RESOURCEIN=** data set and only the unconstrained schedule is obtained, then the Schedule data set contains six new variables named **E_START**, **L_START**, **E_FINISH**, **L_FINISH**, **T_FLOAT**, and **F_FLOAT**.
If a resource-constrained schedule is obtained, however, the Schedule data set contains two new variables named S_START and S_FINISH; the T_FLOAT and F_FLOAT variables are omitted. You can request the omission of the E_START and E_FINISH variables by specifying NOE_START and the omission of the L_START and L_FINISH variables by specifying NOL_START in the RESOURCE statement. The variables listed in the RESOURCE statement are also included in the Schedule data set; to omit them, use the NORESOURCEVARS option in the RESOURCE statement. If the DELAYANALYSIS option is specified, the Schedule data set also includes the variables R_DELAY, DELAY_R and SUPPL_R.

If resource-driven durations or resource calendars are in effect, the start and finish times shown in the Schedule data set are computed as the minimum of the start times for all resources for that activity and the maximum of the finish times for all resources for that activity, respectively. For details see the “Resource-Driven Durations and Resource Calendars” section on page 108.

If an ACTUAL statement is specified, the Schedule data set also contains the four variables A_START, A_FINISH, A_DUR, and STATUS.

The format of the schedule variables in this data set (namely, A_START, A_FINISH, E_FINISH, L_FINISH, and so on) is consistent with the format of the DATE= specification and the INTERVAL= option in the PROC CPM statement.

Definitions of Variables in the OUT= Data Set

Each observation in the Schedule data set is associated with an activity. The variables in the data set have the following meanings.

A_DUR

specifies the actual duration of the activity. This variable is included in the Schedule data set only if the ACTUAL statement is used. The value for this variable is missing unless the activity is completed and may be different from the duration of the activity as specified by the DURATION variable. It is based on the values of the progress variables. See the “Progress Updating” section on page 105 for further details.

A_FINISH

specifies the actual finish time of the activity, either as specified in the Activity data set or as computed by PROC CPM on the basis of the progress variables specified. This variable is included in the Schedule data set only if the ACTUAL statement is used.

A_START

specifies the actual start time of the activity, either as specified in the Activity data set or as computed by PROC CPM on the basis of the progress variables specified. This variable is included in the Schedule data set only if the ACTUAL statement is used.

E_FINISH

specifies the completion time if the activity is started at the early start time.

E_START

specifies the earliest time the activity can be started. This is the maximum of the
maximum early finish time of all predecessor activities and any lower bound placed on the start time of this activity by the alignment constraints.

F_FLOAT
specifies the free float time, which is the difference between the early finish time of the activity and the minimum early start time of the activity’s immediate successors. Consequently, it is the maximum delay that can be tolerated in the activity without affecting the scheduling of a successor activity. The values of this variable are calculated in units of the INTERVAL= parameter.

L_FINISH
specifies the latest completion time of the activity. This is the minimum of the minimum late start time of all successor activities and any upper bound placed on the finish time of the activity by the alignment constraints.

L_START
specifies the latest time the activity can be started. This is computed from the activity’s latest finish time.

S_FINISH
specifies the resource-constrained finish time of the activity. If resources are insufficient and the procedure cannot schedule the activity, the value is set to missing, unless the FILLUNSCHED option is specified.

S_START
specifies the resource-constrained start time of the activity. If resources are insufficient and the procedure cannot schedule the activity, the value is set to missing, unless the FILLUNSCHED option is specified.

STATUS
specifies the current status of the activity. This is a character valued variable. Possible values for the status of an activity are Completed, In Progress, Infeasible or Pending; the meanings are self-evident. If the project is scheduled subject to resource constraints, activities that are Pending are classified as Pending or Infeasible depending on whether or not PROC CPM is able to determine a resource-constrained schedule for the activity.

T_FLOAT
specifies the total float time, which is the difference between the activity late finish time and early finish time. Consequently, it is the maximum delay that can be tolerated in performing the activity and still complete the project on schedule. An activity is said to be on the critical path if T_FLOAT=0. The values of this variable are calculated in units of the INTERVAL= parameter.

If activity splitting is allowed during resource-constrained scheduling, the Schedule data set may contain more than one observation corresponding to each observation in the Activity data set. It will also contain the variable SEGMT_NO, which is explained in the “Activity Splitting” section on page 118.

If the PROJECT statement is used, some additional variables are added to the output data set. See the “Schedule Data Set” section on page 131 for details.
Multiple Calendars

Work pertaining to a given activity is assumed to be done according to a particular calendar. A calendar is defined here in terms of a work pattern for each day and a work week structure for each week. In addition, each calendar may have holidays during a given year.

You can associate calendars with Activities (using the CALID variable in the Activity data set) or Resources (using observations with the keyword ‘CALENDAR’ for the OBSTYPE variable in the Resource data set).

PROC CPM enables you to define very general calendars using the WORKDATA, CALEDATA, and HOLIDATA data sets and options in the PROC CPM statement. Recall that these data sets are referred to as the Workday, Calendar, and Holiday data sets, respectively. The Workday data set specifies distinct shift patterns during a day. The Calendar data set specifies a typical work week for any given calendar; for each day of a typical week, it specifies the shift pattern that is followed. The Holiday data set specifies a list of holidays and the calendars that they refer to; holidays are defined either by specifying the start of the holiday and its duration in interval units, or by specifying the start and end of the holiday period. The Activity data set (the DATA= input data set) then specifies the calendar that is used by each activity in the project through the CALID variable (or a default variable _CAL_). Each of the three data sets used to define calendars is described in greater detail later in this section.

Each new value for the CALID variable in either the Calendar data set or the Holiday data set defines a new calendar. If a calendar value appears in the Calendar data set and not in the Holiday data set, it is assumed to have the same holidays as the default calendar (the default calendar is defined later in this section). If a calendar value appears in the Holiday data set and not in the Calendar data set, it is assumed to have the same work pattern structures (for each week and within each day) as the default calendar. In the Activity data set, valid values for the CALID variable are those that are defined in either the Calendar data set or the Holiday data set.

Cautions

The Holiday, Calendar, and Workday data sets and the processing of holidays and different calendars are supported only when interval is DAY, WEEKDAY, DTDAY, WORKDAY, DTWRKDAY, DTHOUR, DTMINUTE, or DTSECOND. PROC CPM uses default specifications whenever some information required to define a calendar is missing or invalid. The defaults have been chosen to provide consistency among different types of specifications and to correct for errors in input, while maintaining compatibility with earlier versions of PROC CPM. You get a wide range of control over the calendar specifications, from letting PROC CPM define a single calendar entirely from defaults, to defining several calendars of your choice with precisely defined work patterns for each day of the week and for each week. If the Calendar, Workday, and Holiday data sets are used along with multiple calendar specifications, it is important to remember how all of the data sets and the various options interact to form the work patterns for the different calendars.
Default Calendar

The default calendar is a special calendar that is defined by PROC CPM; its definition and uses are explained in this subsection.

If there is no CALID variable and no Calendar and Workday data sets, the default calendar is defined by *interval* and the DAYSTART= and DAYLENGTH= options in the PROC CPM statement. If *interval* is DAY, DTDAY, DTHOUR, DTMINUTE or DTSECOND, work is done on all seven days of the week; otherwise, Saturday and Sunday are considered to be non-working days. Further, if the schedule is computed as SAS datetime values, the length of the working day is determined by *daystart* and *daylength*. All of the holidays specified in the Holiday data set refer to this default calendar, and all of the activities in the project follow it. Thus, if there is no CALID variable, the default calendar is the only calendar that is used for all of the activities in the project.

If there is a CALID variable that identifies distinct calendars, you can use an observation in the Calendar data set to define the work week structure for the default calendar. Use the value ‘0’ (if CALID is a numeric variable) or the value ‘DEFAULT’ (if CALID is a character variable) to identify the default calendar. In the absence of such an observation, the default calendar is defined by *interval*, *daystart*, and *daylength*, as described earlier. The default calendar is used to substitute default work patterns for missing values in the Calendar data set or to set default work week structures for newly defined calendars in the Holiday data set.

WORKDATA Data Set

All numeric variables in the Workday data set are assumed to denote unique shift patterns during one working day. For each variable the observations specify, alternately, the times when consecutive shifts start and end. Suppose S1, S2, and S3 are numeric variables formatted as TIME6. Consider the following Workday data:

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7:00</td>
<td>.</td>
<td>7:00 (start)</td>
</tr>
<tr>
<td></td>
<td>11:00</td>
<td>08:00</td>
<td>11:00 (end)</td>
</tr>
<tr>
<td></td>
<td>12:00</td>
<td>.</td>
<td>. (start)</td>
</tr>
<tr>
<td></td>
<td>16:00</td>
<td>.</td>
<td>. (end)</td>
</tr>
</tbody>
</table>

The variables S1, S2, and S3 define three different work patterns. A missing value in the first observation is assumed to be 0 (or 12:00 midnight); a missing value in any other observation is assumed to denote 24:00 and ends the definition of the shift. Thus, the workdays defined are:

- S1 defines a workday starting at 7:00 a.m. and continuing until 4:00 p.m. with an hour off for lunch from 11:00 a.m. until 12:00 noon.
- S2 defines a workday from midnight to 8:00 a.m.
- S3 defines a workday from 7:00 a.m. to 11:00 a.m.
The last two values for the variables S2 and S3 (both values are ‘24:00’, by default) are ignored. This data set can be used to define all of the unique shift patterns that occur in any of the calendars in the project. These shift patterns are tied to the different calendars in which they occur using the Calendar data set.

CALEDATA Data Set

The Calendar data set defines specific calendars using the names of the shift variables in the Workday data set. You can use the variable specified in the CALID statement or a variable named _CAL_ to identify the calendar name or number. Character variables named _SUN_, _MON_, _TUE_, _WED_, _THU_, _FRI_, and _SAT_ are used to indicate the work pattern that is followed on each day of the week. Valid values for these variables are ‘HOLIDAY’, ‘WORKDAY’ or, any shift variable name defined in the Workday data set.

Note: A missing value for any of these variables is assumed to denote that the work pattern for the corresponding day is the same as for the default calendar.

When *interval* is specified as DTDAY, WORKDAY, or DTWRKDAY, it is necessary to know the length of a *standard* working day in order to be able to compute the schedules consistently. For example, a given calendar may have an eight-hour day on Monday, Tuesday, and Wednesday and a seven-hour day on Thursday and Friday. If a given activity following that calendar has a duration of four days, does it mean that its duration is equal to $8 \times 4 = 32$ hours or $7 \times 4 = 28$ hours? To avoid ambiguity, a numeric variable named D_LENGTH can be specified in the Calendar data set to define the length of a standard working day for the specified calendar. If this variable is not found in the Calendar data set, all calendars for the project are assumed to have a standard daylength as defined by the default calendar.

For example, consider the following Calendar data:

```
   _CAL_   _SUN_   _MON_   _TUE_   _FRI_   _SAT_   D_LENGTH
   1     HOLIDAY   S1     S1     S2     S3     8:00
   2     HOLIDAY   .      .      .     HOLIDAY   .
   3     .        .      .      .      .      .
```

These three observations define three calendars: ‘1’, ‘2’, and ‘3’. The values ‘S1’, ‘S2’, and ‘S3’ refer to the shift variables defined in the “WORKDATA Data Set” section on page 99. Activities in the project can follow either of these three calendars or the default calendar.

Suppose *daystart* has been specified as 9:00 a.m. and *daylength* is eight hours. Further, suppose that *interval* is DTDAY. Using these parameter specifications, PROC CPM defines the default calendar and calendars 1, 2 and 3 using the Calendar data set just defined:

- The default calendar (not specified explicitly in the Calendar data set) is defined using *interval*, *daystart*, and *daylength*. It follows a seven-day week with each day being an eight-hour day (from 9:00 a.m. to 5:00 p.m.). Recall that the
default calendar is defined to have seven or five working days depending on whether *interval* is DTDAY or WORKDAY, respectively.

- Calendar ‘1’ (defined in observation 1) has a holiday on Sunday; on Monday and Tuesday work is done from 7:00 a.m. to 11:00 a.m. and then from 12:00 noon to 4:00 p.m.; work on Friday is done from 12:00 (midnight) to 8:00 a.m.; work on Saturday is done from 7:00 a.m. to 11:00 a.m.; on other days work is done from 9:00 a.m. to 5:00 p.m., as defined by the default calendar. The value of D–LENGTH specifies the number of hours in a standard work day; when durations of activities are specified in terms of number of workdays, then the value of D–LENGTH is used as a multiplier to convert workdays to the appropriate number of hours.

- Calendar ‘2’ (defined in observation 2) has holidays on Saturday and Sunday, and on the remaining days, it follows the standard working day as defined by the default calendar.

- Calendar ‘3’ (defined in observation 3) follows the same definition as the default calendar.

Note: If there are multiple observations in the Calendar data set identifying the same calendar, all except the first occurrence are ignored. The value ‘0’ (if CALID is a numeric variable) or the value ‘DEFAULT’ (if CALID is a character variable) refers to the default calendar. A missing value for the CALID variable is also assumed to refer to the default calendar. Note that the Calendar data set can be used to define the default calendar also.

HOLIDATA Data Set

The HOLIDATA data set (referred to as the Holiday data set) defines holidays for the different calendars that may be used in the project. Holidays are specified by using the HOLIDAY statement. See the HOLIDAY statement earlier in this chapter for a description of the syntax. This data set must contain a variable (the HOLIDAY variable) whose values specify the start of each holiday. Optionally, the data set may also contain a variable (the HOLIDUR variable) used to specify the length of each holiday or another variable (the HOLIFIN variable) specifying the finish time of each holiday. The variable specified by the CALID statement (or a variable named _CAL_) can be used in this data set to identify the calendar to which each holiday refers. A missing value for the HOLIDAY variable in an observation causes that observation to be ignored. If both the HOLIDUR and the HOLIFIN variables have missing values in a given observation, the holiday is assumed to start at the date and time specified for the HOLIDAY variable and last one unit of *interval* where the INTERVAL= option has been specified as *interval*. If a given observation has valid values for both the HOLIDUR and HOLIFIN variables, only the HOLIFIN variable is used so that the holiday is assumed to start and end as specified by the HOLIDAY and HOLIFIN variables, respectively. A missing value for the CALID variable causes the holiday to be included in all of the calendars, including the default.

The HOLIDUR variable is a natural way of expressing vacation times as *n* workdays, and the HOLIFIN variable is more useful for defining standard holiday periods, such as the CHRISTMAS holiday from 24DEC03 to 26DEC03 (both days inclusive). Note
that the HOLIDUR variable is assumed to be in units of interval and the procedure uses the particular work pattern structure for the given calendar to compute the length (finish time) of the holiday.

For example, consider the following Holiday data:

<table>
<thead>
<tr>
<th>HOLISTA</th>
<th>HOLIDUR</th>
<th>HOLIFIN</th>
<th>CAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>24DEC03</td>
<td>.</td>
<td>26DEC03</td>
<td>.</td>
</tr>
<tr>
<td>01JAN04</td>
<td>1</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>19JAN04</td>
<td>.</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>29JAN04</td>
<td>3</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>29JAN04</td>
<td>3</td>
<td>.</td>
<td>3</td>
</tr>
</tbody>
</table>

Suppose calendars ‘1’, ‘2’, and ‘3’ and the default calendar have been defined as described earlier in the description of the Calendar and Workday data sets. Recall that in this example INTERVAL=DTDAY, DAYSTART='09:00'T, and DAYLENGTH='08:00'T. Because the schedule is computed as SAS datetime values (since INTERVAL=DTDAY), the holiday values (specified here as SAS date values) are converted to SAS datetime values. The first observation in the Holiday data set has a missing value for _CAL_ and, hence, the holiday in this observation pertains to all the calendars. As defined by the Holiday data, the holiday lists for the different calendars (not including breaks due to shift definitions) are as shown in Table 2.23.

Note that, even though both calendars ‘2’ and ‘3’ have the same specifications for HOLISTA and HOLIDUR, the actual holiday periods are different for the two calendars. For calendar ‘2’, the three days starting from Thursday, January 29, imply that the holidays are on Thursday, Friday, and Monday (because Saturday and Sunday are already holidays). For calendar ‘3’ (all seven days are working days), the holidays are on Thursday, Friday, and Saturday.

Table 2.23. Holiday Definitions

<table>
<thead>
<tr>
<th>Calendar</th>
<th>Holiday Start</th>
<th>Holiday End</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24DEC03:09:00</td>
<td>26DEC03:16:59:59</td>
</tr>
<tr>
<td>1</td>
<td>24DEC03:09:00</td>
<td>26DEC03:07:59:59</td>
</tr>
<tr>
<td>2</td>
<td>24DEC03:09:00</td>
<td>26DEC03:16:59:59</td>
</tr>
<tr>
<td>3</td>
<td>24DEC03:09:00</td>
<td>26DEC03:16:59:59</td>
</tr>
</tbody>
</table>

You can use the GANTT procedure to visualize the breaks and holidays for the different calendar. Figure 2.4 shows all the breaks and holidays for the period between Christmas and New Year. Holidays and breaks are denoted by *. Likewise, Figure 2.5 shows the vacation periods in January for calendars ‘2’ and ‘3’.
Christmas and New Year Holidays

<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC 22</td>
<td>DEC 22</td>
<td>DEC 23</td>
<td>DEC 23</td>
<td>DEC 24</td>
<td>DEC 24</td>
<td>DEC 24</td>
</tr>
<tr>
<td>cal 00:00</td>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC 24</td>
<td>DEC 25</td>
<td>DEC 25</td>
<td>DEC 26</td>
<td>DEC 26</td>
<td>DEC 27</td>
<td>DEC 27</td>
</tr>
<tr>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC 27</td>
<td>DEC 28</td>
<td>DEC 28</td>
<td>DEC 29</td>
<td>DEC 29</td>
<td>DEC 30</td>
<td>DEC 30</td>
</tr>
<tr>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC 30</td>
<td>DEC 31</td>
<td>DEC 31</td>
<td>JAN 01</td>
<td>JAN 01</td>
<td>JAN 02</td>
<td>JAN 02</td>
</tr>
<tr>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
<td>00:00</td>
<td>12:00</td>
</tr>
</tbody>
</table>

Figure 2.4. Christmas and New Year Holidays for Multiple Calendars
Baseline and Target Schedules

An important aspect of project management is to examine the effects of changing some of the parameters of the project on project completion time. For example, you may want to examine different scenarios by changing the durations of some of the activities, or increasing or decreasing the resource levels. To see the effect of these changes, you need to compare the schedules corresponding to the changes. The BASELINE statement enables you to save a particular schedule as a target schedule and then compare a new schedule against that. See the “BASELINE Statement” section on page 69 for a description of the syntax.
Progress Updating

Once a project has been defined with all of its activities and their relationships, the durations, the resources needed, and so on, it is often useful to monitor its progress periodically. During resource-constrained scheduling, it is useful to schedule only activities that have not yet started, taking into consideration the activities that have already been completed or scheduled and the resources that have already been used by them or allotted for them. The **ACTUAL** statement is used in PROC CPM to convey information about the current status of a project. As information about the activities becomes available, it can be incorporated into the schedule of the project through the specification of the actual start or finish times or both, the duration that is still remaining for the activity, or the percentage of work that has been completed on an activity. The specification of the progress variables and the options in the **ACTUAL** statement have been described earlier in this chapter. This section describes how the options work together and how some default values are determined.

The following options are discussed in this section:

- the TIMENOW= option
- the AUTOUPDT and NOAUTOUPDT options
- the TIMENOWSPLT option
- the progress variables (A_START, A_FINISH, REMDUR, and PCTCOMP)

The TIMENOW= option is specified in the **ACTUAL** statement. The value of the TIMENOW= option (often referred to simply as TIMENOW) is used as a reference point to resolve the values of the remaining duration and percent completion times. All actual start and finish times specified are checked to ensure that they are less than TIMENOW. If there is some inconsistency, a warning message is printed to the log.

If the **ACTUAL** statement is used, at least one of the four progress variables must be specified. PROC CPM uses the nonmissing values for the progress variables in any given observation to determine the information that is to be used for the activity. It is possible that there are some inconsistencies in the specification of the values relating to the progress information. For example, an activity may have valid values for both the A_START and the A_FINISH variables and also have the value of the PCTCOMP variable less than 100. PROC CPM looks at the values in a specific order, resolving inconsistencies in a reasonable manner. Further, PROC CPM determines revised estimates of the durations of the activities on the basis of the actual information.

Suppose that for a given activity, \(as\) is the actual start, \(af\) is the actual finish, \(remdur\) is the remaining duration, \(pctc\) is the percent complete, and \(dur\) is the duration of the activity as specified by the values of the corresponding variables in the Activity data set. (If a particular variable is not specified, assume that the corresponding value is missing.)

The **elapsed duration** of an activity in progress is the time lapse between its actual start and TIMENOW; the **revised duration** of the activity is the **updated duration** of the activity that is used to calculate the projected finish time for activities in progress...
and the actual duration for activities that are completed. The revised duration is used by PROC CPM to compute the updated schedule as described later in this section. In the discussion that follows, as, af, remdur, and pctc refer to the actual start time, actual finish time, remaining duration, and percent completed, respectively, for the activity in the Activity data set, while A_START, A_FINISH, and A_DUR refer to the values calculated by PROC CPM for the corresponding new variables added to the Schedule data set.

The following is a list of some of the conventions used by PROC CPM in calculating the revised duration:

- If both as and af are specified, the revised duration is computed as the time, excluding non-working periods, between as and af; in the Schedule data set, the variable A_DUR is also set to this value; A_START is set to as and A_FINISH to af.
- If as is specified without af, PROC CPM uses remdur to compute the revised duration as the sum of the elapsed duration and the remaining duration.
- If as is specified and both af and remdur are missing, the revised duration is computed on the basis of the elapsed duration and pctc.
- If as is specified and af, remdur and pctc are not specified, the duration is not revised. If the time lapse between as and TIMENOW is greater than or equal to the duration of the activity, it is assumed to have finished at the appropriate time (as + dur) and the Schedule data set has the appropriate values for A_START, A_FINISH, and A_DUR.
- If as is missing and af is valid, PROC CPM determines as on the basis of af and the specified duration (remdur and pctc, if specified, are ignored.)
- If as and af are both missing, the revised duration is determined on the basis of remdur and pctc. If the activity has started (if pctc > 0 or remdur < dur), as is set appropriately, and if it has also finished (which is the case if pctc = 100 or remdur = 0), af is also set.

Using the preceding rules, PROC CPM attempts to determine actual start and finish times for as many activities as possible using the information given for each activity. The next question is: What about activities that have missing values for the actual start and finish times? Suppose a given activity has a valid value for A_START and is currently in progress. It seems logical for successors of this activity to have missing values for A_START. But how about predecessors of the activity? If they have missing values for A_START and A_FINISH, does it mean that there was an error in the input of the actual dates or an error in the precedence constraints? The AUTOUPDT and NOAUTOUPDT options enable you to control the answer to this question. AUTOUPDT instructs CPM to automatically fill in appropriate A_START and A_FINISH values for all activities that precede activities which have already started. NOAUTOUPDT implies that only those activities that have explicit progress information confirming their status are assumed to be in progress or completed; all other activities are assumed to have an implicit start date that is greater than or equal
to TIMENOW. In other words, NOAUTOUPDT assumes that the precedence constraints may be overridden by the actual data. The default option is AUTOUPDT.

The scheduling algorithm treats the actual start and finish times as follows:

- If A_START is not missing, the E_START time is set equal to A_START during the forward pass, and the E_FINISH time is set equal to E_START + the revised duration.
- If A_START is missing, the E_START time is computed as before.
- If A_FINISH or A_START is not missing, the L_FINISH time is set equal to A_FINISH during the backward pass, and the L_START time is computed on the basis of L_FINISH and the revised duration. This rule causes the late start schedule to be the same as the early start schedule for completed or in-progress activities. Thus, T_FLOAT and F_FLOAT are 0 for such activities. Use the SHOWFLOAT option if you want to allow nonzero float for in-progress or completed activities. In this case, the late start schedule is computed as before, using the precedence constraints, so that you can determine the degree of lateness for the activities that have already been completed or are in progress.
- If E_START is less than TIMENOW for an activity (and thus it is also the same as A_START), the activity is scheduled during resource allocation even if there are not enough resources (a warning message is printed to the log if this is the case). Thus, resource-constrained scheduling is done only for the period starting from TIMENOW.

Note: The resources required by activities that are completed or in progress are accounted for and the corresponding changes are made to the resource availability profile before starting the constrained scheduling process at TIMENOW.

- If resource-constrained scheduling is being performed, the TIMENOWSPLT option can be used. This option affects those activities that are currently in progress that cause resource infeasibilities. The TIMENOWSPLT option causes such activities to be split at TIMENOW into segments; the first segment is assumed to be complete before TIMENOW, and the second segment is delayed until sufficient resources are available.

The Schedule data set contains the actual start times (A_START) for all activities that are in progress or completed and the actual finish times (A_FINISH) and the actual duration times (A_DUR) for all activities that are completed. Some of these values may have been derived from the percent completion or remaining duration times in the Activity data set or may have been implicitly determined through the AUTOUPDT option. Also included in the Schedule data set is a variable named STATUS describing the status of each activity. The possible values are Completed, In Progress, Infeasible, and Pending; the interpretations are self-evident.

If the ESTPCTC option is specified, the Schedule data set also contains a variable named PCT_COMP that contains the percent completion time for each activity in the project.
Chapter 2. The CPM Procedure

Resource-Driven Durations and Resource Calendars

The DURATION variable enables you to specify a fixed duration for an activity. The CPM procedure then assumes that all the resources for that activity are required throughout the duration of that activity; further, the activity is assumed to follow the work pattern specified by the activity’s calendar. Suppose that there are multiple resources required by an activity, each following a different calendar and each requiring varying amounts of work. For example, a programming task may require 50 hours of a programmer’s time and 20 hours of a tester’s time. Further, the programmer may work full time on the tasks, while the tester, due to other commitments, may work only half time on the same activity. The scheduling could be further complicated if the tester and the programmer followed different calendars. Situations of this type can be modeled using resource-driven durations and resource calendars.

The WORK variable in the Activity data set specifies the total amount of work required by one unit of a resource. Unlike the DURATION variable, which represents a fixed duration for an activity for all its resources, the WORK variable drives the duration for each resource required by the activity using the resource rate specified. You can specify different amounts of work for different resources by using different observations to specify rates and total work for the different resources. Consider the following data from an Activity data set:

<table>
<thead>
<tr>
<th>ACT</th>
<th>WORK</th>
<th>PGMR</th>
<th>TESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td></td>
<td>.5</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PGMR and TESTER are resource variables specifying the rate at which the respective resource is required (used) for the particular activity; WORK specifies the total number of hours (assuming that the INTERVAL parameter has been specified as HOUR) of work required by each resource that has a rate specified in that observation. Thus, Activity ‘1’ requires 50 hours of the resource PGMR and 20 hours of the resource TESTER, while activity ‘2’ requires 15 hours of each of the two resources. Using the rates for the resources specified in the preceding data, the procedure determines the resource durations for activity 1 to be 50 hours for PGMR and 40 hours for TESTER. Likewise, the resource durations for both resources are 15 hours for activity 2.

In the forward and backward pass calculations, the procedure computes the schedules for each resource and sets the activity’s start (finish) time to be the minimum (maximum) of the start (finish) times for all the resources.

Some activities may have a fixed duration for some resources and a resource-driven duration for other resources. For such activities, use the DURATION variable to specify the fixed duration and the WORK variable to specify the total amount of work required for the activity. If a particular observation has values specified for both the WORK and DURATION variables, use the resource type information in the Resource data set (described in the “RESOURCEIN= Input Data Set” section on page 109) to determine if the resource drives the duration of the activity.
Recall that the CALID variable in the Activity data set specifies the calendar that is used by each activity in the project. In addition, you can also associate calendars with the resources in the project. Resource calendars are specified in the Resource data set. However, the CALID variable must be numeric for you to associate calendars with resources; in other words, the calendars must be identified by numbers and not names.

Resource Usage and Allocation

Often the activities in a project use several resources. If you assume that these resources are available in unlimited quantities, then the only restrictions on the start and finish times of the activities in the project are those imposed by precedence constraints and dates specified for alignment of the activities. In most practical situations, however, there are limitations on the availability of resources; as a result, neither the early start schedule nor the late start schedule (nor any intermediate schedule for that matter) may be feasible. In such cases, the project manager is faced with the task of scheduling the activities in the project subject to constraints on resource availability in addition to the precedence constraints and constraints on the start and finish times of certain activities in the project. This problem is known as *resource allocation*.

You can use PROC CPM to schedule the activities in a project subject to resource constraints. To perform resource allocation, you must specify the resource requirements for each activity in the project and also specify the amount of resources available on each day under consideration. The resource requirements are given in the Activity data set, with the variable names identified to PROC CPM through the `RESOURCE` statement. The levels of resources available on different dates, as well as other information regarding the resources, such as the type of resource, the priority of the resource, and so forth, are obtained from the RESOURCEIN= data set.

Specifying resource requirements is described in detail in the “Specifying Resource Requirements” section on page 113, and the description of the format of the Resource data set is given in the “RESOURCEIN= Input Data Set” section on page 109, which follows. The “Scheduling Method” section on page 114 describes how you can use the SCHEDRULE= and DELAY= options (and other options) in conjunction with certain special observations in the Resource data set to control the process of resource allocation to suit your needs. Subsequent sections describe the different scheduling rules, supplementary resources, activity splitting, progress updating, and alternate resources.

RESOURCEIN= Input Data Set

The RESOURCEIN= data set (referred to as the Resource data set) contains all of the necessary information about the resources that are to be used by PROC CPM to schedule the project. Typically, the Resource data set contains the resource variables (numeric), a type identifier variable (character) that identifies the type of information in each observation, a period variable (numeric and usually a SAS time, date, or datetime variable), and a RESID variable that is used to specify *alternate resources* and *auxiliary resources*.

The value of the type identifier variable in each observation tells CPM how to interpret that observation. Valid values for this variable are RESLEVEL, RESTYPE,
RESUSAGE, RESPRTY, SUPLEVEL, ALTPRTY, ALTRATE, RESRCDUR, CALENDAR, MULTALT, MINARATE, and AUXRES. If the value of the type identifier variable in a particular observation is ‘RESLEVEL’, then that observation contains the levels available for each resource from the time specified in the period variable. Missing values are not allowed for the period variable in an observation containing the levels of the resources. Note that, for consumable resources, the observation indicates the total availability and not the increase in the availability. Likewise, for replenishable resources, the observation indicates the new level and not the change in the level of the resource.

Each resource can be classified as either consumable or replenishable. A consumable resource is one that is used up by the job (such as bricks or money), while a replenishable resource becomes available again once a job using it is over (such as manpower or machinery). If the value of the type identifier variable is ‘RESTYPE’, then that observation identifies the nature (consumable or replenishable) of the resource. The observation contains a value 1 for a replenishable resource and a value 2 for a consumable one. A missing value in this observation is treated as 1. In fact, if there is no observation in the Resource data set with the type identifier variable equal to ‘RESTYPE’, then all resources are assumed to be replenishable.

Sometimes, it may be useful to include resources in the project that are to be used only for aggregation purposes. You can indicate that a given resource is to be used for aggregation, and not for resource allocation, by specifying the values 3 or 4, depending on whether the resource is replenishable or consumable. In other words, use 3 for replenishable aggregate resources and 4 for consumable aggregate resources.

Consumable resources are assumed to be used continuously throughout the duration of the activity at the rate specified in the Activity data set (as described in the “Specifying Resource Requirements” section on page 113). For example, when you specify a rate of 100 per day for bricks, the CPM procedure assumes that the activity consumes bricks at the constant rate of 100 per day. Sometimes, you may wish to allocate all of the resource at the beginning or end of an activity. For example, you may pay an advance at the start of a contracted activity while the full payment is made when the activity is completed. You can indicate such a profile of usage for a consumable resource using the keyword ‘RESUSAGE’ for the value of the type identifier variable. Valid values for the resource variables in such an observation are 0, 1, and 2. A value 0 indicates that the resource is used continuously at the specified rate throughout the activity’s duration, a value 1 indicates that the resource is required at the beginning of the activity, and a value 2 specifies that the resource is used at the end of the activity. A missing value in this observation is treated as 0.

One of the scheduling rules that can be specified using the SCHEDRULE= option is RESPRTY, which requires ordering the resources according to some priority (details are given in the “Scheduling Rules” section on page 116). If this option is used, there must be an observation in the Resource data set with the type identifier variable taking the value ‘RESPRTY’. This observation specifies the ordering of the resources.

If the type identifier variable is given as ‘SUPLEVEL’, the observation denotes the amount of extra resource that is available for use throughout the duration of the project. This extra resource is used only if the activity cannot be scheduled with-
out delaying it beyond its late start time. See the “Secondary Levels of Resources” section on page 117 for details about the use of supplementary levels of resources in conjunction with the DELAY= and ACTDELAY= options.

If the type identifier variable is specified as ‘ALTRATE’, ‘ALTPRTY’, or ‘AUXRES’, the Resource data set must also have a RESID variable that is used to identify the name of a resource for which the current observation lists the possible alternate resources or the required auxiliary resources. See the “Specifying Alternate Resources” section on page 120 and the “Auxiliary Resources” section on page 123 for details.

If the value of the type identifier variable is ‘RESRCDUR’, that observation specifies the effect of the resource on an activity’s duration. Valid values for the resource variables in such an observation are 0, 1, and 2. A value 0 indicates that the resource uses a fixed duration (specified by the DURATION variable); in other words, the activity’s duration is not affected by changing the rate of the resource. A value 1 indicates that the WORK variable for an activity specifies the total amount of work required by the resource that is used to calculate the time required by the resource to complete its work on that activity; such a resource is referred to as a driving resource. The value 2 indicates a third type of resource; such a resource (referred to as a spanning resource) is required throughout the activity’s duration, no matter which resource is working on it. For example, an activity might require 10 percent of a “supervisor,” or the use of a particular room, throughout its duration. For such an activity, the duration used for the spanning resource is computed after determining the span of the activity for all the other resources.

If the value of the type identifier variable is ‘CALENDAR’, that observation specifies the calendar that is followed by each resource. If no calendar is specified for a given resource, the relevant activity’s calendar is used instead. Note that this use of the calendar requires that the calendar variable in the Activity and other data sets be numeric.

If the value of the type identifier variable is ‘MULTALT’, that observation indicates which resources can have multiple alternate resources. The value 1 for a resource variable in the observation indicates that multiple alternates are allowed for that resource, and a value 0 indicates that multiple alternates are not allowed. See the “Specifying Multiple Alternates” section on page 121 for details.

If the value of the type identifier variable is ‘MINARATE’, that observation indicates the minimum rate of substitution for each resource, whenever multiple alternates are used. Note that the ‘MINARATE’ values specified in this observation are used only if the MULTIPLEALTERNATES option is specified or if the Resource data set has an observation with the type identifier value of ‘MULTALT’.

The period variable must have nonmissing values for observations specifying the levels of the resources (that is, with type identifier equal to ‘RESLEVEL’). However, the period variable does not have any meaning when the type identifier variable has any value other than ‘RESLEVEL’; if the period variable has nonmissing values in these observations, it is ignored. The Resource data set must be sorted in order of increasing values of the period variable.

Multiple observations are allowed for each type of observation. If there is a conflict
in the values specified, only the first nonmissing value is honored; for example, if there are two observations of the type ‘RESTYPE’ and a resource variable has value 1 in the first and 2 in the second of these observations, the resource type is assumed to be 1 (replenishable). On the other hand, if the value is missing in the first observation but set to 2 in the second, the resource type is assumed to be 2 (consumable).

A resource is available at the specified level from the time given in the first observation with a nonmissing value for the resource. Its level changes (to the new value) whenever a new observation is encountered with a nonmissing value, and the date of change is the date specified in this observation.

The following examples illustrate the details about the Resource data set. Consider the following Resource data:

<table>
<thead>
<tr>
<th>OBS</th>
<th>OBSTYPE</th>
<th>DATE</th>
<th>WORKERS</th>
<th>BRICKS</th>
<th>PAYMENT</th>
<th>ADVANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESTYPE</td>
<td>.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>RESUSAGE</td>
<td>.</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RESPRTY</td>
<td>.</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>SUPLEVEL</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RESLEVEL</td>
<td>1JUL04</td>
<td>1000</td>
<td>2000</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RESLEVEL</td>
<td>5JUL04</td>
<td>4</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RESLEVEL</td>
<td>9JUL04</td>
<td>1500</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

There are four resources in these data, WORKERS, BRICKS, PAYMENT, and ADVANCE. The variable OBSTYPE is the type identifier, and the variable DATE is the period variable. The first observation (because OBSTYPE has value ‘RESTYPE’) indicates that WORKERS is a replenishable resource while the other three resources are consumable. The second observation indicates the usage profile for the consumable resources: the resource BRICKS is used continuously throughout the duration of an activity, while the resource PAYMENT is required at the end of the activity and the resource ADVANCE is needed at the start of the activity. The third observation indicates that all the resources have equal priority. In the fourth observation, a value ‘1’ under WORKERS indicates that a supplementary level of 1 worker is available if necessary, while no reserve is available for the resources BRICKS, PAYMENT, and ADVANCE.

The next three observations indicate the resource availability profile. The resource WORKERS is unavailable until July 5, 2004, when the level jumps from 0 to 4 and remains at that level through the end of the project. The resource BRICKS is available from July 1, 2004, at level 1000, while the resource levels for PAYMENT, and ADVANCE are 2000 and 500, respectively. On July 9, an additional 500 bricks are made available to increase the total availability to 1500. Note that missing values in observations 5 and 6 indicate that there is no change in the availability for the respective resources.

As another example, suppose that you want to treat BRICKS as an aggregate resource (one that is not to be included in resource allocation). Then consider the following data from a Resource data set:
The first observation indicates that the resource BRAKES is consumable and is to be used only for aggregation while the other two resources are replenishable and are to be treated as constrained resources during resource allocation.

The second observation, with the keyword ‘RESRCDUR’, specifies the effect of the resource on an activity’s duration. The value ‘0’ for the resource BRAKES implies that this resource does not affect the duration of an activity. On the other hand, the value ‘1’ identifies the resource PAINTER as a driving resource; this means that by increasing the number of painters, an activity’s duration can be decreased. Note that the procedure uses this information about the nature of the resource only if a particular observation in the Activity data set has valid values for both the WORK and DURATION variables. Otherwise, if you specify a value only for the WORK variable, the procedure assumes that the resource specifications in that observation drive the activity’s duration. Likewise, if you specify a value only for the DURATION variable, the procedure assumes that the resources specified in that observation require a fixed duration.

In the Resource data set specifications, the second observation also identifies the resource SUPERV to be of the spanning type. In other words, such a resource is required by an activity whenever any of the other resources are working on the same activity. Thus, if you add more painters to an activity, thereby reducing its duration, the supervisor (a spanning resource) will be needed for a shorter time.

The third observation indicates the calendar to be used in calculating the activity’s start and finish times for the particular resource. If you do not specify a calendar, the procedure uses the activity’s calendar.

Specifying Resource Requirements

To perform resource allocation or to summarize the resource utilization, you must specify the amount of resources required by each activity. In this section, the format for this specification is described. The amount required by each activity for each of the resources listed in the RESOURCE statement is specified in the Activity data set. The requirements for each activity are assumed to be constant throughout the activity’s duration. A missing value for a resource variable in the Activity data set indicates that the particular resource is not required for the activity in that observation.

The interpretation of the specification depends on whether or not the resource is replenishable. Suppose that the value for a given resource variable in a particular observation is ‘x’. If the resource is replenishable, it indicates that x units of the resource are required throughout the duration of the activity specified in that observation. On the other hand, if the resource is consumable, it indicates that the specified resource is consumed at the rate of x units per unit interval, where interval is the value specified in the INTERVAL= option in the PROC CPM statement. For example, consider the following specification:
Here, ACTIVITY denotes the activity under consideration, DUR is the duration in days (assuming that INTERVAL=DAY), and the resource variables are WORKERS and BRICKS. A missing value for WORKERS in observation 1 indicates that activity ‘A’ does not need the resource WORKERS, while the same is true for the resource BRICKS and activity ‘B’. You can assume that the resource WORKERS has been identified as replenishable, and the resource BRICKS has been identified as consumable in a Resource data set. Thus, a value ‘100’ for the consumable resource BRICKS indicates that 100 bricks per day are required for each of the 5 days of the duration of activity ‘A’, and a value ‘2’ for the replenishable resource WORKERS indicates that 2 workers are required throughout the duration (4 days) of activity ‘B’. Recall that consumable resources can be further identified as having a special usage profile, indicating that the requirement is only at the beginning or end of an activity. See the “Variable Usage Profile for Consumable Resources” section on page 127 for details.

Negative Resource Requirements

The CPM procedure enables you to specify negative resource requirements. A negative requirement indicates that a resource is produced instead of consumed. Typically, this interpretation is valid only for consumable resources. For example, a brick-making machine may produce bricks at the rate of 1000 units per hour which are then available for consumption by other tasks in the project. To indicate that a resource is produced (and not consumed) by an activity, specify the rate of usage for the resource as a negative number. For example, to indicate that a machine produces boxed cards at the rate of 5000 boxes per day, set the value of the resource, NUMBOXES, to -5000.

Scheduling Method

PROC CPM uses the serial-parallel (serial in time and parallel in activities) method of scheduling. In this section, the basic scheduling algorithm is described. (Modifications to the algorithm if an ACTUAL statement is used, if activity splitting is allowed, or if alternate resources are specified, are described later.) The basic algorithm proceeds through the following steps:

1. An initial tentative schedule describing the early and late start and finish times is determined without taking any resource constraints into account. This schedule does, however, reflect any restrictions placed on the start and finish times by the use of the ALIGNDATE and ALIGNTYPE statements. As much as possible, PROC CPM tries to schedule each activity to start at its E_START time (e_start, as calculated in this step). Set time=min(e_start), where the minimum is taken over all the activities in the network.
2. All of the activities whose e_start values coincide with time are arranged in a waiting list that is sorted according to the rule specified in the SCHEDRULE=
option. (See the “Scheduling Rules” section on page 116 for details on the valid values of this option.) The SCHEDRULE2= option can be used to break ties. PROC CPM tries to schedule the activities in the same order as on this list. For each activity the procedure checks to see if the required amount of each resource will be available throughout the activity’s duration; if enough resources are available, the activity is scheduled to start at \(t \). Otherwise, the resource availability profile is examined to see if there is likely to be an increase in resources in the future. If none is perceived until \(l_{start} + \text{delay} \), the procedure tries to schedule the activity to start at \(t \) using supplementary levels of the resources (if there is an observation in the Resource data set specifying supplementary levels of resources); otherwise, it is postponed. (Note that if the AWAITDELAY option is specified, and there are not enough resources at \(t \), the activity is not scheduled at \(t \) using supplementary resources). If \(t \) is equal to or greater than the value of \(l_{start} + \text{delay} \), and the activity cannot be scheduled (even using supplementary resources), PROC CPM stops with an error message, giving a partial schedule. You can also specify a cut-off date (using the STOPDATE= option) when resource constrained scheduling is to stop.

Note that once an activity that uses a supplementary level of a replenishable resource is over, the supplementary level that was used is returned to the reservoir and is not used again until needed. For consumable resources, if supplementary levels were used on a particular date, PROC CPM attempts to bring the reservoir back to the original level at the earliest possible time. In other words, the next time the primary availability of the resource increases, the reservoir is first used to replenish the supplementary level of the resource. (See Example 2.16, “Using Supplementary Resources”). Adjustment is made to the resource availability profile to account for any activity that is scheduled to start at \(t \).

3. All of the activities in the waiting list that were unable to be scheduled in Step 2 are postponed and are tentatively scheduled to start at the time when the next change takes place in the resource availability profile (that is, their \(e_{start} \) is set to the next change date in the availability of resources). \(t \) is advanced to the minimum \(e_{start} \) time of all unscheduled activities.

Steps 1, 2, and 3 are repeated until all activities are scheduled or the procedure stops with an error message.

Some important points to keep in mind are:

- Holidays and other non-working times are automatically accounted for in the process of resource allocation. Do not specify zero availabilities for the resources on holidays; PROC CPM accounts for holidays and weekends during resource allocation just as in the unrestricted case.

- It is assumed that the activities cannot be interrupted once they are started, unless one of the splitting options is used. See the “Activity Splitting” section on page 118 for details.
Scheduling Rules

The SCHEDRULE= option specifies the criterion to use for determining the order in which activities are to be considered while scheduling them subject to resource constraints. As described in the “Scheduling Method” section on page 114, at a given time specified by time, all activities whose tentative e_start coincides with time are arranged in a list ordered according to the scheduling rule, schedrule. The SCHEDRULE2= option can be used to break ties caused by the SCHEDRULE= option; valid values for schedrule2 are the same as for schedrule. However, if schedrule is ACTPRTY, then schedrule2 cannot be RESPRTY, and vice versa.

The following is a list of the six valid values of schedrule, along with a brief description of their respective effects.

ACTPRTY
- specifies that PROC CPM should sort the activities in the waiting list in the order of increasing values of the variable specified in the ACTIVITYPRTY= option in the RESOURCE statement. This variable specifies a user-assigned priority to each activity in the project (low value of the variable indicates high priority).
- **Note:** If SCHEDRULE is specified as ACTPRTY, the RESOURCE statement must contain the specification of the variable in the Activity data set that assigns priorities to the activities; if the variable name is not specified through the ACTIVITYPRTY= option, then CPM ignores the specification for the SCHEDRULE= option and uses the default scheduling rule, LST, instead.

DELAYLST
- specifies that the activities in the waiting list are sorted in the order of increasing \[L_{\text{START}} + \text{ACTDELAY} \], where ACTDELAY is the value of the ACTDELAY variable for that activity.

LFT
- specifies that the activities in the waiting list are sorted in the order of increasing \[L_{\text{FINISH}} \] time.

LST
- specifies that the activities in the waiting list are sorted in the order of increasing \[L_{\text{START}} \] time. Thus, this option causes activities that are closer to being critical to be scheduled first. This is the default rule.

RESPRTY
- specifies that PROC CPM should sort the activities in the waiting list in the order of increasing values of the resource priority for the most important resource used by each activity. In order for this scheduling rule to be valid, there must be an observation in the Resource data set identified by the value RESPRTY for the type identifier variable and specifying priorities for the resources. PROC CPM uses these priority values (once again, low values indicate high priority) to order the activities; then, the activities in the waiting list are ordered according to the highest priority resource used by them. In other words, the CPM procedure uses the resource priorities to assign priorities to the activities in the project; these activity priorities are then used to order the activities in the waiting list (in increasing order). If this option is specified, and there is no observation in the Resource data set specifying the resource priorities,
PROC CPM ignores the specification for the SCHEDRULE= option and uses the default scheduling rule, LST, instead.

SHORTDUR

specifies that the activities in the waiting list are sorted in the order of increasing durations. Thus, PROC CPM tries to schedule activities with shorter durations first.

Secondary Levels of Resources

There are two factors that you can use to control the process of scheduling subject to resource constraints: *time* and *resources*. In some applications, time is the most important factor, and you may be willing to use extra resources in order to meet project deadlines; in other applications, you may be willing to delay the project completion by an arbitrary amount of time if insufficient resources warrant doing so. The DELAY= and ACTDELAY= options and the availability of supplementary resources enable you to choose either method or a combination of the two approaches.

In the first case, where you do not want the project to be delayed, specify the availability of supplementary resources in the Resource data set and set DELAY=0. In the latter case, where extra resources are unavailable and you are willing to delay project completion time, set the DELAY= option to some very large number or leave it unspecified (in which case it is assumed to be + INFINITY). You can achieve a combination of both effects (using supplementary levels and setting a limit on the delay allowed) by specifying an intermediate value for the DELAY= option and including an observation in the Resource data set with supplementary levels.

You can also use the INFEASDIAGNOSTIC option which is equivalent to specifying infinite supplementary levels for all the resources under consideration. In this case, the DELAY= value is assumed to equal the default value of +INFINITY, unless it is specified otherwise. See Example 2.17, “INFEASDIAGNOSTIC Option and Aggregate Resource Type,” for an illustration.

Note that the DELAY= option presupposes that all the activities can be subjected to the same amount of delay. In some situations, you may want to control the amount of delay for each activity on the basis of some criterion, say the amount of float present in the activity. The ACTDELAY= option enables you to specify a variable amount of delay for each activity.

Resource-Driven Durations and Resource Allocation

If resource-driven durations or resource calendars are specified, the procedure computes the start and finish times for each resource separately for each activity. An activity is considered to be completed only when all the resources have completed their work on that activity. Thus, an activity’s start (finish) time is computed as the minimum (maximum) of the start (finish) times for all the resources used by that activity.

During resource-constrained scheduling, an activity enters the list of activities waiting for resources when all its precedence constraints have been satisfied. As before, this list is ordered using the scheduling rule specified. At this point, a tentative start and finish time is computed for each of the resources required by the activity using
the resource’s duration and calendar. An attempt is made to schedule all of this activity’s resources at these calculated times using the available resources. If the attempt is successful, the activity is scheduled to start at the given time with the appropriate resource schedule times, and the required resources are reduced from the resource availabilities. Otherwise, the procedure attempts to schedule the next activity in the list of activities waiting for resources. When all activities have been considered at the given time, the procedure continues to the next event and continues the allocation process. Note that, at a given point of time, the procedure schedules the activity only if all the required resources are available for that activity to start at that time (or at the nearest time per that resource’s calendar), unless you specify the INDEPENDENTALLOC option.

The INDEPENDENTALLOC option enables each resource to be scheduled independently for the activity. Thus, when an activity enters the list of activities waiting for resources, each resource requirement is considered independently, and a particular resource can be scheduled for that activity even if none of the other resources are available. However, the spanning type of resources must always be available throughout the activity’s duration. Note that the activity is considered to be finished (and its successors can start) only after all the resources for that activity have been scheduled. Note also that this option is valid even if all activities have fixed durations and calendars are not associated with resources.

Activity Splitting

As mentioned in the “Scheduling Method” section on page 114, PROC CPM assumes that activities cannot be preempted once they have started. Thus, an activity is scheduled only if it can be assured of enough resources throughout its entire duration. Sometimes, you may be able to make better use of the resources by allowing activities to be split. PROC CPM enables you to specify the maximum number of segments that an activity can be split into as well as the minimum duration of any segment of the activity. Suppose that for a given activity, \(d \) is its duration, \(maxn \) is the maximum number of segments allowed, and \(dmin \) is the minimum duration allowed for a segment. If one or the other of these values is not given, it is calculated appropriately based on the duration of the activity.

The scheduling algorithm described earlier is modified as follows:

- In Step 2, the procedure tries to schedule the entire activity (call it A) if it is critical. Otherwise, PROC CPM schedules, if possible, only the first part (say A1) of the activity (of length \(dmin \)). The remainder of the activity (call it A2, of length \(d - dmin \)) is added to the waiting list to be scheduled later. When it is A2’s turn to be scheduled, it is again a candidate for splitting if the values of \(maxn \) and \(dmin \) allow it, and if it is not critical. This process is repeated until the entire activity has been scheduled.
- While ordering the activities in the waiting list, in case of a tie, the split segments of an activity are given priority over unsplit activities. Note that some scheduling rules could lead to more splitting than others.
- Activities that have an alignment type of MS or MF imposed on them by the ALIGNTYPE variable are not split.
Note that splitting may not always reduce project completion time; it is designed to make better use of resources. In particular, if there are gaps in resource availability, it allows activities to be split and scheduled around the gaps, thus using the resources more efficiently.

If activity splitting is allowed, a new variable is included in the Schedule data set called SEGMT_NO (segment number). If splitting does occur, the Schedule data set has more observations than the Activity data set. Activities that are not split are treated as before, except that the value of the variable SEGMT_NO is set to missing. For split activities, the number of observations output is one more than the number of disjoint segments created.

The first observation corresponding to such an activity has SEGMT_NO set to missing, and the S_START and S_FINISH times are set to be equal to the start and finish times, respectively, of the entire activity. That is, S_START is equal to the scheduled start time of the first segment, and S_FINISH is equal to the scheduled finish time of the last segment that the activity is split into. Following this observation, there are as many observations as the number of disjoint segments in the activity. All values for these additional observations are the same as the corresponding values for the first observation for this activity, except for the variables SEGMT_NO, S_START, S_FINISH, and the DURATION variable. SEGMT_NO is the index of the segment, S_START and S_FINISH are the resource-constrained start and finish times for this segment, and DURATION is the duration of this segment.

Actual Dates and Resource Allocation

The resource-constrained scheduling algorithm uses the early start schedule as the base schedule to determine possible start times for activities in the project. If an ACTUAL statement is used in the invocation of PROC CPM, the early start schedule (as well as the late start schedule) reflects the progress information that is specified for activities in the project, and thus affects the resource constrained schedule also. Further, activities that are already completed or in progress are scheduled at their actual start without regard to resource constraints. If the resource usage profile for such activities indicates that the resources are insufficient, a warning is printed to the log, but the activities are not postponed beyond their actual start time. The Usage data set contains negative values for the availability of the insufficient resources. These extra amounts are assumed to have come from the supplementary levels of the resources (if such a reservoir existed); for details on supplementary resources, see the “Secondary Levels of Resources” section on page 117.

If activity splitting is allowed (through the specification of the MINSEGMDTUR or MAXNSEGMT variable or the SPLITFLAG or TIMENOWSPLT option), activities that are currently in progress may be split at TIMENOW if resources are insufficient; then the second segment of the split activity is added to the list of activities that need to be scheduled subject to resource constraints. Starting from TIMENOW, all activities that are still unscheduled are treated as described in the “Scheduling Method” section on page 114.
Specifying Alternate Resources

PROC CPM enables you to identify alternate resources that can be substituted for any given resource that is insufficient. Thus, for example, you can specify that if programmer John is unavailable for a given task, he can be substituted by programmer David or Robert. This information is passed to PROC CPM through the Resource data set.

As with other aspects of the Resource data set, each observation is identified by a keyword indicating the type of information in that observation. Two keywords, ALTRATE and ALTPRTY, enable you to specify the rate of substitution and a prioritization of the alternate resources when a resource has more than one substitution (lower value indicates higher priority). Further, a new variable (identified to PROC CPM through the RESID= option) is used to identify the resource for which alternates are being specified in the current observation. Consider the following Resource data:

<table>
<thead>
<tr>
<th>OBS</th>
<th>OBSTYPE</th>
<th>RES_NAME</th>
<th>RES_DATE</th>
<th>JOHN</th>
<th>DAVID</th>
<th>ROBERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESTYPE</td>
<td>.</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ALTRATE</td>
<td>JOHN</td>
<td>.</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>ALTPRTY</td>
<td>JOHN</td>
<td>.</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>RESLEVEL</td>
<td>15JUL04</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

In these Resource data, the second observation indicates that John can be substituted by David or Robert; however, either David or Robert can accomplish John’s tasks with half the effort. In other words, if an activity requires 1 unit of John, it can also be accomplished with 0.5 units of David. Also, the third observation, with OBSTYPE=‘ALTPRTY’, indicates that if John is unavailable, PROC CPM should first try to use David and if he, too, is unavailable, then should use Robert. This setup enables a wide range of control for specifying alternate resources.

In other words, the mechanism for specifying alternate resources is as follows: for each resource, specify a list of possible alternatives along with a conversion rate and an order in which the alternatives are to be considered. In the Resource data set, add another variable (identified by the RESID= option) to specify the name of the resource variable for which alternatives are being specified (the variable RES_NAME in the preceding example).

Let OBSTYPE=‘ALTRATE’ for the observation that specifies the rate of conversion for each possible alternate resource (missing implies the particular resource cannot be substituted). For resources that drive an activity’s duration, the specification of the alternate rate is used as a multiplier of the resource-driven duration. See the “Resource-Driven Durations and Alternate Resources” section on page 122 for details.

Let OBSTYPE=‘ALTPRTY’ for the observation that specifies a prioritization for the resources.

Note that all substitute resources must be of the same type (replenishable or consumable) as the primary resource. The specification of the RESID= option triggers
the use of alternate resources. If alternate resources are used, the Schedule data set contains new variables that specify the actual resources that are used; the names of these variables are obtained by prefixing the resource names by ‘U’. When activities are allowed to be split and alternate resources are allowed, different segments of the activity can use a different set of resources. If this is the case, the Schedule data set contains a different observation for every segment that uses a different set of resources, even if these segments are contiguous in time. Note that contiguous segments, even if they use different sets of resources, are not treated as true splits for the purpose of counting the number of splits allowed for the activity.

By default, multiple resources cannot be used to substitute for a single resource. To enable multiple alternates, use the MULTIPLEALTERNATES option or add an observation to the Resource data set identifying which resources allow multiple alternates. For details, see the “Specifying Multiple Alternates” section on page 121.

See Example 2.20 for an illustration of the use of alternate resources.

Specifying Multiple Alternates

As described in the “Specifying Alternate Resources” section on page 120, you can use the Resource data set to specify alternate resources for any given resource. You can specify a rate of substitution and a priority for substitution. However, the CPM procedure will not use multiple alternate resources to substitute for a given resource. For example, suppose that an activity needs two programmers and the available programmers (alternate resources) are John and Mary. By default, the CPM procedure cannot assign both John and Mary to the activity to fulfill the resource requirement of two programmers.

However, this type of substitution is useful to effectively model group resources or skill pools. To enable substitution of multiple alternates for a single resource, use the MULTIPLEALTERNATES option in the RESOURCE statement. This option enables all resources that have alternate specifications (through observations of the type ALTRATE or ALTPRTY in the Resource data set) to use multiple alternates.

You can refine this feature to selectively allow multiple substitution or set a minimum rate of substitution, by adding special observations to the Resource data set. As with other aspects of the Resource data set, the specifications related to multiple alternates are identified by observations with special keywords, MULTALT and MINARATE.

Let OBSTYPE=‘MULTALT’ for the observation that identifies which resources can have multiple alternates. Valid values for such an observation are ‘0’ and ‘1’: ‘0’ indicates that the resource cannot be substituted by multiple resources, and ‘1’ indicates that it can be substituted by multiple resources. If the Resource data set contains such an observation, the MULTIPLEALTERNATES option is ignored and the values specified in the observation are used to allow multiple substitutions for only selected resources.

Let OBSTYPE=‘MINARATE’ for the observation that indicates the minimum rate of substitution for each resource. For example, you may not want a primary resource requirement of 1.5 programmers, to be satisfied by 5 different alternate programmers at a rate of 0.3 each. To ensure that the minimum rate of substitution is 0.5, specify
the value for the resource variable, PROGRAMMER, as ‘0.5’ in the observation with OBSTYPE=’MINARATE’. In other words, use this observation if you do not wish to split an activity’s resource requirement across several alternate resources with a very small rate of utilization per resource.

Consider the following Resource data:

<table>
<thead>
<tr>
<th>OBS</th>
<th>OBSTYPE</th>
<th>RES_NAME</th>
<th>RES_DATE</th>
<th>JOHN</th>
<th>DAVID</th>
<th>ROBERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESTYPE</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ALTRATE</td>
<td>JOHN</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>MULTALT</td>
<td></td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>MINARATE</td>
<td></td>
<td>0.5</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>RESLEVEL</td>
<td>15JUL04</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

In these Resource data, observations 3 and 4 control the use of multiple alternates. They specify that a requirement for John can be substituted with multiple alternates. Further, if multiple alternates are used instead of John, do not allocate them in units less than 0.5. Note also that observation 2 indicates that David and Robert require twice the effort to accomplish John’s tasks. Thus, if an activity requires 1 unit of John, and he is unavailable, the CPM procedure will require 2 units of David (or Robert) to substitute for John. However, only 1 unit each of David and Robert is available. If multiple alternates are not allowed, the resource allocation algorithm will fail. However, since the resource John does allow multiple substitution, the activity can be scheduled with 1 unit of David and 1 unit of Robert (each substituting for 1/2 of the requirement for John).

Allowing multiple alternates for a single resource raises an interesting question: When distributing the resource requirements across multiple alternatives, should the primary resource be included in the list of multiple alternates? For instance, in the preceding example, if the resource level for John is ‘0.5’ (in observation 5), should the activity use John at rate 0.5 and assign the remainder to one (or more) of the alternate resources? Or, should the primary resource be excluded from the list of possible alternates? You can choose either behavior for the primary resource by specifying ‘1’ (for inclusion) or ‘0’ (for exclusion) in the observation with OBSTYPE=‘ALTRATE’ that corresponds to the primary resource (with RES_NAME=’JOHN’). Thus, in the preceding example, John can be one of the multiple alternates when substituting for himself. To exclude John from the list, set the value of the variable JOHN to ‘0’ in observation 2. Note that you will also need to set the value of JOHN to ‘0’ in any observation with OBSTYPE=‘ALTPRTY’ and RES_NAME=’JOHN’.

Resource-Driven Durations and Alternate Resources

The “Specifying Alternate Resources” section on page 120 describes the use of the RESID= option and the observations of type ‘ALTRATE’ and ‘ALTPRTY’ in the Resource data set to control the use of alternate resources during resource allocation. The behavior described in that section refers to the substitution of resources for resources that have a fixed duration. Alternate resources can also be specified for resources that drive an activity’s duration. However, the specification of the alternate rate is interpreted differently: it is used as a multiplier of the resource-driven duration.
For example, consider the following Resource data:

<table>
<thead>
<tr>
<th>OBS</th>
<th>OBSTYPE</th>
<th>RES_NAME</th>
<th>RES_DATE</th>
<th>JOHN</th>
<th>DAVID</th>
<th>ROBERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESTYPE</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>RESCDUR</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>ALTRATE</td>
<td>JOHN</td>
<td>.</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>ALTPTY</td>
<td>JOHN</td>
<td>.</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>RESLEVEL</td>
<td>.</td>
<td>15JUL04</td>
<td>.</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

In these Resource data, the second observation indicates that all the resources are driving resources. The third observation indicates that John can be substituted by David or Robert; however, either David or Robert will require twice as long to accomplish John’s tasks for resource-driven activities. Thus, in contrast to the fixed-duration activities, the ALTRATE specification changes the duration of the alternate resource, not the rate of use.

For instance, consider the following activity with the specified values for the DURATION and WORK variables and the resource requirement for John:

<table>
<thead>
<tr>
<th>OBS</th>
<th>ACTIVITY</th>
<th>DURATION</th>
<th>WORK</th>
<th>JOHN</th>
<th>DAVID</th>
<th>ROBERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Act1</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Activity ‘Act1’ requires 10 days of work from John, indicating that the resource-driven duration for Act1 is 10 days. However, from the preceding Resource data, John is not available, but can be substituted by David or Robert, who will require twice as long to accomplish the work. So, if Act1 is scheduled using either one of the alternate resources, its resource-driven duration will be 20 days.

Auxiliary Resources

Sometimes, the use of a certain resource may require simultaneous use of other resources. For example, use of a crane will necessitate the use of a crane operator. In other words, if an activity needs the resource, CRANE, it will also need a corresponding resource, CRANEOP. Such requirements can be easily modeled by adding both CRANE and CRANEOP to the list of resources required by the activity.

However, when alternate resources are used, the problem becomes more complex. For example, suppose an activity requires a CRANE and there are two possible cranes that can be used, CRANE1 and CRANE2. You can specify CRANE1 and CRANE2 as the alternate resources for CRANE. Suppose further that each of the two cranes has a specific operator, CRANEOP1 and CRANEOP2, respectively. Specifying CRANEOP1 and CRANEOP2 separately as alternates for CRANEOP will not necessarily guarantee that CRANEOP1 (or CRANEOP2) is used as the alternate for CRANEOP in conjunction with the use of the corresponding CRANE1 (or CRANE2).

You can model such a situation by the use of Auxiliary resource specification: specify CRANEOP1 and CRANEOP2 as auxiliary resources for CRANE1 and CRANE2,
respectively. Auxiliary resources are specified through the Resource data set, using observations identified by the keyword AUXRES for the value of the OBSTYPE variable. For an observation of this type, the RESID variable specifies the name of the primary resource. (This is similar to the specification of ALTRATE and ALTPRTY.)

Once auxiliary resources are specified in the Resource data set, it is sufficient to specify only the primary resource requirements in the Activity data set. In this situation, for example, it is sufficient to require a CRANE for the activity in the Activity data set.

In the Resource data set, add a new observation type, ‘AUXRES’, which will specify the auxiliary resources that are needed for each primary resource. For an observation of this type, the RESID variable specifies the name of the primary resource. The value for each auxiliary resource indicates the rate at which it is required whenever the primary resource is used. You will also need to specify CRANE1 and CRANE2 as the alternate resources for CRANE in the Resource data set.

When scheduling the activity, PROC CPM will schedule CRANE1 (or CRANE2) as the alternate only if both CRANE1 and CRANEOP1 (or CRANE2 and CRANEOP2) are available.

For instance, the preceding example will have the following Resource data set:

<table>
<thead>
<tr>
<th>OBSTYPE</th>
<th>RESID</th>
<th>PER</th>
<th>CRANE</th>
<th>CRANE1</th>
<th>CRANE2</th>
<th>CRANEOP1</th>
<th>CRANEOP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUXRES</td>
<td>CRANE1</td>
<td></td>
<td></td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>AUXRES</td>
<td>CRANE2</td>
<td></td>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>ALTRATE</td>
<td>CRANE</td>
<td></td>
<td></td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>RESLEVEL</td>
<td></td>
<td></td>
<td>10JUL04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

RESOURCENOUT= Usage Data Set

The RESOURCENOUT= data set (referred to as the Usage data set) contains information about the resource usage for the resources specified in the RESOURCE statement. The options ALL, AVPROFILE, ESPROFILE, LSPROFILE, and RCPROFILE (each is discussed earlier in the “RESOURCE Statement” section on page 75) control the number of variables that are to be created in this data set. The ROUTINTERVAL= and ROUTINTPER= options control the number of observations that this data set is to contain. Of the options controlling the number of variables, AVPROFILE and RCPROFILE are allowed only if the procedure is used to obtain a resource-constrained schedule.

The Usage data set always contains a variable named _TIME_ that specifies the date for which the resource usage or availability in the observation is valid. For each of the variables specified in the RESOURCE statement, one, two, three, or four new variables are created depending on how many of the four possible options (AVPROFILE, ESPROFILE, LSPROFILE, and RCPROFILE) are in effect. If none of these four options is specified, the ALL option is assumed to be in effect. Recall that the ALL option is equivalent to specifying ESPROFILE and LSPROFILE when PROC CPM is used to obtain an unconstrained schedule, and it is equivalent to specifying all four options when PROC CPM is used to obtain a resource-constrained schedule.
The new variables are named according to the following convention:

- The prefix A is used for the variable describing the resource availability profile.
- The prefix E is used for the variable denoting the early start usage.
- The prefix L is used for the variable denoting the late start usage.
- The prefix R is used for the variable denoting the resource-constrained usage.

The suffix is the name of the resource variable if the name is less than the maximum possible variable length (which is dependent on the VALIDVARNAME option). If the length of the name is equal to this maximum length, the suffix is formed by deleting the character following the \((n/2)th\) position. The user must ensure that this naming convention results in unique variable names in the Usage data set.

The ROUTINTERVAL=\(\text{routinterval}\) and ROUTINTPER=\(\text{routintper}\) options specify that two successive values of the _TIME_ variable differ by \(\text{routintper}\) number of \(\text{routinterval}\) units, measured with respect to a specific calendar. If the \(\text{routinterval}\) is not specified, PROC CPM chooses a default value depending on the format of the start and finish variables in the Schedule data set. The value of \(\text{routinterval}\) is indicated in a message written to the SAS log.

The MINDATE=\(\text{mindate}\) and MAXDATE=\(\text{maxdate}\) options specify the minimum and maximum values of the _TIME_ variable, respectively. Thus, the Usage data set has observations containing the resource usage information from \(\text{mindate}\) to \(\text{maxdate}\) with the time interval between the values of the _TIME_ variable in two successive observations being equal to \(\text{routintper}\) units of \(\text{routinterval}\), measured with respect to a specific calendar. For example, if \(\text{routinterval}\) is MONTH and \(\text{routintper}\) is 3, then the time interval between successive observations in the Usage data set is three months.

The calendar used for incrementing the _TIME_ variable is specified using the AROUTCAL= or NROUTCAL= options depending on whether the calendars for the project are specified using alphanumeric or numeric values, respectively. In the absence of either of these specifications, the default calendar is used. For example, if the default calendar follows a five-day work week and ROUTINTERVAL=DAY, the Usage data set will not contain observations corresponding to Saturdays and Sundays. You can also use the ROUTNOBREAK option to indicate that there should be no breaks in the _TIME_ values due to breaks or holidays.

Interpretation of Variables

The availability profile indicates the amount of resources available at the beginning of the time interval specified in the _TIME_ variable, after accounting for the resources used through the previous time period.

By default, each observation in the Resource Usage data set indicates the rate of resource usage per unit \(\text{routinterval}\) at the start of the time interval specified in the _TIME_ variable. Note that replenishable resources are assumed to be tied to an activity during any of the activity’s breaks or holidays that fall in the course of the activity’s duration. For consumable resources, you can use the CUMUSAGE option.
to obtain cumulative usage of the resource, instead of daily rate of usage. Often, it is more useful to obtain cumulative usage for consumable resources.

You can use the TOTUSAGE option on the RESOURCE statement to get the total resource usage for each resource within each time period. If you wish to obtain both the rate of usage and the total usage for each time period, use the APPEND option on the RESOURCE statement.

The following example illustrates the default interpretation of the new variables.

Suppose that for the data given earlier (see the “Specifying Resource Requirements” section on page 113), activities ‘A’ and ‘B’ have S_START equal to 1JUL04 and 5JUL04, respectively. If the RESOURCE statement has the options AVPROFILE and RCPPROFILE, the Usage data set has these five variables, _TIME_, RWORKERS, AWORKERS, RBRICKS, and ABRICKS. Suppose further that routinterval is DAY and routintper is 1. The Usage data set contains the following observations:

<table>
<thead>
<tr>
<th>TIME</th>
<th>RWORKERS</th>
<th>AWORKERS</th>
<th>RBRICKS</th>
<th>ABRICKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1JUL04</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>2JUL04</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>900</td>
</tr>
<tr>
<td>3JUL04</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>800</td>
</tr>
<tr>
<td>4JUL04</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>700</td>
</tr>
<tr>
<td>5JUL04</td>
<td>2</td>
<td>2</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td>6JUL04</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>7JUL04</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>8JUL04</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>9JUL04</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1000</td>
</tr>
</tbody>
</table>

On each day of activity A’s duration, the resource BRICKS is consumed at the rate of 100 bricks per day. At the beginning of the first day (July 1, 2004), all 1000 bricks are still available. Note that each day the availability drops by 100 bricks, which is the rate of consumption. On July 5, activity ‘B’ is scheduled to start. On the four days starting with July 5, the value of RWORKERS is ‘2’, indicating that 2 workers are used on each of those days leaving an available supply of 2 workers (AWORKERS is equal to ‘2’ on all 4 days).

If ROUTINTPER is set to 2, and the CUMUSAGE option is used, then the observations would be as follows:

<table>
<thead>
<tr>
<th>TIME</th>
<th>RWORKERS</th>
<th>AWORKERS</th>
<th>RBRICKS</th>
<th>ABRICKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1JUL04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>3JUL04</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>5JUL04</td>
<td>2</td>
<td>2</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>7JUL04</td>
<td>2</td>
<td>2</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>9JUL04</td>
<td>0</td>
<td>4</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

Note that the value of RBRICKS indicates the cumulative usage of the resource BRICKS through the beginning of the date specified by the value of the variable
In each observation. That is why, for example, RBRICKS = 0 on 1JUL04 and not 200.

If the procedure uses supplementary levels of resources, then, on a day when supplementary levels of resources were used through the beginning of the day, the value for the availability profile for the relevant resources would be negative. The absolute magnitude of this value would denote the amount of supplementary resource that was used through the beginning of the day. For instance, if ABRICKS is ‘−100’ on 11JUL04, it would indicate that 100 bricks from the supplementary reservoir were used through the end of July 10, 2004. See Example 2.16, “Using Supplementary Resources,” and Example 2.17, “INFEASDIAGNOSTIC Option and Aggregate Resource Type.”

If, for the same data, ROUTINTPER is 2, and the APPEND option is specified, the Usage data set would contain two sets of observations, the first indicating the rate of resource usage per day, and the second set indicating the product of the rate and the time interval between two successive observations. The observations (five in each set) would be as follows:

<table>
<thead>
<tr>
<th>TIME</th>
<th>OBS_TYPE</th>
<th>RWORKERS</th>
<th>RBRICKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01JUL04</td>
<td>RES_RATE</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>03JUL04</td>
<td>RES_RATE</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>05JUL04</td>
<td>RES_RATE</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>07JUL04</td>
<td>RES_RATE</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>09JUL04</td>
<td>RES_RATE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01JUL04</td>
<td>RES_USED</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>03JUL04</td>
<td>RES_USED</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>05JUL04</td>
<td>RES_USED</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>07JUL04</td>
<td>RES_USED</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>09JUL04</td>
<td>RES_USED</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Variable Usage Profile for Consumable Resources

For consumable resources that have a variable usage profile (as indicated by the values 1 or 2 for observations of type RESUSAGE in the Resource data set), the values of the usage variables indicate the amount of the resource consumed by an activity at the beginning or end of the activity. For example, consider the resources PAYMENT and ADVANCE specified in the following Resource data set:

<table>
<thead>
<tr>
<th>OBS</th>
<th>OBSTYPE</th>
<th>DATE</th>
<th>WORKERS</th>
<th>BRICKS</th>
<th>PAYMENT</th>
<th>ADVANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESTYPE</td>
<td>.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>RESUSAGE</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>RESLEVEL</td>
<td>1JUL2004</td>
<td>4</td>
<td>1000</td>
<td>2000</td>
<td>500</td>
</tr>
</tbody>
</table>

Suppose the activity ‘Task 1’, specified in the following observation, is scheduled to start on July 1, 2004:
Chapter 2. The CPM Procedure

<table>
<thead>
<tr>
<th>OBS</th>
<th>ACTIVITY</th>
<th>DUR</th>
<th>WORKERS</th>
<th>BRICKS</th>
<th>PAYMENT</th>
<th>ADVANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Task 1</td>
<td>5</td>
<td>1</td>
<td>100</td>
<td>1000</td>
<td>200</td>
</tr>
</tbody>
</table>

For these data, the resource usage profile for the resources will be as indicated in the following output:

<table>
<thead>
<tr>
<th>TIME</th>
<th>RWORKERS</th>
<th>RBRICKS</th>
<th>RPAYMENT</th>
<th>RADVANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1JUL04</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>2JUL04</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3JUL04</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4JUL04</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5JUL04</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6JUL04</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>0</td>
</tr>
</tbody>
</table>

RESOURCESCHED= Resource Schedule Data Set

The Resource Schedule data set (requested by the RESSCHED= option on the CPM statement) is very similar to the Schedule data set, and it contains the start and finish times for each resource used by each activity. The data set contains the variables listed in the ACTIVITY, TAILNODE, and HEADNODE statements and all the relevant schedule variables (E.START, E.FINISH, and so forth). For each activity in the project, this data set contains the schedule for the entire activity as well as the schedule for each resource used by the activity. The variable RESOURCE identifies the name of the resource to which the observation refers; the value of the RESOURCE variable is missing for observations that refer to the entire activity’s schedule. The variable DUR_TYPE indicates whether the resource is a driving resource or a spanning resource or whether it is of the fixed type.

A variable _DUR_ indicates the duration of the activity for the resource identified in that observation. This variable has missing values for resources that are of the spanning type. For resources that are of the driving type, the variable _WORK_ shows the total amount of work required by the resource for the activity in that observation. The variable R_RATE shows the rate of usage of the resource for the relevant activity. Note that for driving resources, the variable _DUR_ is computed as (WORK / R_RATE).

If you specify an ACTUAL statement, the Resource Schedule data set also contains the STATUS variable indicating whether the resource has completed work on the activity, is in progress, or is still pending.
Multiproject Scheduling

The CPM procedure enables you to define activities in a multiproject environment with multiple levels of nesting. You can specify a PROJECT variable that identifies the name or number of the project to which each activity belongs. The PROJECT variable must be of the same type and length as the ACTIVITY variable. Further, each project can be considered as an activity, enabling you to specify precedence constraints, alignment dates, or progress information for the different projects. Precedence constraints can be specified between two projects, between activities in the same or different projects, or between a project and activities in another project.

The PROJECT variable enables you to specify the name of the project to which each activity belongs. Each project can in turn be treated as an activity that belongs to a bigger project. Thus, the (PROJECT, ACTIVITY) pair of variables enables you to specify multiple levels of nesting using a hierarchical structure for the (task, supertask) relationship.

In the following discussion, the terms superproject, supertask, parent task, ancestor task, project, or subproject refer to a composite task (a task composed of other tasks). A lowest level task (one which has no subtasks under it) is referred to as a child task, descendent task, a leaf task, or a regular task.

You can assign most of the “activity attributes” to a supertask; however, some of the interpretations may be different. The significant differences are listed as follows.

Activity Duration
Even though a supertask has a value specified for the DURATION variable, the finish time of the supertask may not necessarily be equal to the (start time + duration). The start and finish times of a parent task (supertask) always encompass the span of all its subtasks. In other words, the start (finish) time of a supertask is the minimum start (maximum finish) time of all its subtasks.

The specified DURATION for a supertask is used only if the USEPROJDUR option is specified; this variable is used to compute an upper bound on the late finish time of the project. In other words, you can consider the duration of a supertask as a desired duration that puts a constraint on its finish time.

Note: You cannot specify resource-driven durations for supertasks.

Precedence Constraints
You cannot specify a Start-to-Finish or Finish-to-Finish type of precedence constraint when the Successor task is a supertask. Such a constraint is ignored, and a warning is written to the log.

Time Constraints
The CPM procedure supports all the customary time constraints for a supertask. However, since the supertask does not really have an inherent duration, some of the constraints may lead to unexpected results.

For example, a constraint of the type SLE (Start Less than or Equal to) on a leaf task uses the task’s duration to impose a maximum late finish time for the task. However, for a supertask, the duration is determined by the span of all its subtasks, which
may depend on the activities’ calendars. The CPM procedure uses an estimate of the supertask’s duration computed on the basis of the precedence constraints to determine the maximum finish time for the supertask using the date specified for the SLE constraint. Such a constraint may not translate to the correct upper bound on the supertask’s finish time if the project has multiple calendars. Note that the presence of multiple calendars could change the computed duration of the supertask depending on the starting date of the supertask. Thus, in general, it is better to specify SGE (Start Greater than or Equal to) or FLE (Finish Less than or Equal to) constraints on supertasks.

Note that alignment constraints of the type SGE or FLE percolate down the project hierarchy. For example, if there is an SGE specification on a supertask, then all the subtasks of this supertask must also start on or after the specified date.

Mandatory constraints (either of the type MS or MF) are used to set fixed start and finish times on the relevant task. Such constraints are checked for consistency between a parent task and all its descendants.

Progress Information

You can enter progress information for supertasks in the same way as you do for leaf tasks. The procedure attempts to reconcile inconsistencies between the actual start and finish times of a parent and its children. However, it is sufficient (and less ambiguous) to enter progress information only about the tasks at the lowest level.

Resource Requirements

You can specify resource requirements for supertasks in the same way as you do for regular tasks. However, the supertask is scheduled in conjunction with all its subtasks. In other words, a leaf task is scheduled only when its resources and the resources for all its ancestors are available in sufficient quantity. Thus, a supertask needs to have enough resources throughout the schedule of any of its subtasks; in fact, the supertask needs to have enough resources throughout its entire span. In other words, a supertask’s resource requirements are treated as “spanning.”

In addition to the above treatment of a supertask’s resources, there are two other resource scheduling options available for handling the resource requirements of supertasks. You can use the AGGREGATEPARENTRES option in the PROJECT statement to indicate that a supertask’s resource requirements are to be used only for aggregation. In other words, resource allocation is performed taking into account the resource requirements of only the leaf tasks. Alternately, you can choose to ignore any resource requirements specified for supertasks by specifying the IGNOREPARENTRES option. Note the difference between the AGGREGATEPARENTRES and IGNOREPARENTRES options. The first option includes the supertask’s requirements while computing the aggregate resource usage, while the second option is equivalent to setting all parent resource requirements to 0.

Resource-Driven Durations

Any WORK specification is ignored for a parent task. Note that resources required for a supertask cannot drive the duration of the task; a supertask’s duration is driven by all its subtasks. Note that each leaf task can still be resource driven.
Schedule Computation

The project hierarchy and all the precedence constraints (between leaf tasks, between supertasks, or between a supertask and a leaf task) are taken into consideration when the project schedule is computed. A task (parent or leaf) can be scheduled only when its precedences and all its parent’s precedences are satisfied.

During the forward pass of the scheduling algorithm, all independent start tasks (leaf tasks or supertasks with no predecessors) are initialized to the project start date. Once a supertask’s precedences (if any) are satisfied, all its subtasks whose precedences have been satisfied are added to the list of activities that can be scheduled. The early start times for the subtasks are initialized to the early start time of the supertask and are then updated, taking into account the precedence constraints and any alignment constraints on the activities.

Once all the subtasks are scheduled, a supertask’s early start and finish times are set to the minimum early start and maximum early finish, respectively, of all its subtasks.

The late start schedule is computed using a backward pass through the project network, considering the activities in a reverse order from the forward pass. The late schedule is computed starting with the last activity (activities) in the project; the late finish time for each such activity is set to the master project’s finish date. By default, the master project’s finish date is the maximum of the early finish dates of all the activities in the master project (if a FINISHBEFORE date is specified with the FBDATE option, this date is used as the starting point for the backward calculations).

During the backward pass, the late finish time of a supertask is determined by the precedence constraints and any alignment specification on the supertask. You can specify a finish constraint on a supertask by using the ALIGNDATE and ALIGNTYPE variables, or by using the SEPCRIT or USEPROJDR option.

If a finish constraint is specified using the ALIGNDATE and ALIGNTYPE specifications, the L_FINISH for the supertask is initialized to this value. If the SEPCRIT option is specified, the supertask’s late finish time is initialized to its early finish time. If the USEPROJDR option is specified, the late finish time for the supertask is initialized using the early start time of the supertask and the specified supertask duration. Note that the late finish time of the supertask could further be affected by the precedence constraints. Once a supertask’s late finish has been determined, this value is treated as an upper bound on the late finish of all its subtasks.

As with the early start schedule, once all the subtasks have been scheduled, the late start and finish times for a supertask are set to the minimum late start and maximum late finish time, respectively, of all its subtasks.

Schedule Data Set

If a PROJECT variable is specified, the Schedule data set contains the PROJECT variable as well as two new variables called PROJ_DUR and PROJ_LEV.

The PROJ_DUR variable contains the project duration (computed as E_FINISH - E_START of the project) for each superproject in the master project. This variable has missing values for the leaf tasks. Note that it is possible
for (L_FINISH - L_START) to be different from the value of PROJ_DUR. If a resource-constrained schedule is produced by PROC CPM, the project duration is computed using the resource-constrained start and finish times of the superproject; in other words, in this case PROJ_DUR = (S_FINISH - S_START).

The PROJ_LEV variable specifies the depth of each activity from the root of the project hierarchy tree. The root of the tree has PROJ_LEV = 0; note that if the project does not have a single root, a common root is defined by the CPM procedure.

The ADDACT option on the PROC CPM statement causes an observation to be added to the Schedule data set for this common root. This observation contains the project start and finish times and the project duration. The ADDACT option also adds an observation for any activity that may appear as a value of the SUCCESSOR or PROJECT variable without appearing as a value of the ACTIVITY variable.

In addition to the PROJ_DUR and PROJ_LEV variables, you can request that a WBS code be added to the output data set (using the option ADDWBS). You can also add variables, ES_ASC, ES_DESC, LS_ASC, LS_DESC, SS_ASC, and SS_DESC, that indicate a sorting order for activities in the output data set. For example, the variable ES_ASC enables you to sort the output data set in such a way that the activities within each superproject are ordered according to increasing early start time.

Macro Variable _ORCPM_

The CPM procedure defines a macro variable named _ORCPM_. This variable contains a character string that indicates the status of the procedure. It is set at procedure termination. The form of the _ORCPM_ character string is STATUS= REASON=, where STATUS= is either SUCCESSFUL or ERROR_EXIT and REASON= (if PROC CPM terminated unsuccessfully) can be one of the following:

- CYCLE
- RES_INFEASIBLE
- BADDATA_ERROR
- MEMORY_ERROR
- IO_ERROR
- SEMANTIC_ERROR
- SYNTAX_ERROR
- CPM_BUG
- UNKNOWN_ERROR

This information can be used when PROC CPM is one step in a larger program that needs to determine whether the procedure terminated successfully or not. Because _ORCPM_ is a standard SAS macro variable, it can be used in the ways that all macro variables can be used.
Input Data Sets and Related Variables

The CPM procedure uses activity, resource, and holiday data from several different data sets with key variable names being used to identify the appropriate information. Table 2.24 lists all of the variables associated with each input data set and their interpretation by the CPM procedure. The variables are grouped according to the statement that they are identified in. Some variables use default names and are not required to be identified in any statement.

Table 2.24. PROC CPM Input Data Sets and Associated Variables

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Statement</th>
<th>Variable Name</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALEDATA</td>
<td>CALID</td>
<td>CALID</td>
<td>Calendar corresponding to work pattern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D_LENGTH</td>
<td>Length of standard work day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUN</td>
<td>Work pattern on day of week, valid values: WORKDAY, HOLIDAY, or one of the numeric variables in the Workday data set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAT</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>ACTIVITY</td>
<td>ACTIVITY</td>
<td>Activity in AON format</td>
</tr>
<tr>
<td></td>
<td>ACTUAL</td>
<td>A_START</td>
<td>Actual start time of activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A_FINISH</td>
<td>Actual finish time of activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REMDUR</td>
<td>Remaining duration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCTCOMP</td>
<td>Percentage of work completed</td>
</tr>
<tr>
<td></td>
<td>ALIGNDATE</td>
<td>ALIGNDATE</td>
<td>Time constraint on activity</td>
</tr>
<tr>
<td></td>
<td>ALIGNTYPE</td>
<td>ALIGNTYPE</td>
<td>Type of time constraint, valid values: SGE, SEQ, SLE, FGE, FEQ, FLE, MS, MF</td>
</tr>
<tr>
<td>BASELINE</td>
<td>B_START</td>
<td>Baseline start time of activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B_FINISH</td>
<td>Baseline finish time of activity</td>
<td></td>
</tr>
<tr>
<td>CALID</td>
<td>CALID</td>
<td>Calendar followed by activity</td>
<td></td>
</tr>
<tr>
<td>DURATION</td>
<td>DURATION</td>
<td>Duration of activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINISH</td>
<td>Finish time of activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>START</td>
<td>Start time of activity</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.24. (continued)

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Statement</th>
<th>Variable Name</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADNODE</td>
<td>HEADNODE</td>
<td>HEADNODE</td>
<td>Head of arrow (arc) in AOA format</td>
</tr>
<tr>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>Additional project information</td>
</tr>
<tr>
<td>PROJECT</td>
<td>PROJECT</td>
<td>PROJECT</td>
<td>Project to which activity belongs</td>
</tr>
<tr>
<td>RESOURCE</td>
<td>ACTDELAY</td>
<td>ACTDELAY</td>
<td>Activity delay</td>
</tr>
<tr>
<td></td>
<td>ACTPRTY</td>
<td>ACTPRTY</td>
<td>Activity priority</td>
</tr>
<tr>
<td></td>
<td>MAXNSEGMT</td>
<td>MAXNSEGMT</td>
<td>Maximum number of segments</td>
</tr>
<tr>
<td></td>
<td>MINSEGMTDUR</td>
<td>MINSEGMTDUR</td>
<td>Minimum duration of a segment</td>
</tr>
<tr>
<td>RESOURCE</td>
<td>RESOURCE</td>
<td>RESOURCE</td>
<td>Amount of resource required</td>
</tr>
<tr>
<td>SUCCESSOR</td>
<td>WORK</td>
<td>WORK</td>
<td>Amount of work required</td>
</tr>
<tr>
<td></td>
<td>SUCCESSOR</td>
<td>SUCCESSOR</td>
<td>Successor in AON format</td>
</tr>
<tr>
<td></td>
<td>LAG</td>
<td>LAG</td>
<td>Nonstandard precedence relationship</td>
</tr>
<tr>
<td>TAILNODE</td>
<td>TAILNODE</td>
<td>TAILNODE</td>
<td>Tail of arrow (arc) in AOA format</td>
</tr>
<tr>
<td>HOLIDATA</td>
<td>CALID</td>
<td>CALID</td>
<td>Calendar to which holiday applies</td>
</tr>
<tr>
<td>HOLIDAY</td>
<td>HOLIDAY</td>
<td>HOLIDAY</td>
<td>Start of holiday</td>
</tr>
<tr>
<td></td>
<td>HOLIDUR</td>
<td>HOLIDUR</td>
<td>Duration of holiday</td>
</tr>
<tr>
<td></td>
<td>HOLIFIN</td>
<td>HOLIFIN</td>
<td>End of holiday</td>
</tr>
<tr>
<td>RESOURCEIN</td>
<td>RESOURCE</td>
<td>OBSTYPE</td>
<td>Type of observation; valid values: RESLEVEL, RESTYPE, SUPLEVEL, RESPRTY, ALTRATE, ALTPRTY, RESUSAGE, AUXRES, MULTALT, MINARATE, CALENDAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERIOD</td>
<td>Time from which resource is available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESID</td>
<td>Resource for which alternates are given</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESOURCE</td>
<td>Resource type, priority, availability, alternate rate, alternate priority</td>
</tr>
<tr>
<td>WORKDATA</td>
<td></td>
<td>Any numeric</td>
<td>On-off pattern of work</td>
</tr>
</tbody>
</table>
The following table summarizes the treatment of missing values for variables in the input data sets used by PROC CPM.

Table 2.25. Treatment of Missing Values in the CPM Procedure

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Variable</th>
<th>Value Used / Assumption Made / Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALEDATA</td>
<td>CALID</td>
<td>default calendar (0 or DEFAULT)</td>
</tr>
<tr>
<td></td>
<td>D_LENGTH</td>
<td>DAYLENGTH, if available. 8:00, if INTERVAL = WORKDAY, DTWRKDAY 24:00, otherwise</td>
</tr>
<tr>
<td></td>
<td>SUN</td>
<td>corresponding shift for default calendar</td>
</tr>
<tr>
<td></td>
<td>SAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>ACTIVITY</td>
<td>input error: procedure stops with error message</td>
</tr>
<tr>
<td></td>
<td>ACTDELAY</td>
<td>DELAY= specification</td>
</tr>
<tr>
<td></td>
<td>ACTPRTY</td>
<td>infinity (indicates lowest priority)</td>
</tr>
<tr>
<td></td>
<td>ALIGNDATE</td>
<td>project start date for start activity</td>
</tr>
<tr>
<td></td>
<td>ALIGNTYPE</td>
<td>SGE: if ALIGNDATE is not missing</td>
</tr>
<tr>
<td></td>
<td>A_FINISH</td>
<td>see “Progress Updating” for details</td>
</tr>
<tr>
<td></td>
<td>A_START</td>
<td>see “Progress Updating” for details</td>
</tr>
<tr>
<td></td>
<td>B_FINISH</td>
<td>updated if UPDATE= option is on</td>
</tr>
<tr>
<td></td>
<td>B_START</td>
<td>updated if UPDATE= option is on</td>
</tr>
<tr>
<td></td>
<td>CALID</td>
<td>default calendar (0 or DEFAULT)</td>
</tr>
<tr>
<td></td>
<td>DURATION</td>
<td>input error: procedure stops with error message</td>
</tr>
<tr>
<td></td>
<td>FINISH</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>HEADNODE</td>
<td>input error: procedure stops with error message</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>missing</td>
</tr>
<tr>
<td></td>
<td>LAG</td>
<td>FS_0: if corresponding successor variable value is not missing</td>
</tr>
<tr>
<td></td>
<td>MAXNSEGMT</td>
<td>calculated from MINSEGMDUR</td>
</tr>
<tr>
<td></td>
<td>MINSEGMDUR</td>
<td>0.2 * DURATION</td>
</tr>
<tr>
<td></td>
<td>PCTCOMP</td>
<td>see “Progress Updating” for details</td>
</tr>
<tr>
<td></td>
<td>PROJECT</td>
<td>activity is at highest level</td>
</tr>
<tr>
<td></td>
<td>REMDUR</td>
<td>see “Progress Updating” for details</td>
</tr>
<tr>
<td></td>
<td>RESOURCE</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>START</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>SUCCESSOR</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>TAILNODE</td>
<td>input error: procedure stops with error message</td>
</tr>
<tr>
<td></td>
<td>WORK</td>
<td>resources use fixed duration</td>
</tr>
<tr>
<td>HOLIDATA</td>
<td>CALID</td>
<td>holiday applies to all calendars defined</td>
</tr>
<tr>
<td></td>
<td>HOLIDAY</td>
<td>observation ignored</td>
</tr>
</tbody>
</table>
FORMAT Specification

As can be seen from the description of all of the statements and options used by PROC CPM, the procedure handles SAS date, time, and datetime values in several ways: as time constraints on the activities, holidays specified as date or datetime values, periods of resource availabilities, actual start and finish times, and several other options that control the scheduling of the activities in time. The procedure tries to reconcile any differences that may exist in the format specifications for the different variables. For example, if holidays are formatted as SAS date values while alignment constraints are specified in terms of SAS datetime values, PROC CPM converts all of the holidays to SAS datetime values suitably. However, the procedure needs to know how the variables are to be interpreted (as SAS date, datetime, or time values) in order for this reconciliation to be correct. Thus, it is important that you always use a FORMAT statement explicitly for each SAS date, time, or datetime variable that is used in the invocation of PROC CPM.

Computer Resource Requirements

There is no inherent limit on the size of the project that can be scheduled with the CPM procedure. The number of activities and precedences, as well as the number of resources are constrained only by the amount of memory available. Naturally, there needs to be a sufficient amount of core memory available in order to invoke and initialize the SAS system. As far as possible, the procedure attempts to store all the data in core memory.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Variable</th>
<th>Value Used / Assumption Made / Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOLIDUR</td>
<td>ignored if HOLIFIN is not missing; 1, otherwise</td>
</tr>
<tr>
<td></td>
<td>HOLIFIN</td>
<td>ignored if HOLIDUR is not missing; HOLIDAY + (1 unit of INTERVAL), otherwise</td>
</tr>
<tr>
<td>RESOURSEIN</td>
<td>OBSTYPE</td>
<td>RESLEVEL</td>
</tr>
<tr>
<td></td>
<td>PERIOD</td>
<td>input error if OBSTYPE is RESLEVEL, otherwise ignored</td>
</tr>
<tr>
<td></td>
<td>RESID</td>
<td>observation ignored</td>
</tr>
<tr>
<td></td>
<td>RESOURCE</td>
<td>1.0, if OBSTYPE is RESTYPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>infinity, if OBSTYPE is RESPRTY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0, if OBSTYPE is RESUSAGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0, if OBSTYPE is SUPLEVEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0, if OBSTYPE is RESLEVEL and this is the first observation of this type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>otherwise, equal to value in previous observation</td>
</tr>
<tr>
<td>WORKDATA</td>
<td>any numeric variable</td>
<td>00:00, if first observation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24:00, otherwise</td>
</tr>
</tbody>
</table>
However, if the problem is too large to fit in core memory, the procedure resorts to the use of utility data sets and swaps between core memory and utility data sets as necessary, unless the NOUTIL option is specified. The procedure uses the NACTS=, NADJ=, NNODES=, and NRESREQ= options to determine approximate problem size. If these options are not specified, the procedure estimates default values on the basis of the number of observations in the Activity data set. See the “Syntax” section on page 55 for default specifications.

The storage requirement for the data area required by the procedure is proportional to the number of activities and precedence constraints in the project and depends on the number of resources required by each activity. The time required depends heavily on the number of resources that are constrained and on how tightly constrained they are.

Examples

This section contains examples that illustrate several features of the CPM procedure. Most of the available options are used in at least one example. Two tables, Table 2.28 and Table 2.29, at the end of this section list all the examples in this chapter and the options and statements in the CPM procedure that are illustrated by each example.

A simple project concerning the manufacture of a widget is used in most of the examples in this section. Example 2.22 deals with a nonstandard application of PROC CPM and illustrates the richness of the modeling environment that is available with the SAS System. The last few examples use different projects to illustrate multi-project scheduling and resource-driven durations, resource calendars, and negative resource requirements.

There are 14 activities in the widget manufacturing project. Example 2.1 and Example 2.2 illustrate a basic project network that is built upon by succeeding examples. The tasks in the project can be classified by the division or department that is responsible for them.

Table 2.26 lists the detailed names (and corresponding abbreviations) of all the activities in the project and the department that is responsible for each one. As in any typical project, some of these activities must be completed before others. For example, the activity ‘Approve Plan’ must be done before any of the activities ‘Drawings’, ‘Anal. Market’, and ‘Write Specs’, can start. Table 2.27 summarizes the relationships among the tasks and gives the duration in days to complete each task. This table shows the relationship among tasks by listing the immediate successors to each task.
Table 2.26. Widget Manufacture: Activity List

<table>
<thead>
<tr>
<th>Task</th>
<th>Department</th>
<th>Activity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve Plan</td>
<td>Planning</td>
<td>Finalize and Approve Plan</td>
</tr>
<tr>
<td>Drawings</td>
<td>Engineering</td>
<td>Prepare Drawings</td>
</tr>
<tr>
<td>Anal. Market</td>
<td>Marketing</td>
<td>Analyze Potential Markets</td>
</tr>
<tr>
<td>Write Specs</td>
<td>Engineering</td>
<td>Write Specifications</td>
</tr>
<tr>
<td>Prototype</td>
<td>Engineering</td>
<td>Build Prototype</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>Marketing</td>
<td>Develop Marketing Concept</td>
</tr>
<tr>
<td>Materials</td>
<td>Manufacturing</td>
<td>Procure Raw Materials</td>
</tr>
<tr>
<td>Facility</td>
<td>Manufacturing</td>
<td>Prepare Manufacturing Facility</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>Manufacturing</td>
<td>Initial Production Run</td>
</tr>
<tr>
<td>Evaluate</td>
<td>Testing</td>
<td>Evaluate Product In-House</td>
</tr>
<tr>
<td>Test Market</td>
<td>Testing</td>
<td>Mail Product to Sample Market</td>
</tr>
<tr>
<td>Changes</td>
<td>Engineering</td>
<td>Engineering Changes</td>
</tr>
<tr>
<td>Production</td>
<td>Manufacturing</td>
<td>Begin Full Scale Production</td>
</tr>
<tr>
<td>Marketing</td>
<td>Marketing</td>
<td>Begin Full Scale Marketing</td>
</tr>
</tbody>
</table>

Table 2.27. Widget Manufacture: Precedence Information

<table>
<thead>
<tr>
<th>Task</th>
<th>Dur</th>
<th>Successor</th>
<th>Successor</th>
<th>Successor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve Plan</td>
<td>10</td>
<td>Drawings</td>
<td>Mkt. Strat.</td>
<td>Changes</td>
</tr>
<tr>
<td>Drawings</td>
<td>20</td>
<td>Prototype</td>
<td>Test Market</td>
<td>Production</td>
</tr>
<tr>
<td>Write Specs</td>
<td>15</td>
<td>Prototype</td>
<td>Test Market</td>
<td>Marketing</td>
</tr>
<tr>
<td>Prototype</td>
<td>30</td>
<td>Materials</td>
<td>Changes</td>
<td>Changes</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>25</td>
<td>Test Market</td>
<td>Init. Prod.</td>
<td>Changes</td>
</tr>
<tr>
<td>Materials</td>
<td>60</td>
<td>Init. Prod.</td>
<td>Test Market</td>
<td>Changes</td>
</tr>
<tr>
<td>Facility</td>
<td>45</td>
<td>Init. Prod.</td>
<td>Marketing</td>
<td>Evaluate</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>30</td>
<td>Test Market</td>
<td>Marketing</td>
<td>Evaluate</td>
</tr>
<tr>
<td>Evaluate</td>
<td>40</td>
<td>Changes</td>
<td>Changes</td>
<td>Changes</td>
</tr>
<tr>
<td>Test Market</td>
<td>30</td>
<td>Production</td>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Changes</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marketing</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The relationship among the tasks can be represented by the network in Figure 2.6. The diagram was produced by the NETDRAW procedure. The code used is the same as in Example 7.11 in Chapter 7, “The NETDRAW Procedure,” although the colors may be different.
Example 2.1. Activity-on-Node Representation

The following DATA step reads the project network in AON format into a SAS data set named WIDGET. The data set contains the minimum amount of information needed to invoke PROC CPM, namely, the ACTIVITY variable, one or more SUCCESSOR variables, and a DURATION variable. PROC CPM is invoked, and the Schedule data set is displayed using the PRINT procedure in Output 2.1.1. The Schedule data set produced by PROC CPM contains the solution in canonical units, without reference to any calendar date or time. For instance, the early start time of the first activity in the project is the beginning of period 0 and the early finish time is the beginning of period 5.

/* Activity-on-Node representation of the project */
data widget;
 format task $12. succ1-succ3 $12.;
 input task & days succ1 & succ2 & succ3 & ;
datalines;
 Approve Plan 5 Drawings Anal. Market Write Specs
 Drawings 10 Prototype . . .
 Write Specs 5 Prototype . .
 Prototype 15 Materials Facility .
 Mkt. Strat. 10 Test Market Marketing .

Figure 2.6. Network Showing Task Relationships in Activity-on-Node Format
Materials 10 Init. Prod. . .
Facility 10 Init. Prod. . .
Init. Prod. 10 Test Market Marketing Evaluate
Evaluate 10 Changes . .
Test Market 15 Changes . .
Changes 5 Production . .
Production 0 . .
Marketing 0 . .

; /* Invoke PROC CPM to schedule the project specifying the */ /* ACTIVITY, DURATION and SUCCESSOR variables */ proc cpm;
 activity task;
 duration days;
 successor succ1 succ2 succ3;
run;

title 'Widget Manufacture: Activity-On-Node Format';
title2 'Critical Path';
proc print;
run;

Output 2.1.1. Critical Path

 alternately, if you know that the project is to start on december 1, 2003, then you can determine the project schedule with reference to calendar dates by specifying the DATE= option in the PROC CPM statement. the default unit of duration is assumed to be DAY. the architecture of PROC CPM enables you to include any number of additional variables that are relevant to the project. here, for example, you may want to include more descriptive activity names and department information. the data set DETAILS contains more information about the project that is merged with the WIDGET data set to produce the WIDGETN data set. the ID statement is useful to
Example 2.1. Activity-on-Node Representation

carry information through to the output data set. Output 2.1.2 displays the resulting output data set.

data details;
 format task $12. dept $13. descrpt $30. ;
 input task & dept $ descrpt & ;
 label dept = "Department"
 descrpt = "Activity Description";
 datalines;
 Approve Plan Planning Finalize and Approve Plan
 Drawings Engineering Prepare Drawings
 Anal. Market Marketing Analyze Potential Markets
 Write Specs Engineering Write Specifications
 Prototype Engineering Build Prototype
 Mkt. Strat. Marketing Develop Marketing Concept
 Materials Manufacturing Procure Raw Materials
 Facility Manufacturing Prepare Manufacturing Facility
 Init. Prod. Manufacturing Initial Production Run
 Evaluate Testing Evaluate Product In-House
 Test Market Testing Mail Product to Sample Market
 Changes Engineering Engineering Changes
 Production Manufacturing Begin Full Scale Production
 Marketing Marketing Begin Full Scale Marketing
;

/* Combine project network data with additional details */
data widgetn;
 merge widget details;
 run;

/* Schedule using PROC CPM, identifying the variables */
/* that specify additional project information */
/* and set project start date to be December 1, 2003 */
proc cpm data=widgetn date='1dec03'd;
 activity task;
 successor succ1 succ2 succ3;
 duration days;
 id dept descrpt;
 run;

proc sort;
 by e_start;
 run;

options ls=90;

title2 'Project Schedule';
proc print;
 id descrpt;
 var dept e_: l_: t_float f_float;
 run;
Example 2.2. Activity-on-Arc Representation

The problem discussed in Example 2.1 can also be described in an AOA format.
The network is illustrated in Figure 2.7. Note that the network has an arc labeled ‘Dummy’, which is required to accurately capture all the precedence relationships. Dummy arcs are often needed when representing scheduling problems in AOA format.

The following DATA step saves the network description in a SAS data set, WIDGAOA. The data set contains the minimum amount of information required by PROC CPM for an activity network in AOA format, namely, the TAILNODE and HEADNODE variables, which indicate the direction of each arc in the network and the DURATION variable which gives the length of each task. In addition, the data set also contains a variable identifying the name of the task associated with each arc. This variable, task, can be identified to PROC CPM using the ACTIVITY statement. Note that PROC CPM treats each observation in the data set as a new task, thus enabling you to specify multiple arcs between a pair of nodes. In this example, for instance, both the tasks ‘Drawings’ and ‘Write Specs’ connect the nodes 2 and 3; likewise, both the tasks ‘Materials’ and ‘Facility’ connect the nodes 5 and 7. If multiple arcs are not allowed, you would need more dummy arcs in this example. However, the dummy arc between nodes 8 and 6 is essential to the structure of the network and cannot be eliminated.

As in Example 2.1, the data set DETAILS containing additional activity information, can be merged with the Activity data set and used as input to PROC CPM to determine the project schedule. For purposes of display (in Gantt charts, and so on) the dummy activity has been given a label, ‘Production Milestone’. Output 2.2.1 displays the project schedule.

```sas
/* Activity-on-Arc representation of the project */
data widgaoa;
    format task $12. ;
    input task & days tail head;
datalines;
Approve Plan  5  1  2
Drawings      10  2  3
Anal. Market  5  2  4
Write Specs   5  2  3
Prototype     15  3  5
Mkt. Strat.   10  4  6
Materials     10  5  7
Facility      10  5  7
Init. Prod.   10  7  8
Evaluate      10  8  9
Test Market   15  6  9
Changes       5  9 10
Production    0 10 11
Marketing     0  6 12
Dummy         0  8  6
;

data details;
    format task $12. dept $13. descrpt $30.;
    input task & dept $ descrpt &;
```
label dept = "Department"
 descrpt = "Activity Description";

datalines;
Approve Plan Planning Finalize and Approve Plan
Drawings Engineering Prepare Drawings
Anal. Market Marketing Analyze Potential Markets
Write Specs Engineering Write Specifications
Prototype Engineering Build Prototype
Mkt. Strat. Marketing Develop Marketing Concept
Materials Manufacturing Procure Raw Materials
Facility Manufacturing Prepare Manufacturing Facility
Init. Prod. Manufacturing Initial Production Run
Evaluate Testing Evaluate Product In-House
Test Market Testing Mail Product to Sample Market
Changes Engineering Engineering Changes
Production Manufacturing Begin Full Scale Production
Marketing Manufacturing Begin Full Scale Marketing
Dummy . Production Milestone
;

data widgeta;
 merge widgaoa details;
run;

/* The project is scheduled using PROC CPM */
/* The network information is conveyed using the TAILNODE */
/* and HEADNODE statements. The ID statement is used to */
/* transfer project information to the output data set */
proc cpm data=widgeta date='1dec03'd out=save;
 tailnode tail;
 headnode head;
 duration days;
 activity task;
 id dept descrpt;
run;

proc sort;
 by e_start;
run;

options ls=90;

title 'Widget Manufacture: Activity-On-Arc Format';
title2 'Project Schedule';
proc print;
 id descrpt;
 var dept e_: l_: t_float f_float;
run;
Example 2.3. Meeting Project Deadlines

This example illustrates the use of the project finish date (using the FBDATE= option) to specify a deadline on the project. In the following program it is assumed that the project data are saved in the data set WIDGAOA. PROC CPM is first invoked with the FBDATE= option. Output 2.3.1 shows the resulting schedule. Note that the entire schedule is shifted in time (as compared to the schedule in Output 2.2.1) so that the end of the project is on March 1, 2004. The second part of the program specifies a project start date in addition to the project finish date using both the DATE= and FBDATE= options. The schedule displayed in Output 2.3.2 shows that all of the activities have a larger float than before due to the imposition of a less stringent target date.

```plaintext
proc cpm data=widgaoa
   fbdate='1mar04'd interval=day;
   tailnode tail;
   headnode head;
   duration days;
   id task;
run;

proc sort;
   by e_start;
run;

options ps=60 ls=78;

title 'Meeting Project Deadlines';
title2 'Specification of Project Finish Date';
```
proc print;
 id task;
 var e_: l_: t_float f_float;
run;

proc cpm data=widgaoa
 fbdate='1mar04'd
 date='1dec03'd interval=day;
 tailnode tail;
 headnode head;
 duration days;
 id task;
run;

proc sort;
 by e_start;
run;

title2 'Specifying Project Start and Completion Dates';
proc print;
 id task;
 var e_: l_: t_float f_float;
run;

Output 2.3.1. Meeting Project Deadlines: FBDATE= Option

<table>
<thead>
<tr>
<th>Task</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve Plan</td>
<td>22DEC03</td>
<td>26DEC03</td>
<td>22DEC03</td>
<td>26DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drawings</td>
<td>27DEC03</td>
<td>05JAN04</td>
<td>27DEC03</td>
<td>05JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anal. Market</td>
<td>27DEC03</td>
<td>31DEC03</td>
<td>26JAN04</td>
<td>30JAN04</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Write Specs</td>
<td>27DEC03</td>
<td>31DEC03</td>
<td>01JAN04</td>
<td>05JAN04</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>01JAN04</td>
<td>10JAN04</td>
<td>31JAN04</td>
<td>09FEB04</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Prototype</td>
<td>06JAN04</td>
<td>20JAN04</td>
<td>06JAN04</td>
<td>20JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Materials</td>
<td>21JAN04</td>
<td>30JAN04</td>
<td>21JAN04</td>
<td>30JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Facility</td>
<td>21JAN04</td>
<td>30JAN04</td>
<td>21JAN04</td>
<td>30JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>31JAN04</td>
<td>09FEB04</td>
<td>31JAN04</td>
<td>09FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Evaluate</td>
<td>10FEB04</td>
<td>19FEB04</td>
<td>15FEB04</td>
<td>24FEB04</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Test Market</td>
<td>10FEB04</td>
<td>24FEB04</td>
<td>10FEB04</td>
<td>24FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marketing</td>
<td>10FEB04</td>
<td>10FEB04</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Dummy</td>
<td>10FEB04</td>
<td>10FEB04</td>
<td>10FEB04</td>
<td>10FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Changes</td>
<td>25FEB04</td>
<td>29FEB04</td>
<td>25FEB04</td>
<td>29FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Production</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example 2.4. Displaying the Schedule on a Calendar

This example shows how you can use the output from CPM to display calendars containing the critical path schedule and the early start schedule. The example uses the network described in Example 2.2 and assumes that the data set SAVE contains the project schedule. The following program invokes PROC CALENDAR to produce two calendars; the first calendar in Output 2.4.1 displays only the critical activities in the project, while the second calendar in Output 2.4.2 displays all the activities in the project. In both invocations of PROC CALENDAR, a WHERE statement is used to display only the activities that are scheduled to finish in December.

```proc cpm data=widgaoa out=save
date='1dec03'd interval=day;
tailnode tail;
headnode head;
duration days;
id task;
run;
```

```proc sort data=save out=crit;
where t_float=0;
by e_start;
run;
```

```title 'Printing the Schedule on a Calendar';
title2 'Critical Activities in December';
```

```/* print the critical act. calendar */
proc calendar schedule
data=crit;
id e_start;
where e_finish <= '31dec03'd;
```
Chapter 2. The CPM Procedure

```plaintext
var task;
dur days;
run;

/* sort data for early start calendar */
proc sort data=save;
  by e_start;

/* print the early start calendar */
title2 'Early Start Schedule for December';
proc calendar schedule data=save;
  id e_start;
  where e_finish <= '31dec03'd;
  var task;
dur days;
run;
```

Output 2.4.1. Project Calendar: Critical Activities

Printing the Schedule on a Calendar
Critical Activities in December

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

+==+-----+-----|
| Approve Plan==|Drawings==|
| 7 | 8 | 9 | 10 | 11 | 12 | 13 |

+==|
| Drawings==|
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |

+==|
| Drawings==|Prototype==|
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |

+==|
| Prototype==|
| 28 | 29 | 30 | 31 | | | |

+==|
Example 2.5. Precedence Gantt Chart

This example produces a Gantt chart of the schedule obtained from PROC CPM. The example uses the network described in Example 2.2 (AOA format) and assumes that the data set SAVE contains the schedule produced by PROC CPM and sorted by the variable E_START. The Gantt chart produced shows the early and late start schedules as well as the precedence relationships between the activities. The precedence information is conveyed to PROC GANTT through the TAILNODE= and HEADNODE= options.

* specify the device on which you want the chart printed;

options vpos=50 hpos=80 border;

title f=swiss 'Precedence Gantt Chart';
title2 f=swiss 'Early and Late Start Schedule';

proc gantt graphics data=save;
 chart / compress tailnode=tail headnode=head
 font=swiss height=1.5 nojobnum skip=2
cprec=cyan cmile=magenta
Output 2.5.1. Gantt Chart of Project

Example 2.6. Changing Duration Units

This example illustrates the use of the INTERVAL= option to identify the units of duration to PROC CPM. In the previous examples, it was assumed that work can be done on the activities all seven days of the week without any break. Suppose now that you want to schedule the activities only on weekdays. To do so, specify INTERVAL=WEEKDAY in the PROC CPM statement. Output 2.6.1 displays the schedule produced by PROC CPM. Note that, with a shorter work week, the project finishes on March 8, 2004, instead of on February 9, 2004.

proc cpm data=widget out=save
 date='1dec03'd interval=weekday;
 activity task;
 succ succ1 succ2 succ3;
 duration days;
run;

title 'Changing Duration Units';
title2 'INTERVAL=WEEKDAY';
proc print;

Example 2.6. Changing Duration Units

Output 2.6.1. Changing Duration Units: INTERVAL=WEEKDAY

<table>
<thead>
<tr>
<th></th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drawings</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anal. Market</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>19JAN04</td>
<td>23JAN04</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Write Specs</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>15DEC03</td>
<td>19DEC03</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Prototype</td>
<td>22DEC03</td>
<td>09JAN04</td>
<td>22DEC03</td>
<td>09JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>15DEC03</td>
<td>26DEC03</td>
<td>26JAN04</td>
<td>06FEB04</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Materials</td>
<td>12JAN04</td>
<td>23JAN04</td>
<td>12JAN04</td>
<td>23JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Facility</td>
<td>12JAN04</td>
<td>23JAN04</td>
<td>12JAN04</td>
<td>23JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>26JAN04</td>
<td>06FEB04</td>
<td>26JAN04</td>
<td>06FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Evaluate</td>
<td>09FEB04</td>
<td>20FEB04</td>
<td>16FEB04</td>
<td>27FEB04</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Test Market</td>
<td>09FEB04</td>
<td>27FEB04</td>
<td>09FEB04</td>
<td>27FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Changes</td>
<td>01MAR04</td>
<td>05MAR04</td>
<td>01MAR04</td>
<td>05MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Production</td>
<td>08MAR04</td>
<td>08MAR04</td>
<td>08MAR04</td>
<td>08MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marketing</td>
<td>09FEB04</td>
<td>09FEB04</td>
<td>08MAR04</td>
<td>08MAR04</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

To display the weekday schedule on a calendar, use the WEEKDAY option in the PROC CALENDAR statement. The following code sorts the Schedule data set by the E_START variable and produces a calendar shown in Output 2.6.2, which displays the schedule of activities for the month of December.

```plaintext
proc sort;
  by e_start;
run;

/* truncate schedule: print only for december */
data december;
  set save;
  e_finish = min('31dec03'd, e_finish);
  if e_start <= '31dec03'd;
run;

title3 'Calendar of Schedule';
proc calendar data=december schedule weekdays;
  id e_start;
  finish e_finish;
  var task;
run;
```
Output 2.6.2. Changing Duration Units: WEEKDAY Calendar for December

```
<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

+================================Approve Plan================================+|

| 8      | 9       | 10        | 11       | 12     |

+================================Write Specs================================|
+==================================Anal. Market============================|
+==================================Drawings==============================|

| 15     | 16      | 17        | 18       | 19     |

+==================================================================|

+==================================Mkt. Strat.==========================|
+==================================Drawings============================|

| 22     | 23      | 24        | 25       | 26     |

+==================================================================|

+==================================Prototype==========================|
+==================================Mkt. Strat.=========================

| 29     | 30      | 31        |

+==================================================================|
```

Note that the durations of the activities in the project are multiples of 5. Thus, if work is done only on weekdays, all activities in the project last 0, 1, 2, or 3 weeks. The `INTERVAL=` option can also be used to set the units of duration to hours, minutes, seconds, years, months, quarters, or weeks. In this example, the data set WIDGWK is created from WIDGET to set the durations in weeks. PROC CPM is then invoked with `INTERVAL=WEEK`, and the resulting schedule is displayed in Output 2.6.3. Note that the float values are also expressed in units of weeks.

```plaintext
data widgwk;
  set widget;
  weeks = days / 5;
  run;
```
Example 2.7. Controlling the Project Calendar

This example illustrates the use of the INTERVAL=, DAYSTART=, and DAYLENGTH= options to control the project calendar. In Example 2.1 through Example 2.5, none of these three options is specified; hence the durations are assumed to be days (INTERVAL=DAY), and work is scheduled on all seven days of the week. In Example 2.6, the specification of INTERVAL=WEEKDAY causes the schedule to skip weekends. The present example shows further ways of controlling the project calendar. For example, you may want to control the work pattern during a standard week or the start and length of the workday.

Suppose you want to schedule the project specified in Example 2.1 but you want to schedule only on weekdays from 9 a.m. to 5 p.m. To schedule the project, use the INTERVAL=WORKDAY option rather than the default INTERVAL=DAY. Then, one unit of duration is interpreted as eight hours of work. To schedule the manufacturing project to start on December 1, with an eight-hour workday and a five-day work week, you can invoke PROC CPM with the following statements. Output 2.7.1 displays the resulting schedule; note that the start and finish times are expressed in SAS datetime values.
title 'Controlling the Project Calendar';
title2 'Scheduling on Workdays';
proc cpm data=widget date='1dec03'd interval=workday;
 activity task;
succ succ1 succ2 succ3;
duration days;
run;
title3 'Day Starts at 9 a.m.';
proc print;
id task;
var e_: l_: t_float f_float;
run;

Output 2.7.1. Controlling the Project Calendar: INTERVAL=WORKDAY

<table>
<thead>
<tr>
<th>task</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve Plan</td>
<td>01DEC03:09:00:00</td>
<td>05DEC03:16:59:59</td>
<td>01DEC03:09:00:00</td>
</tr>
<tr>
<td>Drawings</td>
<td>08DEC03:09:00:00</td>
<td>19DEC03:16:59:59</td>
<td>08DEC03:09:00:00</td>
</tr>
<tr>
<td>Anal. Market</td>
<td>08DEC03:09:00:00</td>
<td>12DEC03:16:59:59</td>
<td>19JAN04:09:00:00</td>
</tr>
<tr>
<td>Write Specs</td>
<td>08DEC03:09:00:00</td>
<td>12DEC03:16:59:59</td>
<td>15DEC03:09:00:00</td>
</tr>
<tr>
<td>Prototype</td>
<td>22DEC03:09:00:00</td>
<td>09JAN04:16:59:59</td>
<td>22DEC03:09:00:00</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>15DEC03:09:00:00</td>
<td>26DEC03:16:59:59</td>
<td>26JAN04:09:00:00</td>
</tr>
<tr>
<td>Materials</td>
<td>12JAN04:09:00:00</td>
<td>23JAN04:16:59:59</td>
<td>12JAN04:09:00:00</td>
</tr>
<tr>
<td>Facility</td>
<td>12JAN04:09:00:00</td>
<td>23JAN04:16:59:59</td>
<td>12JAN04:09:00:00</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>26JAN04:09:00:00</td>
<td>06FEB04:16:59:59</td>
<td>26JAN04:09:00:00</td>
</tr>
<tr>
<td>Evaluate</td>
<td>09FEB04:09:00:00</td>
<td>20FEB04:16:59:59</td>
<td>16FEB04:09:00:00</td>
</tr>
<tr>
<td>Test Market</td>
<td>09FEB04:09:00:00</td>
<td>27FEB04:16:59:59</td>
<td>09FEB04:09:00:00</td>
</tr>
<tr>
<td>Changes</td>
<td>01MAR04:09:00:00</td>
<td>05MAR04:16:59:59</td>
<td>01MAR04:09:00:00</td>
</tr>
<tr>
<td>Production</td>
<td>08MAR04:09:00:00</td>
<td>08MAR04:09:00:00</td>
<td>08MAR04:09:00:00</td>
</tr>
<tr>
<td>Marketing</td>
<td>09FEB04:09:00:00</td>
<td>09FEB04:09:00:00</td>
<td>08MAR04:09:00:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>task</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve Plan</td>
<td>05DEC03:16:59:59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drawings</td>
<td>19DEC03:16:59:59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anal. Market</td>
<td>23JAN04:16:59:59</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Write Specs</td>
<td>19DEC03:16:59:59</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Prototype</td>
<td>09JAN04:16:59:59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>06FEB04:16:59:59</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Materials</td>
<td>23JAN04:16:59:59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Facility</td>
<td>23JAN04:16:59:59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>06FEB04:16:59:59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Evaluate</td>
<td>27FEB04:16:59:59</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Test Market</td>
<td>27FEB04:16:59:59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Changes</td>
<td>05MAR04:16:59:59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Production</td>
<td>08MAR04:09:00:00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marketing</td>
<td>08MAR04:09:00:00</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

If you want to change the length of the workday, use the DAYLENGTH= option in the PROC CPM statement. For example, if you want an eight-and-a-half hour workday instead of the default eight-hour workday, you should include DAYLENGTH='08:30'T in the PROC CPM statement. In addition, you might also want to change the start of the workday. The workday starts at 9 a.m., by default. To
change the default, use the DAYSTART= option. The following program schedules
the project to start at 7 a.m. on December 1. The project is scheduled on eight-
and-a-half hour workdays each starting at 7 a.m. Output 2.7.2 displays the resulting
schedule produced by PROC CPM.

```plaintext
proc cpm data=widget date='1dec03'd interval=workday
daylength='08:30't daystart='07:00't;
activity task;
succ succ1 succ2 succ3;
duration days;
run;

title3 'Day Starts at 7 a.m. and is 8.5 Hours Long';
proc print;
id task;
var e_: l_: t_float f_float;
run;
```
Controlling the Project Calendar: DAYSTART and DAYLENGTH

Day Starts at 7 a.m. and is 8.5 Hours Long

task	E_START	E_FINISH	L_START
Approve Plan | 01DEC03:07:00:00 | 05DEC03:15:29:59 | 01DEC03:07:00:00
Drawings | 08DEC03:07:00:00 | 19DEC03:15:29:59 | 08DEC03:07:00:00
Anal. Market | 08DEC03:07:00:00 | 12DEC03:15:29:59 | 19JAN04:07:00:00
Write Specs | 08DEC03:07:00:00 | 12DEC03:15:29:59 | 15DEC03:07:00:00
Prototype | 22DEC03:07:00:00 | 09JAN04:15:29:59 | 22DEC03:07:00:00
Mkt. Strat. | 15DEC03:07:00:00 | 26DEC03:15:29:59 | 26JAN04:07:00:00
Materials | 12JAN04:07:00:00 | 23JAN04:15:29:59 | 12JAN04:07:00:00
Facility | 12JAN04:07:00:00 | 23JAN04:15:29:59 | 12JAN04:07:00:00
Init. Prod. | 26JAN04:07:00:00 | 06FEB04:15:29:59 | 26JAN04:07:00:00
Evaluate | 09FEB04:07:00:00 | 20FEB04:15:29:59 | 16FEB04:07:00:00
Test Market | 09FEB04:07:00:00 | 27FEB04:15:29:59 | 09FEB04:07:00:00
Changes | 01MAR04:07:00:00 | 05MAR04:15:29:59 | 01MAR04:07:00:00
Production | 08MAR04:07:00:00 | 08MAR04:07:00:00 | 08MAR04:07:00:00
Marketing | 09FEB04:07:00:00 | 09FEB04:07:00:00 | 08MAR04:07:00:00

An alternate way of specifying the start of each working day is to set the INTERVAL= option to DTWRKDAY and specify a SAS datetime value for the project start date. Using INTERVAL=DTWRKDAY tells CPM that the DATE= option is a SAS date-time value and that the time given is the start of the workday. For the present example, you could have used DATE='1dec03:07:00'dt in conjunction with the specification INTERVAL=DTWRKDAY and DAYLENGTH='08:30't.

Example 2.8. Scheduling around Holidays

This example shows how you can schedule around holidays with PROC CPM. First, save a list of holidays in a SAS data set as SAS date variables. The length of the holidays is assumed to be measured in units specified by the INTERVAL= option. By default, all holidays are assumed to be one unit long. You can control the length of each holiday by specifying either the finish time for each holiday or the length of each holiday in the same observation as the holiday specification.
Output 2.8.1. Scheduling around Holidays: HOLIDAYS data set

<table>
<thead>
<tr>
<th>Obs</th>
<th>holiday</th>
<th>holifin</th>
<th>holidur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24DEC03</td>
<td>26DEC03</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>01JAN04</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

For example, the data set HOLIDAYS, displayed in **Output 2.8.1** specifies two holidays, one for Christmas and the other for New Year’s Day. The variable holiday specifies the start of each holiday. The variable holifin specifies the end of the Christmas holiday as 26Dec03. Alternately, the variable holidur can be used to interpret the Christmas holiday as lasting four interval units starting from the 24th of December. If the variable holidur is used, the actual days when work is not done depends on the INTERVAL= option and on the underlying calendar used. This form of specifying holidays or breaks is useful for indicating vacations for specific employees. The second observation in the data set defines the New Year’s holiday as just one day long because both the variables holifin and holidur variables have missing values.

To invoke PROC CPM to schedule around holidays, use the HOLIDATA= option in the PROC CPM statement (see the following program) to identify the data set, and list the names of the variables in the data set in a HOLIDAY statement. The holiday start and finish are identified by specifying the HOLIDAY and HOLIFIN variables. **Output 2.8.2** displays the schedule obtained.

```plaintext
proc cpm data=widget holidata=holidays
   out=saveh date='1dec03'd ;
   activity task;
   succ succ1 succ2 succ3;
   duration days;
   holiday holiday / holifin=(holifin);
   run;

proc sort data=saveh;
   by e_start;
run;

title 'Scheduling Around Holidays';
title2 'Project Schedule';
goptions vpos=50 hpos=80 border;
goptions ftext=swiss;

proc gantt graphics data=saveh holidata=holidays;
chart / compress
   font=swiss height=1.5 nojobnum skip=2
dur=days increment=7
   holiday=(holiday) holifin=(holifin)
cframe=ligr;
   id task;
run;
```
The next two invocations illustrate the use of the HOLIDUR= option and the effect of the INTERVAL= option on the duration of the holidays. Recall that the holiday duration is also assumed to be in interval units where interval is the value specified for the INTERVAL= option. Suppose that a holiday period for the entire project starts on December 24, 2003, with duration specified as 4. First the project is scheduled with INTERVAL=DAY so that the holidays are on December 24, 25, 26, and 27, 2003. Output 2.8.3 displays the resulting schedule. The project completion is delayed by one day due to the extra holiday on December 27, 2003.

```
proc cpm data=widget holidata=holidays
   out=saveh1 date='1dec03'd
   interval=day;
   activity task;
   succ succ1 succ2 succ3;
   duration days;
   holiday holiday / holidur=(holidur);
run;

proc sort data=saveh1;
   by e_start;
run;

proc gantt graphics data=saveh1 holidata=holidays;
   chart / compress
   font=swiss
```

Output 2.8.2. Scheduling around Holidays: Project Schedule
Next, suppose that work on the project is to be scheduled only on weekdays. The INTERVAL= option is set to WEEKDAY. Then, the value ‘4’ specified for the variable holidur is interpreted as 4 weekdays. Thus, the holidays are on December 24, 25, 26, and 29, 2003, because December 27 and 28 (Saturday and Sunday) are non-working days anyway. (Note that if holfin had been used, the holiday would have ended on December 26, 2003.) The following statements schedule the project to start on December 1, 2003 with INTERVAL=WEEKDAY. Output 2.8.4 displays the resulting schedule. Note the further delay in project completion time.

```plaintext
proc cpm data=widget holidata=holidays
   out=saveh2 date='1dec03'd
   interval=weekday;
activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holidur=(holidur);
run;
```
proc sort data=saveh2;
 by _e_start;
run;

title2 'Variable Length Holidays : INTERVAL=WEEKDAY';
proc gantt graphics data=saveh2 holidata=holidays;
 chart / compress
 font=swiss
 height=1.5 skip=2
 nojobnum
 dur=days increment=7
 holiday=(holiday)
 holidur=(holidur)
 interval=weekday
 cframe=ligr;
 id task;
run;

Output 2.8.4. Scheduling around Holidays: INTERVAL=WEEKDAY

Finally, the same project is scheduled to start on December 1, 2003 with INTERVAL=WORKDAY. Output 2.8.5 displays the resulting Schedule data set. Note that this time the holiday period starts at 5:00 p.m. on December 23, 2003, and ends at 9:00 a.m. on December 30, 2003.

proc cpm data=widget holidata=holidays
 out=saveh3 date='1dec03'd
 interval=workday;
Example 2.9. CALEDATA and WORKDATA Data Sets

This example shows how you can schedule the job over a nonstandard day and a nonstandard week. In the first part of the example, the calendar followed is a six-day week with an eight-and-a-half hour workday starting at 7 a.m. The project data are the same as were used in Example 2.8, but some of the durations have been changed to include some fractional values. Output 2.9.1 shows the project data set.
Output 2.9.1. Data Set WIDGET9: Scheduling on the Six-Day Week

Scheduling on the 6-Day Week
Data Set WIDGET9

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>succ1</th>
<th>succ2</th>
<th>succ3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5.5</td>
<td>Drawings</td>
<td>Anal. Market</td>
<td>Write Specs</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10.0</td>
<td>Prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>5.0</td>
<td>Mkt. Strat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>4.5</td>
<td>Prototype</td>
<td>Facility</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15.0</td>
<td>Materials</td>
<td>Facility</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10.0</td>
<td>Test Market</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10.0</td>
<td>Init. Prod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10.0</td>
<td>Init. Prod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10.0</td>
<td>Test Market</td>
<td>Marketing</td>
<td>Evaluate</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10.0</td>
<td>Changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15.0</td>
<td>Changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5.0</td>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The same Holiday data set is used. To indicate that work is to be done on all days of the week except Sunday, use INTERVAL=DTDAY and define a Calendar data set with a single variable _SUN_, and a single observation identifying Sunday as a holiday. The DATA step creating CALENDAR and the invocation of PROC CPM is shown in the following code. Output 2.9.2 displays the resulting schedule.

/* Set up a 6-day work week, with Sundays off */
data calendar;
 sun='holiday';
run;

title 'Scheduling on the 6-Day Week';
proc cpm data=widget9 holidata=holidays
 out=savc date='1dec03:07:00'dt
 interval=dtday daylength='08:30't
 calendar=calendar;
 activity task;
 succ succ1 succ2 succ3;
 duration days;
 holiday holiday / holifin=(holifin);
run;
Output 2.9.2. Scheduling on the Six-Day Week

Scheduling on the 6-Day Week

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>E_START</th>
<th>E_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5.5</td>
<td>01DEC03:07:00:00</td>
<td>06DEC03:11:14:59</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10.0</td>
<td>06DEC03:11:15:00</td>
<td>18DEC03:11:14:59</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>5.0</td>
<td>06DEC03:11:15:00</td>
<td>12DEC03:11:14:59</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>4.5</td>
<td>06DEC03:11:15:00</td>
<td>11DEC03:15:29:59</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15.0</td>
<td>18DEC03:11:15:00</td>
<td>09JAN04:11:14:59</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10.0</td>
<td>12DEC03:11:15:00</td>
<td>27DEC03:11:14:59</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10.0</td>
<td>09JAN04:11:15:00</td>
<td>21JAN04:11:14:59</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10.0</td>
<td>09JAN04:11:15:00</td>
<td>21JAN04:11:14:59</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10.0</td>
<td>21JAN04:11:15:00</td>
<td>02FEB04:11:14:59</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10.0</td>
<td>02FEB04:11:15:00</td>
<td>13FEB04:11:14:59</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15.0</td>
<td>02FEB04:11:15:00</td>
<td>19FEB04:11:14:59</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5.0</td>
<td>19FEB04:11:15:00</td>
<td>25FEB04:11:14:59</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0.0</td>
<td>25FEB04:11:15:00</td>
<td>25FEB04:11:15:00</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0.0</td>
<td>02FEB04:11:15:00</td>
<td>02FEB04:11:15:00</td>
</tr>
</tbody>
</table>

Suppose now that you want to schedule work on a five-and-a-half day week (five full working days starting on Monday and half a working day on Saturday). A full work day is from 8 a.m. to 4 p.m. Output 2.9.3 shows the data set WORKDAT, which is used to define the work pattern for a full day (in the shift variable fullday) and a half-day (in the shift variable halfday). Output 2.9.4 displays the Calendar data set, CALDAT, which specifies the appropriate work pattern for each day of the week. The schedule produced by invoking the following program is displayed in Output 2.9.5.

```plaintext
proc cpm data=widget9 holidata=holidays
   out=savecw date='1dec03'd
   interval=day
   workday=workdat calendar=caldat;
   activity task;
   succ   succ1 succ2 succ3;
   duration days;
   holiday holiday / holifin=(holifin);
run;
```
Chapter 2. The CPM Procedure

Output 2.9.3. Workday Data Set

Scheduling on a Five-and-a-Half-Day Week
Workdays Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>fullday</th>
<th>halfday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8:00</td>
<td>8:00</td>
</tr>
<tr>
<td>2</td>
<td>16:00</td>
<td>12:00</td>
</tr>
</tbody>
</table>

Output 2.9.4. Calendar Data Set

Scheduling on a Five-and-a-Half-Day Week
Calendar Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>sun</th>
<th>mon</th>
<th>tue</th>
<th>wed</th>
<th>thu</th>
<th>fri</th>
<th>sat</th>
<th>d_length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>holiday</td>
<td>fullday</td>
<td>fullday</td>
<td>fullday</td>
<td>fullday</td>
<td>halfday</td>
<td>8:00</td>
<td></td>
</tr>
</tbody>
</table>

Output 2.9.5. Scheduling on a Five-and-a-Half Day Week

Scheduling on a Five-and-a-Half Day Week
Project Schedule

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>E_START</th>
<th>E_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5.5</td>
<td>01DEC03:08:00:00:00</td>
<td>06DEC03:11:59:59:00</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10.0</td>
<td>08DEC03:08:00:00:00</td>
<td>19DEC03:11:59:59:00</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>5.0</td>
<td>08DEC03:08:00:00:00</td>
<td>12DEC03:15:59:59:00</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>4.5</td>
<td>08DEC03:08:00:00:00</td>
<td>12DEC03:15:59:59:00</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15.0</td>
<td>19DEC03:12:00:00:00</td>
<td>13JAN04:11:59:59:00</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10.0</td>
<td>13DEC03:08:00:00:00</td>
<td>30DEC03:11:59:59:00</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10.0</td>
<td>13JAN04:12:00:00:00</td>
<td>26JAN04:11:59:59:00</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10.0</td>
<td>13JAN04:12:00:00:00</td>
<td>26JAN04:11:59:59:00</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10.0</td>
<td>26JAN04:12:00:00:00</td>
<td>06FEB04:15:59:59:00</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10.0</td>
<td>07FEB04:08:00:00:00</td>
<td>19FEB04:15:59:59:00</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15.0</td>
<td>07FEB04:08:00:00:00</td>
<td>26FEB04:11:59:59:00</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5.0</td>
<td>26FEB04:12:00:00:00</td>
<td>03MAR04:15:59:59:00</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0.0</td>
<td>04MAR04:08:00:00:00</td>
<td>04MAR04:08:00:00:00</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0.0</td>
<td>07FEB04:08:00:00:00</td>
<td>07FEB04:08:00:00:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01DEC03:08:00:00</td>
<td>06DEC03:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>08DEC03:08:00:00</td>
<td>19DEC03:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>26JAN04:11:59:59</td>
<td>30JAN04:15:59:59</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>4</td>
<td>13JAN04:12:00:00</td>
<td>13JAN04:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>06FEB04:15:59:59</td>
<td>06FEB04:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>26JAN04:11:59:59</td>
<td>26JAN04:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>13JAN04:12:00:00</td>
<td>13JAN04:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>13JAN04:12:00:00</td>
<td>26JAN04:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>06FEB04:15:59:59</td>
<td>06FEB04:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>26FEB04:11:59:59</td>
<td>26FEB04:11:59:59</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>04MAR04:08:00:00</td>
<td>04MAR04:08:00:00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>04MAR04:08:00:00</td>
<td>04MAR04:08:00:00</td>
<td>20.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Note that, in this case, it was not necessary to specify the DAYLENGTH=, DAYSTART=, or INTERVAL= option in the PROC CPM statement. The default value of INTERVAL=DAY is assumed, and the CALDAT and WORKDAT data sets define the workday and work week completely. The length of a standard working day is also included in the Calendar data set, completing all the necessary specifications.
To visualize the breaks in the work schedule created by these specifications, you can use the following simple data set with a dummy activity ‘Schedule Breaks’ to produce a Gantt chart, shown in **Output 2.9.6**. The period illustrated on the chart is from December 19, 2003 to December 27, 2003. The breaks are denoted by *

```sas
/* To visualize the breaks, use following "dummy" data set to plot a schedule bar showing holidays and breaks */
data temp;
e_start='19dec03:08:00'dt;
e_finish='27dec03:23:59:59'dt;
task='Schedule Breaks';
label task='Project Calendar';
format e_start e_finish datetime16.;
run;

options ps=20;
title2 'Holidays and Breaks in the Project Calendar';
proc gantt data=temp lineprinter
   calendar=caldat holidata=holidays
   workday=workdat;
   chart / interval=dtday mininterval=dthour skip=0
       holiday=(holiday) holifin=(holifin) markbreak
       nojobnum nolegend increment=8 holichar='*';
   id task;
run;
```
Output 2.9.6. Gantt Chart Showing Breaks and Holidays

Scheduling on a Five-and-a-Half-Day Week
Holidays and Breaks in the Project Calendar

<table>
<thead>
<tr>
<th>Project</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>08:00</td>
<td>16:00</td>
<td>00:00</td>
<td>08:00</td>
<td>16:00</td>
<td>00:00</td>
</tr>
</tbody>
</table>

Scheduling on a Five-and-a-Half-Day Week
Holidays and Breaks in the Project Calendar

<table>
<thead>
<tr>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>00:00</td>
<td>08:00</td>
<td>16:00</td>
<td>00:00</td>
<td>08:00</td>
<td>16:00</td>
<td>00:00</td>
<td>08:00</td>
</tr>
</tbody>
</table>

Scheduling on a Five-and-a-Half-Day Week
Holidays and Breaks in the Project Calendar

<table>
<thead>
<tr>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>23</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>08:00</td>
<td>16:00</td>
<td>00:00</td>
<td>08:00</td>
<td>16:00</td>
<td>00:00</td>
<td>08:00</td>
<td>16:00</td>
</tr>
</tbody>
</table>

Example 2.10. Multiple Calendars

This example illustrates the use of multiple calendars within a project. Different scenarios are presented to show the use of different calendars and how project schedules are affected. Output 2.10.1 shows the data set WORKDATA, which defines several shift patterns. These shift patterns are appropriately associated with three different calendars in the data set CALEDATA, also shown in the same output. The three calendars are defined as follows:

- The DEFAULT calendar has five eight-hour days (Monday through Friday) and holidays on Saturday and Sunday.
- The calendar OVT_CAL specifies an overtime calendar that has 10-hour work days on Monday through Friday and a half day on Saturday and a holiday on Sunday.
- The calendar PROD_CAL follows a more complicated work pattern: Sunday is a holiday; on Monday work is done from 8 a.m. through midnight with a two hour break from 6 p.m. to 8 p.m.; on Tuesday through Friday work is done round the clock with two 2-hour breaks from 6 a.m. to 8 a.m. and 6 p.m. to 8
p.m.; on Saturday the work shifts are from midnight to 6 a.m. and again from 8 a.m. to 6 p.m. In other words, work is done continuously from 8 a.m. on Monday morning to 6 p.m. on Saturday with two hour breaks every day at 6 a.m. and 6 p.m.

Output 2.10.1. Workday and Calendar Data Sets

<table>
<thead>
<tr>
<th>Obs</th>
<th>fullday</th>
<th>halfday</th>
<th>ovtday</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8:00</td>
<td>8:00</td>
<td>8:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16:00</td>
<td>12:00</td>
<td>18:00</td>
<td>6:00</td>
<td>18:00</td>
<td>6:00</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>.</td>
<td>8:00</td>
<td>20:00</td>
<td>8:00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.</td>
<td>.</td>
<td>18:00</td>
<td>.</td>
<td>18:00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.</td>
<td>.</td>
<td>20:00</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

Multiple Calendars
CALENDAR Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>cal</th>
<th>sun</th>
<th>mon</th>
<th>tue</th>
<th>wed</th>
<th>thu</th>
<th>fri</th>
<th>sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFAULT</td>
<td>holiday</td>
<td>fullday</td>
<td>fullday</td>
<td>fullday</td>
<td>fullday</td>
<td>fullday</td>
<td>holiday</td>
</tr>
<tr>
<td>2</td>
<td>OVT_CAL</td>
<td>holiday</td>
<td>ovtday</td>
<td>ovtday</td>
<td>ovtday</td>
<td>ovtday</td>
<td>ovtday</td>
<td>halfday</td>
</tr>
<tr>
<td>3</td>
<td>PROD_CAL</td>
<td>holiday</td>
<td>s2</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
<td>s3</td>
</tr>
</tbody>
</table>

The same set of holidays is used as in Example 2.9, except that in this case the holiday for New Year's is defined by specifying both the start and finish time for the holiday instead of defaulting to a one-day long holiday. When multiple calendars are involved, it is often less confusing to define holidays by specifying both a start and a finish time for the holiday instead of the start time and duration. Output 2.10.2 displays the Holiday data set.

Output 2.10.2. Holiday Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>holiday</th>
<th>holifin</th>
<th>holidur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24DEC03</td>
<td>26DEC03</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>01JAN04</td>
<td>01JAN04</td>
<td>.</td>
</tr>
</tbody>
</table>

Note that the data set HOLIDAYS does not include any variable identifying the calendars with which to associate the holidays. By default, the procedure associates the two holiday periods with all the calendars.

An easy way to visualize all the breaks and holidays for each calendar is to use a Gantt chart, plotting a bar for each calendar from the start of the project to January 4, 2004, with all the holiday and work shift specifications. The following program produces Output 2.10.3. Note that holidays and breaks are marked with a solid fill pattern.
goptions hpos=160 vpos=25 ftext=swiss;
title h=1.5 'Multiple Calendars';
title2 'Breaks and Holidays for the Different Calendars';
proc gantt data=cals graphics
 calendar=calendar holidata=holidays
 workday=workdata;
 chart / interval=dtday mininterval=dthour skip=2
 holiday=(holiday) holifin=(holifin)
 markbreak daylength='08:00't calid=cal
 ref='1dec03:00:00'dt to '4jan04:08:00'dt by dtday
 nolegend nojobnum increment=16
 hpages=6;
 id cal;
run;

Output 2.10.3. Gantt Chart Showing Breaks and Holidays for Multiple Calendars

![Gantt Chart Showing Breaks and Holidays for Multiple Calendars](image-url)
Example 2.10. Multiple Calendars

Multiple Calendars
Breaks and Holidays for the Different Calendars

Multiple Calendars
Breaks and Holidays for the Different Calendars

Multiple Calendars
Breaks and Holidays for the Different Calendars

Multiple Calendars
Breaks and Holidays for the Different Calendars
The Activity data set used in Example 2.9 is modified by adding a variable called `cal`, which sets the calendar to be ‘PROD_CAL’ for the activity ‘Production’, and ‘OVT_CAL’ for the activity ‘Prototype’, and the DEFAULT calendar for the other activities. Thus, in both the Activity data set and the Calendar data set, the calendar information is conveyed through a CALID variable, `cal`.

PROC CPM is first invoked without reference to the CALID variable. Thus, the procedure recognizes only the first observation in the Calendar data set (a warning is printed to the log to this effect), and only the default calendar is used for all activities in the project. The daylength parameter is interpreted as the length of a standard work day; all the durations are assumed to be in units of this standard work day. Output 2.10.4 displays the schedule obtained. Note that the project is scheduled to finish on March 12, 2004, at 12 noon.

```plaintext
data widgcal;
  set widget9;
  if task = 'Production' then cal = 'PROD_CAL';
  else if task = 'Prototype' then cal = 'OVT_CAL';
  else cal = 'DEFAULT';
run;

proc cpm date='01dec03'd data=widgcal out=scheddef
  holidata=holidays daylength='08:00't
  workday=workdata
  calendar=calendar;
  holiday holiday / holifin = holifin;
  activity task;
  duration days;
  successor succ1 succ2 succ3;
run;

title2 'Project Schedule: Default calendar';
proc print;
  var task days e_start e_finish l_start l_finish
       t_float f_float;
run;
```
Example 2.10. Multiple Calendars

Output 2.10.4. Schedule Using Default Calendar

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>E_START</th>
<th>E_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5.5</td>
<td>01DEC03:08:00:00</td>
<td>08DEC03:11:59:59</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10.0</td>
<td>08DEC03:12:00:00</td>
<td>22DEC03:11:59:59</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>5.0</td>
<td>08DEC03:12:00:00</td>
<td>15DEC03:11:59:59</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>4.5</td>
<td>08DEC03:12:00:00</td>
<td>12DEC03:15:59:59</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15.0</td>
<td>22DEC03:12:00:00</td>
<td>16JAN04:11:59:59</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10.0</td>
<td>15DEC03:12:00:00</td>
<td>02JAN04:11:59:59</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10.0</td>
<td>16JAN04:12:00:00</td>
<td>30JAN04:11:59:59</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10.0</td>
<td>16JAN04:12:00:00</td>
<td>30JAN04:11:59:59</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10.0</td>
<td>30JAN04:12:00:00</td>
<td>13FEB04:11:59:59</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10.0</td>
<td>13FEB04:12:00:00</td>
<td>27FEB04:11:59:59</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15.0</td>
<td>13FEB04:12:00:00</td>
<td>05MAR04:11:59:59</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5.0</td>
<td>05MAR04:12:00:00</td>
<td>12MAR04:11:59:59</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0.0</td>
<td>12MAR04:12:00:00</td>
<td>12MAR04:12:00:00</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0.0</td>
<td>13FEB04:12:00:00</td>
<td>13FEB04:12:00:00</td>
</tr>
</tbody>
</table>

Next PROC CPM is invoked with the CALID statement identifying the variable CAL in the Activity and Calendar data sets. Recall that the two activities, ‘Production’ and ‘Prototype’, do not follow the default calendar. The schedule displayed in Output 2.10.5 shows that, due to longer working hours for these two activities in the project, the scheduled finish date is now March 8, at 10:00 a.m.

```plaintext
proc cpm date='01dec03'd data=widgcal out=schedmc
  holidata=holidays daylength='08:00't
  workday=workdata
  calendar=calendar;
  holiday holiday / holifin = holifin;
  activity task;
  duration days;
  successor succ1 succ2 succ3;
  calid cal;
run;

title2 'Project Schedule: Three Calendars';
proc print;
```
Now suppose that the engineer in charge of writing specifications requests a seven-day vacation from December 8, 2003. How is the project completion time going to be affected? A new calendar, Eng–cal, is defined that has the same work pattern as the default calendar, but it also contains an extra vacation period. Output 2.10.6 displays the data sets HOLIDATA and CALEDATA, which contain information about the new calendar. The fourth observation in the data set CALEDATA has missing values for the variables _sun_, . . . , _sat_, indicating that the calendar, Eng–cal, follows the same work pattern as the default calendar.
Output 2.10.6. HOLIDATA and CALEDATA Data Sets

Multiple Calendars
Holidays Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>holiday</th>
<th>holifin</th>
<th>holidur</th>
<th>cal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08DEC03</td>
<td>.</td>
<td>7</td>
<td>Eng_cal</td>
</tr>
<tr>
<td>2</td>
<td>24DEC03</td>
<td>26DEC03</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>01JAN04</td>
<td>01JAN04</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

Multiple Calendars
Calendar Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>cal</th>
<th>sun</th>
<th>mon</th>
<th>tue</th>
<th>wed</th>
<th>thu</th>
<th>fri</th>
<th>sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFAULT</td>
<td>holiday</td>
<td>fullday</td>
<td>fullday</td>
<td>fullday</td>
<td>fullday</td>
<td>fullday</td>
<td>holiday</td>
</tr>
<tr>
<td>2</td>
<td>OVT_CAL</td>
<td>holiday</td>
<td>ovtday</td>
<td>ovtday</td>
<td>ovtday</td>
<td>ovtday</td>
<td>ovtday</td>
<td>halfday</td>
</tr>
<tr>
<td>3</td>
<td>PROD_CAL</td>
<td>holiday</td>
<td>s2</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
<td>s3</td>
</tr>
<tr>
<td>4</td>
<td>Eng_cal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Once again, in the following code, PROC GANTT is used to compare the new calendar with the default calendar, as shown in Output 2.10.7. Note that the breaks and holidays are marked with a solid fill pattern.

```sas
/* Create a data set to illustrate holidays with PROC GANTT */
data cals2;
e_start='1dec03:00:00'dt;
e_finish='18dec03:00:00'dt;
label cal = 'Schedule Breaks / Holidays';
format e_start e_finish datetime16.;
length cal $8.;
cal='DEFAULT' ; output;
cal='Eng_cal' ; output;
run;

title2 'Breaks and Holidays for Eng_cal and the DEFAULT Calendar';
proc gantt data=cals2 graphics
   calendar=caledata holidata=holidata
   workday=workdata;
   chart / interval=dtday mininterval=dthour skip=2
       holiday=(holiday) holifin=(holifin) holidur=(holidur)
       markbreak daylength='08:00't calid=cal
       ref='1dec03:00:00'dt to '18dec03:00:00'dt by dtday
       nojobnum nolegend increment=16 hpages=3;
id cal;
run;
```
Chapter 2. The CPM Procedure

Output 2.10.7. Difference between Eng_cal and DEFAULT Calendar

The Activity data set is modified to redefine the calendar for the task ‘Write Specs’. PROC CPM is invoked, and Output 2.10.8 shows the new schedule obtained. Note the effect of the Engineer’s vacation on the project completion time. The project is now scheduled to finish at 10 a.m. on March 9, 2004; in effect, the delay is only one day, even though the planned vacation period is seven days. This is due to the fact that the activity ‘Write Specs’, which follows the new calendar, had some slack time present in its original schedule; however, this activity has now become critical.

```
data widgvac;
set widgcal;
```
if task = 'Write Specs' then cal = 'Eng_cal'; run;

proc cpm date='01dec03'd data=widgvac out=schedvac holidata=holidata daylength='08:00't workday=workdata calendar=caledata;
 holiday holiday / holifin = holifin holidur=holidur;
 activity task;
 duration days;
 successor succ1 succ2 succ3;
 calid cal;
run;

title2 'Project Schedule: Four Calendars';
proc print;
 var task days cal e_: l_: t_float f_float;
run;

Output 2.10.8. Schedule Using Four Calendars

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>cal</th>
<th>E_START</th>
<th>E_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5.5</td>
<td>DEFAULT</td>
<td>01DEC03:08:00:00</td>
<td>08DEC03:11:59:59</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10.0</td>
<td>DEFAULT</td>
<td>08DEC03:12:00:00</td>
<td>22DEC03:11:59:59</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>5.0</td>
<td>DEFAULT</td>
<td>08DEC03:12:00:00</td>
<td>15DEC03:11:59:59</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>4.5</td>
<td>Eng_cal</td>
<td>17DEC03:08:00:00</td>
<td>23DEC03:11:59:59</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15.0</td>
<td>OVT_CAL</td>
<td>23DEC03:12:00:00</td>
<td>13JAN04:09:59:59</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10.0</td>
<td>DEFAULT</td>
<td>15DEC03:12:00:00</td>
<td>02JAN04:11:59:59</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10.0</td>
<td>DEFAULT</td>
<td>13JAN04:10:00:00</td>
<td>27JAN04:09:59:59</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10.0</td>
<td>DEFAULT</td>
<td>13JAN04:10:00:00</td>
<td>27JAN04:09:59:59</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10.0</td>
<td>DEFAULT</td>
<td>27JAN04:10:00:00</td>
<td>10FEB04:09:59:59</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10.0</td>
<td>DEFAULT</td>
<td>10FEB04:10:00:00</td>
<td>24FEB04:09:59:59</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15.0</td>
<td>DEFAULT</td>
<td>10FEB04:10:00:00</td>
<td>02MAR04:09:59:59</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5.0</td>
<td>DEFAULT</td>
<td>02MAR04:10:00:00</td>
<td>09MAR04:09:59:59</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0.0</td>
<td>PROD_CAL</td>
<td>09MAR04:10:00:00</td>
<td>09MAR04:10:00:00</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0.0</td>
<td>DEFAULT</td>
<td>10FEB04:10:00:00</td>
<td>10FEB04:10:00:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02DEC03:08:00:00</td>
<td>09DEC03:11:59:59</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>09DEC03:12:00:00</td>
<td>23DEC03:11:59:59</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>27JAN04:09:59:59</td>
<td>27JAN04:09:59:59</td>
<td>26.75</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>17DEC03:08:00:00</td>
<td>23DEC03:11:59:59</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>23DEC03:12:00:00</td>
<td>13JAN04:09:59:59</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>27JAN04:10:00:00</td>
<td>10FEB04:09:59:59</td>
<td>26.75</td>
<td>26.75</td>
</tr>
<tr>
<td>7</td>
<td>13JAN04:10:00:00</td>
<td>27JAN04:09:59:59</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>27JAN04:10:00:00</td>
<td>27JAN04:09:59:59</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>27JAN04:10:00:00</td>
<td>10FEB04:09:59:59</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>17FEB04:10:00:00</td>
<td>02MAR04:09:59:59</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>11</td>
<td>09MAR04:10:00:00</td>
<td>09MAR04:10:00:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>02MAR04:10:00:00</td>
<td>09MAR04:09:59:59</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>09MAR04:10:00:00</td>
<td>09MAR04:10:00:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>09MAR04:10:00:00</td>
<td>09MAR04:10:00:00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
</tbody>
</table>
Example 2.11. Nonstandard Relationships

This example shows the use of LAG variables to describe nonstandard relationships. Consider the project network in AON format. Output 2.11.1 shows the data set WIDGLAG, which contains the required project information; here the data set contains only one successor variable, requiring multiple observations for activities that have more than one immediate successor. In addition, the data set contains two new variables, lagdur and lagdurc, which are used to convey nonstandard relationships that exist between some of the activities. In the first part of the example, lagdur specifies a lag type and lag duration between activities; in the second part, the variable lagdurc specifies a lag calendar in addition to the lag type and lag duration. Note that when multiple successor variables are used, you can specify multiple lag variables and the lag values specified are matched one-for-one with the corresponding successor variables.

Output 2.11.1. Network Data

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>succ</th>
<th>lagdur</th>
<th>lagdurc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>Drawings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Approve Plan</td>
<td>5</td>
<td>Anal. Market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Approve Plan</td>
<td>5</td>
<td>Write Specs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Drawings</td>
<td>10</td>
<td>Prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Write Specs</td>
<td>5</td>
<td>Prototype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Prototype</td>
<td>15</td>
<td>Materials</td>
<td>ss_9</td>
<td>ss_9</td>
</tr>
<tr>
<td>8</td>
<td>Prototype</td>
<td>15</td>
<td>Facility</td>
<td>ss_9</td>
<td>ss_9</td>
</tr>
<tr>
<td>9</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>Test Market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>Marketing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Materials</td>
<td>10</td>
<td>Init. Prod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Facility</td>
<td>10</td>
<td>Init. Prod.</td>
<td>fs_2</td>
<td>fs_2_SEVENDAY</td>
</tr>
<tr>
<td>13</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Test Market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Marketing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Evaluate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Evaluate</td>
<td>10</td>
<td>Changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Test Market</td>
<td>15</td>
<td>Changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Changes</td>
<td>5</td>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Production</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Marketing</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suppose that the project calendar follows a five-day work week. Recall from Example 2.6 that the project finishes on March 8, 2004. The data set, WIDGLAG, specifies that there is a ‘ss_9’ lag between the activities ‘Prototype’ and ‘Materials’, which means that you can start acquiring raw materials nine days after the start of the activity ‘Prototype’ instead of waiting until its finish time. Likewise, there is an ‘ss_9’ lag between ‘Prototype’ and ‘Facility’. The ‘fs_2’ lag between ‘Facility’ and ‘Init. Prod’ indicates that you should wait two days after the completion of the ‘Facility’ task before starting the initial production. To convey the lag information to PROC CPM, use the LAG= specification in the SUCCESSOR statement. The program and the resulting output (Output 2.11.2) follow.

```
proc cpm data=widglag date='1dec03'd
   interval=weekday collapse out=lagsched;
```
Example 2.11. Nonstandard Relationships

Nonstandard Relationships

Activity task;
succ succ / lag = (lagdur);
duration days;
run;

Output 2.11.2. Project Schedule: Default LAG Calendar

<table>
<thead>
<tr>
<th>Nonstandard Relationships</th>
<th>Lag Type and Duration: Default LAG Calendar</th>
</tr>
</thead>
<tbody>
<tr>
<td>task</td>
<td>E_START</td>
</tr>
<tr>
<td>Approve Plan</td>
<td>01DEC03</td>
</tr>
<tr>
<td>Drawings</td>
<td>08DEC03</td>
</tr>
<tr>
<td>Anal. Market</td>
<td>08DEC03</td>
</tr>
<tr>
<td>Write Specs</td>
<td>08DEC03</td>
</tr>
<tr>
<td>Prototype</td>
<td>22DEC03</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>15DEC03</td>
</tr>
<tr>
<td>Materials</td>
<td>02JAN04</td>
</tr>
<tr>
<td>Facility</td>
<td>02JAN04</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>20JAN04</td>
</tr>
<tr>
<td>Evaluate</td>
<td>03FEB04</td>
</tr>
<tr>
<td>Test Market</td>
<td>03FEB04</td>
</tr>
<tr>
<td>Changes</td>
<td>24FEB04</td>
</tr>
<tr>
<td>Production</td>
<td>02MAR04</td>
</tr>
<tr>
<td>Marketing</td>
<td>03FEB04</td>
</tr>
</tbody>
</table>

Note that due to the change in the type of precedence constraint (from the default ‘fs_0’ to ‘ss_9’), the project finishes earlier, on March 2, 2004, instead of on March 8, 2004 (compare with Output 2.6.1).

By default, all the lags are assumed to follow the default calendar for the project. In this case, the default project calendar has five workdays (since INTERVAL=WEEKDAY). Suppose now that the ‘fs_2’ lag between ‘Facility’ and ‘Init. Prod.’ really indicates two calendar days and not two workdays. (Perhaps you want to allow two days for the paint to dry or the building to be ventilated.) The variable lagdurc in the WIDGLAG data set indicates the calendar for this lag by specifying the lag to be ‘fs_2_sevenday’ where ‘sevenday’ is the name of the seven-day calendar defined in the Calendar data set, CALENDAR, displayed in Output 2.11.3. PROC CPM is invoked with LAG=lagdurc and Output 2.11.4 displays the resulting schedule. Note that the project now finishes on March 1, 2004.

```plaintext
proc cpm data=widglag date='1dec03'd calendar=calendar
   interval=weekday collapse out=lagsched;
   activity task;
   succ   succ / lag = (lagdurc);
duration days;
run;
```
Output 2.11.3. Calendar Data Set

Nonstandard Relationships

Calendar Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>cal_</th>
<th>sun_</th>
<th>mon_</th>
<th>tue_</th>
<th>wed_</th>
<th>thu_</th>
<th>fri_</th>
<th>sat_</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEVENDAY</td>
<td>workday</td>
<td>workday</td>
<td>workday</td>
<td>workday</td>
<td>workday</td>
<td>workday</td>
<td>workday</td>
</tr>
</tbody>
</table>

Output 2.11.4. Project Schedule: Lag Type, Duration, and Calendar

Nonstandard Relationships

Lag Type, Duration, and Calendar

<table>
<thead>
<tr>
<th>task</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve Plan</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>02DEC03</td>
<td>08DEC03</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Drawings</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>09DEC03</td>
<td>22DEC03</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Anal. Market</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>12JAN04</td>
<td>16JAN04</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Write Specs</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>16DEC03</td>
<td>22DEC03</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Prototype</td>
<td>22DEC03</td>
<td>09JAN04</td>
<td>23DEC03</td>
<td>12JAN04</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>15DEC03</td>
<td>26DEC03</td>
<td>19JAN04</td>
<td>30JAN04</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Materials</td>
<td>02JAN04</td>
<td>15JAN04</td>
<td>05JAN04</td>
<td>16JAN04</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Facility</td>
<td>02JAN04</td>
<td>15JAN04</td>
<td>05JAN04</td>
<td>16JAN04</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>19JAN04</td>
<td>30JAN04</td>
<td>19JAN04</td>
<td>30JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Evaluate</td>
<td>02FEB04</td>
<td>13FEB04</td>
<td>09FEB04</td>
<td>20FEB04</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Test Market</td>
<td>02FEB04</td>
<td>20FEB04</td>
<td>02FEB04</td>
<td>20FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Changes</td>
<td>23FEB04</td>
<td>27FEB04</td>
<td>23FEB04</td>
<td>27FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Production</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marketing</td>
<td>02FEB04</td>
<td>02FEB04</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

In fact, you can specify an alternate calendar for all the lag durations by using the ALAGCAL= or NLAGCAL= option in the SUCCESSOR statement. The next invocation of the CPM procedure illustrates this feature by specifying ALAGCAL=SEVENDAY in the SUCCESSOR statement. Thus, all the lag durations now follow the seven-day calendar instead of the five-day calendar, which is the default calendar for this project. Output 2.11.5 shows the resulting schedule. Note that now the project finishes on February 27, 2004. Output 2.11.6 displays a precedence Gantt chart of the project. Note how the nonstandard precedence constraints are displayed.

```plaintext
proc cpm data=widglag date='1dec03'd calendar=calendar
   interval=weekday collapse out=lagsched;
activity task;
succ   succ / lag = (lagdur) alagcal=sevenday;
duration days;
run;

goptions hpos=100 vpos=60;
title  c=black f=swiss h=2.5 'Nonstandard Relationships';
title2 c=black f=swiss h=2 'Precedence Gantt Chart';
title3 '
; 
proc gantt graphics data=lagsched logic=widglag;
chart / compress act=task succ=(succ) dur=days
```
Example 2.12. Activity Time Constraints

font=swiss
cprec=black cmile=blue
caxis=black cfram=cyancmheight=1.5 skip=2 nojobnum
dur=days increment=7 lag=(lagdur);

id task);
run;

Output 2.11.5. Project Schedule: LAG Calendar = SEVENDAY

Nonstandard Relationships
Lag Type and Duration: LAG Calendar = SEVENDAY

<table>
<thead>
<tr>
<th>task</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve Plan</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Drawings</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anal. Market</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>09JAN04</td>
<td>15JAN04</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Write Specs</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>15DEC03</td>
<td>19DEC03</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Prototype</td>
<td>22DEC03</td>
<td>09JAN04</td>
<td>22DEC03</td>
<td>09JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>15DEC03</td>
<td>26DEC03</td>
<td>16JAN04</td>
<td>29JAN04</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Materials</td>
<td>31DEC03</td>
<td>13JAN04</td>
<td>02JAN04</td>
<td>15JAN04</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Facility</td>
<td>31DEC03</td>
<td>13JAN04</td>
<td>31DEC03</td>
<td>13JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Init. Prod.</td>
<td>16JAN04</td>
<td>29JAN04</td>
<td>16JAN04</td>
<td>29JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Evaluate</td>
<td>30JAN04</td>
<td>12FEB04</td>
<td>06FEB04</td>
<td>19FEB04</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Test Market</td>
<td>30JAN04</td>
<td>19FEB04</td>
<td>30JAN04</td>
<td>19FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Changes</td>
<td>20FEB04</td>
<td>26FEB04</td>
<td>20FEB04</td>
<td>26FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Production</td>
<td>27FEB04</td>
<td>27FEB04</td>
<td>27FEB04</td>
<td>27FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marketing</td>
<td>30JAN04</td>
<td>30JAN04</td>
<td>27FEB04</td>
<td>27FEB04</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Output 2.11.6. Precedence Gantt Chart
Example 2.12. Activity Time Constraints

Often, in addition to a project start date or a project finish date, there may be other time constraints imposed selectively on the activities in the project. The ALIGNDATE and ALIGNTYPE statements enable you to add various types of time constraints on the activities. In this example, the data set WIDGET12 displayed in Output 2.12.1 contains two variables, adate and atype, which enable you to specify these restrictions. For example, the activity ‘Drawings’ has an ‘feq’ (Finish Equals) constraint, requiring it to finish on the 15th of December. The activity ‘Test Market’ has a mandatory start date imposed on it.

Output 2.12.1. Activity Data Set WIDGET12

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>succ1</th>
<th>succ2</th>
<th>succ3</th>
<th>adate</th>
<th>atype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>Drawings</td>
<td>Anal. Market</td>
<td>Write Specs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10</td>
<td>Prototype</td>
<td></td>
<td></td>
<td>15DEC03</td>
<td>feq</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>5</td>
<td>Prototype</td>
<td></td>
<td></td>
<td>15DEC03</td>
<td>sge</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15</td>
<td>Materials</td>
<td>Facility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>Test Market</td>
<td>Marketing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10</td>
<td>Init. Prod.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10</td>
<td>Init. Prod.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Test Market</td>
<td>Marketing</td>
<td>Evaluate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10</td>
<td>Changes</td>
<td></td>
<td></td>
<td>27FEB04</td>
<td>fle</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15</td>
<td>Changes</td>
<td></td>
<td></td>
<td>16FEB04</td>
<td>ms</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5</td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following statements are needed to schedule the project subject to these restrictions. The option XFERVARS in the PROC CPM statement causes CPM to transfer all variables that were used in the analysis to the Schedule data set. Output 2.12.2 shows the resulting schedule.
Note that the MS and MF constraints are mandatory and override any precedence constraints; thus, both the late start and early start times for the activity ‘Test Market’ coincide with February 16, 2004. However, the other types of constraints are not mandatory; they are superseded by any constraints imposed by the precedence relationships. In other words, neither the early start nor the late start schedule violate precedence constraints. Thus, even though the activity ‘Drawings’ is required to finish on the 15th of December (by the ‘feq’ constraint), the early start schedule causes it to finish on the 19th of December because of its predecessor’s schedule. This type of inconsistency is indicated by the presence of negative floats for some of the activities alerting you to the fact that if some of these deadlines are to be met, these activities must start earlier than the early start schedule. Such activities are called supercritical.

Example 2.13. Progress Update and Target Schedules

This example shows the use of the ACTUAL and BASELINE statements to track and compare a project’s progress with the original planned schedule. Consider the data in **Example 2.1**, for the network in AON format. Suppose that the project has started as scheduled on December 1, 2003, and that the current date is December 19, 2003. You may want to enter the actual dates for the activities that are already in progress or have been completed and use the CPM procedure to determine the schedule for activities that remain to be done. In addition to computing an updated schedule, you may want to check the progress of the project by comparing the current schedule with the planned schedule.

The BASELINE statement enables you to save a target schedule in the Schedule data set. In this example, suppose that you want to try to schedule the activities according to the project’s early start schedule. As a first step, schedule the project with PROC CPM, and use the SET= option in the BASELINE statement to save the early start and finish times as the baseline start and finish times. The following program saves the baseline schedule (in the variables B–START and B–FINISH), and **Output 2.13.1** displays the resulting output data set.

```plaintext
data holidays;
  format holiday holifin date7.;
```
input holiday & date7. holifin & date7. holidur;
datalines;
24dec03 26dec03 4
01jan04 . .;
*

* store early schedule as the baseline schedule;

proc cpm data=widget holidata=holidays
 out=widgbase date='1dec03'd;
activity task;
succ succ1 succ2 succ3;
duration days;
holiday holiday / holifin=(holifin);
baseline / set=early;
run;

Output 2.13.1. Target Schedule

As the project progresses, you have to account for the actual progress of the project
and schedule the unfinished activities accordingly. You can do so by specifying actual
start or actual finish times (or both) for activities that have already finished or are
in progress. Progress information can also be specified using percent complete or
remaining duration values. Assume that current information has been incorporated into the ACTUAL data set, shown in Output 2.13.2. The variables sdate and fdate contain the actual start and finish times of the activities, and rdur specifies the number of days of work that are still remaining for the activity to be completed, and pctc specifies the percent of work that has been completed for that activity.

Output 2.13.2. Progress Data Set ACTUAL

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>sdate</th>
<th>fdate</th>
<th>pctc</th>
<th>rdur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>01DEC2003</td>
<td>05DEC2003</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>06DEC2003</td>
<td>16DEC2003</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>05DEC2003</td>
<td></td>
<td>100</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10DEC2003</td>
<td></td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

The following statements invoke PROC CPM after merging the progress data with the Schedule data set. The NOAUTOUPDT option is specified so that only those activities that have explicit progress information are assumed to have started. The resulting Schedule data set contains the new variables A_START, A_FINISH, A_DUR, and STATUS; this data set is displayed in Output 2.13.3. Note that the activity ‘Mkt. Strat.’, which has rdur=’3’ in Output 2.13.2, has an early finish time (December 21, 2003) that is three days after TIMENOW. The S_VAR and F_VAR variables show the amount of slippage in the start and finish times (predicted on the basis of the current schedule) as compared to the baseline schedule.

```r
* merge the baseline information with progress update;
  data widgact;
  merge actual widgbase;
  run;

proc cpm data=widgact holidata=holidays
    out=widgnupd date='1dec03’d;
  activity task;
  succ succ1 succ2 succ3;
  duration days;
  holiday holiday / holifin=(holifin);
  baseline / compare=early;
  actual / a_start=sdate a_finish=fdate timenow='19dec03’d
    remdur=rdur pctcomp=pctc noautoupdt;
  run;
```
Output 2.13.3. Comparison of Schedules: NOAUTOUPDT

Progress Update and Target Schedules
Updated Schedule vs. Target Schedule: NOAUTOUPDT

<table>
<thead>
<tr>
<th>Obs</th>
<th>Task</th>
<th>Succ1</th>
<th>Succ2</th>
<th>Succ3</th>
<th>Days</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan Drawings</td>
<td>Anal. Market</td>
<td>Write Specs</td>
<td>5</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Drawings Prototype</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>Completed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Write Specs Prototype</td>
<td>Materials Facility</td>
<td>15</td>
<td>Pending</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mkt. Strat. Test Market Marketing</td>
<td>Engineering</td>
<td>10</td>
<td>In Progress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Materials Init. Prod.</td>
<td>Facility Init. Prod.</td>
<td>10</td>
<td>Pending</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Init. Prod. Test Market Marketing Evaluate</td>
<td>10</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Evaluate Changes</td>
<td>10</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Test Market Changes</td>
<td>15</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Changes Production</td>
<td>5</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Production</td>
<td>0</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Marketing</td>
<td>0</td>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>A_DUR</th>
<th>A_START</th>
<th>A_FINISH</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>06DEC03</td>
<td>16DEC03</td>
<td>06DEC03</td>
<td>16DEC03</td>
<td>06DEC03</td>
<td>16DEC03</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>05DEC03</td>
<td>09DEC03</td>
<td>05DEC03</td>
<td>09DEC03</td>
<td>05DEC03</td>
<td>09DEC03</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>07DEC03</td>
<td>12DEC03</td>
<td>07DEC03</td>
<td>12DEC03</td>
<td>07DEC03</td>
<td>12DEC03</td>
</tr>
<tr>
<td>5</td>
<td>.</td>
<td>.</td>
<td>19DEC03</td>
<td>06JAN04</td>
<td>19DEC03</td>
<td>06JAN04</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10DEC03</td>
<td>.</td>
<td>10DEC03</td>
<td>21DEC03</td>
<td>10DEC03</td>
<td>21DEC03</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>.</td>
<td>07JAN04</td>
<td>16JAN04</td>
<td>07JAN04</td>
<td>16JAN04</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.</td>
<td>.</td>
<td>07JAN04</td>
<td>16JAN04</td>
<td>07JAN04</td>
<td>16JAN04</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.</td>
<td>.</td>
<td>17JAN04</td>
<td>26JAN04</td>
<td>17JAN04</td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.</td>
<td>.</td>
<td>27JAN04</td>
<td>05FEB04</td>
<td>05FEB04</td>
<td>05FEB04</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>.</td>
<td>.</td>
<td>27JAN04</td>
<td>10FEB04</td>
<td>27JAN04</td>
<td>10FEB04</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.</td>
<td>.</td>
<td>11FEB04</td>
<td>15FEB04</td>
<td>11FEB04</td>
<td>15FEB04</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>.</td>
<td>.</td>
<td>16FEB04</td>
<td>16FEB04</td>
<td>16FEB04</td>
<td>16FEB04</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>.</td>
<td>.</td>
<td>16FEB04</td>
<td>16FEB04</td>
<td>16FEB04</td>
<td>16FEB04</td>
<td></td>
</tr>
</tbody>
</table>

In order for you to see the effect of the AUTOUPDT option, the same project information is used with the AUTOUPDT option in the ACTUAL statement. Output 2.13.4 displays the resulting schedule. With the AUTOUPDT option (which is, in fact, the default option), PROC CPM uses the progress information and the precedence information to automatically fill in the actual start and finish information for activities that should have finished or started before TIMENOW. Note that the activity ‘Prototype’ has no progress information in WIDGACT, but it is assumed to have an actual start
date of December 17, 2003. This option is useful when there are several activities that take place according to the plan and only a few occur out of sequence; then it is sufficient to enter progress information only for the activities that did not follow the plan. The SHOWFLOAT option, also used in this invocation of PROC CPM, enables activities that are completed or in progress to have float; in other words, the late start schedule for activities in progress is not fixed by the progress information. Thus, the activity ‘Anal. Market’ has LSTART=’08JAN04’ instead of ‘05DEC03’, as in the earlier invocation of PROC CPM (without the SHOWFLOAT option).

The following invocation of PROC CPM produces Output 2.13.4:

```plaintext
proc cpm data=widgact holidata=holidays
  out=widgupdt date=’1dec03’d;
  activity task;
  succ    succ1 succ2 succ3;
  duration days;
  holiday holiday / holifin=(holifin);
  baseline / compare=early;
  actual / as=sdate af=fdate timenow=’19dec03’d
    remdur=rdur pctcomp=pctc
    autoupdt showfloat;
run;
```
Example 2.14. Summarizing Resource Utilization

This example shows how you can use the RESOURCE statement in conjunction with the RESOURCEOUT= option to summarize resource utilization. The example assumes that Engineer is a resource category and the project network (in AOA format) along with resource requirements for each activity is in a SAS data set, as displayed in Output 2.14.1.

Summarizing Resource Utilization

Activity Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>tail</th>
<th>head</th>
<th>engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>Dummy</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>.</td>
</tr>
</tbody>
</table>

Output 2.14.2. Resource Utilization: HOLDATA

Summarizing Resource Utilization

Holidays Data Set HOLDATA

<table>
<thead>
<tr>
<th>Obs</th>
<th>hol</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25DEC03</td>
<td>Christmas</td>
</tr>
<tr>
<td>2</td>
<td>01JAN04</td>
<td>New Year</td>
</tr>
</tbody>
</table>

In the following program, PROC CPM is invoked with the RESOURCE statement identifying the resource for which usage information is required. The project is scheduled only on weekdays, and holiday information is included through the Holiday data set, HOLDATA, which identifies two holidays, one for Christmas and one for New Year’s Day. Output 2.14.2 shows the Holiday data set.

The program saves the resource usage information in a data set named ROUT, which is displayed in Output 2.14.3. Two variables, Eengineer and Lengineer, denote the usage of the resource engineer corresponding to the early and late start schedules, respectively. Note the naming convention for the variables in the resource usage data set: A prefix (E for Early and L for Late) is followed by the name of the resource variable, engineer. Note also that the data set contains only observations corresponding to weekdays; by default, the _TIME_ variable in the resource usage output data set increases by one unit interval of the default calendar for every observation. Further, the MAXDATE= option is used in the RESOURCE statement to get resource usage information only for the month of December.

```cpp
proc cpm date='1dec03'd interval=weekday
resourceout=rout data=widgres
holidata=holidata;
id task;
tailnode tail;
```
duration days;
headnode head;
resource engineer / maxdate='31dec03'd;
holiday hol;
run;

Output 2.14.3. Resource Utilization: Resource Usage Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>TIME</th>
<th>Eengineer</th>
<th>Lengineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01DEC03</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>02DEC03</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>03DEC03</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>04DEC03</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>05DEC03</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>06DEC03</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>07DEC03</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>09DEC03</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>11DEC03</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>12DEC03</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>15DEC03</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>16DEC03</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>17DEC03</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>18DEC03</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>19DEC03</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>22DEC03</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>23DEC03</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>24DEC03</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>26DEC03</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>29DEC03</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>30DEC03</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>31DEC03</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

This data set can be used as input for any type of resource utilization report. In this example, the resource usage for the month of December is presented in two ways: on a calendar and in a chart. The following program prints the calendar and bar chart:

```plaintext
/* format the Engineer variables */
proc format;
   picture efmt other='9 ESS Eng.';
   picture lfmt other='9 LSS Eng.';

proc calendar legend weekdays
   data=rout holidata=holdata;
   id _time_;
   var eengineer lengineer;
   format eengineer efmt. lengineer lfmt.;
   holiday hol;
   holiname name;
run;
```

```plaintext
proc chart data=rout;
   hbar _time_/sumvar=eengineer discrete;
   hbar _time_/sumvar=lengineer discrete;
run;
```
Output 2.14. Calendar Showing Resource Usage

Summarizing Resource Utilization

<table>
<thead>
<tr>
<th>December 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>-----------+-----------+-----------+-----------+-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2 ESS Eng</td>
</tr>
<tr>
<td>2 LSS Eng</td>
</tr>
<tr>
<td>-----------+-----------+-----------+-----------+-----------</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>4 ESS Eng</td>
</tr>
<tr>
<td>1 LSS Eng</td>
</tr>
<tr>
<td>-----------+-----------+-----------+-----------+-----------</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>1 ESS Eng</td>
</tr>
<tr>
<td>3 LSS Eng</td>
</tr>
<tr>
<td>-----------+-----------+-----------+-----------+-----------</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>4 LSS Eng</td>
</tr>
<tr>
<td>-----------+-----------+-----------+-----------+-----------</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>4 ESS Eng</td>
</tr>
<tr>
<td>4 LSS Eng</td>
</tr>
</tbody>
</table>

Legend

- ESS Usage of engineer
- LSS Usage of engineer
Charts such as those shown in Output 2.14.4 through Output 2.14.6 can be used to compare different schedules with respect to resource usage.
Example 2.15. Resource Allocation

In the previous example, a summary of the resource utilization is obtained. Suppose that you want to schedule the project subject to constraints on the availability of ENGINEERS. The activity data, as in Example 2.14, are assumed to be in a data set named WIDGRES. The resource variable, engineer, specifies the number of engineers needed per day for each activity in the project. In addition to the resource engineer, a consumable resource engcost is computed at a daily rate of 200 for each unit of resource engineer used per day. The following DATA step uses the Activity data set from Example 2.14 to create a new Activity data set that includes the resource engcost.

```plaintext
data widgres;
  set widgres;
  if engineer ^= . then engcost = engineer * 200;
run;
```

Now suppose that the availability of the resource engineer and the total outlay for engcost is saved in a data set named WIDGRIN, displayed in Output 2.15.1.

Output 2.15.1. Resource Availability Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>per</th>
<th>otype</th>
<th>engineer</th>
<th>engcost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.</td>
<td>restype</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>suplevel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>01DEC03</td>
<td>reslevel</td>
<td>3</td>
<td>40000</td>
</tr>
<tr>
<td>4</td>
<td>26DEC03</td>
<td>reslevel</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

In the data set WIDGRIN, the first observation indicates that engineer is a replenishable resource, while engcost is a consumable resource. The second observation indicates that an extra engineer is available, if necessary. The remaining observations indicate the availability profile starting from December 1, 2003. PROC CPM is then used to schedule the project to start on December 1, 2003, subject to the availability as specified.

```plaintext
proc cpm date='01dec03'd interval=weekday
  data=widgres holdata=holdata resin=widgrin
  out=widgschd resout=widgrout;
  tailnode tail;
  duration days;
  headnode head;
  holiday hol;
  resource engineer engcost / period=per obstype=otype
    schedrule=shortdur
    delayanalysis;
  id task;
run;
```
In the first invocation of PROC CPM, the scheduling rule used for ordering the activities to be scheduled at a given time is specified to be SHORTDUR. The data set WIDGSCDH, displayed in Output 2.15.2, contains the resource constrained start and finish times in the variables S_START and S_FINISH. On December 8, three activities can be scheduled, all of which require the resource engineer. Using the scheduling rule specified, PROC CPM schedules the activities with the shortest durations first; thus, the activity ‘Drawings’ is delayed by five working days, until December 15, 2003.

The DELAYANALYSIS option in the RESOURCE statement helps analyze the cause of the delay by adding three new variables to the Schedule data set, R_DELAY, DELAY_R, and SUPPL_R. In this example, the R_DELAY and DELAY_R variables indicate that there is a delay of five days in the activity ‘Drawings’ due to the resource engineer. Such information helps to pinpoint the source of resource insufficiency, if any.

Note that other activities that follow ‘Drawings’ also have S_START > E_START, but the slippage in these activities is not caused by resource insufficiency, it is due to
their predecessors being delayed. Note that the entire project is delayed by five working days due to resource constraints (the maximum value of \(S_{\text{FINISH}} \) is 17MAR04, while the maximum value of \(E_{\text{FINISH}} \) is 10MAR04).

Note also that in this invocation, the \texttt{DELAY=} option is not specified; therefore, the supplementary level of resource is not used, since the primary levels of resources are found to be sufficient to schedule the project by delaying some of the activities.

The data set \texttt{WIDGROUT}, displayed in Output 2.15.3, contains variables \texttt{Rengineer} and \texttt{Aengineer} in addition to the variables \texttt{Eengineer} and \texttt{Lengineer}. The variable \texttt{Rengineer} denotes the usage of the resource \texttt{engineer} corresponding to the resource-constrained schedule, and \texttt{Aengineer} denotes the remaining level of the resource after resource allocation. For the consumable resource \texttt{engcost}, the variables \texttt{Eengcost}, \texttt{Lengcost}, and \texttt{Rengcost} indicate the rate of usage per unit \texttt{routinterval} (which defaults to \texttt{INTERVAL=WEEKDAY}, in this case) at the start of the time interval specified in the variable \texttt{TIME}. The variable \texttt{Aengcost} denotes the amount of money available at the beginning of the time specified in the \texttt{TIME} variable.
194



Chapter 2. The CPM Procedure
Output 2.15.3. Resource Usage: Rule = SHORTDUR
Resource Allocation
Usage Profiles for Constrained Schedule: Rule = SHORTDUR

O
b
s

_
T
I
M
E
_

E
e
n
g
i
n
e
e
r

L
e
n
g
i
n
e
e
r

R
e
n
g
i
n
e
e
r

A
e
n
g
i
n
e
e
r

E
e
n
g
c
o
s
t

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

01DEC03
02DEC03
03DEC03
04DEC03
05DEC03
08DEC03
09DEC03
10DEC03
11DEC03
12DEC03
15DEC03
16DEC03
17DEC03
18DEC03
19DEC03
22DEC03
23DEC03
24DEC03
26DEC03
29DEC03
30DEC03
31DEC03
02JAN04
05JAN04
06JAN04
07JAN04
08JAN04
09JAN04
12JAN04
13JAN04
14JAN04
15JAN04
16JAN04
19JAN04
20JAN04
21JAN04
22JAN04
23JAN04
26JAN04
27JAN04
28JAN04
29JAN04
30JAN04
02FEB04
03FEB04
04FEB04
05FEB04

2
2
2
2
2
4
4
4
4
4
1
1
1
1
1
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4

2
2
2
2
2
1
1
1
1
1
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
3
3
3
3
3
4
4
4
4
4
4
4

2
2
2
2
2
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
4
4

1
1
1
1
1
0
0
0
0
0
2
2
2
2
2
2
2
2
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
0
0

400
400
400
400
400
800
800
800
800
800
200
200
200
200
200
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
400
400
400
400
400
400
400
400
400
400
800
800
800
800
800
800
800

L
e
n
g
c
o
s
t
400
400
400
400
400
200
200
200
200
200
600
600
600
600
600
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
400
400
400
400
400
600
600
600
600
600
800
800
800
800
800
800
800

R
e
n
g
c
o
s
t

A
e
n
g
c
o
s
t

400
400
400
400
400
600
600
600
600
600
200
200
200
200
200
200
200
200
200
200
800
800
800
800
800
800
800
800
800
800
800
800
800
800
800
400
400
400
400
400
400
400
400
400
400
800
800

40000
39600
39200
38800
38400
38000
37400
36800
36200
35600
35000
34800
34600
34400
34200
34000
33800
33600
33400
33200
33000
32200
31400
30600
29800
29000
28200
27400
26600
25800
25000
24200
23400
22600
21800
21000
20600
20200
19800
19400
19000
18600
18200
17800
17400
17000
16200


Example 2.15. Resource Allocation

The second invocation of PROC CPM uses a different scheduling rule (LST, which is the default scheduling rule). Ties are broken using the L_START times for the activities. In this example, this rule results in a shorter project schedule. The schedule and the resource usage data sets are displayed in Output 2.15.4 and Output 2.15.5, respectively. Once again the variables DELAY_R and R_DELAY indicate that the resource engineer caused the activity ‘Anal. Market’ (‘Prototype’) to be delayed by five days (three days). However, the entire project is delayed only by three working days because the activity ‘Anal. Market’ is not a critical activity, and delaying it by five days did not affect the project completion time. Note that even with the resource delay of 5 days, this activity is scheduled earlier (S_START=15DEC03) than its latest start time (L_START=21JAN04).

```
proc cpm date='01dec03'd
   interval=weekday
   data=widgres
```
resin=widgrin
holddata=holdata
out=widgsch2
resout=widgrou2;
tailnode tail;
duration days;
headnode head;
holiday hol;
resource engineer engcost / period=per
 obstype=otype
 schedrule=lst
 delayanalysis;
id task;
run;

Output 2.15.4. Resource Constrained Schedule: Rule = LST

<table>
<thead>
<tr>
<th>Obs</th>
<th>tail</th>
<th>head</th>
<th>days</th>
<th>task</th>
<th>engineer</th>
<th>engcost</th>
<th>S_START</th>
<th>S_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>Approve Plan</td>
<td>2</td>
<td>400</td>
<td>01DEC03</td>
<td>05DEC03</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>Drawings</td>
<td>1</td>
<td>200</td>
<td>08DEC03</td>
<td>19DEC03</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Anal. Market</td>
<td>1</td>
<td>200</td>
<td>15DEC03</td>
<td>19DEC03</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Write Specs</td>
<td>2</td>
<td>400</td>
<td>08DEC03</td>
<td>12DEC03</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>Prototype</td>
<td>4</td>
<td>800</td>
<td>26DEC03</td>
<td>16JAN04</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>Mkt. Strat.</td>
<td>.</td>
<td>.</td>
<td>22DEC03</td>
<td>06JAN04</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Materials</td>
<td>.</td>
<td>.</td>
<td>19JAN04</td>
<td>30JAN04</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Facility</td>
<td>2</td>
<td>400</td>
<td>19JAN04</td>
<td>30JAN04</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>Init. Prod.</td>
<td>4</td>
<td>800</td>
<td>02FEB04</td>
<td>13FEB04</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>Evaluate</td>
<td>1</td>
<td>200</td>
<td>16FEB04</td>
<td>27FEB04</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>Test Market</td>
<td>.</td>
<td>.</td>
<td>16FEB04</td>
<td>05MAR04</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>Changes</td>
<td>2</td>
<td>400</td>
<td>08MAR04</td>
<td>12MAR04</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>Production</td>
<td>4</td>
<td>800</td>
<td>15MAR04</td>
<td>15MAR04</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>12</td>
<td>0</td>
<td>Marketing</td>
<td>.</td>
<td>.</td>
<td>16FEB04</td>
<td>16FEB04</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>Dummy</td>
<td>.</td>
<td>.</td>
<td>16FEB04</td>
<td>16FEB04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>R_DELAY</th>
<th>DELAY_R</th>
<th>SUPPL_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>21JAN04</td>
<td>27JAN04</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>15DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15DEC03</td>
<td>28DEC03</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11FEB04</td>
<td>24FEB04</td>
<td>18FEB04</td>
<td>02MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11FEB04</td>
<td>02MAR04</td>
<td>11FEB04</td>
<td>02MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>03MAR04</td>
<td>09MAR04</td>
<td>03MAR04</td>
<td>09MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Output 2.15.5. Resource Usage: Rule = LST

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>01DEC03</td>
<td>2 2 2 1</td>
<td>400 400 400</td>
<td>40000</td>
<td></td>
</tr>
<tr>
<td>02DEC03</td>
<td>2 2 2 1</td>
<td>400 400 400</td>
<td>39600</td>
<td></td>
</tr>
<tr>
<td>03DEC03</td>
<td>2 2 2 1</td>
<td>400 400 400</td>
<td>39200</td>
<td></td>
</tr>
<tr>
<td>04DEC03</td>
<td>2 2 2 1</td>
<td>400 400 400</td>
<td>38800</td>
<td></td>
</tr>
<tr>
<td>05DEC03</td>
<td>2 2 2 1</td>
<td>400 400 400</td>
<td>38400</td>
<td></td>
</tr>
<tr>
<td>06DEC03</td>
<td>4 1 3 0</td>
<td>800 200 600</td>
<td>38000</td>
<td></td>
</tr>
<tr>
<td>07DEC03</td>
<td>4 1 3 0</td>
<td>800 200 600</td>
<td>37400</td>
<td></td>
</tr>
<tr>
<td>08DEC03</td>
<td>4 1 3 0</td>
<td>800 200 600</td>
<td>36800</td>
<td></td>
</tr>
<tr>
<td>09DEC03</td>
<td>4 1 3 0</td>
<td>800 200 600</td>
<td>36200</td>
<td></td>
</tr>
<tr>
<td>10DEC03</td>
<td>4 1 3 0</td>
<td>800 200 600</td>
<td>35600</td>
<td></td>
</tr>
<tr>
<td>11DEC03</td>
<td>1 3 2 1</td>
<td>200 600 400</td>
<td>35000</td>
<td></td>
</tr>
<tr>
<td>12DEC03</td>
<td>1 3 2 1</td>
<td>200 600 400</td>
<td>34600</td>
<td></td>
</tr>
<tr>
<td>13DEC03</td>
<td>1 3 2 1</td>
<td>200 600 400</td>
<td>34200</td>
<td></td>
</tr>
<tr>
<td>14DEC03</td>
<td>1 3 2 1</td>
<td>200 600 400</td>
<td>33800</td>
<td></td>
</tr>
<tr>
<td>15DEC03</td>
<td>1 3 2 1</td>
<td>200 600 400</td>
<td>33400</td>
<td></td>
</tr>
<tr>
<td>16DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>17DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>18DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>19DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>20DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>21DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>22DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>23DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>24DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>25DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>26DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>27DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>28DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>29DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>30DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>31DEC03</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>01JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>02JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>03JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>04JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>05JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>06JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>07JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>08JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>09JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>10JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>11JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>12JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>13JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>14JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>15JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>16JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>17JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>18JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>19JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>20JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>21JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>22JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>23JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>24JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>25JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>26JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>27JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>28JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>29JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>30JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>31JAN04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>01FEB04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>02FEB04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>03FEB04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>04FEB04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
<tr>
<td>05FEB04</td>
<td>4 4 0 3</td>
<td>800 800 0</td>
<td>33000</td>
<td></td>
</tr>
</tbody>
</table>
Example 2.16. Using Supplementary Resources

In this example, the same project as in Example 2.15 is scheduled with a specification of DELAY=0. This indicates to PROC CPM that a supplementary level of resources is to be used if an activity cannot be scheduled to start on or before its latest start time (as computed in the unconstrained case). The schedule data and resource usage data are saved in the data sets WIDGO16 and WIDGRO16, respectively. They are displayed in Output 2.16.1 and Output 2.16.2, respectively.

```plaintext
title 'Using Supplementary Resources';
proc cpm date='01dec03'd interval=weekday
   data=widgres holidata=holdata resin=widgrin
   out=widgo16 resout=widgro16;
   tailnode tail;
duration days;
   headnode head;
holiday hol;
```
To analyze the results of the resource constrained scheduling, you must examine both output data sets, WIDGRO16 and WIDGO16. The negative values for Aengineer in observation numbers 22 through 25 of the Usage data set WIDGRO16 indicate the amount of supplementary resource that is needed on December 22, 23, 24, and 25, to complete the project without delaying any activity beyond its latest start time. Examination of the SUPPL–R variable in the Schedule data set WIDGO16 indicates that the activity, ‘Prototype’, is scheduled to start on December 22 by using a supplementary level of the resource engineer.

Note that the supplementary level is used only if the activity would otherwise get delayed beyond L–START + DELAY. Thus, the activity ‘Anal. Market’ is delayed by five days (S–START = ‘15DEC03’) and scheduled later than its early start time (E–START = ‘08DEC03’), even though a supplementary level of the resource could have been used to start the activity earlier, because the activity’s L–START time is equal to ‘21JAN04’ and DELAY = 0.

Further, note the use of the option CUMUSAGE in the RESOURCE statement, requesting that cumulative resource usage be saved in the Usage data set for consumable resources. Thus, for the consumable resource engcost, the procedure saves the cumulative resource usage in the variables Eengcost, Lengcost, and Rengcost, respectively. For instance, Eengcost in a given observation specifies the cumulative value of engcost for the early start schedule through the end of the previous day.
Chapter 2. The CPM Procedure

Output 2.16.1. Resource-Constrained Schedule: Supplementary Resource

Using Supplementary Resources

Resource Constrained Schedule

<table>
<thead>
<tr>
<th>Obs</th>
<th>tail</th>
<th>head</th>
<th>days</th>
<th>task</th>
<th>engineer</th>
<th>engcost</th>
<th>S_START</th>
<th>S_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>Approve Plan</td>
<td>2</td>
<td>400</td>
<td>01DEC03</td>
<td>05DEC03</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>Drawings</td>
<td>1</td>
<td>200</td>
<td>08DEC03</td>
<td>19DEC03</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Anal. Market</td>
<td>1</td>
<td>200</td>
<td>15DEC03</td>
<td>19DEC03</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Write Specs</td>
<td>2</td>
<td>400</td>
<td>08DEC03</td>
<td>12DEC03</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>Prototype</td>
<td>4</td>
<td>800</td>
<td>22DEC03</td>
<td>13JAN04</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>Mkt. Strat.</td>
<td>.</td>
<td>.</td>
<td>22DEC03</td>
<td>06JAN04</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Materials</td>
<td>.</td>
<td>.</td>
<td>14JAN04</td>
<td>27JAN04</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Facility</td>
<td>2</td>
<td>400</td>
<td>14JAN04</td>
<td>27JAN04</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>Init. Prod.</td>
<td>4</td>
<td>800</td>
<td>28JAN04</td>
<td>10FEB04</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>Evaluate</td>
<td>1</td>
<td>200</td>
<td>11FEB04</td>
<td>24FEB04</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>Test Market</td>
<td>.</td>
<td>11FEB04</td>
<td>02MAR04</td>
<td>09MAR04</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>Changes</td>
<td>2</td>
<td>400</td>
<td>03MAR04</td>
<td>09MAR04</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>Production</td>
<td>4</td>
<td>800</td>
<td>10MAR04</td>
<td>10MAR04</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>12</td>
<td>0</td>
<td>Marketing</td>
<td>.</td>
<td>.</td>
<td>11FEB04</td>
<td>11FEB04</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>Dummy</td>
<td>.</td>
<td>.</td>
<td>11FEB04</td>
<td>11FEB04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>R_DELAY</th>
<th>DELAY_R</th>
<th>SUPPL_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>21JAN04</td>
<td>27JAN04</td>
<td>5</td>
<td>engineer</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>15DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15DEC03</td>
<td>29DEC03</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11FEB04</td>
<td>24FEB04</td>
<td>18FEB04</td>
<td>02MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11FEB04</td>
<td>02MAR04</td>
<td>11FEB04</td>
<td>02MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>03MAR04</td>
<td>09MAR04</td>
<td>03MAR04</td>
<td>09MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example also illustrates the use of the ROUTNOBREAK option to produce a resource usage output data set that does not have any breaks for holidays. Thus, the output data set WIDGRO16 has observations corresponding to holidays and weekends, unlike the corresponding resource output data sets in Example 2.15. Note that for consumable resources with cumulative usage there is no accumulation of the resource on holidays; thus, the cumulative value of engcost at the beginning of the 7th and 8th of December equals the value for the beginning of the 6th of December. For the resource engineer, however, the resource is assumed to be tied to the activity in progress even across holidays or weekends that are spanned by the activity’s duration. For example, both activities ‘Drawings’ and ‘Write Specs’ start on December 8, 2003, requiring one and two engineers, respectively. The ‘Write Specs’ activity finishes on the 12th, freeing up two engineers, whereas ‘Drawings’ finishes only on the 19th of December. Thus, the data set WIDGRO16 has Rengineer equal to ‘3’ from 8DEC03 to 12DEC03 and then equal to ‘1’ on the 13th and 14th of December. Another engineer is required by the activity ‘Anal. Market’ from December 15, 2003; thus, the total usage from 15DEC03 to 19DEC03 is ‘2’.
Output 2.16.2. Resource Usage: Supplementary Resources

Using Supplementary Resources

<table>
<thead>
<tr>
<th>Date</th>
<th>Usage Profiles for Constrained Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td>01DEC03</td>
<td></td>
</tr>
<tr>
<td>02DEC03</td>
<td></td>
</tr>
<tr>
<td>03DEC03</td>
<td></td>
</tr>
<tr>
<td>04DEC03</td>
<td></td>
</tr>
<tr>
<td>05DEC03</td>
<td></td>
</tr>
<tr>
<td>06DEC03</td>
<td></td>
</tr>
<tr>
<td>07DEC03</td>
<td></td>
</tr>
<tr>
<td>08DEC03</td>
<td></td>
</tr>
<tr>
<td>09DEC03</td>
<td></td>
</tr>
<tr>
<td>10DEC03</td>
<td></td>
</tr>
<tr>
<td>11DEC03</td>
<td></td>
</tr>
<tr>
<td>12DEC03</td>
<td></td>
</tr>
<tr>
<td>13DEC03</td>
<td></td>
</tr>
<tr>
<td>14DEC03</td>
<td></td>
</tr>
<tr>
<td>15DEC03</td>
<td></td>
</tr>
<tr>
<td>16DEC03</td>
<td></td>
</tr>
<tr>
<td>17DEC03</td>
<td></td>
</tr>
<tr>
<td>18DEC03</td>
<td></td>
</tr>
<tr>
<td>19DEC03</td>
<td></td>
</tr>
<tr>
<td>20DEC03</td>
<td></td>
</tr>
<tr>
<td>21DEC03</td>
<td></td>
</tr>
<tr>
<td>22DEC03</td>
<td></td>
</tr>
<tr>
<td>23DEC03</td>
<td></td>
</tr>
<tr>
<td>24DEC03</td>
<td></td>
</tr>
<tr>
<td>25DEC03</td>
<td></td>
</tr>
<tr>
<td>26DEC03</td>
<td></td>
</tr>
<tr>
<td>27DEC03</td>
<td></td>
</tr>
<tr>
<td>28DEC03</td>
<td></td>
</tr>
<tr>
<td>29DEC03</td>
<td></td>
</tr>
<tr>
<td>30DEC03</td>
<td></td>
</tr>
<tr>
<td>31DEC03</td>
<td></td>
</tr>
<tr>
<td>01JAN04</td>
<td></td>
</tr>
<tr>
<td>02JAN04</td>
<td></td>
</tr>
<tr>
<td>03JAN04</td>
<td></td>
</tr>
<tr>
<td>04JAN04</td>
<td></td>
</tr>
<tr>
<td>05JAN04</td>
<td></td>
</tr>
<tr>
<td>06JAN04</td>
<td></td>
</tr>
<tr>
<td>07JAN04</td>
<td></td>
</tr>
<tr>
<td>08JAN04</td>
<td></td>
</tr>
<tr>
<td>09JAN04</td>
<td></td>
</tr>
<tr>
<td>10JAN04</td>
<td></td>
</tr>
<tr>
<td>11JAN04</td>
<td></td>
</tr>
<tr>
<td>12JAN04</td>
<td></td>
</tr>
<tr>
<td>13JAN04</td>
<td></td>
</tr>
<tr>
<td>14JAN04</td>
<td></td>
</tr>
<tr>
<td>15JAN04</td>
<td></td>
</tr>
<tr>
<td>16JAN04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Usage Profiles for Constrained Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>01DEC03</td>
<td>20000</td>
</tr>
<tr>
<td>02DEC03</td>
<td>40000</td>
</tr>
<tr>
<td>03DEC03</td>
<td>80000</td>
</tr>
<tr>
<td>04DEC03</td>
<td>120000</td>
</tr>
<tr>
<td>05DEC03</td>
<td>160000</td>
</tr>
<tr>
<td>06DEC03</td>
<td>200000</td>
</tr>
<tr>
<td>07DEC03</td>
<td>240000</td>
</tr>
<tr>
<td>08DEC03</td>
<td>280000</td>
</tr>
<tr>
<td>09DEC03</td>
<td>320000</td>
</tr>
<tr>
<td>10DEC03</td>
<td>360000</td>
</tr>
<tr>
<td>11DEC03</td>
<td>400000</td>
</tr>
<tr>
<td>12DEC03</td>
<td>440000</td>
</tr>
<tr>
<td>13DEC03</td>
<td>480000</td>
</tr>
<tr>
<td>14DEC03</td>
<td>520000</td>
</tr>
<tr>
<td>15DEC03</td>
<td>560000</td>
</tr>
<tr>
<td>16DEC03</td>
<td>600000</td>
</tr>
<tr>
<td>17DEC03</td>
<td>640000</td>
</tr>
<tr>
<td>18DEC03</td>
<td>680000</td>
</tr>
<tr>
<td>19DEC03</td>
<td>720000</td>
</tr>
<tr>
<td>20DEC03</td>
<td>760000</td>
</tr>
<tr>
<td>21DEC03</td>
<td>800000</td>
</tr>
<tr>
<td>22DEC03</td>
<td>840000</td>
</tr>
<tr>
<td>23DEC03</td>
<td>880000</td>
</tr>
<tr>
<td>24DEC03</td>
<td>920000</td>
</tr>
<tr>
<td>25DEC03</td>
<td>960000</td>
</tr>
<tr>
<td>26DEC03</td>
<td>1000000</td>
</tr>
</tbody>
</table>
Using Supplementary Resources

Usage Profiles for Constrained Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>E</th>
<th>L</th>
<th>R</th>
<th>A</th>
<th>E</th>
<th>L</th>
<th>R</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>17JAN04</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20200</td>
<td>19200</td>
<td>20200</td>
<td>19800</td>
</tr>
<tr>
<td>18JAN04</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20200</td>
<td>19200</td>
<td>20200</td>
<td>19800</td>
</tr>
<tr>
<td>19JAN04</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20200</td>
<td>19200</td>
<td>20200</td>
<td>19800</td>
</tr>
<tr>
<td>20JAN04</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20600</td>
<td>19600</td>
<td>20600</td>
<td>19400</td>
</tr>
<tr>
<td>21JAN04</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>21000</td>
<td>20000</td>
<td>21000</td>
<td>19000</td>
</tr>
<tr>
<td>22JAN04</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>21400</td>
<td>20600</td>
<td>21400</td>
<td>18600</td>
</tr>
<tr>
<td>23JAN04</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>21800</td>
<td>21200</td>
<td>21800</td>
<td>18200</td>
</tr>
<tr>
<td>24JAN04</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>22200</td>
<td>21800</td>
<td>22200</td>
<td>17800</td>
</tr>
<tr>
<td>25JAN04</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>22200</td>
<td>21800</td>
<td>22200</td>
<td>17800</td>
</tr>
<tr>
<td>26JAN04</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>22200</td>
<td>21800</td>
<td>22200</td>
<td>17800</td>
</tr>
<tr>
<td>27JAN04</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>22600</td>
<td>22400</td>
<td>22600</td>
<td>17400</td>
</tr>
<tr>
<td>28JAN04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>23000</td>
<td>23000</td>
<td>23000</td>
<td>17000</td>
</tr>
<tr>
<td>29JAN04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>23800</td>
<td>23800</td>
<td>23800</td>
<td>16200</td>
</tr>
<tr>
<td>30JAN04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>24600</td>
<td>24600</td>
<td>24600</td>
<td>15400</td>
</tr>
<tr>
<td>31JAN04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>25400</td>
<td>25400</td>
<td>25400</td>
<td>14600</td>
</tr>
<tr>
<td>01FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>25400</td>
<td>25400</td>
<td>25400</td>
<td>14600</td>
</tr>
<tr>
<td>02FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>25400</td>
<td>25400</td>
<td>25400</td>
<td>14600</td>
</tr>
<tr>
<td>03FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>26200</td>
<td>26200</td>
<td>26200</td>
<td>13800</td>
</tr>
<tr>
<td>04FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>27000</td>
<td>27000</td>
<td>27000</td>
<td>13000</td>
</tr>
<tr>
<td>05FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>27800</td>
<td>27800</td>
<td>27800</td>
<td>12200</td>
</tr>
<tr>
<td>06FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>28600</td>
<td>28600</td>
<td>28600</td>
<td>11400</td>
</tr>
<tr>
<td>07FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>29400</td>
<td>29400</td>
<td>29400</td>
<td>10600</td>
</tr>
<tr>
<td>08FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>29400</td>
<td>29400</td>
<td>29400</td>
<td>10600</td>
</tr>
<tr>
<td>09FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>29400</td>
<td>29400</td>
<td>29400</td>
<td>10600</td>
</tr>
<tr>
<td>10FEB04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>30200</td>
<td>30200</td>
<td>30200</td>
<td>9800</td>
</tr>
<tr>
<td>11FEB04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>31000</td>
<td>31000</td>
<td>31000</td>
<td>9000</td>
</tr>
<tr>
<td>12FEB04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>31200</td>
<td>31000</td>
<td>31200</td>
<td>8800</td>
</tr>
<tr>
<td>13FEB04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>31400</td>
<td>31000</td>
<td>31400</td>
<td>8600</td>
</tr>
<tr>
<td>14FEB04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>31600</td>
<td>31000</td>
<td>31600</td>
<td>8400</td>
</tr>
<tr>
<td>15FEB04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>31600</td>
<td>31000</td>
<td>31600</td>
<td>8400</td>
</tr>
<tr>
<td>16FEB04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>31600</td>
<td>31000</td>
<td>31600</td>
<td>8400</td>
</tr>
<tr>
<td>17FEB04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>31800</td>
<td>31000</td>
<td>31800</td>
<td>8200</td>
</tr>
<tr>
<td>18FEB04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>32000</td>
<td>31000</td>
<td>32000</td>
<td>8000</td>
</tr>
<tr>
<td>19FEB04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>32200</td>
<td>31200</td>
<td>32200</td>
<td>7800</td>
</tr>
<tr>
<td>20FEB04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>32400</td>
<td>31400</td>
<td>32400</td>
<td>7600</td>
</tr>
<tr>
<td>21FEB04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>32600</td>
<td>31600</td>
<td>32600</td>
<td>7400</td>
</tr>
<tr>
<td>22FEB04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>32600</td>
<td>31600</td>
<td>32600</td>
<td>7400</td>
</tr>
<tr>
<td>23FEB04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>32600</td>
<td>31600</td>
<td>32600</td>
<td>7400</td>
</tr>
<tr>
<td>24FEB04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>32800</td>
<td>31800</td>
<td>32800</td>
<td>7200</td>
</tr>
<tr>
<td>25FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>33000</td>
<td>32000</td>
<td>33000</td>
<td>7000</td>
</tr>
<tr>
<td>26FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>33000</td>
<td>32000</td>
<td>33000</td>
<td>7000</td>
</tr>
<tr>
<td>27FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>33000</td>
<td>32000</td>
<td>33000</td>
<td>7000</td>
</tr>
<tr>
<td>28FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>33000</td>
<td>32000</td>
<td>33000</td>
<td>7000</td>
</tr>
<tr>
<td>29FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>33000</td>
<td>32000</td>
<td>33000</td>
<td>7000</td>
</tr>
<tr>
<td>01MAR04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>33000</td>
<td>32000</td>
<td>33000</td>
<td>7000</td>
</tr>
<tr>
<td>02MAR04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>33000</td>
<td>32000</td>
<td>33000</td>
<td>7000</td>
</tr>
<tr>
<td>03MAR04</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>33000</td>
<td>33000</td>
<td>33000</td>
<td>7000</td>
</tr>
</tbody>
</table>
Example 2.17. INFEASDIAGNOSTIC Option and Aggregate Resource Type

The INFEASDIAGNOSTIC option instructs PROC CPM to continue scheduling even when resources are insufficient. When PROC CPM schedules subject to resource constraints, it stops the scheduling process when it cannot find sufficient resources (primary or supplementary) for an activity before the activity’s latest possible start time (L-START + DELAY). In this case, you may want to determine which resources are needed to schedule all the activities and when the deficiencies occur. The INFEASDIAGNOSTIC option is equivalent to specifying infinite supplementary levels for all the resources under consideration; the DELAY= value is assumed to equal the default value of +INFINITY, unless it is specified otherwise.

The INFEASDIAGNOSTIC option is particularly useful when there are several resources involved and when project completion time is critical. You want things to be done on time, even if it means using supplementary resources or overtime resources; rather than trying to juggle activities around to try to fit available resource profiles, you want to determine the level of resources needed to accomplish tasks within a given time frame.

For the WIDGET manufacturing project, let us assume that there are four resources: a design engineer, a market analyst, a production engineer, and money. The resource requirements for the different activities are saved in a data set, WIDGR17, and displayed in Output 2.17.1. Of these resources, suppose that the design engineer is the resource that is most crucial in terms of his availability; perhaps he is an outside contractor and you do not have control over his availability. You need to determine the project schedule subject to the constraints on the resource deseng. Output 2.17.2 displays the RESOURCEIN= data set, RESIN17.
Output 2.17.1. Data Set WIDGR17

Use of the INFEASDIAGNOSTIC Option
Data Set WIDGR17

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>tail</th>
<th>head</th>
<th>deseng</th>
<th>mktan</th>
<th>prodeng</th>
<th>money</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>300</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>250</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>150</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15</td>
<td>6</td>
<td>9</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>Dummy</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Output 2.17.2. Resource in Data Set RESIN17

Use of the INFEASDIAGNOSTIC Option
Data Set RESIN17

<table>
<thead>
<tr>
<th>Obs</th>
<th>per</th>
<th>otype</th>
<th>deseng</th>
<th>mktan</th>
<th>prodeng</th>
<th>money</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>restype</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>01DEC03</td>
<td>reslevel</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>.</td>
</tr>
</tbody>
</table>

In the first invocation of PROC CPM, the project is scheduled subject to resource constraints on the single resource variable deseng. Output 2.17.3 displays the resulting Schedule data set WIDGO17S, which shows that the project is delayed by five days because of this resource. Note that the project finish time has been delayed only by five days, even though R–DELAY='10' for activity ‘Write Specs’. This is due to the fact that there was a float of five days present in this activity.

```sas
proc cpm date='01dec03'd interval=weekday
   data=widgr17 holidata=holdata resin=resin17
   out=widgo17s;
   tailnode tail;
duration days;
headnode head;
holiday hol;
resource deseng / period=per obstype=otype
delayanalysis;
id task;
run;
```
Output 2.17.3. Resource-Constrained Schedule: Single Resource

Use of the INFEASDIAGNOSTIC Option
Resource Constrained Schedule: Single Resource

Now suppose that you have one production engineer available, but you could obtain more if needed. You do not want to delay the project more than five days (the delay caused by deseng). The second invocation of PROC CPM sets a maximum delay of five days on the activities and specifies all four resources along with the INFEASDIAGNOSTIC option. The resource availability data set (printed in Output 2.17.2) has missing values for the resources mktan and money. Further, the resource money is defined to be a consumable aggregate resource (its value is ‘4’ in the first observation). Thus, this resource is used by the CPM procedure only for aggregation purposes and is not considered as a constraining resource during the scheduling process. The INFEASDIAGNOSTIC option enables CPM to assume an infinite supplementary level for all the constraining resources, and the procedure draws upon this infinite reserve, if necessary, to schedule the project with only five days of delay. In other words, PROC CPM assumes that there is an infinite supply of supplementary levels for all the relevant resources. Thus, if at any point in the scheduling process it finds that an activity does not have enough resources and it cannot be postponed any further, it schedules the activity ignoring the insufficiency of the resources.
proc cpm date='01dec03'd interval=weekday
 data=widgr17 holidata=holdata resin=resin17
 out=widgro17m resout=widgrol7;
 tailnode tail;
duration days;
headnode head;
holiday hol;
resource deseng prodeng mktan money / period=per obstype=otype
 delayanalysis
delay=5
infeasdiagnostic
cumusage
rcprofile avprofile;
 id task;
run;

The Schedule data set WIDGO17M (for multiple resources) in Output 2.17.4 shows
the new resource-constrained schedule. With a maximum delay of five days the pro-
cedure schedules the activity ‘Anal. Market’ on January 21, 2004, using an extra pro-
duction engineer as indicated by the SUPPL--R variable. Note that the SUPPL--R
variable indicates the first resource in the resource list that was used beyond its pri-
mary level. Note also that it is possible to schedule the activities with only one pro-
duction engineer, but the project would be delayed by more than five days.

The Usage data set, displayed in Output 2.17.5, shows the amount of resources re-
quired on each day of the project. The data set contains usage and remaining re-
source information only for the resource-constrained schedule because PROC CPM
was invoked with the RCPROFILE and AVPROFILE options in the RESOURCE
statement. Note that the availability profile contains only missing values for the re-
source money because it was used only for aggregation purposes. Further, since this
resource is a consumable resource as per the RESOURCEIN= data set, and since the
CUMUSAGE option is specified, the value for Rmoney in each observation indicates
the cumulative amount of money that would be needed through the beginning of the
date specified in that observation if the resource constrained schedule were followed.

For the other resources, the availability profile in the Usage data set contains negative
values for all the resources that were insufficient on any given day. This feature is
useful for diagnosing the level of insufficiency of any resource; you can determine the
problem areas by examining the availability profile for the different resources. Thus,
the negative values for the resource availability profile Aprodeng indicate that, in
order for the project to be scheduled as desired, you need an extra production engineer
between the 21st and 27th of January, 2004. The negative values for Amktan indicate
the days when a market analyst is needed for the project.
Example 2.17. INFEASDIAGNOSTIC Option and Aggregate Resource Type 207

Output 2.17.4. Resource-Constrained Schedule: Multiple Resources

Use of the INFEASDIAGNOSTIC Option

Resource Constrained Schedule: Multiple Resources

<table>
<thead>
<tr>
<th>Obs</th>
<th>tail</th>
<th>head</th>
<th>days</th>
<th>task</th>
<th>deseng</th>
<th>prodeng</th>
<th>mktan</th>
<th>money</th>
<th>S_START</th>
<th>S_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>Approve Plan</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>200</td>
<td>01DEC03</td>
<td>05DEC03</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>Drawings</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>100</td>
<td>08DEC03</td>
<td>19DEC03</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>Anal. Market</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>21JAN04</td>
<td>27JAN04</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Write Specs</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>150</td>
<td>22DEC03</td>
<td>29DEC03</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>Prototype</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>300</td>
<td>30DEC03</td>
<td>20JAN04</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>Mkt. Strat.</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>150</td>
<td>28JAN04</td>
<td>10FEB04</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Materials</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>300</td>
<td>21JAN04</td>
<td>03FEB04</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Facility</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>500</td>
<td>21JAN04</td>
<td>03FEB04</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>Init. Prod.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>250</td>
<td>04FEB04</td>
<td>17FEB04</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>Evaluate</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>150</td>
<td>18FEB04</td>
<td>02MAR04</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>Test Market</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>200</td>
<td>18FEB04</td>
<td>09MAR04</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>Changes</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>200</td>
<td>10MAR04</td>
<td>16MAR04</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>Production</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>600</td>
<td>17MAR04</td>
<td>17MAR04</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>12</td>
<td>0</td>
<td>Marketing</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>18FEB04</td>
<td>18FEB04</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>Dummy</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>18FEB04</td>
<td>18FEB04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>R_DELAY</th>
<th>DELAY_R</th>
<th>SUPPL_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>0</td>
<td>mktan</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>08DEC03</td>
<td>21JAN04</td>
<td>21JAN04</td>
<td>27JAN04</td>
<td>30</td>
<td>prodeng</td>
<td>prodeng</td>
</tr>
<tr>
<td>4</td>
<td>08DEC03</td>
<td>15DEC03</td>
<td>15DEC03</td>
<td>19DEC03</td>
<td>10</td>
<td>deseng</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>13JAN04</td>
<td>13JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15DEC03</td>
<td>29DEC03</td>
<td>28JAN04</td>
<td>28JAN04</td>
<td>0</td>
<td>mktan</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>0</td>
<td>mktan</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>03MAR04</td>
<td>03MAR04</td>
<td>03MAR04</td>
<td>03MAR04</td>
<td>0</td>
<td>mktan</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Output 2.17.5. Resource Usage: Multiple Resources

Use of the INFEASDIAGNOSTIC Option
Usage Profile: Multiple Resources

<table>
<thead>
<tr>
<th>Obs</th>
<th>TIME</th>
<th>Rdeseng</th>
<th>Adeseng</th>
<th>Rprodeng</th>
<th>Aprodeng</th>
<th>Rmktan</th>
<th>Amktan</th>
<th>Rmoney</th>
<th>Amoney</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>02DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>200</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>03DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>600</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>04DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>800</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>05DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1000</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>06DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1100</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>09DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1200</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>10DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1300</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>11DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1400</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>12DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1500</td>
<td>.</td>
</tr>
<tr>
<td>11</td>
<td>15DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1600</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>16DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1700</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>17DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1800</td>
<td>.</td>
</tr>
<tr>
<td>14</td>
<td>18DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1900</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>19DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2000</td>
<td>.</td>
</tr>
<tr>
<td>16</td>
<td>22DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2100</td>
<td>.</td>
</tr>
<tr>
<td>17</td>
<td>23DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2200</td>
<td>.</td>
</tr>
<tr>
<td>18</td>
<td>24DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2300</td>
<td>.</td>
</tr>
<tr>
<td>19</td>
<td>26DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2450</td>
<td>.</td>
</tr>
<tr>
<td>20</td>
<td>29DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2600</td>
<td>.</td>
</tr>
<tr>
<td>21</td>
<td>30DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2750</td>
<td>.</td>
</tr>
<tr>
<td>22</td>
<td>31DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>3050</td>
<td>.</td>
</tr>
<tr>
<td>23</td>
<td>02JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>3350</td>
<td>.</td>
</tr>
<tr>
<td>24</td>
<td>05JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>3650</td>
<td>.</td>
</tr>
<tr>
<td>25</td>
<td>06JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>3950</td>
<td>.</td>
</tr>
<tr>
<td>26</td>
<td>07JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>4250</td>
<td>.</td>
</tr>
<tr>
<td>27</td>
<td>08JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>4550</td>
<td>.</td>
</tr>
<tr>
<td>28</td>
<td>09JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>4850</td>
<td>.</td>
</tr>
<tr>
<td>29</td>
<td>12JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>5150</td>
<td>.</td>
</tr>
<tr>
<td>30</td>
<td>13JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>5450</td>
<td>.</td>
</tr>
<tr>
<td>31</td>
<td>14JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>5750</td>
<td>.</td>
</tr>
<tr>
<td>32</td>
<td>15JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>6050</td>
<td>.</td>
</tr>
<tr>
<td>33</td>
<td>16JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>6350</td>
<td>.</td>
</tr>
<tr>
<td>34</td>
<td>19JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>6650</td>
<td>.</td>
</tr>
<tr>
<td>35</td>
<td>20JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>6950</td>
<td>.</td>
</tr>
<tr>
<td>36</td>
<td>21JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>7250</td>
<td>.</td>
</tr>
<tr>
<td>37</td>
<td>22JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>8150</td>
<td>.</td>
</tr>
<tr>
<td>38</td>
<td>23JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>9050</td>
<td>.</td>
</tr>
<tr>
<td>39</td>
<td>26JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>9950</td>
<td>.</td>
</tr>
<tr>
<td>40</td>
<td>27JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>10850</td>
<td>.</td>
</tr>
<tr>
<td>41</td>
<td>28JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>11750</td>
<td>.</td>
</tr>
<tr>
<td>42</td>
<td>29JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>12700</td>
<td>.</td>
</tr>
<tr>
<td>43</td>
<td>30JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>13650</td>
<td>.</td>
</tr>
<tr>
<td>44</td>
<td>02FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>14600</td>
<td>.</td>
</tr>
<tr>
<td>45</td>
<td>03FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>15550</td>
<td>.</td>
</tr>
<tr>
<td>46</td>
<td>04FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>16500</td>
<td>.</td>
</tr>
<tr>
<td>47</td>
<td>05FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>16900</td>
<td>.</td>
</tr>
<tr>
<td>48</td>
<td>06FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>17300</td>
<td>.</td>
</tr>
<tr>
<td>49</td>
<td>09FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>17700</td>
<td>.</td>
</tr>
<tr>
<td>50</td>
<td>10FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>18100</td>
<td>.</td>
</tr>
<tr>
<td>51</td>
<td>11FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>18500</td>
<td>.</td>
</tr>
<tr>
<td>52</td>
<td>12FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>18750</td>
<td>.</td>
</tr>
<tr>
<td>53</td>
<td>13FEB04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>19000</td>
<td>.</td>
</tr>
<tr>
<td>54</td>
<td>16FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>19250</td>
<td>.</td>
</tr>
<tr>
<td>55</td>
<td>17FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>19500</td>
<td>.</td>
</tr>
</tbody>
</table>
Example 2.18. Variable Activity Delay

In Example 2.17, the DELAY= option is used to specify a maximum amount of delay that is allowed for all activities in the project. In some situations it may be reasonable to set the delay for each activity based on some characteristic pertaining to the activity. For example, consider the data in Example 2.17 with a slightly different scenario. Suppose that no delay is allowed in activities that require a production engineer. Data set WIDGR18, displayed in Output 2.18.1, is obtained from WIDGR17 using the following simple DATA step.

data widgr18;
 set widgr17;
 if prodeng ^= . then adelay = 0;
 else adelay = 5;
 run;

title 'Variable Activity Delay';
title2 'Data Set WIDGR18';
proc print;
 run;
Chapter 2. The CPM Procedure

Output 2.18.1. Activity Data Set WIDGR18

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>tail</th>
<th>head</th>
<th>deseng</th>
<th>mktan</th>
<th>prodeng</th>
<th>money</th>
<th>adelay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>250</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15</td>
<td>6</td>
<td>9</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Dummy</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>5</td>
</tr>
</tbody>
</table>

PROC CPM is invoked with the ACTDELAY=ADELAY option in the RESOURCE statement. The INFEASDIAGNOSTIC option is also used to enable the procedure to schedule activities even if resources are insufficient. The output data sets are displayed in Output 2.18.2 and Output 2.18.3.

```
data resin17;
  input per & date7. otype $ deseng mktan prodeng money;
  format per date7.;
datalines;
  . restype 1 1 1 4
  01dec03 reslevel 1 . 1 .;
;
data holdata;
  format hol date7. name $9. ;
  input hol & date7. name &;
datalines;
  25dec03 Christmas
  01jan04 New Year;
;
proc cpm date=`01dec03’d
  interval=weekday
data=widgr18
  holidata=holdata
  resin=resin17
  out=widgro18
  resout=widgrol8;
  tailnode tail;
duration days;
  headnode head;
holiday hol;
```
Example 2.18. Variable Activity Delay

```plaintext
resource deseng prodeng mktan money / period=per
   obstype=otype
delayanalysis
   actdelay=adelay
infeasdiagnostic
rcs avl t_float
cumusage;

id task;
run;
```

Output 2.18.2. Resource-Constrained Schedule: Variable Activity Delay

<table>
<thead>
<tr>
<th>Obs</th>
<th>tail</th>
<th>head</th>
<th>days</th>
<th>task</th>
<th>adelay</th>
<th>deseng</th>
<th>prodeng</th>
<th>mktan</th>
<th>money</th>
<th>S_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>Approve Plan</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>200</td>
<td>01DEC03</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>Drawings</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>100</td>
<td>08DEC03</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>Anal. Market</td>
<td>0</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>14JAN04</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Write Specs</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>150</td>
<td>08DEC03</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>15</td>
<td>Prototype</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>300</td>
<td>22DEC03</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>Mkt. Strat.</td>
<td>5</td>
<td>.</td>
<td></td>
<td></td>
<td>1</td>
<td>21JAN04</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Materials</td>
<td>5</td>
<td>.</td>
<td></td>
<td></td>
<td>300</td>
<td>14JAN04</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Facility</td>
<td>0</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td>500 14JAN04</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>Init. Prod.</td>
<td>5</td>
<td>.</td>
<td></td>
<td></td>
<td>250</td>
<td>28JAN04</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>Evaluate</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>150</td>
<td>11FEB04</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>Test Market</td>
<td>5</td>
<td>.</td>
<td></td>
<td></td>
<td>1</td>
<td>200 11FEB04</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>Changes</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>200</td>
<td>03MAR04</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>Production</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>600</td>
<td>10MAR04</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>12</td>
<td>0</td>
<td>Marketing</td>
<td>5</td>
<td>.</td>
<td></td>
<td></td>
<td>1</td>
<td>11FEB04</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>Dummy</td>
<td>5</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td>11FEB04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>S_FINISH</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>R_DELAY</th>
<th>DELAY_R</th>
<th>SUPPL_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>01DEC03</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19DEC03</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20JAN04</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>21JAN04</td>
<td>27JAN04</td>
<td>30</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12DEC03</td>
<td>08DEC03</td>
<td>12DEC03</td>
<td>15DEC03</td>
<td>19DEC03</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13JAN04</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>03FEB04</td>
<td>15DEC03</td>
<td>29DEC03</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>30</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10FEB04</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>24FEB04</td>
<td>11FEB04</td>
<td>24FEB04</td>
<td>18FEB04</td>
<td>02MAR04</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>02MAR04</td>
<td>11FEB04</td>
<td>02MAR04</td>
<td>11FEB04</td>
<td>02MAR04</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>09MAR04</td>
<td>03MAR04</td>
<td>09MAR04</td>
<td>03MAR04</td>
<td>09MAR04</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Output 2.18.3. Resource Usage

<table>
<thead>
<tr>
<th>Obs</th>
<th>TIME</th>
<th>Rdeseng</th>
<th>Adeseng</th>
<th>Rprodeng</th>
<th>Aprodeng</th>
<th>Rmktan</th>
<th>Amktan</th>
<th>Rmoney</th>
<th>Amoney</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>02DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>200</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>03DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>400</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>04DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>600</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>05DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>800</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>08DEC03</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>09DEC03</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1250</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>10DEC03</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1500</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>11DEC03</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1750</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>12DEC03</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2000</td>
<td>.</td>
</tr>
<tr>
<td>11</td>
<td>15DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2250</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>16DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2350</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>17DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2450</td>
<td>.</td>
</tr>
<tr>
<td>14</td>
<td>18DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2550</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>19DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2650</td>
<td>.</td>
</tr>
<tr>
<td>16</td>
<td>22DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2750</td>
<td>.</td>
</tr>
<tr>
<td>17</td>
<td>23DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3050</td>
<td>.</td>
</tr>
<tr>
<td>18</td>
<td>24DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3350</td>
<td>.</td>
</tr>
<tr>
<td>19</td>
<td>25DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3650</td>
<td>.</td>
</tr>
<tr>
<td>20</td>
<td>29DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3950</td>
<td>.</td>
</tr>
<tr>
<td>21</td>
<td>30DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4250</td>
<td>.</td>
</tr>
<tr>
<td>22</td>
<td>31DEC03</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4550</td>
<td>.</td>
</tr>
<tr>
<td>23</td>
<td>02JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4850</td>
<td>.</td>
</tr>
<tr>
<td>24</td>
<td>05JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5150</td>
<td>.</td>
</tr>
<tr>
<td>25</td>
<td>06JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5450</td>
<td>.</td>
</tr>
<tr>
<td>26</td>
<td>07JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5750</td>
<td>.</td>
</tr>
<tr>
<td>27</td>
<td>08JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6050</td>
<td>.</td>
</tr>
<tr>
<td>28</td>
<td>09JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6350</td>
<td>.</td>
</tr>
<tr>
<td>29</td>
<td>12JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6650</td>
<td>.</td>
</tr>
<tr>
<td>30</td>
<td>13JAN04</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6950</td>
<td>.</td>
</tr>
<tr>
<td>31</td>
<td>14JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>7250</td>
<td>.</td>
</tr>
<tr>
<td>32</td>
<td>15JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>8150</td>
<td>.</td>
</tr>
<tr>
<td>33</td>
<td>16JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>9050</td>
<td>.</td>
</tr>
<tr>
<td>34</td>
<td>19JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>9950</td>
<td>.</td>
</tr>
<tr>
<td>35</td>
<td>20JAN04</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>10850</td>
<td>.</td>
</tr>
<tr>
<td>36</td>
<td>21JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>11750</td>
<td>.</td>
</tr>
<tr>
<td>37</td>
<td>22JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>12700</td>
<td>.</td>
</tr>
<tr>
<td>38</td>
<td>23JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>13650</td>
<td>.</td>
</tr>
<tr>
<td>39</td>
<td>26JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>14600</td>
<td>.</td>
</tr>
<tr>
<td>40</td>
<td>27JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>15550</td>
<td>.</td>
</tr>
<tr>
<td>41</td>
<td>28JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>16500</td>
<td>.</td>
</tr>
<tr>
<td>42</td>
<td>29JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>16900</td>
<td>.</td>
</tr>
<tr>
<td>43</td>
<td>30JAN04</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>17300</td>
<td>.</td>
</tr>
<tr>
<td>44</td>
<td>02FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>17700</td>
<td>.</td>
</tr>
<tr>
<td>45</td>
<td>03FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>18100</td>
<td>.</td>
</tr>
<tr>
<td>46</td>
<td>04FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>18500</td>
<td>.</td>
</tr>
<tr>
<td>47</td>
<td>05FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>18750</td>
<td>.</td>
</tr>
<tr>
<td>48</td>
<td>06FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>19000</td>
<td>.</td>
</tr>
<tr>
<td>49</td>
<td>09FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>19250</td>
<td>.</td>
</tr>
<tr>
<td>50</td>
<td>10FEB04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>19500</td>
<td>.</td>
</tr>
<tr>
<td>51</td>
<td>11FEB04</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>19750</td>
<td>.</td>
</tr>
<tr>
<td>52</td>
<td>12FEB04</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>20100</td>
<td>.</td>
</tr>
<tr>
<td>53</td>
<td>13FEB04</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>20450</td>
<td>.</td>
</tr>
<tr>
<td>54</td>
<td>16FEB04</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>20800</td>
<td>.</td>
</tr>
<tr>
<td>55</td>
<td>17FEB04</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>21150</td>
<td>.</td>
</tr>
</tbody>
</table>
Note from the Schedule data set that the activity ‘Anal. Market’ is scheduled to start on January 14, 2004, even though (L–START + adelay)=21JAN04. This is due to the fact that at every time interval, the scheduling algorithm looks ahead in time to detect any increase in the primary level of the resource; if the future resource profile indicates that the procedure will need to use supplementary levels anyway, the activity will not be forced to wait until (L–START + DELAY). (To force the activity to wait until its latest allowed start time, use the AWAITDELAY option). The DELAYANALYSIS variables indicate that a supplementary level of the resource prodeng is needed to schedule the activity on 14JAN03. Note that the variable SUPPL–R identifies only one supplementary resource that is needed for the activity. In fact, examination of the resource requirements for the activity and the RESOURCEOUT data set shows that an extra market analyst is also needed between the 14th and 20th of January to schedule this activity. Likewise, the activities ‘Write Specs’ and ‘Drawings’ require a design engineer and a production engineer; both these activities start on the 8th of December. The RESOURCEOUT data set indicates that an extra design engineer and an extra production engineer are needed from the 8th to the 12th of December.

The next invocation of PROC CPM illustrates the use of the ACTDELAY variable to force the resource-constrained schedule to coincide with the early start schedule. The following DATA step uses the Schedule data set WIDGO18 to set an activity delay variable (actdel) to be equal to –T–FLOAT. PROC CPM is then invoked with the ACTDELAY variable equal to actdel and the INFEASDIAGNOSTIC option. This forces all activities to be scheduled on or before (L–START + actdel), which happens to be equal to E–START; thus all activities are scheduled to start at their early start time. The resulting Schedule data set is displayed in Output 2.18.4. Though this is an extreme case, a similar technique could be used selectively to set the delay value for each activity (or some of the activities) to depend on the unconstrained schedule or the T–FLOAT value. Note that if both the DELAY= and ACTDELAY= options are specified, the DELAY= value is used to set the activity delay values for activities that have missing values for the ACTDELAY variable.
Note also that in this invocation of PROC CPM, the BASELINE statement is used to compare the early start schedule and the resource constrained schedule. Note that the S_VAR and F_VAR variables are 0 for all the activities, as is to be expected (since all activities are forced to start as per the early start schedule).

```plaintext
data negdelay;
  set widgo18;
  actdel=-t_float;
run;

proc cpm date='01dec03'd
  interval=weekday
  data=negdelay
  holidata=holdata
  resin=resin17
  out=widgo18n;
  tailnode tail;
  duration days;
  headnode head;
  holiday hol;
  resource deseng prodeng mktan money / period=per
    obstype=otype
    delayanalysis
    actdelay=actdel
    infeasdiagnostic;
  baseline / set=early compare=resource;
  id task;
run;
```
Example 2.19. Activity Splitting

This example illustrates the use of activity splitting to help reduce project duration. By default, PROC CPM assumes that an activity cannot be interrupted once it is started (except for holidays and weekends). During resource-constrained scheduling, it is possible for a noncritical activity to be scheduled first, and at a later time a critical activity may be held waiting for a resource to be freed by this less critical activity.
In such situations, you may want to allow noncritical activities to be preempted by critical ones. PROC CPM enables you to specify, selectively, the activities that can be split into segments, the minimum length of each segment, and the maximum number of segments per activity.

The data set WIDGR19, displayed in Output 2.19.1, contains the widget network in AON format with two resources: prodman and hrdware. Suppose the production manager is required to oversee certain activities, as indicated by a ‘1’ in the prodman column. hrdware denotes some piece of equipment that is required by the activity ‘Drawings’ (perhaps a plotter to produce the engineering drawings). The variable minseg denotes the minimum length of the split segments for each activity. Missing values for this variable are set to default values (one-fifth of the activity’s duration). The Resource data set WIDGRIN, displayed in Output 2.19.2, indicates that both resources are replenishable, there is one production manager available from December 1, and the hardware is unavailable on the 10th and 11th of December (perhaps it is scheduled for maintenance or has been reserved for some other project).

Output 2.19.1. Activity Splitting: Activity Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>succ</th>
<th>prodman</th>
<th>hrdware</th>
<th>minseg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Approve Plan</td>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Approve Plan</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Drawings</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Anal. Market</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Write Specs</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Prototype</td>
<td>15</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Prototype</td>
<td>15</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Materials</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Facility</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Init. Prod.</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Init. Prod.</td>
<td>10</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Init. Prod.</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Evaluate</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Test Market</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Changes</td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Production</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Marketing</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output 2.19.2. Activity Splitting: Resource Availability Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>per</th>
<th>otype</th>
<th>prodman</th>
<th>hrdware</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.</td>
<td>restype</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>01DECO3</td>
<td>reslevel</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>10DECO3</td>
<td>reslevel</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>12DECO3</td>
<td>reslevel</td>
<td>.</td>
<td>1</td>
</tr>
</tbody>
</table>
The project is first scheduled without allowing any of the activities to be split. The Schedule data set SCHED, displayed in Output 2.19.3, indicates that the project has been delayed by one week (five working days, since maximum $S_{\text{FINISH}} = '17\text{MAR04}'$ while maximum $E_{\text{FINISH}} = '10\text{MAR04}'$). Note that the activity ‘Drawings’ has been postponed to start after the equipment has been serviced (or used by the other project), and the activity ‘Prototype’ (which is actually a critical activity) cannot start on schedule because the production manager is tied up with the noncritical activity ‘Mkt. Strat.’.

```plaintext
proc cpm date='01dec03'd
   data=widgr19 resin=widgrin
   holidata=holdata
   out=sched resout=rout
   interval=weekday collapse;
   activity task;
   duration days;
   successor succ;
   holiday hol;
   resource prodman hrdware / period=per obstype=otype
      t_float f_float rcs avl;
run;
```
In the second invocation of PROC CPM, the MINSEGMTDUR= option is used in the RESOURCE statement to identify the variable minseg to the procedure. This enables the algorithm to split the ‘Drawings’ activity so that some of it is done before December 10, 2003, and the rest is scheduled to start on December 12, 2003. Likewise, the production manager is allocated to the activity ‘Mkt. Strat.’ on December 15, 2003. On the 24th of December the activity ‘Prototype’ demands the production manager, and since preemption is allowed, the earlier activity ‘Mkt. Strat.’, which is less critical than ‘Prototype’, is temporarily halted and is resumed on the 16th of January after the completion of ‘Prototype’ on the 15th of January. The Schedule data set, displayed in Output 2.19.4, contains separate observations for each segment of the split activities as indicated by the variable SEGMT_NO. Note that the project duration has been reduced by three working days, by allowing appropriate activities to be split.

```
proc cpm date='01dec03'd
data=widgr19
  holidata=holdata resin=widgrin
out=spltschd resout=spltrout
  interval=weekday collapse;
```
Example 2.20. Alternate Resources

Some projects may have two or more resource types that are interchangeable; if one resource is insufficient, the other one can be used in its place. To illustrate the use of
alternate resources, consider the widget manufacturing example with the data in AON format as shown in Output 2.20.1. As in Example 2.17, suppose there are two types of engineers, a design engineer and a production engineer. In addition, there is a generic pool of engineers, denoted by the variable engpool. The resource requirements for each category are specified in the data set WIDGR20.

Output 2.20.1. Alternate Resources: Activity Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>succ</th>
<th>deseng</th>
<th>prodeng</th>
<th>engpool</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>Drawings</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Approve Plan</td>
<td>5</td>
<td>Anal. Market</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Approve Plan</td>
<td>5</td>
<td>Write Specs</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Drawings</td>
<td>10</td>
<td>Prototype</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Anal. Market</td>
<td>5</td>
<td>Mkt. Strat.</td>
<td>.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Write Specs</td>
<td>5</td>
<td>Prototype</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Prototype</td>
<td>15</td>
<td>Materials</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Prototype</td>
<td>15</td>
<td>Facility</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>Test Market</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>Marketing</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Materials</td>
<td>10</td>
<td>Init. Prod.</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Facility</td>
<td>10</td>
<td>Init. Prod.</td>
<td>.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Test Market</td>
<td>.</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Marketing</td>
<td>.</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Evaluate</td>
<td>.</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Evaluate</td>
<td>10</td>
<td>Changes</td>
<td>1</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Test Market</td>
<td>15</td>
<td>Changes</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Changes</td>
<td>5</td>
<td>Production</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Production</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Marketing</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>0</td>
</tr>
</tbody>
</table>

Output 2.20.2. Alternate Resources: RESOURCEIN Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>per</th>
<th>otype</th>
<th>resid</th>
<th>deseng</th>
<th>prodeng</th>
<th>engpool</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.</td>
<td>restype</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>altprty</td>
<td>deseng</td>
<td>.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>altprty</td>
<td>prodeng</td>
<td>.</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>.</td>
<td>suplevel</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>01DEC03</td>
<td>reslevel</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The resource availability data set RESIN20, displayed in Output 2.20.2, identifies all three resources as replenishable resources and indicates a primary as well as a supplementary level of availability. A new variable resid in the data set is used to identify resources in observations 2 and 3 that can be substituted for deseng and prodeng, respectively. These observations have the value ‘altprty’ for the OBSTYPE variable and indicate a priority for the substitution. For example, observation number 2 indicates that if deseng is unavailable, the procedure can use prodeng, and if even that is insufficient, it can draw from the engineering resource pool engpool. To trigger the substitution of resources, use the RESID= option in the RESOURCE statement.
First, PROC CPM is invoked without reference to the RESID variable. The procedure ignores observations 2 and 3 in the RESOURCEIN data set (a message is written to the log), and the project is scheduled using the available resources; the supplementary level is not used because the project can be scheduled using only the primary resources by delaying it a few days. The project completion time is March 24, 2004 (see the schedule displayed in Output 2.20.3). The following program shows the invocation of PROC CPM.

```sas
proc cpm date='01dec03'd
   interval=weekday collapse
   data=widgr20 resin=resin20 holidata=holdata
   out=widgo20 resout=widgro20;
   activity task;
   duration days;
   successor succ;
   holiday hol;
   resource deseng prodeng engpool / period=per
      obstype=otype
delayanalysis
```

Output 2.20.3. Alternate Resources Not Used

<table>
<thead>
<tr>
<th>Scheduling with Alternate Resources</th>
<th>Alternate Resources not used</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>succ</th>
<th>days</th>
<th>deseng</th>
<th>prodeng</th>
<th>engpool</th>
<th>S_START</th>
<th>S_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan Drawings</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>01DEC03</td>
<td>05DEC03</td>
</tr>
<tr>
<td>2</td>
<td>Drawings Prototype</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>08DEC03</td>
<td>19DEC03</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market Mkt. Strat.</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>04FEB04</td>
<td>10FEB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Write Specs Prototype</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>22DEC03</td>
<td>29DEC03</td>
</tr>
<tr>
<td>5</td>
<td>Prototype Materials</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30DEC03</td>
<td>20JAN04</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat. Test Market</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>11FEB04</td>
<td>24FEB04</td>
</tr>
<tr>
<td>7</td>
<td>Materials Init. Prod.</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>21JAN04</td>
<td>03FEB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Facility Init. Prod.</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>21JAN04</td>
<td>03FEB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod. Test Market</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>20FEB04</td>
<td>02MAR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Evaluate Changes</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>18FEB04</td>
<td>02MAR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Test Market Changes</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>25FEB04</td>
<td>16MAR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Changes Production</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>17MAR04</td>
<td>23MAR04</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>24MAR04</td>
<td>24MAR04</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>25FEB04</td>
<td>25FEB04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>R_DELAY</th>
<th>DELAY_R</th>
<th>SUPPL_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>08DEC03</td>
<td>19DEC03</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>08DEC03</td>
<td>21JAN04</td>
<td>21JAN04</td>
<td>27JAN04</td>
<td>40 prodeng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>08DEC03</td>
<td>15DEC03</td>
<td>15DEC03</td>
<td>19DEC03</td>
<td>10 deseng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>22DEC03</td>
<td>13JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>29DEC03</td>
<td>28JAN04</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14JAN04</td>
<td>14JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14JAN04</td>
<td>14JAN04</td>
<td>14JAN04</td>
<td>27JAN04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>28JAN04</td>
<td>10FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>24FEB04</td>
<td>18FEB04</td>
<td>18FEB04</td>
<td>02MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>02MAR04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>02MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>03MAR04</td>
<td>09MAR04</td>
<td>03MAR04</td>
<td>09MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>10MAR04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>11FEB04</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next, PROC CPM is invoked with the RESID= option, and the resulting Schedule data set is displayed in Output 2.20.4. The new schedule shows that the project completion time (10MAR04) has been reduced by two weeks as a result of using alternate resources.

Output 2.20.4. Alternate Resources Used

<table>
<thead>
<tr>
<th>Scheduling with Alternate Resources</th>
<th>Alternate Resources Reduce Project Completion Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>t s d r n d r n _ e o g e o g S</td>
<td></td>
</tr>
<tr>
<td>O a u a e e e e e e e e A</td>
<td></td>
</tr>
<tr>
<td>b s c y n n o n n o o R</td>
<td></td>
</tr>
<tr>
<td>s k c s g g l g g l T</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Approve Plan</th>
<th>Drawings</th>
<th>5</th>
<th>1</th>
<th>1</th>
<th>.</th>
<th>1</th>
<th>1</th>
<th>.</th>
<th>01DEC03</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Drawings</td>
<td>Prototype</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>08DEC03</td>
</tr>
<tr>
<td>3</td>
<td>Anal. Market</td>
<td>Mkt. Strat.</td>
<td>5</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>08DEC03</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>Prototype</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>08DEC03</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>Materials</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>22DEC03</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>Test Market</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>15DEC03</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>Init. Prod.</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>14JAN04</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>Init. Prod.</td>
<td>10</td>
<td>.</td>
<td>1</td>
<td>2</td>
<td>.</td>
<td>1</td>
<td>2</td>
<td>14JAN04</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>Test Market</td>
<td>10</td>
<td>.</td>
<td>2</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>28JAN04</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>Changes</td>
<td>10</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>11FEB04</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>Changes</td>
<td>15</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>11FEB04</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>Production</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>03MAR04</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>Marketing</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>10MAR04</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td></td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>11FEB04</td>
</tr>
</tbody>
</table>

When resource substitution is allowed, the procedure adds a new variable prefixed by a ‘U’ for each resource variable; this new variable specifies the actual resources.
used for each activity (as opposed to the resource required). Note that the activity ‘Anal. Market’ requires one production engineer who is tied up with the activity ‘Drawings’ on the 8th of December. Since resource substitution is allowed, the procedure uses an engineer from engpool as indicated by a missing value for Uprodeng and a ‘1’ for Uengpool in the third observation. Likewise, the activity ‘Write Specs’ is scheduled by substituting one engineer from engpool for a design engineer and one for a production engineer to obtain Udeseng=‘.’, Uprodeng=‘.’, and Uengpool=2 in observation number 4. It is evident from the project finish date (S–FINISH=L–FINISH=‘10MAR04’) that resource substitution has enabled the project to be completed without any delay. In fact, the DELAYANALYSIS variables indicate that there is no delay in any of the activities (R–DELAY=0 and DELAY–R=‘ ’ for all activities). Note also that supplementary levels are not used (SUPPL–R=‘ ’) for any of the resources (recall that use of supplementary levels is triggered by the specification of a finite value for DELAY).

The following program produced Output 2.20.4:

```plaintext
proc cpm date=’01dec03’d
   interval=weekday collapse
   data=widgr20 resin=resin20 holidata=holdata
   out=widgalt resout=widralt;
   activity task;
   duration days;
   successor succ;
   holiday hol;
   resource deseng prodeng engpool / period=per
      obstype=otype
      delayanalysis
      resid=resid
      rcs avl;
run;
```

The next two invocations of PROC CPM illustrate the use of both supplementary as well as alternate resources. Note from the output data set, displayed in Output 2.20.5, that once again the project is completed without any delay. Note also that the activity ‘Write Specs’ has used a supplementary resource whereas ‘Anal. Market’ has used an alternate resource. By default, when the DELAY= option is used, it forces the procedure to use supplementary resources before alternate resources. To invert this order so that alternate resources are used before supplementary resources, use the ALTBEFORESUP option in the RESOURCE statement, as illustrated in the second invocation of CPM in the following code. The resulting schedule is displayed in Output 2.20.6; this schedule is, in fact, the same as the schedule displayed in Output 2.20.4, obtained without the DELAY=0 and the ALTBEFORESUP options.

```plaintext
/* Invoke CPM with the DELAY=0 option */
proc cpm date=’01dec03’d
   interval=weekday collapse
   data=widgr20 resin=resin20 holidata=holdata
   out=widgdsup resout=widrdsup;
   activity task;
```
Chapter 2. The CPM Procedure

duration days;
successor succ;
holiday hol;
resource deseng prodeng engpool / period=per
 obstype=otype
delayanalysis
delay=0
 resid=resid
 rcs avl;
run;

/* Invoke CPM with the DELAY=0 and ALTBEFORESUP options */
proc cpm date='01dec03'd
 interval=weekday collapse
data=widgr20 resin=resin20 holidata=holdata
 out=widgdsup resout=widrdsup;
activity task;
duration days;
successor succ;
holiday hol;
resource deseng prodeng engpool / period=per
 obstype=otype
delayanalysis
delay=0
 resid=resid altbeforesup
 rcs avl;
run;
Output 2.20.5. Supplementary Resources Used Before Alternate Resources

Scheduling with Alternate Resources

<table>
<thead>
<tr>
<th>U</th>
<th>U</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>e</td>
<td>p</td>
</tr>
<tr>
<td>d</td>
<td>r</td>
<td>n</td>
</tr>
<tr>
<td>o</td>
<td>g</td>
<td>e</td>
</tr>
<tr>
<td>t</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>O</td>
<td>a</td>
<td>u</td>
</tr>
<tr>
<td>b</td>
<td>s</td>
<td>c</td>
</tr>
<tr>
<td>s</td>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Resources Used instead of Alternate

1. Approve Plan Drawings 5 1 1 . 1 1 . 01DEC03 05DEC03
2. Drawings Prototype 10 1 1 . 1 1 . 08DEC03 19DEC03
3. Anal. Market Mkt. Strat. 5 . 1 . . . 1 08DEC03 12DEC03
4. Write Specs Prototype 5 1 1 . 1 1 . 08DEC03 12DEC03
5. Prototype Materials 15 1 1 1 1 1 1 22DEC03 13JAN04
6. Mkt. Strat. Test Market 10 15DEC03 29DEC03
7. Materials Init. Prod. 10 14JAN04 27JAN04
8. Facility Init. Prod. 10 . 1 2 . 1 2 14JAN04 27JAN04
10. Evaluate Changes 10 1 . . 1 . . 11FEB04 24FEB04
11. Test Market Changes 15 11FEB04 02MAR04
12. Changes Production 5 1 1 . 1 1 . 03MAR04 05MAR04
13. Production 0 10MAR04 10MAR04
14. Marketing 0 11FEB04 11FEB04
Output 2.20.6. Alternate Resources Used Before Supplementary Resources

Scheduling with Alternate Resources

<table>
<thead>
<tr>
<th>P</th>
<th>E</th>
<th>L</th>
<th>R</th>
<th>D</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>e</td>
<td>U</td>
<td>p</td>
<td>e</td>
<td>U</td>
</tr>
<tr>
<td>d</td>
<td>r</td>
<td>n</td>
<td>d</td>
<td>r</td>
<td>n</td>
</tr>
<tr>
<td>t</td>
<td>s</td>
<td>d</td>
<td>s</td>
<td>p</td>
<td>s</td>
</tr>
<tr>
<td>O</td>
<td>a</td>
<td>u</td>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>b</td>
<td>s</td>
<td>c</td>
<td>y</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>s</td>
<td>k</td>
<td>c</td>
<td>s</td>
<td>g</td>
<td>l</td>
</tr>
<tr>
<td>1 Approve Plan Drawings</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>2 Drawings Prototype</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>3 Anal. Market Mkt. Strat.</td>
<td>5</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4 Write Specs Prototype</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5 Prototype Materials</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6 Mkt. Strat. Test Market</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7 Materials Init. Prod.</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>.</td>
</tr>
<tr>
<td>8 Facility Init. Prod.</td>
<td>10</td>
<td>.</td>
<td>1</td>
<td>2</td>
<td>.</td>
</tr>
<tr>
<td>9 Init. Prod. Test Market</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10 Evaluate Changes</td>
<td>10</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>11 Test Market Changes</td>
<td>15</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>12 Changes Production</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>13 Production Marketing</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>14 Marketing</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Example 2.21. PERT Assumptions and Calculations

This example illustrates the PERT statistical approach. Throughout this chapter, it has been assumed that the activity duration times are precise values determined uniquely. In practice, however, each activity is subject to a number of chance sources of variation and it is impossible to know, a priori, the duration of the activity. The PERT statistical approach is used to include uncertainty about durations in scheduling. For a detailed discussion about various assumptions, techniques, and cautions related to the PERT approach, refer to Moder, Phillips, and Davis (1983) and Elmaghraby (1977).
A simple model is used here to illustrate how PROC CPM can incorporate some of these ideas. A more detailed example can be found in *SAS/OR Software: Project Management Examples*.

Consider the widget manufacturing example. To perform PERT analysis, you need to provide three estimates of activity duration: a pessimistic estimate \(t_p \), an optimistic estimate \(t_o \), and a modal estimate \(t_m \). These three estimates are used to obtain a weighted average that is assumed to be a reasonable estimate of the activity duration. Note that the time estimates for the activities must be independent for the analysis to be considered valid. Furthermore, the distribution of activity duration times is purely hypothetical, as no statistical sampling is likely to be feasible on projects of a unique nature to be accomplished at some indeterminate time in the future. Often, the time estimates used are based on past experience with similar projects.

To derive the formula for the mean, you must assume some functional form for the unknown distribution. The well-known Beta distribution is commonly used, as it has the desirable properties of being contained inside a finite interval and can be symmetric or skewed, depending on the location of the mode relative to the optimistic and pessimistic estimates. A linear approximation of the exact formula for the mean of the beta distribution weights the three time estimates as follows:

\[
\frac{t_p + 4t_m + t_o}{6}
\]

The following program saves the network (AOA format) from Example 2.2 with three estimates of activity durations in a SAS data set. The DATA step also calculates the weighted average duration for each activity. Following the DATA step, PROC CPM is invoked to produce the schedule plotted on a Gantt chart in Output 2.21.1. The E_FINISH time for the final activity in the project contains the mean project completion time based on the duration estimates that are used.

```sas
title 'PERT Assumptions and Calculations';
/* Activity-on-Arc representation of the project with three duration estimates */
data widgpert;
  format task $12. ;
  input task & tail head tm tp to;
  dur = (tp + 4*tm + to) / 6;
datalines;
Approve Plan  1 2 5 7 3
Drawings      2 3 10 11 6
Anal. Market  2 4 5 7 3
Write Specs   2 3 5 7 3
Prototype     3 5 15 12 9
Mkt. Strat.   4 6 10 11 9
Materials     5 7 10 12 8
Facility      5 7 10 11 9
Init. Prod.   7 8 10 12 8
Evaluate      8 9 9 13 8
Test Market   6 9 14 15 13
Changes       9 10 5 6 4
```
Production 10 11 0 0 0
Marketing 6 12 0 0 0
Dummy 8 6 0 0 0
;

proc cpm data=widgpert out=sched
date='1dec03'd;
tailnode tail;
headnode head;
duration dur;
id task;
run;

proc sort;
by e_start;
run;

goptions vpos=50 hpos=80 border;
proc gantt graphics data=sched;
chart / compress tailnode=tail headnode=head
 font=swiss height=1.5 nojobnum skip=2
dur=dur increment=7 nolegend
cframe=ligr;

id task;
run;

Some words of caution are worth mentioning with regard to the traditional PERT approach. The estimate of the mean project duration obtained in this instance always underestimates the true value since the length of a critical path is a convex function of the activity durations. The original PERT model developed by Malcolm et al. (1959) provides a way to estimate the variance of the project duration as well as calculating the probabilities of meeting certain target dates and so forth. Their analysis relies on an implicit assumption that you may ignore all activities that are not on the critical path in the deterministic problem that is derived by setting the activity durations equal to the mean value of their distributions. It then applies the Central Limit Theorem to the duration of this critical path and interprets the result as pertaining to the project duration.
However, when the activity durations are random variables, each path of the project network is a likely candidate to be the critical path. Every outcome of the activity durations could result in a different longest path. Furthermore, there could be several dependent paths in the network in the sense that they share at least one common arc. Thus, in the most general case, the length of a longest path would be the maximum of a set of, possibly dependent, random variables. Evaluating or approximating the distribution of the longest path, even under very specific distributional assumptions on the activity durations is not a very easy problem. It is not surprising that this topic is the subject of much research.

In view of the inaccuracies that can stem from the original PERT assumptions, many people prefer to resort to the use of Monte Carlo Simulation. Van Slyke (1963) made the first attempt at straightforward simulation to analyze the distribution of the critical path. Refer to Elmaghraby (1977) for a detailed synopsis of the pitfalls of making traditional PERT assumptions and for an introduction to simulation techniques for activity networks.

Example 2.22. Scheduling Course - Teacher Combinations

This example demonstrates the use of PROC CPM for a typical scheduling problem that may not necessarily fit into a conventional project management scenario. Such problems abound in practice and can usually be solved using a mathematical programming model. Here, the problem is modeled as a resource-allocation problem using PROC CPM, illustrating the richness of the modeling environment that is available with the SAS System. (Refer also to Kulkarni (1991) and SAS/OR...
Software: Project Management Examples for another example of course scheduling using PROC CPM.)

A committee for academically gifted children wishes to conduct some special classes on weekends. There are four subjects that are to be taught and a number of teachers available to teach them. Only certain course-teacher combinations are allowed. There is a constraint on the number of rooms that are available and some teachers may not be able to teach at certain times. Possible class times are one-hour periods between 9 a.m and 12 noon on Saturdays and Sundays. The goal is to determine a feasible schedule of classes specifying the teacher that is to teach each class.

Suppose that there are four courses, c1, c2, c3, and c4, and three teachers, t1, t2, and t3. There are several ways of modeling this problem; one possible way is to form distinct classes for each possible course-teacher combination and treat each of these as a distinct activity that needs to be scheduled. For example, if course c1 can be taught by teachers t1, t2, and t3, define three activities, ‘c1t1’, ‘c1t2’, and ‘c1t3’. The resources for this problem are the courses, the teachers, and the number of rooms. In particular, the resources needed for a particular activity, say, ‘c1t3’, are c1 and t3.

The following constraints are imposed:

- Course 1 can be taught by Teachers 1, 2, and 3; Course 2 can be taught by Teachers 1 and 3; Course 3 can be taught by Teachers 1, 2, and 3; and Course 4 can be taught by Teachers 1 and 2.
- The total number of classes taught at any time cannot exceed NROOMS.
- Class ‘citj’ (if such a course-teacher combination is allowed) can be taught only at times when teacher tj is available.
- At any given time, a teacher can teach only one class.
- At any given time, only one class is to be taught for any given course.

The following program uses PROC CPM to schedule the classes. The schedule is obtained in terms of unformatted numeric values; the times 1, 2, 3, 4, 5, and 6 are interpreted as the six different time slots that are possible, namely, Saturday 9, 10, and 11 a.m. and Sunday 9, 10, and 11 a.m.

The data set CLASSES is the Activity data set, and it indicates the possible course-teacher combinations and identifies the specific room, teacher, and course as the resources required. For each activity, the duration is 1 unit. Note that, in this example, there are no precedence constraints between the activities; the resource availability dictates the schedule entirely. However, there may be situations (such as prerequisite courses) that impose precedence constraints.

The Resource data set, RESOURCE, specifies resource availabilities. The period variable, per, indicates the time period from which resources are available. Since only one class corresponding to a given course is to be taught at a given time, the availability for c1 – c4 is specified as ‘1’. Teacher 2 is available only on Sunday; thus, specify the availability of t2 to be 1 from time period 4. The total number of rooms available at a given time is three. Thus, no more than three classes can be scheduled at a given time.
In the invocation of PROC CPM, the STOPDATE= option is used in the RESOURCE statement, thus restricting resource constrained scheduling to the first six time periods. Not all of the specified activities may be scheduled within the time available, in which case the unscheduled activities represent course-teacher combinations that are not feasible under the given conditions. The schedule obtained by PROC CPM is saved in a data set that is displayed, in Output 2.22.1, after formatting the activity names and the schedule times appropriately. Note that, in this example, all the course-teacher combinations are scheduled within the two-day time period.

```sas
title 'Scheduling Course / Teacher Combinations';
data classes;
    input class $ succ $ dur c1-c4 t1-t3 nrooms;
datalines;
c1t1 . 1 1 . . . 1 . . 1
  c1t2 . 1 1 . . . 1 . . 1
  c1t3 . 1 1 . . . 1 1 1
  c2t1 . 1 . 1 . . 1 . . 1
  c2t3 . 1 . 1 . . 1 1 1
  c3t1 . 1 . . 1 . 1 . . 1
  c3t2 . 1 . . 1 . . 1 . 1
  c3t3 . 1 . . 1 . . 1 1 1
  c4t1 . 1 . . 1 . 1 . 1 1
  c4t2 . 1 . . 1 . 1 1 1 1;

data resource;
    input per c1-c4 t1-t3 nrooms;
datalines;
1 1 1 1 1 1 1 3
4 . . . . . 1 . .
;
proc cpm data=classes out=sched
    resin=resource;
    activity class;
    duration dur;
    successor succ;
    resource c1-c4 t1-t3 nrooms / period=per stopdate=6;
run;

proc format;
    value classtim
        1 = 'Saturday 9:00-10:00'
        2 = 'Saturday 10:00-11:00'
        3 = 'Saturday 11:00-12:00'
        4 = 'Sunday 9:00-10:00'
        5 = 'Sunday 10:00-11:00'
        6 = 'Sunday 11:00-12:00'
        7 = 'Not Scheduled'
    ;
    value $classt
        c1t1 = 'Class 1, Teacher 1'
        c1t2 = 'Class 1, Teacher 2'
    ;
```
Chapter 2. The CPM Procedure

C1T3 = 'Class 1, Teacher 3'
C2T1 = 'Class 2, Teacher 1'
C2T2 = 'Class 2, Teacher 2'
C2T3 = 'Class 2, Teacher 3'
C3T1 = 'Class 3, Teacher 1'
C3T2 = 'Class 3, Teacher 2'
C3T3 = 'Class 3, Teacher 3'
C4T1 = 'Class 4, Teacher 1'
C4T2 = 'Class 4, Teacher 2'
C4T3 = 'Class 4, Teacher 3'

\;

data schedtim;
set sched;
format classtim classtim.;
format class $classt.;
if (s_start <= 6) then classtim = s_start;
else classtim = 7;
run;

title2 'Schedule of Classes';
proc print;
 id class;
 var classtim;
run;

<table>
<thead>
<tr>
<th>Class</th>
<th>Teacher</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Teacher 1</td>
<td>Saturday 9:00-10:00</td>
</tr>
<tr>
<td>Class 1</td>
<td>Teacher 2</td>
<td>Sunday 9:00-10:00</td>
</tr>
<tr>
<td>Class 2</td>
<td>Teacher 1</td>
<td>Saturday 10:00-11:00</td>
</tr>
<tr>
<td>Class 2</td>
<td>Teacher 3</td>
<td>Saturday 10:00-11:00</td>
</tr>
<tr>
<td>Class 3</td>
<td>Teacher 1</td>
<td>Saturday 11:00-12:00</td>
</tr>
<tr>
<td>Class 3</td>
<td>Teacher 2</td>
<td>Sunday 10:00-11:00</td>
</tr>
<tr>
<td>Class 3</td>
<td>Teacher 3</td>
<td>Sunday 9:00-10:00</td>
</tr>
<tr>
<td>Class 4</td>
<td>Teacher 1</td>
<td>Sunday 9:00-10:00</td>
</tr>
<tr>
<td>Class 4</td>
<td>Teacher 2</td>
<td>Sunday 11:00-12:00</td>
</tr>
</tbody>
</table>

Output 2.22.1. Class Schedule

Scheduling Course / Teacher Combinations
Schedule of Classes

There may be several other constraints that you want to impose on the courses scheduled. These can usually be modeled suitably by changing the resource availability profile. For example, suppose that you want to schedule more classes at 10 a.m. and fewer at other times. The following program creates a new Resource data set, RESOURCE2, that changes the number of rooms available. Again, PROC CPM is invoked with the STOPDATE= option, and the resulting schedule is displayed in Output 2.22.2. The schedule can also be displayed graphically using the NETDRAW procedure, as illustrated in a similar problem in Example 7.16 in Chapter 7, “The NETDRAW Procedure.”
data resourc2;
 input per c1-c4 t1-t3 nrooms;
 datalines;
 1 1 1 1 1 1 . 1 1
 2 3
 3 2
 4 1 . 1
 5 3;

 proc cpm data=classes out=sched2
 resin=resourc2;
 activity class;
 duration dur;
 successor succ;
 resource c1-c4 t1-t3 nrooms / period=per stopdate=6;
 run;

data schedtim;
 set sched2;
 format classtim classtim.;
 format class $classt.;
 if (s_start <= 6) then classtim = s_start;
 else classtim = 7;
 run;

 title2 'Alternate Schedule with Additional Constraints';
 proc print;
 id class;
 var classtim;
 run;

Output 2.22.2. Alternate Class Schedule

<table>
<thead>
<tr>
<th>Class</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1, Teacher 1</td>
<td>Saturday 9:00-10:00</td>
</tr>
<tr>
<td>Class 1, Teacher 2</td>
<td>Sunday 9:00-10:00</td>
</tr>
<tr>
<td>Class 1, Teacher 3</td>
<td>Saturday 10:00-11:00</td>
</tr>
<tr>
<td>Class 2, Teacher 1</td>
<td>Saturday 10:00-11:00</td>
</tr>
<tr>
<td>Class 2, Teacher 3</td>
<td>Saturday 11:00-12:00</td>
</tr>
<tr>
<td>Class 3, Teacher 1</td>
<td>Saturday 11:00-12:00</td>
</tr>
<tr>
<td>Class 3, Teacher 2</td>
<td>Sunday 10:00-11:00</td>
</tr>
<tr>
<td>Class 3, Teacher 3</td>
<td>Sunday 11:00-12:00</td>
</tr>
<tr>
<td>Class 4, Teacher 1</td>
<td>Sunday 10:00-11:00</td>
</tr>
<tr>
<td>Class 4, Teacher 2</td>
<td>Sunday 11:00-12:00</td>
</tr>
</tbody>
</table>

Example 2.23. Multiproject Scheduling

This example illustrates multiproject scheduling. Consider a Survey project that contains three phases, Plan, Prepare, and Implement, with each phase containing more than one activity. You can consider each phase of the project as a subproject within
Chapter 2. The CPM Procedure

the master project, Survey. Each subproject in turn contains the lowest level activities, also referred to as the leaf tasks. The Activity data set, containing the task durations, project hierarchy, and the precedence constraints, is displayed in Output 2.23.1.

The PROJECT and ACTIVITY variables together define the project hierarchy using the parent/child relationship. Thus, the subproject, ‘Plan’, contains the two leaf tasks, ‘plan sur’ and ‘design q’. Precedence constraints are specified between leaf tasks as well as between subprojects. For example, the subproject ‘Prepare’ is followed by the subproject ‘Implement’. Durations are specified for all the tasks in the project, except for the master project ‘Survey’.

In addition to the Activity data set, define a Holiday data set, also displayed in Output 2.23.1.

Output 2.23.1. Survey Project

<p>| Survey Project |
| Activity Data Set SURVEY |</p>
<table>
<thead>
<tr>
<th>Obs id</th>
<th>activity</th>
<th>duration</th>
<th>succ1</th>
<th>succ2</th>
<th>succ3</th>
<th>project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plan</td>
<td>plan sur</td>
<td>4</td>
<td>hire per</td>
<td>design q</td>
<td>Plan</td>
</tr>
<tr>
<td>2</td>
<td>Hire Personnel</td>
<td>hire per</td>
<td>5</td>
<td>trn per</td>
<td></td>
<td>Prepare</td>
</tr>
<tr>
<td>3</td>
<td>Design Questionnaire</td>
<td>design q</td>
<td>3</td>
<td>trn per</td>
<td>select h</td>
<td>print q</td>
</tr>
<tr>
<td>4</td>
<td>Train Personnel</td>
<td>trn per</td>
<td>3</td>
<td></td>
<td></td>
<td>Prepare</td>
</tr>
<tr>
<td>5</td>
<td>Select Households</td>
<td>select h</td>
<td>3</td>
<td></td>
<td></td>
<td>Prepare</td>
</tr>
<tr>
<td>6</td>
<td>Print Questionnaire</td>
<td>print q</td>
<td>4</td>
<td></td>
<td></td>
<td>Prepare</td>
</tr>
<tr>
<td>7</td>
<td>Conduct Survey</td>
<td>cond sur</td>
<td>10</td>
<td>analyze</td>
<td></td>
<td>Implement</td>
</tr>
<tr>
<td>8</td>
<td>Analyze Results</td>
<td>analyze</td>
<td>6</td>
<td></td>
<td></td>
<td>Implement</td>
</tr>
<tr>
<td>9</td>
<td>Plan</td>
<td>Plan</td>
<td>6</td>
<td></td>
<td></td>
<td>Survey</td>
</tr>
<tr>
<td>10</td>
<td>Prepare</td>
<td>Prepare</td>
<td>8</td>
<td></td>
<td></td>
<td>Survey</td>
</tr>
<tr>
<td>11</td>
<td>Implement</td>
<td>Implement</td>
<td>18</td>
<td></td>
<td></td>
<td>Survey</td>
</tr>
<tr>
<td>12</td>
<td>Survey Project</td>
<td>Survey</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Survey Project |
| Holiday Data Set HOLIDATA |</p>
<table>
<thead>
<tr>
<th>Obs</th>
<th>hol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09APR04</td>
</tr>
</tbody>
</table>

The following statements invoke PROC CPM with a PROJECT statement identifying the parent task for each subtask in the Survey project. The calendar followed is a weekday calendar with a holiday defined on April 9, 2004. The ORDERALL option on the PROJECT statement creates the ordering variables ES_ASC and LS_ASC in the Schedule data set, and the ADDWBS option creates a work breakdown structure code for the project. The Schedule data set is displayed in Output 2.23.2, after being sorted by the variable ES_ASC.

Note that the PROJ_DUR variable is missing for all the leaf tasks, and it contains the project duration for the supertasks. The project duration is computed as the span of all the subtasks of the supertask. The PROJ.LEV variable specifies the level of the subtask within the tree defining the project hierarchy, starting with the level ‘0’ for the master project (or the root), ‘Survey’. The variable WBS_CODE contains
the Work Breakdown Structure code defined by the CPM procedure using the project hierarchy.

```
proc cpm data=survey date='29mar04'd out=survout1
   interval=weekday holidata=holidata;
   activity activity;
   successor succ1-succ3;
   duration duration;
   id id;
   holiday hol;
   project project / orderall addwbs;
run;
```

```
proc sort;
   by es_asc;
run;
```

```
title 'Conducting a Market Survey';
title2 'Early and Late Start Schedule';
proc print;
run;
```
Output 2.23.2. Survey Project Schedule

Conducting a Market Survey
Early and Late Start Schedule

<table>
<thead>
<tr>
<th>P</th>
<th>P</th>
<th>W</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>R</td>
<td>B</td>
<td>c</td>
<td>u</td>
</tr>
<tr>
<td>r</td>
<td>O</td>
<td>S</td>
<td>t</td>
<td>r</td>
</tr>
<tr>
<td>o</td>
<td>J</td>
<td>i</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>j</td>
<td>C</td>
<td>v</td>
<td>u</td>
<td>u</td>
</tr>
<tr>
<td>O</td>
<td>e</td>
<td>D</td>
<td>L</td>
<td>O</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>U</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>s</td>
<td>t</td>
<td>R</td>
<td>V</td>
<td>E</td>
</tr>
</tbody>
</table>

1	28	0	0	Survey		
2	7	1	0.0	Plan		
3	2	0.0.0	plan sur	hire per	design q	
4	2	0.0.1	design q	trn per	select h	print q
5	8	1	0.1	Prepare		
6	2	0.1.0	hire per	trn per		
7	2	0.1.2	select h			
8	2	0.1.3	print q			
9	2	0.1.1	trn per			
10	16	1	0.2	Implement		
11	2	0.2.0	cond sur	analyze		
12	2	0.2.1	analyze			

Next, a Gantt chart of the master project schedule is produced with the subtasks of each project indented under the parent task. To produce the required indentation, prefix the Activity description (saved in the variable `id`) by a suitable number of blanks using a simple DATA step. The following program shows the DATA step and the invocation of the GANTT procedure; the resulting Gantt chart is plotted in Output 2.23.3. Note the precedence constraints between the two supertasks 'Prepare' and 'Implement'.

```r
data gant;
  length id $26.;
  set survout1;
  if proj_lev=1 then id=" "||id;
```
Example 2.23. Multiproject Scheduling

```sas
else if proj_lev=2 then id="||id;
run;

gooptions hpos=80 vpos=43;
title c=black f=swiss 'Conducting a Market Survey';
title2 c=black f=swiss h=1.5 'Project Schedule';

proc gantt graphics data=gant holidata=holidata;
  chart /
    holiday=(hol)
    interval=weekday
    font=swiss skip=2 height=1.2
    nojobnum
    compress noextrange
    activity=activity succ=(succ1-succ3)
    cprec=cyan cmile=magenta
    caxis=black cframe=ligr;
  id id;
run;
```

Output 2.23.3. Gantt Chart of Schedule

PROJ_LEV, WBS_CODE, and other project-related variables can be used to display selected information about specific subprojects, summary information about subprojects at a given level of the hierarchy, and more. For example, the following statements display the summary schedule of the first level subtasks of the Survey project (Output 2.23.4).

```sas

Output 2.23.4. Gantt Chart of Project Schedule

---

```
sas ```

```sas

```
```
Chapter 2. The CPM Procedure

```sas
proc print data=survout1;
 where proj_lev=1;
 id activity;
 var proj_dur duration e_start--t_float;
run;
```

Output 2.23.4. Survey Project Summary

<table>
<thead>
<tr>
<th>activity</th>
<th>PROJ_DUR</th>
<th>duration</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>7</td>
<td>6</td>
<td>29MAR04</td>
<td>06APR04</td>
<td>29MAR04</td>
<td>07APR04</td>
<td>1</td>
</tr>
<tr>
<td>Prepare</td>
<td>8</td>
<td>8</td>
<td>02APR04</td>
<td>14APR04</td>
<td>02APR04</td>
<td>14APR04</td>
<td>0</td>
</tr>
<tr>
<td>Implement</td>
<td>16</td>
<td>18</td>
<td>15APR04</td>
<td>06MAY04</td>
<td>15APR04</td>
<td>06MAY04</td>
<td>0</td>
</tr>
</tbody>
</table>

The variable WBS_CODE in the Schedule data set (see Output 2.23.2) contains the Work Breakdown structure code defined by the CPM procedure. This code is defined to be ‘0.1’ for the subproject ‘Prepare’. Thus, the values of WBS_CODE for all subtasks of this subproject are prefixed by ‘0.1’. To produce reports for the subproject ‘Prepare’, you can use a simple WHERE clause to subset the required observations from the Schedule data set, as shown in the following statements.

```sas
title 'Market Survey';
title2 'Sub-Project Schedule';
proc print data=survout1;
 where substr(WBS_CODE,1,3) = "0.1";
 id activity;
 var project--activity duration e_start--t_float;
run;
```

Output 2.23.5. Subproject Schedule

<table>
<thead>
<tr>
<th>a</th>
<th>P</th>
<th>P</th>
<th>c</th>
<th>p</th>
<th>R</th>
<th>R</th>
<th>c</th>
<th>u</th>
<th>E</th>
<th>_</th>
<th>L</th>
<th>_</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>r</td>
<td>O</td>
<td>O</td>
<td>S</td>
<td>t</td>
<td>r</td>
<td>_</td>
<td>F</td>
<td>_</td>
<td>F</td>
<td>_</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>o</td>
<td>J</td>
<td>J</td>
<td>i</td>
<td>a</td>
<td>S</td>
<td>I</td>
<td>S</td>
<td>I</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>j</td>
<td>_</td>
<td>C</td>
<td>v</td>
<td>t</td>
<td>T</td>
<td>N</td>
<td>T</td>
<td>N</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>e</td>
<td>D</td>
<td>L</td>
<td>O</td>
<td>i</td>
<td>i</td>
<td>A</td>
<td>I</td>
<td>A</td>
<td>I</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>c</td>
<td>U</td>
<td>E</td>
<td>D</td>
<td>t</td>
<td>o</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>t</td>
<td>R</td>
<td>V</td>
<td>E</td>
<td>y</td>
<td>n</td>
<td>T</td>
<td>H</td>
<td>T</td>
<td>H</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepare Survey 8 1 0.1 Prepare 8 02APR04 14APR04 02APR04 02APR04 0 0 0 0
hire per Prepare . 2 0.1.0 hire per 5 02APR04 08APR04 02APR04 08APR04 0 0 0 0
select h Prepare . 2 0.1.2 select h 3 07APR04 12APR04 12APR04 12APR04 14APR04 2 2 1 2
print q Prepare . 2 0.1.3 print q 4 07APR04 13APR04 08APR04 14APR04 14APR04 1 1 1 1
trn per Prepare . 2 0.1.1 trn per 3 12APR04 14APR04 12APR04 12APR04 14APR04 0 0 0 0

In the first invocation of PROC CPM, the Survey project is scheduled with only a specification for the project start date. Continuing, this example shows how you can impose additional constraints on the master project or on the individual subprojects.
First, suppose that you impose a FINISHBEFORE constraint on the Survey project by specifying the FBDATE to be May 10, 2004. The following program schedules the project with a project start and finish specification. The resulting summary schedule for the subprojects is shown in Output 2.23.6. Note that the late finish time of the project is the 7th of May because there is a weekend on the 8th and 9th of May, 2004.

```plaintext
proc cpm data=survey date='29mar04'd out=survout2
 interval=weekday holidata=holidata
 fbdate='10may04'd; /* project finish date */
 activity activity;
 successor succ1-succ3;
 duration duration;
 id id;
 holiday hol;
 project project / orderall addwbs;
run;
```

```
title 'Market Survey';
title2 'Summary Schedule: FBDATE Option';
proc print data=survout2;
 where proj_lev=1; /* First level subprojects */
 id activity;
 var proj_dur duration e_start--t_float;
run;
```

**Output 2.23.6.** Summary Schedule: FBDATE Option

<table>
<thead>
<tr>
<th>activity</th>
<th>PROJ_DUR</th>
<th>duration</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>7</td>
<td>6</td>
<td>29MAR04</td>
<td>06APR04</td>
<td>30MAR04</td>
<td>08APR04</td>
<td>2</td>
</tr>
<tr>
<td>Prepare</td>
<td>8</td>
<td>8</td>
<td>02APR04</td>
<td>14APR04</td>
<td>05APR04</td>
<td>15APR04</td>
<td>1</td>
</tr>
<tr>
<td>Implement</td>
<td>16</td>
<td>18</td>
<td>15APR04</td>
<td>06MAY04</td>
<td>16APR04</td>
<td>07MAY04</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that the procedure computes the backward pass of the schedule starting from the project finish date. Thus, the critical path is computed in the context of the entire project. If you want to obtain individual critical paths for each subproject, use the SEPCRIT option on the PROJECT statement. You can see the effect of this option in Output 2.23.7: all the subprojects have T_FLOAT = ‘0’.

**Output 2.23.7.** Summary Schedule: FBDATE and SEPCRIT Options

<table>
<thead>
<tr>
<th>activity</th>
<th>PROJ_DUR</th>
<th>duration</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>7</td>
<td>6</td>
<td>29MAR04</td>
<td>06APR04</td>
<td>29MAR04</td>
<td>06APR04</td>
<td>0</td>
</tr>
<tr>
<td>Prepare</td>
<td>8</td>
<td>8</td>
<td>02APR04</td>
<td>14APR04</td>
<td>02APR04</td>
<td>14APR04</td>
<td>0</td>
</tr>
<tr>
<td>Implement</td>
<td>16</td>
<td>18</td>
<td>15APR04</td>
<td>06MAY04</td>
<td>15APR04</td>
<td>06MAY04</td>
<td>0</td>
</tr>
</tbody>
</table>
Chapter 2. The CPM Procedure

Now, suppose that, in addition to imposing a FINISHBEFORE constraint on the entire project, the project manager for each subproject specifies a desired duration for his or her subproject. In the present example, the variable `duration` has values ‘6’, ‘8’, and ‘18’ for the three subprojects. Note that by default these values are not used in either the backward or forward pass, even though they may represent desired durations for the corresponding subprojects. You can specify the USEPROJDUR option on the PROJECT statement to indicate that the procedure should use these specified durations to determine the late finish schedule for each of the subprojects. In other words, if the USEPROJDUR option is specified, the late finish for each subproject is constrained to be less than or equal to

\[ E_{\text{START}} + \text{duration} \]

and this value is used during the backward pass.

The summary schedule resulting from the use of the USEPROJDUR option is shown in Output 2.23.8. Note the difference in the schedules in Output 2.23.7 and Output 2.23.8. In Output 2.23.7, the computed project duration, `PROJ_DUR`, is used to set an upper bound on the late finish time of each subproject, while in Output 2.23.8, the specified project duration is used for the same purpose. Here, only the summary schedules are displayed; the effect of the two options on the subtasks within each subproject can be seen by displaying the entire schedule in each case. A Gantt chart of the entire project is displayed in Output 2.23.9.

**Output 2.23.8. Summary Schedule: FBDATE and USEPROJDUR Options**

<table>
<thead>
<tr>
<th>activity</th>
<th>PROJ_DUR</th>
<th>duration</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>7</td>
<td>6</td>
<td>29MAR04</td>
<td>06APR04</td>
<td>26MAR04</td>
<td>05APR04</td>
<td>-1</td>
</tr>
<tr>
<td>Prepare</td>
<td>8</td>
<td>8</td>
<td>02APR04</td>
<td>14APR04</td>
<td>02APR04</td>
<td>14APR04</td>
<td>0</td>
</tr>
<tr>
<td>Implement</td>
<td>16</td>
<td>18</td>
<td>15APR04</td>
<td>06MAY04</td>
<td>16APR04</td>
<td>07MAY04</td>
<td>1</td>
</tr>
</tbody>
</table>
The project schedule is further affected by the presence of any alignment dates on the individual activities or subprojects. For example, if the implementation phase of the project has a deadline of May 5, 2004, you can specify an alignment date and type variable with the appropriate values for the subproject ‘Implement’, as follows, and invoke PROC CPM with the ALIGNDATE and ALIGNTYPE statements, to obtain the new schedule, displayed in Output 2.23.10.

```plaintext
data survey2;
 format aldate date7.;
 set survey;
 if activity="Implement" then do;
 altype="fle";
 aldate='5may04'd;
 end;
run;

proc cpm data=survey2 date='29mar04'd out=survout5
 interval=weekday holidata=holidata
 fbdate='10jun04'd;
 activity activity;
 successor succ1-succ3;
 duration duration;
 id id;
 holiday hol;
 project project / orderall addwbs sepcrit useprojdur;
 aligntype altype;
```

The project schedule is further affected by the presence of any alignment dates on the individual activities or subprojects. For example, if the implementation phase of the project has a deadline of May 5, 2004, you can specify an alignment date and type variable with the appropriate values for the subproject ‘Implement’, as follows, and invoke PROC CPM with the ALIGNDATE and ALIGNTYPE statements, to obtain the new schedule, displayed in Output 2.23.10.

![Gantt Chart of Schedule](image-url)
aligndate aldate;
run;

title 'Market Survey';
title2 'USEPROJDUR option and Alignment date';
proc print;
  where proj_lev=1;
  id activity;
  var proj_dur duration e_start--t_float;
run;

Output 2.23.10. USEPROJDUR option and Alignment Date

<table>
<thead>
<tr>
<th>Activity</th>
<th>PROJ_DUR</th>
<th>Duration</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>7</td>
<td>6</td>
<td>29MAR04</td>
<td>06APR04</td>
<td>26MAR04</td>
<td>05APR04</td>
<td>-1</td>
</tr>
<tr>
<td>Prepare</td>
<td>8</td>
<td>8</td>
<td>02APR04</td>
<td>14APR04</td>
<td>01APR04</td>
<td>13APR04</td>
<td>-1</td>
</tr>
<tr>
<td>Implement</td>
<td>16</td>
<td>18</td>
<td>15APR04</td>
<td>06MAY04</td>
<td>14APR04</td>
<td>05MAY04</td>
<td>-1</td>
</tr>
</tbody>
</table>

Example 2.24. Resource-Driven Durations and Resource Calendars

This example illustrates the effect of resource-driven durations and resource calendars on the schedule of a project involving multiple resources.

In projects that use manpower as a resource, the same activity may require different amounts of work from different people. Also, the work schedules and vacations may differ for each individual person. All of these factors may cause the schedules for the different resources used by the activity to differ from each other.

Consider a software project requiring two resources: a programmer and a tester. A network diagram displaying the activities and their precedence relationships is shown in Figure 2.8.
Figure 2.8. Software Project Network

Some of the activities in this project have a fixed duration, requiring the same length of time from both resources; others require a different number of days from the programmer and the tester. Further, some activities require only a fraction of the resource; for example, ‘Documentation’ requires only 20 percent of the programmer’s time for a total of two man-days. The activities in the project, their durations (if fixed) in days, the total work required (if resource-driven) in days, the precedence constraints, and the resource requirements are displayed in Output 2.24.1. Note that there are two observations for some of the activities (‘Product Design’ and ‘Documentation’) which require different amounts of work from each resource.
Output 2.24.1. Project Data

<table>
<thead>
<tr>
<th>Activity</th>
<th>act</th>
<th>s1</th>
<th>s2</th>
<th>dur</th>
<th>mandays</th>
<th>Programmer</th>
<th>Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqs</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1.0</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Test Plan</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>.</td>
<td>.</td>
<td>2</td>
<td>0.2</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>8</td>
<td>.</td>
<td>10</td>
<td>0.8</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>Test Data</td>
<td>6</td>
<td>8</td>
<td>.</td>
<td>5</td>
<td>.</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Test Routines</td>
<td>7</td>
<td>8</td>
<td>.</td>
<td>5</td>
<td>.</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>9</td>
<td>.</td>
<td>6</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>9</td>
<td>.</td>
<td>.</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

The following statements invoke PROC CPM with a WORK= specification on the RESOURCE statement, which identifies (in number of man-days, in this case) the amount of work required from each resource used by an activity. If the WORK variable has a missing value, the activity in that observation is assumed to have a fixed duration. The project is scheduled to start on April 12, 2004, and the activities are assumed to follow a five-day work week. Unlike fixed-duration scheduling, each resource used by an activity could have a different schedule; an activity is assumed to be finished only when all of its resources have finished working on it.

```plaintext
proc cpm data=software out=sftout ressched=rsftout
date=’12apr04’d interval=weekday resout=rout;
act act;
succ s1 s2;
dur dur;
res Programmer Tester / work=mandays
 rschedid=Activity;
 id Activity;
run;
```

The individual resource schedules, as well as each activity’s combined schedule, are saved in a Resource Schedule data set, RSFTOUT, requested by the RESSCHED= option on the CPM statement. This output data set (displayed in Output 2.24.2) is very similar to the Schedule data set and contains the activity variable and all the relevant schedule variables (E–START, E–FINISH, L–START, and so forth).
## Output 2.24.2. Resource Schedule Data Set

### Software Development

<table>
<thead>
<tr>
<th>Resource Schedule Data Set RSFTOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A</strong></td>
</tr>
<tr>
<td>Plans &amp; Reqs 1</td>
</tr>
<tr>
<td>Plans &amp; Reqs 1 Programmer FIXED</td>
</tr>
<tr>
<td>Plans &amp; Reqs 1 Tester FIXED</td>
</tr>
<tr>
<td>Product Design 2</td>
</tr>
<tr>
<td>Product Design 2 Programmer RDRIVEN</td>
</tr>
<tr>
<td>Product Design 2 Tester RDRIVEN</td>
</tr>
<tr>
<td>Test Plan 3</td>
</tr>
<tr>
<td>Test Plan 3 Tester FIXED</td>
</tr>
<tr>
<td>Documentation 4</td>
</tr>
<tr>
<td>Documentation 4 Programmer RDRIVEN</td>
</tr>
<tr>
<td>Documentation 4 Tester RDRIVEN</td>
</tr>
<tr>
<td>Code 5</td>
</tr>
<tr>
<td>Code 5 Programmer FIXED</td>
</tr>
<tr>
<td>Test Data 6</td>
</tr>
<tr>
<td>Test Data 6 Tester FIXED</td>
</tr>
<tr>
<td>Test ROUTINES 7</td>
</tr>
<tr>
<td>Test ROUTINES 7 Tester FIXED</td>
</tr>
<tr>
<td>Test Product 8</td>
</tr>
<tr>
<td>Test Product 8 Programmer FIXED</td>
</tr>
<tr>
<td>Test Product 8 Tester FIXED</td>
</tr>
<tr>
<td>Finish 9</td>
</tr>
</tbody>
</table>

For each activity in the project, the Resource Schedule data set contains the schedule for the entire activity as well as the schedule for each resource used by the activity. The variable RESOURCE identifies the name of the resource to which the observation refers and has missing values for observations that refer to the entire activity’s schedule. The value of the variable DUR–TYPE indicates whether the resource drives the activity’s duration (‘RDRIVEN’) or not (‘FIXED’).

The DURATION variable, dur, indicates the duration of the activity for the resource identified in that observation. For resources that are of the driving type, the WORK variable, mandays, shows the total amount of work (in units of the INTERVAL parameter) required by the resource for the activity in that observation. The variable R–RATE shows the rate of usage of the resource for the relevant activity. Note that for driving resources, the variable dur is computed as (mandays / R–RATE). Thus, for the Activity, ‘Documentation’, the programmer requires 10 days to complete 2 man-days of work at a rate of 20 percent per day, while the tester works at a rate of 50 percent requiring 2 days to complete 1 man-day of work.

A Gantt chart of the schedules for each resource is plotted in Output 2.24.3.
The daily utilization of the resources is also saved in a data set, ROUT, displayed in Output 2.24.4. The resource usage data set indicates that you need more than one tester on some days with both the early schedule (on the 14th, 19th, and 20th of April) and the late schedule (on the 7th and 10th of May).
Output 2.24.4. Resource Usage Data

<table>
<thead>
<tr>
<th>Obs</th>
<th><em>TIME</em></th>
<th>EProgrammer</th>
<th>LProgrammer</th>
<th>ETester</th>
<th>LTester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>13APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>14APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>15APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>16APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>19APR04</td>
<td>1.0</td>
<td>0.8</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>20APR04</td>
<td>1.0</td>
<td>0.8</td>
<td>1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>21APR04</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>22APR04</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>23APR04</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>11</td>
<td>26APR04</td>
<td>1.0</td>
<td>0.8</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>12</td>
<td>27APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>13</td>
<td>28APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>14</td>
<td>29APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>30APR04</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>16</td>
<td>03MAY04</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>17</td>
<td>04MAY04</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>18</td>
<td>05MAY04</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>19</td>
<td>06MAY04</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>20</td>
<td>07MAY04</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>21</td>
<td>10MAY04</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>22</td>
<td>11MAY04</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Suppose now that you have only one tester and one programmer. You can determine a resource-constrained schedule using PROC CPM (as in the fixed duration case) by specifying a resource availability data set, RESIN (Output 2.24.5).

Output 2.24.5. Resource Availability Data

<table>
<thead>
<tr>
<th>Obs</th>
<th><em>TIME</em></th>
<th>per</th>
<th>otype</th>
<th>Programmer</th>
<th>Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12APR04</td>
<td>reslevel</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The following statements invoke PROC CPM, and the resulting Resource Schedule data set is displayed in Output 2.24.6. The ADDCAL option on the RESOURCE statement creates a variable in the Resource Schedule data set which identifies the activity or resource calendar. Note that the project still finishes on May 11, but some of the activities (‘Test Plan’, ‘Documentation’, ‘Test Data’, and ‘Test Routines’) are delayed. The resource-constrained schedule is plotted on a Gantt chart in Output 2.24.7; both resources follow the same weekday calendar.

```plaintext
proc cpm data=software resin=resin
 out=sftout1 resout=rout1
 rsched=rftout1
 date='12apr04'd interval=weekday;
 act act;
 succ s1 s2;
```
Chapter 2. The CPM Procedure

```
dur dur;
res Programmer Tester / work=mandays addcal
 obstype=otype
 period=per
 rschedid=Activity;

id Activity;
run;
```

**Output 2.24.6.** Resource-Constrained Schedule: Common Calendar

### Software Development

<table>
<thead>
<tr>
<th>Activity</th>
<th>act</th>
<th><em>CAL</em></th>
<th>RESOURCE</th>
<th>DUR_TYPE</th>
<th>dur</th>
<th>mandays</th>
<th>R_RATE</th>
<th>S_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>0</td>
<td>Programmer</td>
<td>FIXED</td>
<td>2</td>
<td>.</td>
<td>.</td>
<td>12APR04</td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>0</td>
<td>Tester</td>
<td>FIXED</td>
<td>2</td>
<td>.</td>
<td>1.0</td>
<td>12APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>0</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>3</td>
<td>3</td>
<td>1.0</td>
<td>14APR04</td>
</tr>
<tr>
<td>Test Plan</td>
<td>3</td>
<td>0</td>
<td>Tester</td>
<td>RDRIVEN</td>
<td>3</td>
<td>3</td>
<td>1.0</td>
<td>15APR04</td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>0</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>10</td>
<td>2</td>
<td>0.2</td>
<td>27APR04</td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>0</td>
<td>Programmer</td>
<td>FIXED</td>
<td>10</td>
<td>.</td>
<td>0.8</td>
<td>19APR04</td>
</tr>
<tr>
<td>Test Data</td>
<td>6</td>
<td>0</td>
<td>Tester</td>
<td>FIXED</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>20APR04</td>
</tr>
<tr>
<td>Test Routines</td>
<td>7</td>
<td>0</td>
<td>Tester</td>
<td>FIXED</td>
<td>5</td>
<td>.</td>
<td>0.5</td>
<td>20APR04</td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>0</td>
<td>Programmer</td>
<td>FIXED</td>
<td>6</td>
<td>.</td>
<td>.</td>
<td>03MAY04</td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>0</td>
<td>Tester</td>
<td>FIXED</td>
<td>6</td>
<td>.</td>
<td>0.5</td>
<td>03MAY04</td>
</tr>
<tr>
<td>Finish</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>S_FINISH</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqts</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>14APR04</td>
<td>14APR04</td>
<td>14APR04</td>
<td>14APR04</td>
<td>16APR04</td>
</tr>
<tr>
<td>Test Plan</td>
<td>19APR04</td>
<td>14APR04</td>
<td>16APR04</td>
<td>21APR04</td>
<td>23APR04</td>
</tr>
<tr>
<td>Test Plan</td>
<td>19APR04</td>
<td>14APR04</td>
<td>16APR04</td>
<td>21APR04</td>
<td>23APR04</td>
</tr>
<tr>
<td>Documentation</td>
<td>10MAY04</td>
<td>19APR04</td>
<td>30APR04</td>
<td>27APR04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Documentation</td>
<td>10MAY04</td>
<td>19APR04</td>
<td>30APR04</td>
<td>27APR04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Documentation</td>
<td>28APR04</td>
<td>19APR04</td>
<td>20APR04</td>
<td>07MAY04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Code</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Code</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Data</td>
<td>26APR04</td>
<td>19APR04</td>
<td>23APR04</td>
<td>26APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Data</td>
<td>26APR04</td>
<td>19APR04</td>
<td>23APR04</td>
<td>26APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Routines</td>
<td>26APR04</td>
<td>19APR04</td>
<td>23APR04</td>
<td>26APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Routines</td>
<td>26APR04</td>
<td>19APR04</td>
<td>23APR04</td>
<td>26APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Product</td>
<td>10MAY04</td>
<td>03MAY04</td>
<td>10MAY04</td>
<td>03MAY04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Test Product</td>
<td>10MAY04</td>
<td>03MAY04</td>
<td>10MAY04</td>
<td>03MAY04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Test Product</td>
<td>10MAY04</td>
<td>03MAY04</td>
<td>10MAY04</td>
<td>03MAY04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Finish</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
</tr>
</tbody>
</table>
Now suppose that the tester switches to part-time employment, working only four
days a week. Thus, the two resources have different calendars. To determine the
effect this change has on the project schedule, define a calendar data set identifying
calendar ‘1’ as having a holiday on Friday (see Output 2.24.8). In a new resource
availability data set (also displayed in Output 2.24.8), associate calendar ‘1’ with
the resource Tester and calendar ‘0’ with the resource Programmer. Note that ‘0’
refers to the default calendar, which is the weekday calendar for this project (since
INTERVAL = WEEKDAY).

Output 2.24.7. Resource-Constrained Schedule

Output 2.24.8. Resource and Calendar Data
Next, invoke PROC CPM, as shown in the following statements, with the Activity, Resource, and Calendar data sets to obtain the revised schedule, plotted in Output 2.24.9. Note that the project is delayed by two days because of the TESTER’s shorter work week, which is illustrated by the longer holiday breaks in the TESTER’s schedule bars. The new resource constrained schedule is displayed in Output 2.24.10.

```sas
proc cpm data=software resin=resin2 caledata=calendar out=sftout2 rsched=rsftout2 resout=rout2
date=’12apr04’d interval=weekday;
act act;
succ s1 s2;
dur dur;
res Programmer Tester / work=mandays addcal
 obstype=otype
 period=per
 rschedid=Activity;

id Activity;
run;
```

**Output 2.24.9.** Resource-Constrained Schedule

![Software Development Resource Constrained Schedule: Multiple Resource Calendars](image)
Example 2.25. Resource-Driven Durations and Alternate Resources

Consider the software project defined in Example 2.24 but now the project requires a single resource: a programmer. A network diagram displaying the activities and their precedence relationships is shown in Figure 2.8, as part of the same example.

Some of the activities in this project have a fixed duration, requiring a fixed length of time from a programmer. Other activities specify the amount of work required in terms of man-days; for these activities, the length of the task will depend on the num-
ber of programmers (or rate) that is assigned to the task. The activities in the project, their durations (if fixed) or the total work required (if resource-driven) in days, the precedence constraints, and the resource requirements are displayed in Output 2.25.1.

Suppose that you have only one programmer assigned to the project. You can determine a resource-constrained schedule using PROC CPM by specifying a resource availability data set, `resin` (also in Output 2.25.1). Note that the Resource data set indicates that the resource `Programmer` is a driving resource whenever the WORK variable has a valid value.

**Output 2.25.1. Project Data**

<table>
<thead>
<tr>
<th>Software Development</th>
<th>Activity Data Set SOFTWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>act</td>
</tr>
<tr>
<td>Plans &amp; Reqs</td>
<td>1</td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
</tr>
<tr>
<td>Test Plan</td>
<td>3</td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
</tr>
<tr>
<td>Test Data</td>
<td>6</td>
</tr>
<tr>
<td>Test Routines</td>
<td>7</td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
</tr>
<tr>
<td>Finish</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software Development</th>
<th>Resource Availability Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>per</td>
</tr>
<tr>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>12APR04</td>
</tr>
</tbody>
</table>

The following statements invoke PROC CPM with a WORK= specification on the RESOURCE statement, which identifies (in number of man-days, in this case) the amount of work required from the resource `Programmer` for each activity. If the WORK variable has a missing value, the activity in that observation is assumed to have a fixed duration. The project is scheduled to start on April 12, 2004, and the activities are assumed to follow a five-day work week. The resulting schedule is displayed in Output 2.25.2. For each activity in the project, the value of the variable `DUR_TYPE` indicates whether the resource drives the activity’s duration (‘RDRIVEN’) or not (‘FIXED’).

```plaintext
proc cpm data=software
 out=sftout1 resout=rout1
 resched=rsftout1
 resin=resin
 date='12apr04'd interval=weekday;
act act;
succ s1 s2;
dur dur;
res Programmer / work=mandays
```
Example 2.25. Resource-Driven Durations and Alternate Resources

obstype=otype
period=per
id Activity;
run;

title 'Software Development';
title2 'Resource Constrained Schedule: Single Programmer';
proc print data=rsftout1;
id Activity;
run;

Output 2.25.2. Resource Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>act</th>
<th>RESOURCE</th>
<th>DUR_TYPE</th>
<th>dur</th>
<th>mandays</th>
<th>R_RATE</th>
<th>S_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>2</td>
<td>.</td>
<td>.</td>
<td>12APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>Programmer</td>
<td>FIXED</td>
<td>2</td>
<td>1</td>
<td>12APR04</td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>3</td>
<td>.</td>
<td>.</td>
<td>14APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>3</td>
<td>3</td>
<td>14APR04</td>
<td></td>
</tr>
<tr>
<td>Test Plan</td>
<td>3</td>
<td>3</td>
<td>.</td>
<td>.</td>
<td>14APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>11MAY04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>2</td>
<td>2</td>
<td>11MAY04</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>19APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>10</td>
<td>10</td>
<td>19APR04</td>
<td></td>
</tr>
<tr>
<td>Test Data</td>
<td>6</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>19APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Routines</td>
<td>7</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>19APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>6</td>
<td>.</td>
<td>.</td>
<td>03MAY04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>Programmer</td>
<td>FIXED</td>
<td>6</td>
<td>1</td>
<td>03MAY04</td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>9</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>13MAY04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following statements invoke PROC GANTT to display a Gantt chart of the schedule in Output 2.25.3. Note that the activity, ‘Documentation’, is delayed until May 11, 2004, because there is only one programmer available to the project.

```
title h=2 'Software Development';
title2 h=1.5 'Resource Constrained Schedule: Single Programmer';
proc gantt graphics data=sftout1;
```
Next, suppose that you have two programmers assigned to your project and you can use either one of them for a given task, depending on their availability. To model this scenario, specify Chris and John as alternate resources that can be substituted for the resource Programmer. The Resource data set, resin2, printed in Output 2.25.4, indicates that Chris and John are alternates for Programmer. Specifying an availability of ‘0’ for the resource Programmer ensures that the procedure will assign one of the two programmers, Chris or John, to each task.

The second observation in the data set resin2 indicates two different rates of substitution for the alternate resources. A value less than 1 indicates that the alternate resource is more efficient than the primary resource, while a value greater than 1 indicates that the alternate resource is less efficient. For fixed-duration activities, the use of the alternate resource changes the rate of utilization of the resource, while for a resource-driven activity, it changes the duration of the resource. The data set resin specifies that John is twice as efficient as the primary resource Programmer while Chris takes one and a half times as long as the generic resource to accomplish a task.
The following statements invoke PROC CPM with the new Resource data set and a modified Activity data set that includes the newly added resource variables, Chris and John. You can see the effects of the alternate resource specifications in the Resource Schedule data set, printed in Output 2.25.5. Note that the activity ‘Product Design’ that takes 3 days of time from a generic programmer actually takes 4.5 days because the programmer used is Chris, who is substituted at a rate of 1.5. On the other hand, the programmer John efficiently completes the task, ‘Documentation’, in only 1 day, instead of the planned 2 days for a generic programmer. Note also that the start and finish times are specified as SAS datetime values because the substitution of alternate resources results in some of the resource durations being fractional.

```sas
data software2;
 set software;
 Chris = .;
 John = .;
run;

proc cpm data=software2 out=sftout2 rsched=rsftout2
 resin=resin2
date='12apr04'd interval=weekday resout=rout2;
act act;
succ s1 s2;
dur dur;
res Programmer Chris John / work=mandays
 obstype=otype
 period=per
 resid=resid
 rschedid=Activity;

 id Activity;
run;
```
Output 2.25.5.  Resource Schedule with Alternate Programmers

Software Development
Resource Constrained Schedule
Alternate Resources at Varying Rates

<table>
<thead>
<tr>
<th>Activity</th>
<th>act</th>
<th>RESOURCE</th>
<th>DUR_TYPE</th>
<th>dur</th>
<th>mandays</th>
<th>R_RATE</th>
<th>S_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>2.0</td>
<td>.</td>
<td>.</td>
<td>12APR04:00:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>Programmer</td>
<td>FIXED</td>
<td>2.0</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>John</td>
<td>FIXED</td>
<td>2.0</td>
<td>.</td>
<td>0.5</td>
<td>12APR04:00:00:00</td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>3.0</td>
<td>.</td>
<td>.</td>
<td>14APR04:00:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>3.0</td>
<td>3.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>Chris</td>
<td>RDRIVEN</td>
<td>4.5</td>
<td>4.5</td>
<td>1.0</td>
<td>14APR04:00:00:00</td>
</tr>
<tr>
<td>Test Plan</td>
<td>3</td>
<td>3.0</td>
<td>.</td>
<td>.</td>
<td>14APR04:00:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>1.0</td>
<td>.</td>
<td>.</td>
<td>20APR04:12:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>John</td>
<td>RDRIVEN</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>20APR04:12:00:00</td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>1.0</td>
<td>.</td>
<td>.</td>
<td>20APR04:12:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>10.0</td>
<td>10.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Test Data</td>
<td>6</td>
<td>5.0</td>
<td>.</td>
<td>.</td>
<td>19APR04:00:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Routines</td>
<td>7</td>
<td>5.0</td>
<td>.</td>
<td>.</td>
<td>19APR04:00:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>6.0</td>
<td>.</td>
<td>.</td>
<td>11MAY04:12:00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>Programmer</td>
<td>FIXED</td>
<td>6.0</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>John</td>
<td>FIXED</td>
<td>6.0</td>
<td>.</td>
<td>0.5</td>
<td>11MAY04:12:00:00</td>
</tr>
<tr>
<td>Finish</td>
<td>9</td>
<td>0.0</td>
<td>.</td>
<td>.</td>
<td>19MAY04:12:00:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>S_FINISH</th>
<th>E_START</th>
<th>E_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqts</td>
<td>13APR04:23:59:59</td>
<td>12APR04:00:00:00</td>
<td>13APR04:23:59:59</td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>20APR04:11:59:59</td>
<td>14APR04:00:00:00</td>
<td>16APR04:23:59:59</td>
</tr>
<tr>
<td>Test Plan</td>
<td>16APR04:23:59:59</td>
<td>14APR04:00:00:00</td>
<td>16APR04:23:59:59</td>
</tr>
<tr>
<td>Documentation</td>
<td>21APR04:11:59:59</td>
<td>19APR04:00:00:00</td>
<td>20APR04:23:59:59</td>
</tr>
<tr>
<td>Code</td>
<td>11MAY04:11:59:59</td>
<td>19APR04:00:00:00</td>
<td>30APR04:23:59:59</td>
</tr>
<tr>
<td>Test Data</td>
<td>23APR04:23:59:59</td>
<td>19APR04:00:00:00</td>
<td>23APR04:23:59:59</td>
</tr>
<tr>
<td>Test Routines</td>
<td>23APR04:23:59:59</td>
<td>19APR04:00:00:00</td>
<td>23APR04:23:59:59</td>
</tr>
<tr>
<td>Test Product</td>
<td>19MAY04:11:59:59</td>
<td>03MAY04:00:00:00</td>
<td>10MAY04:23:59:59</td>
</tr>
<tr>
<td>Test Product</td>
<td>19MAY04:11:59:59</td>
<td>.</td>
<td>10MAY04:23:59:59</td>
</tr>
<tr>
<td>Test Product</td>
<td>19MAY04:11:59:59</td>
<td>.</td>
<td>10MAY04:23:59:59</td>
</tr>
<tr>
<td>Finish</td>
<td>19MAY04:12:00:00</td>
<td>11MAY04:00:00:00</td>
<td>11MAY04:00:00:00</td>
</tr>
</tbody>
</table>
This example illustrates the use of the MULTIPLEALTERNATES option. The Activity data set printed in Output 2.26.1 is a slightly modified version of the data set in Example 2.25. The difference is in the resource requirement for the first activity in the project. The ‘Plans and Requirements’ task requires 2 programmers. By default, when alternate resources are used, the CPM procedures cannot use multiple alternate resources to substitute for any given resource. In this example, however, you would like the procedure to use both Chris and John for the first task. The Resource data set resmult is also printed in Output 2.26.1, showing that both Chris and John are alternates that can be substituted at the same rate as the primary resource.

To enable PROC CPM to use multiple alternates, use the MULTIPLEALTERNATES option, as shown in the following invocation:

```plaintext
proc cpm data=softmult out=sftmult rsched=rsftmult
 res=sftmult
 date='12apr04'd interval=weekday
 resout=routmult;
act act;
succ s1 s2;
dur dur;
res Programmer Chris John / work=mandays
 obstype=otype
 period=per resid=resid
 multiplealternates
```
The resulting schedule is printed in Output 2.26.2. Note that both programmers are used for the activity ‘Plans and Reqts’.

**Output 2.26.2.** Multiple Alternates: Resource Schedule Data Set

```
Software Development
Use of Multiple Alternate Resources
Resource Constrained Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>act</th>
<th>RESOURCE</th>
<th>DUR_TYPE</th>
<th>dur</th>
<th>mandays</th>
<th>R_RATE</th>
<th>S_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans & Reqts</td>
<td>1</td>
<td>Programmer</td>
<td>FIXED</td>
<td>2</td>
<td>.</td>
<td>12APR04</td>
<td></td>
</tr>
<tr>
<td>Plans & Reqts</td>
<td>1</td>
<td>John</td>
<td>FIXED</td>
<td>2</td>
<td>.</td>
<td>12APR04</td>
<td></td>
</tr>
<tr>
<td>Plans & Reqts</td>
<td>1</td>
<td>Chris</td>
<td>FIXED</td>
<td>2</td>
<td>.</td>
<td>12APR04</td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>3</td>
<td>3</td>
<td>14APR04</td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>Chris</td>
<td>RDRIVEN</td>
<td>3</td>
<td>3</td>
<td>14APR04</td>
<td></td>
</tr>
<tr>
<td>Test Plan</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>.</td>
<td>14APR04</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>2</td>
<td>2</td>
<td>19APR04</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>John</td>
<td>RDRIVEN</td>
<td>2</td>
<td>2</td>
<td>19APR04</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td>.</td>
<td>19APR04</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>Programmer</td>
<td>RDRIVEN</td>
<td>10</td>
<td>10</td>
<td>19APR04</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>Chris</td>
<td>RDRIVEN</td>
<td>10</td>
<td>10</td>
<td>19APR04</td>
<td></td>
</tr>
<tr>
<td>Test Data</td>
<td>6</td>
<td></td>
<td></td>
<td>5</td>
<td>.</td>
<td>19APR04</td>
<td></td>
</tr>
<tr>
<td>Test Routines</td>
<td>7</td>
<td></td>
<td></td>
<td>5</td>
<td>.</td>
<td>19APR04</td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td></td>
<td></td>
<td>6</td>
<td>.</td>
<td>03MAY04</td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>Programmer</td>
<td>FIXED</td>
<td>6</td>
<td>.</td>
<td>03MAY04</td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>Chris</td>
<td>FIXED</td>
<td>6</td>
<td>.</td>
<td>03MAY04</td>
<td></td>
</tr>
<tr>
<td>Finish</td>
<td>9</td>
<td></td>
<td></td>
<td>0</td>
<td>.</td>
<td>11MAY04</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>S_FINISH</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans & Reqts</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
</tr>
<tr>
<td>Plans & Reqts</td>
<td>13APR04</td>
<td>.</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
</tr>
<tr>
<td>Plans & Reqts</td>
<td>13APR04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Product Design</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>14APR04</td>
<td>.</td>
<td>14APR04</td>
<td>14APR04</td>
<td>16APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>16APR04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Test Plan</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
<td>21APR04</td>
<td>23APR04</td>
</tr>
<tr>
<td>Documentation</td>
<td>20APR04</td>
<td>19APR04</td>
<td>20APR04</td>
<td>7MAY04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Documentation</td>
<td>19APR04</td>
<td>.</td>
<td>20APR04</td>
<td>7MAY04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Documentation</td>
<td>20APR04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Code</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Code</td>
<td>30APR04</td>
<td>.</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Data</td>
<td>23APR04</td>
<td>19APR04</td>
<td>23APR04</td>
<td>26APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Routines</td>
<td>23APR04</td>
<td>.</td>
<td>23APR04</td>
<td>26APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Product</td>
<td>10MAY04</td>
<td>.</td>
<td>10MAY04</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Test Product</td>
<td>10MAY04</td>
<td>.</td>
<td>10MAY04</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Finish</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
</tr>
</tbody>
</table>
```
Example 2.27. Auxiliary Resources and Alternate Resources

This example illustrates the use of Auxiliary resources. In the earlier examples, the use of alternate resources enabled the allocation of either John or Chris to the programming tasks. Now, suppose that each of the programmers has a different tester, and whenever a particular programmer is scheduled for a given task, his tester also needs to allocate some part of his or her time, say 50 percent, to the same task. To model such a scenario, specify Tester1 and Tester2 as auxiliary resources for Chris and John, respectively. The Activity and Resource data sets are printed in Output 2.27.1. Unlike the earlier examples, all the activities are of fixed-duration.

Output 2.27.1. Auxiliary Resources: Input Data Sets

<table>
<thead>
<tr>
<th>Activity</th>
<th>dur</th>
<th>act</th>
<th>s1</th>
<th>s2</th>
<th>Programmer</th>
<th>Chris</th>
<th>John</th>
<th>Tester1</th>
<th>Tester2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqts</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Product Design</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Test Plan</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Documentation</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td></td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Code</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td></td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Test Data</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Test Routines</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Test Product</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td></td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Finish</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following statements invoke PROC CPM with the appropriate data sets and resource variables. The resulting schedule is printed in Output 2.27.2. Note the auxiliary resources that have been included in the schedule corresponding to each primary resource: Tester1 whenever Chris is used, and Tester2 whenever John is allocated.

```plaintext
proc cpm data=softaux out=sftaux rsched=rsftaux resin=resaux
date='12apr04'd interval=weekday resout=raux;
act act;
succ s1 s2;
dur dur;
res Programmer Chris John Tester1 Tester2 /
 obstype=otype
 period=per resid=resid
 multalt rschedid=Activity;
 id Activity;
run;
```
Output 2.27.2.  Auxiliary Resources: Resource Schedule Data Set

**Software Development: Alternate and Auxiliary Resources**

<table>
<thead>
<tr>
<th>Activity</th>
<th>act</th>
<th>RESOURCE</th>
<th>DUR_TYPE</th>
<th>dur</th>
<th><em>WORK</em></th>
<th>R_RATE</th>
<th>S_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>2</td>
<td>.</td>
<td>.</td>
<td>12APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>Programmer</td>
<td>FIXED</td>
<td>2</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>Tester1</td>
<td>FIXED</td>
<td>2</td>
<td>0.5</td>
<td>12APR04</td>
<td></td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>1</td>
<td>Chris</td>
<td>FIXED</td>
<td>2</td>
<td>.</td>
<td>1.0</td>
<td>12APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>3</td>
<td>.</td>
<td>.</td>
<td>14APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>Programmer</td>
<td>FIXED</td>
<td>3</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>Tester1</td>
<td>FIXED</td>
<td>3</td>
<td>.</td>
<td>0.5</td>
<td>14APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>2</td>
<td>Chris</td>
<td>FIXED</td>
<td>3</td>
<td>.</td>
<td>1.0</td>
<td>14APR04</td>
</tr>
<tr>
<td>Test Plan</td>
<td>3</td>
<td>3</td>
<td>.</td>
<td>.</td>
<td>14APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>3</td>
<td>.</td>
<td>.</td>
<td>19APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>Programmer</td>
<td>FIXED</td>
<td>3</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>Tester2</td>
<td>FIXED</td>
<td>3</td>
<td>.</td>
<td>0.5</td>
<td>19APR04</td>
</tr>
<tr>
<td>Documentation</td>
<td>4</td>
<td>John</td>
<td>FIXED</td>
<td>3</td>
<td>.</td>
<td>1.0</td>
<td>19APR04</td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>19APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>Programmer</td>
<td>FIXED</td>
<td>10</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>Tester1</td>
<td>FIXED</td>
<td>10</td>
<td>.</td>
<td>0.5</td>
<td>19APR04</td>
</tr>
<tr>
<td>Code</td>
<td>5</td>
<td>Chris</td>
<td>FIXED</td>
<td>10</td>
<td>.</td>
<td>1.0</td>
<td>19APR04</td>
</tr>
<tr>
<td>Test Data</td>
<td>6</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>19APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Routines</td>
<td>7</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>19APR04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>6</td>
<td>.</td>
<td>.</td>
<td>03MAY04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>Programmer</td>
<td>FIXED</td>
<td>6</td>
<td>.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>Tester1</td>
<td>FIXED</td>
<td>6</td>
<td>.</td>
<td>0.5</td>
<td>03MAY04</td>
</tr>
<tr>
<td>Test Product</td>
<td>8</td>
<td>Chris</td>
<td>FIXED</td>
<td>6</td>
<td>.</td>
<td>1.0</td>
<td>03MAY04</td>
</tr>
<tr>
<td>Finish</td>
<td>9</td>
<td>0</td>
<td>.</td>
<td>.</td>
<td>11MAY04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>S_FINISH</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plans &amp; Reqts</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
<td>12APR04</td>
<td>13APR04</td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>13APR04</td>
<td>.</td>
<td>12APR04</td>
<td>13APR04</td>
<td>13APR04</td>
</tr>
<tr>
<td>Plans &amp; Reqts</td>
<td>13APR04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Product Design</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>16APR04</td>
<td>.</td>
<td>14APR04</td>
<td>16APR04</td>
<td>16APR04</td>
</tr>
<tr>
<td>Product Design</td>
<td>16APR04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Test Plan</td>
<td>16APR04</td>
<td>14APR04</td>
<td>16APR04</td>
<td>21APR04</td>
<td>23APR04</td>
</tr>
<tr>
<td>Documentation</td>
<td>21APR04</td>
<td>19APR04</td>
<td>21APR04</td>
<td>06MAY04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Documentation</td>
<td>21APR04</td>
<td>.</td>
<td>19APR04</td>
<td>21APR04</td>
<td>06MAY04</td>
</tr>
<tr>
<td>Documentation</td>
<td>21APR04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Code</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
<td>19APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Code</td>
<td>30APR04</td>
<td>.</td>
<td>19APR04</td>
<td>30APR04</td>
<td>19APR04</td>
</tr>
<tr>
<td>Code</td>
<td>30APR04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Test Data</td>
<td>23APR04</td>
<td>19APR04</td>
<td>23APR04</td>
<td>26APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Routines</td>
<td>23APR04</td>
<td>19APR04</td>
<td>23APR04</td>
<td>26APR04</td>
<td>30APR04</td>
</tr>
<tr>
<td>Test Product</td>
<td>10MAY04</td>
<td>03MAY04</td>
<td>10MAY04</td>
<td>03MAY04</td>
<td>10MAY04</td>
</tr>
<tr>
<td>Test Product</td>
<td>10MAY04</td>
<td>.</td>
<td>03MAY04</td>
<td>10MAY04</td>
<td>03MAY04</td>
</tr>
<tr>
<td>Test Product</td>
<td>10MAY04</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Finish</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
<td>11MAY04</td>
</tr>
</tbody>
</table>
Example 2.28. Use of the SETFINISHMILESTONE Option

A simple activity network is used to illustrate the use of the SETFINISHMILESTONE option in a couple of different scenarios.

The following DATA step reads the project network in AON format into a SAS data set named tasks. The data set (printed in Output 2.28.1) contains an Activity variable (act), a Successor variable (succ), a Lag variable (lag), and a Duration variable (dur). Note that there are several milestones linked to other activities through different types of precedence constraints. The data set also contains some alignment constraints as specified by the variables target and trgttype. Note that the treatment of the milestones will vary depending on the presence or absence of the alignment constraints. The data set also contains two variables that indicate the expected early schedule dates for the milestones corresponding to two different invocations of PROC CPM: the variable notrgtmd corresponds to the non-aligned schedule and the variable miledate corresponds to an invocation with the ALIGNDATE statement (the values for these variables are explained later).

```sas
data tasks;
 format act $7. succ $7. lag $4. target date7.
 trgttype $3. miledate date7. notrgtmd date7. ;
 input act & succ & lag $ dur target & date7.
 trgttype $ miledate & date7. notrgtmd & date7. ;
data lines;
 Task 0 Mile 1 ss_0 1 26Jan04 SGE . .
 Mile 1 Task 2 . 0 . . 26Jan04 26Jan04
 Task 2 . . 1
 Task 3 Mile 4 . 1
 Mile 4 . . 0 . . 26Jan04 26Jan04
 Task 5 Mile 6 . 1
 Mile 6 Mile 7 FS_1 0 . . 26Jan04 26Jan04
 Mile 7 . . 0 . . 27Jan04 27Jan04
 Task 8 Mile 9 SS_3 1
 Mile 9 Mile 10 . 0 . . 29Jan04 29Jan04
 Mile 10 . . 0 . . 29Jan04 29Jan04
 Task 11 Mile 12 . 2
 Mile 12 Mile 13 FS_10 28Jan04 SGE 28Jan04 27Jan04
 Mile 13 . . 0 . . 29Jan04 28Jan04
;```

First, the CPM procedure is invoked with the default treatment of milestones. The resulting schedule is printed in **Output 2.28.2**. Note the dates for the milestones. Compare these dates with the values of the early finish dates of the immediate predecessors.

The default behavior of the CPM procedure defines the start times for milestones to be at the beginning of the day after the predecessor task (with a standard FS_0 relationship) ends. Thus, for example, the activity, ‘Mile 4’ has E_START=27JAN04 because its predecessor, ‘Task 3’, has E_FINISH=26JAN04. The interpretation for these dates are that the early finish corresponds to the end of the day, while the early start of the milestone ‘Mile 4’ corresponds to the beginning of the day. However, in some situations you may want the milestone to be scheduled at the same time as the end of the predecessor activity. In other words, you may wish the early start time of the milestone ‘Mile 4’ to be displayed as 26JAN04, with the interpretation that this time actually denotes the end of the day, rather than the beginning. See the “Finish Milestones” section on page 94 for details about the treatment of milestones. In the
Example 2.28. Use of the SETFINISHMILESTONE Option

In the current example, the variable `notrgtmd` contains the desired milestone schedule dates corresponding to this special treatment of milestones. To obtain these desired dates, you must use the SETFINISHMILESTONE option.

```sas
/* Schedule the project */
proc cpm data=tasks out=out0
   collapse interval=day
date='26jan04'd;
activity act;
successor succ /lag=(lag);
duration dur;
id lag notrgtmd;
run;

title 'Default Schedule';
proc print; run;
```

Next, the CPM procedure is invoked with the option SETFINISHMILESTONE and the resulting schedule is printed in Output 2.28.3. Note that not all milestones are defined to denote the end of the displayed date; such milestones are referred to as finish milestone. The variables `EFINMILE` and `LFINMILE` indicate if the milestone is a finish milestone or not, corresponding the the early or late schedule, respectively. For example, the milestone ‘Mile 12’ has `E_FINISH = 27JAN04` and the value of `EFINMILE` is ‘1’, indicating that the activity finishes at the end of the day on January 27, 2004. The milestone ‘Mile 13’ (with a finish-to-start lag of 1 day) finishes at the end of the day on January 28, 2004. In fact, as the late finish schedule indicates, the value of `L_FINISH` for ‘Mile 13’ (and the project finish time) is the end of the day on 28JAN04. Note that both the variables `EFINMILE` and `LFINMILE` have the same values for all the activities in this example.

```sas
proc cpm data=tasks out=out1
   collapse interval=day
date='26jan04'd
   setfinishmilestone;
activity act;
successor succ /lag=(lag);
duration dur;
id lag notrgtmd;
run;

title 'Schedule with option SETFINISHMILESTONE';
title2 'No Target Dates';
proc print;
id act;
var succ lag notrgtmd e_start e_finish
   l_start l_finish efinmile lfinmile;
run;
```
The next invocation of CPM illustrates the effect of alignment constraints on the milestones. As explained in the “Finish Milestones” section on page 94, imposing an alignment constraint of type SGE on a milestone may change it from a finish milestone to a start milestone (default behavior) as far as the early schedule of the project is concerned. In the following program, the CPM procedure is invoked with the SETFINISHMILESTONE option and the ALIGNDATE and ALIGNTYPE statements. The resulting schedule is printed in Output 2.28.4. Note that the early schedule of the milestones should now correspond to the values in the variable $miledate$. Note also that the activities ‘Mile 12’ and ‘Mile 13’ are no longer finish milestones, as indicated by missing values for the variable $EFINMILE$. The ‘SGE’ alignment constraint with a target date of 28JAN04 moves the milestone ‘Mile 12’ to the beginning of January 28, 2004, instead of the end of January 27, 2004.

```
proc cpm data=tasks out=out2
   collapse
   interval=day
   date='26jan04'd
   setfinishmilestone;
   activity act;
   successor succ /lag=(lag);
   duration dur;
   aligndate target;
   aligntype trgttype;
   id target trgttype lag miledate;
run;

   title 'Schedule with option SETFINISHMILESTONE';
   title2 'Target Dates change Early Schedule for some Milestones';
proc print;
   id act;
```
Example 2.28. Use of the SETFINISHMILESTONE Option

```sas
var succ lag target trgtype miledate e_start e_finish
l_start l_finish efinmile lfinmile;
run;
```

Output 2.28.4. Effect of Alignment Constraints

Schedule with option SETFINISHMILESTONE

Target Dates change Early Schedule for some Milestones

<table>
<thead>
<tr>
<th>t</th>
<th>m</th>
<th>E</th>
<th>L</th>
<th>E</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>g</td>
<td>l</td>
<td>F</td>
<td>_</td>
<td>F</td>
</tr>
<tr>
<td>t</td>
<td>a</td>
<td>e</td>
<td>S</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>s</td>
<td>r</td>
<td>t</td>
<td>N</td>
<td>T</td>
<td>N</td>
</tr>
<tr>
<td>a</td>
<td>u</td>
<td>l</td>
<td>g</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>e</td>
<td>t</td>
<td>R</td>
</tr>
<tr>
<td>t</td>
<td>c</td>
<td>g</td>
<td>e</td>
<td>T</td>
<td>H</td>
</tr>
</tbody>
</table>

Task 0 Mile 1 SS_0 26JAN04 SGE 26JAN04 26JAN04 28JAN04 28JAN04 . .
Mile 1 Task 2 . 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 . .
Task 2 . . 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 . .
Task 3 Mile 4 . 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 . .
Mile 4 . . 26JAN04 26JAN04 26JAN04 28JAN04 28JAN04 . .
Task 5 Mile 6 . 26JAN04 26JAN04 26JAN04 27JAN04 27JAN04 . .
Mile 6 Mile 7 FS_1 . 26JAN04 26JAN04 26JAN04 27JAN04 27JAN04 1 1
Mile 7 . 27JAN04 27JAN04 27JAN04 28JAN04 28JAN04 1 1
Task 8 Mile 9 SS_3 . 26JAN04 26JAN04 26JAN04 26JAN04 26JAN04 . .
Mile 9 Mile 10 . 29JAN04 29JAN04 29JAN04 29JAN04 29JAN04 . .
Mile 10 . . 29JAN04 29JAN04 29JAN04 29JAN04 29JAN04 . .
Task 11 Mile 12 . 26JAN04 26JAN04 26JAN04 27JAN04 27JAN04 . .
Mile 12 Mile 13 FS_1 28JAN04 SGE 28JAN04 28JAN04 28JAN04 27JAN04 . .
Mile 13 . . 29JAN04 29JAN04 29JAN04 28JAN04 28JAN04 . .

The interpretation of the start and finish times for a milestone depends on whether it is a start milestone or a finish milestone. By default, all milestones are start milestones and are assumed to be scheduled at the beginning of the date specified in the start or finish time variable. As such, PROC GANTT displays these milestones at the start of the corresponding days on the Gantt chart. However, if a milestone is a finish milestone then it may not be displayed correctly on the Gantt chart, depending on the scale of the display.

In this example, PROC GANTT is used to display the schedule produced in **Output 2.28.4.** Recall that the schedule is saved in the data set out2. First, PROC GANTT is invoked without any modifications to the schedule data set. The resulting Gantt chart is displayed in **Output 2.28.5.** Note that the finish milestones (with values of EFINMILE = ‘1’) are not plotted correctly. For example, ‘Mile 6’ is plotted at the beginning instead of the end of the schedule bar for the predecessor activity, ‘Act 5’. To correct this problem, you can adjust the schedule variables for the finish milestones and plot the new values, as illustrated by the second invocation of PROC GANTT. The corrected Gantt chart is displayed in **Output 2.28.6.**

```sas
title h=1.5
'Schedule with option SETFINISHMILESTONE and ALIGNDATE';
title2 'Gantt Chart of Early Schedule without adjustment';
proc gantt data=out2(drop=l_:);
chart / compress act=act succ=succ lag=lag
font=swiss scale=7
cprec=cyan cmile=magenta
caxis=black cframe=ligr;
```
Chapter 2. The CPM Procedure

dur=dur nojobnum nolegend;
id act succ lag e_start efinmile;
run;

/* Save adjusted E_START and E_FINISH times for finish milestones */
data temp;
 set out2;
 format estart efinish date7.;
estart = e_start;
efinish = e_finish;
if efinmile then do;
estart=estart+1;
efinish=efinish+1;
end;
run;

/* Plot the adjusted start and finish times for the early schedule */
title h=1.5
 'Schedule with option SETFINISHMILESTONE and ALIGNDATE';
title2 'Gantt Chart of Early Schedule after adjustment';
proc gantt data=temp(drop=l_:);
 chart / compress act=act succ=succ lag=lag
 font=swiss scale=7
 es=estart ef=efinish
cprec=cyan cmile=magenta
caxis=black cframe=ligr;
dur=dur nojobnum nolegend;
id act succ lag e_start efinmile;
run;
Example 2.29. Negative Resource Requirements

Output 2.28.5. Gantt Chart of Unadjusted Schedule

<table>
<thead>
<tr>
<th>act</th>
<th>succ</th>
<th>lag</th>
<th>Early Start</th>
<th>Early Finish Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 0</td>
<td>Mile 1</td>
<td>ss_0</td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 1</td>
<td>Task 2</td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td>Mile 4</td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 4</td>
<td></td>
<td></td>
<td>26JAN04</td>
<td>1</td>
</tr>
<tr>
<td>Task 5</td>
<td>Mile 6</td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 6</td>
<td>Mile 7</td>
<td>FS_1</td>
<td>26JAN04</td>
<td>1</td>
</tr>
<tr>
<td>Mile 7</td>
<td></td>
<td></td>
<td>27JAN04</td>
<td>1</td>
</tr>
<tr>
<td>Task 8</td>
<td>Mile 9</td>
<td>SS_3</td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 9</td>
<td>Mile 10</td>
<td></td>
<td>29JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 10</td>
<td></td>
<td></td>
<td>29JAN04</td>
<td></td>
</tr>
<tr>
<td>Task 11</td>
<td>Mile 12</td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 12</td>
<td>Mile 13</td>
<td>FS_1</td>
<td>28JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 13</td>
<td></td>
<td></td>
<td>29JAN04</td>
<td></td>
</tr>
</tbody>
</table>

Output 2.28.6. Gantt Chart of Adjusted Schedule

<table>
<thead>
<tr>
<th>act</th>
<th>succ</th>
<th>lag</th>
<th>Early Start</th>
<th>Early Finish Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 0</td>
<td>Mile 1</td>
<td>ss_0</td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 1</td>
<td>Task 2</td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td>Mile 4</td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 4</td>
<td></td>
<td></td>
<td>26JAN04</td>
<td>1</td>
</tr>
<tr>
<td>Task 5</td>
<td>Mile 6</td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 6</td>
<td>Mile 7</td>
<td>FS_1</td>
<td>26JAN04</td>
<td>1</td>
</tr>
<tr>
<td>Mile 7</td>
<td></td>
<td></td>
<td>27JAN04</td>
<td>1</td>
</tr>
<tr>
<td>Task 8</td>
<td>Mile 9</td>
<td>SS_3</td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 9</td>
<td>Mile 10</td>
<td></td>
<td>29JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 10</td>
<td></td>
<td></td>
<td>29JAN04</td>
<td></td>
</tr>
<tr>
<td>Task 11</td>
<td>Mile 12</td>
<td></td>
<td>26JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 12</td>
<td>Mile 13</td>
<td>FS_1</td>
<td>28JAN04</td>
<td></td>
</tr>
<tr>
<td>Mile 13</td>
<td></td>
<td></td>
<td>29JAN04</td>
<td></td>
</tr>
</tbody>
</table>
Example 2.29. Negative Resource Requirements

This example illustrates the use of negative resource requirements and the MILESTONERESOURCE option. Consider the production of boxed greeting cards that need to be shipped on trucks with a given capacity. Suppose there are three trucks with a capacity of 10,000 boxes of cards each. Suppose also that the boxes are produced at the rate of 5,000 boxes a day by the box-creating activity, ‘First Order’ with a duration of 6 days, and requiring the use of a machine, say resource Mach1. The activity data set OneOrder, displayed in Output 2.29.1, represents the activities that are to be scheduled. Note that the “Schedule Truck i” task ($i = 1, 2, 3$) is represented as a milestone to denote the point in time when the required number of boxes are available from the production line. The variable numboxes denotes the number of boxes that are produced by the machine, or delivered by the trucks. The Resource data set OneMachine, displayed in Output 2.29.2, defines the resource numboxes as a consumable resource and the resources Mach1 and trucks as replenishable resources.

Output 2.29.1. Activity Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>succ</th>
<th>Duration</th>
<th>Mach1</th>
<th>numboxes</th>
<th>trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First Order</td>
<td>6</td>
<td>1</td>
<td>-5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sched truck1 Delivery 1</td>
<td>0</td>
<td>.</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sched truck2 Delivery 2</td>
<td>0</td>
<td>.</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sched truck3 Delivery 3</td>
<td>0</td>
<td>.</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Delivery 1</td>
<td>2</td>
<td>.</td>
<td></td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Delivery 2</td>
<td>2</td>
<td>.</td>
<td></td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Delivery 3</td>
<td>2</td>
<td>.</td>
<td></td>
<td>.</td>
<td>1</td>
</tr>
</tbody>
</table>

Output 2.29.2. Resource Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>per</th>
<th>obstype</th>
<th>Mach1</th>
<th>numboxes</th>
<th>trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>restype</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15AUG04</td>
<td>reslevel</td>
<td>1</td>
<td>.</td>
<td>1</td>
</tr>
</tbody>
</table>

The following statements invoke the CPM procedure to schedule the production of the boxed greeting cards. The option MILESTONERESOURCE indicates that milestones can consume resources. In this case, the milestones representing the scheduling of the trucks are scheduled only when 10,000 boxes of greeting cards are available. The resulting schedule is displayed in Output 2.29.3 using PROC GANTT, and the resource usage data set is displayed in Output 2.29.4.

```
proc cpm data=OneOrder resin=OneMachine
  out=OneSched rsched=OneRsch resout=OneRout
date='15aug04’d;
act activity;
succ succ;
duration duration;
```
resource Mach1 numboxes trucks / period=per
 obstype=obstye
 milestone=resource;
run;

proc sort data=OneSched;
 by s_start;
run;

title 'Greeting Card Production';
title2 'Truck Schedule';
title h=2 f=swissb 'Greeting Card Production';
title h=1.5 f=swissb 'Truck Schedule';
proc gantt data=OneSched (drop=e_: l_:) ;
 chart / act=activity succ=succ duration=duration
cmile=red top
 nolegend nojobnum;
 id activity duration;
run;

title2 'Resource Usage Data Set';
proc print data=OneRout;
 id _time_; run;

Output 2.29.3. Gantt Chart of Schedule

The resulting Gantt chart shows the schedule of the trucks, which is staggered according to the production rate of the machine that produces the cards. In other words,
the trucks are scheduled at intervals of 2 days. The Resource Usage data set shows
the production/consumption rate of the boxes for each day of the project.

Output 2.29.4. Resource Usage Data Set

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Lead</th>
<th>Requirement</th>
<th>Consumption</th>
<th>Production</th>
<th>Storage</th>
<th>Inventory</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>15AUG04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>25000</td>
<td>-5000</td>
<td>-5000</td>
<td>0</td>
</tr>
<tr>
<td>16AUG04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-5000</td>
<td>-5000</td>
<td>-5000</td>
<td>5000</td>
</tr>
<tr>
<td>17AUG04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-5000</td>
<td>-5000</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>18AUG04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-5000</td>
<td>-5000</td>
<td>-5000</td>
<td>5000</td>
</tr>
<tr>
<td>19AUG04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-5000</td>
<td>-5000</td>
<td>5000</td>
<td>10000</td>
</tr>
<tr>
<td>20AUG04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-5000</td>
<td>-5000</td>
<td>-5000</td>
<td>5000</td>
</tr>
<tr>
<td>21AUG04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10000</td>
<td>10000</td>
<td>0</td>
</tr>
<tr>
<td>22AUG04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23AUG04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 2.30. Auxiliary Resources and Negative Requirements

This example extends the production scenario in the previous example to two separate orders of the greeting cards. Suppose also that the machine used in Example 2.29 is to be replaced by a faster machine that is scheduled to come on-line on August 24, 2004. This scheduling problem is modeled using alternate resources Mach1 and Mach2 for a primary resource Machine. Each of the alternate resources produces the auxiliary resource numboxes; the rate of production depends on which machine is used.

The Activity data set TwoOrders, displayed in Output 2.30.1, now contains additional activities corresponding to the second order of greeting cards. Note that the resource requirement corresponding to the machine needed for the production is now represented in terms of the generic machine resource, Machine. The resource data set, TwoMachines, displayed in Output 2.30.2, specifies Mach1 and Mach2 as alternate resources for Machine and the resource numboxes as an auxiliary resource produced at the rate of 5,000 by Mach1 and 10,000 by Mach2. Observations 5 and 6 indicate that the first machine is available from August 15 and is then replaced by the second machine on August 24, 2004.
Example 2.30. Auxiliary Resources and Negative Requirements

Output 2.30.1. Activity Data Set

Greeting Card Production - Machines 1 and 2
Activity Data Set TwoOrder

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>u</td>
<td>M</td>
</tr>
<tr>
<td>t</td>
<td>a</td>
<td>M</td>
</tr>
<tr>
<td>i</td>
<td>a</td>
<td>M</td>
</tr>
<tr>
<td>v</td>
<td>s</td>
<td>h</td>
</tr>
<tr>
<td>0</td>
<td>i</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>h</td>
</tr>
<tr>
<td>s</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

1 First Order 6 1 1
2 Sched truck1 Delivery 1 0 . . 10000 . 1
3 Sched truck2 Delivery 2 0 . . 10000 . 1
4 Sched truck3 Delivery 3 0 . . 10000 . 1
5 Delivery 1 2 1 1
6 Delivery 2 2 1 1
7 Delivery 3 2 1 1
8 Second Order 6 1 2
9 Sched truck4 Delivery 4 0 . . 10000 . 2
10 Sched truck5 Delivery 5 0 . . 10000 . 2
11 Sched truck6 Delivery 6 0 . . 10000 . 2
12 Delivery 4 2 1 2
13 Delivery 5 2 1 2
14 Delivery 6 2 1 2

Output 2.30.2. Resource Data Set

Greeting Card Production - Machines 1 and 2
Resource Data Set TwoMachines

<table>
<thead>
<tr>
<th>Obs</th>
<th>per</th>
<th>obstype</th>
<th>resid</th>
<th>Machine</th>
<th>Mach1</th>
<th>Mach2</th>
<th>numboxes</th>
<th>trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.</td>
<td>restype</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>alterate</td>
<td>Machine</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>auxres</td>
<td>Mach1</td>
<td>.</td>
<td>.</td>
<td>-5000</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>auxres</td>
<td>Mach2</td>
<td>.</td>
<td>.</td>
<td>-10000</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>reslevel</td>
<td></td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>reslevel</td>
<td></td>
<td>.</td>
<td>0</td>
<td>1</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

The following statements invoke the CPM procedure to schedule the production of the two orders of boxed greeting cards and display the schedule (in Output 2.30.3) using PROC GANTT. Note that PROC GANTT is invoked with the PATTERN= option indicating that the schedules should be drawn using the pattern statements corresponding to the variable _pattern in the activity data set. In addition, the CTEXTCOLS= option indicates that the color of the text should match the color of the schedule bars.

```plaintext
proc cpm data=TwoOrders resin=TwoMachines
   out=TwoSched rsched=TwoRsched resout=TwoRout
date='15aug04’d;
act activity;
succ succ;
duration duration;
resource Machine Mach1 Mach2 numboxes trucks / period=per
   obstype=obstype
   resid=resid
   milestone=resource;
   id _pattern;
run;
```
The Gantt chart shows that the trucks corresponding to the second order of greeting cards depart at a faster rate (every day) than the ones corresponding to the first order (every 2 days). The faster delivery is enabled by the use of the faster machine for the second order. Note also that the activity ‘Second Order’ continues for a total of 6 days, even though the order is filled within the first 3 days. This is due to the fact that the activity is defined to have a fixed duration. The resource usage data set, displayed
Example 2.31. Resource-Driven Durations and Negative Requirements

A more realistic model for the truck scheduling example can be built if the activities ‘First Order’ and ‘Second Order’ are defined to be resource driven. In other words, specify the total amount of work (6 days of work) that is needed from the activity at a pre-specified rate (of 5,000 boxes per day), and allow the choice of machine to dictate the duration of the activity. This modified model is illustrated by the activity data set, TwoOrdersRD, and resource data set, TwoMachinesRD, printed in Output 2.31.1 and Output 2.31.1, respectively. The two orders for greeting cards have a work specification of 6 days if the generic machine Machine (which produces 5,000 boxes a day) is used. The resource data set has a new observation with value ‘resrcdur’ for the variable obstype. This observation specifies that the resources Machine, Mach1 and Mach2 drive the durations of activities that require them. The third observation in this data set specifies that the second machine is twice as fast as the first one, indicated by the fact that the alternate rate is 0.5. This implies that using the second machine will reduce the activity’s duration by 50 percent.
Chapter 2. The CPM Procedure

Output 2.31.1. Activity Data Set

Greeting Card Production - Machines 1 and 2
Activity Data Set TwoOrdersRD

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>n</th>
<th>u</th>
<th>M</th>
<th>u</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>t</td>
<td>r</td>
<td>a</td>
<td>m</td>
<td>t</td>
<td>a</td>
</tr>
<tr>
<td>i</td>
<td>v</td>
<td>s</td>
<td>w</td>
<td>a</td>
<td>a</td>
<td>o</td>
</tr>
<tr>
<td>v</td>
<td>o</td>
<td>i</td>
<td>o</td>
<td>i</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>t</td>
<td>c</td>
<td>o</td>
<td>r</td>
<td>n</td>
<td>h</td>
</tr>
<tr>
<td>s</td>
<td>y</td>
<td>c</td>
<td>n</td>
<td>k</td>
<td>e</td>
<td>l</td>
</tr>
</tbody>
</table>

1 First Order 1 6 1 1
2 Sched truck1 Delivery 1 0 10000 . 1
3 Sched truck2 Delivery 2 0 10000 . 1
4 Sched truck3 Delivery 3 0 10000 . 1
5 Delivery 1 2 1 1
6 Delivery 2 2 1 1
7 Delivery 3 2 1 1
8 Second Order 1 6 1 2
9 Sched truck4 Delivery 4 0 10000 . 2
10 Sched truck5 Delivery 5 0 10000 . 2
11 Sched truck6 Delivery 6 0 10000 . 2
12 Delivery 4 2 1 2
13 Delivery 5 2 1 2
14 Delivery 6 2 1 2

Output 2.31.2. Resource Data Set

Greeting Card Production - Machines 1 and 2
Resource Data Set TwoMachinesRD

<table>
<thead>
<tr>
<th>Obs</th>
<th>per</th>
<th>obstype</th>
<th>resid</th>
<th>Machine</th>
<th>Mach1</th>
<th>Mach2</th>
<th>numboxes</th>
<th>trucks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.</td>
<td>resrccd</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>resrctype</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>2</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>altrate</td>
<td>Machine</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-5000</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>.</td>
<td>auxres</td>
<td>Mach1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>-10000</td>
</tr>
<tr>
<td>5</td>
<td>.</td>
<td>auxres</td>
<td>Mach2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>15aug04</td>
<td>reslevel</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>3</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>24aug04</td>
<td>reslevel</td>
<td>.</td>
<td>0</td>
<td>1.0</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

The following statements invoke PROC CPM with the additional specification of the WORK= option. Once again, the CPM procedure allocates one of the two machines for the production, depending on the availability. The Gantt chart is displayed in Output 2.31.3 and the resource usage data set is printed in Output 2.31.4. As before, the trucks for the first order depart every second day requiring a total of 6 days, while the second order is completed in 3 days. Also, using a resource-driven duration model allows the second activity to be completed in 3 days instead of 6 days, as in the previous example. The resource usage data set indicates that production is stopped as soon as the two orders are filled, avoiding excess inventory.

```
proc cpm data=TwoOrdersRD resin=TwoMachinesRD
   out=TwoSchedRD rsched=TwoRschedRD resout=TwoRoutRD
   date='15aug04'd;
act   activity;
succ  succ;
duration duration;
resource Machine Mach1 Mach2 numboxes trucks / period=per
   obstype=obstype
```
Example 2.31. Resource-Driven Durations and Negative Requirements

```sas
proc sort data=TwoSchedRD;
   by s_start;
run;

title h=1.5 f=swissb 'Greeting Card Production - Machines 1 and 2';
title2 h=1.2 f=swissb 'Truck Schedule: Resource Driven Durations';
proc gantt data=TwoSchedRD(drop=e_: l:);
   chart / act=activity succ=succ duration=duration font=swiss
      nolegend nojobnum compress pattern=_pattern
      ctextcols=id scale=4;
   id activity ;
run;

title2 'Resource Usage Data set: Resource Driven Durations';
proc print data=TwoRoutRD;
   id _time_;
run;
```

Output 2.31.3. Gantt Chart of Schedule

Greeting Card Production – Machines 1 and 2

Truck Schedule: Resource Driven Durations
Statement and Option Cross-Reference Tables

The next two tables reference the statements and options in the CPM procedure that are illustrated by the examples in this section.

Table 2.28. Statements and Options Specified in Examples 2.1–2.17

<table>
<thead>
<tr>
<th>Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITY</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTUAL</td>
<td></td>
</tr>
<tr>
<td>ALIGNDATE</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ALIGNTYPE</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BASELINE</td>
<td>X</td>
</tr>
<tr>
<td>CALID</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURATION</td>
<td>X</td>
</tr>
<tr>
<td>HEADNODE</td>
<td>X</td>
</tr>
<tr>
<td>HOLIDAY</td>
<td>X</td>
</tr>
<tr>
<td>ID</td>
<td>X</td>
</tr>
<tr>
<td>RESOURCE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SUCCESSOR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TAILNODE</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_FINISH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALAGCAL=</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A_START=</td>
<td></td>
</tr>
<tr>
<td>AUTOUPDT</td>
<td></td>
</tr>
<tr>
<td>AVPROFILE</td>
<td></td>
</tr>
<tr>
<td>CALEDATA=</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.28. (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLAPSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPARE=</td>
<td></td>
</tr>
<tr>
<td>CUMUSAGE</td>
<td>X</td>
</tr>
<tr>
<td>DATA=</td>
<td>X</td>
</tr>
<tr>
<td>DATE=</td>
<td>X</td>
</tr>
<tr>
<td>DAYLENGTH=</td>
<td></td>
</tr>
<tr>
<td>DAYSTART=</td>
<td></td>
</tr>
<tr>
<td>DELAY=</td>
<td>X</td>
</tr>
<tr>
<td>DELAYANALYSIS</td>
<td></td>
</tr>
<tr>
<td>FBDATE=</td>
<td>X</td>
</tr>
<tr>
<td>HOLIDATA=</td>
<td></td>
</tr>
<tr>
<td>HOLIDUR=</td>
<td></td>
</tr>
<tr>
<td>HOLIFIN=</td>
<td></td>
</tr>
<tr>
<td>INFEASDIAGNOSTIC</td>
<td></td>
</tr>
<tr>
<td>INTERVAL=</td>
<td>X</td>
</tr>
<tr>
<td>LAG=</td>
<td></td>
</tr>
<tr>
<td>MAXDATE=</td>
<td>X</td>
</tr>
<tr>
<td>NOAUTOUPDT</td>
<td></td>
</tr>
<tr>
<td>OBSTYPE=</td>
<td>X</td>
</tr>
<tr>
<td>OUT=</td>
<td>X</td>
</tr>
<tr>
<td>PCTCOMP=</td>
<td></td>
</tr>
<tr>
<td>PERIOD=</td>
<td>X</td>
</tr>
<tr>
<td>RCPROFILE</td>
<td></td>
</tr>
<tr>
<td>REMDUR=</td>
<td></td>
</tr>
<tr>
<td>RESOURCEIN=</td>
<td>X</td>
</tr>
<tr>
<td>RESOURCEOUT=</td>
<td>X</td>
</tr>
<tr>
<td>ROUTNOCODE</td>
<td></td>
</tr>
<tr>
<td>SCHEDRULE=</td>
<td></td>
</tr>
<tr>
<td>SET=</td>
<td></td>
</tr>
<tr>
<td>SHOWFLOAT</td>
<td>X</td>
</tr>
<tr>
<td>TIMENOW=</td>
<td>X</td>
</tr>
<tr>
<td>WORKDATA=</td>
<td>X</td>
</tr>
<tr>
<td>XFERVARS</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 2.29. Statements and Options Specified in Examples 2.18–2.31

<table>
<thead>
<tr>
<th>Statement</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITY</td>
<td>X</td>
</tr>
<tr>
<td>ALIGNDATE</td>
<td>X</td>
</tr>
<tr>
<td>ALIGNTYPE</td>
<td></td>
</tr>
<tr>
<td>BASELINE</td>
<td>X</td>
</tr>
<tr>
<td>DURATION</td>
<td>X</td>
</tr>
<tr>
<td>HEADNODE</td>
<td></td>
</tr>
<tr>
<td>HOLIDAY</td>
<td>X</td>
</tr>
<tr>
<td>ID</td>
<td>X</td>
</tr>
<tr>
<td>PROJECT</td>
<td>X</td>
</tr>
<tr>
<td>RESOURCE</td>
<td></td>
</tr>
<tr>
<td>SUCCESSOR</td>
<td>X</td>
</tr>
<tr>
<td>TAILNODE</td>
<td>X</td>
</tr>
<tr>
<td>ACTDELAY=</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.29. (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDCAL</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ADDWBS</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ALTBEFORESUP</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AVPROFILE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CALEDATA=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COLLAPSE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COMPARE=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CUMUSAGE</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>X</td>
</tr>
<tr>
<td>DATE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DELAY=</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DELAYANALYSIS</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FBDATE=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F_FLOAT</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HOLIDATA=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INFEASDIAGNOSTIC</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INTERVAL=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LAG=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MILESTONERESOURCE</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MINSEGMDUR=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MULTIPLEALTERNATES</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OBSTYPE=</td>
<td>X</td>
</tr>
<tr>
<td>ORDERLESS</td>
<td></td>
</tr>
<tr>
<td>OUT=</td>
<td>X</td>
</tr>
<tr>
<td>PERIOD=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RCPROFILE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RESID=</td>
<td></td>
</tr>
<tr>
<td>RESOURCEIN=</td>
<td>X</td>
</tr>
<tr>
<td>RESOURCEOUT=</td>
<td>X</td>
</tr>
<tr>
<td>RESOURCESCHED=</td>
<td>X</td>
</tr>
<tr>
<td>ROUTNOBREAK</td>
<td></td>
</tr>
<tr>
<td>RSCHEDID=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SEPCRIT</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SET=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SETFINISHMILESTONE</td>
<td></td>
</tr>
<tr>
<td>STOPDATE=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>T_FLOAT</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>USEPROJDUR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WORK=</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

References

Chapter 3
The PM Procedure

Chapter Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERVIEW</td>
<td>283</td>
</tr>
<tr>
<td>GETTING STARTED</td>
<td>283</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>285</td>
</tr>
<tr>
<td>PROC PM Statement</td>
<td>285</td>
</tr>
<tr>
<td>DETAILS</td>
<td>288</td>
</tr>
<tr>
<td>User Interface Features</td>
<td>289</td>
</tr>
<tr>
<td>Project Hierarchy</td>
<td>291</td>
</tr>
<tr>
<td>Table View</td>
<td>292</td>
</tr>
<tr>
<td>Gantt View</td>
<td>295</td>
</tr>
<tr>
<td>Creating and Editing Projects</td>
<td>300</td>
</tr>
<tr>
<td>Setting Activity Filters</td>
<td>304</td>
</tr>
<tr>
<td>Saving and Restoring Preferences</td>
<td>305</td>
</tr>
<tr>
<td>Sorting Activities</td>
<td>306</td>
</tr>
<tr>
<td>Setting the Project Font</td>
<td>307</td>
</tr>
<tr>
<td>Renumbering the Activities</td>
<td>307</td>
</tr>
<tr>
<td>Printing</td>
<td>308</td>
</tr>
<tr>
<td>TIMENOW Macro Variable</td>
<td>309</td>
</tr>
<tr>
<td>Summary of Differences</td>
<td>309</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>311</td>
</tr>
<tr>
<td>Example 3.1. Defining a New Project</td>
<td>311</td>
</tr>
<tr>
<td>Example 3.2. Adding Subtasks to a Project</td>
<td>316</td>
</tr>
<tr>
<td>Example 3.3. Saving and Comparing Baseline Schedules</td>
<td>317</td>
</tr>
<tr>
<td>Example 3.4. Effect of Calendars</td>
<td>321</td>
</tr>
<tr>
<td>Example 3.5. Defining Resources</td>
<td>324</td>
</tr>
<tr>
<td>Example 3.6. Editing Progress</td>
<td>328</td>
</tr>
</tbody>
</table>
Chapter 3
The PM Procedure

Overview

The PM procedure is an interactive procedure that can be used for planning, controlling, and monitoring a project. The syntax and the scheduling features of PROC PM are virtually the same as those of the CPM procedure. However, since the PM procedure is interactive, there are a few extra options that are available and a few other options that have a default behavior that is different from the CPM procedure. These differences are noted in the “Syntax” section on page 285 and the “Summary of Differences” section on page 309. One major difference is that only the Activity-On-Node representation of the project is supported in PROC PM. In other words, TAILNODE and HEADNODE statements from PROC CPM are not supported.

For a complete description of the syntax and the scheduling algorithm for the CPM procedure, refer to Chapter 2, “The CPM Procedure.”

When PROC PM is invoked with the activity network representation, an interactive window is opened that displays a Table View of the project on the left and a Gantt View of the project on the right. You can add activities and edit the project data using the Table View. You can also use the Gantt View to move activities, change the durations of the activities, and add precedence constraints between the activities. These features are described in the “Details” section on page 288.

The PM procedure is designed to facilitate its inclusion in a Project Management application, such as PROJMAN. Any changes that are made to the activity network or to the activity durations, resource requirements, alignment specifications, and other activity information need to be saved in the resulting Schedule output data set. Further, you should be able to use this output data set as input to a future invocation of PROC PM and continue to manage the project. Thus, there are some differences in the design of the Schedule data set (defined in Chapter 2, “The CPM Procedure”) to enable the integration of PROC PM into a Project Management application. The differences between the Schedule data sets in the two procedures are described in the “Schedule Data Set” section on page 309.

Getting Started

Consider the simple Software Development Project described in the “Getting Started” section of Chapter 2, “The CPM Procedure.” Recall that the Activity data set, SOFTWARE, contains the activity descriptions, durations, and precedence constraints. The following statements (identical to the PROC CPM invocation) initialize the project data and invoke the PM procedure.

```plaintext
data software;
    format Descript $20.
;```
input Descrpt &
  Duration
  Activity $
  Successr1 $
  Successr2 $
 ;

datalines;
Initial Testing 20 TESTING RECODE .
Prel. Documentation 15 PRELDOC DOCEDREV QATEST
Meet Marketing 1 MEETMKT RECODE .
Recoding 5 RECODE DOCEDREV QATEST
QA Test Approve 10 QATEST PROD .
Doc. Edit and Revise 10 DOCEDREV PROD .
Production 1 PROD . .
;

proc pm data=software
  out=intro1
  interval=day
  date='01mar04'd;
  id descrpt;
  activity activity;
  duration duration;
  successor succesr1 succesr2;
run;

When you invoke the PM procedure, the PM Window appears (see Figure 3.1), consisting of the Table View and the Gantt View of the project. The activities are listed in the order in which they are defined in the Activity data set. The two views are separated by a dividing line that can be dragged to the left or right, controlling the size of the two views. Further, the two views scroll together in the vertical direction but can scroll independently in the horizontal direction.

The Table View contains several editable columns (in white) that can be used to edit the project data as well as add new activities to the project. Some of the columns (in gray), such as the Schedule times, are not editable. The Gantt View contains a Gantt chart of the project and displays the precedence relationships between the activities. You can use the Gantt View to add or delete precedence constraints between activities and to change the durations or alignment constraints of the activities by dragging the schedule bars. Details of the interface are described in the “Details” section on page 288.
Figure 3.1. Software Development Project

Syntax

The syntax for PROC PM is virtually identical to that for PROC CPM. The main difference is that you replace the PROC CPM statement with the PROC PM statement.

Note also that the TAILNODE and HEADNODE statements from PROC CPM are not supported in PROC PM.

The form of the PROC PM statement is

```
PROC PM options;
```

PROC PM Statement

```
PROC PM options ;
```

All the options that are available in the PROC CPM statement (Chapter 2, “The CPM Procedure”) can also be specified in the PROC PM statement. However, there are a few additional options available with PROC PM, and some of the other PROC CPM options are not needed as they are the default behavior in PROC PM. See the section “Summary of Differences” for more details on these differences.

Options Specific to PROC PM

The following options can be specified on the PROC PM statement.

NODISPLAY

invokes the procedure in a noninteractive mode. The schedule for the project is still computed and the requested output data sets are created and saved. However, the PM Window is not displayed. This option is useful for scheduling large projects that do not need to be updated interactively. Note that invoking PROC PM with the
NODISPLAY option is similar to invoking PROC CPM; however, since the format of the Schedule output data set is different for the two procedures, you may see some differences in the order and content of the observations. See the section “Schedule Data Set” for details.

**PROJECT=SAS-data-set**
identifies a SAS data set that can be used to save and restore preferences that control the project view. For example, preferences such as the font, column order, column widths, filters, and so forth, can be saved from one invocation to another. See the section “PROJECT Data Set” for more details about this data set and the preferences that can be saved in it.

**PROJECTNAME=’string’**
**PROJNAME=’string’**
**NAME=’string’**
specifies a descriptive string identifying the name of the project. This string is used to label the PM Window.

**SUMMARYNAME=’string’**
**SUMMARY=’string’**
**PROJECTSUMMARY=’string’**
specifies a descriptive string identifying the summary task. By default, when there is more than one root parent activity in a project, PROC PM creates a summary task named “Summary” (or “Project Summary” if the input format for the activity variable is 15 or greater). So, if there is already child activity named “Summary” (or “Project Summary”) in the input data, the resulting schedule would form a cycle. The SUMMARYNAME= option enables you to override the default by specifying a different name for the summary task, thereby avoiding the aforementioned problem.

The following options of PROC CPM are turned on by default in PROC PM.

**Default Options for PROC PM Statement**

**ADDACT**
**ADDAALLACT**
**EXPAND**
indicates that an observation is to be added to the Schedule output data set (and the Resource Schedule output data set) for each activity that appears as a value of the variables specified in the SUCCESSOR or PROJECT statements without appearing as a value of the variable specified in the ACTIVITY statement. In other words, the Schedule output data set produced by PROC PM contains one observation for every activity that appears as a value of the ACTIVITY, SUCCESSOR, or PROJECT variables (as long as it has not been deleted in the current invocation of the procedure). It also contains an observation for every activity that is added to the project using the graphical user interface.

**XFERVARS**
indicates that all relevant variables are to be copied from the Activity data set to the Schedule data set. The procedure carries over to the output data set all the relevant variables from the input data set. Thus, the Schedule output data set contains all the project information that is necessary to schedule it.
Default Options for ACTUAL Statement

**AUTOUPDT**

requests that the procedure should assume automatic completion (or start) of activities that are predecessors to activities already completed (or in progress).

**ESTIMATEPCTC**

**ESTPCTC**

**ESTPCTCOMP**

**ESTPROG**

indicates that a variable named PCT_COMP is to be added to the Schedule output data set (and the Resource Schedule output data set) that contains the percent completion time for each activity (for each resource used by each activity) in the project.

**SHOWFLOAT**

indicates that activities that are completed or in progress should have nonzero float.

Default Options for PROJECT Statement

**ADDWBS**

**WBSCODE**

**WBS**

indicates that the PM procedure is to compute a WBS code for the activities in the project using the project hierarchy structure specified. This code is computed for each activity and stored in the variable WBS_CODE in the Schedule output data set.

**DESCENDING**

**DESC**

indicates that, in addition to the ascending sort variables (ES_ASC, LS_ASC, and SS_ASC) that are requested by the ESORDER, LSORDER, and SSORDER options, the corresponding descending sort variables (ES_DESC, LS_DESC, and SS_DESC, respectively) are also to be added to the Schedule output data set.

**ESORDER**

**ESO**

indicates that a variable named ES_ASC is to be added to the Schedule output data set; this variable can be used to order the activities in such a way that the activities within each subproject are in increasing order of the early start time. Note that this order is not necessarily the same as the one that would be obtained by sorting all the activities in the Schedule data set by E_START.

**LSORDER**

**LSO**

indicates that a variable named LS_ASC is to be added to the Schedule output data set; this variable can be used to order the activities in such a way that the activities within each subproject are in increasing order of the late start time.

**ORDERALL**

**ALL**

is equivalent to specifying the ESORDER and LSORDER options (and the SSORDER option when resource constrained scheduling is performed).
SSORDER
SSO
indicates that a variable named SS_ASC is to be added to the Schedule output data set; this variable can be used to order the activities in such a way that the activities within each subproject are in increasing order of the resource-constrained start time.

Details

Figure 3.2. LAN Selection Project

The PM Window provides the standard editing and viewing functions of a typical project management tool. It can be displayed by invoking the PM procedure or using the Activities Window in the PROJMAN application (Chapter 8, “The Projman Application”). For an existing project, the PM Window is populated with the activities in the project. For a new project, the PM window is empty. Figure 3.2 displays the PM Window for one of the sample projects included with the PROJMAN application.

After you have finished editing the project, you can close the PM Window to save the new project data in the Schedule output data set that was specified in the invocation of the PM procedure.
User Interface Features

This section describes some of the typical features of the PM Window’s graphical user interface. The PM Window provides both a Gantt View and a Table View of the project. The size of each view can be changed by pointing the cursor at the dividing line between the two views until it changes to a double arrow and dragging it to the right or left.

Only part of the project may be visible in the PM Window; horizontal and vertical scroll bars are provided that enable you to scroll the project data in both directions. Note that the Gantt and the Table Views are attached to each other so that they scroll together vertically. Each view can be scrolled horizontally, independently of the other.

The pull-down menu associated with the PM Window provides access to several project management functions under the Edit, View, and Project menus. For example, the Project pull-down menu is shown in Figure 3.3. The commands available through the pull-down menus are described in detail in the appropriate sections.

![Figure 3.3. Project Pull-down Menu](image)

In addition to the pull-down menus, context-sensitive pop-up menus are available in the Table and Gantt Views, the time axis, along the arcs, and from select columns in the Table View. Pop-up menus are displayed by positioning the cursor over a particular object and clicking the right mouse button. For example, clicking the right mouse button on an arc in the Gantt View displays the arc pop-up menu shown in Figure 3.4.

![Figure 3.4. Arc Pop-up Menu](image)

In some situations, the pop-up menu selection can lead to a dialog box that requires you to type a value in one or more of the fields in the box. For example, selecting Edit Lag... from the arc pop-up menu leads to the dialog box displayed in Figure 3.5. (See the “Create Nonstandard Precedence Relationships” section on page 303 for a discussion of nonstandard precedence constraints.)
Figure 3.5. Edit Lag Dialog Box

The Table View displays project data in a tabular format. Some of the columns are editable (white background) while other columns, which are computed by the procedure, are not editable (gray background). The Gantt View always displays the early start schedule of the project. In addition, it also displays the resource-constrained schedule (if resources are present), the actual schedule (if the project has started and is in progress), and the baseline schedule (if a baseline schedule is saved for the project.) The display of all the schedule bars (except the Early Schedule bar) can be toggled on or off using the pop-up menu from the Gantt View.

Note that each row of the combined Table View and Gantt View represents one activity (also referred to as task in this chapter). Any change in data or movement of a row in one view is also reflected in the other.

In addition to the pull-down and pop-up menu actions, several drag-and-drop type of actions are available within the PM Window. You can move the columns and rows of the Table View by selecting a row or column and dragging to the desired position. You can also change the width of the columns by dragging the column dividers in the Table header region.

You can manipulate the durations of the tasks using the Task Information dialog box (see Figure 3.6) by right-clicking on the bar shown in or by changing the length of the Early Schedule bar in the Gantt View. You can also move the task in time by dragging the Early Schedule bar to a new position. This affects the Target Date for the associated task.

Figure 3.6. Task Information Dialog Box
Any of the preceding actions may result in a change to the project schedule that is immediately reflected in the Table and Gantt Views. All editing abilities and the corresponding changes to the schedule are described in detail in the following sections.

**Project Hierarchy**

The PM procedure displays a hierarchical project structure if it is invoked with the PROJECT statement. If the procedure is invoked without a PROJECT statement, the supertask and subtask relationship is not supported, and all the activities are considered to be at the same level, belonging to a single project. Note that, in the PROJMAN application (Chapter 8, “The Projman Application”), the PM procedure is always invoked with the PROJECT statement.

If the PROJECT statement is used, then a task’s level in the project hierarchy is indicated in the Table View by using small square boxes to the left of the activity number in the Job Nbr. column. Empty boxes indicate that the activity does not have any subtasks (it is a leaf activity), while filled boxes indicate that the activity is a supertask. Further, a Project Summary task is included to represent the root task (or Summary Task) of the project. This task is positioned at the top of the list of activities, and its display can be toggled on or off by selecting **Display Summary Task** from the View pull-down menu (see Figure 3.7).

![Figure 3.7. View Pull-down Menu](image)

In the Gantt View, supertasks are indicated by vertical cones at the end of their corresponding schedule bars.

Note that the durations of the supertasks are determined by the overall duration of their subtasks. Thus, you cannot change the duration of a supertask.

If there is no PROJECT statement, all menu selections that correspond to the multi-project structure are grayed out and are unavailable for selection. For example, the **Display Summary Task** selection in Figure 3.7 will be grayed out.
Table View

The Table View displays information about a project in tabular form. It displays activities along with their descriptions, various activity schedules, resource requirements, calendars, and target dates. The hierarchical information about an activity is provided in the Job Nbr. column by a number of small square boxes to the left of the activity number. The number of square boxes corresponds to the level of the activity in the project hierarchy. Empty boxes indicate that the activity does not have any subtasks or that it is a leaf activity, while filled boxes indicate that the activity is a supertask. Some columns in the Table View are editable while others are write-protected. The editable columns are lighter in color than the noneditable ones. In general, you can type into all columns that provide input to the project, while all other columns that contain output values from PROC PM are write-protected. For example, in Figure 3.2, the WBS Code column cannot be edited, while the Activity and Duration columns can be edited.

In the Table View, you can add or delete activities, add subtasks, change the order of the columns or the activities, edit activity information, and so on. These tasks are described in the following sections.

Add/Copy/Delete Tasks

Clicking the right mouse button on any task in the Table View displays the pop-up menu shown in Figure 3.8. From this pop-up menu, you can Add/Copy/Delete the selected task. If the Add Task menu item is selected, the new task is added immediately following the selected task. You can also add a subtask to the selected task using the Add Subtask menu item. If the Copy Task menu item is selected, a copy of the selected task is added to the bottom of the Table View. The new task has the same duration and calendar as the selected task. If the selected task is a supertask, all its subtasks (and any internal precedence constraints) are copied as well.

Change Column Width

The width of a column in the Table View can be increased or decreased by dragging (with the left mouse button) the column dividers in the Table Header region of the Table View. When the cursor is positioned on the column divider, it changes to a double arrow. Dragging it to the right or left increases or decreases the width of the column.
**Change the Order of the Columns**

The display order of columns in the Table View can be changed in several ways:

- Drag the column in the header row and drop it to the destination.
- Select **View** from the pull-down menu and then choose **Move Columns to Left** (see Figure 3.9). Choosing any of the available options moves the corresponding columns to the leftmost portion of the Table View.

![Figure 3.9. Move Columns Pull-down Menu](image)

**Edit Durations**

To change the duration of an activity, edit the Duration column in the Table View. Note that changing an activity’s duration to 0 changes the activity into a **Milestone**. Activity durations can also be changed in the Gantt View.

**Edit Alignment Constraints**

Scroll to columns named Target Date and Target Type. Enter one of either SGE, SLE, MS, MF, FGE, or FLE in the Target Type column. You can either type the values or select them from the pop-up menu displayed by pressing the right mouse button in the Target Type column (see Figure 3.10). Enter the appropriate date in the Target Date column. You can also view these columns by selecting **View->Move Columns to Left->Target Dates** from the pull-down menu (Figure 3.9). You can also change an activity’s alignment constraints in the Gantt View.

![Figure 3.10. Target Type Pop-up Menu](image)
Chapter 3. The PM Procedure

**Edit Calendars**

To change an activity’s calendar, you can enter the calendar number in the Activity Calendar column or the calendar description in the Calendar Name column. Note that the calendars that can be assigned to an activity are predefined in the Calendar data set. To see a list of the calendars, you can click in one of the calendar columns with the right mouse button. This will pop up a list of calendars, from which you can select the activity’s calendar. See Figure 3.11 for an example of a calendar pop-up menu with two calendars.

![Calendar Pop-up Menu](Default%20%7CSunday.png)

**Edit Resource Requirements**

You can change the amount of resources required for an activity by editing the Resource columns in the Table View. Changing the resource requirement causes the project to be rescheduled using the new resource specifications. See the section “Edit Resource Requirements” for more details.

**Edit Progress Information**

You can edit the actual start, actual finish, percent complete, or remaining duration for an activity by editing one of the Progress Information columns in the Table View. Note that by changing one of these columns, all the other related progress columns may also be affected. For example, entering 100 in the Percent Complete column for an activity that is in progress updates the Remaining Duration column to 0, and the Actual Finish column is filled in appropriately. You can also modify the progress information of an activity in the Gantt View.

**Expand/Collapse Supertasks**

Double-clicking on a supertask in the Table View toggles the expand/collapse switch. This action enables you to either view or hide all the subtasks of the supertask.

**Hide Tasks**

An individual task can be hidden by clicking the right mouse button over the task in the Table View and choosing Hide from the menu shown in Figure 3.8. Tasks can also be hidden from view using several filters described in the “Setting Activity Filters” section.

**Move Tasks**

Drag with the left mouse button anywhere in the row corresponding to an activity you want to move and drop it to the destination.
Gantt View

In the Gantt View, activity schedules are pictorially depicted by horizontal bars. There is one bar for each of the early, resource, actual, and baseline schedules. For the Early Schedule bar, critical activities are marked in different colors than the noncritical activities. Weekends are marked by shaded vertical rectangles running through the chart. Supertasks are differentiated from leaf activities by anchoring vertical cones at the ends of their Early Schedule bars.

The Gantt View is displayed with a rectangular grid that can be turned on or off by selecting Grid from the pop-up menu (see Figure 3.12) that is displayed by right-clicking anywhere outside of the schedule bars in the Gantt View with the right mouse button.

Figure 3.12. Gantt View Pop-up Menu

The pop-up menu in the Gantt View also enables you to toggle the display of the Actual, Resource, or Baseline Schedule bars. Note that these bars can be displayed in the Gantt View only if the project data contain the actual, resource-constrained, or baseline schedules, respectively.

In addition to displaying the activity schedules in an easy-to-view format, the Gantt View in the PM Window can also be used to change the durations of the activities, add or delete precedence constraints, set activity alignment constraints, set progress information, and provide access to calendar, precedence, and resource information.

You can also change several of the display attributes of the Gantt View by using the Time Axis pop-up menu (see Figure 3.13) to set the scale of the axis, format the time axis labels, set the units of display, and so forth. All of these tasks are described in the following sections.

Figure 3.13. Time Axis Pop-up Menu

Change the Format of the Time Axis

The format of the major axis can be changed by clicking with the right mouse button on the header row of the Gantt View and choosing Format for the major axis. For the minor axis, choose Format Minor. Some example selections available for the formats are shown in Figure 3.14 and Figure 3.15. In addition to the formats explicitly listed for the major axis, you can specify any valid numeric format by selecting Other... and filling in the appropriate fields in the dialog box that is opened as a result.
Chapter 3. The PM Procedure

Change Increments

Increments in the Gantt View define the number of tick marks on the minor axis per tick mark on the major axis. They can be changed by clicking with the right mouse button on the header area and choosing Increment from the pop-up menu. The available selections are shown in Figure 3.16.

Change the Scale of the Time Axis

Point the mouse to a tick mark on the major axis in Gantt View. The cursor changes to a double arrow. Drag the tick mark horizontally to change the scale. You can also change the scale using the Scale pop-up menu (see Figure 3.17) from the Time Axis pop-up menu.
**Change Units**

The Time Axis Units in the Gantt View can be changed by clicking with the right mouse button on the header bar in the Gantt View and selecting **Units** (see **Figure 3.18**). The default value of the units used for display is based on the specification of the INTERVAL= parameter in the invocation of the PM procedure.

![Figure 3.18. Units Pop-up Menu](image)

**Display/Hide Selected Schedules**

A display/hide switch for a given schedule can be toggled by clicking with the right mouse button in the main panel of the Gantt View and choosing the desired schedule (see **Figure 3.19**).

![Figure 3.19. Gantt View Pop-up Menu](image)

**Display Task Information**

You can display detailed information for an activity by right-clicking on any of its schedule bars and selecting **Task Information** from the resulting pop-up menu (see **Figure 3.20**).

![Figure 3.20. Schedule Bar Pop-up Menu](image)

The ensuing **Task Information** dialog box (see **Figure 3.21**) displays the job number, duration, duration units, a list of predecessor activities, and a list of successor activities, as well as applicable calendar and resource information for the selected activity. You can also edit the activity duration from the **Task Information** dialog box.
Chapter 3. The PM Procedure

If any calendars have been defined to the project, the activity calendar is also displayed. If the project utilizes any resources, there is a list box that lists the resources required by the activity (see Figure 3.22). Selecting a resource from this list box displays the quantity required by the activity in the **Req** field. Furthermore, if the selected resource drives the duration of the activity, then the appropriate work value is also displayed in the **Work** field.

**Modify Activity Alignment Constraints**

An activity’s Early Schedule bar can be moved using the left mouse button. When the mouse is positioned over the activity bar, the cursor changes to a cross-hair type. You can then drag the bar horizontally and move it to a new position. This sets an alignment constraint of type ‘SGE’ for the selected activity with the align date corresponding to the one at the left edge of the bar’s new position. Other types of alignment constraints can be entered by editing the Target Date and Target Type columns as described in the “Edit Alignment Constraints” section.

**Modify Durations**

You can modify the duration of an activity in several ways. In the Gantt View, you can enter it directly using the **Task Information** dialog box as described in the “Display Task Information” section, or change it indirectly by altering the width of the schedule bar. To change the duration of an activity, point to the right edge of the activity’s Early
Schedule bar with the left mouse button, and drag to the left or the right depending on whether you want to decrease or increase the duration. You can also edit activity durations in the **Table View**.

**Modify Precedence Information**

You can add precedence constraints by depressing the left mouse button at either end of the predecessor activity bar and releasing it at either end of the successor activity bar. The type of constraint (FS, FF, SS, or SF) depends on which end of the bars the constraints are drawn from.

You can delete precedence constraints by clicking on the arc with the right mouse button and selecting **Delete** (see **Figure 3.23**).

**Figure 3.23.** Arc Pop-up Menu

You can modify the type of the precedence constraint or the lag value associated with the precedence constraint by clicking on the arc with the right mouse button and selecting **Edit Lag**. The ensuing dialog box is shown in **Figure 3.24**. Enter the value of the lag duration in the first field and the type of the lag in the second field. Valid values of lag are Finish-to-Start (FS), Start-to-Start (SS), Start-to-Finish (SF), and Finish-to-Finish (FF).

**Figure 3.24.** Edit Lag Dialog Box

If calendars are defined in the project, the **Edit Lag** dialog box includes the lag calendar associated with the selected precedence constraint. You can change the lag calendar by selecting from the list of available calendars that is displayed within the **Edit Lag** dialog box shown in **Figure 3.25**.
Modify Progress Information

To modify the Progress using the Gantt View, you must include the Actual Schedule in the view. You can drag the actual schedule bar for the activity to change the amount of progress on the activity; you can also move the activity’s actual bar to change the Actual Start of the activity.

When the project contains progress information, a Timenow line is drawn in the Gantt View, indicating the TIMENOW date. You can move the Timenow line by dragging it. When you change the value of TIMENOW, the progress information changes for all the activities. A confirmation window requires you to confirm that you do want to change the progress information for all the activities. (See also the “TIMENOW Macro Variable” section on page 309.)

You can also edit the progress columns in the Table View.

Creating and Editing Projects

The PM Window provides an easy-to-use interface to enter basic project information such as a list of activities, their durations, order of precedence, resource requirements, and so forth. You can also use the Edit pull-down menu (see Figure 3.26) to add or delete progress, baseline, and other information. All these functions are described in the following sections.
Add Activities

An activity (or task) can be added to the Project in the PM Window by clicking the right mouse button in the Table View. If Add Task is chosen from the pop-up menu, then an activity is added at the same level as the selected activity. Subtasks of an activity can be added by selecting Add Subtask. These actions are also available from the Edit pull-down menu (Figure 3.26) whenever an activity is selected in the Table View. Note that the selected activity is highlighted.

To add a new task at the topmost level of the project hierarchy, choose New Task from the Edit pull-down menu.

Add Precedence Constraints

To add precedence constraints in the Gantt view, point the cursor at the right edge of the predecessor activity until it changes to a cross-hair and drag it vertically up or down to the left edge of the successor activity. By starting and dropping at different ends of the activity bar, you can create nonstandard precedence relationships between the activities. You can view the predecessor and successor tasks for an activity from the Task Information dialog box.

Add Baseline Information

Baseline information is saved in a project so that the current status of a project can be measured against some base schedule. The baseline information can be set in several different ways; most of the actions relating to the Baseline schedule can be performed using the selections available from the Edit pull-down menu (see Figure 3.26).

- If the project data include a Baseline schedule, saved in the variables B_START and B_FINISH, the PM Window displays the Baseline schedule when it is first invoked. This schedule can be replaced by choosing Replace Baseline from the Edit pull-down menu. This selection can be used to reset the Baseline schedule to a new schedule corresponding to one of the current schedules.

- If the project data do not include a Baseline schedule, it can be set in the PM Window by selecting Set Baseline from the Edit pull-down menu (see Example 3.3). This selection can be used to set the Baseline schedule to one of the current schedules (see Figure 3.27). Thus, selecting Resource from the pull-down menu sets the baseline schedule to the current resource-constrained schedule. By saving the current resource-constrained schedule, you can perform some what-if analysis by changing some of the resource requirements or other parameters of the project and comparing the resulting schedule with the saved baseline schedule.
The individual Baseline values can also be edited in the Table View by changing the values in the Baseline Start and Baseline Finish columns.

- If new activities are added to the project, the Baseline values for the new tasks are missing. These can be set to correspond to the current schedule values by selecting **Fill Missing Baseline** from the Edit pull-down menu.

- If you want to delete the Baseline information from the project data, you can select **Delete Baseline** from the Edit pull-down menu.

### Add Progress Information

Progress information can be included by using the **ACTUAL** statement, which is similar to the one for PROC CPM. If the PM Window is invoked without the ACTUAL statement, then progress information can be added to the Project from the Edit pull-down menu (Figure 3.26) by choosing **Add Progress**.

Progress information is updated by dragging the actual schedule bars horizontally (in a manner similar to the one for changing durations) in the Gantt View or by modifying the values in the Progress columns in the Table View. See the “Modify Progress Information” section on page 300 and the “Edit Progress Information” section on page 294.

For details on how the progress information is used to update the project schedule, see the “Progress Updating” section in Chapter 2, “The CPM Procedure.” See also Example 3.6.

### Change Duration

The duration of an activity can be directly changed from the Duration column of the Table View or the Task Information dialog box of the Gantt View. It can also be indirectly changed by dragging the activity bar at the right edge using the left mouse button in the Gantt View.
Copy Activities

An activity (or task) can be copied in the PM Window by clicking the right mouse button in the Table View. If Copy Task is chosen from the pop-up menu, then a copy of the selected activity is added at the end of the activities listed in the Table View. The new task has the same duration and calendar as the selected task. If the selected task is a supertask, all its subtasks (and any internal precedence constraints) are copied as well.

Create Milestones

You can create milestones by adding an activity and assigning it zero duration.

Create Nonstandard Precedence Relationships

A Finish-to-Start relationship between two activities is considered to be a standard precedence constraint. You can create it in Gantt view by dragging the precedence constraint from the right end of the predecessor activity bar to the left end of the successor activity bar. Nonstandard precedence constraints are created by starting and ending at different ends of the two activity bars. For example, a Start-to-Finish relationship is created by dragging the cursor from the left end of the predecessor activity bar to the right end of the successor activity bar.

In addition to specifying the type of the precedence constraint, you can also specify a lag or lead time between the two activities. This lag value can be edited from the Gantt View. See the “Modify Precedence Information” section for more details.

Create Subtasks

Subtasks can be created only if the PM procedure is invoked with the PROJECT statement or from the PROJMAN application. To create a subtask, click the right mouse button on the parent activity in the Table View. Then choose Add Subtask from the background menu. The newly created subtask has one more little square box than the parent task in the Job Nbr. column in the Table View. The empty square boxes denote that it is a leaf activity (a task with no subtasks). The number of boxes denote a task’s level in the project hierarchy, starting with level 0 for the Project Summary task.

Delete Activities

An activity can be deleted in the Table View by clicking the right mouse button anywhere in the task row and choosing Delete Task. If the selected task is a supertask, all its subtasks are deleted as well. Note that, in this case, a confirmation dialog box confirms the Delete Supertask action.

Delete Precedence Constraints

To delete a precedence constraint, click anywhere on the arc with the right mouse button and choose Delete from the pop-up menu. You can view the predecessor and successor tasks for an activity from the task information window.
**Chapter 3. The PM Procedure**

*Edit Activity Alignment Constraints*

Activity alignment constraints can be added/modified as described in sections “Edit Alignment Constraints” and “Modify Activity Alignment”, respectively.

*Edit Baseline Information*

To edit the baseline schedule, scroll to the Baseline Start and Baseline Finish columns, and type in the new values of the baseline start and finish times. Note that you cannot change the baseline values by moving the Baseline Schedule bars. See the section Add Baseline Information for more details.

*Edit Calendar Specifications*

Calendars are defined by the CALEDATA= option in the PROC PM statement. This option is similar to the corresponding option in PROC CPM. Once calendars are defined in the Project, an activity’s calendar can be changed or set in the Table View by editing the Activity Calendar or Calendar Name columns. You can either type the values or select them from the pull-down menu displayed by pressing the right mouse button in either of the Calendar columns. See the “Edit Calendars” section on page 294. You can also view the activity calendar from the task information window.

*Edit Resource Requirements*

The resource requirement information for each activity is displayed and can be edited in the Table View. A column for a resource is created in the Table View when it is specified in the RESOURCE statement of the PROC PM invocation, or it is created by the Resource Manager of the PROJMAN application. For details about the RESOURCE statement, the Resource data set, and Resource Allocation, see Chapter 2, “The CPM Procedure.” Changing the resource requirement causes the project to be rescheduled using the new resources. You can also view the resource requirements for an activity from the task information window.

If alternate resources are used by the scheduling algorithm, an extra set of columns is added to the Table View. These columns (one for every resource in the project) display the resources that were actually used. These Usage columns for the resources cannot be edited.

*Setting Activity Filters*

Activity filters can be set by using the project hierarchy or by selecting from a list of activity attributes, as described in this section.

![Figure 3.28. View Pull-down Menu](image-url)
Activities at different levels in the hierarchy can be viewed by selecting View from the pull-down menu (Figure 3.28) and choosing the appropriate level of the project hierarchy to filter out the higher level tasks. For example, selecting Level 2 Tasks displays only the tasks that are at Level 2 or lower. All activities can be viewed by selecting Tasks at All Levels from the View pull-down menu.

Activities can also be filtered using different criteria by choosing View->Filters from the View pull-down menu (see Figure 3.28). The available filters are shown in Figure 3.29. By default, no filter is in effect (the selection is None); you can save the filter of your choice in the Preference data set (see the “Saving and Restoring Preferences” section on page 305).

**Figure 3.29.** Filters Pull-down Menu

### Saving and Restoring Preferences

When the PM Window is displayed for the first time for a given project, the order and width of the columns in the Table View, the font used for the display, the size of the window, the boundary between the Table and the Gantt Views, and several other attributes of the display are determined by the procedure. As you add activities and edit the Table View, you can change some of these attributes according to your preference. You can also choose a different level of display or set some activity filters (see the “Setting Activities Filter” section).

**PROJECT Data Set**

PROC PM enables you to save the attributes of the display in an indexed data set that is specified in the PROC PM statement, using the PROJECT= option. The following preferences can be saved from one invocation to another:

- text font
- time increment
- time units
- major time axis format
- minor time axis format
- schedule bars displayed (for example, Actual, Baseline, and so forth)
- chart grid
- chart scale
The Project data set uses three variables to save the preference information:

- **PROJATTR** – contains a keyword identifying the project attribute; each attribute has either a numeric value or a character value. The length of this variable is 8.
- **PRATNVAL** – used for numeric data corresponding to the attribute.
- **PRATCVAL** – used for character data corresponding to the attribute. The length of this variable is 200.

You can save and restore the preferences from the Project pull-down menu, which contains the Preferences submenu (Figure 3.30). Note that you have to explicitly save the project preferences using the Save selection from this pull-down menu. Closing the PM Window saves only the activity data of the project; it does not automatically save the project preferences. When you restore preferences, the state used is the one that was last saved for the project in the specified preference data set.

![Preferences Pull-down Menu](image)

**Figure 3.30.** Preferences Pull-down Menu

### Sorting Activities

Activities can be sorted by activity number, early start, late start, and resource start by choosing Project->Sort from the Project pull-down menu (see Figure 3.31). Once the activities are sorted, the Schedule output data set contains the activities in the new sorted order. See the “Renumbering the Activities” section on page 307.
Setting the Project Font

When the PM Window is first displayed, the font used in all the text areas of the window is the same as the SAS font used in other windows. You can use the Fonts selection in the Project pull-down menu (Figure 3.32) to change the font used in the PM Window. You can choose the various fonts and their sizes from the font manager thus obtained. This font can also be saved (and restored) in the Project data set.

Renumbering the Activities

When the PM Window is first displayed for the specified project, the activities are listed in the order in which they are defined in the Activity data set. The activity numbers displayed in the Job Nbr. column correspond to this same order. Even if the activities are rearranged, either by moving selected activities or by sorting, these numbers do not change. Likewise, no renumbering takes place automatically if activities are deleted from the project.

You can use the Renumber selection in the Project pull-down menu (Figure 3.32) to reassign consecutive numbers to the activities, starting from the first activity displayed.

When you close the PM Window, saving all the activity information to the Schedule data set, the activities are numbered according to the order in which they were displayed at the end of the editing session. In other words, the Close action implicitly invokes the Renumber command on the project activities. These activity numbers are, in fact, saved as the values of the ACTID variable (see the “Schedule Data Set” section on page 309).
Printing

The PM Window provides functionality to print the Gantt View, the Table View, or both, provided that a printer has been selected and the correct information has been set in the Printer Setup Window. Print Preview can be used to view the information before printing, and the printed output can be saved to a file. All the printing functions are available from the File pull-down menu (Figure 3.33).

![File Pull-down Menu](image)

**Figure 3.33.** File Pull-down Menu

**Preview the Printed Output on the Screen**

You can view the printed output on screen before actually printing it by selecting Print Preview from the File pull-down menu.

**Print Options**

Select Print Options from the File pull-down menu. There are options for selecting time and activity axis range and scaling of the printed output. See Figure 3.34.

![Print Options Dialog Box](image)

**Figure 3.34.** Print Options Dialog Box

**Save the Printed Output to a File**

The printed output can be saved to a file by selecting File->Print ->Print to File.
TIMENOW Macro Variable

The PM Window can be used to add and edit progress information to a project. When progress information is added, the Schedule data set contains all the Progress variables; see the “Progress Updating” section on page 105.

However, all the values of the progress variables are reconciled and revised on the basis of the value of the TIMENOW parameter. Since the PM procedure enables you to move the TIMENOW line as well as implicitly change the value of TIMENOW by updating the Actual Start or Finish times of the activities, the value of TIMENOW at the end of the editing session is an important parameter of the project. This value is saved in a macro variable called TIMENOW and can be used in subsequent editing sessions of the same project. See Example 3.6 for an example of the use of the TIMENOW macro variable.

Summary of Differences

The computation of the schedule, the resource constrained scheduling algorithm, the resource usage information, and all other aspects of the scheduling engine for PROC PM are the same as the ones for PROC CPM. Refer to Chapter 2, “The CPM Procedure,” for details. Some minor differences pertaining to the Schedule Data set and ALIGNTYPE statement are explained in the following sections.

Schedule Data Set

The Schedule data set produced by PROC PM is very similar to the Schedule data set produced by PROC CPM. See the OUT= Schedule Data Set section in the PROC CPM chapter.

However, unlike PROC CPM, the PM procedure is interactive in nature, enabling you to add activities, set precedence constraints, reorder the activities, and so on. Thus, the output data set produced by PROC PM is designed to capture the original project data as well as all the changes that are made to the project in the course of the interactive session.

There are several differences between the forms of the Schedule output data sets produced by the PM and CPM procedures:

- The PM procedure automatically includes all relevant variables that are needed to define the project. Thus, the ACTIVITY, SUCCESSOR, LAG, DURATION, ALIGNDATE, and ALIGNTYPE variables are included in the output data set by default. If the RESOURCE statement is used, all the resource variables are also included. Likewise, if actual progress is entered for the project during the course of the interactive session, all the progress-related variables are added to the output data set.

- The PM procedure contains three sets of observations, identified by three different values of a new variable, OBS_TYPE. The first set of observations contains one observation for every activity in the project. The value of the OBS_TYPE variable for these observations is ‘SCHEDULE.’ These observations contain all the activity information such as the duration, the start and
finish times, the resource requirements, and so forth. The second set of observations contains one observation for every precedence constraint in the project. The value of the OBS_TYPE variable for these observations is ‘LOGIC.’ These observations contain all the precedence information such as the activity, successor, and lag information.

The third set of observations is present only if the project has resource-driven durations. The value of the OBS_TYPE variable for these observations is ‘WORK.’ These observations specify the WORK value for each resource used by each activity in the project.

• The order of the activities in the Schedule data set produced by PROC PM corresponds to the order in which the activities appear in the Table View at the end of the interactive session. Likewise, when the procedure is first invoked, the order of the activities in the Table View corresponds to the order in which the activities are defined in the Activity input data set. If, during the course of the session, some of the activities are reordered or deleted, or if some new activities are added, the Schedule output data set contains all the activities that are defined in the Table View at the end of the session.

• The PM procedure also assigns a numeric identifier for each activity. These values are assigned by PROC PM consecutively in the order of the activities in the Table View and saved in a variable called ACTID (see the section “Renumbering the Activities” on page 307). In addition to the ACTID variable, the Schedule data set also contains a numeric variable called SUCCID, which contains the numeric identifier for the successor activities in the observations for which OBS_TYPE = ‘LOGIC.’ If the PROJECT statement is used in the invocation of the PM procedure, a numeric variable called PNTID is added to the Schedule data set; this variable identifies the parent task for each activity.

Note: If the ACTIVITY variable in the Activity input data set is a character variable, the ACTID, SUCCID, and PNTID variables are added to the Schedule data set in addition to the ACTIVITY, SUCCESSOR, and PROJECT variables. On the other hand, if the ACTIVITY variable in the Activity input data set is numeric, the new ACTID, SUCCID, and PNTID variables replace the numeric ACTIVITY, SUCCESSOR, and PROJECT variables, respectively.

**ALIGNTYPE Statement**

In PROC PM, if an ALIGNTYPE variable is specified but not an ALIGNDATE variable, then no error message is generated; PROC PM ignores the ALIGNTYPE variable and generates a schedule. However, in PROC CPM, this results in an error message with no schedule generated.

**RESOURCE Statement**

In PROC CPM, the NORESOURCEVARS option in the RESOURCE statement requests that the variables specified in the RESOURCE statement be dropped from the Schedule data set. However in PROC PM, this has no effect.
Examples

This section illustrates some of the interactive features of PROC PM using a few simple examples that lead you through different stages of entering and editing project data. A simple software development project is used in all the examples. The output data set from one example is used as input to the next example. Where necessary, additional data sets are created, or the input data set is modified using simple DATA step code.

You could also use PROJMAN to create the software project and then proceed to each succeeding example using the application to define the calendars, resources, and so forth. The PROJMAN application automatically manages the required data sets.

Example 3.1. Defining a New Project

In this example, a simple software development project is built from scratch, starting with an empty Activity data set. PROC PM is invoked with an Activity data set that has no observations and just a few variables that are required to start the procedure. In addition to the Activity data set, a Project data set is also defined that is used to save the display attributes of the PM Window to be used between successive invocations of the procedure. The following program invokes PROC PM and opens a PM Window that enables you to enter project data. The initial window is shown in Output 3.1.1.

Note that the PROJNAME= option is used in the PROC PM statement. This value is used to label the PM Window. Also specified in the PROC PM statement is the PROJECT= option that identifies the project attribute data set. The activities in the project follow a weekday calendar which is indicated to PROC PM by specifying the INTERVAL=WEEKDAY option. In the PM Window, the weekends are shaded gray in the Gantt View.

/* Initialize the Activity data set */
data software;
  length activity $20.;
  input activity $ actid succid pntid duration;
datalines;
;
data softattr;
  length projattr $8. pratcval $200.;
  input projattr pratnval pratcval;
datalines;
;
proc pm data=software project=softattr
date='1mar04'd interval=weekday
projname='Software Project'
out=softout1;
act actid;
succ succid;
project pntid;
duration duration;
id activity;
run;

**Output 3.1.1.** Initial PM Window

In the PM Window, enter the following tasks with the corresponding durations in the Table View:

- Design 5
- Develop 10
- Document 8
- Test 8
- Ship 0

As each task is entered, the Schedule columns in the Table View are updated with the early and late start times, and the Early Schedule bars appear in the Gantt View. **Output 3.1.2** shows the PM Window after the five tasks have been entered. To view the Schedule columns, you can scroll the Table View to the right or use the View pull-down menu (Figure 3.7) to move the Schedule columns to the left.
Output 3.1.2. List of Tasks in the Software Project

To enter precedence constraints between two activities, such as ‘Design’ and ‘Develop,’ draw an arc, using the left mouse button, from the end of the predecessor task to the beginning of the successor task. Use the Gantt View to enter the following precedence constraints:

- Design --> Develop
- Design --> Document
- Develop --> Test
- Test --> Ship

Output 3.1.3 shows the Software Project as the last precedence constraint is being drawn. Note that, in this view of the PM Window, the Schedule columns have been moved to the left, the grid lines in the Gantt View have been turned off (using the menu in Figure 3.12), and the Gantt View has been scrolled to the right to bring the end of the schedule bar for ‘Test’ into view.
To check the overall project status, you can bring the Project Summary task into view by selecting **Display Summary Task** from the **View** pull-down menu (Figure 3.7). Note that the project duration is 23 days. The Summary Task is indicated by vertical cones at the end of its schedule bar.

For the next few examples, the units used in the Gantt View are changed to “Weeks” using the **Axis** pop-up menu shown in Figure 3.13, the Summary Task is displayed at the top of the list of activities, and the Activity description columns are shown in the Table View. To save these window settings in the Project data set, select **Project->Preferences->Save** from the **Project** pull-down menu. The view of the project corresponding to these settings is shown in **Output 3.1.4**. You can end the interactive editing session by closing the window. All the activity and precedence information is saved in the output data set, **SOFTOUT1**, displayed in **Output 3.1.5**. Note the two sets of observations in this data set: the first contains all the schedule information for all the activities, and the second lists all the precedence relationships between activities.
### Output 3.1.4. Project Schedule

<table>
<thead>
<tr>
<th>Job Nbr.</th>
<th>activity</th>
<th>WBS Code</th>
<th>Duration</th>
<th>09FEB04</th>
<th>01MAR04</th>
<th>22MAR04</th>
<th>12APR04</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Project</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Design</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Develop</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Document</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Test</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ship</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Output 3.1.5. Schedule Data Set

```
SCHEDULE . 23 0 0 0 . 23 Project Summary
SCHEDULE 0 . 1 0 . 1 . 5 Project Summary Design
SCHEDULE 0 . 1 0 . 2 . 10 Project Summary Develop
SCHEDULE 0 . 1 0 . 2 . 3 . 8 Project Summary Document
SCHEDULE 0 . 1 0 . 3 4 . 8 Project Summary Test
SCHEDULE 0 . 1 0 . 4 5 . 0 Project Summary Ship
LOGIC . . 1 2 5 Design Develop
LOGIC . . 1 3 5 Design Document
LOGIC . . 2 4 10 Develop Test
LOGIC . . 4 5 8 Test Ship
```
Example 3.2. Adding Subtasks to a Project

In this example, the output data set from Example 3.1 is used as input to PROC PM. The following statements bring up the saved view of the project as shown in Output 3.2.1. Note that this view is identical to the view saved in Output 3.1.4.

```
proc pm data=softout1 project=softattr
date='1mar04'd interval=weekday
projname='Software Project'
out=softout1;
act actid;
succ succid;
project pntid;
duration duration;
id activity;
run;
```

Output 3.2.1. Project Schedule

In the invocation of PROC PM, the output data set name is the same as the input data set. Thus, it is possible to make changes to the Activity data set using PROC PM and then save the results back to the original data set.

In the current view of the Software Project, you want to add some subtasks to the ‘Design’ and ‘Develop’ tasks. Suppose that these two tasks are broken into two subtasks each, one for ‘Module 1’ and the other for ‘Module 2.’ Further, you want to remove the precedence constraint between the ‘Design’ and ‘Develop’ phases and add constraints between the respective modules. You can accomplish these tasks by making the following editing changes in the PM Window.

1. Use the Table View pop-up menu to add the following subtasks to ‘Design’:
Example 3.3. Saving and Comparing Baseline Schedules

This example shows you how to save a baseline schedule and use it for comparing new schedules. Recall that in Example 3.2 the Schedule data are saved in the data set SOFTOUT1. Thus, the following invocation of PROC PM displays the Software project in its last saved state (as in Output 3.2.2, but with the WBS codes filled in). At the end of the editing session, the schedule is saved in the data set SOFTOUT3.
Chapter 3. The PM Procedure

```
proc pm data=softout1 project=softattr
date='1mar04'd interval=weekday
projname='Software Project'
out=softout3;
 act actid;
succ succid;
project pntid;
duration duration;
id activity;
run;
```

Use the Edit -> Set Baseline pull-down menu (Figure 3.27) to save the current Early Schedule as a Baseline Schedule. The resulting display is shown in Output 3.3.1. Note that the Gantt View now shows the Baseline Schedule, in addition to the Early Schedule. Also, the activities have been numbered to be sequential in the current view (see the “Renumbering the Activities” section on page 307).

**Output 3.3.1.** Using Baseline Schedules

![Gantt Chart Image]

The baseline schedule is useful in determining the effect of changes to the project on the schedule. For example, suppose there is a directive from the Director of your division that all the developers are required to attend a User Interface Standards Meeting before starting the development of Module 2. This meeting has been scheduled to start on March 15, 2004 and is expected to take 3 days. What is the effect of this directive on your project schedule?

To see this, you can make the following changes in the PM Window:

1. Add a new task to the project by selecting **New Task** from the **Edit** pull-down menu.
2. To edit the newly entered task, you may need to scroll down.
3. Type in the name of the task: ‘UI Meeting.’ Set its duration to 3.
4. In the Gantt View, draw a link from this new task to Task 6 (‘Module 2’ under ‘Develop.’)
5. Also in the Gantt View, grab the task, ‘UI Meeting,’ using the left mouse button and drag it to the tick mark corresponding to 15Mar04.

The resulting view is shown in Output 3.3.2. Note that the view may differ depending on the display parameters of your device. It is easy to see that, due to the 3-day meeting that is mandated, there is a delay in the project schedule (the project duration is now 26 days).

**Output 3.3.2.** Effect of UI Meeting on Schedule

You can get a complete picture of the effect on the schedule by examining all the Schedule columns that are shown in the Table View. **Output 3.3.3** shows the Schedule columns, the Baseline columns, and the Target Date and Type columns in the Table View. To obtain this view, some of the columns have been moved and the Baseline Schedule bars (in the Gantt View) have been hidden from the display.
Output 3.3.3. Table View Showing all Schedules

If the project delay resulting from the UI Meeting is of concern, you may want to schedule the meeting on an earlier date. Suppose the revised start date of the meeting is March 10, 2004. To see the effect of the change, you can do the following:

1. Revert to the saved project preferences so that both the Table and the Gantt Views are visible.
2. Use the View pull-down menu to move the Target Date column to the left in the Table View.
3. Scroll down, if necessary, to bring the task ‘UI Meeting’ into view.
4. Change the Target Date column for this task to ‘10Mar04.’

The resulting view is displayed in Output 3.3.4. Note that, as a result of this change, all the activities are back on schedule as the new schedule coincides with the saved baseline schedule. The last activity was defined after the baseline schedule had been saved in Example 3.2; hence, there is no baseline schedule bar for this activity. You can use the Fill Missing Baseline selection from the pull-down menu shown in Figure 3.26 to set the baseline schedule for the ‘UI Meeting’ to be the current early schedule.
Example 3.4. Effect of Calendars

Continuing with the project scenario in the preceding examples, you want to explore other ways of shortening the project duration. One possible alternative is to work overtime. As the project manager, you would like to see the effect on the schedule if you change the calendar for all the development tasks to a six-day calendar.

Calendars are defined using the Calendar data set, as in the CPM procedure. Alternately, if you are using the PROJMAN application, you can use the Calendars Window to define a six-day calendar. This example defines a Calendar data set and invokes PROC PM as follows. Note that, in order to use calendars, the Activity data set needs to have a CALID variable, which is added in a simple DATA step.

```plaintext
/* Define a Calendar data set identifying */
/* Saturday as a workday */
data calendar;
 input calid calname $ _sat_ $;
datalines;
1 Sixday WORKDAY
;
/* Add the CALID variable to the Activity data set */
data softout3;
 set softout3;
 calid=.;
 run;

/* Use softout3 as the Activity data set and specify */
/* the preceding calendar data set. */
```
When the PM procedure initializes the PM Window, it attempts to restore all the display settings using the values in the Project data set, SOFTATTR. However, the new Activity data set has an extra variable, calid, which leads to two new columns in the Table View, one for the Activity Calendar (which displays the Calendar ID) and the other for the Calendar Name. These columns are added at the right end of the Table View and can be seen by scrolling to the right. The resulting view is displayed in Output 3.4.1.

Output 3.4.1. Calendar Columns

By default, all the activities are assumed to follow the standard five-day calendar. Now, you want to change the calendar for the supertask ‘Develop’ and all its subtasks to be the six-day calendar defined in the data set CALENDAR. Note that, in the calendar definition, it is sufficient to specify that Saturday is a working day. All the other days of the week default to the default calendar’s work pattern; see the “Default Calendar” section on page 99 in Chapter 2, “The CPM Procedure.”

To facilitate the editing of the calendar values and to see the effect on the project du-
Example 3.5. Effect of Calendars

In order to reorder the columns (using the left mouse to drag the columns in the Table Header) to display the activity, Activity Calendar, Calendar Name, and Duration columns in the Table View. You may need to move the dividing line between the Table and Gantt Views.

You can enter the Calendar values by typing the number 1 in the Activity Calendar column or the value ‘Sixday’ in the Calendar Name column. You can also use the Calendar pop-up menu in one of the calendar columns to select the desired calendar (see Output 3.4.2). Note that the project duration has reduced to 22 days as a result of the six-day calendar.

Output 3.4.2. Effect of Six-Day Calendar

To see the effect on the individual activities, change the units to “Days” in the Gantt View and enlarge the Gantt View, as shown in Output 3.4.3.
Example 3.5. Defining Resources

In all the preceding examples, it was assumed that you had enough resources to work on the different tasks. Unfortunately, as a project manager you need to schedule your project using the limited set of resources available to you. In this example, you will assign some project resources and schedule the project subject to resource constraints.

In order to assign resources to the tasks, you need to add resource variables to the Activity data set as well as define a resource availability (Resource) data set.

Suppose that the resources that you are interested in are Tester and Programmer. The following statements set up the project data needed to perform resource-constrained scheduling with PROC PM using the output data produced in Example 3.4.

```sas
/* Define a Resource data set specifying */
/* 1 Tester and 1 Programmer as the */
/* available resources */
data resources;
 input _date_ & date7. Tester Programmer;
datalines;
 01jan04 1 1
; /* Add the resource variables Tester and Programmer to the Activity data set */
/* (the output data set saved in last example) */
data softout4;
 set softout4;
 Tester=.;
```

Output 3.4.3. Gantt View of Calendar Effect
Example 3.5. Defining Resources

Programmer=.;
run;
/
/* Use softout4 as the Activity data set and */
/* specify the preceding Resource data set. */
/* Save the schedule in softout5. */
proc pm data=softout4 project=softattr
calendar=calendar
resourcein=resources
date='1mar04'd interval=weekday
projname='Software Project'
out=softout5;
act actid;
succ succid;
project pntid;
duration duration;
id activity;
calid calid;
resource Tester Programmer / per=_date_;
run;

Output 3.5.1. Adding Resources to the Project

Output 3.5.1 shows the Table and Gantt Views of the project after rearranging some of the columns and moving the dividing line to show the resource columns. The Resource Schedule bars are also brought into display by clicking the right mouse button over the background in the Gantt View and selecting Resource Schedule. The Resource Schedule bar is shown between the Early Schedule bar and the Baseline Schedule bar. Note that the resource schedule coincides with the early schedule because no resource requirements have been specified for either of the two resources.
You can now use the Table View to enter the resource requirements for each task. Set the requirement for the resource Tester to ‘1’ for the tasks ‘Document’ and ‘Test,’ and the requirement for the resource Programmer to ‘1’ for the tasks numbered ‘2,’ ‘3,’ ‘5,’ and ‘6.’ The resulting schedule is displayed in Output 3.5.2. In this view, the baseline schedule is not displayed. You can see that several of the tasks have been delayed, resulting in lengthening the project duration to 29 weekdays.

### Output 3.5.2. Editing Resource Requirements

![Software Project Diagram](image)

You can set the resource-constrained schedule as a baseline to do some “what-if” analysis. For example, suppose you would like to determine the effect of adding another programmer to the project. In order to change the resource availability, you need to save the current project, edit the Resource availability data set to add another programmer, and then reinvoke the PM procedure.

First, in the PM Window displayed in Output 3.5.2, do the following:

1. Re-display the Baseline Schedule bar.
2. Use the Replace Baseline selection from the Edit pull-down menu to select the Resource Schedule as the new baseline schedule.
3. Save the project preferences.
4. Close the PM Window.

Reinvoke PROC PM after defining a new resource availability:

```plaintext
/* Change the resource availability for Programmer to 2 */
data resources;
 input _date_ & date7. Tester Programmer;
```
Example 3.5. Defining Resources

```sas
/* Use softout5 as the Activity data set and specify */
/* the preceding Resource data set. */
/* Save the schedule back to softout5. */
proc pm data=softout5 project=softattr
 calendar=calendar
 resourcein=resources
 date='1mar04'd interval=weekday
 projname='Software Project'
 out=softout5;
act actid;
 succ succid;
project pntid;
duration duration;
id activity;
calid calid;
 resource Tester Programmer / per=_date_;
run;

Using the new resource availability, you reduced the project duration by five days. The resulting schedule is displayed in Output 3.5.3, which also shows the baseline schedule corresponding to the earlier resource availability data set.

Output 3.5.3. Comparison of Two Resource Schedules
```
Example 3.6. Editing Progress

Once a project plan has been established and the project is under way, a major part of a project manager’s responsibility is to monitor the project as it progresses. This example uses the PM Window to add progress information to the project and discusses some of the related editing functions.

In the final window of Example 3.5 (shown in Output 3.5.3), do the following:

1. Delete the baseline schedule using the Edit pull-down menu.
2. From the Edit pull-down menu, select Add Progress.

The resulting display is shown in Output 3.6.1. The Gantt View now shows the Actual Schedule bar between the Early Schedule bar and the Resource Schedule bar. It also displays a Timenow Line. Since no progress information has been entered, the Timenow Line is drawn at the beginning of the project and all the Actual Schedule bars show only a handle that can be used to drag progress for a particular task.

Output 3.6.1. Adding Progress Information to Project

You can enter progress information in several ways:

- Drag the Timenow Line to update progress information for several tasks at once. The actual start and finish times (until the Timenow date) are set assuming that the tasks follow the resource-constrained schedule. (If there are no resource constraints, the tasks are assumed to follow the early schedule.)
- Use the handle on the Actual Schedule bar for a given task to drag the progress bar using the left mouse mouse button.
• Bring the Progress columns into view in the Table View and edit one of the Progress columns.

As an example, use the left mouse button to drag the Timenow Line to the tick mark corresponding to 15MAR04. The resulting window (after reordering and resizing some columns and scrolling the Gantt View) is shown in Output 3.6.2.

**Output 3.6.2.** Moving the Timenow Line

Note that some of the activities are completed while others are still in progress. If the project data are saved at this point, the Schedule data set will have all the Progress variables (A_START, A_FINISH, PCT_COMP, and REM_DUR). However, for the PM procedure to be able to recapture the exact state of the schedule as it was saved, it also needs to know the value of TIMENOW when the project data was last saved. This value (15Mar04 for the current example) is saved as a macro variable named TIMENOW (see the “TIMENOW Macro Variable” section on page 309).

To see how the Actual information can be used from one invocation of PROC PM to the other, save the project as displayed in Output 3.6.2 and then reinvoke PROC PM to continue editing the progress information. Note that if you are using the PROJMAN application, the value of TIMENOW is automatically saved by the application and used in subsequent editing of the project.

Recall from the last invocation of PROC PM that the data are saved in the data set SOFTOUT5. To use the saved progress information, invoke PROC PM as follows:

```plaintext
/* Use softout5 as the Activity data set and specify */
/* the Resource data set defined in the last example. */
/* Save the schedule in softout6. */
```
Chapter 3. The PM Procedure

```plaintext
proc pm data=softout5 project=softattr
 calendar=calendar
 resourcein=resources
 date='1mar04'd interval=weekday
 projname='Software Project'
 out=softout6;
act actid;
succ succid;
project pntid;
duration duration;
id activity;
calid calid;
/* Use the ACTUAL statement to specify the Progress */
/* variables and the value of TIMENOW saved from the*/
/* previous invocation */
actual / as=a_start af=a_finish
 remdur=rem_dur pctcomp=pct_comp
 timenow=&timenow;
resource Tester Programmer / per=_date_
run;
```

The preceding program displays the PM Window for the updated Software project. Now use the Table View to edit some of the Progress columns. To do so, you can either scroll to the Progress Columns or move these columns to the left in the Table View using the appropriate selection from the View pull-down menu (Figure 3.9).

Task number 6 (‘Module 2’ under ‘Develop’) has a Remaining Duration value of 4. At this point in time, you may notice that you have misjudged the amount of work involved and that you need only one more day to finish the task. Enter 1 in the Remaining Duration column. This editing change immediately causes the Percent Complete column to update to 50, indicating that 50% of the work is completed. The resulting effect on the project schedule is shown in Output 3.6.3 (the window has been scrolled down to enable the second half of the project to be visible). Note that reducing the duration of the ‘Module’ task did not affect the project end date. The duration of the project is still 24 days. Studying the schedule of the ‘Document’ and ‘Test’ tasks, you notice that the delay to the project is caused by the fact that the resource-constrained schedule of the task ‘Test’ is delayed due to resource constraints.
Example 3.6. Editing Progress

Output 3.6.3. Editing the Remaining Duration Column

In addition to revising the progress information for ‘Module 2,’ you also realize that the ‘Document’ task is 50% complete as of the Timenow date. Edit the Percent Complete column in the Table View, changing the value from 25.0 to 50.0. Immediately, the Remaining Duration column changes to 2. The resulting window is shown in Output 3.6.4. The project end date (for the resource-constrained schedule) is 28Mar04. Thus, the project duration is now reduced to 20 days.

Output 3.6.4. Editing the Percent Complete Column
Chapter 4
The Microsoft Project Conversion Macros (Experimental)

Chapter Contents

OVERVIEW ................................................................. 335
%MSPTOSAS ............................................................... 335
%MSPTOSAS Macro Parameters ................................. 336
EXAMPLES ................................................................. 337
  Example 4.1. Simple %MSPTOSAS Conversion .......... 337
  Example 4.2. Converting Multiple Projects ............... 337
APPENDIX ................................................................. 339
  %MDBTOPM .......................................................... 339
  %MP2KTOPM ........................................................ 340
Chapter 4
The Microsoft Project Conversion Macros (Experimental)

Overview

The SAS macro %MSPTOSAS is available for converting Microsoft Project data to a form that is readable by the PM procedure. The %MSPTOSAS macro converts Microsoft Project 98 (and later) data. The macro generates the necessary SAS data sets, determines the values of the relevant options, and enables you to invoke an instance of the PM procedure with the converted project data. Execution of this macro requires SAS/ACCESS software.


%MSPTOSAS

%MSPTOSAS is a SAS macro that converts Microsoft Project data saved in MDB format to a form that is readable by the PM procedure. The %MSPTOSAS macro has four arguments: one that specifies the location of the MDB file, one that specifies the location of the directory for storing the SAS data sets, one optional numeric argument that controls the mode of the PM procedure invocation, and an argument that specifies which version of Microsoft Project the MDB file corresponds to.

The following SAS data sets are generated by the %MSPTOSAS conversion macro:

- Activity data set: activity
- Calendar data set: calendar
- Holiday data set: holiday
- Workday data set: workday
- Resource data set: resource
- Schedule data set: schedule
- Preferences data set: prefs

The %MSPTOSAS macro converts the hierarchical relationships, precedence relationships, time constraints, resource availabilities, resource requirements, project calendars, task calendars, resource calendars, holiday information, work-shift information, actual start and finish times, and baseline start and finish times. In addition, the notes and cost fields are extracted and stored in the activity data set.
Note: In order to retain the values of the options used to invoke the PM procedure, you need to save the preferences by choosing Preferences -> Save from the Project menu.

%MSPTOSAS Macro Parameters

%MSPTOSAS (MDBFILE=mdbfile, LIBRARY=library,
   VIEWPM=indicator, VERSION=version,
   DBMS=identifier, SERVER=pc-server-hostname,
   PORT=port-number);

General Project Parameters

MDBFILE=mdbfile
   specifies the location of the MDB file. It can be either a SAS file reference or a physical filename. This parameter is required; there is no default value.

LIBRARY=library
   specifies the location of the directory for storing the SAS data sets. This parameter can be either a SAS libref or a physical path. The default value is the work library.

VIEWPM=indicator
   controls the mode of the PM procedure invocation. The value VIEWPM=1 invokes the PM procedure in interactive mode, and the value VIEWPM=0 invokes the PM procedure in non-interactive mode. This parameter is optional; the default value is 1.

VERSION=version
   specifies the Microsoft Project version of the MDB file. You need to know the Microsoft Project version of the MDB file to be converted and set this parameter accordingly. For example, to convert an MDB file from Microsoft Project 98, you need to set VERSION=98. Other recognizable versions are 2000, 2002 and 2003. This parameter is required; there is no default value.

Miscellaneous Parameter

The following statements are available to establish a connection from SAS running on UNIX to a PC server when you are importing a table from a Microsoft Access database.

DBMS=identifier
   specifies the type of data to import. In this case, you need to specify the value DBMS=accesscs.

SERVER=pc-server-hostname
   specifies the computer name of the PC on which you started the PC files server. This name is required by UNIX users to connect to this server machine and is reflected on the server control panel. This hostname can be specified as a simple computer name (wxp320), a fully qualified network name (wxp320.domain.com), or an IP address.

PORT=port-number
   specifies the port or service name that the SAS PC files server is listening to on the PC. The default value is 8621 and needs to be specified.
Example 4.1. Simple %MSPTOSAS Conversion

This example illustrates the use of the %MSPTOSAS macro. Consider the following project created in Microsoft Project 98, as shown in Figure 4.1.

Figure 4.1. Microsoft Project Window

You can use the following call to the %MSPTOSAS macro to convert the MS Project file and view it in the PROC PM window:

\[\%msptosas(mdbfile=c:\myfiles\Ex1msp98.mdb,\]
\[\text{library=PMmacros, version=98})\]

The PM window containing the preceding project is displayed in Figure 4.2.

Figure 4.2. PM Window

Example 4.2. Converting Multiple Projects

This example illustrates the ability of the %MSPTOSAS macro to convert multiple projects saved in one database file to a SAS file readable by PROC PM. Assume you have two projects, named Software Project and Marketing Project, in the Microsoft
Access file Two Projects.mdb. The details of the projects are displayed in Figure 4.3 and Figure 4.4.

**Figure 4.3.** Marketing Project — Microsoft Project Window

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve Plan</td>
<td>5 days</td>
</tr>
<tr>
<td>Drawing</td>
<td>10 days</td>
</tr>
<tr>
<td>Study Market</td>
<td>5 days</td>
</tr>
<tr>
<td>Mkt. Strat.</td>
<td>10 days</td>
</tr>
<tr>
<td>Write Specs</td>
<td>5 days</td>
</tr>
</tbody>
</table>

You can use the following call to the %MSPTOSAS macro to convert the projects and open them in the PROC PM window:

```
%msptosas(mdbfile=c:\myfiles\Two Projects.mdb, library=PMmacros, version=2003)
```

The PM window containing the preceding projects is displayed in Figure 4.5.

**Figure 4.4.** Software Project — Microsoft Project Window

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>5 days</td>
</tr>
<tr>
<td>Develop</td>
<td>10 days</td>
</tr>
<tr>
<td>Document</td>
<td>6 days</td>
</tr>
<tr>
<td>Test</td>
<td>8 days</td>
</tr>
<tr>
<td>Ship</td>
<td>0 days</td>
</tr>
</tbody>
</table>

**Figure 4.5.** PM Window
Appendix

The SAS macros %MDBTOPM and %MP2KTOPM are used for converting MDB files saved by Microsoft Project 98 and Microsoft Project 2000 (and later), respectively. These two macros are wrapped into the macro %MSPTOSAS. The macros generate the necessary SAS data sets, determine the values of the relevant options, and invoke an instance of the PM procedure with the converted project data. Execution of these macros requires SAS/ACCESS software.

%MDBTOPM

%MDBTOPM is a SAS macro that converts Microsoft Project 98 data saved in MDB format to a form that is readable by the PM procedure. The %MDBTOPM macro has two arguments: one that specifies the location of the .MDB file, and another that specifies the location of the directory for storing the SAS data sets.

The following SAS data sets are generated by the %MDBTOPM conversion macro:

- Activity data set: activity
- Calendar data set: calendar
- Holiday data set: holiday
- Workday data set: workday
- Resource data set: resource
- Preferences data set: prefs

The %MDBTOPM macro converts the hierarchical relationships, precedence constraints, time constraints, resource availabilities, resource requirements, project calendars, resource calendars, holiday information, work-shift information, actual start and finish times, and baseline start and finish times. In addition, the notes and cost fields are extracted and stored in the Activity data set.

Note: In order to retain the values of the options used to invoke the PM procedure, you need to save the preferences by choosing Preferences -> Save from the Project menu.

%MDBTOPM Macro Parameters

%MDBTOPM (MDBPATH=mdbpath, LIBPATH=libpath);

MDBPATH=mdbpath

specifies the location of the MDB file. This parameter is required; there is no default value.

LIBPATH=libpath

specifies the location of the directory for storing the SAS data sets. This parameter is required; there is no default value.
%MP2KTOPM

%MP2KTOPM is a SAS macro that converts Microsoft Project 2000 data saved in MDB format to a form that is readable by the PM procedure. The %MP2KTOPM macro has three arguments: one that specifies the location of the MDB file, one that specifies the location of the directory for storing the SAS data sets, and an optional numeric argument that controls the mode of the PM procedure invocation. A nonzero value invokes the PM procedure in the default interactive mode, and a value of zero invokes the procedure in non-interactive mode.

The following SAS data sets are generated by the %MP2KTOPM conversion macro:

- Activity data set: activity
- Calendar data set: calendar
- Holiday data set: holiday
- Workday data set: workday
- Resource data set: resource
- Preferences data set: prefs

The %MP2KTOPM macro converts the hierarchical relationships, precedence relationships, time constraints, resource availabilities, resource requirements, project calendars, resource calendars, holiday information, work-shift information, actual start and finish times, and baseline start and finish times. In addition, the notes and cost fields are extracted and stored in the Activity data set.

Note: In order to retain the values of the options used to invoke the PM procedure, you need to save the preferences by choosing Preferences -> Save from the Project menu.

%MP2KTOPM Macro Parameters

%MP2KTOPM (MDBPATH=mdbpath, LIBPATH=libpath, DISPLAY=display);

MDBPATH= mdbpath
specifies the location of the MDB file. This parameter is required; there is no default value.

LIBPATH= libpath
specifies the location of the directory for storing the SAS data sets. This parameter is required; there is no default value.

DISPLAY= indicator
controls the mode of the PM procedure invocation. The value DISPLAY=1 invokes the PM procedure in interactive mode, and the value DISPLAY=0 invokes the PM procedure in non-interactive mode. This parameter is optional; the default value is 1.
# Chapter 5
The DTREE Procedure

## Chapter Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OVERVIEW</strong></td>
<td>343</td>
</tr>
<tr>
<td><strong>GETTING STARTED</strong></td>
<td>345</td>
</tr>
<tr>
<td>Introductory Example</td>
<td>345</td>
</tr>
<tr>
<td>Attitudes Toward Risk</td>
<td>350</td>
</tr>
<tr>
<td>Sensitivity Analysis and Value of Perfect Information</td>
<td>351</td>
</tr>
<tr>
<td>Value of Perfect Control</td>
<td>352</td>
</tr>
<tr>
<td>Oil Wildcatter’s Problem with Sounding Test</td>
<td>353</td>
</tr>
<tr>
<td><strong>SYNTAX</strong></td>
<td>357</td>
</tr>
<tr>
<td>Functional Summary</td>
<td>357</td>
</tr>
<tr>
<td>PROC DTREE Statement</td>
<td>361</td>
</tr>
<tr>
<td>EVALUATE Statement</td>
<td>373</td>
</tr>
<tr>
<td>MODIFY Statement</td>
<td>374</td>
</tr>
<tr>
<td>MOVE Statement</td>
<td>374</td>
</tr>
<tr>
<td>QUIT Statement</td>
<td>375</td>
</tr>
<tr>
<td>RECALL Statement</td>
<td>375</td>
</tr>
<tr>
<td>RESET Statement</td>
<td>375</td>
</tr>
<tr>
<td>SAVE Statement</td>
<td>375</td>
</tr>
<tr>
<td>SUMMARY Statement</td>
<td>375</td>
</tr>
<tr>
<td>TREEPLOT Statement</td>
<td>376</td>
</tr>
<tr>
<td>VARIABLES Statement</td>
<td>377</td>
</tr>
<tr>
<td>VPC Statement</td>
<td>380</td>
</tr>
<tr>
<td>VPI Statement</td>
<td>381</td>
</tr>
<tr>
<td><strong>DETAILS</strong></td>
<td>381</td>
</tr>
<tr>
<td>Input Data Sets</td>
<td>381</td>
</tr>
<tr>
<td>Missing Values</td>
<td>385</td>
</tr>
<tr>
<td>Interactivity</td>
<td>385</td>
</tr>
<tr>
<td>Options on Multiple Statements</td>
<td>385</td>
</tr>
<tr>
<td>The Order of Stages</td>
<td>386</td>
</tr>
<tr>
<td>Evaluation</td>
<td>386</td>
</tr>
<tr>
<td>Displayed Output</td>
<td>390</td>
</tr>
<tr>
<td>Displaying the Decision Tree</td>
<td>390</td>
</tr>
<tr>
<td>Web-Enabled Decision Tree</td>
<td>394</td>
</tr>
<tr>
<td>ODS Table Names</td>
<td>395</td>
</tr>
<tr>
<td>Precision Errors</td>
<td>395</td>
</tr>
</tbody>
</table>
Computer Resource Requirements ........................................ 396

EXAMPLES ................................................................. 396
Example 5.1. Oil Wildcatter’s Problem with Insurance ........... 397
Example 5.2. Oil Wildcatter’s Problem in Risk-Averse Setting ... 402
Example 5.3. Contract Bidding Problem .............................. 413
Example 5.4. Research and Development Decision Problem .... 418
Example 5.5. Loan Grant Decision Problem ......................... 422
Example 5.6. Petroleum Distributor’s Decision Problem .......... 431
Statement and Option Cross-Reference Tables ....................... 441

REFERENCES ............................................................... 442
The DTREE procedure in SAS/OR software is an interactive procedure for decision analysis. The procedure interprets a decision problem represented in SAS data sets, finds the optimal decisions, and plots on a line printer or a graphics device the decision tree showing the optimal decisions.

To use PROC DTREE you first construct a decision model to represent your problem. This model, called a generic decision tree model, is made up of stages.* Every stage has a stage name, which identifies the stage, as well as a type, which specifies the type of the stage. There are three types of stages: decision stages, chance stages, and end stages. In addition, every stage has possible outcomes.

A decision stage represents a particular decision you have to make. The outcomes of a decision stage are the possible alternatives (or actions) of the decision. A chance stage represents an uncertain factor in the decision problem (a statistician might call it a random variable; here it is called an uncertainty). The outcomes of a chance stage are events, one of which will occur according to a given probability distribution. An end stage terminates a particular scenario (a sequence of alternatives and events). It is not necessary to include an end stage in your model; the DTREE procedure adds an end stage to your model if one is needed.

Each outcome of a decision or chance stage also has several attributes, an outcome name to identify the outcome, a reward to give the instant reward of the outcome, and a successor to specify the name of the stage that comes next when this outcome is realized. For chance stages, a probability attribute is also needed. It gives the relative likelihood of this outcome. Every decision stage should have at least two alternatives, and every chance stage should have at least two events. Probabilities of events for a chance stage must sum to 1. End stages do not have any outcomes.

The structure of a decision model is given in the STAGEIN= data set. It contains the stage name, the type, and the attributes (except probability) of all outcomes for each stage in your model. You can specify each stage in one observation or across several observations. If a diagrammatic representation of a decision problem is all you want, you probably do not need any other data sets.

If you want to evaluate and analyze your decision problem, you need another SAS data set, called the PROBIN= data set. This data set describes the probabilities or conditional probabilities for every event in your model. Each observation in the data set contains a list of given conditions (list of outcomes), if there are any, and at least one combination of event and probability. Each event and probability combination identifies the probability that the event occurs given that all the outcomes specified

*The stages are often referred to as variables in many decision analysis articles.
in the list occur. If no conditions are given, then the probabilities are unconditional probabilities.

The third data set, called the PAYOFFS= data set, contains the value of each possible scenario. You can specify one or more scenarios and the associated values in one observation. If the PAYOFFS= data set is omitted, the DTREE procedure assumes that all values are zero and uses rewards for outcomes to evaluate the decision problem.

You can use PROC DTREE to display, evaluate, and analyze your decision problem. In the PROC DTREE statement, you specify input data sets and other options. A VARIABLES statement identifies the variables in the input data set that describe the model. This statement can be used only once and must appear immediately after the PROC DTREE statement. The EVALUATE statement evaluates the decision tree. You can display the optimal decisions by using the SUMMARY statement, or you can plot the complete tree with the TREEPLOT statement. Finally, you can also associate HTML pages with decision tree nodes and create Web-enabled decision tree diagrams.

It is also possible to interactively modify some attributes of your model with the MODIFY statement and to change the order of decisions by using the MOVE statement. Before making any changes to the model, you should save the current model with the SAVE statement so that you can call it back later by using the RECALL statement. Questions about the value of perfect information or the value of perfect control are answered using the VPI and VPC statements. Moreover, any options that can be specified in the PROC DTREE statement can be reset at any time with the RESET statement.

All statements can appear in any order and can be used as many times as desired with one exception. The RECALL statement must be preceded by at least one SAVE statement. In addition, only one model can be saved at any time; the SAVE statement overwrites the previously saved model. Finally, you can use the QUIT statement to stop processing and exit the procedure.

The DTREE procedure produces one output data set. The IMAGEMAP= data set contains the outline coordinates for the nodes in the decision tree that can be used to generate HTML MAP tags.

PROC DTREE uses the Output Delivery System (ODS), a SAS subsystem that provides capabilities for displaying and controlling the output from SAS procedures. ODS enables you to convert any of the output from PROC DTREE into a SAS data set. For further details, refer to the chapter on ODS in the SAS/STAT User’s Guide.
**Getting Started**

**Introductory Example**

A decision problem for an oil wildcatter illustrates the use of the DTREE procedure. The oil wildcatter must decide whether or not to drill at a given site before his option expires. He is uncertain about many things: the cost of drilling, the extent of the oil or gas deposits at the site, and so on. Based on the reports of his technical staff, the hole could be ‘**Dry**’ with probability 0.5, ‘**Wet**’ with probability 0.3, and ‘**Soaking**’ with probability 0.2. His monetary payoffs are given in the following table.

**Table 5.1.** Monetary Payoffs of Oil Wildcatter’s Problem

<table>
<thead>
<tr>
<th></th>
<th>Drill</th>
<th>Not Drill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wet</td>
<td>$700,000</td>
<td>0</td>
</tr>
<tr>
<td>Soaking</td>
<td>$1,200,000</td>
<td>0</td>
</tr>
</tbody>
</table>

The wildcatter also learned from the reports that the cost of drilling could be $150,000 with probability 0.2, $300,000 with probability 0.6, and $500,000 with probability 0.2. He can gain further relevant information about the underlying geological structure of this site by conducting seismic soundings. A cost control procedure that can make the probabilities of the ‘**High**’ cost outcomes smaller (and hence, the probabilities of the ‘**Low**’ cost outcomes larger) is also available. However, such information and control are quite costly, about $60,000 and $120,000, respectively. The wildcatter must also decide whether or not to take the sounding test or the cost control program before he makes his final decision: to drill or not to drill.

The oil wildcatter feels that he should structure and analyze his basic problem first: whether or not to drill. He builds a model that contains one decision stage named ‘**Drill**’ (with two outcomes, ‘**Drill**’ and ‘**Not_Drill**’) and two chance stages named ‘**Cost**’ and ‘**Oil_Deposit**’. A representation of the model is saved in three SAS data sets. In particular, the **STAGEIN=** data set can be saved as follows:

```sas
/* -- create the STAGEIN= data set -- */
data Dtoils1;
 format _STNAME_ $12. _STTYPE_ $2. _OUTCOM_ $10. _SUCCES_ $12. ;
 input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $ _SUCCES_ $;
datalines;
Drill D Drill Cost
. Not_Drill .
Cost C Low Oil_Deposit
. Fair Oil_Deposit
. High Oil_Deposit
Oil_Deposit C Dry .
. Wet .
. Soaking .
;
```
The structure of the decision problem is given in the Dtoils1 data set. As you apply this data set, you should be aware of the following points:

- There is no reward variable in this data set; it is not necessary.
- The ordering of the chance stages ‘Cost’ and ‘Oil_Deposit’ is arbitrary.
- Missing values for the _SUCCES_ variable are treated as ‘_ENDST_’ (the default name of the end stage) unless the associated outcome variable (_OUTCOM_) is also missing.

The following PROBIN= data set contains the probabilities of events:

```plaintext
/* -- create the PROBIN= data set -- */
data Dtoilp1;
 input _EVENT1 $ _PROB1 _EVENT2 $ _PROB2 _EVENT3 $ _PROB3 ;
datalines;
Low 0.2 Fair 0.6 High 0.2
Dry 0.5 Wet 0.3 Soaking 0.2
;
```

Notice that the sum of the probabilities of the events ‘Low’, ‘Fair’, and ‘High’ is 1.0. Similarly, the sum of the probabilities of the events ‘Dry’, ‘Wet’, and ‘Soaking’ is 1.0.

Finally, the following statements produce the PAYOFFS= data set that lists all possible scenarios and their associated payoffs.

```plaintext
/* -- create PAYOFFS= data set -- */
data Dtoilu1;
 format _STATE1-_STATE3 $12. _VALUE_ dollar12.0;
 input _STATE1 $ _STATE2 $ _STATE3 $;
 /* determine the cost for this scenario */
 if _STATE1='Low' then _COST_=150000;
 else if _STATE1='Fair' then _COST_=300000;
 else _COST_=500000;
 /* determine the oil deposit and the */
 /* corresponding net payoff for this scenario */
 if _STATE2='Dry' then _PAYOFF_=0;
 else if _STATE2='Wet' then _PAYOFF_=700000;
 else _PAYOFF_=1200000;
 /* calculate the net return for this scenario */
 if _STATE3='Not_Drill' then _VALUE_=0;
 else _VALUE_=_PAYOFF-_-_COST_;
 /* drop unneeded variables */
 drop _COST_ _PAYOFF_;
```
Introductory Example

```plaintext
datalines;
Low Dry Not_Drill
Low Dry Drill
Low Wet Not_Drill
Low Wet Drill
Low Soaking Not_Drill
Low Soaking Drill
Fair Dry Not_Drill
Fair Dry Drill
Fair Wet Not_Drill
Fair Wet Drill
Fair Soaking Not_Drill
Fair Soaking Drill
High Dry Not_Drill
High Dry Drill
High Wet Not_Drill
High Wet Drill
High Soaking Not_Drill
High Soaking Drill
;

This data set can be displayed, as shown in Figure 5.1, with the following PROC PRINT statements:

```
### Oil Wildcatter’s Problem

#### The Payoffs

<table>
<thead>
<tr>
<th>Obs</th>
<th>STATE1</th>
<th>STATE2</th>
<th>STATE3</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>Dry</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Dry</td>
<td>Drill</td>
<td>-150,000</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>Wet</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>Wet</td>
<td>Drill</td>
<td>550,000</td>
</tr>
<tr>
<td>5</td>
<td>Low</td>
<td>Soaking</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Low</td>
<td>Soaking</td>
<td>Drill</td>
<td>1,050,000</td>
</tr>
<tr>
<td>7</td>
<td>Fair</td>
<td>Dry</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Fair</td>
<td>Dry</td>
<td>Drill</td>
<td>-300,000</td>
</tr>
<tr>
<td>9</td>
<td>Fair</td>
<td>Wet</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Fair</td>
<td>Wet</td>
<td>Drill</td>
<td>400,000</td>
</tr>
<tr>
<td>11</td>
<td>Fair</td>
<td>Soaking</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Fair</td>
<td>Soaking</td>
<td>Drill</td>
<td>900,000</td>
</tr>
<tr>
<td>13</td>
<td>High</td>
<td>Dry</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>High</td>
<td>Dry</td>
<td>Drill</td>
<td>-500,000</td>
</tr>
<tr>
<td>15</td>
<td>High</td>
<td>Wet</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>High</td>
<td>Wet</td>
<td>Drill</td>
<td>200,000</td>
</tr>
<tr>
<td>17</td>
<td>High</td>
<td>Soaking</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>High</td>
<td>Soaking</td>
<td>Drill</td>
<td>700,000</td>
</tr>
</tbody>
</table>

**Figure 5.1.** Payoffs of the Oil Wildcatter’s Problem

The $550,000 payoff associated with the scenario ‘Low’, ‘Wet’, and ‘Drill’ is a net figure; it represents a return of $700,000 for a wet hole less the $150,000 cost for drilling. Similarly, the net return of the consequence associated with the scenario ‘High’, ‘Soaking’, and ‘Drill’ is $700,000, which is interpreted as a return of $1,200,000 less the $500,000 ‘High’ cost.

Now the wildcatter can invoke PROC DTREE to evaluate his model and to find the optimal decision using the following statements:

```sas
/* -- PROC DTREE statements -- */
title "Oil Wildcatter’s Problem";
proc dtree stagein=Dtoils1
 probin=Dtoilp1
 payoffs=Dtoilu1
 nowarning;
evaluate / summary;
```

The following message, which notes the order of the stages, appears on the SAS log:

```
NOTE: Present order of stages:
 Drill(D), Cost(C), Oil_Deposit(C), _ENDST_(E).
```
Oil Wildcatter’s Problem

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_Deposit</td>
<td>Chance</td>
</tr>
<tr>
<td><em>ENDST</em></td>
<td></td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: $140,000

Optimal Decision Policy

Up to Stage Drill

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>$140,000*</td>
<td></td>
</tr>
<tr>
<td>Not_Drill</td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.2. Optimal Decision Summary of the Oil Wildcatter's Problem

The SUMMARY option in the EVALUATE statement produces the optimal decision summary shown in Figure 5.2.

The summary shows that the best action, in the sense of maximizing the expected payoff, is to drill. The expected payoff for this optimal decision is $140,000, as shown on the summary.

Perhaps the best way to view the details of the results is to display the complete decision tree. The following statement draws the decision tree, as shown in Figure 5.3, in line-printer format:

```/* plot decision tree diagram in line-printer mode */
OPTIONS LINESIZE=100;
treeplot/ lineprinter;```
Attitudes Toward Risk

Assume now that the oil wildcatter is constantly risk averse and has an exponential utility function with a risk tolerance (RT) of $700,000. The risk tolerance is a measure of the decision maker’s attitude to risk. See the “Evaluation” section beginning on page 386 for descriptions of the utility function and risk tolerance.

The new optimal decision based on this utility function can be determined with the following statement:

```
evaluate / criterion=maxce rt=700000 summary;
```

The summary, shown in Figure 5.4, indicates that the venture of investing in the oil well is worth $-13,580 to the wildcatter, and he should not drill the well.
Oil Wildcatter’s Problem

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_Deposit</td>
<td>Chance</td>
</tr>
<tr>
<td>ENDST</td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

- Decision Criterion: Maximize Certain Equivalent Value (MAXCE)
- Risk Tolerance: $700,000
- Optimal Decision Yields: $0

Optimal Decision Policy

Up to Stage Drill

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>$-13,580</td>
<td></td>
</tr>
<tr>
<td>Not_Drill</td>
<td>$0*</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.4. Summary of the Oil Wildcatter’s Problem with RT = $700,000

Sensitivity Analysis and Value of Perfect Information

The oil wildcatter learned that the optimal decision changed when his attitude toward risk changed. Since risk attitude is difficult to express quantitatively, the oil wildcatter wanted to learn more about the uncertainties in his problem. Before spending any money on information-gathering procedures, he would like to know the benefit of knowing, before the ‘Drill’ or ‘Not_Drill’ decision, the amount of oil or the cost of drilling. The simplest approach is to calculate the value of perfect information for each uncertainty. This quantity gives an upper limit on the amount that could be spent profitably on information gathering. The expected value of information for the amount of oil is calculated by the following statement:

\[
\text{vpi Oil_Deposit};
\]

The result of the previous statement is written to the SAS log as

NOTE: The currently optimal decision yields 140000.
NOTE: The new optimal decision yields 295000.
NOTE: The value of perfect information of stage Oil_Deposit yields 155000.
This means that the wildcatter could spend up to $155,000 to determine the amount of oil in the deposit with certainty before losing money. There are several alternative ways to calculate the expected value of perfect information. For example, the following statement

\[
\text{vpi Cost;}
\]

is equivalent to

\[
\begin{align*}
\text{save;} \\
\text{move Cost before Drill;} \\
\text{evaluate;} \\
\text{recall;}
\end{align*}
\]

The messages, which appear on the SAS log, show that if there is some way that the wildcatter knows what the cost to drill will be before his decision has to be made, it will yield an expected payoff of $150,000. So, the expected value of perfect information about drilling cost is $150,000 - $140,000 = $10,000.

\[
\text{NOTE: The current problem has been successfully saved.}
\]

\[
\text{NOTE: Present order of stages:}
\]

\[
\text{Cost(C), Drill(D), Oil_Deposit(C), _ENDST_(E).}
\]

\[
\text{NOTE: The currently optimal decision yields 150000.}
\]

\[
\text{NOTE: The original problem has been successfully recalled.}
\]

\[
\text{NOTE: Present order of stages:}
\]

\[
\text{Drill(D), Cost(C), Oil_Deposit(C), _ENDST_(E).}
\]

Value of Perfect Control

The oil wildcatter may also want to know what the value of perfect control (VPC) is on the cost of drilling. That is, how much is he willing to pay for getting complete control on the drilling cost? This analysis can be performed with the following statement:

\[
\text{vpc Cost;}
\]

The result is written to the SAS log as

\[
\text{NOTE: The currently optimal decision yields 140000.}
\]

\[
\text{NOTE: The new optimal decision yields 300000.}
\]

\[
\text{NOTE: The value of perfect control of stage Cost yields 160000.}
\]
The wildcatter is impressed with the results of calculating the values of perfect information and perfect control. After comparing those values with the costs of the sounding test and the cost-controlling procedure, he prefers to spend $60,000 on sounding test, which has a potential improvement of $155,000. He is informed that the sounding will disclose whether the terrain below has no structure (which is bad), open structure (which is okay), or closed structure (which is really hopeful). The expert also provides him with the following table, which shows the conditional probabilities.

Table 5.2. Conditional Probabilities of Oil Wildcatter's Problem

<table>
<thead>
<tr>
<th>State</th>
<th>Seismic Outcomes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Structure</td>
<td>Open Structure</td>
<td>Closed Structure</td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Soaking</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

To include this additional information into his basic problem, the wildcatter needs to add two stages to his model: a decision stage to represent the decision whether or not to take the sounding test, and one chance stage to represent the uncertain test result. The new STAGEIN= data set is

```sas
/* -- create the STAGEIN= data set -- */
data Dtoils2;
  input _STNAME_ & _STTYPE_ & _OUTCOM_ & _SUCCES_ & _REWARD_ dollar12.0;
  datalines;
  Drill D Drill Cost .
  . . . Not_Drill .
  Cost C Low Oil_Deposit .
  . . . . Fair Oil_Deposit .
  . . . . High Oil_Deposit .
  Oil_Deposit C Dry .
  . . . Wet .
  . . . . Soaking .
  Sounding D Noseismic Drill .
  . . Seismic Structure -$60,000
  Structure C No_Struct Drill .
  . . Open_Struct Drill .
  . . Closed_Struct Drill .
;```

Note that the cost for the seismic soundings is represented as negative reward (of the outcome Seismic) in this data set. The conditional probabilities for stage Structure are added to the PROBIN= data set as follows:
Chapter 5. The DTREE Procedure

/* -- create PROBIN= data set -- */
data Dtoilp2;
  format _EVENT1 $10. _EVENT2 $12. _EVENT3 $14. ;
  input _GIVEN_ $ _EVENT1 $ _PROB1 _EVENT2 $ _PROB2 _EVENT3 $ _PROB3;
datalines;
.  Low  0.2  Fair  0.6  High  0.2
.  Dry  0.5  Wet  0.3  Soaking  0.2
Dry  No_Struct  0.6  Open_Struct  0.3  Closed_Struct  0.1
Wet  No_Struct  0.3  Open_Struct  0.4  Closed_Struct  0.3
Soaking  No_Struct  0.1  Open_Struct  0.4  Closed_Struct  0.5
;

It is not necessary to make any change to the PAYOFFS= data set. To evaluate his new model, the wildcatter invokes PROC DTREE as follows:

/* -- PROC DTREE statements -- */
title "Oil Wildcatter’s Problem";
proc dtree stagein=Dtoils2
  probin=Dtoilp2
  payoffs=Dtoilu1
  nowarning;
  evaluate;

As before, the following messages are written to the SAS log:

NOTE: Present order of stages:

Sounding(D), Structure(C), Drill(D), Cost(C), Oil_Deposit(C), _ENDST_(E).

NOTE: The currently optimal decision yields 140000.

The following SUMMARY statements produce optimal decision summary as shown in Figure 5.5 and Figure 5.6:

summary / target=Sounding;
summary / target=Drill;

The optimal strategy for the oil-drilling problem is found to be the following:

• No soundings test should be taken, and always drill. This alternative has an expected payoff of $140,000.
• If the soundings test is conducted, then drill unless the test shows the terrain below has no structure.
• The soundings test is worth $180,100 - $140,000 = $40,100 (this quantity is also called the value of imperfect information or the value of sample information), but it costs $60,000; therefore, it should not be taken.
Oil Wildcatter’s Problem

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sounding</td>
<td>Decision</td>
</tr>
<tr>
<td>Structure</td>
<td>Chance</td>
</tr>
<tr>
<td>Drill</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_Deposit</td>
<td>Chance</td>
</tr>
<tr>
<td><em>ENDST</em></td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: $140,000

Optimal Decision Policy

Up to Stage Sounding

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward Value</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noseismic</td>
<td>0</td>
<td>$140,000*</td>
</tr>
<tr>
<td>Seismic</td>
<td>-60000</td>
<td>$180,100</td>
</tr>
</tbody>
</table>

Figure 5.5. Summary of the Oil Wildcatter’s Problem for SOUNDING
Oil Wildcatter’s Problem

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sounding</td>
<td>Decision</td>
</tr>
<tr>
<td>Structure</td>
<td>Chance</td>
</tr>
<tr>
<td>Drill</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_Deposit</td>
<td>Chance</td>
</tr>
<tr>
<td><em>ENST</em></td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: $140,000

Optimal Decision Policy

Up to Stage Drill

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noseismic</td>
<td>Drill</td>
<td>0</td>
</tr>
<tr>
<td>Noseismic</td>
<td>Not_Drill</td>
<td>0</td>
</tr>
<tr>
<td>Seismic</td>
<td>No_Struct Drill</td>
<td>-60000</td>
</tr>
<tr>
<td>Seismic</td>
<td>No_Struct Not_Drill</td>
<td>-60000</td>
</tr>
<tr>
<td>Seismic</td>
<td>Open_Struct Drill</td>
<td>-60000</td>
</tr>
<tr>
<td>Seismic</td>
<td>Open_Struct Not_Drill</td>
<td>-60000</td>
</tr>
<tr>
<td>Seismic</td>
<td>Closed_Struct Drill</td>
<td>-60000</td>
</tr>
<tr>
<td>Seismic</td>
<td>Closed_Struct Not_Drill</td>
<td>-60000</td>
</tr>
</tbody>
</table>

Figure 5.6. Summary of the Oil Wildcatter’s Problem for DRILL

Note that the value of sample information also can be obtained by using the following statements:

```
modify Seismic reward 0;
evaluate;
```

The following messages, which appear in the SAS log, show the expected payoff with soundings test is $180,100. Recall that the expected value without test information is $140,000. Again, following the previous calculation, the value of test information is $180,100 - $140,000 = $40,100.

NOTE: The reward of outcome Seismic has been changed to 0.

NOTE: The currently optimal decision yields 180100.

Now, the wildcatter has the information to make his best decision.
Syntax

The following statements are available in PROC DTREE:

```
PROC DTREE options;
 EVALUATE / options;
 MODIFY specifications;
 MOVE specifications;
 QUIT;
 RECALL;
 RESET options;
 SAVE;
 SUMMARY / options;
 TREEPLOT / options;
 VARIABLES / options;
 VPC specifications;
 VPI specifications;
```

The DTREE procedure begins with the `PROC DTREE` statement and terminates with the `QUIT` statement. The `VARIABLES` statement can be used only once, and if it is used, it must appear before any other statements. The `EVALUATE`, `MODIFY`, `MOVE`, `RECALL`, `RESET`, `SAVE`, `SUMMARY`, `TREEPLOT`, `VPC`, and `VPI` statements can be listed in any order and can be used as many times as desired with one exception: the `RECALL` statement must be preceded by at least one `SAVE` statement.

You can also submit any other valid SAS statements, for example, `OPTIONS`, `TITLE`, and SAS/GRAPH global statements. In particular, the SAS/GRAPH statements that can be used to enhance the DTREE procedure’s output on graphics devices are listed in Table 5.3. Note that the DTREE procedure is not supported with the ActiveX or Java series of devices on the `GOPTIONS` statement. Refer to SAS/GRAPH Software: Reference for more explanation of these statements.

Table 5.3. Statements to Enhance Graphics Output

<table>
<thead>
<tr>
<th>Statement</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOOTNOTE</td>
<td>Produce footnotes that are displayed on the graphics output</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>Define default values for graphics options</td>
</tr>
<tr>
<td>NOTE</td>
<td>Produce text that is displayed on the graphics output</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>Create symbol definitions</td>
</tr>
<tr>
<td>TITLE</td>
<td>Produce titles that are displayed on the graphics output</td>
</tr>
</tbody>
</table>

Functional Summary

The following tables outline the options available for the DTREE procedure classified by function.
### Table 5.4. Accuracy Control Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy of numerical computation</td>
<td>DTREE, RESET</td>
<td>TOLERANCE=</td>
</tr>
</tbody>
</table>

### Table 5.5. Data Set Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotate data set</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>ANNOTATE=</td>
</tr>
<tr>
<td>Image map output data set</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>IMAGEMAP=</td>
</tr>
<tr>
<td>Payoffs data set</td>
<td>DTREE</td>
<td>PAYOFFS=</td>
</tr>
<tr>
<td>Probability data set</td>
<td>DTREE</td>
<td>PROBIN=</td>
</tr>
<tr>
<td>Stage data set</td>
<td>DTREE</td>
<td>STAGEIN=</td>
</tr>
</tbody>
</table>

### Table 5.6. Error Handling Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>automatically rescale the probabilities of an uncertainty if they do not sum to 1</td>
<td>DTREE, RESET</td>
<td>AUTOSCALE</td>
</tr>
<tr>
<td>react to errors being detected</td>
<td>DTREE, RESET</td>
<td>ERRHANDLE=</td>
</tr>
<tr>
<td>do not automatically rescale probabilities</td>
<td>DTREE, RESET</td>
<td>NOSCALE</td>
</tr>
<tr>
<td>do not display warning message</td>
<td>DTREE, RESET</td>
<td>NOWARNING</td>
</tr>
<tr>
<td>display warning message</td>
<td>DTREE, RESET</td>
<td>WARNING</td>
</tr>
</tbody>
</table>

### Table 5.7. Evaluation Control Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>criterion to determine the optimal decision risk tolerance</td>
<td>DTREE, EVALUATE, RESET</td>
<td>CRITERION=</td>
</tr>
<tr>
<td>risk tolerance</td>
<td>DTREE, EVALUATE, RESET</td>
<td>RT=</td>
</tr>
</tbody>
</table>

### Table 5.8. Format Control Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum decimal width to format numerical values</td>
<td>DTREE, EVALUATE, RESET, SUMMARY, TREEPLOT</td>
<td>MAXPREC=</td>
</tr>
<tr>
<td>maximum field width to format numerical values</td>
<td>DTREE, EVALUATE, RESET, SUMMARY, TREEPLOT</td>
<td>MAXWIDTH=</td>
</tr>
<tr>
<td>maximum field width to format names</td>
<td>DTREE, EVALUATE, RESET, SUMMARY, TREEPLOT</td>
<td>NWIDTH=</td>
</tr>
</tbody>
</table>

### Table 5.9. Graphics Catalog Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>description field for catalog entry</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>DESCRIPTION=</td>
</tr>
<tr>
<td>name of graphics catalog</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>GOUT=</td>
</tr>
<tr>
<td>name field for catalog entry</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>NAME=</td>
</tr>
</tbody>
</table>

### Table 5.10. Line-printer Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>characters for line-printer plot</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>FORMCHAR=</td>
</tr>
</tbody>
</table>
### Table 5.11. Link Appearance Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>color of LOD(^1)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>CBEST=</td>
</tr>
<tr>
<td>color of all links except LOD(^1)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>CLINK=</td>
</tr>
<tr>
<td>symbol definition for all links except LOD(^1) and LCP(^2)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>LINKA=</td>
</tr>
<tr>
<td>symbol definition for LOD(^1)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>LINKB=</td>
</tr>
<tr>
<td>symbol definition for LCP(^2)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>LINKC=</td>
</tr>
<tr>
<td>line type of all links except LOD(^1) and LCP(^2)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>LSTYLE=</td>
</tr>
<tr>
<td>line type of LOD(^1)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>LSTYLEB=</td>
</tr>
<tr>
<td>line type of LCP(^2)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>LSTYLEC=</td>
</tr>
<tr>
<td>line thickness of all links except LOD(^1)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>LWIDTH=</td>
</tr>
<tr>
<td>line thickness of LOD(^1)</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>LWIDTHB=</td>
</tr>
</tbody>
</table>

\(^1\) LOD denotes links that indicate optimal decisions.

\(^2\) LCP denotes links that continue on subsequent pages.

### Table 5.12. Node Appearance Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>color of chance nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>CSYMBOLC=</td>
</tr>
<tr>
<td>color of decision nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>CSYMBOLE=</td>
</tr>
<tr>
<td>color of end nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>CSYMBOLE=</td>
</tr>
<tr>
<td>height of symbols for all nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>HSYMBOL=</td>
</tr>
<tr>
<td>symbol definition for chance nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>SYMBOLC=</td>
</tr>
<tr>
<td>symbol definition for decision nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>SYMBOLD=</td>
</tr>
<tr>
<td>symbol definition for end nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>SYMBOLD=</td>
</tr>
<tr>
<td>symbol to draw chance nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>VSYMBOLC=</td>
</tr>
<tr>
<td>symbol to draw decision nodes</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>VSYMBOLE=</td>
</tr>
</tbody>
</table>

### Table 5.13. Output Control Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>suppress displaying the optimal decision summary</td>
<td>DTREE, EVALUATE, RESET</td>
<td>NOSUMMARY</td>
</tr>
<tr>
<td>display the optimal decision summary up to which the optimal decision summary is displayed</td>
<td>DTREE, EVALUATE, RESET, SUMMARY</td>
<td>SUMMARY</td>
</tr>
<tr>
<td></td>
<td>DTREE, EVALUATE, RESET, SUMMARY</td>
<td>TARGET=</td>
</tr>
</tbody>
</table>
### Table 5.14. Plot Control Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>draw diagram on one page in graphics mode</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>COMPRESS DISPLAY=</td>
</tr>
<tr>
<td>decision tree diagram information are displayed on the decision tree diagram</td>
<td>DTREE, RESET, TREEPLOT COMPRESS</td>
<td></td>
</tr>
<tr>
<td>processing of the Annotate data set</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>DOANNOTATE</td>
</tr>
<tr>
<td>invoke graphics version</td>
<td>DTREE, RESET, TREEPLOT GRAPHICS</td>
<td></td>
</tr>
<tr>
<td>display labels</td>
<td>DTREE, RESET, TREEPLOT LABEL</td>
<td></td>
</tr>
<tr>
<td>display legend</td>
<td>DTREE, RESET, TREEPLOT LEGEND</td>
<td></td>
</tr>
<tr>
<td>invoke line-printer version</td>
<td>DTREE, RESET, TREEPLOT LINEPRINTER</td>
<td></td>
</tr>
<tr>
<td>suppress processing of the Annotate data set</td>
<td>DTREE, RESET, TREEPLOT NOANNOTATE</td>
<td></td>
</tr>
<tr>
<td>draw diagram across multiple pages</td>
<td>DTREE, RESET, TREEPLOT</td>
<td>NOCOMPRESS</td>
</tr>
<tr>
<td>suppress displaying label</td>
<td>DTREE, RESET, TREEPLOT NOLABEL</td>
<td></td>
</tr>
<tr>
<td>suppress displaying legend</td>
<td>DTREE, RESET, TREEPLOT NOLEGEND</td>
<td></td>
</tr>
<tr>
<td>suppress displaying page number</td>
<td>DTREE, RESET, TREEPLOT NOPAGENUM</td>
<td></td>
</tr>
<tr>
<td>use rectangular corners for turns in the links</td>
<td>DTREE, RESET, TREEPLOT NORC</td>
<td></td>
</tr>
<tr>
<td>display page number at upper right corner</td>
<td>DTREE, RESET, TREEPLOT PAGENUM</td>
<td></td>
</tr>
<tr>
<td>use rounded corners for turns in the links</td>
<td>DTREE, RESET, TREEPLOT RC</td>
<td>YBETWEEN=</td>
</tr>
<tr>
<td>vertical space between two end nodes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 5.15. Text Appearance Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>text color</td>
<td>DTREE, RESET, TREEPLOT CTEXT=</td>
<td></td>
</tr>
<tr>
<td>text font</td>
<td>DTREE, RESET, TREEPLOT FTEXT=</td>
<td></td>
</tr>
<tr>
<td>text height</td>
<td>DTREE, RESET, TREEPLOT HTEXT=</td>
<td></td>
</tr>
</tbody>
</table>

### Table 5.16. Variables in PAYOFFS= Data Set

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>action outcome names</td>
<td>VARIABLES</td>
<td>ACTION=</td>
</tr>
<tr>
<td>state outcome names</td>
<td>VARIABLES</td>
<td>STATE=</td>
</tr>
<tr>
<td>payoffs</td>
<td>VARIABLES</td>
<td>VALUE=</td>
</tr>
</tbody>
</table>

### Table 5.17. Variables in PROBIN= Data Set

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>event outcome names</td>
<td>VARIABLES</td>
<td>EVENT=</td>
</tr>
<tr>
<td>given outcome names</td>
<td>VARIABLES</td>
<td>GIVEN=</td>
</tr>
<tr>
<td>(conditional) probabilities</td>
<td>VARIABLES</td>
<td>PROB=</td>
</tr>
</tbody>
</table>

### Table 5.18. Variables in STAGEIN= Data Set

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement(s)</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>outcome names</td>
<td>VARIABLES</td>
<td>OUTCOME=</td>
</tr>
<tr>
<td>rewards</td>
<td>VARIABLES</td>
<td>REWARD=</td>
</tr>
<tr>
<td>stage name</td>
<td>VARIABLES</td>
<td>STAGE=</td>
</tr>
<tr>
<td>successor names</td>
<td>VARIABLES</td>
<td>SUCCESSOR=</td>
</tr>
<tr>
<td>type of stage</td>
<td>VARIABLES</td>
<td>TYPE=</td>
</tr>
<tr>
<td>web reference variable</td>
<td>VARIABLES</td>
<td>WEB=</td>
</tr>
</tbody>
</table>
PROC DTREE Statement

PROC DTREE options;

The options that can appear in the PROC DTREE statement are listed in the following section. The options specified in the PROC DTREE statement remain in effect for all statements until the end of processing or until they are changed by a RESET statement. These options are classified under appropriate headings: first, all options that are valid for all modes of the procedure are listed followed by the options classified according to the mode (line-printer or graphics) of invocation of the procedure.

General Options

AUTOSCALE | NOSCALE
specifies whether the procedure should rescale the probabilities of events for a given chance stage if the total probability of this stage is not equal to 1. The default is NOSCALE.

CRITERION=i
indicates the decision criterion to be used for determining the optimal decision and the certain equivalent for replacing uncertainties. The following table shows all valid values of i and their corresponding decision criteria and certain equivalents.

Table 5.19. Values for the CRITERION= Option

<table>
<thead>
<tr>
<th>i</th>
<th>Criterion</th>
<th>Certain Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXEV</td>
<td>maximize</td>
<td>expected value</td>
</tr>
<tr>
<td>MINEV</td>
<td>minimize</td>
<td>expected value</td>
</tr>
<tr>
<td>MAXMLV</td>
<td>maximize</td>
<td>value with largest probability</td>
</tr>
<tr>
<td>MINMLV</td>
<td>minimize</td>
<td>value with largest probability</td>
</tr>
<tr>
<td>MAXCE</td>
<td>maximize</td>
<td>certain equivalent value of expected utility</td>
</tr>
<tr>
<td>MINCE</td>
<td>minimize</td>
<td>certain equivalent value of expected utility</td>
</tr>
</tbody>
</table>

The default value is MAXEV. The last two criteria are used when your utility curve can be fit by an exponential function. See the “Evaluation” section beginning on page 386 for more information on the exponential utility function.

DISPLAY=(information-list)
specifies information that should be displayed on each link of the decision tree diagram. Table 5.20 lists the valid keywords and corresponding information.

Table 5.20. Information on Decision Tree and Keywords

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>all information listed in this table</td>
</tr>
<tr>
<td>CR</td>
<td>cumulative rewards of outcomes on the path that leads to the successor of the link</td>
</tr>
<tr>
<td>EV</td>
<td>evaluating value that can be expected from the successor of the link</td>
</tr>
<tr>
<td>LINK</td>
<td>outcome name represented by the link</td>
</tr>
<tr>
<td>P</td>
<td>probability of the outcome represented by the link</td>
</tr>
<tr>
<td>R</td>
<td>instant reward of the outcome represented by the link</td>
</tr>
<tr>
<td>STAGE</td>
<td>stage name of the successor of the link</td>
</tr>
</tbody>
</table>
The default value is (LINK P EV R CR).

Note that the probability information displays on links that represent chance outcomes only. In addition, the PROBIN= option must be specified. The expected values display only if the decision tree has been evaluated. The reward information displays on a link only if the instant reward of the outcome represented by the link is nonzero. The cumulative rewards do not display if the cumulative rewards of links are all zero.

**ERRHANDLE**=DRAIN | QUIT
specifies whether the procedure should stop processing the current statement and wait for next statement or quit PROC DTREE when an error has been detected by the procedure. The default value is DRAIN.

**GRAPHICS**
creates plots for a graphics device. To specify this option, you need to have SAS/GRAPH software licensed at your site. This is the default.

**LABEL** | **NOLABEL**
specifies whether the labels for information displayed on the decision tree diagram should be displayed. If the NOLABEL option is not specified, the procedure uses the following symbols to label all the information that is displayed on each link.

<table>
<thead>
<tr>
<th>Label</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>cr=</td>
<td>the cumulative rewards of outcomes on the path that lead to the successor of the link</td>
</tr>
<tr>
<td>EV=</td>
<td>the value that can be expected from the successor of the link</td>
</tr>
<tr>
<td>p=</td>
<td>the probability of the outcome represented by the link</td>
</tr>
<tr>
<td>r=</td>
<td>the instant reward of the outcome</td>
</tr>
</tbody>
</table>

The default is LABEL.

**LINEPRINTER**

**LP**
creates plots of line-printer quality. If you do not specify this option, graphics plots are produced.

**MAXPREC**=d
specifies the maximum decimal width (the precision) in which to format numerical values using \( w.d \) format. This option is used in displaying the decision tree diagrams and the summaries. The value for this option must be no greater than 9; the default value is 3.

**MAXWIDTH**=mw
specifies the maximum field width in which to format numerical values (probabilities, rewards, cumulative rewards and evaluating values) using \( w.d \) format. This option is used in displaying the decision tree diagrams and the summaries. The value for this option must be no greater than 16 and must be at least 5 plus the value of the **MAXPREC**= option. The default value is 10.
**PROC DTREE Statement**  

**NWIDTH=**nw

specifies the maximum field width in which to format outcome names when displaying the decision tree diagrams. The value for this option must be no greater than 40; the default value is 32.

**PAYOFFS=SAS-data-set**

denames the SAS data set that contains the evaluating values (payoffs, losses, utilities, and so on) for each state and action combination. The use of PAYOFFS= is optional in the PROC DTREE statement. If the PAYOFFS= option is not used, PROC DTREE assumes that all evaluating values at the end nodes of the decision tree are 0.

**PROBIN=SAS-data-set**

denames the SAS data set that contains the (conditional) probability specifications of outcomes. The PROBIN= SAS data set is required if the evaluation of the decision tree is desired.

**RT=r**

specifies the value of the risk tolerance. The RT= option is used only when CRITERION=MAXCE or CRITERION=MINE is specified. If the RT= option is not specified, and CRITERION=MAXCE or CRITERION=MINE is specified, PROC DTREE changes the value of the CRITERION= option to MAXEV or MINEV (which would mean straight-line utility function and imply infinite risk tolerance).

**STAGEIN=SAS-data-set**

denames the SAS data set that contains the stage names, stage types, names of outcomes, and their rewards and successors for each stage. If the STAGEIN= option is not specified, PROC DTREE uses the most recently created SAS data set.

**SUMMARY | NOSUMMARY**

specifies whether an optimal decision summary should be displayed each time the decision tree is evaluated. The decision summary lists all paths through the tree that lead to the target stage as well as the cumulative rewards and the evaluating values of all alternatives for that path. The alternative with optimal evaluating value for each path is marked with an asterisk (*). The default is NOSUMMARY.

**TARGET=stage**

specifies the decision stage up to which the optimal decision policy table is displayed. The TARGET= option is used only in conjunction with the SUMMARY option. The stage specified must be a decision stage. If the TARGET= option is not specified, the procedure displays an optimal decision policy table for each decision stage.

**TOLERANCE=d**

specifies either a positive number close to 0 or greater than 1. PROC DTREE treats all numbers within e of 0 as 0, where

\[
e = \begin{cases} 
  d & \text{if } d < 1 \\
  d \times \epsilon & \text{otherwise}
\end{cases}
\]

and \( \epsilon \) is the machine epsilon. The default value is 1,000.
WARNING | NOWARNING
specifies whether the procedure should display a warning message when

- the payoff for an outcome is not assigned in the PAYOFFS= data set
- probabilities of events for a given chance stage have been automatically scaled by PROC DTREE because the total probability of the chance stage does not equal 1

The default is WARNING.

YBETWEEN=ybetween <units>
specifies the vertical distance between two successive end nodes. If the GRAPHICS option is specified, the valid values for the optional units are listed in Table 5.22.

Table 5.22. Valid Values for the Units of the YBETWEEN= Option

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL</td>
<td>character cells</td>
</tr>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>INCH</td>
<td>inches</td>
</tr>
<tr>
<td>PCT</td>
<td>percentage of the graphics output area</td>
</tr>
<tr>
<td>SPACE</td>
<td>height of the box surrounding the node, its predecessor link, and all text information</td>
</tr>
</tbody>
</table>

The value of the YBETWEEN= option must be greater than or equal to 0. Note that if the COMPRESS option is specified, the actual distance between two successive end nodes is scaled by PROC DTREE and may not be the same as the YBETWEEN= specification.

If the LINEPRINTER option is specified, the optional units value can be CELL or SPACE. The value of the YBETWEEN= option must be a nonnegative integer.

If you do not specify units, a unit specification is determined in the following order:

- the GUNIT= option in a GOPTIONS statement, if the GRAPHICS option is specified
- the default unit, CELL

The default value of YBETWEEN= option is 0.

**Graphics Options**

The following options are specifically for the purpose of producing a high-resolution quality decision tree diagram.
ANNOTATE=SAS-data-set
ANNO=SAS-data-set
specifies an input data set that contains appropriate Annotate variables. The
ANNOTATE= option enables you to add features (for example, customized legend)
to plots produced on graphics devices. For additional information, refer to the chapter
on the annotate data set in SAS/GRAPH Software: Reference.

CBEST=color
CB=color
specifies the color for all links in the decision tree diagram that represent optimal
decisions. If you do not specify the CBEST= option, the color specification is deter-
mained in the following order:

• the CI= option in the jth generated SYMBOL definition, if the option LINKB=j
  is specified
• the second color in the colors list

CLINK=color
CL=color
specifies the color for all links in the decision tree diagram except those that represent
optimal decisions. If the CLINK= option is not specified, the color specification is
determined in the following order:

• the CI= option in the ith generated SYMBOL definition, if the option LINKA=i
  is specified
• the third color in the colors list

COMPRESS | NOCOMPRESS
CP | NOCP
specifies whether the decision tree diagram should be drawn on one physical page.
If the COMPRESS option is specified, PROC DTREE determines the scale so that
the diagram is compressed, if necessary, to fit on one physical page. Otherwise,
the procedure draws the diagram across multiple pages if necessary. The default is
NOCOMPRESS.

CSYMBOLC=color
CC=color
specifies the color of the symbol used to draw all chance nodes in the decision tree
diagram. If the CSYMBOLC= option is not specified, the color specification is de-
termined in the following order:

• the CV= option in the mth generated SYMBOL definition, if the option
  SYMBOLC=m is specified
• the CSYMBOL= option in a GOPTIONS statement
• the fifth color in the colors list
Chapter 5. The DTREE Procedure

**CSYMBOLD=** `color`

**CD=** `color`

specifies the color of the symbol used to draw all decision nodes in the decision tree diagram. If the `CSYMBOLD=` option is not specified, the color specification is determined in the following order:

- the `CV=` option in the `d`th generated SYMBOL definition, if the option `SYMBOLD=d` is specified
- the `CSYMBOL=` option in a GOPTIONS statement
- the fourth color in the colors list

**CSYMBOLE=** `color`

**CE=** `color`

specifies the color of the symbol used to draw all end nodes in the decision tree diagram. If the `CSYMBOLE=` option is not specified, the color specification is determined in the following order:

- the `CV=` option in the `n`th generated SYMBOL definition, if the option `SYMBOLE=n` is specified
- the `CSYMBOL=` option in a GOPTIONS statement
- the sixth color in the colors list

**CTEXT=** `color`

**CT=** `color`

specifies the color to be used for all text that appears on plots except on TITLE and FOOTNOTE lines. If the `CTEXT=` option is not specified, the color specification is determined in the following order:

- the `CTEXT=` option in a GOPTIONS statement
- the first color in the colors list

**DESCRIPTION=** `'string'`

**DES=** `'string'`

specifies a descriptive string, up to 40 characters long, that appears in the description field of the master menu of PROC GREPLAY. If the `DESCRIPTION=` option is omitted, the description field contains a description assigned by PROC DTREE.

**DOANNOTATE | NOANNOTATE**

**DOANNO | NOANNO**

specifies whether the Annotate data set should be processed. If the `NOANNOTATE` option is specified, the procedure does not process the Annotate data set even though the `ANNOTATE=` option is specified. The default is `DOANNOTATE`. 
**FTEXT=**name  
**FONT=name**  
specifies the font to be used for text on plots. If you do not use this option, the font specification is determined in the following order:

- the **FTEXT=** option in a **GOPTIONS** statement
- the hardware font for your graphics output device

Refer to the chapter on SAS/GRAPH fonts in *SAS/GRAPH Software: Reference* for details about SAS/GRAPH fonts.

**GOUT=SAS-catalog**  
specifies the name of the graphics catalog used to save the output produced by PROC DTREE for later replay. For additional information, refer to the chapter on graphics output in *SAS/GRAPH Software: Reference*.

**HSYMBOL=**h  
**HS=h**  
specifies that the height of symbols for all nodes in the decision tree diagram is \( h \) times the heights of symbols assigned by SAS/GRAPH software. You can specify the heights of decision nodes, chance nodes, and end nodes by using the **HEIGHT=** options in the corresponding **SYMBOL** statements. For example, if you specify the options **HSYMBOL=2** and **SYMBOLD=1** in the PROC DTREE statement and defined **SYMBOL1** as

\[
symbol1 \text{ height}=4 \text{ pct};
\]

then all decision nodes in the decision tree diagram are sized at \( 2 \times 4 = 8\% \) of the graphics output area. The default value is 1.

**HTEXT=**h  
**HT=h**  
specifies that the height for all text in plots (except that in **TITLE** and **FOOTNOTE** statements) be \( h \) times the height of the characters assigned by SAS/GRAPH software. You can also specify character height by using the **HTEXT=** option in a **GOPTIONS** statement.

For example, if you specify the option **HTEXT=0.6** in the PROC DTREE statement and also specified a **GOPTIONS** statement as follows

\[
goptions htext=2 in;
\]

then the size of all text is \( 0.6 \times 2 = 1.2 \) inches. For more explanation of the **GOPTIONS** statement, refer to the chapter on the **GOPTIONS** statement in *SAS/GRAPH Software: Reference*. The default value is 1.
IMAGEMAP=SAS-data-set

names the SAS data set that receives a description of the areas of a graph and a link for each area. This information is for the construction of HTML image maps. You use a SAS DATA step to process the output file and generate your own HTML files. The graph areas correspond to the link information that comes from the WEB= variable in the STAGEIN= data set. This gives you complete control over the appearance and structure of your HTML pages.

LEGEND | NOLEGEND
LG | NOLG

specifies whether the default legend should be displayed. If the NOLEGEND is not specified, the procedure displays a legend at the end of each page of the decision tree diagram. The default is LEGEND.

LINKA=i

If the LINKA=i option is specified, then PROC DTREE uses the color specified with the CI= option, the type specified with the LINE= option, and the thickness specified with the WIDTH= option in the ith generated SYMBOL definition to draw all links in the decision tree diagram, except those that indicate optimal decisions and those that are continued on subsequent pages. There is no default value for this option. The color, type, and thickness specifications may be overridden by the specifications of the CLINK=, LSTYLE=, and LWIDTH= options in the PROC DTREE statement.

Note that if you specify the LINKA=i option, PROC DTREE uses the specifications in the ith generated SYMBOL definition and not the specifications in the SYMBOLi statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

LINKB=j

If the LINKB=j option is specified, then PROC DTREE uses the color specified with the CI= option, the type specified with the LINE= option, and the thickness specified with the WIDTH= option in the jth generated SYMBOL definition to draw all links that represent optimal decisions. There is no default value for this option. The color, type, and thickness specifications may be overridden by the specifications of the CBEST=, LSTYLEB=, and LWIDTHB= options in the PROC DTREE statement.

Note that if you specify the LINKB=j option, PROC DTREE uses the specifications in the jth generated SYMBOL definition and not the specifications in the SYMBOLj statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

LINKC=k

If the LINKC=k option is specified, then PROC DTREE uses the type specified with the LINE= option in the kth generated SYMBOL definition to draw all links in the decision tree diagram that are continued on subsequent pages. There is no default value for this option. The color and thickness for links continued on another page indicate whether the link represents an optimal decision or not. The type specification may be overridden by the specification of the LSTYLEC= option in the PROC DTREE statement.

Note that if you specify the LINKC=k option, PROC DTREE uses the specifications
in the kth generated SYMBOL definition and not the specifications in the SYMBOLk statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

**LSTYLE=**

L= specifies the line type (style) used for drawing all links in the decision tree diagram, except those that represent the optimal decisions and those that are continued on subsequent pages. Valid values for l are 1 though 46. If the LSTYLE= option is not specified, the type specification is determined in the following order:

- the LINE= option in the ith generated SYMBOL definition, if the option LINKA=i is specified
- the default value, 1 (solid line)

**LSTYLEB=**

LB= specifies the line type (style) used for drawing the links in the decision tree diagram that represent optimal decisions. Valid values for l2 are 1 though 46. If the LSTYLEB= option is not specified, the type specification is determined in the following order:

- the LINE= option in the jth generated SYMBOL definition, if the option LINKB=j is specified
- the default value, 1 (solid line)

**LSTYLEC=**

LC= specifies the line type (style) used for drawing the links in the decision tree diagram that are continued on the next subsequent pages. Valid values for l3 are 1 though 46. If the LSTYLEC= option is not specified, the type specification is determined in the following order:

- the LINE= option in the kth generated SYMBOL definition, if the option LINKC=k is specified
- the default value, 2 (dot line)

**LWIDTH=**

LTHICK= specifies the line thickness (width) used to draw all links in the decision tree diagram except those that represent the optimal decisions.

If the LWIDTH= option is not specified, the thickness specification is determined in the following order:
the WIDTH= option in the \(i\)th generated SYMBOL definition, if the option LINKA\(=i\) is specified
• the default value, 1

\[
\text{LWIDTHB} = w2
\]
\[
\text{LTHICKB} = w2
\]
specifies the line thickness (width) used to draw the links in the decision tree diagram that represent optimal decisions. If the LWIDTHB= option is not specified, the thickness specification is determined in the following order:

• the WIDTH= option in the \(j\)th generated SYMBOL definition, if the option LINKB\(=j\) is specified
• 2 times the thickness for links that represent regular outcomes

\[
\text{Name} = 'string'
\]
specifies a descriptive string, up to 8 characters long, that appears in the name field of the master menu of PROC GREPLAY. The default is ‘DTREE ’.

**PAGENUM | NOPAGENUM**

**PAGENUMBER | NOPAGENUMBER**
specifies whether the page numbers should be displayed in the top right corner of each page of a multipage decision tree diagram. If the NOPAGENUM is not specified, the pages are ordered from top to bottom, left to right.

The default is PAGENUM.

**RC | NORC**
specifies whether the links in the decision tree diagram should be drawn with rounded corners or with rectangular corners. The default is RC.

\[
\text{SYMBOLC} = m
\]
\[
\text{SYMBC} = m
\]
If the SYMBOLC= option is specified, then PROC DTREE uses the color specified with the CV= option, the character specified with the VALUE= option, the font specified with the FONT= option, and the height specified with the HEIGHT= option in the \(m\)th generated SYMBOL definition to draw all chance nodes in the decision tree diagram. There is no default value for this option. The color and the symbol specifications may be overridden by the specification of the CSYMBOLC= and VSYMBOLC= options in the PROC DTREE statement. The height of the symbol can be changed by the HSYMBOL= option in the PROC DTREE statement.

Note that if you specify the SYMBOLC= \(m\) option, PROC DTREE uses the specifications in the \(m\)th generated SYMBOL definition and not the specifications in the SYMBOL\(m\) statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

\[
\text{SYMBOLD} = d
\]
\[
\text{SYMBD} = d
\]
If the SYMBOLD= option is specified, then PROC DTREE uses the color specified with the CV= option, the character specified with the VALUE= option, the font specified with the FONT= option, and the height specified with the HEIGHT= option
in the \(d\)th generated SYMBOL definition to draw all decision nodes in the decision tree diagram. There is no default value for this option. The color and the symbol specifications may be overridden by the specification of the CSYMBOL= and VSYMBOL= options in the PROC DTREE statement. The height of the characters can be changed by the HSYMBOL= option in the PROC DTREE statement.

Note that if you specify the SYMBOLD= \(d\) option, PROC DTREE uses the specifications in the \(d\)th generated SYMBOL definition and not the specifications in the SYMBOL\(d\) statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

**SYMBOLE=\(n\)**

**SYMBE=\(n\)**

If the SYMBOLE= option is specified, then PROC DTREE uses the color specified with the CV= option, the character specified with the VALUE= option, the font specified with the FONT= option, and the height specified with the HEIGHT= option in the \(n\)th generated SYMBOL definition to draw all end nodes in the decision tree diagram. There is no default value for this option. The color and the symbol specifications may be overridden by the specification of the CSYMBOLE= and VSYMBOLE= options specified in the PROC DTREE statement. The height of the characters can be changed by the HSYMBOLE= option in the PROC DTREE statement.

Note that if you specify the SYMBOLE= \(n\) option, PROC DTREE uses the specifications in the \(n\)th generated SYMBOL definition and not the specifications in the SYMBOL\(n\) statement. Refer to SAS/GRAPH Software: Reference for the details about creating, canceling, reviewing, and altering SYMBOL definitions.

**VSYMBOLE=**\(symbolc-name\)

**VC=**\(symbolc-name\)

specifies that the symbol \(symbolc-name\) from the special symbol table be used to draw all chance nodes in the decision tree diagram. If you do not specify this option, the symbol used is determined in the following order:

- the options VALUE= and FONT= specifications in the \(m\)th generated SYMBOL definition, if the option SYMBOLC=m is specified
- the symbol CIRCLE in the special symbol table

**VSYMBOLE=**\(symbol-name\)

**VD=**\(symbol-name\)

specifies that the symbol \(symbol-name\) from the special symbol table be used to draw all decision nodes in the decision tree diagram. If you do not specify this option, the symbol used is determined in the following order:

- the options VALUE= and FONT= specifications in the \(d\)th generated SYMBOL definition, if the option SYMBOLD=d is specified
- the symbol SQUARE in the special symbol table
Chapter 5. The DTREE Procedure

**VSYMBOL=** `symbole-name`

**VE=** `symbole-name`

specifies that the symbol `symbole-name` from the special symbol table be used to draw all end nodes in the decision tree diagram. If you do not specify this option, the symbol used is determined in the following order:

- the options **VALUE=** and **FONT=** specifications in the `n`th generated SYMBOL definition, if the option **SYMBOLE=** `n` is specified
- the symbol DOT in the special symbol table

**Line-Printer Options**

The following options are specifically for the purpose of producing line-printer quality decision tree diagrams.

**FORMCHAR** `(syni-list)=‘formchar-string’`

defines characters to be used for features on line-printer plots. The `syni-list` is a list of numbers ranging from 1 to 13. The list identifies which features are controlled with the string characters. The `formchar-string` gives characters for features in `syni-list`. Any character or hexadecimal string can be used. By default, `syni-list` is omitted, and the FORMCHAR= option gives a string for all 13 features. The features associated with values of `syni` are listed in **Table 5.23**. Note that characters 4, 6, 7, 10, and 12 are not used in drawing a decision tree diagram.

**Table 5.23. Features Associated with the FORMCHAR= Option**

<table>
<thead>
<tr>
<th>Syni</th>
<th>Description of Character</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vertical bar</td>
<td>vertical link</td>
</tr>
<tr>
<td>2</td>
<td>horizontal bar</td>
<td>horizontal link</td>
</tr>
<tr>
<td>3</td>
<td>box character (upper left)</td>
<td>vertical up to horizontal turn</td>
</tr>
<tr>
<td>5</td>
<td>box character (upper right)</td>
<td>horizontal and down vertical joint</td>
</tr>
<tr>
<td>8</td>
<td>box character (middle right)</td>
<td>horizontal to split joint</td>
</tr>
<tr>
<td>9</td>
<td>box character (lower left)</td>
<td>vertical down to horizontal turn</td>
</tr>
<tr>
<td>11</td>
<td>box character (lower right)</td>
<td>horizontal and up vertical joint</td>
</tr>
<tr>
<td>13</td>
<td>horizontal thick</td>
<td>horizontal link that represents optimal decision</td>
</tr>
</tbody>
</table>

As an example, the decision tree diagram in **Figure 5.7** is produced by the following statement:

```plaintext
title "Decision Tree Showing the Effects of FORMCHAR";

data Dtoils4;
 format _STNAME_ $12. _STTYPE_ $2. _OUTCOM_ $10. _SUCCES_ $12.;
 input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $ _SUCCES_ $;
datalines;
Drill D Drill Cost
 . . Not_Drill .
Cost C Low Oil_Deposit
 . . High Oil_Deposit
```


URRENCY Statement

Olive Deposit C Dry Wet

; proc dtree stagein=Dtoils4
   nowarning
   treeplot / formchar(1 2 3 5 8 9 11 13)=’|/-<\+=’
   lineprinter display=(LINK);
quit;

**Figure 5.7.** Decision Tree Showing the Effects of FORMCHAR

By default, the form character list specified with the SAS system option FORMCHAR= is used; otherwise, the default is ’|----|+|---+=' . Refer to the chapter on the Calendar Procedure in the SAS Procedures Guide for more information.

**EVALUATE Statement**

EVALUATE / options ;

The EVALUATE statement causes PROC DTREE to evaluate the decision tree and calculate the optimal decisions. If the SUMMARY option is specified a decision summary is displayed. Otherwise, the current optimal value is displayed on the SAS log.

The following options, which can appear in the PROC DTREE statement, can also be specified in the EVALUATE statement:

- **CRITERION=i**
- **MAXPREC=d**
- **MAXWIDTH=mx**
- **NOSUMMARY**
- **NWIDTH=nw**
- **RT=r**
- **SUMMARY**
- **TARGET=stage**
Chapter 5. The DTREE Procedure

The MAXPREC=, MAXWIDTH=, and NWIDTH=, options are valid only in conjunction with the SUMMARY option. The RT= option is valid only in conjunction with the CRITERION=MAXCE or CRITERION=MINCE specification. The options specified in this statement are only in effect for this statement.

MODIFY Statement

```
MODIFY outcome-name REWARD new-value;
MODIFY stage-name TYPE;
```

The MODIFY statement is used to change either the type of a stage or the reward from an outcome. If MODIFY outcome-name REWARD new-value is given where the outcome-name is an outcome specified in the STAGEIN= data set, and new-value is a numeric value, then the reward of the outcome named outcome-name is changed to new-value.

If MODIFY stage-name TYPE is given where stage-name is a stage name specified in the STAGEIN= data set, then the type of the stage named stage-name is changed to ‘DECISION’ if its current type is ‘CHANCE’ and is changed to ‘CHANCE’ if its current type is ‘DECISION’. You cannot change the type of an ‘END’ stage. The change of the type of a stage from ‘CHANCE’ to ‘DECISION’ can help the decision-maker learn how much improvement can be expected if he or she could pick which of the future (or unknown) outcomes would occur. However, if you want to change the type of a stage from ‘DECISION’ to ‘CHANCE’, the procedure is not able to determine the probabilities for its outcomes unless you specify them in the PROBIN= data set.

MOVE Statement

```
MOVE stage1 (BEFORE | AFTER) stage2;
```

The MOVE statement is used to change the order of the stages. After all data in input data sets have been read, PROC DTREE determines the order (from left to right) of all stages specified in the STAGEIN= data set and display the order in the SAS log. The ordering is determined based on the rule that if stage A is the successor of an outcome of stage B, then stage A should occur to the right of stage B. The MOVE statement can be used to change the order. If the keyword BEFORE is used, stage1 becomes the new successor for all immediate predecessors of stage2, and stage2 becomes the new successor for all outcomes of stage1. An outcome is said to be an immediate predecessor of a stage if the stage is the successor of that outcome. Similarly, if the keyword AFTER is used, the old leftmost (in previous order) successor of outcomes for stage2 becomes the new successor for all outcomes of stage1 and the new successor of all outcomes of stage2 is stage1.

There are two limitations: the END stage cannot be moved, and no stage can be moved after the END stage. In practice, any stage after the END stage is useless.
**QUIT Statement**

```
QUIT ;
```

The QUIT statement tells the DTREE procedure to terminate processing. This statement has no options.

**RECALL Statement**

```
RECALL ;
```

This statement tells PROC DTREE to recall the decision model that was saved previously with a SAVE statement. The RECALL statement has no options.

**RESET Statement**

```
RESET options ;
```

The RESET statement is used to change options after the procedure has started. All of the options that can be set in the PROC DTREE statement can also be reset with this statement, except for the STAGEIN=, the PROBIN=, and the PAYOFFS= data set options.

**SAVE Statement**

```
SAVE ;
```

The SAVE statement saves the current model (attributes of stages and outcomes, the ordering of stages, and so on) to a scratch space from which you can call it back later. It is a good idea to save your decision model before you specify any MOVE or MODIFY statements. Then you can get back to your original model easily after a series of statements that change the decision model. The SAVE statement has no options.

**SUMMARY Statement**

```
SUMMARY / options ;
```

Unlike the SUMMARY option on the PROC DTREE statement or the EVALUATE statement, which specifies that PROC DTREE display a decision summary when the decision tree is evaluated, the SUMMARY statement causes the procedure to display the summary immediately. If the decision tree has not been evaluated yet, or if it has been changed (by the MOVE, MODIFY, or RECALL statement) since last evaluated, the procedure evaluates or re-evaluates the decision tree before the summary is displayed.

The following options that can appear in the PROC DTREE statement can also be specified in this statement:
Chapter 5. The DTREE Procedure

The options specified in this statement are in effect only for this statement.

**TREEPLOT Statement**

```plaintext
TREEPLOT / options ;
```

The TREEPLOT statement plots the current decision tree (a diagram of the decision problem). Each path in the decision tree represents a possible scenario of the problem. In addition to the nodes and links on the decision tree, the information for each link that can be displayed on the diagram is listed in Table 5.24.

### Table 5.24. Information on Decision Tree Diagram

<table>
<thead>
<tr>
<th>Information</th>
<th>Labeled by</th>
</tr>
</thead>
<tbody>
<tr>
<td>stage name for the successor of the link</td>
<td>NL&lt;sup&gt;3&lt;/sup&gt;</td>
</tr>
<tr>
<td>outcome name for the link</td>
<td>NL&lt;sup&gt;3&lt;/sup&gt;</td>
</tr>
<tr>
<td>probability of the outcome</td>
<td>p=</td>
</tr>
<tr>
<td>value can be expected from the successor</td>
<td>EV=</td>
</tr>
<tr>
<td>instant reward of the outcome</td>
<td>r=</td>
</tr>
<tr>
<td>cumulative rewards of outcomes on the path that leads to the successor</td>
<td>cr=</td>
</tr>
</tbody>
</table>

<sup>3</sup>NL denotes that this information is not labeled.

If necessary, the outcome names and the stage names are displayed above the link, and other information (if there is any) is displayed below the link. The DISPLAY= option can be used to control which information should be included in the diagram. The NOLABEL can be used to suppress the displaying of the labels.

If the LINEPRINTER option is used, the decision nodes, chance nodes, and the end nodes are represented by the characters ‘D’, ‘C’, and ‘E’, respectively. The links are displayed using the specifications of the FORMCHAR= option. See the section “PROC DTREE Statement” beginning on page 361 for more details. In graphics mode, the control of the appearances of nodes and links is more complex. See the “Displaying the Decision Tree” section beginning on page 390 for more information.

The following options that can appear in the PROC DTREE statement can also be specified in the TREEPLOT statement:

- `DISPLAY=(information-list)`
- `GRAPHICS`  
- `LABEL`  
- `LINEPRINTER`  
- `MAXPREC=d`  
- `MAXWIDTH=mw`  
- `NOLABEL`  
- `NWIDTH=nw`  
- `TARGET=stage`  
- `YBETWEEN=ybetween <units>`

The following line-printer options that can appear in the PROC DTREE statement can also be specified in the TREEPLOT statement if the LINEPRINTER option is specified:

```plaintext
FORMCHAR<(syni-list)>='formchar-string'
```
Moreover, the following graphics options that can appear in the PROC DTREE statement can also be specified in the TREEPLOT statement if the GRAPHICS option is specified:

- `ANNOTATE=SAS-data-set`
- `COMPRESS` (if the `NOCOMPRESS` option is not specified)
- `CSYMBOLC=color`
- `CSYMBOLD=color`
- `CSYMBOLE=color`
- `CTEXT=color`
- `DESCRIPTION='string’` (if the `INTERIM` option is specified)
- `DOANNOTATE`
- `FTEXT=name`
- `GOUT=SAS-catalog`
- `HSYMBOL=h`
- `HTEXT=h`
- `IMAGEMAP=SAS-data-set`
- `LEGEND` (if the `LEGEND` option is not specified)
- `LINKA=i`
- `LINKB=j`
- `LINKC=k`
- `LSTYLE=l`
- `LSTYLEB=l2`
- `LSTYLEC=l3`
- `LWIDTH=w2`
- `LWIDTHB=w2`
- `LWIDTHC=w2`
- `NAME='string’`
- `NOANNOTATE`
- `NOCOMPRESS`
- `NOLEGEND`
- `NORC`
- `PAGENUM`
- `PAGENUMRC`
- `RC`
- `SYMBOLE=n`
- `VSYMBOLE=symbolc-name`
- `SYMBOLE=n`
- `VSYMBOLE=symbole-name`

The options specified in this statement are in effect only for this statement, and they may override the options specified in the PROC DTREE statement.

**VARIABLES Statement**

```
VARIABLES / options ;
```

The VARIABLES statement specifies the variable lists in the input data sets. This statement is optional but if it is used, it must appear immediately after the PROC DTREE statement. The options that can appear in the VARIABLES statement are divided into groups according to the data set in which they occur. Table 5.25 lists all the variables or variable lists associated with each input data set and their types. It also lists the default variables if they are not specified in this statement.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Variable</th>
<th>Type*</th>
<th>Interpretation</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAGEIN=</td>
<td>OUTCOME=</td>
<td>C/N</td>
<td>Outcome names</td>
<td>Variables with prefix _OUT</td>
</tr>
<tr>
<td></td>
<td>REWARD=</td>
<td>N</td>
<td>Instant reward</td>
<td>Variables with prefix _REW</td>
</tr>
<tr>
<td></td>
<td>STAGE=</td>
<td>C/N</td>
<td>Stage name</td>
<td>Variables with prefix <em>STNAME</em></td>
</tr>
<tr>
<td></td>
<td>SUCCESSOR=</td>
<td>as STAGE=</td>
<td>Immediate successors</td>
<td>Variables with prefix _SUCC</td>
</tr>
<tr>
<td></td>
<td>TYPE=</td>
<td>C/N</td>
<td>Stage type</td>
<td>Variables with prefix <em>STTYPE</em></td>
</tr>
<tr>
<td></td>
<td>WEB=</td>
<td>C</td>
<td>HTML page for the stage</td>
<td></td>
</tr>
<tr>
<td>PROBIN=</td>
<td>EVENT=</td>
<td>as OUTCOME=</td>
<td>Event names</td>
<td>Variables with prefix _EVEN</td>
</tr>
<tr>
<td></td>
<td>GIVEN=</td>
<td>as OUTCOME=</td>
<td>Names of given outcomes</td>
<td>Variables with prefix _GIVE</td>
</tr>
<tr>
<td></td>
<td>PROB=</td>
<td>N</td>
<td>Conditional probabilities</td>
<td>Variables with prefix _PROB</td>
</tr>
<tr>
<td>PAYOFFS=</td>
<td>ACTION=</td>
<td>as OUTCOME=</td>
<td>Action names of final decision</td>
<td>Variables with prefix _ACT</td>
</tr>
<tr>
<td></td>
<td>STATE=</td>
<td>as OUTCOME=</td>
<td>Outcome names</td>
<td>Variables with prefix _STAT</td>
</tr>
<tr>
<td></td>
<td>VALUE=</td>
<td>N</td>
<td>Values of the scenario</td>
<td>Variables with prefix _VALU</td>
</tr>
</tbody>
</table>

*‘C’ denotes character, ‘N’ denotes numeric, ‘C/N’ denotes character or numeric, and ‘as X’ denotes the same as variable X.*
Chapter 5. The DTREE Procedure

Variables in STAGEIN= Data Set

The following options specify the variables or variable lists in the STAGEIN= input data set that identify the stage name, its type, its outcomes, and the reward; and the immediate successor of each outcome for each stage in the decision model:

**OUTCOME=(variables)**
identifies all variables in the STAGEIN= data set that contain the outcome names of the stage specified by the STAGE= variable. If the OUTCOME= option is not specified, PROC DTREE looks for the default variable names that have the prefix _OUT in the data set. It is necessary to have at least one OUTCOME= variable in the STAGEIN= data set. The OUTCOME= variables can be either all character or all numeric. You cannot mix character and numeric variables as outcomes.

**REWARD=(variables)**
**COST=(variables)**
identifies all variables in the STAGEIN= data set that contain the reward for each outcome specified by the OUTCOME= variables. If the REWARD= option is not specified, PROC DTREE looks for the default variable names that have the prefix _REW in the data set. The number of REWARD= variables must be equal to the number of OUTCOME= variables in the data set. The REWARD= variables must have numeric values.

**STAGE=variable**
specifies the variable in the STAGEIN= data set that names the stages in the decision model. If the STAGE= option is omitted, PROC DTREE looks for the default variable named _STNAME_ in the data set. The STAGE= variable must be specified if the data set does not contain a variable named _STNAME_. The STAGE= variable can be either character or numeric.

**SUCCESSOR=(variables)**
**SUCC=(variables)**
identifies all variables in the STAGEIN= data set that contain the names of immediate successors (another stage) of each outcome specified by the OUTCOME= variables. These variables must be of the same type and length as those defined in the STAGE= option. If the SUCCESSOR= option is not specified, PROC DTREE looks for the default variable names that have the prefix _SUCC in the data set. The number of SUCCESSOR= variables must be equal to the number of OUTCOME= variables. The values of SUCCESSOR= variables must be stage names (values of STAGE= variables in the same data set).

**TYPE=variable**
identifies the variable in the STAGEIN= data set that contains the type identifier of the stage specified by the STAGE= variable. If the TYPE= option is omitted, PROC DTREE looks for the default variable named _STTYPE_ in the data set. The TYPE= variable must be specified if the data set does not contain a variable named _STTYPE_. The STAGE= variable can be either character or numeric.

The following are valid values for the TYPE= variable.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECISION or D or 1</td>
<td>identifies the stage as a decision stage</td>
</tr>
<tr>
<td>CHANCE or C or 2</td>
<td>identifies the stage as an uncertain stage</td>
</tr>
<tr>
<td>END     or E or 3</td>
<td>identifies the stage as an end stage</td>
</tr>
</tbody>
</table>

It is not necessary to specify an end stage in the `STAGEIN=` data set.

**WEB=variable**

**HTML=variable**

specifies the character variable in the `STAGEIN=` data set that identifies an HTML page for each stage. The procedure generates an HTML image map using this information for all the decision tree nodes corresponding to a stage.

**Variables in PROBIN= Data Set**

The following options specify the variables or variable lists in the `PROBIN=` input data set that identify the given outcome names, the event (outcome) name, and the conditional probability for each outcome of a chance stage.

**EVENT=(variables)**

identifies all variables in the `PROBIN=` data set that contain the names of events (outcomes) that probabilities depend on the outcomes specified by the `GIVEN=` variables. If the `EVENT=` option is not specified, PROC DTREE looks for the default variable names that have the prefix `–EVEN` in the data set. You must have at least one `EVENT=` variable in the `PROB=` data set. The values of `EVENT=` variables must be outcome names that are specified in the `STAGEIN=` data set.

**GIVEN=(variables)**

identifies all variables in the `PROBIN=` data set that contain the given condition (a list of outcome names) of a chance stage on which the probabilities of the outcome depend. If the `GIVEN=` option is not specified, PROC DTREE looks for the default variable names that have the prefix `–GIVE` in the data set. It is not necessary to have `GIVEN=` variables in the data set but if there are any, their values must be outcome names that are specified in the `STAGEIN=` data set.

**PROB=(variables)**

identifies all variables in the `PROBIN=` data set that contain the values of the conditional probability of each event specified by the `EVENT=` variables, given that the outcomes specified by the `GIVEN=` variables have occurred. If the `PROB=` option is not specified, PROC DTREE looks for the default variable names that have the prefix `–PROB` in the data set. The number of `PROB=` variables in the data set must be equal to the number of `EVENT=` variables. The `PROB=` variables must have numeric values between 0 and 1 inclusive.

**Variables in PAYOFFS= Data Set**

The following options specify the variables or variable lists in the `PAYOFFS=` input data set that identify the possible scenarios (a sequence of outcomes), the final outcome names, and the evaluating values (payoff) of combinations of scenarios and final outcomes.
ACTION=(variables)
identifies all variables in the PAYOFFS= data set that contain the name of the final outcome for each possible scenario. If the ACTION= option is not specified, PROC DTREE looks for the default variable names that have the prefix _ACT in the data set. It is not necessary to have any ACTION= variables in the PAYOFFS= data set, but if there are any, their values must be outcome names specified in the STAGEIN= data set.

STATE=(variables)
identifies all variables in the PAYOFFS= data set that contain the names of outcomes that identify a possible scenario (a sequence of outcomes or a path in the decision tree), or the names of outcomes which combine with every outcome specified by the ACTION= variables to identify a possible scenario. If the STATE= option is not specified, PROC DTREE looks for the default variable names that have the prefix _STAT in the data set. It is not necessary to have any STATE= variables in the PAYOFFS= data set, but if there are any, their values must be outcome names specified in the STAGEIN= data set.

VALUE=(variables)
PAYOFFS=(variables)
UTILITY=(variables)
LOSS=(variables)
identifies all variables in the PAYOFFS= data set that contain the evaluating values or payoffs for all possible scenarios identified by the outcomes specified by the STATE= variables and the outcomes specified by the associated ACTION= variables. If the VALUE= option is not specified, PROC DTREE looks for the default variable names that have the prefix _VALU in the data set. The number of VALUE= variables must be equal to the number of ACTION= variables if there are any ACTION= variables. If there are no ACTION= variables in the data set, at least one STATE= variable must be in the data set, and the number of VALUE= variables must be exactly 1. The VALUE= variables must have numeric values.

VPC Statement

VPC  chance-stage-name ;

The VPC statement causes PROC TREE to compute the value of perfect control (the value of controlling an uncertainty). The effect of perfect control is that you can pick the outcome of an uncertain stage. This value gives an upper limit on the amount you should be willing to spend on any control procedure. Only the name of a chance stage can be used to calculate the value of perfect control. The procedure evaluates the decision tree, if it has not already done so, before computing this value.
VPI Statement

VPI chance-stage-name ;

The VPI statement causes PROC DTREE to compute the value of perfect information. The value of perfect information is the benefit of resolving an uncertain stage before making a decision. This value is the upper limit on the improvement that can be expected for any information gathering effort. Only the name of a chance stage can be used to calculate the value of perfect information. The procedure evaluates the decision tree, if it has not already done so, before computing this value.

Details

Input Data Sets

A decision problem is normally constructed in three steps:

1. A structuring of the problem in terms of decisions, uncertainties, and consequences.
2. Assessment of probabilities for the events.
3. Assessment of values (payoffs, losses, or preferences) for each consequence or scenario.

PROC DTREE represents these three steps in three SAS data sets. The STAGEIN= data set describes the structure of the problem. In this data set, you define all decisions and define all key uncertainties. This data set also contains the relative order of when decisions are made and uncertainties are resolved (planning horizon). The PROBIN= data set assigns probabilities for the uncertain events, and the PAYOFFS= data set contains the values (or utility measure) for each consequence or scenario. See the “Overview” section (beginning on page 343) and the “Getting Started” section (beginning on page 345) for a description of these three data sets.

PROC DTREE is designed to minimize the rules for describing a problem. For example, the PROBIN= data set is required only when the evaluation and analysis of a decision problem is necessary. Similarly, if the PAYOFFS= data set is not specified, the DTREE procedure assumes all payoff values are 0. The order of the observations is not important in any of the input data sets. Since a decision problem can be structured in many different ways and the data format is so flexible, all possible ways of describing a given decision problem cannot be shown here. However, some alternate ways of supplying the same problem are demonstrated. For example, the following statements show another way to input the oil wildcatter’s problem described in the “Introductory Example” section beginning on page 345.

```sas
data Dtoils3;
 format _STNAME_ $12. _STTYPE_ $2. _OUTCOM_ $10._REWARD_ dollar12.0 _SUCCES_ $12. ;
 input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $
```
DATA Dtoilp3;
  input _EVENT1 $ _PROB1 _EVENT2 $ _PROB2;
  datalines;
  Low 0.2 Dry 0.5
  Fair 0.6 Wet 0.3
  High 0.2 Soaking 0.2
;

title "Oil Wildcatter’s Problem";
proc dtree stagein=Dtoils3 probin=Dtoilp3
  nowarning;
  evaluate / summary;

Note that the STAGEIN= data set describes the problem structure and the payoffs (using the REWARD= variable). Thus, the PAYOFFS= data set is no longer needed. Note also the changes made to the PROBIN= data set. The results, shown in Figure 5.8, are the same as those shown in Figure 5.2 on page 349. However, the rewards and the payoffs are entirely different entities in decision tree models. Recall that the reward of an outcome means the instant returns when the outcome is realized. On the other hand, the payoffs are the return from each scenario. In the other words, the decision tree model described in the previous code and the model described in the “Introductory Example” section beginning on page 345 are not equivalent, even though they have the same optimal decision.
Oil Wildcatter’s Problem

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_deposit</td>
<td>Chance</td>
</tr>
<tr>
<td><em>ENDST</em></td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: 140000

Optimal Decision Policy

Up to Stage Drill

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>0</td>
<td>140000*</td>
</tr>
<tr>
<td>Not_drill</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Figure 5.8.** Optimal Decision Summary of the Oil Wildcatter’s Problem

You can try many alternative ways to specify your decision problem. Then you can choose the model that is most convenient and closest to your real problem. If PROC DTREE cannot interpret the input data, it writes a message to that effect to the SAS log unless the NOWARNING option is specified. However, there are mistakes that PROC DTREE cannot detect. These often occur after the model has been modified with either the MOVE statement or the MODIFY statement. After a MOVE statement is specified, it is a good idea to display the decision tree (using the TREEPLOT statement) and check the probabilities and value assessments to make sure they are reasonable.

For example, using the REWARD= variable in the STAGEIN= data set to input the payoff information as shown in the previous code may cause problems if you change the order of the stages. Suppose you move the stage ‘Cost’ to the beginning of the tree, as was done in the “Sensitivity Analysis and Value of Perfect Information” section on page 351:

```
move Cost before Drill;
evaluate / summary;
```

The optimal decision yields $140,000, as shown on the optimal decision summary in Figure 5.9.
Oil Wildcatter's Problem

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Drill</td>
<td>Decision</td>
</tr>
<tr>
<td>Oil_deposit</td>
<td>Chance</td>
</tr>
<tr>
<td><em>ENDST</em></td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: 140000

Optimal Decision Policy

Up to Stage Drill

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Drill</td>
<td>-150000</td>
<td>450000*</td>
</tr>
<tr>
<td>Low Not_drill</td>
<td>-150000</td>
<td>0</td>
</tr>
<tr>
<td>Fair Drill</td>
<td>-300000</td>
<td>450000*</td>
</tr>
<tr>
<td>Fair Not_drill</td>
<td>-300000</td>
<td>0</td>
</tr>
<tr>
<td>High Drill</td>
<td>-500000</td>
<td>450000*</td>
</tr>
<tr>
<td>High Not_drill</td>
<td>-500000</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5.9. Optimal Decision Summary of the Oil Wildcatter's Problem

Recall that when this was done in the “Sensitivity Analysis and Value of Perfect Information” section (page 351), the optimal decision yielded $150,000. The reason for this discrepancy is that the cost of drilling, implemented as (negative) instant rewards here, is imposed on all scenarios including those that contain the outcome ‘Not_drill’. This mistake can be observed easily from the Cumulative Reward column of the optimal decision summary shown Figure 5.9.

Changing a decision stage to a chance stage is another example where using the MODIFY statement without care may cause problems. PROC DTREE cannot determine the probabilities of outcomes for this new chance stage unless they are included in the PROBIN= data set. In contrast to changing a chance stage to a decision stage (which yields insight on the value of gaining control of an uncertainty), changing a decision stage to a chance stage is not likely to yield any valuable insight even if the needed probability data are included in the PROBIN= data set, and it should be avoided.
Missing Values

In the STAGEIN= data set, missing values are allowed only for the STAGE= and TYPE= variables when the information of a stage is specified in more than one observation. In this case, missing values for the STAGE= and TYPE= variables are not allowed for the first observation defining the stage. Missing values for the OUTCOME=, GIVEN=, EVENT=, STATE=, and ACTION= variables are ignored. Missing values for the REWARD=, PROB=, and VALUE= variables are treated as 0. Missing values for the SUCCESSOR= variables are ignored if the value for the corresponding OUTCOME= variable is also missing.

Interactivity

The DTREE procedure is interactive. You start the procedure with the PROC DTREE statement and terminate it with the QUIT statement. It is not necessary to have a VARIABLES statement, although if you do include one, it must appear immediately after the PROC DTREE statement. The other statements such as the EVALUATE, MODIFY, MOVE, RECALL, RESET, SAVE, SUMMARY, TREEPLOT, VPC, and VPI, as well as the FOOTNOTE, GOPTIONS, NOTE, SYMBOL, and TITLE statements of SAS/GRAPH Software can be used in any order and as often as needed. One exception is that the RECALL statement has to be preceded by at least one SAVE statement.

When an error is detected during processing a statement other than the PROC DTREE statement and the QUIT statement, the procedure terminates if the option ERRHANDLE=QUIT is specified; otherwise it stops processing the current statement and waits for the next statement. In either case, an error message is written to the SAS log. If an error is detected in the PROC DTREE statement or the QUIT statement, the procedure terminates immediately with an error message.

Options on Multiple Statements

Many options that can be specified in the PROC DTREE statement can also appear in other statements. The options specified in the PROC DTREE statement remain in effect for all statements until the end of processing or until they are changed by a RESET statement. In this sense, those options are global options. The options specified in other statements are in effect only for the statement in which they are specified; hence, they are local options. If an option is specified both in the PROC DTREE statement and in another statement, the local specification overrides the global specification.

For example, the following statements

```plaintext
reset criterion=maxev;
evaluate / criterion=maxce rt=700000;
summary;
```

imply that the decision problem is evaluated and the optimal decision is determined based on the criterion MAXCE with RT=700000. However, the optimal
decision summary produced by the SUMMARY statement is based on the option CRITERION=MAXEV and not the MAXCE criterion. If you want an option to be set permanently, use the RESET statement.

The Order of Stages

The order of stages is an important issue in structuring the decision problem. This sets the sequence of events or a time horizon and determines when a decision has to be made and when a chance stage has its uncertainty resolved. If a decision stage precedes another decision stage in the stages order, the decision to the right is made after the decision to the left. Moreover, the choice made in the first decision is remembered by the decision maker when he or she makes the second decision. Any chance stages that occur to the left of a decision stage have their uncertainty resolved before the decision is made. In other words, the decision maker knows what actually happened when he or she makes the decision. However, the order of two chance stages is fairly arbitrary if there are no other decision stages between them. For example, you can change the order of stages ‘Cost’ and ‘Oil_Deposit’ in the oil wildcatter’s problem without affecting the results.

PROC DTREE determines the order (from left to right) of all stages specified in the STAGEIN= data set. The ordering is based on the rule that if stage A is the successor of an outcome of stage B, then stage A should occur to the right of (or after) stage B. With the MOVE statement, you can change this order. The MOVE statement is very useful in determining the value (benefit or penalty) of postponing or hurrying a decision. In particular, the value of perfect information about an uncertainty can be determined by moving the corresponding chance stage to the beginning. However, as mentioned in early sections, the results may be misleading if you use the MOVE statement without care. See the “Input Data Sets” section beginning on page 381 for an example.

Suggestions for preventing misleading results are as follows:

- Using the SAVE statement, always save the original structure before making any changes.
- Use the TREEPLOT statement to display the complete decision tree and check all details after you change the order.

Evaluation

The EVALUATE statement causes PROC DTREE to calculate the optimal decision. The evaluate process is done by successive use of two devices:

- Find a certain equivalent for the uncertain evaluating values at each chance node.
- Choose the best alternative at each decision node.
The certain equivalent of an uncertainty is the certain amount you would accept in exchange for the uncertain venture. In other words, it is a single number that characterizes an uncertainty described by a probability distribution. This value is subjective and can vary widely from person to person. There are two quantities, closely related to the certain equivalent, that are commonly used by decision-makers: the most likely value and the expected value. The most likely value of an uncertainty is the value with the largest probability. The expected value is the sum of all outcomes multiplied by their probabilities.

Perhaps the most popular way to find the certain equivalent for an uncertainty is the use of utility function or utility curve. Utility is a measurement of relative preference to the decision maker for particular outcomes. The utility function assigns a utility to payoff when it is in terms of continuous values such as money. The certain equivalent of an uncertainty (a random variable) is calculated by the following steps:

1. Use the utility function or the utility curve to find the utility values of the outcomes.
2. Calculate the expected utility of the uncertainty.
3. Determine the certain equivalent of the uncertainty as the value that corresponding utility value is the expected utility.

Refer to Raiffa (1970) for a complete discussion of the utility function.

A simple case that is commonly used is the straight line utility curve or the linear utility function. The linear utility function has the form

\[ u(x) = a + bx \]

where \( x \) is the evaluating value, and \( a \) and \( b \) are parameters set by the choice of two points in the utility curve. For example, if the utility curve passes two points \( u(0) = 0 \) and \( u(1000) = 1 \), then parameters \( a \) and \( b \) are set by \( a = 0 \) and \( b = 1/1000 \). The certain equivalent of an uncertainty based on this function is the expected value.

Another special case that is commonly used is the exponential utility function, as

\[ u(x) = a - b \times \exp(-x/r) \]

where, again, \( a \) and \( b \) can be set by the choice of two arbitrary points in the utility curve. For example, if your utility curve goes through points \((0, 0)\) and \((1000, 1)\), then \( a \) and \( b \) are given by

\[ a = b = 1/[1 - \exp(-1000/r)] \]

If an uncertain venture \( A \) has \( n \) events, event \( i \) having probability \( p_i \) and payoff \( x_i \), and if the utility function is an exponential function as in the preceding example, then the certain equivalent of \( A \) is

\[ \text{CE}(A) = -r \ln \left[ \sum_{i=1}^{n} p_i \exp(-x_i/r) \right] \]
and is independent of the choice of values for $a$ and $b$ (provided that $b > 0$) (Raiffa 1970).

The parameter $r$, called the risk tolerance, describes the curvature of the utility function. Moreover, the quantity $1/r$, called risk aversion coefficient (Howard 1968) is a measure of risk aversion.

Experimental results show that within a reasonable range of values, many utility curves can be fit quite well by an exponential function.

If your utility function is an exponential function as in the preceding example, the risk tolerance can be estimated by the largest number $R$ for which the following venture is still acceptable to you.

\[ \begin{align*}
  0.5 & \quad 0.5 \\
  \quad R & \quad \frac{-R}{2}
\end{align*} \]

A similar way to approximate the risk tolerance is to find the largest value $R$ for which the venture is acceptable (Howard 1988).

\[ \begin{align*}
  0.75 & \quad 0.25 \\
  \quad R & \quad -R
\end{align*} \]

For corporate decision making, there are some rules of thumb for estimating the risk tolerance. Examples are to set risk tolerance about equal to one of the following:

- net income of the company
To reveal how well these rules perform in assessing corporate risk tolerance, Howard (1988) provided the following two tables: Table 5.26 shows the relationship between the risk tolerance and financial measures of four large oil and chemicals companies. There, the risk tolerances are obtained from the top executives of the companies. The net sales, net income, and equity are obtained from the annual reports of the four companies.

**Table 5.26.** Relating Corporate Risk Tolerance to Financial Measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Company</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Net Sales</td>
<td>2,300</td>
<td>3,307</td>
<td>16,000</td>
<td>31,000</td>
</tr>
<tr>
<td>Net Income</td>
<td>120</td>
<td>152</td>
<td>700</td>
<td>1,900</td>
</tr>
<tr>
<td>Equity</td>
<td>1,000</td>
<td>1,153</td>
<td>6,500</td>
<td>12,000</td>
</tr>
<tr>
<td>Risk Tolerance</td>
<td>150</td>
<td>200</td>
<td>1,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Table 5.27 shows the ratio of risk tolerance to each of the other quantities.

**Table 5.27.** Ratios of Corporate Risk Tolerance to Financial Measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Company</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>RT/Sales</td>
<td>0.0652</td>
<td>0.0605</td>
</tr>
<tr>
<td>RT/Income</td>
<td>1.25</td>
<td>1.32</td>
</tr>
<tr>
<td>RT/Equity</td>
<td>0.150</td>
<td>0.174</td>
</tr>
</tbody>
</table>

Once the certain equivalents for all chance nodes are assessed, the choice process at each decision node is fairly simple; select the alternative yielding either the maximum or the minimum (depending on the problem) future certain equivalent value.* You can use the CRITERION= option to control the way the certain equivalent is calculated for each chance node and the optimal alternative is chosen at each decision node. Possible values for the CRITERION= option are listed in Table 5.19 on page 361. If you use an exponential utility function, the RT= option can be used to specify your risk tolerance. You also have control over how to present the solution. By default, PROC DTREE writes the value of the optimal decisions to the SAS log. In addition, with the SUMMARY option, you can ask PROC DTREE to display the optimal decision summary to the output.

*The future certain equivalent value is often referred to as the evaluating value in this documentation.
Displayed Output

The SUMMARY statement and the SUMMARY option in an EVALUATE statement cause PROC DTREE to display a optimal decision summary for the decision model. This output is organized into various tables, and they are discussed in order of appearance.

Order of stages

The “Order of stages” table lists all stages, and their types, in order of appearance in the decision model. See the “The Order of Stages” section on page 386 for details.

For ODS purposes, the label of the “Order of stages” table is “Stages.”

Decision Parameters

The “Decision Parameters” table describes the criterion used for determining the optimal decision and the certain equivalent for replacing uncertainties. If you specify the option CRITERION=MAXCE or CRITERION=MINCE in the PROC DTREE statement or in the EVALUATE statement, an additional row is added to the table listing the value of the risk tolerance. It also contains a row showing the value of the optimal decision yields. For additional information, see the “Evaluation” section beginning on page 386.

For ODS purposes, the label of the “Decision Parameters” table is “Parameters.”

Optimal Decision Policy

By default, PROC DTREE produces an “Optimal Decision Policy” table for each decision stages. You can use the TARGET= option to force PROC DTREE to produce only one table for a particular stage. The Alternatives or Outcomes columns list the events in the scenario that leads to the current stage. The Cumulative Reward column lists the rewards accumulated along the scenario to the events of the current target stage. The Evaluating Value column lists the values that can be expected form the events of the target stage. An asterisk (*) is placed beside an evaluating value indicates the current event is the best alternative of the given scenario.

For ODS purposes, the label of the “Optimal Decision Policy” table is “Policy.”

Displaying the Decision Tree

PROC DTREE draws the decision tree either in line-printer mode or in graphics mode. However, you need to have SAS/GRAPH software licensed at your site to use graphics mode. In many cases, the procedure draws the decision tree across page boundaries. If the decision tree diagram is drawn on multiple pages, the procedure numbers each page of the diagram on the upper right corner of the page (unless the NOPAGENUM option is specified). The pages are numbered starting with the upper left corner of the entire diagram. Thus, if the decision tree diagram is broken into three horizontal and four vertical levels and you want to paste all the pieces together to form one picture, they should be arranged as shown in Figure 5.10.
The number of pages that are produced depends on the size of the tree and on the number of print positions that are available in the horizontal and vertical directions. Table 5.28 lists all options you can use to control the number of pages.

### Table 5.28. Options That Control the Number of Pages

<table>
<thead>
<tr>
<th>Option</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY=</td>
<td>amounts of information displayed on the diagram</td>
</tr>
<tr>
<td>MAXPREC=</td>
<td>maximum decimal width allowed (the precision) to format numerical values into ( w.d ) format</td>
</tr>
<tr>
<td>MAXWIDTH=</td>
<td>maximum field width allowed to format numerical values</td>
</tr>
<tr>
<td>NOLABEL=</td>
<td>no labels are displayed on the diagram</td>
</tr>
<tr>
<td>NWIDTH=</td>
<td>maximum field width allowed to format outcome names</td>
</tr>
<tr>
<td>YBETWEEN=</td>
<td>vertical spaces between two successive end nodes</td>
</tr>
</tbody>
</table>

If the GRAPHICS option is used, the following options can be used to control the number of pages:

- The COMPRESS option draws the entire decision tree on one page.
- The HSYMBOL= option controls the height of all symbols.
- The HTEXT= option controls the height of text in the tree.
- The HEIGHT= option in a SYMBOL definition specifies the height of a symbol.
- The HTEXT= option in a GOPTIONS statement specifies the height of all text.
- The HTITLE= option in a GOPTIONS statement specifies the height of the first title line.
• The HPOS= and VPOS= options in a GOPTIONS statement change the number of rows and columns.

Note that the font used for all text may also affect the number of pages needed. Some fonts take more space than others.

If the decision tree diagram is produced on a line printer, you can use the FORMCHAR= option to control the appearance the links and the junctions of the diagram. When the GRAPHICS options are specified, several options are available to enhance the appearance of the decision tree diagram. These are described in the “Graphics Options” section on page 364. In addition, there are many other options available in the GOPTIONS statement and the SYMBOL statement for controlling the details of graphics output. Refer to the relevant chapters in SAS/GRAPH Software: Reference for a detailed discussion of the GOPTIONS and SYMBOL statements.

Table 5.29, Table 5.30, and Table 5.31, show the relationship among the options for controlling the appearance of texts, nodes, and links, respectively. The order that PROC DTREE uses in determining which option is in effect is also provided.

For ODS purposes, the label of the decision tree diagram drawn in line-printer quality is “Treeplot.”

Table 5.29. Options That Control Text Appearance

<table>
<thead>
<tr>
<th>Object</th>
<th>Specification</th>
<th>Search Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Font</td>
<td>1. the FTEXT= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the FTEXT= option in a GOPTIONS statement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. hardware font</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>1. the CTEXT= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the CTEXT= option in a GOPTIONS statement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the first color in the colors list</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>1. the value of the HTEXT= option(^5) times the value of the HTEXT= option(^6) in a GOPTIONS statement</td>
</tr>
</tbody>
</table>

\(^5\)If this option is not specified, the default value 1 is used.
\(^6\)The default value of this option is 1 unit.
Table 5.30. Options That Control Node Appearance

<table>
<thead>
<tr>
<th>Object</th>
<th>Specification</th>
<th>Search Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chance Nodes</td>
<td>Symbol</td>
<td>1. the \texttt{VSYMBOLC=} option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{VALUE=} and \texttt{FONT=} options in the \textit{mth} generated SYMBOL definition, if \texttt{SYMBOLC=}m is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the default symbol, \texttt{CIRCLE}</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>1. the \texttt{CSYMBOLC=} option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{CV=} option in the \textit{mth} generated SYMBOL definition, if \texttt{SYMBOLC=}m is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the \texttt{CSYMBOL=} option in a GOPTIONS statement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. the fifth color in the colors list</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>1. \textit{h} times the value of the \texttt{HEIGHT=} option in the \textit{mth} generated SYMBOL definition, if both the \texttt{HSYMBOL=}h and \texttt{SYMBOLC=}m are specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{HSYMBOL=} option, if it is specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the \texttt{HEIGHT=} option in the \textit{mth} generated symbol definition, if \texttt{SYMBOLC=}m is used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. the default value, 1 cell</td>
</tr>
<tr>
<td>Decision Nodes</td>
<td>Symbol</td>
<td>1. the \texttt{VSYMBOLD=} option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{VALUE=} and \texttt{FONT=} options in the \textit{dth} generated SYMBOL definition, if \texttt{SYMBOLD=}d is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the default value, \texttt{SQUARE}</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>1. the \texttt{CSYMBOLD=} option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{CV=} option in the \textit{dth} generated SYMBOL definition, if \texttt{SYMBOLD=}d is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the \texttt{CSYMBOL=} option in a GOPTIONS statement</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>1. \textit{h} times the value of the \texttt{HEIGHT=} option in the \textit{dth} generated SYMBOL definition, if both the \texttt{HSYMBOL=}h and \texttt{SYMBOLD=}d are specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{HSYMBOL=} option, if it is specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the \texttt{HEIGHT=} option in the \textit{dth} generated symbol definition, if \texttt{SYMBOLD=}d is used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. the default value, 1 cell</td>
</tr>
<tr>
<td>End Nodes</td>
<td>Symbol</td>
<td>1. the \texttt{VSYMOLE=} option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{VALUE=} and \texttt{FONT=} options in the \textit{nth} generated SYMBOL definition, if \texttt{SYMBOLE=}n is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the default value, \texttt{DOT}</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>1. the \texttt{CSYMOLE=} option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{CV=} option in the \textit{nth} generated SYMBOL definition if the option \texttt{SYMBOLE=}n is specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the \texttt{CSYMBOL=} option in a GOPTIONS statement</td>
</tr>
<tr>
<td></td>
<td>Height</td>
<td>1. \textit{h} times the value of the \texttt{HEIGHT=} option in the \textit{nth} generated SYMBOL definition, if both the \texttt{HSYMBOL=}h and \texttt{SYMBOLE=}n are specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the \texttt{HSYMOLE=} option, if it is specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the \texttt{HEIGHT=} option in the \textit{nth} generated symbol definition, if \texttt{SYMBOLE=}n is used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. the default value, 1 cell</td>
</tr>
</tbody>
</table>
Table 5.31. Options That Control Link Appearance

<table>
<thead>
<tr>
<th>Object</th>
<th>Specification</th>
<th>Search Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links for Regular Outcomes</td>
<td>Type</td>
<td>1. the LSTYLE= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the LINE= in the $i$th generated SYMBOL definition, if LINKA=$i$ is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the default value, 1 (solid line)</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>1. the CLINK= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the CI= option in the $i$th generated SYMBOL definition, if LINKA=$i$ is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the third color in the colors list</td>
</tr>
<tr>
<td>Thickness</td>
<td></td>
<td>1. the LWIDTH= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the WIDTH= option in the $i$th generated SYMBOL definition, if LINKA=$i$ is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the default value, 1</td>
</tr>
<tr>
<td>Links for Optimal Decision</td>
<td>Type</td>
<td>1. the LSTYLEB= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the LINE= in the $j$th generated SYMBOL definition, if LINKB=$j$ is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the default value, 1 (solid line)</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>1. the CBEST= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the CI= option in the $j$th generated SYMBOL definition, if LINKB=$j$ is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the second color in the colors list</td>
</tr>
<tr>
<td>Thickness</td>
<td></td>
<td>1. the LWIDTHB= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the WIDTH= option in the $j$th generated SYMBOL definition, if LINKB=$j$ is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. 2 times the thickness of links that represent regular outcomes</td>
</tr>
<tr>
<td>Links That Fall Across Pages</td>
<td>Type</td>
<td>1. the LSTYLEC= option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. the LINE= in the $k$th generated SYMBOL definition, if LINKC=$k$ is used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. the default value, 2 (dot line)</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>1. depends on whether or not it represents an optimal decision</td>
</tr>
<tr>
<td>Thickness</td>
<td></td>
<td>1. depends on whether or not it represents an optimal decision</td>
</tr>
</tbody>
</table>

Web-Enabled Decision Tree

The WEB= variable in the STAGEIN= data set enables you to define an HTML reference for each stage. This HTML reference is currently associated with all the decision tree nodes that correspond to the stage. The WEB= variable is a character variable, and the values need to be of the form HREF=htmlpage.

In addition, you can also store the coordinate and link information defined by the WEB= option in a SAS data set by specifying the IMAGEMAP= option in the PROC DTREE statement or in the TREEPLOT statement. By processing this SAS data set using a DATA step, you can generate customized HTML pages for your decision tree diagram.
**ODS Table Names**

PROC DTREE assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table. For more information on ODS, refer to the chapter on ODS in the SAS/STAT User’s Guide.

**Table 5.32. ODS Tables Produced in PROC DTREE**

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement / Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Decision parameters</td>
<td>SUMMARY or EVALUATE / SUMMARY</td>
</tr>
<tr>
<td>Policy</td>
<td>Optimal decision policy</td>
<td>SUMMARY or EVALUATE / SUMMARY</td>
</tr>
<tr>
<td>Stages</td>
<td>List of stages in order</td>
<td>SUMMARY or EVALUATE / SUMMARY</td>
</tr>
<tr>
<td>Treeplot</td>
<td>Line-printer plot of decision tree</td>
<td>TREEPLOT / LINEPRINTER</td>
</tr>
</tbody>
</table>

**Precision Errors**

When PROC DTREE detects an error, it displays a message on the SAS log to call it to your attention. If the error is in a statement other than the PROC DTREE statement and the QUIT statement, and if the ERRHANDLE=QUIT option is not specified, the procedure ignores the erroneous statement and waits for you to enter another statement. This gives you a chance to correct the mistake you made and keep running. You can exit the procedure at any time by specifying the QUIT statement.

If the error is in an input data set, typically, you will have to edit the data set and then reinvoke PROC DTREE. In one case, however, you can use an option to correct the problem. You may receive an error message indicating that the sum of probabilities for a particular chance stage does not equal 1.0. If it is caused by roundoff errors in the summation, then you can reset the TOLERANCE= option to correct this error. For example, suppose that your problem contains a chance stage that has three outcomes, ‘Out1’, ‘Out2’ and ‘Out3’, and each has probability 1/3. Suppose also that you input their probabilities in the PROBIN= data set as follows:

<table>
<thead>
<tr>
<th>Out1</th>
<th>Out2</th>
<th>Out3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3333</td>
<td>0.3333</td>
<td>0.3333</td>
</tr>
</tbody>
</table>

Then, PROC DTREE detects the total probabilities for that stage as 0.9999, not equal to 1, and hence displays an error message. The following RESET statement fixes the error:

```
reset tolerance=0.00015;
```

Alternatively, you can specify the AUTOSCALE option to ask the procedure to rescale the probabilities whenever this situation occurs.
Computer Resource Requirements

There is no inherent limit on the size of the decision tree model that can be evaluated and analyzed with the DTREE procedure. The numbers of stages and outcomes are constrained only by the amount of memory available. Naturally, there needs to be a sufficient amount of core memory available in order to invoke and initialize the SAS system. Furthermore, more memory is required to load the graphics sublibrary if the GRAPHICS option is specified. As far as possible, the procedure attempts to store all the data in core memory. However, if the problem is too large to fit in core memory, the procedure resorts to the use of utility data sets and swaps between core memory and utility data sets as necessary.

The storage requirement for the data area required by the procedure is proportional to the number of stages and outcomes as well as the number of nodes\(^*\) in the decision tree model. The time required depends heavily on the number of nodes in the decision tree.

Examples

This section contains six examples that illustrate several features and applications of the DTREE procedure. The aim of this section is to show you how to use PROC DTREE to solve your decision problem and gain valuable insight into its structure.

Example 5.1 on page 397 and Example 5.2 on page 402 show two methods frequently used to spread the risk of a venture: buy insurance and enter a partnership. Example 5.1 also illustrates the use of the VARIABLE statement to identify the variables in the input data sets. Example 5.3 on page 413 illustrates the use of the graphics options to produce a graphics quality decision tree diagram. Example 5.4 on page 418 illustrates the use of SYMBOL and GOPTIONS statements and the Annotate facility to control the appearance of the decision tree diagram. Example 5.5 on page 422 demonstrates an application of PROC DTREE for financial decision problems. It also illustrates a situation where redundant data are necessary to determine the value of information. In addition, it shows a case where the results from the VPI and VPC statements are misleading if they are used without care. Example 5.6 on page 431 shows an application in litigation, a sophisticated use of sensitivity analysis. It also shows you how to deal with the value of future money.

Finally, Table 5.40 (page 441) and Table 5.41 (page 441) list all the examples in this chapter, and the options and statements in the DTREE procedure that are illustrated by each example.

\(^*\)The number of nodes depends on the number of stages and the number of outcomes for each stage.
Example 5.1. Oil Wildcatter’s Problem with Insurance

Again consider the oil wildcatter’s problem introduced in the “Introductory Example” section beginning on page 345. Suppose that the wildcatter is concerned that the probability of a dry well may be as high as 0.5.

The wildcatter has learned that an insurance company is willing to offer him a policy that, with a premium of $130,000, will redeem $200,000 if the well is dry. He would like to include the alternative of buying insurance into his analysis. One way to do this is to include a stage for this decision in the model. The following DATA step reads this new decision problem into the STAGEIN= data set named Dtoils4. Notice the new stage named ‘Insurance’, which represents the decision of whether or not to buy the insurance. Also notice that the cost of the insurance is represented as a negative reward of $130,000.

```latex
/* -- create the STAGEIN= data set -- */
data Dtoils4;
 Succ $12. Premium dollar12.0;
input Stage $ Stype $ Outcome $ Succ $ Premium dollar12.0;
datalines;
Drill D Drill Insurance . . .
 . . Not_Drill . .
Insurance D Buy_Insurance Cost -$130,000 . .
 . . Do_Not_Buy Cost . .
Cost C Low Oil_Deposit .
 . . Fair Oil_Deposit .
 . . High Oil_Deposit .
Oil_Deposit C Dry .
 . . Wet .
 . . Soaking .
;
```

Probabilities associated with the uncertain events are given in the PROBIN= data set named Dtoilp4. Except for the order of the variables in this data set, it is the same as the Dtoilp1 data set given in the “Introductory Example” section beginning on page 345.

```latex
/* -- create the PROBIN= data set -- */
data Dtoilp4;
 input (V1-V3) ($) P1-P3 ;
datalines;
Low Fair High 0.2 0.6 0.2
Dry Wet Soaking 0.5 0.3 0.2
;
```

The payoffs for this problem are now calculated to include the cost and value of the insurance. The following DATA step does this.
/* -- create PAYOFFS= data set -- */
data Dtoilu4;
  format Drill $9. Insuran $14. Payoff dollar12.0;
  input Cost $ Deposit $ Drill $ Insuran $;

/* determine the cost for this scenario */
if Cost='Low' then Rcost=150000;
else if Cost='Fair' then Rcost=300000;
else Rcost=500000;

/* determine the oil deposit and the corresponding */
/* net payoff for this scenario */
if Deposit='Dry' then Return=0;
else if Deposit='Wet' then Return=700000;
else Return=1200000;

/* calculate the net return for this scenario */
if Drill='Not_Drill' then Payoff=0;
else Payoff=Return-Rcost;

/* determine redeem received for this scenario */
if Insuran='Buy_Insurance' and Deposit='Dry' then
  Payoff=Payoff+200000;

/* drop unneeded variables */
drop Rcost Return;

datalines;
Low    Dry    Not_Drill    .
Low    Dry    Drill    Buy_Insurance
Low    Dry    Drill    Do_Not_Buy
Low    Wet    Not_Drill    .
Low    Wet    Drill    Buy_Insurance
Low    Wet    Drill    Do_Not_Buy
Low    Soaking    Not_Drill    .
Low    Soaking    Drill    Buy_Insurance
Low    Soaking    Drill    Do_Not_Buy
Fair    Dry    Not_Drill    .
Fair    Dry    Drill    Buy_Insurance
Fair    Dry    Drill    Do_Not_Buy
Fair    Wet    Not_Drill    .
Fair    Wet    Drill    Buy_Insurance
Fair    Wet    Drill    Do_Not_Buy
Fair    Soaking    Not_Drill    .
Fair    Soaking    Drill    Buy_Insurance
Fair    Soaking    Drill    Do_Not_Buy
High    Dry    Not_Drill    .
High    Dry    Drill    Buy_Insurance
High    Dry    Drill    Do_Not_Buy
High    Wet    Not_Drill    .
High    Wet    Drill    Buy_Insurance
High    Wet    Drill    Do_Not_Buy
High    Soaking    Not_Drill    .
High    Soaking    Drill    Buy_Insurance
Example 5.1. Oil Wildcatter’s Problem with Insurance

The payoff table can be displayed with the following PROC PRINT statement:

```sql
/* -- print the payoff table -- */
title "Oil Wildcatter’s Problem";
title3 "The Payoffs";
proc print data=Dtoilu4;
run;
```

The table is shown in Output 5.1.1.

**Output 5.1.1.** Payoffs of the Oil Wildcatter’s Problem with an Insurance Option

<table>
<thead>
<tr>
<th>Obs</th>
<th>Cost</th>
<th>Deposit</th>
<th>Drill</th>
<th>Insuran</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>Dry</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>Dry</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$50,000</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>Dry</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$-150,000</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>Wet</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>5</td>
<td>Low</td>
<td>Wet</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$550,000</td>
</tr>
<tr>
<td>6</td>
<td>Low</td>
<td>Wet</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$500,000</td>
</tr>
<tr>
<td>7</td>
<td>Low</td>
<td>Soaking</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>8</td>
<td>Low</td>
<td>Soaking</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$1,050,000</td>
</tr>
<tr>
<td>9</td>
<td>Low</td>
<td>Soaking</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$1,050,000</td>
</tr>
<tr>
<td>10</td>
<td>Fair</td>
<td>Dry</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>11</td>
<td>Fair</td>
<td>Dry</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$-100,000</td>
</tr>
<tr>
<td>12</td>
<td>Fair</td>
<td>Dry</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$-300,000</td>
</tr>
<tr>
<td>13</td>
<td>Fair</td>
<td>Wet</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>14</td>
<td>Fair</td>
<td>Wet</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$400,000</td>
</tr>
<tr>
<td>15</td>
<td>Fair</td>
<td>Wet</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$400,000</td>
</tr>
<tr>
<td>16</td>
<td>Fair</td>
<td>Soaking</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>17</td>
<td>Fair</td>
<td>Soaking</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$900,000</td>
</tr>
<tr>
<td>18</td>
<td>Fair</td>
<td>Soaking</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$900,000</td>
</tr>
<tr>
<td>19</td>
<td>High</td>
<td>Dry</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>20</td>
<td>High</td>
<td>Dry</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$-300,000</td>
</tr>
<tr>
<td>21</td>
<td>High</td>
<td>Dry</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$-500,000</td>
</tr>
<tr>
<td>22</td>
<td>High</td>
<td>Wet</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>23</td>
<td>High</td>
<td>Wet</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$200,000</td>
</tr>
<tr>
<td>24</td>
<td>High</td>
<td>Wet</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$200,000</td>
</tr>
<tr>
<td>25</td>
<td>High</td>
<td>Soaking</td>
<td>Not_Drill</td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>26</td>
<td>High</td>
<td>Soaking</td>
<td>Drill</td>
<td>Buy_Insurance</td>
<td>$700,000</td>
</tr>
<tr>
<td>27</td>
<td>High</td>
<td>Soaking</td>
<td>Drill</td>
<td>Do_Not_Buy</td>
<td>$700,000</td>
</tr>
</tbody>
</table>
```

To find the optimal decision, call PROC DTREE with the following statements:

```sql
/* -- PROC DTREE statements -- */
title "Oil Wildcatter’s Problem";
proc dtree stagein=Dtoils4
   probin=Dtoilp4
   payoffs=Dtoilu4
```

High Soaking Drill Do_Not_Buy;
nowarning;

variables / stage=Stage type=Stype outcome=(Outcome) reward=(Premium) successor=(Succ) event=(V1 V2 V3) prob=(P1 P2 P3) state=(Cost Deposit Drill Insuran) payoff=(Payoff);

evaluate;

summary / target=Insurance;

The VARIABLES statement identifies the variables in the input data sets. The yield of the optimal decision is written to the SAS log as:

NOTE: Present order of stages:

Drill(D), Insurance(D), Cost(C), Oil_Deposit(C), _ENDST_(E).

NOTE: The currently optimal decision yields 140000.

The optimal decision summary produced by the SUMMARY statements are shown in Output 5.1.2. The summary in Output 5.1.2 shows that the insurance policy is worth $240,000 − $140,000 = $100,000, but since it costs $130,000, the wildcatter should reject such an insurance policy.
Output 5.1.2. Summary of the Oil Wildcatter’s Problem

Oil Wildcatter’s Problem

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>Decision</td>
</tr>
<tr>
<td>Insurance</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_Deposit</td>
<td>Chance</td>
</tr>
<tr>
<td>ENDST</td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: $140,000

Optimal Decision Policy

Up to Stage Insurance

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill Buy_Insurance</td>
<td>-130000</td>
<td>$240,000</td>
</tr>
<tr>
<td>Drill Do_Not_Buy</td>
<td>0</td>
<td>$140,000*</td>
</tr>
</tbody>
</table>

Now assume that the oil wildcatter is risk averse and has an exponential utility function with a risk tolerance of $1,200,000. In order to evaluate his problem based on this decision criterion, the wildcatter reevaluates the problem with the following statements:

```
reset criterion=maxce rt=1200000;
summary / target=Insurance;
```

The output from PROC DTREE given in Output 5.1.3 shows that the decision to purchase an insurance policy is favorable in the risk-averse environment. Note that an EVALUATE statement is not necessary before the SUMMARY statement. PROC DTREE evaluates the decision tree automatically when the decision criterion has been changed using the RESET statement.
Output 5.1.3. Summary of the Oil Wildcatter’s Problem with RT = 1,200,000

Oil Wildcatter’s Problem

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>Decision</td>
</tr>
<tr>
<td>Insurance</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_Deposit</td>
<td>Chance</td>
</tr>
<tr>
<td>ENDST</td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Certain Equivalent Value (MAXCE)
Risk Tolerance: $1,200,000
Optimal Decision Yields: $45,728

Optimal Decision Policy
Up to Stage Insurance

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill Buy_Insurance</td>
<td>-130000</td>
<td>$175,728*</td>
</tr>
<tr>
<td>Drill Do_Not_Buy</td>
<td>0</td>
<td>$44,499</td>
</tr>
</tbody>
</table>

Example 5.2. Oil Wildcatter’s Problem in Risk-Averse Setting

Continuing with the oil wildcatter’s problem, suppose that in addition to possibly buying insurance to spread the risk of the venture, the wildcatter is considering sharing the risk by selling a portion of this venture to other investors. Now, the decision he faces is whether to buy insurance or not and what percentage of the investment to divest. Again, assume that the wildcatter is risk averse with a risk tolerance of $1,200,000. Notice that in the program that follows the ‘Divestment’ decision includes possibilities of no divestment to 100% divestment in 10% increments.

/* -- create the STAGEIN= data set -- */

data Dtoils4;
 format _STNAME_ $12. _OUTCOM_ $15. _SUCCES_ $12. ;
 input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $
 SUCCES $;
datalines;

Divestment Decision No_Divestment Insurance
 . 10% Divestment Insurance
 . 20% Divestment Insurance
 . 30% Divestment Insurance
 . 40% Divestment Insurance
 . 50% Divestment Insurance
Example 5.2. Oil Wildcatter’s Problem in Risk-Averse Setting

The probabilities associated with the uncertain events are given in the PROBIN= data set named Dtoilp4. Except for the order of the variables in this data set, it is the same as the Dtoilp1 data set used in the “Introductory Example” section beginning on page 345.

```sas
/* -- create the PROBIN= data set -- */
data Dtoilp4;
  input _EVENT1 $ _PROB1 _EVENT3 $ _PROB3 ;
datalines;
Low 0.2 Dry 0.5
Fair 0.6 Wet 0.3
High 0.2 Soaking 0.2
;
/* -- create the PAYOFFS= data set -- */
data Dtoilu4(drop=i j k l);
  length _STATE1-_STATE4 $16. ;
  format _VALUE_ dollar12.0;
  array DIVEST{11} $16. _TEMPORARY_ ('No_Divestment',
      '10%_Divestment',
      '20%_Divestment',
      '30%_Divestment',
      '40%_Divestment',
      '50%_Divestment',
      '60%_Divestment',
      '70%_Divestment',
      '80%_Divestment',
      '90%_Divestment',
      '100%_Divestment' );
  array INSUR{3} $16. _TEMPORARY_ ('Do_Not_Buy',
      'Buy_Insurance',
      ' ');
  array COST{4} $ _TEMPORARY_ ('Low',
      'Fair',
      'High',
      ' ');
*/
```
array DEPOSIT(4) $ _TEMPORARY_ ('Dry', 'Wet', 'Soaking', '');

do i=1 to 10; /* loop for each divestment */
 _STATE1=DIVEST(i);
 /* determine the percentage of ownership */ /* retained for this scenario */
 PCT=1.0-((i-1)*0.1);

do j=1 to 2; /* loop for insurance decision */
 _STATE2=INSUR(j);
 /* determine the premium need to pay */ /* for this scenario */
 if _STATE2='Buy_Insurance' then PREMIUM=130000;
 else PREMIUM=0;

do k=1 to 3; /* loop for each well cost */
 _STATE3=COST(k);
 /* determine the cost for this scenario */
 if _STATE3='Low' then _COST_=150000;
 else if _STATE3='Fair' then _COST_=300000;
 else _COST_=500000;

do l=1 to 3; /* loop for each deposit type */
 _STATE4=DEPOSIT(l);
 /* determine the oil deposit and the */ /* corresponding net payoff for this */ /* scenario */
 if _STATE4='Dry' then _PAYOFF_=0;
 else if _STATE4='Wet' then _PAYOFF_=700000;
 else _PAYOFF_=1200000;
 /* determine redeem received for this */ /* scenario */
 if _STATE2='Buy_Insurance' and _STATE4='Dry' then REDEEM=200000;
 else REDEEM=0;
 /* calculate the net return for this */ /* scenario */
 VALUE=(_PAYOFF_-_COST_-PREMIUM+REDEEM)*PCT;

 /* drop unneeded variables */
 drop _COST_ _PAYOFF_ PREMIUM REDEEM PCT;

 /* output this record */
 output;
Example 5.2. Oil Wildcatter’s Problem in Risk-Averse Setting

```plaintext
/* output an observation for the scenario */
/* 100% Divestment */
_STATE1=DIVEST[11];
_STATE2=INSUR[3];
_STATE3=COST[4];
_STATE4=DEPOSIT[4];
_VALUE_=0;
output;

run;
```

The DToilu4 data set for this problem, which contains 181 observations and 5 variables, is displayed in Output 5.2.1.
Output 5.2.1. Payoffs of the Oil Wildcatter's Problem with Risk Sharing

Oil Wildcatter's Problem

<table>
<thead>
<tr>
<th>Obs</th>
<th>_STATE1</th>
<th>_STATE2</th>
<th>_STATE3</th>
<th>_STATE4</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Dry</td>
<td>$-150,000</td>
</tr>
<tr>
<td>2</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Wet</td>
<td>$550,000</td>
</tr>
<tr>
<td>3</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Soaking</td>
<td>$1,050,000</td>
</tr>
<tr>
<td>4</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Dry</td>
<td>$-300,000</td>
</tr>
<tr>
<td>5</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Wet</td>
<td>$400,000</td>
</tr>
<tr>
<td>6</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Soaking</td>
<td>$900,000</td>
</tr>
<tr>
<td>7</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Dry</td>
<td>$-500,000</td>
</tr>
<tr>
<td>8</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Wet</td>
<td>$200,000</td>
</tr>
<tr>
<td>9</td>
<td>No_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Soaking</td>
<td>$700,000</td>
</tr>
<tr>
<td>10</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Dry</td>
<td>$-80,000</td>
</tr>
<tr>
<td>11</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Wet</td>
<td>$420,000</td>
</tr>
<tr>
<td>12</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Soaking</td>
<td>$920,000</td>
</tr>
<tr>
<td>13</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Dry</td>
<td>$-230,000</td>
</tr>
<tr>
<td>14</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Wet</td>
<td>$270,000</td>
</tr>
<tr>
<td>15</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Soaking</td>
<td>$770,000</td>
</tr>
<tr>
<td>16</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Dry</td>
<td>$-430,000</td>
</tr>
<tr>
<td>17</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Wet</td>
<td>$70,000</td>
</tr>
<tr>
<td>18</td>
<td>No_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Soaking</td>
<td>$570,000</td>
</tr>
<tr>
<td>19</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Dry</td>
<td>$-135,000</td>
</tr>
<tr>
<td>20</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Wet</td>
<td>$495,000</td>
</tr>
<tr>
<td>21</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Soaking</td>
<td>$945,000</td>
</tr>
<tr>
<td>22</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Dry</td>
<td>$-270,000</td>
</tr>
<tr>
<td>23</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Wet</td>
<td>$360,000</td>
</tr>
<tr>
<td>24</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Soaking</td>
<td>$810,000</td>
</tr>
<tr>
<td>25</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Dry</td>
<td>$-450,000</td>
</tr>
<tr>
<td>26</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Wet</td>
<td>$180,000</td>
</tr>
<tr>
<td>27</td>
<td>10%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Soaking</td>
<td>$630,000</td>
</tr>
<tr>
<td>28</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Dry</td>
<td>$-72,000</td>
</tr>
<tr>
<td>29</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Wet</td>
<td>$378,000</td>
</tr>
<tr>
<td>30</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Soaking</td>
<td>$828,000</td>
</tr>
<tr>
<td>31</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Dry</td>
<td>$-207,000</td>
</tr>
<tr>
<td>32</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Wet</td>
<td>$243,000</td>
</tr>
<tr>
<td>33</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Soaking</td>
<td>$693,000</td>
</tr>
<tr>
<td>34</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Dry</td>
<td>$-387,000</td>
</tr>
<tr>
<td>35</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Wet</td>
<td>$63,000</td>
</tr>
<tr>
<td>36</td>
<td>10%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Soaking</td>
<td>$513,000</td>
</tr>
<tr>
<td>37</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Dry</td>
<td>$-120,000</td>
</tr>
<tr>
<td>38</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Wet</td>
<td>$440,000</td>
</tr>
<tr>
<td>39</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Soaking</td>
<td>$840,000</td>
</tr>
<tr>
<td>40</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Dry</td>
<td>$-240,000</td>
</tr>
<tr>
<td>41</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Wet</td>
<td>$320,000</td>
</tr>
<tr>
<td>42</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Soaking</td>
<td>$720,000</td>
</tr>
<tr>
<td>43</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Dry</td>
<td>$-400,000</td>
</tr>
<tr>
<td>44</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Wet</td>
<td>$160,000</td>
</tr>
<tr>
<td>45</td>
<td>20%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Soaking</td>
<td>$560,000</td>
</tr>
<tr>
<td>46</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Dry</td>
<td>$-64,000</td>
</tr>
<tr>
<td>47</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Wet</td>
<td>$336,000</td>
</tr>
<tr>
<td>48</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Soaking</td>
<td>$736,000</td>
</tr>
<tr>
<td>Obs</td>
<td>STATE1</td>
<td>STATE2</td>
<td>STATE3</td>
<td>STATE4</td>
<td>VALUE</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>49</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Dry</td>
<td>$-184,000</td>
</tr>
<tr>
<td>50</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Wet</td>
<td>$216,000</td>
</tr>
<tr>
<td>51</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Soaking</td>
<td>$616,000</td>
</tr>
<tr>
<td>52</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Dry</td>
<td>$-344,000</td>
</tr>
<tr>
<td>53</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Wet</td>
<td>$56,000</td>
</tr>
<tr>
<td>54</td>
<td>20%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Soaking</td>
<td>$456,000</td>
</tr>
<tr>
<td>55</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Dry</td>
<td>$-105,000</td>
</tr>
<tr>
<td>56</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Wet</td>
<td>$385,000</td>
</tr>
<tr>
<td>57</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Soaking</td>
<td>$735,000</td>
</tr>
<tr>
<td>58</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Dry</td>
<td>$210,000</td>
</tr>
<tr>
<td>59</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Wet</td>
<td>$280,000</td>
</tr>
<tr>
<td>60</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Soaking</td>
<td>$630,000</td>
</tr>
<tr>
<td>61</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Dry</td>
<td>$-350,000</td>
</tr>
<tr>
<td>62</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Wet</td>
<td>$140,000</td>
</tr>
<tr>
<td>63</td>
<td>30%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Soaking</td>
<td>$490,000</td>
</tr>
<tr>
<td>64</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Dry</td>
<td>$-56,000</td>
</tr>
<tr>
<td>65</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Wet</td>
<td>$294,000</td>
</tr>
<tr>
<td>66</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Soaking</td>
<td>$644,000</td>
</tr>
<tr>
<td>67</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Dry</td>
<td>$-161,000</td>
</tr>
<tr>
<td>68</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Wet</td>
<td>$189,000</td>
</tr>
<tr>
<td>69</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Soaking</td>
<td>$539,000</td>
</tr>
<tr>
<td>70</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Dry</td>
<td>$-301,000</td>
</tr>
<tr>
<td>71</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Wet</td>
<td>$49,000</td>
</tr>
<tr>
<td>72</td>
<td>30%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Soaking</td>
<td>$399,000</td>
</tr>
<tr>
<td>73</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Dry</td>
<td>$-90,000</td>
</tr>
<tr>
<td>74</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Wet</td>
<td>$330,000</td>
</tr>
<tr>
<td>75</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Soaking</td>
<td>$630,000</td>
</tr>
<tr>
<td>76</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Dry</td>
<td>$-180,000</td>
</tr>
<tr>
<td>77</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Wet</td>
<td>$240,000</td>
</tr>
<tr>
<td>78</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Soaking</td>
<td>$540,000</td>
</tr>
<tr>
<td>79</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Dry</td>
<td>$-300,000</td>
</tr>
<tr>
<td>80</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Wet</td>
<td>$120,000</td>
</tr>
<tr>
<td>81</td>
<td>40%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Soaking</td>
<td>$420,000</td>
</tr>
<tr>
<td>82</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Dry</td>
<td>$-48,000</td>
</tr>
<tr>
<td>83</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Wet</td>
<td>$252,000</td>
</tr>
<tr>
<td>84</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Soaking</td>
<td>$552,000</td>
</tr>
<tr>
<td>85</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Dry</td>
<td>$-138,000</td>
</tr>
<tr>
<td>86</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Wet</td>
<td>$162,000</td>
</tr>
<tr>
<td>87</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Soaking</td>
<td>$462,000</td>
</tr>
<tr>
<td>88</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Dry</td>
<td>$-258,000</td>
</tr>
<tr>
<td>89</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Wet</td>
<td>$42,000</td>
</tr>
<tr>
<td>90</td>
<td>40%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Soaking</td>
<td>$342,000</td>
</tr>
<tr>
<td>91</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Dry</td>
<td>$-75,000</td>
</tr>
<tr>
<td>92</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Wet</td>
<td>$275,000</td>
</tr>
<tr>
<td>93</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Soaking</td>
<td>$525,000</td>
</tr>
<tr>
<td>94</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Dry</td>
<td>$-150,000</td>
</tr>
<tr>
<td>95</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Wet</td>
<td>$200,000</td>
</tr>
<tr>
<td>96</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Soaking</td>
<td>$450,000</td>
</tr>
</tbody>
</table>
Oil Wildcatter’s Problem

The Payoffs

<table>
<thead>
<tr>
<th>Obs</th>
<th>STATE1</th>
<th>STATE2</th>
<th>STATE3</th>
<th>STATE4</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Dry</td>
<td>$-250,000</td>
</tr>
<tr>
<td>98</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Wet</td>
<td>$100,000</td>
</tr>
<tr>
<td>99</td>
<td>50%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Soaking</td>
<td>$350,000</td>
</tr>
<tr>
<td>100</td>
<td>50%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Dry</td>
<td>$-40,000</td>
</tr>
<tr>
<td>101</td>
<td>50%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Wet</td>
<td>$210,000</td>
</tr>
<tr>
<td>102</td>
<td>50%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Soaking</td>
<td>$460,000</td>
</tr>
<tr>
<td>103</td>
<td>50%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Dry</td>
<td>$-115,000</td>
</tr>
<tr>
<td>104</td>
<td>50%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Wet</td>
<td>$135,000</td>
</tr>
<tr>
<td>105</td>
<td>50%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Dry</td>
<td>$-215,000</td>
</tr>
<tr>
<td>106</td>
<td>50%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Wet</td>
<td>$35,000</td>
</tr>
<tr>
<td>107</td>
<td>50%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Soaking</td>
<td>$285,000</td>
</tr>
<tr>
<td>108</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Dry</td>
<td>$-60,000</td>
</tr>
<tr>
<td>109</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Wet</td>
<td>$220,000</td>
</tr>
<tr>
<td>110</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Soaking</td>
<td>$420,000</td>
</tr>
<tr>
<td>111</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Dry</td>
<td>$-120,000</td>
</tr>
<tr>
<td>112</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Wet</td>
<td>$160,000</td>
</tr>
<tr>
<td>113</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Soaking</td>
<td>$360,000</td>
</tr>
<tr>
<td>114</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Dry</td>
<td>$-200,000</td>
</tr>
<tr>
<td>115</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Wet</td>
<td>$80,000</td>
</tr>
<tr>
<td>116</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Soaking</td>
<td>$280,000</td>
</tr>
<tr>
<td>117</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Dry</td>
<td>$-32,000</td>
</tr>
<tr>
<td>118</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Wet</td>
<td>$168,000</td>
</tr>
<tr>
<td>119</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>Low</td>
<td>Soaking</td>
<td>$368,000</td>
</tr>
<tr>
<td>120</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Dry</td>
<td>$-92,000</td>
</tr>
<tr>
<td>121</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Wet</td>
<td>$108,000</td>
</tr>
<tr>
<td>122</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>Fair</td>
<td>Soaking</td>
<td>$308,000</td>
</tr>
<tr>
<td>123</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Dry</td>
<td>$-172,000</td>
</tr>
<tr>
<td>124</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Wet</td>
<td>$28,000</td>
</tr>
<tr>
<td>125</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Soaking</td>
<td>$228,000</td>
</tr>
<tr>
<td>126</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Dry</td>
<td>$-45,000</td>
</tr>
<tr>
<td>127</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Wet</td>
<td>$165,000</td>
</tr>
<tr>
<td>128</td>
<td>60%_Divestment</td>
<td>Buy_Insurance</td>
<td>High</td>
<td>Soaking</td>
<td>$315,000</td>
</tr>
<tr>
<td>129</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Dry</td>
<td>$-32,000</td>
</tr>
<tr>
<td>130</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Low</td>
<td>Soaking</td>
<td>$126,000</td>
</tr>
<tr>
<td>131</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Dry</td>
<td>$-69,000</td>
</tr>
<tr>
<td>132</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair</td>
<td>Soaking</td>
<td>$231,000</td>
</tr>
<tr>
<td>133</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Dry</td>
<td>$-129,000</td>
</tr>
<tr>
<td>134</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Wet</td>
<td>$21,000</td>
</tr>
<tr>
<td>135</td>
<td>60%_Divestment</td>
<td>Do_Not_Buy</td>
<td>High</td>
<td>Soaking</td>
<td>$171,000</td>
</tr>
</tbody>
</table>
Example 5.2. Oil Wildcatter’s Problem in Risk-Averse Setting

The Payoffs

<table>
<thead>
<tr>
<th>Obs</th>
<th>STATE1</th>
<th>STATE2</th>
<th>STATE3</th>
<th>STATE4</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>Low Dry</td>
<td></td>
<td>$-30,000</td>
</tr>
<tr>
<td>146</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>Low Wet</td>
<td></td>
<td>$110,000</td>
</tr>
<tr>
<td>147</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>Low Soaking</td>
<td></td>
<td>$210,000</td>
</tr>
<tr>
<td>148</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair Dry</td>
<td></td>
<td>$-60,000</td>
</tr>
<tr>
<td>149</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair Wet</td>
<td></td>
<td>$80,000</td>
</tr>
<tr>
<td>150</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair Soaking</td>
<td></td>
<td>$180,000</td>
</tr>
<tr>
<td>151</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>High Dry</td>
<td></td>
<td>$-100,000</td>
</tr>
<tr>
<td>152</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>High Wet</td>
<td></td>
<td>$40,000</td>
</tr>
<tr>
<td>153</td>
<td>80% Divestment</td>
<td>Do_Not_Buy</td>
<td>High Soaking</td>
<td></td>
<td>$140,000</td>
</tr>
<tr>
<td>154</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>Low Dry</td>
<td></td>
<td>$-16,000</td>
</tr>
<tr>
<td>155</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>Low Wet</td>
<td></td>
<td>$84,000</td>
</tr>
<tr>
<td>156</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>Low Soaking</td>
<td></td>
<td>$184,000</td>
</tr>
<tr>
<td>157</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>Fair Dry</td>
<td></td>
<td>$-46,000</td>
</tr>
<tr>
<td>158</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>Fair Wet</td>
<td></td>
<td>$54,000</td>
</tr>
<tr>
<td>159</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>Fair Soaking</td>
<td></td>
<td>$154,000</td>
</tr>
<tr>
<td>160</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>High Dry</td>
<td></td>
<td>$-86,000</td>
</tr>
<tr>
<td>161</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>High Wet</td>
<td></td>
<td>$14,000</td>
</tr>
<tr>
<td>162</td>
<td>80% Divestment</td>
<td>Buy_Insurance</td>
<td>High Soaking</td>
<td></td>
<td>$114,000</td>
</tr>
<tr>
<td>163</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>Low Dry</td>
<td></td>
<td>$-15,000</td>
</tr>
<tr>
<td>164</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>Low Wet</td>
<td></td>
<td>$55,000</td>
</tr>
<tr>
<td>165</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>Low Soaking</td>
<td></td>
<td>$105,000</td>
</tr>
<tr>
<td>166</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair Dry</td>
<td></td>
<td>$-30,000</td>
</tr>
<tr>
<td>167</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair Wet</td>
<td></td>
<td>$40,000</td>
</tr>
<tr>
<td>168</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>Fair Soaking</td>
<td></td>
<td>$90,000</td>
</tr>
<tr>
<td>169</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>High Dry</td>
<td></td>
<td>$-50,000</td>
</tr>
<tr>
<td>170</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>High Wet</td>
<td></td>
<td>$20,000</td>
</tr>
<tr>
<td>171</td>
<td>90% Divestment</td>
<td>Do_Not_Buy</td>
<td>High Soaking</td>
<td></td>
<td>$70,000</td>
</tr>
<tr>
<td>172</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>Low Dry</td>
<td></td>
<td>$-8,000</td>
</tr>
<tr>
<td>173</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>Low Wet</td>
<td></td>
<td>$42,000</td>
</tr>
<tr>
<td>174</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>Low Soaking</td>
<td></td>
<td>$92,000</td>
</tr>
<tr>
<td>175</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>Fair Dry</td>
<td></td>
<td>$-23,000</td>
</tr>
<tr>
<td>176</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>Fair Wet</td>
<td></td>
<td>$27,000</td>
</tr>
<tr>
<td>177</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>Fair Soaking</td>
<td></td>
<td>$77,000</td>
</tr>
<tr>
<td>178</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>High Dry</td>
<td></td>
<td>$-43,000</td>
</tr>
<tr>
<td>179</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>High Wet</td>
<td></td>
<td>$7,000</td>
</tr>
<tr>
<td>180</td>
<td>90% Divestment</td>
<td>Buy_Insurance</td>
<td>High Soaking</td>
<td></td>
<td>$57,000</td>
</tr>
<tr>
<td>181</td>
<td>100% Divestment</td>
<td>Buy_Insurance</td>
<td>High Soaking</td>
<td></td>
<td>$0</td>
</tr>
</tbody>
</table>

The optimal decisions for this problem can be identified by invoking PROC DTREE and using the SUMMARY statement as follows:

```plaintext
title "Oil Wildcatter’s Problem";

proc dtree stagein=Dtoils4
   probin=Dtoilp4
   payoffs=Dtoilu4
   criterion=maxce rt=1200000
   nowarning;
   evaluate;
   summary / target=Divestment;
   summary / target=Insurance;
quit;
```
The optimal decision summaries in Output 5.2.2 and Output 5.2.3 show the optimal strategy for the wildcatter.

- The wildcatter should sell 30% of his investment to other companies and reject the insurance policy offered to him.
- The insurance policy should be accepted only if the decision to not divest is made.
- If the decision to buy the insurance policy is made, then it is optimal to divest 10% of the venture.

Output 5.2.2. Summary of the Oil Wildcatter’s Problem for DIVESTMENT

Oil Wildcatter’s Problem
The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divestment</td>
<td>Decision</td>
</tr>
<tr>
<td>Insurance</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_Deposit</td>
<td>Chance</td>
</tr>
<tr>
<td>ENDST</td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Certain Equivalent Value (MAXCE)
Risk Tolerance: $1,200,000
Optimal Decision Yields: $50,104

Optimal Decision Policy

Up to Stage Divestment

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No_Divestment</td>
<td>$45,728</td>
<td></td>
</tr>
<tr>
<td>10% Divestment</td>
<td>$48,021</td>
<td></td>
</tr>
<tr>
<td>20% Divestment</td>
<td>$49,907</td>
<td></td>
</tr>
<tr>
<td>30% Divestment</td>
<td>$50,104*</td>
<td></td>
</tr>
<tr>
<td>40% Divestment</td>
<td>$48,558</td>
<td></td>
</tr>
<tr>
<td>50% Divestment</td>
<td>$45,219</td>
<td></td>
</tr>
<tr>
<td>60% Divestment</td>
<td>$40,036</td>
<td></td>
</tr>
<tr>
<td>70% Divestment</td>
<td>$32,965</td>
<td></td>
</tr>
<tr>
<td>80% Divestment</td>
<td>$23,961</td>
<td></td>
</tr>
<tr>
<td>90% Divestment</td>
<td>$12,985</td>
<td></td>
</tr>
<tr>
<td>100% Divestment</td>
<td>$0</td>
<td></td>
</tr>
</tbody>
</table>
Output 5.2.3. Summary of the Oil Wildcatter's Problem for INSURANCE

Oil Wildcatter's Problem

The DTREE Procedure

Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divestment</td>
<td>Decision</td>
</tr>
<tr>
<td>Insurance</td>
<td>Decision</td>
</tr>
<tr>
<td>Cost</td>
<td>Chance</td>
</tr>
<tr>
<td>Oil_Deposit</td>
<td>Chance</td>
</tr>
<tr>
<td>ENDST</td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

<table>
<thead>
<tr>
<th>Decision Criterion: Maximize Certain Equivalent Value (MAXCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Tolerance: $1,200,000</td>
</tr>
<tr>
<td>Optimal Decision Yields: $50,104</td>
</tr>
</tbody>
</table>

Optimal Decision Policy

Up to Stage Insurance

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No_Divestment Buy_Insurance</td>
<td>$45,728*</td>
<td></td>
</tr>
<tr>
<td>No_Divestment Do_Not_Buy</td>
<td>$44,499</td>
<td></td>
</tr>
<tr>
<td>10% Divestment Buy_Insurance</td>
<td>$46,552</td>
<td></td>
</tr>
<tr>
<td>10% Divestment Do_Not_Buy</td>
<td>$48,021*</td>
<td></td>
</tr>
<tr>
<td>20% Divestment Buy_Insurance</td>
<td>$46,257</td>
<td></td>
</tr>
<tr>
<td>20% Divestment Do_Not_Buy</td>
<td>$49,907*</td>
<td></td>
</tr>
<tr>
<td>30% Divestment Buy_Insurance</td>
<td>$44,812</td>
<td></td>
</tr>
<tr>
<td>30% Divestment Do_Not_Buy</td>
<td>$50,104*</td>
<td></td>
</tr>
<tr>
<td>40% Divestment Buy_Insurance</td>
<td>$42,186</td>
<td></td>
</tr>
<tr>
<td>40% Divestment Do_Not_Buy</td>
<td>$48,558*</td>
<td></td>
</tr>
<tr>
<td>50% Divestment Buy_Insurance</td>
<td>$38,350</td>
<td></td>
</tr>
<tr>
<td>50% Divestment Do_Not_Buy</td>
<td>$45,219*</td>
<td></td>
</tr>
<tr>
<td>60% Divestment Buy_Insurance</td>
<td>$33,273</td>
<td></td>
</tr>
<tr>
<td>60% Divestment Do_Not_Buy</td>
<td>$40,036*</td>
<td></td>
</tr>
<tr>
<td>70% Divestment Buy_Insurance</td>
<td>$26,927</td>
<td></td>
</tr>
<tr>
<td>70% Divestment Do_Not_Buy</td>
<td>$32,965*</td>
<td></td>
</tr>
<tr>
<td>80% Divestment Buy_Insurance</td>
<td>$19,284</td>
<td></td>
</tr>
<tr>
<td>80% Divestment Do_Not_Buy</td>
<td>$39,961*</td>
<td></td>
</tr>
<tr>
<td>90% Divestment Buy_Insurance</td>
<td>$10,317</td>
<td></td>
</tr>
<tr>
<td>90% Divestment Do_Not_Buy</td>
<td>$12,985*</td>
<td></td>
</tr>
</tbody>
</table>

This information can be illustrated graphically using the GPLOT procedure. Output 5.2.4 on page 413, produced by the PROC GPLOT statements shown in the following code, provides a clear picture of the effects of the divestment possibilities and the insurance options.

```plaintext
/* create a data set for the return corresponds to each */
/* divestment possibilities and the insurance options */
data Data2g;
  input INSURE DIVEST VALUE;
datalines;
```
/** -- define a format for INSURE variable -- */
proc format;
 value sample 0='Do_Not_Buy' 1='Buy_Insurance';
run;

/** -- define title -- */
title h=3 "Oil Wildcatter’s Problem";

/** -- set graphics options -- */
goptions lfactor=3;

/** define legend -- */
legend1 frame cframe=white label=none
 cborder=black position=center;

/** define symbol characteristics of the data points */
/** and the interpolation line for returns vs divestment */
/** when INSURE=0 */
symbol1 c=black i=join v=dot l=1 h=1.5;

/** define symbol characteristics of the data points */
/** and the interpolation line for returns vs divestment */
/** when INSURE=1 */
symbol2 c=black i=join v=square l=2 h=1.5;

/** -- define axis characteristics -- */
axis1 minor=none label=('Divestment (in percentage)');
axis2 minor=none label=(angle=90 rotate=0 'Certainty Equivalent');

/** plot VALUE vs DIVEST using INSURE as third variable */

proc gplot data=Data2g ;
plot VALUE*DIVEST=INSURE / haxis=axis1
vaxis=axis2
legend=legend1
name="dt2"
frame
cframe=white ;

format INSURE SAMPLE.;
run;
quit;

Note that the data input into the Data2g data set is obtained from the optimal decision summary as in Output 5.2.3 on page 411. The value 1 of the INSURE variable represents the alternative ‘Buy_Insurance’ and the value 0 represents the alternative ‘Do_Not_Buy’.

Output 5.2.4. Returns of the Oil Wildcatter’s Problem

Example 5.3. Contract Bidding Problem

This example illustrates the use of several of the graphics options for producing graphics quality decision tree diagrams.

The production manager of a manufacturing company is planning to bid on a project to manufacture a new type of machine. He has the choice of bidding low or high. The evaluation of the bid will more likely be favorable if the bidder has built a prototype of the machine and includes it with the bid. However, he is uncertain about the cost of
building the prototype. His technical staff has provided him a probability distribution on the cost of the prototype.

Table 5.33. Probability on the Cost of Building Prototype

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Cost</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expensive</td>
<td>$4,500</td>
<td>0.4</td>
</tr>
<tr>
<td>Moderate</td>
<td>$2,500</td>
<td>0.5</td>
</tr>
<tr>
<td>Inexpensive</td>
<td>$1,000</td>
<td>0.1</td>
</tr>
</tbody>
</table>

There is also uncertainty in whether he will win the contract or not. He has estimated the probability distribution of winning the contract as shown in Table 5.34.

Table 5.34. Probability of Winning the Contract

<table>
<thead>
<tr>
<th>Givens</th>
<th>Events</th>
<th>Win the Contract</th>
<th>Lose the Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build Prototype</td>
<td>High Bid</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Build Prototype</td>
<td>Low Bid</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>No Prototype</td>
<td>High Bid</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>No Prototype</td>
<td>Low Bid</td>
<td>0.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>

In addition, the payoffs of this bidding venture are affected by the cost of building the prototype. Table 5.35 shows his payoffs. The first row of the table shows the payoff is 0 if he loses the contract, regardless of whether or not he builds the prototype and whether he bids low or high. The remainder of the entries in the table give the payoff under the various scenarios.

Table 5.35. The Payoffs of the Contract Bidding Decision

<table>
<thead>
<tr>
<th>States</th>
<th>Actions</th>
<th>Bid low</th>
<th>Bid high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lose the Contract</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Win the Contract</td>
<td>Cost</td>
<td>$35,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Win the Contract</td>
<td>Expensive</td>
<td>$25,000</td>
<td>$65,000</td>
</tr>
<tr>
<td>Win the Contract</td>
<td>Moderate</td>
<td>$35,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Win the Contract</td>
<td>Inexpensive</td>
<td>$45,000</td>
<td>$85,000</td>
</tr>
</tbody>
</table>

The production manager must decide whether to build the prototype and how to bid. He uses PROC DTREE to help him to make these decisions. The structure of the model is stored in the STAGEIN= data set named Stage3. There are two decision stages, ‘Choose’ and ‘Bid’, and two chance stages, ‘CostPrototype’ and ‘Contract’. The ‘Choose’ stage represents the decision whether or not to build a prototype. The chance stage ‘CostPrototype’ represents the uncertain cost for building a prototype. It can be ‘Expensive’, which costs $4,500, or ‘Moderate’, which costs $2,500, or ‘Inexpensive’, which costs $1,000. The ‘Bid’ stage represents the decision whether to bid high or bid low. The last stage, ‘Contract’, represents the result, either win the contract or lose the contract.

```plaintext
/* -- create the STAGEIN= data set -- */
data Stage3;
```
format _STNAME_ $14. _STTYPE_ $2. _OUTCOM_ $15.
 SUCCESE $14. _REWARD_ dollar8.0;
input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $
 SUCCESE $ _REWARD_ dollar8.0;
datalines;
Choose D Build_Prototype Cost_Prototype
 . . . No_Prototype Bid
Cost_Prototype C Expensive Bid -$4,500
 . . . Moderate Bid -$2,500
 . . . Inexpensive Bid -$1,000
Bid D High_Bid Contract
 . . . Low_Bid Contract
Contract C Win_Contract
 . . . Lose_Contract ;

The PROBIN= data set, named Prob3, contains the probability information as in Table 5.33 (page 414) and Table 5.34 (page 414).

/* -- create the PROBIN= data set -- */
data Prob3;
 format _GIVEN1_ $15. _EVENT_ $14. ;
 input (_GIVEN1_ _GIVEN2_ _EVENT_) ($) _PROB_;
datalines;
 . . . Expensive 0.4
 . . . Moderate 0.5
 . . . Inexpensive 0.1
Build_Prototype High_Bid Win_Contract 0.4
Build_Prototype High_Bid Lose_Contract 0.6
Build_Prototype Low_Bid Win_Contract 0.8
Build_Prototype Low_Bid Lose_Contract 0.2
No_Prototype High_Bid Win_Contract 0.2
No_Prototype High_Bid Lose_Contract 0.8
No_Prototype Low_Bid Win_Contract 0.7
No_Prototype Low_Bid Lose_Contract 0.3
;

The PAYOFFS= data set named Payoff3 contains the payoff information as in Table 5.35 on page 414. Notice that the payoff to outcome ‘Lose_Contract’ is not in the data set Payoff3. Since PROC DTREE assigns the default value 0 to all scenarios that are not in the PAYOFFS= data set, it is not necessary to include it.

/* -- create the PAYOFFS= data set -- */
data Payoff3;
 format _STATE1_ _STATE2_ $12.;
 input (_STATE1_ _STATE2_ _ACTION_) ($) _VALUE_ dollar8.0;
datalines;
Win_Contract . Low_Bid $35,000
Win_Contract . High_Bid $75,000
Win_Contract Expensive Low_Bid $25,000
The solution, as in Output 5.3.1 on page 417, is displayed on a graphics device with the following code. Notice that the title is specified before invoking PROC DTREE. The `GRAPHICS` option is given on the `PROC DTREE` statement. Specifying the `COMPRESS` option in the `TREEPLOT` statement causes the decision tree diagram to be drawn completely on one page. The vertical distance between two successive end nodes is 1 character cell (`ybetween=1 cell`). All text, except that in the first title line is drawn with font SWISS and height 1 character cell. The height for all nodes is 3 character cells, which is specified by the `HSYMBOL=` option. The thickness for all links in the diagram, except those that represent optimal decisions, is specified by the `LWIDTH=` option as 20. The thickness of the links that represent optimal decisions is specified as 25 (`lwidthb=25`), and the type of those links is 3 (`lstyleb=3`), the dash line. Colors for the text, links and nodes, and symbols to be used for nodes are not specified and hence defaults are used.

```plaintext
/* -- define title -- */
title1 font=swissb h=2 "Contract Bidding Example";

/* -- PROC DTREE statements -- */
proc dtree stagein=Stage3 probin=Prob3 payoffs=Payoff3
   graphics
   nowarning
   evaluate;
   treeplot / name="dt3" compress ybetween=1 cell
      ftext=swiss htext=1 hsymbol=3
      lstyleb=3 lwidth=20 lwidthb=25;
quit;
```
With the information on this decision tree, the production manager can select the optimal bidding strategy:
He should build a prototype to accompany the bid and always bid high unless the cost for building the prototype is as low as $1,000. This optimal strategy yields an expected return of $25,850.

If no prototype is built, the preferred decision is to make a low bid. In this case the expected return is $24,500.

Example 5.4. Research and Development Decision Problem

This example illustrates the use of the SYMBOL and GOPTIONS statements for controlling the appearance of the decision tree diagram. It also uses the ANNOTATE= option to add a customized legend to the diagram.

A typical problem encountered in a research and development setting involves two decisions: whether or not to conduct research, and whether or not to commercialize the results of that research. Suppose that research and development for a specific project will cost $350,000, and there is a 0.4 probability that it will fail. Also suppose that the different levels of market success and their corresponding probabilities are:

Table 5.36. Levels of Market Success and Their Probabilities

<table>
<thead>
<tr>
<th>Market Success</th>
<th>Net Return</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great</td>
<td>$1,000,000</td>
<td>0.25</td>
</tr>
<tr>
<td>Good</td>
<td>$500,000</td>
<td>0.35</td>
</tr>
<tr>
<td>Fair</td>
<td>$200,000</td>
<td>0.30</td>
</tr>
<tr>
<td>Poor</td>
<td>-$250,000</td>
<td>0.10</td>
</tr>
</tbody>
</table>

The structure of the model is represented in the STAGEIN= data set Stage4.

```plaintext
/* -- create the STAGEIN= data set -- */
data Stage4;
  format _STNAME_ $10. _STTYPE_ $2. _OUTCOM_ $12._REWARD_ dollar12.0 _SUCC_ $10.;
  input _STNAME_ $ _STTYPE_ $ _OUTCOM_ $ _REWARD_ dollar12.0 _SUCC_ $ ;
datalines;
  R_and_D D Not_Conduct . .
  . . Conduct -$350,000 RD_Outcome
  RD_Outcome C Success . Production
  . . Failure . .
  Production D Produce . Sales
  . . Abandon . .
  Sales C Great . .
  . . Good . .
  . . Fair . .
  . . Poor . .
;```

The probability distributions for the various outcomes of the chance stages are given in the PROBIN= data set named Prob4.
Example 5.4. Research and Development Decision Problem

```sas
/* -- create the PROBIN= data set -- */
data Prob4;
 input _EVENT1_ $ _PROB1_ _EVENT2_ $ _PROB2_;
datalines;
 Success 0.6 Failure 0.4
 Great 0.25 Good 0.35
 Fair 0.30 poor 0.1
;
```

The payoffs are given in the PAYOFFS= data set Payoff4.

```sas
/* -- create the PAYOFFS= data set -- */
data Payoff4;
 input _STATE_ $ _VALUE_ dollar12.0;
datalines;
 Great $1,000,000
 Good $500,000
 Fair $200,000
 Poor -$250,000
;
```

The following DATA step builds a data set that contains the Annotate description of a legend. Refer to the chapter on the annotate facility in SAS/GRAH Software: Reference for a description of the Annotate facility.

```sas
/* -- create the ANNOTATE= data set for legend -- */
data Legends;
 length FUNCTION STYLE $ 8;
 WHEN = 'B'; POSITION='0';
 XSYS='4'; YSYS='4';
 input FUNCTION $ X Y STYLE $ SIZE COLOR $ TEXT $ & 16.;
datalines;
 move 8 2.1
draw 12 2.1 . 8 black .
label 14 2 swiss 0.7 black BEST ACTION
symbol 9 3.5 marker 0.7 black A
label 14 3.2 swiss 0.7 black END NODE
symbol 9 4.7 marker 0.7 black P
label 14 4.4 swiss 0.7 black CHANCE NODE
symbol 9 5.9 marker 0.7 black U
label 14 5.6 swiss 0.7 black DECISION NODE
label 8 7.0 swiss 0.7 black LEGEND:
move 5 8.5 . . black .
draw 27 8.5 . 2 black .
draw 27 1 . 2 black .
draw 5 1 . 2 black .
draw 5 8.5 . 2 black .
```

The following program invokes PROC DTREE, which evaluates the decision tree and plots it on a graphics device using the Annotate data set Legends to draw the legend.
/* define symbol characteristics for chance nodes and */
/* links except those that represent optimal decisions */
symbol1 f=marker h=2 v=P c=black w=5 l=1;

/* define symbol characteristics for decision nodes */
/* and links that represent optimal decisions */
symbol2 f=marker h=2 v=U c=black w=10 l=1;

/* define symbol characteristics for end nodes */
symbol3 f=marker h=2 v=A c=black;

/* -- define title -- */
title f=swissb h=2 'Research and Development Decision';

/* -- PROC DTREE statements -- */
proc dtree stagein=Stage4 probin=Prob4 payoffs=Payoff4
criterion=maxce rt=1800000
graphics annotate=Legends nolegend;

evaluate;

treeplot / linka=1 linkb=2 symbold=2 symbolc=1 symbole=3
compress name="dt4";

quit;

The SYMBOL1, SYMBOL2, and SYMBOL3 statements create three SYMBOL definitions that contain information for drawing nodes and links. The Legends data set and the ANNOTATE= option specified in the PROC DTREE statement cause the procedure to produce a customized legend for the decision tree diagram. The LINKA=, LINKB=, SYMBOLD=, SYMBOLC=, and SYMBOLE= specifications in the TREEPLOT statement tell PROC DTREE how to use SYMBOL definitions to draw decision tree. Table 5.37 on page 421 describes the options in SYMBOL definitions used to draw the decision tree diagram.

The decision tree diagram produced by the TREEPLOT statement is shown in Output 5.4.1 (page 421). As illustrated on the decision tree, the program recommends that one should not conduct the research and development of the product if he or she is risk averse with a risk tolerance of $1,800,000. However, if he or she decides to undertake the research and development and it is a success, then he or she should commercialize the product.
Example 5.5. Research and Development Decision Problem

Table 5.37. The Usage of SYMBOL Definitions

<table>
<thead>
<tr>
<th>SYMBOL Definition</th>
<th>Specification</th>
<th>Description</th>
<th>Used to Draw</th>
</tr>
</thead>
<tbody>
<tr>
<td>The First</td>
<td>C=black</td>
<td>Color</td>
<td>All links except those that indicate optimal decisions</td>
</tr>
<tr>
<td></td>
<td>L=1</td>
<td>Line Type</td>
<td>Chance nodes</td>
</tr>
<tr>
<td></td>
<td>W=5</td>
<td>Thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C=black</td>
<td>Color</td>
<td>All links that indicate optimal decisions</td>
</tr>
<tr>
<td></td>
<td>F=marker</td>
<td>Font</td>
<td>Decision nodes</td>
</tr>
<tr>
<td></td>
<td>H=2</td>
<td>Height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V=P</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>The Second</td>
<td>C=black</td>
<td>Color</td>
<td>Chance nodes</td>
</tr>
<tr>
<td></td>
<td>L=1</td>
<td>Line Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W=10</td>
<td>Thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C=black</td>
<td>Color</td>
<td>All links that indicate optimal decisions</td>
</tr>
<tr>
<td></td>
<td>F=marker</td>
<td>Font</td>
<td>Decision nodes</td>
</tr>
<tr>
<td></td>
<td>H=2</td>
<td>Height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V=U</td>
<td>Symbol</td>
<td></td>
</tr>
<tr>
<td>The Third</td>
<td>C=black</td>
<td>Color</td>
<td>End nodes</td>
</tr>
<tr>
<td></td>
<td>F=marker</td>
<td>Font</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H=2</td>
<td>Height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V=A</td>
<td>Symbol</td>
<td></td>
</tr>
</tbody>
</table>

Output 5.4.1. Research and Development Decision Tree
Example 5.5. Loan Grant Decision Problem

Many financial decisions are difficult to analyze because of the variety of available strategies and the continuous nature of the problem. However, if the alternatives and time frame can be restricted, then decision analysis can be a useful analysis tool.

For example, a loan officer is faced with the problem of deciding whether to approve or deny an application for a one-year $30,000 loan at the current rate of 15% of interest. If the application is approved, the borrower will either pay off the loan in full after one year or default. Based on experience, the default rate is about 36 out of 700. If the loan is denied, the money is put in government bonds at the interest rate of 8%.

To obtain more information about the applicant, the loan officer engages a credit investigation unit at a cost of $500 per person that will give either a positive recommendation for making a loan or a negative recommendation. Past experience with this investigator yields that of those who ultimately paid off their loans, 570 out of 664 were given a positive recommendation. On the other hand, 6 out of 26 that had defaulted had also been given a positive recommendation by the investigator.

The STAGEIN= data set, Stage6, gives the structure of the decision problem.

```plaintext
/* -- create the STAGEIN= data set -- */
data Stage6;
 input _STNAME_ $ _STTYPE_ $ _OUTCOM_ & _SUCC_ $;
datalines;
 Application D Approve loan Payment
 . . Deny loan .
 Payment C Pay off .
 . . Default .
 Investigation D Order investigation Recommendation
 . . Do not order Application
 Recommendation C Positive Application
 . . Negative Application
```

The PROBIN= data set Prob6 gives the probability distributions for the random events at the chance nodes.

```plaintext
/* -- create the PROBIN= data set -- */
data Prob6;
 length _GIVEN_ _EVENT1_ _EVENT2_ $16;
 EVENT1='Pay off'; _EVENT2_='Default';
 PROB1=664/700; _PROB2_=1.0-_PROB1_;
 output;
 GIVEN='Pay off';
 EVENT1='Positive'; _EVENT2_='Negative';
 PROB1=570/664; _PROB2_=1.0-_PROB1_;
 output;
```
Example 5.5. Loan Grant Decision Problem

_GIVEN_ = 'Default';
_EVENT1_ = 'Positive';  _EVENT2_ = 'Negative';
_PROB1_ = 6/26;       _PROB2_ = 1.0 - _PROB1_
output;

run;

The PAYOFFS= data set Payoff6 gives the payoffs for the various scenarios. Notice that the first observation in this data set indicates that if the officer denies the loan application, then payoffs are the interest from the money invested in government bonds. The second and the third observations are redundant for the basic analysis but are needed to determine the value of information as shown later.

/* -- create the PAYOFFS= data set -- */
data Payoff6(drop=loan);
  length _STATE_ _ACT_ $24;

  loan=30000;

  _ACT_ = 'Deny loan';  _VALUE_ = loan*0.08;  output;
  _STATE_ = 'Pay off';  _VALUE_ = loan*0.08;  output;
  _STATE_ = 'Default';  _VALUE_ = loan*0.08;  output;

  _ACT_ = 'Approve loan';
  _STATE_ = 'Pay off';  _VALUE_ = loan*0.15;  output;
  _STATE_ = 'Default';  _VALUE_ = -1.0*loan;  output;
run;

The following code invokes the DTREE procedure to solve this decision problem.

/* -- define title -- */
title 'Loan Grant Decision';

/* -- PROC DTREE statements -- */
proc dtree
  stagein=Stage6 probin=Prob6 payoffs=Payoff6
  summary target=investigation nowarning;

  modify 'Order investigation' reward -500;

  evaluate;

  OPTIONS LINESIZE=85;
  summary / target=Application;
  OPTIONS LINESIZE=80;

Note that the $500 investigation fee is not included in the Stage6 data set. Since the outcome 'Order investigation' is the only outcome that has a nonzero
reward, it is easier to set the reward for this outcome using the `MODIFY` statement. The quotes that enclose the outcome name in the `MODIFY` statement are necessary because the outcome name contains a space.

The results in Output 5.5.1 and Output 5.5.2 indicate that it is optimal to do the following:

- The loan officer should order the credit investigation and approve the loan application if the investigator gives the applicant a positive recommendation. On the other hand, he should deny the application if a negative recommendation is given to the applicant.
- Furthermore, the loan officer should order a credit investigation if the cost for the investigation is less than $3,725 − $2,726 = $999.

**Output 5.5.1.** Summary of the Loan Grant Decision for Investigation

- **Loan Grant Decision**
- **The DTREE Procedure**
- **Optimal Decision Summary**

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigation</td>
<td>Decision</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Chance</td>
</tr>
<tr>
<td>Application</td>
<td>Decision</td>
</tr>
<tr>
<td>Payment</td>
<td>Chance</td>
</tr>
</tbody>
</table>

**Decision Parameters**

- **Decision Criterion:** Maximize Expected Value (MAXEV)
- **Optimal Decision Yields:** 3225

**Optimal Decision Policy**

- **Up to Stage Investigation**

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order investigation</td>
<td>−500</td>
<td>3725*</td>
</tr>
<tr>
<td>Do not order</td>
<td>0</td>
<td>2726</td>
</tr>
</tbody>
</table>
Output 5.5.2. Summary of the Loan Grant Decision for Application

<table>
<thead>
<tr>
<th>Decision Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Criterion: Maximize Expected Value (MAXEV)</td>
</tr>
<tr>
<td>Optimal Decision Yields: 3225</td>
</tr>
</tbody>
</table>

Optimal Decision Policy

Up to Stage Application

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order investigation Positive Approve loan</td>
<td>-500</td>
<td>4004*</td>
</tr>
<tr>
<td>Order investigation Positive Deny loan</td>
<td>-500</td>
<td>2400</td>
</tr>
<tr>
<td>Order investigation Negative Approve loan</td>
<td>-500</td>
<td>-3351</td>
</tr>
<tr>
<td>Order investigation Negative Deny loan</td>
<td>-500</td>
<td>2400*</td>
</tr>
<tr>
<td>Do not order Approve loan</td>
<td>0</td>
<td>2726*</td>
</tr>
<tr>
<td>Do not order Deny loan</td>
<td>0</td>
<td>2400</td>
</tr>
</tbody>
</table>

Now, the loan officer learns of another credit investigation company that claims to have a more accurate credit checking system for predicting whether the applicants will default on their loans. However, he has not been able to find out what the company charges for their service or how accurate their credit checking system is. Perhaps the best thing he can do at this stage is to assume that the company can predict perfectly whether or not applicants will default on their loans and determine the maximum amount to pay for this perfect investigation. The answer to this question can be found with the PROC DTREE statements:

```
save;
move payment before investigation;
evaluate;
recall;
```

Notice that moving the stage ‘Payment’ to the beginning of the tree means that the new decision tree contains two scenarios that are not in the original tree: the scenario ‘Pay off’ and ‘Deny loan’, and the scenario ‘Default’ and ‘Deny loan’. The second and third observations in the Payoff6 data set supply values for these new scenarios. If these records are not included in the PAYOFFS= data set, then PROC DTREE assumes they are 0.

Also notice that the SUMMARY and TARGET= options are specified globally in the PROC DTREE statement and hence are not needed in the EVALUATE statement. The results from the DTREE procedure are displayed in Output 5.5.3.
Output 5.5.3. Summary of the Loan Grant Decision with Perfect Information

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payment</td>
<td>Chance</td>
</tr>
<tr>
<td>Investigation</td>
<td>Decision</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Chance</td>
</tr>
<tr>
<td>Application</td>
<td>Decision</td>
</tr>
<tr>
<td><em>ENDST</em></td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)

Optimal Decision Yields: 4392

Optimal Decision Policy

Up to Stage Investigation

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay off Order investigation</td>
<td>-500</td>
<td>4500</td>
</tr>
<tr>
<td>Pay off Do not order</td>
<td>0</td>
<td>4500*</td>
</tr>
<tr>
<td>Default Order investigation</td>
<td>-500</td>
<td>2400</td>
</tr>
<tr>
<td>Default Do not order</td>
<td>0</td>
<td>2400*</td>
</tr>
</tbody>
</table>

The optimal decision summary in Output 5.5.3 shows that the yields with perfect investigation is $4,392. Recall that the yield of alternative ‘Do not order’ the investigation, as shown in Output 5.5.1 on page 424, is $2,726. Therefore, the maximum amount he should pay for the perfect investigation can be determined easily as

\[
\text{VPI} = \text{Value with Perfect Investigation} - \text{Value without Investigation} = $4,392 - $2,726 = $1,666
\]

Note that if you use the VPI statement to determine the value of a perfect investigation, the result is different from the value calculated previously.

```bash
vpi payment;
```

NOTE: The currently optimal decision yields 3225.4725275.
NOTE: The new optimal decision yields 4392.
NOTE: The value of perfect information of stage Payment yields 1166.5274725.
The reason for this difference is that the \textit{VPI} statement causes \textsc{PROC DTREE} first to determine the value with perfect information, then to compare this value with the value with current information available (in this example, it is the recommendation from the original investigation unit). Therefore, the \textit{VPI} statement returns a value that is calculated as

\[
\text{VPI} = \text{Value with Perfect Information} - \text{Value with Current Information}
\]

\[
= \$4,392 - \$3,225 \\
= \$1,167
\]

The loan officer considered another question regarding the maximum amount he should pay to a company to help collect the principal and the interest if an applicant defaults on the loan. This question is similar to the question concerning the improvement that can be expected if he can control whether or not an applicant will default on his loan (of course he will always want the applicant to pay off in full after one year). The answer to this question can be obtained with the following statements:

\begin{verbatim}
modify payment type;
evaluate;
\end{verbatim}

\textbf{Output 5.5.4.} Summary of the Loan Grant Decision with Perfect Control

\begin{center}
\begin{tabular}{l l}
\hline
\textbf{Loan Grant Decision} & \\
\text{The DTREE Procedure} & \\
\text{Optimal Decision Summary} & \\
\hline
\text{Order of Stages} & \\
\text{Stage} & \text{Type} \\
\hline
Investigation & Decision \\
Recommendation & Chance \\
Application & Decision \\
Payment & Decision \\
\text{ENDST} & End \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{l l}
\hline
\text{Decision Parameters} & \\
\text{Decision Criterion:} & Maximize Expected Value (MAXEV) \\
\text{Optimal Decision Yields:} & 4500 \\
\hline
\text{Optimal Decision Policy} & \\
\text{Up to Stage Investigation} & \\
\begin{tabular}{l l l}
\hline
\text{Alternatives or Outcomes} & \text{Cumulative Reward} & \text{Evaluating Value} \\
\hline
Order investigation & \text{-500} & 4500 \\
Do not order & 0 & 4500* \\
\hline
\end{tabular}
\end{tabular}
\end{center}
The result is obvious and is shown in Output 5.5.4. Using a calculation similar to the one used to calculate the value of a perfect investigation, the maximum amount one should pay for this kind of service is $4,500 − $2,726 = $1,774. As previously described, this value is different from the value obtained by using the VPC statement. In fact, if you specify the statement

\[
\text{vpc payment;}
\]

you get the value of VPC, which is $1,274.53, from the SAS log as

```
NOTE: The currently optimal decision yields 3225.4725275.
NOTE: The new optimal decision yields 4500.
NOTE: The value of perfect control of stage Payment yields 1274.5274725.
```

Obviously, all of the values of investigation and other services depend on the value of the loan. Since each of the payoffs for the various scenarios given in the Payoff6 data set is proportional to the value of loan, you can safely assume that the value of the loan is 1 unit and determine the ratio of the value for a particular service to the value of the loan. To obtain these ratios, change the value of the variable LOAN to 1 in the Payoff6 data set and invoke PROC DTREE again as follows:

```
/* -- create the alternative PAYOFFS= data set -- */
data Payoff6a(drop=loan);
 length _STATE_ _ACT_ $24;
 loan=1;

 ACT='Deny loan'; _VALUE_=loan*0.08; output;
 STATE='Pay off'; _VALUE_=loan*0.08; output;
 STATE='Default'; _VALUE_=loan*0.08; output;

 ACT='Approve loan';
 STATE='Pay off'; _VALUE_=loan*0.15; output;
 STATE='Default'; _VALUE_=-1.0*loan; output;
run;

/* -- PROC DTREE statements -- */
title 'Loan Grant Decision';
proc dtree
 stagein=Stage6 probin=Prob6 payoffs=Payoff6a
 nowarning;
 evaluate / summary target=investigation;
 save;
 move payment before investigation;
evaluate;
```
Example 5.5. Loan Grant Decision Problem

recall;
modify payment type;
evaluate;
quit;

The optimal decision summary given in Output 5.5.5 shows that the ratio of the value of investigation that the loan officer currently engages in to the value of the loan is $0.1242 - 0.0909 = 0.0333$ to 1.

**Output 5.5.5.** Summary of the Loan Grant Decision with 1 Unit Loan

<table>
<thead>
<tr>
<th>Loan Grant Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>The DTREE Procedure</td>
</tr>
<tr>
<td>Optimal Decision Summary</td>
</tr>
<tr>
<td>Order of Stages</td>
</tr>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Investigation</td>
</tr>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>Application</td>
</tr>
<tr>
<td>Payment</td>
</tr>
<tr>
<td><em>ENDST</em></td>
</tr>
</tbody>
</table>

Decision Parameters

| Decision Criterion: Maximize Expected Value (MAXEV) |
| Optimal Decision Yields: 0.1242 |

Optimal Decision Policy

Up to Stage Investigation

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order investigation</td>
<td>0.1242*</td>
<td></td>
</tr>
<tr>
<td>Do not order</td>
<td>0.0909</td>
<td></td>
</tr>
</tbody>
</table>

The following messages are written to the SAS log:

**NOTE:** Present order of stages:

Investigation (D), Recommendation (C), Application (D), Payment (C), _ENDST_ (E).

**NOTE:** The current problem has been successfully saved.

**NOTE:** Present order of stages:

Payment (C), Investigation (D), Recommendation (C), Application (D), _ENDST_ (E).

**NOTE:** The currently optimal decision yields 0.1464.
NOTE: The original problem has been successfully recalled.

NOTE: Present order of stages:

Investigation(D), Recommendation(C), Application(D), Payment(C), _ENDST_(E).

NOTE: The type of stage Payment has been changed.

NOTE: The currently optimal decision yields 0.15.

The preceding messages show that the ratio of the value of perfect investigation to the value of a loan is $0.1464 - 0.0909 = 0.0555$ to 1, and the ratio of the maximum amount the officer should pay for perfect control to the value of loan is $0.15 - 0.0909 = 0.591$ to 1.

Output 5.5.6 on page 431, produced by the following statements, shows a table of the values of the investigation currently engaged in, the values of perfect investigation, and the values of perfect control for loans ranging from $10,000 to $100,000.

```sas
/* create the data set for value of loan */
/* and corresponding values of services */
data Datav6(drop=k ratio1 ratio2 ratio3);
 label loan="Value of Loan"
 vci="Value of Current Credit Investigation"
 vpi="Value of Perfect Credit Investigation"
 vpc="Value of Perfect Collecting Service";

 /* calculate ratios */
ratio1=0.1242-0.0909;
ratio2=0.1464-0.0909;
ratio3=0.15-0.0909;
 Loan=0;
do k=1 to 10;
 /* set the value of loan */
 loan=loan+10000;
 /* calculate the values of various services */
 vci=loan*ratio1;
 vpi=loan*ratio2;
 vpc=loan*ratio3;
 /* output current observation */
 output;
 end;
run;

/* print the table of the value of loan */
/* and corresponding values of services */
title 'Value of Services by Value of Loan';
```
Example 5.6. Petroleum Distributor’s Decision Problem

The president of a petroleum distribution company currently faces a serious problem. His company supplies refined products to its customers under long-term contracts at guaranteed prices. Recently, the price for petroleum has risen substantially and his company will lose $450,000 this year because of its long-term contract with a particular customer. After a great deal of discussion with his legal advisers and his marketing staff, the president learns that the contract contains a clause that may be beneficial to his company. The clause states that when circumstances are beyond its control, the company may ask its customers to pay the prevailing market prices for up to 10% of the promised amount.

Several scenarios are possible if the clause is invoked. If the customer accepts the invocation of the clause and agrees to pay the higher price for the 10%, the company would turn a loss of $450,000 into a net profit of $600,000. If the customer does not accept the invocation, the customer may sue for damages or accept a settlement of $900,000 (resulting in a loss of $400,000) or simply decline to press the issue. In any case, the distribution company could then sell the 10% on the open market for an expected value of $500,000. However, the lawsuit would result in one of three possible outcomes: the company wins and pays no damages; the company loses and pays normal damages of $1,500,000; the company loses and pays double damages of $3,000,000. The lawyers also feel that this case might last three to five years if the customer decides to sue the company. The cost of the legal proceedings is estimated as $30,000 for the initial fee and $20,000 per year. The likelihood of the various outcomes are also assessed and reported as in Table 5.38. Suppose that the company decides to use a discount rate of 10% to determine the present value of future funds.
Table 5.38. Likelihood of the Outcomes in the Petroleum Distributor’s Decision

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer’s Response</td>
<td>Accept the Invocation</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Reject the Invocation</td>
<td>0.9</td>
</tr>
<tr>
<td>Customer’s Action if the Invocation is being Rejected</td>
<td>Press the Issue</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Settle the Case</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Sue for Damages</td>
<td>0.45</td>
</tr>
<tr>
<td>Case Last</td>
<td>3 Years</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>4 Years</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>5 Years</td>
<td>0.3</td>
</tr>
<tr>
<td>Lawsuit Result</td>
<td>Pay No Damages</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Pay Normal Damages</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Pay Double Damages</td>
<td>0.2</td>
</tr>
</tbody>
</table>

The structure for this decision problem is given in the STAGEIN= data set named Stage7.

```sas
/* -- create the STAGEIN= data set -- */
data Stage7;
 format _OUTCOM1 $14. _OUTCOM2 $14.;
 input _STNAME_ $ _STTYPE_ $ _OUTCOM1 $ _SUCC1 $ _OUTCOM2 $ _SUCC2 $;
datalines;
 Action D Invoking Response Not_Invoking .
 Response C Accept . Refuse Lawsuit
 . . Sue Last . .
 Last C 3_Years Result 4_Years Result
 . . 5_Years Result . .
 Result C No_Damages . Normal_Damages .
 . . Double_Damages . . .
;```

The PROBIN= data set Prob7 contains the probability distributions for the chance nodes.

```sas
/* -- create the PROBIN= data set -- */
data Prob7;
  format _EVENT1_ _EVENT2_ $14.;
  input _EVENT1_ $ _PROB1_ _EVENT2_ $ _PROB2_ ;
datalines;
  Accept 0.1 Refuse 0.9
  Press_Issue 0.1 Settle 0.45
  Sue 0.45 . .
  3_Years 0.3 4_Years 0.4
  5_Years 0.3 . .
  No_Damages 0.15 Normal_Damages 0.65
  Double_Damages 0.20 . .
;```
The PAYOFFS= data set Payoff7 defines the payoffs for the various scenarios.

```plaintext
/* -- create the PAYOFFS= data set -- */
data Payoff7(drop=i j k D PCOST);
 length _ACTION_ _STATE1-_STATE4 $16;

 /* possible outcomes for the case last */
 array YEARS{3} $16. _TEMPORARY_ ('3_Years', '4_Years', '5_Years');

 /* numerical values for the case last */
 array Y{3} _TEMPORARY_ (3, 4, 5);

 /* possible outcomes for the size of judgment */
 array DAMAGES{3} $16. _TEMPORARY_ ('No_Damages', 'Normal_Damages', 'Double_Damages');

 /* numerical values for the size of judgment */
 array C{3} _TEMPORARY_ (0, 1500, 3000);

 D=0.1; /* discount rate */

 /* payoff for the scenario which the */
 /* 10 percent clause is not invoked */
 ACTION='Not_Invoking'; _VALUE_=-450; output;

 /* the clause is invoked */
 ACTION='Invoking';

 /* payoffs for scenarios which the clause is */
 /* invoked and the customer accepts the */
 /* invocation */
 _STATE1='Accept'; _VALUE_=600; output;

 /* the customer refuses the invocation */
 _STATE1='Refuse';

 /* payoffs for scenarios which the clause is */
 /* invoked and the customer refuses the */
 /* invocation but decline to press the issue */
 _STATE2='Press_Issue'; _VALUE_=500; output;

 /* payoffs for scenarios which the clause is */
 /* invoked and the customer refuses the */
 /* invocation but willing to settle out of */
 /* court for 900K */
 _STATE2='Settle'; _VALUE_=500-900; output;

 /* the customer will sue for damages */
 _STATE2='Sue';
 do i=1 to 3;
```

Chapter 5. The DTREE Procedure

```plaintext
_STATE3=YEARS{i};

 /* determine the cost of proceedings */
 PCOST=30; /* initial cost of the proceedings */

 /* additional cost for every years in */
 /* in present value */
 do k=1 to Y{i};
 PCOST=PCOST+(20/((1+D)**k));
 end;

 /* loop for all poss. of the lawsuit result */
 do j=1 to 3;
 _STATE4=DAMAGES{j}; /* the damage have to paid */

 /* compute the net return in present value */
 VALUE=500-PCOST-(C{j}/((1+D)**Y{i}));

 /* output an observation for the payoffs */
 /* of this scenario */
 output;
 end;
end;
run;

/* -- print the payoff table
 -- */
title "Petroleum Distributor’s Decision";
title3 "Payoff table";
proc print;
run;

The payoff table of this problem is displayed in Output 5.6.1.

Output 5.6.1. Payoffs for the Petroleum Distributor’s Problem

Petroleum Distributor’s Decision

<table>
<thead>
<tr>
<th>Obs</th>
<th>ACTION</th>
<th>_STATE1</th>
<th>_STATE2</th>
<th>_STATE3</th>
<th>_STATE4</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not_Invo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-450.00</td>
</tr>
<tr>
<td>2</td>
<td>Invoking</td>
<td>Accept</td>
<td></td>
<td></td>
<td></td>
<td>600.00</td>
</tr>
<tr>
<td>3</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Press_Issue</td>
<td></td>
<td></td>
<td>500.00</td>
</tr>
<tr>
<td>4</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Settle</td>
<td></td>
<td></td>
<td>-400.00</td>
</tr>
<tr>
<td>5</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>3_Years</td>
<td>No_Damages</td>
<td>-706.71</td>
</tr>
<tr>
<td>6</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>3_Years</td>
<td>Normal_Damages</td>
<td>-1833.68</td>
</tr>
<tr>
<td>7</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>3_Years</td>
<td>Double_Damages</td>
<td>-1642.44</td>
</tr>
<tr>
<td>8</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>4_Years</td>
<td>No_Damages</td>
<td>-406.60</td>
</tr>
<tr>
<td>9</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>4_Years</td>
<td>Normal_Damages</td>
<td>-617.92</td>
</tr>
<tr>
<td>10</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>4_Years</td>
<td>Double_Damages</td>
<td>-1468.58</td>
</tr>
<tr>
<td>11</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>5_Years</td>
<td>No_Damages</td>
<td>-537.20</td>
</tr>
<tr>
<td>12</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>5_Years</td>
<td>Normal_Damages</td>
<td>-394.18</td>
</tr>
<tr>
<td>13</td>
<td>Invoking</td>
<td>Refuse</td>
<td>Sue</td>
<td>5_Years</td>
<td>Double_Damages</td>
<td>-1468.58</td>
</tr>
</tbody>
</table>
```
Note that the payoffs of the various scenarios in Output 5.6.1 are in thousands of dollars and are net present values (NPV) (Baird 1989). For example, the payoff for the following scenario “invoking the clause; the customer refuses to accept this and sues for damages; the case lasts four years and the petroleum distribution company loses and pays double damages” is calculated as

\[
\text{Payoff} = 500 - \text{NPV of proceedings cost} - \text{NPV of damages of 3,000,000} = -1642.44
\]

where

\[
\text{NPV of proceedings cost} = 30 + \sum_{k=1}^{4} \frac{20}{(1 + 0.1)^k}
\]

and

\[
\text{NPV of damages of 3,000,000} = 3000/(1 + 0.1)^4
\]

This is because the company can sell the 10% for $500,000 immediately and pay the $3,000,000 damages four years from now. The net present value of the proceedings is determined by paying the $30,000 initial fee now and a fee of $20,000 after every year up to four years. The value of 0.1 is the discount rate used.

The following statements evaluate the problem and plot the optimal solution.

```latex
/* -- define colors list -- */
goptions colors=(black);

/* -- define title -- */
title f=zapfb h=2.5 "Petroleum Distributor's Decision";

/* -- PROC DTREE statements -- */
proc dtree stagein=Stage7 probin=Prob7 payoffs=Payoff7;
evaluate / summary;
treeplot / graphics compress nolg name="dt6p1"
ybetween=1 cell lwidth=8 lwidthb=20 hsymbol=3;
quit;
```

The optimal decision summary in Output 5.6.2 suggests that the president should invoke the 10% clause because it would turn a loss of $450,000 into an expected loss of $329,000 in present value.
Output 5.6.2. Summary of the Petroleum Distributor’s Decision

Petroleum Distributor’s Decision

The DTREE Procedure
Optimal Decision Summary

Order of Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Decision</td>
</tr>
<tr>
<td>Response</td>
<td>Chance</td>
</tr>
<tr>
<td>Lawsuit</td>
<td>Chance</td>
</tr>
<tr>
<td>Last</td>
<td>Chance</td>
</tr>
<tr>
<td>Result</td>
<td>Chance</td>
</tr>
<tr>
<td><em>ENDST</em></td>
<td>End</td>
</tr>
</tbody>
</table>

Decision Parameters

Decision Criterion: Maximize Expected Value (MAXEV)
Optimal Decision Yields: -329

Optimal Decision Policy

Up to Stage Action

<table>
<thead>
<tr>
<th>Alternatives or Outcomes</th>
<th>Cumulative Reward</th>
<th>Evaluating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invoking</td>
<td>-329*</td>
<td></td>
</tr>
<tr>
<td>Not Invoking</td>
<td>-450</td>
<td></td>
</tr>
</tbody>
</table>

The decision tree for this problem is shown in Output 5.6.3. There you can find the expected value of each scenario.
Output 5.6.3. Decision Tree for the Petroleum Distributor's Decision

The president feels that the estimated likelihood of lawsuit outcomes is fairly reliable. However, the assessment of the likelihood of the customer’s response and reaction is
extremely difficult to estimate. Because of this, the president would like to keep the analysis as general as possible. His staff suggests using the symbols $p$ and $q$ to represent the probability that the customer will accept the invocation and the probability that the customer will decline to press the issue if he refuses the invocation, respectively. The probabilities of the other possible outcomes about the customer’s response and reaction to the invocation of the 10% clause are listed in Table 5.39.

**Table 5.39.** Probabilities of the Petroleum Distributor’s Decision

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer’s Response</td>
<td>Accept the Invocation</td>
<td>$p$</td>
</tr>
<tr>
<td></td>
<td>Reject the Invocation</td>
<td>$1 - p$</td>
</tr>
<tr>
<td>Customer’s Action</td>
<td>Press the Issue</td>
<td>$q$</td>
</tr>
<tr>
<td>if the Invocation is being</td>
<td>Settle the Case</td>
<td>$(1 - q)/2$</td>
</tr>
<tr>
<td>Rejected</td>
<td>Sue for Damages</td>
<td>$(1 - q)/2$</td>
</tr>
</tbody>
</table>

Now from the decision tree shown in Output 5.6.3 on page 437, the expected value of the outcome ‘Refuse’ is

\[
EV = 500q - 400(1 - q)/2 - 672(1 - q)/2 \\
= 500q - 200 + 200q - 336 + 336q \\
= 1036q - 536
\]

Hence, the expected payoff if the petroleum distribution company invokes the clause is

\[
EV = 600p + (1036q - 536)(1 - p) \\
= 1136p + 1036q - 1036pq - 536 \\
= 1136p + 1036(1 - p)q - 536
\]

Therefore, the president should invoke the 10% clause if

\[
1136p + 1036(1 - p)q - 536 > -450
\]

or

\[
q > \frac{86 - 1136p}{1036 - 1036p}
\]
This result is depicted in Output 5.6.4 on page 440, which is produced by the following statements:

```sql
/* -- create data set for decision diagram -- */
data Data7(drop=i);
P=0.0; /* initialize P */
/* loop for all possible values of P */
do i=1 to 21;
 /* determine the corresponding Q */
 Q=(86-(1136*P))/(1036*(1.0-P));
 if Q < 0.0 then Q=0.0;
 /* output this data point */
 output;
/* set next possible value of P */
P=P+0.005;
end;
run;
/* create the ANNOTATE= data set for labels of */
/* decision diagram */
data label;
 length FUNCTION STYLE COLOR $8;
 length XSYS YSYS $1;
 length WHEN POSITION $1;
 length X Y 8;
 length SIZE ROTATE 8;
 WHEN = 'A';
 POSITION= '0';
 XSYS='2';
 YSYS='2';
 input FUNCTION $ X Y STYLE $ SIZE COLOR $
 ROTATE TEXT $ & 16.;
datalines;
label 0.01 0.04 centx 2 black . Do Not
label 0.01 0.03 centx 2 black . Invoke
label 0.01 0.02 centx 2 black . The Clause
label 0.06 0.06 centx 2 black . Invoke The
label 0.06 0.05 centx 2 black . Clause
;
/* -- set graphics environment -- */
goptions lfactor=3;

/* -- define symbol characteristics for boundary -- */
symbol1 i=joint v=NONE l=1 ci=black;
```
/* -- define pattern for area fill -- */
pattern1 value=M2N0 color=black;
pattern2 value=M2N90 color=black;

/* -- define axis characteristics -- */
axis1 label=('Pr(Accept the Invocation)')
  order=(0 to 0.1 by 0.01) minor=none;
axis2 label=(angle=90 'Pr(Press the Issue)')
  order=(0 to 0.1 by 0.01) minor=none;

/* -- plot decision diagram -- */
title h=2.5 "Petroleum Distributor’s Decision"
proc gplot data=Data7 ;
  plot Q*P=1 / haxis=axis1
    vaxis=axis2
    annotate=label
    name="dt6p2"
    frame
    areas=2;
run;
quit;

Output 5.6.4. Decision Diagram for the Petroleum Distributor’s Problem

The decision diagram in Output 5.6.4 is an analysis of the sensitivity of the solution to the probabilities that the customer will accept the invocation and that the customer will decline to press the issue. He should invoke the clause if he feels the customer’s probabilities of outcomes ‘Accept’ and ‘Press_Issue’, p and q, are located...
in the upper-right area marked as ‘Invoke The Clause’ in Output 5.6.4 and should not invoke the clause otherwise. Note that the values \( p = 0.1 \) and \( q = 0.1 \) used in this example are located on the upper right corner on the diagram.

### Statement and Option Cross-Reference Tables

The following tables reference the statements and options in the DTREE procedure (except the `PROC DTREE` statement and the `QUIT` statement) that are illustrated by the examples in this section.

#### Table 5.40. Statements Specified in Examples

<table>
<thead>
<tr>
<th>Statement</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALUATE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MODIFY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOVE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECALL</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESET</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAVE</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SUMMARY</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREEPLOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VARIABLES</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 5.41. Options Specified in Examples

<table>
<thead>
<tr>
<th>Option</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ANNOTATE=</td>
<td></td>
</tr>
<tr>
<td>COMPRESS</td>
<td>X</td>
</tr>
<tr>
<td>CRITERION=</td>
<td>X</td>
</tr>
<tr>
<td>EVENT=</td>
<td></td>
</tr>
<tr>
<td>FTEXT=</td>
<td></td>
</tr>
<tr>
<td>GRAPHICS</td>
<td>X</td>
</tr>
<tr>
<td>HSYMBOL=</td>
<td>X</td>
</tr>
<tr>
<td>HTEXT=</td>
<td></td>
</tr>
<tr>
<td>LINKA=</td>
<td></td>
</tr>
<tr>
<td>LINKB=</td>
<td></td>
</tr>
<tr>
<td>LINKC=</td>
<td></td>
</tr>
<tr>
<td>LSTYLEB=</td>
<td>X</td>
</tr>
<tr>
<td>LWIDTH=</td>
<td>X</td>
</tr>
<tr>
<td>LWIDTHB=</td>
<td>X</td>
</tr>
<tr>
<td>NAME=</td>
<td>X</td>
</tr>
<tr>
<td>NOLEGEND</td>
<td></td>
</tr>
<tr>
<td>NOWARNING</td>
<td>X</td>
</tr>
<tr>
<td>OUTCOME=</td>
<td>X</td>
</tr>
<tr>
<td>PAYOFFS=</td>
<td>X</td>
</tr>
<tr>
<td>PROB=</td>
<td>X</td>
</tr>
<tr>
<td>PROBIN=</td>
<td>X</td>
</tr>
<tr>
<td>REWARD=</td>
<td>X</td>
</tr>
<tr>
<td>RT=</td>
<td>X</td>
</tr>
<tr>
<td>STAGE=</td>
<td>X</td>
</tr>
<tr>
<td>STAGEIN=</td>
<td>X</td>
</tr>
<tr>
<td>STATE=</td>
<td>X</td>
</tr>
<tr>
<td>SUCCESSOR=</td>
<td>X</td>
</tr>
<tr>
<td>SUMMARY</td>
<td></td>
</tr>
<tr>
<td>SYMBOLC=</td>
<td>X</td>
</tr>
<tr>
<td>SYMBOLD=</td>
<td>X</td>
</tr>
<tr>
<td>SYMOLE=</td>
<td>X</td>
</tr>
<tr>
<td>TARGET=</td>
<td>X</td>
</tr>
<tr>
<td>TYPE=</td>
<td>X</td>
</tr>
<tr>
<td>VALUE=</td>
<td>X</td>
</tr>
<tr>
<td>YBETWEEN=</td>
<td></td>
</tr>
</tbody>
</table>

### References


Example 6.8. Variable Length Holidays .............................................. 550
Example 6.9. Multiple Calendars ...................................................... 553
Example 6.10. Plotting the Actual Schedule ...................................... 557
Example 6.11. Comparing Progress Against a Baseline Schedule .......... 559
Example 6.12. Using the COMBINE Option ........................................ 562
Example 6.13. Plotting the Resource-Constrained Schedule ................. 563
Example 6.15. BY Processing ......................................................... 567
Example 6.16. Gantt Charts by Persons ............................................ 571
Example 6.17. Using the HEIGHT= and HTOFF= Options .................... 574
Example 6.18. Drawing a Logic Gantt Chart Using AON Representation .... 575
Example 6.19. Specifying the Logic Control Options ......................... 577
Example 6.20. Nonstandard Precedence Relationships ....................... 583
Example 6.21. Using the SAS/GRAPH ANNOTATE= Option .................. 586
Example 6.22. Using the Automatic Text Annotation Feature ............... 591
Example 6.23. Multiproject Gantt Charts .......................................... 593
Example 6.24. Multisegment Gantt Charts ........................................ 596
Example 6.25. Zoned Gantt Charts ................................................. 599
Example 6.26. Web-Enabled Gantt Charts ......................................... 600
Example 6.27. Using the CHARTWIDTH= Option ............................... 605
Statement and Option Cross-Reference Tables ................................. 609

REFERENCES .................................................................................. 611
Chapter 6
The GANTT Procedure

Overview

The GANTT procedure produces a Gantt chart that is a graphical scheduling tool for the planning and control of a project. In its most basic form, a Gantt chart is a bar chart that plots the tasks of a project versus time. PROC GANTT displays a Gantt chart corresponding to a project schedule such as that produced by the CPM procedure or one that is input directly to the procedure, and it offers several options and statements for tailoring the chart to your needs.

Using PROC GANTT, you can plot the predicted early and late schedules and identify critical, supercritical, and slack activities. In addition, you can visually monitor a project in progress with the actual schedule and compare the actual schedule against a target baseline schedule. You can also graphically view the effects of scheduling a project subject to resource limitations. Any combination of these schedules can be viewed simultaneously (provided the relevant data exist) together with any user-specified variables of interest, such as project deadlines and other important dates. PROC GANTT enables you to display the early, late, and actual schedules in a single bar to produce a more meaningful schedule for tracking an activity in progress.

PROC GANTT can display the project logic on the Gantt chart by exhibiting dependencies between tasks using directed arcs to link the related activities. You can use either the Activity-on-Arc (AOA) or Activity-on-Node (AON) style of input for defining the project network. In addition, the GANTT procedure recognizes nonstandard precedence types. With PROC GANTT, you can display weekends, holidays, and multiple calendars, and you can depict milestones, reference lines, and a timenow line on the chart. PROC GANTT enables you to annotate text and graphics on the Gantt chart and provides you with a wide variety of options to control and customize the graphical appearance of the chart.

The GANTT procedure also supports an automatic text annotation facility that is designed specifically for labeling Gantt charts independently of the SAS/GRAPH Annotate facility. It enables you to display label strings with a minimum of effort and data entry while providing the capability for more complex chart labeling situations. An important feature of this facility is the ability to link label coordinates and text strings to variables in the Schedule data set. This means that you can preserve the Label data set even though the schedule dates may change. Several options enable you to customize the annotation, such as the clipping of text strings that run off the page or the chart and the specification of a split character to split labels that are too long.

Using the GANTT procedure, you can produce a wide variety of Gantt charts. You can generate zoned Gantt charts with several options to control its appearance. You can display a zone variable column as well as draw a line demarcating the different
zones. You can also control the bar height and bar offset of each type of schedule bar. This enables you to change the display order of the schedules as well as giving you the capability to produce a Gantt chart with embedded bars. You can override the default schedule bar pattern assignments at the activity level. In addition, you can restrict the schedule types to which the specified pattern is to be applied. You can also override the text color for selected columns of activity text at the activity level. These features facilitate the production of multiproject and multiprocess Gantt charts. Finally, you can also associate HTML pages with activity bars and create Web-enabled Gantt charts.

The GANTT procedure enables you to control the number of pages output by the procedure in both horizontal and vertical directions. In addition, you can control the number of jobs displayed per page as well as the number of tickmarks displayed per page. You can display ID variables on every page and even let the procedure display the maximum number of ID variables that can fit on one page. You can number the pages, justify the Gantt chart in the horizontal and vertical directions with respect to the page boundaries, and maintain the original aspect ratio of the Gantt chart on each page.

PROC GANTT gives you the option of displaying the Gantt chart in one of three modes: line-printer, full-screen, or graphics mode. The default mode is graphics mode, which enables you to produce charts of high resolution quality. Graphics mode requires SAS/GRAPH software. See the “Graphics Version” section on page 500 for more information on producing high-quality Gantt charts. You can also produce line-printer quality Gantt charts by specifying the LINEPRINTER option in the PROC GANTT statement. In addition to submitting the output to either a plotter or printer, you can view the Gantt chart at the terminal in full-screen mode by specifying the FULLSCREEN option in the PROC GANTT statement. See the “Full-Screen Version” section on page 496 for more information on viewing Gantt charts in full-screen mode. The GANTT procedure also produces a macro variable that indicates the status of the invocation and also contains other useful statistics about the Gantt charts generated by the invocation.

There are several distinctive features that characterize the appearance of the chart produced by the GANTT procedure:

- The horizontal axis represents time, and the vertical axis represents the sequence of observations in the data set.
- Both the time axis and the activity axis can be plotted across more than one page.
- The procedure automatically provides extensive labeling of the time axis, enabling you to determine easily the exact time of events plotted on the chart. The labels are determined on the basis of the formats of the times being plotted. You can also specify user-defined formats for the labeling.
- In graphics mode, the COMPRESS option in the CHART statement enables you to produce the entire Gantt chart on one page. The PCOMPRESS option enables you to produce the entire Gantt chart on one page while maintaining the original aspect ratio of the Gantt chart. Both these options work in conjunction
with the HPAGES= and VPAGES= options, which specify the number of pages in the horizontal and vertical directions for the chart.

Project information is communicated into PROC GANTT using SAS data sets. The input data sets used by PROC GANTT are as follows:

- **The Schedule data set** contains the early, late, actual, resource-constrained, and baseline schedules and any other activity-related information. The activity-related information can include precedence information, calendar used by the activity, special dates, and any other information that you want to identify with each activity. This data set can be the same as the Schedule data set produced by PROC CPM, or it can be created separately by a DATA step. Each observation in the Schedule data set represents an activity and is plotted on a separate row of the chart unless activity splitting during resource-constrained scheduling has caused an activity to split into disjoint segments. For details regarding the output format in this case, see the “Displayed Output” section on page 525.

- **The Precedence (Logic) data set** contains the precedence information of the project in AON format in order to draw a Logic Gantt chart of the project. Specifying this data set is not necessary if the precedence information exists in the Schedule data set. If the data set is specified, however, the ACTIVITY variable must exist in both the Schedule and Precedence data sets. Typically you would use this feature when scheduling in PROC CPM with nonstandard precedence constraints where the LAG variables are not transferred to the Schedule data set or with the COLLAPSE option. Setting the Precedence data set for PROC GANTT to be the Activity data set (used in PROC CPM) establishes the required precedence relationships. This is also a convenient feature when drawing several Gantt charts for the same project with different schedule information (such as when monitoring a project in progress). Specifying a Precedence data set avoids having to duplicate the precedence information in every Schedule data set.

- **The Label data set** contains the label information of the project that enables you to draw labeled Gantt charts independently of the SAS/GRAPH Annotate facility. It requires a minimum of effort and provides you with a convenient mechanism to link label strings and their coordinates to variables in the Schedule data set. Another convenient feature is its ability to replicate labels across all activities. Both these features facilitate reuse of the Label data set.

- **The Workday and the Calendar data sets** together enable you to represent any type of work pattern, during a week and within each day of the week, on the Gantt chart. The same Workday and Calendar data sets used by PROC CPM can also be passed to PROC GANTT.

- **The Holiday data set** enables you to associate standard holidays and vacation periods with each calendar and represent them on the Gantt chart. Like the Workday and Calendar data sets, the same Holiday data set used by PROC CPM can also be used by PROC GANTT.
The Annotate data set contains the graphics and text that are to be annotated on the Gantt chart. This data set is used by the GANTT procedure in conjunction with the Annotate facility in SAS/GRAPH software.

The GANTT procedure produces one output data set.

- The Imagemap data set contains the outline coordinates for the schedule bars used in the Gantt chart that can be used to generate HTML MAP tags.

When displaying the precedence relationships between activities on the Gantt chart, bear in mind the following facts with regard to data sets used by PROC GANTT:

- The Schedule data set (and optionally the Precedence data set) contains the variables that define the precedence relationships between activities in the project.
- You can handle nonstandard precedence constraints in PROC GANTT when using AON format by identifying the LAG variables in the CHART statement.
- When you use PROC CPM to produce the schedule for a project with non-standard precedence relationships, the LAG variables are not automatically included in the Schedule data set. Use an ID statement or the XFERVARS option in the PROC CPM statement to add them.
- When you generate the schedule using PROC CPM with the COLLAPSE option, it is recommended that you use the Activity data set to define the precedence relationships for the Gantt procedure by specifying the PRECDATA= option in the PROC GANTT statement. This ensures that all the relevant precedence information is extracted.

Each option and statement available in the GANTT procedure is explained in the “Syntax” section on page 454. The “Examples” section on page 529 illustrates most of these options and statements.

### Getting Started

In order to draw a Gantt chart, at the very minimum you need a Schedule data set. This data set is expected to be similar to the OUT= Schedule data set produced by PROC CPM, with each observation representing an activity in the project. It is possible to obtain a detailed Gantt chart by specifying the single statement

```
PROC GANTT DATA= SAS-data-set ;
```

where the data set specified is the Schedule data set produced by PROC CPM.

As an example of this, consider the software development project in the “Getting Started” section in Chapter 2, “The CPM Procedure.” The output schedule for this example is saved in a data set, INTRO1, which is displayed in Figure 6.1.
<table>
<thead>
<tr>
<th>Obs</th>
<th>activity</th>
<th>succesr1</th>
<th>succesr2</th>
<th>duration</th>
<th>descrpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TESTING</td>
<td>RECODE</td>
<td></td>
<td>20</td>
<td>Initial Testing</td>
</tr>
<tr>
<td>2</td>
<td>PRELDOC</td>
<td>DOCEDREV</td>
<td>QATEST</td>
<td>15</td>
<td>Prel. Documentation</td>
</tr>
<tr>
<td>3</td>
<td>MEETMKT</td>
<td>RECODE</td>
<td></td>
<td>1</td>
<td>Meet Marketing</td>
</tr>
<tr>
<td>4</td>
<td>RECODE</td>
<td>DOCEDREV</td>
<td>QATEST</td>
<td>5</td>
<td>Recoding</td>
</tr>
<tr>
<td>5</td>
<td>QATEST</td>
<td>PROD</td>
<td></td>
<td>10</td>
<td>QA Test Approve</td>
</tr>
<tr>
<td>6</td>
<td>DOCEDREV</td>
<td>PROD</td>
<td></td>
<td>10</td>
<td>Doc. Edit and Revise</td>
</tr>
<tr>
<td>7</td>
<td>PROD</td>
<td></td>
<td></td>
<td>1</td>
<td>Production</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>01MAR04</td>
<td>15MAR04</td>
<td>11MAR04</td>
<td>25MAR04</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>20MAR04</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>05APR04</td>
<td>05APR04</td>
<td>05APR04</td>
<td>05APR04</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Figure 6.1.** Software Project Plan

The following code produces the Gantt chart shown in **Figure 6.2**.

```plaintext
proc gantt lineprinter data=intro1;
run;
```

The DATA= option could be omitted if the INTRO1 data set is the most recent data set created; by default, PROC GANTT uses the _LAST_ data set.
Figure 6.2. Line-Printer Gantt Chart

You can produce a high-resolution graphics quality Gantt chart by specifying the GRAPHICS option instead of the LINEPRINTER option in the PROC GANTT statement. Graphics mode is also the default display mode. The resulting Gantt chart is shown in Figure 6.3.

```
 proc gantt graphics data=introl;
 run;
```
Finally, you can draw a Logic Gantt chart by defining the precedence information to PROC GANTT in AON format using the ACTIVITY= and SUCCESSOR= options in the CHART statement. The Logic Gantt chart is shown in Figure 6.4.

```
proc gantt data=intro1;
 chart / activity=activity successor=(successr1-successr2);
run;
```
Chapter 6. The GANTT Procedure

Figure 6.4. Logic Gantt Chart

For further examples illustrating typical invocations of the GANTT procedure when managing projects, see Chapter 1, “Introduction to Project Management.”

Syntax

The following statements are used in PROC GANTT:

```plaintext
PROC GANTT options ;
 BY variables ;
 CHART specifications / options ;
 ID variables ;
```

Functional Summary

The following tables outline the options available for the GANTT procedure classified by function.
### Table 6.1. Axis Formatting Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>increment for labeling axis</td>
<td>CHART</td>
<td>INCREMENT=</td>
</tr>
<tr>
<td>ending time for axis</td>
<td>CHART</td>
<td>MAXDATE=</td>
</tr>
<tr>
<td>starting time for axis</td>
<td>CHART</td>
<td>MINDATE=</td>
</tr>
<tr>
<td>smallest interval identified on chart</td>
<td>CHART</td>
<td>MININTERVAL=</td>
</tr>
<tr>
<td>suppress time portion of datetime tickmark</td>
<td>CHART</td>
<td>NOTMTIME</td>
</tr>
<tr>
<td>number of columns per mininterval</td>
<td>CHART</td>
<td>SCALE=</td>
</tr>
<tr>
<td>use first plot variable format for tickmarks</td>
<td>CHART</td>
<td>USEFORMAT</td>
</tr>
</tbody>
</table>

### Table 6.2. Bar Enhancement Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual bar height</td>
<td>CHART</td>
<td>ABARHT=</td>
</tr>
<tr>
<td>actual bar offset</td>
<td>CHART</td>
<td>ABAROFF=</td>
</tr>
<tr>
<td>default bar height</td>
<td>CHART</td>
<td>BARHT=</td>
</tr>
<tr>
<td>default bar offset</td>
<td>CHART</td>
<td>BAROFF=</td>
</tr>
<tr>
<td>baseline bar height</td>
<td>CHART</td>
<td>BBARHT=</td>
</tr>
<tr>
<td>baseline bar offset</td>
<td>CHART</td>
<td>BBAROFF=</td>
</tr>
<tr>
<td>color of connect line</td>
<td>CHART</td>
<td>CHCON=</td>
</tr>
<tr>
<td>early/late bar height</td>
<td>CHART</td>
<td>EBARHT=</td>
</tr>
<tr>
<td>early/late bar offset</td>
<td>CHART</td>
<td>EBAROFF=</td>
</tr>
<tr>
<td>holiday bar height</td>
<td>CHART</td>
<td>HBARHT=</td>
</tr>
<tr>
<td>holiday bar offset</td>
<td>CHART</td>
<td>HBAROFF=</td>
</tr>
<tr>
<td>character for drawing connect line</td>
<td>CHART</td>
<td>HCONCHAR=</td>
</tr>
<tr>
<td>draw a horizontal connect line</td>
<td>CHART</td>
<td>HCONNECT</td>
</tr>
<tr>
<td>characters for drawing schedule</td>
<td>CHART</td>
<td>JOINCHAR=</td>
</tr>
<tr>
<td>line style of connect line</td>
<td>CHART</td>
<td>LHCON=</td>
</tr>
<tr>
<td>suppress pattern variable for bar fills</td>
<td>CHART</td>
<td>NOPATBAR</td>
</tr>
<tr>
<td>overprint character for schedule variables</td>
<td>CHART</td>
<td>OVERLAPCH=</td>
</tr>
<tr>
<td>overprint character for CHART variables</td>
<td>CHART</td>
<td>OVPCHAR=</td>
</tr>
<tr>
<td>schedule types that use pattern variable</td>
<td>CHART</td>
<td>PATLEVEL=</td>
</tr>
<tr>
<td>pattern variable for bar fills and text color</td>
<td>CHART</td>
<td>PATTERN=</td>
</tr>
<tr>
<td>resource bar height</td>
<td>CHART</td>
<td>RBARHT=</td>
</tr>
<tr>
<td>resource bar offset</td>
<td>CHART</td>
<td>RBAROFF=</td>
</tr>
<tr>
<td>characters for plotting times</td>
<td>CHART</td>
<td>SYMCHAR=</td>
</tr>
</tbody>
</table>

### Table 6.3. Calendar Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>calendar identifier</td>
<td>CHART</td>
<td>CALID=</td>
</tr>
<tr>
<td>length of workday</td>
<td>CHART</td>
<td>DAYLENGTH=</td>
</tr>
<tr>
<td>beginning of workday</td>
<td>CHART</td>
<td>DAYSTART=</td>
</tr>
<tr>
<td>mark all breaks in a day</td>
<td>CHART</td>
<td>MARKBREAK</td>
</tr>
<tr>
<td>mark all non-working days</td>
<td>CHART</td>
<td>MARKWKND</td>
</tr>
</tbody>
</table>
### Table 6.4. Data Set Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotate data set</td>
<td>GANTT</td>
<td>ANNOTATE=</td>
</tr>
<tr>
<td>Calendar data set</td>
<td>GANTT</td>
<td>CALEDATA=</td>
</tr>
<tr>
<td>Schedule data set</td>
<td>GANTT</td>
<td>DATA=</td>
</tr>
<tr>
<td>Holiday data set</td>
<td>GANTT</td>
<td>HOLIDATA=</td>
</tr>
<tr>
<td>Imagemap output data set</td>
<td>GANTT</td>
<td>IMAGEMAP=</td>
</tr>
<tr>
<td>Label data set</td>
<td>GANTT</td>
<td>LABDATA=</td>
</tr>
<tr>
<td>Precedence (Logic) data set</td>
<td>GANTT</td>
<td>PRECDATA=</td>
</tr>
<tr>
<td>Work pattern data set</td>
<td>GANTT</td>
<td>WORKDATA=</td>
</tr>
</tbody>
</table>

### Table 6.5. Graphics Catalog Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>description of catalog entry</td>
<td>CHART</td>
<td>DESCRIPTION=</td>
</tr>
<tr>
<td>name of graphics catalog</td>
<td>GANTT</td>
<td>GOUT=</td>
</tr>
<tr>
<td>name of catalog entry</td>
<td>CHART</td>
<td>NAME=</td>
</tr>
</tbody>
</table>

### Table 6.6. Holiday Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>character for plotting holidays</td>
<td>CHART</td>
<td>HOLICHAR=</td>
</tr>
<tr>
<td>holiday start variable</td>
<td>CHART</td>
<td>HOLIDAY=</td>
</tr>
<tr>
<td>holiday duration variable</td>
<td>CHART</td>
<td>HOLIDUR=</td>
</tr>
<tr>
<td>holiday finish variable</td>
<td>CHART</td>
<td>HOLIFIN=</td>
</tr>
<tr>
<td>holiday duration units</td>
<td>CHART</td>
<td>INTERVAL=</td>
</tr>
</tbody>
</table>

### Table 6.7. ID Variable Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of columns between ID variables</td>
<td>CHART</td>
<td>BETWEEN=</td>
</tr>
<tr>
<td>mark critical activities</td>
<td>CHART</td>
<td>CRITFLAG</td>
</tr>
<tr>
<td>activity text columns that use pattern color</td>
<td>CHART</td>
<td>CTEXTCOLS=</td>
</tr>
<tr>
<td>allow duplicate ID values</td>
<td>CHART</td>
<td>DUPOK</td>
</tr>
<tr>
<td>display ID variables on every page</td>
<td>CHART</td>
<td>IDPAGES</td>
</tr>
<tr>
<td>maximize number of ID variables on page</td>
<td>CHART</td>
<td>MAXIDS</td>
</tr>
<tr>
<td>suppress job number</td>
<td>CHART</td>
<td>NOJOBNUM</td>
</tr>
<tr>
<td>split character for dividing ID labels</td>
<td>GANTT</td>
<td>SPLIT=</td>
</tr>
<tr>
<td>strip leading blanks from character variables</td>
<td>GANTT</td>
<td>STRIPIDBLANKS</td>
</tr>
</tbody>
</table>

### Table 6.8. Labeling Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>label variable linking to Schedule data set</td>
<td>CHART</td>
<td>LABVAR=</td>
</tr>
<tr>
<td>rules for label layout</td>
<td>CHART</td>
<td>LABRULE=</td>
</tr>
<tr>
<td>split character for labels</td>
<td>CHART</td>
<td>LABSPLIT=</td>
</tr>
<tr>
<td>maximum number of digits in integer label</td>
<td>GANTT</td>
<td>LABMAXINT=</td>
</tr>
</tbody>
</table>
### Table 6.9. Logic Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>activity variable for AON format</td>
<td>CHART</td>
<td>ACTIVITY=</td>
</tr>
<tr>
<td>use AOA precedence specifications</td>
<td>CHART</td>
<td>AOA</td>
</tr>
<tr>
<td>color of precedence connections</td>
<td>CHART</td>
<td>CPREC=</td>
</tr>
<tr>
<td>headnode variable for AOA format</td>
<td>CHART</td>
<td>HEAD=</td>
</tr>
<tr>
<td>lag variable for AON format</td>
<td>CHART</td>
<td>LAG=</td>
</tr>
<tr>
<td>schedule bar associated with connections</td>
<td>CHART</td>
<td>LEVEL=</td>
</tr>
<tr>
<td>line style of precedence connections</td>
<td>CHART</td>
<td>LPREC=</td>
</tr>
<tr>
<td>maximum displacement of local vertical</td>
<td>CHART</td>
<td>MAXDISLV=</td>
</tr>
<tr>
<td>minimum interdistance of global verticals</td>
<td>CHART</td>
<td>MININTGV=</td>
</tr>
<tr>
<td>minimum offset of global vertical</td>
<td>CHART</td>
<td>MINOFFGV=</td>
</tr>
<tr>
<td>minimum offset of local vertical</td>
<td>CHART</td>
<td>MINOFFLV=</td>
</tr>
<tr>
<td>suppress drawing arrow head</td>
<td>CHART</td>
<td>NOARROWHEAD</td>
</tr>
<tr>
<td>suppress automatic range extension</td>
<td>CHART</td>
<td>NOEXTRANGE</td>
</tr>
<tr>
<td>terminate procedure if bad precedence data</td>
<td>CHART</td>
<td>SHOWPREC</td>
</tr>
<tr>
<td>successor variable for AON format</td>
<td>CHART</td>
<td>SUCCESSOR=</td>
</tr>
<tr>
<td>tailnode variable for AOA format</td>
<td>CHART</td>
<td>TAIL=</td>
</tr>
<tr>
<td>width of precedence connections</td>
<td>CHART</td>
<td>WPREC=</td>
</tr>
</tbody>
</table>

### Table 6.10. Milestone Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>color of milestone</td>
<td>CHART</td>
<td>CMILE=</td>
</tr>
<tr>
<td>duration variable</td>
<td>CHART</td>
<td>DUR=</td>
</tr>
<tr>
<td>font for milestone symbol</td>
<td>CHART</td>
<td>FMILE=</td>
</tr>
<tr>
<td>height of milestone</td>
<td>CHART</td>
<td>HMILE=</td>
</tr>
<tr>
<td>character for milestone</td>
<td>CHART</td>
<td>MILECHAR=</td>
</tr>
<tr>
<td>value for milestone symbol</td>
<td>CHART</td>
<td>VMILE=</td>
</tr>
</tbody>
</table>

### Table 6.11. Miscellaneous Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>invoke full-screen version</td>
<td>GANTT</td>
<td>FS</td>
</tr>
<tr>
<td>invoke graphics version</td>
<td>GANTT</td>
<td>GRAPHICS</td>
</tr>
<tr>
<td>invoke line-printer version</td>
<td>GANTT</td>
<td>LP</td>
</tr>
<tr>
<td>maximum number of decimals for a number</td>
<td>GANTT</td>
<td>MAXDEC=</td>
</tr>
<tr>
<td>unit for padding finish times</td>
<td>CHART</td>
<td>PADDING=</td>
</tr>
<tr>
<td>upper limit on number of pages</td>
<td>CHART</td>
<td>PAGES=</td>
</tr>
<tr>
<td>display summary of symbols and patterns</td>
<td>CHART</td>
<td>SUMMARY</td>
</tr>
</tbody>
</table>
### Table 6.12. Page Layout Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>position chart at bottom of page</td>
<td>CHART</td>
<td>BOTTOM</td>
</tr>
<tr>
<td>color for drawing axes</td>
<td>CHART</td>
<td>CAXIS=</td>
</tr>
<tr>
<td>color for frame fill</td>
<td>CHART</td>
<td>CFRAME=</td>
</tr>
<tr>
<td>width of chart axis area</td>
<td>CHART</td>
<td>CHARTWIDTH=</td>
</tr>
<tr>
<td>draw chart on one page in graphics mode</td>
<td>CHART</td>
<td>COMPRESS</td>
</tr>
<tr>
<td>fill each page as much as possible</td>
<td>CHART</td>
<td>FILL</td>
</tr>
<tr>
<td>characters for table outlines and dividers</td>
<td>CHART</td>
<td>FORMCHAR=</td>
</tr>
<tr>
<td>number of pages spanning time axis</td>
<td>CHART</td>
<td>HPAGES=</td>
</tr>
<tr>
<td>left justify chart</td>
<td>CHART</td>
<td>LEFT</td>
</tr>
<tr>
<td>line width</td>
<td>CHART</td>
<td>LWIDTH=</td>
</tr>
<tr>
<td>number of activities on each page</td>
<td>CHART</td>
<td>NJOBS=</td>
</tr>
<tr>
<td>suppress frame</td>
<td>CHART</td>
<td>NOFRAME</td>
</tr>
<tr>
<td>suppress legend</td>
<td>CHART</td>
<td>NOLEGEND</td>
</tr>
<tr>
<td>suppress page number at upper right corner</td>
<td>CHART</td>
<td>NOPAGENUM</td>
</tr>
<tr>
<td>number of tickmarks on each page</td>
<td>CHART</td>
<td>NTICKS=</td>
</tr>
<tr>
<td>display page number at upper right corner</td>
<td>CHART</td>
<td>PAGENUM</td>
</tr>
<tr>
<td>draw chart proportionally on one page</td>
<td>CHART</td>
<td>PCOMPRESS</td>
</tr>
<tr>
<td>right justify chart</td>
<td>CHART</td>
<td>RIGHT</td>
</tr>
<tr>
<td>number of rows between consecutive activities</td>
<td>CHART</td>
<td>SKIP=</td>
</tr>
<tr>
<td>position chart at top of page</td>
<td>CHART</td>
<td>TOP</td>
</tr>
<tr>
<td>number of pages spanning activity axis</td>
<td>CHART</td>
<td>VPAGES=</td>
</tr>
</tbody>
</table>

### Table 6.13. Reference Line Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>color of reference lines</td>
<td>CHART</td>
<td>CREF=</td>
</tr>
<tr>
<td>values of reference lines</td>
<td>CHART</td>
<td>REF=</td>
</tr>
<tr>
<td>character for drawing reference line</td>
<td>CHART</td>
<td>REFCHAR=</td>
</tr>
<tr>
<td>label reference lines</td>
<td>CHART</td>
<td>REFLABEL</td>
</tr>
</tbody>
</table>

### Table 6.14. Schedule Selection Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual start variable</td>
<td>CHART</td>
<td>A__START=</td>
</tr>
<tr>
<td>actual finish variable</td>
<td>CHART</td>
<td>A__FINISH=</td>
</tr>
<tr>
<td>baseline start variable</td>
<td>CHART</td>
<td>B__START=</td>
</tr>
<tr>
<td>baseline finish variable</td>
<td>CHART</td>
<td>B__FINISH=</td>
</tr>
<tr>
<td>concatenate early/late and actual schedules</td>
<td>CHART</td>
<td>COMBINE</td>
</tr>
<tr>
<td>early start variable</td>
<td>CHART</td>
<td>E__START=</td>
</tr>
<tr>
<td>early finish variable</td>
<td>CHART</td>
<td>E__FINISH=</td>
</tr>
<tr>
<td>late start variable</td>
<td>CHART</td>
<td>L__START=</td>
</tr>
<tr>
<td>late finish variable</td>
<td>CHART</td>
<td>L__FINISH=</td>
</tr>
<tr>
<td>resource-constrained start variable</td>
<td>CHART</td>
<td>S__START=</td>
</tr>
<tr>
<td>resource-constrained finish variable</td>
<td>CHART</td>
<td>S__FINISH=</td>
</tr>
</tbody>
</table>
Table 6.15.  Timenow Line Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>color of timenow line</td>
<td>CHART</td>
<td>CTNOW=</td>
</tr>
<tr>
<td>line style of timenow line</td>
<td>CHART</td>
<td>LTNOW=</td>
</tr>
<tr>
<td>suppress timenow label</td>
<td>CHART</td>
<td>NOTNLABEL</td>
</tr>
<tr>
<td>value of timenow line</td>
<td>CHART</td>
<td>TIMENOW=</td>
</tr>
<tr>
<td>character for drawing timenow line</td>
<td>CHART</td>
<td>TNCHAR=</td>
</tr>
<tr>
<td>width of timenow line</td>
<td>CHART</td>
<td>WTNOW=</td>
</tr>
</tbody>
</table>

Table 6.16.  Text Formatting Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>color of text</td>
<td>CHART</td>
<td>CTEXT=</td>
</tr>
<tr>
<td>font of text</td>
<td>CHART</td>
<td>FONT=</td>
</tr>
<tr>
<td>height multiplier of text</td>
<td>CHART</td>
<td>HEIGHT=</td>
</tr>
<tr>
<td>height offset for activity text</td>
<td>CHART</td>
<td>HTOFF=</td>
</tr>
</tbody>
</table>

Table 6.17.  Web Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>imagemap output data set</td>
<td>GANTT</td>
<td>IMAGEMAP=</td>
</tr>
<tr>
<td>web reference variable</td>
<td>CHART</td>
<td>WEB=</td>
</tr>
</tbody>
</table>

Table 6.18.  Zone Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>color of zone line</td>
<td>CHART</td>
<td>CZONE=</td>
</tr>
<tr>
<td>line style of zone line</td>
<td>CHART</td>
<td>LZONE=</td>
</tr>
<tr>
<td>suppress zone column</td>
<td>CHART</td>
<td>NOZONECOL</td>
</tr>
<tr>
<td>display only new zone values</td>
<td>CHART</td>
<td>ONEZONEVAL</td>
</tr>
<tr>
<td>width of zone line</td>
<td>CHART</td>
<td>WZONE=</td>
</tr>
<tr>
<td>zone variable</td>
<td>CHART</td>
<td>ZONE=</td>
</tr>
<tr>
<td>offset of zone line</td>
<td>CHART</td>
<td>ZONEOFF=</td>
</tr>
<tr>
<td>span of zone line</td>
<td>CHART</td>
<td>ZONESSPAN=</td>
</tr>
</tbody>
</table>

**PROC GANTT Statement**

```sas
PROC GANTT options ;
```

The following options can appear in the PROC GANTT statement.

- **ANNOTATE=SAS-data-set**
- **ANNO=SAS-data-set**

specifies the input data set that contains the appropriate Annotate variables for the purpose of adding text and graphics to the Gantt chart. The data set specified must be an Annotate-type data set. See also the “Annotate Processing” section on page 502 for information specifically on annotate processing with the GANTT procedure.

The data set specified with the ANNOTATE= option in the PROC GANTT statement is a “global” ANNOTATE= data set, in the sense that the information in this data set is
displayed on every Gantt chart produced in the current invocation of PROC GANTT. This option is available only in graphics mode.

See Example 6.21, “Using the SAS/GRAPH ANNOTATE= Option,” for further illustration of this option.

**CALEDDATA=SAS-data-set**

**CALENDAR=SAS-data-set**

identifies a SAS data set that specifies the work pattern during a standard week for each of the calendars that is to be used in the project. Each observation of this data set (also referred to as the Calendar data set) contains the name or the number of the calendar being defined in that observation, the names of the shifts or work patterns used each day, and, optionally, a standard workday length in hours. For details on the structure of this data set, see the “Multiple Calendars and Holidays” section on page 495. The work shifts referred to in the CALEDATA data set are defined in the WORKDATA data set.

**DATA=SAS-data-set**

names the SAS data set that carries the schedule information to be used by PROC GANTT. If the DATA= option is omitted, the most recently created SAS data set is used. This data set, also known as the Schedule data set, contains all the time variables (early, late, actual, resource-constrained, and baseline start and finish times, and any other variables to be specified in a CHART statement) that are to be plotted on the chart. For projects that use multiple calendars, this data set also identifies the calendar that is used by each activity. The Schedule data set also contains precedence information when drawing a Logic Gantt chart in graphics mode. See the “Schedule Data Set” section on page 489 for more details.

**FULLSCREEN**

**FS**

indicates that the Gantt chart be drawn in full-screen mode. This mode enables you to scroll horizontally and vertically through the output using commands, pull-down menus, or function keys. See the “Full-Screen Version” section on page 496 for more information.

**GOUT=graphics catalog**

specifies the name of the graphics catalog used to save the output produced by PROC GANTT for later replay. This option is available only in graphics mode.

**GRAPHICS**

indicates that the Gantt chart produced be of high-resolution quality. This is the default mode of display. If you invoke the GANTT procedure in Graphics mode, but you do not have SAS/GRAPH software licensed at your site, the procedure stops and issues an error message. See the “Graphics Version” section on page 500 for more information.

**HOLIDATA=SAS-data-set**

names the SAS data set that specifies holidays. These holidays can be associated with specific calendars that are also identified in the HOLIDATA data set (also referred to as the Holiday data set). The HOLIDATA= option must be used with the HOLIDAY= option in the CHART statement, which specifies the variable in the SAS data set that
contains the start time of holidays. Optionally, the data set can include a variable that specifies the length of each holiday or a variable that identifies the finish time of each holiday (if the holidays are longer than one unit of the INTERVAL= option). For projects involving multiple calendars, this data set can also include the variable named by the CALID= option that identifies the calendar to be associated with each holiday.

**IMAGEMAP=SAS-data-set**

names the SAS data set that receives a description of the areas of a graph and a link for each area. This information is for the construction of HTML image maps. You use a SAS DATA step to process the output file and generate your own HTML files. The graph areas correspond to the link information that comes from the WEB variable in the schedule data set. This gives you complete control over the appearance and structure of your HTML pages.

**LABDATA=SAS-data-set**

**LABELDATA=SAS-data-set**

**LABEL=SAS-data-set**

specifies the input data set that contains the label specific information. This option is required to initiate the automatic text annotation of the Gantt chart. See the “Label Data Set” section on page 520 for information on the variables it can contain. This option is available only in graphics mode.

**LABMAXINT=n**

**LMI=n**

specifies the maximum number of digits in the integer part when displaying an unformatted numeric as a string. The default value is 16. The maximum number of decimal positions is specified using the MAXDEC= option in the PROC GANTT statement. This option is applicable only to labels defined with the Label data set.

**LINEPRINTER**

**LP**

indicates that the Gantt chart be drawn in line-printer mode.

**MAXDEC=n**

**M=n**

indicates the maximum number of decimal positions displayed for a number. A decimal specification in a format overrides a MAXDEC= specification. The default value of MAXDEC= is 2.

**PRECDATA=SAS-data-set**

names the SAS data set that contains the variables that define the precedence constraints in AON format. This data set is required if the Schedule data set does not contain the required precedence information as, for example, when the COLLAPSE option in PROC CPM causes some observations to be excluded from the Schedule data set. When this option is specified, it is mandatory that the ACTIVITY variable exist in both data sets and be identical in both type and length. This option is available only in graphics mode.
Chapter 6. The GANTT Procedure

SPLIT='character'
S='character'
splits labels used as column headings where the split character appears. When you define the value of the split character, you must enclose it in single quotes. In PROC GANTT, column headings for ID variables consist of either variable labels (if they are present and space permits) or variable names. If the variable label is used as the column heading, then the split character determines where the column heading is to be split.

WORKDATA=SAS-data-set
WORKDAY=SAS-data-set
identifies a SAS data set that defines the work pattern during a standard working day. Each numeric variable in this data set (also referred to as the Workday data set) is assumed to denote a unique shift pattern during one working day. The variables must be formatted as SAS time values, and the observations are assumed to specify, alternately, the times when consecutive shifts start and end.

BY Statement

BY variables ;
A BY statement can be used with PROC GANTT to obtain separate Gantt charts for observations in groups defined by the BY variables. When a BY statement appears, the procedure expects the schedule data to be sorted in order of the BY variables. If your Schedule data set is not sorted, use the SORT procedure with a similar BY statement to sort the data. The chart for each BY group is formatted separately based only on the observations within that group.

CHART Statement

CHART specifications / options ;
The options that can appear in the CHART statement are listed below. The options are classified under appropriate headings: first, all options that are valid for all modes of the procedure are listed, followed by the options classified according to the mode (line-printer, full-screen, or graphics) of invocation of the procedure. Most of the options in line-printer and full-screen modes are also valid in graphics mode with similar interpretations. The differences and similarities in interpretation of the options are documented under the “Mode-Specific Differences” section on page 524.

General Options

The CHART statement controls the format of the Gantt chart and specifies additional variables (other than early, late, actual, resource-constrained, and baseline start and finish times) to be plotted on the chart. For example, suppose a variable that you want to specify in the CHART statement is one that contains the target finish date for each activity in a project; that is, if FDATE is a variable in the Schedule data set containing the desired finish date for each activity, the CHART statement can be used to mark the value of FDATE on the chart for each activity. A CHART specification can be one of the following types:
variable1 . . . variablen indicates that each variable is to be plotted using the default symbol, the first character of the variable name. For example, the following statement

```
CHART SDATE FDATE;
```

causes the values of SDATE to be plotted with an ‘S’ and the values of FDATE with an ‘F.’

variable1=’symbol1’ . . . variablen=’symboln’

indicates that each variable is to be plotted using the symbol specified. The symbol must be a single character enclosed in quotes.

(variables)=’symbol1’ . . . (variables)=’symboln’

indicates that each variable within the parentheses is to be plotted using the symbol associated with that group. The symbol must be a single character enclosed in single quotes. For example, the following statement

```
CHART (ED SD)=’*’
 (FD LD)=’+’;
```

plots the values of the variables in the first group using an asterisk (‘*’) and the values of the variables in the second group using a plus sign (‘+’).

A single CHART statement can contain specifications in more than one of these forms. Also, each CHART statement produces a separate Gantt chart.

Note: It is not necessary to specify a CHART statement if default values are to be used to draw the Gantt chart.

The following options can appear in the CHART statement.

**A_FINISH=variable**
**AF=variable**

specifies the variable containing the actual finish time of each activity in the Schedule data set. This option is not required if the default variable name A_FINISH is used.

**A_START=variable**
**AS=variable**

specifies the variable containing the actual start time of each activity in the Schedule data set. This option is not required if the default variable name A_START is used.

**B_FINISH=variable**
**BF=variable**

specifies the variable containing the baseline finish time of each activity in the Schedule data set. This option is not required if the default variable name B_FINISH is used.
Chapter 6. The GANTT Procedure

\textbf{B\_START=}variable
\textbf{BS=}variable

specifies the variable containing the baseline start time of each activity in the \textit{Schedule} data set. This option is not required if the default variable name B\_START is used.

\textbf{BETWEEN=}number

specifies the number of columns between two consecutive \textit{ID} variable columns. This option gives you greater flexibility in spacing the ID columns. The default value of the BETWEEN= option is 3.

\textbf{CALID=}variable

specifies the variable in the \textit{Schedule}, \textit{Holiday}, and \textit{Calendar} data sets that is used to identify the name or number of the calendar to which each observation refers. This variable can be either numeric or character depending on whether the different calendars are identified by unique numbers or names, respectively. If this variable is not found in any of the three data sets, PROC GANTT looks for a default variable named \_CAL\_ in that data set (a warning message is issued to the log). For each activity in the \textit{Schedule} data set, this variable identifies the calendar that is used to mark the appropriate holidays and weekends for the activity. For further details, see the “Multiple Calendars and Holidays” section on page 495.

\textbf{COMBINE}

concatenates the early/late and actual schedule bars of an activity into a single bar and draws a timenow line on the Gantt chart. The COMBINE option does not affect the resource-constrained or baseline schedule bars. If the \textbf{TIMENOW=} option is not specified, it is implicitly assumed to exist and set to missing. The computation of TIMENOW is then carried out as described in the TIMENOW= option. Since the timenow line represents the instant at which a “snapshot” of the project is taken, values less than TIMENOW can be regarded as the “past” and values greater or equal to TIMENOW can be regarded as the “future.” The GANTT procedure uses this property of the timenow line to partition the chart into two regions; the region to the left of the timenow line reporting only the actual schedule (events that have already taken place), and the region to the right (including the timenow line) reporting only the predicted early/late schedule.

\textbf{CRITFLAG}

\textbf{FLAG}

indicates that critical jobs be flagged as being critical or super-critical. An activity is critical if its total float is zero. If the total float is negative, the activity is super-critical. Critical activities are marked ‘CR,’ and super-critical activities are marked ‘SC’ on the left side of the chart.

\textbf{DAYLENGTH=}daylength

specifies the length of the workday. Each workday is plotted starting at the beginning of the day as specified in the \textbf{DAYSTART=} option and ending daylength hours later. The value of daylength should be a SAS time value. If the \textbf{INTERVAL=} option is specified as DTSECOND, DTMINUTE, DT.HOUR, or DTDAY, the default value of daylength is 24 hours. If the \textbf{INTERVAL=} option is specified as WORKDAY or
DTWRKDAY, the default value of *daylength* is 8 hours. For other values of the INTERVAL= option, the DAYLENGTH= option is ignored.

**Note:** The DAYLENGTH= option is needed to mark the non-worked periods within a day correctly (if the MARKBREAK option is in effect). The DAYLENGTH= option is also used to determine the start and end of a weekend precisely (to the nearest second). This accuracy is needed if you want to depict on a Gantt chart the exact time (for example, to within the nearest hour) for the start and finish of holidays or weekends. This option is used only if the times being plotted are SAS datetime values.

**DAYSTART=daystart**
specifies the start of the workday. The end of the day, *dayend*, is computed as *daylength* seconds after *daystart*. The value of *daystart* should be a SAS time value. This option is to be specified only when the value of the INTERVAL= option is one of the following: WORKDAY, DTSECOND, DTMINUTE, DT HOUR, DTDAY, or DTWRKDAY. For purposes of denoting on the Gantt chart, the weekend is assumed to start at *dayend* on Friday and end at *daystart* on Monday morning. Of course, if the SCALE= and MININTERVAL= values are such that the resolution is not very high, you will be unable to discern the start and end of holidays and weekends to the nearest hour. The default value of *daystart* is 9:00 a.m. if INTERVAL=WORKDAY or INTERVAL=DTWRKDAY, and midnight otherwise.

**DUPOK**
causes duplicate values of ID variables *not to be skipped*. As described later in the ID Statement section, if two or more consecutive observations have the same combination of values for all the ID variables, only the first of these observations is plotted. The DUPOK option overrides this behavior and causes all the observations to be plotted.

**DURATION=variable**
**DUR=variable**
identifies a variable in the Schedule data set that determines whether or not an activity is to be regarded as a milestone with respect to a specific schedule. This option is not required if the default variable name _DUR_ is used. A value of 0 for this variable indicates that if the start and finish times of the activity with respect to a given schedule are identical (a schedule taken to mean early, late, actual, resource-constrained or baseline), then the activity is represented by a milestone with respect to the given schedule. A nonzero value treats identical start and finish times in the default manner by implicitly padding the finish times as specified by the PADDING= option. The milestone symbol is defined by the MILECHAR= option in line-printer and full-screen modes and by the CMILE=, FMILE=, HMILE=, and VMILE= options in graphics mode; these four options represent the color, font, height, and value of the symbol, respectively. See the descriptions of these options for their default values. To illustrate, suppose that the observations for activities A and B from the Schedule data set are as follows:

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>A_START</th>
<th>A_FINISH</th>
<th><em>DUR</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27JUL04</td>
<td>27JUL04</td>
<td>31JUL04</td>
<td>31JUL04</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>31JUL04</td>
<td>31JUL04</td>
<td>01AUG04</td>
<td>02AUG04</td>
<td>0</td>
</tr>
</tbody>
</table>
In this example, the actual schedule for activity A begins on ‘31JUL04’ and finishes at the end of the day, as explained in the “Schedule Data Set” section on page 489. PROC GANTT uses the _DUR_ variable to recognize that activity A has nonzero duration, pads the finish time by a PADDING= unit, and displays a bar representing one day. In contrast, the value of ‘0’ for _DUR_ in activity A alerts PROC GANTT that padding be ignored for any schedule with identical start and finish times. Consequently, the early schedule for activity B is represented on the chart by the milestone symbol at ‘31JUL04.’ The actual schedule, however, not having identical start and finish times, is padded as usual and plotted as starting on ‘01AUG04’ and finishing at the end of ‘02AUG04.’

**E_FINISH=variable**

EF=variable  
specifies the variable containing the early finish time of each activity in the Schedule data set. This option is not required if the default variable name E_FINISH is used.

**E_START=variable**

ES=variable  
specifies the variable containing the early start time of each activity in the Schedule data set. This option is not required if the default variable name E_START is used.

**FILL**

causes each page of the Gantt chart to be filled as completely as possible before a new page is started (when the size of the project requires the Gantt chart to be split across several pages). If the FILL option is not specified, the pages are constrained to contain an approximately equal number of activities. The FILL option is not valid in full-screen mode because all of the activities are plotted on one logical page.

**HCONNECT**

causes a line to be drawn for each activity from the left boundary of the chart to the beginning of the bar for the activity. This feature is particularly useful when the Gantt chart is drawn on a large page. In this case, the schedule bars for some of the activities may not start close enough to the left boundary of the chart; the connecting lines help to identify the activity associated with each bar.

**HOLIDAY=(variable)**

HOLIDAYS=(variable)  
specifies the date or datetime variable in the Holiday data set that identifies holidays to be marked on the schedule. If there is no end time nor duration specified for the holiday, it is assumed to start at the time specified by the HOLIDAY variable and last one unit of interval, where interval is the value of the INTERVAL= option.

**HOLIDUR=(variable)**

HDURATION=(variable)  
specifies the variable in the Holiday data set that identifies the durations of the holidays that are to be marked on the schedule.

**HOLIFIN=(variable)**

HOLIEND=(variable)  
specifies the date or datetime variable in the Holiday data set that identifies the finish times of the holidays that are to be marked on the schedule.
IDPAGES

displays ID variables on every page. By default, the ID variables are displayed only on the first page.

INCREMENT=increment

specifies the number of minintervals between time axis labels on the Gantt chart. If the INCREMENT= option is not specified, a value is chosen that provides the maximum possible labeling.

INTERVAL=interval
HOLINTERVAL=interval

specifies the units for the values of the HOLIDUR variables. Valid values for this option are DAY, WEEKDAY, WORKDAY, DTSECOND, DTMINUTE, DTHOUR, DTDAY, or DTWRKDAY. If the value for the INTERVAL= option has been specified as WEEKDAY, WORKDAY, or DTWRKDAY, weekends are also marked on the Gantt chart with the same symbol as holidays for line-printer quality charts. Graphics-quality Gantt charts use the same PATTERN statement as the one used for marking holidays. The default value of the INTERVAL= option is DAY if the times being plotted are SAS date values and is DTDAY if the times being plotted are SAS datetime values. See the “Specifying the INTERVAL= Option” section on page 496 for further information regarding this option.

L_FINISH=variable
LF=variable

specifies the variable containing the late finish time of each activity in the Schedule data set. This option is not required if the default variable name L_FINISH is used.

L_START=variable
LS=variable

specifies the variable containing the late start time of each activity in the Schedule data set. This option is not required if the default variable name L_START is used.

MARKBREAK

causes all breaks (non-worked periods) during a day to be marked on the Gantt chart. The symbol used for marking the breaks is the same as the HOLICHAR= symbol. This option may not be of much use unless the chart has been plotted with a scale that enables you to discern the different hours within a day on the Gantt chart. For instance, if the chart is in terms of days, there is no point in trying to show the breaks within a day; on the other hand, if it is in terms of hours or seconds, you may want to see the start and end of the various shifts within a day. This option turns on the MARKWKND option.

MARKWKND

causes all weekends (or non-worked days during a week) to be marked on the Gantt chart. The symbol used for marking weekends is the same as the HOLICHAR= symbol. Note that weekends are also marked on the chart if the value of the INTERVAL= option is WEEKDAY, WORKDAY, or DTWRKDAY.
**MAXDATE=** `maxdate`

specifies the end time for the time axis of the chart. The default value is the largest value of the times being plotted unless the logic options are invoked without the NOEXTRANGE option in the CHART statement. For a discussion of the default behavior in this instance, see the “Formatting the Axis” section on page 514.

**MAXIDS**

displays as many consecutive ID variables as possible in the presence of an ID statement. In the absence of this option, the default displays all of the variables or none if this is not possible.

**MINDATE=** `mindate`

specifies the starting time for the time axis of the chart. The default value is the smallest value of the times being plotted unless the logic options are invoked without the NOEXTRANGE option in the CHART statement. For a discussion of the default behavior in this instance, see the “Formatting the Axis” section on page 514.

**MININTERVAL=** `mininterval`

specifies the smallest interval to be identified on the chart. For example, if MININTERVAL=DAY, then one day is represented on the chart by `scale` (see the SCALE= option) number of columns. The default value of the MININTERVAL= option is chosen on the basis of the formats of the times being plotted, as explained in the “Specifying the MININTERVAL= Option” section on page 494. See also the “Page Format” section on page 493 for a further explanation of how to use the MININTERVAL= option in conjunction with the SCALE= option.

**NOJOBNUM**

suppresses displaying an identifying job number for each activity. By default, the job number is displayed to the left of the Gantt chart.

**NOLEGEND**

suppresses displaying the concise default legend at the bottom of each page of the Gantt chart. The NOLEGEND option is not effective in full-screen mode.

**NOTNLABEL**

suppresses displaying the timenow label. By default, the label is displayed on the bottom border of the chart.

**PADDING=** `padding`
**FINPAD=** `padding`

requests that finish times on the chart be increased by one `padding` unit. An exception to this is when a milestone is to be plotted. See the DUR= option for further information regarding this. The PADDING= option enables the procedure to mark the finish times as the end of the last time period instead of the beginning. Possible values for `padding` are NONE, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QTR, YEAR, DTSECOND, DTMINUTE, DTHOUR, DTWEEK, DTMONTH, DTQTR, or DTYEAR. The default value is chosen on the basis of the format of the times being plotted. See the “Specifying the PADDING= Option” section on page 492 for further explanation of this option.
**CHART Statement**  •  469

`PAGELIMIT=pages`

`PAGES=pages`

specifies an upper limit on the number of pages allowed for the Gantt chart. The default value of `pages` is 100. This option is useful for preventing a voluminous amount of output from being generated by a wrong specification of the `MININTERVAL=` or `SCALE=` option. This option is ignored in full-screen mode.

`REF=values`

indicates the position of one or more vertical reference lines on the Gantt chart. The values allowed are constant values. Only those reference lines that fall within the scope of the chart are displayed.

In line-printer and full-screen modes, the reference lines are displayed using the character specified in the `REFCHAR=` option. In graphics mode, use the `CREF=`, `LREF=`, and `LWIDTH=` options to specify the color, style, and width of the reference lines.

`REFLABEL` specifies that the reference lines are to be labeled. The labels are formatted in the same way as the time axis labels and are placed along the bottom border of the Gantt chart at the appropriate points. If the reference lines are too numerous and the scale does not allow all the labels to be nonoverlapping, then some of the labels are dropped.

`S_FINISH=variable`

`SF=variable`

specifies the variable containing the resource-constrained finish time of each activity in the Schedule data set. This option is not required if the default variable name `S_FINISH` is used.

`S_START=variable`

`SS=variable`

specifies the variable containing the resource-constrained start time of each activity in the Schedule data set. This option is not required if the default variable name `S_START` is used.

`SCALE=scale`

requests that `scale` number of columns on the chart represent one unit of `mininterval` where `mininterval` is the value of the `MININTERVAL=` option. In line-printer and graphics modes, the default value of the `SCALE=` option is 1 if the time axis of the chart is too wide to fit on one page. If the time axis fits on less than one page, then a default value is chosen that expands the time axis as much as possible but still fits the time axis on one page. In full-screen mode, the default value of the `SCALE=` option is always 1.

`SKIP=skip`

`S=skip`

requests that `skip` number of lines be skipped between the plots of the schedules of two activities. The `SKIP=` option can take integer values between 0 and 4, inclusive. In graphics mode, 0 is not a valid value. The default value of the `SKIP=` option is 1.
STRIPIDBLANKS
STRIPID
strips all leading blanks from character ID variables. The default behavior is to pre-
serve any leading blanks.

SUMMARY
requests that a detailed description of all symbols and patterns used in the Gantt chart
be displayed before the first page of the chart. In line-printer mode, this description
includes examples of some strings that could occur in the body of the Gantt chart.
The SUMMARY option is not supported in full-screen mode.

TIMENOW=value
specifies the position for the timenow line on the chart. If the value is invalid or set
to missing, TIMENOW is set to be the time period following the maximum of all
specified actual times. If there are no actual times, TIMENOW is set to be equal to
the current date. The value of TIMENOW is written to the log.

The timenow line has precedence over all other variables and reference lines and is
drawn only if it falls within the range of the chart axis. If TIMENOW is based on
the maximum of the actual times, and the MAXDATE= option is not specified, then
the range of the chart axis is increased, if necessary, to display the timenow line.
The timenow line is labeled by default; the label is formatted in the same way as the time
axis and is placed along the bottom border of the chart. The timenow line is displayed
in line-printer and full-screen modes using the character specified by the TNCHAR=
option (or T, if none is specified) in the CHART statement. In graphics mode, use the
CTNOW=, LTNOW=, and WTNOW= options in the CHART statement to specify
the color, style, and width of the timenow line. In the presence of a timenow line, the
actual schedule for an activity with an actual start less than TIMENOW and a missing
actual finish time is represented on the Gantt chart by a bar that begins at the actual
start and ends at TIMENOW to indicate that the activity is in progress at TIMENOW.
This behavior is consistent with the convention used by PROC CPM. A warning is
also issued to the log in this case.

USEFORMAT
specifies that the tickmark labels of the Gantt chart axis are to be displayed using
the format associated with the first plot variable appearing in the order E–START=,
S–FINISH=, B–START=, B–FINISH=. This format is also used for labeling any
reference lines and the timenow line.

Full-Screen and Line-Printer Options
The following options can appear in the CHART statement and are specifically for
the purpose of producing Gantt charts in line-printer and full-screen modes.

FORMCHAR[ index list ]='string'
defines the characters to be used for constructing the chart outlines and dividers. The
value is a string 11 characters long defining the two bar characters, vertical and hor-
izontal, and the nine corner characters: upper left, upper middle, upper right, middle
left, middle middle (cross), middle right, lower left, lower middle, and lower right.
The default value of the FORMCHAR= option is ’|-----|+----’. Any character
or hexadecimal string can be substituted to customize the chart appearance. Use an index list to specify which default form character each supplied character replaces, or replace the entire default string by specifying the full 11 character replacement string with no index list. For example, change the four corners to asterisks by using

\[ \text{formchar}(3 \ 5 \ 9 \ 11) = '****' \].

Specifying the following produces charts with no outlines or dividers.

\[ \text{formchar} = ' ' \ (11 \ blanks) \]

If you have your output routed to an IBM 6670 printer using an extended font (type-style 27 or 225) with input character set 216, it is recommended that you specify

\[ \text{formchar} = 'FABFACCBCEB8FECABCBB'X \].

If you are using a printer with a TN (text) print train, it is recommended that you specify the following:

\[ \text{formchar} = '4FBFACBFBC4F8F4FABBFB'BX \].

\( \text{HCONCHAR='}\text{character}' \)

specifies the symbol to be used for drawing the connecting line described in the \( \text{HCONNECT} \) option. The default character is \( - \). This is a line-printer option and is not valid in conjunction with the \( \text{GRAPHICS} \) option. For corresponding graphics options, see the \( \text{LHCON=} \) and \( \text{CHCON=} \) options described later in this section under “Graphics Options.”

\( \text{HOLICHAR='}\text{character}' \)

indicates the character to display for holidays. Note that PROC GANTT displays only those holidays that fall within the duration or the slack time of an activity. The default character used for representing holidays is \( ! \).

\( \text{JOINCHAR='}\text{string}' \)

defines a string eight characters long that identifies nonblank characters to be used for drawing the schedule. The first two symbols are used to plot the schedule of an activity with positive total float. The first symbol denotes the duration of such an activity while the second symbol denotes the slack present in the activity’s schedule. The third symbol is used to plot the duration of a critical activity (with zero total float). The next two symbols are used to plot the schedule of a supercritical activity (one with negative float). Thus, the fourth symbol is used to plot the negative slack of such an activity starting from the late start time (to early start time), and the fifth symbol is used to plot the duration of the activity (from early start to early finish). The sixth symbol is used to plot the actual schedule of an activity if the \( \text{A–START} \) and \( \text{A–FINISH} \) variables are specified. The seventh symbol is used to plot the resource-constrained schedule of an activity if the \( \text{S–START} \) and \( \text{S–FINISH} \) variables are
specified. The eighth symbol is used to plot the baseline schedule of an activity if the B_START and B_FINISH variables are specified. The default value of the JOINCHAR= option is ‘−−.−−+−_’.

MILECHAR=’character’
indicates the character to display for the milestone symbol. If this option is not used, the letter M+ is used. In the event that another milestone or a character representing a start or finish time is to be plotted in this column, the OVERLAPCH= character is used.

OVERLAPCH=’character’
OVLPCHAR=’character’
indicates the overprint character to be displayed when more than one of the symbols in SYMCHAR=’string’ or MILECHAR=’character’ are to be plotted in the same column. The default character is *.

OVPCHAR=’character’
indicates the character to be displayed if one of the variables specified in the CHART statement is to be plotted in the same column as one of the start or finish times. If no OVPCHAR= option is given, the ‘at’ symbol (@) is used. Note that if one of the E_START, E_FINISH, L_START, L_FINISH, A_START, A_FINISH, S_START, S_FINISH, B_START, or B_FINISH times coincides with another, the overprint character to be displayed can be specified separately using the OVERLAPCH= option.

REFCHAR=’character’
indicates the character to display for reference lines. If no REFCHAR= option is given, the vertical bar (|) is used. If a time variable value is to be displayed in the column where a REF= value goes, the plotting symbol for the time variable is displayed instead of the REFCHAR= value. Similarly, the HOLICHAR= symbol has precedence over the REFCHAR= value.

SYMCHAR=’string’
defines the symbols to be used for plotting the early start, late start, early finish, late finish, actual start and finish, resource-constrained start and finish, and baseline start and finish times, in that order. The default value is ‘<<>>**<>[]’ . If any of the preceding symbols coincide with one another or with the milestone symbol, the symbol plotted is the one specified in the OVERLAPCH= option (or *, if none is specified). If the actual, resource-constrained, and baseline schedules are not plotted on the chart, you can specify only the first four symbols. If fewer than the required number of symbols are specified, nonspecified symbols are obtained from the default string.

TNCHAR=’character’
indicates the character to display for the timenow line. If this option is not used, the letter T is used.
Graphics Options

The following describes the interpretation of the CHART specification in graphics mode. Note that the GANTT procedure is not supported with the ActiveX or Java series of devices on the GOPTIONS statement.

As before, the CHART statement controls the format of the Gantt chart and specifies additional variables (other than the early, late, actual, resource-constrained, and baseline start and finish times) to be plotted on the chart. The same forms for the specification of CHART variables (as in the line-printer and full-screen version) are allowed, although the interpretation is somewhat different. Each form of specification is repeated here with a corresponding description of the interpretation. Note that the symbols for any activity are plotted on a line above the one corresponding to that activity. In addition to plotting the required symbol, PROC GANTT draws a vertical line below the symbol in the same color as the symbol. The length of the line is the same as the height of the bars (referred to as bar height) that represent the durations of the activities on the Gantt chart. This line helps identify the exact position of the plotted value. See also the “Special Fonts for Project Management and Decision Analysis” section on page 509 for information on a special set of symbols that are suitable for representing CHART variables on a Gantt chart.

variable1 . . . variablen
indicates that each variable is to be plotted using symbols specified in SYMBOL statements. The ith variable in the list is plotted using the plot symbol, color, and font specified in the ith SYMBOL statement. The height specified in the SYMBOL statement is multiplied by the bar height to obtain the height of the symbol that is plotted. Thus, if \( H=0.5 \) in the first SYMBOL statement, and the bar height is 5\% of the screen area, then the first symbol is plotted with a height of 2.5\%. For example, suppose the following two SYMBOL statements are in effect:

```plaintext
SYMBOL1 V=STAR C=RED H=1;
SYMBOL2 V=V C=GREEN H=0.5 F=GREEK;
```

Then, the following statement

```
CHART SDATE FDATE;
```

causes values of SDATE to be plotted with a red star that is as high as each bar and the values of FDATE with an inverted green triangle that is half as high as the bar height. See the “Using SYMBOL Statements” section on page 506 for further information on using the SYMBOL statement.

variable1='symbol1' . . . variablen='symboln'
indicates that each variable is to be plotted using the symbol specified. The symbol must be a single character enclosed in quotes. The font used for the symbol is the same as the font used for the text.

(variables)='symbol1' . . . (variables)='symboln'
indicates that each variable in parentheses is to be plotted using the symbol associated
with that group. The symbol must be a single character enclosed in single quotes. For example, the following statement

```
CHART (ED SD)='*'
 (FD LD)='+' ;
```

plots the values of variables in the first group using an asterisk (*) and the values of variables in the second group using a plus sign (+).

A single CHART statement can contain requests in more than one of these forms.

**Note:** It is not necessary to specify a CHART statement if only default values are used to draw the Gantt chart.

The following options can appear in the CHART statement specifically for the production of high-resolution graphics quality Gantt charts.

**ABARHT=h**

specifies that the height of the actual schedule bar be \( h \) cellheights. The value of \( h \) is restricted to be a positive real number. The default bar height is one cellheight. This specification will override a BARHT= specification. In the event that the actual schedule bar corresponds to the logic bar (using the LEVEL= option), the value is ignored and the default value is used instead. Any non-working days corresponding to this schedule bar are also drawn using the same height as the schedule bar unless the HBARHT= option is specified.

**ABAROFF=d**

specifies that the actual schedule bar be offset \( d \) cellheights from its default position. A value of zero corresponds to the default position. The direction of increase is from top to bottom. This specification will override a BAROFF= specification. In the event that the actual schedule bar corresponds to the logic bar (specified using the LEVEL= option), the value is ignored and the default value is used instead. Any non-working days corresponding to this schedule bar are drawn using the offset of the schedule bar unless the HBAROFF= option is specified.

**ACTIVITY=variable**

**ACT=variable**

specifies the variable identifying the names of the nodes representing activities in the Schedule data set. This option is required when the precedence information is specified using the AON format. The variable can be either numeric or character in type. If the PRECDATA= option is specified, then this variable must also exist in the Precedence data set and have identical type and length.

**ANNOTATE=SAS-data-set**

**ANNO=SAS-data-set**

specifies the input data set that contains the appropriate Annotate variables for the purpose of adding text and graphics to the Gantt chart. The data set specified must be an Annotate-type data set. See also the "Annotate Processing" section on page 502 for information specifically on annotate processing with the GANTT procedure.

The ANNOTATE= data set specified in a CHART statement is used only for the Gantt chart created by that particular CHART statement. You can also specify an
ANNOTATE= data set in the PROC GANTT statement, which provides “global” Annotate information to be used for all Gantt charts created by the procedure.

AOA causes PROC GANTT to use the specification for the AOA format for producing a Logic Gantt chart when the precedence information has been specified in both AOA format (TAIL= and HEAD= options) and AON format (ACTIVITY=, SUCCESSOR=, and, optionally, LAG= options). The default behavior is to use the AON format.

BARHT=h specifies that the height of all the schedule bars be h cellheights. The value of h is restricted to be a positive real number. The default value is one cellheight. This specification can be overridden for each schedule type by specifying the bar height option appropriate for that schedule type. If a Logic Gantt chart is produced, the specified bar height is ignored for the logic bar (specified using the LEVEL= option) and the default bar height of one cellheight is used for it instead. All non-working days corresponding to a schedule bar are drawn using the height of the schedule bar unless the HBARHT= option is specified.

BAROFF=d specifies that all the schedule bars be offset d cellheights from their default positions. A value of zero corresponds to the default positions. The direction of increase is from top to bottom. This specification can be overridden for each schedule type by specifying the bar offset option that is appropriate for that schedule type. If a Logic Gantt chart is produced, the specified bar offset is ignored for the logic bar (specified using the LEVEL= option) and the default bar offset of zero used instead.

BBARHT=h specifies that the height of the baseline schedule bar be h cellheights. The value of h is restricted to be a positive real number. The default bar height is one cellheight. This specification overrides a BARHT= specification. In the event that the baseline schedule bar corresponds to the logic bar (using the LEVEL= option), the value is ignored and the default value is used instead. Any non-working days corresponding to this schedule bar are also drawn using the same height as the schedule bar unless the HBARHT= option is specified.

BBAROFF=d specifies that the baseline schedule bar be offset d cellheights from its default position. A value of zero corresponds to the default position. The direction of increase is from top to bottom. This specification overrides a BAROFF= specification. In the event that the baseline schedule bar corresponds to the logic bar (specified using the LEVEL= option), the value is ignored and the default value is used instead. Any non-working days corresponding to this schedule bar are drawn using the offset of the schedule bar unless the HBAROFF= option is specified.

BOTTOM positions the bottom of the Gantt chart at the bottom of the page, just above the footnotes. This option is ignored if you specify the TOP or TJUST option.
Chapter 6. The GANTT Procedure

**CAXIS=color**

specifies the color to use for displaying axes for the Gantt chart. If the CAXIS= option is omitted, PROC GANTT uses the first color in the COLORS= list in the GOPTIONS statement.

**CFRAME=color**

specifies the color to use for filling the axis area. By default, the axis is not filled. This option is ignored if the NOFRAME option is specified.

**CHARTWIDTH=p**

**CHARTPCT=p**

specifies the width of the axis area as a percentage of the total Gantt chart width in the chart that would be produced if you had a page large enough to contain the entire chart without compression. The Gantt procedure rescales the chart so the axis area with is $p\%$ of the virtual chart width and the text area width is $(100-p)\%$ of the virtual chart width.

This option gives you the capability to generate Gantt charts that are consistent in their appearance. In the event that the chart fits on a single page, it is possible to get a smaller chart than had the CHARTWIDTH= option not been specified. You can use the FILL option in this case if you wish to use the entire page.

**CHCON=color**

specifies the color to use for drawing the horizontal connecting lines. If the CHCON= option is not specified, PROC GANTT uses the first color in the COLORS= list in the GOPTIONS statement.

**CMILE=color**

specifies the color to use for drawing the milestone symbol on the chart. If the CMILE= option is not specified, the default color of the milestones follows the rules for coloring the bars of the relevant schedule. For example, the milestone depicting a critical activity is drawn with the color of the fill pattern used for critical activities. For an activity with slack, the early start and late start milestone are drawn with the color of the fill pattern used for the duration and the slack time of a noncritical activity, respectively. You can also control the color at the activity level by using a PATTERN variable.

**COMPRESS**

specifies that the Gantt chart be drawn on the number of output pages determined by the HPAGES= and VPAGES= options. If the HPAGES= option is not specified, the procedure assumes a default of HPAGES=1. If the VPAGES= option is not specified, the procedure assumes a default of VPAGES=1. The COMPRESS option does not attempt to maintain the aspect ratio of the Gantt chart. To maintain the aspect ratio of the Gantt chart, use the PCOMPRESS option instead.

**CPREC=color**

specifies the color to use for drawing the precedence connections. If the CPREC= option is not specified, PROC GANTT uses the first color in the COLORS= list in the GOPTIONS statement.
CHART Statement • 477

CREF=color
specifies the color to use for drawing vertical reference lines on the chart. If the CREF= option is not specified, PROC GANTT uses the first color in the COLORS= list in the GOPTIONS statement.

CTEXT=color
CT=color
specifies the color to use for displaying text that appears on the chart, including variable names or labels, tickmark values, values of ID variables, and so on. The default color is the value specified for the CTEXT= option in the GOPTIONS statement. If CTEXT= is not specified in the GOPTIONS statement, PROC GANTT uses the first color in the COLORS= list in the GOPTIONS statement.

CTEXTCOLS=name
CTEXTCOLS=(namelist)
CPATTEXT=name
CPATTEXT=(namelist)
CACTTEXT=name
CACTTEXT=(namelist)

names the columns of activity text to be displayed using the color of the PATTERN variable when one exists or from the fill pattern from a particular schedule bar.

A missing value for a PATTERN variable results in the default text color being used. The default text color is the value of the CTEXT= option.

In the absence of a PATTERN variable, the activity text color is the color of the fill pattern indicating the duration of the schedule identified by the PATLEVEL= option. If PATLEVEL=EARLY or PATLEVEL=LATE, the color depends on the status of the activity. Colors for critical duration, supercritical duration, and normal duration are used depending on whether the activity is critical, supercritical, or noncritical, respectively. If more than one level is specified, the first in order of appearance on the Gantt chart is used, that is, in order EARLY, LATE, ACTUAL, RESOURCE, BASELINE.

Possible values for the CTEXTCOLS= option are shown in the following table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZONE</td>
<td>ZONE variable column</td>
</tr>
<tr>
<td>JOBNUM</td>
<td>Job number column</td>
</tr>
<tr>
<td>ID</td>
<td>ID variable columns</td>
</tr>
<tr>
<td>FLAG</td>
<td>Status flag column</td>
</tr>
<tr>
<td>ALL</td>
<td>All of the above (default)</td>
</tr>
</tbody>
</table>

CTNOW=color
specifies the color to use for drawing the timenow line on the chart. If the CTNOW= option is not specified, PROC GANTT uses the first color in the COLORS= list of the GOPTIONS statement.
CZONE=color
CZLINE=color
   specifies the color to use for drawing the horizontal zone lines that demarcate the
different zones on the chart. If the CZONE= option is not specified, the GANTT
procedure uses the first color in the COLORS= list in the GOPTIONS statement.

DESCRIPTION=’string’
DES=’string’
   specifies a descriptive string, up to 40 characters in length, that appears in the descrip-
tion field of the master menu of PROC GREPLAY. If the DESCRIPTION= option is
omitted, the description field contains a description assigned by PROC GANTT.

EBARHT=h
LBARHT=h
   specifies that the height of the early/late schedule bar be h cellheights. The value of
h is restricted to be a positive real number. The default bar height is one cellheight.
This specification overrides a BARHT= specification. In the event that the early/late
schedule bar corresponds to the logic bar (using the LEVEL= option), the value is
ignored and the default value is used instead. Any non-working days corresponding
to this schedule bar are also drawn using the same height as the schedule bar unless
the HBARHT=option is specified.

EBAROFF=d
LBAROFF=d
   specifies that the early/late schedule bar be offset d cellheights from its default posi-
tion. A value of zero corresponds to the default position. The direction of increase
is from top to bottom. This specification overrides a BAROFF= specification. In the
event that the early/late schedule bar corresponds to the logic bar (specified using
the LEVEL= option), the value is ignored and the default value is used instead. Any
non-working days corresponding to this schedule bar are drawn using the offset of
the schedule bar unless the HBAROFF= option is specified.

FONT=font
   specifies the font to use for displaying job numbers, ID variables, legend, labels on
the time axis, and so forth. The default font is the value specified for the FTEXT=
option in the GOPTIONS statement. If FTEXT= is not specified in the GOPTIONS
statement, the hardware character set for your device is used to display the text.

FMILE=font
   specifies the font to use for drawing the milestone symbol on the chart. To select a
symbol from the special symbol table, set FMILE=NONE or leave it unspecified. If
the FMILE= option is specified without a corresponding VMILE= option, the value
of the FMILE= option is ignored, and the default milestone symbol, a filled diamond,
is used instead. A warning is issued to the log in this instance.

See also the “Special Fonts for Project Management and Decision Analysis” section
on page 509 for information on a special set of symbols that are suitable for repre-
senting milestones on a Gantt chart.

HBARHT=h
   specifies that all non-working days be displayed with a bar which is h cellheights
high. The default behavior is to use the same height as that of the schedule bar.

**HBAROFF=d**

specifies that the bars which represent non-working days be offset d cellheights from their default positions. The default behavior is to use the same offset as that of the schedule bar.

**HEAD=variable**

**HEADNODE=variable**

specifies the variable (either character or numeric) in the Schedule data set that contains the name of the node that represents the finish of the activity. This option is required when the precedence information is specified using the AOA format.

**HEIGHT=h**

specifies that the height for all text in PROC GANTT, excluding TITLE and FOOTNOTE statements, be h times the value of HTEXT=, the default text height specified in the GOPTIONS statement of SAS/GRAPH. The value of h is a positive real number; the default value is 1.0.

To illustrate, suppose you have the specification HEIGHT=0.6 in the CHART statement and the following GOPTIONS statement:

```
GOPTIONS htext = 2 in;
```

Then the height for all text in PROC GANTT is 0.6 x 2 in = 1.2 in.

For each activity, all text corresponding to the JOB, FLAG, and ID variables is displayed at a depth of d cells from the top of the first bar corresponding to the activity, where d is the value of the HTOFF= option. The default value of d is 1.0. Furthermore, the text strings do not overwrite one another and skip, the value of the SKIP= option, is not increased to accommodate a large text height. Subject to the preceding restrictions, PROC GANTT calculates the maximum allowable value for text height as the height occupied by (skip + the number of different schedule bars drawn per activity) blank lines. Specifically, this is the height between like bars corresponding to consecutive activities. If the specified text height exceeds this value, the height is truncated to the maximum allowable value and a warning is issued to the log. This option enables you to enlarge the text to at least the height occupied by all of the schedule bars, making it easier to read. This is especially useful when the value of the VPOS= option is very large, and several schedule bars are plotted for each activity. It also provides easier identification of the activity corresponding to a given schedule bar.

**HMILE=height**

specifies the height in cells of the milestone symbol. The height is a positive real number; the default value is 1.0.

**HPAGES=h**

specifies that the Gantt chart is to be produced using h horizontal pages. This, however, may not be possible due to intrinsic constraints on the output. For example, the GANTT procedure requires that every horizontal page represent at least one activity. Thus, the number of horizontal pages can never exceed the number of activities in
the project. Subject to such inherent constraints, the GANTT procedure attempts to use the specified value for the HPAGES= option; if this fails, it uses \( h \) as an upper bound. The exact number of horizontal pages used by the Gantt chart is given in the _ORGANTT macro variable. See the “Macro Variable _ORGANTT” section on page 528 for further details.

The appearance of the chart with respect to the HPAGES= option is also influenced by the presence of other related procedure options. The HPAGES= option performs the task of determining the number of vertical pages in the absence of the VPAGES= option. If the COMPRESS or PCOMPRESS option is specified in this scenario, the chart uses one vertical page; if neither option is specified, the number of vertical pages is computed to display as much of the chart as possible in a proportional manner.

**HTOFF=**

specifies that the line upon which all activity text rests, also referred to as the font baseline, is positioned at a depth of \( d \) cells below the top of the first bar. The default value of \( d \) is 1.0. The value of the HTOFF= option can be any nonnegative real number less than the \( \text{skip} + \text{the number of different schedule bars per activity} - 1 \). A value of 0 positions text on the line corresponding to the top of the first bar. Assigning the maximum value corresponds to positioning text directly above the bar reserved for CHART variables of the next activity on the page. If a value larger than the maximum is specified, PROC GANTT truncates this value to the maximum and issues a warning to the log. Furthermore, if the HEIGHT= and HTOFF= values cause activity text to overwrite the text headings, PROC GANTT reduces the HTOFF= value accordingly and issues a warning to the log.

**LABVAR=**

specifies the variable that links observations in the Label data set (label definitions) to observations in the Schedule data set (activities). This variable must exist in both the Schedule data set and the Label data set and be identical in type and length. The variable can be either numeric or character in type. The linking can be a 1-1, 1-many, many-1, or many-many relationship. The linking can be used to extract positional information as well as the text string information from the Schedule data set for an observation in the Label data set when such information cannot be retrieved from the relevant variables in the Label data set.

If the _Y variable does not exist or its value is missing, the vertical coordinate for a label’s placement position is determined from the activities that are linked to it and their relative positions on the activity axis of the Gantt chart. A value of -1 for _Y implies linking of the label to every activity (assuming data values are used). This is equivalent to specifying the LABVAR= option in the CHART statement and linking every activity to the label. Note that any Label data set observation with dual linkage definitions is ignored. That is, an observation with _Y equal to -1 and with a nonmissing value for the LABVAR= variable is ignored.

The following rules apply to label definitions in the Label data set that are linked to activities in the Schedule data set:

- If the _X variable does not exist in the Label data set or its value is missing, the horizontal coordinate is extracted from the Schedule data set using the _XVAR
If the _LABEL variable does not exist in the Label data set or its value is missing, the text string is determined from the Schedule data set using the _LVAR variable.

LABRULE=rule
LABFMT=rule
specifies the rule to use for laying out labels that are defined in the Label data set. Valid values for rule are PAGECLIP and FRAMCLIP. PAGECLIP displays a label at the specified location and clips any part of the label that runs off the page. A value of FRAMCLIP differs from PAGECLIP in that it clips all labels with data value coordinates that run off the frame of the Gantt chart. The default value for rule is PAGECLIP.

LABSPLIT='character'
LABELSPLIT='character'
splits labels that are defined in the Label data set wherever the split character appears. By default, if there are embedded blanks, the GANTT procedure attempts to split strings at suitable blanks so that the resulting lines are equal in length. To suppress the default splitting when using strings embedded with blanks, specify a dummy character not used in the labeling.

LAG=variable
LAG=(variables)
specifies the variables identifying the lag types of the precedence relationships between an activity and its successors. Each SUCCESSOR variable is matched with the corresponding LAG variable; that is, for a given observation, the ith LAG variable defines the relationship between the activities specified by the ACTIVITY variable and the ith SUCCESSOR variable. The LAG variables must be character type and their values are expected to be specified as one of FS, SS, SF, FF, which denote ‘Finish-to-Start’, ‘Start-to-Start’, ‘Start-to-Finish’, ‘Finish-to-Finish’, respectively. You can also use the keyword _duration _calendar specification used by PROC CPM although PROC GANTT uses only the keyword information and ignores the lag duration and the lag calendar. If no LAG variables exist or if an unrecognized value is specified for a LAG variable, PROC GANTT interprets the lag as a ‘Finish-to-Start’ type. If the PRECDATA= option is specified, the LAG variables are assumed to exist in the Precedence data set; otherwise, they are assumed to exist in the Schedule data set.

LEFT
LJUST
displays the Gantt chart left-justified with the left edge of the page. This option has priority over the RIGHT or RJUST option. Note that when displaying a Gantt chart in graphics mode, the chart is centered in both horizontal and vertical directions in the space available after accounting for titles, footnotes, and notes. The chart justification feature enables you to justify the chart in the horizontal and vertical directions with the page boundaries.

LEVEL=number
specifies the schedule bar to use for drawing the precedence connections. The default
value of LEVEL= is 1, which corresponds to the topmost bar.

**LHCON=linetype**

specifies the line style (1 – 46) to be used for drawing the horizontal connecting line produced by the **HCONNECT** option described earlier in this section. Possible values for **linetype** are

1 solid line (the default value when LHCON= is omitted)
2 – 46 various dashed lines. See Figure 6.5.

For the corresponding line-printer option, see the **HCONCHAR=** option described earlier in this section.

**LPREC=linetype**

specifies the line style (1 – 46) to use for drawing the precedence connections. The default line style is 1, a solid line. See Figure 6.5 for examples of the various line styles available.

**LREF=linetype**

specifies the line style (1 – 46) to use for drawing the reference lines. The default line style is 1, a solid line. See Figure 6.5 for examples of the various line styles available. For the corresponding line-printer option, see the **REFCHAR=** option described earlier.

**LTNOW=linetype**

specifies the line style (1 – 46) to use for drawing the timenow line. The default line style is 1, a solid line. See Figure 6.5 for examples of the various line styles available.

**LWIDTH=linewidth**

specifies the line width to be used for drawing lines, other than the timenow line and precedence connection lines, used in the Gantt chart. The default width is 1.

**LZONE=linetype**

specifies the line style (1 – 46) to use for drawing the horizontal zone lines which demarcate the different zones on the chart. The default line style is 1, a solid line.
Figure 6.5. Valid Line Styles

MAXDISLV=columns
specifies the maximum allowable distance, in number of columns, that a local vertical can be positioned from its minimum offset to avoid overlap with a global vertical. The value of the MAXDISLV= option must be greater than or equal to 0.1; the default value is 1. For the definitions of global and local verticals, see the “Specifying the Logic Options” section on page 511.

MININTGV=columns
specifies the minimum inter-distance, in number of columns, of any two global verticals to prevent overlap. The value of the MININTGV= option must be greater than or equal to 0.1; the default value is 0.75.

MINOFFGV=columns
specifies the minimum offset, in number of columns, of a global vertical from the end of the bar with which it is associated. The value of the MINOFFGV= option must be greater than or equal to 0.1; the default value is 1.
MINOFFLV=columns
specifies the minimum offset, in number of columns, of a local vertical from the end of the bar with which it is associated. The value of the MINOFFLV= option must be greater than or equal to 0.1; the default value is 1.

NAME='string'
where 'string' specifies a descriptive string, up to eight characters long, that appears in the name field of the master menu of the GREPLAY procedure. If you omit the NAME= option, the name field of the master menu contains the name of the procedure.

NJOBS=number
NACTS=number
specifies the number of jobs that should be displayed on a single page. This option overrides the VPAGES= option.

NOARROWHEAD
NOARRHD
suppresses the arrowhead when drawing the precedence connections.

NOEXTRANGE
NOXTRNG
suppresses the automatic extension of the chart axis range when drawing a Logic Gantt chart and neither the MINDATE= nor MAXDATE= option is specified.

NOFRAME
NOFR
suppresses drawing the vertical boundaries to the left and right of the Gantt chart; only the top axis and a parallel line at the bottom are drawn. If this option is not specified, the entire chart area is framed.

NOPAGENUM
suppresses numbering the pages of a multipage Gantt chart. This is the default behavior. To number the pages of a multipage Gantt chart on the upper right-hand corner of each page, use the PAGENUM option.

NOPATBAR
suppresses the use of the PATTERN variable for filling the schedule bars. The default fill patterns are used instead. Typically, this option is used when you want to color the activity text using the CTEXTCOLS= option but leave the bars unaffected by the PATTERN variable.

NOTMTIME
suppresses the display of the time portion of the axis tickmark label when the value of MININTERVAL is DTDAY. When MININTERVAL=DTDAY, the time axis tickmarks are labeled with three lines, the first indicating the month, the second indicating the day, and the third indicating the time. This option effectively lowers the first two lines by a line and drops the third line altogether.

NOZONECOL
suppresses displaying the ZONE variable column that is automatically done in the presence of a zone variable.
NTICKS=\textit{number}
NINCRS=\textit{number}
specifies the number of tickmarks that should be displayed on the first horizontal page of the Gantt chart. The number of tickmarks on the remaining horizontal pages is determined by the page width and the columns of text that are to be displayed (ZONE, IDs, flag, and so forth). The page width is determined to be the minimum width necessary to fit the first page. If the IDPAGES option is specified, the number of tickmarks is the same as that specified by the NTICKS= option. This option overrides the HPAGES= option.

ONEZONEVAL

displays the value of the ZONE variable in the ZONE variable column only for activities that begin a new zone. A blank string is displayed for all other activities.

PAGENUM

numbers the pages of the Gantt chart on the top right-hand corner of the page if the chart exceeds one page. The numbering scheme is from left to right, top to bottom.

PATLEVEL=\textit{name}
PATLEVEL=\textit{(namelist)}
specifies the different schedule bar levels to fill using the pattern variable. By default, all of the schedule bar levels for an activity are filled using the pattern defined by the PATTERN variable. Note that holiday and non-working days are not filled with this pattern.

Possible values for the PATLEVEL= option and their actions are shown in the following table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARLY</td>
<td>Early/Late schedule durations</td>
</tr>
<tr>
<td>LATE</td>
<td>Early/Late schedule durations</td>
</tr>
<tr>
<td>ACTUAL</td>
<td>Actual schedule durations</td>
</tr>
<tr>
<td>RESOURCE</td>
<td>Resource schedule duration</td>
</tr>
<tr>
<td>BASELINE</td>
<td>Baseline schedule duration</td>
</tr>
<tr>
<td>ALL</td>
<td>All of the above (default)</td>
</tr>
</tbody>
</table>

In the absence of a PATTERN variable, this option defines the schedule type that determines the color for the activity text columns (ZONE variable, ID variable, Job number, Critical Flag), which are identified with the CTEXTCOLS= option. In this case, only one schedule type is used, namely the first one appearing in the order EARLY, LATE, ACTUAL, RESOURCE, BASELINE.

PATTERN=\textit{variable}
PATVAR=\textit{variable}
specifies an integer variable in the Schedule data set that identifies the pattern for filling the schedule bars and coloring the milestones. The default PATTERN variable name is _PATTERN. If the value of the PATTERN variable is missing for a particular activity, or if there is no PATTERN variable, the different schedule bars and
milestones for the activity are drawn using the corresponding default patterns given in Table 6.24. The procedure uses the defined or default pattern to fill all the schedule bars and color all the milestones associated with the activity, except for holidays and non-working days. Use the PATLEVEL= option to restrict the application of the defined pattern to selected schedule bar levels.

When plotting split activities, you have the additional capability of overriding the defined pattern at the segment level by specifying a value for the PATTERN variable for the schedule data set observation representing the segment. Setting it to missing results in inheriting the PATTERN variable value from the observation for the same activity with a missing SEGMT_NO. For example, setting PATTERN=SEGMT_NO in the CHART statement when using split activities results in each segment using a different pattern.

Note that, if the value of the PATTERN variable is \( n \) for a particular activity, the GANTT procedure uses the specifications in the \( n \)th generated PATTERN definition, not the specifications in the PATTERN \( n \) statement.

The chart legend and summary, when displayed, indicate the default patterns that identify the different schedule types represented on the Gantt chart as listed in Table 6.24. Since the PATTERN variable overrides these values at the activity level, you must be careful in interpreting the summary and legend when using a PATTERN variable, especially if any of the specified pattern definitions overlap with one of the default patterns.

**PCOMPRESS**

specifies that every output page of the Gantt chart is to be produced maintaining the original aspect ratio of the Gantt chart. The number of output pages is determined by the HPAGES= and VPAGES= options. In the absence of the HPAGES= and VPAGES= options, the PCOMPRESS option displays the Gantt chart on a single page.

**RBARHT=**\( h \)

**SBARHT=**\( h \)

specifies that the height of the resource-constrained schedule bar be \( h \) cellheights. The value of \( h \) is restricted to be a positive real number. The default bar height is one cellheight. This specification overrides a BARHT= specification. In the event that the resource-constrained schedule bar corresponds to the logic bar (using the LEVEL= option), the value is ignored and the default value is used instead. Any non-working days corresponding to this schedule bar are also drawn using the same height as the schedule bar unless the HBARHT= option is specified.

**RBAROFF=**\( d \)

**SBAROFF=**\( d \)

specifies that the resource-constrained schedule bar be offset \( d \) cellheights from its default position. A value of zero corresponds to the default position. The direction of increase is from top to bottom. This specification overrides a BAROFF= specification. In the event that the resource-constrained schedule bar corresponds to the logic bar (specified using the LEVEL= option), the value is ignored and the default value is used instead. Any non-working days corresponding to this schedule bar are drawn
using the offset of the schedule bar unless the HBAROFF= option is specified.

**RIGHT**
**RJUST**
displays the Gantt chart right-justified with the right edge of the page. This option is ignored in the presence of the **LEFT** or **LJUST** option.

**SHOWPREC**
causes PROC GANTT to terminate in the event that a valid **AOA** or **AON** specification exists, and an error occurs either in the logic system (memory allocation, data structure creation, and so on) or simply due to bad data (missing values for the **ACTIVITY**, **TAIL**, **HEAD** variables, and so on). The default behavior is to attempt drawing the chart without the precedence connections.

**SUCCESSOR=variable**
**SUCC=variable**
**SUCCESSOR=(variables)**
**SUCC=(variables)**
specifies the variables identifying the names of the immediate successors of the node specified by the **ACTIVITY** variable. This option is required when the precedence information is specified in the **AON** format. These variables must have the same type as the **ACTIVITY** variable. If the PRECDATA= option has been specified, the SUCCESSOR variables are assumed to exist in the Precedence data set; otherwise, they are assumed to exist in the Schedule data set.

**TAIL=variable**
**TAILNODE=variable**
specifies the variable in the Schedule data set that contains the name of the node that represents the start of the activity. This option is required when the precedence information is specified using the **AOA** format. The variable can be either numeric or character in type.

**TOP**
**TJUST**
positions the top of the Gantt chart at the top of the page, just below the titles. This option has priority over the **BOTTOM** or **BJUST** option.

**VMILE=value**
specifies a plot symbol from the font specified in the FMILE= option to be used as the milestone symbol on the chart. If the FMILE= option is set to NONE or is not specified, then the milestone symbol is the symbol specified by the VMILE= option in the special symbol table shown in Table 6.25. The default milestone symbol is a filled diamond.

**VPAGES=v**
Specifies that the Gantt chart is to be produced using v vertical pages. This, however, may not be possible due to intrinsic constraints on the output. For example, the GANTT procedure requires that every vertical page represent at least one tickmark. Thus, the number of vertical pages can never exceed the number of tickmarks in the axis. Subject to such inherent constraints, the GANTT procedure attempts to use the specified value for the VPAGES= option; if this fails, it uses v as an upper...
bound. The exact number of vertical pages used by the Gantt chart is provided in the _ORGANTT macro variable. See the “Macro Variable _ORGANTT” section on page 528 for further details.

The appearance of the chart with respect to the VPAGES= option is also influenced by the presence of other related procedure options. The VPAGES= option performs the task of determining the number of horizontal pages in the absence of the HPAGES= option. If the COMPRESS or PCOMPRESS option is specified in this scenario, the chart uses one horizontal page. If neither the COMPRESS nor PCOMPRESS option is specified, the number of horizontal pages is computed in order to display as much of the chart as possible in a proportional manner.

**WEB=variable**
**HTML=variable**

specifies the character variable in the schedule data set that identifies an HTML page for each activity. The procedure generates an HTML image map using this information for all the schedule bars, milestones, and ID variables corresponding to an activity.

**WPREC=linewidth**

specifies the line width to use for drawing the precedence connections. The default width is 1.

**WTNOW=linewidth**

specifies the line width to use for drawing the timenow line. The default width is 4.

**WZONE=linewidth**
**WZLINE=linewidth**

specifies the line width to use for drawing the horizontal zone lines which demarcate the different zones on the chart. The default linewidth is 1.

**ZONE=variable**
**ZONEVAR=variable**

names the variable in the Schedule data set that is used to separate the Gantt chart into zones. This option enables you to produce a zoned Gantt chart. The GANTT procedure does not sort the Schedule data set and processes the data in the order it appears in the Schedule data set. A change in the value of the zone variable establishes a new zone. By default, the GANTT procedure displays a ZONE variable column before the ID variable columns. You can suppress this column using the NOZONECOL option. The GANTT procedure also draws a horizontal line demarcating zones. By default, the line spans the entire chart in the horizontal direction, both inside and outside the axis area. You can control the span of this line using the ZONESPAN= option. You can also adjust the vertical offset of the line from its default position by using the ZONEOFFSET= option. In addition, you can also control the graphical attributes associated with this line such as color, style, and width using the CZONE=, LZONE=, and WZONE= options, respectively.

**ZONEOFF=d**
**ZONEOFFSET=d**

specifies the offset in cellheights of the zone line from its default position of 0.5 cell
height above the top of the first schedule bar for the first activity in the zone. The default value of \( d \) is 0. The direction of increase is from top to bottom.

**ZONESPAN=name**

**ZONELINE=name**

specifies the span of the horizontal zone line that is drawn at the beginning of each new zone. Valid values for ‘name’ are LEFT, RIGHT, ALL, and NONE. The value of LEFT draws a line that spans the width of the columns of text that appear on the left hand side of the Gantt chart. The value of RIGHT draws a line that spans the width of the axis area which appears on the right-hand side of the chart. The value of ALL draws a line spanning both the preceding regions while the value of NONE suppresses the line altogether. The default value is ALL.

**ID Statement**

ID variables;

The ID statement specifies the variables to be displayed that further identify each activity. If two or more consecutive observations have the same combination of values for all the ID variables, only the first of these observations is plotted unless the DUPOK option is specified in the CHART statement.

By default, if the ID variables do not all fit on one page, they are all omitted and a message explaining the omission is printed to the log. You can override this behavior and display the maximum number of consecutive ID variables that can fit on a page by specifying the MAXIDS option in the CHART statement.

If the time axis of a Gantt chart spans more than one page, the ID variables are displayed only on the first page of each activity. You can display the ID variables on every page by specifying the IDPAGES option in the CHART statement.

**Details**

**Schedule Data Set**

Often, the Schedule data set input to PROC GANTT is the output data set (the OUT= data set) produced by PROC CPM, sometimes with additional variables. Typically, this data set contains

- the start and finish times for the early and late schedules (E_START, E_FINISH, L_START, and L_FINISH variables)
- the actual start and finish times (A_START and A_FINISH variables) of activities that have been completed or are in progress for projects that are in progress or completed
- the resource-constrained start and finish times of the activities (S_START and S_FINISH variables) for projects that have been scheduled subject to resource constraints
the baseline start and finish times (B\_START and B\_FINISH variables) of activities when monitoring and comparing the progress of a project against a target schedule.

When such a data set is input as the Schedule data set to PROC GANTT, the procedure draws a Gantt chart showing five different schedules for each activity: the predicted early/late schedules using E\_START, E\_FINISH, L\_START, and L\_FINISH on the first line for the activity, the actual schedule using A\_START and A\_FINISH on the second line, the resource-constrained schedule using S\_START and S\_FINISH on the third line, and the baseline schedule using B\_START and B\_FINISH on the fourth line.

The SEGMT\_NO Variable

Normally, each observation of the Schedule data set causes one set of bars to be plotted corresponding to the activity in that observation. If activity splitting has occurred during resource-constrained scheduling, the Schedule data set produced by PROC CPM contains more than one observation for each activity. It also contains a variable named SEGMT\_NO. For activities that are not split, this variable has a missing value. For split activities, the number of observations in the Schedule data set is equal to (1 + the number of disjoint segments that the activity is split into). The first observation corresponding to such an activity has SEGMT\_NO equal to missing, and the S\_START and S\_FINISH variables are equal to the start and finish times, respectively, of the entire activity. Following this observation, there are as many observations as the number of disjoint segments in the activity. All values for these segments are the same as the first observation for this activity except SEGMT\_NO, S\_START, S\_FINISH, and the duration. SEGMT\_NO is the index of the segment, S\_START and S\_FINISH are the resource-constrained start and finish times for this segment, and duration is the duration of this segment. See the “Displayed Output” section on page 525 for details on how PROC GANTT treats the observations in this case.

Note: For a given observation in the Schedule data set, the finish times (E\_FINISH, L\_FINISH, A\_FINISH, S\_FINISH, and B\_FINISH) denote the last day of work when the variables are formatted as SAS date values; if they are formatted as SAS time or datetime values, they denote the last second of work. For instance, if an activity has E\_START='2JUN04' and E\_FINISH='4JUN04', then the earliest start time for the activity is the beginning of June 2, 2004, and the earliest finish time is the end of June 4, 2004. Thus, PROC GANTT assumes that the early, late, actual, resource-constrained, or baseline finish time of an activity is at the end of the time interval specified for the respective variable. The exceptions to this type of default behavior occur when either the DURATION= option or the PADDING= option is in effect. See the “Specifying the PADDING= Option” section on page 492 for further details.

All start and finish times, and additional variables specified in the CHART statement must be numeric and have the same formats. The ID and BY variables can be either numeric or character. Although the data set does not have to be sorted, the output may be more meaningful if the data are in order of increasing early start time. Further, if
the data set contains segments of split activities, the data should also be sorted by SEGMT_NO for each activity.

A family of options, available only in graphics mode, enables you to display the precedence relationships between activities on the Gantt chart. The precedence relationships are established by specifying a set of variables in the CHART statement; this can be done in one of two ways. These variables must lie in the Schedule data set and, optionally, in the Precedence data set defined by the PRECDATA= option in the PROC GANTT statement. See the “Specifying the Logic Options” section on page 511 for more details on producing a Logic Gantt chart.

Also available in graphics mode is an automatic text annotation facility that enables you to annotate labels on the Gantt chart independently of the SAS/GRAPH Annotate facility. A useful property of this facility is the ability to link label coordinates and text strings to variables in the Schedule data set. You can create links of two types. An implicit link automatically links an observation in the Label data set to every observation in the Schedule data set. An explicit link uses a variable that must exist on both data sets and be identical in type and length. For more information on the linking variable in the automatic text annotation facility, see the “Automatic Text Annotation” section on page 519.

### Missing Values in Input Data Sets

Table 6.19 summarizes the treatment of missing values for variables in the input data sets used by PROC GANTT.

Table 6.19. Treatment of Missing Values in PROC GANTT

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Variable</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALEDATA</td>
<td>CALID</td>
<td>default calendar (0 or “DEFAULT”)</td>
</tr>
<tr>
<td></td>
<td><em>SUN</em>, . . . ,<em>SAT</em></td>
<td>corresponding shift for default calendar</td>
</tr>
<tr>
<td></td>
<td>D_LENGTH</td>
<td>DAYLENGTH, if available; else, 8:00, if INTERVAL=WORKDAY or DTWRKDAY;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24:00, otherwise</td>
</tr>
<tr>
<td>DATA</td>
<td>A_FINISH</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>A_START</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>ACTIVITY</td>
<td>input error: logic options are ignored</td>
</tr>
<tr>
<td></td>
<td>B_FINISH</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>B_START</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>CALID</td>
<td>default calendar (0 or “DEFAULT”)</td>
</tr>
<tr>
<td></td>
<td>CHART</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>DUR</td>
<td>nonzero</td>
</tr>
<tr>
<td></td>
<td>E_FINISH</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>E_START</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>HEADNODE</td>
<td>input error: logic options are ignored</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>missing</td>
</tr>
<tr>
<td></td>
<td>L_FINISH</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>L_START</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>LAG</td>
<td>FS</td>
</tr>
<tr>
<td></td>
<td>S_FINISH</td>
<td>value ignored</td>
</tr>
</tbody>
</table>
Table 6.19. (continued)

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Variable</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_START</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>SEGMT_NO</td>
<td>See the “Displayed Output” section on page 525</td>
</tr>
<tr>
<td></td>
<td>SUCCESSOR</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>TAILNODE</td>
<td>input error: logic options are ignored</td>
</tr>
<tr>
<td></td>
<td>ZONE</td>
<td>zone value</td>
</tr>
<tr>
<td>HOLIDATA</td>
<td>CALID</td>
<td>holiday applies to all calendars defined</td>
</tr>
<tr>
<td></td>
<td>HOLIDAY</td>
<td>observation ignored</td>
</tr>
<tr>
<td></td>
<td>HOLIDUR</td>
<td>ignored, if HOLIFIN is not missing; else, 1.0</td>
</tr>
<tr>
<td></td>
<td>HOLIFIN</td>
<td>ignored, if HOLIDUR is not missing; else, HOLIDAY + (1 unit of INTERVAL)</td>
</tr>
<tr>
<td>LABDATA</td>
<td>_ALABEL</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>_CLABEL</td>
<td>CTEXT=</td>
</tr>
<tr>
<td></td>
<td>_FLABEL</td>
<td>FONT=</td>
</tr>
<tr>
<td></td>
<td>_HLABEL</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>_JLABEL</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>_LABEL</td>
<td>use _LVAR</td>
</tr>
<tr>
<td></td>
<td>_LVAR</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>_PAGEBRK</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>_RLABEL</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>_X</td>
<td>use _XVAR</td>
</tr>
<tr>
<td></td>
<td>_XOFFSET</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>_XVAR</td>
<td>value ignored</td>
</tr>
<tr>
<td></td>
<td>_XSYS</td>
<td>DATA</td>
</tr>
<tr>
<td></td>
<td>_Y</td>
<td>use LABVAR=</td>
</tr>
<tr>
<td></td>
<td>_YOFFSET</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>_YSYS</td>
<td>DATA</td>
</tr>
<tr>
<td></td>
<td>LABVAR</td>
<td>value ignored</td>
</tr>
<tr>
<td>PRECDATA</td>
<td>ACTIVITY</td>
<td>input error: logic options are ignored</td>
</tr>
<tr>
<td></td>
<td>LAG</td>
<td>FS</td>
</tr>
<tr>
<td></td>
<td>SUCCESSOR</td>
<td>value ignored</td>
</tr>
<tr>
<td>WORKDATA</td>
<td>any numeric variable</td>
<td>00:00, if first observation; 24:00, otherwise</td>
</tr>
</tbody>
</table>

Specifying the PADDING= Option

As explained in the “Schedule Data Set” section on page 489, the finish times in the Schedule data set denote the final time unit of an activity’s duration; that is, the activity finishes at the end of the day/second specified as the finish time. A plot of the activity’s duration should continue through the end of the final time unit. Thus, if the value of the E_Finish variable is ‘4JUN04’, the early finish time for the activity is plotted at the end of June 4, 2004 (or the beginning of June 5, 2004).

In other words, the finish times are padded by a day (second) if the finish time variables are formatted as SAS date (SAS time or datetime) values. This treatment is consistent with the meaning of the variables as output by PROC CPM. Default values of PADDING corresponding to different format types are shown in Table 6.20.
The PADDING= option is provided to override the default padding explained above. Valid values of this option are NONE, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QTR, YEAR, DTSECOND, DTMINUTE, DTHOUR, DTWEEK, DTMONTH, DTQTR, and DTYEAR. Use the value NONE if you do not want the finish times to be adjusted.

**Table 6.20.** Default Values of the PADDING= Option Corresponding to Format Type

<table>
<thead>
<tr>
<th>Format</th>
<th>PADDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS time value</td>
<td>SECOND</td>
</tr>
<tr>
<td>SAS date value</td>
<td>DAY</td>
</tr>
<tr>
<td>SAS datetime value</td>
<td>DTSECOND</td>
</tr>
<tr>
<td>Other</td>
<td>NONE</td>
</tr>
</tbody>
</table>

It is recommended that when plotting zero duration activities, you include a variable in the Schedule data set that has value zero if and only if the activity has zero duration. Defining this variable to the GANTT procedure using the DURATION= (or DUR=) option in the CHART statement ensures that a zero duration activity is represented on the chart by a Milestone. If this is not done, an activity with zero duration is shown on the chart as having a positive duration since finish times are padded to show the end of the last time unit.

**Page Format**

The GANTT procedure divides the observations (activities) into a number of subgroups of approximately equal numbers. The size of each group is determined by the PAGESIZE system option. Similarly, the time axis is divided into a number of approximately equal divisions depending on the LINESIZE system option.

If the FILL option is specified, however, each page is filled as completely as possible before plotting on a new page. If both axes are split, the pages are ordered with the chart for each group of activities being plotted completely (the time axis occupying several consecutive pages, if needed) before proceeding to the next group.

If a BY statement is used, each BY group is formatted separately.

Two options that control the format of the chart are the MININTERVAL= and SCALE= options. The value for the MININTERVAL= option, denoted by mininterval, is the smallest time interval unit to be identified on the chart. The value for the SCALE= option, denoted by scale, is the number of columns to be used to denote one unit of mininterval. For example, if MININTERVAL=MONTH and SCALE=10, the chart is formatted so that 10 columns denote the period of one month. The first of these 10 columns denotes the start of the month and the last denotes the end, with each column representing approximately three days. Further, the INCREMENT= option can be used to control the labeling. In this example, if INCREMENT=2, then the time axis would have labels for alternate months.
**Chapter 6. The GANTT Procedure**

### Specifying the MININTERVAL= Option

The value specified for the MININTERVAL= option is the smallest time interval unit to be identified on the chart. If the time values being plotted are SAS date values, the valid values for mininterval are DAY, WEEK, MONTH, QTR, or YEAR. If the values are SAS datetime values, valid values for mininterval are DTSECOND, DTMINUTE, DTHOUR, DTDAY, DTWEEK, DTMONTH, DTQTR, or DTYEAR. If they are SAS time values, then valid values are SECOND, MINUTE, or HOUR.

**Note:** If the times being plotted are SAS datetime values and mininterval is either DTSECOND, DTMINUTE, or DTHOUR, the output generated could run into several thousands of pages. Therefore, be careful when choosing a value for mininterval.

Table 6.21 shows the default values of mininterval corresponding to different formats of the times being plotted on the chart.

**Table 6.21.** Default Values of the MININTERVAL= Option

<table>
<thead>
<tr>
<th>Format</th>
<th>MININTERVAL Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATEw.</td>
<td>DAY</td>
</tr>
<tr>
<td>DATETIMEw.d</td>
<td>DTDAY</td>
</tr>
<tr>
<td>HHMMw.d</td>
<td>HOUR</td>
</tr>
<tr>
<td>MONYYw.</td>
<td>MONTH</td>
</tr>
<tr>
<td>TIMEw.d</td>
<td>HOUR</td>
</tr>
<tr>
<td>YYMMDDw.</td>
<td>MONTH</td>
</tr>
<tr>
<td>YYQw.</td>
<td>MONTH</td>
</tr>
</tbody>
</table>

### Labeling on the Time Axis

If the variables being plotted in the chart are unformatted numeric values, the time axis is labeled by the corresponding numbers in increments specified by the INCREMENT= option. However, if the variables have date, datetime, or time formats, then the time axis is labeled with two or three lines. Each line is determined by the value of mininterval, which in turn is determined by the format of the plotted times (see Table 6.21). Table 6.22 illustrates the format of the label corresponding to different values of mininterval.

**Table 6.22.** Label Format Corresponding to MININTERVAL= Value

<table>
<thead>
<tr>
<th>MININTERVAL= Value</th>
<th>First Line</th>
<th>Second Line</th>
<th>Third Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY, WEEK, DTWEEK</td>
<td>month</td>
<td>day</td>
<td></td>
</tr>
<tr>
<td>MONTH, QTR, YEAR,</td>
<td>year</td>
<td>month</td>
<td></td>
</tr>
<tr>
<td>DTMONTH, DTQTR, DTYEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTSECOND, DTMINUTE, DTHOUR,</td>
<td>month</td>
<td>day</td>
<td>time</td>
</tr>
<tr>
<td>DTDAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECOND, MINUTE, HOUR</td>
<td>time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple Calendars and Holidays

Work pertaining to a given activity is assumed to be done according to a particular calendar. A calendar is defined in terms of a work pattern for each day and a work-week structure for each week. In addition, each calendar may include holidays during the year. See the “Multiple Calendars” section in the PROC CPM chapter for details on how calendars are defined and how all the options work together. In this chapter, a less detailed description is provided. PROC GANTT uses the same structure as PROC CPM for defining calendars, but the options for using them differ in minor ways. The following are the differences in syntax:

- The CALID variable is specified as an option in the CHART statement and is not a separate statement as in PROC CPM.
- The HOLIDAY variable is specified as an option in the CHART statement and is not a separate statement as in PROC CPM.
- The HOLIDUR and HOLIFIN variables are specified as options in the CHART statement and not in a separate HOLIDAY statement.
- The INTERVAL= option is specified in the CHART statement and not in the procedure statement as in PROC CPM.

The WORKDATA (or Workday) data set specifies distinct shift patterns during a day. The CALEDATA (or Calendar) data set specifies a typical workweek for all the calendars in the project; for each day of a typical week, it specifies the shift pattern that is followed. The HOLIDATA (or Holiday) data set specifies a list of holidays and the calendars that they refer to; holidays are defined either by specifying the start of the holiday and its duration in interval units, where the INTERVAL= option has been specified as interval, or by specifying the start and end of the holiday period. If both the HOLIDUR and the HOLIFIN variables have missing values in a given observation, the holiday is assumed to start at the date and time specified for the HOLIDAY variable and last one unit of interval. If a given observation has valid values for both the HOLIDUR and the HOLIFIN variables, only the HOLIFIN variable is used so that the holiday is assumed to start and end as specified by the HOLIDAY and HOLIFIN variables, respectively. The Schedule data set (the DATA= data set), specifies the calendar that is used by each activity in the project through the CALID variable (or a default variable _CAL__). Each of the three data sets used to define calendars is described in greater detail in the “Multiple Calendars” section in the PROC CPM chapter.

Each new value for the CALID variable in either the Calendar or the Holiday data set defines a new calendar. If a calendar value appears in the Calendar data set and not in the Holiday data set, it is assumed to have the same holidays as the default calendar (the default calendar is defined in the PROC CPM chapter). If a calendar value appears in the Holiday data set and not in the Calendar data set, it is assumed to have the same work pattern structures (for each week and within each day) as the default calendar. In the Schedule data set, valid values for the CALID variable are those that are defined in either the Calendar or the Holiday data set.
All the holiday, workday and workweek information is used by PROC GANTT for display only; in particular, the weekend and shift information is used only if the MARKWKND or MARKBREAK option is in effect. The value of the INTERVAL= option, which has a greater scope in PROC CPM, is used here only to determine the end of holiday periods appropriately. Further, the Workday, Calendar, and Holiday data sets and the processing of holidays and different calendars are supported only when interval is DAY, WEEKDAY, WORKDAY, DTSECOND, DTMINUTE, DTHOUR, DTDAY, or DTRKDAY.

Specifying the INTERVAL= Option

The INTERVAL= option is needed only if you want holidays or breaks or both during a week or day to be indicated on the Gantt chart. The value of INTERVAL= is used to compute the start and end of holiday periods to be compatible with the way they were computed and used by PROC CPM. Further, if the MARKWKND or MARKBREAK option is in effect, the INTERVAL= option, in conjunction with the DAYSTART= and DAYLENGTH= options and the Workday, Calendar, and Holiday data sets, helps identify the breaks during a standard week or day as well as the holidays that are to be marked on the chart. Valid values of interval are DAY, WEEKDAY, WORKDAY, DTSECOND, DTMINUTE, DTHOUR, DTDAY, and DTRKDAY. If interval is WEEKDAY, WORKDAY, or DTRKDAY, the MARKWKND option is in effect; otherwise, breaks during a week are indicated only if MARKWKND is specified and breaks within a day are marked only if MARKBREAK is specified.

Full-Screen Version

You can invoke PROC GANTT in full-screen mode by specifying FS (or FULLSCREEN) in the PROC GANTT statement. The full-screen mode offers you a convenient way to browse the Gantt chart for the project. For large projects, where the chart could span several pages, the full-screen mode is especially convenient because you can scroll around the output using commands on the command line, pull-down menus, or function keys. You can scroll vertically to a given job on the task axis by specifying a job number or scroll horizontally to a given point in time along the time axis by specifying a date. You can optionally display the title and the legend.

The specifications for the full-screen version of PROC GANTT and the output format are the same as those for the line-printer version. The following is a list of the few minor differences:

- The FILL option is not relevant in this case because all of the activities are plotted on one logical page.
- The NOLEGEND option is not effective. The screen always displays only the body of the chart along with the ID columns. To see what the symbols mean, you can use the SHOW LEGEND command, which causes the legend to be displayed at the bottom of the chart. To delete the legend, use the DELETE LEGEND command.
- The SUMMARY option is not supported in full-screen mode.
• The **SCALE** option works the same way as in the line-printer version, except for its default behavior. The default value is always 1, unlike in the line-printer case where, if the time axis fits on less than one page, the default value is chosen so that the time axis fills as much of the page as possible.

**Output Format**

The output format is similar to the line-printer version of PROC GANTT. When PROC GANTT is invoked with the **FS** option, the screen is filled with a display of the Gantt chart. The display consists of column headings at the top and ID values (if an ID statement is used to specify ID variables) at the left. The body of the chart occupies the bottom right portion of the display. The column headings can be scrolled left or right, the ID values can be scrolled up or down, and the body of the chart can scroll along both directions. The display does not include the TITLES or LEGEND.

In addition to using the symbols and join characters as described for the line-printer version of PROC GANTT, the full-screen version also uses different colors to distinguish the types of activities and their associated bars.

You can use the **FIND** command to locate a particular job (by job number) or a particular time along the time axis. The format of the FIND command is FIND JOB *n* or FIND TIME *t*. All the commands that are specific to PROC GANTT are described as follows.

**Local Commands**

Table 6.23 lists the commands that can be used in the full-screen version of PROC GANTT.

**Table 6.23.** Full-Screen Commands and Their Purpose

<table>
<thead>
<tr>
<th>Scrolling</th>
<th>Controlling Display</th>
<th>Exiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKWARD</td>
<td>SHOW</td>
<td>END</td>
</tr>
<tr>
<td>FORWARD</td>
<td>DELETE</td>
<td>CANCEL</td>
</tr>
<tr>
<td>LEFT</td>
<td>FIND</td>
<td></td>
</tr>
<tr>
<td>RIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOTTOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSCROLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSCROLL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**BACKWARD**

scrolls towards the top of the Gantt chart by the **VSCROLL** amount. A specification of **BACKWARD MAX** scrolls to the top of the chart. You can also specify the vertical scroll amount for the current command as **BACKWARD PAGE | HALF | n**. Note that during vertical scrolling, the column headings are not scrolled.

**BOTTOM**

scrolls to the bottom of the Gantt chart.
DELETE LEGEND | TITLE
deletes the legend or the title from the screen. A specification of DELETE LEGEND deletes the legend from the current display; DELETE TITLE deletes the current title (titles) from the current display.

END
ends the current invocation of the procedure.

FIND
scrolls to the specified position on the chart. The format of the command is FIND JOB \(n\) or FIND TIME \(t\).

A specification of FIND JOB \(n\) scrolls backward or forward, as necessary, in order to position the activity with job number \(n\) on the screen. The specified activity is positioned at the top of the screen, unless this would result in blank space at the bottom of the screen. In this instance, the chart is scrolled down to fit as many jobs as space permits.

A specification of FIND TIME \(t\) scrolls left or right, as necessary, in order to position the time \(t\) on the time axis to appear on the screen. The specified time is positioned at the left boundary of the displayed chart area unless this would result in blank space at the right of the screen. In this instance, the chart is scrolled to the right to fit as much of the time axis as space permits.

FORWARD
scrolls towards the bottom of the Gantt chart by the VSCROLL amount. A specification of FORWARD MAX scrolls to the bottom of the chart. You can also specify the vertical scroll amount for the current command as FORWARD PAGE | HALF | \(n\).

Note that during vertical scrolling, the column headings are not scrolled.

HELP
displays a HELP screen listing all the full-screen commands specific to PROC GANTT.

HOME
moves the cursor to the command line.

HSCROLL
sets the amount of information that scrolls horizontally when you execute the LEFT or RIGHT command. The format is HSCROLL PAGE | HALF | \(n\). The specification is assumed to be in number of columns. A specification of HSCROLL PAGE sets the scroll amount to be the number of columns in the part of the screen displaying the plot of the schedules. A specification of HSCROLL HALF is half that amount; HSCROLL \(n\) sets the horizontal scroll amount to \(n\) columns. The default setting is PAGE.

KEYS
displays current function key settings.

LEFT
scrolls towards the left boundary of the Gantt chart by the HSCROLL amount. A specification of LEFT MAX scrolls to the left boundary. You can also specify the
horizontal scroll amount for the current command as LEFT PAGE | HALF | n. Note that during horizontal scrolling, the ID columns are not scrolled.

RIGHT
scrolls towards the right boundary of the Gantt chart by the HSCROLL amount. A specification of RIGHT MAX scrolls to the right boundary. You can also specify the horizontal scroll amount for the current command as RIGHT PAGE | HALF | n. Note that during horizontal scrolling, the ID columns are not scrolled.

SHOW LEGEND | TITLE
displays the legend or the title on the screen. A specification of SHOW LEGEND displays the legend in the bottom portion of the current display; SHOW TITLE displays the current title (titles) in the top portion of the current display.

TOP
scrolls to the top of the Gantt chart.

VSCROLL
sets the amount of information that scrolls vertically when you execute the BACKWARD or FORWARD command. The format is VSCROLL PAGE | HALF | n. The specification is assumed to be in number of rows. A specification of VSCROLL PAGE sets the scroll amount to be the number of rows in the part of the screen displaying the plot of the schedules. A specification of VSCROLL HALF is half that amount; VSCROLL n sets the vertical scroll amount to n rows. The default setting is PAGE.

Global Commands

Most of the global commands used in SAS/FSP software are also valid with PROC GANTT. Some of the commands used for printing screens are described below.

SAS/FSP software provides you with a set of printing commands that enable you to take pictures of windows and to route those pictures to a printer or a file. Whether you choose to route these items directly to a printer queue or to a print file, SAS/FSP software provides you with a means of specifying printing instructions. The following is an overview of these related commands and their functions:

FREE
releases all items in the print queue to the printer. This includes pictures taken with the SPRINT command as well as items sent to the print queue with the SEND command. All items in the print queue are also automatically sent to the printer when you exit the procedure, send an item that uses a different form, or send an item to a print file. Items are also sent automatically when internal buffers have been filled.

Items sent to a file: If you have routed pictures taken with the SPRINT command to a file rather than to a printer, the file is closed when you execute a FREE command. It is also closed when you send an item that uses a different form, send items to a different print file or to the print queue, or exit the procedure.

Note: Any items sent to the same print file after it has been closed will replace the current contents.
PRTFILE ‘filename’
PRTFILE fileref
PRTFILE CLEAR

specifies a file to which the procedure sends pictures taken with the SPRINT command instead of sending them to the default printer. You can specify an actual filename or a previously assigned fileref.

Using a filename: To specify a file named destination-file, execute

    prtfile ‘destination-file’

where destination-file follows your system’s conventions. Note that quotes are required when you specify a filename rather than a fileref.

Using a fileref: You can also specify a previously assigned fileref.

Using the default: Specify PRTFILE CLEAR to prompt the procedure to route information once again to the queue for the default printer.

Identify the current print file: Specify PRTFILE to prompt the procedure to identify the current print file.

SPRINT [NOBORDER][NOCMD]

takes a picture of the current window exactly as you see it, including window contents, border, and command line. By default, the picture is sent to the queue for the default printer.

Border and command line: By default, both the window border and command line are included in the picture you take with the SPRINT command. You can capture a picture of the window contents that excludes either the window border, the command line, or both. Specify the NOBORDER option to exclude the border and the NOCMD option to exclude the command line. Taking a picture of the window contents without the border and command line is a convenient way to print text for a report.

Destination: The destination of the picture captured with the SPRINT command is determined by the PRTFILE command. By default, the picture goes to the default printer. Use the PRTFILE command if you want it sent to a file instead. Each time you execute the SPRINT command, the picture you take is appended to the current print file; it does not write over the current file. See the PRTFILE command for further explanation.

---

Graphics Version

Formatting the Chart

If necessary, PROC GANTT divides the Gantt chart into several pages. You can force the Gantt chart to fit on one page by specifying the COMPRESS option in the CHART statement. You can achieve a similar result using the PCOMPRESS option, which maintains the aspect ratio as well. In addition, you can fit the chart
into a prescribed number of horizontal and vertical pages by using the HPAGES= and VPAGES= options in the CHART statement.

The amount of information contained on each page is determined by the values of the graphics options HPOS= and VPOS= specified in a GOPTIONS statement. If any compression of the Gantt chart is performed, the values of HPOS and VPOS are increased, as necessary, to the number of rows and columns respectively, that the entire chart occupies in uncompressed mode. The default height of each row of the Gantt chart is computed as \((100/v)\%\) of the screen height where VPOS=\(v\). Thus, the larger the value of VPOS, the narrower the row. You can control the default bar height and default bar offset by using the BARHT= option and the BAROFF= option, respectively. You can further override these at the schedule level. For example, the ABARHT= option affects only the height of the actual schedule bars. The screen is assumed to be divided into \(h\) columns where HPOS=\(h\); thus, each column is assumed to be as wide as \((100/h)\%\) of the screen width. Hence, the specifications SCALE=10 and MININTERVAL=WEEK imply that a duration of one week is denoted by a bar of length \((1000/h)\%\) of the screen width.

The height of the text characters is controlled by both the HEIGHT= option in the CHART statement and the HTEXT= option specified in a GOPTIONS statement. The text height is set equal to the product of the HEIGHT= and HTEXT= values. The units in which the text height is measured are those of the HTEXT= option. By default, the value of HEIGHT= is 1, which sets the text height to be equal to the HTEXT= value. The default value of HTEXT= is 1 unit, where a unit is defined by the GUNIT= option in a GOPTIONS statement. Thus, in the absence of the HEIGHT=, HTEXT=, and GUNIT= options, the text height is the same as the bar height, namely one cell height. Increasing the value of HEIGHT= is useful when you use the COMPRESS option, particularly when you have a very large chart. Since the chart is scaled as appropriate to fit on one page, the text can be very hard to discern, or even illegible, and would benefit from enlargement. Relative positioning of the font baseline for activity text is controlled by the HTOFF= option in the CHART statement. By default, the font baseline for an activity is at the bottom of the first bar corresponding to the activity.

The color of the text characters is specified using the CTEXT= option in the CHART statement. If CTEXT= is not specified, PROC GANTT uses the value of the CTEXT= option specified in a GOPTIONS statement that has a default value of the first color in the current COLORS= list in the GOPTIONS statement. You can override the text colors for selected columns of activity text at the activity level by using a PATTERN variable in the Schedule data set and specifying the CTEXTCOLS= option in the CHART statement.

The font used for the text characters is specified with the FONT= option in the CHART statement. If FONT= is not specified, PROC GANTT uses the value of the FTEXT= option specified in a GOPTIONS statement that has a default value of the hardware font for your output device. If the hardware font cannot be used, the SIMULATE font is used instead. The default value of the SIMULATE font is the SIMPLEX font.

Global PATTERN statements are used to specify the fill pattern for the different types
of bars drawn on the Gantt chart. Each fill pattern can be associated with a color. Patterns can be used to reflect the status of an activity (normal, critical, supercritical) in the predicted early/late schedule, to indicate the different schedule types (actual, resource-constrained, baseline), and to represent weekends, holidays and breaks on the Gantt chart. See the “Using PATTERN Statements” section on page 503 for details. In addition, you can override these fill patterns for selected schedules at an activity level by using a PATTERN variable in the Schedule data set and specifying the PATLEVEL= option in the CHART statement.

You can use global SYMBOL statements to define the symbols that represent CHART variables in the Gantt chart. The SYMBOL statement enables you to select symbols from different fonts and modify their appearance to suit your requirements. You can specify a color and a height for the symbol in addition to a variety of other options. See the “Using SYMBOL Statements” section on page 506 for details.

**Annotate Processing**

The Annotate facility enables you to enhance graphics output produced by PROC GANTT. However, if the only items being annotated are symbols and text strings, it is recommended that you use the Automatic Text Annotation facility that is built into the Gantt procedure instead. This facility was developed specifically for labeling Gantt charts; it has some very useful features and requires a minimum of effort.

To use the SAS/GRAPH Annotate facility, you must create an Annotate data set that contains a set of graphics commands that can be superimposed on the Gantt chart. This data set has a specific format and must contain key variables. Each observation in the Annotate data set represents a command to draw a graphics element or perform an action. The values of the variables in the observation determine what is done and how it is done. The observations in an Annotate data set can be created by explicitly assigning values to the Annotate variables through a DATA step or SAS/FSP procedure or by implicitly assigning values with Annotate macros within a SAS DATA step. The process of creating Annotate observations is greatly simplified through the use of Annotate macros.

Coordinates specify where graphic elements are to be positioned. A coordinate system, in turn, determines how coordinates are interpreted. There are several different coordinate systems that are used by the Annotate facility. Typically, one of three major drawing areas can be associated with any coordinate system: data area, procedure output area, and graphics output area. This chapter explains the coordinate system that is based on the data area of PROC GANTT.

When annotating a graph produced by any of the graphics procedures, you may find it helpful to use data coordinates that refer to the data values corresponding to the graph that is being annotated. For example, if you want to label a particular activity of a Gantt chart with additional text, you can position the text accurately if you use data coordinates instead of screen coordinates. With respect to PROC GANTT, the Annotate facility uses the time axis and the activity axis of the Gantt chart as the basis for the data coordinate system. To use this feature, create an Annotate data set based on the Schedule data set that is input to the procedure, utilizing Annotate macros whenever possible to simplify the process.
Note: The data coordinate system enables you to annotate the graph even if it spans multiple pages. However, each annotation must be entirely contained within a given page. For example, you cannot annotate a line on the Gantt chart that runs from one page of the chart to another.

In addition to a coordinate system based on the data, you can select a coordinate system based on either the procedure output area or the Graphics output area. You would typically need to use one of these systems, for example, if you want to annotate text outside the chart area.

Using PATTERN Statements

PROC GANTT uses those patterns that are available with the GCHART procedure. PROC GANTT uses a maximum of nine different patterns to denote various phases in an activity’s duration and the various types of schedules that are plotted. Patterns are specified in PATTERN statements that can be used anywhere in your SAS program. Table 6.24 lists the function of each of the first nine PATTERN statements that are used by PROC GANTT.

Any PATTERN statements that you specify are used. If more are needed, default PATTERN statements are used.

You can override any of these patterns at the activity level by using a PATTERN variable in the schedule data set. A PATTERN variable is identified by specifying the PATTERN= option in the CHART statement or by the presence of the default _PATTERN variable.

Table 6.24. PATTERN Statements used by PROC GANTT

<table>
<thead>
<tr>
<th>PATTERN</th>
<th>Used to Denote</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>duration of a noncritical activity</td>
</tr>
<tr>
<td>2</td>
<td>slack time for a noncritical activity</td>
</tr>
<tr>
<td>3</td>
<td>duration of a critical activity</td>
</tr>
<tr>
<td>4</td>
<td>slack time for a supercritical activity</td>
</tr>
<tr>
<td>5</td>
<td>duration of a supercritical activity</td>
</tr>
<tr>
<td>6</td>
<td>actual duration of an activity</td>
</tr>
<tr>
<td>7</td>
<td>break due to a holiday</td>
</tr>
<tr>
<td>8</td>
<td>resource-constrained duration of an activity</td>
</tr>
<tr>
<td>9</td>
<td>baseline duration of an activity</td>
</tr>
</tbody>
</table>

Refer to the SAS/GRAPH documentation for a detailed description of PATTERN statements. Most of the relevant information is reproduced here for the sake of completeness.

PATTERN Statement Syntax

The general form of a PATTERN statement is

PATTERNn options;
where

- \( n \) is a number ranging from 1 to 255. If you do not specify a number after the keyword PATTERN, PATTERN1 is assumed.
- options enables you to specify the colors and patterns used to fill the bars in your output.

PATTERN statements are additive; if you specify a C= or V= option in a PATTERN statement and then omit that option in a later PATTERN statement ending in the same number, the option remains in effect. To turn off options specified in a previous PATTERN\( n \) statement, either specify all options in a new PATTERN\( n \) statement, or use the keyword PATTERN\( n \) followed by a semicolon. For example, the following statement turns off any C= or V= option specified in previous PATTERN3 statements:

```
pattern3;
```

You can reset options in PATTERN statements to their default values by specifying a null value. A comma can be used (but is not required) to separate a null parameter from the next option.

For example, both of the following statements cause the C= option to assume its default value (the value of the CPATTERN= option or the first color in the COLORS= list):

```
pattern c=, v=solid;
```

or

```
pattern c= v=solid;
```

In the following statement, both options are reset to their default values:

```
pattern2 c= v=;
```

You can also turn off options by specifying the RESET= option in a GOPTIONS statement.

**General options**

You can specify the following options in a PATTERN statement.

- \( \text{COLOR=\text{color}} \)  
  - \( \text{C=\text{color}} \)
    - specifies the color to use for a bar or other area to be filled. If you do not specify the C= option in a PATTERN statement, the procedure uses the value you specified for the CPATTERN= option in a GOPTIONS statement. If you omitted the CPATTERN=
option, the procedure uses the pattern specified by the V= option (see below) with each color in the COLORS= list before it uses the next PATTERN statement.

**REPEAT=n**

**R=n**

specifies the number of times the PATTERN statement is to be reused. For example, the following statement represents one pattern to be used by SAS/GRAPH software:

```plaintext
pattern1 v=x3 c=red;
```

You can use the REPEAT= option in the statement to repeat the pattern before going to the next pattern. For example, if you specify the following statements, PATTERN1 is repeated ten times before PATTERN2 is used:

```plaintext
pattern1 v=x3 c=red r=10;
pattern2 v=s c=blue r=10;
```

Remember that if you omit the COLOR= option in the PATTERN statement and you do not specify the CPATTERN= option, SAS/GRAPH software repeats the pattern for each color in the current COLORS= list. If you specify the R= option in a PATTERN statement from which the C= option is omitted, the statement cycles through the COLORS= list the number of times given by the value of the R= option.

For example, if the current device has seven colors, then the following statement results in 70 patterns because each group of seven patterns generated by cycling through the COLORS= list is repeated ten times:

```plaintext
pattern v=x3 r=10;
```

**VALUE=value**

**V=value**

specifies the pattern to use for a bar or other area to be filled. The valid values you can use depend on what procedure you are using and the type of graph you are producing. In PROC GANTT, which produces bars, you must use one of the pattern values shown in Figure 6.6.

In a PATTERN statement, if you specify a value for the V= option but not for the C= option, the procedure uses the value you specified for the CPATTERN= option in a GOPTIONS statement. If you omitted the CPATTERN= option, the procedure uses the pattern specified for the V= option with each color in the COLORS= list before it uses the next PATTERN statement. Thus, if you specify the following statements, the PATTERN1 statement is used for the first type of bar, namely, for the duration of a noncritical activity:

```plaintext
pattern1 c=red v=x3;
pattern2 v=s;
pattern3 c=blue v=l3;
pattern4 c=green v=r4;
proc gantt data=sched;
```
The PATTERN2 statement is used for the second type of bar, namely, for the slack time of a noncritical activity. Because a C= value is not specified in the PATTERN2 statement, SAS/GRAPH software uses the PATTERN2 statement and cycles through the colors in the COLORS= list for the device to obtain as many patterns as there are colors in the list. If needed, the PATTERN3 and PATTERN4 values are then used for any remaining types of bars.

Figure 6.6. Pattern Selection Guide

Using SYMBOL Statements

You can specify a SYMBOL statement anywhere in your SAS program. SYMBOL statements give PROC GANTT information about the characters to be used for plotting the CHART variables.

See also the “Special Fonts for Project Management and Decision Analysis” section on page 509 for a description of some typically used Gantt chart symbols that can be specified using a SYMBOL statement.

Refer to the SAS/GRAPH documentation for a detailed description of SYMBOL statements. Most of the relevant information is reproduced here for the sake of completeness.

SYMBOL Statement Syntax

The general form of a SYMBOL statement is

\[
\text{SYMBOL}\ n \ options; 
\]

where

- \( n \) is a number ranging from 1 to 255. Each SYMBOL statement remains in effect until you specify another SYMBOL statement ending in the same number. If you do not specify a number following the keyword SYMBOL, SYMBOL1 is assumed.
- \( options \) enables you to specify the plot characters and color.
SYMBOL statements are additive; that is, if you specify a given option in a SYMBOL statement and then omit that option in a later SYMBOL statement ending in the same number, the option remains in effect. To turn off all options specified in previous SYMBOL statements, you can specify all options in a new SYMBOL statement, use the keyword SYMBOLn followed by a semicolon, or specify a null value. A comma can be used (but is not required) to separate a null parameter from the next option.

For example, both of the following statements cause the C= option to assume its default value (the value of the CSYMBOL= option or the first color in the COLORS= list):

```
symbol1 c=, v=plus;
```

and

```
symbol1 c= v=plus;
```

In the following statement, both options are reset to their default values:

```
symbol4 c= v=;
```

You can also turn off options by specifying the RESET= option in a GOPTIONS statement.

**General options**

You can specify the following options in the SYMBOL statement.

**COLOR=color**

C=color

specifies the color to use for the corresponding plot specification. If you do not specify the C= option in a SYMBOL statement, the procedure uses the value you specified for the CSYMBOL= option in a GOPTIONS statement. If you omit the CSYMBOL= option, the procedure uses the value specified by the V= option with each color in the COLORS= list before it uses the next SYMBOL statement.

**FONT=font**

F=font

specifies the font from which the symbol corresponding to the value specified with the V= option is to be drawn. If you do not specify a font, the V= option specifies the symbol from the special symbol table shown in Table 6.25.

**H=height**

H=height

specifies the height of the symbol that is to be drawn.

For example, this SYMBOL statement

```
symbol1 c=green v=x f=special h=2;
```
indicates that the symbol at each data point is the letter K from the SPECIAL font (a filled square), drawn in green, the height being twice the bar height.

\textbf{\texttt{REPEAT=\textit{n}}}
\texttt{\textbf{\texttt{R=n}}}

specifies the number of times the SYMBOL statement is to be reused.

\texttt{\textbf{\texttt{V=\textit{special-symbol}}}}
\texttt{\textbf{\texttt{V=\textit{\textquoteleft\textquoteleft string\textquoteleft\textquoteleft}}}}

identifies the symbols from the font specified by the FONT= option in the SYMBOL statement for the corresponding plot specifications. If the FONT= option is not specified, the plot symbol is the symbol corresponding to the value of V= in the special symbol table shown in Table 6.25. Also permitted without a FONT= specification are the letters A through W and the numbers 0 through 9. If the font is a symbol font, such as MARKER, the string specified with the V= option is the character code for the symbol. If the font is a text font, such as SWISS, the string specified with the V= option is displayed as the plot symbol. By default, the value of V= is PLUS, which produces the plus symbol (+) from the special symbol table.

Note that if you use the special symbol comma (,) with the V= option, you must enclose the comma in quotes as illustrated in the following statement:

\texttt{\textbf{\textit{symbol1 v=\textquoteleft\textquoteleft ,\textquoteleft\textquoteleft ;}}}

### Table 6.25. Special Symbol Table

<table>
<thead>
<tr>
<th>VALUE=</th>
<th>Plot Symbol</th>
<th>VALUE=</th>
<th>Plot Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUS</td>
<td>+</td>
<td>%</td>
<td>(percent)</td>
</tr>
<tr>
<td>X</td>
<td>×</td>
<td>&amp;</td>
<td>(ampersand)</td>
</tr>
<tr>
<td>STAR</td>
<td>*</td>
<td>‘</td>
<td>(single quote)</td>
</tr>
<tr>
<td>SQUARE</td>
<td>□</td>
<td>=</td>
<td>(equals)</td>
</tr>
<tr>
<td>DIAMOND</td>
<td>◊</td>
<td>-</td>
<td>(hyphen)</td>
</tr>
<tr>
<td>TRIANGLE</td>
<td>△</td>
<td>@</td>
<td>(at)</td>
</tr>
<tr>
<td>HASH</td>
<td>#$</td>
<td>*</td>
<td>(asterisk)</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>+</td>
<td>(plus)</td>
</tr>
<tr>
<td>Z</td>
<td>Z</td>
<td>&gt;</td>
<td>(greater than)</td>
</tr>
<tr>
<td>PAW</td>
<td>.</td>
<td>.</td>
<td>(period)</td>
</tr>
<tr>
<td>POINT</td>
<td>.</td>
<td>&lt;</td>
<td>(less than)</td>
</tr>
<tr>
<td>DOT</td>
<td>.</td>
<td>,</td>
<td>(comma)</td>
</tr>
<tr>
<td>CIRCLE</td>
<td>○</td>
<td>/</td>
<td>(slash)</td>
</tr>
<tr>
<td>_</td>
<td>_</td>
<td>?</td>
<td>(question mark)</td>
</tr>
<tr>
<td>&quot;</td>
<td>”</td>
<td>(</td>
<td>(left parenthesis)</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>)</td>
<td>(right parenthesis)</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>:</td>
<td>(colon)</td>
</tr>
</tbody>
</table>

*Note: The words or special characters in the VALUE= column are entered exactly as shown.*

**Special Fonts for Project Management and Decision Analysis**

Two special marker fonts, ORFONT and ORFONTE, are available in versions 6.08 and later. These two fonts are meant to be used with SAS/OR software and provide a variety of symbols that are typically used in Project Management and Decision Analysis. The fonts ORFONT and ORFONTE are shown in Figure 6.7 and Figure 6.8, respectively. The fonts behave like any SAS/GRAH font providing you with the capability to control attributes such as color and height.
Chapter 6. The GANTT Procedure

**Figure 6.7.** ORFONT - A Filled Font

**Figure 6.8.** ORFONTE - An Empty Font
For example, to use a filled yellow “doghouse” symbol to represent milestones on the Gantt chart, specify the options

\[
\text{VMILE="H" FMILE=ORFONT CMILE= YELLOW}
\]

in the CHART statement.

If you wish to represent a CHART variable with an empty blue “circled arrow,” then specify the following options in the corresponding SYMBOL statement.

\[
\text{V="Q" F=ORFONTE C=BLUE;}
\]

**Specifying the Logic Options**

The Logic options are a family of options used with the GANTT procedure that enable you to view the precedence relationships between activities on the Gantt chart. The Logic options constitute a high-resolution graphics feature and, as such, are only valid with specification of the GRAPHICS option in the PROC GANTT statement. The Logic options can accommodate nonstandard precedence relationships. The Logic options enable you to control the color, line style, and width of the connecting arcs as well as their layout and positioning on the Gantt chart. You can specify the precedence information required to draw the connections in one of two formats and store it in a data set different from the Schedule data set. You can also use the Schedule data set produced by PROC CPM to provide the precedence information. When using the Schedule data set from PROC CPM, you can ensure that all the relevant precedence information exists in the data set by either specifying the XFERVARS option in the PROC CPM statement or by using an ID statement.

The Logic options are not valid with the specification of either a BY statement or the COMBINE option in the CHART statement.

In order to invoke the logic options, you need to, minimally, specify a set of variables that defines the precedence relationships between tasks. This can be done using one of two formats for defining project networks, the AOA specification or the AON specification.

**Activity-on-Arc (AOA) Specification**

In the AOA specification, each activity of the project is represented by an arc. The node at the tail of the arc represents the start of the activity, and the node at the head of the arc represents the finish of the activity. The relationship between an activity and its successor is represented by setting the tail node of the successor arc to be the head node of the activity arc. One of the disadvantages of using the AOA method is that it cannot accommodate nonstandard lag types; all lag types are of the Finish-to-Start (FS) type.

The variables required by PROC GANTT to establish a valid AOA specification are defined using the HEADNODE= and TAILNODE= options in the CHART statement.
Activity-on-Node (AON) Specification

In the AON specification, each activity is represented by a node. All arcs originating from an activity terminate at its successors. Consequently, all arcs terminating at an activity originate from its predecessors.

The variables required by PROC GANTT to establish a valid AON specification are defined by the ACTIVITY= and SUCCESSOR= options in the CHART statement.

Optionally, nonstandard precedence relationships can be specified using the LAG= option in the CHART statement to define a variable that defines the lag type of a relationship.

Precedence Data Set

When using the AON specification, you can specify the precedence information using a data set different from the Schedule data set. This is particularly useful when producing several Gantt charts for the same project with different schedule information as would typically be the case when monitoring a project in progress. It eliminates the requirement that the precedence information exist in each Schedule data set and enables for more compact data. This separate data set is specified by the PRECDATA= option in the PROC GANTT statement and is referred to as the Precedence data set.

In order to graphically represent the precedence relationships derived from the Precedence data set on the Gantt chart, you must link the Precedence data set with the Schedule data set by means of a common variable. This common variable is selected as the ACTIVITY variable by virtue of the fact that it always exists in the Precedence data set. Thus, when using the Precedence data set, you need to ensure that the ACTIVITY variable exists in the Schedule data set, too.

In the event that both a valid AOA and a valid AON specification exist, PROC GANTT uses the AON specification by default. To override the default, use the AOA option in the CHART statement.

Drawing the Precedence Connections

The relationship between an activity and its successor is represented on the Gantt chart by a series of horizontal and vertical line segments that connect their schedule bars corresponding to a specified type (early/late, actual, and so forth). For a given connection, the intersection of a horizontal segment with a vertical segment is called a turning point of the connection. The type of the schedule bar used for the connection, also called the logic bar, is determined by the LEVEL= option in the CHART statement.

Every connection is comprised of either three or five segments and is termed a 3-segment or a 5-segment connection, respectively. The segments are routed in the following sequence:

a) a horizontal segment that originates from the appropriate end of the logic bar corresponding to the activity. The length of this segment is controlled by the MINOFFGV= and MININTGV= options in the CHART statement.
b) a vertical segment traveling from activity to the successor

c) a horizontal segment traveling towards the appropriate end of the successor’s logic bar. The length of this segment is determined by the MINOFFLV= and MAXDISLVL= options in the CHART statement.

d) a vertical and horizontal segment into the logic bar of the successor

Every connection begins with a horizontal line segment originating from the activity’s logic bar and ends with a horizontal line segment terminating at the successor’s logic bar. If the lag type of the relationship is SS or SF, the initial horizontal segment originates from the left end of the activity’s logic bar, otherwise it originates from the right end of the logic bar. If the lag type of the relationship is SS or FS, the final horizontal segment terminates at the left end of the successor’s logic bar, otherwise it terminates at the right end of the logic bar.

Note: The ends of the bars must be consistent with the lag type of the connection if it is to be drawn; that is, the left end of the activity’s logic bar must represent a start time if an SS or SF lag type connection is to be drawn, and the right end of the activity’s logic bar must represent a finish time if an FS or FF lag type connection is to be drawn.

Violation of these conditions is unlikely when using the Schedule data set generated by PROC CPM. An example violating these conditions is a Schedule data set containing incorrect or invalid data. The following example illustrates two observations that are in violation of these conditions. The first observation is invalid data (E_START greater than E_FINISH) while the second observation is incomplete (missing E_START and L_FINISH times).

<table>
<thead>
<tr>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>03MAR04</td>
<td>01MAR04</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>05MAR04</td>
<td>07MAR04</td>
<td>.</td>
</tr>
</tbody>
</table>

The following figure illustrates two typical precedence connections between an activity and its successor.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>SUCCESSOR</th>
<th>LAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>FS</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>FS</td>
</tr>
</tbody>
</table>
Chapter 6. The GANTT Procedure

Figure 6.9. Typical Precedence Connections

The connection from activity A to activity C is comprised of three segments PQ, QR, and RT whereas the connection from activity B to activity C is made up of five segments UV, VW, WX, XS, and ST; the two additional segments correspond to the optional segments mentioned in item d) above. Points Q, R, V, W, X, and S are turning points.

Formatting the Axis

If neither MINDATE= nor MAXDATE= have been specified, the time axis of the Gantt chart is extended by a small amount in the appropriate direction or directions in an attempt to capture all of the relevant precedence connections on the chart. While this will succeed for the majority of Gantt charts, it is by no means guaranteed. If connection lines still tend to run off the chart, you can perform one or both of the following tasks.

- Use the MINDATE= or MAXDATE= options (or both) in the CHART statement to increase the chart range as necessary.

- Decrease the values of the MINOFFGV=, MININTGV=, MAXDISLV=, and MINOFFLV= options to reduce the horizontal range spanned by the vertical segments so that they will lie within the range of the time axis.

On the other hand, if the automatic extension supplied by PROC GANTT is excessive, you can suppress it by specifying the NOEXTRANGE option in the CHART statement.

The following section, “Controlling the Layout,” addresses the CHART statement options MINOFFGV=, MININTGV=, MINOFFLV=, and MAXDISLV= which control placement of the vertical segments that make up a connection. For most Gantt charts, default values of these options will suffice since their usage is typically reserved for “fine tuning” chart appearance. This section can be skipped unless you
want to control the layout of the connection. The description of the layout methodology and concepts is also useful to help you understand the routing of the connections in a complex network with several connections of different types.

**Controlling the Layout**

The concepts of global and local verticals are first introduced in order to describe the function of the segment placement controls.

**Global Verticals**

In the interest of minimizing clutter on the chart, each activity is assigned a maximum of two vertical tracks for placement of the vertical segment described in item b) above. One vertical track is maintained for SS and SF lag type connections and is referred to as the start global vertical of the activity, while the other vertical track is maintained for FS and FF lag type connections and is referred to as the finish global vertical of the activity. The term global vertical refers to either start global vertical or finish global vertical.

**Note:** The use of the term “global” is attributed to the fact that in any connection from an activity to its successor, the global vertical of the activity corresponds to the only segment that travels from activity to successor.

The following figure illustrates the two global verticals of activity A.

![Global Verticals](image)

**Figure 6.10.** Global Verticals

Activity A has four successors: activities B, C, D, and E. The lag type of the relationship between A and B is nonstandard, namely ‘Start-to-Start’, as is that between A and D. The other two lag types are standard. The start and finish global verticals of activity A are represented by the two dotted lines. The vertical segments of the SS lag type connections from A to B and from A to D that are placed along the start global vertical of A are labeled PQ and RS, respectively. The vertical segments of the FS lag type connections from A to C and from A to E that are placed along the finish global vertical of A are labeled TU and UV, respectively.
For a given connection from activity to successor, the vertical segment that is placed on the activity global vertical is connected to the appropriate end of the logic bar by the horizontal segment described in item a) above. The minimum length of this horizontal segment is specified with the MINOFFGV= option in the CHART statement. Further, the length of this segment is affected by the MININTGV= option in the CHART statement, which is the minimum interdistance of any two global verticals.

In Figure 6.10, the horizontal segments QW and RX connect the vertical segments PQ and RS, respectively, to the logic bar and the horizontal segment YU connects both vertical segments TU and UV to the logic bar.

**Local Verticals**

Each activity has seven horizontal tracks associated with it, strategically positioned on either end of the logic bar, above the first bar of the activity, and below the last bar of the activity. These tracks are used for the placement of the horizontal segments described in items c) and d), respectively.

Figure 6.11 illustrates the positions of the horizontal tracks for an activity in a Gantt chart with four schedule bars. Three of the horizontal tracks, namely track 1, track 4, and track 7, service the start of the logic bar and are connected to one another by a vertical track referred to as the Start Local Vertical. Similarly, the horizontal tracks track 2, track 3, track 5, and track 6 service the finish of the bar and are interconnected by a vertical track referred to as the Finish Local Vertical. The local verticals are used for placement of the vertical segment described in item d) above.

**Note:** The use of the term “local” is attributed to the fact that the local vertical is used to connect horizontal tracks associated with the same activity.

Notice that track 1 and track 7 terminate upon their intersection with the start local vertical and that track 2 and track 6 terminate upon their intersection with the finish local vertical.

The minimum distance of a local vertical from its respective bar end is specified with the MINOFFLV= option in the CHART statement. The maximum displacement of the local vertical from this point is specified using the MAXDISLV= option in the CHART statement. The MAXDISLV= option is used to offset the local vertical in order to prevent overlap with any global verticals.

Arrowheads are drawn by default on the horizontal tracks corresponding to the logic bar, namely track 3, track 4, and track 5, upon entering the bar and on continuing pages. The NOARROWHEAD option is used to suppress the display of arrowheads.


Figure 6.11. Local Verticals

Routing the Connection

The routing of the precedence connection from an activity to its successor is dependent on two factors, namely

- the horizontal displacement of the appropriate global vertical of the activity relative to the appropriate local vertical of the successor

- the vertical position on the task axis of the activity relative to the successor

The routing of a SS or FS type precedence connection from activity to successor is described below. A similar discussion holds for the routing of a SF or FF type precedence connection.

Suppose the activity lies above the successor. Let the start local vertical of the successor be denoted by slv, and let the appropriate global vertical of the activity be denoted by gv.

CASE 1:

If gv lies to the left of slv, then the connection is routed vertically down along gv onto track 4 of the successor, on which it is routed horizontally to enter the bar. The resulting 3-segment connection is shown in Figure 6.12.
Figure 6.12. 3-Segment Connection

An example of this type of routing is illustrated by the connection between activities A and C in Figure 6.9.

CASE 2:

If $gv$ lies to the right of $slv$, then the connection is routed vertically down along $gv$ onto track 1 of the successor, horizontally to the left to meet $slv$, vertically down along $slv$ onto track 4 of the successor and horizontally to the right to enter the bar. The resulting 5-segment connection is shown in Figure 6.13.

Figure 6.13. 5-Segment Connection

This type of routing is illustrated by the connection between activities B and C in Figure 6.9.

An identical description applies when the activity lies below the successor, with the only difference being that track 7 is used in place of track 1 (see Figure 6.11).
Automatic Text Annotation

The automatic text annotation feature is designed specifically for labeling Gantt charts independently of the SAS/GRAPH Annotate facility. This facility enables you to display label strings with a minimum of effort and data entry while providing the capability for more complex chart labeling situations. Some of the properties that characterize this feature are

- the ability to tag labels. This enables you to define 1-1, 1-many, many-1, and many-many relationships.
- the ability to link label coordinates and label strings to variables in the Schedule data set. This enables the Label data set to remain unchanged even if the Schedule data set changes, such as when monitoring a project.
- the ability to automatically format or convert numeric variable values that have been specified for label text strings
- the ability to automatically split strings embedded with blanks to make the pieces as equal in length as possible, with the provision to override this behavior by specifying a split character
- the ability to mix data and percentage coordinates
- the ability to clip labels running off the frame of the Gantt chart

All relevant information is contained in a SAS data set specified using the LABDATA= data set option in the PROC GANTT statement. This data set is also referred to as the Label data set in the context of this documentation. The Label data set is required to contain certain variables in order to determine the label string and the positional information related to the string. At the very least, it requires three variables, one to determine the string to be displayed, one to determine the horizontal position, and one to determine the vertical position. The procedure terminates if it cannot find the required variables.

<table>
<thead>
<tr>
<th>Determining the ...</th>
<th>requires the following variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label text string</td>
<td>_LVAR and/or _LABEL</td>
</tr>
<tr>
<td>Horizontal placement position</td>
<td>_XVAR and/or _X</td>
</tr>
<tr>
<td>Vertical placement position</td>
<td>LABVAR= and/or _Y</td>
</tr>
</tbody>
</table>

The LABVAR variable refers to the variable specified with the LABVAR= option in the CHART statement. It is the LABVAR variable that links the Schedule and Label data sets together. As far as possible, the procedure attempts to use the _X, _Y, and _LABEL variables in the Label data set. However, a link established using the LABVAR variable makes the Schedule data set a secondary source of information for determining positional and text string information for linked observations. The exact meaning of the preceding variables is explained later in this chapter.

Note that, other than the preceding requirements, there are no further restrictions on the Label data set. In fact, the Schedule data set can also be specified as the Label data set.
set as long as the required variables are present. There are several optional variables in the Label data set. These variables enable you to specify offsets in both horizontal and vertical directions from the given coordinate position; adjust graphical attributes such as baseline angles, character rotations, colors, fonts, and heights; control justification of strings; control placement behavior at pagebreaks; and specify coordinate reference systems for the horizontal and vertical values.

**Label Data Set**

You specify the Label data set using the LABDATA= option in the PROC GANTT statement. This initiates the labeling of the Gantt chart. The Label data set contains the information that provides the means of determining the label strings and their placement positions. As far as possible, the procedure attempts to use the _X, _Y, and _LABEL variables in the Label data set to extract the horizontal position, the vertical position, and the text string, respectively. The Schedule data set acts as a secondary source of information for all Label data set observations that are linked to it. The priority mechanism is described in the “Determining the Vertical Position” section on page 520.

**Determining the Vertical Position**

You can specify the vertical position for a label string in one of two ways, either directly by using the _Y variable in the Label data set or indirectly by associating the label with an activity or activities. In the latter case, the vertical position is determined by the relative position of the activity on the activity axis of the Gantt chart.

*Directly using _Y*

The procedure determines the vertical position using the _Y variable. You specify the coordinate system for the value of _Y with the optional _YSYS variable. A value of DATA or DATAVAL for the _YSYS variable indicates that the unit of measurement is data values. This is also the default coordinate system for _Y. A value of PCT or PCTVAL indicates that the unit of measurement is percentage of the procedure output area. When the coordinate system for _Y is based on data values, the values that _Y can take are restricted to positive real numbers with the exception of -1, which is a special value indicating that the label be displayed for every activity. In effect, this is a more concise way of linking a label to every activity.

*Indirectly using LABVAR=

If the _Y variable does not exist or its value is missing, the procedure uses the value of the LABVAR variable to determine the vertical position of the label. If the LABVAR= option is specified and the value of the LABVAR variable is nonmissing, the observation is displayed for every activity that provides a matching value for the LABVAR variable. It is quite possible that there are no activities that provide a match, in which case the Label data set observation is ignored. Likewise, the Label data set observation is ignored if the value of the LABVAR variable is missing.

When the vertical position is based on an integer value for _Y or linkage using the LABVAR variable, the default position for the baseline of the string is the top of the first schedule bar corresponding to the activity (unless offsets _XOFFSET or _YOFFSET are used).
Determining the Horizontal Position

The procedure attempts to determine the horizontal position using the _X variable. You specify the coordinate system for the value of _X with the optional _XSYS variable. A value of DATA or DATAVAL for the _XSYS variable indicates that the unit of measurement is data values. This is also the default coordinate system for _X. A value of PCT or PCTVAL indicates that the unit of measurement is percentage of the procedure output area.

If the _X variable does not exist or its value is missing, the procedure ignores the Label data set observation if the observation is not linked to an activity in the Schedule data set. However, if the label is linked to an activity (either by the LABVAR variable or a value of -1 for _Y, as described previously), the procedure extracts the horizontal position using the _XVAR variable in the Label data set. The _XVAR variable values are names of numeric variables in the Schedule data set. If the _XVAR value is not missing, the horizontal position is the value of the specified variable in the Schedule data set corresponding to the activity. If no such variable exists in the Schedule data set or its value is missing, no label is displayed for this particular (activity, label) link. As with the _X variable, the _XSYS variable names the unit of measurement for the associated Schedule data set variable.

Coordinate Systems

Coordinates can be specified in data values and percentages. It is important to note a significant difference between these two systems when using multiple pages. A data coordinate value is a point along either the time or activity axis, and it can be related to a page number and to a position on that page in the relevant direction. A percentage value, on the other hand, cannot be related to a particular page and, as such, is treated as applicable to every single page. It is possible to mix data and percentage coordinates. That is, the horizontal position can be in data values and the vertical position can be in percentage values, and vice versa. By mixing coordinate systems, you can get as flexible as you want in labeling Gantt charts.

- If both coordinates are in data values, the label is displayed at a specific coordinate on a specific page.
- If the horizontal coordinate is a percentage, the label is displayed at this horizontal position for every page that corresponds to the vertical position. Likewise, if the vertical position is a percentage, the label is displayed at this vertical position for every page that corresponds to the horizontal position. For example, you can display certain headings at the top of the Gantt chart or at the bottom of the Gantt chart by using a data value for the vertical position and a percentage value for the horizontal position.
- If the horizontal and vertical coordinates are both percentages, the label is displayed on every page at the specified coordinate. This feature can be used to display text that appears on every page, much like titles and footnotes, for example.
Determining the Label String

The technique for determining the label string is similar to that of determining the horizontal position.

As far as possible, the procedure attempts to use the _LABEL variable. If the _LABEL variable does not exist or its value is missing, the procedure ignores the label data observation if the observation is not linked to an activity in the Schedule data set. However, if the label is linked to an activity (either by the LABVAR variable or a value of -1 for _Y, as described previously), the procedure extracts the text string from the Schedule data set using the _LVAR variable. The _LVAR variable values are names of variables in the Schedule data set. If the _LVAR value is not missing, the text string is the value of the specified variable in the Schedule data set corresponding to the activity. If no such variable exists in the Schedule data set or if the value is missing, no label is displayed for this particular (activity, label) link.

Note that the _LABEL variable and the Schedule data set variables named by _LVAR are not restricted to be of character type. These variables can be character or numeric, formatted or unformatted. The strings are displayed using the following rules:

- If the variable is of character type, the label is the character string corresponding to the given activity.
- If the variable is of numeric type and formatted, the label is the formatted string.
- If the variable is of numeric type and unformatted, the label is the number displayed as a string with an integer part of up to LABMAXINT= digits and a maximum of MAXDEC= decimal positions. The LABMAXINT= and MAXDEC= options are specified in the PROC GANTT statement and their default values are 16 and 2, respectively.

Optional Information

In addition to specifying the horizontal and vertical coordinates as described previously, you can also specify a relative offset from these values using the _XOFFSET and _YOFFSET variables. These are optional variables and their default values are both 0. The unit of measurement for the _XOFFSET variable is in MININTERVAL units, and the direction of increase is from left to right. The unit of measurement for the _YOFFSET variable is in barheights, and the direction of increase is from top to bottom. When labels are split, the offset variables pertain only to the first piece of the label. The positions of the remaining split pieces are determined from the positioning of the first piece. The adjusted coordinate after taking the offsets into account is what is used for the placement of the string and is known as the referenced coordinate.

You can control the color and font of the label strings using the _CLABEL and _FLABEL variables, respectively. The values for the _CLABEL variable are any valid SAS/GRAPH color names. If the _CLABEL variable does not exist or its value is missing, the value of the CTEXT= option in the CHART statement is used. The values for the _FLABEL variable are any valid SAS/GRAPH font names. If the _FLABEL variable does not exist or its value is missing, the value of the FONT= option in the CHART statement is used.
You can control the height of the label strings with the _HLABEL variable. The units of measurement are in barheights. If the _HLABEL variable does not exist or its value is missing, the default value of 1 is used.

You can specify the angle of the character baseline with respect to the horizontal in degrees using the _ALABEL variable. If the _ALABEL variable does not exist or its value is missing, the default value of 0 is used. You can specify the rotation angle of each character in the string in degrees with the _RLABEL variable. If the _RLABEL variable does not exist or its value is missing, the default value of 0 is used.

You can control the alignment of the string with the _JLABEL variable. Strings can be displayed left-justified, right-justified, or centered at the specified coordinate. By default, all strings are displayed left-justified. The valid values are L or LEFT for left justification, R or RIGHT for right justification, and C or CENTER for centered justification.

The _PAGEBRK variable gives you displaying control when the referenced coordinate of a label coincides with a pagebreak tickmark and the horizontal coordinate is measured in data values. You can specify on which of the two pages you would like the label to be displayed. The default always displays the label on the first page associated with the common tickmark except when the tickmark is the very first tickmark on the Gantt chart. Valid values are 0 (default), 1 (use first page), or 2 (use second page).

Variables in the LABELDATA= data set

The following table lists all the variables associated with the Label data set and their interpretations by the GANTT procedure. The table also lists for each variable its type, the possible values it can assume, and its default value.
Table 6.26. Label Data Set Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Allowed Values</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>_Y</td>
<td>N</td>
<td>y position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_X</td>
<td>N</td>
<td>x position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_LABEL</td>
<td>C/N</td>
<td>label string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_XVAR</td>
<td>C</td>
<td>name of numeric SAS var in DATA= ds for x position</td>
<td>DATA, DATAVAL, PCT, PCTVAL</td>
<td>DATA</td>
</tr>
<tr>
<td>_LVAR</td>
<td>C</td>
<td>name of SAS var in DATA= ds for label string</td>
<td>DATA, DATAVAL, PCT, PCTVAL</td>
<td>DATA</td>
</tr>
<tr>
<td>_XSYS</td>
<td>C</td>
<td>coordinate system for _X, _XVAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_YSYS</td>
<td>C</td>
<td>coordinate system for _Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>_PAGEBRK</td>
<td>N</td>
<td>resolve pagebreak referenced display</td>
<td>0, 1, 2</td>
<td>0</td>
</tr>
<tr>
<td>_XOFFSET</td>
<td>N</td>
<td>horizontal offset in minintervals</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>_YOFFSET</td>
<td>N</td>
<td>vertical offset in bar heights</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>_ALABEL</td>
<td>N</td>
<td>baseline angle in degrees</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>_CLABEL</td>
<td>C</td>
<td>SAS/GRAPH color name</td>
<td>CTEXT=</td>
<td></td>
</tr>
<tr>
<td>_FLABEL</td>
<td>C</td>
<td>SAS/GRAPH font name</td>
<td>FONT=</td>
<td></td>
</tr>
<tr>
<td>_HLABEL</td>
<td>N</td>
<td>height in barheights</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>_JLABEL</td>
<td>C</td>
<td>justify text</td>
<td>L, LEFT, R, RIGHT, C, CENTER</td>
<td>L</td>
</tr>
<tr>
<td>_RLABEL</td>
<td>N</td>
<td>character rotation in degrees</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>LABVAR</td>
<td>C/N</td>
<td>variable linking activities to labels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Web-Enabled Gantt Charts

The WEB variable enables you to define an HTML reference for each activity. This HTML reference is currently associated with all the schedule bars, milestones, and ID variables that correspond to the activity. The WEB variable is a character variable, and the values need to be of the form “HREF=htmlpage.”

In addition, you can also store the coordinate and link information defined by the WEB= option in a SAS data set by specifying the IMAGEMAP= option in the PROC GANTT statement. By processing this SAS data set using a DATA step, you can generate customized HTML pages for your Gantt chart.

Mode-Specific Differences

All the options that are valid for line-printer, full-screen, and graphics mode Gantt charts are explained in detail in the “Syntax” section on page 454. With few exceptions, the options listed in the section “General Options” on page 462 have the same interpretation in all three modes.

Table 6.27 lists those line-printer options that have a different interpretation for the graphics version of PROC GANTT. Table 6.28 lists options specific for graphics charts and the equivalent line-printer/full-screen option. Table 6.29 lists options specific for line-printer and full-screen charts and the equivalent graphics option.
Table 6.27. Line-Printer Options and Corresponding Graphics Interpretation

<table>
<thead>
<tr>
<th>Line-Printer Option</th>
<th>Graphics Mode Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALE=scale</td>
<td>one column is denoted by ((1/h)%) of the screen width, where HPOS=(h).</td>
</tr>
<tr>
<td>SKIP=skip</td>
<td>(skip) number of bar heights are skipped between the bars for two consecutive activities. The value 0 is not valid in the graphics case.</td>
</tr>
</tbody>
</table>

Table 6.28. Graphics Mode Options and Line-Printer/Full-Screen Equivalent

<table>
<thead>
<tr>
<th>Graphics Option/Statement</th>
<th>Line-Printer/Full-Screen Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHCON=linetype</td>
<td>HCONCHAR='character'</td>
</tr>
<tr>
<td>LREF=linetype</td>
<td>REFCHAR='character'</td>
</tr>
<tr>
<td>LTNOW=linetype</td>
<td>TNCHAR='character'</td>
</tr>
<tr>
<td>NOFRAME</td>
<td>FORMCHAR='string'</td>
</tr>
<tr>
<td>PATTERN statement</td>
<td>JOINCHAR='string' and SYMCHAR='string'</td>
</tr>
<tr>
<td>SYMBOL statement</td>
<td>first character of variable name is plotted (See CHART specifications)</td>
</tr>
<tr>
<td>VMILE=value</td>
<td>MILECHAR='character'</td>
</tr>
<tr>
<td>WTNOW=width</td>
<td>TNCHAR='character'</td>
</tr>
</tbody>
</table>

Table 6.29. Line-Printer/Full-Screen Mode Specific Options

<table>
<thead>
<tr>
<th>Line-Printer/Full-Screen Option</th>
<th>Graphics Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMCHAR='string'</td>
<td>NOFRAME</td>
</tr>
<tr>
<td>HCONCHAR='character'</td>
<td>LHCON=linetype, CHCON=color</td>
</tr>
<tr>
<td>HOLICHAR='character'</td>
<td>PATTERN statement 7</td>
</tr>
<tr>
<td>JOINCHAR='string'</td>
<td>PATTERN statements 1-6, 8, and 9</td>
</tr>
<tr>
<td>MILECHAR='character'</td>
<td>VMILE=value, FMILE=font, HMILE=height, CMILE=color</td>
</tr>
<tr>
<td>REFCCHAR='character'</td>
<td>LREF=linetype, CREF=color</td>
</tr>
<tr>
<td>SYMCHAR='string'</td>
<td>PATTERN statements 1-6, 8, and 9</td>
</tr>
<tr>
<td>TNCHAR='string'</td>
<td>LTNOW=linetype, WTNOW=width, CTNOW=color</td>
</tr>
</tbody>
</table>

Displayed Output

The `GANTT` procedure produces one or more pages of displayed values and a plot of the schedule. If the `SUMMARY` option is specified, the chart is preceded by a detailed description of the symbols used. A legend is displayed at the foot of the chart on each page unless suppressed by the `NOLEGEND` option. The main body of the output consists of columns of the `ID` values and the Gantt chart of the schedule.

For each activity in the project, PROC GANTT displays the values of the `ID` variables in the `ID` columns and plots any combination of the following schedules: the predicted schedule as specified by the early and late start and finish times, the actual schedule as specified by the actual start and finish times, the resource-constrained schedule as specified by the resource-constrained start and finish times, and the baseline schedule as specified by the baseline start and finish times. The procedure
looks for default variable names for each of these times (E_START for early start, E_FINISH for early finish, S_START for resource-constrained start times, and so on), or you can explicitly specify the names of the appropriate variables using the ES=, EF=, LS=, . . . options.

By specifying the COMBINE option in the CHART statement, you can request PROC GANTT to represent early, late, and actual schedule information on a single bar rather than use two separate bars (one for the early and late schedules and the other for the actual schedule.) PROC GANTT automatically draws a timenow line when the COMBINE option is specified with the property that all times to the left of the line represent the actual schedule times (that is, times that have already taken place) and all times to the right of the line represent the predicted early/late schedule times (times that have not yet taken place.)

Normally, each observation in the Schedule data set is assumed to denote a new activity, and a new set of ID values are displayed and the schedules corresponding to this activity are plotted on the chart. There are two exceptions to this rule:

- If the ID values for two or more consecutive observations are identical, only the first such observation is used.
- If there is a variable named SEGMT_NO in the Schedule data set, PROC GANTT assumes that the data set contains observations for segments of activities that were split during resource-constrained scheduling. In accordance with the conventions used by PROC CPM, only observations with a missing value for SEGMT_NO are assumed to denote a new activity. Further, the data are assumed to be sorted by SEGMT_NO for each activity. For each activity, PROC GANTT plots the schedules corresponding to the ES, EF, LS, LF, AS, and AF variables on the basis of the first observation for this activity, namely the observation with a missing value for the SEGMT_NO variable. This observation is also the one used for displaying values for the ID variables for this activity.

In addition to the schedules that are plotted, the Gantt chart also displays any variables specified in the CHART statement. Holidays, weekends, and breaks within a day are marked as appropriate. For details on how to specify holidays, weekends, and breaks within a day, see the “Multiple Calendars and Holidays” section on page 495. You can also represent zero duration activities with milestone symbols, draw a timenow line to reflect the current time of the project, draw horizontal connect lines, draw vertical reference lines, and group the activities by zones on the Gantt chart. It is important to note that all times are plotted at the start of the appropriate time period. Thus, if the chart starts on June 1, 2004, in column 15 of the page and the value of
E=START is ‘2JUN04,’ MININTERVAL=DAY, and SCALE=5, then the early start time is plotted in column 20.

Each activity is identified by a job number (unless the NOJOBNUM option is used), which appears as the first column of activity text. The next column of activity text identifies the values of the ZONE= variable, if specified. This column can be suppressed by specifying the NOZONECOL option in the CHART statement. Next to appear are the ID variables in the order in which they are specified in the CHART statement. If the time axis of the chart is very wide, causing it to be divided across more than one page, the ID variables, by default, do not appear on continuation pages. You need to specify the IDPAGES option to produce the ID variable columns on every page. By default, if the ID variables occupy too much space, leaving no room for the chart to be started on the first page, they are omitted and a warning message is printed to the log. You can override this behavior by using the MAXIDS option. Column headings for the ZONE and ID variables consist of either variable labels (if they are present and if space permits) or variable names. To suppress variable labels in column headings, use the NOLABEL system option. If a ZONE or ID variable is formatted, the value is displayed using that format. If the CRITFLAG option is specified, a flag is displayed to the right of the ID values that indicates how critical the activity is. This flag is also repeated on continuation pages if the time axis occupies more than one page. The body of the chart starts to the right of this flag.

By default, the GANTT procedure is invoked in graphics mode. In graphics mode, you can fit the Gantt chart entirely on one page by specifying the COMPRESS option in the CHART statement. The HPAGES= and VPAGES= options take this one step further by enabling you to control the number of pages that you want the Gantt chart to be compressed into. The PCOMPRESS option behaves much like the COMPRESS option except that all compression is performed in a proportional manner, that is, by maintaining the aspect ratio of the Gantt chart.

PROC GANTT can display the precedence relationships (including nonstandard types) between activities on the Gantt chart by means of directed links between activities. Each link is drawn so as to convey the type of precedence relationship it represents. See the “Specifying the Logic Options” section on page 511 for a detailed description on how this can be done.

In addition, graphics mode provides you with the easy-to-use automatic text annotation facility to generate labels on the Gantt chart. You can link labels and their coordinates to variables in the schedule data set and also have complete control over all attributes such as font, color, angle, rotation, and so forth. You also have the additional capability of annotating text and graphics independently on the Gantt chart by using the SAS/GRAPH Annotate facility.

The GANTT procedure offers you a wide variety of options in addition to text, bar, symbol, and line formatting controls to customize your Gantt chart. These features enable you to create a wide variety of charts such as Logic Gantt charts, zoned Gantt charts, multiproject Gantt charts, Web-enabled Gantt charts, and multiprocess Gantt charts, to name but a few.
Chapter 6. The GANTT Procedure

Macro Variable _ORGANTT

The GANTT procedure defines a macro variable named _ORGANTT, which is set at procedure termination. This variable contains a character string that indicates the status of the procedure and also provides chart specific information with respect to each Gantt chart produced by invocation of the GANTT procedure. This includes charts resulting from multiple CHART statements and BY groups.

The format of the _ORGANTT string for a GANTT procedure invocation with \( n \) CHART statements is as follows:

\[
\text{STATUS=} \text{REASON=} \text{CHART}1 \text{chart1info} \# \ldots \text{CHART}n \text{chartninfo} \#
\]

where the value of STATUS= is either SUCCESSFUL or ERROR_EXIT, and the value of REASON= is one of the following:

- BADDATA_ERROR
- MEMORY_ERROR
- IO_ERROR
- SEMANTIC_ERROR
- SYNTAX_ERROR
- GANTT_BUG
- UNKNOWN_ERROR

The notation chartINFO is a string of the form

\[
\text{SCALE=} \text{INCREMENT=} \text{SKIP=} \text{HPAGES=} \text{VPAGES=} \text{SEGNAME=}
\]

if there are no BY groups, and it is a string of the form

\[
\text{BY1 by1info: } \ldots \text{BY}m \text{byminfo:}
\]

where byINFO is a string of the form

\[
\text{SCALE=} \text{INCREMENT=} \text{SKIP=} \text{HPAGES=} \text{VPAGES=} \text{SEGNAME=}
\]

if there are \( m \) BY groups. In other words, the macro contains an informational sub-string for every chart produced, using the symbol “#” as a CHART statement delimiter and the symbol “;” as a BY statement delimiter within CHART statements.

The chart specific information given in _ORGANTT is described below along with the identifying keyword preceding it. It should be noted that these values refer to those actually used in producing the chart and are not necessarily the same as those specified in the invocation of the procedure.

- SCALE= The value of scale
- INCREMENT= The value of increment
- SKIP= The value of skip
- HPAGES= The number of horizontal pages
• VPAGES= The number of vertical pages
• SEGNAME= The name of the first chart segment in graphics mode

**Note:** Some of the information may be redundant or predictable in certain display modes. For example, the value of SEGNAME= is empty in line-printer and full-screen modes. The values of HPAGES= and VPAGES= are equal to 1 in full-screen mode.

This information can be used when PROC GANTT is one step in a larger program that needs to determine whether the procedure terminated successfully or not. Because _ORGANTT is a standard SAS macro variable, it can be used in the ways that all macro variables can be used.

---

**Computer Resource Requirements**

There is no inherent limit on the size of the project that can be accommodated by the GANTT procedure. The number of activities in the Gantt chart is restricted only by the amount of memory available. Other memory-dependent factors are the type of Gantt chart required and the desired display mode.

Naturally, there needs to be a sufficient amount of core memory available in order to invoke and initialize the SAS System as well as to meet the memory requirements of the specific mode in which you invoke the procedure. For example, more memory is required when using high-resolution graphics than when using line-printer mode since the graphics sublibrary has to be loaded. As far as possible, the procedure attempts to store all the data in core memory. However, if there is insufficient core memory available for the entire project, the GANTT procedure resorts to the use of Utility data sets and swaps between core memory and Utility data sets as necessary.

The data storage requirement for the GANTT procedure is proportional to the number of activities in the project, and it depends on the number of schedule variables, the number of ID variables, and whether the Logic and Labeling options have been specified or not.

---

**Examples**

This section contains examples that illustrate several of the options and statements available with PROC GANTT in the different display modes. Example 6.1 and Example 6.2 illustrate the GANTT procedure in line-printer mode, and Example 6.3 through Example 6.27 illustrate the GANTT procedure in graphics mode.

---

**Line-Printer Examples**

Example 6.1 shows how to obtain a basic line-printer Gantt chart using the default options. Example 6.2 demonstrates how to use various options to customize the Gantt chart for the same project.
Example 6.1. Printing a Gantt Chart

This example shows how to use the GANTT procedure to obtain a basic line-printer Gantt chart using the default options. The following data describe the precedence relationships among the tasks involved in the construction of a typical floor in a multistory building. The first step saves the precedence relationships in a SAS data set. The variable ACTIVITY names each task, the variable DUR specifies the time it takes to complete the task in days, and the variables SUCCESS1 to SUCCESS4 specify tasks that are immediate successors to the task identified by the ACTIVITY variable.

PROC CPM determines the shortest schedule for the project that finishes before September 1, 2004. The solution schedule, saved in a SAS data set, is next sorted by the early start time before invoking the GANTT procedure to plot the schedule. Since the DATA= option is not specified, PROC GANTT uses the sorted data set to produce the schedule since it is the most recently created data set. The Gantt chart in Output 6.1.1 is plotted on two pages because there are too many observations (29) to fit on one page. Note that the observations are split into two groups containing 15 and 14 observations, respectively, so that the chart size on each page is approximately equal. The time axis is labeled from June 21, 2004, to September 1, 2004, since these are the minimum and maximum dates in the Schedule data set. A legend is displayed at the bottom of the chart on each page.

title 'Gantt Example 1';
title2 'Printing a Gantt Chart';
data;
                   success3 $20. success4 $20.;
    input activity dur success1-success4;
datalines;
    form        4 pour . . .
    pour        2 core . . .
    core        14 strip spray_fireproof insulate_walls .
    strip       2 plumbing curtain_wall risers doors
    strip       2 electrical_walls balance_elevator .
    curtain_wall 5 glaze_sash . . .
    glaze_sash  5 spray_fireproof insulate_walls .
    spray_fireproof 5 ceil_ducts_fixture .
    ceil_ducts_fixture 5 test . . .
    plumbing    10 test . . .
    test        3 insulate_mechanical .
    insulate_mechanical 3 lath . . .
    insulate_walls 5 lath . . .
    risers      10 ceil_ducts_fixture .
    doors       1 port_masonry . .
    port_masonry 2 lath finish_masonry .
    electrical_walls 16 lath . . .
    balance_elevator 3 finish_masonry .
    finish_masonry 3 plaster marble_work .
    lath         3 plaster marble_work .
    plaster     5 floor_finish tiling acoustic_tiles .
    marble_work 3 acoustic_tiles . .
Example 6.1. Printing a Gantt Chart

```
acoustic_tiles 5 paint finish_mechanical . .
tiling 3 paint finish_mechanical . .
floor_finish 5 paint finish_mechanical . .
paint 5 finish_paint . .
finish_mechanical 5 finish_paint . .
finish_paint 2 caulking_cleanup . .
caulking_cleanup 4 finished . .
```

* invoke cpm to find the optimal schedule;
proc cpm finishbefore date='1sep04'd;
   activity activity;
   duration dur;
   successors success1-success4;
   run;

* sort the schedule by the early start date;
proc sort;
   by e_start;
   run;

* invoke proc gantt to print the schedule;
proc gantt lineprinter;
   run;
```
Output 6.1.1. Printing a Gantt Chart

<table>
<thead>
<tr>
<th>Job</th>
<th>JUN</th>
<th>JUN</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><-----</td>
<td>Duration of a Normal Job</td>
</tr>
<tr>
<td>>.....</td>
<td>Slack Time for a Normal Job</td>
</tr>
<tr>
<td>====</td>
<td>Duration of a Critical Job</td>
</tr>
</tbody>
</table>
Example 6.2. Customizing the Gantt Chart

This example shows how to control the format of the Gantt chart using CHART statement options. The Schedule data set used by PROC GANTT is the same as that used in Example 6.1. Output 6.2.1 is on three pages; the first page contains a detailed description of the various symbols used by the procedure to plot the schedule. This description is produced by using the SUMMARY option. The next two pages contain the Gantt chart. The LINEPRINTER option invokes the procedure in line-printer mode. The FILL option causes the first page to be filled as completely as possible before the second page is started. Thus, the first page of the chart contains 20 activities while the second page contains only 8 activities.

The SKIP=2 specification causes two lines to be skipped between observations. The NOLEGEND option suppresses displaying of the legend, while the NOJOBNUM option causes job numbers to be omitted. The CRITFLAG option is used to produce the flag to the left of the main chart indicating if an activity is critical. Specifying BETWEEN=2 sets the number of columns between consecutive ID columns equal to
2. The REF= option produces the reference lines shown on the chart on the specified dates. The INCREMENT=5 specification indicates to the procedure that labels are to be displayed in increments of 5 units of the MININTERVAL= value, which by default is DAY. The ID statement is used to display the activity names to the left of the chart. The ID statement also causes the activity 'strip' to appear only once in the chart. Thus, there are only 28 activities in this chart instead of 29, as in Example 6.1.

```plaintext
options ps=70;
title 'Gantt Example 2';
title2 'Customizing the Gantt Chart';
proc gantt lineprinter;
   chart / summary
      fill
      skip=2
      nolegend
      nojobnum critflag between=2
      ref='10jun04'd to '30aug04'd by 15
      increment=5;
   id activity;
run;
```
Output 6.2.1. Customizing the Gantt Chart

Gantt Example 2

Summary

Symbols used for different times on the schedule

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Variable</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_START</td>
<td><</td>
<td>L_START</td>
<td><</td>
</tr>
<tr>
<td>E_FINISH</td>
<td>></td>
<td>L_FINISH</td>
<td>></td>
</tr>
</tbody>
</table>

Miscellaneous Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference Line</td>
</tr>
<tr>
<td>*</td>
<td>Overprint character when start or finish times coincide</td>
</tr>
</tbody>
</table>

Symbols used for joining start and/or finish times

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Duration of non-critical job</td>
</tr>
<tr>
<td>.</td>
<td>Slack time for non-critical job</td>
</tr>
<tr>
<td>=</td>
<td>Duration of critical job</td>
</tr>
<tr>
<td>-</td>
<td>Slack time (neg.) for supercritical job</td>
</tr>
<tr>
<td>*</td>
<td>Duration of supercritical job</td>
</tr>
</tbody>
</table>

Some examples of typical strings

<table>
<thead>
<tr>
<th>String</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><--->...<...></td>
<td>Duration followed by slack time: early finish before late start</td>
</tr>
<tr>
<td><---<-->...></td>
<td>Duration followed by slack time: early finish after late start</td>
</tr>
<tr>
<td><---*...></td>
<td>Duration followed by slack time: early finish equals late start</td>
</tr>
<tr>
<td>==*</td>
<td>Duration of job on critical path</td>
</tr>
<tr>
<td><------<**></td>
<td>Duration preceded by negative slack time for a supercritical job: late finish before early start</td>
</tr>
<tr>
<td><------></td>
<td>Duration preceded by negative slack time for a supercritical job: late finish after early start</td>
</tr>
<tr>
<td><---****></td>
<td>Duration preceded by negative slack time for a supercritical job: late finish equals early start</td>
</tr>
</tbody>
</table>
Gantt Example 2

Customizing the Gantt Chart

<table>
<thead>
<tr>
<th>activity</th>
<th>Flag</th>
<th>JUN</th>
<th>JUN</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>form</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>pour</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>core</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>strip</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>curtain_wall</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>plumbing</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>risers</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>doors</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>electrical_walls</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>balance_elevator</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>port_masonry</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>finish_masonry</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>glaze_sash</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>spray_fireproof</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>insulate_walls</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>ceil_ducts Fixture</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>test</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>insulate_mechanical</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>lath</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>plaster</td>
<td>CR</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The following examples illustrate the use of graphics options and the use of PATTERN and SYMBOL statements to produce high resolution graphics quality Gantt charts. In Example 6.3, an extra input data set containing the holiday information is used to mark the holidays used in computing the schedule by PROC CPM. Example 6.4 illustrates the use of the CHART statement to specify milestones and additional variables to be plotted on the chart. Example 6.5 illustrates the use of the COMPRESS option to fit an entire Gantt chart on one page. Example 6.6 illustrates the use of the MININTERVAL= and SCALE= options to control the width of the chart; this example also shows how the chart is divided and continued on the succeeding page when the time axis extends beyond one page. In Example 6.7, the MINDATE= and MAXDATE= options are used to permit viewing of only a portion of the schedule in greater detail. Example 6.8 uses the HOLIDUR= option in conjunction with the INTERVAL= option to mark holidays of varying lengths on the Gantt chart. Example 6.9 illustrates the use of the CALENDAR and WORKDAY data sets to mark holiday information from different calendars on the chart.

In Example 6.10, the actual schedule for each activity is plotted on a separate line in addition to the early and late schedules. Example 6.11 illustrates tracking a project and comparing its progress against a baseline schedule. In Example 6.12, the COMBINE option is used to concatenate the early, late, and actual schedules of a project in progress to produce a single concise schedule that retains all of the vital information of the former schedules. Example 6.13 shows the resource-constrained schedule containing split segments of activities. The ability to bypass the project scheduler, PROC CPM, and directly specify the schedule information to
PROC GANTT is demonstrated in Example 6.14. Example 6.15 illustrates the use of the BY statement to obtain Gantt charts for different projects in a multiproject environment. In Example 6.16, the GANTT procedure is used after some data manipulation steps to produce Gantt charts for individuals, each working on different subsets of activities in the project.

In Example 6.17, the HEIGHT= and HTOFF= options are used to modify the text height in relation to the height of the activity bars. The next three examples show you how to invoke the different logic options in order to draw a Logic Gantt chart that displays the precedence relationships between activities. Example 6.18 illustrates use of the ACTIVITY= and SUCCESSOR= options to specify the precedence information in AON format and the LEVEL= option to specify the bar type for the connections. In Example 6.19, the routing control options MAXDISLV=, MAXOFFGV=, MAXOFFFLV=, and MININTGV= are used in connection with a project that is specified in AOA format using the TAIL= and HEAD= options in the CHART statement. Example 6.20 demonstrates the specification of nonstandard lag types using the LAG= option in the CHART statement. This example also illustrates use of the PRECDATA= option in the PROC GANTT statement. In Example 6.21, the ANNOTATE= option is used to add graphics and text on a Gantt chart. Example 6.22 illustrates the Automatic Text Annotation facility to label the Gantt chart independently of the SAS/GRAPH Annotate facility. In Example 6.23 a PATTERN variable and a Label data set are used to generate Gantt charts for multiprojects. A very useful chart in project management and multiprocess environments is the multisegment Gantt chart. Example 6.24 illustrates the use of the SEGMENT_NO variable and the PATTERN variable to produce a versatile multisegment Gantt chart. In Example 6.25 the ZONE= option is used to produce a zoned Gantt chart. Example 6.26 shows you how to produce a “Web-enabled” Gantt chart that you can use to drill-down your project. Finally, Example 6.27 uses the CHARTWIDTH= option to produce Gantt charts that are consistent in appearance.

In all the examples presented, the early and late schedules are specified in the data set by means of the variables E–START, E–FINISH, L–START, and L–FINISH; hence, the ES=, EF=, LS=, and LF= options are not needed in the CHART statement. Unless otherwise specified, the pattern statements used in the examples are as follows:

```plaintext
pattern1 c=black v=x1; /* duration of a noncrit. activity */
pattern2 c=black v=l1; /* slack time for a noncrit. act. */
pattern3 c=black v=s; /* duration of a critical act. */
pattern4 c=black v=r1; /* slack time for a supercrit. act. */
pattern5 c=black v=x2; /* duration of a supercrit. act. */
pattern6 c=black v=x4; /* actual duration of an activity */
pattern7 c=black v=e; /* break due to a holiday */
pattern8 c=black v=x3; /* resource schedule of activity */
pattern9 c=black v=l2; /* baseline schedule of activity */
```

Example 6.3. Marking Holidays

This example uses the widget manufacturing project introduced in Chapter 2, “The CPM Procedure.” The data sets used in this example are the same as those used in Example 2.8 to illustrate holiday processing in PROC CPM. The WIDGET data set
describes the project in AON format. The variable \texttt{TASK} identifies the activity and the variables \texttt{SUCC1}, \texttt{SUCC2}, and \texttt{SUCC3} identify the successors to \texttt{TASK}. The variable \texttt{DAYS} defines the duration of an activity. Another data set, \texttt{HOLIDAYS}, defines the holidays that need to be taken into account when scheduling the project. Although the \texttt{HOLIDAYS} data set contains three variables \texttt{HOLIDAY}, \texttt{HOLIFIN}, and \texttt{HOLIDUR}, the \texttt{HOLIDUR} variable is not used in this example. Thus, the Christmas holiday starts on December 24, 2003, and finishes on December 26, 2003. \texttt{PROC CPM} schedules the project to start on December 1, 2003, and saves the schedule in a data set named \texttt{SAVEH}. This data set is shown in \textbf{Output 6.3.1}.

Next, the \texttt{GANTT} procedure is invoked with the specification of \texttt{HOLIDATA= HOLIDAYS} in the \texttt{PROC GANTT} statement and the \texttt{HOLIDAY=} and \texttt{HOLIEND=} options in the \texttt{CHART} statement, causing the Christmas and New Year holidays to be marked on the chart. The resulting Gantt chart is shown in \textbf{Output 6.3.2}. Note that the procedure marks the duration of the holiday with the pattern corresponding to the seventh \texttt{PATTERN} statement. (See the “Graphics Examples” section beginning on page 537 for a list of the pattern statements used in the examples.) The \texttt{HPAGES=} option is used to fit the horizontal span of the chart on one page. The \texttt{SIMPLEX} font is used for all text by specifying the \texttt{FONT=} option in the \texttt{CHART} statement.

```plaintext
options ps=60 ls=100;
title 'Gantt Example 3';
title2 'Marking Holidays';

/* Activity-on-Node representation of the project */
data widget;
  format task $12. succ1-succ3 $12. ;
  input task & days succ1 & succ2 & succ3 & ;
datalines;
  Approve Plan 5 Drawings Study Market Write Specs
  Drawings 10 Prototype .
  Study Market 5 Mkt. Strat. .
  Write Specs 5 Prototype .
  Prototype 15 Materials Facility .
  Mkt. Strat. 10 Test Market Marketing .
  Materials 10 Init. Prod. .
  Facility 10 Init. Prod. .
  Init. Prod. 10 Test Market Marketing Evaluate
  Evaluate 10 Changes .
  Test Market 15 Changes .
  Changes 5 Production .
  Production 0 .
  Marketing 0 .
;

data holidays;
  format holiday holifin date7.;
  input holiday & date7. holifin & date7. holidur;
datalines;
24dec03 26dec03 4
```
Chapter 6. The GANTT Procedure

01jan04 . . .

* schedule the project subject to holidays;
proc cpm data=widget holidata=holidays
 out=saveh date='1dec03'd;
 activity task;
 succ succ1 succ2 succ3;
 duration days;
 holiday holiday / holifin=(holifin);
run;

* sort the schedule by the early start date;
proc sort;
 by e_start;
run;

* print the schedule;
proc print data=saveh;
 var task days e_start e_finish l_start l_finish
t_float f_float;
run;

* plot the schedule;
proc gantt holidata=holidays data=saveh;
 chart / holiday=(holiday) holiend=(holifin)
hpages=1 font=simplex;
 id task;
run;

Output 6.3.1. Schedule Data Set SAVEH

<table>
<thead>
<tr>
<th>Obs</th>
<th>Task</th>
<th>Days</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10</td>
<td>06DEC03</td>
<td>15DEC03</td>
<td>06DEC03</td>
<td>15DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Study Market</td>
<td>5</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td>09JAN04</td>
<td>13JAN04</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>5</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td>11DEC03</td>
<td>15DEC03</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>11DEC03</td>
<td>20DEC03</td>
<td>14JAN04</td>
<td>23JAN04</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Prototype</td>
<td>15</td>
<td>16DEC03</td>
<td>03JAN04</td>
<td>16DEC03</td>
<td>03JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10</td>
<td>04JAN04</td>
<td>13JAN04</td>
<td>04JAN04</td>
<td>13JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10</td>
<td>04JAN04</td>
<td>13JAN04</td>
<td>04JAN04</td>
<td>13JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10</td>
<td>14JAN04</td>
<td>23JAN04</td>
<td>14JAN04</td>
<td>23JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10</td>
<td>24JAN04</td>
<td>02FEB04</td>
<td>29JAN04</td>
<td>07FEB04</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>15</td>
<td>24JAN04</td>
<td>07FEB04</td>
<td>24JAN04</td>
<td>07FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Marketing</td>
<td>0</td>
<td>24JAN04</td>
<td>13FEB04</td>
<td>13FEB04</td>
<td>13FEB04</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>Changes</td>
<td>5</td>
<td>08FEB04</td>
<td>12FEB04</td>
<td>08FEB04</td>
<td>12FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Production</td>
<td>0</td>
<td>13FEB04</td>
<td>13FEB04</td>
<td>13FEB04</td>
<td>13FEB04</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Output 6.3.2. Marking Holidays on the Gantt Chart

Gantt Example 3
Marking Holidays

<table>
<thead>
<tr>
<th>Job</th>
<th>Task</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>FEB</th>
<th>FEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Facility</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Changes</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Production</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:
- Duration of a Normal Job
- Duration of a Critical Job
- Slack Time for a Normal Job
- Break due to Holiday

Gantt Example 3
Marking Holidays

<table>
<thead>
<tr>
<th>Job</th>
<th>Task</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>FEB</th>
<th>FEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Study Market</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mkt. Strat.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Prototype</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:
- Duration of a Normal Job
- Duration of a Critical Job
- Slack Time for a Normal Job
- Break due to Holiday
Chapter 6. The GANTT Procedure

Example 6.4. Marking Milestones and Special Dates

The widget manufacturing project described in Example 6.3 has two activities with zero duration, namely ‘Production’ and ‘Marketing.’ By default, PROC GANTT pads finish times by a padding unit, thus these two activities are represented on the Gantt chart as having a duration equal to one day (see the “Specifying the PADDING= Option” section on page 492 for further information on padding). In other words, based on start and finish times alone, PROC GANTT cannot distinguish between activities that are one day or zero days long; it needs knowledge of the activity duration variable, which is specified using the DUR= option in the CHART statement, in order to represent zero duration activities by a milestone symbol.

Now, suppose that the Engineering department would like to finish writing up the specifications before Christmas and have the prototype ready by mid-January. In addition, the Marketing department would like to develop a marketing concept by the year’s end. The data set, TARGET, contains the target dates for these activities. This data set is merged with the WIDGET data set to produce the WIDGETT data set. The WIDGETT data set is then input to the CPM procedure, which is invoked with an ID statement to ensure that the variable TARGET is passed to the Schedule data set. After sorting the Schedule data set by the early start time, PROC GANTT is used to produce a Gantt chart of the resulting schedule. The Gantt chart is shown in Output 6.4.1.

Before invoking PROC GANTT, you specify the required symbol using a SYMBOL statement. Specifying the variable TARGET in the CHART statement causes target dates to be marked on the chart with the symbol specified in the SYMBOL statement, a PLUS symbol in black. Specifying the DUR= option in the CHART statement causes zero duration schedules to be represented on the chart by the default milestone symbol, a filled diamond. To use a different milestone symbol, use the FMILE= and VMILE= options in the CHART statement. The duration and slack time of the activities are indicated by the use of the appropriate fill patterns as explained in the legend.

Colors for the milestone, axis, frame fill, and text are specified using the options CMILE=, CAXIS=, CFRAME=, and CTEXT=, respectively. The SIMPLEX font is used for all text by specifying the FONT= option in the CHART statement. The global options HPOS= and VPOS= are set to 120 and 40, respectively.

```
options ps=60 ls=100;

title f=swiss 'Gantt Example 4';
title2 f=simplex 'Marking Milestones and Special Dates';

proc cpm data=widgett date='1dec03'd;
    activity task;
    successor succ1-succ3;
    duration days;
    id target;
    run;

* sort the schedule by the early start date ;
```
Example 6.5. Marking Milestones and Special Dates

```plaintext
proc sort;
   by e_start;
run;

goptions hpos=120 vpos=40;

* set up required symbol statement;
symbol c=black v=plus;

* plot the schedule;
proc gantt;
   chart target / dur=days cmile=cyan
               font=simplex ctext=blue
               caxis=cyan cframe=ligr;
   id task;
run;
```

Output 6.4.1. Marking Milestones and Special Dates in Graphics Mode

Gantt Example 4

Marking Milestones and Special Dates

<table>
<thead>
<tr>
<th>Job</th>
<th>task</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>FEB</th>
<th>FEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Study Market</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Met. Strat.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Prototype</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:
- Duration of a Normal Job
- Duration of a Critical Job
- Stack Time for a Normal Job
- Milestone
- Target
Example 6.5. Using the COMPRESS Option

In the previous example, PROC GANTT produced two pages of output since the chart would not fit on a single page. One way to ensure that the entire chart fits on a single page in graphics mode is to adjust the values of HPOS and VPOS accordingly. An easier way that is independent of the values of HPOS and VPOS is to specify the COMPRESS option in the CHART statement. Output 6.5.1 shows the result of adding the COMPRESS option to the CHART statement in Example 6.4. The PCOMPRESS option would have a similar effect but would maintain the aspect ratio as well. Some other options that can be used to control the number of pages generated are the HPAGES= and VPAGES= options.

```plaintext
title f=swiss 'Gantt Example 5';
title2 f=simplex 'Using the COMPRESS Option';

* plot the schedule on one page;

proc gantt;
  chart target / dur=days cmile=cyan
        font=simplex ctext=blue
        caxis=cyan cframe=ligr
        compress;
  id task;
run;
```
Example 6.6. Using the MININTERVAL= and SCALE= Options

The data sets used for this example are the same as those used to illustrate PROC CPM in Example 2.2. The data set WIDGAOA defines the project using the AOA specification. The data set DETAILS specifies the abbreviated and detailed names for each of the activities in addition to the name of the department that is responsible for that activity. Notice that a dummy activity has been added to the project in order to maintain the precedence relationships established by the WIDGET data set of the previous two examples that define the same project in AON format. The two data sets WIDGAOA and DETAILS are merged to form the WIDGETA data set that is input as the Activity data set to PROC CPM. The data set SAVE produced by PROC CPM and sorted by E–START is shown in Output 6.6.1.

Because MININTERVAL=WEEK and SCALE=10, PROC GANTT uses \(\frac{1000}{h} \)% of the screen width to denote one week, where \(h \) is the value of HPOS. Note that this choice also causes the chart to become too wide to fit on one page. Thus, PROC GANTT splits the chart into two pages. The first page contains the ID variable as well as the job number while the second page contains only the job number. The chart is split so that the displayed area on each page is approximately equal. The SWISS font is used for all Gantt chart text by specifying the FONT= option in the CHART statement. The milestone color is changed to green using the CMILE= option. The resulting Gantt chart is shown in Output 6.6.2.
Output 6.6.1. Schedule Data Set SAVE

Gantt Example 6
Using the MININTERVAL= and SCALE= Options

<table>
<thead>
<tr>
<th>descrpt</th>
<th>dept</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finalize and Approve Plan</td>
<td>Planning</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prepare Drawings</td>
<td>Engineering</td>
<td>06DEC03</td>
<td>15DEC03</td>
<td>06DEC03</td>
<td>15DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Analyze Potential Markets</td>
<td>Marketing</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td>05JAN04</td>
<td>09JAN04</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Write Specifications</td>
<td>Engineering</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td>11DEC03</td>
<td>15DEC03</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Develop Marketing Concept</td>
<td>Marketing</td>
<td>11DEC03</td>
<td>20DEC03</td>
<td>10JAN04</td>
<td>19JAN04</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Build Prototype</td>
<td>Engineering</td>
<td>16DEC03</td>
<td>30DEC03</td>
<td>16DEC03</td>
<td>30DEC03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Procure Raw Materials</td>
<td>Manufacturing</td>
<td>31DEC03</td>
<td>09JAN04</td>
<td>31DEC03</td>
<td>09JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prepare Manufacturing Facility</td>
<td>Manufacturing</td>
<td>31DEC03</td>
<td>09JAN04</td>
<td>31DEC03</td>
<td>09JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Initial Production Run</td>
<td>Manufacturing</td>
<td>10JAN04</td>
<td>19JAN04</td>
<td>10JAN04</td>
<td>19JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Evaluate Product In-House</td>
<td>Testing</td>
<td>20JAN04</td>
<td>29JAN04</td>
<td>25JAN04</td>
<td>03FEB04</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mail Product to Sample Market</td>
<td>Testing</td>
<td>20JAN04</td>
<td>03FEB04</td>
<td>20JAN04</td>
<td>03FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Begin Full Scale Marketing</td>
<td>Marketing</td>
<td>20JAN04</td>
<td>20JAN04</td>
<td>09FEB04</td>
<td>09FEB04</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Production Milestone</td>
<td>Marketing</td>
<td>20JAN04</td>
<td>20JAN04</td>
<td>20JAN04</td>
<td>20JAN04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Engineering Changes</td>
<td>Engineering</td>
<td>04FEB04</td>
<td>08FEB04</td>
<td>04FEB04</td>
<td>08FEB04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Begin Full Scale Production</td>
<td>Manufacturing</td>
<td>09FEB04</td>
<td>09FEB04</td>
<td>09FEB04</td>
<td>09FEB04</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

options ps=60 ls=100;

title f=swiss 'Gantt Example 6';
title2 f=swiss 'Using the MININTERVAL= and SCALE= Options';

data widgaoa;
 format task $12. ;
 input task & days tail head;
 datalines;
 Approve Plan 5 1 2
 Drawings 10 2 3
 Study Market 5 2 4
 Write Specs 5 2 3
 Prototype 15 3 5
 Mkt. Strat. 10 4 6
 Materials 10 5 7
 Facility 10 5 7
 Init. Prod. 10 7 8
 Evaluate 10 8 9
 Test Market 15 6 9
 Changes 5 9 10
 Production 0 10 11
 Marketing 0 6 12
 Dummy 0 8 6
;

data details;
 format task $12. dept $13. descrpt $30.;
 input task & dept & descrpt &;
 label dept = "Department"
 descrpt = "Activity Description";
 datalines;
 Approve Plan Planning Finalize and Approve Plan
 Drawings Engineering Prepare Drawings
 Study Market Marketing Analyze Potential Markets
Example 6.6. Using the MININTERVAL= and SCALE= Options

Write Specs Engineering Write Specifications
Prototype Engineering Build Prototype
Mkt. Strat. Marketing Develop Marketing Concept
Materials Manufacturing Procure Raw Materials
Facility Manufacturing Prepare Manufacturing Facility
Init. Prod. Manufacturing Initial Production Run
Evaluate Testing Evaluate Product In-House
Test Market Testing Mail Product to Sample Market
Changes Engineering Engineering Changes
Production Manufacturing Begin Full Scale Production
Marketing Marketing Begin Full Scale Marketing
Dummy . Production Milestone

* schedule the project;
proc cpm data=widgeta date='1dec03’d out=save;
 tailnode tail;
 headnode head;
 duration days;
 id task dept descrpt;
run;

* sort the schedule by the early start date;
proc sort;
 by e_start;
run;

goptions vpos=42 hpos=80;

* plot the schedule;
proc gantt;
 chart / mininterval=week scale=10
 dur=days cmile=green
 ref='1dec03’d to ’1feb04’d by month
 font=swiss
 nolegend;
 id descrpt;
run;
Chapter 6. The GANTT Procedure

Output 6.6.2. Using the MININTERVAL= and SCALE= Options in Graphics Mode

Gantt Example 6
Using the MININTERVAL= and SCALE= Options

<table>
<thead>
<tr>
<th>Job</th>
<th>Activity Description</th>
<th>DEC 01</th>
<th>DEC 08</th>
<th>DEC 15</th>
<th>DEC 22</th>
<th>DEC 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Finalize and Approve Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Prepare Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Analyze Potential Markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Write Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Develop Marketing Concept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Build Prototype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Procure Raw Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Prepare Manufacturing Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Initial Production Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Evaluate Product In—House</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mail Product to Sample Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Begin Full Scale Marketing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Production Milestone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Engineering Changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Begin Full Scale Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gantt Example 6
Using the MININTERVAL= and SCALE= Options

<table>
<thead>
<tr>
<th>Job</th>
<th>DEC 29</th>
<th>JAN 05</th>
<th>JAN 12</th>
<th>JAN 19</th>
<th>JAN 26</th>
<th>FEB 02</th>
<th>FEB 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 6.7. Using the MINDATE= and MAXDATE= Options

In this example, the SAVE data set from Example 6.6 is used to display the schedule of the project over a limited time period. The start date and end date are specified by the MINDATE= and MAXDATE= options, respectively, in the CHART statement. As in Example 6.5, the COMPRESS option is used to ensure that the region of the Gantt chart lying between January 1, 2004, and February 2, 2004, fits on a single page. The specification REF='5JAN04’d TO ‘2FEB04’d BY WEEK causes PROC GANTT to draw reference lines at the start of every week. Further, the reference lines are labeled using the REFLABEL option. The CREF= and LREF= options are specified in the CHART statement to indicate the color and line style, respectively, of the reference lines. The CFRAME= option is used to specify the color of the frame fill. The resulting Gantt chart is shown in Output 6.7.1.

```plaintext
title f=swiss 'Gantt Example 7';
title2 f=swiss 'Using the MINDATE= and MAXDATE= Options';
goptions vpos=40 hpos=100;

* plot the schedule;
proc gantt data=save;
   chart / mindate='1jan04’d maxdate='2feb04’d ref='5jan04’d to ’2feb04’d by week
            reflabel cref=black lref=2
            cframe=cyan
            dur=days font=swiss nojobnum
            compress;
   id task;
run;
```
Example 6.8. Variable Length Holidays

This example shows how you can mark vacation periods that last longer than one day on the Gantt chart. This can be done by using the HOLIDUR= option in the CHART statement. Recall that holiday duration is assumed to be in interval units where interval is the value specified for the INTERVAL= option. The project data for this example are the same as the data used in the previous example. Suppose that in your scheduling plans you want to assign work on all days of the week, allowing for a Christmas vacation of four days starting from December 24, 2003, and a day off on January 1, 2004 for the New Year. The data set HOLIDAYS contains the holiday information for the project. First, the project is scheduled with INTERVAL=DAY so that the holidays are on December 24, 25, 26, and 27, 2003, and on January 1, 2004. PROC GANTT is invoked with INTERVAL=DAY to correspond to the invocation of PROC CPM. The resulting Gantt chart is shown in Output 6.8.1.

```sas
title f=swiss 'Gantt Example 8';
data holidays;
  format holiday holifin date7.;
  input holiday & date7. holifin & date7. holidur;
datalines;
24dec03 27dec03 4
01jan04 .
;
* schedule the project subject to holidays;
```
Example 6.8. Variable Length Holidays

```plaintext
proc cpm data=widgeta holidata=holidays out=sched1
date='1dec03'd interval=day;
tailnode tail;
headnode head;
duration days;
id task dept descrpt;
holiday holiday / holidur=(holidur);
run;

* sort the schedule by the early start date;
proc sort;
  by e_start;
run;

* plot the schedule;
title2 'Variable Length Holidays: INTERVAL=DAY';
proc gantt holidata=holidays data=sched1;
  chart / holiday=(holiday) holidur=(holidur)
    interval=day
    dur=days
    pcompress;
id task;
run;
```

Output 6.8.1. Variable Length Holidays: INTERVAL=DAY

![Gantt Chart Example 8](image)

Next, consider the same project and Holiday data set, but invoke PROC CPM with INTERVAL=WEEKDAY. Then, the value ‘4’ specified for the variable HOLIDUR is interpreted as 4 weekdays. The holidays are on December 24, 25, 26, and 29, 2003,
and on January 1, 2004, because December 27 and 28 (Saturday and Sunday) are non-working days. The same steps are used as previously, except that INTERVAL is set to WEEKDAY instead of DAY in both PROC CPM and PROC GANTT. Suppose that the resulting data set is saved as SCHED2. The following invocation of PROC GANTT produces Output 6.8.2. Note that the use of INTERVAL=WEEKDAY causes weekends to be also marked on the chart.

```plaintext
title2 'Variable Length Holidays: INTERVAL=WEEKDAY';
proc gantt holidata=holidays data=sched2;
   chart / holiday=(holiday) holidur=(holidur)
            interval=weekday
            dur=days
            pcompress;
   id task;
run;

Output 6.8.2.  Variable Length Holidays: INTERVAL=WEEKDAY
```

Finally, when the INTERVAL= option is specified as WORKDAY, the workday is assumed to be from 9:00 a.m. to 5:00 p.m., and the Christmas holiday period begins at 5:00 p.m. on December 23, 2003, and ends at 9:00 a.m. on December 30, 2004. PROC GANTT is invoked with the MARKBREAK option and MININTERVAL=DTHOUR so that all breaks during a day can be seen. Because the SCALE= option is not specified, each column denotes one hour of the schedule. Since the project duration is several days long, the entire Gantt chart would be spread across many pages. Simply specifying the COMPRESS or PCOMPRESS option will
not be of much help since the text would be barely legible owing to the extent of the scaling. Hence, only a portion of the Gantt chart is shown in Output 6.8.3 using the MINDATE= and MAXDATE= options. Note that the Gantt chart is labeled with the date as well as the time values on the time axis.

```plaintext
proc gantt holidata=holidays data=sched3;
   chart / holiday=(holiday) holidur=(holidur)
        interval=workday
        dur=days
        mininterval=dthour markbreak
        mindate='29dec03:09:00:00'dt
        maxdate='03jan04:00:00:00'dt
        pcompress;
   id task;
run;
```

Output 6.8.3. Variable Length Holidays: INTERVAL=WORKDAY

Example 6.9. Multiple Calendars

This example illustrates the use of multiple calendars within a project. The data for this example are the same as the data used in Example 2.10 to illustrate the CPM Procedure. The input data sets to PROC CPM are displayed in Output 6.9.1. The WORKDATA data set defines several shift patterns, which in turn are identified with four different calendars in the CALEDATA data set:
The ‘DEFAULT’ calendar has five 8-hour workdays (8 a.m. - 4 p.m.) on Monday through Friday and holidays on Saturday and Sunday.

The ‘OVT–CAL’ calendar defines the “overtime” calendar that is followed by the Engineering department to build the prototype. The ‘OVT–CAL’ calendar has five 10-hour workdays (8 a.m. - 6 p.m.) on Monday through Friday, a 4-hour halfday (8 a.m. - 12 noon) on Saturday and a holiday on Sunday.

The ‘PROD–CAL’ calendar defines the “production” calendar that is used for full-scale production of the widget. The ‘PROD–CAL’ calendar consists of continuous work from Monday 8 a.m. through Saturday 6 p.m. except for two 2-hour breaks per day from 6 a.m. to 8 a.m. and from 6 p.m. to 8 p.m. Thus, ‘PROD–CAL’ is made up of eleven 8-hour shifts per week; six day shifts and five night shifts.

The ‘Eng–cal’ calendar defines the calendar followed by the Engineering department for writing the specifications for the prototype. The ‘Eng–cal’ calendar has the same work pattern as the default calendar with an extra holiday period of seven days starting on December 8, 2003.

The HOLIDATA data set defines the appropriate holidays for the different calendars. The project data set WIDGVAC includes a variable named CAL to identify the appropriate calendar for each activity.
The program used to invoke PROC CPM and PROC GANTT follows. The CALENDAR= and WORKDAY= options are specified in the PROC GANTT statement to identify the CALEDATA and WORKDATA data sets, respectively. The CALID= option in the CHART statement names the variable identifying the calendar that each observation refers to in the WIDGVEC and CALEDATA data sets. Since the value of MININTERVAL= is DTDAY, setting the SCALE= value to 12 ensures that a single column on the Gantt chart represents two hours. This is done in order to be able to detect a two hour difference between schedules. Consequently, the MINDATE= and MAXDATE= options are used to control the output produced by PROC GANTT. The resulting Gantt chart is shown in Output 6.9.2. Notice the 5
column duration for ‘Prototype’ on December 29, 2003 representing a 10-hour day versus the 4 column duration for ‘Mkt. Strat.’ for the same day representing 8 hours of work. Although MAXDATE= is set to 8 a.m. on January 2, 2004, the last tick mark is the beginning of January 3, 2004. This is because the specified value of the MAXDATE= option does not correspond to a tick mark (based on the SCALE= and MININTERVAL= options); the value used is the first tick mark appearing after the value of the MAXDATE= option.

```
proc cpm date='01dec03'd interval=workday data=widgvac
   out=schedvac holidata=holidata
   workday=workdata calendar=caledata;
   holiday holiday / holifin=holifin holidur=holidur;
   activity task;
   duration days;
   successor succ1 succ2 succ3;
   calid cal;
   run;
```

title 'Gantt Example 9';
title2 'Multiple Calendars';

```
proc gantt data=schedvac holidata=holidata
   workday=workdata calendar=caledata ;
   chart / holiday=(holiday) holiend=(holifin)
   calid=cal
   markbreak scale=12
   mindate='27dec03:00:00'dt
   maxdate='02jan04:08:00'dt
   pcompress;
   id task;
   run;
```
Example 6.10. Plotting the Actual Schedule

Suppose that the project is complete and you want to compare the actual progress of the activities with the predicted schedule computed by PROC CPM. The following DATA step stores the actual start and finish times of each activity in a data set named COMPLETE. A data set named WIDGELA is then created that contains both the schedule obtained from PROC CPM (the data set SAVEH from Example 6.3 is used because it does not contain the dummy activity) and the actual schedule. The resulting data set is sorted by early start time.

The COMPRESS option is employed in order to draw the entire Gantt chart on one page. Predicted schedules as well as actual schedules are plotted on separate bars for each activity. The A_START= and A_FINISH= options in the CHART statement are used to specify the variables containing the actual start and finish times for each activity. The actual schedule is plotted with the fill pattern specified in the sixth PATTERN statement. This example also illustrates the drawing of holidays in graphics mode. PROC GANTT uses the fill pattern specified in the seventh PATTERN statement to represent the holidays defined by the HOLIDATA= data set. The holidays are identified to PROC GANTT by specifying the HOLIDAY= and HOLIFIN= options in the CHART statement.

The HCONNECT option causes a connecting line to be drawn from the left boundary of the chart to the early start time for each activity. The CHCON= option specifies the color for drawing the connect lines. You can use the LHCON= option in the CHART statement to specify a line style other than the default style for the connect lines. The Gantt chart is shown in Output 6.10.1.
data complete;
format activity $12. sdate date7. fdate date7.;
input activity & sdate & date7. fdate & date7.;
datalines;
Approve Plan 01dec03 05dec03
Drawings 06dec03 16dec03
Study Market 05dec03 09dec03
Write Specs 07dec03 12dec03
Prototype 17dec03 03jan04
Mkt. Strat. 10dec03 19dec03
Materials 02jan04 11jan04
Facility 01jan04 13jan04
Init. Prod. 13jan04 21jan04
Evaluate 22jan04 01feb04
Test Market 23jan04 08feb04
Changes 05feb04 11feb04
Production 12feb04 12feb04
Marketing 26jan04 26jan04
;
* merge the computed schedule with the actual schedule;
data widgela;
 merge saveh complete;
run;

* sort the data;
proc sort;
 by e_start;
run;

title f=swiss 'Gantt Example 10';
title2 f=swiss
 'Plotting Actual Start and Finish Times on the Chart';

* set vpos to 40 and hpos to 100;
goptions vpos=40 hpos=100;

* plot the computed and actual schedules using proc gantt;
proc gantt data=widgela holidata=holidays;
 chart / holiday=(holiday) holifin=(holifin)
 a_start=sdate a_finish=fdate
dur=days cmile=blue
font=swiss ctext=blue
caxis=black hconnect
compress;
 id task;
run;
Example 6.11. Comparing Progress Against a Baseline Schedule

Suppose that the widget manufacturing project is currently in progress and you want to measure its performance by comparing it with a baseline schedule. For example, the baseline schedule may be the originally planned schedule, a target schedule that you would like to achieve, or an existing schedule that you intend to improve on. The data for this example come from Example 2.13, which was used to illustrate the options available in PROC CPM. Prior to the beginning of the project, the predicted early schedule is saved by PROC CPM as the baseline schedule. Progress information for the project as of December 19, 2003, is saved in the ACTUAL data set. The variables SDATE and FDATE represent the actual start and actual finish times, respectively. The variables PCTC and RDUR represent the percent of work completed and the remaining days of work for each activity, respectively. PROC CPM is then invoked using the baseline and project progress information with TIMENOW set to December 19, 2003. The scheduling is carried out with the AUTOPUPDT option in order to automatically update progress information. The Schedule data set WIDGUPDT produced by PROC CPM is shown in Output 6.11.1. Notice that the development of a marketing strategy (activity 5: 'Mkt. Strategy') and the building of the prototype (activity 6: 'Prototype') have a specified value for A_START and a missing value for A_FINISH, indicating that they are currently in progress at TIMENOW.

PROC GANTT is next invoked with the data set WIDGUPDT. This data set contains the actual schedule variables A_START and A_FINISH and the baseline schedule...
variables B_START and B_FINISH. The Gantt chart is drawn with three schedule bars per activity. The first bar represents the predicted early/late schedule based on the actual data specified, the second bar represents the actual schedule, and the third bar represents the baseline schedule. The TIMENOW= option is specified in the CHART statement to draw a timenow line on December 19, 2003. Actual schedule bars for ‘Mkt. Strategy’ and ‘Prototype’ are drawn up to TIMENOW to indicate that they are currently in progress. You can use the CTNOW=, LTNOW=, and WTNOW= options to change the color, style, and width of the timenow line, respectively. To suppress the timenow label displayed at the bottom of the axis, specify the NOTNLABEL in the CHART statement.

* estimate schedule based on actual data;
proc cpm data=widgact holidata=holidays
 out=widgupdt date='1dec03'd;
 activity task;
 succ succ1 succ2 succ3;
 duration days;
 holiday holiday / holifin=(holifin);
 baseline / compare=early;
 actual / as=sdate af=fdate timenow='19dec03'd
 remdur=rdur pctcomp=pctc
 autoupdt;
run;

* sort the data;
proc sort;
 by e_start;
run;

title 'Gantt Example 11';
title2 'Progress Data';

* print the data;
proc print;
 var task e_: l_: a_start a_finish b_: ;
run;

* set up required pattern statements;
pattern1 c=black v=r1; /* duration of a noncritical act. */
pattern2 c=black v=e; /* slack time for a noncrit. act. */
pattern3 c=black v=s; /* duration of a critical act. */
pattern4 c=black v=e; /* slack time for a supercrit. act. */
pattern5 c=black v=r2; /* duration of a supercrit. act. */
pattern6 c=black v=l1; /* actual duration of an activity */
pattern7 c=black v=x1; /* break due to a holiday */
pattern8 c=black v=l1; /* resource schedule of activity */
pattern9 c=black v=e; /* baseline schedule of activity */

title f=swiss 'Gantt Example 11';
title2 f=swiss 'Comparing Project Progress against a Baseline Schedule';
Example 6.12. Using the COMBINE Option

* plot the actual and baseline schedules using proc gantt;
proc gantt data=widgupdt holidata=holidays;
 chart / holiday=(holiday) holifin=(holifin)
 timenow='19dec03'd dur=days
 scale=2 height=1.25 font=swiss
 pcompress;
 id task;
run;

Output 6.11.1. Schedule Data Set WIDGUPDT

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>A_START</th>
<th>A_FINISH</th>
<th>B_START</th>
<th>B_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td>01DEC03</td>
<td>05DEC03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Study Market</td>
<td>05DEC03</td>
<td>09DEC03</td>
<td>05DEC03</td>
<td>09DEC03</td>
<td>05DEC03</td>
<td>09DEC03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Drawings</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>07DEC03</td>
<td>11DEC03</td>
<td>07DEC03</td>
<td>11DEC03</td>
<td>07DEC03</td>
<td>11DEC03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mkt. Strat.</td>
<td>10DEC03</td>
<td>14DEC03</td>
<td>10DEC03</td>
<td>14DEC03</td>
<td>10DEC03</td>
<td>14DEC03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Prototype</td>
<td>17DEC03</td>
<td>21DEC03</td>
<td>17DEC03</td>
<td>21DEC03</td>
<td>17DEC03</td>
<td>21DEC03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>05JAN04</td>
<td>09JAN04</td>
<td>05JAN04</td>
<td>09JAN04</td>
<td>05JAN04</td>
<td>09JAN04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>05JAN04</td>
<td>09JAN04</td>
<td>05JAN04</td>
<td>09JAN04</td>
<td>05JAN04</td>
<td>09JAN04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>15JAN04</td>
<td>19JAN04</td>
<td>15JAN04</td>
<td>19JAN04</td>
<td>15JAN04</td>
<td>19JAN04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>25JAN04</td>
<td>02FEB04</td>
<td>25JAN04</td>
<td>02FEB04</td>
<td>25JAN04</td>
<td>02FEB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td>25JAN04</td>
<td>08FEB04</td>
<td>25JAN04</td>
<td>08FEB04</td>
<td>25JAN04</td>
<td>08FEB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Marketing</td>
<td>25JAN04</td>
<td>14FEB04</td>
<td>25JAN04</td>
<td>14FEB04</td>
<td>25JAN04</td>
<td>14FEB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Changes</td>
<td>09FEB04</td>
<td>13FEB04</td>
<td>09FEB04</td>
<td>13FEB04</td>
<td>09FEB04</td>
<td>13FEB04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Production</td>
<td>14FEB04</td>
<td>18FEB04</td>
<td>14FEB04</td>
<td>18FEB04</td>
<td>14FEB04</td>
<td>18FEB04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output 6.11.2. Comparing Project Progress Against a Baseline Schedule
Example 6.12. Using the COMBINE Option

When you monitor a project in progress, as in the previous example, it is evident that there are no actual dates beyond TIMENOW and that PROC CPM sets the early times to the corresponding actual times for activities that are completed or in progress (see Output 6.11.1). For example, activities 1 through 4 have their early schedule equal to the actual schedule. Activities 5 and 6 have their early start equal to the actual start; however the actual finish for these two activities is missing since they are in progress at TIMENOW. Finally, activities 7 through 14 have no actual information.

The COMBINE option in PROC GANTT exploits the fact that the early times are made consistent with the actual times to strip away a lot of the redundancy and produce a more compact Gantt chart while retaining all of the essential schedule information. Specifying the COMBINE option in the CHART statement of the previous example produces the Gantt chart in Output 6.12.1. Instead of using two separate bars to draw the early/late schedule and the actual schedule, the COMBINE option causes PROC GANTT to use one bar to represent all three schedules and draws a timenow line. The actual schedule is shown to the left of TIMENOW and the early/late schedule is shown to the right of TIMENOW. Thus, for activities 1 through 4, the actual schedule is drawn on the first bar to the left of the timenow line. Activities 5 and 6 are in progress at TIMENOW, which is indicated by the actual start positioned to the left of TIMENOW and the predicted early/late schedule, based on the progress made up to TIMENOW, drawn to the right of TIMENOW. Activities 7 through 14 have not yet started, and this is reflected in their predicted early/late schedules drawn to the right of TIMENOW.

The COMBINE option draws a timenow line by default, and if the TIMENOW= option is not specified, the procedure computes the value of TIMENOW based on the schedule data as explained in the “Syntax” section. In this example, specifying the COMBINE option without the TIMENOW= option causes a timenow line to be drawn on December 18, 2003, since this is the first day following the largest actual value. The CTNOW= option is used to specify the color of the timenow line. You can change the line style and line width of the timenow line by specifying the LTNOW= and WTNOW= options, respectively, in the CHART statement.

```
title f=swiss 'Gantt Example 12';
title2 f=swiss 'Using the COMBINE Option';

* set vpos to 50 and hpos to 100;
goptions vpos=50 hpos=100;

* plot the combined and baseline schedules using proc gantt;
proc gantt graphics data=widgupdt holidata=holidays;
  chart / holiday=(holiday) holifin=(holifin)
         timenow='19dec03'd ctnow=red
         combine
         dur=days
         font=swiss
         compress;
  id task;
run;
```
Example 6.13. Plotting the Resource-Constrained Schedule

This example illustrates plotting the resource-constrained schedules on a Gantt chart. The schedule used is the one produced in Example 2.19 using the CPM procedure. The output data set from PROC CPM is displayed in Output 6.13.1. Notice that the activities ‘Drawings’ and ‘Mkt. Strat.’ have been split to produce a shorter project duration than if they had not been split.

PROC GANTT is invoked with all default options and an ID statement. The early/late schedule is drawn on the first bar, and the resource-constrained schedule is drawn on the second bar of each activity. The observations corresponding to the split segments of each activity have been combined to produce the plot of the resource-constrained schedule for that activity. Thus, even though the Schedule data set input to PROC GANTT contains 18 observations, the Gantt chart shows each of the 14 activities only once.

```
title f=swiss 'Gantt Example 13';
title2 f=swiss 'Resource Constrained Schedule';

* plot the resource-constrained schedule using proc gantt;

proc gantt data=splitschd holidata=holdata;
    chart / holiday=(hol) dur=days
              font=swiss pcompress;
    id task;
run;
```
Output 6.13.1. Schedule Data Set SPLTSCHD

Gantt Example 13
Project Schedule: Splitting Allowed

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>P</th>
<th>H</th>
<th>S</th>
<th>E</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>r</td>
<td>r</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>M</td>
<td>o</td>
<td>d</td>
<td>S</td>
<td>I</td>
<td>S</td>
<td>I</td>
</tr>
<tr>
<td>T</td>
<td>d</td>
<td>d</td>
<td>w</td>
<td>T</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>O</td>
<td>u</td>
<td>_</td>
<td>s</td>
<td>m</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>b</td>
<td>s</td>
<td>c</td>
<td>N</td>
<td>y</td>
<td>a</td>
<td>R</td>
</tr>
<tr>
<td>s</td>
<td>k</td>
<td>c</td>
<td>o</td>
<td>s</td>
<td>n</td>
<td>e</td>
</tr>
</tbody>
</table>

1 Approve Plan: Drawings . 5 1 01DEC03 05DEC03 01DEC03 05DEC03 01DEC03 05DEC03
2 Drawings: Prototype . 1 2 08DEC03 23DEC03 08DEC03 19DEC03 08DEC03 19DEC03
3 Drawings: Prototype . 2 1 08DEC03 09DEC03 08DEC03 19DEC03 08DEC03 19DEC03
4 Drawings: Prototype . 2 8 1 12DEC03 23DEC03 08DEC03 19DEC03 08DEC03 19DEC03
5 Study Market: Mkt. Strat. . 5 1 08DEC03 12DEC03 08DEC03 12DEC03 21JAN04 27JAN04
6 Write Specs: Prototype . 5 1 08DEC03 12DEC03 08DEC03 12DEC03 15DEC03 19DEC03
7 Prototype: Materials . 15 1 24DEC03 15JAN04 22DEC03 13JAN04 22DEC03 13JAN04
8 Mkt. Strat.: Test Market . 10 1 15DEC03 20JAN04 15DEC03 29DEC03 28JAN04 10FEB04
9 Mkt. Strat.: Test Market . 1 7 1 15DEC03 23DEC03 15DEC03 29DEC03 28JAN04 10FEB04
10 Mkt. Strat.: Test Market . 2 3 1 16JAN04 20JAN04 15DEC03 29DEC03 28JAN04 10FEB04
11 Materials: Init. Prod. . 10 1 16JAN04 29JAN04 14JAN04 27JAN04 14JAN04 27JAN04
12 Facility: Init. Prod. . 10 1 16JAN04 29JAN04 14JAN04 27JAN04 14JAN04 27JAN04
13 Init. Prod.: Test Market . 10 1 30JAN04 12FEB04 28JAN04 10FEB04 28JAN04 10FEB04
14 Evaluate: Changes . 10 1 13FEB04 26FEB04 11FEB04 24FEB04 18FEB04 02MAR04
15 Test Market: Changes . 15 1 13FEB04 04MAR04 11FEB04 02MAR04 11FEB04 02MAR04
16 Changes: Production . 5 1 05MAR04 11MAR04 03MAR04 09MAR04 03MAR04 09MAR04
17 Production . 1 0 12MAR04 12MAR04 10MAR04 10MAR04 10MAR04 10MAR04
18 Marketing . 0 0 13FEB04 13FEB04 11FEB04 11FEB04 10MAR04 10MAR04

Output 6.13.2. Plotting the Resource-Constrained Schedule

Gantt Example 13
Resource Constrained Schedule

Legend:
- **Duration of a Normal Job**
- **Duration of a Critical Job**
- **Shortest Time for a Normal Job**
- **Due Date for a Normal Job**
- **Resource-Critical Schedule**

<table>
<thead>
<tr>
<th>Job</th>
<th>Task</th>
<th>Duration</th>
<th>Due Date</th>
<th>Shortest Time</th>
<th>Resource-Critical</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Study Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Test Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 6.14. Specifying the Schedule Data Directly

Although each of the examples shown so far uses PROC CPM to produce the Schedule data set for PROC GANTT, this is by no means a requirement of the GANTT procedure. While the CPM procedure is a convenient means for producing different types of schedules, you can create your own schedule and draw a Gantt chart of the schedule without any intervention from PROC CPM. This is done by storing the schedule information in a SAS data set and specifying the data set name using the DATA= option in the PROC GANTT statement. It is also not necessary for the variables in the data set to have specific names, although giving the variables certain names can eliminate the need to explicitly identify them in the CHART statement.

An example of the direct type of input can be seen in Example 6.10 which illustrates plotting of the actual schedule. In Example 6.10, PROC CPM was used to compute the predicted early/late schedule, which was then stored in the SAVEH data set. However, information about the actual schedule, which was provided in the COMPLETE data set, was not used by PROC CPM. Instead, this information was merged with the SAVEH data set to form WIDGELA, the Schedule data set for PROC GANTT. The variables representing the actual start and finish were identified to PROC GANTT using the A_START= and A_FINISH= options, respectively, in the CHART statement. The identification of the variables would not have been necessary if the start and finish variable names were A_START and A_FINISH, respectively.

The following example draws a Gantt chart of the early, late, and resource-constrained schedules for the widget manufacturing project. The schedule information is held in the WIDGDIR data set. The WIDGDIR data set contains the variables TASK, SEGMT_NO, DUR, RS, RF, E_START, E_FINISH, SDATE, and FDATE. The variable TASK identifies the activity. E_START and E_FINISH are recognized as the default names of the early start and early finish variables, respectively. The variables SDATE and FDATE define the late start and late finish times, respectively. Since these are not the default names for the late schedule variables, they need to be identified as such by specifying the LS= and LF= options (or the L_START= and L_FINISH= options) in the CHART statement. The variables RS and RF represent the resource-constrained start and finish times, respectively. As with the late schedule, these variables need to be identified to PROC GANTT by specifying the SS= and SF= options (or the S_START= and S_FINISH= options) in the CHART statement. Further, the SEGMT_NO variable identifies the segment number of the resource constrained schedule that an observation corresponds to since these are activities that start and stop multiple times before completion. The ZDUR variable is identified as a zero duration indicator by specifying the DUR= option in the CHART statement. Since ZDUR is zero for ‘Production’ and ‘Marketing,’ these activities are represented by milestones on the chart. Notice that although all the other activities have a value of ‘1’ for the ZDUR variable, any nonzero value will produce the same result. This is due to the fact that PROC GANTT only uses this variable as an indicator of whether the activity has zero duration or not, in contrast to the interpretation of the DURATION variable in PROC CPM.

options ps=60 ls=100;
title f=swiss 'Gantt Example 14';

/* Activity-on-Node representation of the project */
data widgdir;
 format task $12. rs rf e_start e_finish sdate fdate date7.;
 input task & segmt_no zdur rs & date7. rf & date7.
 e_start & date7. e_finish & date7.
 sdate & date7. fdate & date7.;
 datalines;
 Approve Plan . 1 01DEC03 05DEC03 01DEC03 05DEC03 01DEC03 05DEC03
 Drawings . 1 08DEC03 23DEC03 08DEC03 19DEC03 08DEC03 19DEC03
 Drawings . 1 08DEC03 09DEC03 08DEC03 19DEC03 08DEC03 19DEC03
 Drawings . 1 12DEC03 23DEC03 12DEC03 21JAN04 12DEC03 21JAN04
 Study Market . 1 08DEC03 12DEC03 08DEC03 12DEC03 08DEC03 12DEC03
 Prototype . 1 24DEC03 15JAN04 22DEC03 13JAN04 22DEC03 13JAN04
 Mkt. Strat. . 1 15DEC03 20JAN04 15DEC03 29DEC03 28JAN04 10FEB04
 Mkt. Strat. . 1 15DEC03 23DEC03 15DEC03 29DEC03 28JAN04 10FEB04
 Mkt. Strat. . 2 1 16JAN04 23DEC03 15DEC03 29DEC03 28JAN04 10FEB04
 Materials . 1 16JAN04 29JAN04 29JAN04 14JAN04 27JAN04 14JAN04
 Facility . 1 16JAN04 29JAN04 29JAN04 14JAN04 27JAN04 14JAN04
 Init. Prod. . 1 30JAN04 12FEB04 28JAN04 10FEB04 28JAN04 10FEB04
 Evaluate . 1 13FEB04 12FEB04 11FEB04 24FEB04 18FEB04 02MAR04
 Test Market . 1 13FEB04 04MAR04 11FEB04 02MAR04 11FEB04 02MAR04
 Changes . 1 05MAR04 11MAR04 05MAR04 09MAR04 03MAR04 09MAR04
 Production . 0 12MAR04 12MAR04 10MAR04 10MAR04 10MAR04 10MAR04
 Marketing . 0 13FEB04 13FEB04 11FEB04 11FEB04 10MAR04 10MAR04
;

data holdata;
 format hol & date7.;
 input hol & date7.;
 datalines;
 25dec03
 01jan04
;

* set up required pattern statements;

pattern1 c=black v=r1; /* duration of a non-critical activity */
pattern2 c=black v=e; /* slack time for a noncrit. activity */
pattern3 c=black v=s; /* duration of a critical activity */
pattern4 c=black v=e; /* slack time for a supercrit. activity */
pattern5 c=black v=r2; /* duration of a supercrit. activity */
pattern6 c=black v=l1; /* actual duration of an activity */
pattern7 c=black v=x1; /* break due to a holiday */
pattern8 c=black v=l1; /* resource schedule of activity */
pattern9 c=black v=e; /* baseline schedule of activity */

title2 f=swiss 'Specifying the Schedule Data Directly';

proc gantt data=widgdir holidata=holdata;
 chart / holiday=(hol) dur=zdur
 ss=rs sf=rf ls=sdate lf=fdate
 font=swiss pcompress;

Example 6.15. BY Processing

Every activity in the widget manufacturing project is carried out by one of five departments: Planning, Engineering, Marketing, Manufacturing, and Testing. The DETAILS data set in Example 6.6 identifies the department responsible for each activity. Thus, the project can be thought of as made up of five smaller subprojects, a subproject being the work carried out by a department. A foreseeable need of the project manager and every department is a separate Gantt chart for each subproject. This example uses the WIDGETN data set from Example 2.1, which is formed by merging the WIDGET data set with the DETAILS data set. After scheduling the master project using PROC CPM with DEPT as an ID variable, the Schedule data set is sorted by department name and early start time. The GANTT procedure is then invoked with the variable DEPT specified in the BY statement to obtain individual Gantt charts for each subproject. The Gantt charts for the five different subprojects are shown in Output 6.15.1. The MINDATE= and MAXDATE= options have been specified to ensure a consistent date range across projects. Notice that the TITLE2 statement uses the text substitution option #BYVARn, which substitutes the name of the nth BY variable. The BY-LINE that appears below the titles identifies the current values of the BY variables. You can suppress this using the NOBYLINE option in an OPTION statement or the HBY option in a GOPTIONS statement. The SPLIT= option is specified to prevent the TASK variable label from being split on the embedded blank.
title f=swiss 'Gantt Example 15';

data widgetn;
 label task = "Activity Name";
 merge widget details;
run;

proc cpm date='01dec03'd data=widgetn;
 activity task;
 duration days;
 successor succ1 succ2 succ3;
 id dept;
run;

proc sort;
 by dept e_start;
run;

title2 f=swiss 'Project Schedules by #BYVAR1';

proc gantt split='/';
 chart / pcompress scale=1 dur=days
 mindate='01dec03'd maxdate='11feb04'd
 font=swiss;
 by dept;
 id task;
run;

Output 6.15.1. Using BY Processing for Separate Gantt Charts

Gantt Example 15
Project Schedules by Department
 Department = Engineering

<table>
<thead>
<tr>
<th>Job</th>
<th>Activity Name</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>DEC</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>JAN</th>
<th>FEB</th>
<th>FEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drawings</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Write Specs</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Prototype</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Changes</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:
- Duration of a Normal Job
- Duration of a Critical Job
- Slack Time for a Normal Job
- Milestone
Example 6.15. BY Processing
Example 6.16. Gantt Charts by Persons

Now suppose that you want to obtain individual Gantt charts for two people (Thomas and William) working on the widget manufacturing project. The data set WIDGBYGP, displayed in Output 6.16.1, contains two new variables, THOMAS and WILLIAM. Each variable has a value ‘1’ for activities in which the person is involved and a missing value otherwise. Thus, a value of ‘1’ for the variable THOMAS in observation number 2 indicates that Thomas is working on the activity ‘Drawings.’

PROC CPM is used to schedule the project to start on December 1, 2003. A data set named PERSONS is created containing one observation per activity per person working on that activity and a new variable named PERSON containing the name of the person to which the observation pertains. For example, this new data set contains two observations for the activity ‘Write Specs,’ one with PERSON=’Thomas’ and the other with PERSON=’William,’ and no observation for the activity ‘Approve Plan.’ This data set is sorted by PERSON and E_START, and displayed in Output 6.16.2. PROC GANTT is next invoked with a BY statement to obtain individual charts for each person. The resulting Gantt charts are shown in Output 6.16.3. The BY-LINE is suppressed by specifying the NOBYLINE option in an OPTIONS statement and the name of the person corresponding to the chart is displayed in the subtitle by using the #BYVAL substitution in the TITLE2 statement.

Output 6.16.1. Data Set WIDGBYGP

```
<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>tail</th>
<th>head</th>
<th>thomas</th>
<th>william</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>Drawings</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>Study Market</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>Write Specs</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Prototype</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>Materials</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Facility</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Init. Prod.</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>Evaluate</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Changes</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>Production</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Marketing</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>Dummy</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
```

```
title f=swiss ’Gantt Example 16’;

proc cpm data=widgbyp date=’1dec03’d;
    tailnode tail;
    duration days;
    headnode head;
    id task thomas william;
run;

data persons;
    set _last_;
    if william^=. then do;
```
person='William';
output;
end;
if thomas ^= . then do;
 person='Thomas';
output;
end;
drop thomas william;
run;

proc sort data=persons;
 by person e_start;
run;

title2 'Data PERSONS';
proc print data=persons;
 run;

/* suppress byline */
options nobyline;

/* suppress byline */
options nobyline;

title2 f=swiss 'Personalized Gantt Chart for #BYVAL(person)';

proc gantt data=persons;
 chart / pcompress font=swiss;
 by person;
id task;
run;

Output 6.16.2. Data Set PERSONS

<table>
<thead>
<tr>
<th>Obs</th>
<th>tail</th>
<th>head</th>
<th>days</th>
<th>task</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
<th>person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>Drawings</td>
<td>06DEC03</td>
<td>15DEC03</td>
<td>06DEC03</td>
<td>15DEC03</td>
<td>0</td>
<td>0</td>
<td>Thomas</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Write Specs</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td>11DEC03</td>
<td>15DEC03</td>
<td>5</td>
<td>5</td>
<td>Thomas</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>Prototype</td>
<td>16DEC03</td>
<td>30DEC03</td>
<td>16DEC03</td>
<td>30DEC03</td>
<td>0</td>
<td>0</td>
<td>Thomas</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>Init. Prod.</td>
<td>10JAN04</td>
<td>19JAN04</td>
<td>10JAN04</td>
<td>19JAN04</td>
<td>0</td>
<td>0</td>
<td>Thomas</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>Evaluate</td>
<td>20JAN04</td>
<td>29JAN04</td>
<td>25JAN04</td>
<td>03FEB04</td>
<td>5</td>
<td>5</td>
<td>Thomas</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>Changes</td>
<td>04FEB04</td>
<td>08FEB04</td>
<td>04FEB04</td>
<td>08FEB04</td>
<td>0</td>
<td>0</td>
<td>Thomas</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>Write Specs</td>
<td>06DEC03</td>
<td>10DEC03</td>
<td>11DEC03</td>
<td>15DEC03</td>
<td>5</td>
<td>5</td>
<td>William</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>Prototype</td>
<td>16DEC03</td>
<td>30DEC03</td>
<td>16DEC03</td>
<td>30DEC03</td>
<td>0</td>
<td>0</td>
<td>William</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Materials</td>
<td>31DEC03</td>
<td>09JAN04</td>
<td>31DEC03</td>
<td>09JAN04</td>
<td>0</td>
<td>0</td>
<td>William</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>Facility</td>
<td>31DEC03</td>
<td>09JAN04</td>
<td>31DEC03</td>
<td>09JAN04</td>
<td>0</td>
<td>0</td>
<td>William</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>Evaluate</td>
<td>20JAN04</td>
<td>29JAN04</td>
<td>25JAN04</td>
<td>03FEB04</td>
<td>5</td>
<td>5</td>
<td>William</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>Production</td>
<td>09FEB04</td>
<td>09FEB04</td>
<td>09FEB04</td>
<td>09FEB04</td>
<td>0</td>
<td>0</td>
<td>William</td>
</tr>
</tbody>
</table>
Example 6.17. Using the HEIGHT= and HTOFF= Options

Output 6.16.3. Gantt Charts by Person

Personalized Gantt Chart for Thomas

Job	Task	DEC 06	DEC 10	DEC 14	DEC 18	DEC 22	DEC 26	DEC 30	DEC 03	JAN 07	JAN 11	JAN 15	JAN 19	JAN 23	JAN 27	JAN 31	JAN 04	JAN 08	FEB 08	FEB 12		
1	Drawings		10	12	14																	
2	Write Specs																					
3	Prototype						22	26	30	03												
4	Init. Prod.												22	26	30	03	07	11	15	19		
5	Evaluate																					
6	Changes																					

Legend:
- `###` Duration of a Normal Job
- `####` Slack Time for a Normal Job
- `####` Duration of a Critical Job

Personalized Gantt Chart for William

Job	Task	DEC 06	DEC 10	DEC 14	DEC 18	DEC 22	DEC 26	DEC 30	DEC 03	JAN 07	JAN 11	JAN 15	JAN 19	JAN 23	JAN 27	JAN 31	JAN 04	JAN 08	FEB 08	FEB 12		
1	Write Specs																					
2	Prototype							22	26	30	03											
3	Materials																					
4	Facility																					
5	Evaluate																					
6	Production																					

Legend:
- `###` Duration of a Normal Job
- `####` Slack Time for a Normal Job
- `####` Duration of a Critical Job
Example 6.17. Using the HEIGHT= and HTOFF= Options

The following example illustrates two options that control the height and positioning of all text produced by PROC GANTT. The data used for this example come from Example 6.13, which illustrates plotting of the resource-constrained schedule. PATTERN statements are specified in order to identify the fill patterns for the different schedule types and holidays. The resource-constrained schedule is drawn using the fill pattern from the eighth PATTERN statement. The HEIGHT= option is set to 2, indicating that the height of all text produced by PROC GANTT be equal to the height of two activity bars. This text includes activity text, legend text, and axis labeling text. The HTOFF= option is also set to 2, which drops the font baseline of the activity text by the height of one schedule bar causing the font baseline to be positioned at the bottom of the resource-constrained schedule bar. The resulting Gantt chart is displayed in Output 6.17.1.

title f=swiss 'Gantt Example 17';
title2 f=swiss 'Using the HEIGHT= and HTOFF= options';

* set vpos to 50 and hpos to 100;
goptions vpos=50 hpos=100;

* set up required pattern statements;
pattern1 c=black v=r1; /* duration of a noncrit. activity */
pattern2 c=black v=e; /* slack time for a noncrit. act. */
pattern3 c=black v=s; /* duration of a critical activity */
pattern4 c=black v=e; /* slack time for a supercrit. act. */
pattern5 c=black v=r2; /* duration of a supercrit. act. */
pattern6 c=black v=l1; /* actual duration of an activity */
pattern7 c=black v=x1; /* break due to a holiday */
pattern8 c=black v=l1; /* res. constrained dur of an act. */
pattern9 c=black v=e; /* baseline duration of an activity */

proc sort data=spltschd;
 by e_start;
run;
goptions cback=cyan;

* draw Gantt chart using height and htoff equal to 2;
proc gantt data=spltschd holidata=holdata;
 chart / holiday=(hol) font=swiss
dur=days cmile=green
 height=2
 htoff=2
 compress;
 id task;
run;
Example 6.18. Drawing a Logic Gantt Chart Using AON Representation

This example uses the data of Example 6.10, which illustrates the drawing of the actual schedule. The ACTIVITY= and SUCCESSOR= options are specified in the CHART statement to define the precedence relationships using the AON format to PROC GANTT. Since no LAG= option is specified, the lag type of each connection is assumed to be Finish-to-Start (FS). In this case, the precedence defining variables exist in the WIDGELA data set; however, this is not a requirement. The precedence defining variables can belong to a different data set as long as the ACTIVITY variable is common to both data sets and the PRECDATA= option, identifying the Precedence data set, is specified in the PROC GANTT statement. Setting the LEVEL= option to 2 causes the actual schedule bar to be used as the logic bar; that is, PROC GANTT draws the precedence connections with respect to the actual schedule. By default, the precedence connections are drawn with respect to the first bar. The color of the precedence connections is specified with the CPREC= option in the CHART statement. You can change the line style and line width of the precedence connections by specifying the LPREC= and WPREC= options in the CHART statement. The resulting Gantt chart is shown in Output 6.18.1.

title f=swiss 'Gantt Example 18';
title2 f=swiss
 'Logic Gantt Chart: AON Representation and LEVEL= Option';
* sort the data;
proc sort;
 by e_start;
run;

* set vpos to 50 and hpos to 100;
goptions vpos=50 hpos=100;

* set background to ltgray;
goptions cback=ltgray;

* draw the Logic Gantt chart;
proc gantt data=widgela holidata=holidays;
 chart / holiday=(holiday) holifin=(holifin)
 a_start=sdate a_finish=fdate
 cmile=black dur=days
 font=swiss
 activity=task successor=(succ1-succ3)
 level=2
 cprec=blue
 compress;
 id task;
run;

Output 6.18.1. Drawing a Logic Gantt Chart Using AON Representation
Example 6.19. Specifying the Logic Control Options

This example illustrates four options that control the routing of a precedence connection from an activity to its successor on the logic Gantt chart. The example also illustrates the drawing of a Logic Gantt chart using the Activity-on-Arc format.

The Activity data set for PROC CPM is the WIDGETA data set from Example 2.2, which defines the widget manufacturing project in AOA format. The project is scheduled subject to weekends, and the holidays are defined in the HOLDATA data set. The resulting schedule is stored in the output data set SAVEHP. The GANTT procedure is next invoked to produce a Logic Gantt chart by specifying the HEAD= and TAIL= options in the CHART statement. The TRIPLEX font is used for all text except for the first TITLE by specifying it globally using the FTEXT= option in a GOPTIONS statement. The same effect could have been obtained by specifying the TRIPLEX font using the FONT= option in the CHART statement and the F= option in the TITLE2 statement. The resulting Logic Gantt chart is shown in Output 6.19.1.

title f=swiss 'Gantt Example 19';

data holdata;
 format hol date7.;
 input hol & date7.;
datalines;
25dec03
01jan04
;

* schedule the project subject to holidays and weekends;

proc cpm data=widgeta holidata=holdata out=savehp
date='1dec03'd interval=weekday;
 tailnode tail;
 headnode head;
 duration days;
 holiday hol;
 id task dept descrpt;
 run;

* sort the schedule by the early start date;

proc sort;
 by e_start;
 run;

* set background to white, text to black and font to triplex;
goptions cback=white ctext=black ftext=triplex;

* set vpos to 50 and hpos to 100;
The next invocation of PROC GANTT illustrates the effect of the MININTGV= and MINOFFGV= options, which control placement of the global verticals. The concept of global verticals is explained in the “Specifying the Logic Options” section on page 511. The data sets from the previous invocation of the GANTT procedure remain unchanged. The minimum distance of a global vertical from the end of the bar it is associated with is increased from its default of 1 cell to 2.5 cells by specifying MINOFFGV=2.5. Likewise, the minimum distance between any two global verticals is increased from its default of .75 cells to 2 cells by specifying MININTGV=2.0. The effects of these changes are visible in the resulting Logic Gantt chart shown in Output 6.19.2.
* illustrate the minintgv and minoffgv options;

```plaintext
title2 'Logic Gantt Chart: AOA Representation, MININTGV=2 and MINOFFGV=2.5';
proc gantt data=savehp holidata=holdata;
chart / holiday=(hol) dur=days increment=7 compress
   caxis=black cmile=cyan cprec=blue
   head=head tail=tail
   minintgv=2.0 minoffgv=2.5;
   id task;
run;
```

Notice that now there is greater distance between vertical segments (corresponding
to global verticals), and the horizontal segments leaving bars are longer.

Output 6.19.2. Specifying the MININTGV= and MINOFFGV= Options

![Gantt Chart Example 19](image)

The MAXDATE= option is specified in the remaining Gantt calls in this example in
order to focus on the schedule bars of the first few activities in the chart. The next two
outputs illustrate the use of the MAXDISLV= option in the CHART statement. The
MAXDISLV= option is used as a safeguard to limit the feasible region made available
to PROC GANTT for placement of local verticals. The value specified dictates the
maximum allowable displacement of the local vertical from its ideal position, that
is, at a distance of MINOFFLV= from the end of the bar with which it is associated.
However, this ideal position may tend to be positioned too close to a global vertical
or even coinciding with one. Depending on the cell width, this can result in visual
misinterpretation of the Logic Gantt chart. In order to avoid this scenario, you should
specify a reasonable value for the MAXDISLV= option to permit a certain amount
of freedom for local vertical placement so as to distinguish between local and global
verticals. Typically, use of this option is desirable when the value of the MININTGV=

```plaintext
```

Example 6.19. Specifying the Logic Control Options
• 579

* illustrate the minintgv and minoffgv options;

```plaintext
title2 'Logic Gantt Chart: AOA Representation, MININTGV=2 and MINOFFGV=2.5';
proc gantt data=savehp holidata=holdata;
chart / holiday=(hol) dur=days increment=7 compress
   caxis=black cmile=cyan cprec=blue
   head=head tail=tail
   minintgv=2.0 minoffgv=2.5;
   id task;
run;
```

Notice that now there is greater distance between vertical segments (corresponding
to global verticals), and the horizontal segments leaving bars are longer.

Output 6.19.2. Specifying the MININTGV= and MINOFFGV= Options

![Gantt Chart Example 19](image)

The MAXDATE= option is specified in the remaining Gantt calls in this example in
order to focus on the schedule bars of the first few activities in the chart. The next two
outputs illustrate the use of the MAXDISLV= option in the CHART statement. The
MAXDISLV= option is used as a safeguard to limit the feasible region made available
to PROC GANTT for placement of local verticals. The value specified dictates the
maximum allowable displacement of the local vertical from its ideal position, that
is, at a distance of MINOFFLV= from the end of the bar with which it is associated.
However, this ideal position may tend to be positioned too close to a global vertical
or even coincide with one. Depending on the cell width, this can result in visual
misinterpretation of the Logic Gantt chart. In order to avoid this scenario, you should
specify a reasonable value for the MAXDISLV= option to permit a certain amount
of freedom for local vertical placement so as to distinguish between local and global
verticals. Typically, use of this option is desirable when the value of the MININTGV=

```plaintext
```
option, the minimum distance between global verticals, is relatively much greater than the value of the MAXDISLV= option.

To illustrate, consider the following Gantt call with a large MININTGV= value (10) and a relatively smaller MAXDISLV= value (0.3). Thus, for every local vertical, PROC GANTT has a very small interval that is less than a third of a cell wide in which to place that local vertical regardless of whether a global vertical runs through that interval or not. The result of this constraint is illustrated in the chart shown in Output 6.19.3. The local vertical for ‘Drawings’ is positioned as far as possible from the global vertical of ‘Approve Plan,’ but the value of the MAXDISLV= option restricts it from being positioned any further. Visually it is not pleasing, and it is difficult to distinguish the local and global verticals. A similar situation is evident with the local vertical of ‘Prototype’ and the global vertical of ‘Write Specs.’

```plaintext
    title2
    'Logic Gantt Chart: AOA Representation and MAXDISLV=.3';

    proc gantt data=savehp holidata=holdata;
      chart / holiday=(hol) dur=days compress
caxis=black cmile=cyan cprec=blue
    head=head tail=tail
      maxdislv=.3 minintgv=10
    maxdate='01feb04'd;
      id task;
    run;
```
By reducing the value of MAXDISLV= even further, you can produce a chart that gives the appearance of a local vertical overlapping with a global vertical owing to resolution limitations of the display device. Theoretically, by design, this will never be the case. Recall that the value of the MAXDISLV= option is strictly positive and is at least one-tenth of a cell width.

The solution to this problem is to increase the value of the MAXDISLV= option so that the local vertical can be displaced further away from any adjacent global verticals. In the next invocation of PROC GANTT, the value of the MAXDISLV= option is increased to 2, resulting in a Logic Gantt chart in which the local verticals are staggered further away from nearby global verticals. This Gantt chart is displayed in Output 6.19.4.

```
title2
'Logic Gantt Chart: AOA Representation and MAXDISLV=.3';

proc gantt data=savehp holidata=holdata;
  chart / holiday=(hol) dur=days compress
caxis=black cmile=cyan cprec=blue
head=head tail=tail
maxdislv=2 minintgv=10
maxdate='01feb04'd;
  id task;
run;
```
Output 6.19.4. Specifying the MAXDISLV= Option (II)

The final Gantt chart in this example illustrates the use of the MINOFFLV= option in the CHART statement. This option specifies the minimum distance of a local vertical from the end of the bar with which it is associated. Although the position corresponding to the MINOFFLV= option is the position of choice for placement of the local vertical, the actual placement can differ from this position owing to the presence of nearby global verticals, as illustrated by Output 6.19.3 and Output 6.19.4. The maximum amount of displacement is determined by the value of the MAXDISLV= option.

In all of the preceding charts in this example, the connection from the activity, ‘Approve Plan,’ to each of its three successors, ‘Drawings’, ‘Study Market’, and ‘Write Specs’, is a 5-segment connection similar to the type illustrated in Figure 6.13. This is caused by backtracking of the activity’s global vertical to the successor’s local vertical as described in the “Controlling the Layout” section on page 515. To transform this connection into a 3-segment connection as shown in Figure 6.12, you need to position the local vertical to the right of the global vertical. The following invocation of PROC GANTT achieves this by specifying MINOFFLV=0.5, and the resulting Gantt chart is shown in Output 6.19.5. Notice that this option affects the positioning of all local verticals on the chart in contrast to the MAXDISLV= option, which affects only those local verticals that are close to global verticals.

```
* illustrate the minofflv option;

title2 'Logic Gantt Chart: AOA Representation and MINOFFLV=.5';
```
Example 6.20. Nonstandard Precedence Relationships

This example demonstrates the use of nonstandard precedence relationships and specification of the PRECDATA= option in the PROC GANTT statement.

The project and nonstandard precedence relationships are defined by the WIDGLAG2 data set, which is a modification of the WIDGLAG data set that was used in Example 2.11 to illustrate the CPM procedure. The activity and successor variables are represented by the TASK and SUCC variables, respectively, and the lag type of the relationship is defined by the LAGDUR variable. The LAGDUR variable defines the lag type in keyword_duration_calendar format for the purpose of passing the information to PROC CPM. Although PROC GANTT accepts this format for a lag variable, it does not use the duration and calendar values when drawing the connection since the schedule is already computed at this time (presumably by PROC CPM).
Chapter 6. The GANTT Procedure

As in the WIDGLAG data set, the WIDGLAG2 data set specifies a Start-to-Start lag of nine days between the activity ‘Prototype’ and its successors, ‘Materials’ and ‘Facility,’ and a Finish-to-Start lag of two days between ‘Facility’ and ‘Init. Prod.’. In addition, changes to the widget design are permitted to be made no earlier than six days after in-house evaluation of the product has begun. Furthermore, the Engineering department has to ensure that there will be at least three days available for any changes that need to be carried out after the test market results have come in. These constraints are incorporated in the WIDGLAG data set by setting the value of the LAGDUR variable equal to ‘ss_6’ for the relationship between ‘Evaluate’ and ‘Changes’ and equal to ‘ff_3’ for the relationship between ‘Test Market’ and ‘Changes.’

The project is scheduled using PROC CPM subject to weekends and the holidays defined in the HOLIDAYS data set. Specifying the COLLAPSE option in the PROC CPM statement ensures that there is one observation per activity. The WIDGLAGH data set is created by deleting the successor variable from the Schedule data set produced by PROC CPM.

Since there is no precedence information contained in the WIDGLAGH data set, specifying DATA=WIDGLAGH in the PROC GANTT statement without the PRECDATA= option produces a nonprecedence Gantt chart. You can produce a Logic Gantt chart by specifying the precedence information using the PRECDATA= option in the PROC GANTT statement as long as the activity variable is common to both the schedule and Precedence data sets.

The Gantt chart shown in Output 6.20.1 is produced by specifying PRECDATA=WIDGLAG2. The lag type of the precedence connections is indicated to PROC GANTT using the LAG= option in the CHART statement. The width of the precedence connections is set to 2 with the WPREC= option, and the color of the connections is set to blue using the CPREC= option. The MININTGV= and MINOFFLV= options are specified in the CHART statement in an attempt to minimize the number of 5-segment connections. A reference line with a line style of 2 is drawn at the beginning of every month by using the REF= and LREF= options in the CHART statement.

```plaintext
options ps=60 ls=100;

/* Activity-on-Node representation of the project with lags */
data widglag2;
  format task $12. succ $12. lagdur $4. ;
  input task & days succ & lagdur $ ;
datalines;
Approve Plan 5 Drawings .
Approve Plan 5 Study Market .
Approve Plan 5 Write Specs .
Drawings 10 Prototype .
Study Market 5 Mkt. Strat. .
Write Specs 5 Prototype .
Prototype 15 Materials ss_9
```

The project is scheduled using PROC CPM subject to weekends and the holidays defined in the HOLIDAYS data set. Specifying the COLLAPSE option in the PROC CPM statement ensures that there is one observation per activity. The WIDGLAGH data set is created by deleting the successor variable from the Schedule data set produced by PROC CPM.

Since there is no precedence information contained in the WIDGLAGH data set, specifying DATA=WIDGLAGH in the PROC GANTT statement without the PRECDATA= option produces a nonprecedence Gantt chart. You can produce a Logic Gantt chart by specifying the precedence information using the PRECDATA= option in the PROC GANTT statement as long as the activity variable is common to both the schedule and Precedence data sets.

The Gantt chart shown in Output 6.20.1 is produced by specifying PRECDATA=WIDGLAG2. The lag type of the precedence connections is indicated to PROC GANTT using the LAG= option in the CHART statement. The width of the precedence connections is set to 2 with the WPREC= option, and the color of the connections is set to blue using the CPREC= option. The MININTGV= and MINOFFLV= options are specified in the CHART statement in an attempt to minimize the number of 5-segment connections. A reference line with a line style of 2 is drawn at the beginning of every month by using the REF= and LREF= options in the CHART statement.

```plaintext
options ps=60 ls=100;

title f=swiss 'Gantt Example 20';

/* Activity-on-Node representation of the project with lags */
data widglag2;
  format task $12. succ $12. lagdur $4. ;
  input task & days succ & lagdur $ ;
datalines;
Approve Plan 5 Drawings .
Approve Plan 5 Study Market .
Approve Plan 5 Write Specs .
Drawings 10 Prototype .
Study Market 5 Mkt. Strat. .
Write Specs 5 Prototype .
Prototype 15 Materials ss_9
```
Example 6.20. Nonstandard Precedence Relationships

Prototype 15 Facility ss_9
Mkt. Strat. 10 Test Market.
Mkt. Strat. 10 Marketing.
Materials 10 Init. Prod.
Facility 10 Init. Prod. fs_2
Init. Prod. 10 Test Market.
Init. Prod. 10 Marketing.
Init. Prod. 10 Evaluate.
Evaluate 10 Changes ss_6
Test Market 15 Changes ff_3
Changes 5 Production.
Production 0.
Marketing 0.

;

data holidays;
 format holiday holifin date7.;
 input holiday & date7. holifin & date7. holidur;
datalines;
24dec03 26dec03 4
01jan04 . .
;
proc cpm data=widglag2 holidata=holidays date='1dec03'd
 interval=weekday collapse;
 activity task;
 succ succ / lag = (lagdur);
 duration days;
 holiday holiday / holifin=(holifin);
 run;

data widglagh;
 set _last_;
 drop succ;
 run;

* set background to light gray
 goptions cback=ltgray;

* set vpos to 50 and hpos to 100;
 goptions vpos=50 hpos=100;

title2 f=swiss
 'Nonstandard Precedence Relationships and the PRECDATA= Option';

proc gantt data=widglagh precdata=widglag2
 holidata=holidays;
 chart / compress dur=days
 holiday=(holiday) holifin=(holifin)
 cframe=ligr cmile=blue font=swiss
 ref='01dec03’d to ’01mar04’d by month
 cref=black lref=2 relabel
 act=task succ=(succ) lag=(lagdur)
 minintgv=2 minofflv=.5
Example 6.21. Using the SAS/GRAPH ANNOTATE= Option

This example illustrates the use of the ANNOTATE= option to add graphics and text to the body of the Gantt chart. The intent of the first invocation of PROC GANTT is to display the resource requirements of each activity on the Gantt chart, while that of the second invocation is to plot the resource usage bar chart for the replenishable resource engineers and the resource availability curve for the consumable resource cost.

The data for this example come from Example 2.15, in which the widget manufacturing project is scheduled using PROC CPM subject to resource constraints. The project network is defined in the WIDGRES data set using AOA format. The number of engineers needed per day per activity is a replenishable resource and is identified by the ENGINEER variable in the WIDGRES data set. The cost incurred per day per activity is a consumable resource and is identified by the ENGCOST variable in the WIDGRES data set. The WIDGRIN data set specifies the resource availabilities for the project. The schedule produced by PROC CPM using the default choice of LST as a heuristic is shown in Output 6.21.1. The following programs assume that the schedule is stored in the WIDGSCH2 data set and that the resource usage is stored in the WIDGROU2 data set.
The Annotate macros are used in this example to simplify the process of creating Annotate observations. The ANNOMAC macro is first used to compile the Annotate macros and make them available for use. The Annotate data set ANNO1 is then created using the Annotate macros. The DCLANNO macro declares all Annotate variables except the TEXT variable, and the SYSTEM macro defines the Annotate reference system. The coordinate system defined here uses date for the horizontal scale and job number for the vertical scale. The text to be displayed contains the number of engineers required per day and the total cost over the duration of the activity. The LABEL macro is used to annotate the necessary text on the Gantt chart using the BRUSH font.

The GANTT procedure is invoked with the ANNOTATE=ANNO1 specification in the PROC GANTT statement. The resulting Gantt chart is shown in Output 6.21.2. It is important to note that the job number will be used for the vertical scale even if NOJOBNUM is specified in the CHART statement.

<table>
<thead>
<tr>
<th>Resource Constrained Schedule: Rule = LST</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

1	1	2	5	Approve Plan	2	400	01DEC03	05DEC03	01DEC03	05DEC03	01DEC03	05DEC03	0	
2	2	3	10	Drawings	1	200	08DEC03	19DEC03	08DEC03	19DEC03	08DEC03	19DEC03	0	
3	2	4	5	Study Market	1	200	15DEC03	19DEC03	08DEC03	12DEC03	21JAN04	27JAN04	5 engineer	
4	2	3	5	Write Specs	2	400	08DEC03	12DEC03	08DEC03	12DEC03	15DEC03	19DEC03	0	
5	3	5	15	Prototype	4	800	26DEC03	16JAN04	22DEC03	13JAN04	22DEC03	13JAN04	3 engineer	
6	4	6	10	Mkt. Strat.	2	200	06JAN04	15DEC03	29DEC03	28JAN04	10FEB04	0		
7	5	7	10	Materials	15JAN04	30JAN04	14JAN04	27JAN04	14JAN04	27JAN04	0			
8	5	7	10	Facility	2	400	19JAN04	30JAN04	14JAN04	27JAN04	14JAN04	27JAN04	0	
9	7	8	10	Init. Prod.	4	800	02FEB04	13FEB04	28JAN04	10FEB04	28JAN04	10FEB04	0	
10	8	9	10	Evaluate	1	200	16FEB04	27FEB04	11FEB04	02MAR04	24FEB04	18FEB04	02MAR04	0
11	6	9	15	Test Market	16FEB04	09MAR04	11FEB04	02MAR04	11FEB04	02MAR04	0			
12	9	10	5	Changes	2	400	09MAR04	12MAR04	03MAR04	09MAR04	03MAR04	09MAR04	0	
13	10	11	0	Production	4	800	15MAR04	15MAR04	10MAR04	10MAR04	10MAR04	10MAR04	0	
14	6	12	0	Marketing	16FEB04	16FEB04	11FEB04	11FEB04	10MAR04	10MAR04	0			
15	8	6	0	Dummy	16FEB04	16FEB04	11FEB04	11FEB04	11FEB04	11FEB04	0			

title c=black f=swiss 'Gantt Example 21';
title2 c=black f=swiss
'Displaying Resource Requirements';

* set background to white and text to black;
goptions ctext=black cback=white ftext=swiss border;

* set vpos to 50 and hpos to 100;
goptions vpos=50 hpos=100;

* begin annotate process;

* compile annotate macros;
%annomac;
* create Annotate data set for first chart;

data anno1;
 %dclanno; /* set length and type for annotate vars */
 %system(2,2,4); /* define annotate reference system */
 set widgsch2;
 length lab $20;
 length text $ 37;
 Y1 = _n_;
 lab=' ';
 if _n_=1 then do;
 %label('01dec03'd,13,
 'Format: Engineers per day, Total cost',
 *,0,0,1.2,brush,6);
 end;
 if engineer ^= . then do;
 /* create a text label */
 lab = put(engineer, 1.) || " Engineer";
 if engineer > 1 then lab = trim(lab) || "s";
 if days > 0 then lab = trim(lab) || ", " ||
 put(engcost*days, dollar7.);
 /* position the text label */
 if y1 < 10 then do;
 x1 = max(l_finish, s_finish) + 2;
 %label(x1,y1,lab,black,0,0,1.0,brush, 6);
 end;
 else do;
 x1 = e_start - 2;
 %label(x1,y1,lab,black,0,0,1.0,brush, 4);
 end;
end;
run;

* annotate the Gantt chart;
proc gantt data=widgsch2 holidata=holdata
annotate=anno1;
chart / holiday=(hol) interval=weekday increment=7
 ref='1dec03'd to '21mar04'd by week
 cref=blue lref=2
 dur=days cmile=black caxis=black
 compress;
 id task;
run;
The next illustration of the ANNOTATE= option is to plot the resource usage bar chart for the replenishable resource engineers and the resource availability curve for the consumable resource cost. A DATA step determines the largest value of the cost availability throughout the life of the project in order to scale the costs accordingly. The CScale macro variable is required to represent cost availabilities on the Gantt chart. Since there are no further cash inflows after December 1, 2003, and there are 15 jobs represented on the chart, the value of the macro variable CScale is $(15 - 1)/40000$.

An Annotate data set, ANNO2, is created in much the same fashion as ANNO1, but it employs some additional macros. The BAR macro is used to draw the resource usage bar chart, and the DRAW and MOVE macros are used to draw the resource availability curve. The PUSH and POP macros are used as necessary to store and retrieve the last used coordinates from the stack, respectively. The resulting Gantt chart is displayed in Output 6.21.3.

```sas
title2 c=black f=swiss 'Plotting Resource Usage and Resource Availability';
* calculate scaling factor for cost curve;
data _null_;  
    set widgrou2 end=final;  
    retain maxcost;  
    if aengcost > maxcost then maxcost=aengcost;  
    if final then call symput('cscale', 14/maxcost);  
run;
```
* create Annotate data set for second chart;

```
data anno2;
   %dclanno; /* set length and type for annotate vars */
   %system(2,2,4); /* define annotate reference system */
   set widgrou2;
   length lab $16;
   length text $27;
   x1=_time_;
   y1=15-aengcost*symget('cscale');
   y2=15-rengineer;
   lab=' ';  
if _n_=1 then do;
   /* print labels */
   do i = 1 to 14 by 1;
      lab=put( (15-i) / symget('cscale'), dollar7.);
      %label('21mar04'd,i,lab,black,0,0,1.0,swiss,4);
   end;
   do i = 0 to 4 by 1;
      lab=put(i,1.);
      %label('01dec03'd,15-i,lab,black,0,0,1.0,swiss,6);
   end;
   %label('01dec03'd,10,'Resource Usage: Engineers',
         *,0,0,1.2,swiss,6);
   %label('02jan04'd,4,'Resource Availability: Cost',
         *,0,0,1.2,swiss,6);
   %move(x1,y1);
   %push;
end;
else do;
   /* draw cost availability curve */
   %pop;
   when='a';
   %draw(x1,y1,black,1,2);
   %push;
   /* draw engineer usage barchart */
   when='b';
   if y2 <= 14 then do;
      %bar(x1,15,x1+1,y2,blue,0,11);
   end;
end;
run;
```

* annotate the Gantt chart;

```
proc gantt data=widgsh2 holidata=holdata
   annotate=anno2;
   chart / holiday=(hol) interval=weekday increment=7
      mindate='1dec03'd maxdate='21mar04'd
      ref='1dec03'd to '21mar04'd by week
      cref=blue lref=2
      dur=days cmile=black caxis=black
      compress;
   id task;
```
Example 6.22. Using the Automatic Text Annotation Feature

The following example is a subproject of a larger project involving the maintenance of a pipeline and steam calender (Moder, Phillips, and Davis 1983), and it illustrates the automatic text annotation feature of the GANTT procedure. The SHUTDOWN data set is input as the activity data set to PROC CPM, and the project is scheduled to begin on June 1, 2004. PROC GANTT is used to produce a Gantt chart of the resulting schedule with the data set LABELS specified as a Label data set; the output is shown in Output 6.22.1. The LABVAR= option in the CHART statement specifies the ACT variable as the common linking variable. The LABSPLIT= option is specified in order to prevent the labels from splitting on embedded blanks.

The first observation in the LABELS data set causes the value of the ACT variable to be displayed at the E_START time for every activity in the project. The value of _YOFFSET='-.2' positions the baseline of the displayed text at 0.2 barheights above the top of the first bar for the activity. Similarly the second observation displays the ID variable at the E_START time for each activity with the baseline positioned at 0.8 barheights below the bottom of the first bar for the activity. The heights for both these strings is 1 barheight. The next two observations in the LABELS data set display the symbols corresponding to the values ‘N’ and ‘M’ in the ORFONT font, rotated at an angle of 90 degrees, beside the milestones corresponding to the deactivation and activation of the calender, respectively. Observations 5 and 6 indicate the start and
finish of the “Maintenance Period” by displaying the indicated strings rotated 90 degrees at the start and finish times of the activity ‘Repair Calender.’ Finally, the last three observations provide headings for each of the three distinct regions on the chart. The _JLABEL variable is used along with the _XVAR variable to place the strings in the regions defined by the start and finish times of the ‘Repair Calender’ activity.

It should be noted that since the plot times are linked to variables rather than absolute values, the Label data set need not be changed even if the project is rescheduled. This is a convenient feature when monitoring a project in progress, since the annotation automatically places the labels at the appropriate times.

title c=black f=swiss 'Gantt Example 22';

data shutdown;
 input act succ id & $20. dur;
datalines;
 1100 1110 Start Project 0
 1110 1120 Procure Pipe 10
 1120 1130 Prefab Pipe Sections 5
 1130 1140 Deactivate Calender 0
 1140 1150 Position New Pipe 1
 1150 1160 Start Disassembly 0
 1160 1170 Disassemble Calender 2
 1170 1200 Finish Disassembly 0
 1200 1300 Repair Calender 10
 1300 1310 Start Assembly 0
 1310 1320 Reassemble Calender 3
 1320 1330 Finish Assembly 0
 1330 1340 Connect Pipes 2
 1340 1350 Adjust and Balance 1
 1350 1360 Activate Calender 0
 1360 1370 System Testing 1
 1370 . Finish Project 0
;

proc cpm data=shutdown date='01jun04'd interval=day
 out=sched;
 act act;
 succ succ;
 dur dur;
 id id;
run;

data labels;
 input act _y _xvar $ _lvar $ _yoffset _xoffset _label & $25.
 _alabel _hlabel _jlabel $ _flabel $;
datalines;
 . -1 e_start act -.3 0 . 0 1.5 .
 . -1 e_start id 2.3 0 . 0 1.5 .
 1130 . e_start . 1.5 -1 N 90 2 L orfont
 1350 . e_finish . 1.5 5 M 90 2 L orfont
 1200 17 e_start . 2.5 1 Start Maintenance Period 90 2 . swiss
 1200 17 e_finish . 2.5 .5 Finish Maintenance Period 90 2 . swiss

Example 6.23. Multiproject Gantt Charts

The following example illustrates an application of the PATTERN variable to display summary bars for subprojects. The LAN Selection Project (Bostwick 1986) consists of eight subprojects, two of which represent the beginning and ending of the master project. The data set LANACT defines the structure of the project. The ACT and SUCC variables define the precedence relationships, the PARENT variable defines the parent task, and the DAYS variable contains the duration of the activity.

The project is scheduled using the CPM procedure with a PARENT statement to identify the parent. The schedule data set, SCHED, is created by appending a
The `PATTERN` variable to the output data set generated by CPM. The value of this variable is set to '4,' corresponding to subprojects, and set to missing otherwise. This results in the subproject bars being filled using `PATTERN4`, namely a solid black pattern. The `ACTID` variable is indented within the DATA step to reflect the level of each activity in the project hierarchy when used as the ID variable.

A Label data set, `LABELS`, is created in order to add markers to both ends of the schedule bars that correspond to subprojects. The two observations in the `LABELS` data set are linked to the `SCHED` data set with the `PATTERN` variable.

The GANTT procedure is next invoked to produce the Gantt chart in Output 6.23.1. The `LABVAR=_PATTERN` specification establishes the link between the Schedule and Label data sets. The `ACT=` and `SUCC=` options are used to display the precedence relationships between activities.

```sparql
pattern1 c=black v=r1; /* Non-critical duration */
pattern2 c=black v=e; /* Slack duration */
pattern3 c=black v=x1; /* Critical duration */
pattern4 c=black v=s; /* Project duration */
```

data lanact;
 format act $30. succ $30. parent $20.;
 input act & succ & parent & days;
 datalines;
Measure Current Volume Forecast Future Volume NEEDS ASSESSMENT 2
Literature Survey Manufacturer Demos MARKET SURVEY 5
Determine Current Users Forecast Future Needs NEEDS ASSESSMENT 2
Forecast Future Volume Prepare Network Spec NEEDS ASSESSMENT 2
Manufacturer Demos Identify Vendors MARKET SURVEY 5
Forecast Future Needs Prepare Network Spec NEEDS ASSESSMENT 2
Identify Vendors . MARKET SURVEY 2
Prepare Network Spec . NEEDS ASSESSMENT 2
Prepare RFQ Evaluate Vendor Responses VENDOR SELECTION 4
Prepare Cable Plan Procure Cable SITE PREPARATION 4
Evaluate Vendor Responses Notify Final Candidate VENDOR SELECTION 15
Procure Cable Install Cable SITE PREPARATION 22
Notify Final Candidate Negotiate Price/Config VENDOR SELECTION 1
Install Cable . SITE PREPARATION 10
Negotiate Price/Config Prepare Purchase Order VENDOR SELECTION 3
Prepare Purchase Order . VENDOR SELECTION 1
Server Functional Spec Server Detail Design SPECIAL HARDWARE 5
Procure LAN Hardware Receive Network Hardware NETWORK INSTALLATION 25
Server Detail Design Server Coding SPECIAL HARDWARE 10
Receive Network Hardware Install LAN Hardware NETWORK INSTALLATION 4
Server Coding Test Server Code SPECIAL HARDWARE 10
Install LAN Hardware Test Network NETWORK INSTALLATION 7
Test Server Code Install/Integrate Server SPECIAL HARDWARE 5
Test Network . NETWORK INSTALLATION 5
Install/Integrate Server . SPECIAL HARDWARE 2
BEGIN PROCUREMENT NEEDS ASSESSMENT .
BEGIN PROCUREMENT MARKET SURVEY .
NEEDS ASSESSMENT VENDOR SELECTION .
NEEDS ASSESSMENT SITE PREPARATION .
MARKET SURVEY Prepare Network Spec .
VENDOR SELECTION NETWORK INSTALLATION .
VENDOR SELECTION SPECIAL HARDWARE .
Example 6.23. Multiproject Gantt Charts

SITE PREPARATION Install LAN Hardware
NETWORK INSTALLATION NETWORK AVAILABLE
SPECIAL HARDWARE NETWORK AVAILABLE

; proc sort data=lanact;
 by act;
run;

proc cpm data=lanact out=lanout
 expand interval=workday date='03nov03'd;
 parent parent / wbs eso;
 activity act;
 duration days;
 successor succ;
run;

/* create the schedule data set with a pattern variable */
data sched;
 label wbs_code='WBS';
 label act='Project/Activity';
 set lanout;
 if proj_lev !0 then do;
 if parent=' ' then pattern=4;
 actid=act;
 do i=1 to proj_lev-1; /* indent the id values */
 actid = " " || actid;
 end;
 output;
 end;

proc sort data=sched;
 by es_asc wbs_code;
run;

/* create the label data set */
data labels;
 pattern=4;
 _flabel='orfont';
 _jlabel='c';
 _yoffset=0.925;
 _label='Z';
 _xvar='e_start ';
 output;
 _xvar='l_finish';
 output;
 ;

title1 f=swiss 'Gantt Example 23';
title2 f=swiss 'Displaying Summary Bars For Each Subproject';

proc gantt data=sched labdata=labels;
 id actid wbs_code;
 chart / pcompress nojobnum increment=7 scale=1.5
color=black caxis=black font=swiss
mindate='01nov03'd maxdate='29feb04'd
labvar=_pattern
Chapter 6. The GANTT Procedure

minoffgv=1.5 minofflv=1.5 cprec=black wprec=3
act=act succ=succ;
run;

Output 6.23.1. Using the PATTERN Variable and Labels

Gantt Example 23
Displaying Summary Bars For Each Subproject

Example 6.24. Multisegment Gantt Charts

The following is a simple example that illustrates the generation of multisegmented Gantt charts. The SCHED data set identifies the city, the arrival time, and the departure time for each of four traveling salespeople. In addition, a _PATTERN variable is used to identify the pattern to be used for drawing the bar. The objective is to display the complete schedule for each sales person on a single row. This would require displaying several bars on a single row, each bar corresponding to the time spent in a city. In order to do this, you need first to sort the SCHED data set by Salesperson and Arrival Time and then to add a SEGMT_NO variable that identifies the number of the segment that, in this case, is the order in which the salesperson visits the city. The resulting data set, NEWSCHED, is shown in Output 6.24.1. You next create the LABELS data set in order to identify the names of the cities above the bars; the resulting Gantt chart is shown in Output 6.24.2.

Notice that each bar is drawn using the pattern identified by the _PATTERN variable in the SCHED data set. In the absence of the _PATTERN variable, the pattern associated with the resource-constrained schedule would have been used for all the bars. This is the same mechanism that produced the split segments in Example 6.13 although the SEGMT_NO variable in this case was automatically created by the CPM procedure.
Example 6.24. Multisegment Gantt Charts

title1 'Gantt Example 24';
title2 f=swiss 'Schedule of Cities Visited by Salesperson';
data sched;
 format city $12. from to date7. ;
 input person $ city & from & date7. to & date7. _pattern;
datalines;
 Clark New York 01May04 03May04 10
 Clark Boston 06May04 09May04 11
 Clark Wisconsin 12May04 15May04 12
 Clark Chicago 18May04 24May04 13
 Clark New York 28May04 02Jun04 10
 Stevens Charlotte 02May04 04May04 14
 Stevens Atlanta 08May04 10May04 15
 Stevens Dallas 12May04 15May04 16
 Stevens Denver 17May04 20May04 17
 Stevens Nashville 27May04 02Jun04 18
 Stevens Charlotte 04Jun04 06Jun04 14
 Jackson Los Angeles 01May04 08May04 19
 Jackson Las Vegas 11May04 18May04 20
 Jackson Portland 21May04 23May04 21
 Jackson Seattle 25May04 29May04 22
 Rogers Miami 02May04 07May04 23
 Rogers Tampa 11May04 15May04 24
 Rogers New Orleans 18May04 24May04 25
 Rogers Houston 28May04 01Jun04 26
; /* Sort data by person, from */
proc sort data=sched;
 by person from;
run;

/* Add Segmt_no variable */
data newsched;
 set sched;
 retain segmt_no;
 if person ne lag(person) then segmt_no=1;
 else segmt_no = segmt_no + 1;
 output;
run;
proc print data=sched;
run;

data labels;
 _y=-1;
 _lvar="city";
 _xvar="from";
 _flabel="swiss";
 _hlabel=0.75;
 _yoffset = -.2;
run;
pattern1 v=s r=25;
proc gantt data=newsched labdata=labels;
 id person;
Chapter 6. The GANTT Procedure

```
chart / ss=from sf=to compress labsplit='.' scale=2
   nolegend nojobnum skip=3 font=swiss
   ref='01may04'd to '30jun04'd by week;
run;
```

Output 6.24.1. NEWSCHE Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>city</th>
<th>from</th>
<th>to</th>
<th>person</th>
<th>_pattern</th>
<th>segmt_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New York</td>
<td>01MAY04</td>
<td>03MAY04</td>
<td>Clark</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Boston</td>
<td>06MAY04</td>
<td>09MAY04</td>
<td>Clark</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Wisconsin</td>
<td>12MAY04</td>
<td>15MAY04</td>
<td>Clark</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Chicago</td>
<td>18MAY04</td>
<td>24MAY04</td>
<td>Clark</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>New York</td>
<td>28MAY04</td>
<td>02JUN04</td>
<td>Clark</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Los Angeles</td>
<td>01MAY04</td>
<td>08MAY04</td>
<td>Jackson</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Las Vegas</td>
<td>11MAY04</td>
<td>18MAY04</td>
<td>Jackson</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Portland</td>
<td>21MAY04</td>
<td>23MAY04</td>
<td>Jackson</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Seattle</td>
<td>25MAY04</td>
<td>29MAY04</td>
<td>Jackson</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Miami</td>
<td>02MAY04</td>
<td>07MAY04</td>
<td>Rogers</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Tampa</td>
<td>11MAY04</td>
<td>15MAY04</td>
<td>Rogers</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>New Orleans</td>
<td>18MAY04</td>
<td>24MAY04</td>
<td>Rogers</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Houston</td>
<td>28MAY04</td>
<td>01JUN04</td>
<td>Rogers</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Charlotte</td>
<td>02MAY04</td>
<td>04MAY04</td>
<td>Stevens</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Atlanta</td>
<td>08MAY04</td>
<td>10MAY04</td>
<td>Stevens</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Dallas</td>
<td>12MAY04</td>
<td>15MAY04</td>
<td>Stevens</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>Denver</td>
<td>17MAY04</td>
<td>20MAY04</td>
<td>Stevens</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>Nashville</td>
<td>27MAY04</td>
<td>02JUN04</td>
<td>Stevens</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>Charlotte</td>
<td>04JUN04</td>
<td>06JUN04</td>
<td>Stevens</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

Output 6.24.2. Multisegment Gantt Chart

Gantt Example 24
Schedule of Cities Visited by Salesperson
Example 6.25. Zoned Gantt Charts

Example 6.15 illustrated the use of BY processing with the GANTT procedure to present separate Gantt charts for each department. Alternatively, you can use a zoned Gantt chart to display each of the departmental schedules on the same chart with the different department schedules separated by horizontal zone lines running across the chart. The ZONE variable divides the Activity axis into distinct zones. Activities with the same value of the ZONE variable belong to the same zone. This example produces a zoned Gantt chart using the schedule data from Example 6.15. The ZONE=DEPT specification in the CHART statement identifies the DEPT variable as the ZONE variable. The ONEZONEVAL option specifies that the value of the ZONE variable be displayed only when beginning new zones. The resulting Gantt chart is shown in Output 6.25.1. You can customize the color, style and width of the zone line by using the CZONE=, LZONE=, and WZONE= options, respectively. You can also control the span and offset of the zone line by specifying the ZONESPAN= and ZONEOFF= options, respectively, in the CHART statement.

```latex
\begin{verbatim}
title1 'Gantt Example 25';
proc cpm date='01dec03'd data=widgetn;
 activity task;
 duration days;
 successor succ1 succ2 succ3;
 id dept;
run;

proc sort;
 by dept e_start;
run;

proc gantt split='/';
 chart / pcompress scale=1 dur=days
 mindate='01dec03'd maxdate='11feb04'd
 font=swiss
 zone=dept onezoneval;
 id task;
run;
\end{verbatim}
```

```latex
\end{verbatim}
```
Chapter 6. The GANTT Procedure

Output 6.25.1. Gantt Charts Zoned by Department

<table>
<thead>
<tr>
<th>Job</th>
<th>Department</th>
<th>Activity Name</th>
<th>DEC 01</th>
<th>DEC 05</th>
<th>DEC 09</th>
<th>DEC 13</th>
<th>DEC 17</th>
<th>DEC 21</th>
<th>DEC 25</th>
<th>DEC 29</th>
<th>JAN 02</th>
<th>JAN 06</th>
<th>JAN 10</th>
<th>JAN 14</th>
<th>JAN 18</th>
<th>JAN 22</th>
<th>JAN 26</th>
<th>JAN 30</th>
<th>FEB 03</th>
<th>FEB 07</th>
<th>FEB 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engineering</td>
<td>Drawings</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Write Specs</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Prototype</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Changes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Manufacturing</td>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Facility</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Init. Prod.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Marketing</td>
<td>Study Market</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Mid. Str.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Planning</td>
<td>Approve Plan</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Testing</td>
<td>Evaluate</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Test</td>
<td>Market</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:
- Duration of a Normal Job
- Duration of a Critical Job
- Slack Time for a Normal Job
- Milestone

Example 6.26. Web-Enabled Gantt Charts

This example illustrates the process of “Web-enabling” your Gantt charts. This feature enables you to associate a URL with each activity on a Gantt chart. By using this feature together with SAS/IntrNet software, you can develop some very powerful Project Management applications. SAS/IntrNet software provides you with the capability to perform data set queries and execute SAS applications in real time and view the results in HTML format using a Web browser.

This example takes advantage of the Output Delivery System (ODS) HTML statement to create a very simple “drill-down” Gantt application beginning from a summary Gantt chart of the “top level” projects in Example 6.23. The objective is to display a detailed Gantt chart of the activities in a subproject when you click on the subproject bar.

In order to be able to click on an activity and invoke an action, you need to add variables to the schedule data set that associate a URL with each of the activities that you want linked. The following code adds the WEBVAR and WEBVAR2 variables to the LANOUT data set in Example 6.23 to create the LANWEB data set. The WEBVAR variable uses the ALT= portion to identify information about an activity’s schedule that is to be displayed when the mouse hovers over the schedule bar. In addition, it uses the HREF= portion to associate the URL with the linked activity. The WEBVAR2 variable uses only the ALT= portion, so information in the detailed Gantt chart can still be displayed by hovering over the schedule bars.

The LANWEB data set is then sorted by the WBS_CODE variable.
data lanweb;
 set lanout;
 length webvar $500;
 length webvar2 $500;

 /* WEBVAR is for the top-level summary chart */
 webvar='alt='|| quote(
 'Activity: '||trim(left(act))||'0D'x||
 '-----------------------'||'0D'x||
 'Early Start: '||put(e_start, datetime.)||'0D'x||
 'Early Finish: '||put(e_finish, datetime.)||'0D'x||
 'Late Start: '||put(l_start, datetime.)||'0D'x||
 'Late Finish: '||put(l_finish, datetime.)
)||
 ' HREF=#'||trim(wbs_code) /* link to the anchors */
 ;

 /* WEBVAR2 is for the detailed charts */
 webvar2='alt='|| quote(
 'Activity: '||trim(left(act))||'0D'x||
 '-----------------------'||'0D'x||
 'Early Start: '||put(e_start, datetime.)||'0D'x||
 'Early Finish: '||put(e_finish, datetime.)||'0D'x||
 'Late Start: '||put(l_start, datetime.)||'0D'x||
 'Late Finish: '||put(l_finish, datetime.)
);
 run;

 proc sort data=lanweb;
 by wbs_code;
 run;

Before creating the charts, you need to specify that the GIF driver be used to create graphics output. ODS HTML output always creates a “body” file, which is a single HTML document containing the output from one or more procedures and is specified using the FILE= option in the ODS HTML statement.

 goptions reset=all device=gif;

 ods html file="Gantt_Sum.html";

For example, when you click on any of the schedule bars for an activity with WBS_CODE='0.2', you link to an anchor labeled ‘0.2’ in the body file Gantt_Sum.html.

You are now ready to create the summary Gantt chart. You identify the WEBVAR variable to the GANTT procedure using the HTML= option in the CHART statement and invoke the procedure using a WHERE clause to produce a Gantt chart of the top-level activities.

 /* Create the Summary Gantt Chart with Drill Down Action */
 pattern1 c=green v=s; /* Non-critical duration */
pattern2 c=green v=e; /* Slack duration */
pattern3 c=red v=s; /* Critical duration */

title1 f=swiss 'Gantt Example 26';
title2 f=swiss 'Project Summary Gantt Chart';

proc gantt data=lanweb;
id act wbs_code;
where proj_lev=1;
label act='SUBPROJECT' wbs_code='WBS CODE';
chart / pcompress nojobnum font=swiss
duration=days
mininterval=week scale=2.5
mindate='30oct03'd maxdate='29feb04'd
ref='30oct03:00:00'dt to '01mar04:00:00'dt by dtmonth
relabel
cmile=black
html=webvar
act=act succ=succ wprec=3;
run;

The graph that is displayed when you click on one of the subprojects is determined by the name of the anchor that has been defined for the subproject. Before creating these graphs, you need to define the anchor name in an ODS HTML statement using the ANCHOR= option to add the anchor to the HTML body file. Since you have to create a chart for each subproject, you can automate this process by using a SAS macro.

/* Define the macro to generate the detail charts */
%macro gandet(wbs);
goptions device=gif;
ods html anchor=&wbs;
title1 f=swiss 'Gantt Example 26';
title2 f=swiss "Detail Gantt Chart for WBS="&wbs;

proc gantt data=lanweb;
id act wbs_code;
where index(wbs_code,&wbs)=1;
label act='SUBPROJECT' wbs_code='WBS CODE';
chart / pcompress nojobnum font=swiss
duration=days
mininterval=week scale=2.5
mindate='30oct03'd maxdate='29feb04'd
ref='30oct03:00:00'dt to '01mar04:00:00'dt by dtmonth
relabel
html=webvar
act=act succ=succ wprec=3;
run;
%mend;

/* Generate each of the detail Gantt Charts */
%gandet('0.1');

Finally, use the ODS HTML CLOSE statement to close the body file and stop generating HTML output.

```sas
ods html close;
```

After you have closed the body file, you can display it in a browser window, as shown in Output 6.26.1, to view the output generated by this example.

Output 6.26.1. Summary Gantt Chart

![Gantt Chart Image]

Notice the hand-shaped cursor on the SITE PREPARATION bar, which indicates that this bar is a “hot” link. The alternate text box displays the early and late schedules of the SITE PREPARATION activity. The status bar of the browser also shows that...
clicking the SITE PREPARATION bar will take you to the location identified by “Gantt_Sum.html#0.4,” which is shown in Output 6.26.2.

Output 6.26.2. Detail Gantt Chart for SITE PREPARATION

Similarly, the detail Gantt chart that is displayed when you click on the SPECIAL HARDWARE summary bar is shown in Output 6.26.3.
Example 6.27. Using the CHARTWIDTH= Option

This example illustrates the use of the CHARTWIDTH= option to create Gantt charts that are consistent in appearance. The data set used in this example is the SAVE data set created in Example 6.6.

Gantt charts are first produced using different values of the MINDATE= option, and without specifying the CHARTWIDTH= option. Output 6.27.1 shows a Gantt chart using MINDATE='1jan04', and Output 6.27.2 shows a Gantt chart using MINDATE='1oct03'. Notice that the chart in Output 6.27.2 has a much larger chart area than the chart in Output 6.27.1, and the ‘Activity Description’ column is compressed and rather difficult to read.

```
title f=swiss 'Gantt Example 27';

* plot the schedule with MINDATE=1jan04;

  title2 f=swiss 'MINDATE=1jan04';
  proc gantt data=save;
    chart / mindate='1jan04'd maxdate='1feb04'd
```
dur=days nojobnum compress fill
ref='2jan04'd to '2feb04'd by week
relabel font=swiss;

id descrpt;
run;

* plot the schedule with MINDATE=1oct03;

title2 f=swiss 'MINDATE=1oct03';
proc gantt data=save;
 chart / mindate='1oct03'd maxdate='1feb04'd
dur=days nojobnum compress fill
ref='2oct03'd to '2feb04'd by week
relabel font=swiss;
 id descrpt;
run;

Output 6.27.1. Without the CHARTWIDTH= Option (MINDATE=1Jan04)
Example 6.27. Using the CHARTWIDTH= Option

Output 6.27.2. Without the CHARTWIDTH= Option (MINDATE=1Oct03)

The same charts are now plotted with the CHARTWIDTH= option. The specification CHARTWIDTH=75 indicates that the chart is rescaled so the axis area is 75% of the chart width and the text area is 25% of the chart width. Therefore, specifying CHARTWIDTH=75 for both charts gives the two charts a consistent appearance. The output is shown in Output 6.27.3 and Output 6.27.4.

```plaintext
title f=swiss 'Gantt Example 27';

* plot the schedule with MINDATE=1jan04 and CHARTWIDTH=75;

title2 f=swiss 'MINDATE=1jan04, CHARTWIDTH=75';
proc gantt data=save;
   chart / mindate='1jan04'd maxdate='1feb04'd
dur=days nojobnum compress fill
   ref='2jan04'd to '2feb04'd by week
   relabel font=swiss chartwidth=75;
   id descrpt;
run;

* plot the schedule with MINDATE=1oct03 and CHARTWIDTH=75;

title2 f=swiss 'MINDATE=1oct03, CHARTWIDTH=75';
proc gantt data=save;
   chart / mindate='1oct03'd maxdate='1feb04'd
dur=days nojobnum compress fill
   ref='2oct03'd to '2feb04'd by week
   relabel font=swiss chartwidth=75;
```
Chapter 6. The GANTT Procedure

id descrpt;
run;

Output 6.27.3. Using the CHARTWIDTH= Option (MINDATE=1Jan04)

Output 6.27.4. Using the CHARTWIDTH= Option (MINDATE=1Oct03)
Statement and Option Cross-Reference Tables

The next two tables reference the statements and options in the GANTT procedure that are illustrated by the examples in this section.

Table 6.30. Options Specified in Examples 4.1–4.14

<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_FINISH=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_START=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETWEEN=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CALID=</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CALENDAR=</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CAXIS=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CFRAME=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CHART var</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CMILE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMBINE</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMPRESS</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREF=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CRITFLAG</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CTEXT=</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTNOW=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DATA=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUR=</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FILL</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FONT=</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCONNECT</td>
<td></td>
</tr>
<tr>
<td>HEIGHT=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>HOLIDATA=</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLIDAY=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLIDUR=</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>HOLIFIN=</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPAGES=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCREMENT=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>INTERVAL=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LINEPRINTER</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>L_FINISH=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>LREF=</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_START=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MARKBREAK</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MAXDATE=</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINDATE=</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MININTERVAL=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NOJOBNUM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOLEGEND</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PCOMPRESS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>REF=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.30. (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFLABEL</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCALE=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>S_FINISH=</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SKIP=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>S_START=</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SUMMARY</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TIMENOW=</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WORKDATA=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.31. Options Specified in Examples 4.15–4.27

<table>
<thead>
<tr>
<th>Option</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_FINISH=</td>
<td>X</td>
</tr>
<tr>
<td>A_START=</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY=</td>
<td>X</td>
</tr>
<tr>
<td>ANNOTATE=</td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CAXIS=</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CFRA ME=</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CHARTWIDTH=</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMILE=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>COMPRESS</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CPREC=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CREF=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CTEXT=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DATA=</td>
<td>X</td>
</tr>
<tr>
<td>DUR=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FONT=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FILL</td>
<td></td>
</tr>
<tr>
<td>HEAD=</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HEIGHT=</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HOLIDATA=</td>
<td>X</td>
</tr>
<tr>
<td>HOLIDAY=</td>
<td>X</td>
</tr>
<tr>
<td>HOLIDFIN=</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>HTML=</td>
<td></td>
</tr>
<tr>
<td>HTOFF=</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>X</td>
</tr>
<tr>
<td>INCREMENT=</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>INTERVAL=</td>
<td></td>
</tr>
<tr>
<td>LABDATA=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LABSPLIT=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LABVAR=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LAG=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LEVEL=</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LREF=</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.31. (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXDATE=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MAXDEC=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXDISLV=</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MINDATE=</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MININTERVAL=</td>
<td></td>
</tr>
<tr>
<td>MININTGV=</td>
<td></td>
</tr>
<tr>
<td>MINOFFGV=</td>
<td></td>
</tr>
<tr>
<td>MINOFFLV=</td>
<td></td>
</tr>
<tr>
<td>NOJOBNUM</td>
<td></td>
</tr>
<tr>
<td>NOLEGEND</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ONEZONEVAL</td>
<td></td>
</tr>
<tr>
<td>PCOMPRESS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PRECDATA=</td>
<td></td>
</tr>
<tr>
<td>REF=</td>
<td></td>
</tr>
<tr>
<td>REFLABEL</td>
<td></td>
</tr>
<tr>
<td>SCALE=</td>
<td></td>
</tr>
<tr>
<td>S FINISH=</td>
<td></td>
</tr>
<tr>
<td>SKIP=</td>
<td></td>
</tr>
<tr>
<td>SPLIT=</td>
<td></td>
</tr>
<tr>
<td>S START=</td>
<td></td>
</tr>
<tr>
<td>SUCCESSOR=</td>
<td></td>
</tr>
<tr>
<td>TAIL=</td>
<td></td>
</tr>
<tr>
<td>WPREC=</td>
<td></td>
</tr>
<tr>
<td>ZONE=</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

References

The NETDRAW procedure draws a network diagram of the activities in a project. Boxes (or nodes) are used to represent the activities, and lines (or arcs) are used to show the precedence relationships among the activities. Though the description of the procedure is written using project management terminology, PROC NETDRAW can be used to draw any network such as an organizational chart or a software flow diagram. The only information required by the procedure for drawing such a diagram is the name of each activity in the project (or node in the network) and a list of all its immediate successor activities (or nodes connected to it by arcs). Note that project networks are acyclic. However, the procedure can also be used to draw cyclic networks by specifying explicitly the coordinates for the nodes or by requesting the procedure to break the cycles in an arbitrary fashion.

The ACTNET statement in the NETDRAW procedure is designed to draw activity networks that represent a project in Activity-On-Node (AON) format. All network information is contained in SAS data sets. The input data sets used by PROC NETDRAW and the output data set produced by the procedure are as follows:

- The **Network** input data set contains the precedence information, namely, the activity-successor information for all the nodes in the network. This data set can be an Activity data set that is used as input to the CPM procedure or a Schedule data set that is produced by the CPM procedure, or it can even be a Layout data set produced by the NETDRAW procedure. The minimum amount of information that is required by PROC NETDRAW is the activity-successor information that can be obtained from any one of the preceding three possible types of data sets. The additional information in the input data set can be used by the procedure to add detail to the nodes in the diagram, and, in the case of the Layout data set, the procedure can use the _X_ and _Y_ variables to lay out the nodes and arcs of the diagram.

- The **Annotate** input data set contains the graphics and text that are to be annotated on the network diagram. This data set is used by the procedure through the Annotate facility in SAS/GRAPH software.

- The **Layout** output data set produced by PROC NETDRAW contains all the information about the layout of the network. For each node in the network, the procedure saves the \((x, y)\) coordinates; for each arc between each pair of nodes, the procedure saves the \((x, y)\) coordinates of each turning point of the arc in a separate observation. Using these values, the procedure can draw the network diagram without recomputing node placement and arc routing.
Two issues arise in drawing and displaying a network diagram: the layout of the diagram and the format of the display. The layout of the diagram consists of placing the nodes of the network and routing the arcs of the network in an appropriate manner. The format of the display includes the size of the nodes, the distance between nodes, the color of the nodes and arcs, and the information that is placed within each node. Several options available in the ACTNET statement enable you to control the format of the display and the layout of the diagram; these options and their uses are explained in detail later in this chapter.

Following is a list of some of the key aspects of the procedure:

- The Network input data set specifies the activities (or nodes) in the network and their immediate successors. The amount of information displayed within each node can be controlled by the ID= option and by the use of default variables in the data set.
- The procedure uses the node-successor information to determine the placement of the nodes and the layout of the arcs connecting the nodes.
- By default, PROC NETDRAW uses the topological ordering of the activity network to determine the x coordinates of the nodes. In a time-based network diagram, the nodes can be ordered according to any numeric, SAS date, time, or datetime variable (the ALIGN= variable) in the input data set.
- The network does not have to represent a project. You can use PROC NETDRAW to draw any network. If the network has no cycles, then the procedure bases the node placement and arc routing on the precedence relationships. Alternately, you can specify explicitly the node positions or use the ALIGN= variable, and let the procedure determine the arc routing.
- To draw networks with cycles, use the BREAKCYCLE option. Alternately, you can use the ALIGN= option or specify the node positions so that the procedure needs only to determine the arc routing. See Example 7.12 on page 694 for an illustration of a cyclic network.
- The ZONE= option enables you to divide the network into horizontal bands or zones. This is useful in grouping the activities of the project according to some appropriate classification.
- The TREE option instructs PROC NETDRAW to check if the network is indeed a tree, and, if so, to exploit the tree structure in the node layout. This feature is useful for drawing organizational charts, hierarchical charts, and work breakdown structures.
- PROC NETDRAW gives you the option of displaying the network diagram in one of three modes: graphics, line-printer, or full-screen. The default mode is graphics mode, which enables you to produce charts of high resolution quality. Graphics mode requires SAS/GRAPH software. See the “Graphics Options” section on page 633 for more information on producing high-resolution quality network diagrams. You can also produce line-printer quality network diagrams by specifying the LINEPRINTER (LP) option in the PROC NETDRAW statement. In addition to sending the output to either a plotter or printer, you can view the network diagram at the terminal in full-screen mode by specifying
the FULLSCREEN (FS) option in the PROC NETDRAW statement. See the “Full-Screen Options” section on page 632 for more information on viewing network diagrams in full-screen mode.

- The full-screen version of the procedure enables you to move the nodes around on the screen (subject to maintaining the precedence order of the activities) and thus change the layout of the network diagram.

- The graphics version of the procedure enables you to annotate the network diagram using the Annotate facility in SAS/GRAPH software.

- The positions of the nodes and arcs of the layout determined by PROC NETDRAW are saved in an output data set called the Layout data set. This data set can be used again as input to PROC NETDRAW; using such a data set saves some processing time because the procedure does not need to determine the node and arc placement.

- If necessary, the procedure draws the network across page boundaries. The number of pages that are used depends on the number of print positions that are available in the horizontal and vertical directions.

- In graphics mode, the COMPRESS and PCOMPRESS options enable you to produce the network on one page. You can also control the number of pages used to create the network diagram with the HPAGES= and VPAGES= options.

- In graphics mode, the ROTATE and ROTATETEXT options enable you to produce a top-down tree diagram.

Getting Started

The first step in defining a project is to make a list of the activities in the project and determine the precedence constraints that need to be satisfied by these activities. It is useful at this stage to view a graphical representation of the project network. In order to draw the network, you specify the nodes of the network and the precedence relationships among them. Consider the software development project that is described in the “Getting Started” section of Chapter 2, “The CPM Procedure.” The network data are in the SAS data set SOFTWARE, displayed in Figure 7.1.

<table>
<thead>
<tr>
<th>Obs</th>
<th>descrpt</th>
<th>duration</th>
<th>activity</th>
<th>succesr1</th>
<th>succesr2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial Testing</td>
<td>20</td>
<td>TESTING</td>
<td>RECODE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Prel. Documentation</td>
<td>15</td>
<td>PRELDOC</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>3</td>
<td>Meet Marketing</td>
<td>5</td>
<td>MEETMKT</td>
<td>RECODE</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Recoding</td>
<td>5</td>
<td>RECODE</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>5</td>
<td>QA Test Approve</td>
<td>10</td>
<td>QATEST</td>
<td>PRO</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Doc. Edit and Revise</td>
<td>10</td>
<td>DOCEDREV</td>
<td>PRO</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Production</td>
<td>1</td>
<td>PRO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.1. Software Project
The following code produces the network diagram shown in Figure 7.2:

```plaintext
pattern1 v=e c=green;
title f=swiss 'Software Project';
proc netdraw graphics data=software;
  actnet / act=activity
    succ=(successr1 successr2)
    pcompress separatearcs
    font=swiss;
run;
```

Figure 7.2. Software Project

The procedure determines the placement of the nodes and the routing of the arcs on the basis of the topological ordering of the nodes and attempts to produce a compact diagram. You can control the placement of the nodes by specifying explicitly the node positions. The data set SOFTNET, shown in Figure 7.3, includes the variables `_X_` and `_Y_`, which specify the desired node coordinates. Note that the precedence information is conveyed using a single SUCCESSOR variable unlike the data set SOFTWARE, which contains two SUCCESSOR variables.
The following code produces a network diagram (shown in Figure 7.4) with the new node placement:

```
title2 h=1.5 f=swiss 'Controlled Layout';
proc netdraw graphics data=softnet;
   actnet / act=activity
      succ=(succesor)
      pcompress
      font=swiss;
run;
```

Figure 7.3. Software Project: Specify Node Positions

Figure 7.4. Software Project: Controlled Layout
Chapter 7. The NETDRAW Procedure

While the project is in progress, you may want to use the network diagram to show the current status of each activity as well as any other relevant information about each activity. PROC NETDRAW can also be used to produce a time-scaled network diagram using the schedule produced by PROC CPM. The schedule data for the software project described earlier are saved in a data set, INTRO1, which is shown in Figure 7.5.

To produce a time-scaled network diagram, use the TIMESCALE option in the ACTNET statement, as shown in the following program. The MININTERVAL= and the LINEAR options are used to control the time axis on the diagram. The ID=, NOLABEL, and NODEFID options control the amount of information displayed within each node. The resulting diagram is shown in Figure 7.6.

```sas
title2 h=1.5 f=swiss 'Time-Scaled Diagram';
proc netdraw graphics data=intro1;
   actnet / act=activity succ=(succ:)
       separatearcs pcompress font=swiss htext=2
       timescale linear frame mininterval=week
       id=(activity duration) nolabel nodefid;
run;
```

Figure 7.5. Software Project Schedule

<table>
<thead>
<tr>
<th>descrpt</th>
<th>activity</th>
<th>succes1</th>
<th>succes2</th>
<th>duration</th>
<th>E_START</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Testing</td>
<td>TESTING</td>
<td>RECODE</td>
<td></td>
<td></td>
<td>01MAR04</td>
</tr>
<tr>
<td>Prel. Documentation</td>
<td>PRELDOC</td>
<td>DOCEDREV</td>
<td>QATEST</td>
<td></td>
<td>01MAR04</td>
</tr>
<tr>
<td>Meet Marketing</td>
<td>MEETMKT</td>
<td>RECODE</td>
<td></td>
<td></td>
<td>01MAR04</td>
</tr>
<tr>
<td>Recoding</td>
<td>RECODE</td>
<td>DOCEDREV</td>
<td>QATEST</td>
<td></td>
<td>21MAR04</td>
</tr>
<tr>
<td>QA Test Approve</td>
<td>QATEST</td>
<td>PROD</td>
<td></td>
<td></td>
<td>26MAR04</td>
</tr>
<tr>
<td>Doc. Edit and Revise</td>
<td>DOCEDREV</td>
<td>PROD</td>
<td></td>
<td></td>
<td>26MAR04</td>
</tr>
<tr>
<td>Production</td>
<td>PROD</td>
<td></td>
<td></td>
<td></td>
<td>05APR04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>descrpt</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
<th>T_FLOAT</th>
<th>F_FLOAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Testing</td>
<td>20MAR04</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prel. Documentation</td>
<td>15MAR04</td>
<td>11MAR04</td>
<td>25MAR04</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Meet Marketing</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>20MAR04</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Recoding</td>
<td>25MAR04</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>QA Test Approve</td>
<td>04APR04</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Doc. Edit and Revise</td>
<td>04APR04</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Production</td>
<td>05APR04</td>
<td>05APR04</td>
<td>05APR04</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Several other options are available to control the layout of the nodes, the appearance of the network, and the format of the time axis. For projects that have natural divisions, you can use the ZONE= option to divide the network into horizontal zones or bands. For networks that have an embedded tree structure, you can use the TREE option to draw the network like a tree laid out from left to right, with the root at the left edge of the diagram; in graphics mode, you can obtain a top-down tree with the root at the top of the diagram. For cyclic networks you can use the BREAKCYCLE option to enable the procedure to break cycles. All of these options are discussed in detail in the following sections.

Syntax

The following statements are used in PROC NETDRAW:

```
PROC NETDRAW options;
   ACTNET / options;
```

Functional Summary

The following tables outline the options available for the NETDRAW procedure classified by function.
Table 7.1. Color Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>color of arcs</td>
<td>ACTNET</td>
<td>CARCS=</td>
</tr>
<tr>
<td>color of time axis</td>
<td>ACTNET</td>
<td>CAXIS=</td>
</tr>
<tr>
<td>fill color for critical nodes</td>
<td>ACTNET</td>
<td>CCNODEFILL=</td>
</tr>
<tr>
<td>color of critical arcs</td>
<td>ACTNET</td>
<td>CCRITARCS=</td>
</tr>
<tr>
<td>color of outline of critical nodes</td>
<td>ACTNET</td>
<td>CCRITOUT=</td>
</tr>
<tr>
<td>fill color for nodes</td>
<td>ACTNET</td>
<td>CNODEFILL=</td>
</tr>
<tr>
<td>color of outline of nodes</td>
<td>ACTNET</td>
<td>COUTLINE=</td>
</tr>
<tr>
<td>color of reference lines</td>
<td>ACTNET</td>
<td>CREF=</td>
</tr>
<tr>
<td>color of reference break lines</td>
<td>ACTNET</td>
<td>CREFBRK=</td>
</tr>
<tr>
<td>color of text</td>
<td>ACTNET</td>
<td>CTEXT=</td>
</tr>
</tbody>
</table>

Table 7.2. Data Set Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotate data set</td>
<td>ACTNET</td>
<td>ANNOTATE=</td>
</tr>
<tr>
<td>Annotate data set</td>
<td>NETDRAW</td>
<td>ANNOTATE=</td>
</tr>
<tr>
<td>Activity data set</td>
<td>NETDRAW</td>
<td>DATA=</td>
</tr>
<tr>
<td>Network output data set</td>
<td>NETDRAW</td>
<td>OUT=</td>
</tr>
</tbody>
</table>

Table 7.3. Format Control Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>height of node in character cells</td>
<td>ACTNET</td>
<td>BOXHT=</td>
</tr>
<tr>
<td>width of node in character cells</td>
<td>ACTNET</td>
<td>BOXWIDTH=</td>
</tr>
<tr>
<td>duration variable</td>
<td>ACTNET</td>
<td>DURATION=</td>
</tr>
<tr>
<td>ID variables</td>
<td>ACTNET</td>
<td>ID=</td>
</tr>
<tr>
<td>suppress default ID variables</td>
<td>ACTNET</td>
<td>NODEFID</td>
</tr>
<tr>
<td>suppress ID variable labels</td>
<td>ACTNET</td>
<td>NOLABEL</td>
</tr>
<tr>
<td>upper limit on number of pages</td>
<td>ACTNET</td>
<td>PAGES=</td>
</tr>
<tr>
<td>indicate completed or in-progress activities</td>
<td>ACTNET</td>
<td>SHOWSTATUS</td>
</tr>
<tr>
<td>horizontal distance between nodes</td>
<td>ACTNET</td>
<td>XBETWEEN=</td>
</tr>
<tr>
<td>vertical distance between nodes</td>
<td>ACTNET</td>
<td>YBETWEEN=</td>
</tr>
</tbody>
</table>

Table 7.4. Full-Screen Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference break line character</td>
<td>ACTNET</td>
<td>BRKCHAR=</td>
</tr>
<tr>
<td>characters for node outlines and connections</td>
<td>ACTNET</td>
<td>FORMCHAR=</td>
</tr>
<tr>
<td>reference character</td>
<td>ACTNET</td>
<td>REFCHAR=</td>
</tr>
</tbody>
</table>

Table 7.5. Graphics Catalog Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>description for catalog entry</td>
<td>ACTNET</td>
<td>DESCRIPTION=</td>
</tr>
<tr>
<td>name for catalog entry</td>
<td>ACTNET</td>
<td>NAME=</td>
</tr>
<tr>
<td>name of graphics catalog</td>
<td>NETDRAW</td>
<td>GOUT=</td>
</tr>
</tbody>
</table>
Table 7.6. Graphics Display Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>length of arrowhead in character cells</td>
<td>ACTNET</td>
<td>ARROWHEAD=</td>
</tr>
<tr>
<td>center each ID variable within node</td>
<td>ACTNET</td>
<td>CENTERID</td>
</tr>
<tr>
<td>compress the diagram to a single page</td>
<td>ACTNET</td>
<td>COMPRESS</td>
</tr>
<tr>
<td>text font</td>
<td>ACTNET</td>
<td>FONT=</td>
</tr>
<tr>
<td>text height</td>
<td>ACTNET</td>
<td>HEIGHT=</td>
</tr>
<tr>
<td>horizontal margin in character cells</td>
<td>ACTNET</td>
<td>HMARGIN=</td>
</tr>
<tr>
<td>number of horizontal pages</td>
<td>ACTNET</td>
<td>HPAGES=</td>
</tr>
<tr>
<td>reference line style</td>
<td>ACTNET</td>
<td>LREF=</td>
</tr>
<tr>
<td>reference break line style</td>
<td>ACTNET</td>
<td>LREFBRK=</td>
</tr>
<tr>
<td>width of lines used for critical arcs</td>
<td>ACTNET</td>
<td>LWCritt=</td>
</tr>
<tr>
<td>width of lines</td>
<td>ACTNET</td>
<td>LWIDTH=</td>
</tr>
<tr>
<td>width of outline for nodes</td>
<td>ACTNET</td>
<td>LOUTLINE=</td>
</tr>
<tr>
<td>suppress filling of arrowheads</td>
<td>ACTNET</td>
<td>NOARROWFILL</td>
</tr>
<tr>
<td>suppress page number</td>
<td>ACTNET</td>
<td>NOPAGENumber</td>
</tr>
<tr>
<td>suppress vertical centering</td>
<td>ACTNET</td>
<td>NOVCENTER</td>
</tr>
<tr>
<td>number of nodes in horizontal direction</td>
<td>ACTNET</td>
<td>NXNODES=</td>
</tr>
<tr>
<td>number of nodes in vertical direction</td>
<td>ACTNET</td>
<td>NYNODES=</td>
</tr>
<tr>
<td>display page number at upper right corner</td>
<td>ACTNET</td>
<td>PAGENumber</td>
</tr>
<tr>
<td>pattern variable</td>
<td>ACTNET</td>
<td>PATTERN=</td>
</tr>
<tr>
<td>proportionally compress the diagram</td>
<td>ACTNET</td>
<td>PCOMPRESS</td>
</tr>
<tr>
<td>draw arcs with rectangular corners</td>
<td>ACTNET</td>
<td>RECTILINEAR</td>
</tr>
<tr>
<td>reverse the order of the y pages</td>
<td>ACTNET</td>
<td>REVERSEY</td>
</tr>
<tr>
<td>rotate the network diagram</td>
<td>ACTNET</td>
<td>ROTATE</td>
</tr>
<tr>
<td>rotate text within node by 90 degrees</td>
<td>ACTNET</td>
<td>ROTATETEXT</td>
</tr>
<tr>
<td>separate arcs along distinct tracks</td>
<td>ACTNET</td>
<td>SEPARATEARCS</td>
</tr>
<tr>
<td>vertical margin in character cells</td>
<td>ACTNET</td>
<td>VMargin=</td>
</tr>
<tr>
<td>number of vertical pages</td>
<td>ACTNET</td>
<td>VPAGES=</td>
</tr>
</tbody>
</table>

Table 7.7. Layout Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>break cycles in cyclic networks</td>
<td>ACTNET</td>
<td>BREAKCYCLE</td>
</tr>
<tr>
<td>use dynamic programming algorithm to route arcs</td>
<td>ACTNET</td>
<td>DP</td>
</tr>
<tr>
<td>number of horizontal tracks between nodes</td>
<td>ACTNET</td>
<td>HTRACKS=</td>
</tr>
<tr>
<td>route arc along potential node positions</td>
<td>ACTNET</td>
<td>NODETRACK</td>
</tr>
<tr>
<td>do not use dynamic programming algorithm to route arcs</td>
<td>ACTNET</td>
<td>NONDP</td>
</tr>
<tr>
<td>block track along potential node positions</td>
<td>ACTNET</td>
<td>NONODETRACK</td>
</tr>
<tr>
<td>restrict scope of arc layout algorithm</td>
<td>ACTNET</td>
<td>RESTRICTSEARCH</td>
</tr>
<tr>
<td>use spanning tree layout</td>
<td>ACTNET</td>
<td>SPANNINGTREE</td>
</tr>
<tr>
<td>draw network as a tree, if possible</td>
<td>ACTNET</td>
<td>TREE</td>
</tr>
<tr>
<td>number of vertical tracks between nodes</td>
<td>ACTNET</td>
<td>VTRACKS=</td>
</tr>
</tbody>
</table>
Table 7.8. Line-Printer Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference break line character</td>
<td>ACTNET</td>
<td>BRKCHAR=</td>
</tr>
<tr>
<td>characters for node outlines and connections</td>
<td>ACTNET</td>
<td>FORMCHAR=</td>
</tr>
<tr>
<td>reference character</td>
<td>ACTNET</td>
<td>REFCHAR=</td>
</tr>
</tbody>
</table>

Table 7.9. Mode Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>invoke full-screen version</td>
<td>NETDRAW</td>
<td>FULLSCREEN</td>
</tr>
<tr>
<td>invoke graphics version</td>
<td>NETDRAW</td>
<td>GRAPHICS</td>
</tr>
<tr>
<td>invoke line-printer version</td>
<td>NETDRAW</td>
<td>LINEPRINTER</td>
</tr>
<tr>
<td>suppress display of diagram</td>
<td>NETDRAW</td>
<td>NODISPLAY</td>
</tr>
</tbody>
</table>

Table 7.10. Network Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>activity variable</td>
<td>ACTNET</td>
<td>ACTIVITY=</td>
</tr>
<tr>
<td>lag variables</td>
<td>ACTNET</td>
<td>LAG=</td>
</tr>
<tr>
<td>successor variables</td>
<td>ACTNET</td>
<td>SUCCESSOR=</td>
</tr>
</tbody>
</table>

Table 7.11. Time-Scale Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>align variable</td>
<td>ACTNET</td>
<td>ALIGN=</td>
</tr>
<tr>
<td>draw reference lines at every level</td>
<td>ACTNET</td>
<td>AUTOREF</td>
</tr>
<tr>
<td>frame network diagram and axis</td>
<td>ACTNET</td>
<td>FRAME</td>
</tr>
<tr>
<td>draw all vertical levels</td>
<td>ACTNET</td>
<td>LINEAR</td>
</tr>
<tr>
<td>maximum number of empty columns between tick marks</td>
<td>ACTNET</td>
<td>MAXNULLCOLUMN=</td>
</tr>
<tr>
<td>smallest interval per level</td>
<td>ACTNET</td>
<td>MININTERVAL=</td>
</tr>
<tr>
<td>number of levels per tick mark</td>
<td>ACTNET</td>
<td>NLEVELSPERCOLUMN=</td>
</tr>
<tr>
<td>suppress time axis on continuation pages</td>
<td>ACTNET</td>
<td>NOREPEATAXIS</td>
</tr>
<tr>
<td>omit the time axis</td>
<td>ACTNET</td>
<td>NOTIMEAXIS</td>
</tr>
<tr>
<td>stop procedure if align value is missing</td>
<td>ACTNET</td>
<td>QUITMISSINGALIGN</td>
</tr>
<tr>
<td>draw zigzag reference line at breaks</td>
<td>ACTNET</td>
<td>REFBREAK</td>
</tr>
<tr>
<td>show all breaks in time axis</td>
<td>ACTNET</td>
<td>SHOWBREAK</td>
</tr>
<tr>
<td>draw time-scaled diagram</td>
<td>ACTNET</td>
<td>TIMESCALE</td>
</tr>
<tr>
<td>use format of variable and not default</td>
<td>ACTNET</td>
<td>USEFORMAT</td>
</tr>
</tbody>
</table>

Table 7.12. Tree Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>center each node with respect to subtree</td>
<td>ACTNET</td>
<td>CENTERSUBTREE</td>
</tr>
<tr>
<td>order of the children of each node</td>
<td>ACTNET</td>
<td>CHILDOORDER=</td>
</tr>
<tr>
<td>separate sons of a node for symmetry</td>
<td>ACTNET</td>
<td>SEPARATESONS</td>
</tr>
<tr>
<td>use spanning tree layout</td>
<td>ACTNET</td>
<td>SPANNINGTREE</td>
</tr>
<tr>
<td>draw network as a tree, if possible</td>
<td>ACTNET</td>
<td>TREE</td>
</tr>
</tbody>
</table>
PROC NETDRAW Statement

PROC NETDRAW *options* ;

The following options can appear in the PROC NETDRAW statement.

ANNOTATE=SAS-data-set
specifies the input data set that contains the appropriate annotate variables for the purpose of adding text and graphics to the network diagram. The data set specified must be an Annotate data set. See the “Using the Annotate Facility” section on page 657 for further details about this option.

DATA=SAS-data-set
names the SAS data set to be used by PROC NETDRAW for producing a network diagram. If DATA= is omitted, the most recently created SAS data set is used. This data set, also referred to as the Network data set, contains the network information (ACTIVITY and SUCCESSOR variables) and any ID variables that are to be displayed within the nodes. For details about this data set, see the “Network Input Data Set” section on page 640.

FULLSCREEN
FS
indicates that the network be drawn in full-screen mode. This enables you to view the network diagram produced by NETDRAW in different scales; you can also move nodes around the diagram to modify the layout.

GOUT=graphics-catalog
specifies the name of the graphics catalog used to save the output produced by PROC NETDRAW for later replay. This option is valid only if the GRAPHICS option is specified.

GRAPHICS
indicates that the network diagram produced be of high-resolution quality. If you specify the GRAPHICS option, but you do not have SAS/GRA PH software licensed at your site, the procedure stops and issues an error message. GRAPHICS is the default mode.

Table 7.13. Web Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>image map output data set</td>
<td>NETDRAW</td>
<td>IMAGEMAP=</td>
</tr>
<tr>
<td>web reference variable</td>
<td>ACTNET</td>
<td>WEB=</td>
</tr>
</tbody>
</table>

Table 7.14. Zone Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>divide network into connected components</td>
<td>ACTNET</td>
<td>AUTOZONE</td>
</tr>
<tr>
<td>suppress zone labels</td>
<td>ACTNET</td>
<td>NOZONELABEL</td>
</tr>
<tr>
<td>zone variable</td>
<td>ACTNET</td>
<td>ZONE=</td>
</tr>
<tr>
<td>label zones</td>
<td>ACTNET</td>
<td>ZONELABEL</td>
</tr>
<tr>
<td>set missing pattern values using zone</td>
<td>ACTNET</td>
<td>ZONEPAT</td>
</tr>
<tr>
<td>leave extra space between zones</td>
<td>ACTNET</td>
<td>ZONESPACE</td>
</tr>
</tbody>
</table>

Table 7.13. Web Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>image map output data set</td>
<td>NETDRAW</td>
<td>IMAGEMAP=</td>
</tr>
<tr>
<td>web reference variable</td>
<td>ACTNET</td>
<td>WEB=</td>
</tr>
</tbody>
</table>

Table 7.14. Zone Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>divide network into connected components</td>
<td>ACTNET</td>
<td>AUTOZONE</td>
</tr>
<tr>
<td>suppress zone labels</td>
<td>ACTNET</td>
<td>NOZONELABEL</td>
</tr>
<tr>
<td>zone variable</td>
<td>ACTNET</td>
<td>ZONE=</td>
</tr>
<tr>
<td>label zones</td>
<td>ACTNET</td>
<td>ZONELABEL</td>
</tr>
<tr>
<td>set missing pattern values using zone</td>
<td>ACTNET</td>
<td>ZONEPAT</td>
</tr>
<tr>
<td>leave extra space between zones</td>
<td>ACTNET</td>
<td>ZONESPACE</td>
</tr>
</tbody>
</table>
Chapter 7. The NETDRAW Procedure

IMAGEMAP=SAS-data-set
names the SAS data set that receives a description of the areas of a graph and a link for each area. This information is for the construction of HTML image maps. You use a SAS DATA step to process the output file and generate your own HTML files. The graph areas correspond to the link information that comes from the WEB variable in the Network data set. This gives you complete control over the appearance and structure of your HTML pages.

LINEPRINTER LP
produces a network diagram of line-printer quality.

NODISPLAY
requests the procedure not to display any output. The procedure still produces the Layout data set containing the details about the network layout. This option is useful to determine node placement and arc routing for a network that can be used at a later time to display the diagram.

OUT=SAS-data-set
specifies a name for the output data set produced by PROC NETDRAW. This data set, also referred to as the Layout data set, contains the node and arc placement information determined by PROC NETDRAW to draw the network. This data set contains all the information that was specified in the Network data set to define the project; in addition, it contains variables that specify the coordinates for the nodes and arcs of the network diagram. For details about the Layout data set, see the “Layout Data Set” section on page 647.

If the OUT= option is omitted, the procedure creates a data set and names it according to the DATAn convention.

ACTNET Statement

ACTNET/ options ;

The ACTNET statement draws the network diagram. You can specify several options in this statement to control the appearance of the network. All these options are described in the current section under appropriate headings: first, all options that are valid for all modes of the procedure are listed, followed by the options classified according to the mode (full-screen, graphics, or line-printer) of invocation of the procedure.

General Options

ACTIVITY=variable
specifies the variable in the Network data set that names the nodes in the network. If the data set contains a variable called ¯FROM¯, this specification is ignored; otherwise, this option is required.
ALIGN=variable
specifies the variable in the Network data set containing the time values to be used for positioning each activity. This option triggers the TIMESCALE option that adds a time axis at the top of the network and aligns the nodes of the network according to the values of the ALIGN= variable. The minimum and maximum values of this variable are used to determine the time axis. The format of this variable is used to determine the default value of the MININTERVAL= option, which, in turn, determines the format of the time axis.

AUTOREF
draws reference lines at every tick mark. This option is valid only for time-scaled network diagrams.

AUTOZONE
enables automatic zoning (or dividing) of the network into connected components. This option is equivalent to defining an automatic zone variable that associates a tree number for each node. The tree number refers to a number assigned (by the procedure) to each distinct tree of a spanning tree of the network.

BREAKCYCLE
breaks cycles by reversing the back arcs of the network. The back arcs are determined by constructing an underlying spanning tree of the network. Once cycles are broken, the nodes of the network are laid out using a topological ordering of the new network formed from the original network by ignoring the back arcs. The back arcs are drawn after determining the network layout. Note that only the back arcs go from right to left.

BOXHT=boxht
specifies the height of the box (in character cell positions) used for denoting a node. If this option is not specified, the height of the box equals the number of lines required for displaying all of the ID variable values for any of the nodes. See the ROTATETEXT option (under “Graphics Options”) for an exception.

BOXWIDTH=boxwdth
specifies the width of the box (in character cell positions) used for denoting a node. If this option is not specified, the width of the box equals the maximum number of columns required for displaying all of the ID variable values for any of the nodes. See the ROTATETEXT option (under “Graphics Options”) for an exception.

CENTERSUBTREE
positions each node at the center of the subtree that originates from that node instead of placing it at the midpoint of its children (which is the default behavior). Note that the nodes are placed at integral positions along an imaginary grid, so the positioning may not be exactly at the center. This option is valid only in conjunction with the TREE option.

CHILDOORDER=order
orders the children of each node when the network is laid out using either the TREE or the SPANNINGTREE option. The valid values for this option are TOPDOWN and BOTTOMUP for default orientation, and LEFTRGHT and RGHTLEFT for rotated networks (drawn with the ROTATETEXT option). The default is TOPDOWN.
Chapter 7. The NETDRAW Procedure

DP
causes PROC NETDRAW to use a dynamic programming (DP) algorithm to route the arcs. This DP algorithm is memory and CPU-intensive and is not necessary for most applications.

DURATION=variable
specifies a variable that contains the duration of each activity in the network. This value is used only for displaying the durations of each activity within the node.

FRAME
encloses the drawing area with a border. This option is valid only for time-scaled or zoned network diagrams.

HTRACKS=integer
controls the number of arcs that are drawn horizontally through the space between two adjacent nodes. This option enables you to control the arc-routing algorithm. The default value is based on the maximum number of successors of any node.

ID=(variables)
specifies the variables in the Network data set that are displayed within each node. In addition to the ID variables, the procedure displays the ACTIVITY variable, the DURATION variable (if the DURATION= option was specified), and any of the following variables in the Network data set: E_START, E_FINISH, L_START, L_FINISH, S_START, S_FINISH, A_START, A_FINISH, T_FLOAT, and F_FLOAT. See Chapter 2, “The CPM Procedure,” for a description of these variables. If you specify the NODEFID option, only the variables listed in the ID= option are displayed.

LAG=variable
LAG=(variables)
specifies the variables in the Network data set that identify the lag types of the precedence relationships between an activity and its successors. Each SUCCESSOR variable is matched with the corresponding LAG variable; that is, for a given observation, the rth LAG variable defines the relationship between the activities specified by the ACTIVITY variable and the rth SUCCESSOR variable. The LAG variables must be character type, and their values are expected to be specified as one of FS, SS, SF, or FF, which denote ‘Finish-to-Start’, ‘Start-to-Start’, ‘Start-to-Finish’, and ‘Finish-to-Finish’, respectively. You can also use the keyword_duration_calendar specification used by the CPM procedure, although PROC NETDRAW uses only the keyword information and ignores the lag duration and the lag calendar. If no LAG variables exist or if an unrecognized value is specified for a LAG variable, PROC NETDRAW interprets the lag as a ‘Finish-to-Start’ type.

This option enables the procedure to identify the different types of nonstandard precedence constraints (Start-to-Start, Start-to-Finish, and Finish-to-Finish) on graphics quality network diagrams by drawing the arcs from and to the appropriate edges of the nodes.
LINEAR
plots one column for every \textit{mininterval} between the minimum and maximum values of the \texttt{ALIGN=} variable. By default, only those columns that contain at least one activity are displayed. This option is valid only for time-scaled network diagrams.

\texttt{MAXNULLCOLUMN=mxncol}
\texttt{MAXEMPTY=mxncol}
\texttt{MAXZCOL=mxncol}
\texttt{MAXNCOL=mxncol}

specifies the maximum number of empty columns between two consecutive nonempty columns. The default value for this option is 0. Note that specifying the \texttt{LINEAR} option is equivalent to specifying the \texttt{MAXNULLCOLUMN=} option to be infinity. This option is valid only for time-scaled network diagrams.

\texttt{MININTERVAL=mininterval}

specifies the smallest interval to be used per column of the network diagram. Thus, if \texttt{MININTERVAL=}DAY, each column is used to represent a day, and all activities that start on the same day are placed in the same column. The valid values for \texttt{mininterval} are SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QTR, and YEAR. The default value of \texttt{mininterval} is determined by the format of the \texttt{ALIGN=} variable. The tick labels are formatted on the basis of \texttt{mininterval}; for example, if \texttt{mininterval} is DAY, the dates are marked using the DATE7. format, and if \texttt{mininterval} is HOUR, the labels are formatted as TIME5. and so on. This option is valid only for time-scaled network diagrams.

\texttt{NLEVELSPERCOLUMN=npercol}
\texttt{NPERCOL=npercol}

contracts the time axis by specifying that activities that differ in \texttt{ALIGN=} value by less than \texttt{npercol} units of \texttt{MININTERVAL} can be plotted in the same column. The default value of \texttt{npercol} is 1. This option is valid only for time-scaled network diagrams.

\texttt{NODEFID}
indicates that the procedure need not check for any of the default ID variables in the Network data set; if this option is in effect, only the variables specified in the \texttt{ID=} option are displayed within each node.

\texttt{NODETRACK}
specifies that the arcs can be routed along potential node positions if there is a clear horizontal track to the left of the successor (or _TO_) node. This is the default option. To prevent the use of potential node positions, use the \texttt{NONODETRACK} option.

\texttt{NOLABEL}
suppresses the labels. By default, the procedure uses the first three letters of the variable name to label all the variables that are displayed within each node of the network. The only exception is the variable that is identified by the \texttt{ACTIVITY=} option.
NONSEP

uses a simple heuristic to connect the nodes. The default mode of routing is NONDP, unless the HTRACKS= or VTRACKS= option (or both) are specified and set to a number that is less than the maximum number of successors. The NONDP option is faster than the DP option.

NONODESTACK

blocks the horizontal track along potential node positions. This option may lead to more turns in some of the arcs. The default is NODETRACK.

NOREPEATAXIS

displays the time axis only on the top of the chart and not on every page. This option is useful if the different pages are to be glued together to form a complete diagram. This option is valid only for time-scaled network diagrams.

NOTIMEAXIS

suppresses the display of the time axis and its labels. Note that the nodes are still placed according to the time scale, but no axis is drawn. This option is valid only for time-scaled network diagrams.

NOZONELABEL

omits the zone labeling and the dividing lines. The network is still divided into zones based on the ZONE variable, but there is no demarcation or labeling corresponding to the zones.

PAGES= npages

specifies the maximum number of pages to be used for the network diagram in graphics and line-printer modes. The default value is 100.

QUITMISSINGALIGN

stops processing if the ALIGN= variable has any missing values. By default, the procedure tries to fill in missing values using the topological order of the network. This option is valid only for time-scaled network diagrams.

REFBREAK

shows breaks in the time axis by drawing a zigzag line down the diagram just before the tick mark at the break. This option is valid only for time-scaled network diagrams.

RESTRICTSEARCH

restricts the scope of the arc layout algorithm by restricting the area of search for the arc layout when the DP option is in effect; this is useful in reducing the computational complexity of the dynamic programming algorithm. By default, using the DP algorithm to route the arcs, the y coordinates of the arcs can range through the entire height of the network. The RESTRICTSEARCH option limits the y coordinates to the minimum and the maximum of the y coordinates of the node and its immediate successors.
SEPARATESONS
separates the children (immediate successors) of a given node by adding an extra space in the center whenever it is needed to enable the node to be positioned at integral \((x, y)\) coordinates. For example, if a node has two children, placing the parent node at the midpoint between the two children requires the \(y\) coordinate to be noninteger, which is not allowed in the Layout data set. By default, the procedure positions the node at the same \(y\) level as one of its children. The SEPARATESONS option separates the two children by adding a dummy child in between, thus enabling the parent node to be centered with respect to its children. This option is valid only in conjunction with the TREE option.

SHOWBREAK
shows breaks in the time axis by drawing a jagged break in the time axis line just before the tick mark corresponding to the break. This option is valid only for time-scaled network diagrams.

SHOWSTATUS
uses the variable STATUS (if it exists) in the Network data set to determine if an activity is in-progress or completed. Note that the STATUS variable exists in the Schedule data set produced by PROC CPM when used with an ACTUAL statement. If there is no STATUS variable or if the value is missing, the procedure uses the A_FINISH and A_START values to determine the status of the activity. If the network is drawn in line-printer or full-screen mode, activities in progress are outlined with the letter \(P\) and completed activities are outlined with the letter \(F\); in high-resolution graphics mode, in-progress activities are marked with a diagonal line across the node from the bottom left to the top right corner, while completed activities are marked with two diagonal lines.

SPANNINGTREE
uses a spanning tree to place the nodes in the network. This method typically results in a wider layout than the default. However, for networks that have totally disjoint pieces, this option separates the network into connected components (or disjoint trees). This option is not valid for time-scaled or zoned network diagrams, because the node placement dictated by the spanning tree may not be consistent with the zone or the tickmark corresponding to the node.

SUCCESSOR=(variables)
specifies the variables in the Network data set that name all the immediate successors of the node specified by the ACTIVITY variable. This specification is ignored if the data set contains a variable named _TO_. At least one SUCCESSOR variable must be specified if the data set does not contain a variable called _TO_.

TIMESCALE
indicates that the network is to be drawn using a time axis for placing the nodes. This option can be used to align the network according to default variables. If the TIMESCALE option is specified without the ALIGN= option, the procedure looks for default variables in the following order: E_START, L_START, S_START, and A_START. The first of these variables that is found is used as the ALIGN= variable.
TREE TREELAYOUT
requests the procedure to draw the network as a tree if the network is indeed a tree (that is, all the nodes have at most one immediate predecessor). The option is ignored if the network does not have a tree structure.

USEFORMAT
indicates that the explicit format of the ALIGN= variable is to be used instead of the default format based on the MININTERVAL= option. Thus, for example, if the ALIGN variable contains SAS date values, by default, the procedure uses the DATE7. format for the time axis labels irrespective of the format of the ALIGN= variable. The USEFORMAT option specifies that the variable’s format should be used for the labels instead of the default format. This option is valid only for time-scaled network diagrams.

VTRACKS=integer
controls the number of arcs that are drawn vertically through the space between two adjacent nodes. A default value is based on the maximum number of successors of any node.

XBETWEEN=integer
HBETWEEN=integer
specifies the horizontal distance (in character cell positions) between two adjacent nodes. The value for this option must be at least 3; the default value is 5.

YBETWEEN=integer
VBETWEEN=integer
specifies the vertical distance (in character cell positions) between two adjacent nodes. The value for this option must be at least 3; the default value is 5.

ZONE=variable
names the variable in the Network data set used to separate the network diagram into zones.

ZONELABEL
ZONEDESCR
labels the different zones and draws dividing lines between two consecutive zones. This is the default behavior; to omit the labels and the dividing lines, use the NOZONELABEL option.

ZONESPACE
ZONELEVADD
draws the network with an extra row between two consecutive zones.

Full-Screen Options

BRKCHAR=brkchar
specifies the character used for drawing the zigzag break lines down the chart at break points of the time axis. The default value is >. This option is valid only for time-scaled network diagrams.
CARCS=color
specifies the color of the connecting lines (or arcs) between the nodes. The default value of this option is CYAN.

CAXIS=color
specifies the color of the time axis. The default value is WHITE. This option is valid only for time-scaled network diagrams.

CCRITARCS=color
specifies the color of arcs connecting critical activities. The procedure uses the values of the E_FINISH and L_FINISH variables (if they are present) in the Network data set to determine the critical activities. The default value is the value of the CARCS= option.

CREF=color
specifies the color of the reference lines. The default value is WHITE. This option is valid only for time-scaled network diagrams.

CREFBRK=color
specifies the color of the lines drawn to denote breaks in the time axis. The default value is WHITE. This option is valid only for time-scaled network diagrams.

FORMCHAR [index list] = 'string'
specifies the characters used for node outlines and arcs. See the “Line-Printer Options” section on page 639 for a description of this option.

PATTERN=variable
specifies an integer-valued variable in the Network data set that identifies the color number for each node of the network. If the data set contains a variable called _PATTERN, this specification is ignored. All the colors available for the full-screen device are used in order corresponding to the number specified in the PATTERN variable; if the value of the PATTERN variable is more than the number of colors available for the device, the colors are repeated starting once again with the first color. If a PATTERN variable is not specified, the procedure uses the first color for noncritical activities, the second color for critical activities, and the third color for supercritical activities.

REFCHAR=refchar
specifies the reference character used for drawing reference lines. The default value is “|”. This option is valid only for time-scaled network diagrams.

ZONEPAT
indicates that if a PATTERN variable is not specified or is missing and if a ZONE= variable is present, then the node colors are based on the value of the ZONE= variable.

Graphics Options

ANNOTATE=SAS-data-set
specifies the input data set that contains the appropriate annotate variables for the purpose of adding text and graphics to the network diagram. The data set specified must be an Annotate data set. See the “Using the Annotate Facility” section on page 657 for further details about this option.
ARROWHEAD=integer
specifies the length of the arrowhead in character cell positions. You can specify ARROWHEAD = 0 to suppress arrowheads altogether. The default value is 1.

CARCS=color
specifies the color to use for drawing the connecting lines between the nodes. If CARCS= is not specified, the procedure uses the fourth color in the COLORS= list of the GOPTIONS statement.

CAXIS=color
specifies the color of the time axis. If CAXIS= is not specified, the procedure uses the text color. This option is valid only for time-scaled network diagrams.

CCNODEFILL=color
specifies the fill color for all critical nodes of the network diagram. If you specify this option, the procedure uses a solid fill pattern (with the color specified in this option) for all critical nodes, ignoring any fill pattern specified in the PATTERN statements; the PATTERN statements are used only to obtain the color of the outline for these nodes unless you specify the CCRITOUT= option. The default value for this option is the value of the CNODEFILL= option, if it is specified; otherwise, the procedure uses the PATTERN statements to determine the fill pattern and color.

CCRITARCS=color
specifies the color of arcs connecting critical activities. The procedure uses the values of the E_FINISH and L_FINISH variables (if they are present) in the Network data set to determine the critical activities. The default value of this option is the value of the CARCS= option.

CCRITOUT=color
specifies the outline color for critical nodes. The default value for this option is the value of the COUTLINE= option, if it is specified; otherwise, it is the same as the pattern color for the node.

CENTERID
centers the ID values placed within each node. By default, character valued ID variables are left justified and numeric ID variables are right justified within each node. This option centers the ID values within each node.

CNODEFILL=color
specifies the fill color for all nodes of the network diagram. If you specify this option, the procedure uses a solid fill pattern with the specified color, ignoring any fill pattern specified in the PATTERN statements; the PATTERN statements are used only to obtain the color of the outline for the nodes, unless you specify the COUTLINE= option.

COMPRESS
draws the network on one physical page. By default, the procedure draws the network across multiple pages if necessary, using a default scale that allots one character cell position for each letter within the nodes. Sometimes, to get a broad picture of the network and all its connections, you may want to view the entire network on one screen. If the COMPRESS option is specified, PROC NETDRAW determines the
horizontal and vertical transformations needed so that the network is compressed to fit on one screen.

COUTLINE= *color*

specifies an outline color for all nodes. By default, the procedure sets the outline color for each node to be the same as the fill pattern for the node. This option is useful when used in conjunction with a solid fill using a light color. Note that if an empty fill pattern is specified, then the COUTLINE= option will cause all nodes to appear the same.

CREF= *color*

specifies the color of the reference lines. If the CREF= option is not specified, the procedure uses the text color. This option is valid only for time-scaled network diagrams.

CREFBRK= *color*

specifies the color of the zigzag break lines. If the CREFBRK= option is not specified, the procedure uses the text color. This option is valid only for time-scaled network diagrams.

CTEXT= *color*

CT= *color*

specifies the color of all text on the network diagram including variable names or labels, values of ID variables, and so on. If CTEXT= is omitted, PROC NETDRAW uses the value specified by the global graphics option CTEXT; if there is no such specification, then the procedure uses the first color in the COLORS= list of the GOPTIONS statement.

DESCRIPTION= *'string'*

specifies a descriptive string, up to 40 characters in length, that appears in the description field of the master menu in PROC GREPLAY. If the DESCRIPTION= option is omitted, the description field contains a description assigned by PROC NETDRAW.

FILLPAGES

causes the diagram on each page to be magnified (if necessary) to fill up the page.

FONT= *font*

specifies the font of the text. If there is no FONT= specification, PROC NETDRAW uses the font specified by the global graphics option FTEXT=; if there is no such specification, then the procedure uses hardware characters.

HEIGHT= *h*

HTEXT= *h*

specifies that the height for all text in PROC NETDRAW (excluding the titles and footnotes) be *h* times the value of the global HTEXT= option, which is the default text height specified in the GOPTIONS statement of SAS/GRAPH. The value of *h* must be a positive real number; the default value is 1.0.
HMARGIN=integer
specifies the width of a horizontal margin (in number of character cell positions) for the network in graphics mode. The default width is 1.

HPAGES=h
NXPAGES=h
specifies that the network diagram is to be produced using h horizontal pages. However, it may not be possible to use h horizontal pages due to intrinsic constraints on the output.

For example, PROC NETDRAW requires that every horizontal page should contain at least one x level. Thus, the number of horizontal pages can never exceed the number of vertical levels in the network. The exact number of horizontal pages used by the network diagram is given in the _ORNETDR macro variable. See the “Macro Variable _ORNETDR” section on page 658 for further details.

The appearance of the diagram with respect to the HPAGES= option is also influenced by the presence of other related procedure options. The HPAGES= option performs the task of determining the number of vertical pages in the absence of the VPAGES= option. If the COMPRESS or PCOMPRESS option is specified in this scenario, the chart uses one vertical page (unless the HPAGES= and VPAGES= options are specified). If neither the COMPRESS nor PCOMPRESS option is specified, the number of vertical pages is computed in order to display as much of the chart as possible in a proportional manner.

LREF=linestyle
specifies the linestyle (1-46) of the reference lines. The default linestyle is 1, a solid line. See Figure 6.5 in Chapter 6, “The GANTT Procedure,” for examples of the various line styles available. This option is valid only for time-scaled network diagrams.

LREFBRK=linestyle
specifies the linestyle (1-46) of the zigzag break lines. The default linestyle is 1, a solid line. See Figure 6.5 in Chapter 6, “The GANTT Procedure,” for examples of the various line styles available. This option is valid only for time-scaled network diagrams.

LWCRIT=integer
specifies the line width for critical arcs and the node outlines for critical activities. If the LWCRIT= option is not specified, the procedure uses the value specified for the LWIDTH= option.

LWIDTH=integer
specifies the line width of the arcs and node outlines. The default line width is 1.

LWOUTLINE=integer
specifies the line width of the node outlines. The default line width for the node outline is equal to LWIDTH for noncritical nodes and LWCRIT for critical nodes.
NAME= 'string'
specifies a string of up to eight characters that appears in the name field of the catalog entry for the graph. The default name is NETDRAW. If either the name specified or the default name duplicates an existing name in the catalog, then the procedure adds a number to the duplicate name to create a unique name, for example, NETDRAW2.

NOARROWFILL
draws arrowheads that are not filled. By default, the procedure uses filled arrowheads.

NOPAGENUMBER
NONUMBER
suppresses the page numbers that are displayed in the top right corner of each page of a multipage network diagram. Note that the pages are ordered from left to right, bottom to top (unless the **REVERSEY** option is specified).

NOVCENTER
draws the network diagram just below the titles without centering in the vertical direction.

NXNODES= nx
specifies the number of nodes that should be displayed horizontally across each page of the network diagram. This option determines the value of the **HPAGES=** option; this computed value of HPAGES overrides the specified value for the HPAGES= options.

NYNODES= ny
specifies the number of nodes that should be displayed vertically across each page of the network diagram. This option determines the value of the **VPAGES=** option; this computed value of VPAGES overrides the specified value for the VPAGES= options.

PAGENUMBER
PAGENUM
numbers the pages of the network diagram on the top right-hand corner of the page if the diagram exceeds one page. The numbering scheme is from left to right, bottom to top (unless the **REVERSEY** option is specified).

PATTERN= variable
specifies an integer-valued variable in the **Network** data set that identifies the pattern for filling each node of the network. If the data set contains a variable called _PATTERN, this specification is ignored. The patterns are assumed to have been specified using PATTERN statements. If a PATTERN variable is not specified, the procedure uses the first PATTERN statement for noncritical activities, the second PATTERN statement for critical activities, and the third PATTERN statement for supercritical activities.

PCOMPRESS
draws the network diagram on one physical page. As with the COMPRESS option, the procedure determines the horizontal and vertical transformation needed so that the network is compressed to fit on one screen. However, in this case, the transformations are such that the network diagram is proportionally compressed. See **Example 7.4** on page 667 for an illustration of this option.
If the HPAGES= and VPAGES= options are used to control the number of pages, each page of the network diagram is drawn while maintaining the original aspect ratio.

RECTILINEAR
draws arcs with rectangular corners. By default, the procedure uses rounded turning points and rounded arc merges in graphics mode.

REVERSEY
reverses the order in which the y pages are drawn. By default, the pages are ordered from bottom to top in the graphics mode. This option orders them from top to bottom.

ROTATE
rotates the network diagram to change the orientation of the network to be from top to bottom instead of from left to right. For example, you can use this option to draw a Bill of Materials diagram that is traditionally drawn from top to bottom with the Final Product drawn at the top of the tree. In addition to rotating the orientation of the network, use the ROTATETEXT option to rotate the text within each node. See Example 7.18 on page 716 for an illustration of this option.

This option is similar to the global graphics option, ROTATE (GOPTIONS ROTATE). Note that if the global graphics option is used, titles and footnotes also need to be drawn with an angle specification: A=90. However, some device drivers ignore the global graphics option, ROTATE (for example, the SASGDDMX driver). Use the ROTATE option on the ACTNET statement for such device drivers.

ROTATETEXT
RTEXT
rotates the text within the nodes by 90 degrees. This option is useful when used in conjunction with the ROTATE option in the ACTNET statement (or the global graphics option ROTATE) to change the orientation of the network to be from top to bottom instead of from left to right. For example, you can use this option to draw an organizational chart that is traditionally drawn from top to bottom with the head of the organization at the top of the chart. If the ROTATETEXT option is specified, then the definitions of the BOXHT= and BOXWIDTH= options are reversed. See Example 7.18 on page 716 for an illustration of this option.

SEPARATEARCS
separates the arcs to follow distinct tracks. By default, the procedure draws all segments of the arcs along a central track between the nodes, which may cause several arcs to be drawn on top of one another. If the SEPARATEARCS option is specified, the procedure may increase the values of the XBETWEEN= and YBETWEEN= options to accommodate the required number of lines between the nodes.

VMARGIN=integer
specifies the width of a vertical margin (in number of character cell positions) for the network. The default width is 1.

VPAGES=v
NYPAGES=v
specifies that the network diagram is to be produced using v vertical pages. This, however, may not be possible due to intrinsic constraints on the output. For example,
PROC NETDRAW requires that every vertical page should contain at least one level. Thus, the number of vertical pages can never exceed the number of horizontal levels in the network. The exact number of vertical pages used by the procedure is provided in the _ORNETDR macro variable. See the “Macro Variable _ORNETDR” section on page 658 for further details.

The appearance of the diagram with respect to the VPAGES= option is also influenced by the presence of other related procedure options. The VPAGES= option performs the task of determining the number of horizontal pages in the absence of the HPAGES= option (or the NXNODES= option). If the COMPRESS or PCOMPRESS option is specified (without the HPAGES= or NXNODES= options), the chart uses one horizontal page. If neither the COMPRESS nor PCOMPRESS option is specified, the number of horizontal pages is computed in order to display as much of the chart as possible in a proportional manner.

\textbf{WEB=variable} \\
\textbf{HTML=variable}

specifies the character variable in the Network data set that identifies an HTML page for each activity. The procedure generates an HTML image map using this information for each node in the network diagram.

\textbf{ZONEPAT}

indicates that if a PATTERN= variable is not specified or is missing and if a ZONE= variable is present, then the node patterns are based on the value of the ZONE= variable.

\textbf{Line-Printer Options}

\textbf{BRKCHAR=brkchar}

specifies the character used for drawing the zigzag break lines down the chart at break points of the time axis. The default value is \textgreater. This option is valid only for time-scaled network diagrams.

\textbf{FORMCHAR [index list]=’string’}

specifies the characters used for node outlines and arcs. The value is a string 20 characters long. The first 11 characters define the 2 bar characters, vertical and horizontal, and the 9 corner characters: upper-left, upper-middle, upper-right, middle-left, middle-middle (cross), middle-right, lower-left, lower-middle, and lower-right. These characters are used to outline each node and connect the arcs. The nineteenth character denotes a right arrow. The default value of the FORMCHAR= option is |-----|+|-----+=-|/-\<>&. Any character or hexadecimal string can be substituted to customize the appearance of the diagram. Use an index list to specify which default form character each supplied character replaces, or replace the entire default string by specifying the full character replacement string without an index list. For example, change the four corners of each node and all turning points of the arcs to asterisks by specifying

\texttt{FORMCHAR(3 5 7 9 11)=’*****’}
Specifying

```
formchar=' ' (11 blanks)
```

produces a network diagram with no outlines for the nodes (as well as no arcs). For further details about the FORMCHAR= option see Chapter 5, “The DTREE Procedure,” and Chapter 6, “The GANTT Procedure.”

REFCHAR= *refchar*

specifies the reference character used for drawing reference lines. The default value is “|”. This option is valid only for time-scaled network diagrams.

Details

Network Input Data Set

The Network input data set contains the precedence information, namely the activity-successor information for all the nodes in the network. The minimum amount of information that is required by PROC NETDRAW is the activity-successor information for the network. Additional information in the input data set can be used by the procedure to add detail to the nodes in the diagram or control the layout of the network diagram.

Three types of data sets are typically used as the Network data set input to PROC NETDRAW. Which type of data set you use depends on the stage of the project:

- The **Activity** data set that is input to PROC CPM is the first type. In the initial stages of project definition, it may be useful to get a graphical representation of the project showing all the activity precedence constraints.

- The **Schedule** data set produced by PROC CPM (as the OUT= data set) is the second type. When a project is in progress, you may want to obtain a network diagram showing all the relevant start and finish dates for the activities in the project, in addition to the precedence constraints. You may also want to draw a time-scaled network diagram, with the activities arranged according to the start or finish times corresponding to any of the different schedules produced by PROC CPM.

- The **Layout** data set produced by PROC NETDRAW (as the OUT= data set) is the third type. Often, you may want to draw network diagrams of the project every week showing updated information (as the project progresses); if the network logic has not changed, it is not necessary to determine the placement of the nodes and the routing of the arcs every time. You can use the Layout data set produced by PROC NETDRAW that contains the node and arc positions, update the start and finish times of the activities or merge in additional information about each activity, and use the modified data set as the Network data set input to PROC NETDRAW. The new network diagram will have the same layout as the earlier diagram but will contain updated information about the
schedule. Such a data set may also be useful if you want to modify the layout of the network by changing the positions of some of the nodes. See the “Controlling the Layout” section on page 648 for details on how the layout information is used by PROC NETDRAW. If the Layout data set is used, it contains the variables _FROM_ and _TO_; hence, it is not necessary to specify the ACTIVITY= and SUCCESSOR= options. See Example 7.13 on page 699 and Example 7.14 on page 703 for illustrations of the use of the Layout data set.

The minimum information required by PROC NETDRAW from the Network data set is the variable identifying each node in the network and the variable (or variables) identifying the immediate successors of each node. In addition, the procedure can use other optional variables in the data set to enhance the network diagram. The procedure uses the variables specified in the ID= option to label each node. The procedure also looks for default variable names in the Network data set that are added to the list of ID variables; the default variable names are E_START, E_FINISH, L_START, L_FINISH, S_START, S_FINISH, A_START, A_FINISH, T_FLOAT, and F_FLOAT. The format used for determining the location of these variables within each node is described in the “Format of the Display” section on page 644. See the “Variables in the Network Data Set” section on page 641 for a table of all the variables in the Network data set and their interpretations by PROC NETDRAW.

If the Network data set contains the variables _X_ and _Y_ identifying the x and y coordinates of each node and each turning point of each arc in the network, then this information is used by the procedure to draw the network. Otherwise, the precedence relationships among the activities are used to determine the layout of the network. It is possible to specify only the node positions and let the procedure determine the routing of all the arcs. However, partial information cannot be augmented by the procedure.

Note: If arc information is provided, the procedure assumes that it is complete and correct and uses it exactly as specified.

Variables in the Network Data Set

The NETDRAW procedure expects all the network information to be contained in the Network input data set named by the DATA= option. The network information is contained in the ACTIVITY and SUCCESSOR variables. In addition, the procedure uses default variable names in the Network data set for specific purposes. For example, the _X_ and _Y_ variables, if they are present in the Network data set, represent the coordinates of the nodes, the _SEQ_ variable indexes the turning points of each arc of the network, and so on.

In addition to the network precedence information, the Network data set may also contain other variables that can be used to change the default layout of the network. For example, the nodes of the network can be aligned in the horizontal direction using the ALIGN= specification, or they can be divided into horizontal bands (or zones) using a ZONE variable.
Table 7.15 lists all of the variables associated with the Network data set and their interpretations by the NETDRAW procedure. Note that all the variables are identified to the procedure in the ACTNET statement. Some of the variables use default names that are recognized by the procedure to denote specific information, as explained previously. The table indicates if the variable is default or needs to be identified in the ACTNET statement.

Table 7.15. Network Data Set and Associated Variables

<table>
<thead>
<tr>
<th>Statement</th>
<th>Variable Name</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTNET</td>
<td>ACTIVITY</td>
<td>Activity or node name</td>
</tr>
<tr>
<td></td>
<td>ALIGN</td>
<td>Align variable for time-scaled network</td>
</tr>
<tr>
<td></td>
<td>DURATION</td>
<td>Duration of activity</td>
</tr>
<tr>
<td></td>
<td>ID</td>
<td>Additional variables to be displayed</td>
</tr>
<tr>
<td></td>
<td>PATTERN</td>
<td>Pattern number</td>
</tr>
<tr>
<td></td>
<td>SUCCESSOR</td>
<td>Immediate successor</td>
</tr>
<tr>
<td></td>
<td>WEB</td>
<td>HTML page corresponding to activity</td>
</tr>
<tr>
<td></td>
<td>ZONE</td>
<td>Zone variable for dividing network</td>
</tr>
</tbody>
</table>

Default Variable Names

- A_FINISH: default ID variable
- A_START: default ID variable
- E_FINISH: default ID variable
- E_START: default ID variable
- F_FLOAT: default ID variable
- L_FINISH: default ID variable
- L_START: default ID variable
- S_FINISH: default ID variable
- S_START: default ID variable
- T_FLOAT: default ID variable
- _FROM_: supersedes ACTIVITY= specification
- _PATTERN_: supersedes PATTERN= specification
- _SEQ_: index of turning point in arc
- _TO_: supersedes SUCCESSOR= specification
- _X_: x coordinate of node or arc turning point
- _Y_: y coordinate of node or arc turning point

Missing Values

Missing values are not allowed for the ACTIVITY, _X_, _Y_, and _SEQ_ variables. Missing values for the SUCCESSOR and ID variables are ignored. Missing values are not allowed for the ALIGN= variable if the QUITMISSINGALIGN option is specified; otherwise, the procedure determines suitable values for the ALIGN= variable using the topological ordering of the network nodes.
Layout of the Network

The network layout is determined in two stages. First, the precedence relationships are used to determine the positions of the nodes, which are then used to determine a routing of the arcs. The positions of the nodes and arcs are identified by specifying their x and y coordinates in a grid. Figure 7.7 shows a sample grid and explains some of the conventions followed by PROC NETDRAW in determining the node and arc layout. This notation will be useful in later sections that describe the Layout data set and how you can control the layout of the diagram. The asterisks in the figure represent possible positions for the nodes of the network. The arcs are routed between the possible node positions. For example, node A has coordinates (1, 3) and node B has coordinates (2, 1). The arc connecting them has two turning points and is completely determined by the two pairs of coordinates (1.5, 3) and (1.5, 1); here, $x = 1.5$ implies that the position is midway between the x coordinates 1 and 2.

![Sample Grid and Coordinates for Node and Arc Layout](image)

PROC NETDRAW sets $x = 1$ for all nodes with no predecessors; the x coordinates for the other nodes are determined so that each node is placed to the immediate right of all its predecessors; in other words, no node will appear to the left of any of its predecessors or to the right of any of its successors in the network diagram. The nodes are placed in topological order: a node is placed only after all its predecessors have been placed. Thus, the node-placement algorithm requires that there should be no cycles in the network. The y coordinates of the nodes are determined by the procedure using several heuristics designed to produce a reasonable compact diagram of the network. To draw a network that has cycles, use the BREAKCYCLE option,
or you can specify the node coordinates or an ALIGN= variable to circumvent the requirement of a topological ordering of the nodes (see the second part of Example 7.12 on page 694).

Note that the \(x \) and \(y \) coordinates fix only a relative positioning of the nodes and arcs. The actual distance between two nodes, the width and height of each node, and so on can be controlled by specifying desired values for the options that control the format of the display, namely, BOXHT=, BOXWIDTH=, and so on. See the “Format of the Display” section on page 644 for details on these options.

By default, the procedure routes the arcs using a simple heuristic that uses, at most, four turning points: the arc leaves the predecessor node from its right edge, turns up or down according to whether the successor is above or below the current node position, then tracks horizontally across to the vertical corridor just before the successor node, and then tracks in a vertical direction to meet the successor node. For example, see the tracking of the arc connecting nodes C and D in Figure 7.7.

For networks that include some nonstandard precedence constraints, the arcs may be drawn from and to the appropriate edges of the nodes, depending on the type of the constraint.

The default routing of the arcs may lead to an unbalanced diagram with too many arcs in one section and too few in another. The DP option in the ACTNET statement causes the procedure to use a dynamic programming algorithm to route the arcs. This algorithm tries to route the arcs between the nodes so that not too many arcs pass through any interval between two nodes. The procedure sets the maximum number of arcs that are allowed to be routed along any corridor to be equal to the maximum number of successors for any node. The HTRACKS= and VTRACKS= options enable you to set these maximum values: HTRACKS specifies the maximum number of arcs that are allowed to pass horizontally through any point while VTRACKS specifies the same for arcs in the vertical direction. See Example 7.7 on page 677 for an illustration of the HTRACKS= option.

The layout of the network for time-scaled and zoned network diagrams is discussed in the “Time-Scaled Network Diagrams” section on page 649 and the “Zoned Network Diagrams” section on page 651, respectively. The “Organizational Charts or Tree Diagrams” section on page 652 describes the layout of the diagram when the TREE option is specified.

Format of the Display

As explained in the previous section, the layout of the network is determined by the procedure in terms of \(x \) and \(y \) coordinates on a grid as shown in Figure 7.7. The distance between nodes and the width and height of each node is determined by the values of the format control options: XBETWEEN=, YBETWEEN=, BOXHT=, and BOXWIDTH=. Note that if the ROTATETEXT option is specified (in graphics mode), then the definitions of the BOXHT= and BOXWIDTH= options are reversed.

The amount of information that is displayed within each node is determined by the variables specified by the ID= option, the number of default variables found in the Network data set, and whether the NOLABEL and NODEFID options are specified.
The values of the variables specified by the ID= option are placed within each node on separate lines. If the NOLABEL option is in effect, only the values of the variables are written; otherwise, each value is preceded by the name of the ID variable truncated to three characters. Recall from the “Syntax” section on page 621 that, in addition to the variables specified using the ID= option, the procedure also displays additional variables. These variables are displayed below the variables explicitly specified by the ID= option, in pre-determined relative positions within each node (see Figure 7.8.)

<table>
<thead>
<tr>
<th>ID1</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>IDn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity variable</td>
<td>Duration variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E朣TART</td>
<td>E朣NISH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L朣TART</td>
<td>L朣NISH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S朣TART</td>
<td>S朣NISH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A朣TART</td>
<td>A朣NISH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T朣FLOAT</td>
<td>F朣FLOAT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.8. Display Format for the Variables within Each Node

Note: If a node is identified as a successor (through a SUCCESSOR variable) and is never identified with the ACTIVITY variable, the ID values for this node are never defined in any observation; hence, this node will have missing values for all the ID variables.

If the SHOWSTATUS option is specified and the Network data set contains progress information (in either the STATUS variable or the A朣TART and A朣NISH variables), the procedure appropriately marks each node referring to activities that are completed or in progress. See Example 7.8 on page 680 for an illustration of the SHOWSTATUS option.

The features just described pertain to all three modes of the procedure. In addition, there are options to control the format of the display that are specific to the mode of invocation of the procedure. For graphics quality network diagrams, you can choose the color and pattern used for each node separately by specifying a different pattern number for the PATTERN variable, identified in the ACTNET statement (for details, see the “Graphics Version” section on page 656). For line-printer or full-screen network diagrams, the FORMCHAR= option enables you to specify special boxing characters that enhance the display; for full-screen network diagrams, you can also choose the color of the nodes using the PATTERN= option.

By default, all arcs are drawn along the center track between two consecutive nodes. The SEPARATEARCS option, which is available in the graphics version, separates arcs in the same corridor by drawing them along separate tracks, thus preventing them from being drawn on top of each other.
If the network fits on one page, it is centered on the page; in the graphics mode, you can use the `NOVCENTER` option to prevent centering in the vertical direction so that the network is drawn immediately below the title. If the network cannot fit on one page, it is split onto different pages appropriately. See the “Page Format” section on page 646 for a description of how the pages are split.

Page Format

![Page Format](image)

Figure 7.9. Page Layout

As explained in the “Format of the Display” section on page 644, if the network fits on one page, it is centered on the page (unless the `NOVCENTER` option is specified); otherwise, it is split onto different pages appropriately, and each page is drawn starting at the bottom left corner. If the network is drawn on multiple pages, the procedure numbers each page of the diagram on the top right corner of the page. The pages are numbered starting with the bottom left corner of the entire picture. Thus, if the network diagram is broken into three horizontal and three vertical levels and you want to paste all the pieces together to form one picture, they should be arranged as shown in Figure 7.9.

The number of pages of graphical output produced by the NETDRAW procedure depends on several options such as the `NXNODES=`, `NYNODES=`, `HPAGES=`, `VPAGES=`, `COMPRESS`, `PCOMPRESS`, `HEIGHT=`, and the `ID=` options. The value of the `HTEXT=` option and the number of variables specified in the `ID=` options determines the size of each node in the network diagram, which in turn affects the number of horizontal and vertical pages needed to draw the entire network. The number of pages is also affected by the global specification of the `HPOS=`, `VPOS=`, `HSIZE=`, and `VSIZE=` graphics options.

The `COMPRESS` and `PCOMPRESS` options force the entire network diagram to be drawn on a single page. You can explicitly control the number of horizontal and vertical pages using the `HPAGES=` and `VPAGES=` options. The `NXNODES=` and `NYNODES=` options enable you to specify the number of nodes in the horizontal and vertical directions, respectively, on each page of the network diagram.

For examples of these options and how they affect the network diagram output, see Example 7.5 on page 671.
Layout Data Set

The Layout data set produced by PROC NETDRAW contains all the information needed to redraw the network diagram for the given network data. In other words, the Layout data set contains the precedence information, the ID variables that are used in the current invocation of the procedure, and variables that contain the coordinate information for all the nodes and arcs in the network.

The precedence information used by the procedure is defined by two new variables named _FROM_ and _TO_, which replicate the ACTIVITY and SUCCESSOR variables from the Network data set. Note that the Layout data set has only one _TO_ variable even if the Network data set has multiple SUCCESSOR variables; if a given observation in the Network data set defines multiple successors for a given activity, the Layout data set defines a new observation for each of the successors. In fact, for each (node, successor) pair, a sequence of observations, defining the turning points of the arc, is saved in the Layout data set; the number of observations corresponding to each pair is equal to one plus the number of turns in the arc connecting the node to its successor. Suppose that a node ‘C’ has two successors, ‘D’ and ‘E,’ and the arcs connecting ‘C’ and ‘D’ and ‘C’ and ‘E’ are routed as shown in Figure 7.7 on page 643. Then, Figure 7.10 illustrates the format of the observations corresponding to the two (_FROM_, _TO_) pairs of nodes, (‘C’, ‘D’) and (‘C’, ‘E’).

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>X</th>
<th>Y</th>
<th>SEQ</th>
<th>_PATTERN</th>
<th>ID variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>3.5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>3.5</td>
<td>2.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>5.5</td>
<td>2.5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>5.5</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.10. Sample Observations in the Layout Data Set

For every (node, successor) pair, the first observation (_SEQ_ = ‘0’) gives the coordinates of the predecessor node; the succeeding observations contain the coordinates of the turning points of the arc connecting the predecessor node to the successor. The data set also contains a variable called _PATTERN, which contains the pattern number that is used for coloring the node identified by the _FROM_ variable. The value of this variable is missing for observations with _SEQ_ > 0.
Controlling the Layout

As explained in the “Layout of the Network” section on page 643, the procedure uses the precedence constraints between the activities to draw a reasonable diagram of the network. A very desirable feature in any procedure of this nature is the ability to change the default layout. PROC NETDRAW provides two ways of modifying the network diagram:

- using the full-screen interface
- using the Network data set

The full-screen method is useful for manipulating the layout of small networks, especially networks that fit on a handful of screens. You can use the full-screen mode to examine the default layout of the network and move the nodes to desired locations using the MOVE command from the command line or by using the appropriate function key. When a node is moved, the procedure reroutes all the arcs that connect to or from the node; other arcs are unchanged. For details about the MOVE command, see the “Full-Screen Version” section on page 653.

You can use the Network data set to modify or specify completely the layout of the network. This method is useful if you want to draw the network using information about the network layout that has been saved from an earlier invocation of the procedure. Sometimes you may want to specify only the positions of the node and let the procedure determine the routing of the arcs. The procedure looks for three default variables in the data set: \(_X \), \(_Y \), and \(_SEQ \). The \(_X \) and \(_Y \) variables are assumed to denote the \(x \) and \(y \) coordinates of the nodes and all the turning points of the arcs connecting the nodes. The variable \(_SEQ \) is assumed to denote the order of the turning points. This interpretation is consistent with the values assigned to the \(_X \), \(_Y \), and \(_SEQ \) variables in the Layout data set produced by PROC NETDRAW. If there is no variable called \(_SEQ \) in the data set, the procedure assumes that only the node positions are specified and uses the specified coordinates to place the nodes and determines the routing of the arcs corresponding to these positions. If there is a variable called \(_SEQ \), the procedure requires that the turning points for each arc be specified in the proper order, with the variable \(_SEQ \) containing numbers sequentially starting with 1 and continuing onward. The procedure then draws the arcs exactly as specified, without checking for consistency or interpolating or extrapolating turning points that may be missing.

The ALIGN= variable provides another means of controlling the node layout (see the “Time-Scaled Network Diagrams” section on page 649). This variable can be used to specify the \(x \) coordinates for the different nodes of the network; the procedure then determines the \(y \) coordinates. Note that time-scaled network diagrams (without an ALIGN= specification) are equivalent to network diagrams drawn with the ALIGN= variable being set to the E..START variable.

You can also control the placement of the nodes using the ZONE= option (see the “Zoned Network Diagrams” section on page 651). The procedure uses the values of the ZONE variable to divide the network into horizontal zones. Thus, you can control
the horizontal placement of the nodes using the ALIGN= option and the vertical placement of the nodes using the ZONE= option.

For networks that have a tree structure, the TREE option draws the network as a tree, thus providing another layout option (see the “Organizational Charts or Tree Diagrams” section on page 652). The procedure draws the tree from left to right, with the root at the left edge of the diagram. Thus, the children of each node are drawn to the right of the node. In the graphics mode of invocation, you can use the ROTATEETEXT option in conjunction with the ROTATE option in the ACTNET statement (or the global graphics option ROTATE) to obtain a top-down tree diagram.

Time-Scaled Network Diagrams

By default, PROC NETDRAW uses the topological ordering of the activity network to determine the \(x \) coordinates of the nodes. As a project progresses, you may want to display the activities arranged according to their time of occurrence. Using the TIMESCALE option, you can draw the network with a time axis at the top and the nodes aligned according to their early start times, by default. You can use the ALIGN= option to specify any of the other start or finish times in the Network data set. In fact, PROC NETDRAW enables you to align the nodes according to any numeric variable in the data set.

If the TIMESCALE option is specified without any ALIGN= specification, the procedure chooses one of the following variables as the ALIGN= variable: ESTART, LSTART, SSTART, or ASTART, in that order. The first of these variables that is found is used to align the nodes. The minimum and maximum values of the ALIGN= variable are used to determine the time axis. The format of this variable is used to determine the default value for the MININTERVAL= option. The value of the MININTERVAL= option (or the default value) is used to determine the format of the time axis. You can override the format based on mininterval by specifying the desired format for the ALIGN= variable (using the FORMAT statement to indicate a standard SAS format or a special user-defined format) and the USEFORMAT option in the ACTNET statement. Table 7.16 lists the valid values of mininterval corresponding to the type of the ALIGN= variable and the default format corresponding to each value of mininterval. For each value in the first column, the first value of mininterval listed is the default value of the MININTERVAL= option corresponding to that type of the ALIGN= variable.

Several options are available in PROC NETDRAW to control the spacing of the nodes and the scaling of a time-scaled network diagram:

- The MININTERVAL= option enables you to scale the network diagram: one tick mark is associated with one unit of mininterval. Thus, if mininterval is DAY, each column is used to represent one day and all activities that start on the same day are placed in the same column. By default, the procedure omits any column (tick mark) that does not contain any node.

- The LINEAR option enables you to print a tick mark corresponding to every day (or the unit of mininterval). Note that, for a project that has few activities
spread over a large period of time, the LINEAR option can lead to a network diagram that is very wide.

- The MAXNULLCOLUMN= option specifies the maximum number of empty columns that is allowed between two consecutive nonempty columns. The LINEAR option is equivalent to specifying maxncol = infinity, while the default time-scaled network diagram is drawn with maxncol = 0.

- The NLEVELSPERCOLUMN= option enables you to contract the network diagram by combining a few columns. For example, if mininterval is DAY and nlevelspercol is 7, each column contains activities that start within seven days of each other; note that the same effect can be achieved by setting mininterval to be WEEK.

<table>
<thead>
<tr>
<th>ALIGN Variable Type</th>
<th>MININTERVAL</th>
<th>Axis Label Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric format</td>
<td></td>
</tr>
<tr>
<td>SAS time</td>
<td>HOUR</td>
<td>HHMM5.</td>
</tr>
<tr>
<td></td>
<td>MINUTE</td>
<td>HHMM5.</td>
</tr>
<tr>
<td></td>
<td>SECOND</td>
<td>TIME8.</td>
</tr>
<tr>
<td>SAS date</td>
<td>DAY</td>
<td>DATE7.</td>
</tr>
<tr>
<td></td>
<td>WEEKDAY</td>
<td>DATE7.</td>
</tr>
<tr>
<td></td>
<td>WEEK</td>
<td>DATE7.</td>
</tr>
<tr>
<td></td>
<td>MONTH</td>
<td>MONYY5.</td>
</tr>
<tr>
<td></td>
<td>QTR</td>
<td>MONYY5.</td>
</tr>
<tr>
<td></td>
<td>YEAR</td>
<td>MONYY5.</td>
</tr>
<tr>
<td>SAS datetime</td>
<td>DTDAY</td>
<td>DATE7.</td>
</tr>
<tr>
<td></td>
<td>WORKDAY</td>
<td>DATE7.</td>
</tr>
<tr>
<td></td>
<td>DTWRKDAY</td>
<td>DATE7.</td>
</tr>
<tr>
<td></td>
<td>DTSECOND</td>
<td>DATETIME16.</td>
</tr>
<tr>
<td></td>
<td>DTMINUTE</td>
<td>DATETIME16.</td>
</tr>
<tr>
<td></td>
<td>DTHOUR</td>
<td>DATETIME13.</td>
</tr>
<tr>
<td></td>
<td>DTWEEK</td>
<td>DATE7.</td>
</tr>
<tr>
<td></td>
<td>DTMONTH</td>
<td>MONYY5.</td>
</tr>
<tr>
<td></td>
<td>DTQTR</td>
<td>MONYY5.</td>
</tr>
<tr>
<td></td>
<td>DTYEAR</td>
<td>MONYY5.</td>
</tr>
</tbody>
</table>

The node-placement algorithm described in the “Layout of the Network” section on page 643 is modified slightly for time-scaled network diagrams. The x coordinate of each node is determined by the value of the ALIGN= variable. The scaling options just described are used to determine the tick mark corresponding to the node. The y coordinate is determined as before. Once the node placement is completed, the arc routing algorithm is the same as described earlier.

Note: Since the node placement for time-scaled networks is determined by the ALIGN= variable, it is possible that some of the arcs between the nodes may have to
be routed from right to left instead of from left to right; in other words, there may be some backward arcs. Note also that, if the ALIGN= variable is used to determine the \(x \) coordinates of the nodes, the procedure can also draw networks that contain cycles (see the second part of Example 7.12 on page 694).

Several other options are available to control the appearance of time-scaled network diagrams: AUTOREF, BRKCHAR=, CAXIS=, CREF=, CREFBRK=, FRAME, LREF=, LREFBRK=, NOREPEATAXIS, NOTIMEAXIS, REFBREAK, REFCHAR=, and SHOWBREAK. These options are described in the “Syntax” section on page 621.

Zoned Network Diagrams

Most projects have at least one natural classification of the different activities in the project: department, type of work involved, location of the activity, and so on. The ZONE= option enables you to divide the network diagram into horizontal bands or zones corresponding to this classification. The procedure uses the following rules to place the nodes in a zoned network diagram:

- The values of the ZONE variable are used to define as many zones as there are distinct values of this variable.
- Each node of the network is drawn within its corresponding zone.
- The number of rows within each zone is determined by the maximum number of nodes in any given column that correspond to that zone.
- The values of the ZONE variable do not need to be sorted in any particular order, nor do they need to be grouped by distinct values.
- The zones are ordered according to the order of appearance of the different values of the ZONE variable in the Network data set. This enables you to choose any order for the zone values.
- For arcs that connect two nodes within the same zone, the arc lies entirely within the zone; in other words, all the turning points of the arc have \(y \) coordinates that are between the minimum and maximum \(y \) coordinates for the zone.
- Each zone is labeled by the value of the ZONE variable unless the NOZONELABEL option is specified.
- Each zone is separated from the next by a horizontal line drawn across the width of the network unless the NOZONELABEL option is specified.
- In the graphics and full-screen modes of invocation of the procedure, you can use the ZONEPAT option to color the nodes in each zone differently using different pattern statements. In the graphics mode, the first zone uses the first PATTERN statement, the second zone uses the second PATTERN statement, and so on; in full-screen mode, the colors available for the device are repeated in cyclic order. Note that the values of the PATTERN variable (or the default _PATTERN variable, if it exists in the Network data set) override the node patterns dictated by the ZONEPAT option.
Organizational Charts or Tree Diagrams

The NETDRAW procedure automatically draws any acyclic network; it does not have to be a representation of a project. You can also use the procedure to draw a general directed graph that has cycles, if node location is specified or if the BREAKCYCLE option is specified. The procedure attempts to draw the network in a compact fashion, which may not always produce the expected result. Trees form one such class of directed graphs that have an inherent natural layout that may not be produced by the default layout of PROC NETDRAW. The TREE option in the ACTNET statement exploits the tree structure of the network by laying the nodes out in the form of a tree.

A directed graph is said to be a tree if it has a root and there is a unique directed path from the root to every node in the tree. An equivalent characterization of a tree is that the root node has no predecessors and every other node has exactly one predecessor (Even 1979). Typical examples of trees that arise in project management are organizational charts or work breakdown structures. If the TREE option is specified, the NETDRAW procedure checks if the network has a tree structure and draws the network with the root at the left edge of the diagram and the children of each node appearing to the right of the node. In other words, the tree is drawn from left to right.

The NETDRAW procedure enables you to specify multiple trees in the same Network data set; each tree is drawn separately in the same diagram with all the roots appearing at the left edge of the diagram. Thus, you can use the TREE option as long as every node in the network has at most one predecessor. If you specify the TREE option and some node has multiple predecessors, the TREE option is ignored and the procedure uses the default node-layout algorithm.

There are several features that control the appearance of the tree:

- The children of each node are placed in the order of occurrence in the Network data set. The \((x, y)\) coordinates of each node are required to be integers. The procedure attempts to place each node at the center of all its children, subject to the requirement that the coordinates must be integers. This requirement may cause some of the nodes to be positioned slightly off-center. See Example 7.15 on page 705.
- The SEPARATESONS option separates the children of a node, if necessary, to enable the parent node to be exactly centered with respect to its children. See the second part of Example 7.15 on page 705.
- The CENTERSUBTREE option can be used to center each node with respect to the entire subtree originating from the node instead of centering it with respect to its children.
- In graphics mode, you can change the orientation of the network to be from top to bottom instead of from left to right. To do so, use the ROTATETEXT option in the ACTNET statement to rotate the text within the nodes and the ROTATE option in the ACTNET statement (or the ROTATE global graphics option) to rotate the entire diagram by 90 degrees. See Example 7.18 on page 716 for an illustration of this feature.
You can invoke PROC NETDRAW in full-screen mode by specifying FS (or FULLSCREEN) in the PROC NETDRAW statement. The statement specifications are the same as for the line-printer mode. The full-screen mode offers you a convenient way to browse the network diagram of the project and change the layout of the network by moving the nodes of the network to desired locations. However, you cannot move a node to any position that violates the precedence constraints that must be satisfied by the node. In other words, you cannot move a node to the left of any of its predecessors or to the right of any of its successors. For time-scaled network diagrams, you cannot move a node out of the column corresponding to the value of the ALIGN= variable. For zoned network diagrams you cannot move a node out of its zone.

The format control options are treated in the same way as for the line-printer version, with some minor changes. It is assumed that the main purpose of invoking the procedure is to gain a general picture of the layout of the entire network and to modify it to some extent. In an effort to display as much of the network as possible, the initial display on the screen is drawn with only one row and three columns for each node. In other words, the BOXHT=, BOXWIDTH=, XBETWEEN=, and YBETWEEN= options are ignored by the procedure in drawing the initial display. However, the full-screen commands supported by PROC NETDRAW enable you to change the scale of the diagram. You can display as much or as little information within each node by invoking the SCALE ROW or the SCALE COL command or both. The SCALE MAX command causes the procedure to display the diagram using the values specified in the ACTNET statement or the dimensions that would be required to display all the ID information, whichever is larger. The SCALE RESET command returns the scaling to the initial values used for display.

The nodes of the network are color coded on the basis of the PATTERN variable. If there is no PATTERN variable, then the nodes are color coded depending on whether the activities are normal, critical, or supercritical. The nodes are drawn in reverse video. By default, the nodes are drawn without an outline; however, there is an OUTLINE command that lets you toggle back and forth between an outlined or non-outlined node. Using an outline for the node is useful if you want to obtain a printout of the screen display using SPRINT; it helps mark the boundary of each node clearly.

Commands

Table 7.17 lists the commands that can be invoked from the command line in the full-screen version of PROC NETDRAW. These commands are explained in greater detail in this section.
Table 7.17. Full-Screen Commands and Their Purposes

<table>
<thead>
<tr>
<th>Scrolling</th>
<th>Controlling Display</th>
<th>Changing Network Layout</th>
<th>Exiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKWARD</td>
<td>OUTLINE</td>
<td>CLEAR</td>
<td>GEND</td>
</tr>
<tr>
<td>FORWARD</td>
<td>SCALE</td>
<td>MOVE</td>
<td>END</td>
</tr>
<tr>
<td>LEFT</td>
<td></td>
<td></td>
<td>CANCEL</td>
</tr>
<tr>
<td>RIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOTTOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSCROLL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSCROLL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BACKWARD
scrolls toward the top of the network by the VSCROLL amount. BACKWARD MAX scrolls to the top of the network. You can specify the vertical scroll amount for the current command as BACKWARD PAGE | HALF | n.

BOTTOM
scrolls to the bottom of the network.

CANCEL
ends the current invocation of the procedure.

CLEAR
clears any outstanding move commands.

GEND
ends the current invocation of the procedure after drawing the network in graphics mode with the compress option.

END
ends the current invocation of the procedure.

FORWARD
scrolls toward the bottom of the network by the VSCROLL amount. FORWARD MAX scrolls to the bottom of the network. You can also specify the vertical scroll amount for the current command as FORWARD PAGE | HALF | n.

HELP
displays a help screen listing all the full-screen commands specific to PROC NETDRAW.

HOME
moves the cursor to the command line.

HSCROLL
sets the amount that information scrolls horizontally when you execute the LEFT or RIGHT command. The format is HSCROLL PAGE | HALF | n. The specification is assumed to be in number of horizontal levels. HSCROLL PAGE sets the scroll
amount to be the number of horizontal levels that fit on one screen; HSCROLL HALF is half that amount; HSCROLL n sets the horizontal scroll amount to n levels.

KEYS

displays current function key settings for the NETDRAW procedure.

LEFT

scrolls toward the left boundary of the network by the HSCROLL amount. LEFT MAX scrolls to the left boundary. You can specify the horizontal scroll amount for the current command as LEFT PAGE | HALF | n.

MOVE

specifies a node to be moved or a place to move a node to. You can specify these in any order. Thus, you can first position the cursor on the node that you want to move, issue the MOVE command, and then position the cursor at a target position and issue the MOVE command again. If the target position is valid, the node is moved. You can also first specify the target position and then indicate the node that is to be moved.

Note: For a standard network, a node cannot be moved to any position that violates the topological ordering of the nodes in the network. For time-scaled network diagrams, you cannot move a node to a level corresponding to a different tick mark. For zoned network diagrams, you cannot move a node out of its zone.

OUTLINE

causes an outline to be drawn around each node in the network. This is useful if you want to print a copy of the screen by using the SPRINT command. The OUTLINE command works like an on/off switch: you can turn it off by entering the command again.

RIGHT

scrolls toward the right boundary of the network by the HSCROLL amount. RIGHT MAX scrolls to the right boundary. You can also specify the horizontal scroll amount for the current command as RIGHT PAGE | HALF | n.

SCALE

controls the scaling of the nodes and the space between nodes. The format of this command is SCALE MAX | MIN | RESET | ROW MAX | COL MAX | ROW MIN | COL MIN | ROW n | COL n | +n | -n. The number n denotes the number of character positions. SCALE MIN displays as many nodes on the screen as can fit. SCALE MAX enables as many rows and columns per node as is required to display all the information that pertains to it. SCALE ROW MAX displays the maximum number of rows per node. SCALE COL MAX displays the maximum number of columns per node. SCALE ROW n sets the number of rows per node to n. SCALE ROW +n increases the number of rows per node by n. SCALE COL n sets the number of columns per node to n. SCALE COL +n increases the number of columns per node by n. SCALE RESET sets the values to be the same as for the initial display. Note that none of these values can be greater than the dimensions of the screen.

TOP

scrolls to the top of the network.
Chapter 7. The NETDRAW Procedure

VSCROLL
sets the amount by which information scrolls vertically when you execute the BACKWARD or FORWARD command. The format is VSCROLL PAGE | HALF | n. The specification is assumed to be in number of vertical levels. VSCROLL PAGE sets the scroll amount to be the number of vertical levels that fit on one screen; VSCROLL HALF is half that amount; VSCROLL n sets the vertical scroll amount to n levels.

Full-Screen Global Commands

Most of the global commands used in SAS/FSP software are also valid with PROC NETDRAW. Some of the commands used for printing screens are described in the “Global Commands” section of Chapter 6, “The GANTT Procedure.”

Graphics Version

Several options are available in the ACTNET statement to enhance the appearance of the network diagram in graphics mode. These are described in the “Graphics Options” section on page 633. The format control options BOXWIDTH=, BOXHT=, XBETWEEN=, and YBETWEEN= are also valid in this mode and can be used to control the width and height of each node and the distance between the nodes. These parameters are specified in terms of number of character cell positions. The number of positions available on one page depends on the graphics device that is used; thus, if a plotter is used with large paper, more of the network will be drawn on a single page. Further, you can control the number of character cell positions on a page by changing the values of the global graphics options (HPOS= and VPOS=). Note that the NETDRAW procedure is not supported with the ActiveX or Java series of devices on the GOPTIONS statement.

You can also control the number of nodes on a given page by specifying the NXNODES= and NYNODES= options. The HPAGES= and VPAGES= options control the number of pages in the horizontal and vertical directions. Thus, you have a wide degree of control over the amount of information displayed on each page of the network diagram.

Another option that is available in graphics mode to control the appearance of your network diagrams is the specification of a PATTERN variable in the ACTNET statement. If the variable is named _PATTERN, you do not need to use the PATTERN= option; the procedure looks for such a variable by default. You can use this variable to specify the PATTERN definition that is to be used for filling each node of the network. Note that if the value of the _PATTERN variable is j for a particular node, PROC NETDRAW uses the specifications in the jth generated PATTERN definition, not the specifications in the PATTERN/ statement.

The patterns that can be used with PROC NETDRAW are any of the patterns that can be used for drawing bars (not ones that are used for drawing maps). However, for the text to be visible, you may want to restrict the patterns used to be empty and change only the color of the pattern. You can also use solid fills with a light color and specify the COUTLINE= and CCCRITOUT= options to mark noncritical and critical nodes with different colors for the outline.
Using the Annotate Facility

See *SAS/GRAPH Software: Reference* for details about creating, canceling, reviewing, and altering PATTERN definitions. For a brief description of the PATTERN statement and for a list of available patterns, see Chapter 6, “The GANTT Procedure.”

If a PATTERN variable is not specified, the procedure uses the values of the E_FINISH and L_FINISH variables (if these variables exist in the Network data set) to determine if activities in the project are normal, critical, or supercritical. The procedure then uses the first generated PATTERN definition to fill the nodes corresponding to noncritical activities, the second generated PATTERN definition for nodes corresponding to critical activities, and the third generated PATTERN definition for nodes corresponding to supercritical activities.

For zoned network diagrams, if there is no PATTERN variable, the ZONEPAT option enables you to color the nodes based on the values of the ZONE= variable.

The Annotate facility enables you to enhance graphics output produced by PROC NETDRAW. To use this facility, you must create an Annotate data set, which contains a set of graphics commands that can be superimposed on the network diagram. This data set has a specific format and must contain key variables as described in *SAS/GRAPH Software: Reference*. The chapter entitled “The Annotate Data Set” lists the variables that are required in this data set and explains the coordinate systems used by the Annotate facility. The present section explains the use of data coordinates specifically with reference to the NETDRAW procedure.

When annotating a graph produced by any of the graphics procedures, it is helpful to use data coordinates that refer to the data values corresponding to the graph that is being annotated. For example, if you want to label a particular node of a network diagram with additional text, you can position the text accurately if you use data coordinates instead of screen coordinates. With respect to PROC NETDRAW, the Annotate facility uses the _X_ and _Y_ values in the Layout data set as the basis for the data coordinate system. To use this feature, you can invoke PROC NETDRAW (with the NODISPLAY option, if necessary) for the given network to produce the Layout data set that contains the _X_ and _Y_ coordinates for each node of the network. This data set can then be used to create the required Annotate data set containing the graphics commands positioning the primitives appropriately on the diagram using the data coordinates. See Example 7.16 on page 708 and Example 7.17 on page 711 for illustrations of this feature.

Note: The data coordinate system enables you to annotate the graph even if it spans multiple pages. However, each annotation must be entirely contained within a given page. For example, you cannot annotate a line on the network diagram that runs from one page of the diagram to another.
Web-Enabled Network Diagrams

The `WEB` variable enables you to define a HTML reference for each activity. This HTML reference is associated with the node corresponding to the activity. The `WEB` variable is a character variable and the values need to be of the form “HREF=htmlpage”.

In addition, you can also store the coordinate and link information defined by the `WEB=` option in a SAS data set by specifying the `IMAGEMAP=` option in the `PROC NETDRAW` statement. By processing this SAS data set using a DATA step, you can generate customized HTML pages for your network diagram.

Macro Variable –ORNETDR

The `NETDRAW` procedure defines a macro variable named `_ORNETDR`. This variable contains a character string that indicates the status of the procedure. It is set at procedure termination. The form of the `_ORNETDR` character string is `STATUS= REASON=`, where `STATUS=` is either `SUCCESSFUL` or `ERROR_EXIT` and `REASON=` (if `PROC NETDRAW` terminated unsuccessfully) can be one of the following:

- CYCLE
- BADDATA_ERROR
- MEMORY_ERROR
- IO_ERROR
- SEMANTIC_ERROR
- SYNTAX_ERROR
- NETDRAW_BUG
- UNKNOWN_ERROR

This information can be used when `PROC NETDRAW` is one step in a larger program that needs to determine whether the procedure terminated successfully or not. Because `_ORNETDR` is a standard SAS macro variable, it can be used in the ways that all macro variables can be used.

In addition to the “`STATUS= REASON=`” string indicating the status of the procedure, the macro variable `_ORNETDR` also provides some information about the network diagram produced by the current invocation of `PROC NETDRAW`.

The information given in `_ORNETDR` is described in the following list along with the keyword identifying it. It should be noted that these values refer to those actually used in producing the network diagram and are not necessarily the same as those specified in the invocation of the procedure.
Example 7.1. Line-Printer Network Diagram

- HPAGES= The number of horizontal pages
- VPAGES= The number of vertical pages
- SEGNAME= The name of the first network diagram segment in graphics mode

Note: Some of the information may be redundant or predictable in certain display modes. For example, the value of the SEGNAME= option is empty in line-printer and full-screen modes. The values of the HPAGES= and VPAGES= options are equal to 1 in full-screen mode.

Computer Resource Requirements

There is no inherent limit on the size of the network that can be drawn with the NETDRAW procedure. Naturally, a sufficient amount of core memory must be available in order to invoke and initialize the SAS system. Furthermore, the amount of memory required depends on the mode of invocation of the procedure. As far as possible, the procedure attempts to store all the data in core memory. However, if the problem is too large to fit in core memory, the procedure resorts to the use of utility data sets and swaps between core memory and utility data sets as necessary.

The storage requirement for the data area required by the procedure is proportional to the number of nodes and arcs in the network. The memory required is further increased by the use of the DP option in the ACTNET statement. Recall that this option requests the use of a dynamic programming algorithm to route the arcs between the nodes, and such algorithms tend to grow exponentially with the size of the problem being solved.

Examples

This section contains 18 examples that illustrate several features of the NETDRAW procedure. Most of the examples use the data from the Widget Manufacturing Project described in Chapter 2, “The CPM Procedure.” Two tables, Table 7.18 and Table 7.19, at the end of this section list all the examples in this chapter and the options and statements in the NETDRAW procedure that are illustrated by each example.

Example 7.1. Line-Printer Network Diagram

This example uses the data set WIDGET that was used in Example 2.2 in Chapter 2, “The CPM Procedure,” to illustrate the Activity-on-Node representation of the project. The following program invokes PROC NETDRAW twice. First, the Activity data set WIDGET is used as input to the procedure. The activity and successor information is identified using the ACTIVITY= and SUCCESSOR= options in the ACTNET statement. The LINEPRINTER option is specified, producing the line-printer network diagram shown in Output 7.1.1.

```/* Activity-on-Node representation of the project */
data widget;
  format task $12. succ1-succ3 $12.;```
Chapter 7. The NETDRAW Procedure

input task & days succ1 & succ2 & succ3 & ;
datalines;
Approve Plan 5 Drawings Anal. Market Write Specs
Drawings 10 Prototype . .
Write Specs 5 Prototype . .
Prototype 15 Materials Facility .
Mkt. Strat. 10 Test Market Marketing .
Materials 10 Init. Prod. . .
Facility 10 Init. Prod. . .
Init. Prod. 10 Test Market Marketing Evaluate
Evaluate 10 Changes . .
Test Market 15 Changes . .
Changes 5 Production . .
Production 0 . .
Marketing 0 . .
; title 'Widget Manufacture';
options ps=32 ls=78;
proc netdraw data=widget lineprinter;
   actnet / activity=task successor=(succ1 succ2 succ3);
run;

Output 7.1.1. Line-Printer Network Diagram

Widget Manufacture

     ----------------------------  ----------------------------
     | Drawings                | Materials              | | |
|---|---|---|---|
     |                        |                        |
     |                        |                        |
     |                        |                        |
     |                        |                        |
     |                        |                        |
     |-----------------------|-----------------------|
     | Approve Plan   | Write Specs  | Prototype   | Facility    |
     |-----------------------|-----------------------|-----------------------|
     |                         |                        |
     |                         |                        |
     |                         |                        |
     |                         |                        |
     |                         |                        |
     |-----------------------|-----------------------|
     |-----------------------|-----------------------|


Next, PROC CPM is invoked to schedule the project, and the resulting Schedule data set is used as input to the NETDRAW procedure. In addition to the ACTIVITY= and SUCCESSOR= options, the DURATION= option is used in the ACTNET statement. The DURATION= option adds the values of the DURATION variable within each node of the network. The procedure also displays the values of the E–START, E–FINISH, L–START, L–FINISH, T–FLOAT, and F–FLOAT variables within each node. The network is displayed in Output 7.1.2.

```sas
proc cpm data=widget out=sched
date='1dec03'd;
activity task;
successor succ1 succ2 succ3;
duration days;
run;

options ps=45 ls=90;
title2 'Schedule Information';
proc netdraw data=sched lineprinter;
actnet / activity=task
 successor=(succ1 succ2 succ3)
 duration = days;
run;
```
## Output 7.1.2. Project Schedule

**Widget Manufacture**

### Schedule Information

<table>
<thead>
<tr>
<th>Drawings</th>
<th>Dur: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 06DEC03</td>
<td>EF: 15DEC03</td>
</tr>
<tr>
<td>LS: 06DEC03</td>
<td>LF: 15DEC03</td>
</tr>
<tr>
<td>TF: 0</td>
<td>FF: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approve Plan</th>
<th>Dur: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 01DEC03</td>
<td>EF: 05DEC03</td>
</tr>
<tr>
<td>LS: 01DEC03</td>
<td>LF: 05DEC03</td>
</tr>
<tr>
<td>TF: 0</td>
<td>FF: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Write Specs</th>
<th>Dur: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 06DEC03</td>
<td>EF: 10DEC03</td>
</tr>
<tr>
<td>LS: 06DEC03</td>
<td>LF: 10DEC03</td>
</tr>
<tr>
<td>TF: 5</td>
<td>FF: 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prototype</th>
<th>Dur: 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 16DEC03</td>
<td>EF: 30DEC03</td>
</tr>
<tr>
<td>LS: 16DEC03</td>
<td>LF: 30DEC03</td>
</tr>
<tr>
<td>TF: 0</td>
<td>FF: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anal. Market</th>
<th>Dur: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 06DEC03</td>
<td>EF: 10DEC03</td>
</tr>
<tr>
<td>LS: 05JAN04</td>
<td>LF: 09JAN04</td>
</tr>
<tr>
<td>TF: 30</td>
<td>FF: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mkt. Strat.</th>
<th>Dur: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 11DEC03</td>
<td>EF: 20DEC03</td>
</tr>
<tr>
<td>LS: 10JAN04</td>
<td>LF: 19JAN04</td>
</tr>
<tr>
<td>TF: 30</td>
<td>FF: 30</td>
</tr>
</tbody>
</table>
## Example 7.2. Graphics Version of PROC NETDRAW

### Widget Manufacture Schedule Information

<table>
<thead>
<tr>
<th>Materials</th>
<th>Dur: 10</th>
<th>Test Market</th>
<th>Dur: 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 31DEC03</td>
<td>EF: 09JAN04</td>
<td>ES: 20JAN04</td>
<td>EF: 03FEB04</td>
</tr>
<tr>
<td>LS: 31DEC03</td>
<td>LF: 09JAN04</td>
<td>LS: 20JAN04</td>
<td>LF: 03FEB04</td>
</tr>
<tr>
<td>TF: 0</td>
<td>FF: 0</td>
<td>TF: 0</td>
<td>FF: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials</th>
<th>Dur: 10</th>
<th>Test Market</th>
<th>Dur: 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 31DEC03</td>
<td>EF: 09JAN04</td>
<td>ES: 20JAN04</td>
<td>EF: 03FEB04</td>
</tr>
<tr>
<td>LS: 31DEC03</td>
<td>LF: 09JAN04</td>
<td>LS: 20JAN04</td>
<td>LF: 03FEB04</td>
</tr>
<tr>
<td>TF: 0</td>
<td>FF: 0</td>
<td>TF: 0</td>
<td>FF: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facility</th>
<th>Dur: 10</th>
<th>Init. Prod.</th>
<th>Dur: 10</th>
<th>Evaluate</th>
<th>Dur: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 31DEC03</td>
<td>EF: 09JAN04</td>
<td>ES: 10JAN04</td>
<td>EF: 19JAN04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS: 31DEC03</td>
<td>LF: 09JAN04</td>
<td>LS: 10JAN04</td>
<td>LF: 19JAN04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF: 0</td>
<td>FF: 0</td>
<td>TF: 0</td>
<td>FF: 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facility</th>
<th>Dur: 10</th>
<th>Init. Prod.</th>
<th>Dur: 10</th>
<th>Evaluate</th>
<th>Dur: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 31DEC03</td>
<td>EF: 09JAN04</td>
<td>ES: 10JAN04</td>
<td>EF: 19JAN04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS: 31DEC03</td>
<td>LF: 09JAN04</td>
<td>LS: 10JAN04</td>
<td>LF: 19JAN04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF: 0</td>
<td>FF: 0</td>
<td>TF: 0</td>
<td>FF: 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


### Widget Manufacture Schedule Information

<table>
<thead>
<tr>
<th>Changes Dur: 5</th>
<th>Production Dur: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES: 04FEB04 EF: 08FEB04</td>
<td>ES: 09FEB04 EF: 09FEB04</td>
</tr>
<tr>
<td>LS: 04FEB04 LF: 08FEB04</td>
<td>LS: 09FEB04 LF: 09FEB04</td>
</tr>
<tr>
<td>TF: 0 FF: 0</td>
<td>TF: 0 FF: 0</td>
</tr>
</tbody>
</table>
Example 7.2. Graphics Version of PROC NETDRAW

The same network used in Example 7.1 is drawn here with the GRAPHICS option (which is also the default mode of output for the NETDRAW procedure). In this example, the network is drawn before scheduling the project with PROC CPM. The global options HPOS= and VPOS= are set to 100 and 70, respectively. These options control the number of character cell positions on the screen. The network is displayed in Output 7.2.1. Note that all the nodes are the same color as specified by the PATTERN statement, the color of the arcs is blue as specified by the CARCS= option, the width of all lines is 3 as specified by the LWIDTH= option, and the font used for the text is SWISS as specified by the FONT= option.

```plaintext
goptions hpos=100 vpos=70 border;
pattern1 c=green v=e;
title h=3 j=l f=swiss 'Project: Widget Manufacture';
proc netdraw data=widget graphics;
 actnet / act=task
 succ=(succ1 succ2 succ3)
carcs=blue
 font=swiss;
run;
```

Output 7.2.1. Project Network

---

Example 7.3. Spanning Multiple Pages

In this example, the Schedule data set produced by PROC CPM is displayed in a graphics network. As in the second part of Example 7.1, the procedure displays the
duration as well as the early and late start and finish times and the total float and free float of each activity in the node corresponding to that activity. The network cannot fit on one page and is drawn across three pages, as shown in Output 7.3.1.

This example also illustrates several options for controlling the appearance of the network diagram. The pattern statements set a background fill color for all the nodes of the network (PATTERN1 and PATTERN2). The COUTLINE= and CCRITOUT= options set the outline colors for noncritical and critical activities, respectively. Recall that the procedure uses the values of the E–FINISH and L–FINISH variables to determine if an activity is critical. The CARCS= and CCRITARCS= options color the regular arcs blue and the critical arcs (arcs connecting critical activities) red, respectively. The CTEXT= options sets the color of the text to blue, while the FONT= option uses the Swiss font for all text. Finally, the LWIDTH= option sets the default width for all the lines in the network, and the LWCRIT= option further highlights the critical arcs by drawing them with thicker lines.

In this invocation of PROC NETDRAW, the SEPARATEARCS option is used so that the two parallel arcs leading into the activity ‘Test Market’ (one from ‘Mkt.Strat.’ and the other from ‘Init. Prod.’) are drawn along separate tracks instead of along a single track as in Example 7.2.

```plaintext
goptions hpos=80 vpos=50 border;
pattern1 c=ltgray v=s;
pattern2 c=ltgray v=s;
title c=blue j=l f=swiss h=1.5 ' Project: Widget Manufacture';
title2 c=blue f=swiss j=l h=1.5 ' Schedule Information';
footnote c=blue f=swiss j=r 'Spanning Multiple Pages ';
proc netdraw data=sched graphics;
 actnet / act=task
 succ=(succ1 succ2 succ3)
 dur = days
 coutline=blue
 ccritout=red
 carcs=blue
 ccritarcs=red
 ctext=blue
 lwidth=1
 lwcrit=2
 separatearcs
 font=swiss;
run;
```
Output 7.3.1. Project Schedule

Project: Widget Manufacture
Schedule Information

Diagram showing project schedule with tasks such as "Drawings," "Prototype," "Annl. Market," "Mat. Sht," "Materials," "Facility," "Init. Prod.," and "Evaluate" with specific start (ES) and finish (EF) dates.
Example 7.4. The COMPRESS and PCOMPRESS Options

In Example 7.2, the number of character cell positions were specified so that the entire network fit on one page; in Example 7.3, the network spanned several pages. To force the network diagram to fit on one page automatically, you can use the COMPRESS or PCOMPRESS options. Both options use window transformations to fit the network on one page: the COMPRESS option treats the horizontal and vertical transformations independently of each other so that one direction may not be as compressed as the other; the PCOMPRESS option uses a proportional transformation so that each direction is compressed as much as the other. The following two invocations of PROC NETDRAW illustrate the differences in the diagrams produced.

In both network diagrams, PATTERN statements are used to color the nodes red or green, depending on whether the activities they represent are critical or not. The first PATTERN statement is for nodes corresponding to noncritical activities, and the second statement is for critical activities. The second invocation of PROC NETDRAW also uses the NOVCENTER option in the ACTNET statement to turn off centering in the vertical direction, so that the network is drawn immediately below the titles.

```plaintext
goptions hpos=100 vpos=65 border;

title j=1 f=swiss h=3 'Project: Widget Manufacture';
title2 j=1 f=swiss h=2 'Schedule Information';
footnote f=swiss j=r h=1.5 'COMPRESS Option,'
proc netdraw data=sched graphics;
 actnet / act=task
 succ=(succ1 succ2 succ3)
```
dur = days
carcs=blue ccritarcs=red
font=swiss
separatearcs
compress;
run;

footnote f=swiss j=r h=1.5 'PCOMPRESS Option ';
proc netdraw data=sched graphics;
   actnet / act=task
      succ=(succ1 succ2 succ3)
dur = days
carcs=blue ccritarcs=red
font=swiss
separatearcs
pcompress
novcenter;
run;
Output 7.4.1. Project Network: COMPRESS Option
Output 7.4.2. Project Network: PCOMPRESS Option
Example 7.5. Controlling the Display Format

In addition to the COMPRESS and PCOMPRESS options and the HPOS= and VPOS= global options, you can control the amount of information displayed on a single page by

- turning off the default ID variable selection (using the NODEFID option) and using the ID= option to select only a few variables of interest in the Network data set
- setting the dimensions of each node using the BOXWIDTH= and the BOXHT= options
- specifying the horizontal and vertical distances between nodes using the XBETWEEN= and YBETWEEN= options, respectively

This example uses the data from Example 6.1 in Chapter 6, “The GANTT Procedure,” and some of the options just mentioned to produce the network diagram shown in Output 7.5.1. The ID= and NODEFID options are used to display only the activity name and duration values within each node. The NOLABEL option suppresses the display of the variable names within each node. Some of the activity names are truncated by the BOXWIDTH= option. Even with the restrictions imposed, the network is too large to fit on one page and spans two pages. Note that on devices with higher resolution, you can increase the values of HPOS and VPOS (still maintaining readability) to enable more of the network to be drawn on one page.

```plaintext
data ex ;
 input activity dur success1-success4;
 datalines;
form 4 pour . . .
pour 2 core . . .
core 14 strip spray_fireproof insulate_walls .
strip 2 plumbing curtain_wall risers doors
strip 2 electrical_walls balance_elevator .
curtain_wall 5 glaze_sash . .
glaze_sash 5 spray_fireproof insulate_walls .
spray_fireproof 5 ceil_ducts_fixture . .
ceil_ducts_fixture 5 test . .
plumbing 10 test . .
test 3 insulate_mechanical . .
insulate_mechanical 3 lath . .
insulate_walls 5 lath . .
risers 10 ceil_ducts_fixture . .
doors 1 port_masonry . .
port_masonry 2 lath finish_masonry .
electrical_walls 16 lath . .
balance_elevator 3 finish_masonry . .
finish_masonry 3 plaster marble_work . .
lath 3 plaster marble_work . .
```
plaster 5 floor_finish tiling acoustic_tiles .
muscle_work 3 acoustic_tiles ...
acoustic_tiles 5 paint finish_mechanical ..
tiling 3 paint finish_mechanical ..
floor_finish 5 paint finish_mechanical ..
paint 5 finish_paint ..
finish_mechanical 5 finish_paint ..
finish_paint 2 caulking_cleanup ..
caulking_cleanup 4 finished ..
finished 0 ..
;

proc cpm finishbefore date='1jan04'd out=sched;
  activity activity;
duration dur;
successors success1-success4;
run;

proc sort;
  by e_start;
run;

goptions hpos=130 vpos=75 border;

title f=swiss j=l h=3 ' Site: Multi-Story Building'
  j=r ' Date: January 1, 2004';
footnote f=swiss j=r h=2 'Controlling Display Format ';
proc netdraw data=sched graphics;
  actnet / act = activity
    succ = (success1-success4)
    font=triplex
    id = ( activity dur )
    nolabel nodefaultid
    boxwidth = 6
    ybetween = 6
    separatearcs;
run;
You can also control the format of the display by specifying the number of pages into which the network diagram should be split. You can do this by
• using the HPAGES= and VPAGES= options, which specify the number of pages in the horizontal and vertical directions, respectively
• setting the number of nodes in the horizontal and vertical directions using the NXNODES= and NYNODES= options, respectively

The following statements invoke PROC NETDRAW with some additional page control options. The HTEXT= option is also used to control the height of the text used in the diagram.

```plaintext
footnote f=swiss j=r 'Controlling Number of Pages';
proc netdraw data=sched graphics;
 actnet / act = activity
 succ = (success1-success4)
 font=triplex
 id = (activity dur)
 nolabel nodefaultid
 boxwidth = 6
 ybetween = 6
 separatearcs
 htext=2
 nopagename
 hpages=3 vpages=1;
run;
```

**Output 7.5.2.** Controlling the Display Format
Example 7.6. Nonstandard Precedence Relationships

Site: Multi-Story Building  Date: January 1, 2004

Site: Multi-Story Building  Date: January 1, 2004
Example 7.6. Nonstandard Precedence Relationships

This example illustrates the use of the LAG= option to indicate nonstandard precedence relationships between activities. Consider the widget manufacturing project described in the earlier examples. Some of the precedence constraints between the activities may be nonstandard or have a nonzero lag value. For example, the activity 'Init. Prod.' may not be able to start until 2 days after the completion of the activity 'Facility.' The Network data set is displayed in Output 7.6.1. The variable lagdur indicates the type of relationship between the activities specified in the variables task and succ.

The following statements invoke PROC NETDRAW with the LAG= option. The resulting network diagram is shown in Output 7.6.2.

```
title 'Widget Manufacture';
title2 h=1.5 'Nonstandard Precedence Constraints';
proc netdraw graphics data=widglag;
 actnet / act=task
 succ=succ
 lag=lagdur
 pcompress
 htext=3 boxht=3 arrowhead=2
 xbetween=7 ybetween=9
 centerid
 separatearcs;
run;
```

**Output 7.6.1.** Network with Nonstandard Precedence Constraints

<table>
<thead>
<tr>
<th>Obs</th>
<th>task</th>
<th>days</th>
<th>succ</th>
<th>lagdur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approve Plan</td>
<td>5</td>
<td>Drawings</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Approve Plan</td>
<td>5</td>
<td>Anal. Market</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Approve Plan</td>
<td>5</td>
<td>Write Specs</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Drawings</td>
<td>10</td>
<td>Prototype</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Write Specs</td>
<td>5</td>
<td>Prototype</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Prototype</td>
<td>15</td>
<td>Materials</td>
<td>ss_9</td>
</tr>
<tr>
<td>8</td>
<td>Prototype</td>
<td>15</td>
<td>Facility</td>
<td>ss_9</td>
</tr>
<tr>
<td>9</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>Test Market</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mkt. Strat.</td>
<td>10</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Materials</td>
<td>10</td>
<td>Init. Prod.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Facility</td>
<td>10</td>
<td>Init. Prod.</td>
<td>fs_2</td>
</tr>
<tr>
<td>13</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Test Market</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Init. Prod.</td>
<td>10</td>
<td>Evaluate</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Evaluate</td>
<td>10</td>
<td>Changes</td>
<td>ss_6</td>
</tr>
<tr>
<td>17</td>
<td>Test Market</td>
<td>15</td>
<td>Changes</td>
<td>ff_3</td>
</tr>
<tr>
<td>18</td>
<td>Changes</td>
<td>5</td>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Production</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Marketing</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This example illustrates the use of the DP and HTRACKS= options to control the routing of the arcs connecting the nodes. The project is a simple construction project with the following data. A Schedule data set produced by PROC CPM is input to PROC NETDRAW. The first invocation of the procedure illustrates the default layout of the network. As explained in the “Layout of the Network” section on page 643, the NETDRAW procedure uses a simple heuristic to route the arcs between the nodes. In the resulting diagram displayed in Output 7.7.1, note that the specification of BOXHT=3 limits the number of rows within each node so that the float values are not displayed.

```sas
data exmpl;
 format task $16. succesr1-succesr3 $16. ;
 input task &
 duration
 succesr1 &
 succesr2 &
 succesr3 & ;
datalines;
Drill Well 4 Pump House . .
Pump House 3 Install Pipe . .
Power Line 3 Install Pipe . .
Excavate 5 Install Pipe Install Pump Foundation
Deliver Material 2 Assemble Tank . .
Assemble Tank 4 Erect Tower . .
```

Output 7.6.2. Network Diagram with Nonstandard Precedence Constraints

Widget Manufacture
Nonstandard Precedence Constraints
Chapter 7. The NETDRAW Procedure

```
proc cpm data=exmpl date='1jan04'd out=sched;
 activity task;
 duration duration;
 successor succesr1 succesr2 succesr3;
run;
```

```
title j=l h=2 ' Site: Old Well Road';
title2 j=l h=2 ' Date: January 1, 2004';
footnote j=r 'Default Layout '
proc netdraw data=sched graphics;
 actnet / act = task
dur = duration
 succ = (succesr1-succesr3)
boxht = 3 xbetween = 10
separatearcs
htext=2
pcompress;
run;
```

Output 7.7.1. Arc Routing: Default Layout

Next, a different routing of the arcs is obtained by specifying the DP and the HTRACKS= options. As a result of these options, the NETDRAW procedure uses a
dynamic programming algorithm to route the arcs, limiting the number of horizontal tracks used to 1. The resulting network diagram is shown in Output 7.7.2. Notice that at most one arc is drawn in each horizontal track. Recall that, by default, the procedure uses a dynamic programming algorithm for arc routing if the number of tracks is restricted to be less than the maximum number of successors. Thus, for this example, the default routing option will be DP, even if it is not explicitly specified (because HTRACKS = 1 and the maximum number of successors is 3).

footnote j=r h=1 'Controlled Layout '
proc netdraw data=sched graphics;
   actnet / act = task
dur = duration
succ = (successr1-succesr3)
boxht = 3 xbetween = 10
separatearcs
htracks=1
htext=2
pcompress
dp;
run;

**Output 7.7.2.** Arc Routing: Controlled Layout

**Site:** Old Well Road  
**Date:** January 1, 2004
Chapter 7. The NETDRAW Procedure

Example 7.8. PATTERN and SHOWSTATUS Options

As a project progresses, in addition to the criticality of the activities, you may also want to display the status of the activity: whether it is in progress, has been completed, or is still to be scheduled. The SHOWSTATUS option in the ACTNET statement displays this additional information. In the current example, the same progress data as shown in Example 2.13 in Chapter 2, “The CPM Procedure,” are used to illustrate the SHOWSTATUS option. The following program shows the necessary code. First, PROC CPM schedules the project with the SHOWFLOAT option; this enables activities that are already in progress or completed also to show nonzero float. Following this, a DATA step sets the variable style to ‘3’ for activities that are completed or in progress; the remaining activities have missing values for this variable.

PROC NETDRAW is then invoked with the SHOWSTATUS option, which draws two diagonal lines across nodes referring to completed activities and one diagonal line for in-progress activities. The PATTERN= option in the ACTNET statement identifies the variable style containing the pattern information. Thus, the third pattern statement is used for in-progress or completed activities; the other activities (which have missing values for the variable style) use the second or the first pattern statement according to whether or not they are critical. However, since the first two PATTERN statements have EMPTY fill patterns specified, the nodes representing activities that have not yet started are in fact colored on the basis of the COUTLINE= and CCRITOUT= options. The resulting network diagram is shown in Output 7.8.1.

data holidays;
  format holiday holifin date7.;
  input holiday & date7. holifin & date7. holidur;
datalines;
24dec03 26dec03 4
01jan04 . .
;
* actual schedule at timenow = 19dec03;
data actual;
  format task $12. sdate fdate date7.;
  input task & sdate & date7. fdate & date7. pctc rdur;
datalines;
  Approve Plan 01dec03 05dec03 .
  Drawings 06dec03 16dec03 .
  Anal. Market 05dec03 . 100 .
  Write Specs 07dec03 12dec03 .
  Prototype . . . .
  Mkt. Strat. 10dec03 . . 3
  Materials . . . .
  Facility . . . .
  Init. Prod. . . . .
  Evaluate . . . .
  Test Market . . . .
  Changes . . . .
  Production . . . .
  Marketing . . . .
Example 7.8. PATTERN and SHOWSTATUS Options

; * merge the predicted information with network data;
data widgact;
  merge actual widget;
run;

* estimate schedule based on actual data;
proc cpm data=widgact holidata=holidays
  out=widgupd date='1dec03'd;
  activity task;
  succ succ1 succ2 succ3;
  duration days;
  holiday holiday / holifin=(holifin);
  actual / as=sdate af=fdate timenow='19dec03'd
    remdur=rdur pctcomp=pctc showfloat;
run;

/* Set patterns for activities that have started */
data netin;
  set widgupd;
  if a_start ^= . then style = 3;
run;

goptions hpos=120 vpos=70 border;
pattern1 c=green v=e;
pattern2 c=red v=e;
pattern3 c=ltgray v=s;
title j=l f=swissb h=3 ' Project: Widget Manufacture';
title2 j=l f=swissb h=3 ' Date: December 19, 2003';
footnote1 j=l f=swissb h=1.5 ' Activity';
footnote2 j=l f=swissb h=1.5 ' Start';
footnote3 j=r f=swissb h=1.5 ' PATTERN and SHOWSTATUS Options '; 
proc netdraw data=netin graphics;
  actnet / act=task
    succ=(succ1 succ2 succ3)
    ybetween = 10
    separatearcs
    pcompress
    font=swiss
    id=(task e_start e_finish)
    nodefid nolabel
    carcs=cyan
    ccritarcs=red
    coutline = green
    ccritout = red
    showstatus
    pattern = style
    htext=2;
run;
Example 7.9. Time-Scaled Network Diagram

This example illustrates the use of the TIMESCALE and ALIGN= options to draw time-scaled network diagrams. The Schedule data set WIDGUPD, produced by PROC CPM in the previous example, is used. First, PROC NETDRAW is invoked with the TIMESCALE option without any ALIGN= specification. By default, the procedure aligns the nodes to coincide with the early start times of the activities. The network spans two pages(HPAGES=2 VPAGES=1), as shown in Output 7.9.1. The HMARGIN= and VMARGIN= options add extra space around the margins.

```
title j=1 f=swiss h=2 'Project: Widget Manufacture';
title2 j=1 f=swiss h=1.5 'Date: December 19, 2003';
footnote j=r f=swiss 'Task Name / Early Finish Within Node'
 j=r f=swiss 'Time Scaled: Default Alignment ';

proc netdraw data=widgupd graphics;
 actnet / act=task
 succ=(succ1 succ2 succ3)
 ybetween = 8
 separatearcs
 novcenter
 font=swiss
 id=(task e_finish)
 nolabel
 showstatus
```

```
```
Example 7.9. Time-Scaled Network Diagram

```sas
 carcs=blue
 ccritarcs=red
 vmargin=5
 hmargin=5
 timescale
 htext=2 pcompress
 hpages=2 vpages=1
 nopagenumber;
 run;
```

Output 7.9.1. TIMESCALE Option: Default Alignment

Project: Widget Manufacture
Date: December 19, 2003

<table>
<thead>
<tr>
<th>01DEC03</th>
<th>05DEC03</th>
<th>06DEC03</th>
<th>07DEC03</th>
<th>10DEC03</th>
<th>17DEC03</th>
</tr>
</thead>
</table>

Task Name / Early Finish Within Node

Time Scaled: Default Alignment
Next, PROC NETDRAW is invoked with several of the time-scale options:

- The ALIGN= option requests that the activities be placed according to the LSTART times.
- The FRAME option produces a border around the network diagram.
- The AUTOREF option draws reference lines at every tick mark.
- The LREF= and CREF= options specify the line style and color for the reference lines.
- The SHOWBREAK option requests that breaks in the time axis be indicated by breaks before the corresponding tick marks.

footnote j=l f=swiss h=1.5 ' Task Name / Late Finish Within Node'
    j=r f=swiss 'Time Scaled: Align = Late Start ';

proc netdraw data=widgupd graphics;
    actnet / act=task
        succ=(succ1 succ2 succ3)
ybetween = 10
    separatearcs
    pcompress
    novcenter
    font=swiss
    id=(task l_finish)

In this example, the construction project described in Example 7.7 is used to illustrate some more time-scale options. First, the REFBREAK option indicates breaks in the time axis by drawing a zigzag line down the diagram before each tick mark corresponding to a break. The CREFBRK= and LREFBRK= options control the color and line style for these lines. The network diagram is shown in Output 7.10.1.

```
title f=swiss j=l h=1.5 ' Site: Old Well Road';
title2 f=swiss j=l h=1.5 ' Date: January 1, 2004';
```
footnote f=swiss j=r 'Time Scale Options: Reference Breaks ';

proc netdraw data=sched graphics;
  actnet / act = task font=swiss
dur = duration
  succ = (succsr1-succsr3)
dp compress separatearcs
  htext=2
timescale refbreak lrefbrk = 33
carcs = cyan crefbrk = blue;
run;
Next, PROC NETDRAW is invoked with the LINEAR option so that there is no break in the time axis. The BOXWIDTH= option limits the size of each node. The diagram is drawn in Output 7.10.2.
footnote f=swiss j=r 'Time Scale Options: Linear Diagram ';

proc netdraw data=sched graphics;
  actnet / act = task font=swiss
dur = duration
succ = (succesr1-succesr3)
dp
pcompress
novcenter
vmargin = 10
separatearcs
htext=2
carcs=cyan
id=(task)
nodelid
nolabel
boxwidth=7
timescale
linear
frame;
run;
Example 7.11. Zoned Network Diagram

Site: Old Well Road
Date: January 1, 2004

Output 7.10.2. Time-Scaled Network: LINEAR Option

Time Scale Options: Linear Diagram
Example 7.11. Zoned Network Diagram

This example illustrates zoned network diagrams. The Widget Manufacturing project is used to illustrate some aspects of this feature. The data set DETAILS contains a variable phase, which identifies the phase of each activity in the project. This data set is merged with the Activity data set from Example 7.1, WIDGET, to produce the data set NETWORK that is input to PROC NETDRAW. The ZONE= option divides the network diagram into horizontal zones based on the project phase. The ZONEPAT option causes the activities in each zone to be drawn using a different pattern. The resulting network diagram is shown in Output 7.11.1.

```plaintext
data details;
 format task $12. phase $13. descrpt $30. ;
 input task & phase $ descrpt & ;
datalines;
 Approve Plan Planning Develop Concept
 Drawings Engineering Prepare Drawings
 Anal. Market Marketing Analyze Potential Markets
 Write Specs Engineering Write Specifications
 Prototype Engineering Build Prototype
 Mkt. Strat. Marketing Develop Marketing Concept
 Materials Manufacturing Procure Raw Materials
 Facility Manufacturing Prepare Manufacturing Facility
 Init. Prod. Manufacturing Initial Production Run
 Evaluate Testing Evaluate Product In-House
 Test Market Testing Test Product in Sample Market
 Changes Engineering Engineering Changes
 Production Manufacturing Begin Full Scale Production
 Marketing Marketing Begin Full Scale Marketing
;
 data network;
 merge widget details;
 run;

 pattern1 v=e c=green;
 pattern2 v=e c=red;
 pattern3 v=e c=magenta;
 pattern4 v=e c=blue;
 pattern5 v=e c=cyan;

 title j=1 f=swiss h=1.5 'Project: Widget Manufacture';
 title2 j=1 f=swiss h=1.5 'Date: December 1, 2003';
 footnote j=r f=swiss 'Zoned Network Diagram';
 proc netdraw data=network graphics;
 actnet / act=task
 succ=(succ1 succ2 succ3)
 font = swiss
 separatearcs
 zone=phase zonepat
 pcompress htext=2;
 label phase = 'Department';
 run;
```

Next, the project is scheduled with PROC CPM, and PROC NETDRAW is invoked with the ZONE= and TIMESCALE options. The nodes are placed in different zones as dictated by the ZONE variable, phase, and are aligned along the time axis as
dictated by the default ALIGN variable, E-START. The MININTERVAL= option produces one tick mark per week for the duration of the project. The LREF= option identifies the linestyle of the reference lines and the dividing lines between zones. The nodes are colored red or green according to whether or not the corresponding activities are critical (PATTERN statements 1 and 2 from the previous invocation of PROC NETDRAW are still valid).

```
proc cpm data=network interval=weekday
 out=sched date='1dec03'd;
activity task;
succ succ1 succ2 succ3;
duration days;
id phase;
run;

footnote j=r f=swiss 'Zone and Timescale ';
proc netdraw data=sched graphics;
 actnet / act=task succ=(succ1 succ2 succ3)
 pcompress
 font = swiss
carcs = blue ccritarcs = red
cref = cyan
caxis = magenta
lref = 33
id = (task)
nodefid
nolabel
boxwidth = 8
htext=2
separatearcs
timescale
mininterval=week
autoref
linear
zone=phase
zonespace;
label phase = 'Department';
run;
```
Example 7.12. Schematic Diagrams

Output 7.11.2. Zoned Network Diagram with Time Axis

Project: Widget Manufacture
Date: December 1, 2003

Zone and Timescale

Department

Marketing

Engineering

Finance

Production

Materials

Manufacturing

Testing

Zone:

09MAR04
08MAR04
07MAR04
06MAR04
05MAR04

Time Axis:

08DEC03
07DEC03
06DEC03
05DEC03
04DEC03
03DEC03
02DEC03
01DEC03

Notes:
Example 7.12. Schematic Diagrams

You can use PROC NETDRAW to determine node placement and arc routing for any network depicting a set of nodes connected by arcs. If you want the procedure to determine the node placement, the network must be acyclic. This example illustrates the use of PROC NETDRAW to draw two networks that represent different schematic flows. The first network does not contain any cycles, while the second one has one cycle; to draw the second network, you need to use the BREAKCYCLE option.

First, a schematic representation of the data flow going in and out of the three procedures (CPM, GANTT, and NETDRAW) is drawn using PROC NETDRAW. (See Chapter 1, “Introduction to Project Management,” for a detailed discussion of such a data flow.) The PATTERN= option is used to specify the variable in the data set that identifies the color that is to be used for each node. Nodes representing SAS/OR procedures are colored red, the ones representing output data sets are colored green, and all other nodes (representing the use of other parts of the SAS System) are colored blue. Three ID variables are used to specify the text that is to be placed within each node. The flow diagram is shown in Output 7.12.1.

data dataflow;
    format id1 $18. id2 $14. id3 $19.;
    input a $ b $ id1 & id2 & id3 & style;
    datalines;
    A B Data Definition: PROC FSEDIT, SAS/AF, etc. 2
    B C Data Manipulation: Sort, Merge, Concatenate, etc. 2
    B D Data Manipulation: Sort, Merge, Concatenate, etc. 2
    D C PROC NETDRAW . 1
    C E PROC CPM . PROC PM 1
    C F PROC CPM . PROC PM 1
    E H Resource Usage . Data 3
    F G . Schedule Data . 3
    G I Data Manipulation: Sort, Merge, Subset, etc. 2
    G J Data Manipulation: Sort, Merge, Subset, etc. 2
    H K Data Manipulation: Sort, Merge, Subset, etc. 2
    I J Other Reporting PROC’s: PRINT, CALENDAR, etc. 2
    J K Reporting PROC’s: PLOT, CHART, GPLOT, GCHART, etc. 2
;
    goptions hpos=110 vpos=70;
    pattern1 v=s c=red;
    pattern2 v=s c=blue;
    pattern3 v=s c=green;

    title f=swiss h=3 'A Typical Project Management System';
    title2 f=swiss h=2.5 'Schematic Representation of Data Flow';
    proc netdraw data=dataflow graphics;
    actnet / act=a succ=b id = (id1-id3)
      nodefaultid font=swiss
      nolabel
      pattern=style
      carcs=black
coutline=black
ctext=white
hmargin = 2
ybetween = 15
rectilinear
noarrowfill
pcompress
htext=2;
run;
Next, a typical sequence of procedures followed at the scheduling of a nuclear power plant outage is shown using the NETDRAW procedure. Such a schematic diagram is illustrated in Chapter 1, “Introduction to Project Management.” In Figure

Output 7.12.1. Schematic Representation of Data Flow
1.6, there is a cycle that is not normally allowed in a Network data set that is input to PROC NETDRAW. However, you can draw such networks by specifying the BREAKCYCLE option. (Note that you can also draw cyclic networks by specifying explicitly the node coordinates or an ALIGN= variable that fixes the \( x \) coordinates for each node.)

In this example, the data set OUTAGE contains the network representation. The variable style is used to color nodes appropriately. The resulting diagram is shown in Output 7.12.2.

```sas
data outage;
 format id1 $12. id2 $12. ;
 input a $ b $ id1 & id2 & style;
 datalines;
A B Project Definition 1
B C CPM Schedule 2
C D Gantt Chart Network 3
D E Start Power Outage 4
E F Project Update 1
F G Schedule Update 2
G E Gantt Chart Network 3
;

goptions hpos=110 vpos=70;
pattern1 v=s c=green;
pattern2 v=s c=blue;
pattern3 v=s c=blue;
pattern4 v=s c=red;
title f=swiss h=3 ‘Scheduling an Outage’;
title2 f=swiss h=2.5 ‘Project Cycle’;
proc netdraw data=outage graphics;
 actnet / act=a succ=b id = (id1 id2)
 breakcycle
 nodefaultid
 font=swiss
 centerid
 vmargin = 5 hmargin = 0
 nolabel
 novcenter
 pattern=style
 carcs=black coutline=black ctext=white
 ybetween = 15 xbetween=3
 noarrowfill
 pcompress
 htext=2;
run;
```
Output 7.12.2. Scheduling a Power Outage
Example 7.13. Modifying Network Layout

This example uses the SURVEY project described in Chapter 1, “Introduction to Project Management,” to illustrate how you can modify the default layout of the network. The data set SURVEY contains the project information. PROC NETDRAW is invoked with the GRAPHICS option. The network diagram is shown in Output 7.13.1.

```plaintext
data survey;
 format id $20. activity succ1-succ3 $8. phase $9. ;
 input id &
 activity &
 duration
 succ1 &
 succ2 &
 succ3 &
 phase $;
 datalines;
Plan Survey plan sur 4 hire per design q . Plan
Hire Personnel hire per 5 trn per . . Prepare
Design Questionnaire design q 3 trn per select h print q Plan
Train Personnel trn per 3 cond sur . . Prepare
Select Households select h 3 cond sur . . Prepare
Print Questionnaire print q 4 cond sur . . Prepare
Conduct Survey cond sur 10 analyze . . Implement
Analyze Results analyze 6 . . Implement
;
pattern1 v=s c=green;
title f=swiss j=l ' Project: Market Survey';
title2 f=swiss j=l h=1.5 ' Changing Node Positions';
footnote f=swiss j=r 'Default Layout '; proc netdraw data=survey graphics out=network;
actnet / act=activity
 succ=(succ1-succ3)
 id=(id)
nodefidi
olabel
carcs = blue
ctext = white
coutline=red
font=swiss
centerid
boxht = 3
htext=2
pcompress
separatearcs
ybetween=8;
run;

title2 'NETWORK Output Data Set'; proc print data=network;
 run;
```
Chapter 7. The NETDRAW Procedure

Output 7.13.1. Default Network Layout of SURVEY Project

Project: Market Survey
Changing Node Positions

The Layout data set produced by PROC NETDRAW (displayed in Output 7.13.2) contains the $x$ and $y$ coordinates for all the nodes in the network and for all the turning points of the arcs connecting them.

Suppose that you want to interchange the positions of the nodes corresponding to the two activities, ‘Select Households’ and ‘Train Personnel.’ As explained in the “Controlling the Layout” section on page 648, you can invoke the procedure in FULLSCREEN mode and use the MOVE command to move the nodes to desired locations. In this example, the data set NETWORK produced by PROC NETDRAW is used to change the $x$ and $y$ coordinates of the nodes. A new data set called NODEPOS is created from NETWORK by retaining only the observations containing node positions (recall that for such observations, _SEQ_ = ‘0’) and by dropping the _SEQ_ variable. Further, the $y$ coordinates (given by the values of the _Y_ variable) for the two activities ‘Select Households’ and ‘Train Personnel’ are interchanged. The new data set, displayed in Output 7.13.3, is then input to PROC NETDRAW.
### Output 7.13.2. Layout Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>FROM</th>
<th>TO</th>
<th>X</th>
<th>Y</th>
<th>SEQ</th>
<th>PATTERN</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>plan</td>
<td>sur</td>
<td>hire</td>
<td>per</td>
<td>1.0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>plan</td>
<td>sur</td>
<td>hire</td>
<td>per</td>
<td>1.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>plan</td>
<td>sur</td>
<td>hire</td>
<td>per</td>
<td>1.5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>plan</td>
<td>sur</td>
<td>design q</td>
<td>1.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>hire</td>
<td>per</td>
<td>trn</td>
<td>per</td>
<td>2.0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>hire</td>
<td>per</td>
<td>trn</td>
<td>per</td>
<td>2.5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>hire</td>
<td>per</td>
<td>trn</td>
<td>per</td>
<td>2.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>design q</td>
<td>trn</td>
<td>per</td>
<td>2.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>design q</td>
<td>trn</td>
<td>per</td>
<td>2.5</td>
<td>2</td>
<td>1</td>
<td>Design Questionnaire</td>
</tr>
<tr>
<td>10</td>
<td>design q</td>
<td>trn</td>
<td>per</td>
<td>2.5</td>
<td>3</td>
<td>2</td>
<td>Design Questionnaire</td>
</tr>
<tr>
<td>11</td>
<td>design q</td>
<td>select h</td>
<td>2.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>Design Questionnaire</td>
</tr>
<tr>
<td>12</td>
<td>design q</td>
<td>select h</td>
<td>2.5</td>
<td>2</td>
<td>1</td>
<td>Design Questionnaire</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>design q</td>
<td>select h</td>
<td>2.5</td>
<td>3</td>
<td>2</td>
<td>Design Questionnaire</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>design q</td>
<td>print q</td>
<td>2.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>Design Questionnaire</td>
</tr>
<tr>
<td>15</td>
<td>trn</td>
<td>per</td>
<td>cond sur</td>
<td>3.0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>trn</td>
<td>per</td>
<td>cond sur</td>
<td>3.5</td>
<td>1</td>
<td>1</td>
<td>Train Personnel</td>
</tr>
<tr>
<td>17</td>
<td>trn</td>
<td>per</td>
<td>cond sur</td>
<td>3.5</td>
<td>2</td>
<td>2</td>
<td>Train Personnel</td>
</tr>
<tr>
<td>18</td>
<td>select h</td>
<td>cond sur</td>
<td>3.0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>Select Households</td>
</tr>
<tr>
<td>19</td>
<td>select h</td>
<td>cond sur</td>
<td>3.5</td>
<td>3</td>
<td>1</td>
<td>Select Households</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>select h</td>
<td>cond sur</td>
<td>3.5</td>
<td>2</td>
<td>2</td>
<td>Select Households</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>print q</td>
<td>cond sur</td>
<td>3.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>Print Questionnaire</td>
</tr>
<tr>
<td>22</td>
<td>cond sur</td>
<td>analyze</td>
<td>4.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>Conduct Survey</td>
</tr>
<tr>
<td>23</td>
<td>analyze</td>
<td></td>
<td></td>
<td>5.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

```sas
data nodepos;
 set network;
 if _seq_ = 0;
 drop _seq_;
 if _from_ = 'select h' then _y_=1;
 if _from_ = 'trn per' then _y_=3;
run;

title2 'Modified Node Positions';
proc print data=nodepos;
run;
```

### Output 7.13.3. Modified Layout Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>FROM</th>
<th>TO</th>
<th>X</th>
<th>Y</th>
<th>PATTERN</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>plan</td>
<td>sur</td>
<td>hire</td>
<td>per</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>plan</td>
<td>sur</td>
<td>design q</td>
<td>1.0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>hire</td>
<td>per</td>
<td>trn</td>
<td>per</td>
<td>2.0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>hire</td>
<td>per</td>
<td>trn</td>
<td>per</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>design q</td>
<td>trn</td>
<td>per</td>
<td>2.0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>design q</td>
<td>trn</td>
<td>per</td>
<td>2.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>design q</td>
<td>trn</td>
<td>per</td>
<td>2.5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>design q</td>
<td>select h</td>
<td>2.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>design q</td>
<td>select h</td>
<td>2.5</td>
<td>2</td>
<td>1</td>
<td>Design Questionnaire</td>
</tr>
<tr>
<td>10</td>
<td>design q</td>
<td>select h</td>
<td>2.5</td>
<td>3</td>
<td>2</td>
<td>Design Questionnaire</td>
</tr>
<tr>
<td>11</td>
<td>design q</td>
<td>print q</td>
<td>2.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>trn</td>
<td>per</td>
<td>cond sur</td>
<td>3.0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>trn</td>
<td>per</td>
<td>cond sur</td>
<td>3.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>trn</td>
<td>per</td>
<td>cond sur</td>
<td>3.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>select h</td>
<td>cond sur</td>
<td>3.0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>select h</td>
<td>cond sur</td>
<td>3.5</td>
<td>3</td>
<td>1</td>
<td>Select Households</td>
</tr>
<tr>
<td>17</td>
<td>select h</td>
<td>cond sur</td>
<td>3.5</td>
<td>2</td>
<td>2</td>
<td>Select Households</td>
</tr>
<tr>
<td>18</td>
<td>print q</td>
<td>cond sur</td>
<td>3.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>cond sur</td>
<td>analyze</td>
<td>4.0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>analyze</td>
<td></td>
<td></td>
<td>5.0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that the data set NODEPOS contains variables named `_FROM_` and `_TO_`, which specify the (activity, successor) information; hence, the call to PROC
NETDRAW does not contain the ACTIVITY= and SUCCESSOR= specifications. The presence of the variables _X_ and _Y_ indicates to PROC NETDRAW that the data set contains the x and y coordinates for all the nodes. Because there is no variable named _SEQ_ in this data set, PROC NETDRAW assumes that only the node coordinates are given and uses these node positions to determine how the arcs are to be routed. The resulting network diagram is shown in Output 7.13.4.

```plaintext
title2 f=swiss j=1 h=1.5 ' Changing Node Positions';
footnote f=swiss j=r 'Modified Network Layout ';
proc netdraw data=nodepos graphics;
 actnet / id=(id)
 nodefid
 nolabel
 carcs = blue
 ctext = white
 coutline = red
 font = swiss
 centerid
 boxht = 3
 htext=2
 pcompress
 separatearcs
 ybetween=8;
run;
```

**Output 7.13.4.** Modified Network Layout of SURVEY Project

This example uses a typical problem in network flow optimization to illustrate how you can use PROC NETDRAW to draw a network by specifying completely all the node positions. Consider a simple two-period production inventory problem with one manufacturing plant (PLANT), two warehouses (DEPOT1 and DEPOT2), and one customer (CUST). In each period, the customer can receive goods directly from the plant or from the two warehouses. The goods produced at the plant can be used to satisfy directly some or all of the customer’s demands or can be shipped to a warehouse. Some of the goods can also be carried over to the next period as inventory at the plant. The problem is to determine the minimum cost of satisfying the customer’s demands; in particular, how much of the customer’s demands in each period is to be satisfied from the inventory at the two warehouses or from the plant, and also how much of the production is to be carried over as inventory at the plant? This problem can be solved using PROC NETFLOW; the details are not discussed here.

Let PLANT\_i represent the production at the plant in period \( i \), DEPOT1\_i represent the inventory at DEPOT1 in period \( i \), DEPOT2\_i represent the inventory at DEPOT2 in period \( i \), and CUST\_i represent the customer’s demand in period \( i \) (\( i = 1, 2 \)). These variables can be thought of as nodes in a network with the following data representing the COST and CAPACITY of the arcs connecting them:

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>COST</th>
<th>CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANT_1</td>
<td>CUST_1</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>PLANT_1</td>
<td>DEPOT1_1</td>
<td>7</td>
<td>75</td>
</tr>
<tr>
<td>PLANT_1</td>
<td>DEPOT2_1</td>
<td>8</td>
<td>75</td>
</tr>
<tr>
<td>DEPOT1_1</td>
<td>CUST_1</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>DEPOT2_1</td>
<td>CUST_1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>PLANT_1</td>
<td>PLANT_2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>DEPOT1_1</td>
<td>DEPOT2_1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>DEPOT2_1</td>
<td>DEPOT2_2</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>PLANT_2</td>
<td>CUST_2</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>PLANT_2</td>
<td>DEPOT1_2</td>
<td>7</td>
<td>75</td>
</tr>
<tr>
<td>PLANT_2</td>
<td>DEPOT2_2</td>
<td>8</td>
<td>75</td>
</tr>
<tr>
<td>DEPOT1_2</td>
<td>CUST_2</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>DEPOT2_2</td>
<td>CUST_2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>CUST_1</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>CUST_2</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Suppose that you want to use PROC NETDRAW to draw the network corresponding to the preceding network flow problem and suppose also that you require the nodes to be placed in specific positions. The following program saves the network information along with the required node coordinates in the Network data set ARCS and invokes PROC NETDRAW to draw the network diagram shown in Output 7.14.1. The Network data set also contains a variable named _pattern, which specifies that pattern statement 1 be used for nodes relating to period 1 and pattern statement 2 be used for those relating to period 2.

```plaintext
data arcs;
 input from $ to $ _x_ _y_ _pattern;
```
Chapter 7. The NETDRAW Procedure

datalines;
PLANT_1 CUST_1 1 5 1
PLANT_1 DEPOT1_1 1 5 1
PLANT_1 DEPOT2_1 1 5 1
DEPOT1_1 CUST_1 2 6 1
DEPOT2_1 CUST_1 2 4 1
PLANT_1 PLANT_2 1 5 1
DEPOT1_1 DEPOT1_2 2 6 1
DEPOT2_1 DEPOT2_2 2 4 1
PLANT_2 CUST_2 4 2 2
PLANT_2 DEPOT1_2 4 2 2
PLANT_2 DEPOT2_2 4 2 2
DEPOT1_2 CUST_2 5 3 2
DEPOT2_2 CUST_2 5 1 2
CUST_1 . 3 5 1
CUST_2 . 6 2 2
;

pattern1 v=s c=green;
pattern2 v=s c=red;

title f=swiss c=blue 'Distribution Network';
proc netdraw data=arcs graphics out=netout;
  actnet / act=from
    succ=to
    separatearcs
    font=swiss
    ybetween = 4
    centerid
    ctext = white
    carcs = blue
    htext=2
    pcompress;
  run;

Note: This network diagram can also be drawn by using suitably defined ZONE and ALIGN variables.
This example illustrates using the TREE option to draw organizational charts. The Network data set, DOCUMENT, describes how the procedures are distributed between two volumes of the SAS/OR documentation. The structure can be visualized easily in a tree diagram. The data set DOCUMENT contains the parent-child relationship for each node of the diagram. For each node, a detailed description is contained in the variable ID. In addition, the variable _pattern specifies the pattern to be used for each node. PROC NETDRAW is invoked with the TREE option, which illustrates the organization of the documentation in the form of a tree diagram drawn from left to right. The CENTERID option centers text within each node. Arrowheads are not necessary for this diagram and are suppressed by specifying ARROWHEAD=0. Output 7.15.1 shows the resulting diagram.

data document;
  format parent child $8. id $24.;
  input parent $ child $ id & _pattern;
datalines;
  OR MPBOOK Operations Research 1
  OR PMBOOK Operations Research 1
  PMBOOK CPM Project Management 2
  PMBOOK DTREE Project Management 2
  PMBOOK GANTT Project Management 2
  PMBOOK NETDRAW Project Management 2
  PMBOOK PM Project Management 2
  PMBOOK PROJMAN Project Management 2
Chapter 7. The NETDRAW Procedure

goptions ftext=swiss;
pattern1 v=s c=blue;
pattern2 v=s c=red;
pattern3 v=s c=green;
title j=l h=1.5 'Operations Research Documentation';
title2 j=l h=1 'Procedures in Each Volume';
footnote j=r h=.75 'Default Tree Layout';
proc netdraw graphics data=document;
   actnet / act=parent
      succ=child
      id=(id)
      nodefid
      nolabel
      pcompress
      centerid
      tree
      arrowhead=0
      xbetween=15
      ybetween=3
      rectilinear
      carcs=black
ctext=white
   htext=3;
run;
Example 7.15. Organizational Charts with PROC NETDRAW

Output 7.15.1. Organization of Documentation: Default TREE Layout

The procedure draws the tree compactly with the successors of each node being placed to the immediate right of the node, ordered from top to bottom in the order of occurrence in the Network data set. The next invocation of PROC NETDRAW illustrates the effect of the SEPARATESONS and CENTERSUBTREE options on the layout of the tree (see Output 7.15.2).

```
footnote j=r h=.75 'Centered Tree Layout ';
proc netdraw graphics data=document;
 actnet / act=parent
 succ=child
 id=(id)
 nodefid
 nolabel
 pcompress
 novcenter
 centerid
tree
 arrowhead=0
 separatesons
 centersubtree
 xbetween=15
 ybetween=3
 rectilinear
carcs=black
ctext=white
htext=3.5;
run;
```
Example 7.16. Annotate Facility with PROC NETDRAW

This example demonstrates the use of PROC NETDRAW for a nonstandard application. The procedure is used to draw a time table for a class of students. The days of the week are treated as different zones, and the times within a day are treated as different values of an alignment variable. The following DATA step defines a total of twenty activities, ‘m1’, . . . , ‘f5’, which refer to the five different periods for the five different days of the week. The variable class contains the name of the subject taught in the corresponding period and day. Note that the periods are taught during the hours 1, 2, 3, 5, and 6; the fourth hour is set aside for lunch. The time axis is labeled with the format CLASSTIM, which is defined using PROC FORMAT. The USEFORMAT option in the ACTNET statement instructs PROC NETDRAW to use the explicit format specified for the time variable rather than the default format.

This example also illustrates the use of the Annotate facility with PROC NETDRAW. The data set ANNO labels the fourth period ‘LUNCH.’ The positions for the text are specified using data coordinates that refer to the (X, Y) grid used by PROC NETDRAW. Thus, for example X = ‘4’ identifies the x coordinate for the annotated text to be the fourth period, and the y coordinates are set appropriately. The resulting time table is shown in Output 7.16.1.

```plaintext
/* Define format for the ALIGN= variable */
proc format;
 value classtim 1 = '9:00 - 10:00'
 2 = '10:00 - 11:00'
```
3 = ‘11:00 - 12:00’
4 = ‘12:00 - 1:00 ’
5 = ’ 1:00 - 2:00 ’
6 = ’ 2:00 - 3:00 ’;
run;

data schedule;
  format day $9. class $12. ;
  input day $ class & time daytime $ msucc $;
  format time classtim.;
  label day = "Day \ Time";
  datalines;
  Monday Mathematics 1 m1 .
  Monday Language 2 m2 .
  Monday Soc. Studies 3 m3 .
  Monday Art 5 m4 .
  Monday Science 6 m5 .
  Tuesday Language 1 t1 .
  Tuesday Mathematics 2 t2 .
  Tuesday Science 3 t3 .
  Tuesday Music 5 t4 .
  Tuesday Soc. Studies 6 t5 .
  Wednesday Mathematics 1 w1 .
  Wednesday Language 2 w2 .
  Wednesday Soc. Studies 3 w3 .
  Wednesday Phys. Ed. 5 w4 .
  Wednesday Science 6 w5 .
  Thursday Language 1 th1 .
  Thursday Mathematics 2 th2 .
  Thursday Science 3 th3 .
  Thursday Phys. Ed. 5 th4 .
  Thursday Soc. Studies 6 th5 .
  Friday Mathematics 1 f1 .
  Friday Language 2 f2 .
  Friday Soc. Studies 3 f3 .
  Friday Library 5 f4 .
  Friday Science 6 f5 .
  ;

data anno;
  /* Set up required variable lengths, etc. */
  length function color style $8;
  length xsys ysys hsys $1;
  length when position $1;
  xsys = ’2’;
  ysys = ’2’;
  hsys = ’4’;
  when = ’a’;
  function = ’label ’;
  x = 4;
  size = 2;
Chapter 7. The NETDRAW Procedure

```plaintext
position = '5';
y=5; text='L'; output;
y=4; text='U'; output;
y=3; text='N'; output;
y=2; text='C'; output;
y=1; text='H'; output;
run;

pattern1 v=s c=magenta;
title 'Class Schedule: 2003-2004';
footnote j=l ' Teacher: Mr. A. Smith Hall'
 j=r 'Room: 107 ';
proc netdraw graphics data=schedule anno=anno;
 actnet / act=daytime
 succ=msucc
 id=(class)
 nodefid nolabel
 zone=day
 align=time
 useformat
 linear
 pcompress
 coutline=black
 hmargin = 2 vmargin = 2
 htext=2;
run;
```

Output 7.16.1. Use of the Annotate Facility

### Class Schedule: 2003 – 2004

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>9:00 – 10:00</th>
<th>10:00 – 11:00</th>
<th>11:00 – 12:00</th>
<th>12:00 – 1:00</th>
<th>1:00 – 2:00</th>
<th>2:00 – 3:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td></td>
<td>Mathematics</td>
<td>Language</td>
<td>Soc. Studies</td>
<td>L</td>
<td>Art</td>
<td>Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td></td>
<td>Language</td>
<td>Mathematics</td>
<td>Science</td>
<td>U</td>
<td>Music</td>
<td>Soc. Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td></td>
<td>Mathematics</td>
<td>Language</td>
<td>Soc. Studies</td>
<td>H</td>
<td>Library</td>
<td>Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teacher: Mr. A. Smith Hall

Room: 107
Example 7.17. AOA Network Using the Annotate Facility

This example illustrates the use of the Annotate Facility to draw an Activity-on-Arc network. First, PROC NETDRAW is invoked with explicit node positions for the vertices of the network. The ALIGN= and ZONE= options are used to provide horizontal and vertical axes as a frame of reference. The resulting diagram is shown in Output 7.17.1.

data widgaoa;
  format task $12. ;
  input task & days tail head _x_ _y_;
datalines;
Approve Plan  5 1 2 1 2
Drawings      10 2 3 4 2
Anal. Market  5 2 4 4 2
Write Specs   5 2 3 4 2
Prototype     15 3 5 7 1
Mkt. Strat.   10 4 6 10 3
Materials     10 5 7 10 1
Facility      10 5 7 10 1
Init. Prod.   10 7 8 13 1
Evaluate      10 8 9 16 1
Test Market   15 6 9 18 2
Changes       5 9 10 20 1
Production    0 10 11 23 1
Marketing     0 6 12 19 2
Dummy         0 8 6 16 1
. . 11 . 26 1
. . 12 . 22 3
;

pattern1 v=e c=red;
title j=l 'Project: Widget Manufacture';
title2 j=l 'Network in Activity-on-Arc Format';
footnote j=r 'Initial Layout';

proc netdraw graphics data=widgaoa out=netout;
  actnet / act=tail
    succ=head
    id=(tail)
    align=_x_
    zone=_y_
    ybetween = 10
    nodefid
    nolabel
    pcompress
    htext=2;
  label _y_='Y \ X';
run;
In Output 7.17.1, the arc leading from vertex ‘4’ to vertex ‘6’ has two turning points: (10.5, 3) and (10.5, 2). Suppose that you want the arc to be routed differently, to provide a more symmetric diagram. The next DATA step creates a data set, NETIN,
Example 7.17. AOA Network Using the Annotate Facility

which changes the $x$ coordinates of the turning points to 16.5 instead of 10.5. Further, two Annotate data sets are created: the first one labels the nodes outside the boxes, either to the top or to the bottom, and the second one sets labels for the arcs. PROC NETDRAW is then invoked with the combined Annotate data set to produce the diagram shown in Output 7.17.2.

```plaintext
data netin;
set netout;
 if _from_=4 and _to_=6 and _seq_>0 then _x_=16.5;
run;

data anno1;
set netout;
if _seq_=0;
 /* Set up required variable lengths, etc. */
 length function color style $8;
 length xsys ysys hsys $1;
 length when position $1;
 length text $12;
 xsys = '2';
 ysys = '2';
 hsys = '4';
 when = 'a';
 /* label the nodes using node numbers */
 function = 'label '
 size = 2;
 position = '5';
 text = left(put(tail, f2.));
 x=_x_;
 if _y_ = 1 then y=_y_-0.3;
 else y=_y_+0.5;
run;

data anno2;
 /* Set up required variable lengths, etc. */
 length function color style $8;
 length xsys ysys hsys $1;
 length when position $1;
 length text $12;
 xsys = '2';
 ysys = '2';
 hsys = '4';
 when = 'a';
 /* label the arcs using Activity names */
 function = 'label '
 size = 2;
 position = '5';
 x=2.5; y=1.8; text='Approve Plan'; output;
 x=5.5; y=.8; text='Drawings'; output;
 x=5.7; y=1.4; text='Write Specs'; output;
 x=7; y=3.4; text='Anal.Market'; output;
 x=8.5; y=.8; text='Prototype'; output;
 x=11.5; y=1.4; text='Facility'; output;
```
data anno;
  set anno1 anno2;
run;

footnote j=r 'Annotated and Modified Layout '; 
pattern1 v=s c=red;

proc netdraw graphics data=netin anno=anno;
  actnet / nodefid 
    nolabel 
    boxwidth=1 
    pcompress 
    novcenter 
    vmargin=20 
    xbetween=10;
run;
Output 7.17.2. Activity-on-Arc Format: Annotated Diagram

Project: Widget Manufacture

Network in Activity-on-Arc Format
Example 7.18. Branch and Bound Trees

This example illustrates a nonstandard use of PROC NETDRAW. The TREE option in PROC NETDRAW is used to draw a branch and bound tree such as one that you obtain in the solution of an integer programming problem. Refer to Chapter 3, “The LP Procedure” (SAS/OR User’s Guide: Mathematical Programming) for a detailed discussion of branch and bound trees. The data used in this example were obtained from one particular invocation of PROC LP.

The data set NET (created in the following DATA step) contains information pertaining to the branch and bound tree. Each observation of this data set represents a particular iteration of the integer program, which can be drawn as a node in the tree. The variable node names the problem. The variable object gives the objective value for that problem. The variable problem identifies the parent problem corresponding to each node; for example, since the second and the seventh observations have problem equal to ‘-1’ and ‘1’, respectively, it indicates that the second and the seventh problems are derived from the first iteration. Finally, the variable _pattern specifies the pattern of the nodes based on the status of the problem represented by the node.

```plaintext
data net;
 input node problem cond $10. object;
 if cond="ACTIVE" then _pattern=1;
 else if cond="SUBOPTIMAL" then _pattern=2;
 else _pattern=3;
datalines;
1 0 ACTIVE 4
2 -1 ACTIVE 4
3 2 ACTIVE 4
4 -3 ACTIVE 4.3333333
5 4 SUBOPTIMAL 5
6 3 FATHOMED 4.3333333
7 1 ACTIVE 4
8 -7 ACTIVE 4
9 -8 FATHOMED 4.3333333
10 8 FATHOMED 4.3333333
11 7 ACTIVE 4
12 -11 FATHOMED 4.3333333
13 11 FATHOMED 4.5;
```

The next DATA step (which creates the data set LOGIC) uses this child-parent information to format the precedence relationships as expected by PROC NETDRAW. Next, the two data sets are merged together to create the Network input data set (BBTREE) for PROC NETDRAW. The ID variable in the data set BBTREE is formatted to contain both the iteration number and the objective value.

Finally, PROC NETDRAW is invoked with the TREE, ROTATE, and ROTATETEXT options to produce a branch and bound tree shown in Output 7.18.1. Note that the ROTATE and ROTATETEXT options produce a rotated graph with a top-down orientation.
/* set precedence relationships */
data logic;
  keep node succ;
  set net(firstobs=2);
  succ=node;
  node=abs(problem);
run;

proc sort data=logic;
  by node;
run;

/* combine the logic data and the node data */
/* set ID values */
data bbtree;
  length id $ 9;
  merge logic net; by node;
  if node < 10 then id=put(node,1.)||put(object,f8.2);
  else id=put(node,2.)||put(object,f7.2);
run;

goptions ftext=swissb border;
pattern1 v=s c=green;
pattern2 v=s c=red;
pattern3 v=s c=blue;
title j=c 'Branch and Bound Tree';
title2 ' ';
footnote1 h=1.2 j=c c=red 'Optimal ' 
c=green ' Active ' 
c=blue ' Fathomed '; 
footnote2 ' ';
footnote3 ' Node shows Iteration Number and Objective Value '; 
proc netdraw data=bbtree graphics out=bbout;
  actnet /activity=node
    successor=succ
    id=(id)
    nodefid
    nolabel
    ctext=white
    coutline=black
    carcs=black
    xbetween=15
    ybetween=3
    font=swiss
    compress
    rectilinear
    tree
    rotate
    rotatetext
    arrowhead=0
    htext=2;
run;
In the next invocation, PROC NETDRAW uses a modified layout of the nodes to produce a diagram where the nodes are aligned according to the iteration number. The following program uses the Layout data set produced in the previous invocation of PROC NETDRAW. The same $y$ coordinates are used; but the $x$ coordinates are changed to equal the iteration number. Further, the ALIGN= specification produces a time axis that labels each level of the diagram with the iteration number. Each node is labeled with the objective value. The resulting diagram is shown in Output 7.18.2.

```sas
data netin;
 set bbout;
 if _seq_ = 0; drop _seq_;
 x = _from_;
 id = substr(id, 3);
run;

goptions rotate=landscape;
title 'Branch and Bound Tree';
title2 h=1.5 'Aligned by Iteration Number';
footnote1 h=1.2 j=c c=red 'Optimal '
 c=green ' Active ',
 c=blue ' Fathomed ';
footnote2 '';
footnote3 j=1 ' Node shows Objective Value ';
pattern1 v=e c=green;
pattern2 v=e c=red;
pattern3 v=e c=blue;
proc netdraw data=netin graphics;
```
Example 7.18. Branch and Bound Trees

Output 7.18.2. Branch and Bound Tree: Aligned by Iteration Number

Branch and Bound Tree
Aligned by Iteration Number

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Node shows Objective Value
## Statement and Option Cross-Reference Tables

The next two tables reference the options in the NETDRAW procedure that are illustrated by the examples in this section. Note that all the options are specified on the ACTNET statement.

**Table 7.18. Options Specified in Examples 5.1–5.9**

<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITY=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ALIGN=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ARROWHEAD=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOREF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOXHT=</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOXWIDTH=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARCS=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CCRITARCS=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CCRITOUT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CENTERID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUTLINE=</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREF=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTEXT=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURATION=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FONT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAPHICS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMARGIN=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HPAGES=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTEXT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HTRACKS=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LAG=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINEPRINTER</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LREF=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWCRIT=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWIDTH=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODEFAULTID</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOLABEL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOPAGENUMBER</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOVCENTER</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PATTERN=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PCOMPRESS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SEPARATEARCS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SHOWBREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHOWSTATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SUCCESSOR=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 7.18. (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMESCALE</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VMARGIN=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPAGES=</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XBETWEEN=</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>YBETWEEN=</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 7.19. Options Specified in Examples 5.10–5.18

<table>
<thead>
<tr>
<th>Option</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITY=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ALIGN=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ANNOTATE=</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARROWHEAD=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOREF</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOXHT=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOXWIDTH=</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BREAKCYCLE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARCS=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CAXIS=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCRITARCS=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTERID</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CENTERSUBTREE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPRESS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUTLINE=</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREF=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREFBRK=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTEXT=</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURATION=</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FONT=</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRAME</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAPHICS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMARGIN=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTEXT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ID=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINEAR</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LREF=</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LREFBRK=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MININTERVAL=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOARROWFILL</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NODEFID</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOLABEL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NOVCENTER</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OUT=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7.19. (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATTERN=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PCOMPRESS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RECTILINEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>REFBREAK</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROTATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ROTATETEXT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPARATEARCS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPARATESONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SUCCESSOR=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TIMESCALE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TREE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>USEFORMAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VMARGIN=</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XBETWEEN=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>YBETWEEN=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ZONE=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ZONEPAT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ZONESPACE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

References

# Chapter 8

## The Projman Application

### Chapter Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OVERVIEW</strong></td>
<td>725</td>
</tr>
<tr>
<td><strong>PROJMAN COMMAND</strong></td>
<td>725</td>
</tr>
<tr>
<td><strong>PROJMAN WINDOW</strong></td>
<td>726</td>
</tr>
<tr>
<td>Projman Options Window</td>
<td>728</td>
</tr>
<tr>
<td>Import Project Window</td>
<td>729</td>
</tr>
<tr>
<td><strong>PROJECT INFORMATION WINDOW</strong></td>
<td>730</td>
</tr>
<tr>
<td>Project Schedule Summary Window</td>
<td>731</td>
</tr>
<tr>
<td><strong>PM WINDOW</strong></td>
<td>732</td>
</tr>
<tr>
<td><strong>CALENDARS WINDOW</strong></td>
<td>733</td>
</tr>
<tr>
<td>Edit Calendar Window</td>
<td>734</td>
</tr>
<tr>
<td><strong>HOLIDAYS WINDOW</strong></td>
<td>735</td>
</tr>
<tr>
<td>Edit Holiday Window</td>
<td>736</td>
</tr>
<tr>
<td><strong>RESOURCES WINDOW</strong></td>
<td>738</td>
</tr>
<tr>
<td>Edit Resource Window</td>
<td>739</td>
</tr>
<tr>
<td>Availability Window</td>
<td>741</td>
</tr>
<tr>
<td>Alternates Window</td>
<td>742</td>
</tr>
<tr>
<td><strong>WORKSHIFTS WINDOW</strong></td>
<td>744</td>
</tr>
<tr>
<td>Edit Workshift Window</td>
<td>745</td>
</tr>
<tr>
<td><strong>SCHEDULE OPTIONS WINDOW</strong></td>
<td>746</td>
</tr>
<tr>
<td>Additional Options Window</td>
<td>748</td>
</tr>
<tr>
<td>Additional Options</td>
<td>748</td>
</tr>
<tr>
<td>Resource Options Window</td>
<td>750</td>
</tr>
<tr>
<td>Resource Options</td>
<td>750</td>
</tr>
<tr>
<td>Scheduling Rules</td>
<td>752</td>
</tr>
<tr>
<td><strong>REPORTS WINDOW</strong></td>
<td>753</td>
</tr>
<tr>
<td>Report Options Window</td>
<td>755</td>
</tr>
<tr>
<td>Tabular Report Options</td>
<td>756</td>
</tr>
<tr>
<td>Graphics Report Options</td>
<td>757</td>
</tr>
<tr>
<td>Title Window</td>
<td>758</td>
</tr>
<tr>
<td>Footnote Window</td>
<td>759</td>
</tr>
</tbody>
</table>
Options Window ......................................................... 759
Standard Options .................................................. 759
Macro Variables ...................................................... 761

CALENDAR REPORT OPTIONS WINDOW ......................... 764

GANTT CHART OPTIONS WINDOW ................................. 766
  Chart Control Options .......................................... 767
  Task Options .................................................... 768
  Time Axis Controls .............................................. 769
  Task Bar Options ................................................ 769
  Color Options .................................................... 770

NETWORK DIAGRAM OPTIONS WINDOW .......................... 771
  Page/Layout Control Options ................................. 773
  Node Options .................................................... 775
  Time Scale Options ............................................. 776
  Arc Options ...................................................... 776
  Color Options .................................................... 777

RESOURCE REPORT OPTIONS WINDOW ............................ 778

TABULAR LISTING OPTIONS WINDOW ............................ 779
  Additional Options .............................................. 780

IMPORT ACTIVITY DATA SET WINDOW ............................ 781
  Standard Import Options ...................................... 782
  Secondary Windows ............................................. 783
  Basic Activity Information .................................... 783
  Progress/Baseline Information ............................... 785
  Resource Information .......................................... 786
  Additional Information ......................................... 787

IMPORT CALENDAR DATA SET WINDOW ............................ 788

IMPORT HOLIDAY DATA SET WINDOW .............................. 789

IMPORT RESOURCEIN DATA SET WINDOW ......................... 791

IMPORT WORKSHIFT DATA SET WINDOW .......................... 792

EDIT DATE WINDOW .................................................. 793
The Projman application is a user-friendly graphical user interface for performing project management with the SAS System. Through the use of an interactive Gantt chart window provided by the PM procedure, you can easily create and manage multiple projects. For more information, see Chapter 3, “The PM Procedure.”

Projman is accessed by invoking the projman command in the SAS windowing environment, or by selecting Solutions->Analysis->Project Management from the primary SAS menu. When you invoke Projman, the Projman Window is displayed. This window is the primary window for accessing the functionality of the application. See the “Projman Window” section on page 726 for more information.

Projman enables you to define multiple projects, information about which is stored in a project dictionary data set. For more information about this data set, see the “PROJDICT= Option” section, which follows. To access the data associated with a project, you use the Project Information window. This window provides access to interfaces for defining data corresponding to activities, calendars, holidays, resources, and workshifts. See the “Project Information Window” section on page 730 for more information.

Projman also provides a variety of project reports. These reports include Gantt charts, network diagrams, calendars, and tabular listings, as well as resource usage and cost reports. You can easily modify any of the standard reports to add your own personalized reports to the application. For more information on reports, see the “Reports Window” section on page 753.

For general information about project management, consult Appendix A, “Glossary of Project Management Terms.”

**Projman Command**

The projman command supports two options:

- PROJDICT=
- project name

**PROJDICT= Option**

The PROJDICT= option is used to specify the location of the Projman project dictionary data set. The project dictionary data set stores the definition of each project created with the Projman application.
Valid values for the option are a two-level SAS data set name (that is, `<library>.<dsname>`, where `<library>` is a currently defined SAS libname and `<dsname>` is a valid SAS data set name).

If the data set specified with the PROJDICT= option does not exist, Projman attempts to create a new project dictionary data set at that location. If the data set already exists and it is not a valid project dictionary data set, Projman uses the default project dictionary data set location, SASUSER.PROJDICT.

**Project Name Option**

The Project Name option can be used to indicate a project that should be opened automatically when Projman is started. If the project does not exist, Projman produces a warning message.

To specify project names that contain multiple adjacent blanks (that is, “Project _ _ ABC”), enclose the name in double quotes.

**Projman Window**

The Projman Window is the initial window opened by the Projman application. When you start the application, all currently defined projects are listed in this window. To view an existing project, select the desired name in the project list and click **Open**. Projects can be opened with either **read** or **update** access.

When a new or existing project is opened, a **Project Information window** is displayed. Individual project data can be manipulated from that window. For more information, see the “**Project Information Window**” section on page 730.

**Project List**

The project list contains a list of all projects that are defined to the application.
**Quit**

Pressing the **Quit** button exits the Projman application. If projects are open with update access and changes have been made, you are prompted to save changes.

**New**

Pressing the **New** button creates a new project and opens that project with update access. A default project name (Projectn, where n is an integer) is automatically generated and added to the **project list**. When creating a new project, you are prompted to select the library where the project data is to be stored. After you select a library, the **Project Information window** is opened. For more information on that window, see the “**Project Information Window**” section on page 730.

**Open**

Pressing the **Open** button opens the selected project with read or update access. The access level is determined by the current setting of the **Open Mode** option. In order to save modifications to a project, you must open the project with update access. While you have a project open with update access, other users are only able to obtain read access to that project.

**Copy**

Pressing the **Copy** button copies the selected project. When copying a project, you are prompted to select the library where the project data is to be stored. You are also required to specify a unique project name. The new project name automatically appears in the **project list**.

**Delete**

Pressing the **Delete** button deletes the selected project. In order to delete a project, you must be able to obtain update access. In other words, no other user can have the project open with update access.

**Display Library**

This option is used to toggle the display of project library names within the **project list**. The library name indicates the library reference to the SAS data library where a particular project’s data is stored. If a project’s library reference is not defined, Projman is unable to open the project.

**Options**

When this button is pressed, the **Projman Options window** is displayed. For information on this window, see the “**Projman Options Window**” section on page 728.

**Import Project**

When this button is pressed, the **Import Project window** is opened. For information on this window, see the “**Import Project Window**” section on page 729.
Open Mode

The Open Mode option is used to specify whether projects are to be opened with read or update access. When a project is opened with read access, you may modify a working copy of the project data, but you are unable to save those changes when the project is closed (although you can use the Save As feature to save the modified project as a different project).

When a project is opened with update access, no other Projman session can open that same project with update access; however, read access is available. It is necessary to use update access if you want to save changes to the current project.

For different users to have simultaneous read access to the same project, SAS/SHARE software is required. Note that only one user can have update access to a particular project at a particular time. Access level does not affect the ability to produce project reports.

Projman Options Window

The Projman Options window enables you to manipulate options that control the behavior of the Projman application.

User Name

The User Name field can be used to specify the user’s name, which is used to indicate who last modified a project. Modification information appears in the Project Schedule Summary window. For information on that window, see the “Project Schedule Summary Window” section on page 731.

Device Driver

The Device Driver field can be used to specify the name of the device driver that is to be used when printing reports. You can also indicate whether or not to use this device as a “target” device when reports are shown on the screen. In other words, the graphics output on the screen emulates the characteristics of the device listed in the Device Driver field.
**Default Scheduling Options**

The Default Scheduling Options enable you to set default values for the project’s duration unit, day start, and day length parameters. Note that changing the values of these options does not affect projects that already exist.

**Automatically open Activities Window when opening projects.**

If this option is selected, a project’s Activities window (an interactive Gantt chart window provided by the PM procedure) automatically opens when the project is opened. For more information, see the “PM Window” section on page 732.

**Import Project Window**

The Import Project window enables you to import external project data or create sample projects.

**Activity Data Set**

When this option is selected and the Import Project... button is pressed, the Import Activity Data Set window is opened. For more information, see the “Import Activity Data Set Window” section on page 781.

**PROJMAN (V6) project**

When this option is selected and the Import Project... button is pressed, you are presented with a list of Version 6 Projman projects to import.

**Import Project...**

Depending upon the setting of Project Type as Activity data set or PROJMAN (V6) project, pressing this button commences the appropriate import process.

**Sample Projects**

This list displays the sample projects that are currently available with the Projman application. Make the desired selection and use the Create Sample Project button to create a sample project.
Create Sample Project

Use this button to create the sample project that is currently selected in the Sample Projects list.

Project Information Window

The Project Information window is initially displayed when a project is opened for read or update. The access control level is indicated in the window title. In this window, you can edit the project name and description as well as access windows for specifying project data and producing reports.

Name

The Name field is used to specify the name of the project. Project names must be unique. A longer description can be given in the Description field.

Description

The Description field is provided to give the opportunity for storing a short description of the project. A description is purely optional and is used for identification purposes only.

Activities

When this button is selected, the PM window (an interactive Gantt Chart provided by the PM procedure) displays the current project structure and schedule. Within this window, activities can be added and deleted and corresponding data can be modified. For more information, see the “PM Window” section on page 732.

Options

This selection is used to access a window for setting project scheduling options, as well as a window for adding variables to the Activity data set. For more information on project scheduling options, see the “Schedule Options Window” section on page 746.
**Calendars**

When this button is pressed, the **Calendars window** is opened. For information on this window, see the “**Calendars Window**” section on page 733.

**Holidays**

When this button is pressed, the **Holidays window** is opened. For information on this window, see the “**Holidays Window**” section on page 735.

**Resources**

When this button is pressed, the **Resources window** is opened. For information on this window, see the “**Resources Window**” section on page 738.

**Workshifts**

When this button is pressed, the **Workshifts window** is opened. For information on this window, see the “**Workshifts Window**” section on page 744.

**Reports**

When this button is pressed, the **Reports window** is opened. For information on this window, see the “**Reports Window**” section on page 753.

**Summary**

When this button is pressed, the **Project Schedule Summary window** is opened. For information on this window, see the “**Project Schedule Summary Window**” section on page 731.

---

**Project Schedule Summary Window**

This window displays summary information for the different project schedules that have been computed. In addition to the start and finish times for these schedules, the **duration** and the **percent completion** of the project are also displayed. Note that these values correspond to the Resource Schedule of the project if **resource-constrained scheduling** was performed; otherwise, they correspond to the Early Schedule of the project.

This window also indicates the dates when the project was created and last modified as well as the user that last modified the project.
Chapter 8. The Projman Application

The PM Window (also referred to as the Activities window) is an interactive Gantt chart window provided by the PM procedure. Within Projman, this window is used to manipulate data corresponding to the project activities. This data includes names, durations, precedence relationships, calendars, resource requirements, progress information, and baseline schedules, as well as user-defined identification fields.

While the PM window is open, all other Projman application windows are inactive. To access options that control the manner in which the PM window schedules activities, press the Options button on the Project Information window before opening the PM window. For additional information on the PM window, see Chapter 3, “The PM Procedure.”
Calendars Window

The Calendars window lists all of the calendars that have been defined for the project. From this window, you can create, edit, copy, and delete calendar definitions. Once defined, calendars can be assigned to activities as well as resources. You can define as many individual calendars as you want. Note that some actions in this window are disabled if they are not valid.

Calendar List

This list contains all of the calendars that are defined for the project. By selecting an item in this list, you can manipulate the selected item by pressing the Open, Copy, or Delete buttons. The New button can always be used to add a new item to the list.

New

When this button is pressed, a new calendar is created and displayed in an Edit Calendar window for editing.

Copy

When this button is pressed, the selected calendar is copied and displayed in an Edit Calendar window for editing. If no calendar is selected, this option is disabled.

Open

When this button is pressed, the selected calendar is displayed in an Edit Calendar window for editing. If no calendar is selected, this option is disabled.

Delete

When this button is pressed, the selected item in the calendar list is deleted. A secondary window is opened to confirm the deletion. Deletions are irreversible unless the project is closed without saving the current changes. If no calendar is selected, this option is disabled.
Import Calendar Data Set

When this button is pressed, a window is displayed for importing a CALENDAR data set. For information on this window, see the “Import Calendar Data Set Window” section on page 788. The import data set is required to be in the format appropriate for input to the CPM or PM procedure. For information on the CALENDAR data set, see the “CALEDATA Data Set” section on page 100.

Edit Calendar Window

This window enables you to create and modify calendar definitions. You can specify a calendar name and description as well as choose the workshifts for each day of the work week.

Calendar names can take either character or numeric values, but they must be unique. If a calendar is defined with the name Default, every activity in the project will follow that calendar unless the activity has a specific calendar associated with it.

Calendar Name

The Calendar Name field is used to specify the name of the calendar. The calendar name can be either character or numeric, but it must be unique. This name is the value that will be used to assign calendars to activities and resources. A longer description can be given in the Description field.

Description

The Description field enables you to store a short description about the calendar. A description is purely optional and is used for identification purposes only.

Workshift Table

The Workshift table indicates the workshifts that have been assigned to each day of the week. By default, Monday through Friday are working days (identified by the WORKDAY workshift), while Saturday and Sunday are nonworking days (identified by the HOLIDAY workshift). To change the workshift associated with a particular day or days, simply select that day (days) by selecting the corresponding workshift (workshifts) in the table and press the Set Workshift... button.
Set Workshift...

When the Set Workshift... button is pressed, a window is opened that displays all of the workshifts currently defined for the project. By selecting different workshifts, you can change the highlighted values in the Workshift table. When the desired selection has been made, press the Close button to close the window.

Holidays Window

The Holidays window lists all of the holidays that have been defined for the project. From this window, you can create, edit, copy and delete holiday definitions. You can define as many individual holidays as you want. Note that some actions in this window are disabled if they are not valid.

Holiday List

This list contains all of the holidays that are defined for the project. By selecting an item in this list, you can manipulate the selected item by pressing the Open, Copy, or Delete buttons. The New button can always be used to add a new item to the list.

New

When this button is pressed, a new holiday is created and displayed in an Edit Holiday window for editing.

Copy

When this button is pressed, the selected holiday is copied and displayed in an Edit Holiday window for editing. If no holiday is selected, this option is disabled.

Open

When this button is pressed, the selected holiday is displayed in an Edit Holiday window for editing. If no holiday is selected, this option is disabled.
Delete

When this button is pressed, the selected item in the holiday list is deleted. A secondary window is opened to confirm the deletion. Deletions are irreversible unless the project is closed without saving any changes. If no holiday is selected, this option is disabled.

Import Holiday Data Set

When this button is pressed, a window is displayed for importing a HOLIDAY data set. For information on this window, see the “Import Holiday Data Set Window” section on page 789. The import data set is required to be in the format appropriate for input to the CPM or PM procedure. For information on the HOLIDAY data set, see the “HOLIDATA Data Set” section on page 101.

Edit Holiday Window

This window enables you to create and modify holiday definitions. You can specify a holiday name and description as well as a start date, finish date, and the duration (or length) of the holiday. Additionally, you can indicate the calendar or calendars that the holiday is to be associated with.

Holiday names can take either character or numeric values. A start date is always required when defining a holiday.

Holiday Name

The Holiday Name field is used to specify the name of the holiday. The holiday name can be either character or numeric. A longer description can be given in the Description field.

Description

The Description field enables you to store a short description about the holiday. A description is purely optional and is used for identification purposes only.
**Holiday Start Date**

The **Holiday Start Date** is used to indicate the calendar date that represents the start of the holiday. The start date is required. The value can be entered with either a DATEw. (that is, 01MAY2004) or a DATETIMEw. (that is, 01MAY2004:08:30:00) format. Alternatively, by pressing the **Start:** button, you can access an Edit Date window to specify the desired value.

**Holiday Finish Date**

The **Holiday Finish Date** can be used to indicate the calendar date that represents the finish of the holiday. The finish date is not required; however, if not specified, the holiday will last only one duration unit (as defined for the project) unless the length of the holiday is specified in the **Duration** field. The finish date value can be entered with either a DATEw. (that is, 01MAY2004) or a DATETIMEw. (that is, 01MAY2004:16:59:59) format. Alternatively, by pressing the **Finish:** button, you can access an Edit Date window to specify the desired value.

**Duration**

The **Duration** field can be used to specify the length of the holiday. Duration values are specified in the units of the project’s duration unit. The duration is optional, but it is assumed to be 1 if the holiday finish date is not provided. If the holiday finish date is specified, the duration is ignored.

**Calendars...**

Pressing the **Calendars...** button opens a window for indicating which project calendar or calendars the holiday is to be associated with. If no calendars are specified in the list, the holiday is assigned to **all** calendars.

The Calendars window contains a list of calendars that the current holiday is assigned to. To remove calendars, simply select the calendar to be removed and press the **Remove** button. To add calendars to the list, press the **Add** button. A list of all calendars is displayed and if you select individual calendar entries, they are added to the holiday’s calendar assignments.
Resources Window

The Resources window lists all of the resources that have been defined for the project. From this window, you can create, edit, copy and delete resource definitions. You can define as many individual resources as you want. Note that some actions in this window are disabled if they are not valid.

Resource List

This list contains all of the resources that are defined for the project. By selecting an item in this list, you can manipulate the selected item by pressing the Open, Copy, or Delete buttons. The New button can always be used to add a new item to the list.

New

When this button is pressed, a new resource is created and displayed in an Edit Resource window for editing.

Copy

When this button is pressed, the selected resource is copied and displayed in an Edit Resource window for editing. If no resource is selected, this option is disabled.

Open

When this button is pressed, the selected resource is displayed in an Edit Resource window for editing. If no resource is selected, this option is disabled.

Delete

When this button is pressed, the selected item in the resource list is deleted. A secondary window is opened to confirm the deletion. Deletions are irreversible unless the project is closed without saving any changes. If no resource is selected, this option is disabled.
**Import Resourcein Data Set**

When this button is pressed, a window is displayed for importing a RESOURCEIN data set. For information on this window, see the “Import Resourcein Data Set Window” section on page 791. The import data set is required to be in the format appropriate for input to the CPM or PM procedure. For information on the RESOURCEIN data set, see the “RESOURCEIN= Input Data Set” section on page 109.

**Edit Resource Window**

This window enables you to create and modify resource definitions. You can specify a resource name and description as well as indicate the resource type and priority. Actual, budgeted, and fixed resource costs can also be specified. In two secondary windows, you can define the availability profile and a list of substitute resources.

Resource names must be valid SAS variable names and must be unique.

![Edit Resource Window](image)

**Name**

The Name field is used to specify the name of the resource. The resource name must be a valid SAS variable name and must be unique. A longer description can be given in the Description field.

**Description**

The Description field enables you to store a short description of the resource. A description is purely optional and is used for reporting purposes only.

**Calendar**

The Calendar field is used to specify the name of the calendar for the resource. Simply type the name of the desired calendar in the field and press Enter. If that calendar does not exist, you are asked if you would like for it to be created. If you respond affirmatively, a calendar (with default settings) is created and given the specified name. Calendars are modified by accessing the Calendars window for the project. For more information, see the “Calendars Window” section on page 733.
Resource Type

Resources are classified as either consumable or replenishable. A consumable resource is one that is used up by the job (such as bricks or money), while a replenishable resource becomes available again once a job using it has finished (such as laborers or machinery).

If the For Aggregation Only option is selected, this resource is used for aggregation rather than resource-constrained scheduling. When a resource is defined as an aggregate resource, resource availability information is ignored.

Amount of Work

This selection indicates the amount of work that a particular resource is to perform on an activity (or the manner in which the resource affects an activity’s duration). When the Fixed by activity duration option is selected, the resource works for a fixed duration, as specified for the activity; in other words, the activity’s duration is not affected by changing the rate of the resource used by the activity. The Drives activity duration selection indicates that the activity’s work value indicates the total amount of work required by the resource for that activity; such a resource is called a driving resource. The Spans entire activity selection indicates that the resource is to be a spanning resource; in other words, the resource is required to work throughout the activity’s duration, no matter which resource is working on it. For example, an activity might require 10 percent of a “supervisor,” or the use of a particular room, throughout its duration. For such an activity, the duration used for the spanning resource is computed after determining the span of the activity for all the other resources.

Resource Priority

You can use the horizontal slider to specify a resource priority value between 1 and 100. Lower numbers indicate higher priority. During resource-constrained scheduling, this number is used to order activities that are waiting for resources when the primary scheduling rule is specified as resource priority. For information on scheduling rules, see the “Scheduling Rules” section on page 752.

Resource Cost

The Cost fields enables you to specify an actual, budgeted, and fixed cost value for each resource. These costs are optional and are used in cost calculations for resource cost reports.

Supplementary Resource Level

The Supplementary Resource Level field can be used to specify an amount of extra resource that is available for use throughout the duration of the project. This extra resource is used only if the activity cannot be scheduled without delaying it beyond its late start time.
Availability Window

Pressing the Availability... button opens the Availability window for the current resource. From this window, you can define the availability profile for the resource. For more information, see the “Availability Window” section on page 741.

Alternates...

Pressing the Alternates... button opens the Alternates window for the current resource. From this window, you can define alternate (substitute) resources for the current resource. For more information, see the “Alternates Window” section on page 742.

Availability Window

This window enables you to specify the availability profile for the current resource. By adding records to the profile, you can indicate when the resource availability changes over time. By default, one record is added to the list to indicate an initial availability of one unit on January 1, 1960.

It is only necessary to add records for each change in the availability. Note that, for consumable resources, the availability amount represents the cumulative amount available to date.

Day

The horizontal slider is used to specify the desired day for adding an entry to the availability profile.

Month

The horizontal slider is used to specify the desired month for adding an entry to the availability profile.
Chapter 8. The Projman Application

Year

The horizontal slider is used to specify the desired year for adding an entry to the availability profile.

Time

The horizontal slider is used to specify the desired time for adding an entry to the availability profile. Note that times are based on a 24 hour clock (that is, 13:00=1 PM).

Available

The Available field is used to specify the desired available amount for adding (or updating) an entry to the availability profile.

Availability Profile

The Availability Profile list indicates the amount of resource that is available to the project over time. To add or update records in the list, select the desired date, specify an available amount, and press the Add/Update button. Records in the list are sorted automatically by date. To delete records from the list, select the desired records and press the Delete button.

Add/Update

Pressing the Add/Update button adds or updates a record in the availability profile depending on the current date setting and the available amount specified. Records in the availability profile are sorted automatically by date.

Delete

Pressing the Delete button removes the currently selected records in the availability profile. Note that deletions cannot be aborted unless changes to the resource are not saved.

Alternates Window

This window enables you to specify the alternates profile for the current resource. By adding records to the profile, you can indicate which resources and at what rate those resources can be substituted for the current resource. Alternate resources are purely optional, but they can be very helpful in reducing resource infeasibilities. Only resources of the same type (consumable or replenishable) can be substituted for one another.
The Resources list contains all of the resources defined for the project that are of the same type (replenishable or consumable) as the current resource, as substitutions can only be made by like-typed resources. Selecting one or more resources in this list enables you to add records to the alternates profile.

Rate

The Rate field is used to specify the rate of substitution for an alternate resource specification. For example, if resource Z is to be substituted for resource X with a substitution rate of 0.5, an activity that requires 1 unit of resource X could be completed with 0.5 units of resource Z.

Priority

The horizontal slider can be used to indicate a priority for an alternate resource specification. Lower numbers indicate higher priority. This priority is used to order the resources that are listed as alternates (substitutes) for the current resource.

Alternates Profile

The Alternates Profile indicates the resources that are eligible to be substituted for the current resource (if it should be unavailable during project scheduling). Records in this list are ordered by priority to indicate the order in which substitutions would be made, if needed. To add or update records in the list, select one or more resources in the Resources list, specify the rate of substitution and the priority, and press the Add/Update button. To delete records from the list, select the desired records and press the Delete button.

Add/Update

Pressing the Add/Update button adds or updates a record in the alternates profile depending on the current resource, rate, and priority settings.
Delete

Pressing the **Delete** button removes the currently selected records in the alternates profile. Note that deletions cannot be aborted unless changes to the resource are not saved.

Workshifts Window

The Workshifts window lists all of the workshifts that have been defined for the project. From this window, you can create, edit, copy, and delete workshift definitions. You can define as many individual workshifts as you want. Note that some actions in this window are disabled if they are not valid.

Workshift List

This list contains all of the workshifts that are defined for the project. By selecting an item in this list, you can manipulate the selected item by pressing the **Open**, **Copy**, or **Delete** buttons. The **New** button can always be used to add a new item to the list.

New

When this button is pressed, a new workshift is created and displayed in an Edit Workshift window for editing.

Copy

When this button is pressed, the selected workshift is copied and displayed in an Edit Workshift window for editing. If no workshift is selected, this option is disabled.

Open

When this button is pressed, the selected workshift is displayed in an Edit Workshift window for editing. If no workshift is selected, this option is disabled.

Delete

When this button is pressed, the selected item in the workshift list is deleted. A secondary window is opened to confirm the deletion. Deletions are irreversible unless the project is closed without saving any changes. If no workshift is selected, this option is disabled.
**Import Workshift Data Set**

When this button is pressed, a window is displayed for importing a WORKSHIFT data set. For information on this window, see the “Import Workshift Data Set Window” section on page 792. The import data set is required to be in the format appropriate for input to the CPM or PM procedure. For information on the WORKDAY data set, see the “WORKDATA Data Set” section on page 99.

**Edit Workshift Window**

This window enables you to create and modify workshift definitions. You can specify a workshift name and description as well as define the on/off working times that make up the valid working periods within a single day.

Workshift names must be valid SAS variable names and must be unique.

![Edit Workshift Window](image)

**Workshift Name**

The **Workshift Name** field is used to specify the name of the workshift. The workshift name must be a valid SAS variable name and must be unique. A longer description can be given in the **Description** field.

**Description**

The **Description** field enables you to store a short description of the workshift. A description is purely optional and is used for identification purposes only.

**Shift Time**

The horizontal slider can be used to adjust the shift time. When the **Add ->** button is pressed, this value is added to the **Shift Times list**. The values in the Shift Times list are sorted automatically. Note that times are based on a 24 hour clock (that is, 13:00=1 PM).
Chapter 8. The Projman Application

Add ->

When this button is pressed, the current shift time value is added to the Shift Times list. The values in the Shift Times list are sorted automatically.

Shift Times List

The Shift Times list contains the on/off working times that represent the workshift (workday) definition. Times can be added to the list by setting the Shift Time and pressing the Add -> button, while times are removed by selecting items in the list and pressing the Delete button. Times should be added to the Shift Times list in pairs that represent on/off working times. A valid workshift will have an even number of times in the list.

Delete

When this button is pressed, any times selected in the Shift Times list are deleted.

Schedule Options Window

This window enables you to set options that control the scheduling of the active project using the critical path method. These options are maintained separately for each project, and default values depend upon the data specified for the project. Schedule Constraints (such as resource leveling) can be enabled and disabled here. Secondary windows can be used to set additional options that are used to provide tighter control over the scheduling algorithm.

Some options are not available unless certain project data has been specified. For example, if no resources are defined, the Resource Leveling option is disabled. However, when resources are added to the project, this option is automatically enabled and selected.

Project Start Date

The Project Start Date is used to align the start of the project. This value can be entered with either a DATEw. (that is, 01MAY2004) or a DATETIMEw. (that is,
01MAY2004:08:30:00) format. Alternatively, by pressing the **Start** button, you can access an **Edit Date window** to specify the desired value.

A **project finish date** can also be specified. If neither of these dates is specified, the project start date is automatically set to the current date upon initial scheduling.

**Project Finish Date**

The **Project Finish Date** is used to align the finish of the project. This value can be entered with either a DATEw. (that is, 01MAY2004) or a DATETIMEw. (that is, 01MAY2004:17:00:00) format. Alternatively, by pressing the **Finish** button, you can access an **Edit Date window** to specify the desired value.

A **project start date** can also be specified. If neither of these dates is specified, the project start date is automatically set to the current date upon initial scheduling.

**Duration Unit**

The **Duration Unit** specifies the unit of time for the duration of each activity in the project. The following choices are available:

- Second
- Minute
- Hour
- Day
- Weekday
- Month
- Qtr
- Year

The default value is Day.

**Workday Start**

This option can be used to specify the start of the default workday. Values for this option correspond to a TIME5. (hh:mm) value, where hh is in hours and mm is in minutes. Use the horizontal slider to select the desired value. Note that times are based on a 24 hour clock (that is, 13:00=1 PM).

This option is ignored when the **duration unit** is specified as Month, Qtr, or Year.

**Workday Length**

This option can be used to specify the length of the default workday. Values for this option correspond to a TIME5. (hh:mm) value, where hh is in hours and mm is in minutes. Use the horizontal slider to select the desired value.

This option is ignored when the **duration unit** is specified as Month, Qtr, or Year.

**Resource Leveling**

The **Resource Leveling** option is used to indicate that the activities in the project are to be scheduled subject to the availability of required resources. If the active project contains resource data, this option is selected by default; otherwise, the option is disabled. To schedule a project without using resource constraints, simply deselect the **Resource Leveling** option.
Resource Options...

Pressing this button opens the Resource Options window, which is used to set options to control the resource allocation algorithm. For more information on this window, see the “Resource Options Window” section on page 750.

Additional Options...

Pressing this button opens the Additional Options window, which is used to set basic options that control the project scheduling algorithm. For more information on this window, see the “Additional Options Window” section, which follows.

Additional Options Window

This window enables you to control general scheduling options, such as the use of holidays and calendars. There are also controls for supertask and progress options. Note that some of these options are disabled if the required project data are not present. The settings of these options are established and maintained for each project.

![Additional Options Window Screenshot]

Additional Options

Use Holidays

When this option is activated, holiday definitions are considered during scheduling; otherwise, all holidays are ignored. Note that this option is disabled if no holidays have been defined. This option is automatically activated when holidays are initially created.

Use Calendars

When this option is activated, calendar definitions are considered during scheduling; otherwise, all calendars are ignored. Note that this option is disabled if no calendars have been defined. This option is automatically activated when calendars are initially created.
Compute individual critical paths for each separate supertask.

When this option is selected, the scheduling algorithm calculates a separate critical path for each supertask in the project.

By default, the project’s early finish time is treated as the starting point for the calculation of the backward pass (which calculates the late start schedule). The late finish time for each supertask is then determined during the backward pass on the basis of the precedence constraints. If a target date is placed on the finish time of a supertask, the late finish time of the supertask is further constrained by this value. However, when this option is activated, the scheduling algorithm requires that the late finish time of each subtask be less than or equal to the early finish time of the supertask.

Allow supertask durations to drive the late finish calculation.

When this option is activated, the scheduling algorithm uses the specified super-task duration to compute the maximum allowed late finish time for each supertask. Otherwise, the maximum allowed late finish time is determined by the supertask span, as computed from the span of all the subtasks of the supertask.

Aggregate rather than constrain supertask resource requirements.

When this option is selected, the resource requirements for all supertasks are used only for aggregation purposes and not for resource-constrained scheduling.

Ignore resource requirements for all supertasks.

When this option is activated, the resource requirements for all supertasks are ignored.

Allow completed or in-progress activities to have nonzero float.

When this option is selected, the scheduling algorithm allows activities that are completed or in progress to have nonzero float. For more information on float, see total float and free float in Appendix A, “Glossary of Project Management Terms.” By default, all completed or in-progress activities have zero float.

Update predecessors of completed or in-progress activities.

When this option is selected, the scheduling algorithm assumes automatic completion (or start) of activities that are predecessors to activities already completed (or in progress). For example, if activity B is a successor of activity A, and B has an actual start time (or actual finish time or both) specified while A has no actual start or actual finish time, then the algorithm assumes that A must have already finished. Activity A is assigned an actual start time and an actual finish time consistent with the precedence constraints.

Allow in-progress activities to split if resources are insufficient.

When this option is activated, the scheduling algorithm allows activities that are in progress at the timenow date to be split if they cause resource infeasibilities. During resource allocation, any activities with early start values less than the timenow date are scheduled even if there are not enough resources. This is true even for activities
that are in progress. This option permits an activity to be split into two segments at the timenow date, allowing the second segment of the activity to be scheduled later when resource levels permit. Note that activities with a target date alignment type of mandatory start or mandatory finish are not allowed to be split; also, activities without resource requirements are not split.

Resource Options Window

The Resource Options window enables you to control several aspects of the resource scheduling algorithm. When activities are scheduled subject to the limited availability of resources, it is quite possible that a feasible schedule does not exist or cannot be found. The resource options available here can be used to control and manipulate the resource allocation process. In some cases, these options might enable the algorithm to find a feasible schedule or to shorten the existing schedule.

These options settings are established and maintained for each project. Note that some options have no effect if the appropriate data has not been specified.

Resource Options

Resource Cutoff Date

The Resource Cutoff Date field can be used to specify a cutoff date for resource leveling. When this date is specified, the scheduled start and finish for activities that would occur after the cutoff date are set to missing (empty). This value can be entered with either a DATEw. (that is, 01MAY2004) or a DATETIMEw. (that is, 01MAY2004:17:00:00) format. Alternatively, by pressing the Date: button, you can access an Edit Date window to specify the desired value.
**Maximum Activity Delay**

The Default Maximum Activity Delay field can be used to specify the maximum amount of time by which any activity in the project can be delayed due to lack of resources. This value acts as a default for all project activities, while individual values can be specified for each separate activity. The default value for this option is $+\infty$.

**Resource Usage Observations**

The maximum number of resource observations sets an upper limit on the number of observations that the resource usage output data set can contain. The default value is 1000. Use the horizontal slider to increase this limit. The frequency indicates the time interval at which observations are added to the data set. Use the combo box to select the desired time interval.

**Limit activity resource delays.**

When this option is activated, the maximum activity delay and each activity’s delay values (if specified) are used to control activity schedule slippage when performing resource leveling; otherwise, the values are ignored and activity schedules are allowed to slip indefinitely.

**Use resource calendars.**

When this option is activated, resource calendars (if specified) are used to determine on/off work periods for resources; otherwise, all resource calendars are ignored.

**Allow activity splitting.**

When this option is activated, activities are allowed to be split into segments during resource allocation. The maximum number of segments and the minimum segment duration can be specified for each activity to control the extent of the splitting.

**Use alternate resources.**

When this option is activated, alternate resources (if specified) are used; otherwise, they are ignored.

**Allow designated resources to drive activity durations.**

This option is used to activate resource-driven durations, provided that resources have been defined as driving resources and work rates have been specified for the activities.

**Allow multiple resources to be allocated independently.**

When this option is selected, each resource can be scheduled separately for each activity during resource allocation; otherwise, all resources (required by an activity) must be available before work on the activity can be scheduled. If this option is selected, each resource is scheduled independently of the others. This may cause an activity’s schedule to be extended if its resources cannot all start at the same time.
Continue scheduling even when resources are insufficient.

When this option is selected, the scheduling algorithm continues to schedule activities even when resources are insufficient. By default, the algorithm stops (with a partial schedule) when it cannot find sufficient resources for an activity before the activity’s latest possible start time (accounting for the activity’s delay value or the maximum activity delay and using supplementary or alternate resources if necessary and if allowed). This option is equivalent to specifying infinite supplementary levels for all resources under consideration.

Require intersection of resource calendars for each activity.

When this option is selected, an activity can be scheduled only during periods that are common working times for all resource calendars (corresponding to the resources used by that activity) and the activity’s calendar. Use this option with caution; if an activity uses resources that have mutually disjoint calendars, that activity can never be scheduled.

If this option is not specified and resources have independent calendars, then each resource is scheduled using its own calendar. Thus, an activity can have one resource working on a five-day calendar, while another resource is working on a seven-day calendar.

Allocate alternate resources before using supplementary levels.

This option indicates that the scheduling algorithm is to check for alternate resources before using supplementary resources. When this option is not selected, the algorithm uses supplementary levels first (if available) and alternate resources are used only if the supplementary levels are not sufficient.

Allow activities to be delayed before using supplementary levels.

When this option is selected, the scheduling algorithm waits until an activity’s late start plus delay before it is scheduled using a supplementary level of resources. Otherwise, even if an activity has a nonzero value specified for delay, it can be scheduled using supplementary resources before late start plus delay.

Scheduling Rules

The primary scheduling rule is used to order the list of activities whose predecessor activities have been completed while scheduling activities subject to resource constraints. The secondary scheduling rule is used to break ties caused by the primary scheduling rule. The scheduling rule choices are

<table>
<thead>
<tr>
<th>Activity Priority</th>
<th>Late Finish Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed Late Start</td>
<td>Resource Priority</td>
</tr>
<tr>
<td>Late Start Time</td>
<td>Shortest Duration</td>
</tr>
</tbody>
</table>

The default primary scheduling rule is Late Start Time, while the default secondary scheduling rule is Shortest Duration.
Activity Priority

The Activity Priority scheduling rule specifies that activities in the waiting list (for resources) should be sorted in the order of increasing values of their priority.

Delayed Late Start

The Delayed Late Start scheduling rule specifies that activities in the waiting list (for resources) should be sorted in the order of increasing values of their late start plus their delay.

Late Start Time

The Late Start Time scheduling rule specifies that activities in the waiting list (for resources) should be sorted in the order of increasing values of their late start.

Late Finish Time

The Late Finish Time scheduling rule specifies that activities in the waiting list (for resources) should be sorted in the order of increasing values of their late finish.

Resource Priority

The Resource Priority scheduling rule specifies that activities in the waiting list (for resources) should be sorted in the order of increasing values of the resource priority for the most important resource used by each activity. In other words, the resource priorities are used to assign priorities to the activities in the project; these activity priorities are then used to order the activities in the waiting list (in increasing order).

Shortest Duration

The Shortest Duration scheduling rule specifies that activities in the waiting list (for resources) should be sorted in the order of increasing values of their durations.

Reports Window

The Reports window displays a list of all project reports defined to the Projman application. Reports are divided into two categories, Standard and Custom. Standard reports are included with the application and cannot be modified or deleted. You can copy and modify standard reports to create custom reports, which can be copied, modified, and deleted.

Reports are grouped according to type. The following types are available:

- Calendars
- Gantt Charts
- Network Diagrams
- Resource Cost
- Resource Schedule
- Resource Usage
- Tabular

The Reports window displays a list of all project reports defined to the Projman application. Reports are divided into two categories, Standard and Custom. Standard reports are included with the application and cannot be modified or deleted. You can copy and modify standard reports to create custom reports, which can be copied, modified, and deleted.

Reports are grouped according to type. The following types are available:

- Calendars
- Gantt Charts
- Network Diagrams
- Resource Cost
- Resource Schedule
- Resource Usage
- Tabular
You can define as many different reports as you would like. Reports are designed to work with any project provided that the necessary data are available. Individual report options can be set by accessing the Options window for a particular report. For more information, see the “Options Window” section on page 759.

Global report options can be set by accessing the Report Options window. These options include the setting of default colors and fonts as well as the specification of report titles and footnotes. For more information, see the “Report Options Window” section on page 755.

**Active Project**

The Active Project indicates the project that is active for the Reports window. When you generate reports, the active project provides the data for the selected report. When multiple projects are open at one time, the active project removes any confusion about which project data are used to produce the report. To change the active project, simply click on the name of the current project, and a list of open projects is displayed for selection.

**Report Type**

The Report Type combo box indicates the type of reports that are currently displayed in the window. By default, all reports are initially displayed. For example, you might use this option to specify that only Gantt chart reports are to be listed in the window. To change the report type, simply click on the combo box, and a list of available report types is displayed.

**Standard Reports**

This list contains all of the reports (of a particular type or types) that are defined by the Projman application. These standard reports cannot be modified or deleted. To make changes to one of these reports, you must select the desired report and press the Copy button. A copy of the selected report is added to the Custom Reports list. Use the View button to generate a report.
Custom Reports

This list contains all of the reports (of a particular type or types) that have been created by the user. Custom reports are created by copying a report from the list of standard reports. These reports can be manipulated by selecting the desired report in the list and pressing the Open, Copy, or Delete buttons. Use the View button to generate a particular report.

Open

When this button is pressed, the selected custom report is displayed in the report’s Options window for editing. For more information on that window, see the “Options Window” section on page 759. If no custom report is selected, this option is disabled.

Copy

When this button is pressed, the selected report is copied and displayed in the report’s Options window for editing. For more information on that window, see the “Options Window” section on page 759. If no report is selected, this option is disabled.

Delete

When this button is pressed, the selected report in the Custom Reports list is deleted. A secondary window is opened to confirm the deletion. Note that the deletion of reports is irreversible. If no custom report is selected, this option is disabled.

View

When this button is pressed, the currently selected report is generated. If no report is selected, the option is disabled. Note that when modifying a specific custom report, you can view the report to verify the results before saving the current changes.

Options

When this button is pressed, the Report Options window is displayed. From that window, you can control general options that affect all project reports. For more information, see the “Report Options Window” section on page 755.

Close

When this button is pressed, the window is closed. Also, all individual report Options windows (which are currently open) are closed.

Report Options Window

The Report Options window provides access to various options for both tabular and graphic quality reports. You can modify output appearance features such as page headings, titles, and footnotes as well as colors and fonts. These options affect all reports generated with the Projman application.
Tabular Report Options

**Print current date.**

When this option is selected, the current date is displayed in the upper-right corner of each page of all tabular (nongraphics quality) reports.

**Print page numbers.**

When this option is selected, page numbers are displayed in the upper-right corner of each page of all tabular (nongraphics quality) reports.

**Characters per line**

The horizontal slider can be used to specify the width of pages of tabular (nongraphics quality) reports. The number of characters per line must be an integer value between 64 and 256.

**Lines per page**

The horizontal slider can be used to specify the length of pages of tabular (nongraphics quality) reports. The number of lines per page must be an integer value between 15 and 512.

**Titles**

When the Titles button is pressed, a window is displayed for specifying one or more titles for project reports. You can customize any of your output from reports by adding up to four titles to the top of each page.

To create or modify a title, simply press the button corresponding to the title you want to modify. For each title, you can specify the type, color, and size of the font.
as well as the justification used to align the text. Note that the type, color, size, and justification specifications are used only when producing graphics-quality reports. For more information, see the “Title Window” section on page 758.

Footnotes

When the Footnotes button is pressed, a window is displayed for specifying one or more footnotes for project reports. You can customize any of your output from reports by adding up to four footnotes to the bottom of each page.

To create or modify a footnote, simply press the button corresponding to the footnote you want to modify. For each footnote, you can specify the type, color, and size of the font as well as the justification used to align the text. Note that the type, color, size, and justification specifications are used only when producing graphics-quality reports. For more information, see the “Footnote Window” section on page 759.

Formats

When the Formats button is pressed, a window is displayed for selecting the format to be used for displaying project schedules. You can specify whether reports are to display schedules using a DATE7. (that is, 01MAY04) or a DATETIME13. (that is, 01MAY04:12:00) format.

Graphics Report Options

Height

The horizontal slider can be used to specify the default height to be used for all text displayed in graphics-quality reports. The default value is 1, and valid values range from 0.1 to 5.

Font

The Font combo box can be used to specify the default font to be used for all text displayed in graphics-quality reports.

Color

The Color combo box can be used to specify the default color to be used for all text displayed in graphics-quality reports.

Gantt Chart Patterns

Pressing the Gantt Charts button opens a window where you can specify the colors and fill patterns of the activity bars drawn on graphics-quality Gantt charts.

The various types of activity bars, along with their respective colors and fill patterns, are listed in the window. To modify the attributes for a particular activity bar, simply click on the corresponding color or fill pattern, and a selection window is opened. From that window, simply select the desired color or fill pattern.
Network Diagram Patterns

Pressing the Network Diagrams button opens a window where you can specify the colors and fill patterns of the activity nodes drawn on graphics-quality network diagram reports.

The various types of activity nodes, along with their respective colors and fill patterns, are listed in the window. To modify the attributes for a particular activity node, simply click on the corresponding color or fill pattern, and a selection window is opened. From that window, simply select the desired color or fill pattern.

Title Window

The Title window is used to modify the attributes of report titles.

Text

The Text field is used to specify the text of the title or footnote. By default, Title1 contains "&projname". When the report is generated, the macro variable, &projname, resolves to the name of the current project. Alternatively, &projdesc can be used to specify the project description.

Font

Use this selection to specify the font used to draw the text of the title or footnote. Note that the font specification is used only when producing graphics-quality reports.

Color

Use this selection to specify the color of the text of the title or footnote. Note that the color specification is used only when producing graphics-quality reports.

Justify

Use this selection to specify whether the text of the title or footnote is to be left-justified, centered, or right-justified on the page. Note that the justification specification is used only when producing graphics-quality reports.
**Height**

Use this selection to specify the height of the text of the title or footnote. The default height is 1, except for the Title1 (which has a default height of 2). Note that the height specification is only used when producing graphics-quality reports.

**Footnote Window**

The Footnote window is used to modify the attributes of report footnotes. For descriptions of the options, see the “Title Window” section on page 758.

**Options Window**

A report’s Options window is used to modify the characteristics of a selected report. Options differ depending on the type of report that is being modified. All reports fall into one of the following categories:

- Calendar Reports
- Gantt Charts
- Network Diagrams
- Resource Reports
- Tabular Listings

**Standard Options**

The following set of options are common to several different types of reports.

**Id**

The Id field displays a unique identifier label for the report. This label cannot be modified.

**Name**

The Name field can be used to provide a name for the report. The report name is used for identification purposes only.
Chapter 8. The Projman Application

**Identifiers**
When this button is pressed, a window is opened to enable you to add selections to the Identifier list. Selections are added to the bottom of the list as they are chosen. Items can be removed from the Identifier list by selecting the desired items and pressing the Remove button.

**Identifier List**
The Identifier list contains the list of variables that have been selected to provide identifying information for the report. For instance, the values of these variables are used to identify (highlight) records in a tabular report or activity bars on a Gantt chart. Use the Identifiers button to add items to this list.

**Sub-Groups**
When this button is pressed, a window is opened to enable you to add selections to the Sub-Group list. Selections are added to the bottom of the list as they are chosen. Items can be removed from the Sub-Group list by selecting the desired items and pressing the Remove button.

**Sub-Group List**
The Sub-Group list contains the list of variables that have been selected to provide grouping information for the report. For instance, like values of these variables are used to group records in a tabular report for separate analysis. Similarly, like values of these variables divide activities into groups for display on separate Gantt charts. Note that this separation (and any necessary sorting) is done automatically. Use the Sub-Groups button to add items to this list.

**Remove**
When this button is pressed, highlighted selections in the Identifier and Sub-Group lists are deleted.

**OK**
If you press the OK button, the current values displayed in the window are stored and the window is closed.

**Cancel**
If you press the Cancel button, all values displayed in the window are returned to their original values (as when the window was opened) and the window is closed.

**View**
When this button is pressed, the report is generated. This option is very useful for testing modifications to a report before actually saving the changes.
Edit Source...

When this button is pressed, a window is displayed for modifying the report source code. Changes to the source code should be made with care as incorrect changes can disable report options or cause the report to fail entirely. In the Edit Source window, type `ok` on the command line to save changes and `cancel` to cancel.

Macro Variables

This section describes the SAS macro variables that are defined by the Projman application during report generation. Many of these macro variables are used in the SAS source code provided with the standard reports. When you modify the source code of custom reports, this information may be helpful.

Standard Macro Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;reptname</td>
<td>‘report name’</td>
<td>Current report name</td>
</tr>
<tr>
<td>&amp;projname</td>
<td>‘project name’</td>
<td>Active project name</td>
</tr>
<tr>
<td>&amp;projdesc</td>
<td>‘project description’</td>
<td>Active project description</td>
</tr>
<tr>
<td>&amp;rdformat</td>
<td>datetime7. or datetime13.</td>
<td>specified by the Formats option</td>
</tr>
<tr>
<td>&amp;varlist</td>
<td>‘Variables variable names’</td>
<td>specified by the Variable list</td>
</tr>
<tr>
<td>&amp;ivarlist</td>
<td>‘Identifier variable names’</td>
<td>specified by the Identifier list</td>
</tr>
<tr>
<td>&amp;byvlist</td>
<td>BY + ‘Sub-Group variable names’</td>
<td>specified by the Sub-Group List</td>
</tr>
</tbody>
</table>

Calendar Reports

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;start</td>
<td>‘start variable name’</td>
<td>specified by the Schedule option</td>
</tr>
<tr>
<td>&amp;finish</td>
<td>‘finish variable name’</td>
<td>finish corresponding to &amp;start</td>
</tr>
<tr>
<td>&amp;calopts</td>
<td>header=Small, Medium, or Large</td>
<td>specified by the Header Size option</td>
</tr>
<tr>
<td></td>
<td>fill</td>
<td>if Display All Months is selected</td>
</tr>
<tr>
<td></td>
<td>missing</td>
<td>if Include Missing Labels is selected</td>
</tr>
<tr>
<td>&amp;caldata</td>
<td>caledata=work.cal workdata=work.shift(drop=holiday workday)</td>
<td>if calendars used in scheduling</td>
</tr>
<tr>
<td></td>
<td>holidata=work.hol</td>
<td>if holidays used in scheduling</td>
</tr>
<tr>
<td>&amp;calstmt</td>
<td>calid calid;</td>
<td>if calendars used in scheduling</td>
</tr>
<tr>
<td></td>
<td>outstart monday; outfinish friday;</td>
<td>if Display Weekdays Only is selected</td>
</tr>
<tr>
<td>&amp;holstmt</td>
<td>holistart hstart; holidur holidur; holifin hfinish; holiname holiname;</td>
<td>if holidays used in scheduling</td>
</tr>
</tbody>
</table>

Note that the &caldata, &calstmt, and &holstmt macro variables are not defined unless the active project’s duration unit is ‘DAY’ or ‘WEEKDAY’.
### Gantt Chart Reports

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;gout</td>
<td>gout=work.ggseg</td>
<td>graphics catalog specification</td>
</tr>
<tr>
<td>&amp;resdict</td>
<td>work.resdict</td>
<td>resource dictionary data set</td>
</tr>
<tr>
<td>&amp;zonevar</td>
<td>‘variable name’</td>
<td>first variable in Sub-Group List</td>
</tr>
<tr>
<td>&amp;res</td>
<td>Lineprinter, Fullscreen or Graphics</td>
<td>specified by the Resolution option</td>
</tr>
</tbody>
</table>
| &gantdata  | caledata=work.cal workdata=work.shift(drop=holiday
day) | if calendars used in scheduling                  |
|            | holodata=work.hol                             | if holidays used in scheduling                   |
|            | labldata=work.labels                          | if Mark Parent Tasks is selected                 |
|            | precdata=work.reptemp (where=(obs_type='LOGIC')) | if Show Precedence is selected                  |
|            | mininterval='duration unit'                   | specified by the Per Interval option             |
|            | scale='integer value'                         | specified by the Columns option                  |
|            | name="g"                                     | graphics catalog entry name                      |
|            | maxids                                        | draw maximum number of identifiers               |
|            | interval='duration unit'                      | duration unit used for scheduling                |
|            | dur=duration cmile='color'                    | if Show Milestones is selected                   |
|            | activity=actid succ=succid lag=lag cprec='color' | if Show Precedence is selected                  |
|            | noarrowhead                                   | if Suppress Arrowheads is selected               |
|            | nojobnum                                      | unless Show Job Numbers is selected              |
|            | nolegend                                      | unless Show Chart Legend is selected             |
|            | compress                                      | if Compress To One Page is selected              |
|            | hconnect chcon='color'                        | if Draw Task Lines is selected                   |
|            | critflag                                      | if Flag Critical Tasks is selected               |
|            | combine                                       | if Combine Schedules is selected                 |
|            | labvar=actid                                  | if Mark Parent Tasks is selected                 |
|            | markwknd                                      | if Mark Weekends is selected                     |
|            | markbreak                                     | if Mark Work Breaks is selected                  |
|            | idpages                                       | if Print Id On Each Page is selected             |
|            | fill                                          | if Fill Pages Completely is selected             |
|            | noframe                                       | if Suppress Chart Frame is selected              |
|            | pcompress                                     | if Proportional Compress is selected             |
|            | hpages='integer value'                        | specified by the Horizontal Pages option         |
|            | vpages='integer value'                        | specified by the Vertical Pages option           |
|            | height='numeric value'                        | specified by the Text Height option              |
|            | caxis='color'                                 | specified by the Time Axis option                |
|            | ctext='color'                                 | specified by the Text option                    |
|            | cframe='color'                                | specified by the Chart Frame option              |
|            | holiday=(hstart) holidur=(holidur) hofinish=(hfinish) | if holidays were used in scheduling |
|            | calid=calid                                   | if calendars were used in scheduling            |
|            | timenow='timenow date'                        | if Draw Timenow Line is selected                 |
|            | notnlabel                                     | unless Label Timenow Line is selected            |
Note that the CALEDATA=, HOLIDATA= AND WORKDATA= specifications are not added to the &gantdata macro variable unless the active project’s duration unit is larger than ‘DAY’.

**Network Diagram Reports**

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;gout</td>
<td>gout=work.ngseg</td>
<td>graphics catalog specification</td>
</tr>
<tr>
<td>&amp;res</td>
<td>Lineprinter, Fullscreen or Graphics specified by the Resolution option</td>
<td></td>
</tr>
<tr>
<td>&amp;netopts</td>
<td>name=&quot;n&quot;</td>
<td>graphics catalog entry name</td>
</tr>
<tr>
<td></td>
<td>zone='variable name'</td>
<td>specified by the Zone Variable option</td>
</tr>
<tr>
<td></td>
<td>nozonelabel</td>
<td>if Suppress Zone Labels is selected</td>
</tr>
<tr>
<td></td>
<td>zonespace</td>
<td>if Space Between Zones is selected</td>
</tr>
<tr>
<td></td>
<td>nodelayoutld</td>
<td>unless Show Default Vars is selected</td>
</tr>
<tr>
<td></td>
<td>nolabel</td>
<td>unless Label Variables is selected</td>
</tr>
<tr>
<td></td>
<td>duration=duration</td>
<td>if Show Duration is selected</td>
</tr>
<tr>
<td></td>
<td>separatearcs</td>
<td>if Draw Separate Arcs is selected</td>
</tr>
<tr>
<td></td>
<td>showstatus</td>
<td>if Show Progress is selected</td>
</tr>
<tr>
<td></td>
<td>compress</td>
<td>if Compress To One Page is selected</td>
</tr>
<tr>
<td></td>
<td>centerid</td>
<td>if Center Id Values is selected</td>
</tr>
<tr>
<td></td>
<td>spanningtree</td>
<td>if Spanning Tree Layout is selected</td>
</tr>
<tr>
<td></td>
<td>lag=(lag)</td>
<td>if Show Precedence Type is selected</td>
</tr>
<tr>
<td></td>
<td>rectilinear</td>
<td>if Draw Rectangular Arcs is selected</td>
</tr>
<tr>
<td></td>
<td>pcompress</td>
<td>if Proportional Compress is selected</td>
</tr>
<tr>
<td></td>
<td>arrowhead=0</td>
<td>if Suppress Arrowheads is selected</td>
</tr>
<tr>
<td></td>
<td>noarrowfill</td>
<td>if Draw Open Arrowheads is selected</td>
</tr>
<tr>
<td></td>
<td>nonumber</td>
<td>if Suppress Page Numbers is selected</td>
</tr>
<tr>
<td></td>
<td>hpages='integer value'</td>
<td>specified by the Horizontal Pages option</td>
</tr>
<tr>
<td></td>
<td>vpages='integer value'</td>
<td>specified by the Vertical Pages option</td>
</tr>
<tr>
<td></td>
<td>height='numeric value'</td>
<td>specified by the Text Height option</td>
</tr>
<tr>
<td></td>
<td>arcs='color'</td>
<td>specified by the Arcs option</td>
</tr>
<tr>
<td></td>
<td>ccritarcs='color'</td>
<td>specified by the Critical Arcs option</td>
</tr>
<tr>
<td></td>
<td>ctext='color'</td>
<td>specified by the Node Text option</td>
</tr>
<tr>
<td></td>
<td>frame caxis='color'</td>
<td>if Draw Border is selected</td>
</tr>
<tr>
<td></td>
<td>autozone</td>
<td>if Automatic Zone Layout is selected</td>
</tr>
<tr>
<td></td>
<td>linear</td>
<td>if Draw Linear Time Axis is selected</td>
</tr>
<tr>
<td></td>
<td>autoref cref='color'</td>
<td>if Draw Reference Lines is selected</td>
</tr>
<tr>
<td></td>
<td>refbreak</td>
<td>if Show Ref. Line Breaks is selected</td>
</tr>
<tr>
<td></td>
<td>showbreak</td>
<td>if Show Time Axis Breaks is selected</td>
</tr>
<tr>
<td></td>
<td>notimeaxis</td>
<td>if Suppress Time Axis is selected</td>
</tr>
<tr>
<td></td>
<td>align='schedule variable name'</td>
<td>specified by the Schedule option</td>
</tr>
</tbody>
</table>

Note that the following specifications are not added to the &netopts macro variable unless the Schedule option is specified: FRAME, CAXIS=, LINEAR, AUTOREF, CREF=, REFBREAK, SHOWBREAK, AND NOTIMEAXIS.
Resource Reports

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;gout</td>
<td>gout=work.rgseg</td>
<td>graphics catalog specification</td>
</tr>
<tr>
<td>&amp;plotopts</td>
<td>name=&quot;r&quot;</td>
<td>graphics catalog entry name</td>
</tr>
<tr>
<td>&amp;chrtopts</td>
<td>name=&quot;r&quot;</td>
<td>graphics catalog entry name</td>
</tr>
<tr>
<td>&amp;resdict</td>
<td>work.resdict</td>
<td>resource dictionary data set</td>
</tr>
<tr>
<td>&amp;schedout</td>
<td>‘data set name’</td>
<td>report schedule data set</td>
</tr>
<tr>
<td>&amp;varlist</td>
<td>‘<em>.<em>ALL.</em>.</em>’</td>
<td>if Scope option is set to All Resources</td>
</tr>
<tr>
<td></td>
<td>‘resource name’</td>
<td>if Scope option is set to Selected Resource</td>
</tr>
<tr>
<td>&amp;res</td>
<td>Lineprinter or Graphics</td>
<td>specified by the Resolution option</td>
</tr>
<tr>
<td>&amp;interval</td>
<td>‘duration unit’</td>
<td>specified by the Frequency scheduling option</td>
</tr>
<tr>
<td>&amp;mwhere</td>
<td></td>
<td>not currently initialized</td>
</tr>
</tbody>
</table>

Tabular Listing Reports

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;prnopts</td>
<td>round</td>
<td>if Round values is selected</td>
</tr>
<tr>
<td></td>
<td>double</td>
<td>if Double space is selected</td>
</tr>
<tr>
<td></td>
<td>noobs</td>
<td>unless Print observation number is selected</td>
</tr>
<tr>
<td></td>
<td>label</td>
<td>unless Suppress labels is selected</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>if Print number of observations is selected</td>
</tr>
<tr>
<td></td>
<td>uniform</td>
<td>if Format pages uniformly is selected</td>
</tr>
</tbody>
</table>

Calendar Report Options Window

This window provides access to the settings and options available for calendar reports. By changing values in this window, you can create and customize calendar reports to meet your specific needs. Note that some options may be unavailable if the active project does not contain the appropriate data. Also, if data unique to a specific project are required by a report, that report may fail when generated for a different project.

Note that reports can be generated and viewed to verify the results before any changes are saved. Access to the source code is also provided.

For a description of standard report options, see the “Standard Options” section on page 759.
Schedule

The setting of the Schedule option indicates which project schedule is to be used to mark activities on the calendar. You can choose from the actual, baseline, early, late, and resource-constrained schedules.

Header Size

This option specifies the type of heading to use in displaying the name of the month and year on the calendar report. When Small is selected, the month and year are displayed on one line. For the Medium selection, the month and year are displayed in a box 4-lines high, while the Large selection will display the month name 7-lines high (the year is included if space is available).

Display All Months

When selected, this option specifies that all months between the first and last activity start and finish dates, inclusive, are to be displayed (including months that contain no activities). If this option is not used, months with no activities are omitted from the report.

Include Missing Labels

When selected, this option specifies that missing values of identifier variables will appear in the label of an activity. If this option is not selected, missing values are ignored in labeling activities.

Display Weekdays Only

When selected, this option specifies that only days from Monday through Friday are to be displayed in the calendar.
Gantt Chart Options Window

This window provides access to the settings and options available for Gantt chart reports. By changing values in this window, you can create and customize Gantt chart reports to meet your specific needs. Note that some options may be unavailable if the active project does not contain the appropriate data. Also, if data unique to a specific project are required by a report, that report may fail when generated for a different project.

Note that reports can be generated and viewed to verify the results before any changes are saved. Access to the source code is also provided.

For a description of standard report options, see the “Standard Options” section on page 759.

Schedules

The Schedules options provide the capability to control which project schedules are to be drawn on the Gantt chart. You can choose one or more of the following schedules: actual, baseline, early start, late start, and resource-constrained. Note that at least one schedule should be selected. If the active project does not have the indicated schedules, the extra specifications are ignored when the report is generated.

Resolution

This option is used to specify the resolution of the Gantt chart report. The report can be produced with either lineprinter, fullscreen, or graphics-quality resolution.

Colors...

By pressing this button, you can access a window containing color options for the Gantt chart report. These options are used to control the colors of different portions of the Gantt chart output. Note that these options have no effect unless the Resolution option is set to produce a graphics-quality report. For more information, see the “Color Options” section on page 770.
Options...

By pressing this button, you can access a window containing additional options for the Gantt chart report.

---

**Chart Control Options**

**Horizontal Pages**

When the **Horizontal Pages** option is selected (by activating the check box), the Gantt chart is scaled so that it spans the specified number of pages in the horizontal direction. The desired number of pages can be adjusted with the horizontal slider. Note that this option is used only when the report **Resolution** option is set for graphics-quality output. Due to intrinsic constraints on the output, the number of generated pages may not be exactly equal to the amount specified with this option.

**Vertical Pages**

When the **Vertical Pages** option is selected (by activating the check box), the Gantt chart is scaled so that it spans the specified number of pages in the vertical direction. The desired number of pages can be adjusted with the horizontal slider. Note that this option is used only when the report **Resolution** option is set for graphics-quality output. Due to intrinsic constraints on the output, the number of generated pages may not be exactly equal to the amount specified with this option.

**Compress To One Page**

When this option is specified, the Gantt chart is compressed so that it is drawn on one physical page. Note that this option is ignored unless the report **Resolution** option is set for graphics-quality output.
Proportional Compress

When this option is specified, the Gantt chart is compressed so that it is drawn on one physical page. This option is the same as the Compress To One Page option except that the compression of the chart is done proportionally to maintain the correct aspect ratio. In other words, the amount of horizontal and vertical compression is equal. Note that this option is used only when the report Resolution option is set for graphics-quality output.

Fill Pages Completely

When the Gantt chart spans multiple pages, this option causes each page of the Gantt chart to be filled completely before a new page is started. By default, the pages are constrained to contain an approximately equal number of activities.

Show Chart Legend

When this option is specified, a concise default legend is displayed at the end of each page of the Gantt chart.

Suppress Chart Frame

When this option is specified, the vertical boundaries to the left and right of the Gantt chart are not drawn; only the time axis and a parallel line at the bottom of the chart are drawn. If this option is not specified, the entire chart is framed. Note that this option is ignored unless the report Resolution option is set for graphics-quality output.

Draw TimeNow Line

When this option is specified, a vertical reference line is drawn on the time axis at the timenow date.

Label TimeNow Line

If the Draw TimeNow Line option is specified, selecting this option displays the value of the timenow date below the timenow line at the bottom of the Gantt chart.

Print Id On Each Page

When the Gantt chart spans multiple pages, selecting this option causes all values in the Identifier list to be displayed on each page of the Gantt chart.

Task Options

Text Height

When text height is specified as \( h \), all text drawn on the Gantt chart (excluding titles and footnotes) is \( h \) times the value of the global text height option, which is specified in the Report Options window. For more information, see the “Report Options Window” section on page 755. Note that this option is used only when the report Resolution option is set for graphics-quality output.
**Show Job Numbers**

When this option is specified, an identifying job number is displayed beside each activity on the Gantt chart.

**Flag Critical Tasks**

When selected, this option indicates that critical activities are to be flagged as critical or supercritical. Critical activities are marked CR, and supercritical activities are marked SC on the left side of the Gantt chart.

**Show Precedence**

When this option is specified, precedence relationships are drawn on the Gantt chart. This option is used only when the report Resolution option is set for graphics-quality output.

**Suppress Arrowheads**

When the Show Precedence option is specified, selecting this option indicates that arcs drawn on the Gantt chart should be drawn without arrowheads. This option is ignored unless the report Resolution option is set for graphics-quality output.

**Draw Task Lines**

When specified, this option indicates that lines are to be drawn from the left edge of the Gantt chart to the beginning of the activity schedule bar.

---

**Time Axis Controls**

**Columns**

The horizontal slider is used to specify the number of columns (amount of space) for drawing each interval on the time axis, where interval is the value indicated with the Per Interval option. These options can be used to scale the size of the Gantt chart.

**Per Interval**

The Per Interval combo box indicates the duration unit to use for scaling the size of the Gantt chart. The Columns option indicates the number of columns (amount of space) available for drawing each specified interval on the time axis.

---

**Task Bar Options**

**Show Milestones**

When this option is specified, all activities that have zero duration are represented on the Gantt chart by a milestone symbol. This option is ignored unless the report Resolution option is set for graphics-quality output.
**Combine Schedules**

When this option is specified, the early/late and actual schedule bars of an activity are concatenated into a single bar on the Gantt chart. A vertical reference line is automatically drawn at the current *timenow* date. This timenow line acts to partition the Gantt chart into two regions; the region to the left of the timenow line reporting the actual schedule (events that have already taken place) and the region to the right (including the timenow line) reporting only the predicted early/late schedule.

**Mark Parent Tasks**

When this option is specified, symbols are added to the activity bars of *supertasks* on the Gantt charts. These symbols emphasize the parent-child relationship between the supertask and its *subtasks*. This option is used only when the report *Resolution* option is set for graphics-quality output.

**Mark Weekends**

When this option is specified, all weekends (or nonworked days during a week) are marked on the Gantt chart.

**Mark Work Breaks**

When this option is specified, all work breaks (nonworked periods) during a day are marked on the Gantt chart. This option automatically activates the *Mark Weekends* option.

**Color Options**

This window is used to set options that control the color of various features of the Gantt chart report. Note that these options are ignored unless the report *Resolution* option is set for graphics-quality output.

**Text**

The *Text* combo box can be used to specify the color to use for displaying text that appears on the Gantt chart. Note that this color specification does not apply to titles, footnotes or any annotated text.
**Time Axis**

The **Time Axis** combo box can be used to specify the color to use for displaying the time axis along the top of the Gantt chart. The same color is also used for the frame around the chart area (where the activity bars are drawn).

**Precedence**

The **Precedence** combo box can be used to specify the color to use for drawing the precedence connections on the Gantt chart. Note that this option is used only when precedence relationships are to be drawn on the Gantt chart.

**Milestones**

The **Milestone** combo box can be used to specify the color to use for drawing any milestone symbols that appear on the Gantt chart.

**Chart Frame**

The **Chart Frame** combo box can be used to specify the background color for the chart area (where the activity bars are drawn).

**Task Lines**

The **Task Lines** combo box can be used to specify the color to use for drawing the task lines on the Gantt chart. Note that this option is used only when task lines are to be drawn on the Gantt chart.

---

**Network Diagram Options Window**

This window provides access to the settings and options available for network diagram reports. By changing values in this window, you can create and customize reports to meet your specific needs. Note that some options may be unavailable if the active project does not contain the appropriate data. Also, if data unique to a specific project are required by a report, that report may fail when generated for a different project.

Note that reports can be generated and viewed to verify the results before any changes are saved. Access to the source code is also provided.

For a description of standard report options, see the “Standard Options” section on page 759.
Zone

When the Zone button is pressed, a window is opened to enable you to select a Zone variable. The selection is displayed on the window. The Zone variable can be removed by selecting the variable and pressing the Remove button.

Zone Variable

The Zone variable is used to divide the network diagram into horizontal bands or zones corresponding to the distinct values of the variable. Most projects have at least one natural classification of the different activities in the project: department, type of work involved, location of the activity, and so on. By specifying a Zone variable, you can use this classification to subdivide the network diagram. The zones are automatically labeled with the Zone variable values and are separated by dividing lines. Use the Zone button to select a Zone variable.

Remove

When this button is pressed, highlighted selections in the Identifier and Zone lists are deleted.

Resolution

This option is used to specify the resolution of the network diagram report. The report can be produced with either lineprinter, fullscreen, or graphics-quality resolution.

Observations

This option is used to specify which observations are used to produce the network diagram. For hierarchical projects, selecting Leaf Tasks Only means that only the lowest level tasks appear in the network diagram. When All Tasks is specified, all tasks (regardless of their hierarchical relationship) appear in the network diagram as separate nodes.
Colors...

By pressing this button, you can access a window containing color options for the network diagram report. These options are used to control the colors of different portions of the network diagram. Note that these options are ignored unless the Resolution option is set to produce a graphics-quality report. For more information, see the “Color Options” section on page 777.

Options...

By pressing this button, you can access a window containing additional options for the network diagram report.

Page/Layout Control Options

Horizontal Pages

When the Horizontal Pages option is selected (by activating the check box), the network diagram is scaled so that it spans the specified number of pages in the horizontal direction. The desired number of pages can be adjusted with the horizontal slider. Note that this option is used only when the report Resolution option is set for graphics-quality output. Due to intrinsic constraints on the output, the number of generated pages may not be exactly equal to the amount specified with this option.

Vertical Pages

When the Vertical Pages option is selected (by activating the check box), the network diagram is scaled so that it spans the specified number of pages in the vertical direction. The desired number of pages can be adjusted with the horizontal slider. Note that this option is used only when the report Resolution option is set for graphics-quality output. Due to intrinsic constraints on the output, the number of generated pages may not be exactly equal to the amount specified with this option.
**Compress To One Page**

When this option is specified, the network diagram is compressed so that it is drawn on one physical page. Note that this option is ignored unless the report Resolution option is set for graphics-quality output.

**Proportional Compress**

When this option is specified, the network diagram is compressed so that it is drawn on one physical page. This option is the same as the Compress To One Page option except that the compression of the diagram is done proportionally to maintain the correct aspect ratio. In other words, the amount of horizontal and vertical compression is equal. Note that this option is ignored unless the report Resolution option is set for graphics-quality output.

**Spanning Tree Layout**

When this option is specified, the nodes in the network diagram are positioned using a spanning tree. This method typically results in a wider layout than the default. However, for networks that have totally disjoint pieces, this option separates the network into connected components (or disjoint trees). This option is ignored if a time axis is being drawn or if the Zone variable is specified.

**Automatic Zone Layout**

When specified, this option allows automatic zoning (or dividing) of the network into connected components. This option is equivalent to adding an automatic Zone variable that associates a tree number for each node. The tree number refers to a number assigned automatically to each distinct tree of a spanning tree of the network.

**Suppress Zone Labels**

When this option is selected and a Zone variable is specified, the zone labels and dividing lines are omitted from the network diagram.

**Space Between Zones**

When this option is selected and the Zone variable is specified, extra empty space is placed between consecutive zones.

**Draw Border**

When this option is specified, a border (or frame) is drawn around the network diagram. This option is ignored if no time axis is being drawn or if no Zone variable is specified.

**Suppress Page Numbers**

When this option is selected, no page numbers are drawn in the upper right-hand corner of a multipage network diagram. By default, pages are numbered from left to right, top to bottom.
Node Options

Text Height

When text height is specified as $h$, all text drawn on the network diagram (excluding titles and footnotes) is $h$ times the value of the global text height option, which is specified in the Report Options window. For more information on this window, see the “Report Options Window” section on page 755. Note that this option is ignored unless the report Resolution option is set for graphics-quality output.

Center Id Values

When this option is specified, all values of variables in the Identifier list are centered within each node in the network diagram. By default, character valued variables are left justified and numeric valued variables are right justified within each node. Note that this option is ignored unless the report Resolution option is set for graphics-quality output.

Show Default Vars

When this option is specified, values of the default variables are displayed within each node. These values include the activity name and any project schedule dates or float amounts. If this option is not selected, only values appearing in the Identifier list are displayed.

Label Variables

When this option is specified, short (3-character) labels are displayed in front of the values that are listed within each node of the network diagram. By default, there are no labels.

Show Duration

When this option is specified, the duration of each activity is listed within the corresponding node in the network diagram.

Show Progress

When this option is specified, the current status (completed, in-progress, or pending) is indicated within each node of the network diagram. If the network diagram is created with lineprinter or fullscreen resolution, activities in progress are outlined with the letter P and completed activities are outlined with the letter F; in graphics-quality resolution, in-progress activities are marked with a diagonal line across the node from the bottom left to the top right corner, while completed activities are marked with two diagonal lines. Pending activities are drawn in the default manner.
### Time Scale Options

**Schedule**

Selecting a schedule indicates that a time axis is to be drawn across the top of the network diagram and nodes are to be positioned horizontally according to the values of the selected schedule start times. The minimum and maximum values are used to determine the time axis. You can choose from the baseline, early, late, and resource-constrained schedules.

**Suppress Time Axis**

When this option is selected, no time axis is drawn on the network diagram; however, nodes are still positioned horizontally according to the Schedule option.

**Draw Linear Time Axis**

When a time axis is being drawn on the network diagram, the axis is divided up into even intervals based on the duration unit. By default, only those intervals (columns) that contain at least one activity are drawn. When this option is specified, all intervals are drawn. In some cases, this option may cause the network diagram to span many pages in the horizontal direction.

**Show Time Axis Breaks**

When this option is specified, breaks in the time axis are indicated by drawing a jagged break in the time axis line just before the tick mark corresponding to the break. The time axis is determined by the setting of the Schedule option.

**Draw Reference Lines**

When this option is specified, a reference line is drawn at every tick mark (column) along the time axis. Reference lines are vertical lines drawn at specific positions along the time axis to indicate time intervals. The time axis is determined by the setting of the Schedule option.

**Show Ref. Line Breaks**

When this option is specified, breaks in the time axis are indicated by drawing a zigzag line down the network diagram just before the tick mark corresponding to the break. The time axis is determined by the setting of the Schedule option.

### Arc Options

**Draw Separate Arcs**

When this option is specified, arcs drawn on the network diagram are allowed to follow distinct tracks. By default, all segments of the arcs are drawn along a central track between the nodes, which may cause several arcs to be drawn on top of one another. If this option is selected, the arcs are drawn so that they do not overlap. Note that this option is ignored unless the report Resolution option is set for graphics-quality output.
**Draw Rectangular Arcs**

When this option is specified, all arcs are drawn with rectangular corners. By default, arcs are drawn with rounded corners when the report **Resolution** option is set for graphics-quality output.

**Show Precedence Type**

When this option is specified, arcs are drawn to indicate the type of logical relationship between the activities at either end of the arc. The start and end points of the arcs are adjusted to represent the specific relationship. By default, all arcs are drawn out of the right edge of nodes and into the left edge of nodes.

**Suppress Arrowheads**

When this option is specified, all arcs are drawn without arrowheads.

**Draw Open Arrowheads**

When this option is selected, the arrowheads on the end of the arcs are not filled. By default, the arrowheads are filled (solid). Note that this option is ignored unless the report **Resolution** option is set for graphics-quality output.

**Color Options**

This window is used to set options that control the color of various features of the network diagram. Note that these options are ignored unless the report **Resolution** option is set for graphics-quality output.

![Network Diagram Color Options](image)

**Arcs**

The **Arcs** combo box can be used to specify the color to use for drawing the connecting lines between the nodes in the network diagram.

**Critical Arcs**

The **Critical Arcs** combo box can be used to specify the color to use for drawing the arcs connecting critical activities in the network diagram.
Chapter 8. The Projman Application

Reference Lines

The Reference Lines combo box can be used to specify the color to use for drawing reference lines on the network diagram. Reference lines are vertical lines drawn at specific positions along the time axis to indicate time intervals. Note that this option is used only when a time axis is drawn along the top of the network diagram.

Node Text

The Node Text combo box can be used to specify the color to use for displaying text that appears within nodes on the network diagram. Note that this color specification does not apply to titles, footnotes, or any annotated text.

Time Axis

The Time Axis combo box can be used to specify the color to use for displaying the time axis along the top of the network diagram. The same color is also used for the frame around the chart area (where the activity bars are drawn). Note that this option is used only when a time axis is drawn along the top of the network diagram.

Resource Report Options Window

This window provides access to the settings and options available for resource reports. By changing values in this window, you can create and customize reports to meet your specific needs. Note that some options may be unavailable if the active project does not contain the appropriate data. Also, if data unique to a specific project are required by a report, that report may fail when generated for a different project.

Note that reports can be generated and viewed to verify the results before any changes are saved. Access to the source code is also provided.

For a description of standard report options, see the “Standard Options” section on page 759.

Resource

You can use the Resource combo box to select a specific resource for the report. By default, all resources are used for the report. When a resource is selected and the Scope option indicates that the selected resource is to be used, the resulting report contains summarized information for that resource only.
Scope

The Scope option indicates whether the report is to utilize data about all project resources or only the resource specified with the Resource option. By default, all resources are used for the report. When a resource is selected with the Resource option and Selected Resource is chosen, the resulting report contains summarized information for the selected resource only.

Resolution

This option is used to specify the resolution of the resource report. The report can be produced with either lineprinter or graphics quality.

Tabular Listing Options Window

This window provides access to the settings and options available for tabular listing reports. By changing values in this window, you can create and customize reports to meet your specific needs. Note that some options may be unavailable if the active project does not contain the appropriate data. Also, if data unique to a specific project are required by a report, that report may fail when generated for a different project.

Note that reports can be generated and viewed to verify the results before any changes are saved. Access to the source code is also provided.

For a description of standard report options, see the “Standard Options” section on page 759.

Variables

When this button is pressed, a window is opened to allow selections to be added to the Variable list. Selections are added to the bottom of the list as they are chosen. Items can be removed from the Variable list by selecting the desired items and pressing the Remove button.
Variable List

The Variable list contains the list of variables that are to be displayed in the tabular listing report. The information contained in these variables is displayed to the right of the information provided by the Identifier list in the report. Use the Variables button to add items to this list.

Remove

When this button is pressed, highlighted selections in the Identifier, Sub-Group, and Variable lists are deleted.

Observations

This option enables you to control which observations are used for the tabular listing report. The All selection indicates that all records in the input data set are to be used, while the Collapse selection indicates that only one observation should be displayed for each activity. When activities have multiple successors (as is usually the case), the input data set contains multiple records for some activities. Thus, when all observations are used, there can be some duplication in the resulting report.

Options...

By pressing this button, you can access a window containing additional options for the tabular listing report. These options are used to format the output.

Additional Options

Round values

When you select this option, all numeric variables are rounded to two decimal places. Values are rounded before summing for totals and subtotals.

Double space

When you select this option, the report is double spaced. If this option is not specified, the report is single spaced.

Suppress labels

By default, variable labels are displayed instead of the variable names as the column heading in the tabular listing report. If you choose this option, the labels are suppressed and the variable names are used instead.
**Print observation number**

When this option is selected, an observation (record) number is displayed for each observation in the tabular listing report. If the Identifier list is not empty, this option has no effect.

**Print number of observations**

When this option is selected, the total number of observations (records) in the tabular listing report is displayed at the end of the report.

**Format pages uniformly**

When this option is specified, all pages of the tabular listing report are formatted uniformly. If this option is not specified, some pages may be spaced differently (depending on the data).

---

**Import Activity Data Set Window**

This window enables you to import a SAS data set that contains project activity information. Projman assumes that the selected data set is in the format appropriate for input to the CPM or PM procedure. For more information, refer to Chapter 2, “The CPM Procedure,” or Chapter 3, “The PM Procedure.”

When you select the data set that you want to import, you must identify certain variables within that data set. Projman attempts to recognize the variables by searching for some standard names; however, it is likely that you will need to select the required variables. When all the necessary selections have been made and the activity data set is imported, a new project is created.
Chapter 8. The Projman Application

Standard Import Options

The following set of options are common to several different import windows.

**Library**

This list contains all currently defined SAS library names. Use this list to select the library that contains the data set that you want to import. Selection of a library automatically populates the Data Set list.

**Data Set**

This list contains the names of all SAS data sets that currently reside in the selected library. When you select the data set that you want to import, the Variables list is populated automatically. When a data set is selected, some automatic variable selection may also take place.

**Variables**

This list contains the names of the variables that currently exist in the selected SAS data set. To import variable selections, simply select the desired variable or variables in this list and press the appropriate button.

**Import**

When all necessary selections have been made, pressing this button causes the selected data set to be imported. If additional selections are required, an attention window is displayed.

**OK**

Pressing this button accepts the current selections and closes the window.

**Cancel**

Pressing this button cancels the current selections and closes the window or aborts the import process if it is selected in the primary import window.

**Reset**

Pressing this button causes all variable selections in the current window to be cleared.

**Remove**

When the Remove check box is selected, pressing a variable button causes the corresponding import variable selection to be cleared. You can use the Reset button to clear all import variable selections in the current window.
Secondary Windows

**Progress / Baseline**

Pressing this button opens a window that enables you to specify variables that contain activity progress information and baseline schedules. This information is optional. For information on this window, see the “Progress/Baseline Information” section on page 785.

**Resources**

Pressing this button opens a window that enables you to identify the variables that contain resource requirement information for the activities. You can also specify which variable contains the activity work rate. This information is optional. For information on this window, see the “Resource Information” section on page 786.

**Additional Info**

Pressing this button opens a window that enables you to specify variables that contain information about activity target (alignment) dates, limits on activity delay, activity priorities for resource scheduling, and activity splitting. This information is optional. For information on this window, see the “Additional Information” section on page 787.

**Basic Activity Information**

This window is used to identify variables that contain basic activity information. For a description of standard import options, see the “Standard Import Options” section on page 782.
Activity

The Activity variable should contain values that represent the names of the activities of the project. These names are assumed to be unique for each activity. This variable can contain either character or numeric values. If Successor variables are specified, the format must be the same as the Activity variable. An Activity variable is required.

Successors

The Successor variables should contain values that represent the names of the successor activities of the project. This variable can contain either character or numeric values. If Successor variables are specified, the format must be the same as the Activity variable.

Description

The Description variable normally will contain values that provide more detailed information (that is, longer name) about the activity. This variable can be either character or numeric.

Project

The Project variable should contain values that represent the names of the parent (project) activities of the project. In other words, this variable indicates the parent-child (supertask-subtask) relationship between the activity named in the Project variable and the activity named in the Activity variable. This variable should be in the same format as the Activity variable.

Duration

The Duration variable should contain values that represent the duration of each project activity. The unit of duration is assumed to be the same for each activity. This variable must be numeric.

Lead / Lag

The Lead / Lag variables should contain values that represent the lags (or nonstandard precedence relationships) between the activities specified in the Activity and Successor variables. Although it is not required, the number of Lead / Lag variables should match the number of Successor variables. The lag values are required to follow the same naming convention as that used by the CPM procedure. For more information, see the LAG= option in the “SUCCESSOR Statement” section on page 86.

Calendar

The Calendar variable should contain values that represent the name of the calendar that the activity is to follow. Projman assumes that the calendars will be defined after the activities are imported. At that time, you can create the calendars manually or import a calendar data set. This variable can be either character or numeric.
Details

The Details variables can be used to import nonstandard information about the activities that is stored in the import data set. For instance, you may want to import information stored in variables representing the phase of the project or the department that is responsible for the activity. These variables can be both character and numeric.

Progress/Baseline Information

This window is used to identify variables that contain activity progress information and baseline schedules. For a description of standard import options, see the “Standard Import Options” section on page 782.

Actual Start

The Actual Start variable should contain values that represent the actual start date of the activity. This variable must be numeric.

Actual Finish

The Actual Finish variable should contain values that represent the actual finish date of the activity. This variable must be numeric.

% Completed

The Percent Completed variable should contain values representing the percentage of the activity that is completed. This variable must be numeric and should contain values between 0 and 100.
Rem. Duration

The Remaining Duration variable should contain values that represent the amount of time remaining for an activity that is in progress. This variable must be numeric and should contain nonnegative values. The unit of duration is assumed to be the same as that for the Duration variable.

Baseline Start

The Baseline Start variable should contain values that represent the baseline start date of the activity. This variable must be numeric.

Baseline Finish

The Baseline Finish variable should contain values that represent the baseline finish date of the activity. This variable must be numeric.

Resource Information

This window is used to identify variables that contain resource requirement information. For a description of standard import options, see the “Standard Import Options” section on page 782.

Resources

The Resource variables should contain values that indicate the amount of resource that is needed for a particular activity. For consumable resources, this value represents the amount of resource needed per unit of duration; for replenishable resources, it indicates the amount of resource that must be available throughout the duration of the activity. These variables must be numeric.
Work Rate

The Work Rate variable should contain values that indicate the total amount of work (time) required by one unit of a resource for a particular activity. This variable can be used to drive the activity duration for each resource required by the activity using the resource rate specified in the corresponding Resource variable.

Additional Information

This window is used to identify variables that contain additional activity information. For a description of standard import options, see the “Standard Import Options” section on page 782.

Target Date

The Target Date variable should contain values that represent the date portion of an activity alignment constraint. For example, an activity must finish on or before a particular date. The type of alignment constraint is specified in the Target Type variable. The Target Date variable must be numeric.

Target Type

The Target Type variable should contain values that represent the type portion of an activity alignment constraint. For example, an activity must finish on or before a particular date. The date portion of the alignment constraint is specified in the Target Date variable. The target type values are required to follow the same naming convention as that used by the CPM procedure. For more information, see the “ALIGNTYPE Statement” section on page 68.
Min Seg. Duration

The Minimum Segment Duration variable should contain values that indicate the minimum duration of a single segment of an activity (when activity splitting is allowed). This variable must be numeric.

Max Num. Segments

The Maximum Number of Segments variable should contain values that indicate the maximum number of segments into which an activity can be split (when activity splitting is allowed). This variable must be numeric.

Activity Delay

The Activity Delay variable should contain values that indicate the maximum amount of time by which an activity can be delayed due to resource unavailability. This variable must be numeric.

Activity Priority

The Activity Priority variable should contain values that indicate the priority of an activity (lower values indicate higher priority). The activity priority can be used to order activities that are waiting for an unavailable resource. This variable must be numeric.

Import Calendar Data Set Window

This window enables you to import a SAS data set that contains calendar information. Projman assumes that the selected data set is in the format appropriate for input to the CPM or PM procedure. For more information, see the CALEDATA Data Set section.

When you select the data set that you want to import, you must identify certain variables within that data set. Projman attempts to recognize the variables by searching for some standard names; however, it is likely that you will need to select the required variables. When all the necessary selections have been made and the calendar data set is imported, the appropriate calendars are created.

Note that valid calendar data sets are expected to contain the following standard variables: _SUN_, _MON_, _TUE_, _WED_, _THU_, _FRI_ and _SAT_.

For a description of standard import options, see the “Standard Import Options” section on page 782.
Calendar Name

The Calendar Name variable should contain values that represent the names of the individual calendars. This variable can be either character or numeric, and it is required.

Description

The Description variable normally contains values that provide more detailed information (that is, longer name) about the calendar. This variable can be either character or numeric.

Import Holiday Data Set Window

This window enables you to import a SAS data set that contains holiday information. Projman assumes that the selected data set is in the format appropriate for input to the CPM or PM procedure. For more information, see the HOLIDATA Data Set section.

When you select the data set that you want to import, you must identify certain variables within that data set. Projman attempts to recognize the variables by searching for some standard names; however, it is likely that you will need to select the required variables. When all the necessary selections have been made and the holiday data set is imported, the appropriate holidays are created.

For a description of standard import options, see the “Standard Import Options” section on page 782.
Chapter 8. The Projman Application

Name

The Name variable should contain values that represent a short name for each holiday. This variable can be either character or numeric.

Description

The Description variable normally contains values that provide more detailed information (that is, longer name) about the holiday. This variable can be either character or numeric.

Calendar

The Calendar variable should contain values that represent the name of the calendar to which the holiday belongs. Projman assumes that the calendars already exist. If they do not, after the import, you can create the calendars or import a calendar data set. This variable can be either character or numeric.

Start

The Start variable should contain values that indicate the start date of each holiday. This variable must be numeric, and it is required.

Finish

The Finish variable should contain values that indicate the finish date of each holiday. This variable must be numeric. This variable is optional; however, if the Duration variable is not specified, Projman assumes that each holiday is to last one duration unit.
**Duration**

The Duration variable should contain values that indicate the length of each holiday. This variable must be numeric. This variable is optional; however, if the Finish variable is not specified, Projman assumes that each holiday is to last one duration unit.

**Import Resource in Data Set Window**

This window enables you to import a SAS data set that contains resource information. Projman assumes that the selected data set is in the format appropriate for input to the CPM or PM procedure. For more information, see the RESOURCEIN= Input Data Set section.

When you select the data set that you want to import, you must identify certain variables within that data set. Projman attempts to recognize the variables by searching for some standard names; however, it is likely that you will need to select the required variables. When all the necessary selections have been made and the resourcein data set is imported, the appropriate resources are created.

For a description of standard import options, see the “Standard Import Options” section on page 782.

![Widget Manufacturing: Import Resource in Data Set Window](image)

**Obstype**

The Obstype variable should contain values that represent the type identifier for the particular observation. The Obstype values are required to follow the same naming convention as that used by the CPM procedure. For more information, see the OBSTYPE=variable section. This variable must be character, and it is required.

**Period**

The Period variable should contain values that indicate the specific date for each observation containing resource availability information. This variable must be numeric.
Chapter 8. The Projman Application

**Resname**

The Resname variable should contain values that represent the names of resources that have alternate (substitutable) resource specifications. This variable must be character.

**Import Workshift Data Set Window**

This window enables you to import a SAS data set that contains workshift information. Projman assumes that the selected data set is in the format appropriate for input to the CPM or PM procedure. For more information, see the WORKDATA Data Set section.

Valid workshift data sets contain numeric variables only. If the selected data set does not contain any numeric variables, an attention window is raised.

When you have made the necessary selections, the workshift data set is imported and the appropriate workshifts are created.

For a description of standard import options, see the “Standard Import Options” section on page 782.

**Library**

This list contains all currently defined SAS library names. Use this list to select the library that contains the data set that you want to import. Selection of a library automatically populates the Datasets list.

**Datasets**

This list contains the names of all SAS data sets that currently reside in the selected library. Select the data set that you want to import.
Edit Date Window

This window can be used to specify and/or modify date values. If no initial date is specified, the current date is used. To modify the date value, use the horizontal sliders to select the desired Day, Month, Year, and Time. Use the OK button to confirm the changes or the Cancel button to cancel the changes. The Clear button can be used to remove the date specification.
# Chapter 9
The Earned Value Management Macros (Experimental)

## Chapter Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERVIEW</td>
<td>797</td>
</tr>
<tr>
<td>GETTING STARTED</td>
<td>802</td>
</tr>
<tr>
<td>Analysis</td>
<td>802</td>
</tr>
<tr>
<td>Charts</td>
<td>820</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>826</td>
</tr>
<tr>
<td>Analysis</td>
<td>826</td>
</tr>
<tr>
<td>Charts</td>
<td>836</td>
</tr>
<tr>
<td>DETAILS</td>
<td>842</td>
</tr>
<tr>
<td>Variances</td>
<td>842</td>
</tr>
<tr>
<td>Performance Indices</td>
<td>842</td>
</tr>
<tr>
<td>Cost Estimates</td>
<td>842</td>
</tr>
<tr>
<td>Analysis</td>
<td>843</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>849</td>
</tr>
<tr>
<td>Example 9.1. Integrated Assembly Project</td>
<td>849</td>
</tr>
<tr>
<td>Example 9.2. Construction Project</td>
<td>860</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>878</td>
</tr>
</tbody>
</table>
Chapter 9  
The Earned Value Management Macros  (Experimental)

Overview

Earned value refers to the amount of work that has been completed within a project to date. In Earned Value Management (EVM), this earned value is compared to the work that was planned, in order to measure project performance and to estimate future costs and project completion.

To see why an earned value analysis might be of interest, consider a four-week project with a planned completion cost of $10,000. After one week, the Planned Value (PV) is one quarter of $10,000, or $2,500. Assume that only $2,000 has been spent so far. This is the Actual Cost (AC). Also assume that only one fifth of the project has been completed. This gives an Earned Value (EV) of $2,000, which is one fifth of the original planned completion cost. The amount of work accomplished for the cost incurred is as expected, but the project is progressing more slowly than expected. In other words, the project is behind schedule, but within its budgetary constraints.

Based upon the performance of the project so far, EVA can be used to forecast the funds required to complete the project, and to predict the project completion date. Historically, earned value measurements have been found to be reliable indicators of future project performance as early as the 15 to 20% completion point (see Fleming and Koppelman 2000).

The cost performance is good for the four-week project, so the project is still expected to cost $10,000 on completion. However, based on the schedule performance, the project duration is predicted to be five weeks instead of four weeks as originally planned. Additional estimates can provide upper and lower bounds on the project costs; these estimates are discussed in the “Getting Started” section on page 802.

In this chapter two distinct sets of macros are described: one for analysis and one for reporting. The first set, consisting of the %EVA_PLANNED_VALUE, %EVA_EARNED_VALUE, %EVA_METRICS, and %EVA_TASK_METRICS macros, is used to analyze schedule and cost data and to derive earned value metrics. The second set, consisting of the %EVG_COST_PLOT, %EVG_SCHEDULE_PLOT, %EVG_INDEX_PLOT, %EVG_VARIANCE_PLOT, %EVG_GANTT_CHART and %EVG_WBS_CHART macros, is used to graphically represent the results from the first set.

Note: To use the graphical macros, SAS/GRAFH must be licensed.

The %EVA_PLANNED_VALUE macro computes the periodic planned value for the project. The periodic planned value is the periodic cost that is to be incurred by the project and is derived from the planned schedule and costs, and the workday,
calendar, and holiday data sets. (These inputs are provided by the user.) The costs associated with an activity can be incurred continuously and/or at discrete time points. Continuously incurred costs are modeled by specifying a cost rate. For discretely incurred costs, the cost of the activity can be apportioned at the beginning (100-0), at the end (0-100), both equally (50-50), or both asymmetrically (custom), as desired. In general, costs can be incurred at evenly distributed time points over the duration of the associated activity, according to the number of weights specified. This macro can be run at any time—before, during, or after project execution.

Once the project is under way and actual schedule and cost information is available, the %EVA-PRICE macro can be invoked to produce the revised periodic cost, along with periodic earned value. The set of periodic costs produced by %EVA-PLANNED-PRICE and %EVA-EARNED-PRICE can then be used in the %EVA-METRICS macro to generate earned value performance measurements and summary statistics for one or more status dates. In addition, the %EVA-METRICS macro computes cumulative costs, indices, and variances.

The %EVA-TASK-METRICS macro produces task-based performance measurements including Cost and Schedule Variance (CV and SV, respectively) and Cost and Schedule Performance Index (CPI and SPI, respectively).

The flow of data through the analysis macros is illustrated in Figure 9.1. The large arrow indicates the passage of time between the planned schedule and budget and the updated schedule and budget.
The first of the graphics macros is %EVG_COST_PLOT. It is used to produce line plots of planned value, earned value, actual cost, and revised cost over time, using the output from the %EVA_METRICS macro. Figure 9.2 illustrates the data flow for the %EVG_COST_PLOT macro.
Figure 9.2. Graphics Macro Data Flow

The %EVA_INDEX_PLOT macro displays line plots of the Cost and Schedule Performance Indices (CPI and SPI, respectively), also using the output from the %EVA_METRICS macro. The CPI is the earned value per actual cost and the SPI is the earned value per planned value. Figure 9.2 also shows the data flow for the %EVA_INDEX_PLOT macro.

The %EVA_SCHEDULE_PLOT macro is a schedule-oriented version of %EVA_COST_PLOT. The plot produced by %EVA_SCHEDULE_PLOT shows an estimate for the end date of the project. This estimate is an extrapolation of the current earned value to the BAC (Budget at Completion). The data flow is given in Figure 9.3.

Figure 9.3. Graphics Macro Data Flow

%EVA_METRICS uses the output from %EVA_METRICS to produce line
plots for the project Cost and Schedule Variance (CV and SV, respectively) over time. The CV is computed as the difference between the earned value and actual cost, whereas the SV is the difference between earned value and planned value. See Figure 9.3 for the data flow.

The %EVG_GANTT_CHART macro uses the planned and revised schedule and budget, along with the output from the %EVA_TASK_METRICS macro, to produce a Gantt chart of the project activities, along with the CV and SV for each activity. A pictorial description of the data flow is given in Figure 9.4.

Finally, for multiprojects, or projects with a task/subtask hierarchy, the %EVG_WBS_CHART macro is used to display the Work Breakdown Structure. The input data set for this macro contains the activity, the project to which it belongs (or alternatively, the Work Breakdown Structure code), and any miscellaneous data for each activity that is to be carried into the graphical output. The data flow is shown in Figure 9.5.
Chapter 9. The Earned Value Management Macros (Experimental)

Getting Started

Analysis

Generating Periodic Data Sets

Consider the following set of activities that constitute a software multiproject. The Project variable defines the project hierarchy and the Succesr1 and Succesr2 variables define the precedence relationships. The complete project data is shown in Figure 9.6.

data softin;
  input Project $10.
      Activity $11.
      Description $22.
      Duration
      Succesr1 $9.
      Succesr2 $9.;
datalines;
  SWPROJ Software project .
  DEBUG RECODE Recoding 5 DOCEDREV QATEST
  DOC DOCEDREV Doc. Edit and Revise 10 PROD
  DOC PRELDOC Prel. Documentation 15 DOCEDREV QATEST
  MISC MEETMKT Meet Marketing 0 RECODE
  MISC PROD Production 1
  SWPROJ DEBUG Debug & Code Fixes .
  SWPROJ DOC Doc. Subproject .
  SWPROJ MISC Miscellaneous .
  SWPROJ TEST Test Subproject .
  TEST QATEST QA Test Approve 10 PROD
  TEST TESTING Initial Testing 20 RECODE;

<table>
<thead>
<tr>
<th>Obs</th>
<th>Project</th>
<th>Activity</th>
<th>Description</th>
<th>Duration</th>
<th>Succesr1</th>
<th>Succesr2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWPROJ</td>
<td></td>
<td>Software project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DEBUG</td>
<td>RECODE</td>
<td>Recoding</td>
<td>5</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>3</td>
<td>DOC</td>
<td>DOCEDREV</td>
<td>Doc. Edit and Revise</td>
<td>10</td>
<td>PROD</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DOC</td>
<td>PRELDOC</td>
<td>Prel. Documentation</td>
<td>15</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>5</td>
<td>MISC</td>
<td>MEETMKT</td>
<td>Meet Marketing</td>
<td>0</td>
<td>RECODE</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MISC</td>
<td>PROD</td>
<td>Production</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SWPROJ</td>
<td>DEBUG</td>
<td>Debug &amp; Code Fixes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SWPROJ</td>
<td>DOC</td>
<td>Doc. Subproject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SWPROJ</td>
<td>MISC</td>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SWPROJ</td>
<td>TEST</td>
<td>Test Subproject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TEST</td>
<td>QATEST</td>
<td>QA Test Approve</td>
<td>10</td>
<td>PROD</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TEST</td>
<td>TESTING</td>
<td>Initial Testing</td>
<td>20</td>
<td>RECODE</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9.6. Software Schedule Input SOFTIN

The project network diagram showing the precedence relationships can be generated with the following code, using the NETDRAW procedure (see SAS/OR User’s Guide):
Project Management, Chapter 5, for additional information). (Note that the first data step removes the root task to simplify the diagram.)

```sas
data softabridged;
 set softin;
 if activity ne 'SWPROJ' and project ne 'SWPROJ' then output;
run;
proc netdraw data=softabridged out=ndout graphics;
 actnet/act=activity font=swiss
 id=(description)
 nodelab
 succ=(success1 success2)
 lwidth=2
 coutline=black
 ctext=black
 carcs=black
 cnodefill=ltgray
 zone=project
 zonespace
 htext=3 pcompress
 centerid;
run;
```

The resulting diagram is shown in Figure 9.7.

![Figure 9.7. Project Network Diagram Using PROC NETDRAW](image)

The project hierarchy, or Work Breakdown Structure (WBS), can be visualized with the following code. The details for the use of the %EVG-WBS-CHART macro are given in the “Syntax” section on page 826.
Chapter 9. The Earned Value Management Macros (Experimental)

The graphical output is shown in Figure 9.8:

![Work Breakdown Structure]

**Figure 9.8.** Work Breakdown Structure Using %EVG_WBS_CHART

The CPM procedure can be used as follows to generate a schedule based on the precedence and hierarchical constraints (see *SAS/OR User's Guide: Project Management*, Chapter 2, for more details).

```sas
proc cpm data=softin
 out=software
 interval=day
 date='01mar04'd;
 id description;
 project project / addwbs;
 activity activity;
 duration duration;
 successor succesr1 succesr2;
run;
```
The resulting schedule data set is manipulated to produce a data set containing the early and late schedules, shown in Figure 9.9. The WBS_CODE variable gives the project hierarchy. The E_START and E_FINISH variables represent the early schedule, and the L_START and L_FINISH variables give the late schedule.

```
proc sort data=software;
 by wbs_code;
run;
proc print data=software;
 title 'Planned Schedule';
 var activity wbs_code e_start e_finish l_start l_finish;
run;
```

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>WBS_CODE</th>
<th>E_START</th>
<th>E_FINISH</th>
<th>L_START</th>
<th>L_FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWPROJ</td>
<td>0</td>
<td>01MAR04</td>
<td>05APR04</td>
<td>01MAR04</td>
<td>05APR04</td>
</tr>
<tr>
<td>2</td>
<td>DEBUG</td>
<td>0.0</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>21MAR04</td>
<td>25MAR04</td>
</tr>
<tr>
<td>3</td>
<td>RECODE</td>
<td>0.0.0</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>21MAR04</td>
<td>25MAR04</td>
</tr>
<tr>
<td>4</td>
<td>DOC</td>
<td>0.1</td>
<td>01MAR04</td>
<td>04APR04</td>
<td>04APR04</td>
<td>04APR04</td>
</tr>
<tr>
<td>5</td>
<td>DOCEDREV</td>
<td>0.1.0</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>26MAR04</td>
<td>04APR04</td>
</tr>
<tr>
<td>6</td>
<td>PRELDOC</td>
<td>0.1.1</td>
<td>15MAR04</td>
<td>15MAR04</td>
<td>25MAR04</td>
<td>25MAR04</td>
</tr>
<tr>
<td>7</td>
<td>MISC</td>
<td>0.2</td>
<td>01MAR04</td>
<td>05APR04</td>
<td>05APR04</td>
<td>05APR04</td>
</tr>
<tr>
<td>8</td>
<td>MEETMKT</td>
<td>0.2.0</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>21MAR04</td>
<td>21MAR04</td>
</tr>
<tr>
<td>9</td>
<td>PROD</td>
<td>0.2.1</td>
<td>05APR04</td>
<td>05APR04</td>
<td>05APR04</td>
<td>05APR04</td>
</tr>
<tr>
<td>10</td>
<td>TEST</td>
<td>0.3</td>
<td>01MAR04</td>
<td>04APR04</td>
<td>01MAR04</td>
<td>04APR04</td>
</tr>
<tr>
<td>11</td>
<td>QATEST</td>
<td>0.3.0</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>26MAR04</td>
<td>04APR04</td>
</tr>
<tr>
<td>12</td>
<td>TESTING</td>
<td>0.3.1</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>01MAR04</td>
<td>20MAR04</td>
</tr>
</tbody>
</table>

**Figure 9.9.** Software Schedule SOFTWARE

A Gantt chart of this schedule can be produced with the GANTT procedure using the following code. (See SAS/OR User’s Guide: Project Management, Chapter 4, for more details.)

```
title f=swiss h=4pct 'Project Master Schedule';
title2 f=swiss h=3pct;
proc gantt data=software;
 chart / mininterval=software pcompress
top
cframe=ltgray
font=swiss
height=1
skip=2
activity=activity
nojobnum
successor=(successr1 successr2)
scale=10
duration=duration;
id description wbs_code;
run;
```
Figure 9.10 shows the output from this call to PROC GANTT.

Figure 9.10. Initial Schedule Using PROC GANTT

Now suppose the early schedule is designated as the baseline. For the sake of clarity, the E_START and E_FINISH variables have been renamed to START and FINISH, respectively. Also, the variables required for performing the earned value analysis are retained. The modified data set is shown in Figure 9.11.

data software;
  set software;
  keep project activity duration description
    e_start e_finish wbs_code succesr1 succesr2;
  rename e_start = Start
    e_finish = Finish;
  label wbs_code = 'WBS Code'
    e_start = 'Start'
    e_finish = 'Finish';
  if duration eq . then duration = proj_dur;
run;
Figure 9.11. Software Schedule SOFTWARE

Assume also that each of the activities is budgeted to incur costs continuously at the rates shown in the RATES data set in Figure 9.12.

Figure 9.12. Software Budget RATES

To determine the periodic budgeted costs, invoke the %EVA_PLANNED_VALUE macro as follows:

```plaintext
%eva_planned_value(
 plansched=software, /* schedule data */
 activity=activity,
 start=start,
 finish=finish,
 duration=duration,
 budgetcost=rates, /* cost data */
 rate=rate
);
```
The parameters used in this call to %EVA_PLANNED_VALUE are described in the following list. More details are given in the “Syntax” section on page 826.

- PLANSCHED= identifies the data set that contains the planned schedule.
- ACTIVITY= specifies the activity variable in the PLANSCHED= and BUDGETCOST= data sets.
- START= specifies the start date or datetime variable in the PLANSCHED= data set.
- FINISH= specifies the finish date or datetime variable in the PLANSCHED= data set.
- DURATION= specifies the task duration variable in the PLANSCHED= data set.
- BUDGETCOST= identifies the data set containing the budgeted costs.
- RATE= specifies the cost rate variable in the BUDGETCOST= data set.

The output data set generated by this call to %EVA_PLANNED_VALUE is shown in Figure 9.13.
### Figure 9.13. Periodic Planned Value Data Set Using %EVA\_PLANNED\_VALUE

Note that the “PV Rate” column shows the daily Planned Value (or Budgeted Cost of Work Scheduled). This is the cost incurred each day according to the plan or budget.

In general, once a project is in progress it is subject to uncertainties, the impact of which can often only be approximated in the original plan. Such uncertainties can affect the project schedule, project cost, or both. From a schedule standpoint an activity may be delayed due to a multitude of factors—a required resource being unavailable, a worker becoming sick, a machine breaking down, adverse weather conditions, etc. From a cost standpoint a contractor may revise his/her original estimate, the cost of raw materials may increase due to external factors, a sick or disabled worker might necessitate the use of a more costly contractor to minimize schedule slippage, etc.

### Figure 9.14

Lists the status of completed activities, and those in progress, as of March 25, 2004.
### Actual Dates and Percentage Complete

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>Start</th>
<th>Finish</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MEETMKT</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>PRELDOC</td>
<td>01MAR04</td>
<td>14MAR04</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>TESTING</td>
<td>01MAR04</td>
<td>.</td>
<td>80</td>
</tr>
</tbody>
</table>

#### Figure 9.14. Software Project Status SOFTACT

Integrating this new information with the original schedule input data set gives the updated data set shown in Figure 9.15.

```sql
proc sql;
 create table softupd as
 select project, softin.activity, duration, start, finish, percent, succesr1, succesr2, description
 from softin left join softact
 on softin.activity = softact.activity
 order by 1, 2
;
quit;
```

### Schedule Input March 25

<table>
<thead>
<tr>
<th>Obs</th>
<th>Project</th>
<th>Activity</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Percent</th>
<th>Succesr1</th>
<th>Succesr2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWPROJ</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>2</td>
<td>DEBUG</td>
<td>RECODE</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>3</td>
<td>DOC</td>
<td>DOCEDREV</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>PROD</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DOC</td>
<td>PRELDOC</td>
<td>15</td>
<td>01MAR04</td>
<td>14MAR04</td>
<td>100</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>5</td>
<td>MISC</td>
<td>MEETMKT</td>
<td>0</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>100</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>6</td>
<td>MISC</td>
<td>PROD</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>7</td>
<td>SWPROJ</td>
<td>DEBUG</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>8</td>
<td>SWPROJ</td>
<td>DOC</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>9</td>
<td>SWPROJ</td>
<td>MISC</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>10</td>
<td>SWPROJ</td>
<td>TEST</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
<tr>
<td>11</td>
<td>TEST</td>
<td>QATEST</td>
<td>10</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>PROD</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TEST</td>
<td>TESTING</td>
<td>20</td>
<td>01MAR04</td>
<td>.</td>
<td>80</td>
<td>DOCEDREV</td>
<td>QATEST</td>
</tr>
</tbody>
</table>

#### Figure 9.15. Updated Software Schedule Input SOFTUPD

Using this updated data set, PROC CPM is then invoked to create a new schedule.

```sql
proc cpm data=softupd
 out=software25
 interval=day
 date='01mar04'd;
 id description percent;
 project project / addwbs;
 activity activity;
 duration duration;
```
The resulting schedule is shown alongside the planned schedule in Figure 9.16.

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>WBS Code</th>
<th>Planned Start</th>
<th>Planned Finish</th>
<th>Actual Start</th>
<th>Actual Finish</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWPROJ</td>
<td>0</td>
<td>01MAR04</td>
<td>05APR04</td>
<td>01MAR04</td>
<td>15APR04</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>DEBUG</td>
<td>0.0</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>31MAR04</td>
<td>04APR04</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>RECODE</td>
<td>0.0.0</td>
<td>21MAR04</td>
<td>25MAR04</td>
<td>31MAR04</td>
<td>04APR04</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>DOC</td>
<td>0.1</td>
<td>01MAR04</td>
<td>04APR04</td>
<td>01MAR04</td>
<td>14APR04</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>DOCEDREV</td>
<td>0.1.0</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>05APR04</td>
<td>14APR04</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>PRELDOC</td>
<td>0.1.1</td>
<td>01MAR04</td>
<td>15MAR04</td>
<td>01MAR04</td>
<td>14MAR04</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>MISC</td>
<td>0.2</td>
<td>01MAR04</td>
<td>05APR04</td>
<td>01MAR04</td>
<td>15APR04</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>MEETMKT</td>
<td>0.2.0</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>01MAR04</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>PROD</td>
<td>0.2.1</td>
<td>05APR04</td>
<td>05APR04</td>
<td>15APR04</td>
<td>15APR04</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>TEST</td>
<td>0.3</td>
<td>01MAR04</td>
<td>04APR04</td>
<td>01MAR04</td>
<td>14APR04</td>
<td>.</td>
</tr>
<tr>
<td>11</td>
<td>QATEST</td>
<td>0.3.0</td>
<td>26MAR04</td>
<td>04APR04</td>
<td>05APR04</td>
<td>14APR04</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>TESTING</td>
<td>0.3.1</td>
<td>01MAR04</td>
<td>20MAR04</td>
<td>01MAR04</td>
<td>30MAR04</td>
<td>80</td>
</tr>
</tbody>
</table>

Figure 9.16. Updated Software Schedule SOFTWARE25

Notice that the activity PRELDOC has completed one day ahead of schedule. Despite this encouraging bit of news, the project is showing signs of slipping. Only one other activity has completed as of the status date. The original plan called for three activities to have completed, with two additional activities completing at the end of the day. Instead, five activities are in progress. The finish date for the root parent activity, SWPROJ, shows the magnitude of the project slippage so far.

The updated cost rate information is given in Figure 9.17. Compared to the numbers listed in Figure 9.12 the rates for the PRELDOC and TESTING activities have increased, while the rate for the RECODE activity has decreased. Note that the original rates still apply for the activities that are not listed here.
To compute the impact of schedule slippage and cost overruns, data sets SOFTWARE25 and RATES25 can be specified for the %EVA_EARNED_VALUE macro as shown in the following SAS code. It is assumed that the %EVA_PLANNED_VALUE macro has been run, in which case the planned duration and costs are implicitly carried over to the %EVA_EARNED_VALUE macro as shown in Figure 9.1. Also, as before, the E_START and E_FINISH variables have been renamed to START and FINISH, respectively.

\[
\text{%eva\_earned\_value(}
\text{revisesched=software25, /* revised schedule */}
\text{activity=activity,}
\text{start=start,}
\text{finish=finish,}
\text{actualcost=rates25, /* actual costs */}
\text{rate=rate}
\text{)};
\]

The parameters used in this call to %EVA_EARNED_VALUE are described briefly in the following list. More details are given in the “Syntax” section on page 826.

- REVISESCHED= identifies the data set that contains the revised schedule.
- ACTIVITY= specifies the activity variable in the REVISESCHED= and ACTUALCOST= data sets.
- START= specifies the start date or datetime variable in the REVISESCHED= data set.
- FINISH= specifies the finish date or datetime variable in the REVISESCHED= data set.
- ACTUALCOST= identifies the data set containing the revised cost. Activities not included are assigned the budgeted cost.
- RATE= specifies the cost rate variable in the ACTUALCOST= data set.

The variable names specified for the ACTIVITY=, START=, FINISH=, and RATE= parameters must be the same, respectively, as those previously specified for the %EVA_PLANNED_VALUE macro. This is to enable the later use of the %EVA_TASK_METRICS and %EVG_GANTT_CHART macros. The output generated by this call to %EVA_EARNED_VALUE is shown in Figure 9.18.
<table>
<thead>
<tr>
<th>Observations</th>
<th>Date</th>
<th>EV Rate</th>
<th>AC Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>02MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>03MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>04MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>05MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>06MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>07MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>08MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>09MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>10MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>11MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>12MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>13MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>14MAR04</td>
<td>12.5369</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>15MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>16MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>17MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>18MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>19MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>20MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>21</td>
<td>21MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>22MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>23MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>24</td>
<td>24MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>25MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>26</td>
<td>26MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>27</td>
<td>27MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>28</td>
<td>28MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>29MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>30MAR04</td>
<td>8.2512</td>
<td>12</td>
</tr>
<tr>
<td>31</td>
<td>31MAR04</td>
<td>13.2512</td>
<td>14</td>
</tr>
<tr>
<td>32</td>
<td>01APR04</td>
<td>13.2512</td>
<td>14</td>
</tr>
<tr>
<td>33</td>
<td>02APR04</td>
<td>13.2512</td>
<td>14</td>
</tr>
<tr>
<td>34</td>
<td>03APR04</td>
<td>13.2512</td>
<td>14</td>
</tr>
<tr>
<td>35</td>
<td>04APR04</td>
<td>13.2512</td>
<td>14</td>
</tr>
<tr>
<td>36</td>
<td>05APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>37</td>
<td>06APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>38</td>
<td>07APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>39</td>
<td>08APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>09APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>41</td>
<td>10APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>42</td>
<td>11APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>43</td>
<td>12APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>44</td>
<td>13APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>45</td>
<td>14APR04</td>
<td>14.2512</td>
<td>16</td>
</tr>
<tr>
<td>46</td>
<td>15APR04</td>
<td>6.6957</td>
<td>8</td>
</tr>
</tbody>
</table>

**Figure 9.18.** Periodic Earned Value Data Set Using %EVA_EARNED_VALUE

The “EV Rate” column shows the daily Earned Value (or Budgeted Cost of Work Performed). This is the budgeted cost for the work that was actually accomplished each day. Up to the status date (TIMENOW) of March 25, 2004, the “AC Rate” column depicts the daily Actual Cost (or Actual Cost of Work Performed). After this date, this column represents estimated costs. For this estimate, it is assumed that activities that are in progress at the status date continue at the same cost rate, rather than reverting to the budgeted cost rate. This assumption...
ultimately yields the revised Estimate At Completion (EAC\textsuperscript{rev}). Figure 9.19 shows the daily Planned Value, Earned Value, and Actual Cost together. The disparity in the number of observations (47 here versus the former 37 for the %EVA_PLANNED_VALUE macro) reflects a schedule slippage of 10 days.

<table>
<thead>
<tr>
<th>Obs</th>
<th>DATE</th>
<th>PV Rate</th>
<th>EV Rate</th>
<th>AC Rate</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>03MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>04MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>05MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>06MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>08MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>09MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14MAR04</td>
<td>15</td>
<td>12.5369</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15MAR04</td>
<td>15</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16MAR04</td>
<td>11</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17MAR04</td>
<td>11</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18MAR04</td>
<td>11</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19MAR04</td>
<td>11</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20MAR04</td>
<td>11</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21MAR04</td>
<td>15</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22MAR04</td>
<td>15</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23MAR04</td>
<td>15</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24MAR04</td>
<td>15</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25MAR04</td>
<td>15</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26MAR04</td>
<td>16</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27MAR04</td>
<td>16</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28MAR04</td>
<td>16</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29MAR04</td>
<td>16</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30MAR04</td>
<td>16</td>
<td>8.2512</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31MAR04</td>
<td>16</td>
<td>13.2512</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>01APR04</td>
<td>16</td>
<td>13.2512</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>02APR04</td>
<td>16</td>
<td>13.2512</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>03APR04</td>
<td>16</td>
<td>13.2512</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>04APR04</td>
<td>16</td>
<td>13.2512</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>05APR04</td>
<td>8</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>06APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>07APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>08APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>09APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>10APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>11APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>12APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>13APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>14APR04</td>
<td>.</td>
<td>14.2512</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>15APR04</td>
<td>.</td>
<td>6.6957</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9.19. Periodic Planned Value, Earned Value, and Actual Cost
Results

The earned value metrics can now be computed using the following code:

```%eva_metrics(timenow='25MAR04'd);```

It is assumed that the %EVA_PLANNED_VALUE and %EVA_EARNED_VALUE macros have been run and that the default output data sets, PV and EV, were used. This enables the %EVA_METRICS macro to implicitly use those data sets as input (see Figure 9.1). If the default data set names were not used, you must specify the correct names using the PV= and EV= options.

The TIMENOW= parameter specifies the date or datetime to which the updated schedule and rates apply.

Figure 9.20 shows the output from the %EVA_METRICS macro.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Complete</td>
<td>50.91</td>
</tr>
<tr>
<td>PV (Planned Value)</td>
<td>355.00</td>
</tr>
<tr>
<td>EV (Earned Value)</td>
<td>266.28</td>
</tr>
<tr>
<td>AC (Actual Cost)</td>
<td>370.00</td>
</tr>
<tr>
<td>CV (Cost Variance)</td>
<td>-103.72</td>
</tr>
<tr>
<td>CV%</td>
<td>-38.95</td>
</tr>
<tr>
<td>SV (Schedule Variance)</td>
<td>-88.72</td>
</tr>
<tr>
<td>SV%</td>
<td>-24.99</td>
</tr>
<tr>
<td>CPI (Cost Performance Index)</td>
<td>0.72</td>
</tr>
<tr>
<td>SPI (Schedule Performance Index)</td>
<td>0.75</td>
</tr>
<tr>
<td>BAC (Budget At Completion)</td>
<td>523.00</td>
</tr>
<tr>
<td>EAC (Revised Estimate At Completion)</td>
<td>668.00</td>
</tr>
<tr>
<td>EAC (Overrun to Date)</td>
<td>626.72</td>
</tr>
<tr>
<td>EAC (Cumulative CPI)</td>
<td>726.72</td>
</tr>
<tr>
<td>EAC (Cumulative CPI X SPI)</td>
<td>845.57</td>
</tr>
<tr>
<td>ETC (Estimate To Complete)*</td>
<td>356.72</td>
</tr>
<tr>
<td>VAC (Variance At Completion)*</td>
<td>-203.72</td>
</tr>
<tr>
<td>VAC*</td>
<td>-38.95</td>
</tr>
<tr>
<td>TCPI (BAC) (To-Complete Performance Index)</td>
<td>1.68</td>
</tr>
<tr>
<td>TCPI (EAC) (To-Complete Performance Index)*</td>
<td>0.72</td>
</tr>
</tbody>
</table>

* The CPI form of the EAC is used.

Figure 9.20. Earned Value Summary Metrics Using %EVA_METRICS

The metrics in Figure 9.20 reflect the condition of the project at the status date (TIMENOW). “Percent Complete” is the percentage of the planned work that has been accomplished. Values for this entry range from 0 to 100. PV is the Planned Value, or Budgeted Cost of Work Scheduled (BCWS). This is the work that was projected to have been completed. EV is the Earned Value, or Budgeted Cost of Work Performed (BCWP). This measure represents the value of work completed so far, in
terms of budgeted cost. AC is the Actual Cost of Work Performed (ACWP), and represents the actual cost of the work so far.

At first glance, one might compare the Planned Value of $355 to the Actual Cost of $370, and conclude that costs are nearly on track. However, the Earned Value figure of $266.28 puts these numbers in the proper perspective. This project is careening out of control with respect to schedule and costs.

CV and SV are the Cost and Schedule Variance, respectively. CV is the earned value less the amount spent. SV is the earned value less the planned value. CPI and SPI are the Cost and Schedule Performance indices, respectively, and are analogous to the CV and SV. The CPI and SPI are expressed as ratios, rather than differences. The value of 0.72 for CPI indicates a cost overrun situation in which the project has earned 72 cents for every dollar spent. The value of 0.75 for SPI foretells a late project, as only 75% of the planned work has been accomplished on the status date. BAC is the Budget at Completion and is the total budgeted cost of the project. EAC is the Estimate at Completion, and represents the projected total cost, given the current state of the project. For the first of the EAC metrics, EAC_{rev}, it is assumed that future work is performed at the revised rates. EAC_{rev} is computed by accumulating the “AC Rate” data found in the output data set from the %EVA_EARNED_VALUE macro. For EAC_{OTD}, the overrun to date estimate, it is assumed that future work will be done at the budgeted rate, which is typically not very realistic. The next two estimates take into account the performance of the project so far. EAC_{CPI}, or the cumulative CPI EAC, is widely regarded as one of the more accurate and reliable estimates, and is frequently used to provide a quick forecast of the project costs. By default, the EAC_{CPI} is used to compute the Variance at Completion (VAC) and one of the To-Complete Performance Index (TCPI) formulations, to follow. The cumulative CPI-times-SPI EAC, denoted EAC_{CPI}×SPI, is often used to provide a high-end estimate of the project costs. ETC is the Estimate to Complete, or a projection of remaining costs. The VAC represents the financial impact of the expenditures to date on the original budget.

The TCPI is the cost performance factor that must be achieved in order to complete the remaining work using the available funds. The available funds can be defined to be either the remaining budget (BAC − AC) or remaining costs (EAC − AC). For example, the TCPI_{BAC} of 1.68 indicates that the project needs to earn 1.68 dollars for each dollar spent to stay within the budget. The TCPI_{EAC} is a far lower value (0.72) because the revised costs are much larger than the budgeted costs for the remaining work. See Table 9.11, Table 9.12, and Table 9.13 for formula expressions of the preceding metrics.

Figure 9.21 gives a listing of the earned value summary statistics data set produced by the %EVA_METRICS macro. This data set is used to generate the %EVA_METRICS report as well as some of the charts to be described in later sections.
Figure 9.21. Summary Earned Value Data Set Using %EVA_METRICS

The %EVA_METRICS macro also produces the cumulative periodic earned value data set shown in Figure 9.22. This data set contains the cumulative planned value, earned value, and actual and revised costs, together with the associated variances and performance indices.
Earned Value Cumulative Periodic Metrics
Values, Costs, Variances and Indices

<table>
<thead>
<tr>
<th>Obs</th>
<th>Date</th>
<th>PV</th>
<th>EV</th>
<th>AC</th>
<th>Revised Cost</th>
<th>CV</th>
<th>SV</th>
<th>CPI</th>
<th>SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01MAR04</td>
<td>15</td>
<td>12.537</td>
<td>17</td>
<td>-4.463</td>
<td>-4.4631</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02MAR04</td>
<td>30</td>
<td>25.074</td>
<td>34</td>
<td>-8.926</td>
<td>-4.9262</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>03MAR04</td>
<td>45</td>
<td>37.611</td>
<td>51</td>
<td>-13.389</td>
<td>-7.3892</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>04MAR04</td>
<td>60</td>
<td>50.148</td>
<td>68</td>
<td>-17.852</td>
<td>-9.8523</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>05MAR04</td>
<td>75</td>
<td>62.685</td>
<td>85</td>
<td>-22.315</td>
<td>-12.3154</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>06MAR04</td>
<td>90</td>
<td>75.222</td>
<td>102</td>
<td>-26.778</td>
<td>-14.7785</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07MAR04</td>
<td>105</td>
<td>87.758</td>
<td>119</td>
<td>-31.242</td>
<td>-17.2415</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>08MAR04</td>
<td>120</td>
<td>100.295</td>
<td>136</td>
<td>-35.705</td>
<td>-19.7046</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>09MAR04</td>
<td>135</td>
<td>112.832</td>
<td>153</td>
<td>-40.168</td>
<td>-22.1677</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10MAR04</td>
<td>150</td>
<td>125.369</td>
<td>170</td>
<td>-44.631</td>
<td>-24.6308</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11MAR04</td>
<td>165</td>
<td>137.906</td>
<td>187</td>
<td>-49.094</td>
<td>-27.0939</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12MAR04</td>
<td>180</td>
<td>150.443</td>
<td>204</td>
<td>-53.557</td>
<td>-29.5569</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13MAR04</td>
<td>195</td>
<td>162.980</td>
<td>221</td>
<td>-58.020</td>
<td>-32.0200</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14MAR04</td>
<td>210</td>
<td>175.517</td>
<td>238</td>
<td>-62.483</td>
<td>-34.4831</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15MAR04</td>
<td>225</td>
<td>183.768</td>
<td>250</td>
<td>-66.946</td>
<td>-36.9462</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16MAR04</td>
<td>236</td>
<td>192.019</td>
<td>262</td>
<td>-70.409</td>
<td>-38.4092</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17MAR04</td>
<td>247</td>
<td>200.271</td>
<td>274</td>
<td>-73.871</td>
<td>-40.8715</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18MAR04</td>
<td>258</td>
<td>208.522</td>
<td>286</td>
<td>-77.432</td>
<td>-42.4326</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19MAR04</td>
<td>269</td>
<td>216.773</td>
<td>298</td>
<td>-81.003</td>
<td>-43.0037</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20MAR04</td>
<td>280</td>
<td>225.024</td>
<td>310</td>
<td>-84.276</td>
<td>-44.2759</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21MAR04</td>
<td>295</td>
<td>233.275</td>
<td>322</td>
<td>-87.548</td>
<td>-46.5472</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22MAR04</td>
<td>310</td>
<td>241.527</td>
<td>334</td>
<td>-90.820</td>
<td>-48.8201</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23MAR04</td>
<td>325</td>
<td>249.778</td>
<td>346</td>
<td>-94.092</td>
<td>-50.0919</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24MAR04</td>
<td>340</td>
<td>258.029</td>
<td>358</td>
<td>-97.364</td>
<td>-52.3637</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25MAR04</td>
<td>355</td>
<td>266.280</td>
<td>370</td>
<td>-100.636</td>
<td>-54.6356</td>
<td>0.73747</td>
<td>0.83579</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26MAR04</td>
<td>371</td>
<td>. .</td>
<td>382</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27MAR04</td>
<td>387</td>
<td>. .</td>
<td>394</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28MAR04</td>
<td>403</td>
<td>. .</td>
<td>406</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29MAR04</td>
<td>419</td>
<td>. .</td>
<td>418</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30MAR04</td>
<td>435</td>
<td>. .</td>
<td>430</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31MAR04</td>
<td>451</td>
<td>. .</td>
<td>444</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>01APR04</td>
<td>467</td>
<td>. .</td>
<td>458</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>02APR04</td>
<td>483</td>
<td>. .</td>
<td>472</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>03APR04</td>
<td>499</td>
<td>. .</td>
<td>486</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>04APR04</td>
<td>515</td>
<td>. .</td>
<td>500</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>05APR04</td>
<td>523</td>
<td>. .</td>
<td>516</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>06APR04</td>
<td>. .</td>
<td>. .</td>
<td>532</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>07APR04</td>
<td>. .</td>
<td>. .</td>
<td>548</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>08APR04</td>
<td>. .</td>
<td>. .</td>
<td>564</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>09APR04</td>
<td>. .</td>
<td>. .</td>
<td>580</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>10APR04</td>
<td>. .</td>
<td>. .</td>
<td>596</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>11APR04</td>
<td>. .</td>
<td>. .</td>
<td>612</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>12APR04</td>
<td>. .</td>
<td>. .</td>
<td>628</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>13APR04</td>
<td>. .</td>
<td>. .</td>
<td>644</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>14APR04</td>
<td>. .</td>
<td>. .</td>
<td>660</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>15APR04</td>
<td>. .</td>
<td>. .</td>
<td>668</td>
<td>. .</td>
<td>. .</td>
<td>. .</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9.22. Cumulative Earned Value Data Set Using %EVA_METRICS

The cost and schedule variance by activity can now be produced using the following call to %EVA_TASK_METRICS.
The parameters used in this call to %EVA_TASK_METRICS are described briefly in the following list. More details are given in the “Syntax” section on page 826.

- **PLANSCHED=** identifies the data set that contains the planned schedule.
- **REVISESCHED=** identifies the data set that contains the updated schedule.
- **ACTIVITY=** specifies the activity variable in the PLANSCHED= and REVISESCHED= data sets.
- **START=** specifies the start date or datetime variable in the PLANSCHED= and REVISESCHED= data sets.
- **FINISH=** specifies the finish date or datetime variable in the PLANSCHED= and REVISESCHED= data sets.
- **BUDGETCOST=** identifies the data set containing the budgeted cost.
- **ACTUALCOST=** identifies the data set containing the revised cost.
- **RATE=** specifies the cost rate variable in the BUDGETCOST= and ACTUALCOST= data sets.
- **AGGREGATE=** indicates whether or not to roll up values along the project hierarchy; a value of Y indicates that aggregation is to be performed.
- **TIMENOW=** specifies the date or datetime of the updated schedule and costs.

Note that the variable names specified for the ACTIVITY=, START=, FINISH=, and RATE= parameters must be the same, respectively, as those previously specified for the %EVA_PLANNED_VALUE and %EVA_EARNED_VALUE macros.

The output produced by this invocation of the %EVA_TASK_MTERICS macro is shown in Figure 9.23.
Earned Value Analysis by Activity as of March 25, 2004

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>WBS Code</th>
<th>PV</th>
<th>EV</th>
<th>AC</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWPROJ</td>
<td>0</td>
<td>355.00</td>
<td>266.28</td>
<td>370.00</td>
<td>-103.72</td>
</tr>
<tr>
<td>2</td>
<td>DEBUG</td>
<td>0.0</td>
<td>35.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>RECODE</td>
<td>0.00</td>
<td>30.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>DOC</td>
<td>0.1</td>
<td>85.00</td>
<td>79.44</td>
<td>95.00</td>
<td>-15.56</td>
</tr>
<tr>
<td>5</td>
<td>DOCEDREV</td>
<td>0.1.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>PRELDOK</td>
<td>0.1.1</td>
<td>60.00</td>
<td>60.00</td>
<td>70.00</td>
<td>-10.00</td>
</tr>
<tr>
<td>7</td>
<td>MISCT</td>
<td>0.2</td>
<td>25.00</td>
<td>19.57</td>
<td>25.00</td>
<td>-5.43</td>
</tr>
<tr>
<td>8</td>
<td>MEETMKT</td>
<td>0.2.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>PROD</td>
<td>0.2.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>TEST</td>
<td>0.3</td>
<td>85.00</td>
<td>69.44</td>
<td>125.00</td>
<td>-55.56</td>
</tr>
<tr>
<td>11</td>
<td>QATEST</td>
<td>0.3.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>TESTING</td>
<td>0.3.1</td>
<td>60.00</td>
<td>50.00</td>
<td>100.00</td>
<td>-50.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>CV%</th>
<th>SV</th>
<th>SV%</th>
<th>CPI</th>
<th>SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-38.95</td>
<td>-88.72</td>
<td>-24.99</td>
<td>0.72</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>-35.00</td>
<td>-100.00</td>
<td>.</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>-30.00</td>
<td>-100.00</td>
<td>.</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>-19.58</td>
<td>-5.56</td>
<td>-6.54</td>
<td>0.84</td>
<td>0.93</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>-16.67</td>
<td>0.00</td>
<td>0.00</td>
<td>0.86</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>-27.78</td>
<td>-5.43</td>
<td>-21.74</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>-80.00</td>
<td>-15.56</td>
<td>-18.30</td>
<td>0.56</td>
<td>0.82</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>-100.00</td>
<td>-10.00</td>
<td>-16.67</td>
<td>0.50</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Figure 9.23. Cost and Schedule Variance by Activity Using %EVA_TASK_METRICS

Note that by specifying Y for the AGGREGATE= parameter, the values have been rolled up along the project hierarchy; otherwise, the values would represent the corresponding activity only.

Charts

In Figure 9.24, cost and schedule variance are plotted against time using a default invocation of the %EVG_VARIANCE_PLOT macro. Notice that the variances lie outside the plus or minus 10% Planned Value thresholds, which is a cause for concern.

%evg_variance_plot;
Figure 9.24. CV and SV versus Time Using %EVG_VARIANCE_PLOT

Although not apparent from the preceding chart, as any project nears completion its schedule variance tends toward zero. This is because the earned value eventually converges to the planned value.

Note that the %EVA_METRICS macro must have been called prior to this invocation in order to generate the METRICS= data set.

The cost and schedule variance can also be displayed by activity on a Gantt chart with the %EVG_GANTT_CHART macro, as follows.

```sas
%evg_gantt_chart(
    plansched=software,
    revisesched=software25,
    duration=duration,
    start=start,
    finish=finish,
    activity=activity,
    timenow='25MAR04'd,
    id=wbs cv sv cpi spi,
    height=3,
    scale=20
);
```
Figure 9.25 depicts cost and schedule variance, in addition to the cost and schedule performance indices, with a Gantt-style schedule. Note that two bars are used to represent each activity. The top bar is the revised schedule and the bottom bar is the baseline schedule.

Figure 9.25. CV and SV by Task Using %EVG_GANTT_CHART

The parameters used in this call to %EVG_GANTT_CHART are described briefly in the following list. More details are given in the “Syntax” section on page 826.

- **PLANSCHED=** identifies the data set containing the planned schedule.
- **REVISESCHED=** identifies the data set that contains the updated schedule.
- **ACTIVITY=** specifies the activity variable in the PLANSCHED= and REVISESCHED= data sets.
- **START=** specifies the start date or datetime variable in the PLANSCHED= and REVISESCHED= data sets.
- **FINISH=** specifies the finish date or datetime variable in the PLANSCHED= and REVISESCHED= data sets.
- **DURATION=** specifies a duration variable in the PLANSCHED= and REVISESCHED= data sets. If the variable is present in both data sets, the REVISESCHED= data set is chosen as the source for the variable values. This variable is only used for differentiating milestones from single day tasks.
- TIMENOW= specifies the date or datetime of the updated schedule and costs.
- ID= specifies the variable(s) to be included in the Gantt chart.
- HEIGHT= specifies a height factor for all text in PROC GANTT. (See the HEIGHT= option for the CHART statement of PROC GANTT (SAS/OR User’s Guide: Project Management, Chapter 4) for more details.)
- SCALE= specifies the relative size adjustment of the data columns and chart. (See the SCALE= option for the CHART statement of PROC GANTT (SAS/OR User’s Guide: Project Management, Chapter 4) for more details.)

This macro relies on the output data set (named TASKMETS by default) that is generated by %EVA_TASK_METRICS. The TASKMETRICS= parameter is used by both %EVA_TASK_METRICS and %EVG_GANTT_CHART to specify a different data set name. More details are given in the “Syntax” section on page 826.

The %EVG_INDEX_PLOT macro is used to generate a line plot of the cost and schedule performance indices, along with the to-complete performance index. The output generated by a default invocation is shown in Figure 9.26. Recall that CPI is the ratio of earned value to actual cost, and SPI is the ratio of earned value to planned value. Also, TCPI_{BAC} is the ratio of work remaining to the remaining budget.

```
%evg_index_plot;
```

![Figure 9.26. CPI, SPI, and TCPI Using %EVG_INDEX_PLOT](image-url)
The CPI and SPI plots show a poor cost and schedule performance. Therefore the TCPI\textsubscript{BAC}, an indicator of the performance required to get back on track, is relatively high.

Note that the \%EVA_METRICS macro must have been called prior to this invocation in order to generate the METRICS= and SUMMARY= data sets.

The \%EVG_COST_PLOT macro is used to plot the Budgeted Cost of Work Scheduled (or Planned Value), Budgeted Cost of Work Performed (or Earned Value), Actual Cost of Work Performed (or simply Actual Cost), and revised Estimate at Completion (EAC\textsubscript{rev}) against time. The output from this macro is shown in Figure 9.27.

\%evg_cost_plot;

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure9_27.png}
\caption{PV, EV, AC, and EAC\textsubscript{rev} versus Time Using \%EVG_COST_PLOT}
\end{figure}

The EAC\textsubscript{rev} value of $668 depicted in Figure 9.27 is the sum of the actual costs so far and the revised cost of the future work. In other words, it is the sum of the “AC Rate” column in the output data set of the \%EVA_EARNED_VALUE macro. With the optimistic EAC\textsubscript{OTD} value of $626.72, it is assumed that the remaining work will be completed according to the original budget. A more realistic value of $726.72 is shown for the EAC\textsubscript{CPI}. Finally, the “upper bound” estimate of $845.57 is given by the EAC\textsubscript{CPI\timesSPI}.

Note that the %EVA_METRICS macro must have been called prior to this invocation in order to generate the METRICS= and SUMMARY= data sets.

The %EVG_SCHEDULE_PLOT macro can be used to show planned, revised, and projected completion dates as pictured in Figure 9.28.

```plaintext
%evg_schedule_plot;
```

![figure](image)

Figure 9.28. Projected Completion Dates Using %EVG_SCHEDULE_PLOT

In Figure 9.28, the current date (25MAR04) and planned end date (05APR04) are marked with vertical lines, as is the completion date according to the revised schedule (15APR04). The rightmost vertical line marks the projected finish time based upon the rate at which earned value has accumulated so far. This slope is used to extend the current earned value to the Budget at Completion (BAC) value of $523, providing a prediction of the completion date.

Note that the %EVA_METRICS macro must have been called prior to this invocation in order to generate the METRICS= data set.

Using the software schedule data set as input, the %EVG_WBS_CHART macro can be utilized to produce the Work Breakdown Structure seen in Figure 9.8.
Syntax

Analysis

The following macros are available for earned value analysis.

\%
EVA_PLANNED_VALUE \(\text{(parameters)} \);
\%
EVA_EARNED_VALUE \(\text{(parameters)} \);
\%
EVA_METRICS \(\text{< (parameters) >} \);
\%
EVA_TASK_METRICS \(\text{(parameters)} \);

The role of each of these macros is illustrated in Figure 9.29.

![Analysis Macro Data Flow](image-url)
%EVA_PLANNED_VALUE

This macro is used to produce the periodic planned value.

%EVA_PLANNED_VALUE (parameters);

Required Parameters

ACTIVITY=variable
specifies the activity variable in the PLANSCHED= and BUDGETCOST= data sets.

BUDGETCOST=SAS-data-set

PLANCOST=SAS-data-set
identifies the input data set containing the budgeted cost rates for each activity.

PLANSCHED=SAS-data-set
identifies the input data set containing the planned schedule.

START=variable
specifies the start date or datetime variable in the PLANSCHED= data set.

Optional Parameters

CALENDAR=SAS-data-set
identifies the calendar input data set. (See the CALENDAR= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

COST=variable
specifies the cost variable in the BUDGETCOST= data set. This is the total of the start and finish costs associated with the given task. At least one of COST= or RATE= must be specified.

DURATION=variable
specifies the task duration variable in the PLANSCHED= data set. At least one of DURATION= or FINISH= must be specified. If both parameters are specified, the FINISH= variable value overrides a nonzero DURATION= variable value; i.e., duration is only used to indicate a milestone task.

FINISH=variable
specifies the finish date or datetime variable in the PLANSCHED= data set. At least one of FINISH= or DURATION= must be specified. If both parameters are specified, the FINISH= variable value overrides a nonzero DURATION= variable value; i.e., duration is only used to indicate a milestone task.

HOLIDATA=SAS-data-set
identifies the input data set that contains the holiday schedule. (See the HOLIDATA= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

HOLIDAY=statement
specifies the HOLIDAY statement to use for PROC CPM. For example:

%eva_planned_value(..., holiday=holiday start / holifin=finish, ...);
INTERVAL=interval
specifies the units to use for the DURATION= variable values. (See the INTERVAL= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

MAXOBS=max
sets the limit on the number of allowable observations for the PV= data set. (See the MAXOBS= option of the RESOURCE statement and CPM procedure in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

NROUTCAL=variable
indicates which calendar is to be used for incrementing the _TIME_ variable in the BCOSTOUT= data set. (See the NROUTCAL= option of the RESOURCE statement and CPM procedure in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

PV=SAS-data-set
identifies the output data set that contains the periodic planned value. The frequency is determined by the INTERVAL= and ROUTINTERVAL= parameters. The default data set name is PV.

RATE=variable
specifies the cost rate variable in the BUDGETCOST= data set. This is the rate at which cost is incurred over the duration of the task. The variable containing this duration is specified with the DURATION= parameter. At least one of RATE= or COST= must be specified.

ROUTINTERVAL=interval
specifies the period between values in the PV= data set. (See the ROUTINTERVAL= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

SPCT=variable
specifies the start percentage variable in the BUDGETCOST= data set. This is the percentage of the COST= amount that is incurred at the beginning of the task. The default is zero, in which case the entire COST= amount is incurred at the completion of the task. The specified variable may also contain a comma-delimited list of weights to be used for distributing the cost at equal working intervals over the duration of the activity.

TASKPV=SAS-data-set
identifies the output data set that is used as input to the %EVA-EARNED_VALUE macro. This data set is used to store the planned duration and costs by activity, which are used by the %EVA-EARNED_VALUE macro to compute earned value (see Figure 9.29). The default data set name is TASKPV.

WORKDAY=SAS-data-set
identifies the workday input data set. (See the WORKDAY= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)
Note that if a WORKDAY=, CALENDAR=, or HOLIDAY= data set is specified, the default variable name, _CAL_, is assumed for calendar identification.

Table 9.1 summarizes the parameters used for managing input and output data sets in the %EVA_PLANNED_VALUE macro.

Table 9.1. %EVA_PLANNED_VALUE I/O Parameter Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>BUDGETCOST</td>
<td>COST, RATE, SPCT</td>
</tr>
<tr>
<td>INPUT</td>
<td>CALENDAR</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>HOLIDATA</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>PLANSCHED</td>
<td>ACTIVITY, DURATION, FINISH, START</td>
</tr>
<tr>
<td>INPUT</td>
<td>WORKDAY</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>PV</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>TASKPV</td>
<td></td>
</tr>
</tbody>
</table>

%EVA_EARNED_VALUE

This macro is used to produce the periodic earned value and actual cost.

%EVA_EARNED_VALUE (parameters);

Required Parameters

ACTIVITY=variable

specifies the activity variable in the REVISESCHED=, ACTUALCOST=, and BUDGETCOST= data sets.

ACTUALCOST=SAS-data-set

REVISECOST=SAS-data-set

identifies the updated costs input data set.

REVISESCHED=SAS-data-set

identifies the input data set containing the updated schedule.

START=variable

specifies the start date or datetime variable in the REVISESCHED= data set.
Optional Parameters

CALENDAR=SAS-data-set

identifies the calendar input data set. (See the CALENDAR= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

COST=variable

specifies the cost variable in the ACTUALCOST= data set. This is the total of the start and finish costs associated with the given task. At least one of COST= or RATE= must be specified. This parameter is only allowed if used for %EVA.PLANNED.VALUE; further, the variable specified must be the same as that specified for %EVA.PLANNED.VALUE. If a variable is specified for this parameter, but the value for the variable is missing for a given observation, the corresponding value from the BUDGETCOST= data set is used.

DURATION=variable

specifies the task duration variable in the REVISESCHED= data set. At least one of DURATION= or FINISH= must be specified. If both parameters are specified, the FINISH= variable value overrides a nonzero DURATION= variable value; i.e., duration is only used to indicate a milestone task.

EV=SAS-data-set

identifies the output data set, which contains the periodic earned value and revised cost. The frequency is determined by the INTERVAL= and ROUTINTERVAL= parameters. The default data set name is EV.

FINISH=variable

specifies the finish date or datetime variable in the REVISESCHED= data set. At least one of FINISH= or DURATION= must be specified. If both parameters are specified, the FINISH= variable value overrides a nonzero DURATION= variable value; i.e., duration is only used to indicate a milestone task.

HOLIDATA=SAS-data-set

identifies the input data set that contains the holiday schedule. (See the HOLIDATA= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

HOLIDAY=statement

specifies the HOLIDAY statement to use for PROC CPM. For example:

```sas
%eva_earned_value(..., holiday=holiday start / holifin=finish, ...);
```

(See the HOLIDAY statement in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

INTERVAL=interval

specifies the units to use for the DURATION= variable values. (See the INTERVAL= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

MAXOBS=max

sets the limit on the number of allowable observations for the EV= data set. (See the MAXOBS= option of the RESOURCE statement and CPM procedure in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)
NROUTCAL=variable
indicates which calendar is to be used for incrementing the _TIME_ variable in the ACOSTOUT= data set. (See the NROUTCAL= option of the RESOURCE statement and CPM procedure in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

RATE=variable
specifies the cost rate variable in the ACTUALCOST= data set. This is the rate at which cost is incurred over the duration of the task. The variable containing this duration is specified with the DURATION= parameter. At least one of RATE= or COST= must be specified. This parameter is only allowed if used with %EVA_PLANNED_VALUE; further, the variable specified must be the same as that specified for %EVA_PLANNED_VALUE. If a variable is specified for this parameter, but the value for the variable is missing for a given observation, the corresponding value from the BUDGETCOST= data set is used.

ROUTINTERVAL=interval
specifies the period between values in the EV= data set. (See the ROUTINTERVAL= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

SPCT=variable
specifies the start percentage variable in the ACTUALCOST= data set. This is the percentage of the COST= amount that is incurred at the beginning of the task. The default is zero, in which case the entire COST= amount is incurred at the completion of the task. The specified variable may also contain a comma-delimited list of weights to be used for distributing the cost at equal working intervals over the duration of the activity. This parameter is only allowed if used for %EVA_PLANNED_VALUE; further, the variable specified must be the same as that specified for %EVA_PLANNED_VALUE. If a variable is specified for this parameter, but the value for the variable is missing for a given observation, the corresponding value from the BUDGETCOST= data set will be used.

TASKPV=SAS-data-set
identifies the input data set containing the planned duration and costs by activity, which are used to compute earned value. This data set is generated by the %EVA_PLANNED_VALUE macro, with name specified by the TASKPV= parameter of the %EVA_PLANNED_VALUE macro (see Figure 9.29). The default data set name is TASKPV.

WORKDAY=SAS-data-set
identifies the workday input data set. (See the WORKDAY= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

Note that if a WORKDAY=, CALENDAR=, or HOLIDAY= data set is specified, the default variable name, _CAL_, is assumed for calendar identification.

Also note that the variable names specified for the ACTIVITY=, START=, FINISH=, and RATE= parameters must be the same, respectively, as those previously specified for the %EVA_PLANNED_VALUE macro. This is to enable the subsequent use of the %EVA_TASK_METRICS and %EVG_GANTT_CHART macros.
Table 9.2 summarizes the parameters used for managing input and output data sets in the %EVA_EARNED_VALUE macro.

Table 9.2. %EVA_EARNED_VALUE I/O Parameter Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>ACTUALCOST</td>
<td>COST, RATE, SPCT</td>
</tr>
<tr>
<td>INPUT</td>
<td>CALENDAR</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>HOLIDATA</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>REVISESCHED</td>
<td>ACTIVITY, DURATION, FINISH, START</td>
</tr>
<tr>
<td>INPUT</td>
<td>TASKPV</td>
<td>COST, RATE, SPCT</td>
</tr>
<tr>
<td>INPUT</td>
<td>WORKDAY</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>EV</td>
<td></td>
</tr>
</tbody>
</table>

%EVA_METRICS

This macro is used to generate summary statistics for the status date(s) requested, along with periodic metrics.

%EVA_METRICS < (parameters) > ;

Optional Parameters

ACRONYMS=long

specifies whether the long form of the earned value acronyms is to be used; e.g., BCWP versus EV. The short form is used unless the macro variable _ACRONYMS_ is set to “long” or ACRONYMS=long is specified. The parameter overrides the macro variable setting; i.e., specifying any non-null value other than “long” for the ACRONYMS= parameter produces short forms.

EACFORM=integer

indicates the form of the EAC to be used in computing ETC, VAC, VAC percentage, and TCPI_{EAC}. The values are assigned as follows:

- 1 - EAC_{rev}
- 2 - EAC_{OTD}
- 3 - EAC_{CPI}
- 4 - EAC_{CPI\times SPI}

The default value is 3 for EAC_{CPI}.

EV=SAS-data-set

identifies the input data set containing the periodic earned value and actual cost. It is generated by the %EVA_EARNED_VALUE macro, with name specified by the EV= parameter of the %EVA_EARNED_VALUE macro. The default data set name is EV.

METRICS=SAS-data-set

identifies the periodic output data set containing earned value metrics. The default name of the periodic output data set is METRICS.
\textbf{PV=SAS-data-set} identifies the input data set containing the periodic planned value. It is generated by the %EVA_PLANNED_VALUE macro, with name specified by the PV= parameter of the %EVA_PLANNED_VALUE macro. The default data set name is PV.

\textbf{SUMMARY=SAS-data-set} identifies the output data set, which contains a summary of metrics derived with respect to the last time given by the TIMENOW= parameter. The default name of the summary output data set is SUMMARY.

\textbf{TIMENOW=time(s)} specifies one or more reference dates (’ddmmyy’d) or datetimes (’ddmmyy:mm:ss’dt) delimited by whitespace, for the summary output. For example:

\begin{verbatim}
%eva_metrics(timenow=’01SEP05’ ’15SEP05:12:00:00’dt);
\end{verbatim}

The list of dates or datetimes must be in chronological order. The default value is today’s date, unless the macro variable _TIMENOW_ has been set, in which case the default is the latter.

Table 9.3 summarizes the parameters used for managing input and output data sets in the %EVA_METRICS macro.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Type & Data Set \\
\hline
INPUT & EV \\
\hline
INPUT & PV \\
\hline
OUTPUT & METRICS \\
\hline
OUTPUT & SUMMARY \\
\hline
\end{tabular}
\caption{\%EVA_METRICS I/O Parameter Summary}
\label{table9.3}
\end{table}

\textbf{%EVA_TASK_METRICS} This macro is used to produce earned value measures for each task; these measures include Planned Value, Earned Value, Actual Cost, Cost and Schedule Variance, and Cost and Schedule Performance Index.

\begin{verbatim}
%eva_task_metrics (parameters) ;
\end{verbatim}

\textbf{Required Parameters}

\textbf{ACTIVITY=variable} specifies the activity variable in the PLANSCHED= and REVISESCHED= data sets.

Chapter 9. The Earned Value Management Macros (Experimental)

PLANSCHED=SAS-data-set
identifies the input data set that contains the planned schedule.

REVISESCHED=SAS-data-set
identifies the input data set that contains the updated schedule.

START=variable
specifies the start date or datetime variable in the PLANSCHED= and REVISESCHED= data sets.

Optional Parameters

ACRONYMS=long
specifies whether the long form of the earned value acronyms is to be used; e.g., BCWP versus EV. The short form is used unless the macro variable _ACRONYMS_ is set to “long” or ACRONYMS=long is specified. The parameter overrides the macro variable setting; i.e., specifying any non-null value other than “long” for the ACRONYMS= parameter produces short forms.

AGGREGATE=Y or otherwise
specifies whether or not to roll up values along the project hierarchy; a value of Y indicates that aggregation is to be carried out. No rollup is performed for the default behavior. The WBSCODE= parameter is required if AGGREGATE=Y is specified.

CALENDAR=SAS-data-set
identifies the calendar data set. (See the CALENDAR= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

COST=variable
specifies the cost variable in the BUDGETCOST= and ACTUALCOST= data sets. This is the total of the start and finish costs associated with the given task. At least one of COST= or RATE= must be specified. If a variable is specified for this parameter, but the value for the variable is missing for a given observation, the corresponding value from the BUDGETCOST= data set is used.

DURATION=variable
specifies the task duration variable in the PLANSCHED= and REVISESCHED= data sets. At least one of DURATION= or FINISH= must be specified. If both parameters are specified, the FINISH= variable value overrides a nonzero DURATION= variable value; i.e., duration is only used to indicate a milestone task.

FINISH=variable
specifies the finish date or datetime variable in the PLANSCHED= and REVISESCHED= data sets. At least one of FINISH= or DURATION= must be specified. If both parameters are specified, the FINISH= variable value overrides a nonzero DURATION= variable value; i.e., duration is only used to indicate a milestone task.

HOLIDATA=SAS-data-set
identifies the holiday data set. (See the HOLIDATA= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)
HOLIDAY=statement
specifies the HOLIDAY statement to use for PROC CPM. For example:

\%eva_task_metrics(..., holiday=holiday start / holifin=finish, ...);

(See the HOLIDAY statement in Chapter 2 of SAS/OR User’s Guide: Project
Management for more details.)

INTERVAL=interval
specifies the units to use for the DURATION= variable values. (See the INTERVAL=
option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

PCTCOMP=variable
specifies the percentage complete variable of the REVISESCHED= data set. Note
that for a given activity, the specified percentage complete can appear to be in conflict
with the amount of time spent, relative to the projected finish time for that activity.
For example, even though 5 of 10 working days have elapsed, maybe only 30% of
the activity has been completed. The input data reflects an anticipated acceleration
in progress over the next five days. Also, if there is no value for the PCTCOMP=
variable for a given activity, a computed value is substituted.

RATE=variable
specifies the cost rate variable in the BUDGETCOST= and ACTUALCOST= data
sets. This is the rate at which cost is incurred over the DURATION= variable value
for the given task. At least one of RATE= or COST= must be specified. If a variable
is specified for this parameter, but the value for the variable is missing for a given
observation, the corresponding value from the BUDGETCOST= data set is used.

SPCT=variable
specifies the start percentage variable in the BUDGETCOST= and ACTUALCOST=
data sets. This is the percentage of the COST= amount that is incurred at the be-
ginning of the task. The default is zero, in which case the entire COST= amount
is incurred at the completion of the task. The specified variable may also contain a
comma-delimited list of weights to be used for distributing the cost at equal working
intervals over the duration of the activity. If a variable is specified for this parameter,
but the value for the variable is missing for a given observation, the corresponding
value from the BUDGETCOST= data set is used.

TASKMETRICS=SAS-data-set
identifies the output data set. The default data set name is TASKMETS.

TIMENOW=time
specifies the date (’ddmmmyy’d) or datetime (’ddmmmyy:hh:mm:ss’dt) of the up-
dated schedule and costs. The default value is today’s date unless the macro variable
_ _TIMENOW_ _ has been set, in which case the default is the latter.

WBSCODE=variable
specifies the variable containing the Work Breakdown Structure code in the
PLANSCHED= or REVISESCHED= data set. The default variable name is WBS_CODE.
WORKDAY=SAS-data-set
identifies the workday input data set. (See the WORKDAY= option in Chapter 2 of SAS/OR User’s Guide: Project Management for more details.)

Note that if a WORKDAY=, CALENDAR=, or HOLIDAY= data set is specified, the default variable name, _CAL_, is assumed for calendar identification.

Table 9.4 summarizes the parameters used for managing input and output data sets in the %EVA_TASK_METRICS macro.

Table 9.4. %EVA_TASK_METRICS I/O Parameter Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>ACTUALCOST</td>
<td>COST, RATE, SPCT</td>
</tr>
<tr>
<td>INPUT</td>
<td>BUDGETCOST</td>
<td>COST, RATE, SPCT</td>
</tr>
<tr>
<td>INPUT</td>
<td>CALENDAR</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>HOLIDATA</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>PLANSCHED</td>
<td>ACTIVITY, DURATION, FINISH, START, WBSCODE</td>
</tr>
<tr>
<td>INPUT</td>
<td>REVISESCHED</td>
<td>ACTIVITY, DURATION, FINISH, PCTCOMP, START, WBSCODE</td>
</tr>
<tr>
<td>INPUT</td>
<td>WORKDAY</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>TASKMETRICS</td>
<td></td>
</tr>
</tbody>
</table>

Charts

The following macros are available for earned value charts and reports.

%EVG_COST_PLOT < (parameters) >;
%EVG_SCHEDULE_PLOT < (parameters) >;
%EVG_INDEX_PLOT < (parameters) >;
%EVG_VARIANCE_PLOT < (parameters) >;
%EVG_GANTT_CHART (parameters) ;
%EVG_WBS_CHART (parameters) ;

%EVG_COST_PLOT

This macro is used to produce a plot of earned value measures over time. The plots include Planned Value, Earned Value, Actual Cost, and revised cost.

%EVG_COST_PLOT < (parameters) >;

Optional Parameters

ACRONYMS=long
specifies whether the long form of the earned value acronyms is to be used; e.g., BCWP versus EV. The short form is used unless the macro variable _ACRONYMS_ is set to “long” or ACRONYMS=long is specified. The parameter overrides the
macro variable setting; i.e., specifying any non-null value other than “long” for the ACRONYMS= parameter produces short forms.

METRICS=SAS-data-set

identifies the periodic metrics data set produced by the %EVA_METRICS macro, the name of which is determined by the METRICS= parameter of %EVA_METRICS. The default data set name is METRICS.

PLOT=SAS-data-set

specifies the name of the output data set. This is an internal data set that is used as input to the plotting procedure. The default data set name is PLOT.

SUMMARY=SAS-data-set

identifies the summary data set from the %EVA_METRICS macro, the name of which is determined by the SUMMARY= parameter of %EVA_METRICS. The default data set name is SUMMARY.

Table 9.5 summarizes the parameters used for managing input and output data sets in the %EVG_COST_PLOT macro.

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>METRICS</td>
</tr>
<tr>
<td>INPUT</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>PLOT</td>
</tr>
</tbody>
</table>

%EVG_SCHEDULER_PLOT

This macro is used to display planned and projected completion times for the project. Specifically, the status date is shown, along with the planned finish time, the revised finish time, and the projected finish time.

```plaintext
%EVG_SCHEDULER_PLOT < (parameters) >;
```

Optional Parameters

ACRONYMS=long

specifies whether the long form of the earned value acronyms is to be used; e.g., BCWP versus EV. The short form is used unless the macro variable _ACRONYMS_ is set to “long” or ACRONYMS=long is specified. The parameter overrides the macro variable setting; i.e., specifying any non-null value other than “long” for the ACRONYMS= parameter produces short forms.

METRICS=SAS-data-set

identifies the periodic metrics data set produced by the %EVA_METRICS macro, the name of which is determined by the METRICS= parameter of %EVA_METRICS. The default data set name is METRICS.

PLOT=SAS-data-set

specifies the name of the output data set. This is an internal data set that is used as input to the plotting procedure. The default data set name is PLOT.
Table 9.6 summarizes the parameters used for managing input and output data sets in the %EVG_SCHEDULE_PLOT macro.

Table 9.6. %EVG_SCHEDULE_PLOT I/O Parameter Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>METRICS</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>PLOT</td>
</tr>
</tbody>
</table>

%EVG_INDEX_PLOT

This macro is used to obtain a plot of the cost and schedule performance indices over time. If the project has not been completed, the To-Complete Performance Index (Budget at Completion version) is also displayed. The legend includes the Planned Value, Earned Value, and Actual Cost.

%EVG_INDEX_PLOT < (parameters) > ;

Optional Parameters

- **METRICS=SAS-data-set**
 - identifies the periodic metrics data set produced by the %EVA_METRICS macro, the name of which is determined by the METRICS= parameter of %EVA_METRICS. The default data set name is METRICS.

- **PLOT=SAS-data-set**
 - specifies the name of the output data set. This is an internal data set that is used as input to the plotting procedure. The default data set name is PLOT.

- **SUMMARY=SAS-data-set**
 - identifies the summary data set from the %EVA_METRICS macro, the name of which is determined by the SUMMARY= parameter of %EVA_METRICS. The default data set name is SUMMARY.

Table 9.7 summarizes the parameters used for managing input and output data sets in the %EVG_INDEX_PLOT macro.

Table 9.7. %EVG_INDEX_PLOT I/O Parameter Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>METRICS</td>
</tr>
<tr>
<td>INPUT</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>PLOT</td>
</tr>
</tbody>
</table>

%EVG_VARIANCE_PLOT

This macro is used to generate a plot of the cost and schedule variance against time; it features threshold plots obtained from the Planned Value, plus or minus 10%. The vital statistics of Planned Value, Earned Value, and Actual Cost are listed in the legend.
Optional Parameters

METRICS=SAS-data-set
identifies the periodic metrics data set produced by the %EVA-METRICS macro, the name of which is determined by the METRICS= parameter of %EVA-METRICS. The default data set name is METRICS.

PLOT=SAS-data-set
specifies the name of the output data set. This is an internal data set that is used as input to the plotting procedure.

The default data set name is PLOT.

Table 9.8 summarizes the parameters used for managing input and output data sets in the %EVG-VARIANCE- PLOT macro.

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>METRICS</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>PLOT</td>
</tr>
</tbody>
</table>

%EVG-GANTT-CHART

This macro is used to produce a Gantt chart of the planned and revised schedule, along with selected earned value metrics for each task.

%EVG-GANTT-CHART (parameters) ;

Required Parameters

ACTIVITY=variable
specifies the activity variable in the PLANSCHED= and REVISESCHED= data sets.

FINISH=variable
specifies the finish date or datetime variable in the PLANSCHED= and REVISESCHED= data sets

PLANSCHED=SAS-data-set
identifies the data set containing the planned schedule.

REVISESCHED=SAS-data-set
identifies the data set that contains the updated schedule.

START=variable
specifies the start date or datetime variable in the PLANSCHED= and REVISESCHED= data sets.

Optional Parameters

CHART=SAS-data-set
specifies the name of the output data set. This is an internal data set that is used as input to the GANTT procedure. The default data set name is CHART.
DURATION=variable

specifies a duration variable in the PLANSCHED= or REVISESCHED= data set. The specified variable in the REVISESCHED= data set is used if the variable is present in both data sets. This variable is used only for differentiating milestones from single-day tasks.

HEIGHT=h

specifies a height factor for all text in PROC GANTT. (See the HEIGHT= option for the CHART statement of PROC GANTT (SAS/OR User’s Guide: Project Management, Chapter 4) for more details.)

ID=variable(s)

specifies a space-delimited list of the variables from the TASKS= data set to be included in the chart. The choices are: WBS, PV, EV, AC, CV, CVP, SV, SVP, CPI, and SPI. The default value is “CV SV”.

SCALE=scale

specifies the relative size adjustment of the data columns and chart. (See the SCALE= option for the CHART statement of PROC GANTT (SAS/OR User’s Guide: Project Management, Chapter 4) for more details.)

TASKMETRICS=SAS-data-set

specifies the name of the output data set from the %EVA_TASK_METRICS macro. The default data set name is TASKMETS.

TIMENOW=time

specifies the date (‘ddmmyy’d) or datetime (‘ddmmyy:hh:mm:ss’dt) of the updated schedule and costs. The default value is today’s date, unless the macro variable _TIMENOW_ has been set, in which case the default is the latter. A vertical line and label indicate the value.

Table 9.9 summarizes the parameters used for managing input and output data sets in the %EVG_GANTT_CHART macro.

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>PLANSCHED</td>
<td>ACTIVITY, DURATION, FINISH, START</td>
</tr>
<tr>
<td>INPUT</td>
<td>REVISESCHED</td>
<td>ACTIVITY, DURATION, FINISH, START</td>
</tr>
<tr>
<td>INPUT</td>
<td>TASKMETRICS</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>CHART</td>
<td></td>
</tr>
</tbody>
</table>

%EVG_WBS_CHART

This macro is used to generate a Work Breakdown Structure chart. The parameters can be used to control the data that appears within the boxes of the display.

```
%EVG_WBS_CHART ( parameters );
```
Required Parameters

ACTIVITY=variable
specifies the activity variable in the STRUCTURE= data set.

PROJECT=variable
specifies the STRUCTURE= data set variable that identifies the project to which the current task belongs.

STRUCTURE=SAS-data-set
identifies the data set that defines the Work Breakdown Structure.

Optional Parameters

DEFID= Y or otherwise
specifies whether or not to include the default identification variables that are present in the STRUCTURE= data set in the boxes of the display. Default variable names are: E_START, E_FINISH, L_START, L_FINISH, S_START, S_FINISH, A_START, A_FINISH, T_FLOAT, and F_FLOAT. The default value for the DEFID= parameter is Y, meaning the default variables are displayed. (See the NODEFID option of the ACTNET statement of the NETDRAW procedure (SAS/OR User's Guide: Project Management, Chapter 5) for more details.)

ID=variable list
specifies the STRUCTURE= data set variables that appear in the boxes of the display.

REVERSEY= Y or otherwise
specifies whether or not to reverse the order in which the output pages appear. The default value is Y, which orders the pages from top to bottom. (See the REVERSEY option of the ACTNET statement of the NETDRAW procedure (SAS/OR User’s Guide: Project Management, Chapter 5) for more details.)

ROTATE= Y or otherwise
specifies whether or not to rotate the display by 90 degrees. The default value is Y, which performs the rotation. (See the ROTATE option of the ACTNET statement of the NETDRAW procedure (SAS/OR User’s Guide: Project Management, Chapter 5) for more details.)

ROTATETEXT= Y or otherwise
specifies whether or not to rotate the text that appears within the boxes of the display by 90 degrees. The default value is Y, which rotates the text. (See the ROTATETEXT option of the ACTNET statement of the NETDRAW procedure (SAS/OR User’s Guide: Project Management, Chapter 5) for more details.)

VPAGES=integer
specifies the number of vertical pages to produce. The default value is 1. (See the VPAGES= parameter of the ACTNET statement of the NETDRAW procedure (SAS/OR User’s Guide: Project Management, Chapter 5) for more details.)

Table 9.10 summarizes the parameters used for managing input and output data sets in the %EVG_WBS_CHART macro.
Table 9.10. %EVG_WBS_CHART I/O Parameter Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Data Set</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>STRUCTURE</td>
<td>ACTIVITY, ID, PROJECT</td>
</tr>
</tbody>
</table>

Details

Variances

Table 9.11 shows the formulas for the Cost Variance, Schedule Variance, and Variance at Completion, along with the associated percentages.

Table 9.11. Variance Formulas

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>EV - AC</td>
</tr>
<tr>
<td>CV%</td>
<td>CV</td>
</tr>
<tr>
<td>SV</td>
<td>EV - PV</td>
</tr>
<tr>
<td>SV%</td>
<td>PV</td>
</tr>
<tr>
<td>VAC</td>
<td>BAC - EAC</td>
</tr>
<tr>
<td>VAC%</td>
<td>BAC</td>
</tr>
</tbody>
</table>

Performance Indices

Table 9.12 shows the formulas for Cost, Schedule, and To-Complete Performance Indices. WR is Work Remaining and is given by: WR = BAC − EV. The “Cost Estimates” section on page 842 gives different expressions for the EAC (Estimate at Completion).

Table 9.12. Performance Index Formulas

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>EV</td>
</tr>
<tr>
<td>SPI</td>
<td>EV</td>
</tr>
<tr>
<td>TCPI_{BAC}</td>
<td>WR \times BAC - AC</td>
</tr>
<tr>
<td>TCPI_{EAC}</td>
<td>WR \times EAC - AC</td>
</tr>
</tbody>
</table>

Cost Estimates

The ETC, or Estimate to Complete, and the EAC, or Estimate at Completion, are two metrics that are central to Earned Value Analysis. The ETC is a projection of the additional funds needed to finish the project. The EAC can be derived as follows (where AC represents the actual costs to date):

\[EAC = AC + ETC. \]

For the purposes of this document, each of these two cost estimates takes four forms, illustrated by the following table for ETC:
Table 9.13. ETC Formulas

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETC<sub>rev</sub></td>
<td>Revised</td>
<td>EAC<sub>rev</sub> - AC</td>
</tr>
<tr>
<td>ETC<sub>OTD</sub></td>
<td>Overrun-to-date</td>
<td>BAC - EV = WR</td>
</tr>
<tr>
<td>ETC<sub>CPI</sub></td>
<td>CPI</td>
<td>WR / CPI</td>
</tr>
<tr>
<td>ETC<sub>CPI×SPI</sub></td>
<td>CPI times SPI</td>
<td>WR / CPI×SPI</td>
</tr>
</tbody>
</table>

The ETC_{rev} is derived directly from the revised schedule, revised costs, and actual costs to date. This form does not make allowances for past performance. It is assumed that this information has already been factored into the updated schedule and costs. Analogous to the ETC_{rev}, the ETC_{OTD} is taken to be the remaining planned value (Budget at Completion less Earned Value), also known as Work Remaining (WR). This form can be thought of as having a performance factor of 1.

The ETC_{CPI} form is the remaining planned value divided by the CPI. In this way favorable cost performance (CPI greater than 1) forces the estimate downward. The performance factor in this case is the inverse of the CPI. Similarly, the ETC_{CPI×SPI} form employs the inverse of the product of the CPI and SPI as the performance factor. In this case, both cost and schedule performance affect the estimate. For example, if both CPI and SPI are favorable (greater than 1), the estimate is lower.

Analysis

This section describes each macro in the earned value macro set in further detail.

%EVA_PLANNED_VALUE

This macro is used to establish periodic planned value. The first input data set for this macro (identified using the PLANSCHED= parameter) provides an initial baseline schedule. The second input data set (identified using the BUDGETCOST= parameter) contains the budgeted costs data set. One of the output data sets (identified using the PV= parameter) consists of two pertinent variables: _TIME_ and _PV_RATE_. The latter variable lists the budgeted cost for the date or datetime indicated by the former variable. Another output data set is identified using the TASKPV= parameter, and provides the planned duration and costs by activity, for later use by the %EVA_EARNED_VALUE macro.

Upon completion, the status of the macro is saved in a global macro variable named _EVA_PLANNED_VALUE_, which can take one of the following three values:

- STATUS=SUCCESSFUL indicates successful completion of the macro.
- STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
- STATUS=RUNTIME_ERROR indicates that the macro invocation failed.

%EVA_EARNED_VALUE

This macro is used to establish periodic earned value and actual cost. The first of the input data sets for this macro (identified using the REVISESCHED= parameter)
Chapter 9. The Earned Value Management Macros (Experimental)

contains a schedule that has been updated to reflect the current status of the project. A second input data set (identified using the ACTUALCOST= parameter) specifies the revised cost. The third input data set, from the %EVA_PLANNED_VALUE macro, is identified using the TASKPV= parameter, and supplies the planned duration and costs by activity. These are needed for computing the earned value. The output data set (identified using the EV= parameter) contains three relevant variables: _TIME_, _EV_RATE_, and _AC_RATE_. _EV_RATE_ lists the Earned Value, and _AC_RATE_ the Actual Cost of Work Performed, for the date or datetime indicated by the _TIME_ variable.

Upon completion, the status of the macro is saved in a global macro variable named _EVA_EARNED_VALUE_, which can take one of the following three values:

- STATUS=SUCCESSFUL indicates successful completion of the macro.
- STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
- STATUS=RUNTIME_ERROR indicates that the macro invocation failed.

%EVA_METRICS

This macro is used to compute the periodic metrics and summary statistics in reference to the date(s) or datetime(s) specified by the TIMENOW= parameter. The periodic planned value data set (generated by the %EVA_PLANNED_VALUE macro) and the periodic earned value data set (generated by the %EVA_EARNED_VALUE macro) are the inputs to the %EVA_METRICS macro. These two data sets are identified using the PV= and EV= parameters, respectively. The METRICS= parameter identifies the periodic output data set, and the SUMMARY= parameter identifies the summary output data set. An output listing is also produced, which is derived from the summary output data set. The two output data sets are described next.

Periodic Output Data Set

The variables in this data set are as follows:

- _TIME_ is the date or datetime reference point for the other variables.
- _PV_ is the cumulative Planned Value (Budgeted Cost of Work Scheduled).
- _EV_ is the cumulative Earned Value (Budgeted Cost of Work Performed).
- _AC_ is the cumulative Actual Cost (Actual Cost of Work Performed).
- _EACREV_ is the EACrev. This variable is simply an accumulation of costs to project completion, according to the revised budget and schedule.
- _SV_ is the cumulative Schedule Variance, calculated as $SV = EV - PV$.
- _CV_ is the cumulative Cost Variance, calculated as $CV = EV - AC$.
- _CPI_ is the Cost Performance Index, calculated as $CPI = \frac{EV}{AC}$.
- _SPI_ is the Schedule Performance Index, calculated as $SPI = \frac{EV}{PV}$.
Summary Output Data Set

The variables in this data set are as follows:

- **_NAME_** is the internal variable name.
- **_LABEL_** is the label used for the variable in the output listing.
- **_VALUE_n** gives the value of the variable for the reference date or datetime given by the respective TIMENOW= parameter value.

Each row of the data set corresponds to one of the summary statistics as follows:

- **_pctcomp_** is the percentage complete for the entire project, calculated as
 \[\text{Percentage Complete} = \frac{EV}{BAC} \].
- **_ev_** is the cumulative Budgeted Cost of Work Performed (Earned Value).
- **_pv_** is the cumulative Budgeted Cost of Work Scheduled (Planned Value).
- **_ac_** is the cumulative Actual Cost of Work Performed (Actual Cost).
- **_cpi_** is the Cost Performance Index.
- **_spi_** is the Schedule Performance Index.
- **_cv_** is the Cost Variance, calculated as \[CV = EV - AC \].
- **_cvp_** is the Cost Variance percentage, calculated as \[CV\% = \frac{CV}{EV} \].
- **_sv_** is the Schedule Variance, calculated as \[SV = EV - PV \].
- **_svp_** is the Schedule Variance percentage, calculated as \[SV\% = \frac{SV}{PV} \].
- **_bac_** is the Budget at Completion (BAC).
- **_etc_** is the Estimate To Complete (ETC). The form of EAC used to compute the ETC is specified by the EACFORM= parameter of the %EVA_METRICS macro.
- **_eacrev_** is the revised Estimate at Completion (EAC_{rev}).
- **_eacotd_** is the Overrun To Date form of the EAC, calculated as \[EAC_{OTD} = AC + WR \], where WR is the Work Remaining \((WR = BAC - EV) \).
- **_eaccpi_** is the Cumulative CPI form of the EAC, calculated as \[EAC_{CPI} = AC + \frac{WR}{CPI} \].
- **_eaccpispi_** is the Cumulative CPI times SPI form of the EAC, calculated as \[EAC_{CPI \times SPI} = AC + \frac{WR}{CPI \times SPI} \].
- **_vac_** is the Variance at Completion, calculated as \[VAC = BAC - EAC \]. The form of EAC used is specified by the EACFORM= parameter of the %EVA_METRICS macro.
- **_vacp_** is the CPI Variance at Completion percentage, calculated as \[VAC\% = \frac{VAC}{BAC} \]. The form of EAC used to compute the VAC is specified by the EACFORM= parameter of the %EVA_METRICS macro.
- **_tcpi_** is the BAC To-Complete Performance Index, calculated as \[TCPI = \frac{WR}{BAC - AC} \].
Chapter 9. The Earned Value Management Macros (Experimental)

•

•

•

•

Upon completion, the status of the macro is saved in a global macro variable named _EVA_METRICS_, which can take one of the following three values:

• STATUS=SUCCESSFUL indicates successful completion of the macro.
• STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
• STATUS=RUNTIME_ERROR indicates that the macro invocation failed.

%EVA_TASK_METRICS

This macro uses the budgeted schedule and costs (identified using the PLANSCHED= and BUDGETCOST= parameters, respectively), along with the updated schedule and costs (identified using the REVISESCHED= and ACTUALCOST= parameters, respectively), to produce Cost Variance and Schedule Variance by task. The corresponding output data set is specified using the TASKMETRICS= parameter and is represented in the output listing. The variables in this data set are as follows:

• Activity is the reference task for the given row.
• WBS_CODE is the Work Breakdown Structure code for the given task.
• CV_ is the Cost Variance for the given task.
• CVP_ is the Cost Variance percentage for the given task.
• SV_ is the Schedule Variance for the given task.
• SVP_ is the Schedule Variance percentage for the given task.
• CPI_ is the Cost Performance Index for the given task.
• SPI_ is the Schedule Performance Index for the given task.
• PV_ is the Planned Value (BCWS) for the given task.
• EV_ is the Earned Value (BCWP) for the given task.
• AC_ is the Actual Cost (ACWP) for the given task.

Specifying “AGGREGATE=Y” with the WBSCODE= option forces the preceding metrics to be rolled up along the project hierarchy.

Upon completion, the status of the macro is saved in a global macro variable named _EVA_TASK_METRICS_, which can take one of the following three values:

• STATUS=SUCCESSFUL indicates successful completion of the macro.
• STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
• STATUS=RUNTIME_ERROR indicates that the macro invocation failed.
%EVG_COST_PLOT

This macro is used to generate a line plot of the Earned Value, Planned Value, Actual Cost, and revised cost over time. If the project has not been completed, three Estimates at Completion are also delineated by a three-tiered box at the right-hand side of the plot area. In addition, several vital statistics appear as part of the legend: Planned Value, Earned Value, Actual Cost, revised cost, Cost and Schedule Performance Indices, Budget At Completion, and Estimates at Completion.

Upon completion, the status of the macro is saved in a global macro variable named _EVG_COST_PLOT_, which can take one of the following three values:

- STATUS=SUCCESSFUL indicates successful completion of the macro.
- STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
- STATUS=RUNTIME_ERROR indicates that the macro invocation failed.

%EVG_SCHEDULE_PLOT

This macro is used to visualize planned and projected completion times for the project. To this end, plots of the planned value and actual and revised cost are displayed. To arrive at a projected finish time, the earned value plot is extended to the Budget at Completion with a slope equal to the ratio of Earned Value to time elapsed at the status date. The slope of this extension is the average rate at which Earned Value has accumulated up to the status date. Vital statistics displayed in the legend include Planned Value, Earned Value, Actual Cost, and Budget at Completion.

Upon completion, the status of the macro is saved in a global macro variable named _EVG_SCHEDULE_PLOT_, which can take one of the following three values:

- STATUS=SUCCESSFUL indicates successful completion of the macro.
- STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
- STATUS=RUNTIME_ERROR indicates that the macro invocation failed.

%EVG_INDEX_PLOT

This macro is used to plot the Cost and Schedule Performance Indices over time. The To-Complete Performance Index is also shown.

Upon completion, the status of the macro is saved in a global macro variable named _EVG_INDEX_PLOT_, which can take one of the following three values:

- STATUS=SUCCESSFUL indicates successful completion of the macro.
- STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
- STATUS=RUNTIME_ERROR indicates that the macro invocation failed.
%EVG_VARIANCE_PLOT

This macro is used to plot the Cost and Schedule Variances over time. Upon completion, the status of the macro is saved in a global macro variable named _EVG_VARIANCE_PLOT_, which can take one of the following three values:

- STATUS=SUCCESSFUL indicates successful completion of the macro.
- STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
- STATUS=RUNTIME_ERROR indicates that the macro invocation failed.

%EVG_GANTT_CHART

This macro is used to show the Cost and Schedule Variances and the Cost and Schedule Performance Indices by activity, along with a Gantt chart of the schedule. For each task, the bottom bar depicts the baseline schedule and the top bar represents the updated schedule.

Upon completion, the status of the macro is saved in a global macro variable named _EVG_GANTT_CHART_, which can take one of the following three values:

- STATUS=SUCCESSFUL indicates successful completion of the macro.
- STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
- STATUS=RUNTIME_ERROR indicates that the macro invocation failed.

%EVG_WBS_CHART

This macro is used to display the Work Breakdown Structure, in addition to any other data associated with an activity.

Upon completion, the status of the macro is saved in a global macro variable named _EVG_WBS_CHART_, which can take one of the following three values:

- STATUS=SUCCESSFUL indicates successful completion of the macro.
- STATUS=SYNTAX_ERROR indicates that macro execution was halted due to an error in the macro invocation syntax.
- STATUS=RUNTIME_ERROR indicates that the macro invocation failed.
Examples

In this section, a series of examples illustrates the usage and results of the earned value macro set.

Example 9.1. Integrated Assembly Project

The planned schedule for an assembly project is shown in Output 9.1.1. This schedule can be computed by either of the CPM or PM procedures. (For more details, see SAS/OR User's Guide: Project Management, Chapter 2 or Chapter 6, respectively.)

Output 9.1.1. Schedule IOUT1

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>Duration</th>
<th>Description</th>
<th>Planned Start</th>
<th>Planned Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>0</td>
<td>Start</td>
<td>01OCT03</td>
<td>01OCT03</td>
</tr>
<tr>
<td>2</td>
<td>PD</td>
<td>105</td>
<td>Preliminary Design</td>
<td>01OCT03</td>
<td>13JAN04</td>
</tr>
<tr>
<td>3</td>
<td>PDR</td>
<td>21</td>
<td>Prelim Design Review</td>
<td>14JAN04</td>
<td>03FEB04</td>
</tr>
<tr>
<td>4</td>
<td>FD</td>
<td>168</td>
<td>Final Design</td>
<td>04FEB04</td>
<td>20JUL04</td>
</tr>
<tr>
<td>5</td>
<td>PM</td>
<td>126</td>
<td>Procure Material</td>
<td>09JUN04</td>
<td>12OCT04</td>
</tr>
<tr>
<td>6</td>
<td>FDR</td>
<td>21</td>
<td>Final Design Review</td>
<td>21JUL04</td>
<td>10AUG04</td>
</tr>
<tr>
<td>7</td>
<td>FP</td>
<td>273</td>
<td>Facility Preparation</td>
<td>01OCT04</td>
<td>30JUN05</td>
</tr>
<tr>
<td>8</td>
<td>FC</td>
<td>273</td>
<td>Fabricate Components</td>
<td>11AUG04</td>
<td>10MAY05</td>
</tr>
<tr>
<td>9</td>
<td>DA</td>
<td>26</td>
<td>Deliver Assembly</td>
<td>26JUN05</td>
<td>21JUL05</td>
</tr>
<tr>
<td>10</td>
<td>FRR</td>
<td>21</td>
<td>Facil Readiness Rvw</td>
<td>01JUL05</td>
<td>21JUL05</td>
</tr>
<tr>
<td>11</td>
<td>IA</td>
<td>42</td>
<td>Install Assembly</td>
<td>22JUL05</td>
<td>01SEP05</td>
</tr>
<tr>
<td>12</td>
<td>RR</td>
<td>21</td>
<td>Readiness Review</td>
<td>02SEP05</td>
<td>22SEP05</td>
</tr>
<tr>
<td>13</td>
<td>T</td>
<td>126</td>
<td>Test</td>
<td>01OCT05</td>
<td>03FEB06</td>
</tr>
<tr>
<td>14</td>
<td>TV</td>
<td>63</td>
<td>Test Validation</td>
<td>07JAN06</td>
<td>10MAR06</td>
</tr>
</tbody>
</table>

The budgeted cost rates are given in Output 9.1.2. It is assumed that the activities incur costs continuously.
Output 9.1.2. Cost Rates IATCOST

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>PD</td>
<td>4.7619</td>
</tr>
<tr>
<td>3</td>
<td>PDR</td>
<td>7.1429</td>
</tr>
<tr>
<td>4</td>
<td>FD</td>
<td>1.7857</td>
</tr>
<tr>
<td>5</td>
<td>PM</td>
<td>6.0317</td>
</tr>
<tr>
<td>6</td>
<td>FDR</td>
<td>7.1429</td>
</tr>
<tr>
<td>7</td>
<td>FP</td>
<td>4.0293</td>
</tr>
<tr>
<td>8</td>
<td>FC</td>
<td>5.1282</td>
</tr>
<tr>
<td>9</td>
<td>DA</td>
<td>13.0769</td>
</tr>
<tr>
<td>10</td>
<td>FRR</td>
<td>7.1429</td>
</tr>
<tr>
<td>11</td>
<td>IA</td>
<td>5.9524</td>
</tr>
<tr>
<td>12</td>
<td>RR</td>
<td>7.1429</td>
</tr>
<tr>
<td>13</td>
<td>T</td>
<td>7.1429</td>
</tr>
<tr>
<td>14</td>
<td>TV</td>
<td>7.9365</td>
</tr>
</tbody>
</table>

The budgeted periodic cost can now be generated with the following specification of the %EVA_PLANNED_VALUE macro:

```plaintext
%eva_planned_value(
    plansched=iout1,
    activity=activity,
    start=start,
    finish=finish,
    duration=duration,
    budgetcost=iatcost,
    rate=rate
);
```

For brevity, only the first 17 rows of the output data set are shown in Output 9.1.3.
Next, the actual progress of the project through September 30, 2004, is entered. The ACTUAL data set is shown in Output 9.1.4.

Output 9.1.4. Current Status ACTUAL

<table>
<thead>
<tr>
<th>Activity</th>
<th>Obs</th>
<th>Start</th>
<th>Finish</th>
<th>Rate</th>
<th>Pct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>01OCT03</td>
<td>01OCT03</td>
<td>0.0</td>
<td>100</td>
</tr>
<tr>
<td>PD</td>
<td>2</td>
<td>01OCT03</td>
<td>29JAN04</td>
<td>6.0</td>
<td>100</td>
</tr>
<tr>
<td>PDR</td>
<td>3</td>
<td>30JAN04</td>
<td>19FEB04</td>
<td>8.2</td>
<td>100</td>
</tr>
<tr>
<td>FD</td>
<td>4</td>
<td>20FEB04</td>
<td>10SEP04</td>
<td>3.1</td>
<td>100</td>
</tr>
<tr>
<td>PM</td>
<td>5</td>
<td>10AUG04</td>
<td></td>
<td>6.4</td>
<td>40</td>
</tr>
<tr>
<td>FDR</td>
<td>6</td>
<td>11SEP04</td>
<td></td>
<td>8.0</td>
<td>80</td>
</tr>
</tbody>
</table>

These inputs are then used by the CPM procedure with the original schedule to produce an updated schedule, given in Output 9.1.5. (For information on using the CPM procedure, see SAS/OR User’s Guide: Project Management, Chapter 2.)
Output 9.1.5. Updated Schedule UPDSCHED

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>Duration</th>
<th>Description</th>
<th>Pct</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>0</td>
<td>Start</td>
<td>100</td>
<td>01OCT03</td>
<td>01OCT03</td>
</tr>
<tr>
<td>2</td>
<td>PD</td>
<td>121</td>
<td>Preliminary Design</td>
<td>100</td>
<td>01OCT03</td>
<td>29JAN04</td>
</tr>
<tr>
<td>3</td>
<td>PDR</td>
<td>21</td>
<td>Prelim Design Review</td>
<td>100</td>
<td>30JAN04</td>
<td>19FEB04</td>
</tr>
<tr>
<td>4</td>
<td>FD</td>
<td>204</td>
<td>Final Design</td>
<td>100</td>
<td>20FEB04</td>
<td>10SEP04</td>
</tr>
<tr>
<td>5</td>
<td>PM</td>
<td>.</td>
<td>Procure Material</td>
<td>40</td>
<td>10AUG04</td>
<td>17DEC04</td>
</tr>
<tr>
<td>6</td>
<td>FDR</td>
<td>.</td>
<td>Final Design Review</td>
<td>80</td>
<td>11SEP04</td>
<td>05OCT04</td>
</tr>
<tr>
<td>7</td>
<td>FP</td>
<td>.</td>
<td>Facility Preparation</td>
<td>.</td>
<td>06OCT04</td>
<td>05JUL05</td>
</tr>
<tr>
<td>8</td>
<td>FC</td>
<td>.</td>
<td>Fabricate Components</td>
<td>.</td>
<td>12OCT04</td>
<td>11JUL05</td>
</tr>
<tr>
<td>9</td>
<td>DA</td>
<td>.</td>
<td>Deliver Assembly</td>
<td>.</td>
<td>07JUL05</td>
<td>01AUG05</td>
</tr>
<tr>
<td>10</td>
<td>FRR</td>
<td>.</td>
<td>Facil Readiness Rwv</td>
<td>.</td>
<td>06JUL05</td>
<td>26JUL05</td>
</tr>
<tr>
<td>11</td>
<td>IA</td>
<td>.</td>
<td>Install Assembly</td>
<td>.</td>
<td>02AUG05</td>
<td>12SEP05</td>
</tr>
<tr>
<td>12</td>
<td>RR</td>
<td>.</td>
<td>Readiness Review</td>
<td>.</td>
<td>13SEP05</td>
<td>03OCT05</td>
</tr>
<tr>
<td>13</td>
<td>T</td>
<td>.</td>
<td>Test</td>
<td>.</td>
<td>04OCT05</td>
<td>06FEB06</td>
</tr>
<tr>
<td>14</td>
<td>TV</td>
<td>.</td>
<td>Test Validation</td>
<td>.</td>
<td>10JAN06</td>
<td>13MAR06</td>
</tr>
</tbody>
</table>

The %EVA_EARNED_VALUE macro can then be used to generate the updated periodic cost, as follows:

```plaintext
%eva_earned_value(
    revisesched=updsched,
    activity=activity,
    start=start,
    finish=finish,
    actualcost=iatupd,
    rate=rate
);
```
Again, for brevity only the first 17 rows of the output data set are shown in Output 9.1.6.

Output 9.1.6. %EVA–EARNED–VALUE: Periodic Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>Period Identifier</th>
<th>EV Rate</th>
<th>AC Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>02OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>03OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>04OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>05OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>06OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>07OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>08OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>09OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>11OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>12OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>13OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>14OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>15OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>16OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>17OCT03</td>
<td>4.13223</td>
<td>6</td>
</tr>
</tbody>
</table>

The %EVA–METRICS macro can be called with a current date of September 30, 2004, as follows:

```sas
%eva_metrics(
   timenow='30sep04'd,
   acronyms=long
);
```

Output 9.1.7 shows the output listing from %EVA–METRICS. Notice that “ACRONYMS=long” is specified, which results in the long version of the earned value acronyms being used.
Chapter 9. The Earned Value Management Macros (Experimental)

Output 9.1.7. %EVA_METRICS: Summary Statistics

Earned Value Analysis
as of September 30, 2004

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Complete</td>
<td>20.66</td>
</tr>
<tr>
<td>BCWS (Budgeted Cost of Work Scheduled)</td>
<td>2049.16</td>
</tr>
<tr>
<td>BCWP (Budgeted Cost of Work Performed)</td>
<td>1374.00</td>
</tr>
<tr>
<td>ACWP (Actual Cost of Work Performed)</td>
<td>2023.40</td>
</tr>
<tr>
<td>CV (Cost Variance)</td>
<td>-649.40</td>
</tr>
<tr>
<td>CV%</td>
<td>-47.26</td>
</tr>
<tr>
<td>SV (Schedule Variance)</td>
<td>-675.16</td>
</tr>
<tr>
<td>SV%</td>
<td>-32.95</td>
</tr>
<tr>
<td>CPI (Cost Performance Index)</td>
<td>0.68</td>
</tr>
<tr>
<td>SPI (Schedule Performance Index)</td>
<td>0.67</td>
</tr>
<tr>
<td>BAC (Budget At Completion)</td>
<td>6650.00</td>
</tr>
<tr>
<td>EAC (Revised Estimate At Completion)</td>
<td>7352.60</td>
</tr>
<tr>
<td>EAC (Overrun to Date)</td>
<td>7299.40</td>
</tr>
<tr>
<td>EAC (Cumulative CPI)</td>
<td>9793.02</td>
</tr>
<tr>
<td>EAC (Cumulative CPI X SPI)</td>
<td>13610.86</td>
</tr>
<tr>
<td>ETC (Estimate To Complete)*</td>
<td>7769.62</td>
</tr>
<tr>
<td>VAC (Variance At Completion)*</td>
<td>-3143.02</td>
</tr>
<tr>
<td>VAC%*</td>
<td>-47.26</td>
</tr>
<tr>
<td>TCPI (BAC) (To-Complete Performance Index)</td>
<td>1.14</td>
</tr>
<tr>
<td>TCPI (EAC) (To-Complete Performance Index)*</td>
<td>0.68</td>
</tr>
</tbody>
</table>

* The CPI form of the EAC is used.

Next, the %EVA_TASK_METRICS macro is used to produce Cost and Schedule Variance by task.

%eva_task_metrics(
 plansched=iout1,
 revisesched=updsched,
 activity=activity,
 start=start,
 finish=finish,
 pctcomp=pctcomp,
 budgetcost=iatcost,
 actualcost=iatupd,
 rate=rate,
 timenow='30sep04'd,
 acronyms=long
);

The output listing is shown in Output 9.1.8.
Output 9.1.8. %EVA_TASK_METRICS: CV and SV by Activity

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>BCWS</th>
<th>BCWP</th>
<th>ACWP</th>
<th>CV</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>PD</td>
<td>500.00</td>
<td>500.00</td>
<td>726.00</td>
<td>-226.00</td>
<td>-45.20</td>
</tr>
<tr>
<td>3</td>
<td>PDR</td>
<td>150.00</td>
<td>150.00</td>
<td>172.20</td>
<td>-22.20</td>
<td>-14.80</td>
</tr>
<tr>
<td>4</td>
<td>FD</td>
<td>300.00</td>
<td>300.00</td>
<td>632.40</td>
<td>-332.40</td>
<td>-110.80</td>
</tr>
<tr>
<td>5</td>
<td>PM</td>
<td>687.62</td>
<td>304.00</td>
<td>332.80</td>
<td>-28.80</td>
<td>-9.47</td>
</tr>
<tr>
<td>6</td>
<td>FDR</td>
<td>150.00</td>
<td>120.00</td>
<td>160.00</td>
<td>-40.00</td>
<td>-33.33</td>
</tr>
<tr>
<td>7</td>
<td>FP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>FC</td>
<td>261.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>DA</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>FRR</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>IA</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>RR</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>T</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>TV</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>SV</th>
<th>SV%</th>
<th>CPI</th>
<th>SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.69</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.87</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.47</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>-383.62</td>
<td>-55.79</td>
<td>0.91</td>
<td>0.44</td>
</tr>
<tr>
<td>6</td>
<td>-30.00</td>
<td>-20.00</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-261.54</td>
<td>-100.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output 9.1.9 through Output 9.1.13 show charts that are produced using the earned value analysis reporting macros. First, the %EVG_COST_PLOT macro is used to generate the plot in Output 9.1.9.

```plaintext
%evg_cost_plot(acronyms=long);
```
According to the plan, the earned value percentage complete at the status date of September 30, 2004 (shown by the BCWS plot) should have been 2049/6650, or 30.81%. Instead, the percentage complete (shown by the BCWP plot) is only 1374/6650, or 20.66%.

Next, the %EVG_SCHEDULE_PLOT macro is used to produce the plot in Output 9.1.10. The resulting output shows a disastrous projected completion date of August 1, 2008, based upon the current earned value. This is two years and four months behind the planned schedule end date of March 10, 2006. Based on the performance of the project so far, it is estimated to cost $9793 at completion (EAC\textsubscript{CPI}), amounting to nearly a 50% overrun.

%evg_schedule_plot;
Example 9.1. Integrated Assembly Project

Output 9.1.10. %EVG_SCHEDULE_PLOT: Projected Completion Date

The %EVG_INDEX_PLOT macro is then used to produce the plot in Output 9.1.11.

%evg_index_plot;
Chapter 9. The Earned Value Management Macros (Experimental)

Output 9.1.11. %EVG_INDEX_PLOT: Cost and Schedule Performance Index

The plot in Output 9.1.11 shows that the performance factor must be increased from 0.68 to 1.14 in order to stay within the budget.

The %EVG_VARIANCE_PLOT macro is used to produce the plot in Output 9.1.12.

%evg_variance_plot;
Output 9.1.12. %EVG_VARIANCE_PLOT: Cost and Schedule Variance

The plot in Output 9.1.12 shows that both the cost and schedule variance have strayed outside of the area between the 10% threshold plots of the planned value.

Finally, the %EVG_GANTT_CHART macro is used to produce the Gantt chart shown in Output 9.1.13.

%evg_gantt_chart(
 plansched=iout1,
 revisesched=updsched,
 activity=activity,
 start=start,
 finish=finish,
 duration=duration,
 timenow='30sep04'd,
 id=pv ev ac cv cvp sv svp,
 height=3,
 scale=0.5
);
Example 9.2. Construction Project

This example illustrates a home building multiproject. The cost structure of the multiproject consists of both rates and fixed costs. This example also demonstrates how to accommodate multiple status dates. The initial schedule is shown in Output 9.2.1.
Output 9.2.1. Initial Schedule GBSCHEFD

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>WBS Code</th>
<th>Duration</th>
<th>Scheduled Start</th>
<th>Scheduled Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Build House</td>
<td>0</td>
<td>1</td>
<td>04SEP04</td>
<td>12OCT04</td>
</tr>
<tr>
<td>2</td>
<td>Landscaping</td>
<td>0.00</td>
<td>1</td>
<td>29SEP04</td>
<td>10OCT04</td>
</tr>
<tr>
<td>3</td>
<td>Finish Grading</td>
<td>0.00</td>
<td>2</td>
<td>29SEP04</td>
<td>30SEP04</td>
</tr>
<tr>
<td>4</td>
<td>Walks & Landscape</td>
<td>0.00.1</td>
<td>5</td>
<td>06OCT04</td>
<td>10OCT04</td>
</tr>
<tr>
<td>5</td>
<td>Drainage</td>
<td>0.01</td>
<td>1</td>
<td>28SEP04</td>
<td>29SEP04</td>
</tr>
<tr>
<td>6</td>
<td>Gutters & Downspouts</td>
<td>0.01.0</td>
<td>1</td>
<td>28SEP04</td>
<td>28SEP04</td>
</tr>
<tr>
<td>7</td>
<td>Storm Drains</td>
<td>0.01.1</td>
<td>1</td>
<td>29SEP04</td>
<td>29SEP04</td>
</tr>
<tr>
<td>8</td>
<td>Wiring</td>
<td>0.02</td>
<td>1</td>
<td>14SEP04</td>
<td>05OCT04</td>
</tr>
<tr>
<td>9</td>
<td>Initial Wiring</td>
<td>0.02.0</td>
<td>2</td>
<td>14SEP04</td>
<td>15SEP04</td>
</tr>
<tr>
<td>10</td>
<td>Kitchen Fixtures</td>
<td>0.02.1</td>
<td>1</td>
<td>03OCT04</td>
<td>03OCT04</td>
</tr>
<tr>
<td>11</td>
<td>Finish Electrical</td>
<td>0.02.2</td>
<td>1</td>
<td>04OCT04</td>
<td>04OCT04</td>
</tr>
<tr>
<td>12</td>
<td>Finish Carpentry</td>
<td>0.02.3</td>
<td>3</td>
<td>03OCT04</td>
<td>05OCT04</td>
</tr>
<tr>
<td>13</td>
<td>Plumbing</td>
<td>0.03</td>
<td>1</td>
<td>10SEP04</td>
<td>04OCT04</td>
</tr>
<tr>
<td>14</td>
<td>Rough Plumbing</td>
<td>0.03.0</td>
<td>3</td>
<td>11SEP04</td>
<td>13SEP04</td>
</tr>
<tr>
<td>15</td>
<td>Basement Plumbing</td>
<td>0.03.1</td>
<td>1</td>
<td>10SEP04</td>
<td>10SEP04</td>
</tr>
<tr>
<td>16</td>
<td>Finish Plumbing</td>
<td>0.03.2</td>
<td>2</td>
<td>03OCT04</td>
<td>04OCT04</td>
</tr>
<tr>
<td>17</td>
<td>Foundation</td>
<td>0.04</td>
<td>1</td>
<td>04SEP04</td>
<td>15SEP04</td>
</tr>
<tr>
<td>18</td>
<td>Excavate & Footers</td>
<td>0.04.0</td>
<td>4</td>
<td>04SEP04</td>
<td>07SEP04</td>
</tr>
<tr>
<td>19</td>
<td>Pour Foundation</td>
<td>0.04.1</td>
<td>2</td>
<td>08SEP04</td>
<td>09SEP04</td>
</tr>
<tr>
<td>20</td>
<td>Pour Basement</td>
<td>0.04.2</td>
<td>2</td>
<td>14SEP04</td>
<td>15SEP04</td>
</tr>
<tr>
<td>21</td>
<td>Roofing</td>
<td>0.05</td>
<td>1</td>
<td>10SEP04</td>
<td>27SEP04</td>
</tr>
<tr>
<td>22</td>
<td>Finish Roof</td>
<td>0.05.0</td>
<td>2</td>
<td>26SEP04</td>
<td>27SEP04</td>
</tr>
<tr>
<td>23</td>
<td>Frame & Roof</td>
<td>0.05.1</td>
<td>4</td>
<td>10SEP04</td>
<td>13SEP04</td>
</tr>
<tr>
<td>24</td>
<td>Flooring</td>
<td>0.06</td>
<td>1</td>
<td>30SEP04</td>
<td>12OCT04</td>
</tr>
<tr>
<td>25</td>
<td>Varnish Floor</td>
<td>0.06.0</td>
<td>2</td>
<td>11OCT04</td>
<td>12OCT04</td>
</tr>
<tr>
<td>26</td>
<td>Finish Flooring</td>
<td>0.06.1</td>
<td>3</td>
<td>30SEP04</td>
<td>02OCT04</td>
</tr>
<tr>
<td>27</td>
<td>Heat & Ventilation</td>
<td>0.07</td>
<td>4</td>
<td>16SEP04</td>
<td>19SEP04</td>
</tr>
<tr>
<td>28</td>
<td>Plaster</td>
<td>0.08</td>
<td>10</td>
<td>20SEP04</td>
<td>29SEP04</td>
</tr>
<tr>
<td>29</td>
<td>Brickwork</td>
<td>0.09</td>
<td>6</td>
<td>20SEP04</td>
<td>25SEP04</td>
</tr>
<tr>
<td>30</td>
<td>Paint</td>
<td>0.10</td>
<td>3</td>
<td>06OCT04</td>
<td>08OCT04</td>
</tr>
</tbody>
</table>

The Work Breakdown Structure for the project is given in Output 9.2.2; this chart was created using the %Evg_wbs_chart macro.

```sql
%evg_wbs_chart(
  structure=gbsched,
  activity=activity,
  project=project,
  id=wbs_code id,
  rotate=N,
  rotatetext=N,
  defid=N
);```
Output 9.2.2. %EVG_WBS_CHART: Work Breakdown Structure

Output 9.2.3 lists the budgeted costs for each task.
### Output 9.2.3. Budgeted Cost Rates GBASE

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>Cost</th>
<th>Start Pct./Weights</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Build House</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Landscaping</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Drainage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Wiring</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Plumbing</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Foundation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Roofing</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Flooring</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Heat &amp; Ventilation</td>
<td>325</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Plaster</td>
<td>14500</td>
<td>1, 2, 3, 4</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Brickwork</td>
<td>9500</td>
<td>1, 2, 3</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Paint</td>
<td>3250</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Finish Grading</td>
<td>425</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>Walks &amp; Landscape</td>
<td>2475</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>Gutters &amp; Downspouts</td>
<td>1200</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>Storm Drains</td>
<td>150</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>Initial Wiring</td>
<td>575</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>18</td>
<td>Kitchen Fixtures</td>
<td>375</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>Finish Electrical</td>
<td>550</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>Finish Carpentry</td>
<td>1450</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>Rough Plumbing</td>
<td>1025</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>Basement Plumbing</td>
<td>1000</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>Finish Plumbing</td>
<td>350</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>Excavate &amp; Footers</td>
<td>5250</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>Pour Foundation</td>
<td>1500</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>Pour Basement</td>
<td>950</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>27</td>
<td>Finish Roof</td>
<td>725</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>Frame &amp; Roof</td>
<td>9500</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>29</td>
<td>Varnish Floor</td>
<td>750</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>Finish Flooring</td>
<td>425</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

Note that the “Storm Drains” task, in the sixteenth observation, costs one quarter (25%) of $150 upon initiation and continues at a rate of $15/day. When complete, the balance (75%) of the $150 is charged. Weighted milestones are specified for the “Plaster” activity, given in Observation 10. At the start, one tenth \(\left(\frac{1}{1+2+3+4}\right)\) of $14,500, or $1,450, is incurred. The rate is $20/day. When the task is one third complete, another fifth \(\left(\frac{2}{1+2+3+4}\right)\) of $14,500, or $2,900, is incurred. At completion, the cost is two fifths \(\left(\frac{4}{1+2+3+4}\right)\) of $14,500, or $5,800.

The %EVA_PLANNED_VALUE macro is next invoked to compute the periodic planned value.
The periodic planned value data set is shown in Output 9.2.4.
### Output 9.2.4. %EVA\_PLANNED\_VALUE: Periodic Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>Period Identifier</th>
<th>PV Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04SEP04</td>
<td>2645.00</td>
</tr>
<tr>
<td>2</td>
<td>05SEP04</td>
<td>20.00</td>
</tr>
<tr>
<td>3</td>
<td>06SEP04</td>
<td>20.00</td>
</tr>
<tr>
<td>4</td>
<td>07SEP04</td>
<td>2645.00</td>
</tr>
<tr>
<td>5</td>
<td>08SEP04</td>
<td>390.00</td>
</tr>
<tr>
<td>6</td>
<td>09SEP04</td>
<td>1140.00</td>
</tr>
<tr>
<td>7</td>
<td>10SEP04</td>
<td>3460.00</td>
</tr>
<tr>
<td>8</td>
<td>11SEP04</td>
<td>321.25</td>
</tr>
<tr>
<td>9</td>
<td>12SEP04</td>
<td>65.00</td>
</tr>
<tr>
<td>10</td>
<td>13SEP04</td>
<td>7958.75</td>
</tr>
<tr>
<td>11</td>
<td>14SEP04</td>
<td>683.75</td>
</tr>
<tr>
<td>12</td>
<td>15SEP04</td>
<td>971.25</td>
</tr>
<tr>
<td>13</td>
<td>16SEP04</td>
<td>202.50</td>
</tr>
<tr>
<td>14</td>
<td>17SEP04</td>
<td>40.00</td>
</tr>
<tr>
<td>15</td>
<td>18SEP04</td>
<td>40.00</td>
</tr>
<tr>
<td>16</td>
<td>19SEP04</td>
<td>202.50</td>
</tr>
<tr>
<td>17</td>
<td>20SEP04</td>
<td>3098.33</td>
</tr>
<tr>
<td>18</td>
<td>21SEP04</td>
<td>65.00</td>
</tr>
<tr>
<td>19</td>
<td>22SEP04</td>
<td>3231.67</td>
</tr>
<tr>
<td>20</td>
<td>23SEP04</td>
<td>2965.00</td>
</tr>
<tr>
<td>21</td>
<td>24SEP04</td>
<td>65.00</td>
</tr>
<tr>
<td>22</td>
<td>25SEP04</td>
<td>4815.00</td>
</tr>
<tr>
<td>23</td>
<td>26SEP04</td>
<td>4772.50</td>
</tr>
<tr>
<td>24</td>
<td>27SEP04</td>
<td>422.50</td>
</tr>
<tr>
<td>25</td>
<td>28SEP04</td>
<td>1235.00</td>
</tr>
<tr>
<td>26</td>
<td>29SEP04</td>
<td>6116.25</td>
</tr>
<tr>
<td>27</td>
<td>30SEP04</td>
<td>581.25</td>
</tr>
<tr>
<td>28</td>
<td>01OCT04</td>
<td>25.00</td>
</tr>
<tr>
<td>29</td>
<td>02OCT04</td>
<td>237.50</td>
</tr>
<tr>
<td>30</td>
<td>03OCT04</td>
<td>890.00</td>
</tr>
<tr>
<td>31</td>
<td>04OCT04</td>
<td>902.50</td>
</tr>
<tr>
<td>32</td>
<td>05OCT04</td>
<td>1107.50</td>
</tr>
<tr>
<td>33</td>
<td>06OCT04</td>
<td>2298.75</td>
</tr>
<tr>
<td>34</td>
<td>07OCT04</td>
<td>55.00</td>
</tr>
<tr>
<td>35</td>
<td>08OCT04</td>
<td>1680.00</td>
</tr>
<tr>
<td>36</td>
<td>09OCT04</td>
<td>25.00</td>
</tr>
<tr>
<td>37</td>
<td>10OCT04</td>
<td>1881.25</td>
</tr>
<tr>
<td>38</td>
<td>11OCT04</td>
<td>202.50</td>
</tr>
<tr>
<td>39</td>
<td>12OCT04</td>
<td>577.50</td>
</tr>
</tbody>
</table>

Notice that the TASKPV= parameter has been used to ultimately pass the planned activity duration and costs to %EVA\_EARNED\_VALUE. Assume that the schedule has been updated to reflect actual start and finish times, as of the status date September 15, 2004. The updated schedule is shown in Output 9.2.5.
### Output 9.2.5. Updated Schedule GASCHED

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>WBS Code</th>
<th>Duration</th>
<th>Scheduled Start</th>
<th>Scheduled Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Build House</td>
<td>0</td>
<td>1</td>
<td>04SEP04</td>
<td>17OCT04</td>
</tr>
<tr>
<td>2</td>
<td>Landscaping</td>
<td>0.00</td>
<td>1</td>
<td>04OCT04</td>
<td>15OCT04</td>
</tr>
<tr>
<td>3</td>
<td>Drainage</td>
<td>0.01</td>
<td>1</td>
<td>03OCT04</td>
<td>04OCT04</td>
</tr>
<tr>
<td>4</td>
<td>Wiring</td>
<td>0.02</td>
<td>1</td>
<td>19SEP04</td>
<td>10OCT04</td>
</tr>
<tr>
<td>5</td>
<td>Plumbing</td>
<td>0.03</td>
<td>1</td>
<td>15SEP04</td>
<td>09OCT04</td>
</tr>
<tr>
<td>6</td>
<td>Foundation</td>
<td>0.04</td>
<td>1</td>
<td>04SEP04</td>
<td>20SEP04</td>
</tr>
<tr>
<td>7</td>
<td>Roofing</td>
<td>0.05</td>
<td>1</td>
<td>15SEP04</td>
<td>02OCT04</td>
</tr>
<tr>
<td>8</td>
<td>Flooring</td>
<td>0.06</td>
<td>1</td>
<td>05OCT04</td>
<td>17OCT04</td>
</tr>
<tr>
<td>9</td>
<td>Heat &amp; Ventilation</td>
<td>0.07</td>
<td>4</td>
<td>21SEP04</td>
<td>24SEP04</td>
</tr>
<tr>
<td>10</td>
<td>Plaster</td>
<td>0.08</td>
<td>10</td>
<td>25SEP04</td>
<td>04OCT04</td>
</tr>
<tr>
<td>11</td>
<td>Brickwork</td>
<td>0.09</td>
<td>6</td>
<td>25SEP04</td>
<td>30SEP04</td>
</tr>
<tr>
<td>12</td>
<td>Paint</td>
<td>0.10</td>
<td>3</td>
<td>11OCT04</td>
<td>13OCT04</td>
</tr>
<tr>
<td>13</td>
<td>Finish Grading</td>
<td>0.00.0</td>
<td>2</td>
<td>04OCT04</td>
<td>05OCT04</td>
</tr>
<tr>
<td>14</td>
<td>Walks &amp; Landscape</td>
<td>0.00.1</td>
<td>5</td>
<td>11OCT04</td>
<td>15OCT04</td>
</tr>
<tr>
<td>15</td>
<td>Gutters &amp; Downspouts</td>
<td>0.01.0</td>
<td>1</td>
<td>03OCT04</td>
<td>03OCT04</td>
</tr>
<tr>
<td>16</td>
<td>Storm Drains</td>
<td>0.01.1</td>
<td>1</td>
<td>04OCT04</td>
<td>04OCT04</td>
</tr>
<tr>
<td>17</td>
<td>Initial Wiring</td>
<td>0.02.0</td>
<td>2</td>
<td>19SEP04</td>
<td>20SEP04</td>
</tr>
<tr>
<td>18</td>
<td>Kitchen Fixtures</td>
<td>0.02.1</td>
<td>1</td>
<td>08OCT04</td>
<td>08OCT04</td>
</tr>
<tr>
<td>19</td>
<td>Finish Electrical</td>
<td>0.02.2</td>
<td>1</td>
<td>09OCT04</td>
<td>09OCT04</td>
</tr>
<tr>
<td>20</td>
<td>Finish Carpentry</td>
<td>0.02.3</td>
<td>3</td>
<td>08OCT04</td>
<td>10OCT04</td>
</tr>
<tr>
<td>21</td>
<td>Rough Plumbing</td>
<td>0.03.0</td>
<td>3</td>
<td>16SEP04</td>
<td>18SEP04</td>
</tr>
<tr>
<td>22</td>
<td>Basement Plumbing</td>
<td>0.03.1</td>
<td>1</td>
<td>15SEP04</td>
<td>15SEP04</td>
</tr>
<tr>
<td>23</td>
<td>Finish Plumbing</td>
<td>0.03.2</td>
<td>2</td>
<td>08OCT04</td>
<td>09OCT04</td>
</tr>
<tr>
<td>24</td>
<td>Excavate &amp; Footers</td>
<td>0.04.0</td>
<td>4</td>
<td>04SEP04</td>
<td>11SEP04</td>
</tr>
<tr>
<td>25</td>
<td>Pour Foundation</td>
<td>0.04.1</td>
<td>2</td>
<td>12SEP04</td>
<td>14SEP04</td>
</tr>
<tr>
<td>26</td>
<td>Pour Basement</td>
<td>0.04.2</td>
<td>2</td>
<td>19SEP04</td>
<td>20SEP04</td>
</tr>
<tr>
<td>27</td>
<td>Finish Roof</td>
<td>0.05.0</td>
<td>2</td>
<td>01OCT04</td>
<td>02OCT04</td>
</tr>
<tr>
<td>28</td>
<td>Frame &amp; Roof</td>
<td>0.05.1</td>
<td>4</td>
<td>15SEP04</td>
<td>18SEP04</td>
</tr>
<tr>
<td>29</td>
<td>Varnish Floor</td>
<td>0.06.0</td>
<td>2</td>
<td>16OCT04</td>
<td>17OCT04</td>
</tr>
<tr>
<td>30</td>
<td>Finish Flooring</td>
<td>0.06.1</td>
<td>3</td>
<td>05OCT04</td>
<td>07OCT04</td>
</tr>
</tbody>
</table>

The updated cost rates are given in Output 9.2.6.
Output 9.2.6. Updated Cost Rates GACT

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>Rate</th>
<th>Cost</th>
<th>Start Pct./Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Build House</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Landscaping</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Drainage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Wiring</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Plumbing</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Foundation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Roofing</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Flooring</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Heat &amp; Ventilation</td>
<td>40</td>
<td>325</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>Plaster</td>
<td>20</td>
<td>14500</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>11</td>
<td>Brickwork</td>
<td>45</td>
<td>9500</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>12</td>
<td>Paint</td>
<td>30</td>
<td>3250</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>Finish Grading</td>
<td>25</td>
<td>425</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>Walks &amp; Landscape</td>
<td>25</td>
<td>2475</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>Gutters &amp; Downspouts</td>
<td>15</td>
<td>1200</td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>Storm Drains</td>
<td>15</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>17</td>
<td>Initial Wiring</td>
<td>45</td>
<td>575</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>Kitchen Fixtures</td>
<td>25</td>
<td>375</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>Finish Electrical</td>
<td>50</td>
<td>550</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>Finish Carpentry</td>
<td>20</td>
<td>1450</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>Rough Plumbing</td>
<td>30</td>
<td>1025</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>Basement Plumbing</td>
<td>50</td>
<td>1000</td>
<td>25</td>
</tr>
<tr>
<td>23</td>
<td>Finish Plumbing</td>
<td>20</td>
<td>350</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>Excavate &amp; Footers</td>
<td>30</td>
<td>6350</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>Pour Foundation</td>
<td>30</td>
<td>2700</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>Pour Basement</td>
<td>20</td>
<td>950</td>
<td>50</td>
</tr>
<tr>
<td>27</td>
<td>Finish Roof</td>
<td>40</td>
<td>725</td>
<td>50</td>
</tr>
<tr>
<td>28</td>
<td>Frame &amp; Roof</td>
<td>35</td>
<td>9500</td>
<td>25</td>
</tr>
<tr>
<td>29</td>
<td>Varnish Floor</td>
<td>15</td>
<td>750</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>Finish Flooring</td>
<td>25</td>
<td>425</td>
<td>50</td>
</tr>
</tbody>
</table>

The %EVA_EARNED_VALUE macro can then be called as follows:

```plaintext
%evaEarnedValue(
 revisedsched=gasched,
 activity=activity,
 start=start,
 finish=finish,
 actualcost=gact,
 rate=rate,
 cost=cost,
 spct=spct,
 taskpv=taskpv,
 ev=gacost
);
```

The periodic earned value data set that is generated by %EVA_EARNED_VALUE is shown in Output 9.2.7.
The BUDGETCOST= parameter has been employed to capture the planned duration and costs for each activity. Next, the %EVA_METRICS macro is used to produce statistics for the entire project. For illustrative purposes, a range of times from the start of the project to the revised projected end date is used. Typically, only actual status dates would be used; in this case, perhaps September 4, 2004 and September 15, 2004. Unless otherwise noted, the latter is the assumption for the remainder of the macros in this example.
The output listing is given in **Output 9.2.8**.

### Output 9.2.8. %EVA-METRICS: Summary Statistics

#### Earned Value Analysis

<table>
<thead>
<tr>
<th>Metric</th>
<th>September 4, 2004</th>
<th>September 15, 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Complete</td>
<td>4.54</td>
<td>17.78</td>
</tr>
<tr>
<td>PV (Planned Value)</td>
<td>2645.00</td>
<td>20320.00</td>
</tr>
<tr>
<td>EV (Earned Value)</td>
<td>2635.00</td>
<td>10320.00</td>
</tr>
<tr>
<td>AC (Actual Cost)</td>
<td>3205.00</td>
<td>12840.00</td>
</tr>
<tr>
<td>CV (Cost Variance)</td>
<td>-570.00</td>
<td>-2520.00</td>
</tr>
<tr>
<td>CV%</td>
<td>-21.63</td>
<td>-24.42</td>
</tr>
<tr>
<td>SV (Schedule Variance)</td>
<td>-10.00</td>
<td>-10000.00</td>
</tr>
<tr>
<td>SV%</td>
<td>-0.38</td>
<td>-49.21</td>
</tr>
<tr>
<td>CPI (Cost Performance Index)</td>
<td>0.82</td>
<td>0.80</td>
</tr>
<tr>
<td>SPI (Schedule Performance Index)</td>
<td>1.00</td>
<td>0.51</td>
</tr>
<tr>
<td>BAC (Budget At Completion)</td>
<td>58055.00</td>
<td>58055.00</td>
</tr>
<tr>
<td>EAC (Revised Estimate At Completion)</td>
<td>60575.00</td>
<td>60575.00</td>
</tr>
<tr>
<td>EAC (Overrun to Date)</td>
<td>58625.00</td>
<td>60575.00</td>
</tr>
<tr>
<td>EAC (Cumulative CPI)</td>
<td>70613.39</td>
<td>72231.22</td>
</tr>
<tr>
<td>EAC (Cumulative CPI X SPI)</td>
<td>70869.21</td>
<td>129780.85</td>
</tr>
<tr>
<td>ETC (Estimate To Complete)*</td>
<td>67408.39</td>
<td>59391.22</td>
</tr>
<tr>
<td>VAC (Variance At Completion)*</td>
<td>-12558.39</td>
<td>-14176.22</td>
</tr>
<tr>
<td>VAC%*</td>
<td>-21.63</td>
<td>-24.42</td>
</tr>
<tr>
<td>TCPI (BAC) (To-Complete Performance Index)</td>
<td>1.01</td>
<td>1.06</td>
</tr>
<tr>
<td>TCPI (EAC) (To-Complete Performance Index)*</td>
<td>0.82</td>
<td>0.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>October 1, 2004</th>
<th>October 17, 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Complete</td>
<td>68.59</td>
<td>100.00</td>
</tr>
<tr>
<td>PV (Planned Value)</td>
<td>48197.50</td>
<td>58055.00</td>
</tr>
<tr>
<td>EV (Earned Value)</td>
<td>39817.50</td>
<td>58055.00</td>
</tr>
<tr>
<td>AC (Actual Cost)</td>
<td>42337.50</td>
<td>60575.00</td>
</tr>
<tr>
<td>CV (Cost Variance)</td>
<td>-2520.00</td>
<td>-2520.00</td>
</tr>
<tr>
<td>CV%</td>
<td>-6.33</td>
<td>-4.34</td>
</tr>
<tr>
<td>SV (Schedule Variance)</td>
<td>-8380.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SV%</td>
<td>-17.39</td>
<td>0.00</td>
</tr>
<tr>
<td>CPI (Cost Performance Index)</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>SPI (Schedule Performance Index)</td>
<td>0.83</td>
<td>1.00</td>
</tr>
<tr>
<td>BAC (Budget At Completion)</td>
<td>58055.00</td>
<td>58055.00</td>
</tr>
<tr>
<td>EAC (Revised Estimate At Completion)</td>
<td>60575.00</td>
<td>60575.00</td>
</tr>
<tr>
<td>EAC (Overrun to Date)</td>
<td>60575.00</td>
<td>60575.00</td>
</tr>
<tr>
<td>EAC (Cumulative CPI)</td>
<td>61729.23</td>
<td>60575.00</td>
</tr>
<tr>
<td>EAC (Cumulative CPI X SPI)</td>
<td>65810.42</td>
<td>60575.00</td>
</tr>
<tr>
<td>ETC (Estimate To Complete)*</td>
<td>19391.73</td>
<td>0.00</td>
</tr>
<tr>
<td>VAC (Variance At Completion)*</td>
<td>-3674.23</td>
<td>-2520.00</td>
</tr>
<tr>
<td>VAC%*</td>
<td>-6.33</td>
<td>-4.34</td>
</tr>
<tr>
<td>TCPI (BAC) (To-Complete Performance Index)</td>
<td>1.16</td>
<td>0.00</td>
</tr>
<tr>
<td>TCPI (EAC) (To-Complete Performance Index)*</td>
<td>0.94</td>
<td>0.94</td>
</tr>
</tbody>
</table>

* The CPI form of the EAC is used.
Observe that the Estimate To Complete (ETC) and Schedule Performance Index (SPI) converge to 0 and 1, respectively, over time. Also, the Actual Cost (AC) agrees with the various Estimates At Completion (EAC’s) at the projected completion date.

Next, the %EVA_TASK_METRICS macro is used to show an activity-level view of the progress of the project.

```plaintext
%eva_task_metrics(
 activity=id,
 plansched=gbsched,
 revisesched=gasched,
 start=start,
 finish=finish,
 budgetcost=gbase,
 actualcost=gact,
 cost=cost,
 spct=spct,
 rate=rate,
 timenow='15SEP04'd,
 aggregate=Y
);
```

The AGGREGATE= parameter is specified in order to roll up the values with respect to the project hierarchy. The output from this macro is shown in Output 9.2.9 and Output 9.2.10.
### Output 9.2.9. %EVA_TASK_METRICS: Metrics by Activity

**Earned Value Analysis by Activity**  
**as of September 15, 2004**

<table>
<thead>
<tr>
<th>Obs</th>
<th>Activity</th>
<th>WBS Code</th>
<th>PV</th>
<th>EV</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Build House</td>
<td>0</td>
<td>20320.00</td>
<td>10320.00</td>
<td>12840.00</td>
</tr>
<tr>
<td>2</td>
<td>Landscaping</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>Drainage</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>Wiring</td>
<td>0.02</td>
<td>665.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>Plumbing</td>
<td>0.03</td>
<td>2165.00</td>
<td>1050.00</td>
<td>1050.00</td>
</tr>
<tr>
<td>6</td>
<td>Foundation</td>
<td>0.04</td>
<td>7850.00</td>
<td>6860.00</td>
<td>9380.00</td>
</tr>
<tr>
<td>7</td>
<td>Roofing</td>
<td>0.05</td>
<td>9640.00</td>
<td>2410.00</td>
<td>2410.00</td>
</tr>
<tr>
<td>8</td>
<td>Flooring</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>Heat &amp; Ventilation</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>Plaster</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>Brickwork</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>Paint</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>Finish Grading</td>
<td>0.00.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>Walks &amp; Landscape</td>
<td>0.00.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>Gutters &amp; Downspouts</td>
<td>0.01.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>Storm Drains</td>
<td>0.01.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>Initial Wiring</td>
<td>0.02.0</td>
<td>665.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>Kitchen Fixtures</td>
<td>0.02.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>19</td>
<td>Finish Electrical</td>
<td>0.02.2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>Finish Carpentry</td>
<td>0.02.3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>Rough Plumbing</td>
<td>0.03.0</td>
<td>1115.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>22</td>
<td>Basement Plumbing</td>
<td>0.03.1</td>
<td>1050.00</td>
<td>1050.00</td>
<td>1050.00</td>
</tr>
<tr>
<td>23</td>
<td>Finish Plumbing</td>
<td>0.03.2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>24</td>
<td>Excavate &amp; Footers</td>
<td>0.04.0</td>
<td>5330.00</td>
<td>5330.00</td>
<td>6590.00</td>
</tr>
<tr>
<td>25</td>
<td>Pour Foundation</td>
<td>0.04.1</td>
<td>1530.00</td>
<td>1530.00</td>
<td>2790.00</td>
</tr>
<tr>
<td>26</td>
<td>Pour Basement</td>
<td>0.04.2</td>
<td>990.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>27</td>
<td>Finish Roof</td>
<td>0.05.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>28</td>
<td>Frame &amp; Roof</td>
<td>0.05.1</td>
<td>9640.00</td>
<td>2410.00</td>
<td>2410.00</td>
</tr>
<tr>
<td>29</td>
<td>Varnish Floor</td>
<td>0.06.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>Finish Flooring</td>
<td>0.06.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
### Output 9.2.10. %EVA_TASK_METRICS: Metrics by Activity (Continued)

<table>
<thead>
<tr>
<th>Obs</th>
<th>CV</th>
<th>CV%</th>
<th>SV</th>
<th>SV%</th>
<th>CPI</th>
<th>SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2520.00</td>
<td>-24.42</td>
<td>-10000.00</td>
<td>-49.21</td>
<td>0.80</td>
<td>0.51</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>-665.00</td>
<td>-100.00</td>
<td>.</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>-1115.00</td>
<td>-51.50</td>
<td>1.00</td>
<td>0.48</td>
</tr>
<tr>
<td>6</td>
<td>-2520.00</td>
<td>-36.73</td>
<td>-990.00</td>
<td>-12.61</td>
<td>0.73</td>
<td>0.87</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td>-7230.00</td>
<td>-75.00</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>16</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>17</td>
<td>0.00</td>
<td>0.00</td>
<td>-665.00</td>
<td>-100.00</td>
<td>.</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>19</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>21</td>
<td>0.00</td>
<td>0.00</td>
<td>-1115.00</td>
<td>-100.00</td>
<td>.</td>
<td>0.00</td>
</tr>
<tr>
<td>22</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>23</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>24</td>
<td>-1260.00</td>
<td>-23.64</td>
<td>0.00</td>
<td>0.00</td>
<td>0.81</td>
<td>1.00</td>
</tr>
<tr>
<td>25</td>
<td>-1260.00</td>
<td>-82.35</td>
<td>0.00</td>
<td>0.00</td>
<td>0.55</td>
<td>1.00</td>
</tr>
<tr>
<td>26</td>
<td>0.00</td>
<td>0.00</td>
<td>-990.00</td>
<td>-100.00</td>
<td>.</td>
<td>0.00</td>
</tr>
<tr>
<td>27</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>28</td>
<td>0.00</td>
<td>0.00</td>
<td>-7230.00</td>
<td>-75.00</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>29</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Next, the %EVG_COST_PLOT macro is called to show the Planned Value (PV), Earned Value (EV), Actual Cost (AC), and revised cost plots.

```
%evg_cost_plot;
```

The plot is shown in Output 9.2.11.
The %EVG_SCHEDULE_PLOT macro is used to show different estimates of the project completion date.

%evg_schedule_plot;

The plot is shown in Output 9.2.12.
The %EVG_INDEX_PLOT macro is used to graphically display the performance indices for the project.

```
%evg_index_plot;
```

The plot is shown in Output 9.2.13. As in the previous example, the cost performance needs to increase from 0.8 to 1.06 in order to stay within the budget.
Output 9.2.13. %EVG_INDEX_PLOT: CPI, SPI, and TCPI

The Cost and Schedule Variance for the project is shown in Output 9.2.14 using the following call to the %EVG_VARIANCE_PLOT macro:

%evg_variance_plot;
While the Cost Variance is just outside the 10% threshold, the Schedule Variance is significantly outside and should be a warning signal that the project is slipping significantly. The plan called for $20,320 of work to be completed, but only $10,320 has been accomplished so far (roughly 50% of the goal).

Finally, the %EVG_GANTT_CHART macro is used to show a Gantt view of the project along with some metrics by task. In this case, only the Work Breakdown Structure code and Cost Variance (CV) and Schedule Variance (SV) are selected.

```%evg_gantt_chart(
 activity=id,
 plansched=gbsched,
 revisesched=gasched,
 start=start,
 finish=finish,
 timenow='15SEP04'd,
 id=wbs cv sv,
 height=3,
 scale=20
);```

The resulting Gantt chart is shown in Output 9.2.15.
Output 9.2.15. %EVG_GANTT_CHART: Cost and Schedule Variance by Task

Earned Value Analysis

Gantt Chart Showing Variances and Performance Indices

<table>
<thead>
<tr>
<th>Activity</th>
<th>WBS Code</th>
<th>CV</th>
<th>SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build House</td>
<td>0</td>
<td>-2520.00</td>
<td>-10000.00</td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Drainage</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Wiring</td>
<td>0.02</td>
<td>0.00</td>
<td>-665.00</td>
</tr>
<tr>
<td>Plumbing</td>
<td>0.03</td>
<td>0.00</td>
<td>-1115.00</td>
</tr>
<tr>
<td>Foundation</td>
<td>0.04</td>
<td>-2520.00</td>
<td>-990.00</td>
</tr>
<tr>
<td>Roofing</td>
<td>0.05</td>
<td>0.00</td>
<td>-7230.00</td>
</tr>
<tr>
<td>Flooring</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat & Ventilation</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Plaster</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Brickwork</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Paint</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Finish Grading</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Walks & Landscape</td>
<td>0.00.1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gutters & Downspouts</td>
<td>0.01.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Storm Drains</td>
<td>0.01.1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Initial Wiring</td>
<td>0.02.0</td>
<td>0.00</td>
<td>-665.00</td>
</tr>
<tr>
<td>Kitchen Fixtures</td>
<td>0.02.1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Finish Electrical</td>
<td>0.02.2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Finish Carpentry</td>
<td>0.02.3</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Rough Plumbing</td>
<td>0.03.0</td>
<td>0.00</td>
<td>-1115.00</td>
</tr>
<tr>
<td>Basement Plumbing</td>
<td>0.03.1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Finish Plumbing</td>
<td>0.03.2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Excavate & Footers</td>
<td>0.04.0</td>
<td>-1260.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Pour Foundation</td>
<td>0.04.1</td>
<td>-1260.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Pour Basement</td>
<td>0.04.2</td>
<td>0.00</td>
<td>-990.00</td>
</tr>
<tr>
<td>Finish Roof</td>
<td>0.05.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Frame & Roof</td>
<td>0.05.1</td>
<td>0.00</td>
<td>-7230.00</td>
</tr>
<tr>
<td>Varnish Floor</td>
<td>0.06.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Finish Flooring</td>
<td>0.06.1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LEGEND:
- Revised Schedule
- Baseline Schedule
- Milestones
References

Appendix A
Glossary of Project Management Terms

A

Activity
An element of work performed during the course of a project. An activity normally has an expected duration, an expected cost, and expected resource requirements. Activities are often subdivided into tasks.

Activity delay
The maximum amount of time that an activity can be delayed due to lack of resources.

Activity-on-arrow (AOA)
See arrow diagramming method.

Activity-on-node (AON)
See precedence diagramming method.

Activity priority
A priority value assigned to activities to provide an ordering for activities that are waiting for resources (during resource-constrained scheduling).

Activity splitting
Allowing activities to be split into segments during resource allocation. In some instances, preemption of activities may free a resource to be used by a more critical activity.

Actual Cost of Work Performed (ACWP)
Total costs incurred (direct and indirect) in accomplishing work during a given time period. See also earned value.

Actual Finish date (AF)
The calendar date work actually ended on an activity. It must be prior to the timenow date.
Actual Start date (AS)

The calendar date work actually began on an activity. It must be prior to the `timenow` date.

Aggregation

Using activity resource requirements to calculate total resource needs rather than to constrain the project schedule. Normally, resource requirements are used to perform resource-constrained scheduling.

Alignment type

The alignment type is used to identify the type of constraint associated with a `target` date. The following types are available:

- Finish On
- Finish On or After
- Finish On or Before
- Start On
- Start On or After
- Start On or Before
- Mandatory Start
- Mandatory Finish

Arrow

The graphic representation of an activity. See also `arrow diagramming method`.

Arrow diagramming method

A network diagramming technique in which activities are represented by arrows. The tail of the arrow represents the start and the head represents the finish of the activity (the length of the arrow does not represent the expected `duration` of the activity). Activities are connected at points called nodes (usually drawn as small circles) to illustrate the sequence in which the activities are expected to be performed. See also `precedence diagramming method`.

As-of date

See `timenow date`.

B

Backward pass

The calculation of late finish dates and late start dates for the uncompleted portions of all network activities. Determined by working backwards through the network logic from the project’s end date. The end date can be specified, although it is usually calculated in a `forward pass`.
Baseline schedule
A project schedule consisting of baseline start and finish dates, which represent an estimated or expected schedule, or both. This schedule is often derived from an initial set of early, late, or scheduled finish dates. Typically, once a baseline schedule is established, it does not change over the course of a project.

Baseline Finish date (BF)
The calendar date when work is scheduled to end on an activity. This date is usually estimated, or it can be derived from the early, late, or scheduled finish dates. Typically, once a baseline schedule is established, it does not change over the course of the project.

Baseline Start date (BS)
The calendar date when work was scheduled to begin on an activity. This date is usually estimated, or it can be derived from the early, late, or scheduled start dates. Typically, once a baseline schedule is established, it does not change over the course of the project.

Budget at Completion (BAC)
The estimated total cost of the project when done.

Budgeted Cost of Work Performed (BCWP)
The sum of the approved cost estimates (including any overhead allocation) for activities (or portions of activities) completed during a given period (usually project-to-date). See also earned value.

Budgeted Cost of Work Scheduled (BCWS)
The sum of the approved cost estimates (including any overhead allocation) for activities (or portions of activities) scheduled to be performed during a given period (usually project-to-date). See also earned value.

C

Calendar
A calendar identifies project work days, and it can be altered so that weekends, holidays, vacation, weather days, and so forth are not included.

Cost Performance Index (CPI)
The ratio of budgeted costs to actual costs (BCWP/ACWP). The CPI is often used to predict the magnitude of a possible cost overrun using the following formula: original cost estimate/CPI = projected cost at completion. See also earned value.
Cost variance (CV)
(1) Any difference between the estimated cost of an activity and the actual cost of an activity.
(2) In earned value, BCWP less ACWP.

Critical activity
Any activity on the critical path.

Critical path
The series of activities of a project that determines the earliest completion of the project. The critical path generally changes from time to time as activities are completed ahead of or behind schedule. The critical path is usually defined as those activities with total float less than or equal to zero. See also critical path method.

Critical path method (CPM)
A network analysis technique used to predict project duration by analyzing which sequence of activities (which path) has the least amount of scheduling flexibility (the least amount of total float). Early dates are calculated by means of a forward pass using a specified start date. Late dates are calculated by means of a backward pass starting from a specified completion date (usually the forward pass’s calculated project early finish date).

Cycle
See loop.

D

Data date
See timenow date.

Dependency
See logical relationship.

Duration
The number of work periods (not including holidays or other nonworking periods) required to complete an activity or set of activities. All activity durations are specified with the same duration unit.

Duration unit
The duration unit specifies the unit of time for the duration of each activity in the project. The following choices are available:

- Second
Appendix A. Glossary of Project Management Terms

- Minute
- Hour
- Day
- Weekday
- Week
- Month
- Qtr
- Year

E

Early Finish date (EF)

In the critical path method, the earliest possible point in time at which the uncompleted portions of an activity (or the project) can finish, based on the network logic and any schedule constraints. Early finish dates can change as the project progresses and changes are made to the project plan.

Early Start date (ES)

In the critical path method, the earliest possible point in time at which the uncompleted portions of an activity (or the project) can start, based on the network logic and any schedule constraints. Early start dates can change as the project progresses and changes are made to the project plan.

Earned value (EV)

(1) A method for measuring project performance. It compares the amount of work that was planned with what was actually accomplished to determine if cost and schedule performance is as planned. See also actual cost of work performed, budgeted cost of work performed, budgeted cost of work scheduled, cost variance, cost performance index, schedule variance, and schedule performance index.

(2) The budgeted cost of work performed, for an activity or group of activities.

Earned value analysis

See definition (1) under earned value.

Effort

The number of labor units required to complete an activity or other project element. Usually expressed as staffhours, staffdays, or staffweeks. Should not be confused with duration.
Appendix A. Glossary of Project Management Terms

Estimate at Completion (EAC)

The expected total cost of an activity, group of activities, or the project when the defined scope of work has been completed. Most techniques for forecasting EAC include some adjustment of the original cost estimate based on project performance to date. Also called “estimated at completion.” Often shown as EAC = Actuals-to-date + ETC. See also *earned value* and *estimate to complete*.

Estimate to Complete (ETC)

The expected additional cost needed to complete an activity, a group of activities, or the project. Most techniques for forecasting ETC include some adjustment to the original cost estimate based on project performance to date. Also called “estimated to complete.” See also *earned value* and *estimate at completion*.

F

Float

See *total float*.

Forward pass

The calculation of the early start and early finish dates for the uncompleted portions of all network activities. See also *backward pass*.

Free float (FF)

The amount of time an activity can be delayed without delaying the early start of any immediate successor activities. See also *total float*.

G

Gantt chart

A graphic representation of work activities shown by a time-scaled bar chart.

Graphical Evaluation and Review Technique (GERT)

A network analysis technique that allows for conditional and probabilistic treatment of logical relationships (that is, some activities may not be performed).

H

Holiday

A period of time within the project timeframe when work cannot be scheduled. Holidays can be assigned to one or more calendars.
L

Lag

A modification of a logical relationship that directs a delay of the successor task. For example, in a finish-to-start dependency with a 10-day lag, the successor activity can start 10 days after the predecessor has finished. See also *lead*.

Late Finish date (LF)

In the critical path method, the latest possible point in time that an activity can be completed without delaying a specified milestone (usually the project finish date).

Late Start date (LS)

In the critical path method, the latest possible point in time that an activity can begin without delaying a specified milestone (usually the project finish date).

Lead

A modification of a logical relationship that allows an acceleration of the successor task. For example, in a finish-to-start dependency with a 10-day lead, the successor activity can start 10 days before the predecessor has finished. See also *lag*.

Logic

The collection of activity dependencies that make up a project network diagram.

Logic diagram

See *network diagram*.

Logical relationship

A dependency between two project activities. The four possible types of logical relationships are

- Finish-to-start – the “from” activity must finish before the “to” activity can start.
- Finish-to-finish – the “from” activity must finish before the “to” activity can finish.
- Start-to-start – the “from” activity must start before the “to” activity can start.
- Start-to-finish – the “from” activity must start before the “to” activity can finish.

Finish-to-start is defined as the standard (or default) logical relationship.
Loop
A network path that passes the same node twice. Loops cannot be analyzed using traditional network analysis techniques such as CPM and PERT. Loops are allowed in GERT.

M

Maximum number of segments
This value specifies the maximum number of segments that an activity can be split into when activity splitting is allowed.

Milestone
A significant event in the project, usually completion of a major deliverable.

Minimum segment duration
This value specifies the minimum duration of a segment of an activity when activity splitting is allowed.

N

Near-critical activity
An activity that has low total float.

Network
See network diagram.

Network analysis
The process of identifying early and late start and finish dates for the uncompleted portions of project activities. See also critical path method, Program Evaluation and Review Technique, and Graphical Evaluation and Review Technique.

Network diagram
A schematic display of the logical relationships of project activities. Always drawn from left to right to reflect project chronology. Often incorrectly referred to as a "PERT chart."

Network logic
See logic.

Network path
Any continuous series of connected activities that make up a project network diagram.
Node
One of the defining points of a network; a junction point joined to some or all of the other dependency lines. Also, the graphic representation of an activity. See also arrow diagramming method and precedence diagramming method.

Nonstandard logical relationship
A dependency between two project activities that is not the standard finish-to-start relationship. See logical relationship for the four possible types of relationships.

Organizational breakdown structure (OBS)
A depiction of the project organization arranged so as to relate work packages to organizational units.

Overlap
See lead.

Path
A set of sequentially connected activities in a project network diagram.

Path float
See total float.

Percent complete
An estimate, expressed as a percent, of the amount of work that has been completed on an activity or group of activities.

PERT chart
A specific type of project network diagram. See Program Evaluation and Review Technique.

Precedence diagramming method (PDM)
A network diagramming technique in which activities are represented by boxes (or nodes). Activities are linked together by precedence relationships to show the sequence in which the activities are to be performed.
Precedence relationship

The term used in the precedence diagramming method for a logical relationship. In current usage, however, precedence relationship, logical relationship, and dependency are widely used interchangeably regardless of the diagramming method in use.

Predecessor activity

Any activity that exists on a common path with the activity in question and occurs before the activity in question.

Preemption

See *activity splitting*.

Program Evaluation and Review Technique (PERT)

An event-oriented network analysis technique used to estimate project duration when there is a high degree of uncertainty with the individual activity duration estimates. PERT applies the critical path method to a weighted average duration estimate.

Project

A temporary endeavor undertaken to create a unique product or service. A project consists of one or more activities.

Project management

The application of knowledge, skills, tools, and techniques to project activities in order to meet or exceed stakeholder needs and expectations from a project.

Project Management Body of Knowledge (PMBOK)

An inclusive term that describes the sum of knowledge within the profession of project management. As with other professions such as law, medicine, and accounting, the body of knowledge rests with the practitioners and academics who apply and advance it. The PMBOK includes proven, traditional practices that are widely applied as well as innovative and advanced ones that have seen more limited use.

Project network diagram

See *network diagram*.

Project schedule

The planned dates for performing activities and the planned dates for meeting milestones.

R

Remaining duration

The amount of time needed to complete an activity.
Resource-constrained scheduling

The scheduling of activities in a project with the knowledge of certain resource constraints and requirements. This process adjusts activity scheduled start and finish dates to conform to resource availability and use.

Resource leveling

Any form of network analysis in which scheduling decisions (start and finish dates) are driven by resource management concerns (for example, limited resource availability or difficult-to-manage changes in resource levels).

Schedule

See *project schedule*.

Schedule analysis

See *network analysis*.

Schedule performance index (SPI)

The ratio of work performed to work scheduled (BCWP/BCWS). See *earned value*.

Schedule variance

(1) Any difference between the scheduled completion of an activity and the actual completion of that activity.

(2) In *earned value*, BCWP less BCWS.

Scheduled Finish date (SF)

The date when the activity is scheduled to be completed using the resource-constrained scheduling process.

Scheduled Start date (SS)

The date when the activity is scheduled to begin using the resource-constrained scheduling process. This date is equal to or greater than the early start date.

Slack

Term used in PERT for float (see also *total float*).

Subtask

An activity that is contained within a supertask.
Successor activity

Any activity that exists on a common path with the activity in question and occurs after the activity in question.

Supertask

An aggregate or summary activity that contains one or more activities (or subtasks) such that no subtask can begin until the supertask has begun and the supertask cannot end until all of the subtasks have ended.

Target date

A date used to constrain the start or finish of an activity. The type of constraint is identified by an alignment type.

Task

See activity.

Timenow date

The calendar date that separates actual (historical) data from future (scheduled) data.

Total Float (TF)

The amount of time that an activity can be delayed from its early start without delaying the project finish date. Total float is a mathematical calculation and can change as the project progresses and changes are made to the project plan. Also called “float,” “slack,” and “path float.” See also free float.

Work breakdown structure (WBS)

A deliverable-oriented grouping of project elements that organizes and defines the total scope of the project. Each descending level represents an increasingly detailed definition of a project component. Project components can be products or services.

Work packages

A deliverable at the lowest level of the work breakdown structure. A work package can be divided into activities.

Workshift

One or more pairs of on/off working times that define the valid working periods within a single day.
References

Appendix B
Glossary of Earned Value Management Terms

A

AC
See Actual Cost.

ACWP
See Actual Cost.

Actual Cost
Total costs incurred that must relate to whatever cost was budgeted within the Planned Value and Earned Value (which can sometimes be direct labor hours alone, direct costs alone, or all costs including indirect costs) in accomplishing work during a given time period.

Actual Cost of Work Performed
See Actual Cost.

B

BAC
See Budget at Completion.

BCWP
See Earned Value.

BCWS
See Planned Value.

Budget at Completion
The sum of the total budgets for a project.

Budgeted Cost of Work Performed
See Earned Value.
Appendix B. Glossary of Earned Value Management Terms

Budgeted Cost of Work Scheduled

See Planned Value.

C

CPI

See Cost Performance Index.

CV

See Cost Variance.

CV%

See Cost Variance Percentage.

Cost Performance Index

The cost efficiency ratio of Earned Value to Actual Cost. CPI is often used to predict the magnitude of a possible cost overrun using the following formula: \(\frac{BAC}{CPI} = \) projected cost at completion. \(CPI = \frac{EV}{AC} \).

Cost Variance

The difference between the Earned value of an activity and the Actual Cost of that activity, i.e., \(CV = EV - AC \).

Cost Variance Percentage

Cost Variance relative to Earned Value: \(CV\% = \frac{CV}{EV} \).

E

EAC

See Estimate at Completion.

ETC

See Estimate to Complete.

EV

See Earned Value.

Earned Value

The physical work accomplished plus the authorized budget for this work. The sum of the approved cost estimates (may include overhead allocation) for activities (or portions of activities) completed during a given period (usually project-to-date). Previously called the budgeted cost of work performed (BCWP) for an activity or group of activities.
Earned Value Management
A method for integrating scope, schedule, and resources, and for measuring project performance. It compares the value of work that was planned, the value of work that was actually completed, and the amount of money that was actually spent, to determine if cost and schedule performance are as planned.

Estimate at Completion
The expected total cost of an activity, a group of activities, or the project when the defined scope of work has been completed. Most techniques for producing the EAC include some adjustment of the original cost estimate, based on actual project performance to date. This metric is derived from the ETC as follows: \(EAC = AC + ETC \). See **Estimate to Complete**.

Estimate to Complete
The expected additional cost needed to complete an activity, a group of activities, or the project. Most techniques for producing the ETC factor in the project performance to date. The revised ETC, or \(ET C_{rev} \), is the cumulative cost from the status date to the project completion date, according to the revised schedule and costs. The other three formulations used in this document appear in the following illustration:

\[
ETC_{OTD} = BAC - EV \\
ETC_{CPI} = \frac{BAC - EV}{CPI} = \frac{BAC}{CPI} \\
ETC_{CPI \times SPI} = \frac{BAC - EV}{CPI \times SPI}
\]

PV
See **Planned Value**.

Percentage Complete
The percentage of total earned value that has been accumulated for a project:

\[
Percentage \ Complete = \frac{EV}{BAC}.
\]

Planned Value
The physical work scheduled, plus the authorized budget to accomplish the scheduled work. Previously, this was called the budgeted cost of work scheduled (BCWS).

SPI
See **Schedule Performance Index**.
Appendix B. Glossary of Earned Value Management Terms

SV

See *Schedule Variance*.

SV%

See *Schedule Variance Percentage*.

Schedule Performance Index

The schedule efficiency ratio of *Earned Value* accomplished against the *Planned Value*. The SPI describes what portion of the planned schedule was actually accomplished. $SPI = \frac{EV}{PV}$.

Schedule Variance

The difference between the *Earned value* and the *Planned value* of the project at any point in time, i.e., $SV = EV - PV$.

Schedule Variance Percentage

Schedule Variance relative to Planned Value:

$SV\% = \frac{SV}{PV}$.

T

TCPI

See *To-Complete Performance Index*.

To-Complete Performance Index

The cost of remaining work divided by the remaining budget or estimated budget:

$TCPI(BAC) = \frac{BAC - EV}{BAC - AC}$

$TCPI(EAC) = \frac{BAC - EV}{EAC - AC}$

V

VAC

See *Variance at Completion*.

VAC%

See *Variance at Completion Percentage*.
Appendix B. Glossary of Earned Value Management Terms

Variance at Completion

The difference between the original budget and the current estimate at completion:
\[VAC = BAC - EAC. \]

Variance at Completion Percentage

The Variance at Completion relative to the Budget at Completion:
\[VAC\% = \frac{VAC}{BAC}. \]

W

WBS

See *Work Breakdown Structure*.

Work Breakdown Structure

The project hierarchy.
Subject Index

A
_A_FINISH variable
input data set (%EVG_WBS_CHART), 841
_A_START variable
input data set (%EVG_WBS_CHART), 841
AC variable
periodic data set (%EVA_METRICS), 844
task data set (%EVA_TASK_METRICS), 846
_AC_RATE_ variable
periodic data set (%EVA_EARNED_VALUE), 844
.ACRONYMS_ macro variable
%EVA_METRICS macro, 832
%EVA_TASK_METRICS macro, 834
%EVG_COST_PLOT macro, 836
%EVG_SCHEDULE_PLOT macro, 837
_ACT variables,
See also ACTION variables
Payoff data set (DTREE), 380
ACTDELAY variable
Activity data set (CPM), 76, 213
ACTID variable
Schedule data set (PM), 310
ACTION variables
Payoff data set (DTREE), 380
actions, decision stage, 343
activities
limiting the number per page (GANTT), 484
activity align types, 68
activity axis
GANTT procedure, 448, 502
activity calendar, 70, 170
Activity data set
as input to NETDRAW procedure, 640
CPM procedure, 49, 52, 60, 450
missing values, 135
resource requirement specification (CPM), 113
variables, 133
activity delay
analysis, 78, 96, 192
and supplementary resources, 117
example (CPM), 205, 209, 210, 213
specification, 76, 78
wait until, 77
activity duration,
See duration
activity information,
See also Activity data set
additional variables, 73
activity numbers
PM procedure, 307
PM Window, 307
Activity-on-Arc
network diagram, 51
specification, CPM procedure, 72, 87
specification, Logic Gantt charts, 511
Activity-on-Edge,
See Activity-on-Arc
Activity-on-Node
network diagram, 51
specification, CPM procedure, 65, 86
specification, Logic Gantt charts, 512
Activity-on-Vertex,
See Activity-on-Node
activity splitting
at TIMENOW (CPM), 67, 107, 119
CPM procedure, 80, 81, 85, 118, 119
eample (CPM), 215
eample (GANTT), 563
GANTT procedure, 490, 526
maximum number of segments, 80
minimum duration of segment, 81
option to allow default, 85
activity status
flags indicating, 464, 527
indicating within node, 631, 680
setting in CPM procedure, 97
activity text
color, 477
font baseline, 501
ACTIVITY variable
Activity data set (CPM), 65
Network data set (NETDRAW), 626, 641
Precedence data set (GANTT), 449, 461, 474, 481, 487, 512
task data set (%EVA_TASK_METRICS), 846
ACTIVITYPRTY variable
Activity data set (CPM), 76
actual bar
height, 474
offset, 474
actual cost, 797, 799, 812, 816, 817, 824, 843–846
actual schedule
CPM procedure, 65, 105–107
eample (CPM), 181
eample (GANTT), 557
fill pattern for (GANTT), 503
finish times (CPM), 65
GANTT procedure, 490, 525
start times (CPM), 66
ACWP, 34
add activities
PM procedure, 301
PM Window, 301
add activity records
CPM procedure, 60
add subtasks
PM Window, 303
add tasks
Table View (PM), 292
A_DUR variable
Schedule data set (CPM), 96, 106, 107, 183
A_FINISH variable
Activity data set (CPM), 65, 90, 105
Network data set (NETDRAW), 628, 642, 645
Schedule data set (CPM), 96, 106, 107, 183
Schedule data set (GANTT), 463, 472, 489, 490, 559
AFINMILE variable
Schedule data set (CPM), 95
LABEL variable
Label data set (GANTT), 523, 524
ALIGN variable
Network data set (NETDRAW), 627, 630, 641, 648
ALIGNDATE variable
Activity data set (CPM), 68, 90, 92–94
alignment constraints
CPM procedure, 68, 92–94
Gantt View, 298
PM Window, 304
pop-up menu, 293
ALIGNTYPE variable
Activity data set (CPM), 68, 92–94
alternate resources
CPM procedure, 76, 81, 83, 120, 121
example (CPM), 219
alternatives, decision stage, 343
Annotate data set
DTREE procedure, 365
GANTT procedure, 449, 459, 474, 502
NETDRAW procedure, 615, 657
processing (DTREE), 366
suppress processing (DTREE), 366
Annotate facility
cordinate systems (GANTT), 502
cordinate systems (NETDRAW), 657
drawing legend of decision tree diagram, 419
DTREE procedure, 419
eample (GANTT), 586
eample (NETDRAW), 708, 711
GANTT procedure, 502
NETDRAW procedure, 657
AOA,
See Activity-on-Arc
AOE,
See Activity-on-Arc
AON,
See Activity-on-Node
AOV,
See Activity-on-Node
arc routing, 643, 644
arrow diagramming method,
See Activity-on-Arc
arrowheads
length of, 634
no fill, 637
suppress display (GANTT), 484, 516
suppress display (NETDRAW), 634, 705
A_START variable
Activity data set (CPM), 66, 90, 105
Network data set (NETDRAW), 628, 642, 645
Schedule data set (CPM), 96, 106, 107, 183
Schedule data set (GANTT), 463, 472, 489, 490, 559
attitudes toward risk, 350
Automatic Text Annotation, 491, 519–523,
See also labeled Gantt charts
auxiliary resources
CPM procedure, 123
example (CPM), 270, 273
axis
activity (GANTT), 448, 502
time (GANTT), 448, 467–470, 476, 493, 494, 502
B
BAC, 800, 816, 825, 842, 845
baseline bar
height, 475
offset, 475
baseline schedule
comparing, 69, 104, 213
fill pattern for (GANTT), 503
GANTT procedure, 490, 525
measuring project progress, example (GANTT), 559
PM Window, 301, 304
setting, 69, 70, 181
specifying, 69, 70, 104
treatment of SEGMENT_NO variable (GANTT), 526
updating, 70
BCWP, 34
BCWS, 34
B_FINISH variable
Activity data set (CPM), 69
Schedule data set (CPM), 70, 181
schedule (GANTT), 463, 472, 489, 490, 560
break and shift information
defining, 460, 462, 464, 465
discussion, CPM procedure, 98–102, 104
displaying, 465, 467, 496
B_·START variable
 Activity data set (CPM), 69
 Schedule data set (CPM), 70, 181
 Schedule data set (GANTT), 464, 472, 489, 490, 560
BY processing
 example (GANTT), 567, 571
 GANTT procedure, 493
BY variables
 Schedule data set (GANTT), 462, 490, 567

C
C/SCSC, 39
 CAL variable,
 See also CALID variable
 Activity data set (CPM), 70
 calendar data set (%EVA_EARNED_VALUE), 831
 calendar data set (%EVA_PLANNED_VALUE), 828
 calendar data set (%EVA_TASK_METRICS), 836
 Calendar data set (CPM), 70
 Holiday data set (CPM), 70
 Resource Schedule data set (CPM), 76
 Schedule data set (GANTT), 464
 calculations, 844, 845
 Calendar data set
 calendars example (CPM), 100
 CPM procedure, 49, 60, 98, 100, 162, 167
 GANTT procedure, 449, 460, 495, 496
 missing values, 135
 treatment of CALID variable, 464, 495
 variables, 133
 calendar data set
 variables, 828, 831, 836
 calendar information,
 See also Calendar data set
 lag dialog box, 300
 PM Window, 304
 pop-up menu, 294
 Table View, 294
 calendars,
 See also Calendar data set
 See also Holiday data set
 See also holidays
 See also multiple calendars and holidays
 See also Workday data set
 associated with activity, 53
 default, CPM procedure, 99
 discussion, 98–102, 104
 in Usage data set, 125
 length of workday (CPM), 61, 90, 99, 100
 multiple calendars, 98–102, 104
 start of workday (CPM), 61, 90, 99
 work shifts, 99
 work unit specification (CPM), 62
CALID variable
 Activity data set (CPM), 70, 71, 98, 99
 Calendar data set (CPM), 70, 71, 98–101
 Calendar data set (GANTT), 464, 495
 example (CPM), 170, 174
 Holiday data set (CPM), 70, 71, 98, 99, 101, 102
 Holiday data set (GANTT), 464, 495
 Schedule data set (GANTT), 464, 495
center
 ID variables (NETDRAW), 634
 turning off vertical (NETDRAW), 637, 645, 667
certain equivalent
 calculation, 389
 DTREE procedure, 361, 387
 exponential utility function, 387

chance nodes
 character, 370
 color, 365, 370
 font, 370
 height, 370
 symbol, 371

chance stage
 decision tree model, 343
 outcomes, 343
 probabilities, 343

character specification,
 See also symbol specification
 chance nodes (DTREE), 370
 decision nodes (DTREE), 371
 end nodes (DTREE), 371

chart format
 controlling, 493
chart outlines and dividers, 470

CHART variables, 462
 example (GANTT), 542
 project management symbols, 511
 Schedule data set (GANTT), 462, 473, 490, 526
 SYMBOL statements and, 506
chart width, 476

charts
 %EVG_COST_PLOT macro, 824, 855, 872
 %EVG_GANTT_CHART macro, 822, 859, 876
 %EVG_INDEX_PLOT macro, 823, 857, 874
 %EVG_SCHEDULE_PLOT macro, 825, 856, 873
 %EVG_VARIANCE_PLOT macro, 820, 858, 875
 %EVG_WBS_CHART macro, 804, 861
 GANTT procedure, 806

CIRCLE, special symbol table
 DTREE procedure, 371

 _CLABEL variable
 Label data set (GANTT), 522, 524
clip labels
 Labeling facility (GANTT), 481
collapse supertasks
 Table View, 294
color specification
 activity text (GANTT), 477
 arcs (NETDRAW), 633, 634
 axis (NETDRAW), 633, 634
break lines along time axis (NETDRAW), 633, 635
change nodes (DTREE), 365, 370
connect line (GANTT), 476
critical arcs (NETDRAW), 633, 634
decision nodes (DTREE), 366, 371
end nodes (DTREE), 366, 371
frame fill (GANTT), 476
links of optimal decisions (DTREE), 365, 368
links on decision tree (DTREE), 365, 368
milestone (GANTT), 476
nodes (NETDRAW), 653, 656
outline for all nodes (NETDRAW), 635
outline for critical nodes (NETDRAW), 634
precedence connections (GANTT), 476
reference lines (GANTT), 477
reference lines (NETDRAW), 633, 635
symbol (DTREE), 365, 366, 370, 371
text (DTREE), 366
text (GANTT), 477
text (NETDRAW), 635
time axis (GANTT), 476
timenow line (GANTT), 477
zone line (GANTT), 478
column headings
splitting, 462
column, change order
Table View, 293
column, change width
Table View, 292
common working calendar, 83
comparison of schedules, 69
compress in graphics mode
decision tree diagram, 365, 416
Gantt chart, 476, 486, 544
network diagram, 617, 634, 637, 667
computer resource requirements
CPM procedure, 62, 136
DTREE procedure, 396
GANNTT procedure, 529
NETDRAW procedure, 659
concatenate early, late, and actual schedule bars, 464, 526
example (GANTT), 562
conditional probability, 343
connect line, 466
character for drawing, 471
color, 476
line style, 482
consumable resource, 110
contract bidding decision problem, 413
convert Microsoft Project data to SAS, 46
coordinate system
annotate processing (GANTT), 502
annotate processing (NETDRAW), 657
copy activities
PM Window, 303
corners, rectangular
decision tree diagram, 370
network diagram, 638
corners, rounded
decision tree diagram, 370
network diagram, 638
corporate risk tolerance, 388
assessing, 389
estimating, 388
COST variables,
See REWARD variables
costs
specifying, 807, 808, 812, 818, 819, 827, 828, 830, 831, 834, 835, 849, 850, 852, 854, 862, 863, 866, 867, 870
CPI, 798, 800, 816, 823, 840, 842, 844–846, 857, 874
 Claw_ variable
periodic data set (%EVA_METRICS), 844
task data set (%EVA_TASK_METRICS), 846
CPM,
See critical path method
CPM examples, 804, 810
activity splitting, 215
Activity-on-Arc format, 142
Activity-on-Node format, 139
alternate resources, 219
analyzing resource delay, 191
auxiliary resources, 270, 273
basic project schedule, 137
changing length of workday, 153
changing start of workday, 153
course scheduling, 229
finish milestone, 261
incorporating actual schedule, 181
infeasibility diagnostics, 203
meeting project deadlines, 145
multiproject scheduling, 233
negative resource requirements, 268, 270, 273
nonstandard precedence constraints, 176
PERT analysis, 226
resource calendars, 242, 273
resource-driven durations, 242, 273
resource-constrained scheduling, 191
saving a target schedule, 181
scheduling around holidays, 156
scheduling courses, 229
scheduling only on weekdays, 150
scheduling over nonstandard day and week, 161, 166
setting activity delay, 209
setting project finish date, 145
setting project start date, 140
substitutable resources, 219
summarizing resources used by project, 186
supplementary resources, 198
time-constrained scheduling, 180
TIMENOW option, 181
use of PROC CALENDAR to print schedule, 147
CPM procedure
Activity data set, 60, 450
Activity-on-Arc, 51
Activity-on-Node, 51
actual schedule, 65
add activity records, 60
alternate resources, 120
auxiliary resources, 123
baseline schedules, 104
Calendar data set, 60, 98, 100
calendar data set, 60
computer resource requirements, 62, 136
default calendar, 99
definitions of Schedule data set variables, 96, 97
duration specification, 90
finish milestone, 94, 95
float times, 89
formatting details, 136
functional summary, 55
Holiday data set, 61, 98, 101, 102
input data sets, 133
macro variable _ORCPM_, 132
missing values, treatment of, 135
multiple alternates, 121
multiple calendars, 98–102, 104
multiproject scheduling, 129–132
negative resource requirements, 114
options classified by function, 55
_resource variable, 132
output data sets, 95, 124, 128
overview, 4, 49
precedence relationships, 91, 92
progress updating, 105–107
progress variables, 65, 105–107
random activity durations, 229
resource allocation, 109–122, 124–128
Resource data set, 63, 109
resource-driven durations, 122
Resource Schedule data set, 64
resource usage, 126
SAS date, time, and datetime values, 61, 90, 91, 102, 136
Schedule data set, 63, 96, 97
scheduling subject to precedence constraints, 88–90
serial-parallel scheduling method, 114, 116
specifying resource requirements, 113, 114
syntax skeleton, 55
table of syntax elements, 55
target schedules, 104
time-constrained scheduling, 92–94
Usage data set, 63
variables, 96, 133
Workday data set, 64, 98, 99
CPU requirement,
CPM procedure, 52, 53, 89, 94, 97
critical activities
critical path, 89, 97
critical path method (CPM), 50, 52
cumulative resource usage, 77
cumulative reward, 384
on decision tree diagram, 361, 362, 376
optimal decision summary, 363
current time,
CV, 798, 800, 801, 816, 820, 822, 840, 842, 844, 858, 875, 876
CV Percentage, 842
_percent variable
periodic data set (%EVA_METRICS), 844
task data set (%EVA_TASK_METRICS), 846
_percent variable
task data set (%EVA TASK METRICS), 846
cycles
definition, CPM procedure, 89
in network diagrams, 616, 650, 696
D
data flow
between procedures, 3, 8
CPM procedure, 4
DTREE procedure, 11
GANTT procedure, 5
NETDRAW procedure, 7
PM procedure, 7
data sets,
SAS data sets
data storage requirements,
computer resource requirements
day
length of, 61, 90, 99, 100, 154, 464, 496
start of, 61, 90, 99, 100, 154, 465, 496
deadlines,
SAS date, time, and datetime values, 61, 90, 91, 102, 136
milestone
finish-before date, 61
decision analysis
example, 41
introduction, 10
decision criterion, 361
specifying, 350
decision model,
decision tree model
decision nodes
color, 366, 371
count, 371
decision stage
decision tree model, 343
decision support systems, 9
decision tree diagram
cumulative reward, 361, 376
displaying, 344, 349, 376, 386, 390
Subject Index

drawing on one page, 365, 416

evaluating value, 361, 376

graphics version, 392

information displayed, 361, 376

labels, 362, 376

documentation version, 392

number of pages, 361, 376

outcome name, 360, 376

page format, 390

probability, 361, 376

reward, 361, 376

stage name, 361, 376

decision tree model, 343

difference between rewards and payoffs, 382

evaluating, 344, 349

modifying, 344

outcomes, 343

recalling, 344, 375

representing, 363

saving, 344, 375, 386

scenario, 376

stages, 343

default calendar

CPM procedure, 70, 99, 170

GANTT procedure, 495

default data set name

CHART, 839

EV, 830, 832

METRICS, 832, 837–839

PLOT, 837–839

PV, 828, 832

SUMMARY, 833, 837, 838

TASKMETS, 835, 840

TASKPV, 828, 831

default variable name

.CAL., 828, 831, 836

WBS_CODE, 835

delay diagnostics,

See activity delay, analysis

DELAY_R variable

Schedule data set (CPM), 78, 96, 192

delete activities

PM Window, 303

delete duplicate observations, 60

delete precedence constraints

PM Window, 303

delete tasks

Table View (PM), 292

diagnose resource infeasibilities,

See infeasibility diagnostics

diagrams

NETDRAW procedure, 803

dialog box

edit lag, 290, 300

etag lag calendar, 300

task information, 290

discount rate

example (DTREE), 431

display

information in decision tree diagram, 361, 376

information in network diagram, 644

schedule bar, Gantt View, 297

task information, Gantt View, 297

displayed output

DTREE procedure, 390

GANTT procedure, 525

NETDRAW procedure, 644

dividers and outlines

Gantt chart, 470

D_LENGTH variable

Calendar data set (CPM), 100

DOT, special symbol table

DTREE procedure, 372

draw and display networks,

See NETDRAW procedure, network layout
drill-down Gantt charts

graphics example (GANTT), 600

DTREE examples, 396

contract bidding decision problem, 413

loan grant decision problem, 422

oil wildcatter’s decision problem, 397, 402

petroleum distributor’s decision problem, 431

research and development decision problem, 418

DTREE procedure

computer resource requirements, 396

displayed output, 390

displaying decision tree, 390

error handling, 395

evaluating decision tree, 386

functional summary, 357

general options, 361–364

graphics options, 364–372

Imagemap data set, 368, 394

input data sets, 381

interactivity, 385

line-printer options, 372

missing values, 385

ODS table names, 395

options classified by function, 357

output data sets, 344

Output Delivery System (ODS), 344

overview, 10, 343

syntax skeleton, 357

table of syntax elements, 357

terminating, 344, 375, 385

variables, 377–380

duplicate ID values, 465, 489

duplicate observations

deleting (CPM), 60

DUR variable,

See also DURATION variable

Resource Schedule data set (CPM), 128

Schedule data set (GANTT), 465
duration

calculated, 71, 72

estimates of, 227

multiplier, CPM procedure, 62

resource-driven, 86, 96, 108
specification, CPM procedure, 71, 90
units, CPM procedure, 53, 62, 90, 150

DURATION variable
Activity data set (CPM), 71, 108
Network data set (NETDRAW), 628
Schedule data set (GANTT), 465, 466, 493

DUR_TYPE variable
Resource Schedule data set (CPM), 128
dynamic programming algorithm, 628, 644, 679

E
E_FINISH variable
input data set (%EVG–WBS–CHART), 841
E_START variable
input data set (%EVG–WBS–CHART), 841
EAC, 842
CPI, 816, 824, 832, 842, 843, 845
CPI-times-SPI, 816, 824, 832, 842, 843, 845
OTD, 816, 824, 832, 842, 843, 845
revised, 813, 816, 824, 832, 842–845, 855
EACREV variable
periodic data set (%EVA–METRICS), 844
ever bar
height, 478
offset, 478
ever schedule
GANTT procedure, 490, 525
ever start schedule computation,
See schedule computation
earned value, 797, 799, 812, 815–817, 824, 825, 843–846
Earned Value Analysis, 39
earned value analysis, 797
edit
alignment constraints, Table View, 293
calendars, Table View, 294
durations, Gantt View, 298
durations, PM Window, 302
durations, Table View, 293
lag, Gantt View, 300
project, PM procedure, 300
E_FINISH variable
Network data set (NETDRAW), 628, 642, 645
Schedule data set (CPM), 53, 78, 89, 95, 96
Schedule data set (GANTT), 466, 472, 489, 490, 492, 565
EFINMILE variable
Schedule data set (CPM), 95
derheads
character, 371
color, 366, 371
font, 371
height, 371
symbol, 372
der stage
decision tree model, 343
equity
estimating corporate risk tolerance, 388
elements
CPM procedure, 132, 135
DTREE procedure, 362, 383–386, 395
GANTT procedure, 491, 528
NETDRAW procedure, 658
ES_ASC variable
Schedule data set (CPM), 74
ES_DESC variable
Schedule data set (CPM), 74
E_START variable
Network data set (NETDRAW), 628, 642, 645
Schedule data set (CPM), 53, 78, 89, 94–96
Schedule data set (GANTT), 466, 472, 489, 490, 565
estimates
cost, 813, 815, 816, 824, 832, 842, 844, 845, 855, 870, 872
schedule, 825, 856, 873
ETC, 816, 842, 845
CPI, 842, 843
CPI-times-SPI, 842, 843
OTD, 842, 843
revised, 842, 843
EV variable
periodic data set (%EVA–METRICS), 844
task data set (%EVA–TASK–METRICS), 846
_EV_RATE_ variable
periodic data set (%EVA–EARNED–VALUE), 844
%EVA–EARNED–VALUE examples, 812, 852, 867
%EVA–EARNED–VALUE macro
macro variable _EVA–EARNED–VALUE_, 844
%EVA–EARNED–VALUE macro variable, 844
%EVA–METRICS examples, 815, 853, 868
%EVA–METRICS macro
macro variable _EVA–METRICS_, 846
%EVA–METRICS macro variable, 846
%EVA–PLANNED–VALUE examples, 807, 850, 863
%EVA–PLANNED–VALUE macro
macro variable _EVA–PLANNED–VALUE_, 843
%EVA–PLANNED–VALUE macro variable, 843
%EVA–TASK–METRICS examples, 818, 854, 870
%EVA–TASK–METRICS macro
macro variable _EVA–TASK–METRICS_, 846
%EVA–TASK–METRICS macro variable, 846
evaluating value
decision tree diagram, 362
DTREE procedure, 379, 380, 387
on decision tree diagram, 361, 376
on optimal decision summary, 363
optimal, 373
represented with Payoff data set (DTREE), 363
selecting the best alternative, 389

EQN variables,
See also EVENT variables
Probability data set (DTREE), 379
EVENT variables
Probability data set (DTREE), 379
events, 343
%EVG_COST_PLOT examples, 824, 855, 872
%EVG_COST_PLOT macro
 macro variable _EVG_COST_PLOT_, 847
 _EVG_COST_PLOT_ macro variable, 847
%EVG_GANTT_CHART examples, 821, 859, 876
%EVG_GANTT_CHART macro
 macro variable _EVG_GANTT_CHART_, 848
 _EVG_GANTT_CHART_ macro variable, 848
%EVG_INDEX_PLOT examples, 823, 857, 874
%EVG_INDEX_PLOT macro
 macro variable _EVG_INDEX_PLOT_, 847
 _EVG_INDEX_PLOT_ macro variable, 847
%EVG_SCHEDULE_PLOT examples, 825, 856, 873
%EVG_SCHEDULE_PLOT macro
 macro variable _EVG_SCHEDULE_PLOT_, 847
 _EVG_SCHEDULE_PLOT_ macro variable, 847
%EVG_VARIANCE_PLOT examples, 820, 858, 875
%EVG_VARIANCE_PLOT macro
 macro variable _EVG_VARIANCE_PLOT_, 848
 _EVG_VARIANCE_PLOT_ macro variable, 848
%EVG_WBS_CHART examples, 803, 861
%EVG_WBS_CHART macro
 macro variable _EVG_WBS_CHART_, 848
 _EVG_WBS_CHART_ macro variable, 848
See also CPM examples
See also DTREE examples
See also GANTT examples
See also introductory examples
See also NETDRAW examples
See also PM examples
%EVA>EARNED_VALUE macro, 812, 852, 867
%EVA_METRICS macro, 815, 853, 868
%EVA_PLANNED_VALUE macro, 807, 850, 863
%EVA_TASK_METRICS macro, 818, 854, 870
%EVG_COST_PLOT macro, 824, 855, 872
%EVG_GANTT_CHART macro, 821, 859, 876
%EVG_INDEX_PLOT macro, 823, 857, 874
%EVG_SCHEDULE_PLOT macro, 825, 856, 873
%EVG_VARIANCE_PLOT macro, 820, 858, 875
%EVG_WBS_CHART macro, 803, 861
CPM procedure, 804, 810
earned value analysis, 797, 802, 849, 860
GANTT chart, 806
GANTT procedure, 805
NETDRAW procedure, 803
statement and option cross-reference tables (CPM), 276–278
statement and option cross-reference tables (DTREE), 441
statement and option cross-reference tables (GANTT), 609–611
statement and option cross-reference tables (NETDRAW), 720
expand supertasks
 Table View, 294
expected utility, DTREE procedure, 387
expected value, DTREE procedure, 387
exponential utility function
 DTREE procedure, 350, 361, 387–389
example (DTREE), 401
F
F_FLOAT variable
 input data set (%EVG_WBS_CHART), 841
F_FLOAT variable
 Network data set (NETDRAW), 628, 642, 645
Schedule data set (CPM), 53, 79, 95, 97
fill patterns
 limiting PATTERN variable to specific schedules, 485
 suppress using PATTERN variable (GANTT), 484
 using PATTERN variable (GANTT), 485, 502, 503
filling page area, 466, 493, 533
filters, 304
financial decisions,
 See loan grant decision problem
finish-before date
 CPM procedure, 61
finish milestone
 CPM procedure, 94, 95
example (CPM), 261
finish times
 computation of, CPM procedure, 89
 format of, 490
 interpretation of, CPM procedure, 90
 padding, 490
 treatment of, 490
FINISH variable
 Activity data set (CPM), 71
 _LABEL variable
 Label data set (GANTT), 522, 524
flags
 activity status, 464, 527
float
 free, 53, 89, 97
 total, 53, 89, 97
font baseline of activity text, 480, 501
font specification,
 See also symbol specification
 baseline of activity text (GANTT), 480
chance nodes (DTREE), 370
decision nodes (DTREE), 371
end nodes (DTREE), 371
milestones (GANTT), 478
symbol (DTREE), 370–372

text (DTREE), 367

text (GANTT), 478

text (NETDRAW), 635

font, hardware

for text on decision tree, 367

fonts for Gantt charts

ORFONT (filled), 509

ORFONTE (empty), 509, 510

fonts for project management and decision analysis,

forced finish,

See time constraints, Mandatory Finish

forced start,

See time constraints, Mandatory Start

forecasts
cost, 813, 815, 816, 824, 842, 844, 845, 855, 872

schedule, 825, 856, 873

format control options

DTREE procedure, 362, 363, 391

GANTT procedure, 493

NETDRAW procedure, 627–632, 644, 646

formatting
details, CPM procedure, 136

numerical values on decision tree diagram, 362

outcome names on decision tree diagram, 363

time axis (GANTT), 470

formulas, 844, 845

frame fill
color, 476

framing chart

suppress, 484

free float,

See float, free

FRL variable

Calendar data set (CPM), 100

FROM variable

Layout data set (NETDRAW), 647

Network data set (NETDRAW), 626

full-screen version

changing the scale (NETDRAW), 653

differences with line-printer version (GANTT), 496

GANTT procedure, 460, 496

global commands (GANTT), 499

global commands (NETDRAW), 656

local commands (GANTT), 497

local commands (NETDRAW), 653, 654

modifying the network layout, 648

NETDRAW procedure, 653, 654, 656

options specific to (GANTT), 470

options specific to (NETDRAW), 625, 632, 633

output format, 497

routing images to a file, 499

routing images to a printer, 500

use of the PATTERN variable (NETDRAW), 653

functional summary

CPM procedure, 55

DTREEE procedure, 357

GANTT procedure, 454

NETDRAW procedure, 621

future certain equivalent value,

See evaluating value

future funds

example (DTREE), 431

F_VAR variable

Schedule data set (CPM), 70, 183, 213

G

GANTT charts, 806, 822

Gantt charts, 448

GANTT examples, 529, 805

activity filtering, 571

actual schedule, 557

annotate facility (graphics), 586

BY processing, 567

compressing chart to fit on one page (graphics), 544

concatenating early, late, and actual schedules, 562

customizing the Gantt chart, 533

direct specification of schedule data, 565

drawing Gantt charts by resource usage, 571

drawing Gantt charts by task code, 567

drill-down Gantt charts (graphics), 600

fitting the chart on one page (graphics), 544

graphics mode, 537

height and placement of text (graphics), 574

holidays in scheduling, 538

introductory, 450

labeled Gantt charts (graphics), 591

layout controls for Logic Gantt charts (graphics), 577

line-printer mode, 529

Logic Gantt chart, AOA representation (graphics), 577

Logic Gantt chart, AON representation (graphics), 575

Logic Gantt charts, layout control (graphics), 577

milestones and special dates, 542

monitoring project progress against a baseline schedule, 559

multiple calendars, 553

multiproject Gantt charts (graphics), 593

multisegment Gantt charts (graphics), 596

nonstandard precedence relationships, 583

printing a Gantt chart, 530

resource-constrained schedule, 563

smallest identifiable time unit, 545

statement and option cross-reference tables, 609–611

time axis, altering range (graphics), 549

variable length holidays, 550

Web-enabled Gantt charts (graphics), 600

zoned Gantt charts (graphics), 599

GANTT procedure

activity axis, 448, 502
Annotate data set, 449, 459, 474, 502
annotate processing, 502
automatic text annotation, 449
Calendar data set, 449, 460, 464, 495, 496
computer resource requirements, 529
direct input of schedule data, 565
displayed output, 525
justification, 475, 481, 487
labeling, 449
line-printer examples, 529
macro variable _ORGANTT, 480, 488, 528
memory requirements, 529
nonstandard precedence relationships, 449, 450, 511, 512, 515–517
options classified by function, 454
ORFONT font, 509
ORFONTE font, 509, 510
edium of symbol, 480, 488, 528
output, 525
overview, 5, 447
Precedence data set, 449, 461, 491, 512
precedence relationships, 449, 450, 511–513, 515–518
Schedule data set, 449, 450, 460, 489, 512, 526
scheduling holidays, 538
table of syntax elements, 454
time axis, 448, 494, 502
variables, 491
Workday data set, 449, 460, 462, 495, 496
Gantt View, 295
alignment constraints, 298
display schedule bar, 297
display task information, 297
edit durations, 298
edit lag, 300
hide schedule bar, 297
lag calendar, 300
nonstandard precedence relationships, 299, 301, 303
PM procedure, 295
PM Window, 295
progress information, 300
time axis format, 295
time axis units, 297
time increment, 296
time scale, 296
general options
DTREE procedure, 361–364
GANTT procedure, 462
NETDRAW procedure, 626–632
_GIVE variables,
See also GIVEN variables
Probability data set (DTREE), 379
GIVEN variables
Probability data set (DTREE), 379
global commands
full-screen version (GANTT), 499
full-screen version (NETDRAW), 656
global graphics options
color of text, 366
color of symbol, 365, 366
controlling the appearance of decision tree, 392, 418
defont of text, 367
height, 367
number of columns, 392
number of rows, 392
unit of measure, 364
global options
DTREE procedure, 385
global verticals, 483, 515,
See also Logic Gantt charts
graphics catalog
DTREE procedure, 387
GANTT procedure, 460
NETDRAW procedure, 643
options specific to (DTREE), 364–372
options specific to (GANTT), 473
options specific to (NETDRAW), 625, 633–639
text font baseline (GANTT), 480
graphics version
activity text placement (GANTT), 479, 480
effects of HPOS and VPOS, 501
effects on the schedule (GANTT), 413
effects on the schedule (NETDRAW), 643
fitting Gantt chart on a single page, 476, 486, 500
full-screen version (GANTT), 499
full-screen version (NETDRAW), 656
graphs
%EVG_COST_PLOT macro, 824, 855, 872
%EVG_GANTT_CHART macro, 822, 859, 876
%EVG_INDEX_PLOT macro, 823, 857, 874
%EVG_SCHEDULE_PLOT macro, 825, 856, 873
%EVG_VARIANCE_PLOT macro, 820, 858, 875
Subject Index

hardware font
for text on decision tree, 367

HEAD variable
 Activity data set (CPM), 72
 Schedule data set (GANTT), 479, 511

height specification
 actual bar (GANTT), 474
 baseline bar (GANTT), 475
 chance nodes (DTREE), 370
 decision nodes (DTREE), 371
 early bar (GANTT), 478
 end nodes (DTREE), 371
 holiday bar (GANTT), 478
 late bar (GANTT), 478
 milestones (GANTT), 479
 nodes on decision tree (DTREE), 367

 resource-constrained schedule bar (GANTT), 486
 schedule bar (GANTT), 475
 symbol (DTREE), 367, 370, 371
 text (DTREE), 367
 text (GANTT), 479, 480

hide
 schedule bar, Gantt View, 297
 tasks, Table View, 294

hierarchical charts,
See organizational charts

_HLABEL variable
 Label data set (GANTT), 522, 524

holiday bar
 height, 478
 offset, 479

Holiday data set
 CPM procedure, 49, 61, 72, 98, 101, 102, 157, 167
 GANTT procedure, 449, 460, 495, 496
 holidays example (CPM), 102
 missing values, 135
 treatment of CALID variable, 495
 treatment of holiday related variables, 72, 466, 467, 495
 variables, 133

holiday information,
See Holiday data set

HOLIDAY variable
 Holiday data set (CPM), 72, 101
 Holiday data set (GANTT), 466, 495

holidays,
See also Holiday data set
 character to represent (GANTT), 471
 defining, 72, 460, 495
 displaying, 495
 duration units, 467, 495
 durations, 72, 73, 466
 examples (GANTT), 538
 fill pattern for (GANTT), 503
 finish times, 72, 73, 466
 GANTT procedure, 466
 graphics example (GANTT), 557
 scheduling around, 53, 495
 start times, 72, 466

 variable length, example (GANTT), 550

HOLIDUR variable
 Holiday data set (CPM), 72, 73, 101
 Holiday data set (GANTT), 466, 495

HOLIFIN variable
 Holiday data set (CPM), 72, 73, 101
 Holiday data set (GANTT), 466, 495

horizontal banding,
 See zoned network diagrams

horizontal space
 around margin (NETDRAW), 636, 682
 between ID columns (GANTT), 464
 between nodes (NETDRAW), 632, 644, 677

I

ID variables
 Activity data set (CPM), 73
 column headings, 527
 displaying as many as possible, 468
 displaying on multiple pages, 467, 527
 duplicate values, 465, 489, 526
 format of (GANTT), 490
 labels for headings, 527
 labels, suppress displaying, 527
 NETDRAW procedure, 644, 645
 Network data set (NETDRAW), 628, 642, 645
 omission of, 527
 Schedule data set (GANTT), 462, 464, 465, 489, 491, 525–527
 space between columns, 464
 split character for labels, 462
 splitting column headings, 462
 stripping leading blanks, 470

Imagemap data set
 DTREE procedure, 344
 GANTT procedure, 450

independent resource scheduling, 79, 118

indices
 CPI, 798, 800, 816, 823, 840, 844–846, 857, 874
 CV, 845, 846, 854, 859
 SPI, 798, 800, 816, 823, 840, 844–846, 857, 874
 SV, 845, 846, 854, 859
 TCPI, 816, 823, 845, 857, 874

infeasibility diagnostics
 CPM procedure, 80, 117, 203

input data sets,
 See also Activity data set
 See also Annotate data set
 See also Calendar data set
 See also Holiday data set
 See also Label data set
 See also Layout data set
 See also Network data set
 See also Payoff data set
 See also Precedence data set
 See also Probability data set
 See also Resource data set
line-printer version
 examples (GANTT), 529
 GANTT procedure, 461
 introductory example (GANTT), 451
 options specific to (DTREE), 372
 options specific to (GANTT), 470

line style specification
 break lines along time axis (NETDRAW), 636
 connect lines (GANTT), 482
 links across pages (DTREE), 368, 369
 links of optimal decisions (DTREE), 368, 369
 links on decision tree (DTREE), 368, 369
 precedence connections (GANTT), 482
 reference lines (GANTT), 482
 reference lines (NETDRAW), 636
 timenow line (GANTT), 482
 zone line (GANTT), 482

line width specification
 arcs and nodes (NETDRAW), 636
 critical arcs and nodes (NETDRAW), 636
 GANTT procedure, 482
 links of optimal decisions (DTREE), 368, 370
 links on decision tree (DTREE), 368, 369
 node outlines (NETDRAW), 636
 precedence connections (GANTT), 488
 timenow line (GANTT), 488
 zone line (GANTT), 488

linear utility function, 387

links across pages
 color, 368
 style, 369
 thickness, 368
 type, 368, 369

links of optimal decisions
 color, 365, 368
 style, 369
 thickness, 368, 370
 type, 368, 369

links on decision tree
 color, 365, 368
 style, 369
 thickness, 368, 369
 type, 368, 369

litigation decisions,
 See petroleum distributor’s decision problem

loan grant decision problem, 422

local commands
 full-screen version (GANTT), 497
 full-screen version (NETDRAW), 653

local options
 DTREE procedure, 385
 local verticals, 483, 516,
 See also Logic Gantt charts

logic bar, 512, 515
 graphics example (GANTT), 575, 577

Logic Gantt charts, 511
 3-segment connection, 512, 514, 517
 5-segment connection, 512, 518
 AOA representation, graphics example (GANTT), 577
 AOA specification, 479, 487, 511
 AON representation, graphics example (GANTT), 575
 AON specification, 474, 487, 512
 arrowheads, 484, 516
 arrowheads, suppress display, 516
 controlling the layout, 515
 drawing the precedence connections, 512
 error handling, 487
 finish global vertical, 515
 finish local vertical, 516
 framing chart, suppress, 484
 global verticals, 483, 515
 global verticals, illustration of, 515
 global verticals, minimum interdistance of, 483, 516
 global verticals, minimum offset from logic bar, 483, 516
 horizontal tracks for segment placement, 516
 introductory example, 453
 lag types, 481, 512, 515
 layout controls, 483, 512, 514, 515
 linking Precedence data set and Schedule data set, 512
 local verticals, 483, 516
 local verticals, illustration of, 516
 local verticals, maximum displacement from minimum offset location, 483, 516
 local verticals, minimum offset from logic bar, 484, 516
 logic bar, 481, 512, 513, 515, 516
 nonstandard precedence relationships, 449, 450, 511, 512, 515–517
 placement of horizontal segments, 516
 placement of vertical segments, 515, 516
 precedence connections, illustration, 513
 Precedence data set, 474, 487, 512
 Precedence data set, linking to Schedule data set, 512
 precedence information, 474, 479, 481, 482, 487, 511
 precedence information using PROC CPM, 511
 precedence relationships, 449, 450, 511–513, 515–518
 routing sequence, 512
 routing the connection, 517
 Schedule data set, 512
 Schedule data set, linking to Precedence data set, 512
 start global vertical, 515
 start local vertical, 516
 time axis, extension of, 514
 time axis, suppress extension of, 484, 514
 turning points, 512, 514
 vertical tracks for segment placement, 515, 516

Logic options, 491, 511
loop,

See cycles

LOSS variables,

See VALUE variables

LS_ASC variable

Schedule data set (CPM), 74

LS.DESC variable

Schedule data set (CPM), 74

L.START variable

Network data set (NETDRAW), 628, 642, 645

Schedule data set (CPM), 53, 80, 89, 94, 95, 97

Schedule data set (GANTT), 467, 472, 489, 490

_LVAR variable

Label data set (GANTT), 481, 519, 522, 524

M

Machine epsilon, 363

Macro data flow

%EVA_.EARNED_.VALUE_, 798, 826

%EVA_.METRICS_, 798, 826

%EVA_.PLANNED_.VALUE_, 798, 826

%EVA_.TASK_.METRICS_, 798, 826

%EVG_.COST_.PLOT_, 799

%EVG_.GANTT_.CHART_, 801

%EVG_.INDEX_.PLOT_, 799

%EVG_.SCHEDULE_.PLOT_, 800

%EVG_.VARIANCE_.PLOT_, 800

%EVG_.WBS_.CHART_, 801

Macro variable

%EVA_.EARNED_.VALUE_, 844

%EVA_.METRICS_, 846

%EVA_.PLANNED_.VALUE_, 843

%EVA_.TASK_.METRICS_, 846

%EVG_.COST_.PLOT_, 847

%EVG_.GANTT_.CHART_, 848

%EVG_.INDEX_.PLOT_, 847

%EVG_.SCHEDULE_.PLOT_, 847

%EVG_.VARIANCE_.PLOT_, 848

%EVG_.WBS_.CHART_, 848

%ORCPM_, 132

%ORGANTT, 480, 488, 528

%ORNEDR, 658

TIMENOW, 309

Mandatory time constraints,

See time constraints

Maximum allowable text height (GANTT), 479

Maximum number of observations (CPM), 81

MAXNSEGMT variable

Activity data set (CPM), 80

MDB format

Microsoft Project, 46

Memory requirements,

See computer resource requirements

Menu systems for project management, 44

Microsoft Project

Converting to PM, 46

MDB format, 46

Microsoft Project Conversion Macros

%MP2KTOCPM, 340

%MSPTOSAS, 335

Overview, 335

Milestones, 465, 493

Character to represent, 472

Color, 476

Examples (GANTT), 542

Font, 478

Height, 479

PM Window, 303

Project management symbols, 511

Set finish (CPM), 64

Symbol value, 487

MINSEGMDUR variable

Activity data set (CPM), 81

Missing values

CPM procedure, 135

DTREE procedure, 385

GANTT procedure, 491

NETDRAW procedure, 642

Mode specific differences, 524

Graphics options, 525

Line-printer and full-screen options, 525

MON variable

Calendar data set (CPM), 100

Most likely value, DTREE procedure, 387

Move tasks

Table View, 294

Multiple alternates

CPM procedure, 81, 121, 122

Multiple calendars and holidays

Common working calendar, 83

CPM procedure, 98–102, 104

Example (CPM), 166

Example (GANTT), 553

GANTT procedure, 495

Scheduling during common working times, 83

Syntax differences between PROC CPM and PROC GANTT, 495

Multiple pages

Displaying decision tree diagram, 390

GANTT procedure, 493

NETDRAW procedure, 645, 646

Multiproject Gantt charts

Graphics example (GANTT), 593

Multiproject scheduling, 129–132

Example (CPM), 233

Introductory example, 23

Sequential scheduling example, 31

Multisegment Gantt charts

Graphics example (GANTT), 596

N

NAME variable

Summary data set (%EVA_.METRICS_), 845

Negative float, 471

Negative requirements

Specifying, CPM procedure, 114

Negative resource requirements
example (CPM), 268, 270, 273
negative slack duration, 471
net income
 estimating corporate risk tolerance, 388
net present value, 435
net sales
 estimating corporate risk tolerance, 388
NETDRAW examples, 803
 branch and bound trees, 716
 compressing information graphics version to fit on a page, 667
 controlling information within nodes, 671
 controlling the number of pages, 671
 controlling the routing of the arcs, 677
 displaying status of the activities, 680
 drawing an AOA network using the Annotate facility, 711
 drawing organizational charts, 705
 drawing schematic diagrams, 694
 graphics version, 664
 illustrating data flow, 694
 illustrating several time-scale options, 685
 illustrating the Annotate facility, 708
 line-printer version, 659
 modifying network layout, 699
 nonstandard precedence relationships, 676
 spanning several pages, 664
 specifying node layout through the Network data set, 703
 time-scaled network diagram, 682
 zoned network diagram, 690
NETDRAW procedure
 Annotate data set, 625, 633
 Annotate facility, 657
 arc layout options, 628–630, 632
 arc routing, 643, 644
 backward arcs in networks, 650
 computer resource requirements, 659
 controlling the network layout, 648
 cyclic networks, 616, 643, 650
 default ID variables, 644
details, 640
dynamic programming, 644
format control, 627–632, 644, 646
full-screen options, 625, 632, 633
full-screen version, 648, 653, 654, 656
functional summary, 621
graphics catalog specification, 625
graphics options, 625, 633–639
graphics version, 656, 657
hierarchical charts, 652
horizontal placement of nodes, 648
HTML Imagemap data set, 626
Imagemap data set, 626
information within node, 644
input data sets, 615, 640
Layout data set, 626, 647
layout specification, 648
line-printer options, 626, 639, 640
missing values, 642, 645
modes of display, 616, 625, 626, 645
modifying the network layout, 617, 648
moving nodes, 653
Network data set, 625
network layout, 615, 617, 643–645, 647–649
network specification, 626, 631
node coordinates and layout, 643
node layout, 616, 617
time-axis format, 649, 650
time-scaled networks, 616, 620, 627–632, 649–651
top-down networks, 649, 652
topological ordering, 643
tree diagrams, 627, 631, 632, 652
using full-screen to modify layout, 648
variables, list of, 641, 642
vertical placement of nodes, 648
zoned networks, 616, 630, 632, 651
Network data set
description, 641
list of variables, 641, 642
NETDRAW procedure, 615, 625, 640
network diagrams,
 See also NETDRAW procedure
 Activity-on-Arc, 51
 Activity-on-Node, 51
network layout, NETDRAW procedure
discussion, 643–645, 647–649
modifications for time-scaled networks, 650
modifications for zoned networks, 651
use of dynamic programming, 644
nodes on decision tree, 359,
 See also chance nodes
 See also decision nodes
 See also end nodes
nodes on network diagram
coordinates, 643
height, 627, 644, 677
layout, 643
width, 627, 644, 671
noncritical activities
 fill pattern for duration of (GANTT), 503
 fill pattern for slack time of (GANTT), 503
nonstandard precedence relationships
CPM procedure, 91, 92
example (CPM), 176
GANTT procedure, 449, 450, 511, 512, 515–517
Gantt View, 299, 301, 303
graphics example (GANTT), 583
lag calendar, 86, 87, 177, 178
lag duration, 86
lag types, 86
lag variables, 86, 176
specification, CPM procedure, 86
NPV, See net present value
number of columns, global graphics options
DTREE procedure, 392
number of nodes
horizontal (NETDRAW), 637
vertical (NETDRAW), 637
number of pages
displaying decision tree diagram, 391
displaying network diagram, 630
horizontal (NETDRAW), 636
NETDRAW procedure, 646
vertical (NETDRAW), 638
number of rows, global graphics options
DTREE procedure, 392
number pages
GANTT procedure, 484, 485
numerical precision, DTREE procedure, 395
O
OBSTYPE variable
Resource data set (CPM), 82, 109
OBS_TYPE variable
Usage data set (CPM), 77
ODS,
 See Output Delivery System
offset specification
actual bar (GANTT), 474
baseline bar (GANTT), 475
early bar (GANTT), 478
holiday bar (GANTT), 479
late bar (GANTT), 478
resource-constrained schedule bar (GANTT), 486
schedule bar (GANTT), 475
zone line (GANTT), 488
oil wildcatter’s decision problem, 381, 386
 a risk-averse setting, 402
 an insurance option, 397
 example, 345
 sounding test option, 353
 value of perfect control, 352
 value of perfect information, 351
optimal decision
determining, 350
optimal decision summary
displaying, 344, 349, 363, 375, 385, 389, 390
 example, 349, 354, 383, 384
 suppress displaying, 363
optimal evaluating value, 373
options
not changed, 375
resetting, 344, 375, 385
specified on multiple statements, 385
options classified by function,
 See functional summary
 ORCPM macro variable, 4, 8, 132
order of stages
determining, 386
limitations to modifying, 374
modifying, 344, 374, 386
structuring decision problems, 386
order of statements
DTREE procedure, 385
ORFONT font (filled), 510
ORFONTE font (empty), 510
organizational charts
 NETDRAW procedure, 652, 705
 _ORGANTT macro variable, 6, 480, 488, 528
 _ORNEDR macro variable, 7, 658
 _OUT variables,
 See also OUTCOME variables
Stage data set (DTREE), 378
outcome name
 on decision tree diagram, 361, 376
OUTCOME variables
Stage data set (DTREE), 378
outcomes
 chance stage, 343
decision stage, 343
decision tree model, 343
 name, 343
 reward, 343
 successor, 343
outlines and arcs
 network diagrams, 633, 639
outlines and dividers
Gantt chart, 470
output,
 See also displayed output
 See also output data sets
output data sets,
 See also Imagemap data set
 See also Layout data set
 See also Project data set
 See also Resource Schedule data set
 See also Schedule data set
 See also Usage data set
CPM procedure, 4, 49
DTREE procedure, 344
GANTT procedure, 450, 461
NETDRAW procedure, 6, 7, 615
PM procedure, 8
Output Delivery System (ODS)
 DTREE procedure, 344
 GANTT procedure, 600
 table names, 395
overprint character
for CHART variables, 472
for schedule variables, 472

overview
 CPM procedure, 49
 DTREE procedure, 343
 GANTT procedure, 447
 NETDRAW procedure, 615
 PM procedure, 283
 Projman, 725

P
 padding finish times, 465, 468, 490, 492, 542
 default behavior, 493

page
 drawing decision tree on a single, 365, 416
 drawing Gantt chart on a single, 544
 drawing network on a single, 634, 637, 667
 format of decision tree diagram, 390
 format of Gantt chart, 493
 format of network diagram, 646

page numbers
 in NETDRAW procedure, 637
 on decision tree diagram, 370
 on Gantt charts, 485
 suppress displaying (DTREE), 370
 suppress displaying (GANTT), 484
 suppress displaying (NETDRAW), 637

_PAGEBRK variable
 Label data set (GANTT), 523, 524

pages
 display page number (GANTT), 485
 limiting number of (GANTT), 469, 479, 487, 501
 limiting number of (NETDRAW), 630
 limiting number of horizontal (GANTT), 479
 limiting number of vertical (GANTT), 487
 needed in displaying decision tree diagram, 391
 suppress page number (GANTT), 484

pattern specification
 GANTT procedure, 486, 501
 NETDRAW procedure, 656, 657
 pattern selection guide, 506
 table of assignments (GANTT), 503

PATTERN variable
 Network data set (NETDRAW), 633, 637, 651, 653, 656
 Schedule data set (GANTT), 477, 485, 502, 503

_PATTERN variable
 See also PATTERN variable

Payoff data set
 DTREE procedure, 344, 363, 381, 382
 example, 346
 redundant observations, 423
 variables, 379, 380

payoffs
 decision tree model, 382
different from rewards, 382
warning if unassigned, 364

PAYOFFS variables,
 See VALUE variables

PCTCOMP variable
 Activity data set (CPM), 67, 105, 183

PCT__COMP variable
 Schedule data set (CPM), 66
 percent complete, 67, 105, 815, 816, 835, 845, 855
 percentages
 CV%, 845
 SV%, 845
 VAC%, 845

PERIOD variable
 Resource data set (CPM), 82, 90, 109
 periodic data set
 variables, 843

periodic data sets
 %EVA_EARNED_VALUE macro, 812, 853, 867
 %EVA_METRICS macro, 817, 844
 %EVA_PLANNED_VALUE macro, 808, 850, 864
 variables, 844

petroleum distributor’s decision problem, 431
placement of activity text (GANTT), 479, 480
placement of ID variables (NETDRAW), 646
planned value, 797, 799, 807, 815, 817, 824, 843–846

plots
 %EVG_COST_PLOT macro, 824, 855, 872
 %EVG_GANTT_CHART macro, 822, 859, 876
 %EVG_INDEX_PLOT macro, 823, 857, 874
 %EVG_SCHEDULE_PLOT macro, 825, 856, 873
 %EVG_VARIANCE_PLOT macro, 820, 858, 875

PM examples
 adding subtasks, 316
 baseline schedules, 317
 new project, 311

PM procedure
 activity numbers, 307
 add activities, 301
 edit project, 300
 Gant View, 295
 ORCPM macro variable, 8
 overview, 7, 8, 283
 PM Window, 288
 progress updating, 309
 progress variables, 309
 project hierarchy, 291
 Schedule data set, 309
 Summary of Differences, 309
 Table View, 292
 TIMENOW macro variable, 309

PM Window, 288
 activity numbers, 307
 add activities, 301
 add subtasks, 303
alignment constraints, 304
baseline schedule, 301, 304
calendar information, 304
copy activities, 303
delete activities, 303
delete precedence constraints, 303
define durations, 302
edit durations, 302
filters, 304
Gantt View, 295
milestones, 303
PM procedure, 288
print options, 308
print preview, 308
printing
PM Window, 308
PROB variables
Probability data set (DTREE), 379
_PROB variables,
See also PROB variables
Probability data set (DTREE), 379
probabilities
decision tree model, 343
do not sum to 1, 361
on decision tree diagram, 361, 362, 376
scaled by DTREE procedure, 361
warning when rescaled, 364
Probability data set
DTREE procedure, 343, 363, 381, 382, 384
equation, 346
variables, 379
problem size specification
CPM procedure, 136
number of activities (CPM), 62
number of adjacencies (CPM), 62
resource requirement array (CPM), 63
size of symbolic table (CPM), 62
utility data sets (CPM), 62, 136
progress information
Gantt View, 300
PM Window, 302
Table View, 294
progress updating
allow nonzero float, 67, 107
automatic updating of progress information, 66, 106, 183, 287
CPM procedure, 105–107
current time, 67, 105
estimate percent completion time, 66, 287
equation (CPM), 181
interrupt activities in progress, 67, 107
PM procedure, 309
resource allocation during, 119
specifying information, 65–67
progress variables, 105
CPM procedure, 65, 105–107
PM procedure, 309
PROJATTR variable
PROJECT data set (PM), 306
PROJ–DUR variable
Schedule data set (CPM), 131
project
cost control, example, 34
definition, 3, 50
finish date, 61, 89, 145
graphical representation, 617
introductory example, 11, 52
multiple projects, 23, 31
preference, DTREE procedure, 387
print options
PM Window, 308
print preview
PM Window, 308
printing
PM Window, 308
PM Window, 308
PRNTID variable
Schedule data set (PM), 310
pop-up menu
alignment constraints, 293
arc, 289, 299
calendar, 294
Gantt View, 295, 297
increment, 296
major axis, 296
minor axis, 296
scale, 296
schedule bar, 297
Table View, 292
target type, 293
task information, 298
Time Axis, 295
units, 297
PRATCV AL variable
PROJECT data set (PM), 306
PRATNV AL variable
PROJECT data set (PM), 306
precedence connections
color, 476
GANTT procedure, 511
line style, 482
line width, 488
Precedence data set, 449, 450, 461, 474, 487, 491, 512
graphics example (GANTT), 583
linking to Schedule data set, 512
precedence diagramming method,
See Activity-on-Node
precedence information, 474, 479, 481, 482, 487
precedence relationships
CPM procedure, 91, 92
GANTT procedure, 449, 450, 511–513, 515–518
scheduling subject to, 88–90
problem size specification
CPM procedure, 136
number of activities (CPM), 62
number of adjacencies (CPM), 62
resource requirement array (CPM), 63
size of symbolic table (CPM), 62
utility data sets (CPM), 62, 136
progress information
Gantt View, 300
PM Window, 302
Table View, 294
progress updating
allow nonzero float, 67, 107
automatic updating of progress information, 66, 106, 183, 287
CPM procedure, 105–107
current time, 67, 105
estimate percent completion time, 66, 287
example (CPM), 181
interrupt activities in progress, 67, 107
PM procedure, 309
resource allocation during, 119
specifying information, 65–67
progress variables, 105
CPM procedure, 65, 105–107
PM procedure, 309
PROJATTR variable
PROJECT data set (PM), 306
PROJ–DUR variable
Schedule data set (CPM), 131
project
cost control, example, 34
definition, 3, 50
finish date, 61, 89, 145
graphical representation, 617
introductory example, 11, 52
multiple projects, 23, 31
preference, DTREE procedure, 387
print options
PM Window, 308
print preview
PM Window, 308
printing
PM Window, 308
PRNTID variable
Schedule data set (PM), 310
pop-up menu
alignment constraints, 293
arc, 289, 299
calendar, 294
Gantt View, 295, 297
increment, 296
major axis, 296
minor axis, 296
scale, 296
schedule bar, 297
Table View, 292
target type, 293
task information, 298
Time Axis, 295
units, 297
PRATCV AL variable
PROJECT data set (PM), 306
PRATNV AL variable
PROJECT data set (PM), 306
precedence connections
color, 476
GANTT procedure, 511
line style, 482
line width, 488
Precedence data set, 449, 450, 461, 474, 487, 491, 512
graphics example (GANTT), 583
linking to Schedule data set, 512
precedence diagramming method,
See Activity-on-Node
precedence information, 474, 479, 481, 482, 487
precedence relationships
CPM procedure, 91, 92
GANTT procedure, 449, 450, 511–513, 515–518
scheduling subject to, 88–90
problem size specification
CPM procedure, 136
number of activities (CPM), 62
number of adjacencies (CPM), 62
resource requirement array (CPM), 63
size of symbolic table (CPM), 62
utility data sets (CPM), 62, 136
progress information
Gantt View, 300
PM Window, 302
Table View, 294
progress updating
allow nonzero float, 67, 107
automatic updating of progress information, 66, 106, 183, 287
CPM procedure, 105–107
current time, 67, 105
estimate percent completion time, 66, 287
example (CPM), 181
interrupt activities in progress, 67, 107
PM procedure, 309
resource allocation during, 119
specifying information, 65–67
progress variables, 105
CPM procedure, 65, 105–107
PM procedure, 309
PROJATTR variable
PROJECT data set (PM), 306
PROJ–DUR variable
Schedule data set (CPM), 131
project
cost control, example, 34
definition, 3, 50
finish date, 61, 89, 145
graphical representation, 617
introductory example, 11, 52
multiple projects, 23, 31
Subject Index

network diagram, example, 12
resource-constrained schedule, 18
schedule comparison, 69
scheduling and reporting, 15
start date, 60, 89, 141, 145
summary, 17
work breakdown structure (WBS) example, 13
project cost control, 34
ACWP, 34
BCWP, 34
BCWS, 34
definition of measures, 34
example, 34
plot of measures, 39
PROJECT data set (PM)
PRATCV AL variable, 306
PRATNV AL variable, 306
PROJATTR variable, 306
project deadlines,
See deadlines
project font
PM Window, 307
project hierarchy
PM procedure, 291
project management
decision analysis in, 3
examples, 11
introduction, 3–11, 45
scheduling example, 16, 18
project management systems, 44
project monitoring
using baseline schedule, 559
project network diagram, 802
project preferences
PM Window, 305
pull-down menu, 306, 307
project progress,
See also progress updating
measuring using baseline schedule, 559
PROJECT variable
Activity data set (CPM), 73, 129
Schedule data set (CPM, 131
PROJ.LEV variable
Schedule data set (CPM), 131
Projman
accessing reports, 731
application options, 728
calendar report options, 764
calendars, 733, 734
editing activities, 730
editing calendars, 731, 733, 734
editing holidays, 731, 735, 736
editing resources, 731, 738, 739
editing workshifts, 731, 744, 745
Gantt chart options, 766
holidays, 735, 736
importing activity data set, 729, 781
importing calendar data set, 734, 788
importing holiday data set, 736, 789
importing projects, 729
importing resource in data set, 739, 791
importing workshift data set, 745, 792
introduction, 45
network diagram options, 771
overview, 725
project information, 730
project name option, 726
project summary, 731
projman command, 725
Projman window, 726
report macro variables, 761
report options, 755
reports, 753
resource report options, 778
resources, 738, 739
sample projects, 729
scheduling options, 746
tabular listing options, 779
workshifts, 744, 745
proportional compression
Gantt chart, 486
pull-down menu
edit, 300
file, 308
filters, 305
move column, 293
preferences, 306, 307
project, 289
project preferences, 306, 307
set baseline, 302
sort, 307
View, 291, 304
PY. variable
periodic data set (%EVA_METRICS), 844
task data set (%EVA_TASK_METRICS), 846
_PY_RATE_. variable
periodic data set (%EVA_PLANNED_VALUE), 843
R
R_DELAY variable
Schedule data set (CPM), 78, 96, 192
rectangular corners
decision tree diagram, 370
network diagram, 638
reference lines, 469
automatic at every tick mark, 627
break character, 632
character to represent, 472, 633, 640
color, 477, 633, 635
labels, 469
line style, 482, 636
remaining duration, 67, 105
REMDUR variable
Activity data set (CPM), 67, 183
replenishable resource, 110
rescale probabilities
DTREE procedure, 361
warning in DTREE procedure, 364
research and development decision problem, 418
RESID variable
Resource data set (CPM), 83, 109
resource allocation, 109–122, 124–128,
See also resource allocation control
activity splitting, 118, 119, 215
actual dates, 119
alternate resources, 111, 120–122, 219
analyzing infeasibilities, 80, 117, 203
auxiliary resources, 123
effect of the TIMENOW option, 119
example (CPM), 191
multiple alternates, 121, 122
negative resource requirements, 114
progress updating, 119
resource availability profile, 112
resource calendars, 242
resource dictionary, 109
resource-driven durations, 117, 122
resource levels, 109
resource priority, 109, 110, 116
resource usage variables, 124
scheduling method, 114–117
scheduling rule, 84, 116, 191
secondary scheduling rule, 85, 116
specifying resource requirements, 113, 114
substitutable resources, 111, 120
supplementary levels, 109, 110
supplementary resources, 117
resource allocation control
activity-splitting options, 80, 81, 85
alternate resources, 76, 81, 83
checking levels needed, 80
cutoff date, 85
options related to, 76–78, 80, 81, 83–85
scheduling rules, 84, 85
resource calendars
example (CPM), 242
resource-constrained schedule, 18
example (GANTT), 563
fill pattern for (GANTT), 503
GANTT procedure, 490, 525
split activities, 490, 526
treatment of SEGMT_NO variable (GANTT), 526
resource-constrained schedule bar
height, 486
offset, 486
resource constraints,
See resource allocation
Resource data set
alternate resource specification, 120
CPM procedure, 49, 63, 109, 191
missing values, 135
multiple alternates, 122
observation type, 82
resource specification example (CPM), 112
variables, 109, 133
resource-driven durations, 86, 96, 108
and resource allocation (CPM), 117
CPM procedure, 122
example (CPM), 242, 273
resource infeasibilities, 80, 117, 203, 205, 210, 213
resource requirements
PM Window, 304
specifying, CPM procedure, 113, 114
Table View, 294
Resource Schedule data set
CPM procedure, 50, 64
resource type
consumable, 110, 191
replenishable, 110
resource usage,
See also Usage data set
CPM procedure, 109, 126
cumulative usage, 77, 126
cumulative usage example, 198, 199, 206
daily usage, 126
element of reports, 188
variables in Usage data set, 124
RESOURCE variables
Activity data set (CPM), 75, 113
table (CPM), 186
Resource data set (CPM), 76, 109
Resource Schedule data set (CPM), 128
_REW variables,
See also REWARD variables
Stage data set (DTREE), 378
REWARD variables
Stage data set (DTREE), 378, 382, 383
rewards
decision tree model, 382
different from payoffs, 382
label on decision tree diagram, 362
modifying, 374
on decision tree diagram, 361, 376
risk, 388
risk averse, 401, 402
risk aversion
coefficient, 388
DTREE procedure, 388
risk tolerance
DTREE procedure, 350, 388
estimation, 388
element (DTREE), 401, 402
specifying, 350, 363, 389
_RLABEL variable
Label data set (GANTT), 523, 524
rotating the network diagram, 617, 638, 644, 649, 652, 716
used for top-down trees, 649, 652
rounded corners
decision tree diagram, 370
network diagram, 638
rows in Gantt chart
between activities, 469, 525
R_RATE variable
Resource Schedule data set (CPM), 128
RSCHEDID variables
Activity data set (CPM), 84
Resource Schedule data set (CPM), 84
RT,
See risk tolerance
S
S_FINISH variable
input data set (%EVG_WBS_CHART), 841
S_START variable
input data set (%EVG_WBS_CHART), 841
SAS catalogs,
See graphics catalog
SAS data sets,
See also input data sets
See also output data sets
CPM procedure, 49, 50
DTREE procedure, 343–345, 381
GANTT procedure, 449, 450
NETDRAW procedure, 615
PM procedure, 7
used to model project information, 3
SAS date, time, and datetime values
CPM procedure, 61, 90, 91, 102, 136
SAT_ variable
Calendar data set (CPM), 100
saving printed output
PM Window, 308
scenario of decision tree, 343, 376
schedule
character string to represent duration (GANTT), 471
character string to represent times (GANTT), 472
fill patterns to represent duration (GANTT), 503
variables format (GANTT), 490
schedule bar
height, 475
offset, 475
schedule computation
finish milestone, 94
multiproject, 131
nonstandard precedence constraints, 92
progress updating, 106, 107
resource constraints, 114–117
standard precedence constraints, 88, 89
time constraints, 93, 94
Schedule data set
as input to NETDRAW procedure, 640
CPM procedure, 49, 52, 63, 95–97, 121
direct specification of schedule data (GANTT), 565
GANTT procedure, 449, 450, 460, 489
generated by PROC CPM, 449, 450, 489, 511, 513
linking to Precedence data set, 512
multiproject, 131
options to control, 60, 65, 78–83, 85
PM procedure, 309
progress variables, 107, 309
resources used, 121, 223
sort variables, 74, 75, 132, 234
treatment of _DUR_ variable, 465, 493
treatment of finish times, 490
treatment of ID variables, 526
treatment of schedule variables, 489
treatment of SEGMT_NO variable (GANTT), 490, 526
treatment of start times, 490
variables, 53, 95–97, 107, 119, 121
schedule information,
See Schedule data set
scheduling
around weekends and holidays, 53, 150, 153, 156, 161
multiple projects, example, 24, 33
projects, example, 16
resource-constrained, example, 18
rule for breaking ties, 85
rule for ordering activities, 84, 116, 117
sequential scheduling of multiple projects, 31
serial parallel method, CPM procedure, 114, 116
secondary levels of resource
CPM procedure, 117
segments,
See activity splitting
SEGMT_NO variable
Schedule data set (CPM), 97, 119, 218
Schedule data set (GANTT), 486, 490, 526, 565, 596
SEQ_ variable
Layout data set (NETDRAW), 647
Network data set (NETDRAW), 641, 648
serial-parallel scheduling method
CPM procedure, 114, 116
S_FINISH variable
Network data set (NETDRAW), 628, 642, 645
Schedule data set (CPM), 96, 97, 119
Schedule data set (GANTT), 469, 472, 489, 490
SFN Milestone variable
Schedule data set (CPM), 95
shift variables,
See Workday data set, shift variables
shifts,
See break and shift information
slack duration, 471
fill patterns for (GANTT), 503
slack time,
See float
smallest identifiable time unit, 468, 493
default values, 494
example (GANTT), 545
number of columns representing, 469, 493
time axis labeling corresponding to, 494
sort variables
Schedule data set (CPM), 74, 75, 132, 234
sorting activities
PM Window, 306

spacing between
activity plots, 469
ID columns, 464
nodes, 632
time axis labels, 467
two successive end nodes, 364

special symbol table
DTREE procedure, 371, 372
GANTT procedure, 487

SPI, 798, 800, 816, 823, 840, 842, 844–846, 857, 874
SPL variable
periodic data set (%EVA_METRICS), 844
task data set (%EVA_TASK_METRICS), 846

split activities,
See activity splitting
split character for ID labels, 462
split ID column headings, 462
split labels
Labeling facility (GANTT), 481
SQUARE, special symbol table
DTREE procedure, 371

SS_ASC variable
Schedule data set (CPM), 74, 75

SS_DESC variable
Schedule data set (CPM), 74

S_START variable
Network data set (NETDRAW), 628, 642, 645
Schedule data set (CPM), 96, 97, 119
Schedule data set (GANTT), 469, 472, 489, 490

Stage data set
DTREE procedure, 343, 363, 381–383, 386
example, 345
variables, 378

stage name
on decision tree diagram, 361, 376

stage type
modifying, 374

STAGE variable
Stage data set (DTREE), 378

stages
chance, 343
decision, 343
decision tree model, 343
end, 343
name, 343
order, 343, 386
outcomes, 343
type, 343, 374

start times
format of, 490
interpretation of, CPM procedure, 90
treatment of, 490

START variable
Activity data set (CPM), 71

_STAT variables,
See also STATE variables
Payoff data set (DTREE), 380

STATE variables
Payoff data set (DTREE), 380
statement order
DTREE procedure, 385
status flags, 464
displaying on multiple pages, 527

STATUS variable
Network data set (NETDRAW), 645
Resource Schedule data set (CPM), 128
Schedule data set (CPM), 96, 97, 107, 183, 631
STNAME variable,
See also STAGE variable
Stage data set (DTREE), 378
straight-line utility function, 363
STTYPE variable,
See also TYPE variable
Stage data set (DTREE), 378

style of lines,
See line style specification
subcontracting decisions, 41

subprojects,
See also multiproject scheduling
individual critical paths for (CPM), 74
ordering activities within (CPM), 74, 75

substitutable resources,
See alternate resources

SUCC variables,
See also SUCCESSOR variables
Stage data set (DTREE), 378

SUCCESSOR variables
Activity data set (CPM), 86
Network data set (NETDRAW), 631, 641
Precedence data set (GANTT), 481, 487, 512
Schedule data set (GANTT), 487
Stage data set (DTREE), 378

SUCCID variable
Schedule data set (PM), 310

summary data sets
%EVA_METRICS macro, 816, 845, 853, 869
variables, 845

summary of Gantt chart symbols, 470, 525, 533
summary output
%EVA_METRICS macro, 815

SUN variable
Calendar data set (CPM), 100

supercritical activities
definition of, 89, 94
definition of, 181
fill pattern for duration of (GANTT), 503
fill pattern for slack time of (GANTT), 503
GANTT procedure, 464, 471
node pattern (NETDRAW), 657

supplementary resources
CPM procedure, 117
definition of, 198
definition of, 203

SUPPL_R variable
Schedule data set (CPM), 78, 96, 192

SV, 798, 800, 801, 816, 820, 822, 840, 842, 844, 858, 875, 876
SV Percentage, 842
SV variable
 periodic data set (%EVA_METRICS), 844
task data set (%EVA_TASK_METRICS), 846
S_VAR variable
 Schedule data set (CPM), 70, 183, 213
SVP variable
task data set (%EVA_TASK_METRICS), 846
symbol specification
 chance nodes (DTREE), 370, 371
 controlling the appearance of decision tree, 392
decision nodes (DTREE), 371
end nodes (DTREE), 371, 372
event (DTREE), 418, 420
GANTT procedure, 502, 506
identifying symbols for links on decision tree, 368
identifying symbols for nodes on decision tree, 370, 371
milestones (GANTT), 487
project management fonts, 511
special symbol table, 509
symbols for project management and decision analysis, 509
syntax skeleton
 CPM procedure, 55
 DTREE procedure, 357
 GANTT procedure, 454
 NETDRAW procedure, 621

T

T_FLOAT variable
 input data set (%EVA_WBS_CHART), 841
table of syntax elements,
 See functional summary
Table View, 292
 add tasks, 292
collapse supertasks, 294
column, change order, 293
column, change width, 292
delete tasks, 292
edit alignment constraints, 293
edit calendars, 294
edit durations, 293
expand supertasks, 294
hide tasks, 294
move tasks, 294
PM procedure, 292
PM Window, 292
pop-up menu, 292
progress information, 294
resource requirements, 294
target date, 293
target type, 293
time constraints, 293
TAIL variable
 Activity data set (CPM), 87
 Schedule data set (GANTT), 487, 511
target completion dates,
 See deadlines
target date
 Table View, 293
target schedule,
 See baseline schedule
target type
 Table View, 293
target variables,
 See CHART variables
task axis,
 See activity axis
task data sets
 %EVA_TASK_METRICS macro, 846
 variables, 846
task information dialog box, 290
task output
 %EVA_TASK_METRICS macro, 819, 854, 870
TCPI, 816, 823, 857, 874
BAC, 816, 823, 842, 845
EAC, 816, 842, 845
text
 color (DTREE), 366
color (GANTT), 477
color (NETDRAW), 635
font (DTREE), 367
font (GANTT), 478
font (NETDRAW), 635
font baseline (activity), 480
height (DTREE), 367
height (GANTT), 479
height (NETDRAW), 635
height, graphics example (GANTT), 574
maximum allowable height, 479
placement (GANTT), 480
placement, graphics example (GANTT), 574
T_FLOAT variable
 Network data set (NETDRAW), 628, 642, 645
Schedule data set (CPM), 53, 85, 95, 97
thickness of lines,
 See line width specification
thresholds, 820, 838, 859, 875
THU variable
 Calendar data set (CPM), 100
tickmark label
 suppress time portion, 484
tickmarks
 limiting the number on first page (GANTT), 485
time axis
 altering range, graphics example (GANTT), 549
 color, 476
 extension of, 514
 format (Gantt View), 295
 formatting, 468, 470, 632, 649, 650, 710
GANTT procedure, 448, 494, 502
increments on, 467, 493
inter-label spacing, 467
labeling, 493, 494
largest time value, 468
maximum and minimum values, 627
NETDRAW procedure, 649, 650
scaling, 629, 649, 650
show break in, 631
smallest interval represented, 629
smallest time value, 468
suppress extension of, 484, 514
suppress printing, 630
suppress printing on every page, 630
units (Gantt View), 297
time-constrained scheduling
CPM procedure, 68, 90, 92–94
example (CPM), 180
time constraints
activity align dates (CPM), 68, 180
activity align dates (PM), 293
activity align types (CPM), 68, 180
activity align types (PM), 293
fix finish time (CPM), 61
Mandatory Finish, MF, 94, 181
Mandatory Start, MS, 94, 181
project finish date (CPM), 61, 89
project start date (CPM), 60, 89
scheduling subject to, 92–94
Table View, 293
time increment
Gantt View, 296
time scale
Gantt View, 296
TIME variable
periodic data set (%EVA_EARNED_VALUE), 844
periodic data set (%EVA_METRICS), 844
periodic data set (%EVA_PLANNED_VALUE), 843
Usage data set (CPM), 77, 80–82, 84, 85, 124, 125, 127
time-scaled network diagrams, 616, 620, 649, 682, 685
default ALIGN variable, 649
spacing of nodes, 650
tick marks, 649
TIMENOW, 67,
See also progress updating
allow activity splitting at, 67
macro variable (PM), 309
timenow line, 464, 470
character for drawing, 472
color, 477
line style, 482
line width, 488
produced by COMBINE, 464, 526
produced by COMBINE, example (GANTT), 562
suppress label, 468
TIME-TIMENOW_ macro variable
%EVA_METRICS macro, 833
%EVA_TASK_METRICS macro, 835
TO variable
Layout data set (NETDRAW), 647
Network data set (NETDRAW), 631
top-down hierarchical diagram, 638
total float,
See float, total
total probability
DTREE procedure, 361
is not equal to 1, 361
tree diagrams
NETDRAW procedure, 616, 652, 705
TUE variable
Calendar data set (CPM), 100
turning points
Logic Gantt charts, 512, 514
type of lines,
See line style specification
TYPE variable
Stage data set (DTREE), 378

U
unassigned payoffs
warning in DTREE procedure, 364
uncertain factor
represented as chance stage, 343
uncertainty, decision tree model, 343, 387
unconditional probability
DTREE procedure, 344
unit of measure, global graphics options
DTREE procedure, 364
units of duration
CPM procedure, 53
units of vertical space
DTREE procedure, 364
graphics version (DTREE), 364
line-printer version, 364
Usage data set
CPM procedure, 50, 63, 124, 126, 186, 188
description, 124, 125
G PLOT example, 22
options, 76–84
rate of usage, 77, 85
resource usage and availability profile, 126
total usage, 77, 85
variables, 124–127
user interface features
PM Window, 289
utility, 387
utility curve, 361, 387
utility function
DTREE procedure, 350, 387
exponential, 350, 361, 387–389
straight-line, 363, 387
utility value, 387
UTILITY variables,
See VALUE variables
V
VAC, 816, 842, 845
VAC Percentage, 842
VAC%, 845
vacations,
 See holidays
 _VALU variables,
 See also _VALUE variables
Payoff data set (DTREE), 380
value of imperfect information,
 See value of sample information
value of perfect control, 352, 380
 evaluating, 344, 352, 427, 428
 misleading, 428
 oil wildcatter’s decision problem, 352
value of perfect information, 351, 352, 386, 426
 evaluating, 427
 oil wildcatter’s decision problem, 352
value of sample information, 354
 evaluating, 356
VALUE variables
 Payoff data set (DTREE), 380
variables
 format of (CPM), 136
 format of (GANTT), 490
 list of, CPM procedure, 133
 list of, DTREE procedure, 377
 list of, GANTT procedure, 491
 list of, NETDRAW procedure, 641, 642
 treatment of missing values (CPM), 135
 treatment of missing values (DTREE), 385
 treatment of missing values (GANTT), 491
 treatment of missing values (NETDRAW), 642
variances
 CV, 798, 800, 801, 816, 820, 822, 840, 844, 858, 875, 876
 SV, 798, 800, 801, 816, 820, 822, 840, 844, 858, 875, 876
 VAC, 816, 845
vertical space
 around margin (NETDRAW), 638, 682
 between activities (GANTT), 469, 525
 between nodes (NETDRAW), 632, 644, 671
 between two end nodes (DTREE), 364
 units (DTREE), 364
View pull-down menu, 291
W
warning
 suppress displaying (CPM), 64
 suppress displaying (DTREE), 364, 383
WBS, 13, 74, 75
WBS_CODE variable
 task data set (%EVA_TASK_METRICS), 846
WBS_CODE variable
 Schedule data set (CPM), 75
Web-enabled decision tree, 368, 379, 394
Web-enabled Gantt charts, 461, 488, 524
 graphics example (GANTT), 600
 Web-enabled network diagram, 626, 639, 658
WEB variable
 Imagemap data set (DTREE), 368
 Imagemap data set (GANTT), 461
 Network data set (NETDRAW), 639
 Schedule data set (GANTT), 488, 524, 600
 Stage data set (DTREE), 379, 394
 WEB variable
 Calendar data set (CPM), 100
weekends and non-worked days,
 See also break and shift information
displaying, 467, 496
 scheduling around, 53
width of lines,
 See line width specification
work breakdown structure, 13, 616, 803–805, 825, 834, 835, 840, 846, 848, 861
work pattern, 449,
 See also break and shift information
 See also weekends and non-worked days
work shifts,
 See break and shift information
WORK variable
 Activity data set (CPM), 86, 108
 WORK variable
 Resource Schedule data set (CPM), 128
 workday
 length of, 61, 90, 99, 100, 154, 464, 496
 start of, 61, 90, 99, 100, 154, 465, 496
Workday data set
 CPM procedure, 49, 64, 98, 99, 167
 GANTT procedure, 449, 460, 462, 495, 496
 missing values, 135
 shift variables, 99
 variables, 133
 work shift example (CPM), 99
 workshift information,
 See Workday data set
X
 _X variable
 Label data set (GANTT), 481, 519, 521, 524
 X variable
 Layout data set (NETDRAW), 647
 Network data set (NETDRAW), 641, 648
 XOFFSET variable
 Label data set (GANTT), 520, 522, 524
 _XSYS variable
 Label data set (GANTT), 521, 524
 _XVAR variable
 Label data set (GANTT), 481, 519, 521, 524, 592
Y
 _Y variable
 Label data set (GANTT), 480, 519–521, 524
 Y variable
Layout data set (NETDRAW), 647
Network data set (NETDRAW), 641, 648

_YOFFSET variable
 Label data set (GANTT), 520, 522, 524, 591

_YSYS variable
 Label data set (GANTT), 520, 524

Z
zero duration activities,
 See milestones
zone line
 color, 478
 line style, 482
 line width, 488
ZONE variable
 Network data set (NETDRAW), 632, 641, 648
 Schedule data set (GANTT), 488, 527, 599
zoned Gantt charts
 display ZONE variable only for new zones, 485
 graphics example (GANTT), 599
 line offset, 488
 line span, 489
 suppress ZONE variable column, 484
ZONE Variable, 488
zoned network diagrams, 616, 651, 690
Syntax Index

A
ABARHT= option
 CHART statement (GANTT), 474, 501
ABAROFF= option
 CHART statement (GANTT), 474
ACRONYMS= parameter
 %EVA_METRICS macro, 832
 %EVA_TASK_METRICS macro, 834
 %EVG_COST_PLOT macro, 836
 %EVG_SCHEDULE_PLOT macro, 837
ACT statement,
 See ACTIVITY statement
ACT= option,
 See ACTIVITY= option
ACTDELAY= option
 RESOURCE statement (CPM), 76, 117, 210
ACTION= option
 VARIABLES statement (DTREE), 380
ACTIVITY statement
 CPM procedure, 51, 65, 139
ACTIVITY= option
 ACTNET statement (NETDRAW), 626, 659
 CHART statement (GANTT), 453, 474, 512, 575
ACTIVITY= parameter
 %EVA_EARNED_VALUE macro, 829
 %EVA_TASK_METRICS macro, 833
AGGREGATE= parameter
 %EVA_TASK_METRICS macro, 834
AGGREGATEPARENTRES option
 PROJECT statement (CPM), 74
AGGREGATEPR option,
 See AGGREGATEPARENTRES option
ALAGCAL= option
 SUCCESSOR statement (CPM), 86, 178
ALIGN statement,
 See ALIGNTYPE statement
ALIGN= option
 ACTNET statement (NETDRAW), 627, 649, 684
ALIGNDATE statement
 RESOURCE statement (CPM), 76
B
BASE= option
 RESOURCE statement (CPM), 76
BASE= parameter
 %EVA_METRICS macro, 832
 %EVA_TASK_METRICS macro, 834
 %EVG_COST_PLOT macro, 836
 %EVG_SCHEDULE_PLOT macro, 837
BASEACT keyword
 CHART statement (GANTT), 474
BASEACT= option
 CHART statement (GANTT), 474
BASEACT= parameter
 %EVA_METRICS macro, 832
 %EVA_TASK_METRICS macro, 834
 %EVG_COST_PLOT macro, 836
 %EVG_SCHEDULE_PLOT macro, 837
BASE calendar= option
 CHART statement (GANTT), 493
RESOURCE statement (CPM), 76, 124
ALTBEFORESUP option
RESOURCE statement (CPM), 76, 223
ALTPRTY keyword
OBSTYPE variable (CPM), 82, 83, 110, 111, 120
ALTRATE keyword
OBSTYPE variable (CPM), 82, 83, 110, 111, 120
ANNO= option,
See ANNOTATE= option
ANNOTATE= option
ACTNET statement (NETDRAW), 633
CHART statement (GANTT), 474
PROC DTREE statement, 365, 420
PROC GANTT statement, 459, 586
PROC NETDRAW statement, 625, 710
TREEPLOT statement (DTREE), 377
AOA option
CHART statement (GANTT), 475, 512
APPEND option
RESOURCE statement (CPM), 77
APPENDINTXRATE option,
See APPEND option
APPENDRATEXINT option,
See APPEND option
APPENDUSAGE option,
See APPEND option
AROUTCAL= option
RESOURCE statement (CPM), 77, 125
ARROWHEAD= option
ACTNET statement (NETDRAW), 634
AS= option,
See A._START= option
A._START= option
ACTUAL statement (CPM), 66, 183
CHART statement (GANTT), 463, 557, 565
ATYPE statement,
See ALIGNTYPE statement
AUTOREF option
ACTNET statement (NETDRAW), 627, 684, 692
AUTOSCALE option
PROC DTREE statement, 361
AUTOPDT option
ACTUAL statement (CPM), 66, 106, 184
ACTUAL statement (PM), 287
AUTOZONE option
ACTNET statement (NETDRAW), 627
AUXRES keyword
OBSTYPE variable (CPM), 82, 83, 110, 111, 124
AVL option,
See AVPROFILE option
AVP option,
See AVPROFILE option
AVPROFILE option
RESOURCE statement (CPM), 77, 124, 205
AWAITDELAY option
RESOURCE statement (CPM), 77
B
BARHT= option
CHART statement (GANTT), 475, 478, 501
BAROFF= option
CHART statement (GANTT), 475, 478, 501
BASELINE keyword
PATLEVEL= option (GANTT), 485
BASELINE statement
CPM procedure, 69, 181
BBARHT= option
CHART statement (GANTT), 475
BBAROFF= option
CHART statement (GANTT), 475
BEFORE keyword
MOVE statement (DTREE), 374
BETWEEN= option
CHART statement (GANTT), 464, 533
BF= option,
See B._FINISH= option
B._FINISH= option
BASELINE statement (CPM), 69
CHART statement (GANTT), 463
BJUST option,
See BOTTOM option
BOTTOM option
CHART statement (GANTT), 475, 487
BOTTOMUP keyword
CHILDORDER= option (NETDRAW), 627
BOXHT= option
ACTNET statement (NETDRAW), 627, 644, 677
BOXWIDTH= option
ACTNET statement (NETDRAW), 627, 644, 671
BREAKCYCLE option
ACTNET statement (NETDRAW), 627, 697
BRKCHAR= option
ACTNET statement (NETDRAW), 632, 639
BS= option,
See B._START= option
B._START= option
BASELINE statement (CPM), 69
CHART statement (GANTT), 464
BUDGETCOST= parameter
%EVA_PLANNED_VALUE macro, 827
%EVA_TASK_METRICS macro, 833
BY statement
GANTT procedure, 462, 493, 511, 567, 571
C
CA= option,
See CAXIS= option
CACTTEXT= option,
See CTEXTCOLS= option
CALEDATA= option
PROC CPM statement, 60
PROC GANTT statement, 460, 464, 555
CALENDAR keyword
 OBSTYPE variable (CPM), 82, 110, 111
CALENDAR= option,
 See CALEDATA= option
CALENDAR= parameter
 %EVA..EARNED..VALUE macro, 830
 %EVA..PLANNED..VALUE macro, 827
 %EVA..TASK..METRICS macro, 834
CALID statement
 CPM procedure, 70, 170
 CHART statement (GANTT), 460, 464, 555
CARCS= option
 ACTNET statement (NETDRAW), 633, 634, 664, 665
CAXES= option,
 See CAXIS= option
CAXIS= option
 ACTNET statement (NETDRAW), 633, 634, 664, 665
 CHART statement (GANTT), 476, 542
CB= option,
 See CBEST= option
CBEST= option
 PROC DTREE statement, 365
 TREEPLOT statement (DTREE), 377
CC= option,
 See CSYMBOLC= option
CCNODEFILL= option
 ACTNET statement (NETDRAW), 634
CCRITARCS= option
 ACTNET statement (NETDRAW), 633, 634, 665
CCRITOUT= option
 ACTNET statement (NETDRAW), 634, 656, 665
CD= option,
 See CSYMBOLD= option
CC= option,
 See CSYMBOLC= option
CELL units
 YBETWEEN= option (DTREE), 364
CENTERID option
 ACTNET statement (NETDRAW), 634, 697
CENTERSUBTREE option
 ACTNET statement (NETDRAW), 627, 652, 708
CFR= option,
 See CFRAPE= option
CFRAPE= option
 CHART statement (GANTT), 476, 542, 549
CHANCE keyword
 TYPE variable (DTREE), 378
 CHART statement (GANTT), 462
 full-screen options, 470
general options, 462
 graphics options, 473
 line-printer options, 470
CHART= parameter
 %EVG..GANTT..CHART macro, 839
CHARTPCT= option,
 See CHARTWIDTH= option
CHARTWIDTH= option
 CHART statement (GANTT), 476
CHCON= option
 CHART statement (GANTT), 471, 476, 557
CHILDORDER= option
 ACTNET statement (NETDRAW), 627
CL= option,
 See CLINK= option
CLINK= option
 PROC DTREE statement, 365
 TREEPLOT statement (DTREE), 377
CM units
 YBETWEEN= option (DTREE), 364
CMILE= option
 CHART statement (GANTT), 465, 476, 542, 545
CNODEFILL= option
 ACTNET statement (NETDRAW), 634
COLLAPSE option
 PROC CPM statement, 60, 176, 449, 461
COLORS= option, GOPTIONS statement
 GANTT procedure, 476–478, 501
 NETDRAW procedure, 635
COMBINE option
 CHART statement (GANTT), 464, 511, 526, 562
COMPARE= option
 BASELINE statement (CPM), 69, 183
COMPRESS option
 ACTNET statement (NETDRAW), 634
 CHART statement (GANTT), 449, 476, 480, 488, 501, 527, 544, 549
 PROC DTREE statement, 365
 TREEPLOT statement (DTREE), 377, 416, 420, 435
COST= option,
 See REWARD= option
COST= parameter
 %EVA..EARNED..VALUE macro, 830
 %EVA..PLANNED..VALUE macro, 827
 %EVA..TASK..METRICS macro, 834
OUTLINE= option
 ACTNET statement (NETDRAW), 635, 656, 665
CP option,
 See COMPRESS option
CPATTERN= option, GOPTIONS statement
 GANTT procedure, 504
CPATTEXT= option,
 See CTENHCOLS= option
CPM procedure, 55
 ACTIVITY statement, 51, 65
 ACTUAL statement, 65, 181
 ALIGNDATE statement, 68, 180
 ALIGNTYPE statement, 68, 180
 BASELINE statement, 69, 181
CALID statement, 70, 170, 174
DURATION statement, 51, 71
HEADNODE statement, 51, 72
HOLIDAY statement, 72
ID statement, 73, 450
PROC CPM statement, 60
PROJECT statement, 73
RESOURCE statement, 75, 186
SUCCESSOR statement, 51, 86
TAILNODE statement, 51, 87

CPREC= option
CHART statement (GANTT), 476, 575, 584

CR keyword
DISPLAY= option (DTREE), 361
CREF= option
ACTNET statement (NETDRAW), 633, 635, 684
CHART statement (GANTT), 469, 477, 549
CREFBRK= option
ACTNET statement (NETDRAW), 633, 635, 685

CRITERION= option
EVALUATE statement (DTREE), 373
PROC DTREE statement, 361, 409, 420
RESET statement (DTREE), 401

CRITFLAG option
CHART statement (GANTT), 464, 527, 533

CSYMBOL= option, OPTIONS statement
GANTT procedure, 507

CSYMBOLC= option
PROC DTREE statement, 365
TREEPLOT statement (DTREE), 377

CSYMBOLD= option
PROC DTREE statement, 366
TREEPLOT statement (DTREE), 377

CSYMOLE= option
PROC DTREE statement, 366
TREEPLOT statement (DTREE), 377

CT= option,
See CTEXT= option

CTEXT= option
ACTNET statement (NETDRAW), 635
CHART statement (GANTT), 477, 501, 522, 542
PROC DTREE statement, 366
TREEPLOT statement (DTREE), 377

CTEXT= option, OPTIONS statement
GANTT procedure, 477, 501
NETDRAW procedure, 635

CTEXTCOLS= option
CHART statement (GANTT), 477

CTNOW= option
CHART statement (GANTT), 470, 477, 560, 562

CUMUSAGE option
RESOURCE statement (CPM), 77, 126, 198

CURRDATE= option,
See TIMENOW= option

CZLINE= option,
See CZONE= option

CZONE= option
CHART statement (GANTT), 478, 488, 599

D

DATA= option
PROC CPM statement, 60, 141
PROC GANTT statement, 460, 464
PROC NETDRAW statement, 625, 659

DATE statement,
See ALIGNDATE statement

DATE= option
PROC CPM statement, 60, 89, 141

DAY keyword
INTERVAL= option (CPM), 62
INTERVAL= option (GANTT), 467, 496
MININTERVAL= option (GANTT), 494
MININTERVAL= option (NETDRAW), 629
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

DAYLENGTH= option
CHART statement (GANTT), 464, 465, 496
PROC CPM statement, 61, 90, 153

DAYSTART= option
CHART statement (GANTT), 464, 465, 496
PROC CPM statement, 61, 153

DBMS= option
MSPTOSAS Macro Parameters, 336

DECISION keyword
TYPE variable (DTREE), 378

DEFID= parameter
%EVG_WBS_CHART macro, 841

DELAY= option
RESOURCE statement (CPM), 78, 117, 198

DELAYANALYSIS option
RESOURCE statement (CPM), 78, 96, 191

DELAYLST keyword
SCHEDRULE= option (CPM), 84, 116

DES= option,
See DESCRIPTION= option

DESC option,
See DESCENDING option

DESCENDING option
PROC CPM statement (CPM), 74

DESCRIPTION= option
ACTNET statement (NETDRAW), 635
CHART statement (GANTT), 478
PROC DTREE statement, 366
TREEPLOT statement (DTREE), 377

DISPLAY= option
PROC DTREE statement, 361
TREEPLOT statement (DTREE), 376

DISPLAY= option
MP2KTOPM Macro Parameters, 340

DOANNO option,
See DOANNOTATE option

DOANNOTATE option
PROC DTREE statement, 366
TREEPLOT statement (DTREE), 377
Syntax Index

DP option
ACTNET statement (NETDRAW), 628, 644, 679

DRAIN keyword
ERRHANDLE= option (DTREE), 362

DTDAY keyword
INTERVAL= option (CPM), 62
INTERVAL= option (GANTT), 467, 496
MININTERVAL= option (GANTT), 494
ROUTINTERVAL= option (CPM), 84

DTHOUR keyword
INTERVAL= option (CPM), 62
INTERVAL= option (GANTT), 467, 496
MININTERVAL= option (GANTT), 494
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

DTMINUTE keyword
INTERVAL= option (CPM), 62
INTERVAL= option (GANTT), 467, 496
MININTERVAL= option (GANTT), 494
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

DTMONTH keyword
INTERVAL= option (CPM), 90
INTERVAL= option (CPM), 62
MININTERVAL= option (GANTT), 494
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

DTQTR keyword
INTERVAL= option (CPM), 90
INTERVAL= option (CPM), 62
MININTERVAL= option (GANTT), 494
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

DTREE procedure, 357
EVALUATE statement, 373
MODIFY statement, 374
MOVE statement, 374
PROC DTREE statement, 361
QUIT statement, 375
RECALL statement, 375
RESET statement, 375
SAVE statement, 375
SUMMARY statement, 375
TREEPLOT statement, 376
VARIABLES statement, 377
VPC statement, 380
VPI statement, 381

DTSECOND keyword
INTERVAL= option (CPM), 62
INTERVAL= option (GANTT), 467, 496
MININTERVAL= option (GANTT), 494
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

DTWEEK keyword
INTERVAL= option (CPM), 90
INTERVAL= option (CPM), 62
MININTERVAL= option (GANTT), 494
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

DURATION= option
CPM procedure, 51, 71, 139
DURATION= option
ACTNET statement (NETDRAW), 628, 661
CHART statement (GANTT), 465, 491

DURATION= parameter
%EVA_EARNED_VALUE macro, 830
%EVA_PLANNED_VALUE macro, 827
%EVA_TASK_METRICS macro, 834
%EVG_GANTT_CHART macro, 839

E

EACFORM= parameter
%EVA_METRICS macro, 832

EARLY keyword
COMPARE= option (CPM), 69
PATLEVEL= option (GANTT), 485
SET= option (CPM), 70
UPDATE= option (CPM), 70

Earned Value Analysis macros
syntax, 826

EBARHT= option
CHART statement (GANTT), 478

EBAROFF= option
CHART statement (GANTT), 478

EF= option,
See E_FINISH= option

E_FINISH= option
CHART statement (GANTT), 466

END keyword
TYPE variable (DTREE), 378
ERRHANDLE= option
PROC DTREE statement, 362
ES= option,
See E_START= option

ESO option,
See ESORDER option

ESORDER option
PROJECT statement (CPM), 74

ESP option,
See ESPROF macro
ESPROFILE option
 RESOURCE statement (CPM), 78, 124
ESS option,
 See ESPROFILE option
E. START option
 RESOURCE statement (CPM), 78
E. START= option
 CHART statement (GANTT), 466
ESTIMATEPCTC option
 ACTUAL statement (CPM), 66
 ACTUAL statement (PM), 287
ESTPCTC option,
 See ESTIMATEPCTC option
ESTPCTCOMP option,
 See ESTIMATEPCTC option
ESTPROG option,
 See ESTIMATEPCTC option
EV keyword
 DISPLAY= option (DTREE), 361
EV= parameter
 %EVA.EARNED.VALUE macro, 830
 %EVA.METRICS macro, 832
EVA.EARNED.VALUE macro, 829, 843
EVA.METRICS macro, 832, 844
EVA.PLANNED.VALUE macro, 827, 843
EVA.TASK_METRICS macro, 833, 846
EVALUATE statement
 DTREE procedure, 373
EVENT= option
 VARIABLES statement (DTREE), 379, 400
EVG.COST.PLOT macro, 836, 847
EVG.GANTT.CHART macro, 839, 848
EVG.INDEX.PLOT macro, 838, 847
EVG.SCHEDULE.PLOT macro, 837, 847
EVG.VARIANCE.PLOT macro, 838, 848
EVG.WBS.CHART macro, 840, 848
EXCLUNSCHED option
 RESOURCE statement (CPM), 78
EXPAND option,
 See ADDACT option
F
FBDATE= option
 PROC CPM statement, 61, 89, 145
FEQ keyword
 ALIGNTYPE variable (CPM), 68
FF keyword
 LAG variable (CPM), 87
 LAG variable (GANTT), 481
 LAG variable (NETDRAW), 628
F FLOAT option
 RESOURCE statement (CPM), 79, 217
FGE keyword
 ALIGNTYPE variable (CPM), 68
FILL option
 CHART statement (GANTT), 466, 493, 496, 533
FILLMISSING option,
 See FILLUNSCHED option
FILLPAGES option
 ACTNET statement (NETDRAW), 635
FILLUNSCHED option
 RESOURCE statement (CPM), 79
FINISH= option
 DURATION statement (CPM), 71
FINISH= parameter
 %EVA.EARNED.VALUE macro, 830
 %EVA.PLANNED.VALUE macro, 827
 %EVA.TASK_METRICS macro, 834
 %EVE.GANTT.CHART macro, 839
FINISHBEFORE option
 PROC CPM statement, 61
FINPADD= option,
 See PADD= option
FIXSTART option
 ACTUAL statement (CPM), 66
FIXFINISH option
 PROC CPM statement, 61
FLAG keyword
 CTXTSCOL= option (GANTT), 477
FLAG option,
 See CRITFLAG option
FLE keyword
 ALIGNTYPE variable (CPM), 68
FMILE= option
 CHART statement (GANTT), 465, 478, 487, 542
FONT= option,
 DTREE, See FTEXT= option
 ACTNET statement (NETDRAW), 635, 664
 CHART statement (GANTT), 478, 501, 522, 539, 542, 545, 577
FORMCHAR= option
 ACTNET statement (NETDRAW), 633, 639
 CHART statement (GANTT), 470, 525
 PROC DTREE statement, 372
 TREEPLOT statement (DTREE), 377
FRAMCLIP keyword
 LABRULE= option (GANTT), 481
FRAME option
 ACTNET statement (NETDRAW), 628, 684, 687
FROM statement,
 See TAILNODE statement
FS keyword
 LAG variable (CPM), 87
 LAG variable (GANTT), 481
 LAG variable (NETDRAW), 628
FS option,
 See FULLSCREEN option
FTEXT= option
 PROC DTREE statement, 367
 TREEPLOT statement (DTREE), 377, 416, 435
FTEXT= option, OPTIONS statement
 GANTT procedure, 478, 501
 NETDRAW procedure, 635
FULLSCREEN option
 PROC GANTT statement, 448, 460, 496
PROC NETDRAW statement, 617, 625, 653

G

GANTT procedure, 454
- BY statement, 462, 511, 567, 571
- CHART statement, 462
- ID statement, 489, 511, 525, 526, 534, 563
- PROC GANTT statement, 459

GIVEN= option
- VARIABLES statement (DTREE), 379

GOPTIONS statement
- COLORS= option, 476–478, 501, 635
- CPATTERN= option, 504
- CSYMBOL= option, 507
- CTEXT= option, 477, 501, 635
- FTEXT= option, 478, 501, 635
- GUNIT= option, 501
- HPOS= option, 501, 525, 656, 664, 671
- HTEXT= option, 479, 501
- RESET= option, 504, 507
- VPOS= option, 479, 501, 656, 664, 671

GOUT= option
- PROC DTREE statement, 367
- PROC GANTT statement, 460
- PROC NETDRAW statement, 625
- TREEPLOT statement (DTREE), 377

GRAPHICS option
- PROC DTREE statement, 362, 416, 420
- PROC GANTT statement, 448, 460, 537
- PROC NETDRAW statement, 617, 625, 664
- TREEPLOT statement (DTREE), 376, 435

GUNIT= option, GOPTIONS statement
- GANTT procedure, 501

H

HBARHT= option
- CHART statement (GANTT), 478

HBAROFF= option
- CHART statement (GANTT), 478, 479

HBETWEEN= option, SeeXBETWEEN= option

HBY option, GOPTIONS statement
- GANTT procedure, 567

HCONCHAR= option
- CHART statement (GANTT), 471, 482, 525

HCONNECT option
- CHART statement (GANTT), 471, 482, 525

HDURATION= option, SeeHOLIDUR= option

HEAD statement, SeeHEADNODE statement

HEAD= option
- CHART statement (GANTT), 479, 511, 577

HEADNODE statement
- CPM procedure, 51, 72, 143
- HEADNODE= option, SeeHEAD= option

HEIGHT= option
- ACTNET statement (NETDRAW), 635
- CHART statement (GANTT), 479, 480, 501, 574

HEIGHT= parameter
- %EVG..GANTT..CHART macro, 840

HMARGIN= option
- ACTNET statement (NETDRAW), 636, 682, 695

HMILE= option
- CHART statement (GANTT), 465, 479

HOLICCHAR= option
- CHART statement (GANTT), 465, 471, 472, 525

HOLIDATA= option
- PROC CPM statement, 61, 157
- PROC GANTT statement, 460, 464, 539

HOLIDATA= parameter
- %EVA..EARNED..VALUE macro, 830
- %EVA..PLANNED..VALUE macro, 827
- %EVA..TASK..METRICS macro, 834

HOLIDAY statement
- CPM procedure, 72, 157
- HOLIDAY= option, CPM, SeeHOLIDATA= option
- CHART statement (GANTT), 460, 466, 539, 557

HOLIDAY= parameter
- %EVA..EARNED..VALUE macro, 830
- %EVA..PLANNED..VALUE macro, 827
- %EVA..TASK..METRICS macro, 834

HOLIDAYS statement, SeeHOLIDAY statement

HOLIDAYS= option, SeeHOLIDAY= option

HOLIDUR= option
- CHART statement (GANTT), 466, 550
- HOLIDAY statement (CPM), 73, 157

HOLIEND= option, SeeHOLIFIN= option

HOLIFIN= option
- CHART statement (GANTT), 466, 539, 557
- HOLIDAY statement (CPM), 73, 157

HOLINTERVAL= option, SeeINTERVAL= option

HOUR keyword
- INTERVAL= option (CPM), 62
- MININTERVAL= option (GANTT), 494
- MININTERVAL= option (NETDRAW), 629
- PADDING= option (GANTT), 468, 492
- ROUTINTERVAL= option (CPM), 84

HPAGES= option
- ACTNET statement (NETDRAW), 636
- CHART statement (GANTT), 476, 479, 486, 487, 501, 527, 539, 544

HPOS= option, GOPTIONS statement
- GANTT procedure, 501, 525
- NETDRAW procedure, 656, 664, 671

HS= option, SeeHSYMBOL= option
HSYMBOL= option
 PROC DTREE statement, 367
 TREEPLOT statement (DTREE), 377, 416, 435
HT= option,
 See HTEXT= option
HTEXT= option,
 NETDRAW, See HEIGHT= option
 PROC DTREE statement, 367
 TREEPLOT statement (DTREE), 377, 416
HTEXT= option, GOPTIONS statement
 GANTT procedure, 479, 501
HTML= option,
 See WEB= option
HTOFF= option
 CHART statement (GANTT), 479, 480, 501, 574
HTRACKS= option
 ACTNET statement (NETDRAW), 628, 644, 679

I
ID keyword
 CTEXTCOLS= option (GANTT), 477
ID statement
 CPM procedure, 73, 141, 450
 GANTT procedure, 489, 511, 525, 526, 534, 563
ID= option
 ACTNET statement (NETDRAW), 628, 644
ID= parameter
 %EVA_GANTT_CHART macro, 840
 %EVA_WBS_CHART macro, 841
IDPAGES option
 CHART statement (GANTT), 479, 480, 501, 574
IGNOREPARENTRES option
 PROJECT statement (CPM), 74
IGNOREPR option,
 See IGNOREPARENTRES option
IGNOREP_RES option,
 See IGNOREPARENTRES option
IMAGEMAP= option
 PROC DTREE statement, 368, 394
 PROC GANTT statement, 461, 524
 PROC NETDRAW statement, 626
 TREEPLOT statement (DTREE), 377
INCH units
 YBETWEEN= option (DTREE), 364
INCLUSCHED option
 RESOURCE statement (CPM), 79
INCREMENT= option
 CHART statement (GANTT), 467, 493, 534
INDEPALLOC option,
 See INDEPENDENTALLOC option
INDEPENDENTALLOC option
 RESOURCE statement (CPM), 79, 118
INFEASDIAG option,
 See INFEASDIAGNOSTIC option
INFEASDIAGNOSTIC option
 RESOURCE statement (CPM), 80, 117, 127, 203
INTERVAL= option
 CHART statement (GANTT), 460, 464, 465, 467, 495, 496, 550
 PROC CPM statement, 60–62, 90, 91, 150
INTERVAL= parameter
 %EVA_EARNED_VALUE macro, 830
 %EVA_PLANNED_VALUE macro, 828
 %EVA_TASK_METRICS macro, 835
INTPER= option
 PROC CPM statement, 62
INTUSAGE option,
 See TOTUSAGE option
INTXRATE option,
 See TOTUSAGE option

J
JOBNUM keyword
 CTEXTCOLS= option (GANTT), 477
JOINCHAR= option
 CHART statement (GANTT), 479, 525

L
L= option,
 See LSTYLE= option
LABDATA= option
 PROC GANTT statement, 461, 519, 523
LABEL option
 PROC DTREE statement, 362
 TREEPLOT statement (DTREE), 376
LABEL= option,
 See LABDATA= option
LABELDATA= option,
 See LABDATA= option
LABELSPLIT= option,
 See LABSPLIT= option
LABFMT= option,
 See LABRULE= option
LABMAXINT= option
 PROC GANTT statement, 461, 522
LABRULE= option
 CHART statement (GANTT), 481
LABSPLIT= option
 CHART statement (GANTT), 481, 591
LABVAR= option
 CHART statement (GANTT), 480, 519, 520, 591, 594
LAG= option
 ACTNET statement (NETDRAW), 628
 CHART statement (GANTT), 481, 512, 575, 584
 PROC GANTT statement, 512
 SUCCESSOR statement (CPM), 86, 91, 176
LATE keyword
 COMPARE= option (CPM), 69
 PATLEVEL= option (GANTT), 485
 SET= option (CPM), 70
 UPDATE= option (CPM), 70
LB= option,
 See LSTYLEB= option
LBARHT= option
 CHART statement (GANTT), 478
LBAROFF= option
 CHART statement (GANTT), 478
LC= option,
 See LSTYLEC= option
LEFT keyword
 ZONESPAN= option (GANTT), 489
LEFT option
 CHART statement (GANTT), 481, 487
LEFTRIGHT keyword
 CHILDORDER= option (NETDRAW), 627
LEGEND option
 PROC DTREE statement,
 TREEPLOT statement (DTREE), 377
LEVEL= option
 CHART statement (GANTT), 478, 481, 512, 575
LF= option,
 See L_FINISH= option
L_FINISH= option
 CHART statement (GANTT), 467, 565
LFT keyword
 SCHEDRULE= option (CPM), 84, 116
LG option,
 See LEGEND option
LHCON= option
 CHART statement (GANTT), 471, 482, 525, 557
LIBPATH=option
 MDBTOPM Macro Parameters, 339
 MP2KTOPM Macro Parameters, 340
LIBRARY=option
 MSPTOAS Macro Parameters, 336
LINEAR option
 ACTNET statement (NETDRAW), 629, 649, 687
LINEPRINTER option
 PROC DTREE statement, 362
 PROC GANTT statement, 448, 461
 PROC NETDRAW statement, 626
 TREEPLOT statement (DTREE), 376
LINESIZE system option, 493
LINK keyword
 DISPLAY= option (DTREE), 361
LINKA= option
 PROC DTREE statement, 368
 TREEPLOT statement (DTREE), 377, 420
LINKB= option
 PROC DTREE statement, 368
 TREEPLOT statement (DTREE), 377, 420
LINKC= option
 PROC DTREE statement, 368
 TREEPLOT statement (DTREE), 377
LJUST option,
 See LEFT option
LMI= option,
 See LABMAXINT= option
LOSS= option,
 See VALUE= option
LP option,
 See LINEPRINTER option
LPREC= option
 CHART statement (GANTT), 482, 575
LREF= option
 ACTNET statement (NETDRAW), 636, 684
 CHART statement (GANTT), 469, 482, 525, 549, 584
LREFBRK= option
 ACTNET statement (NETDRAW), 636, 685
LS= option,
 See LSTART= option
LSO option,
 See LSORDER option
LSORDER option
 PROJECT statement (CPM), 74
LSP option,
 See LSPROFILE option
LSPROFILE option
 RESOURCE statement (CPM), 80, 124
LSS option,
 See LSPROFILE option
LST keyword
 SCHEDRULE= option (CPM), 84, 116
LSTART= option
 RESOURCE statement (CPM), 80
LSTART option
 CHART statement (GANTT), 467, 565
LSTYLE= option
 PROC DTREE statement, 369
 TREEPLOT statement (DTREE), 377
LSTYLEB= option
 PROC DTREE statement, 369
 TREEPLOT statement (DTREE), 377, 416
LSTYLEC= option
 PROC DTREE statement, 369
 TREEPLOT statement (DTREE), 377, 416
LWIDTH= option
 PROC DTREE statement, 369
 TREEPLOT statement (DTREE), 377
LWIDTHB= option
 PROC DTREE statement, 369
 TREEPLOT statement (DTREE), 377
LWIDTHC= option
 PROC DTREE statement, 369
 TREEPLOT statement (DTREE), 377
LWCRIT= option
 Proc DTREE statement, 366
 TREEPLOT statement (DTREE), 377, 420
LTHICK= option,
 See LWIDTH= option
LTHICKB= option,
 See LWIDTHB= option
LTNOW= option
 CHART statement (GANTT), 470, 482, 525, 560, 562
LWCRIT= option
 ACTNET statement (NETDRAW), 636, 665
LWIDTH= option
 ACTNET statement (NETDRAW), 636, 664, 665
 CHART statement (GANTT), 469, 482
 Proc DTREE statement, 369
 TREEPLOT statement (DTREE), 377, 416, 435
LWIDTHB= option
 PROC DTREE statement, 370
 TREEPLOT statement (DTREE), 377, 416, 435
LWOUTLINE= option
 ACTNET statement (NETDRAW), 636
LZLINE= option,
See LZONE= option
LZONE= option
CHART statement (GANTT), 482, 488, 599

M
M= option,
See MAXDEC= option
MARKBREAK option
CHART statement (GANTT), 465, 467, 496, 552
MARKWKN option
CHART statement (GANTT), 467, 496
MAXCE option
CRITERION= option (DTREE), 361, 363
MAXDATE= option
CHART statement (GANTT), 468, 470, 484, 514, 549, 553, 555, 567, 579
RESOURCE statement (CPM), 80, 125, 187
MAXDEC= option
PROC GANTT statement, 461, 522
MAXDISLV= option
CHART statement (GANTT), 483, 512, 514, 516, 579, 581
MAXEMPTY= option,
See MAXNULLCOLUMN= option
MAXEV option
CRITERION= option (DTREE), 361
MAXIDS option
CHART statement (GANTT), 468, 489
MAXMLV option
CRITERION= option (DTREE), 361
MAXNCOL= option,
See MAXNULLCOLUMN= option
MAXNSEG= option,
See MAXSEGMENTS= option
MAXSEGMENT= option
RESOURCE statement (CPM), 80, 85, 118
MAXNULLCOLUMN= option
ACTNET statement (NETDRAW), 629, 650
MAXOBS= option
RESOURCE statement (CPM), 81
MAXOBS= parameter
%EVA_EARNED_VALUE macro, 830
%EVA_PLANNED_VALUE macro, 828
MAXPREC= option
EVALUATE statement (DTREE), 373
PROC DTREE statement, 362
SUMMARY statement (DTREE), 376
TREEPLOT statement (DTREE), 376
MAXWIDTH= option
EVALUATE statement (DTREE), 373
PROC DTREE statement, 362
SUMMARY statement (DTREE), 376
TREEPLOT statement (DTREE), 376
MAXZCOL= option,
See MAXNULLCOLUMN= option
MDBFILE= option
MSPTOSAS Macro Parameters, 336
MDBPATH= option
MDBTOPM Macro Parameters, 339
MP2KTOPM Macro Parameters, 340
MDBTOPM Macro Parameters
LIBPATH= option, 339
MDBPATH= option, 339
METRICS= parameter
%EVA_METRICS macro, 832
%EVA_COST_PLOT macro, 837
%EVA_INDEX_PLOT macro, 838
%EVA_SCHEDULE_PLOT macro, 837
%EVA_VARIANCE_PLOT macro, 839
MF keyword
ALIGNTYPE variable (CPM), 68
MILECHAR= option
CHART statement (GANTT), 465, 472, 525
MILESTONENORESOURCE
RESOURCE statement (CPM), 81
MILESTONERESOURCE
RESOURCE statement (CPM), 81
MINRATE keyword
OBSTYPE variable (CPM), 82, 110, 111, 121
MINCE keyword
CRITERION= option (DTREE), 361, 363
MINDATE= option
CHART statement (GANTT), 468, 470, 484, 514, 549, 553, 555, 567
RESOURCE statement (CPM), 81, 125
MINEV keyword
CRITERION= option (DTREE), 361
MININTERVAL= option
ACTNET statement (NETDRAW), 629, 649, 692
CHART statement (GANTT), 465, 468, 469, 493, 501, 534, 545, 552, 555
MININTGV= option
CHART statement (GANTT), 483, 512, 514, 516, 578, 580
MINMLV keyword
CRITERION= option (DTREE), 361
MINOFFFVG= option
CHART statement (GANTT), 483, 512, 514, 516, 578
MINOFFLV= option
CHART statement (GANTT), 484, 512, 514, 516, 579, 582
MINSEGD= option,
See MINSEGMENTDUR= option
MINSEGDURATION= option
RESOURCE statement (CPM), 81, 85, 118, 218
MINUTE keyword
INTERVAL= option (CPM), 62
MININTERVAL= option (GANTT), 494
MININTERVAL= option (NETDRAW), 629
PADDING= option (NETDRAW), 468, 492
ROUTINTERVAL= option (CPM), 84
MODIFY statement
DTREE procedure, 374, 423, 424, 427, 429
MONTH keyword
INTERVAL= option (CPM), 62
Syntax Index

MININTERVAL= option (GANTT), 494
MININTERVAL= option (NETDRAW), 629
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

MOVE statement
 DTREE procedure, 374, 425

MP2KTOPM Macro Parameters
 DISPLAY= option, 340
 LIBPATH= option, 340
 MDBPATH= option, 340

MS keyword
 ALIGNTYPE variable (CPM), 68

MSPTOSAS Macro Parameters
 DBMS= option, 336
 LIBRARY= option, 336
 MDBFILE= option, 336
 PORT= option, 336
 SERVER= option, 336
 VERSION= option, 336
 VIEWPM= option, 336

MULTALT keyword
 OBSTYPE variable (CPM), 82, 110, 111, 121

MULTALT option,
 See MULTIPLEALTERNATES option

MULTIPLEALTERNATES option
 RESOURCE statement (CPM), 81, 121

N

NACTS= option,
 GANTT, See NJOBS= option
 PROC CPM statement, 62

NADJ= option
 PROC CPM statement, 62

NAME= option,
 PM, See PROJECTNAME= option
 ACTNET statement (NETDRAW), 637
 CHART statement (GANTT), 484
 PROC DTREE statement, 370
 TREEPLOT statement (DTREE), 377

NETDRAW procedure, 621
 ACTNET statement, 626
 PROC NETDRAW statement, 625

NINCRS= option,
 See NTICKS= option

NJOBS= option
 CHART statement (GANTT), 484

NLAGCAL= option
 SUCCESSOR statement (CPM), 87

NLEVELSPERCOLUMN= option
 ACTNET statement (NETDRAW), 629, 650

NODES= option
 PROC CPM statement, 62

NOANNO option,
 See NOANNOTATE option

NOANNOTATE option
 PROC DTREE statement, 366
 TREEPLOT statement (DTREE), 377

NOARRHD option,
 See NOARROWHEAD option

NOARROWFILL option
 ACTNET statement (NETDRAW), 637, 695

NOARROWHEAD option
 CHART statement (GANTT), 484, 516

NOAUTOUPDT option
 ACTUAL statement (CPM), 66, 106, 183

NOBYLINE option, OPTIONS statement
 GANTT procedure, 567, 571

NOCOMPRESS option
 PROC DTREE statement, 365
 TREEPLOT statement (DTREE), 377

NOCOMPRESS option,
 See NOCOMPRESS option

NODEFID option
 ACTNET statement (NETDRAW), 629, 644, 671

NODETRACK option
 ACTNET statement (NETDRAW), 629

NODISPLAY option
 PROC NETDRAW statement, 626
 PROC PM statement, 285

NOE_START option
 RESOURCE statement (CPM), 81

NOEXTRANGE option
 CHART statement (GANTT), 468, 484, 514

NO_FLOAT option
 RESOURCE statement (CPM), 81

NOFR option,
 See NOFRAME option

NOFRAME option
 CHART statement (GANTT), 476, 484, 525

NOJOBNUM option
 CHART statement (GANTT), 468, 533

NOLABEL option
 ACTNET statement (NETDRAW), 629, 644, 671
 CHART statement (GANTT), 527
 PROC DTREE statement, 362
 TREEPLOT statement (DTREE), 376

NOLEGEND option
 CHART statement (GANTT), 468, 496, 525, 533
 PROC DTREE statement, 368, 420
 TREEPLOT statement (DTREE), 377, 435

NOLG option,
 See NOLEGEND option

NLOPTIONS option
 RESOURCE statement (CPM), 82

NONDP option
 ACTNET statement (NETDRAW), 630

NONE keyword
 PADDING= option (GANTT), 468, 492
 ZONESPAN= option (GANTT), 489

NONODETRACK option
 ACTNET statement (NETDRAW), 630

NONUMBER option,
 NETDRAW, See NOPAGENUMBER option

NOPAGENUM option
 CHART statement (GANTT), 484
<table>
<thead>
<tr>
<th>Syntax Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROC DTREE statement, 370</td>
</tr>
<tr>
<td>TREEPLOT statement (DTREE), 377</td>
</tr>
<tr>
<td>NOPAGENUMBER option, DTREE, See NOPAGENUM option</td>
</tr>
<tr>
<td>ACTNET statement (NETDRAW), 637</td>
</tr>
<tr>
<td>NOPATBAR option</td>
</tr>
<tr>
<td>CHART statement (GANTT), 484</td>
</tr>
<tr>
<td>NORC option</td>
</tr>
<tr>
<td>PROC DTREE statement, 370</td>
</tr>
<tr>
<td>TREEPLOT statement (DTREE), 377</td>
</tr>
<tr>
<td>NOREPEATAXIS option</td>
</tr>
<tr>
<td>ACTNET statement (NETDRAW), 630</td>
</tr>
<tr>
<td>NOSOURCEVARS option</td>
</tr>
<tr>
<td>RESOURCE statement (CPM), 82</td>
</tr>
<tr>
<td>NORESVARS option, See NOSOURCEVARS option</td>
</tr>
<tr>
<td>NORESVARSOUT option, See NOSOURCEVARS option</td>
</tr>
<tr>
<td>NOSCALE option</td>
</tr>
<tr>
<td>PROC DTREE statement, 361</td>
</tr>
<tr>
<td>NOSUMMARY option</td>
</tr>
<tr>
<td>EVALUATE statement (DTREE), 373</td>
</tr>
<tr>
<td>PROC DTREE statement, 363</td>
</tr>
<tr>
<td>NOT_FLOAT option</td>
</tr>
<tr>
<td>RESOURCE statement (CPM), 82</td>
</tr>
<tr>
<td>NOTIMEAXIS option</td>
</tr>
<tr>
<td>ACTNET statement (NETDRAW), 630</td>
</tr>
<tr>
<td>NOTTIME option</td>
</tr>
<tr>
<td>CHART statement (GANTT), 484</td>
</tr>
<tr>
<td>NOTNLABEL option</td>
</tr>
<tr>
<td>CHART statement (GANTT), 468, 560</td>
</tr>
<tr>
<td>NOUTIL option</td>
</tr>
<tr>
<td>PROC CPM statement, 62</td>
</tr>
<tr>
<td>NOVCENTER option</td>
</tr>
<tr>
<td>ACTNET statement (NETDRAW), 637, 645, 682</td>
</tr>
<tr>
<td>NOWARNING option</td>
</tr>
<tr>
<td>PROC DTREE statement, 364</td>
</tr>
<tr>
<td>NOXTRNG option, See NOEXTRANGE option</td>
</tr>
<tr>
<td>NOZONECOL option</td>
</tr>
<tr>
<td>CHART statement (GANTT), 484, 488, 527</td>
</tr>
<tr>
<td>NOZONEDESCR option, See NOZONELABEL option</td>
</tr>
<tr>
<td>NOZONELABEL option</td>
</tr>
<tr>
<td>ACTNET statement (NETDRAW), 630</td>
</tr>
<tr>
<td>NPERCOL= option, See NLEVELSPERCOLUMN= option</td>
</tr>
<tr>
<td>NRESREQ= option</td>
</tr>
<tr>
<td>PROC CPM statement, 63</td>
</tr>
<tr>
<td>NROUTCAL= option</td>
</tr>
<tr>
<td>RESOURCE statement (CPM), 82, 125</td>
</tr>
<tr>
<td>NROUTCAL= parameter</td>
</tr>
<tr>
<td>%EVA_EARNED_VALUE macro, 830</td>
</tr>
<tr>
<td>%EVA_PLANNED_VALUE macro, 828</td>
</tr>
<tr>
<td>NTICKS= option</td>
</tr>
<tr>
<td>CHART statement (GANTT), 485</td>
</tr>
<tr>
<td>NWIDTH= option</td>
</tr>
<tr>
<td>EVALUATE statement (DTREE), 373</td>
</tr>
<tr>
<td>PROC DTREE statement, 363</td>
</tr>
<tr>
<td>SUMMARY statement (DTREE), 376</td>
</tr>
<tr>
<td>TREEPLOT statement (DTREE), 376</td>
</tr>
<tr>
<td>NXNODES= option</td>
</tr>
<tr>
<td>ACTNET statement (NETDRAW), 637</td>
</tr>
<tr>
<td>NXPAGES= option, See HPAGES= option</td>
</tr>
<tr>
<td>NYPAGES= option</td>
</tr>
<tr>
<td>ACTNET statement (NETDRAW), 637</td>
</tr>
<tr>
<td>NYPAGES= option, See VPAGES= option</td>
</tr>
</tbody>
</table>

O

| OBSTYPE= option |
| RESOURCE statement (CPM), 82, 191 |
| ODS HTML statement, 600 |
| ANCHOR= option, 602 |
| CLOSE option, 603 |
| FILE= option, 601 |
| ONEZONEVAL option |
| CHART statement (GANTT), 485 |
| ORDERALL option |
| PROJECT statement (CPM), 74 |
| OUT= option |
| PROC CPM statement, 63, 143 |
| PROC NETDRAW statement, 626 |
| OUTCOME= option |
| VARIABLES statement (DTREE), 378, 400 |
| OVLAPCH= option |
| CHART statement (GANTT), 472 |
| OVERRIDEDUR option |
| DURATION statement (CPM), 72 |
| OVLPCCHAR= option, See OVLAPCH= option |
| OVPCHAR= option |
| CHART statement (GANTT), 472 |

P

| P keyword |
| DISPLAY= option (DTREE), 361 |
| PADDING= option |
| CHART statement (GANTT), 468, 491, 492, 542 |
| PAGECLIP keyword |
| LABRULE= option (GANTT), 481 |
| PAGELIMIT= option |
| CHART statement (GANTT), 469 |
| PAGENUM option, NETDRAW, See PAGENUMBER option |
| CHART statement (GANTT), 485 |
| PROC DTREE statement, 370 |
| TREEPLOT statement (DTREE), 377 |
| PAGENUMBER option, DTREE, See PAGENUM option |
| ACTNET statement (NETDRAW), 637 |
| PAGES= option, GANTT, See PAGELIMIT= option |
| ACTNET statement (NETDRAW), 630 |
| PAGESIZE system option, 493 |
PARENT statement,
 See PROJECT statement
PATLEVEL= option
 CHART statement (GANTT), 477, 485, 486, 502
PATTERN statement, 467, 503, 525, 537
 options, 504
 syntax, 503
PATTERN= option
 ACTNET statement (NETDRAW), 633, 637, 651, 653, 656, 680
 CHART statement (GANTT), 485, 502, 503
PATVAR= option,
 See PATTERN= option
PAYOFFS= option,
 VARIABLES statement (DTREE), See VALUE= option
PROC DTREE statement, 363
PCOMP= option,
 See PCTCOMP= option
PCTCOMP= parameter
 %EVG_TASK_METRICS macro, 835
PCTCOMPLETE= option,
 See PCTCOMP= option
PER= option,
 See PERIOD= option
PERIOD= option
 RESOURCE statement (CPM), 82, 191
PLANCOSt= parameter
 %EVA_PLANNED_VALUE macro, 827
 %EVA_TASK_METRICS macro, 833
PLANSCHED= parameter
 %EVA_PLANNED_VALUE macro, 827
 %EVA_TASK_METRICS macro, 833
 %EVG_GANTT_CHART macro, 839
PLOT= parameter
 %EVG_COST_PLOT macro, 837
 %EVG_INDEX_PLOT macro, 838
 %EVG_SCHEDULE_PLOT macro, 837
 %EVG_VARIANCE_PLOT macro, 839
PM procedure
 PROC PM statement, 285
PORT= option
 MSPTOSAS Macro Parameters, 336
PRECDATA= option
 PROC GANTT statement, 450, 461, 474, 481, 487, 491, 583
PROB= option
 VARIABLES statement (DTREE), 379, 400
PROBIN= option
 PROC DTREE statement, 363
PROC CPM statement,
 See also CPM procedure statement options, 60
PROC DTREE statement,
 See also DTREE procedure general options, 361–364
graphics options, 365–372
 line-printer options, 372
PROC GANTT statement,
 See also GANTT procedure statement options, 459
PROC NETDRAW statement,
 See also NETDRAW procedure statement options, 625
PROC PM statement,
 See also PM procedure statement options, 285
PROJdict= option
 Projman, 725
PROJECT= option
 CPM procedure, 73
PROJECT= option
 PROC PM statement, 286
PROJECT= parameter
 %EVG_WBS_CHART macro, 841
PROJECTNAME= option
 PROC PM statement, 286
PROJECTSUMMARY= option,
 See SUMMARYNAME= option
Projman
 PROJdict= option, 725
 project name option, 726
 projman command, 725
PROJMAN Application, 725
PROJNAME= option,
 See PROJECTNAME= option
PV= parameter
 %EVA_METRICS macro, 832
 %EVA_PLANNED_VALUE macro, 828
Q
QTR keyword
 INTERVAL= option (CPM), 62
 MININTERVAL= option (GANTT), 494
 MININTERVAL= option (NETDRAW), 629
 PADDING= option (GANTT), 468, 492
 ROUTINTERVAL= option (CPM), 84
QUIT keyword
 ERRHANDLE= option (DTREE), 362
QUIT statement
 DTREE procedure, 375
QUITMISSINGALIGN option
 ACTNET statement (NETDRAW), 630
R
R keyword
 DISPLAY= option (DTREE), 361
 RATE= parameter
 %EVA_EARNED_VALUE macro, 831
%EVA_D PLANNED_VALUE macro, 828
%EVA_TASK_METRICS macro, 835
RATEXINT option,
 See TOTUSAGE option
RBARHT= option
 CHART statement (GANTT), 486
RBAROFF= option
 CHART statement (GANTT), 486
RC option
 PROC DTREE statement, 370
 TREEPLOT statement (DTREE), 377
RCI option,
 See RESCALINTERSECT option
RCP option,
 See RCPROFILE option
RCPROFILE option
 RESOURCE statement (CPM), 82, 124, 205
RCs option,
 See RCPROFILE option
RDUR= option,
 See REMDUR= option
RDURATION= option,
 See REMDUR= option
RECALL statement
 DTREE procedure, 375, 425, 429
RECTILINEAR option
 ACTNET statement (NETDRAW), 638, 706
REF= option
 CHART statement (GANTT), 469, 472, 534, 549, 584
REFBREAK option
 ACTNET statement (NETDRAW), 630, 685
REFCHAR= option
 ACTNET statement (NETDRAW), 633, 640
 CHART statement (GANTT), 469, 472, 482, 525
REFLABEL option
 CHART statement (GANTT), 469, 549
REMDUR= option
 ACTURAL statement (CPM), 67, 183
RES statement,
 See RESOURCE statement
RESCALINT option,
 See RESCALINTERSECT option
RESCALINTERSECT option
 RESOURCE statement (CPM), 83
RESET statement
 DTREE procedure, 375, 401
RESET= option, GOPTIONS statement
 GANTT procedure, 504, 507
RESID= option
 RESOURCE statement (CPM), 83, 222
RESIN= option,
 See RESOURCEIN= option
RESLEVEL keyword
 OBSTYPE variable (CPM), 82, 110
RESLEVEL= option,
 See RESOURCEIN= option
RESOURCE keyword
 COMPARE= option (CPM), 69
 PATLEVEL= option (GANTT), 485
 SET= option (CPM), 70
 UPDATE= option (CPM), 70
RESOURCE statement
 CPM procedure, 75, 186
RESOURCEIN= option
 PROC CPM statement, 63, 191
RESOURCEOUT= option
 PROC CPM statement, 63, 186
RESOURCESCHED= option
 PROC CPM statement, 64
RESOURCEVARS option
 RESOURCE statement (CPM), 83
RESOUT= option,
 See RESOURCEOUT= option
RESPRTY keyword
 OBSTYPE variable (CPM), 82, 110
 SCHEDRULE= option (CPM), 84, 116
RESRCURD keyword
 OBSTYPE variable (CPM), 82, 110, 111
RESSCHED= option,
 See RESOURCESCHED= option
RESTRICTSEARCH option
 ACTNET statement (NETDRAW), 630
RESTYPE keyword
 OBSTYPE variable (CPM), 82, 110
RESUSAGE keyword
 OBSTYPE variable (CPM), 82, 110
 RESUSAGE= option,
 See RESOURCEOUT= option
RESVARSOUT option,
 See RESOURCEVARS option
VERSEY option
 ACNET statement (NETDRAW), 638
VERSEY= parameter
 %EVG_WBS_CHART macro, 841
REVISECOST= parameter
 %EVA_EARNED_VALUE macro, 829
 %EVA_TASK_METRICS macro, 833
REVISESCHED= parameter
 %EVA_EARNED_VALUE macro, 829
 %EVA_TASK_METRICS macro, 834
 %EVG_GANTT_CHART macro, 839
REWARD keyword
 MODIFY statement (DTREE), 374
REWARD= option
 VARIABLES statement (DTREE), 378, 400
RGHTLEFT keyword
 CHILORDER= option (NETDRAW), 627
RIGHT keyword
 ZONESPAN= option (GANTT), 489
RIGHT option
 CHART statement (GANTT), 481, 487
RIN= option,
 See RESOURCEIN= option
RJUST option,
 See RIGHT option
ROTATE option
ACTNET statement (NETDRAW), 638, 652, 716, 718

ROTATE= parameter

%EVG_WBS_CHART macro, 841

ROTATETEXT option
ACTNET statement (NETDRAW), 638, 649, 652, 716, 718

ROTATETEXT= parameter
%EVG_WBS_CHART macro, 841

ROUT= option,
See RESOURCEOUT= option
ROUTCONT option,
See ROUTNOBREAK option
ROUTINTERVAL= option
RESOURCE statement (CPM), 83, 124, 125

ROUTINTERVAL= parameter
%EVA_EARNED_VALUE macro, 831
%EVA_PLANNED_VALUE macro, 828
ROUTINTERVAL= option
RESOURCE statement (CPM), 84, 125, 126
ROUTNOBREAK option
RESOURCE statement (CPM), 84, 125, 198

RSCHDORDER option,
See RSCHEDORDER option
RSCHDWSBS option,
See RSCHEDWSB option
RSCHED= option,
See RESOURCESCHED= option
RSCHEDID= option
RESOURCE statement (CPM), 84
RSCHEDORDER option
PROJECT statement (CPM), 74
RSCHEDULE= option,
See RESOURCESCHED= option
RSCHEDWSBS option
PROJECT statement (CPM), 74
RSEARCH option,
See RESTRICTSEARCH option
RSID= option,
See RSCHEDID= option
RSORDER option,
See RSCHEDORDER option
RSWBS option,
See RSCHEDWSB option
RT= option
EVALUATE statement (DTREE), 373
PROC DTREE statement, 363, 409, 420
RESET statement (DTREE), 401
RTEXT option,
See ROTATETEXT option
RULE2= option,
See SCHEDRULE2= option
RULE= option,
See SCHEDRULE= option

S

S= option,
PROC GANTT statement, See SPLIT= option
CHART statement (GANTT), 469, 565

SAVE statement
DTREE procedure, 375, 425, 429

SBARHT= option,
See RBARHT= option
SBAROFF= option,
See RBAROFF= option
SCALE= option
CHART statement (GANTT), 465, 468, 469, 496, 501, 525, 545, 555
SCALE= parameter
%EVG_GANTT_CHART macro, 840

SCHEDRULE2= option
RESOURCES statement (CPM), 85, 116
SCHEDRULE= option
RESOURCES statement (CPM), 84, 116, 191
SECOND keyword
INTERVAL= option (CPM), 62
MININTERVAL= option (GANTT), 494
MININTERVAL= option (NETDRAW), 629
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

SEPARATEARCS option
ACTNET statement (NETDRAW), 638, 645, 665

SEPARATESONS option
ACTNET statement (NETDRAW), 631, 652, 708

SEPCRIT option
PROJECT statement (CPM), 74
SEQ keyword
ALIGNTYPE variable (CPM), 68
SERVER=option
MSPTOSAS Macro Parameters, 336
SET= option
BASELINE statement (CPM), 70, 181

SETFINISHMILESTONE option
PROC CPM statement, 64
SF keyword
LAG variable (CPM), 87
LAG variable (GANTT), 481
LAG variable (NETDRAW), 628
SF= option,
See S_FINISH= option
S_FINISH= option
CHART statement (GANTT), 469, 565

SGE keyword
ALIGNTYPE variable (CPM), 68
SHORTDUR keyword
SCHEDRULE= option (CPM), 84, 117
SHOWBREAK option
ACTNET statement (NETDRAW), 631, 684
SHOWFLOAT option
ACTUAL statement (CPM), 67, 107, 185
ACTUAL statement (PM), 287
SHOWPREC option
CHART statement (GANTT), 487
SHOWSTATUS option
ACTNET statement (NETDRAW), 631, 645, 680
940 • Syntax Index

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKIP= option</td>
<td>CHART statement (GANTT), 469, 479, 525, 533</td>
</tr>
<tr>
<td>SLE keyword</td>
<td>ALIGNTYPE variable (CPM), 68</td>
</tr>
<tr>
<td>SLIPINF option</td>
<td>See DELAYANALYSIS option</td>
</tr>
<tr>
<td>SPACE units</td>
<td>YBETWEEN= option (DTREE), 364</td>
</tr>
<tr>
<td>SPANNINGTREE option</td>
<td>ACTNET statement (NETDRAW), 631</td>
</tr>
<tr>
<td>SPCT= parameter</td>
<td>%EVA_EVALUED_VALUE macro, 831</td>
</tr>
<tr>
<td></td>
<td>%EVA_PLANNED_VALUE macro, 828</td>
</tr>
<tr>
<td></td>
<td>%EVA_TASK_METRICS macro, 835</td>
</tr>
<tr>
<td>SPLIT= option</td>
<td>PROC GANTT statement, 462, 567</td>
</tr>
<tr>
<td>SPLITFLAG option</td>
<td>RESOURCE statement (CPM), 85</td>
</tr>
<tr>
<td>SS keyword</td>
<td>LAG variable (CPM), 87</td>
</tr>
<tr>
<td></td>
<td>LAG variable (GANTT), 481</td>
</tr>
<tr>
<td></td>
<td>LAG variable (NETDRAW), 628</td>
</tr>
<tr>
<td>SS= option</td>
<td>See S_START= option</td>
</tr>
<tr>
<td>SSO option</td>
<td>See SSORDER option</td>
</tr>
<tr>
<td>SSORDER option</td>
<td>PROJECT statement (CPM), 75</td>
</tr>
<tr>
<td>S_START= option</td>
<td>CHART statement (GANTT), 469, 565</td>
</tr>
<tr>
<td>STAGE keyword</td>
<td>DISPLAY= option (DTREE), 361</td>
</tr>
<tr>
<td>STAGE= option</td>
<td>VARIABLES statement (DTREE), 378, 400</td>
</tr>
<tr>
<td>STAGEIN= option</td>
<td>PROC DTREE statement, 363</td>
</tr>
<tr>
<td>START= option</td>
<td>DURATION statement (CPM), 71</td>
</tr>
<tr>
<td>START= parameter</td>
<td>%EVA_EVALUED_VALUE macro, 829</td>
</tr>
<tr>
<td></td>
<td>%EVA_PLANNED_VALUE macro, 827</td>
</tr>
<tr>
<td></td>
<td>%EVA_TASK_METRICS macro, 834</td>
</tr>
<tr>
<td></td>
<td>%EVG_GANTT_CHART macro, 839</td>
</tr>
<tr>
<td>STATE= option</td>
<td>VARIABLES statement (DTREE), 380, 400</td>
</tr>
<tr>
<td>STEP= option</td>
<td>See ROUTINTPER= option</td>
</tr>
<tr>
<td>STEPINT= option</td>
<td>See ROUTINTERVAL= option</td>
</tr>
<tr>
<td>STEPSIZE= option</td>
<td>See ROUTINTPER= option</td>
</tr>
<tr>
<td>STOPDATE= option</td>
<td>RESOURCE statement (CPM), 85, 230</td>
</tr>
<tr>
<td>STRIPID option</td>
<td>See STRIPIDBLANKS option</td>
</tr>
<tr>
<td>STRIPIDBLANKS option</td>
<td>CHART statement (GANTT), 470</td>
</tr>
<tr>
<td>STRUCTURE= parameter</td>
<td>%EVG_WBS_CHART macro, 841</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAIL= option</td>
<td>CHART statement (GANTT), 487, 511, 577</td>
</tr>
<tr>
<td>TAILNODE statement</td>
<td>CPM procedure, 51, 87, 143</td>
</tr>
</tbody>
</table>
TAILNODE= option,
 See TAIL= option
TARGET= option
 EVALUATE statement (DTREE), 373, 429
 PROC DTREE statement, 363, 423
 SUMMARY statement (DTREE), 376, 400, 409, 423
TASKMETRICS= parameter
 %EVA_TASK_METRICS macro, 835
 %EVA_GANTT_CHART macro, 840
TASKPV= parameter
 %EVA_EARNED_VALUE macro, 831
 %EVA_PLANNED_VALUE macro, 828
T_FLOAT option
 RESOURCE statement (CPM), 85, 217
TIMENOW= option
 ACTUAL statement (CPM), 67, 183
 CHART statement (GANTT), 464, 470, 560, 562
TIMENOW= parameter
 %EVA_METRICS macro, 833
 %EVA_TASK_METRICS macro, 835
 %EVA_GANTT_CHART macro, 840
TIMENOWSPLIT option
 ACTUAL statement (CPM), 67, 107
TIMESCALE option
 ACTNET statement (NETDRAW), 631, 649, 682
TJUST option,
 See TOP option
TNCHAR= option
 CHART statement (GANTT), 470, 472, 525
TO statement,
 See HEADNODE statement
TOLERANCE= option
 PROC DTREE statement, 363
TOP option
 CHART statement (GANTT), 487
TOPDOWN keyword
 CHILDORDER= option (NETDRAW), 627
TOTUSAGE option
 RESOURCE statement (CPM), 85
TREE option
 ACTNET statement (NETDRAW), 632, 652, 706
TREEAYOUT option,
 See TREE option
TREEPLOT statement
 DTREE procedure, 376, 377, 416, 420, 435
TYPE keyword
 MODIFY statement (DTREE), 374
TYPE= option
 VARIABLES statement (DTREE), 378, 400

U
UNSCHEDMISS option
 RESOURCE statement (CPM), 85
UPDATE= option
 BASELINE statement (CPM), 70
UPDTUNSCHED option
 RESOURCE statement (CPM), 85
USEFORMAT option
 ACTNET statement (NETDRAW), 632, 710
 CHART statement (GANTT), 470
USEPRODUR option
 PROJECT statement (CPM), 75
USEPRODURSPEC option,
 See USEPRODUR option
USESPECDUR option,
 See USEPRODUR option
UTILITY= option,
 See VALUE= option

V
VALUE= option
 VARIABLES statement (DTREE), 380, 400
VARIABLES statement
 DTREE procedure, 377–380, 400
VBETWEEN= option,
 See YBETWEEN= option
VC= option,
 See VS_SYMBOLC= option
VD= option,
 See VS_SYMBOLD= option
VE= option,
 See VS_SYMBOLE= option
VERSION= option
 MSPTOSAS Macro Parameters, 336
VIEWPM= option
 MSPTOSAS Macro Parameters, 336
VMARGIN= option
 ACTNET statement (NETDRAW), 638, 682
VMILE= option
 CHART statement (GANTT), 465, 478, 487, 525, 542
VPAGES= option
 ACTNET statement (NETDRAW), 638
 CHART statement (GANTT), 476, 479, 484, 486, 487, 501, 527, 544
VPAGES= parameter
 %EVA_WBS_CHART macro, 841
VPC statement
 DTREE procedure, 380, 428
VPI statement
 DTREE procedure, 381, 426
VPOS= option, GOPTIONS statement
 GANTT procedure, 479, 501
 NETDRAW procedure, 656, 664, 671
VS_SYMBOLC= option
 PROC DTREE statement, 371
 TREEPLOT statement (DTREE), 377
VS_SYMBOLD= option
 PROC DTREE statement, 371
 TREEPLOT statement (DTREE), 377
VS_SYMBOLE= option
 PROC DTREE statement, 372
 TREEPLOT statement (DTREE), 377
VTRACKS= option
ACTNET statement (NETDRAW), 632, 644

W
WARNING option
PROC DTREE statement, 364
WBS option,
See WBSCODE option
WBS CODE option
PROJECT statement (CPM), 75
WBSCODE= parameter
%EVA_TASK_METRICS macro, 835
WEB= option
ACTNET statement (NETDRAW), 639
CHART statement (GANTT), 488, 524, 601
VARIABLES statement (DTREE), 379, 394

WEEK keyword
INTERVAL= option (CPM), 62
MININTERVAL= option (GANTT), 494
MININTERVAL= option (NETDRAW), 629
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

WEEKDAY keyword
INTERVAL= option (CPM), 62
INTERVAL= option (GANTT), 467, 496
ROUTINTERVAL= option (CPM), 84
WORK= option
RESOURCE statement (CPM), 86
WORKDATA= option
PROC CPM statement, 64, 167
PROC GANTT statement, 462, 555

WORKDAY keyword
INTERVAL= option (CPM), 62, 90
INTERVAL= option (GANTT), 467, 496
ROUTINTERVAL= option (CPM), 84
WORKDAY= option,
See WORKDATA= option
WORKDAY= parameter
%EVA_EARNED_VALUE macro, 831
%EVA_PLANNED_VALUE macro, 828
%EVA_TASK_METRICS macro, 835
WPREC= option
CHART statement (GANTT), 488, 575, 584

WTNOW= option
CHART statement (GANTT), 470, 488, 525, 560, 562
WZLINE= option,
See WZONE= option
WZONE= option
CHART statement (GANTT), 488, 599

X
XBE TWEEN= option
ACTNET statement (NETDRAW), 632, 644, 677
XFERVARS option
PROC CPM statement, 65, 180, 450
PROC PM statement, 286

Y
YBETWEEN= option
ACTNET statement (NETDRAW), 632, 644, 671
PROC DTREE statement, 364
TREEPLOT statement (DTREE), 376, 416, 435

YEAR keyword
INTERVAL= option (CPM), 62
MININTERVAL= option (GANTT), 494
MININTERVAL= option (NETDRAW), 629
PADDING= option (GANTT), 468, 492
ROUTINTERVAL= option (CPM), 84

Z
ZONE keyword
CTEXTCOLS= option (GANTT), 477
ZONE= option
ACTNET statement (NETDRAW), 632, 651, 691
CHART statement (GANTT), 488, 527
ZONEDESCR option,
See ZONELABEL option
ZONELABEL option
ACTNET statement (NETDRAW), 632
ZONENEV ADD option,
See ZONESPACE option
ZONELINE= option,
See ZONESPACE option
ZONEOFFSET= option,
See ZONEOFF= option
ZONEPAT option
ACTNET statement (NETDRAW), 633, 639, 651, 691
ZONESPACE option
ACTNET statement (NETDRAW), 632, 692
ZONESPACE option
ACTNET statement (NETDRAW), 488, 489, 599
ZONEVAR= option,
See ZONE= option
Your Turn

If you have comments or suggestions about *SAS/OR 9.1.3 User’s Guide: Project Management 2.1*, please send them to us on a photocopy of this page or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com
SAS Publishing gives you the tools to flourish in any environment with SAS®!

Whether you are new to the workforce or an experienced professional, you need a way to distinguish yourself in this rapidly changing and competitive job market. SAS Publishing provides you with a wide range of resources, from software to online training to publications to set yourself apart.

Build Your SAS Skills with SAS Learning Edition
SAS Learning Edition is your personal learning version of the world’s leading business intelligence and analytic software. It provides a unique opportunity to gain hands-on experience and learn how SAS gives you the power to perform.

support.sas.com/LE

Personalize Your Training with SAS Self-Paced e-Learning
You are in complete control of your learning environment with SAS Self-Paced e-Learning! Gain immediate 24/7 access to SAS training directly from your desktop, using only a standard Web browser. If you do not have SAS installed, you can use SAS Learning Edition for all Base SAS e-learning.

support.sas.com/selfpaced

Expand Your Knowledge with Books from SAS Publishing
SAS Press offers user-friendly books for all skill levels, covering such topics as univariate and multivariate statistics, linear models, mixed models, fixed effects regression and more. View our complete catalog and get free access to the latest reference documentation by visiting us online.

support.sas.com/pubs