
SAS® 9.1.3
Open Metadata Interface
Reference
Second Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2005.
SAS ® 9.1.3 Open Metadata Interface: Reference, Second Edition. Cary, NC: SAS Institute
Inc.

SAS® 9.1.3 Open Metadata Interface: Reference, Second Edition
Copyright © 2002–2007, SAS Institute Inc., Cary, NC, USA
ISBN 978–1–59047–812–7
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, July 2005
2nd printing, November 2006
3rd printing, June 2007
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview of the SAS Open Metadata Interface vii

Details of SAS Open Metadata Interface Enhancements vii

P A R T 1 Understanding the SAS Open Metadata Interface 1

Chapter 1 � Introduction 3
About This Book 3

Prerequisites 4

What Is the SAS Open Metadata Architecture? 4

What Can I Do with the SAS Open Metadata Interface? 5

How Does the SAS Open Metadata Architecture Work? 5

Important Concepts 7

Accessing Application Metadata 7

Creating Repositories 8

Controlling the SAS Metadata Server 8

Security 8

Authorization Facility 9

Chapter 2 � Open Client Requirements 11
Types of SAS Open Metadata Interface Clients 11

Connecting to the SAS Metadata Server 12

Call Interfaces 13

Java IOMI Class Signature Summary Table 15

Visual Basic IOMI Class Signature Summary Table 18

Visual C++ IOMI Class Signature Summary Table 21

Sample Java IOMI Client 24

Sample Visual Basic OMI Client 28

Sample Visual C++ IOMI Client 31

Using Server Output 36

P A R T 2 SAS Metadata Model 37

Chapter 3 � Overview of the SAS Metadata Model and Model Documentation 39
Namespaces 39

Understanding Associations 40

Overview of the SAS Metadata Model Documentation 41

Using the Metadata Types Reference 42

SAS Metadata Model Conventions 44

Chapter 4 � SAS Namespace Submodels 45
Overview of SAS Namespace Submodels 46

iv

Analysis Submodel 48

Authorization Submodel 49

Business Information Submodel 49

Foundation Submodel 50

Grouping Submodel 52

Mining Submodel 52

Property Submodel 53

Relational Submodel 55

Resource Submodel 57

Software Deployment Submodel 59

Transform Submodel 61

XML Submodel 64

Hierarchical Listing of Metadata Types 65

Chapter 5 � Hierarchy and Association Diagrams 69
Overview to Hierarchy and Association Diagrams 70

Diagrams for Analysis Metadata Types 71

Diagrams for Authorization Metadata Types 75

Diagrams for Business Information Metadata Types 77

Diagrams for Foundation Metadata Types 78

Diagrams for Grouping Metadata Types 80

Diagrams for Mining Metadata Types 81

Diagrams for Property Metadata Types 83

Diagrams for Relational Metadata Types 86

Diagrams for Resource Metadata Types 91

Diagrams for Software Deployment Metadata Types 95

Diagrams for Transformation Metadata Types 100

Diagrams for XML Metadata Types 105

Chapter 6 � REPOS Namespace Metadata Types 107
Overview of REPOS Namespace Metadata Types 107

Repository 108

RepositoryBase 109

P A R T 3 Method Classes 113

Chapter 7 � Methods for Reading and Writing Metadata (IOMI Class) 115
Overview of the IOMI Class Methods 117

Constructing a Metadata Property String 118

Identifying Metadata 120

Functional Index to IOMI Methods 120

Using IOMI Flags 121

Summary Table of IOMI Flags 122

Summary Table of IOMI Options 129

<DOAS> Option 131

AddMetadata 132

v

CheckinMetadata 135

CheckoutMetadata 137

CopyMetadata 139

DeleteMetadata 141

DoRequest 144

FetchMetadata 146

GetMetadata 148

GetMetadataObjects 152

GetNamespaces 155

GetRepositories 156

GetSubtypes 158

GetTypeProperties 160

GetTypes 162

IsSubtypeOf 164

UndoCheckoutMetadata 165

UpdateMetadata 167

Chapter 8 � Security Methods (ISecurity Class) 171
Overview of the ISecurity Class 171

FreeCredentials 172

GetAuthorizations 173

GetCredentials 175

GetIdentity 176

IsAuthorized 177

Chapter 9 � Repository and Server Control Methods (IServer Class) 181
Overview of the IServer Class 181

Pause 182

Refresh 184

Resume 186

Status 187

Stop 189

Chapter 10 � Program-Specific Method Examples 191
Overview to Program-Specific Method Examples 193

Program-Specific AddMetadata Examples 193

Program-Specific DeleteMetadata Examples 197

Program-Specific GetMetadata Examples 201

Program-Specific GetMetadataObjects Examples 205

Program-Specific GetNamespaces Examples 209

Program-Specific GetRepositories Examples 213

Program-Specific GetSubtypes Examples 216

Program-Specific GetTypeProperties Examples 220

Program-Specific GetTypes Examples 224

Program-Specific IsSubtypeOf Examples 227

Program-Specific UpdateMetadata Examples 231

vi

P A R T 4 SAS Language Metadata Interfaces 237

Chapter 11 � Procedures 239
METADATA Procedure 240

METALIB Procedure 245

METAOPERATE Procedure 262

Chapter 12 � DATA Step Functions 271
SAS Metadata DATA Step Functions 273

METADATA_DELASSN Function 276

METADATA_DELOBJ Function 278

METADATA_GETATTR Function 279

METADATA_GETNASL Function 280

METADATA_GETNASN Function 282

METADATA_GETNATR Function 284

METADATA_GETNOBJ Function 286

METADATA_GETNPRP Function 288

METADATA_GETNTYP Function 290

METADATA_GETPROP Function 291

METADATA_NEWOBJ Function 293

METADATA_PAUSED Function 295

METADATA_PURGE Function 295

METADATA_RESOLVE Function 297

METADATA_SETASSN Function 299

METADATA_SETATTR Function 301

METADATA_SETPROP Function 302

METADATA_VERSION Function 303

Chapter 13 � System Options 305
SAS Metadata System Options 305

Index 309

vii

What’s New

Overview of the SAS Open Metadata Interface

The SAS Open Metadata Interface is an XML-based API for interacting with
metadata. It is the basic interface that SAS clients use to deliver metadata services in
the SAS Open Metadata Architecture, which was introduced with SAS 9.

This section describes the features of SAS Open Metadata Interface that are new or
enhanced since SAS 9. It also introduces a new SAS language interface for maintaining
metadata.

Details of SAS Open Metadata Interface Enhancements

� Beginning with SAS 9.1.3, Service Pack 3, the IServer class Status method
supports <PlatformVersion/> and <ModelVersion/> parameters. These parameters
enable clients to retrieve the SAS Metadata Server and SAS Metadata Model
version numbers, respectively. For more information, see “Status” on page 187.

� Beginning with SAS 9.1.3, Service Pack 3, the IOMI class CheckinMetadata
method supports an unlimited number of characters in the changeDesc parameter.
changeDesc enables clients to store a description of object modifications in a
Change metadata object that is generated by the checkin process. Information
entered into changeDesc is now stored in a TextStore object instead of as a Change
attribute. For more information, see “CheckinMetadata” on page 135.

� Beginning with SAS 9.1.3, Service Pack 3, the METALIB procedure is available to
automate the creation and maintenance of the table metadata associated with a
SAS library. For more information, see “METALIB Procedure” on page 245.

viii What’s New

1

P A R T1

Understanding the SAS Open Metadata
Interface

Chapter 1.Introduction 3

Chapter 2.Open Client Requirements 11

2

3

C H A P T E R

1
Introduction

About This Book 3
Prerequisites 4

What Is the SAS Open Metadata Architecture? 4

What Can I Do with the SAS Open Metadata Interface? 5

How Does the SAS Open Metadata Architecture Work? 5

Important Concepts 7
Accessing Application Metadata 7

Creating Repositories 8

Controlling the SAS Metadata Server 8

Security 8

Authorization Facility 9

About This Book

This book describes the SAS 9.1.3 Open Metadata Interface and contains all of the
information you need to write a SAS Open Metadata Interface client that creates and
manages metadata in SAS Metadata Repositories. This book describes

� the SAS Metadata Model

� namespaces

� metadata-related, security-related, and server-control methods

� call interfaces

� open client requirements.

Hierarchy and association diagrams are provided to help you to understand the
relationships between application-related metadata types in the SAS Metadata Model.
You need to understand these relationships before you can issue SAS Open Metadata
Interface method calls that read and write metadata. In addition, program-specific
examples are provided that show how to issue SAS Open Metadata Interface method
calls in Java, Visual Basic, and C++ clients.

The SAS Open Metadata Architecture is a client-server architecture that uses XML
as its transport language. If you are unfamiliar with XML, see the W3C XML
Specifications at

www.w3.org/TR/1998/REC-xml-19980210

This book also contains reference information about SAS language interfaces for
metadata. The SAS language interfaces for metadata are SAS Open Metadata Interface
clients that enable you to read and write metadata in SAS Metadata Repositories from
base SAS.

4 Prerequisites � Chapter 1

Note: Due to production issues, reference information about the SAS namespace
metadata types is provided only in online versions of this book. When you come upon a
reference to the “Alphabetical Listing of SAS Namespace Metadata Types,” look for this
listing in SAS Help and Documentation or in SAS OnlineDoc. �

Prerequisites
The SAS Open Metadata Interface is shipped as part of Base SAS software and uses

the Integrated Object Model (IOM) to communicate with a SAS Metadata Server.
Currently, this interface supports Visual Basic, C++, and Java clients.

The following software must be installed on computers where you will develop SAS
Open Metadata Interface clients:

� Base SAS software
� The client software for the following SAS Integration Technologies Software IOM

interface:
� The IOM Bridge for COM – for Windows clients connecting to a SAS Metadata

Server in a Windows environment or another operating environment.
� The IOM Bridge for Java – for Java clients connecting to a SAS Metadata

Server in any operating environment.

SAS Integration Technologies Software can be installed from the SAS Software
Installation Kit CD-ROM that is shipped along with SAS. For details about this
IOM interface, see the Integration Technologies documentation.

� Software for the intended programming environment.

To get the most out of this document, you should be familiar with the following:
� a client-application programming language, such as Visual Basic, C++, or Java
� a software development environment, such as Microsoft’s Visual Studio or SAS

AppDev Studio
� Extensible Markup Language (XML) 1.0.

What Is the SAS Open Metadata Architecture?
The SAS Open Metadata Architecture is a general-purpose metadata management

facility that provides common metadata services to SAS applications. Using the
metadata architecture, separate SAS applications can exchange metadata, which makes
it easier for these applications to work together. The metadata architecture also saves
development effort because applications no longer have to maintain their own metadata
facilities.

The metadata architecture includes an application metadata model, a repository
metadata model, an application programming interface, and a metadata server.

� The application metadata model, called the SAS Metadata Model, provides classes
and objects that define different types of application metadata. It models
associations between individual metadata objects, it uses inheritance of attributes
and methods to effect common behaviors, and it uses subclassing to extend
behaviors.

� The repository metadata model is a special-purpose model that defines metadata
types for repositories and repository managers. Like the SAS Metadata Model, it
uses classes, objects, inheritance, and subclassing. However, its purpose is to
support repository queries and impose controls on the objects contained in the
repositories which the repository objects describe.

Introduction � How Does the SAS Open Metadata Architecture Work? 5

� The SAS Open Metadata Interface provides methods for reading and writing
metadata objects that are stored in repositories. These same methods can be used
to maintain the repositories, although this is a secondary task. Another set of
methods is provided for administering repositories and the server.

� The SAS Metadata Server is a multiuser server that surfaces metadata from one or
more repositories via the SAS Open Metadata Interface. The SAS Metadata Server
uses the Integrated Object Model (IOM) from SAS Integration Technologies. IOM
provides distributed object interfaces to Base SAS software features and enables
you to use industry-standard languages, programming tools, and communication
protocols to develop client programs that access base features on IOM servers. Its
purpose is to provide a central, shared location for accessing metadata.

Display 1.1 SAS Open Metadata Architecture

Repositories

metadata

metadata

SAS Open
Metadata
Interface

SAS
Metadata

Server

What Can I Do with the SAS Open Metadata Interface?

The SAS Open Metadata Interface enables you to read and write the metadata of
applications that comply with the metadata architecture. It also enables you to
maintain repositories and to control the SAS Metadata Server, but these tasks are
secondary. For the most part, you will use the SAS Open Metadata Interface to read or
write the metadata of applications. For example, you can write clients that perform the
following tasks:

� return a list of data stores that contain a metadata item that you specify, such as a
column name of Salary

� export the metadata from one application to another application, so that the
metadata can be analyzed

� export the metadata for a data store so that the data store can be accessed by
more than one application.

How Does the SAS Open Metadata Architecture Work?
To use the metadata architecture, you write SAS Open Metadata Interface client

applications in Java, Visual Basic, C++, or you use SAS Open Metadata Interface
clients provided by SAS.

Java, Visual Basic, and C++ clients include the appropriate object libraries and
method calls that are required to connect to the metadata server and to

� access the metadata within a repository

6 How Does the SAS Open Metadata Architecture Work? � Chapter 1

� access the metadata that defines a repository

� control the SAS Metadata Server.

SAS Open Metadata Interface clients like SAS Data Integration Studio, SAS
Management Console, PROC METADATA, PROC METAOPERATE, SAS Metadata
DATA step functions, the SAS Java Metadata Interface, and the SAS Foundation
Services Information Service Interface enable you to create and access metadata within
a SAS Metadata Repository without having to know the details of the SAS Open
Metadata Interface.

SAS Data Integration Studio
is a thin-client application that enables you to create and manage ETL process
flows – sequences of steps for the extraction, transformation, and loading of data.
Using SAS Data Integration Studio, you create metadata objects that define
sources, targets, and the transformations that connect them. The software then
uses this metadata to generate or retrieve code that reads sources and creates
targets in a file system. For more information, see the SAS Data Integration
Studio: User’s Guide.

SAS Management Console
provides a graphical user interface for registering repositories; creating global
metadata, including metadata access controls; and controlling the metadata server.

PROC METADATA
enables you to issue XML-formatted method calls to create, update, and query
metadata from within a SAS program.

PROC METAOPERATE
enables you to pause, resume, refresh, stop, and get the status of the metadata
server from a SAS program.

SAS Language Metadata DATA Step Functions
provides a family of metadata DATA step functions to get attributes, associations,
and properties from metadata objects. These functions also enable you to set and
update attributes, associations, and properties for metadata objects.

SAS Java Metadata Interface
provides a Java programming interface to the SAS Metadata Server. The interface
provides a way to access SAS metadata repositories through the use of client Java
objects that represent server metadata.

Foundation Services Information Service Interface
provides a generic programming interface for interacting with heterogeneous
repositories, including SAS Metadata Repositories, Lightweight Directory Access
Protocol (LDAP) repositories, and WebDAV repositories, from an application. Using
Information Service methods, a client can submit a single query that searches all
available repository sources and returns the results in a "smart object" that
provides a uniform interface to common data elements such as the object’s name,
description, and type. The smart objects hide repository and model details. The
interface then uses the SAS Java Metadata Interface to launch further queries.

This book describes the SAS Open Metadata Interface and how to write clients that
use this interface directly. It also provides reference information about the
“METADATA Procedure” on page 240, the “METAOPERATE Procedure” on page 262,
and the “SAS Metadata DATA Step Functions” on page 273. For information about the
other SAS Open Metadata Interface clients, see their respective documentation.

Introduction � Accessing Application Metadata 7

Important Concepts

metadata type specifies a template that models the metadata for a particular kind
of object. For example, the metadata type Column models the
metadata for a SAS table column, and the metadata type
RepositoryBase models the metadata for a repository.

namespace specifies a group of related metadata types and their properties.
Names are used to partition metadata into different contexts. The
SAS Open Metadata Interface defines two namespaces: SAS and
REPOS. The SAS namespace contains metadata types that describe
application elements such as tables and columns. The REPOS
namespace contains metadata types that describe repositories.

metadata object specifies an instance of a metadata type, such as the metadata for a
particular data store or the metadata for a particular metadata
repository. All SAS Open Metadata Interface clients use the same
methods to read or write a metadata object, whether the object
defines an application element or a metadata repository.

Accessing Application Metadata
As shown in the next figure, a SAS Open Metadata Interface client that accesses

application metadata has the following characteristics:

� specifies the SAS namespace in order to access the metadata types for application
elements such as tables and columns

� connects to the SAS Metadata Server via a communication standard that is
appropriate for the client and the IOM-based server, such as COM/DCOM or
CORBA

� uses SAS Open Metadata Interface method calls to access instances of the
metadata types that are stored in SAS metadata repositories.

Display 1.2 Accessing Metadata Defined in the SAS Namespace

Repositories

metadata

metadata

SAS
Metadata

Server

client/server
communication

standard

SAS
Open Metadata
Interface Client

Namespace: SAS

Repository Manager

For general information about writing SAS Open Metadata Interface clients, see
Chapter 2, “Open Client Requirements,” on page 11. For an overview of the metadata
types in the SAS namespace, see Chapter 4, “SAS Namespace Submodels,” on page 45.
Reference information about each metadata type is provided in the “Alphabetical

8 Creating Repositories � Chapter 1

Listing of SAS Namespace Metadata Types,” which is provided only in online versions
of this book. Details about the methods that are used to read or write metadata objects
are provided in Chapter 7, “Methods for Reading and Writing Metadata (IOMI Class),”
on page 115.

Creating Repositories
Before you can read and write metadata objects, at least one repository must be

registered in the server’s repository manager. The information stored in the repository
manager tells the server how to access the repository. You can register repositories by
writing a SAS Open Metadata Interface client. However, the preferred method for
registering repositories is to use SAS Management Console. SAS Management Console
creates default authorization metadata and templates in each repository.

For information about registering repositories using SAS Management Console, see
the Help for the product. For information about the metadata types used to represent
repositories, see Chapter 6, “REPOS Namespace Metadata Types,” on page 107.

Controlling the SAS Metadata Server
A metadata server must be running before any client can access metadata

repositories. At many sites, a server administrator starts the SAS Metadata Server and
SAS Open Metadata Interface clients simply connect to that server. However, there are
times when the administrator might want to refresh the server to change certain
configuration or invocation options, or to pause and resume repositories and the
repository manager to temporarily change their state, for example, in preparation for a
backup. He might also want to stop the metadata server. For more information about
tasks that might require an administrator to control the metadata server, see the SAS
Intelligence Platform: System Administration Guide.

The SAS Open Metadata Interface provides IServer class methods for controlling the
metadata server. You can write a Java, Visual Basic, or C++ client that issues IServer
class methods to control the metadata server. Or you can use a SAS Open Metadata
Interface clients such as SAS Management Console or PROC METAOPERATE, which
automate the IServer methods, to perform server control tasks.

A user must have administrative user status on the metadata server in order to issue
IServer class methods, except Status. For more information, see “User and Group
Management” in the SAS Intelligence Platform: Security Administration Guide.

For information about writing a SAS Open Metadata Interface client that controls
the metadata server, see Chapter 2, “Open Client Requirements,” on page 11 and
Chapter 9, “Repository and Server Control Methods (IServer Class),” on page 181. For
information about controlling the metadata server using SAS Management Console, see
the SAS Management Console documentation. For information about PROC
METAOPERATE, see “METAOPERATE Procedure” on page 262.

Security
The SAS Metadata Server supports a variety of authentication providers to

determine who can access the metadata server and uses an authorization facility to
control user access to metadata on the server. Only users who have been granted
unrestricted user status on the metadata server have unrestricted access to metadata on

Introduction � Authorization Facility 9

the server. A user must be either an unrestricted user or an administrative user on the
metadata server in order to be able to create and delete repositories, modify a
repository’s registrations, change the state of a repository, and to register users. For
more information, see “User and Group Management” in the SAS Intelligence Platform:
Security Administration Guide.

Authorization Facility

Authorization processes are insulated from metadata-related processes in the SAS
Metadata Server. Authorization decisions are made by an authorization facility.

The authorization facility provides an interface for querying authorization metadata
that is on the metadata server and returns authorization decisions based on rules that
are stored in the metadata. The SAS Metadata Server consumes this interface to make
queries regarding read and write access to metadata and enforces the decisions that are
returned by the authorization facility. It is not necessary for SAS Open Metadata
Interface clients to write queries or to enforce authorization decisions regarding read
and write access to metadata.

SAS Open Metadata Interface clients can use the interface to request authorization
decisions on other types of metadata access, for example, to return decisions regarding
administrative access or to request authorization decisions on the data represented by
the SAS metadata. Applications that use the authorization facility to return
authorization decisions on user-defined actions must provide their own authorization
enforcement.

The query interface consists of a set of methods that are available in the SAS Open
Metadata Interface ISecurity class. For more information, see Chapter 8, “Security
Methods (ISecurity Class),” on page 171.

For information about how the authorization facility makes authorization decisions,
see the SAS Intelligence Platform: Security Administration Guide.

10

11

C H A P T E R

2
Open Client Requirements

Types of SAS Open Metadata Interface Clients 11
Connecting to the SAS Metadata Server 12

Server Connection Parameters 12

SAS Open Metadata Interface Method Classes 13

Call Interfaces 13

Comparison of the Standard Interface and the DoRequest Method 14
IOMI Parameter Names 15

Java IOMI Class Signature Summary Table 15

Visual Basic IOMI Class Signature Summary Table 18

Visual C++ IOMI Class Signature Summary Table 21

Sample Java IOMI Client 24

Class Libraries 24
Sample Java IOMI Class Connection Program 24

Sample Visual Basic OMI Client 28

Type Libraries 29

Sample Visual Basic OMI Class Connection Program 29

Sample Visual C++ IOMI Client 31
Type Libraries 31

Sample Visual C++ IOMI Class Connection Program 32

vcToOMIDlg.h 32

vcToOMIDlg.cpp 33

Using Server Output 36

Types of SAS Open Metadata Interface Clients

A SAS Open Metadata Interface client is a Java, Visual Basic, C++, or SAS program
that connects to the SAS Metadata Server and uses the SAS Open Metadata Interface
to issue method calls. You can create three types of clients:

� clients that read and write application metadata objects

� clients that read and write repository objects

� clients that control access to repositories and to the SAS Metadata Server.

Most of your clients will read and write application metadata objects.
Clients write to repository objects in order to register repositories in the repository

manager and to perform tasks such as defining repository dependencies and enabling or
disabling repository auditing.

A client that controls access to a repository or to the SAS Metadata Server can
temporarily override the repository or repository manager’s access state. For example,
the client can pause the repository and the repository manager to a read-only or offline

12 Connecting to the SAS Metadata Server � Chapter 2

state in preparation for performing a backup. A client that controls the metadata server
can also refresh a server to change certain server invocation and configuration options.

Connecting to the SAS Metadata Server

Before it can issue a method call, a SAS Open Metadata Interface client must
connect to the SAS Metadata Server and instantiate objects for method parameters.
This section describes the requirements for connecting to the metadata server.

The SAS Metadata Server uses the Integrated Object Model (IOM) provided by SAS
Integration Technologies. IOM provides distributed object interfaces to Base SAS
software features and enables you to use industry-standard languages, programming
tools, and communication protocols to develop client programs that access Base SAS
features on IOM servers. The interfaces supported by IOM servers are described in
“Connecting Clients to IOM Servers” in the SAS Integration Technologies Library at
support.sas.com/rnd/itech/library. The SAS Metadata Server supports the IOM
COM/DCOM and CORBA interfaces.

� Windows clients connecting to a SAS Metadata Server use the IOM Bridge for
COM. The IOM Bridge for COM supports connections to servers running in
Windows and non-Windows operating environments.

� Java clients connect to the SAS Metadata Server by using the IOM Bridge for
Java in all operating environments.

To connect to the metadata server, a client must

� invoke the appropriate IOM interface for the programming environment

� supply server connection properties

� reference the SAS Open Metadata Interface method class that is appropriate to
the task that will be performed.

The client will need to establish a connection to the metadata server each time it
issues a method call. To facilitate connection, it is recommended that you create a
connection object that can be referenced in individual method calls.

Server Connection Parameters
The following server connection parameters are required by the SAS Metadata Server.

Optional parameters are described in the SAS Integration Technologies documentation.

host
The host name or Internet Protocol (IP) address of the computer hosting the SAS
Metadata Server.

port=XXXX
The TCP port to which the SAS Metadata Server listens for requests and that
clients will use to connect to the server. XXXX must be a unique number from
0-64K.

username
An authenticated username on the metadata server. See the SAS Intelligence
Platform: Security Administration Guide for information about authentication
requirements.

password
The password corresponding to the authenticated username.

Open Client Requirements � Call Interfaces 13

factory number
The SAS Metadata Server identifier for Java clients. This property must have the
value "2887e7d7-4780-11d4-879f-00c04f38f0db".

server identifier
The SAS Metadata Server identifier for Windows clients. This property must have
the value "SASOMI.OMI".

protocol
The network protocol for Java clients. The valid value is "bridge".

SAS Open Metadata Interface Method Classes
The SAS Open Metadata Interface provides methods in three classes:
� The IOMI class contains metadata access methods. In the Visual Basic

programming environment, this class is referred to as the OMI class. A client
references the IOMI class to read and write both application and repository
metadata objects.

� The IServer class contains methods that pause and resume repositories or the
repository manager, and refresh, get the status of, or stop the SAS Metadata
Server. A client references the IServer class to control access to repositories and
the SAS Metadata Server.

� The ISecurity class contains methods for requesting authorization decisions from
the SAS Open Metadata Architecture authorization facility. A client references the
ISecurity class to request user-defined authorization decisions on access controls
that are stored as metadata.

For more information about the IOMI methods, see Chapter 7, “Methods for Reading
and Writing Metadata (IOMI Class),” on page 115. For more information about the
IServer methods, see Chapter 9, “Repository and Server Control Methods (IServer
Class),” on page 181. For more information about the ISecurity methods, see Chapter 8,
“Security Methods (ISecurity Class),” on page 171.

Call Interfaces
Each metadata-related method takes a set of parameters that drive the behavior of

the method. The SAS Open Metadata Interface supports two ways of passing a method
and its parameters to the metadata server:

� A client can define object variables for each of the parameters and issue the method
call directly from within the client. This approach involves setting the name and
data type of each parameter directly in the client, then referencing the variables in
the method call. This approach is referred to as the “standard interface”.

� A client can define object variables for and issue a generic DoRequest method in
the client and pass metadata-related method calls to the server in a coded XML
string. The XML string is passed to the server in the DoRequest method’s
inMetadata parameter. This approach is referred to as the “DoRequest method”.

Although object variables must still be defined for its parameters, the DoRequest
method provides a program-independent way of submitting metadata-related method
calls. The DoRequest method also provides performance benefits in that it enables the
client to submit multiple methods in the input XML string, simply by enclosing the
string in a <Multiple_Requests> XML element. The format of this input XML string is
described in “DoRequest” on page 144.

14 Comparison of the Standard Interface and the DoRequest Method � Chapter 2

Comparison of the Standard Interface and the DoRequest Method
The following Java code fragment illustrates the steps required to issue a

GetRepositories method call using the standard interface. (The GetRepositories method
returns a list of the repositories registered in a repository manager.)

private void getRepositories() {
int returnCodeFromOMI = -999;
int flags = 0;
String options = " ";
StringHolder returnInfoFromOMI = new org.omg.CORBA.StringHolder();

try {
returnCodeFromOMI = connection.GetRepositories(returnInfoFromOMI,flags,options);
System.out.print1n("returnCodeFromOMI = " + returnCodeFromOMI);
System.out.print1n("returnInfoFromOMI = " = returnInfoFromOMI.value);

}
}

The GetRepositories method has three parameters – Repositories, Flags, and Options
– in addition to a return code. When using the standard interface, the client explicitly
sets the variable name and data type for each parameter and also issues the
GetRepositories call.

The following code fragment shows a GetRepositories call that is issued via the
DoRequest method.

private void getRepositories() {
int returnCodeFromOMI = -999;
String inMetadata = "<GetRepositories>

<Repositories/>
<Flags>0</Flags>
<Options/>

</GetRepositories>";
StringHolder outMetadata = new org.omg.CORBA.StringHolder();

try {
returnCodeFromOMI = connection.DoRequest(inMetadata, outMetadata);
System.out.print1n("returnCodeFromOMI = " + returnCodeFromOMI);
System.out.print1n("outMetadata = " + returnInfoFromOMI.value);

}
}

When using the DoRequest method, the client sets names and data types for the
DoRequest method parameters (inMetadata and outMetadata), and submits the
GetRepositories method and all of its parameters in an XML string in the inMetadata
parameter.

The following is an example of using the <Multiple_Requests> XML element in a
DoRequest call. The request issues a GetRepositories method and a GetTypes method.
The GetTypes method lists the metadata types defined for a namespace.

private void getRepositories() {
int returnCodeFromOMI = -999;
String inMetadata = "<Multiple_Requests>

<GetRepositories>
<Repositories/>
<Flags>0</Flags>

Open Client Requirements � Java IOMI Class Signature Summary Table 15

<Options/>
</GetRepositories>
<GetTypes>

<Types/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetTypes>
</Multiple_Requests>";

StringHolder outMetadata = new org.omg.CORBA.StringHolder();
try {
returnCodeFromOMI = connection.DoRequest(inMetadata, outMetadata);
System.out.print1n("returnCodeFromOMI = " + returnCodeFromOMI);
System.out.print1n("outMetadata = " + returnInfoFromOMI.value);

}
}

IOMI Parameter Names
The following rules apply when you declare object variables for IOMI methods:
� When you declare names for method parameters in the standard interface, the SAS

Open Metadata Interface does not require you to use the published names for the
method parameters; however, if you use a different name, the name in the object
variable declaration must match the parameter name used in the method call.

� When you reference method parameters in an XML string used with the
DoRequest method, the SAS Open Metadata Interface does not require you to use
the published parameter names with one exception: <Metadata> must be used to
represent the inMetadata parameter in the XML string. The method parameters
must also be supplied in the order given in the method documentation.

Java IOMI Class Signature Summary Table
The Java programming environment requires the following data types for IOMI

method parameters.

Method Parameter Definition

AddMetadata inMetadata java.lang.String

reposid java.lang.String

outMetadata org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

CheckinMetadata inMetadata java.lang.String

projectReposid java.lang.String

outMetadata org.omg.CORBA.StringHolder

changeName java.lang.String

16 Java IOMI Class Signature Summary Table � Chapter 2

Method Parameter Definition

changeDesc java.lang.String

changeId java.lang.String

ns java.lang.String

flags int

options java.lang.String

CheckoutMetadata inMetadata java.lang.String

projectReposid java.lang.String

outMetadata org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

CopyMetadata inMetadata java.lang.String

targetReposid java.lang.String

outMetadata org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

DeleteMetadata inMetadata java.lang.String

outMetadata org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

DoRequest inString java.lang.String

outString org.omg.CORBA.StringHolder

FetchMetadata inMetadata java.lang.String

projectReposid java.lang.String

outMetadata org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

GetMetadata inMetadata java.lang.String

outMetadata org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

GetMetadataObjects reposid java.lang.String

type java.lang.String

Open Client Requirements � Java IOMI Class Signature Summary Table 17

Method Parameter Definition

objects org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

GetNamespaces ns java.lang.String

flags int

options java.lang.String

GetRepositories repositories org.omg.CORBA.StringHolder

flags int

options java.lang.String

GetSubtypes type java.lang.String

subtypes org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

GetTypeProperties type java.lang.String

properties org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

GetTypes type java.lang.String

ns java.lang.String

flags int

options java.lang.String

IsSubtypeOf type java.lang.String

supertype java.lang.String

result org.omg.CORBA.BooleanHolder

ns java.lang.String

flags int

options java.lang.String

UndoCheckoutMetadata inMetadata java.lang.String

outMetadata org.omg.CORBA.StringHolder

ns java.lang.String

flags int

options java.lang.String

UpdateMetadata inMetadata java.lang.String

outMetadata org.omg.CORBA.StringHolder

18 Visual Basic IOMI Class Signature Summary Table � Chapter 2

Method Parameter Definition

ns java.lang.String

flags int

options java.lang.String

Visual Basic IOMI Class Signature Summary Table
The Visual Basic programming environment requires the following data types for

OMI method parameters.

Method Parameter Definition

AddMetadata InMetadata As String

Reposid As String

OutMetadata As String

Ns As String

Flags As Long

Options As Long As String

CheckinMetadata InMetadata As String

ProjectReposid As String

OutMetadata As String

ChangeName As String

ChangeDesc As String

ChangeId As String

Ns As String

Flags As Long

Options As String

As Long

CheckoutMetadata InMetadata As String

ProjectReposid As String

OutMetadata As String

Ns As String

Flags As Long

Options As String

As Long

CopyMetadata InMetadata As String

TargetReposid As String

OutMetadata As String

Ns As String

Open Client Requirements � Visual Basic IOMI Class Signature Summary Table 19

Method Parameter Definition

Flags As Long

Options As String

As Long

DeleteMetadata InMetadata As String

OutMetadata As String

Ns As String

Flags As Long

Options As String

As Long

DoRequest InString As String

OutString As String

As Long

FetchMetadata InMetadata As String

ProjectReposid As String

OutMetadata As String

Ns As String

Flags As Long

Options As String

As Long

GetMetadata InMetadata As String,

OutMetadata As String

Ns As String

Flags As Long

Options As String

As Long

GetMetadataObjects Reposid As String

Type As String

Objects As String

Ns As String

Flags As Long

Options As String

As Long

GetNamespaces Ns As String

Flags As Long

Options As String

As Long

GetRepositories Repositories As String

Flags As Long

20 Visual Basic IOMI Class Signature Summary Table � Chapter 2

Method Parameter Definition

Options As String

As Long

GetSubtypes Type As String

Subtypes As String

Ns As String

Flags As Long

Options As String

As Long

GetTypeProperties Type As String

Properties As String

Ns As String

Flags As Long

Options As String

As Long

GetTypes Types As String

Ns As String

Flags As Long

Options As String

As Long

IsSubtypeOf Type As String

Supertype As String

Result As Boolean

Ns As String

Flags As Long

Options As String

As Long

UndoCheckoutMetadata InMetadata As String

OutMetadata As String

Ns As String

Flags As Long

Options As String

As Long

UpdateMetadata InMetadata As String

OutMetadata As String

Ns As String

Open Client Requirements � Visual C++ IOMI Class Signature Summary Table 21

Method Parameter Definition

Flags As Long

Options As String

As Long

Visual C++ IOMI Class Signature Summary Table

The Visual C++ programming environment requires the following data types for
IOMI method parameters.

Method Parameter Definition

AddMetadata InMetadata BSTR [in]

Reposid BSTR [in]

OutMetadata BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

CheckinMetadata InMetadata BSTR [in]

projectReposid BSTR [in]

OutMetadata BSTR* [out]

ChangeName BSTR [in]

ChangeDesc BSTR [in]

ChangeId BSTR [in]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

CheckoutMetadata InMetadata BSTR [in]

ProjectReposid BSTR [in]

OutMetadata BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

CopyMetadata InMetadata BSTR [in]

TargetReposid BSTR [in]

22 Visual C++ IOMI Class Signature Summary Table � Chapter 2

Method Parameter Definition

OutMetadata BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

DeleteMetadata InMetadata BSTR [in]

OutMetadata BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

DoRequest InString BSTR [in]

OutString BSTR* [out]

retval long* [out, retval]

FetchMetadata InMetadata BSTR [in]

ProjectReposid BSTR [in]

OutMetadata BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

GetMetadata InMetadata BSTR [in]

OutMetadata BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

GetMetadataObjects Reposid BSTR [in]

Type BSTR [in]

Objects BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

GetNamespaces Ns BSTR* [out]

Flags long [in]

Options BSTR [in]

Open Client Requirements � Visual C++ IOMI Class Signature Summary Table 23

Method Parameter Definition

retval long* [out, retval]

GetRepositories Repositories BSTR* [out]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

GetSubtypes Type BSTR [in]

Subtypes BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

GetTypeProperties Type BSTR [in]

Properties BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

GetTypes Types BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

IsSubtypeOf Type BSTR [in]

Supertype long* [out, retval] BSTR [in]

Result VARIANT_BOOL* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

UndoCheckoutMetadata InMetadata BSTR [in]

OutMetadata BSTR* [out]

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

UpdateMetadata InMetadata BSTR [in]

OutMetadata BSTR* [out]

24 Sample Java IOMI Client � Chapter 2

Method Parameter Definition

Ns BSTR [in]

Flags long [in]

Options BSTR [in]

retval long* [out, retval]

Sample Java IOMI Client

This section describes how to create a Java IOMI client in a UNIX operating
environment.

To create a connection object for a Java client, you must instantiate a CORBA Object
Request Broker (ORB) and define a stub that implements the SAS Open Metadata
Interface class that you want to use. You must also supply server connection properties
to the ORB. To learn more about the CORBA (Common Object Request Broker
Architecture), see “Using Java CORBA Stubs for IOM Objects” in the SAS Integration
Technologies Library at support.sas.com/rnd/itech/library.

Class Libraries
SAS Open Metadata Interface classes are provided in class libraries that are shipped

on your installation media in the sas.oma.omi.jar and IOMJAVA.zip files. Before you
can use them, you must unzip and install the IOMJAVA package on your machine, then
set the CLASSPATH= environment variable to point to the location of all the JAR files.

In an IOMI client, reference the following libraries as import classes:

com.sas.meta.SASOMI.IOMI
contains CORBA stubs for IOMI class methods.

com.sas.meta.SASOMI.IOMIHelper
contains definitions for an OMI IOMI ORB.

org.omg.CORBA.*
contains definitions for the IOM CORBA services.

java.util.Properties
java.util.Enumeration
java.net.URLEncoder

contain standard Java application programming interfaces.

Sample Java IOMI Class Connection Program
The following sample program demonstrates the steps for connecting a Java client to

the SAS Metadata Server using the IOMI interface. The program creates a connection
object and uses the connection object to issue a GetRepositories method call. The
GetRepositories method is the first method that you will want to issue because it
returns the information necessary to begin querying a specific repository.

Open Client Requirements � Sample Java IOMI Class Connection Program 25

The sample program uses the standard call interface. Numbers have been inserted
at the beginning of each step.Refer to the numbered descriptions following the code
sample for an explanation of each step.

[1]

import com.sas.meta.SASOMI.IOMI;
import com.sas.meta.SASOMI.IOMIHelper;
import org.omg.CORBA.*;
import java.util.Properties;
import java.util.Enumeration;
import java.net.URLEncoder;

class runToOMI {

[2]

java.util.Properties connectionProperties = new java.util.Properties();
String connectionString = "";
IOMI connection = null;

[3]

/**
Put the connection properties into a properties object.
**/
private void setConnectionProperties(String host,

String port,
String username,
String password) {

String protocol = "bridge";
connectionProperties.put("host",host);
connectionProperties.put("port",port);
connectionProperties.put("protocol",protocol);
connectionProperties.put("userName",username);
connectionProperties.put("password",password);

}

[4]

/**
Take the connection properties from the properties object and return
a URL string.
**/
private void propertiesToUrl() {

StringBuffer buffer = new StringBuffer("bridge://");
buffer.append(connectionProperties.getProperty("host"));
buffer.append(":");
buffer.append(connectionProperties.getProperty("port"));
buffer.append("/");
buffer.append("2887e7d7-4780-11d4-879f-00c04f38f0db");

StringBuffer query = null;
Enumeration propertyNames = connectionProperties.propertyNames();

26 Sample Java IOMI Class Connection Program � Chapter 2

while (propertyNames.hasMoreElements())
{

String propertyName = (String)propertyNames.nextElement();

if (!propertyName.equals("host") && !propertyName.equals("port"))
{

if (query == null)
{

query = new StringBuffer();
}
else
{

query.append("&");
}
query.append(URLEncoder.encode(propertyName));
query.append("=");
query.append
(URLEncoder.encode(connectionProperties.getProperty(propertyName)));

}
}

if (query != null)
{

buffer.append("?");
buffer.append(query.toString());

}

connectionString = buffer.toString();

}

/**
Instantiate a connection object and supply server connection parameters.
***/
private void getConnected() {

[5]

IOMI privateCMA = null;

try {

[6]

// Create an Object Request Broker
ORB orb2 = new com.sas.net.brg.orb.BrgOrb();

[7]

// Instantiate an object and set up a remote reference to it
org.omg.CORBA.Object obj2 = orb2.string_to_object(connectionString);

[8]

Open Client Requirements � Sample Java IOMI Class Connection Program 27

//Use helper class to set the interface you want
privateCMA = IOMIHelper.narrow(obj2);

}
catch (Exception e)
{
privateCMA = null;
e.printStackTrace();

}

[9]

connection = privateCMA;
}

/**
This releases a connection to a SAS Metadata Server.
**/
private void disConnect() {
connection._release();

}

/**
This sends a request to the GetRepositories method.
***/
private void getRepositories() {

int returnCodeFromOMI = -999;
int flags = 0;
String options = "";
StringHolder returnInfoFromOMI = new org.omg.CORBA.StringHolder();

try {

[10]

returnCodeFromOMI =
connection.GetRepositories(returnInfoFromOMI,flags,options);

System.out.println("returnCodeFromOMI = " + returnCodeFromOMI);
System.out.println("returnInfoFromOMI = " + returnInfoFromOMI.value);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
e.printStackTrace();

}
catch (org.omg.CORBA.SystemException e)
{

System.out.println(e);
e.printStackTrace();

}
}

/***
Main program
**/

28 Sample Visual Basic OMI Client � Chapter 2

public static void main (String[] args) {

runToOMI getToOMI = new runToOMI();
//getToOMI.setConnectionProperties("host","port","username","password");

getToOMI.setConnectionProperties
("login004.unx.sas.com","6713","myuid","mypaswd");
getToOMI.propertiesToUrl();
getToOMI.getConnected();
getToOMI.getRepositories();
getToOMI.disConnect();

int n = 0;
System.exit(n);

}

}

[1] The com.sas.meta.SASOMI.IOMI and com.sas.meta.SASOMI.IOMIHelper
packages specify that the SAS Open Metadata Interface IOMI interface is used. The
org.omg.CORBA.* package specifies the IOM CORBA interface. (The asterisk at the
end of the name indicates that all classes in the CORBA package should be available to
the compiler for compilation.)

[2] These statements declare object variables for a connectionProperties object, a
connectionString object, and an IOMI connection object. Values are assigned later in
the program.

[3] These statements create the connectionProperties object. Note the use of
name=value pairs to supply all server connection values except the factory number. The
factory number must be provided when the server properties are converted to a URL
string.

[4] These statements convert the server connection properties into a URL string.
Note the factory number "2887e7d7-4780-11d4-879f-00c04f38f0db". If you omit this
value, or if the string has an error in it, the IOM server returns an error.

[5] This statement declares an object variable called "PrivateCMA".
[6] This statement creates an object request broker (ORB) for the SAS Open

Metadata Interface.
[7] This statement instantiates an object (ob2) for a generic stub

(org.omg.CORBA.object) and sets up a remote reference to it.
[8] This statement assigns the privateCMA object variable to a helper class that sets

the obj2 object as an IOMI interface.
[9] This statement sets the object variable "connection" to the values in privateCMA.
[10] This statement uses the connection object in a GetRepositories method call.

Sample Visual Basic OMI Client
This section describes how to create a Visual Basic SAS Open Metadata Interface

client. The client uses the IOM Bridge for COM to connect to a server in a Windows or
other operating environment. Note that in the Visual Basic environment, the IOMI
class is referred to as the OMI class.

Open Client Requirements � Sample Visual Basic OMI Class Connection Program 29

Type Libraries
All Visual Basic clients (OMI and IServer) must reference the following type library:

SASOMI: (SAS 9.1) Type Library
contains the IServer and OMI method classes.

Clients that use the IOM Bridge for COM must additionally select the following type
library:

Combridge 1.0 Type Library
contains the definitions for IOM Bridge for COM software.

Visual Basic provides a semi-interactive client development environment. Use the
software’s References window to find and select the type libraries from a list.

Sample Visual Basic OMI Class Connection Program
The following window was created by a Visual Basic program. The program collects

the information necessary to connect to the SAS Metadata Server and uses it to issue a
GetRepositories method call. The GetRepositories method is the first method that you
will want to issue because it returns the information necessary to begin querying a
specific repository.

Note: In order to focus on the SAS Open Metadata Interface, the code that created
the window has been omitted from the sample. Numbers have been inserted at the
beginning of each step. Refer to the numbered descriptions following the code sample
for an explanation of each step. �

The program issues the metadata request via the DoRequest method.

30 Sample Visual Basic OMI Class Connection Program � Chapter 2

[1]

Option Explicit
Dim obCB As New SASCombridge.Combridge
Dim obOMI As SASOMI.OMI
Dim returnFromOMI As Long
Dim wrap As String
Dim inputXML As String
Dim outputXML As String

[2]

Private Sub connect_Click()
On Error GoTo connectError
Set obOMI = Nothing
Set obOMI = obCB.CreateObject(host.Text, username.Text, password.Text,
CInt(port.Text), "", EncryptNothing, "", "SASOMI.OMI")

msgOutputToUser.Text = "Connected to server." + wrap + msgOutputToUser.Text
Exit Sub

connectError:
msgOutputToUser.Text = Err.Description + wrap + msgOutputToUser.Text

End Sub

[3]

Private Sub disconnect_Click()
On Error GoTo disconnectError
Set obOMI = Nothing
msgOutputToUser.Text = _
"Disconnected from server." + wrap + msgOutputToUser.Text

Exit Sub

disconnectError:
msgOutputToUser.Text = Err.Description + wrap + msgOutputToUser.Text

End Sub

Private Sub exit_Click()
End

End Sub

Private Sub Form_Load()
wrap = Chr(13) + Chr(10)

End Sub

[4]

Private Sub runmethod_Click()
On Error GoTo runError

inputXML = "<getrepositories>" + _
"<repositories/>" + _
"<flags>0</flags>" + _
"<options/>" + _
"</getrepositories>"

[5]

Open Client Requirements � Type Libraries 31

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

msgOutputToUser.Text = "Output from SAS Metadata Server: " _
+ outputXML + Str(returnFromOMI) + wrap + msgOutputToUser.Text

msgOutputToUser.Text = "Using DoRequest method, " _
+ "returnCode = " + Str(returnFromOMI) + wrap + msgOutputToUser.Text

Exit Sub

runError:
msgOutputToUser.Text = Err.Description + wrap + msgOutputToUser.Text

End Sub

[1] The DIM statements declare object variables for a SASCombridge
object, a SASOMI OMI class object, the method return code, an
inputXML string, and an output XML string. The latter two object
variables are parameters for the DoRequest method.

[2] These statements create and assign values to a SAS Metadata
Server connection object obOMI that is invoked each time the
Connect button is selected. The server connection properties are
passed as arguments to the Visual Basic CreateObject function. The
host, username, password, and port number are passed as
name=value pairs and the encryptionPolicy and serverIdentifier
properties are passed as strings. Null values are provided for the
servicename and encryptionAlgorithm parameters.

[3] These statements define the actions for the Disconnect button.
obOMI is reset to a null value.

[4] These statements define the actions for the Get List of Repositories
from OMI Server button. An XML string containing the
GetRepositories method and its parameters is assigned to the
inputXML object variable.

[5] This statement issues a DoRequest method call to pass the input
XML string to the SAS Metadata Server. Note that the DoRequest
call references the connection object obOMI that was created earlier
in the program.

Sample Visual C++ IOMI Client
This section describes how to create a Visual C++ IOMI client. The sample program

connects to the SAS Metadata Server using the IOM Bridge for COM.
Visual C++ uses object pointers instead of object variables to represent method

parameters. Therefore, you need to convert SAS Open Metadata Interface string
parameters to BSTRs before you can issue a method call, and you need to convert
output from a BSTR to another format if you intend to use it elsewhere.

Type Libraries
All Visual C++ clients (IOMI and IServer) must reference the following type library:

SASOMI: (SAS 9.1) Type Library

32 Sample Visual C++ IOMI Class Connection Program � Chapter 2

contains the IServer and IOMI method classes.

Clients that use the IOM Bridge for COM must additionally select the following:

Combridge 1.0 Type Library
contains the definitions for IOM Bridge for COM software.

Use the software’s OLE/COM Object Viewer to reference the type libraries.

Sample Visual C++ IOMI Class Connection Program
The following window was created using the Visual C++ MFC AppWizard. The

window collects the information necessary to connect to the SAS Metadata Server and
uses it to issue a GetRepositories method call. The GetRepositories method is the first
method that you will want to issue because it returns the information necessary to
begin querying a specific repository. To add SAS Open Metadata Interface functionality
to the window, edit the vcToOMIDlg.h and vcToOMIDlg.cpp files as described in the
sections that follow.

vcToOMIDlg.h
vcToOMIDlg.h is a header file that defines the functions that are available to the

MFCAppWizard. In the vcToOMIDlg.h file, add IMPORT statements for the

Open Client Requirements � vcToOMIDlg.cpp 33

appropriate IOM and SAS Open Metadata Interface class libraries and insert
statements referencing these libraries as follows. To conserve space, only the affected
portion of the header file is shown.

// vcToOMIDlg.h : header file
//

#if !defined(AFX_VCTOOMIDLG_H__A31C4C7A_E267_11D4_87A6_00C04F2C3599__INCLUDED_)
#define AFX_VCTOOMIDLG_H__A31C4C7A_E267_11D4_87A6_00C04F2C3599__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#import "c:\program files\sas\shared files\integration technologies\omi.tlb"
using namespace SASOMI;

#import "c:\program files\sas\shared files\integration technologies\sascomb.dll"
using namespace SASCombridge;

///
// CVcToOMIDlg dialog

class CVcToOMIDlg : public CDialog
{
...

The IMPORT statements are added after the IF statements. The first IMPORT
statement specifies the pathname of the SASOMI type library and assigns it the
namespace “SASOMI”. The second IMPORT statement specifies the pathname of the
Combridge DLL and assigns it the namespace “SASCombridge”.

vcToOMIDlg.cpp
The vcToOMIDlg.cpp file is an implementation file. In this file, add the following

statements:
� pointers that reference the namespaces defined in the vcToOMIDlg.h file
� a CoInitialize statement
� a connection pointer to the SAS Metadata Server
� the necessary BSTRs to issue the GetRepositories method call
� statements releasing the SAS Metadata Server.

Add the first set of pointers beneath the IF statements, in the form
Namespace::DesiredInterface::DiscretionaryName, as follows. In the code fragment, note
that the pointer for the SASOMI namespace is set to the IOMI interface and is assigned
the name pIOMI. A second pointer for the SASCombridge DLL is set as ICombridgePtr
and assigned the name pICombridge.

// vcToOMIDlg.cpp : implementation file
//

#include "stdafx.h"
#include "vcToOMI.h"
#include "vcToOMIDlg.h"

34 vcToOMIDlg.cpp � Chapter 2

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

CString wrap("\r\n");
SASOMI::IOMIPtr pIOMI;
SASCombridge::ICombridgePtr pICombridge;

...
Add the CoInitialize statement to the OnInitDialog subroutine, as follows.

///
// CVcToOMIDlg message handlers

BOOL CVcToOMIDlg::OnInitDialog()
{

CDialog::OnInitDialog();
SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

CoInitialize(NULL);

return TRUE;
}

The following code fragment creates the connection pointer, pIOMI. pIOMI is defined
as a local pointer to an in-process server that is invoked by the Connect button. The
pointer is assigned the values of the IOMI namespace, the SASCombridge DLL, and a
local object that supplies server connection properties. Insert this somewhere after the
CoInitialize statement.

void CVcToOMIDlg::OnConnect()
{

try {
UpdateData(TRUE);

ICombridgePtr pICombridgea("SAS.Combridge", NULL, CLSCTX_INPROC_SERVER);

pICombridge = pICombridgea;

pIOMI = (IOMIPtr)(pICombridge->CreateObject((_bstr_t)m_Host,
(_bstr_t)m_Username,
(_bstr_t)m_Password,
m_Port,

Open Client Requirements � vcToOMIDlg.cpp 35

m_MsgOutputToUser = "Connected to server" + wrap + m_MsgOutputToUser;
UpdateData(FALSE);

}

catch (_com_error e) {
m_MsgOutputToUser = e.ErrorMessage() + wrap + m_MsgOutputToUser;
UpdateData(FALSE);

}

}

Use the following sample code fragment to issue a GetRepositories call using the
DoRequest method. In the code fragment, the CString inputXML contains the
GetRepositories method and its parameters. It and CString outputXML are converted
to BSTRs and passed to the SAS Metadata Server via the generic DoRequest method.
The DoRequest method call references the pIOMI connection pointer to establish
communication with the SAS Metadata Server.

void CVcToOMIDlg::OnRunmethod()
{

HRESULT hr;

CString inputXML("<getrepositories><repositories/><flags>0</flags>
<options/></getrepositories>");
BSTR inXML = inputXML.AllocSysString();

CString outputXML;
BSTR outXMLa = outputXML.AllocSysString();

UpdateData(TRUE);

try {
hr = pIOMI->DoRequest(inXML, &outXMLa);
CString outXML3(outXMLa);

m_MsgOutputToUser = outXML3 + wrap + m_MsgOutputToUser;
UpdateData(FALSE);

}

catch (_com_error e) {
m_MsgOutputToUser = e.ErrorMessage() + wrap + m_MsgOutputToUser;
UpdateData(FALSE);

}

}

Finally, insert the following code to disconnect from the SAS Metadata Server.

void CVcToOMIDlg::OnDisconnect()
{

UpdateData(TRUE);

try {

36 Using Server Output � Chapter 2

pIOMI->Release();
pICombridge->Release();
m_MsgOutputToUser = "Disconnected from server." + wrap + m_MsgOutputToUser;
UpdateData(FALSE);
OnOK();
}

catch (_com_error e) {
m_MsgOutputToUser = e.ErrorMessage() + wrap + m_MsgOutputToUser;
UpdateData(FALSE);
OnOK();
}

}

Using Server Output

The SAS Metadata Server returns output in the form of an XML string. Clients can
interact with this output by using their favorite XML parser (DOM or SAX) or by using
a set of Java classes provided by SAS. To learn more about the Java metadata classes,
see the SAS Java Metadata Interface: User’s Guide.

37

P A R T2

SAS Metadata Model

Chapter 3.Overview of the SAS Metadata Model and Model
Documentation 39

Chapter 4.SAS Namespace Submodels 45

Chapter 5.Hierarchy and Association Diagrams 69

Chapter 6.REPOS Namespace Metadata Types 107

38

39

C H A P T E R

3
Overview of the SAS Metadata
Model and Model
Documentation

Namespaces 39
Understanding Associations 40

Cardinality 40

Overview of the SAS Metadata Model Documentation 41

Using the Metadata Types Reference 42

Legend for Attributes Table 42
Legend for Associations Table 42

SAS Metadata Model Conventions 44

Date, Time, and DateTime Values 44

"V" in Length Attribute 44

Namespaces

The SAS Open Metadata Interface provides metadata types in two namespaces:

� The SAS namespace defines metadata types for the most commonly used SAS
application elements. These types comprise the SAS Metadata Model. The SAS
Metadata Model provides a framework and a common format for sharing metadata
between SAS applications. In addition, it provides a foundation for conversion
programs to convert SAS common metadata to standard representations like the
Object Management Group’s Common Metadata Model XML Metadata
Interchange format. This is the namespace that you use in most SAS Open
Metadata Interface clients.

� The REPOS namespace is a special-purpose namespace that defines metadata
types for repositories.

Other applications, like SAS Data Integration Studio software, may define additional
special-purpose namespaces. These namespaces are described in the appropriate
documentation.

Regardless of their namespace, the following rules describe a metadata type:

� Each metadata type models the metadata for a particular kind of object.
Distinctions among objects are based on the conceptual identities of the objects,
e.g., table, column, document, and on their behavior. Other distinctions are based
on an object’s origin and characteristics.

� The metadata types exist in a hierarchy. Supertypes define common behaviors for
subtypes. Subtypes extend behaviors. A subtype can have subtypes of its own.

� A metadata object is uniquely described by the values of its attributes and
associations.

� The attributes describe the characteristics of the metadata object.

40 Understanding Associations � Chapter 3

� The associations describe an object’s relationships with objects of other
metadata types.

� User-defined attributes are supported as extensions; user-defined metadata types
are not supported.

Understanding Associations
An association is a property that describes the relationship that joins two metadata

types. In the SAS Metadata Model, two associations exist between any related
metadata types. That is, an association is defined that describes the relationship from
the perspective of each of the metadata types. As an example, consider the relationship
between a data table and its columns. The DataTable metadata type has an association
named "Columns" defined to describe its relationship to the Column metadata type.
Conversely, the Column metadata type has an association named "Table" defined to
describe its relationship to the DataTable metadata type. The two names refer to the
same relationship; however, each association has different characteristics, including the
number of object instances supported in the relationship and a required or optional
nature.

An association that supports a relationship to a single object is referred to as a single
association. The Table association from the example above is an example of a single
association: a Column object can be associated with a single DataTable object. An
association that supports a relationship to multiple objects is referred to as a multiple
association. The Columns association is an example of a multiple association: a
DataTable object can be associated with many Column objects.

The Table association is also an example of a required association. A Column object
cannot be created without this association. However, not all single associations are
required associations. An example of a single association that is optional is the
PrimaryPropertyGroup association. A Column object can have a PrimaryPropertyGroup
association defined to a single PropertyGroup object but it is not required to have an
association to a PropertyGroup object, primary or otherwise.

The required/optional nature and number of objects that are supported by an
association are expressed in the model by a cardinality figure. The cardinality figure
lets us know the number of related objects that can or must be associated with a given
object through a particular association. Cardinality concepts are described in greater
detail in the following section.

Cardinality
A cardinality defines an upper and a lower bound that is expressed with the notation

lower..upper. In the SAS Metadata Model, the lower bound for an association is 0 or 1.
If the lower bound is 0, then the association is optional. The upper bound is 1 or n. If
the upper bound is 1, the association is a single association. If the upper bound is n, the
association is a multiple association. The following is a summary of the cardinality
combinations supported in the SAS Metadata Model:

0..1 Single, non-required association

1..1 Single, required association

0..n Multiple, non-required association

1..n Multiple, required association

Overview of the SAS Metadata Model and Model Documentation � Overview of the SAS Metadata Model Documentation 41

Objects that have have a 1..1 cardinality in an association are called dependent
objects. Dependent objects cannot be updated. If a change is needed to the dependent
object’s attributes, then the object must be deleted and a new object and association
created. In addition, if the partner object of a dependent object is deleted, then the
dependent object is deleted as well. For example, if a PhysicalTable object
(PhysicalTable is a subtype of DataTable) is deleted, then all of the Column objects
associated with it are also automatically deleted. A PhysicalTable object is not deleted
when an associated Column object is deleted because the Columns association has a
0..n cardinality.

The following association diagram illustrates the concept of cardinality:

In the diagram, the labels preceded by a + (plus sign) are association names. The
name directly outside a box describes the association defined for the object on the
opposite side. That is, PhysicalTable has a 0..n Columns association to Column.
Column has a 1..1 Table association to PhysicalTable.

See Chapter 5, “Hierarchy and Association Diagrams,” on page 69 for a graphical
representation of the main associations that are defined between the metadata types in
each submodel.

Overview of the SAS Metadata Model Documentation
This reference provides the following information about each metadata type:

� Chapter 4, “SAS Namespace Submodels,” on page 45 provides an overview of the
SAS namespace metadata types and groups metadata types that are used to
support particular functions into submodels to help you navigate the SAS
Metadata Model.

� The “Hierarchical Listing of Metadata Types” on page 65 shows the object class
hierarchy.

� Chapter 5, “Hierarchy and Association Diagrams,” on page 69 contains hierarchy
diagrams that depict the inheritance structure in each submodel (from the most
abstract types to the most specialized types) and association diagrams that
illustrate the relationships between the metadata types within a submodel.

� An “Alphabetical Listing of SAS Namespace Metadata Types” provides reference
information about each SAS namespace metadata type. This listing is available
only in online versions of this book. Look for the listing in SAS Help and
Documentation or SAS OnlineDoc.

� Chapter 6, “REPOS Namespace Metadata Types,” on page 107 provides reference
information about the metadata types defined to represent repositories.

The metadata type descriptions in the “Alphabetical Listing of SAS Namespace
Metadata Types” contain the details necessary to construct a metadata property string.
Before reading this documentation, see “Using the Metadata Types Reference” on page
42 for important information about how the reference information is structured.

When you are ready to begin creating metadata objects, see “Model Usage Scenarios”
in the SAS Open Metadata Interface: User’s Guide. These scenarios describe the specific

42 Using the Metadata Types Reference � Chapter 3

metadata types and associations needed to represent the most common application
elements. They also provide sample XML requests that show how to create the
metadata objects.

Using the Metadata Types Reference
The “Alphabetical Listing of SAS Namespace Metadata Types” contains the

following information for each metadata type:
� a description
� the XML element used to represent the metadata type in a metadata property

string
� the type’s subclass name, if any
� a list of subtypes
� an overview of the type’s usage
� an Attributes table
� an Associations table.

Legend for Attributes Table
The Attributes table lists all of the attributes defined for a given metadata type,

provides information about valid values, and indicates whether the attribute is required
and can be updated.

Name Description Type Length
Reqd for
Add

Update
allowed

Id Object’s repository ID String 17 No No

Name A logical identifier for the object.
Used for, but not limited to, display.

String 60 Yes Yes

Desc More detailed documentation for
this object.

String 200 No Yes

Type indicates the attribute’s data type, Length is the attribute’s allowed length, and
Yes or No in the appropriate column indicates whether the attribute is required when
the object is created, and whether the attribute can be updated.

Legend for Associations Table
The Associations table lists the associations that are supported for the metadata

type.

Overview of the SAS Metadata Model and Model Documentation � Legend for Associations Table 43

Name, Subelements,and
Partner Name Description

Number of
subelements

Reqd for
add

Object
ref

Update
allowed

Name:

AccessControls

Subelements:

AccessControl

AccessControlEntry

AccessControlTemplates

Partner Name:

Objects

the access
controls that
are defined
for this
object

0 to * No Yes Yes

In the table (which illustrates the information provided to describe a PhysicalTable
object’s association to access control objects):

Name, Subelements, and Partner Name column

Name
is the association name that describes the association from the perspective of
the named metadata type.

Subelements
are the metadata types supported as related objects in the association.

Partner Name
is the association name that describes the association from the perspective of
the related object.

In other words, the PhysicalTable metadata type has an AccessControls association
to the AccessControl, AccessControlEntry, and AccessControlTemplate metadata
types. In turn, the AccessControl, AccessControlEntry, and AccessControlTemplate
metadata types have an Objects association to the PhysicalTable metadata type.

Description
is an optional description of the association.

Number of subelements
indicates the cardinality of the association. In this example, the association is
optional; a PhysicalTable can have zero or multiple access control objects
associated with it.

Reqd for add
indicates whether the association needs to be defined when the object is created.
No means it can be added later with the UpdateMetadata method.

Obj ref
indicates whether the related object is required to exist before the association can
be created. In this example, Yes indicates that an AccessControl,
AccessControlEntry, or AccessControlTemplate object must be defined before this
association can be created.

Update Allowed
indicates whether the objects in the association can be updated. Yes indicates the
objects can be updated.

The information in the previous example indicates that a PhysicalTable object does
not require an AccessControls association in order to be created (the object can be

44 SAS Metadata Model Conventions � Chapter 3

updated to include the association later). However, the access control object must exist
before an association can be created. The associations can be added to a PhysicalTable
object by using the AddMetadata method or the UpdateMetadata method. The
attributes of the objects in the association can also be updated with no restrictions.

SAS Metadata Model Conventions

Date, Time, and DateTime Values
Date, time, and datetime information is stored on the metadata server as GMT

values in SAS date, time, and datetime encoding. These values are then formatted in
the XML according to a specified locale. The metadata server supports a US-English
locale. You can use a different locale in the client by setting the OMI_NOFORMAT flag
in a GetMetadata request. For more information, see “GetMetadata” on page 148.

The OMI_NOFORMAT flag gets date, time, and datetime data as raw floating point
values that the client can use as SAS date, time, and datetime values and format
however they want. Because objects are persisted to disk with a GMT datetime value,
an object created in local time might have a different datetime value on disk. For
example, an object created at ’30May2003:16:20:01’ CST could have a persisted
datetime value of ’30May2003:21:20:01’. To accommodate the storage conversion, the
server converts values that you specify in an XMLSELECT search string to GMT for
you. However, the datetime values returned by the server will look different than the
values that you submitted in the search string.

"V" in Length Attribute
Attributes that have no practical length limitation are represented with a "V" in the

Length attribute, for example, "V64". The "V" indicates the property is variable length
(arbitrarily large). The documented length (64) is the maximum length of the string
that can be stored before an overflow algorithm is invoked. Storing a string that
exceeds the documented length causes one or more TextPage objects and corresponding
associations that connect them to the original object to be created to store the string.
Each TextPage object holds an additional 1,000 characters of text.

Use of the overflow algorithm has performance overhead associated with it.
XMLSELECT processing also will not search overflow text in attempts to qualify an
object for selection.

45

C H A P T E R

4
SAS Namespace Submodels

Overview of SAS Namespace Submodels 46
Submodels in the SAS Metadata Model 47

Analysis Submodel 48

Metadata Types 48

Container Metadata Types 48

Aggregation Metadata Types 48
Other Metadata Types 48

Usage 49

Authorization Submodel 49

Metadata Types 49

Usage 49

Business Information Submodel 49
Metadata Types 49

Usage 50

Foundation Submodel 50

Metadata Types 50

Basic Metadata Types 51
Extension Metadata Types 51

Identity Metadata Types 51

Role Metadata Types 51

Usage 51

Grouping Submodel 52
Metadata Types 52

Usage 52

Mining Submodel 52

Metadata Types 52

Usage 53

Property Submodel 53
Metadata Types 53

Usage 54

Providing Parameter Information for a Stored Process 54

Supporting Default Values and Other Pre-Configured Parameters 55

Defining Property Sheets 55
Relational Submodel 55

Metadata Types 56

Container Metadata Types 56

Table Metadata Types 56

Column Metadata Types 56
Key Metadata Types 57

Other Metadata Types 57

Usage 57

46 Overview of SAS Namespace Submodels � Chapter 4

Resource Submodel 57
Metadata Types 57

Container Types 58

Content Types 58

Text Metadata Types 58

File Metadata Types 58
Entry Metadata Types 58

Device Metadata Types 58

Other Metadata Types 59

Usage 59

Software Deployment Submodel 59

Metadata Types 59
Software Metadata Types 60

Connection Metadata Types 60

Service Metadata Types 61

Other Metadata Types 61

Usage 61
Transform Submodel 61

Metadata Types 62

Abstract Metadata Types 62

Event Metadata Type 62

Query Metadata Types 62
Process Metadata Types 63

Scheduling Metadata Types 63

Usage 63

Describing Stored Processes 63

Representing ETL Processes 63

Defining Queries 64
Scheduling Processes 64

Storing Initialization Information for Software Components 64

XML Submodel 64

Metadata Types 64

Usage 64
Hierarchical Listing of Metadata Types 65

Overview of SAS Namespace Submodels
The SAS namespace contains the metadata types for defining application metadata

objects. The SAS namespace metadata types form the basis of the SAS Metadata Model.
The SAS Metadata Model defines approximately 150 metadata types. In order to

make the model more understandable, metadata types that are used to support a
particular scenario are grouped into submodels. The groupings are for documentation
purposes only.

All methods in the IOMI class are valid with the SAS namespace metadata types.
For information about these methods, see Chapter 7, “Methods for Reading and Writing
Metadata (IOMI Class),” on page 115.

To see descriptions of the metadata types, see the “Alphabetical Listing of SAS
Namespace Metadata Types” in online versions of this reference. This reference is
available in the SAS Online Help and Documentation and in SAS OnlineDoc.

SAS Namespace Submodels � Submodels in the SAS Metadata Model 47

Submodels in the SAS Metadata Model
The following submodels have been identified to help you to navigate the SAS

Metadata Model. The submodels provide functional groupings of the metadata types.

Analysis submodel
includes metadata types that are used to describe statistical transformations,
multidimensional data sources, and OLAP information. For more information, see
“Analysis Submodel” on page 48.

Authorization submodel
includes metadata types that are used to define access controls. Metadata objects
based on authorization metadata types can be associated with metadata objects
describing people, repositories, and application elements to control access both to
the metadata and the data that the metadata describes. For more information, see
“Authorization Submodel” on page 49.

Business Information submodel
includes metadata types that are used to describe people, their responsibilities,
and information about how to contact them, as well as business documentation
and other descriptive information. For more information, see “Business
Information Submodel” on page 49.

Foundation submodel
includes the basic metadata types of the model, from which all other types are
derived, and some utility metadata types. For more information, see “Foundation
Submodel” on page 50.

Grouping submodel
includes metadata types that are used to group metadata objects together in a
particular context or hierarchy. For more information, see “Grouping Submodel”
on page 52.

Mining submodel
includes metadata types that are used to store analytic information associated
with data mining. For more information, see “Mining Submodel” on page 52.

Property submodel
includes metadata types that are used to describe prototypes of metadata objects,
parameters for processes, and properties or options for SAS libraries, data sets,
connections to servers, or software commands. For more information, see
“Property Submodel” on page 53.

Relational submodel
includes metadata types that are used to describe relational tables and other
objects used in a relational database system, such as indexes, columns, keys, and
schemas. For more information, see “Relational Submodel” on page 55.

Resource submodel
includes metadata types that are used to describe data resources such as files,
directories, SAS libraries, SAS catalogs and catalog entries. For more information,
see “Resource Submodel” on page 57.

Software Deployment submodel
includes metadata types that are used to describe software, servers, and
connection information. For more information, see “Software Deployment
Submodel” on page 59.

48 Analysis Submodel � Chapter 4

Transform submodel
includes metadata types that are used to describe a transformation of data. This
can be a logical to physical mapping, or a set of steps that transform input data to
a final result. For more information, see “Transform Submodel” on page 61.

XML submodel
includes metadata types that are used to describe XML constructs such as SAS
XML LIBNAME Engine map definitions and XPath location paths. For more
information, see “XML Submodel” on page 64.

Analysis Submodel

This submodel contains the metadata types that are used by the SAS OLAP server.

Metadata Types
The following metadata types, relevant to the Analysis submodel, are classified as

Container, Aggregation, and Other:

AggregateAssociation

Aggregation

Cube

Dimension

Hierarchy

Level

Measure

OLAPProperty

OLAPSchema

Container Metadata Types
The OLAPSchema metadata type is a container for Dimension objects and Cube

objects that can be accessed by a particular OLAP server.

Aggregation Metadata Types
The Aggregation and AggregateAssociation metadata types are used to represent

aggregated data and the physical location of aggregated data.

Other Metadata Types
The Cube metadata type represents multidimensional data. The Dimension

metadata type represents a categorization of data, organized into hierarchies. Each
hierarchy is represented by the Hierarchy metadata type. The Level metadata type
represents a grouping of information within a hierarchy. The Measure metadata type
represents a calculated value. The OLAPProperty metadata type is an attribute
associated with members of a given dimension level.

SAS Namespace Submodels � Metadata Types 49

Usage
These metadata types are used to store metadata about multi-dimensional data

structures. This type of information is created by the OLAP server and other analytic
applications.

Note: Application developers are discouraged from creating or consuming Cube
metadata directly with the SAS Open Metadata Interface. Instead, Cubes should be
defined by using either SAS OLAP Cube Studio or PROC OLAP. For more information,
see the documentation for SAS OLAP Cube Studio and PROC OLAP. �

Authorization Submodel
The Authorization submodel contains the metadata types that are used to define

access controls.

Metadata Types
The Authorization submodel has the following metadata types:
AccessControl
AccessControlEntry
AccessControlTemplate
Permission
PermissionCondition
SecurityRule
SecurityRuleScheme
SecurityTypeContainmentRule

Usage
Application developers are discouraged from creating or consuming access control

and permission metadata directly with the SAS Open Metadata Interface. Instead,
access control and permission metadata should be defined by using the SAS
Management Console Authorization Manager plug–in. For more information, see the
documentation for SAS Management Console.

The security rule metadata types define inheritance rules for the SAS Authorization
Facility. These types are for internal use.

Business Information Submodel
This submodel contains the metadata types that are used to describe people and

documents.

Metadata Types
The Business Information submodel has the following metadata types:

50 Usage � Chapter 4

Document
Email
Keyword
Location
Person
Phone
ResponsibleParty
Timestamp
UnitofTime

The Keyword metadata type is used to add single keyword descriptions to another
metadata object. The Document metadata type contains a URI and can be used to
associate documentation to a metadata object. The Timestamp metadata type contains
a timestamp value and a role that indicates the meaning of the timestamp. The
UnitofTime metadata type is used to specify the number of a unit of time measurement
such as day, hour, or week.

The Person metadata type describes a particular person and can be associated with
ResponsibleParty objects, Email objects, Location objects, and Phone objects. The
ResponsibleParty metadata type describes a particular role for a person, such as an
author or administrator. The Email metadata type contains an e-mail address. The
Location metadata type is used to describe an address. The Phone metadata type
contains information about phone numbers.

Usage
The primary usage of these metadata types is to further describe other metadata

objects. These metadata types are used to
� associate documentation to an object
� identify the author, owner, or administrator of an object
� identify important date/time events, such as when the object was created or

updated.

Foundation Submodel
The Foundation submodel contains the basic metadata types from which all other

metadata types are derived and some utility metadata types.

Metadata Types
The following metadata types, relevant to the Foundation submodel, are classified as

Basic, Extension, Identity, and Role:

AbstractExtension
Classifier
Extension

SAS Namespace Submodels � Usage 51

ExternalIdentity
Feature
Identity
IdentityGroup
NumericExtension
Role
Root

Basic Metadata Types
Root is the supertype for all metadata types in the model.
Classifier is the supertype for objects that contain data or reports made from

transformed data.
Feature is the supertype for objects that contain data or other information and have

a dependency on a Classifier. For example, Column is a Feature of DataTable, which is
a Classifier; Measure is a Feature, and Dimension is a Classifier.

Subtypes of AbstractExtension are used to extend a metadata type by adding
additional information that is needed for a particular deployment of an application.

The ExternalIdentity metadata type is associated with some other object and
represents an ID for that object obtained from some other context. For example, a
GUID or a DistinguishedName for an object can be stored in an ExternalIdentity object.

Extension Metadata Types
AbstractExtension is the supertype for the extension metadata types. An extension is

used to “extend” or add additional attributes to any metadata type. It would be used
when an application is deployed at a particular site, and the metadata type does not
contain all the information that is required by the deployment. The extension will
include the name of the extension and a value. An SQL type of the extension may also
be specified. The Extension metadata type is used for character values and the
NumericExtension metadata type is used for numeric values.

Identity Metadata Types
The Identity and IdentityGroup metadata types are used for access control.

Role Metadata Types
There is only one Role metadata type, and it identifies the various “roles” associated

with an object. For example, a relational table may have a role of “Source” for SAS
Data Integration Studio. This means that SAS Data Integration Studio reads data from
that table; it is not a table created by SAS Data Integration Studio. Another role may
be “Summary” for the OLAP product. This identifies the way the OLAP product will
use the table.

Usage
The Foundation metadata types are primarily supertypes for other metadata types.

The exceptions are the Extension metadata types and ExternalIdentity. Extensions are

52 Grouping Submodel � Chapter 4

used when an application is deployed at a particular site, and a metadata type does not
contain information that is required by the deployment. ExternalIdentity is used to
maintain information about the object’s identity from another context.

Grouping Submodel
The Grouping submodel contains the metadata types that are used to group

metadata objects together in a particular context, as well as metadata types that are
used to construct a hierarchy of metadata objects.

Metadata Types
The Grouping submodel has the following metadata types:

Group
Tree

The Group metadata type provides a simple grouping mechanism and has an
association to a set of other metadata objects. The Tree metadata type is like Group,
except that it can be used to form a hierarchy. A Tree object may have a single
ParentTree object and any number of SubTree objects.

Usage
Each of these metadata types may be associated to a SoftwareComponent object or

DeployedComponent object (see “Software Deployment Submodel” on page 59). This
provides a context for grouping metadata objects in an application hierarchy. For
example, Enterprise Miner keeps its information organized in hierarchical “projects“
Each project is represented as a Tree object. The root Tree is associated to a
SoftwareComponent object that represents Enterprise Miner 5.0. When any copy of
Enterprise Miner 5.0 is run, it can query the metadata server for the
SoftwareComponent object that represents its type of software, obtain the Tree object
associated with that SoftwareComponent, and locate its “projects”.

Mining Submodel
The Mining submodel contains the metadata types that are used to store metadata

about mining models, as created by SAS Enterprise Miner. The metadata types in this
submodel are used in conjunction with the “Transform Submodel” on page 61.

Metadata Types
The Mining submodel has the following metadata types:
AnalyticColumn
AnalyticTable
FitStatistic
MiningResult

SAS Namespace Submodels � Metadata Types 53

Target

The MiningResult metadata type is a subtype of Transformation that is used to
represent an Enterprise Miner Model.

The AnalyticColumn metadata type contains analytic attributes to apply to a column.
These attributes include information such as upper and lower limits, and cost of
acquiring a variable, level, and distribution.

The AnalyticTable metadata type contains analytic attributes to apply to a table.
These attributes include information such as the sampling rate and a description of the
group of observations in this table.

The FitStatistic is usually a measure of accuracy of a predicted value. It may also
measure the performance or accuracy of a model.

The Target metadata type models the event or the value of interest for a mining
model.

Usage
The mining metadata types are used to store metadata about mining models. This

type of information is created by SAS Enterprise Miner and other data mining
applications.

Property Submodel
The Property submodel contains the metadata types that are used to

� provide parameter information for a stored process, including the valid choices for
the parameter

� store preconfigured parameters or options used with an object such as a library,
data set, or server (options for connecting to the server), or a stored process

� create a property sheet used to drive a user interface.

Metadata Types
The Property submodel contains the following metadata types:

AbstractProperty

AssociationProperty

AttributeProperty

LocalizedResource

LocalizedType

Property

PropertyGroup

PropertySet

PropertyType

Prototype

PrototypeProperty

The AbstractProperty, LocalizedType, and PrototypeProperty metadata types are
supertypes that aren’t expected to be instantiated; they exist so that their subtypes will

54 Usage � Chapter 4

inherit appropriate attributes and associations. You will not create objects of these
types, so for the rest of this discussion, these will be ignored.

Property objects are used to contain name=value pairs, and any object may have
Property objects. They are used to provide additional information for a particular
metadata object or to provide parameter information for a Transformation (the
metadata type used to describe a process or program).

Each Property metadata object is required to have have an owning PropertyType
metadata object. The PropertyType metadata object stores the SQL type as an integer.
If the property type is an array, there will be an association to another PropertyType
object using the ElementType association. This object will contain the SQL type of the
array elements. The PropertyType can also have a StoredConfiguration metadata object
defined. The StoredConfiguration object will contain additional information such as a
list of enumerated values.

The LocalizedResource metadata type contains information about text meant to be
displayed to a user. It contains the text for a particular locale, as well as a locale
identifier. A Property metadata object can have a set of LocalizedResource metadata
objects, one for each textual object that can be displayed and its locale.

The Prototype metadata type is used to provide a template for creating a set of
metadata objects. For example, some of the metadata types used to describe a
Workspace Server are ServerComponent, a set of Connection objects (COMConnection
and TCPIPConnection), and possibly Transformation, to describe the initialization
process for the server. A Prototype object is used to describe the metadata objects used
in a particular scenario, like defining a Workspace Server. A Prototype has
AttributeProperty and AssociationProperty objects that describe the attributes and
associations that are needed in the scenario. Property objects are used to describe
name=value pairs and can be associated with any type of object, including Prototype.

There are several ways of grouping Property objects. The Properties association is
available for any object, and the objects in this association are considered to be the
“default” properties. This association should contain a complete set of properties for
“default” usage. If there is no default, then this association should not be used. Another
grouping is the PropertySet, which is a complete set of Property objects used in a
particular context. The third is PropertyGroup, which allows Property objects to be
grouped in a hierarchy of PropertyGroup objects used to drive a UI.

Usage

Providing Parameter Information for a Stored Process
A stored process is a SAS program that can accept input from the user to select

values for parameters. A stored process is described by the metadata type
Transformation, or one of its subtypes, and will frequently need parameters filled in for
correct execution. An example is a program that subsets Defects data based on division.
There may be a parameter called “Division” that may have one of three values:
Analytical Solutions (ANT), Software Architecture (SAR), and ALL. This parameter
should be represented as a Property.

There are three ways to associate a Property with the object it describes:

� through the Properties association

� through a PropertySet object

� through a PropertyGroup object.

If the Property is going to be displayed in a user interface and have its value selected
through the user interface, then it should be part of a PropertyGroup. PropertyGroups
can be organized in a hierarchy. For example, there can be a PropertyGroup for

SAS Namespace Submodels � Relational Submodel 55

properties associated with Operating System and a set of subgroups for Windows 2000,
z/OS, and AIX. The PropertyGroup for Windows 2000 would have the Property objects
used by Windows 2000, and so on, for the other operating systems.

There can be many more Property objects available through PropertyGroups that are
never copied into a particular Properties or PropertySet grouping. For example, the
default group of properties can have no host-specific objects. Property objects, however,
can be available through PropertyGroups that provide specific information for a specific
environment.

Supporting Default Values and Other Pre-Configured Parameters
If there are default settings for the stored process, then these defaults should be

available through the Properties association. For example, for this stored process, the
Property Division would have a default setting of "ALL" and is included in the
Properties association.

If the Analytical Solutions (ANT) group wants an alternative setting for the Property
to be "ANT", then a copy of the Property should be made and associated to a
PropertySet. When the stored process is run for the ANT group, the property set for
ANT is used, not the default settings.

It is frequently the case that a Property will be duplicated, with one copy in the
Properties list, and another in the PropertySet list, and yet a third in the
PropertyGroup list. This is a design tradeoff. It was decided that duplicating objects
across the various grouping mechanisms was preferrable to the overhead that would be
incurred by merging the Property objects across the various grouping mechanisms.

In summary:
� Properties are for a full set of properties with the default values filled in. No

hierarchy is allowed.
� PropertySets are for a full set of properties with values filled in for a specific

usage. No hierarchy is allowed.
� PropertyGroups are used to drive a UI and can be grouped in hierarchies.

Defining Property Sheets
A Prototype can also be used to define alternative values. For example, in a situation

similar to the one described in “Supporting Default Values and Other Preconfigured
Parameters” using a SASLibrary object as an example, instead of having
PropertyGroups associated directly with a SASLibrary to define alternative values, a
property sheet could be created by using the metadata type Prototype.

A Prototype is a metadata type that describes the settings of another type in a
particular environment. For SASLibrary metadata objects, there might be a Prototype
object for DB2 libraries, another for Oracle, and another for Base SAS. The Prototype
would have a top-level PropertyGroup, which in turn might have nested PropertyGroups
that contain the possible settings for attributes, Property objects, and associated objects.

A Prototype should not use either the Properties or PropertySets associations,
because it is used only as a template for creating other metadata types. All Property
objects used with the Prototype should be organized in PropertyGroups.

Relational Submodel
The Relational submodel contains the metadata types that are used to describe

relational tables and other objects used in a relational database system, such as
indexes, columns, keys, and schemas.

56 Metadata Types � Chapter 4

Metadata Types
The following metadata types, relevant to the Relational submodel, are classified as

Container, Table, Column, Key, and Other:

Column
Column Range
DatabaseSchema
DataTable
ExternalTable
ForeignKey
Index
JoinTable (Deprecated)
Key
KeyAssociation
LogicalColumn
PhysicalTable
QueryTable
RelationalTable
SASPassword
UniqueKey
WorkTable

Container Metadata Types
These metadata types are subtyped from the TablePackage metadata type in the

“Resource Submodel” on page 57. The only container defined in the Relational submodel
is DatabaseSchema.

Table Metadata Types
DataTable is the supertype of the table metadata types and has an association to the

Column metadata type that is inherited by all of the table metadata types. The
RelationalTable metadata type is used to represent a table that does not have a
physical representation. Use the RelationalTable metadata type to represent a table
that is described in a data model. A relational table can have a fixed physical location,
such as in a particular database schema. Use the PhysicalTable metadata type to
represent a table that has a fixed physical location.

Other table metadata types represent tables that do not have a fixed location. The
QueryTable metadata type represents a transient relational table that is the result set
from execution of an SQL statement. The WorkTable metadata type represents a table
in the SAS Work library; it is transient and exists only for the lifetime of a SAS session.

The ExternalTable metadata type represents tables that contain information similar
to a relational table, but do not reside in a DBMS. Excel data or comma-separated lists
are represented using this metadata type.

Column Metadata Types
LogicalColumn is the supertype used to describe column-like objects. It is not a part

of a relational table. Column is the metadata type used to describe columns in a

SAS Namespace Submodels � Metadata Types 57

relational table. The ColumnRange metadata type represents a range of columns that
have the same characteristics and that will all be acted upon in the same manner for
any transformation or query.

Key Metadata Types
Key is the supertype for the UniqueKey metadata type, which represents unique and

primary keys, and the ForeignKey metadata type, which represents foreign keys. The
KeyAssociation metadata type is used to associate columns used in a foreign key with
columns in the unique key.

Other Metadata Types
The Index metadata type is used to represent an index associated with a table, and

the SASPassword metadata type represents the SAS password that is used for an
encrypted table.

Usage
Relational tables should be associated with a data package, for example, a

DatabaseSchema or SASLibrary. The schema or library is associated to the component
where the physical data resides. In addition, a SASLibrary might be associated to a
Directory or set of Directory metadata objects which contain the file system path. A
table has a set of columns represented by the Column metadata type. For more
information about defining keys, see “Usage Scenario: Creating Metadata for Tables,
Columns, and Keys” in “Model Usage Scenarios” in the SAS Open Metadata Interface:
User’s Guide.

Resource Submodel
The Resource submodel contains the metadata types that are used to describe

physical objects such as files, directories, SAS libraries, SAS catalogs, and catalog
entries.

Metadata Types
The following metadata types, relevant to the Resource submodel, are categorized as

Container, Content, and Other:

ArchiveEntry
ArchiveFile
ContentLocation
ContentType
DeployedDataPackage
Device
DeviceType
Directory

58 Container Types � Chapter 4

File
Memory
SASCatalog
SASCatalogEntry
SASFileRef
SASLibrary
Stream
Text
TextStore

Container Types
The Directory, SASLibrary, SASCatalog, and TablePackage metadata types describe

containers for data and are subtyped from the metadata type DeployedDataPackage.
TablePackage is the supertype for all data containers that contain relational tables.
The DatabaseSchema and OLAPSchema metadata types are also subtyped from
DeployedDataPackage, but these metadata types are contained in the Relational and
Analysis submodels, respectively (see“Relational Submodel” on page 55 and “Analysis
Submodel” on page 48).

Content Types
The content metadata types describe physical location and are subtyped from the

ContentLocation metadata type. These include file metadata types, text metadata
types, and other location metadata types.

Text Metadata Types
The text metadata types are supertypes for the content metadata types and represent

a physical container for data. Unfortunately, the name “text” is a misnomer for these
metadata types, because binary as well as textual information might be stored in
objects represented by the Text metadata type. Metadata types that represent files, SAS
catalogs, and URLs as well as the TextStore metadata type, which contains data stored
directly in the metadata repository, are all subtyped from the Text metadata type. The
Document metadata type, which is used to represent a URI, is also subtyped from Text.

File Metadata Types
The file metadata types are File and ArchiveFile. An ArchiveFile can be a TAR or

Zip file and acts as both a file and a container for ArchiveEntry metadata objects.

Entry Metadata Types
These are metadata types that describe objects that are an entry in some other

physical object. These metadata types are SASCatalogEntry, which is an entry in a
SASCatalog, and ArchiveEntry, which is an entry in an ArchiveFile.

Device Metadata Types
The device metadata types represent other physical resources. They are Device,

which is used to represent printers and terminals; Memory, which represents memory

SAS Namespace Submodels � Metadata Types 59

in a computer; and Stream, Connection, and Email, which represent ways of delivering
information. The DeviceType metadata type represents information about supported
devices, including display information.

Other Metadata Types
The SASFileRef metadata type is used specifically with SAS software to identify the

physical location used by SAS software. The Report metadata type is a generic
metadata type subtyped from the Classifier metadata type (refer to the “Foundation
Submodel” on page 50) that is used to describe the result of transforming data into
another representation such as a textual table or a graph.

Usage
The metadata types in the Resource submodel are used to define the location and

type of data sources and how the data is to be delivered.
A file, for example, has a name and a physical location of a file system. The File

metadata type is used with an associated Directory metadata object. In addition, this
file may be referenced by a SASFileref metadata object.

A Zip file is considered an ArchiveFile. The ArchiveFile contains entries represented
by an ArchiveEntry. There is also an associated Directory.

SAS applications may need to reference a SASCatalog metadata object. The
SASCatalog also has associated SASCatalogEntry objects. A SASCatalog is located by a
SAS application through the SASLibrary metadata object. For more information about
defining a SASLibrary metadata object, refer to “Usage Scenario: Creating Metadata
for a SASLibrary” in “Model Usage Scenarios” in the SAS Open Metadata Interface:
User’s Guide.

A Report can have a location in a file system. If it does, there would be an associated
File or Directory metadata object if the report is actually a collection of files. A Report
can also be delivered in other ways. For example, the Report can be sent directly to a
printer Device, or an Email account. A Report can also be a static item that is stored,
or it could be created by a Transformation which is also defined in the metadata. The
resulting report would be a ClassifierTarget of a ClassifierMap. For more information
about defining transformations, refer to “Usage Scenario: Creating Metadata for a
Stored Process” in “Model Usage Scenarios” in the SAS Open Metadata Interface: User’s
Guide.

Data sources can be requested by a variety of devices. Each device has limitations on
the content that can be displayed. The ContentType metadata type should be associated
with any type of content to aid applications in determining if the content can be used,
and if so, then what is the best way to use it.

Software Deployment Submodel
The Software Deployment submodel contains the metadata types that are used to

describe software, servers, and connection information.

Metadata Types
The following metadata types, relevant to the Software Deployment submodel, are

classified as Software, Connection, Service, and Other:

60 Software Metadata Types � Chapter 4

AuthenticationDomain
COMConnection
ConfiguredComponent
Connection
DeployedComponent
LogicalServer
Login
Machine
NamedService
OpenClientConnection
SASClientConnection
ServerComponent
ServerContext
ServiceComponent
ServiceType
SoftwareComponent
TCPIPConnection

Software Metadata Types
The SoftwareComponent metadata type represents a type of software, for example,

SAS/ACCESS for ORACLE, Version 9.0. The DeployedComponent metadata type
describes software that is actually installed. An actual installation of SAS/ACCESS for
ORACLE on any machine is represented by the DeployedComponent metadata type. An
installation of software can have various configurations that are defined to run the
software. This submodel contains several subtypes of DeployedComponent that
represent different types of configured software.

� The ConfiguredComponent metadata type represents software that is configured to
run. This includes software such as Java components or customizers.

� The ServiceComponent metadata type represents software that acts as a service.
� The ServerComponent metadata type is used to represent servers and spawners.
� The LogicalServer metadata type represents a grouping of homogeneous servers

for the purpose of load balancing or pooling. It is important to note that IOM
workspace servers will always use the logical server construct even if it is a single
server.

� The ServerContext metadata type groups non-homogeneous servers that all share
common resources. ServerContext gives an application context for the grouped
servers.

Connection Metadata Types
These metadata types contain information about how to communicate with a

DeployedComponent. The Connection metadata type is the parent class and has two
primary subtypes, OpenClientConnection and SASClientConnection. The
SASClientConnection metadata type was created because of specific limitations that
SAS software has on connection information, such as the eight-character length
limitation on the name used to refer to the server.

SAS Namespace Submodels � Transform Submodel 61

TCPIPConnection and COMConnection are subtypes of OpenClientConnection, and
each contains attributes that provide the protocol-specific connection information.

Service Metadata Types
There are two metadata types in this category: ServiceType and NamedService. The

ServiceType metadata type contains descriptive information about the types of services
that are provided by a DeployedComponent. “DBMS” may be a ServiceType specified for
an Oracle or DB2 server. The NamedService metadata type contains the name used by
a naming service, such as the RMI registry, or Active Directory, to refer to a
DeployedComponent.

Other Metadata Types
The other metadata types in the Software Deployment submodel are Machine, Login,

and AuthenticationDomain. The Machine metadata type is used to identify the
computer that can run a DeployedComponent. The Login metadata type contains a user
ID and password. The AuthenticationDomain metadata type is used to identify which
Login objects can be used with which Connection objects. For example, MYNET might
be an AuthenticationDomain, and any Login metadata objects associated with that
domain can be used with any Connection object associated with that domain.

Usage
The metadata types in the Software Deployment submodel are used to define the

software that is found in an enterprise and information about how to initialize and
access the software. The metadata types are generic in nature since it is impractical to
have a metadata type for every software system or every type of connection. In most
use cases, these metadata types will have associated properties which give more specific
information about the deployment of the system or provide additional options that can
be used. A prototype will typically be defined for these classes, which represent
software that is supported by an application. Many of these prototypes are installed by
the SAS Management Console during the initialization of a new repository. For more
information about using the Software Deployment submodel, refer to “Usage Scenario:
Creating Objects which Represent a DBMS” in “Model Usage Scenarios” in the SAS
Open Metadata Interface: User’s Guide. Also see “Usage Scenario: Creating Metadata
for a Workspace Server,” which contains information about using a prototype to create
the metadata definition.

Transform Submodel

The Transform submodel contains the metadata types that are used to

� describe stored processes

� represent ETL processes

� define queries

� schedule processes

� store initialization information for software components.

62 Metadata Types � Chapter 4

Metadata Types
The following metadata types, relevant to the Transform submodel, are classified as

Abstract, Event, Query, Process, and Scheduling:
AbstractJob
AbstractTransformation
Event
FeatureMap
GroupByClause (Deprecated)
HavingClause (Deprecated)
JFJob
Job
Join (Deprecated)
OnClause (Deprecated)
OrderByClause
QueryClause
RowSelector
Select
StepPrecedence
Transformation
TransformationActivity
TransformationStep
Variable
WhereClause (Deprecated)

Abstract Metadata Types
The AbstractJob, AbstractTransformation, and QueryClause metadata types are

supertypes that aren’t expected to be instantiated; they exist so that their subtypes will
inherit appropriate attributes and associations.

Event Metadata Type
The Event metadata type is used to describe conditions that must occur to drive

other processes.

Query Metadata Types
The GroupByClause, HavingClause, OnClause, WhereClause, and Join metadata

types all have been deprecated from the model. They will be removed once all changes
have been made by Information Map. For the purposes of this discussion, we will focus
on the current metadata types.

The Select metadata type represents a query process. The query is stored as text in
the SourceCode association of the Select metadata object. The query may contain
strings which should be replaced by a value. The Variable metadata type will contain
information and associations which help determine which strings should be replaced
and which value should be used.

SAS Namespace Submodels � Usage 63

The RowSelector and OrderByClause metadata types are used by the Transformation
metadata type and subtypes to further qualify the transformation.

Process Metadata Types
The process metadata types are used to define a process. A process may be a stored

process. In this case, the code for the process is stored and additional associations give
information about the inputs and outputs and where the process can be run. The
process could also be a process in which an application will be generating the code,
based upon the associated inputs and outputs and the location, or on the
DeployedComponent that will be running the generated process.

The metadata for a process contains all of the information about the sources and the
targets; therefore, if a change is made to any source, it is easy to identify the process
and targets that might be impacted by the change.

The TransformationActivity metadata type represents a grouping of
TransformationStep metadata objects. At this level, the TransformationSources and
TransformationTargets associations represent the initial inputs to the activity and the
final output of the activity. For detailed information about what is happening within
the activity, the application should drill down first to the TransformationStep objects,
then to the Transformation metadata objects. A TransformationStep is a grouping of
Transformation metadata types. Transformation metadata types include ClassifierMap
and Select. A ClassifierMap shows the mapping between Classifier metadata types.
Examples of Classifier metadata types include PhysicalTable and Report. A Classifier
often has features, for example, a PhysicalTable has Columns. These features are
mapped by using a FeatureMap metadata type. The StepPrecendence metadata type is
used to show the order of steps within an activity. If a StepPrecendence object is not
defined for a Transformation, then it is assumed that the steps may run in parallel.

Scheduling Metadata Types
Once a process has been defined and tested, the process can be scheduled. The Job

metadata type groups TransformationActivity metadata objects into a runtime unit to
be rescheduled. The JFJob metadata type represents a job which is scheduled in the
LSF Job Flow.

Usage

Describing Stored Processes
The stored process begins with a ClassifierMap and has associations to the

SourceCode that is to be run, the component(s) that can run the process
(ComputeLocations), the inputs (ClassifierSources), and the outputs (ClassifierTargets)
of the stored process. For more detailed information, refer to “Usage Scenario: Creating
Metadata for a Stored Process” in “Model Usage Scenarios” in the SAS Open Metadata
Interface: User’s Guide.

Representing ETL Processes
The ETL uses a ClassifierMap and the associated FeatureMaps to show the mapping

of data through a process flow. The ClassifierMaps are reusable entities that are
grouped together in TransformationSteps. TransformationSteps are also reusable and
are grouped into TransformationActivities. A TransformationActivity may also be

64 XML Submodel � Chapter 4

reused and would be grouped by a Job. The Job is the unit which defines the process
which is to be run. The Job can be scheduled to run as a batch process or can be
triggered by various external or internal events. StepPrecedence is used to show the
order of TransformationSteps. Each level of the ETL process can have different
locations where the process should be run. The ComputeLocations association is used to
show the components that are capable of performing the process.

Defining Queries
A query uses the Select metadata type, which is a subtype of ClassifierMap, to define

the SQL query. The query is stored as SourceCode and may contain substitution
strings. The associated Variable objects will contain information about which string to
replace and where to get the value that should be used. The Select object will also use
the ClassifierSource and ClassifierTarget associations to document the inputs and
outputs of this query.

Scheduling Processes
Any process defined in the metadata can be scheduled to run as a job. It is required

that the process be part of a TransformationActivity. TransformationActivity objects can
then be grouped together as a Job.

Storing Initialization Information for Software Components
A Deployed Component (or its subtypes) may need initialization information that is

used at startup. The DeployedComponent would have an associated InitProcess. The
Transformation type is usually used to represent this process, and startup information
that is needed is associated to the Transformation using the TransformationSources
association. For an example of an InitProcess, refer to “Usage Scenario: Creating
Metadata for a Workspace Server” in “Model Usage Scenarios” in the SAS Open
Metadata Interface: User’s Guide.

XML Submodel
The XML submodel contains the metadata types that are used to describe XML

constructs such as SAS XML LIBNAME Engine map definitions and XPath location
paths.

Metadata Types
The XML submodel consists of the following metadata types:
SXLEMap
XPath

The SXLEMap metadata type is the root node for a SAS XML LIBNAME Engine
map definition.

The XPath metadata type is used to store an XPath location path.

Usage
These metadata types are used by the SAS XML LIBNAME Engine to aid in defining

the XML mappings.

SAS Namespace Submodels � Hierarchical Listing of Metadata Types 65

Hierarchical Listing of Metadata Types
The SAS Metadata Model is an object-oriented, hierarchical model. The following

listing is illustrates the object hierarchy.
� Root

� Hierarchy
� SummaryStats (DEPRECATED)
� Aggregation
� AggregateAssociation (DEPRECATED)
� AbstractTransformation

� TransformationStep
� SyncStep

� TransformationActivity
� FeatureMap
� Transformation

� ClassifierMap
� Select
� Join (DEPRECATED)

� AbstractJob
� Job
� JFJob

� MiningResult

� QueryClause
� WhereClause (DEPRECATED)
� RowSelector
� GroupByClause
� HavingClause (DEPRECATED)
� OrderByClause
� OnClause (DEPRECATED)

� Event
� Variable
� Feature

� Level
� OLAPProperty
� StepPrecedence

� ConditionalPrecedence

� LogicalColumn
� Measure
� Column

� ColumnRange

� Classifier
� Cube

66 Hierarchical Listing of Metadata Types � Chapter 4

� Dimension
� DataTable

� ExternalTable
� RelationalTable

� PhysicalTable
� WorkTable

� QueryTable
� JoinTable (DEPRECATED)

� TableCollection

� Index
� Report

� AbstractExtension
� Extension
� NumericExtension

� Role
� Identity

� IdentityGroup
� Person

� ExternalIdentity
� SASPassword
� Key

� UniqueKey
� ForeignKey

� KeyAssociation
� Tree
� Group

� SXLEMap

� DeployedDataPackage
� OLAPSchema
� DatabaseCatalog
� SASCatalog
� RelationalSchema

� DatabaseSchema
� DataSourceName
� SASLibrary

� ContentLocation
� Text

� TextStore
� SASCatalogEntry
� File

� ArchiveFile

� ArchiveEntry

SAS Namespace Submodels � Hierarchical Listing of Metadata Types 67

� Document

� Directory
� Device
� Stream
� Memory
� Connection

� SASClientConnection
� OpenClientConnection

� TCPIPConnection
� COMConnection

� Email

� SASFileRef

� ContentType
� DeviceType
� AuthenticationDomain
� SoftwareComponent

� DeployedComponent
� ConfiguredComponent

� ServerComponent
� LogicalServer
� ServerContext

� ServiceComponent

� Login
� Machine
� ServiceType
� NamedService
� SASLicense
� ResponsibleParty
� Location
� Phone
� Keyword
� Timestamp
� UnitofTime
� LocalizedResource
� LocalizedType

� PropertyGroup
� PropertyType
� Prototype
� AbstractProperty

� Property
� PrototypeProperty

� AttributeProperty

68 Hierarchical Listing of Metadata Types � Chapter 4

� AssociationProperty

� PropertySet
� AnalyticColumn
� AnalyticTable
� FitStatistic
� Target
� XPath
� Change
� Permission
� PermissionCondition
� AccessControl

� AccessControlEntry
� AccessControlTemplate

� SecurityRuleScheme
� SecurityRule

� SecurityTypeContainmentRule

� EMModel
� EMRules
� PSPortalProfile
� PSPortalPage
� PSPortlet
� PSLayoutComponent

� PSColumnLayoutComponent
� PSGridLayoutComponent

� ITTransportAlias
� ITQueueAlias
� ITMsmqModel
� ITChannel
� ITSubscriber

� ITContentSubscriber)
� ITEventSubscriber

� ITFilter
� ITModel
� ITMap
� ITRendModel

69

C H A P T E R

5
Hierarchy and Association
Diagrams

Overview to Hierarchy and Association Diagrams 70
Understanding the Diagrams 71

Diagrams for Analysis Metadata Types 71

Analysis Hierarchy 71

Level, Measure Hierarchy 72

Dimension Associations 72
Physical Associations 73

OLAP Schema 74

Cube Associations 74

Diagrams for Authorization Metadata Types 75

Authorization Hierarchy 75

Authorization Associations 75
Security Rules Hierarchy 76

Security Rules Associations 76

Diagrams for Business Information Metadata Types 77

Business Information Hierarchy 77

Root Associations 77
Person Associations 78

Diagrams for Foundation Metadata Types 78

Foundation Hierarchy 78

Root Associations 79

Identity Associations 79
Diagrams for Grouping Metadata Types 80

Grouping Hierarchy 80

Grouping Associations 80

Diagrams for Mining Metadata Types 81

Mining Hierarchy 81

Target Associations 81
Analytic Table and Column Associations 82

ModelResult Associations 82

Diagrams for Property Metadata Types 83

Property Hierarchy 83

Property Associations 84
Configuration Associations 84

Prototype Associations 85

Locale Associations 85

PropertyType Array Associations 86

Diagrams for Relational Metadata Types 86
Key Hierarchy 86

Column Hierarchy 87

Table Hierarchy 87

70 Overview to Hierarchy and Association Diagrams � Chapter 5

DeployedDataPackage Hierarchy 88
Schema, Table, Role, and Column Associations 89

Table, Password, and Index Associations 89

Table and Key Associations 89

Threaded Kernel Table Services Data Source Name Associations 90

Table Collection Associations 90
Diagrams for Resource Metadata Types 91

Resource Hierarchy 91

Report, SASFileRef Associations 92

DeployedDataPackage, File Associations 93

Resource Content Type, Devices Associations 93

SASLibrary, SASCatalog Associations 94
Diagrams for Software Deployment Metadata Types 95

Software Deployment Hierarchy 95

Login, DeployedComponent Associations 95

DeployedComponent, ServiceType Association 96

DeployedComponent Associations 96
DeployedComponent, NamedService Association 97

SASLibrary, Database Associations 98

SoftwareComponent, Root Association 98

Connection, Script File Associations 99

Connection, SASPassword Associations 99
Diagrams for Transformation Metadata Types 100

Transformation Hierarchy 100

Root, Transformation Associations 101

Transformation Associations Overview 102

Event Associations 102

ClassifierMap Associations 103
Join Associations 104

Job Associations 104

Variable Associations 104

Workflow Associations 105

Diagrams for XML Metadata Types 105
XML Hierarchy 105

XML Associations 106

Overview to Hierarchy and Association Diagrams

This section contains graphical representations of the metadata type relationships
described in “Overview of SAS Namespace Submodels” on page 46. Hierarchy diagrams
illustrate the supertype and subtype relationships defined in the SAS Metadata Model.
Association diagrams illustrate the associations between related metadata types. The
purpose of the diagrams is to help you understand the relationships between the SAS
namespace metadata types. By understanding these relationships, you can

� identify which metadata types you need to use to describe common application
elements

� assess the data structures that will be affected when a change is made to an object
in a particular hierarchy

� determine how to access metadata types by using their associated properties

� identify which metadata types can be created independently and which ones must
be created in association with other types.

Hierarchy and Association Diagrams � Analysis Hierarchy 71

The diagrams are grouped according to submodel. After reviewing the diagrams, see
“Model Usage Scenarios” in the SAS Open Metadata Interface: User’s Guide for
examples of how to use the SAS namespace metadata types to create actual objects of
the most commonly used application elements.

Understanding the Diagrams
The diagrams in this section are UML diagrams. The acronym “UML” stands for

Unified Modeling Language, which is an object-oriented analysis and design language
developed by the Object Management Group (OMG).

Each diagram shows only a part of the total structure. The following notes apply to
all diagrams:

� Each square in the diagram represents a metadata type; the text in the square is
the name of the metadata type.

� Each line (connection) indicates that two metadata types have an association.
Arrows indicate the direction of the data flow.

� Hollow arrows indicate a subtype/supertype relationship in which the metadata
type being pointed to is the supertype.

The following notes apply only to association diagrams:
� The text preceded by a + (plus sign) outside of each square is the association name

and describes the nature of the connected square’s association to the square.
� The n..n describes the cardinality of the association.

For more information about associations and cardinality, see “Understanding
Associations” on page 40.

Diagrams for Analysis Metadata Types

Analysis Hierarchy
The Analysis Hierarchy Diagram depicts the hierarchy of the metadata types that

are defined to represent statistical transformations, multidimensional data sources, and
OLAP information.

72 Level, Measure Hierarchy � Chapter 5

Figure 5.1 Analysis Hierarchy Diagram

Root
(from Foundation)

Classifier
(from Foundation)

Hierarchy

Aggregation Aggregate Association

Cube Dimension

Level, Measure Hierarchy
The Level and Measure Hierarchy Diagram depicts the hierarchy of the metadata

types that are defined to represent OLAP information.

Figure 5.2 Level and Measure Hierarchy Diagram

Feature
(from Foundation)

OLAPProperty LogicalColumn
(from Relational)

Level

Measure

Dimension Associations
The Dimension Associations Diagram illustrates the associations between the

Dimension, Level, OLAPProperty, Measure, and Hierarchy metadata types.

Hierarchy and Association Diagrams � Physical Associations 73

Figure 5.3 Dimension Associations Diagram

Measure

+OwningDimension
1

+Levels
0..n

+Levels
0..n

+OLAPProperties
 0..n

+Hierarchies
0..n

+OLAPProperties
0..n

+AssociatedLevel
 0..n

+OwningDimension
1

+0..n
 +Measures

+DefaultMeasure
 0..1

+OwningDimension
1

+DefaultHierarchy
 0..1

+Hierarchies
 0..n

+DefaultForDimension
 0..1

+DefaultForDimension
 0..1

OLAPProperty

Level

Hierarchy

Dimension

+Hierarchies
 0..n

Physical Associations
The Physical Associations Diagram illustrates the associations between the Cube,

File, PhysicalTable, Aggregation, and Level metadata types. The tables from which the
Cube is derived are associated via one or more ClassifierMap objects. For more
information, see the description of the “Transform Submodel” on page 61.

74 OLAP Schema � Chapter 5

Figure 5.4 Physical Associations Diagram

PhysicalTable
(from Relational)+ReachThruTables

 0..n

+ReachThruCubes
 0..n +Aggregations

0..n
Cube

File
(from Resource)

Level

+OwningCube
1

+AggregationTables
0..n

+Aggregations
0..n

0..n
+Aggregations+AssociatedCubes

 0..1

+AssociatedFile
 1

+Levels
0..n

+AggregateAssociations
0..n

Aggregation

OLAP Schema
The OLAP Schema Diagram illustrates the associations between the

DeployedDataPackage, OLAPSchema, Dimension, File, and Cube metadata types.

Figure 5.5 OLAP Schema Diagram

DeployedDataPackage
(from Resource)

+AssociatedOLAPSchema
 0..1

OLAPSchema

+AssociatedOLAPSchema
 0..1

Dimension Cube

File
(from Resource)

+AssociatedOLAPSchema
 0..1

+Cubes
0..n

+LogFile
 0..1

+Dimensions
 0..n

Cube Associations
The Cube Associations Diagram illustrates the associations between the Dimension,

Measure, Cube, and Hierarchy metadata types.

Hierarchy and Association Diagrams � Authorization Associations 75

Figure 5.6 Cube Associations Diagram

Dimension

Hierarchy

Cube

Measure

+OwningDimension
1

+Dimensions
0..n

+Measures
0..n

+Measures
0..n

+ParentCubes
0..n

+Cubes
0..n

+Cubes
0..n

+SubCubes
0..n

 +Cubes
0..n

+Hierarchies
 0..n

Diagrams for Authorization Metadata Types

Authorization Hierarchy
The Authorization Hierarchy Diagram depicts the hierarchy of the metadata types

that are defined to represent access controls.

Figure 5.7 Authorization Hierarchy Diagram

Root
(from Foundation)

Permission AccessControl PermissionCondition

AccessControlTemplate AccessControlEntry

Authorization Associations
The Authorization Associations Diagram illustrates the associations between the

Root, AccessControl, and AccessControlTemplate metadata types, and the
AccessControlEntry, Identity, Permission, and PermissionCondition metadata types.

76 Security Rules Hierarchy � Chapter 5

Figure 5.8 Authorization Associations Diagram

+Identities
0..n

Root
(from Foundation)

+AccessControlItems
0..n

+Objects
0..n

+AccessControls
0..n

+AccessControlEntries
 0..1 +OwningAccessControlEntry

1
+Permissions

0..n

AccessControl

AccessControlTemplate

+AccessControlTemplates
0..n

AccessControlEntry

Identity
(from Foundation)

+AssociatedControlEntries
0..n

PermissionCondition

+AssociatedCondition
0..1

Permission

Security Rules Hierarchy
The Security Rules Hierarchy Diagram depicts the hierarchy of the metadata types

that are defined to represent security rules.

Figure 5.9 Security Rules Hierarchy Diagram

Root
(from Foundation)

SecurityRuleSchema SecurityRule

SecurityTypeContainmentRule

Security Rules Associations
The Security Rules Associations Diagram illustrates the associations between the

SecurityRuleScheme and SecurityRule metadata types.

Hierarchy and Association Diagrams � Root Associations 77

Figure 5.10 Security Rules Associations Diagram

SecurityRuleScheme

+SecRuleSch
 1

+SecRules
0..n

SecurityRule

Diagrams for Business Information Metadata Types

Business Information Hierarchy
The Business Information Hierarchy Diagram depicts the hierarchy of the metadata

types that are defined to represent people, their responsibilities, information about how
to contact them, and business documents.

Figure 5.11 Business Information Hierarchy Diagram

Root
(from Foundation)

Text
(from Resource)

Document

ResponsibleParty Identity
(from Foundation)

Person

Phone

Email

Location

Timestamp

UnitofTime

DeployedDataPackage
(from Resource)

ContentLocation
(from Resource)

Root Associations
The Root Associations Diagram illustrates the associations between the Root,

Document, Timestamp, TextStore, ResponsibleParty, and Person metadata types.

78 Person Associations � Chapter 5

Figure 5.12 Root Associations Diagram

Document
Timestamp

ResponsibleParty Person

Root
(from Foundation)

TextStore
(from Resource)

+Documents
 0..n

+Objects
 0..n

+Objects
0..n

+ResponsibleParties
0..n

+Responsibilities
0..n

 +Timestamps
0..n

 +Objects
0..n

+Objects
0..n

+Notes
0..n

+Persons
0..n

Person Associations
The Person Associations Diagram illustrates the associations between the Person,

Location, Email, and Phone metadata types.

Figure 5.13 Person Associations Diagram

Location

Email

Phone

Person

+EmailAddresses
 0..n

+Locations
 0..n

+Persons
 0..n

+Persons
 0..n +Persons

0..n

+PhoneNumbers
 0..n

Diagrams for Foundation Metadata Types

Foundation Hierarchy
The Foundation Hierarchy Diagram illustrates the basic metadata types of the SAS

Metadata Model, from which all other metadata types are derived.

Hierarchy and Association Diagrams � Identity Associations 79

Figure 5.14 Foundation Hierarchy Diagram

Root

Classifier

Identity

IdentityGroup

Feature

Extension NumericExtension

AbstractExtension

Keyword
(from Business Information)

Role

ExternalIdentity

Root Associations
The Root Associations Diagram illustrates the associations between the Root,

ExternalIdentity, Keyword, and AbstractExtension metadata types.

Figure 5.15 Root Associations Diagram

ExternalIdentity

AbstractExtension

Keyword
(from Business Information)

 +ExternalIdentities
0..n

+OwningObject
 1

+OwningObject
 1

+Extensions
 0..n

+Objects
 0..n

+Keywords
 0..n

Root

Identity Associations
The Identity Associations Diagram illustrates the associations between the Identity,

Login, and IdentityGroup metadata types.

80 Diagrams for Grouping Metadata Types � Chapter 5

Figure 5.16 Identity Associations Diagram

Identity

Login
(from Software Deployment)

IdentityGroup

+AssociatedIdentity
 0..1

+Logins
0..n

 +MemberIdentities
0..n

 +IdentityGroups
0..n

Diagrams for Grouping Metadata Types

Grouping Hierarchy
The Grouping Hierarchy Diagram depicts the hierarchy of the metadata types that

are defined to represent collections of data.

Figure 5.17 Grouping Hierarchy Diagram

Root
(from Foundation)

Group Tree

Grouping Associations
The Grouping Associations Diagram illustrates the associations between the Root,

Group, Tree, and SoftwareComponent metadata types.

Hierarchy and Association Diagrams � Target Associations 81

Figure 5.18 Grouping Associations Diagram

+Members
0..n

+Groups
0..n

+SoftwareGroups
0..n

+SoftwareComponents
0..n

+Trees
0..n

+SoftwareTrees
 0..n

+SoftwareComponents
0..n

+Members
0..n

+SubTrees
 0..n

+ParentTree
0..1

Root
(from Foundation)

Software Component
(from SoftwareDeployment)

TreeGroup

Diagrams for Mining Metadata Types

Mining Hierarchy
The Mining Hierarchy Diagram depicts the hierarchy of the metadata types that are

defined to represent analytic transformations.

Figure 5.19 Mining Hierarchy Diagram

Root
(from Foundation)

AnalyticColumn AnalyticTable

Target

FitStatistic

Transformation
(from Transform)

MiningResult

Target Associations
The Target Associations Diagram illustrates the associations between the

AnalyticColumn, Target, MiningResult, Text, and FitStatistic metadata types.

82 Analytic Table and Column Associations � Chapter 5

Figure 5.20 Target Associations Diagram

0..n
+Models

+Targets
0..n 0..n

+FitStatistics

0..n
+Targets

0..n
+TextualInformationObjects

0..1
+TargetInformation

1
+OwningAnalyticColumn 1

+OwningTarget

Text
(from Resource)

MiningResult

AnalyticColumn FitStatistic

Target

Analytic Table and Column Associations
The Analytic Table and Column Associations Diagram illustrates the associations

between the RelationalTable and AnalyticTable metadata types, and the Column and
AnalyticColumn metadata types.

Figure 5.21 Analytic Table and Column Associations Diagram

RelationalTable
(from Relational)

Column
(from Relational)

AnalyticColumn

AnalyticTable

+AnalyticTrainingTable
0..1

0..n
+AnalyticTables

0..n
+AnalyticColumns

+OwningColumn
1

ModelResult Associations
The ModelResult Associations Diagram illustrates the associations between the

MiningResult, TextStore, ArchiveFile, RelationalTable, and PhysicalTable metadata
types.

Hierarchy and Association Diagrams � Property Hierarchy 83

Figure 5.22 ModelResult Associations Diagram

TextStore
(from Resource)

ArchiveFile
(from Resource)

PhysicalTable
(from Relational)

RelationalTable
(from Relational)

MiningResults

 +ResultPMML
0..1

+OwningMiningResult
 0..1

 0..n
+TrainedModelResults

0..1
 +TrainingTable

 0..n
+MiningReports

 +AssociatedMiningResult
0..1

0..n
 +ModelResults

 +TargetTable
0..1

Diagrams for Property Metadata Types

Property Hierarchy
The Property Hierarchy Diagram depicts the hierarchy of the metadata types that

are defined to represent options and extended properties in the SAS Metadata Model.

Figure 5.23 Property Hierarchy Diagram

Root
(from Foundation)

Classifier
(from Foundation)

PropertySet LocalizedType LocalizedResource

Prototype AbstractProperty

PropertyGroup

Property

PropertyType

PrototypeProperty

AttributeProperty AssociationProperty

84 Property Associations � Chapter 5

Property Associations
The Property Associations Diagram illustrates the associations between the Root,

PropertySet, Property, PropertyType, AttributeProperty, PropertyGroup,
AbstractProperty, and Text metadata types.

Figure 5.24 Property Associations Diagram

Root
(from Foundation)

PropertySet

PropertyGroup

Property

PropertyType

AttributeProperty

Text
(from Resource)

AbstractProperty

+UsedByPrototypes
0..n

+OwningObject
1

+PropertySets
0..n

+AssociatedPropertySets
0..1

+SetProperties
0..n

+OwningType
1

+TypedAttProperties
0..n

+OwningType
1

+AssociatedType
0..1

+StoredConfiguration
 0..1

+TypedProperties
0..n

 +Properties
0..n

+StoredConfiguration
 0..1

+AssociatedProperty
 0..1

+GroupedProperties
 0..n

+ParentGroup
0..1

+AssociatedPropertyGroup
 0..1

+PrimaryPropertyGroup
 0..1

+AssociatedObject
 0..1

+SubpropertyGroups
 0,,n

+AssociatedObjects
0..1

+UsingPrototype
 0..1

Configuration Associations
The Configuration Associations Diagram illustrates the associations between the

PropertyGroup, SoftwareComponent, AbstractProperty, and PropertyType metadata
types.

Hierarchy and Association Diagrams � Locale Associations 85

Figure 5.25 Configuration Associations Diagram

PropertyGroup

SoftwareComponent
(from Software Deployment) AbstractProperty

PropertyType

+PropertyGroups
0..n

+Customizers
0..n

 +Validators
0..n

+ValidatedTypes
 0..n

 +CustomizedTypes
0..n

+EditedTypes
0..n

+Editors
0..n +Customizers

 0..n

+Editors
0..n

+Customizers
0..n

 +Validators
0..n

+CustomizedProperties
0..n

+EditedProperties
0..n

 +ValidatedProperties
0..n

Prototype Associations
The Prototype Associations Diagram illustrates the associations between the

Prototype, PrototypeProperty, and AssociationProperty metadata types.

Figure 5.26 Prototype Associations Diagram

Prototype

PrototypeProperty

AssociationProperty

+PrototypeProperties
0..n

+OwningPrototype
1

+AssociatedPrototypes
0..n

+Associations
0..n

Locale Associations
The Locale Associations Diagram illustrates the associations between the

LocalizedType and LocalizedResource metadata types, and the Root and Property
metadata types.

86 PropertyType Array Associations � Chapter 5

Figure 5.27 Locale Associations Diagram

Root
(from Foundation)

LocalizedType

LocalizedResource

Property

+LocalizedObject
1

+Resources
0..n

0..1
+AssociatedLocalizedObject

+LocalizedAttributes
0..n

PropertyType Array Associations
The PropertyType Array Associations Diagram illustrates the associations between

PropertyType objects.

Figure 5.28 PropertyType Array Associations Diagram

PropertyType

+ElementType
0..1

 +ArrayTypes
0..n

Diagrams for Relational Metadata Types

Key Hierarchy
The Key Hierarchy Diagram depicts the hierarchy of the metadata types that are

defined to represent relational keys in the SAS Metadata Model.

Hierarchy and Association Diagrams � Table Hierarchy 87

Figure 5.29 Key Hierarchy Diagram

Root
(from Foundation)

Key KeyAssociation

UniqueKey ForeignKey

Column Hierarchy
The Column Hierarchy Diagram depicts the hierarchy of the metadata types that are

defined to represent relational columns.

Figure 5.30 Column Hierarchy Diagram

Root
(from Foundation)

LogicalColumn

ColumnRange

Column

Table Hierarchy
The Table Hierarchy Diagram depicts the hierarchy of the metadata types that are

defined to represent tables.

88 DeployedDataPackage Hierarchy � Chapter 5

Figure 5.31 Table Hierarchy Diagram

Classifier
(from Foundation)

DataTable Index

ExternalTable RelationalTable TableCollection

QueryTable PhysicalTable

JoinTable WorkTable

DataTable is an abstract metadata type that models the properties for three classes
of subtypes: ExternalTable, RelationalTable, and TableCollection. RelationalTable has
as subtypes QueryTable, PhysicalTable, JoinTable, and WorkTable, which also inherit
from each other.

DeployedDataPackage Hierarchy

The DeployedDataPackage Hierarchy Diagram depicts the hierarchy of the metadata
types that are defined to represent a relational schema.

Figure 5.32 DeployedDataPackage Hierarchy Diagram

DeployedDataPackage
(from Resource)

RelationalSchema
(from Resource)

DatabaseSchema SASLibrary
(from Resource)

Hierarchy and Association Diagrams � Table and Key Associations 89

Schema, Table, Role, and Column Associations

The Schema, Table, Role, and Column Associations Diagram illustrates the
associations between the DatabaseCatalog, RelationalSchema, DataTable, Role, and
Column metadata types.

Figure 5.33 Schema, Table, Role, and Column Associations Diagram

DatabaseCatalog

RelationalSchema
(from Resource)

Role
(from Foundation)

Column

0..1
+SchemaPackage

+Schemas
0..n

+TablePackage
0..1

+Roles
0..n

+RoleObject
1

+Tables
0..n

+Table 1

+Columns 0..n

DataTable

Table, Password, and Index Associations

The Table, Password, and Index Associations Diagram illustrates the associations
between the PhysicalTable, SASPassword, Index, and Column metadata types.

Figure 5.34 Table, Password, and Index Associations Diagram

PhysicalTable Index

SASPassword Column

+ProtectedTable 0..1

+SASPasswords 0..n

+Indexes 0..n

+Columns 0..n

+OwningPhysicalTable
1

+Indexes
0..n

Table and Key Associations

The Table and Key Associations Diagram illustrates the associations between
DataFile, Column, Key and KeyAssociation metadata types.

90 Threaded Kernel Table Services Data Source Name Associations � Chapter 5

Figure 5.35 Table and Key Associations Diagram

Column

DataTable

Key

UniqueKey ForeignKey

KeyAssociation

 +ForeignKeyColumn
1

+Columns
0..n

 +DisplayColumns
0..n

+Table 1

+Table
1

+Table
1

0..n
+UniqueKeys

+DisplayForKey
0..n

+UniqueKeyColimn 1

+KeyedColumns
1..n

+UniqueKeyAssociations 0..n

+Keys
0..n

+ForeignKeyAssociations
0..n

+KeyAssociations 0..n

+PartnerUniqueKey
1 +ForeignKeys

0..n

+ForeignKeys 0..n +OwningForeignKey
1

Threaded Kernel Table Services Data Source Name Associations
The Threaded Kernel Table Services Data Source Name Associations Diagram

illustrates the associations between RelationalSchema, DataSourceName, Login, and
Connection metadata types.

Figure 5.36 Threaded Kernel Table Services Data Source Name Associations
Diagram

RelationalSchema
(from Resource)

DataSourceName

Connection
(from Software Deployment)

Login
(from Software Deployment)

0..n
+ChildDataSources

+ParentDataSources
0..n

+DataSources
0..n

+DataSources
 0..n

 0..1
+DataSourceConnection

+DefaultLogin
 0..1

Table Collection Associations
The Table Collection Associations Diagram illustrates the associations between the

DataTable, Column, and TableCollection metadata types, and the TableCollection,

Hierarchy and Association Diagrams � Resource Hierarchy 91

DeployedDataPackage, ContentLocation, Directory, Text, File, RelationalSchema, and
SASLibrary metadata types.

Figure 5.37 Table Collection Associations Diagram

DeployedDataPackage
(from Resource)

Directory
(from Resource)

File
(from Resource)

Text
(from Resource)

ContentLocation
(from Resource)

RelationalSchema
(from Resource)

SASLibrary
(from Resource)

+Tables
0..n

+Table
1

+Columns
0..n

DataTable Column

TableCollection
0..n

+TableCollections 0..n
+TableCollections

 +CollectionLocations
0..n

0..n
+Directories

0..n
+Files

Diagrams for Resource Metadata Types

Resource Hierarchy
The Resource Hierarchy Diagram depicts the hierarchy of the metadata types that

are defined to represent data resources in the SAS Metadata Model.

92 Report, SASFileRef Associations � Chapter 5

Figure 5.38 Resource Hierarchy Diagram

Root
(from Foundation)

Classifier
(from Foundation)

OLAPSchema
(from OLAP)

DatabaseCatalog
(from Relational)

Connection
(from Software Deployment)

Email
(from Business Information)

DeployedDataPackage ContentType

Report ContentLocation

Stream Device Memory Directory

SASFileRef

SASCatalog

DeviceType

RelationalSchema

DatabaseSchema
(from Relational)

DataSourceName
(from Relational)

Document
(from Business Information)

SASLibrary
Text

SASCatalogEntry TextStore

File ArchiveEntry

ArchiveFile

Report, SASFileRef Associations
The Report and SASFileRef Associations Diagram illustrates the associations

between the Report, SASFileRef, and ContentLocation metadata types.

Figure 5.39 Report and SASFileRef Associations Diagram

Report

ContentLocation

SASFileRef

+Reports
 0..n

+FileRefs
 0..n

+FileRefs
0..n

+FileRefLocations
0..n

+ReportLocation
0..1

+Reports
0..n

Hierarchy and Association Diagrams � Resource Content Type, Devices Associations 93

DeployedDataPackage, File Associations
The DeployedDataPackage and File Associations Diagram illustrates the associations

between the DeployedDataPackage and DeployedComponent metadata types and the
File, ExternalTable, ArchiveFile, ArchiveEntry, and Directory metadata types.

Figure 5.40 DeployedDataPackage and File Associations Diagram

DeployedDataPackage

 +AliasFor
0..1

+Aliases
0..n

+DataPackages
0..n

+DeployedComponents
0..n

+OwningFile
1

0..1
+AssociatedExternalTable

+OwningArchive
1

+ArchiveEntries
0..n

ArchiveEntry

ArchiveFile
+Parent

0..1

DirectoryFile

+Files
0..n

+Directories
 0..n

+SubDirectories
0..nExternalTable

(from Relational)

DeployedComponent
(from Software Deployment)

Resource Content Type, Devices Associations
The Resource Content Type, Devices Associations Diagram illustrates the

associations between the UnitofTime, ContentLocation, ContentType, DeviceType, and
Device metadata types.

94 SASLibrary, SASCatalog Associations � Chapter 5

Figure 5.41 Resource Content Type, Devices Associations Diagram

UnitofTime
(from Business Information)

+UnitofTimes
0..n

+ContentItems
0..n

+AssociatedContentType
0..1

+AssociatedContentLocation
0..1

ContentLocation

ContentType

Device
+DeployedDevices
0..n

+AssociatedDevice
0..1

DeviceType 0..n
+ContentTypes

0..n
+DeviceDescriptors

SASLibrary, SASCatalog Associations
The SASLibrary, SASCatalog Associations Diagram illustrates the associations

between the DeployedDataPackage, RelationalSchema, DataTable, SASLibrary,
SASCatalog, and SASCatalogEntry metadata types.

Figure 5.42 SASLibrary, SASCatalog Associations Diagram

DeployedDataPackage

RelationalSchema

SASLibrary

SASCatalog

SASCatalogEntry

DataTable
(from Relational)

+UsedByPackages
0..n

+UsingPackages
0..n

+Libraries
0..n

+SASCatalogs
0..n

+AssociatedSASCatalog
0..1

+SASCatalogEntries
0..n

+TablePackages
 0..n

+Tables
0..n

Hierarchy and Association Diagrams � Login, DeployedComponent Associations 95

Diagrams for Software Deployment Metadata Types

Software Deployment Hierarchy
The Software Deployment Hierarchy Diagram depicts the hierarchy of the metadata

types that are defined to describe software, servers, and connection information.

Figure 5.43 Software Deployment Hierarchy Diagram

Root
(from Foundation)

Machine AuthenticationDomain NamedService ServiceType

Login SoftwareComponent SASLicense

DeployedComponent

ConfiguredComponent

ServiceComponent ServerComponent

LogicalServer ServerContext

TCPIPConnectionCOMConnection

OpenClientConnection SASClientConnection

Connection

ContentLocation
(from Resource)

Login, DeployedComponent Associations
The Login and DeployedComponent Associations Diagram illustrates the associations

between the Login, DeployedComponent, Connection, and AuthenticationDomain
metadata types.

96 DeployedComponent, ServiceType Association � Chapter 5

Figure 5.44 Login and DeployedComponent Associations Diagram

+Source
1

DeployedComponent

+Providers
0..n

+ProviderConnections
0..n

Login
+Logins
0..n

+Domain
0..1

+Connections
0..n

 +SourceConnections
0..n

Connection

AuthenticationDomain+Domain
0..1

DeployedComponent, ServiceType Association

The DeployedComponent, ServiceType Association Diagram illustrates the
associations between the DeployedComponent and SASLicense metadata types, and the
DeployedComponent and ServiceType metadata types.

Figure 5.45 DeployedComponent, ServiceType Association Diagram

DeployedComponent ServiceType

SASLicense

 0..n
+DeployedComponents0..1

+LicensedComponent

+Licenses
0..n

+ServiceTypes
0..n

DeployedComponent Associations

The DeployedComponent Associations Diagram illustrates the associations between
the DeployedComponent, Machine, DeployedDataPackage, SoftwareComponent, and
Connection metadata types.

Hierarchy and Association Diagrams � DeployedComponent, NamedService Association 97

Figure 5.46 DeployedComponent Associations Diagram

DeployedDataPackage
(from Resource)

Machine

+DataPackages 0..n

0..1 +AssociatedMachine

+UsedByComponents 0..n

+DeployedComponents
0..n

+DeployedComponents
0..n

DeployedComponent

Connection

+Providers
 0..n

+Source
 1

+ProviderConnections
 0..n

 +SourceConnections
0..n

+UsingComponents 0..n

 +DeployedComponents
0..n

SoftwareComponent

+DescriptiveComponent
 0..1

DeployedComponent, NamedService Association
The DeployedComponent and NamedService Association Diagram illustrates the

associations between the DeployedComponent and NamedService metadata types.

98 SASLibrary, Database Associations � Chapter 5

Figure 5.47 DeployedComponent and NamedService Association Diagram

DeployedComponent

NamedService

+NamingServices
0..n

+NamedComponent
1

+ServiceNames
0..n

+NamedServices
0..n

SASLibrary, Database Associations
The SASLibrary and Database Associations Diagram illustrates the associations

between the SASLibrary, SASClientConnection, Login, Connection, and
DeployedComponent metadata types.

Figure 5.48 SASLibrary and Database Associations Diagram

SASLibrary
(from Resource)

DeployedComponent

SASClientConnection

Connection

Login

+Libraries
0..n

+LibraryConnection
0..1

+ProviderConnections
0..n

+DefaultLogin
0..1

+Libraries
0..n

+Providers
0..n

+Source
1

 +SourceConnection
0..n

SoftwareComponent, Root Association
The SoftwareComponent and Root Associations Diagram illustrates the associations

between the SoftwareComponent and Root metadata types.

Hierarchy and Association Diagrams � Connection, SASPassword Associations 99

Figure 5.49 SoftwareComponent and Root Associations Diagram

File
(from Resource)

Connection

SASClientConnection
+ScriptedConnections

0..n

+ScriptFiles
0..n

Connection, Script File Associations
The Connection and Script File Associations Diagram illustrates the associations

between the Connection, SASClientConnection, and File metadata types.

Figure 5.50 Connection and Script File Associations Diagram

Root
(from Foundation)

SoftwareComponent

+ImplementedObjects
0..n

+Implementors
0..n

Connection, SASPassword Associations
The Connection and SASPassword Associations Diagram illustrates the associations

between the Connection and SASPassword metadata types.

100 Diagrams for Transformation Metadata Types � Chapter 5

Figure 5.51 Login and DeployedComponent Associations Diagram

Connection

SASPassword
(from Relational)

+ProtectedConnections
0..n

0..1
+SAPW

+ProtectedPassthrus
0..n

0..1
+PassthruPassword

Diagrams for Transformation Metadata Types

Transformation Hierarchy
The Transformation Hierarchy Diagram depicts the hierarchy of the metadata types

that are defined to describe transformation of data.

Hierarchy and Association Diagrams � Root, Transformation Associations 101

Figure 5.52 Transformation Hierarchy Diagram

Root
(from Foundation)

Feature
(from Foundation)

StepPrecedence

ConditionalPrecedence

AbstractTransformation

QueryClause Variable

Transformation TransformationActivity TransformationStep

ClassifierMap AbstractJob
FeatureMap SyncStep

Join Select Job JFJob

Root, Transformation Associations
The Root and Transformation Associations Diagram illustrates the associations

between the Root, AbstractTransformation, DeployedComponent, SoftwareComponent,
and Text metadata types.

Figure 5.53 Root and Transformation Associations Diagram

DeployedComponent
(from Software Deployment)

+DeployedComponents
 0..n

 0..n
+SpecSourceTransformations

+InitProcesses
0..n

+ComputeLocations
 0..n

+ComputeTasks
 0..n

SoftwareComponent
(from Software Deployment)

+Customizers
 0..n

+CustomizedTransformations
 0..n

AbstractTransformation

+AssociatedTransformation
 0..1

+SourceCode
0..1

+TargetTransformations
0..n

+SpecTargetTransformations
0..n

+SourceTransformations
 0..n

+SourceSpecifications
0..n

+TransformationSources
0..n

 +TransformationTargets
0..n

+TargetSpecifications
0..n

Text
(from Resource)

Root
(from Foundation)

102 Transformation Associations Overview � Chapter 5

Transformation Associations Overview
The Transformation Associations Overview Diagram illustrates the associations

between the TransformationActivity, TransformationStep, StepPrecedence,
Transformation, ClassifierMap, Classifier, FeatureMap, and Feature metadata types.

Figure 5.54 Transformation Associations Overview Diagram

TransformationActivity
+Activities

1..n

+Steps
0..n

TransformationStep
+Steps
0..n

+Transformations
0..n

Transformation+ClassifierSources
 0..n

Classifier
(from Foundation)

+SourceClassifierMaps
 0..n ClassifierMap

 +TargetClassifierMaps
0..n+ClassifierTargets

 0..n

+AssociatedClassifierMap
0..1

+FeatureSources
 0..n +FeatureMaps

0..n
Feature

(from Foundation)

+FeatureTargets
 0..n

+SourceFeatureMaps
 0..n

 +TargetFeatureMaps
0..n

FeatureMap

0..n
 +PredecessorDependencies

 +Predecessors
1..n

StepPrecedence

 +SuccessorDependencies
0..n+Successors

 1..n

Event Associations
The Event Associations Diagram illustrates the associations between the

AbstractTransformation, DeployedComponent, and Event metadata types.

Hierarchy and Association Diagrams � ClassifierMap Associations 103

Figure 5.55 Event Associations Diagram

DeployedComponent
(from Software Deployment)

AbstractTransformation

+TriggeredTransforms
0..n

+TriggeringEvents
0..n Event 0..n

+RegisteredEvents

0..n
+TriggeringTransforms

+TriggeredEvents
0..n

0..n
+EventBrokers

ClassifierMap Associations
The ClassifierMap Associations Diagram illustrates the associations between the

AbstractTransformation and Text, and Classifier, ClassifierMap, RowSelector, and Join
metadata types.

Figure 5.56 ClassifierMap Associations Diagram

+AssociatedTransformation
0..1

AbstractTransformation Text
(from Resource)0..1

+SourceCode

+ClassifierSources
 0..n

+SourceClassifierMaps
 0..n

+OwningClassifierMap
 1

+AssociatedRowSelector
 0..1
RowSelector

Join

ClassifierMap

+TargetClassifierMaps
 0..n+ClassifierTargets

0..n

Classifier
(from Foundation)

104 Join Associations � Chapter 5

Join Associations
The Join Associations Diagram illustrates the associations between the

AbstractTransformation and Text, and Classifier, ClassifierMap, Join, JoinTable, and
OnClause metadata types.

Figure 5.57 Join Associations Diagram

AbstractTransformation
+AssociatedTransformation
 0..1 Text

(from Resource) 0..1
+SourceCode

ClassifierMapClassifier
(from Foundation)

+ClassifierSources
 0..n

+SourceClassifierMaps
0..n

+TargetClassifierMaps
0..n

Join

JoinTable
(from Relational)

+OwningJoinTable
 1

+TableJoin
0..1

+OwningJoin
 1

+OnForJoin
 0..1

OnClause

+ClassifierTargets
0..n

Job Associations
The Job Associations Diagram illustrates the associations between the AbstractJob,

TransformationActivity, Job, and JFJob metadata types.

Figure 5.58 Job Associations Diagram

AbstractJob TransformationActivity

Job JFJob

+Jobs
 0..n

+JobActivities
 0..n

+JFJobs
0..n

 0..1
+AssociatedJob

Variable Associations
The Variable Associations Diagram illustrates the associations between the Root,

Variable, and AbstractTransformation metadata types.

Hierarchy and Association Diagrams � XML Hierarchy 105

Figure 5.59 Variable Associations Diagram

Root
(from Foundation)

AbstractTransformation

Variable

1
+OwningTransformation

+SubstitutionVariables
0..n

 0..n
+Variables

+AssociatedObject
 0..1

Workflow Associations
The Workflow Associations Diagram illustrates the associations between the

TransformationStep, SyncStep, Transformation, ClassifierMap, and AbstractJob
metadata types and the TransformationStep, StepPrecedence, and
ConditionalPrecedence metadata types.

Figure 5.60 Workflow Associations Diagram

+Successors
 1..n

 1..n
+Predecessors

 0..n
+Steps

TransformationStep

+SuccessorDependencies
 0..n

StepPrecedence

+Transformations
 0..n

SyncStep

Transformation

ClassifierMap AbstractJob

ConditionalPrecedence

 0..n
+PredecessorDependencies

Diagrams for XML Metadata Types

XML Hierarchy
The XML Hierarchy Diagram depicts the hierarchy of the metadata types that are

defined to represent XML structures.

106 XML Associations � Chapter 5

Figure 5.61 XML Hierarchy Diagram

Group
(from Grouping)

Root
(from Foundation)

SXLEMap XPath
■

 LocationPath : LongString
■

 LocationPathType : Integer
■

 MajorVersion : Integer
■

 MinorVersion : Integer
■

 ProccessTag : Integer
■

 AxisName : String
■

 NodeSetFunction : String

XML Associations
The XML Associations Diagram illustrates the associations between the SXLEMap,

RelationalTable, XPath, and Column metadata types.

Figure 5.62 XML Associations Diagram

SXLEMap

RelationalTable
(from Relational)

Column
(from Relational)

0..1
+AssociatedXMLMap

+XMLMapTables
0..n

 0..1
+AssociatedMapTable

0..1
+AssociatedMapColumn

+XPaths
0..n

0..n
+XPaths

XPath

107

C H A P T E R

6
REPOS Namespace Metadata
Types

Overview of REPOS Namespace Metadata Types 107
Type Hierarchy 108

Repository 108

Overview 108

Attributes 108

Usage 108
Using GetMetadataObjects 109

RepositoryBase 109

Overview 109

Attributes 109

Association elements 111

RepositoryBase Usage 111
All Methods 111

Using AddMetadata 112

Using DeleteMetadata 112

Using Pause 112

Overview of REPOS Namespace Metadata Types
The REPOS namespace contains metadata types that define repository objects. The

SAS Open Metadata Interface provides these metadata types to enable you to register
repositories in the repository manager, to define optional relationships between
repositories, and to invoke features such as repository auditing. After you create
repository objects, you can query their attributes and associations by using IOMI class
methods, just like you can those of any application-related metadata object. You can
also issue IServer class methods to “control” a repository, for example, to temporarily
change a repository’s state in preparation for a backup.

A relationship between repositories must exist before users of the repositories can
create cross-repository references between the objects in those repositories. A
relationship between repositories is also required for features such as the change
management facility. The change management facility ensures multiuser concurrency
by implementing a check-out/check-in mechanism for updating metadata in SAS
metadata repositories. For more information about repository relationships and
cross-repository references, see “Creating Relationships Between Repositories” in the
SAS Open Metadata Interface: User’s Guide. For information about the change
management facility, see “Using the Change Management Facility” in the user’s guide.
For information about repository auditing, see “Invoking a Repository Audit Trail” in
the user’s guide.

When using IOMI class methods on repository objects, be sure to note usage
considerations described in the metadata type documentation.

108 Type Hierarchy � Chapter 6

Type Hierarchy
The SAS Metadata Model uses classes and objects to define different types of

metadata, and to model associations between individual metadata objects. It uses
inheritance of attributes and associations to effect common behaviors, and it uses
subclassing to extend behaviors.

This is the hierarchy of the repository types:
� “Repository” on page 108 (Abstract Class for Metadata Repositories)
� “RepositoryBase” on page 109 (Metadata Type for SAS Repositories)

Repository
Description: Abstract class for metadata repositories
Element tag: <Repository>

Overview
Repository is an abstract class for repositories that store metadata objects. The

subtypes represent each repository engine that is supported. In the current release, the
only subtype is RepositoryBase.

Attributes

AttributeName Description Type Length

Desc A user-defined
description of the
repository

String 200

Id The repository’s
unique,
system-generated
identifier

String 15

MetadataCreated The date and time the
metadata was created

Double

MetadataUpdated The date and time the
metadata was last
updated

Double

Name A user-defined,
unique, logical name
assigned to the
repository

String 15

Usage
The following section includes some special usage notes for the Repository type.

REPOS Namespace Metadata Types � Attributes 109

Using GetMetadataObjects
When you use GetMetadataObjects to return a list of repositories, you can list the

repositories that match any of the subtypes in the Repository superclass, or you can
simply list the repositories that match one of the subtypes.

To list instances of all subtypes in the Repository superclass:
� specify the Repository supertype in the Type parameter
� set the OMI_INCLUDE_SUBTYPES (16) flag.

Example:

<GetMetadataObjects>
<Reposid>A0000001.A0000001</Reposid>
<Type>Repository</Type>
<Objects/>
<NS>REPOS</NS>
<Flags>16</Flags> /* OMI_INCLUDE_SUBTYPES flag */
<Options/>

</GetMetadataObjects>

To list instances of one subtype in the Repository superclass, specify the appropriate
repository subtype in the Type parameter.

Example:

<GetMetadataObjects>
<Reposid>A0000001.A0000001</Reposid>
<Type>RepositoryBase</Type>
<Objects/>
<NS>REPOS</NS>
<Flags/>
<Options/>

</GetMetadataObjects>

RepositoryBase
Description: The metadata type for SAS metadata repositories
Element tag: <RepositoryBase>
Subclass of: Repository

Overview
The RepositoryBase class models the metadata for SAS metadata repositories.

Attributes

Attribute Name Description Type Length Reqd for
Add

Update
Allowed

Id The repository’s unique,
system-generated identifier.

String 17 No No

Name A user-defined, unique, logical
name assigned to the repository.

String 60 Yes Yes

110 Attributes � Chapter 6

Attribute Name Description Type Length Reqd for
Add

Update
Allowed

Desc A user-defined description of the
repository.

String 200 No Yes

Access The repository’s access mode. The
default value, CMR_FULL (0),
indicates the repository is available
for read, write, and update access.
CMR_READONLY (1) indicates the
repository can only be read.

Integer 1 No Yes

Path The directory where the repository
is located.

String 200 Yes No

Engine The engine for this repository.
Valid values are base (the default),
ORACLE, and DB2.

String 10 No Yes

Options SAS library options for this
repository. See "Creating a
Repository on an External DBMS"
in the SAS Open Metadata
Interface: User’s Guide for a list of
required options.

String 200 No No

RepositoryType The type of repository. Valid values
are Foundation, Project, or Custom.

String 40 No Yes

PauseState The Pause method override state.
This attribute is set by the Pause
method and cleared by the Resume
method. Valid values are an empty
string, READONLY, or OFFLINE.
An empty string indicates the
repository is not paused.

String 15 No Yes

AuditType Turns auditing on and off and
specifies the type of auditing that
will be performed. An empty string
indicates auditing has never been
enabled; 1 enables auditing for
added metadata records; 2 enables
auditing for deleted metadata
records; 4 enables auditing for
updated metadata records; 7
enables auditing of all transaction
types (add, delete, update); 0 turns
off auditing and indicates it was
disabled.

Integer 200 No Yes

AuditPath The directory where the audit trail
is to be created.

String 200 No Yes

AuditEngine The engine for the audit trail. This
option is reserved for future use.

String 10 No Yes

REPOS Namespace Metadata Types � RepositoryBase Usage 111

Attribute Name Description Type Length Reqd for
Add

Update
Allowed

AuditOptions SAS library options for the audit
trail. This option is reserved for
future use.

String 200 No No

MetadataCreated The date and time the repository
was created.

Double No No

MetadataUpdated The date and time the repository’s
properties were last updated.

Double No No

Association elements

Name, Subelements, and
Partner Name

Description Number of
Subelements

Reqd
for Add

Obj
Ref

Update
Allowed

Name:

DependencyUsedBy

Subelements:

Repository

Partner Name:

RepositoryBase

The repositories that
depend on this
repository.

0 to * No No Yes

Name:

DependencyUses

Subelements:

Repository

Partner Name:

RepositoryBase

The repositories on
which this repository
depends.

0 to * No No Yes

RepositoryBase Usage
The following section includes usage notes for the RepositoryBase type.

All Methods
A method call that adds, updates, or deletes a RepositoryBase object instance or any

of its properties must specify REPOS in the Namespace parameter. It must also specify
the OMI_TRUSTED_CLIENT flag (268435456) in the Flags parameter.

The metadata server must add, update, and delete objects in the REPOS namespace
when no other activity is taking place in the server, so it automatically delays other
client requests until the REPOS namespace changes are complete. This may have a
small effect on server performance.

112 RepositoryBase Usage � Chapter 6

Using AddMetadata
For remote repositories, specify the Engine and Options attributes.
To make the default access mode of a repository read-only, set Access = 1. To

temporarily change a repository’s access mode, issue the Pause method to modify its
PauseState attribute.

To grant specific users ReadMetadata and WriteMetadata permission to a repository,
specify values in the repository’s default access control template by using SAS
Management Console. For more information, see the Help for SAS Management
Console.

Using DeleteMetadata
You can delete the metadata in a repository or the metadata and the repository’s

registration. For more information, see “DeleteMetadata” on page 141. Also see
“Clearing or Deleting a Repository” in “Repository Maintenance Tasks” in the SAS Open
Metadata Interface: User’s Guide.

Using Pause
The Pause method temporarily overrides the access mode in a repository’s Access

attribute by specifying a value for the PauseState attribute. PauseState is a transient
value that is not retained across instances of the server. The PauseState remains in
effect until client activity on the repository is resumed using the Resume method, or
until the server is reinitialized. The Resume method returns the repository to the access
mode specified in the Access attribute. Use the GetRepositories method to determine a
repository’s current Access and PauseState attribute values. For more information, see
“GetRepositories” on page 156, “Pause” on page 182, and “Resume” on page 186.

113

P A R T3

Method Classes

Chapter 7.Methods for Reading and Writing Metadata (IOMI
Class) 115

Chapter 8.Security Methods (ISecurity Class) 171

Chapter 9.Repository and Server Control Methods (IServer Class) 181

Chapter 10.Program-Specific Method Examples 191

114

115

C H A P T E R

7
Methods for Reading and
Writing Metadata (IOMI Class)

Overview of the IOMI Class Methods 117
Using the IOMI Class 118

Introduction to IOMI Methods 118

Return Code 118

Other Method Output 118

Constructing a Metadata Property String 118
Quotation Marks and Special Characters 119

Identifying Metadata 120

Functional Index to IOMI Methods 120

Using IOMI Flags 121

Specifying a Flag 122

Corresponding XML Elements 122
Flag Behavior When Multiple Flags Are Used 122

Summary Table of IOMI Flags 122

Summary Table of IOMI Options 129

<DOAS> Option 131

Specifying the <DOAS> Option 131
Example 1: Standard Interface 132

Example 2: DoRequest Method 132

AddMetadata 132

Syntax 133

Parameters 133
Details 133

Example 1: Standard Interface 134

Example 2: DoRequest Method 134

Related Methods 134

CheckinMetadata 135

Syntax 135
Parameters 135

Details 136

Example 1: Standard Interface 136

Example 2: DoRequest Method 137

Related Methods 137
CheckoutMetadata 137

Syntax 137

Parameters 137

Details 138

Example 1: Standard Interface 139
Example 2: DoRequest Method 139

Related Methods 139

CopyMetadata 139

116 Contents � Chapter 7

Syntax 139
Parameters 140

Details 140

Example 1: Standard Interface 141

Example 2: DoRequest Method 141

Related Methods 141
DeleteMetadata 141

Syntax 141

Parameters 142

Details 143

Example 1: Standard Interface 143

Example 2: DoRequest Method 144
Related Methods 144

DoRequest 144

Syntax 144

Parameters 144

Details 145
Example 146

FetchMetadata 146

Syntax 146

Parameters 147

Details 147
Example 1: Standard Interface 148

Example 2: DoRequest Method 148

Related Methods 148

GetMetadata 148

Syntax 148

Parameters 149
Details 150

Example 1: Standard Interface 151

Example 2: DoRequest Method 151

Related Methods 152

GetMetadataObjects 152
Syntax 152

Parameters 152

Details 154

Example 1: Standard Interface 154

Example 2: DoRequest Method 154
Related Methods 155

GetNamespaces 155

Syntax 155

Parameters 155

Details 155

Example 1: Standard Interface 156
Example 2: DoRequest Method 156

Related Methods 156

GetRepositories 156

Syntax 156

Parameters 157
Details 157

Examples 157

Standard Interface 157

DoRequest Method 158

GetSubtypes 158

Methods for Reading and Writing Metadata (IOMI Class) � Overview of the IOMI Class Methods 117

Syntax 158
Parameters 159

Details 159

Example 1: Standard Interface 159

Example 2: DoRequest Method 160

Related Methods 160
GetTypeProperties 160

Syntax 160

Parameters 160

Details 161

Example 1: Standard Interface 161

Example 2: DoRequest Method 162
Related Methods 162

GetTypes 162

Syntax 162

Parameters 162

Details 163
Example 1: Standard Interface 163

Example 2: DoRequest Method 164

Related Methods 164

IsSubtypeOf 164

Syntax 164
Parameters 164

Example 1: Standard Interface 165

Example 2: DoRequest Method 165

Related Methods 165

UndoCheckoutMetadata 165

Syntax 166
Parameters 166

Details 166

Example 1: Standard Interface 167

Example 2: DoRequest Method 167

Related Methods 167
UpdateMetadata 167

Syntax 167

Parameters 168

Details 168

Example 1: Standard Interface 169
Example 2: DoRequest Method 169

Related Methods 170

Overview of the IOMI Class Methods

The SAS Open Metadata Interface defines a set of methods that read and write
metadata types (the IOMI class), a set of methods for administering the SAS Metadata
Server (the IServer class), and a set of methods for requesting authorization decisions
from the authorization facility (the ISecurity class). This section describes the methods
for reading and writing metadata.

The IOMI class is surfaced as a Component Object Model (COM) class in the
Windows development environment and as a Java class in the Java programming
environment. Except for the initial invocation, the methods are identical in all
programming environments.

118 Using the IOMI Class � Chapter 7

Using the IOMI Class
Using the IOMI class is a matter of using its methods. To access these methods, you

must connect to the SAS Metadata Server and instantiate objects as described in
“Introduction to IOMI Methods”.

Introduction to IOMI Methods
Each IOMI method has a set of parameters that communicate the details of the

metadata request to the SAS Metadata Server. For example, parameters identify the
namespace to use as the context for the request, the repository in which to process the
request, and the metadata type to reference. In addition, parameters specify flags and
additional options to use when processing the request. The IOMI class supports two call
interfaces for passing method parameters to the metadata server. These interfaces are
described in “Call Interfaces” on page 13.

Methods that read and write metadata objects additionally require you to pass a
metadata property string that describes the object to the server. This metadata
property string must be formatted in XML (Extensible Markup Language). For
instructions about how to define a metadata property string, see “Constructing a
Metadata Property String” on page 118.

Each IOMI method also has two output parameters: a return code and a holder for
information received from the server.

Return Code
The return code is a Boolean operator that indicates whether the method

communicated with the server. A 0 indicates that communication was established. A 1
indicates that communication did not occur. The return code does not indicate the
success or failure of the method call itself. It is the responsibility of SAS Open
Metadata Interface clients to provide error codes.

Other Method Output
All other output received from the server is in the form of a formatted XML string.

The output typically mirrors the input, except that the requested values are filled in.

Constructing a Metadata Property String
To read or write a metadata object, you must pass a string of properties that describe

that object to the SAS Metadata Server. This property string is passed to the server in
the inMetadata parameter of the method call.

A metadata object is described by
� its metadata type
� attributes that are specific to the metadata object, such as its ID, name,

description, and other characteristics
� its associations with other metadata objects.

The SAS Open Metadata Interface supports the following XML elements for defining
a metadata property string:

Methods for Reading and Writing Metadata (IOMI Class) � Quotation Marks and Special Characters 119

Metadata type
identifies the metadata type that you want to read or write, within angle brackets.
This example shows the XML element representing the PhysicalTable metadata
type:

<PhysicalTable></PhysicalTable>

A shorthand method of specifying this tag set is

<PhysicalTable/>

Metadata type attributes
specify attributes of the metadata type as XML attributes (within the angle
brackets of the metadata type). This example specifies the PhysicalTable metadata
type that has "NE Sales" in the Name attribute.

<PhysicalTable Name="NE Sales"/>

Metadata type association name and association subelement elements
are nested subelements that describe the relationship between the metadata type
named in the main XML element and another metadata type. For example:

<PhysicalTable Name="NE Sales"/>
<Columns>

<Column/>
</Columns>

</PhysicalTable>

In the example, the first nested element, Columns, is the association name. The
association name is a label that describes the relationship between the main
element (PhysicalTable) and the second nested element (Column). The second
nested element is known as the association subelement. The association
subelement identifies the partner metadata object in the relationship. The nested
elements in the example specify that the main metadata object, PhysicalTable, has
a Columns association to an object of metadata type Column.

CAUTION:
In order to meet XML parsing rules, the metadata type, attribute, and association element
and subelement names that you specify in the metadata property string must exactly match
those published in the metadata type documentation. �

Quotation Marks and Special Characters
The metadata property string is passed as a string literal (a quoted string) in most

programming environments. To ensure that the string is parsed correctly, it is
recommended that any additional quotation marks, such as those used to denote XML
attribute values in the metadata property string, be marked to indicate that they
should be treated as characters. Below are examples of using escape characters to
accomplish the task:

Java "<PhysicalTable Id=\"123\" Name=\"TestTable\" />"

Visual Basic "<PhysicalTable Id=""123"" Name=""TestTable"" />"

Visual C++ "<PhysicalTable Id=\"123\" Name=\"TestTable\" />"

SAS "<PhysicalTable Id=""123"" Name=""TestTable"" />"
"<PhysicalTable Id="123" Name="TestTable" />"

Special characters that are used in XML syntax are specified as:
’<’ = <

120 Identifying Metadata � Chapter 7

’>’ = >
’&’ = &

Identifying Metadata
The documentation for many of the metadata types mentions “general, identifying

information.” This phrase refers to the Id and Name attributes.
Each metadata object in a repository, such as the metadata for a particular column in

a SAS table, has a unique identifier assigned to it when the object is created. Each
object also has a name. For example, here is the Id and Name for a SAS table column,
as returned by the GetMetadata method:

<Column Id="A2345678.A3000001"
Name="New Column"/>

Name refers to the user-defined name assigned to the metadata object. In
the previous example, the Name of the table column is "New
Column".

Id refers to the unique identifier of the metadata object. It has the
form reposid.instanceid. For example, in the previous example, the
Id for the Column object is A2345678.A3000001.

The reposid is system-generated value that is assigned to a particular metadata
repository when it is created. Each application using the SAS Open Metadata
Architecture has one or more repositories. The reposid is a unique character string that
identifies the metadata repository that stores the object.

The instanceid is system-generated value that is assigned to a particular metadata
object when it is created. An instanceid is a unique character string that distinguishes
one metadata object from all other objects of the same type.

Note: No assumptions should be made about the internal format of the Id
attribute. Different repository systems use different Id formats. �

CAUTION:
It is strongly recommended that you avoid coding the identifier of a particular metadata
object in a client application. Instead, use the GetMetadataObjects method or other
SAS Open Metadata Interface method to return a list of the unique object identifiers,
names, and descriptions for objects of a particular type. �

Functional Index to IOMI Methods
In the dictionary, IOMI methods are listed in alphabetical order. This topic lists

IOMI methods by category.

Methods for Reading and Writing Metadata (IOMI Class) � Using IOMI Flags 121

Category Method Description

Change Management CheckinMetadata Copies metadata objects from a project
repository to a primary repository and
unlocks them

CheckoutMetadata Locks and copies metadata objects from a
primary repository to a project repository

FetchMetadata Copies metadata objects from a primary
repository to a project repository without
locking them

UndoCheckoutMetadata Deletes the specified object from the project
repository and unlocks its corresponding
primary object

General Management GetNamespaces Lists the namespaces defined for a
repository

GetSubtypes Returns all possible subtypes for a specified
metadata type

GetTypes Lists all metadata types defined in the SAS
Metadata Model

GetTypeProperties Returns all possible properties for a
metadata type

IsSubtypeOf Determines whether one metadata type is a
subtype of another

Read GetMetadata Reads specified metadata from a repository

GetMetadataObjects Lists metadata objects when passed the
repository and type

Repository GetRepositories Lists all metadata repositories available
through this server

Write AddMetadata Adds specified metadata to a repository

DeleteMetadata Deletes specified metadata from a
repository

UpdateMetadata Updates specified metadata in a repository

Messaging DoRequest Executes XML-encoded method calls

Using IOMI Flags
Various IOMI methods support flags. The write methods (AddMetadata,

DeleteMetadata, and UpdateMetadata) require that an OMI_TRUSTED_CLIENT flag
be set to authenticate write operations. Other methods support flags to expand or filter
metadata retrieval requests. See “Summary Table of IOMI Flags” on page 122 for a list
of the available flags and the methods for which they are supported.

122 Specifying a Flag � Chapter 7

Specifying a Flag
IOMI flags are specified as numeric constants in the Flags parameter of a method

call. For example, to specify the OMI_ALL (1) flag in a GetMetadata call, specify the
number 1 in the Flags parameter. To specify more than one flag, add their numeric
values together and specify the sum in the Flags parameter. For example, OMI_ALL (1)
+ OMI_SUCCINCT (2048)=2049. This flag combination retrieves all properties for the
named object, excluding those for which a value has not been defined.

Corresponding XML Elements
Most of the flags do not require additional input. When a flag does require it, you

must supply this input in a special XML element in the Options parameter. For
example, the OMI_XMLSELECT flag, which invokes search criteria to filter the objects
retrieved by the GetMetadataObjects method, requires you to specify the search criteria
in an <XMLSelect> element in the Options parameter. The GetMetadata method
OMI_TEMPLATES flag, which enables you to request additional properties for
metadata objects, requires that you submit a string identifying those properties in a
<Templates> element in the Options parameter. Several methods also support an
OMI_LOCK_TEMPLATES flag, which enables you to specify the associated metadata
objects that are checked out along with a requested metadata object. When this flag is
used, you must submit a metadata property string that identifies the associated objects
in a <LockTemplates> element in the Options parameter. See “Summary Table of IOMI
Options” on page 129 for a list of these special XML elements.

Flag Behavior When Multiple Flags Are Used
Some methods, like GetMetadata and GetMetadataObjects, support many flags. In

addition, GetMetadata flags can be used in a GetMetadataObjects method call when the
OMI_GET_METADATA flag is also set. When more than one flag is set in a
GetMetadata or GetMetadataObjects request, each flag is applied unless a filtering
option is also used. When a filtering option is used, it is applied first, and any
properties requested by flags are retrieved for the filtered objects. For example, in a
GetMetadataObjects request, any properties requested by a GetMetadataObjects or
GetMetadata flag are retrieved only for objects that were retrieved after any
<XMLSelect> criteria have been applied. In a GetMetadata request, when search
criteria are specified in the inMetadata parameter to filter the associated objects that
are retrieved, GetMetadata retrieves information requested by a flag only for objects
that meet the search criteria.

The properties and any search criteria specified in a template are always applied in
addition to any properties requested by other GetMetadata parameters.

Summary Table of IOMI Flags
The following table summarizes the flags that are supported for the metadata-related

methods.

Methods for Reading and Writing Metadata (IOMI Class) � Summary Table of IOMI Flags 123

Flag name Constant Method Description

OMI_ALL 1 “GetMetadata” on page
148

“GetRepositories” on
page 156

Gets all of the
properties of the
requested object and
general, identifying
information about any
objects that are
associated with the
requested object.

OMI_ALL_DESCENDANTS 64 “GetSubtypes” on page
158

Gets the descendants
of the returned
subtypes in addition
to the subtypes.

OMI_ALL_SIMPLE 8 “GetMetadata” on page
148

Gets all of the
attributes of the
requested object.

OMI_CI_DELETE_ALL 33 “CheckinMetadata” on
page 135

Deletes fetched as well
as checked and new
metadata objects from
a project repository
upon check-in to a
primary repository.

OMI_CI_NODELETE 524288 “CheckinMetadata” on
page 135

Keeps copies of
checked, fetched, and
new metadata objects
in a project repository
after check-in to a
primary repository.

OMI_DELETE 32 “DeleteMetadata” on
page 141

Deletes the contents
of a repository in
addition to the
repository’s
registration.

124 Summary Table of IOMI Flags � Chapter 7

Flag name Constant Method Description

OMI_DEPENDENCY_USED_BY 16384 “GetMetadata” on page
148

“GetMetadataObjects”
on page 152

In GetMetadata,
specifies to look for
cross-repository
references in
repositories that use
the current repository.
In
GetMetadataObjects,
specifies to retrieve
objects of the passed
type from all
repositories that have
a DependencyUsedBy
dependency in the
repository chain. For
more information
about repository
dependencies and
cross-repository
references, see
“Creating
Relationships
Between Repositories”
in the SAS Open
Metadata Interface:
User’s Guide.

OMI_DEPENDENCY_USES 8192 “GetMetadataObjects”
on page 152

Specifies to retrieve
objects of the passed
type from all
repositories that have
a DependencyUses
dependency in the
repository chain. For
more information
about repository
dependencies, see
“Creating
Relationships
Between Repositories”
in the SAS Open
Metadata Interface:
User’s Guide.

OMI_GET_METADATA 256 “GetMetadataObjects”
on page 152

Executes a
GetMetadata call for
each object that is
returned by the
GetMetadataObjects
method.

Methods for Reading and Writing Metadata (IOMI Class) � Summary Table of IOMI Flags 125

Flag name Constant Method Description

OMI_IGNORE_NOTFOUND 134217728 “DeleteMetadata” on
page 141

“UpdateMetadata” on
page 167

Prevents a delete or
update operation from
being aborted when a
request specifies to
delete or update an
object that does not
exist.

OMI_INCLUDE_SUBTYPES 16 “GetMetadata” on page
148

“GetMetadataObjects”
on page 152

Gets the properties of
metadata objects that
are subtypes of the
passed metadata type
in addition to the
metadata for the
passed type. In
GetMetadata, this flag
must be used in
conjunction with the
OMI_TEMPLATES
flag.

OMI_LOCK 32768 “GetMetadata” on page
148

Locks the specified
object and any
associated objects
selected by
GetMetadata flags
and options from
update by other users.

OMI_LOCK_TEMPLATE 65536 “CheckoutMetadata”
on page 137

“CopyMetadata” on
page 139

“FetchMetadata” on
page 146

“GetMetadata” on page
148

“UndoCheckoutMetadata”
on page 165

In GetMetadata,
specifies to lock the
associated objects
specified in a
user-defined lock
template instead of
associated objects
requested by the
method. In the other
methods, overrides
the default OMA lock
template with a
user-supplied
template. In all cases,
the user-defined lock
template is submitted
in a <LockTemplates>
element in the
Options parameter.

126 Summary Table of IOMI Flags � Chapter 7

Flag name Constant Method Description

OMI_MATCH_CASE 512 “GetMetadataObjects”
on page 152

Performs a
case-sensitive search
based on criteria
specified in the
<XMLSelect> option.
The
OMI_MATCH_CASE
flag must be used in
conjunction with the
OMI_XMLSELECT
flag.

OMI_NO_DEPENDENCY_CHAIN 16777216 “GetMetadataObjects”
on page 152

When used with
OMI_DEPENDENCY_USES,
retrieves objects only
from repositories on
which the repository
directly depends.
When used with
OMI_DEPENDENCY_USED_BY,
retrieves objects only
from repositories that
directly depend upon
the repository.

OMI_NOFORMAT 67108864 “GetMetadata” on page
148

Causes date, time, and
datetime values in the
output XML stream to
be returned as raw
SAS Date, SAS Time,
and SAS Datetime
floating point values.
Without the flag, the
default US-English
locale is used to
format the values into
recognizable character
strings.

OMI_PURGE 1048576 DeleteMetadata Removes previously
deleted metadata from
a repository without
disturbing the current
metadata objects.

OMI_REINIT 2097152 “DeleteMetadata” on
page 141

Deletes the contents
of a repository but
does not remove the
repository’s
registration from the
repository manager.

Methods for Reading and Writing Metadata (IOMI Class) � Summary Table of IOMI Flags 127

Flag name Constant Method Description

OMI_RETURN_LIST 1024 “CheckinMetadata” on
page 135

“CheckoutMetadata”
on page 137

“CopyMetadata” on
page 139

“DeleteMetadata” on
page 141

“FetchMetadata” on
page 146

“UndoCheckoutMetadata”
on page 165

“UpdateMetadata” on
page 167

In the change
management methods,
returns the object
identifiers of any
associated objects that
were copied in the
outMetadata
parameter. In
DeleteMetadata,
returns the identifiers
of any cascading
objects that were
deleted in the
outMetadata
parameter. In
UpdateMetadata,
returns the identifiers
of any dependent
objects that were
deleted as a result of
the update operation
in the outMetadata
parameter.

OMI_SUCCINCT 2048 “GetMetadata” on page
148

“GetTypes” on page 162

In GetMetadata,
omits all properties
that do not contain
values or that contain
a null value. In
GetTypes, checks the
Options parameter for
a <Reposid> element,
and lists the metadata
types for which objects
exist in the specified
repository. For more
information, see
“Listing the Metadata
Types in a Repository”
in “Overview” of
querying metadata in
the SAS Open
Metadata Interface:
User’s Guide.

128 Summary Table of IOMI Flags � Chapter 7

Flag name Constant Method Description

OMI_TEMPLATE 4 “GetMetadata” on page
148

Checks the Options
parameter for one or
more user-defined
templates that define
which metadata
properties to return.
The templates are
passed as a metadata
property string in a
<Templates> element.
For more information,
see “Using Templates”
in “Querying Specific
Metadata Objects” in
the SAS Open
Metadata Interface:
User’s Guide.

OMI_TRUNCATE 4194304 “DeleteMetadata” on
page 141

Deletes all metadata
objects but does not
remove the metadata
object containers from
a repository or change
the repository’s
registration.

OMI_TRUSTED_CLIENT 268435456 “AddMetadata” on
page 132

“UpdateMetadata” on
page 167

“DeleteMetadata” on
page 141

Determines whether
the client can call this
method.

OMI_UNLOCK 131072 “UpdateMetadata” on
page 167

Unlocks an object lock
that is held by the
calling user.

Methods for Reading and Writing Metadata (IOMI Class) � Summary Table of IOMI Options 129

Flag name Constant Method Description

OMI_UNLOCK_FORCE 262144 “UpdateMetadata” on
page 167

Unlocks an object lock
that is held by
another user.

OMI_XMLSELECT 128 “GetMetadataObjects”
on page 152

Checks the Options
parameter for search
criteria that qualifies
the objects to return.
The criteria are
passed as a search
string in an
<XMLSelect> element.
For more information,
see “Filtering a
GetMetadataObjects
Request” in “Querying
All Metadata of a
Specified Type” in the
SAS Open Metadata
Interface: User’s
Guide.

Summary Table of IOMI Options
The following table lists the optional XML elements that are used in conjunction

with IOMI flags.

130 Summary Table of IOMI Options � Chapter 7

Option Flag Method Description

<DOAS> None “AddMetadata” on page
132

“DeleteMetadata” on page
141

“GetMetadata” on page
148

“GetMetadataObjects” on
page 152

“GetSubtypes” on page
158

“GetTypeProperties” on
page 160

“IsSubtypeOf” on page 164

“UpdateMetadata” on
page 167

Specifies an alternate
calling identity for a
metadata request. For
more information, see
“<DOAS> Option” on
page 131.

<LockTemplates> OMI_LOCK_TEMPLATE

(65536)

“CheckoutMetadata” on
page 137

“FetchMetadata” on page
146

“CopyMetadata” on page
139

“GetMetadata” on page
148

“UndoCheckoutMetadata”
on page 165

For GetMetadata,
specifies associated
objects to be locked
instead of those
requested by method
flags and options. For
other methods,
overrides the default
lock template with a
user-supplied lock
template.

<Reposid> OMI_SUCCINCT
(2048)

GetTypes Specifies a repository
ID for which to list
metadata types. See
“Listing the Metadata
Types in a Repository”
in “Overview” of
querying metadata in
the SAS Open Metadata
Interface: User’s Guide.

Methods for Reading and Writing Metadata (IOMI Class) � Specifying the <DOAS> Option 131

Option Flag Method Description

<Templates> OMI_TEMPLATE
(4)

“GetMetadata” on page
148

Specifies properties to
retrieve for an object, in
addition to those
specified in the
inMetadata parameter.
See “Using Templates”
in “Querying Specific
Metadata Objects” in
the SAS Open Metadata
Interface: User’s Guide.

<XMLSelect> OMI_XMLSELECT
(128)
and optionally
OMI_MATCH_CASE
(512)

“GetMetadataObjects” on
page 152

Specifies a search string
to filter the objects that
are retrieved. See
“Filtering a
GetMetadataObjects
Request” in “Querying
All Metadata of a
Specified Type” in the
SAS Open Metadata
Interface: User’s Guide.

<DOAS> Option

IOMI class methods support a <DOAS> option that enables SAS Open Metadata
Interface clients to make a metadata request on behalf of another user. Typically when
a metadata request is made, the authorization facility checks the user ID and
credentials of the connecting user to determine whether the request is allowed. The
<DOAS> option causes the request to be issued on behalf of another user ID and
authorized using the credentials of this other user.

Credentials refer to the set of metadata identities associated with a user who is
registered in the SAS Metadata Server. The set begins with a principal identity
represented by the Person (or IdentityGroup) object that is mapped directly to an
authenticated user ID. The credentials set also contains references to any
IdentityGroup objects in which the principal identity is either directly or indirectly
identified as a member.

The <DOAS> option is provided to enable middleware servers to assert the identity
of their own clients during requests for metadata. This way, the request is authorized
based on the credentials of the client rather than those of the connecting user. That is,
when <DOAS> is found, metadata is created, returned, and updated based on the
credentials of the specified client rather than those of the connecting user. It is the
responsibility of the client to authenticate the user.

Specifying the <DOAS> Option
The <DOAS> option is supported in the AddMetadata, DeleteMetadata,

GetMetadata, GetMetadataObjects, GetSubTypes, GetTypeProperties, IsSubtypeOf, and
UpdateMetadata methods.

132 Example 1: Standard Interface � Chapter 7

It is passed in the Options parameter in the form <DOAS
Credential="credHandle"/> where credHandle is a handle returned by the ISecurity
getCredentials method that represents the surrogate user’s credentials.

A client must have trusted user status on the metadata server in order to issue the
ISecurity getCredentials method. A trusted user is a special user whose user ID is
defined in the trustedUsers.txt file. For more information about the support provided
for middleware servers, see “User and Group Management” in the SAS Intelligence
Platform: Security Administration Guide.

Example 1: Standard Interface
The following is an example of a GetMetadataObjects request that specifies the

<DOAS> option. The method call is formatted for the standard interface.

<!-- set repository Id and type -->
reposid="A0000001.A4345678";
type="PhysicalTable";
ns="SAS";
flags=0;
options="<DOAS Credential="0000000000235462"/>";

rc = GetMetadataObjects(reposid, type, objects, ns, flags, options);

This request will return only PhysicalTable objects which the user identified in the
credential handle is authorized to read.

Example 2: DoRequest Method
The following is an example of an AddMetadata method that specifies the <DOAS>

option. The method call is formatted for the inMetadata= parameter of DoRequest
method.

<AddMetadata>
<Metadata>

<PhysicalTable Name="NECust"
Desc="All customers in the northeast region"/>

</Metadata>
<Reposid>A0000001.A2345678</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options>
<DOAS Credential="0000000000235462"/>
</Options>

</AddMetadata>

The requested object will be created only if the user identified in the credential
handle has WriteMetadata permission to the specified repository.

AddMetadata

Adds new metadata objects to a repository
Category: Write methods

Methods for Reading and Writing Metadata (IOMI Class) � Details 133

Syntax
rc= AddMetadata(inMetadata, reposid, outMetadata, ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata property string that defines the properties of the
metadata object.

reposid C in The ID of the repository to which the metadata is to be added.

outMetadata C out The metadata string returned by the metadata server.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for the method. This method supports one
flag, which is required:

OMI_TRUSTED_CLIENT=268435456
Specifies that the client can call this method.

options C in The indicator for options. This method currently supports one
option:

<DOAS Credential="credHandle"/>
Optionally specifies an alternate calling identity for the
request. For more information, see “<DOAS> Option” on
page 131.

Details
The AddMetadata method is used to create new metadata objects in a repository. To

update an existing metadata object, use the UpdateMetadata method.
The inMetadata parameter specifies an XML string that defines the properties to be

added for the object. Not all metadata types or their properties can be added; refer to
the documentation for each metadata type. AddMetadata returns an error for any type
that cannot be added.

The outMetadata parameter mirrors the content of the inMetadata parameter and
additionally returns identifiers for the requested objects. Any invalid properties in the
inMetadata string remain in the outMetadata string. See “Constructing a Metadata
Property String” on page 118 for information about the structure of the metadata
property string.

The AddMetadata method can be used to create an object, to create an object and an
association to an existing object, or to create an object, an association, and the
associated object. Associations can be made to objects in the same or another repository.
The attributes used to define the objects indicate the type of operation that is to be
performed. For more information, see “Adding Metadata” in the SAS Open Metadata
Interface: User’s Guide.

134 Example 1: Standard Interface � Chapter 7

The metadata server assigns object identifiers at the successful completion of an
AddMetadata request.

Be sure to check the return code of a write method call. A nonzero return code
indicates that a failure occurred while trying to write the metadata. When a nonzero
return code is returned, none of the changes indicated by the method call are made.

The following examples show how to issue a simple AddMetadata method call
without regard to the programming environment. For program-specific examples, see
“Program-Specific AddMetadata Examples” on page 193.

Example 1: Standard Interface
The following AddMetadata request adds a new PhysicalTable object and fills in its

Name and Desc properties.

<!-- Create a metadata list to be passed to AddMetadata routine -->
inMetadata = "<PhysicalTable Name="NECust"

Desc="All customers in the northeast region"/>";

reposid= "A0000001.A2345678";
ns= "SAS";
flags= 268435456; <!-- OMI_TRUSTED_CLIENT flag -->
options= "";

rc = AddMetadata(inMetadata, reposid, outMetadata, ns, flags, options);

<!-- outMetadata XML string returned -->
<PhysicalTable Id="A2345678.A2000001" Name="NECust"

Desc="All customers in the northeast region"/>

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadata parameter of the DoRequest method. Note that <Metadata> tags, rather
than <inMetadata> tags, identify the passed property string.

<AddMetadata>
<Metadata>
<PhysicalTable Name="NECust"

Desc="All customers in the northeast region"/>
</Metadata>
<Reposid>A0000001.A2345678</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

Related Methods
� “CopyMetadata” on page 139

� “UpdateMetadata” on page 167

� “GetRepositories” on page 156

Methods for Reading and Writing Metadata (IOMI Class) � Parameters 135

CheckinMetadata

Copies metadata objects from a project repository to a primary repository and
unlocks them

Category: Change management methods

Syntax

rc = CheckinMetadata(inMetadata, outMetadata, projectReposid, changeName,
changeDesc, changeId, ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata string that identifies the metadata objects to check
in. Reserved for future use.

outMetadata C out The metadata string returned from the server.

projectReposidC in The ID of the project repository.

changeName C in A name for the output Change object.

changeDesc C in A description of the metadata updates.

changeId C in The identifier of an existing Change object. Reserved for future
use.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for this method. All of the flags are optional.
For no flags, a 0 should be passed.

OMI_CI_DELETE_ALL=33
Deletes fetched as well as checked and new metadata
objects from a project repository on check-in to a primary
repository.

OMI_CI_NODELETE=524288
Keeps copies of checked, fetched, and new metadata objects
in a project repository after check-in to a primary
repository.

OMI_RETURN_LIST=1024
Includes the object identifiers of any associated objects that
were copied to a primary repository in the outMetadata
parameter.

options C in Reserved for future use.

136 Details � Chapter 7

Details

The CheckinMetadata method is used with the CheckoutMetadata method to provide
an organized method of controlling updates to metadata objects by multiple users.
CheckinMetadata copies to and unlocks in the appropriate primary repository metadata
objects that were locked and copied to the specified project repository by
CheckoutMetadata.

Note: In the current release, CheckinMetadata does not support check-in of
individual objects. A CheckinMetadata method copies all of the objects in the specified
project repository to their respective primary repositories. �

The source project identifier must include both the repository manager ID and the
repository ID in the form Reposmgrid.Reposid.

The changeName and changeDesc parameters enable you to supply a description of
object modifications for reporting purposes. These values are stored as the Name= and
Desc= attributes of a Change object that is generated by the check-in process.

CheckinMetadata does not place a limit on the number of characters that you can
specify in the changeDesc parameter. The method stores the first 200 characters in the
Desc= attribute of the Change object and stores the complete description text in a
TextStore object. A GetMetadata request on the Desc= attribute of the Change object
will not automatically retrieve the text in the TextStore. In order to retrieve the
complete description text, you must issue a GetMetadata request directly on the
TextStore object. The TextStore object has the same Name as the Change object, and is
associated to the Change object via the Notes association.

The default behavior of the CheckinMetadata method is to delete checked and new
metadata objects from the project repository when the objects are checked into the
primary repository. Fetched objects are not deleted from the project repository. Set
OMI_CI_DELETE_ALL (33) to additionally delete fetched objects. Set the
OMI_CI_NODELETE (524288) flag to keep copies of the all objects in the project
repository.

Be sure to check the return code of a CheckinMetadata method call. A nonzero
return code indicates that a failure occurred while trying to write the metadata. When
a nonzero return code is returned, none of the changes indicated by the method call are
made.

For more information about primary repositories, project repositories, and Change
objects, see “Using the Change Management Facility” in the SAS Open Metadata
Interface: User’s Guide.

Example 1: Standard Interface

The following CheckinMetadata request copies all the metadata objects in project
repository A0000001.A5WW3LXC into their respective primary repositories and unlocks
them.

projectReposid="A0000001.A5WW3LXC";
changeName="Test1";
changeDesc="Changes for CM testing";
ns= "SAS";
flags="0";
options= "";

rc = CheckinMetadata(projectReposid, changeName, changeDesc, ns, flags, options);

Methods for Reading and Writing Metadata (IOMI Class) � Parameters 137

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadata parameter of the DoRequest method.

<CheckinMetadata>
<ProjectReposid>A0000001.A5WW3LXC</ProjectReposid>
<ChangeName>CM Testing</ChangeName>
<ChangeDesc>Changes for CM testing</ChangeDesc>
<Ns>SAS</Ns>
<Flags>0</Flags>
<Options/>

</CheckinMetadata>

Related Methods
� “CheckoutMetadata” on page 137
� “UndoCheckoutMetadata” on page 165
� “FetchMetadata” on page 146

CheckoutMetadata
Locks and copies metadata objects from a primary repository to a project repository
Category: Change management methods

Syntax
rc = CheckoutMetadata(inMetadata, outMetadata, projectReposid, ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata string identifying an object to be locked and copied.

outMetadata C out The metadata string returned from the server.

projectReposidC in The ID of the target project repository.

ns C in The namespace to use as the context for the request.

138 Details � Chapter 7

Parameter Type Direction Description

flags L in The flags supported for this method. All of the flags are optional.
For no flags, a 0 should be passed.

OMI_LOCK_TEMPLATE=65536
Overrides the default lock template with a user-defined
template submitted in the Options parameter.

OMI_RETURN_LIST=1024
Includes the object identifiers of any associated objects that
were checked out in the outMetadata parameter.

options C in The indicator for options. This method supports one option:

<LockTemplates> Specifies a user-defined lock template.
The <LockTemplates> element must be
specified in conjunction with the
OMI_LOCK_TEMPLATE flag.

Details
The CheckoutMetadata method provides an organized method of controlling updates

to metadata objects by multiple users. The method locks and copies the specified
metadata object from its primary repository to a project repository where it can be
safely updated. Any associated objects identified in a default lock template are
automatically locked and copied as well.

The metadata object to copy is identified in the inMetadata parameter by its
metadata type and its object instance identifier. The object instance identifier is
specified in the form Reposid.Objectid. The target project repository is identified in the
projectReposid parameter and is specified in the form Reposmgrid.Reposid. Multiple
metadata objects can be checked out at the same time by stacking their metadata
property strings in the inMetadata parameter.

When a metadata object is checked out, any associated objects defined for it in a
default lock template are checked out as well. To view the default lock template defined
for a metadata type, see “Default Lock Templates” in the SAS Open Metadata Interface:
User’s Guide. To override the default lock template and check out a different set of
associated objects, set the OMI_LOCK_TEMPLATE (65536) flag and supply an
alternate template in a <LockTemplates> element in the Options parameter. For more
information, see “Using the Change Management Facility” in the SAS Open Metadata
Interface: User’s Guide.

By default, the outMetadata parameter lists only the object(s) specified in the
inMetadata parameter. To include associated objects that were checked out by the lock
template in the outMetadata parameter, set the OMI_RETURN_LIST (1024) flag.

Be sure to check the return code of a CheckoutMetadata method call. A nonzero
return code indicates that a failure occurred while trying to write the metadata. When
a nonzero return code is returned, none of the changes indicated by the method call are
made.

Methods for Reading and Writing Metadata (IOMI Class) � Syntax 139

Example 1: Standard Interface
The following CheckoutMetadata request locks a PhysicalTable object in primary

repository A5WW3LXC and copies it to project repository A5NZA58I.

inMetadata="<PhysicalTable Id="A5WW3LXC.AA000002"/>";
projectReposid="A0000001.A5NZA58I";
outMetadata="";
ns= "SAS";
flags=0;
options= "";

rc = CheckoutMetadata(inMetadata, outMetadata, projectReposid, ns, flags, options);

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadata parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<CheckoutMetadata>
<Metadata>
<PhysicalTable Id="A5WW3LXC.AA000002"/>
</Metadata>
<ProjectReposid>A0000001.A5NZA58I</ProjectReposid>
<ns>SAS</ns>
<flags>0</flags>
<Options/>
</CheckoutMetadata>

Related Methods
� “UndoCheckoutMetadata” on page 165
� “CheckinMetadata” on page 135
� “FetchMetadata” on page 146

CopyMetadata
Copies metadata objects from one metadata repository to another
Category: Change management

Syntax
rc = CopyMetadata(inMetadata, outMetadata, targetReposid, ns, flags, options);

140 Parameters � Chapter 7

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata string that identifies the metadata object to be
copied.

outMetadata C out The metadata string returned from the metadata server.

targetReposid C in The ID of the target repository.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for this method. All of the flags are optional.
For no flags, a 0 should be passed.

OMI_LOCK_TEMPLATE=65536
Overrides the default lock template with a user-supplied
template submitted in the <LockTemplates> element in the
Options parameter.

OMI_RETURN_LIST=1024
Returns the object identifiers of any associated objects that
were copied in the outMetadata parameter.

options C in An indicator for options. This method supports one option:

<LockTemplates>
Specifies associated objects to copy. The <LockTemplates>
element must be specified in conjunction with the
OMI_LOCK_TEMPLATE flag.

Details
CopyMetadata enables you to copy individual metadata objects in a repository to the

same or another repository. To copy or promote a repository, use SAS Management
Console. CopyMetadata is categorized as a change management method, but it can be
used independently of the change management facility.

When a metadata object is copied, any associated objects defined for it in a default
lock template are copied as well. To view the default lock template defined for a
metadata type, see “Default Lock Templates” in the SAS Open Metadata Interface:
User’s Guide. You can override the default lock template and copy a different set of
associated objects by setting the OMI_LOCK_TEMPLATE (65536) flag and supplying
an alternate lock template in a <LockTemplates> element in the Options parameter.
For more information, see “Using the Change Management Facility” in the SAS Open
Metadata Interface: User’s Guide.

Set the OMI_RETURN_LIST (1024) flag to include the associated objects that were
copied in the output returned in the outMetadata parameter.

Copied objects are considered new objects and are assigned unique identifiers.
Associations between copied objects are updated to reference each other instead of the

Methods for Reading and Writing Metadata (IOMI Class) � Syntax 141

original objects. If a copied object has an association to a non-copied object and the
non-copied object exists in a repository other than the target repository, the association
will be broken unless a dependency exists between the repositories and a
cross-repository reference can be created between the copied and non-copied objects.

Be sure to check the return code of a CopyMetadata method call. A nonzero return
code indicates that a failure occurred while trying to write the metadata. When a
nonzero return code is returned, none of the changes indicated by the method call are
made.

Example 1: Standard Interface
The following CopyMetadata request duplicates a PhysicalTable object in the same

repository.

inMetadata="<PhysicalTable Id="A5WW3LXC.AA000002"/>";
ToReposid="A0000001.A5WW3LXC";
outMetadata="";
ns= "SAS";
flags=1024;
options= "";

rc = CopyMetadata(inMetadata, outMetadata, ToReposid, ns, flags, options);

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadata parameter of the DoRequest method.

<CopyMetadata>
<Metadata>

<PhysicalTable Id="A5WW3LXC.AA000002"/>
</Metadata>
<!--Metadata and ToReposid parameters specify the same repository-->
<ToReposid>A0000001.A5WW3LXC</ToReposid>
<Ns>SAS</Ns>
<!--OMI_RETURN_LIST flag -->
<Flags>1024</Flags>
<Options/>

</CopyMetadata>

Related Methods
� “AddMetadata” on page 132

DeleteMetadata
Deletes metadata objects from a repository
Category: Write Methods

Syntax
rc = DeleteMetadata(inMetadata, outMetadata, ns, flags, options);

142 Parameters � Chapter 7

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata property string that identifies the metadata object to
be deleted.

outMetadata C out The metadata property string returned from the metadata
server. For this method, the output string is returned only if
OMI_RETURN_LIST is specified.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for this method. The
OMI_TRUSTED_CLIENT flag is required; all other flags are
optional.

OMI_DELETE=32
Deletes the contents of a repository in addition to the
repository’s registration.

OMI_IGNORE_NOTFOUND=134217728
Prevents a delete operation from being aborted when a
request specifies to delete an object that does not exist.

OMI_PURGE=1048576
Removes previously deleted metadata from a repository
without disturbing the current metadata objects.

OMI_REINIT=2097152
Deletes the contents of a repository but does not remove
the repository’s registration from the repository manager.

OMI_RETURN_LIST=1024
Returns a list of deleted object IDs, as well as any
cascading object IDs that were deleted.

OMI_TRUNCATE=4194304
Deletes all metadata objects but does not remove the
metadata object containers from a repository or change a
repository’s registration.

OMI_TRUSTED_CLIENT=268435456
Specifies that the client can call this method.

options C in Passed indicator for options.

<DOAS Credential="credHandle"/>
Specifies an alternate calling identity for the request. For
more information, see “<DOAS> Option” on page 131.

Methods for Reading and Writing Metadata (IOMI Class) � Example 1: Standard Interface 143

Details
The DeleteMetadata method handles requests to remove metadata objects from a

repository. To delete specific properties of a metadata object, use the UpdateMetadata
method.

Besides deleting specific metadata objects, you can use the DeleteMetadata method
to delete all of the metadata objects in a repository, to unregister a repository, and to
destroy a repository. You perform these actions by issuing the DeleteMetadata method
on a RepositoryBase object in the REPOS namespace. Flags that operate on the
repository level (OMI_DELETE, OMI_PURGE, OMI_REINIT, and OMI_TRUNCATE)
are supported only in the REPOS namespace on the RepositoryBase type.

Caution: You should not combine the REPOS namespace flags. Specifying more than
one of these flags will potentially yield undesirable results. For additional information
about using REPOS namespace flags, see “Clearing or Deleting a Repository” in
“Repository Maintenance Tasks” in the SAS Open Metadata Interface: User’s Guide.

Delete requests for dependent metadata objects in the SAS namespace are handled
as follows: When a delete is requested on an object that has dependent objects, the
dependent objects are automatically deleted with the specified object. There is no need
to specify the dependent objects in the deletion request. This is called a cascading
delete. If the dependent objects are specified in the DeleteMetadata request, then the
metadata server attempts to locate objects that have already been deleted, and aborts
the delete operation when they are not found. You can prevent this from happening by
setting the OMI_IGNORE_NOTFOUND (134217728) flag, but it is recommended that
you avoid specifying dependent objects altogether.

Dependent objects that exist in other repositories are deleted if the delete request is
issued on the repository that has a DependencyUses association in the repository
relationship. The DeleteMetadata method will not delete dependent objects when the
delete request is issued on the repository that has a DependencyUsedBy association. To
learn more about repository dependencies, see “Creating Relationships Between
Repositories” in the SAS Open Metadata Interface: User’s Guide.

Be sure to check the return code of a delete method call. A non-zero return code
indicates a failure in the method call. When a non-zero return code is returned, none of
the changes indicated by the method call are made.

For additional information, including usage examples, see “Deleting Metadata
Objects,” also in the user’s guide.

The following examples show how to issue a DeleteMetadata method call without
regard to the programming environment. Examples are given that use the standard
interface and the DoRequest method. Also see “Program-Specific DeleteMetadata
Examples” on page 197.

Example 1: Standard Interface
The following DeleteMetadata request deletes a SASLibrary object. When a

SASLibrary object is deleted, any object in the library will be deleted as well. The
OMI_RETURN_LIST flag is specified (268435456 + 1024 =268436480) so the
outMetadata parameter will return a list of all deleted object IDs.

inMetadata="<SASLibrary Id=’A2345678.A2000001’/>";
outMetadata="";
ns= "SAS";
flags= 268436480;
options= "";

rc = DeleteMetadata(inMetadata, outMetadata, ns, flags, options);

144 Example 2: DoRequest Method � Chapter 7

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadataparameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<DeleteMetadata>
<Metadata>
<SASLibrary Id="A2345678.A2000001"/>

</Metadata>
<NS>SAS</NS>

<!--- OMI_TRUSTED_CLIENT flag ------>
<Flags>268436480</Flags>
<Options/>

</DeleteMetadata>

Related Methods
� “AddMetadata” on page 132
� “UndoCheckoutMetadata” on page 165
� “UpdateMetadata” on page 167

DoRequest
Executes XML encoded method calls
Category: Message Methods

Syntax
rc = DoRequest(inMetadata, outMetadata);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata property string that contains the metadata method
to execute and any parameters appropriate to that method. For
more information about the format of this input string, see the
documentation for the method that you want to execute.

outMetadata C out A metadata property string that contains the results of the
executed method. For more information about the format of this
string, see the documentation for the method that you executed.

Methods for Reading and Writing Metadata (IOMI Class) � Details 145

Details

The DoRequest method enables you to submit other IOMI methods and all of their
parameters to the SAS Metadata Server in an input XML string. The XML string has
the form:

<MethodName>
<Parameter1>Value</Parameter1>
<Parameter2>Value</Parameter2>
<Parametern>Value</Parametern>

...
</MethodName>

where <MethodName> is an XML element containing the name of an IOMI method and
<Parameter> is an XML element containing the name of a method parameter.

Multiple methods can be submitted by placing them within a <Multiple_Requests>
XML element. For example:

<Multiple_Requests>
<MethodName1>

<Parameter1>Value</Parameter1>
<Parameter2>Value</Parameter2>
<Parametern>Value</Parametern>

</MethodName1>
<MethodName2>

<Parameter1>Value</Parameter1>
<Parameter2>Value</Parameter2>
<Parametern>Value</Parametern>

</MethodName2>
</Multiple_Requests>

The published IOMI method parameter names can, but are not required to be, used
for all parameters except inMetadata. A <Metadata> XML element must be used to
represent the inMetadata parameter in all IOMI method calls that have an inMetadata
parameter. When names other than those published are used, the parameters must be
passed in the order published in the method documentation.

There is no need to declare an outMetadata parameter in the input XML string.
The input XML string is passed to the metadata server in the inMetadata parameter

of the DoRequest method. The output from the request is returned in the DoRequest
method’s outMetadata parameter. The following is an example of an AddMetadata
method call that is formatted for the DoRequest method:

<AddMetadata>
<Metadata><PhysicalTable Name="TestTable" Desc="Sample table"/></Metadata>
<Reposid>A0000001.A2345678</Reposid>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>
</AddMetadata>

The input XML string is submitted to the server as a string literal (a quoted string).
To ensure that the string is parsed correctly, it is recommended that any additional
double quotation marks in the string, such as those used to denote XML attribute
values in the metadata property string, be marked in some way to indicate that they
should be treated as characters. Below are examples of using escape characters to
accomplish this task:

146 Example � Chapter 7

Java "<PhysicalTable Name=\"TestTable\" Desc=\"Sample
table\"/>"

Visual Basic "<PhysicalTable Name=""TestTable"" Desc=""Sample table""/>"

Visual C++ "<PhysicalTable Name=\"TestTable\" Desc=\"Sample table\"/>"

SAS "<PhysicalTable Name=""TestTable"" Desc=""Sample table""/>"
’<PhysicalTable Name="TestTable" Desc="Sample table"/>’

Any metadata-related (IOMI class) method can be passed to the server using the
DoRequest method. The method also supports requests to metadata objects in both the
SAS namespace and the REPOS namespace, although both namespaces should not be
referenced in the same DoRequest.

Be sure to check the return code of a DoRequest method call. A nonzero return code
indicates that a failure occurred while trying to write metadata. When a nonzero return
code is returned, none of the changes by any of the methods in the DoRequest will be
made.

Example
The DoRequest method is issued in the standard interface. The following example

shows how to issue a DoRequest method call without regard for the programming
environment.

outMetadata=program-specific value
inMetadata =
"<GetMetadataObjects>

<Reposid>A0000001.A2345678</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadataObjects>";

rc=DoRequest(inMetadata,outMetadata);

FetchMetadata
Copies metadata objects from a primary repository to a project repository without

locking them
Category: Change management methods

Syntax
rc = FetchMetadata(inMetadata, outMetadata, projectReposid, ns, flags, options);

Methods for Reading and Writing Metadata (IOMI Class) � Details 147

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata property string that identifies the metadata object to
be fetched.

outMetadata C out The metadata property string returned from the server.

projectReposidC in The ID of the target project repository.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for this method. All of the flags are optional.
For no flags, a 0 should be passed.

OMI_LOCK_TEMPLATE= 65536
Overrides the default lock template with a user-defined
template submitted in the Options parameter.

OMI_RETURN_LIST=1024
Returns the object identifiers of any associated objects that
were fetched in the outMetadata parameter.

options C in An indicator for options. This method supports one option:

<LockTemplates>
Specifies a user-defined lock template that overrides the
default lock template for the specified metadata object.
The <LockTemplates> element must be specified in
conjunction with the OMI_LOCK_TEMPLATE flag.

Details
The FetchMetadata method creates object instances in the project repository that

cannot be copied back to the corresponding primary repository.
When a metadata object is fetched, associated objects defined for it in a default lock

template are fetched as well. You can override the default lock template and fetch a
different set of associated objects by setting the OMI_LOCK_TEMPLATE (65536) flag
and supplying an alternate lock template in a <LockTemplates> element in the Options
parameter. For more information, see “Using the Change Management Facility” in the
SAS Open Metadata Interface: User’s Guide.

By default, the outMetadata parameter lists only the object(s) specified in the
inMetadata parameter. To include associated objects that were fetched by the lock
template, set the OMI_RETURN_LIST (1024) flag.

Be sure to check the return code of a FetchMetadata method call. A nonzero return
code indicates that a failure occurred while trying to write the metadata. When a
nonzero return code is returned, none of the changes indicated by the method call will
be made.

A fetched object is deleted from a project repository by using the
UndoCheckoutMetadata method.

148 Example 1: Standard Interface � Chapter 7

Example 1: Standard Interface
The following FetchMetadata request copies a PhysicalTable object and its associated

objects to project repository A0000001.A5NZA58I using the default lock template.

inMetadata="<PhysicalTable Id="A5WW3LXC.AA000002"/>";
outMetadata="";
projectReposid="A0000001.A5NZA58I";
ns= "SAS";
flags=0;
options= "";

rc = FetchMetadata(inMetadata, outMetadata, projectReposid, ns, flags, options);

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadata parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<FetchMetadata>
<Metadata>

<PhysicalTable Id="A5WW3LXC.AA000002"/>
</Metadata>
<ProjectReposid>A0000001.A5NZA58I</ProjectReposid>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</FetchMetadata>

Related Methods
� “CheckoutMetadata” on page 137
� “CheckinMetadata” on page 135
� “UndoCheckoutMetadata” on page 165

GetMetadata

Syntax
rc = GetMetadata(inMetadata, outMetadata, ns, flags, options);

Methods for Reading and Writing Metadata (IOMI Class) � Parameters 149

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata property string that identifies the metadata object
whose properties are to be read.

outMetadata C out The metadata property values returned from the metadata
server.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for this method. All of the flags are optional.
For no flags, a 0 should be passed.

OMI_ALL=1
Specifies that the method get all of the properties of the
requested object. If the XML stream returns a reference to
any associated objects, then the method will return only
general, identifying information for the associated objects.

OMI_ALL_SIMPLE=8
Specifies that the method get all of the attributes of the
requested object.

OMI_DEPENDENCY_USED_BY=16384
Specifies to look for cross-repository references in
repositories that use the current repository. For more
information, see “Querying Cross-Repository References” in
“Creating Relationships Between Repositories” in the SAS
Open Metadata Interface: User’s Guide.

OMI_INCLUDE_SUBTYPES=16
Specifies to include subtypes of the requested type when a
template is used. The OMI_INCLUDE_SUBTYPES flag
cannot be used without the OMI_TEMPLATES flag.

OMI_LOCK=32768
Locks the requested object and any associated objects
requested in the method call from update by other users.

OMI_LOCK_TEMPLATE=65536
Specifies to lock the associated objects requested in a
user-defined lock template rather than those requested by
the method. You submit the user-defined lock template in a
<LockTemplates> XML element in the Options parameter.

OMI_NOFORMAT=67108864
Causes date, time, and datetime values in the output XML
stream to be returned as raw SAS Date, SAS Time, and
SAS Datetime floating point values. Without the flag, the
default US-English locale is used to format the values into
recognizable character strings.

OMI_SUCCINCT=2048
Specifies to omit properties that do not contain values or
that contain null values.

150 Details � Chapter 7

Parameter Type Direction Description

OMI_TEMPLATE=4
Checks the Options parameter for one or more user-defined
templates that specify the properties to return for a given
metadata type. The templates are passed in a
<Templates> element in the Options parameter.

options C in An indicator for options. This method supports the following
options:

<DOAS Credential="credHandle"/>
Specifies an alternate calling identity for the request. For
more information, see “<DOAS> Option” on page 131.

<LockTemplates>
Specifies associated objects to lock. The <LockTemplates>
element must be specified in conjunction with the
OMI_LOCK_TEMPLATE flag.

<Templates>
Specifies properties to return for an object, by metadata
type. The <Templates> element must be specified in
conjunction with the OMI_TEMPLATE flag.

Details
The GetMetadata method provides four ways of identifying the metadata that you

want to retrieve.
� You can supply a formatted metadata property string and pass it to the

GetMetadata method as input in the inMetadata parameter. In this case, only the
properties whose names have been passed in the property string will be returned.
This allows for selective retrieval of pieces of metadata about an object.

� You can pass an inMetadata string with just the Type and Id attributes filled in
and specify one or more flags in the Flags parameter. In this case, all of a
particular category of property (for example, all attributes, all associations, or
both) that describe the requested object will be retrieved.

� You can pass one or more user-defined templates to expand the properties
requested in the inMetadata and Flags parameters. Templates also enable you to
retrieve properties for associated objects.

� You can specify search criteria on the association name subelements that are
passed to the server in either or both of the inMetadata parameter and in the
<Templates> element to filter the associated objects that are retrieved.

For detailed usage information about the GetMetadata method, see “Querying
Specific Metadata Objects” in the SAS Open Metadata Interface: User’s Guide.

The GetMetadata method uses the US-English locale to format date, time, and
datetime values. Set the OMI_NOFORMAT (67108864) flag to get these values as SAS
floating point values that you can format as you want.

The OMI_LOCK (32768) flag is one of several multi-user concurrency controls
supported by the SAS Open Metadata Interface. By default, the flag locks the objects

Methods for Reading and Writing Metadata (IOMI Class) � Example 2: DoRequest Method 151

specified in the metadata property string and by GetMetadata flags and options. To
specify a different set of associated objects to lock, you can additionally set the
OMI_LOCK_TEMPLATE (65536) flag and supply one or more user-defined templates in
a <LockTemplates> XML element in the Options parameter. When
OMI_LOCK_TEMPLATE is set, the software will lock only the specified object and any
associated objects identified in the user-defined lock template. (Specifying
OMI_LOCK_TEMPLATE without also specifying OMI_LOCK does not lock any objects.)
See “Metadata Locking Options” in the SAS Open Metadata Interface: User’s Guide for
an overview of the concurrency controls supported by the SAS Open Metadata Interface.

Metadata objects that are locked by OMI_LOCK are unlocked by issuing an
UpdateMetadata method call that sets the OMI_UNLOCK or OMI_UNLOCK_FORCE
flag.

Some GetMetadata flags have interdependencies that can affect the metadata that is
returned when more than one flag is set. For more information, see “Using IOMI Flags”
on page 121.

The following examples issue a GetMetadata method call with no flags and without
regard to the programming environment. The first example instantiates objects for
method parameters and issues the call using the standard interface. The second
formats the same request for the inMetadata parameter of the DoRequest method. See
also “Program-Specific GetMetadata Examples” on page 201.

Example 1: Standard Interface
The following GetMetadata method call retrieves the name, description, and columns

of the PhysicalTable with an Id of A2345678.A2000001.

<!-- Create a metadata list to be passed to GetMetadata routine -->

inMetadata= "<PhysicalTable Id="A2345678.A2000001" Name="" Desc="">
<Columns/>

</PhysicalTable>";
ns="SAS";
flags=0;
options="";

rc= GetMetadata(inMetadata, outMetadata, ns, flags, options);

<!-- outMetadata XML string returned -->
<PhysicalTable Id="A2345678.A2000001" Name="New Table"
Desc="New Table added through API">
<Columns>

<Column Id="A2345678.A3000001" Name="New Column" Desc="New Column added
through API"/>

<Column Id="A2345678.A3000002" Name="New Column2" Desc="New Column2 added
through API"/>
</Columns>

</PhysicalTable>

Example 2: DoRequest Method
The following XML string formats the request in Example 1 for the inMetadata

parameter of the DoRequest method.

152 Related Methods � Chapter 7

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<GetMetadata>
<Metadata>
<PhysicalTable Id="A2345678.A200001" Name="" Desc="">

<Columns/>
</PhysicalTable>

</Metadata>
<MS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadata>

Related Methods
� “GetMetadataObjects” on page 152

GetMetadataObjects
Lists metadata objects of the specified type in the specified repository
Category: Read Methods

Syntax
rc = GetMetadataObjects(reposid, type, objects, ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
Return Code“Return Code” on page 118.

reposid C in The ID of the target repository.

type C in The metadata type name of the objects to retrieve.

objects C out The returned list of metadata objects.

ns C in The namespace to use as the context for the request.

Methods for Reading and Writing Metadata (IOMI Class) � Parameters 153

Parameter Type Direction Description

flags L in The flags supported for this method. All of the flags are optional.
For no flags, a 0 should be passed.

OMI_DEPENDENCY_USED_BY=16384
Specifies to retrieve objects of the passed type from all
repositories that have a DependencyUsedBy dependency in
the repository chain.

OMI_DEPENDENCY_USES=8192
Specifies to retrieve objects of the passed type from all
repositories that have a DependencyUses dependency in
the repository chain.

OMI_NO_DEPENDENCY_CHAIN=16777216
When used with OMI_DEPENDENCY_USES, retrieves
objects only from repositories on which the repository
directly depends. When used with
OMI_DEPENDENCY_USED_BY, retrieves objects only
from repositories that directly depend upon the repository.

OMI_GET_METADATA=256
Specifies to execute a GetMetadata call for each object that
is returned by the GetMetadataObjects request.

OMI_INCLUDE_SUBTYPES=16
Specifies to retrieve metadata objects that are subtypes of
the passed metadata type in addition to objects of the
passed type. If OMI_XMLSELECT is also specified, it
affects the metadata and subtypes that are retrieved.

OMI_MATCH_CASE=512
Specifies to perform a case-sensitive search of the criteria
specified in the <XMLSELECT> option. The
OMI_MATCH_CASE flag cannot be used without the
OMI_XMLSELECT flag.

OMI_XMLSELECT=128
Checks the Options parameter for criteria to qualify the
objects that are returned by the server. The criteria are
specified in a search string that is passed in the
<XMLSELECT> option. See “Filtering a
GetMetadataObjects Request” in “Querying All Metadata
of a Specified Type” in the SAS Open Metadata Interface:
User’s Guide for more information.

options C in An indicator for options. This method supports two options:

<DOAS Credential="credHandle"/>
Specifies an alternate calling identity for the request. For
more information, see “<DOAS> Option” on page 131.

<XMLSELECT>
Specifies an XML search string.

154 Details � Chapter 7

Details
The GetMetadataObjects method retrieves a list of all objects of the specified type in

the specified repository. The default behavior is to return “Identifying Metadata” on
page 120 for each object.

You can set IOMI flags to expand or to filter the object request:
� OMI_INCLUDE_SUBTYPES expands the retrieval request to include subtypes of

the specified metadata type.
� OMI_GET_METADATA enables you to issue a GetMetadata request from within

the GetMetadataObjects method call and specify additional metadata to retrieve
for each object.

� OMI_DEPENDENCY_USES and OMI_DEPENDENCY_USED_BY expand the
retrieval request to include additional repositories.

� OMI_XMLSELECT enables you to specify search criteria to filter the objects that
are retrieved.

For additional information, including examples of using GetMetadataObjects flags,
see “Querying All Metadata of a Specified Type” in the SAS Open Metadata Interface:
User’s Guide.

General information about flags, including interdependencies between them, is
provided in Using IOMI Flags“Using IOMI Flags” on page 121.

The following examples show how to issue a GetMetadataObjects call with no flags
and without regard to the programming environment. See also “Program-Specific
GetMetadataObjects Examples” on page 205.

Example 1: Standard Interface
The following GetMetadataObjects request returns all objects defined for metadata

type PhysicalTable in repository A0000001.A2345678.

<!-- set repository Id and type -->
reposid="A0000001.A2345678";
type="PhysicalTable";
ns="SAS";
flags=0;
options="";

rc = GetMetadataObjects(reposid, type, objects, ns, flags, options);

<!-- XML string returned in objects parameter -->

<Objects>
<PhysicalTable Id="A2345678.A2000001" Name="New Table"/>
<PhysicalTable Id="A2345678.A2000002" Name="New Table2"/>

</Objects>

Example 2: DoRequest Method
The following XML string formats the request in Example 1 for the inMetadata

parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<GetMetadataObjects>

Methods for Reading and Writing Metadata (IOMI Class) � Details 155

<Reposid>A0000001.A2345678</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadataObjects>

Related Methods
� “GetMetadata” on page 148

GetNamespaces
Lists namespaces
Category: Management Methods

Syntax
rc = GetNamespaces(ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

ns C out The returned list of all namespaces

flags L in This method does not support any flags. Reserved for future use.

For no flags, a 0 should be passed.

options C in An indicator for options. This method does not support any
options.

Details
A namespace refers to a metadata model that can be accessed by the SAS Open

Metadata Interface. The NS parameter returns the Id (a character string used to
represent the Namespace) and Desc properties for all of the namespaces defined in the
current repository manager.

The SAS Open Metadata Interface provides two namespaces: the "REPOS"
namespace, which contains the repository metadata types, and the "SAS" namespace,
which contains metadata types describing application elements.

The following examples show how to issue a GetNamespaces method call without
regard to the programming environment. Examples are given that use the standard

156 Example 1: Standard Interface � Chapter 7

interface and the DoRequest method. For program-specific examples, see
“Program-Specific GetNamespaces Examples” on page 209.

Example 1: Standard Interface
The following GetNamespaces request returns the namespaces in the current

repository manager using the method interface.

flags=0;
options="";
rc = GetNamespaces(ns,flags,options);
<!-- XML string returned in ns parameter -->
<Namespaces>

<Ns Name="SAS"/>
<Ns Name="REPOS"/>

</Namespaces>

Example 2: DoRequest Method
The following XML string shows how to format the same request for the

inMetadataparameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<GetNamespaces>

<NameSpaces/>
<Flags>0</Flags>
<Options/>

</GetNamespaces>

Related Methods
� “GetTypes” on page 162
� “GetSubtypes” on page 158

GetRepositories
Lists the metadata repositories available through this server
Category: Repository Methods

Syntax
rc = GetRepositories(repositories, flags, options);

Methods for Reading and Writing Metadata (IOMI Class) � Examples 157

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

repositories C out The returned list of all repositories that are available to the
current server.

flags L in The flags supported for this method. This flag is optional. For no
flags, a 0 should be passed.

OMI_ALL=1
Gets the Access and PauseState attributes of all
repositories and the repository manager.

options C in An indicator for options. This method does not support any
options.

Details
A repository is a collection of related metadata objects. Each repository is registered

in a repository manager. The SAS Metadata Server can access only those repositories
that are registered in its repository manager. There is one repository manager for a
SAS Metadata Server.

Issued without flags, the GetRepositories method returns alist of the repositories
that are registered in the repository manager, as well as the description, default
namespace, and “Identifying Metadata” on page 120 for each repository.

Setting OMI_ALL (1) additionally returns the Access and PauseState attributes of
the repository manager and all repositories. These attributes indicate the availability of
the repository manager and individual repositories. For a description of the attributes,
see “RepositoryBase” on page 109.

A GetRepositories method call issued on a repository manager that is paused to an
offline state will return an error.

Examples
The following examples show how to issue a GetRepositories method call without

regard to the programming environment. For program-specific examples, see
“Program-Specific GetRepositories Examples” on page 213.

Standard Interface
The following is an example of a GetRepositories method that is formatted for the

standard interface and that is issued without flags.

flags=0;
options= "";

158 GetSubtypes � Chapter 7

rc = GetRepositories(repositories,flags,options);

This is an example of the output returned by the metadata server:

<!-- XML string returned in repositories parameter -->
<Repositories>

<Repository Id="A0000001.A5345678" Name="Sample API Repository"
Desc="Repository with Sample Metadata" DefaultNS="SAS"/>

<Repository Id="A0000001.A5934023" Name="Sales Repository"
Desc="Repository representing all sales for the first quarter"
DefaultNS="SAS"/>

</Repositories>

DoRequest Method
The following is an example of a GetRepositories method that is formatted for the

inMetadata parameter of the DoRequest method and is issued with the OMI_ALL (1)
flag set.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<GetRepositories>

<Repositories/>
<Flags>1</Flags>
<Options/>

</GetRepositories>

This is an example of the output returned by the metadata server:

<!-- XML string returned in repositories parameter -->
<Repositories>

<Repository Id="A0000001.A5345678" Name="Sample API Repository"
Desc="Repository with Sample Metadata" DefaultNS="SAS" Access="OMS_FULL"
PauseState="" />

<Repository Id="A0000001.A5934023" Name="Sales Repository"
Desc="Repository representing all sales for the first quarter"
DefaultNS="SAS" Access="OMS_FULL" PauseState="READONLY" />

</Repositories>

GetSubtypes
Returns the subtypes for a specified metadata type
Category: Management Methods

Syntax
rc = GetSubtypes(supertype, subtypes, ns, flags, options);

Methods for Reading and Writing Metadata (IOMI Class) � Example 1: Standard Interface 159

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

supertype C in The name of the metadata type for which you want a list of
subtypes.

subtypes C out The returned XML list of all subtypes for the specified type.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for this method. This flag is optional. For no
flags, a 0 should be passed.

OMI_ALL_DESCENDANTS=64
Returns all subtypes along with all of their descendants.

options C in An indicator for options. This method supports one option:

<DOAS Credential="credHandle"/>
Specifies an alternate calling identity for the request. For
more information, see “<DOAS> Option” on page 131.

Details
Subtypes are metadata types that take on the characteristics of a specific metadata

supertype. In addition, a subtype can have subtypes of its own.
The subtypes parameter returns an XML string that consists of the Id, Desc, and a

HasSubtypes attribute for each subtype. The HasSubtypes attribute indicates whether a
subtype has any subtypes of its own. If this attribute has a value of 0, then the subtype
does not have subtypes. If it has a value of 1, then the subtype does have subtypes.

The GetSubtypes method will not return metadata about descendants unless the
OMI_ALL_DESCENDANTS flag is set.

The following examples show how to issue a GetSubtypes method call without regard
to the programming environment. Examples are given that use the standard interface
and the DoRequest method. For additional examples, see “Program-Specific
GetSubtypes Examples” on page 216.

Example 1: Standard Interface
The following GetSubtypes request lists the subtypes defined for supertype

DataTable.

supertype= "DataTable";
ns= "SAS";
flags= 0;
options= "";
rc = GetSubtypes(supertype, subtypes, ns, flags, options);

The following is an example of the output returned by the metadata server:

160 Example 2: DoRequest Method � Chapter 7

<!-- XML string returned in the Subtypes parameter -->
<subtypes>

<Type Id="PhysicalTable" Desc="Physical Storage Abstract Type" HasSubtypes="0"/>
<Type Id="WorkTable" Desc="Work Tables" HasSubtypes="1"/>
<Type Id="Join" Desc="Table Joins" HasSubtypes="0"/>

</subtypes>

Example 2: DoRequest Method
The following XML string shows how to format the request in Example 1 for the

inMetadata parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<GetSubtypes>
<Supertype>DataTable</Supertype>
<Subtypes/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetSubtypes>

Related Methods
� “GetTypes” on page 162

� “IsSubtypeOf” on page 164

GetTypeProperties

Returns the properties for a metadata type
Category: Management Methods

Syntax
rc = GetTypeProperties(type, properties, ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

type C in The name of the metadata type for which you want a list of
properties.

properties C out The returned XML list of all properties for the specified
metadata type.

ns C in The namespace to use as the context for the request.

Methods for Reading and Writing Metadata (IOMI Class) � Example 1: Standard Interface 161

Parameter Type Direction Description

flags L in This method does not support any flags. Reserved for future use.

For no flags, a 0 should be passed.

options C in An indicator for options. This method supports one option:

<DOAS Credential="credHandle"/>
Specifies an alternate calling identity for the request. For
more information, see “<DOAS> Option” on page 131.

Details

Properties consists of an XML string that contains all of the properties for a specific
metadata type.

The following examples show how to issue a GetTypeProperties method call without
regard to the programming environment. Examples are given that use the standard
interface and the DoRequest method. For additional examples, see “Program-Specific
GetTypeProperties Examples” on page 220.

Example 1: Standard Interface

The following GetTypeProperties method call, formatted for the standard interface,
requests the properties of the Column metadata type.

type="Column";
ns="SAS";
flags=0;
options="";

rc = GetTypeProperties(type, properties, ns, flags, options);

This is an example of the output returned by the metadata server:

<!-- sample XML string returned in Properties parameter -->
<Properties Cardinality="" ColType="" Cvalue="" Desc="" Format="" Id=""
Informat="" IsNullable="" Length="" Max="" MetadataCreated="" MetadataUpdated=""
Min="" Moment1="" Moment2="" Name="" Nmiss="" Nvalue="" SortOrder=""
Statistic="" Sum="" SummaryRole="" UserType="">

<Administrator/>
<Extensions/>
<Key/>
<KeyAssoc/>
<MemberGroups/>
<Note/>
<Owner/>
<Packages/>
<Table/>

</Properties>

162 Example 2: DoRequest Method � Chapter 7

Example 2: DoRequest Method
The following XML string shows how to format the request in Example 1 for the

inMetadata parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<GetTypeProperties>
<Type>Column</Type>
<Properties/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

<GetTypeProperties>

Related Methods
� “GetTypes” on page 162
� “GetSubtypes” on page 158

GetTypes
Lists the metadata types in a namespace
Category: Management Methods

Syntax
rc = GetTypes(types, ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

types C out The returned XML list of metadata types.

ns C in The namespace to use as the context for the request. Use a "
(double-quotation mark) to indicate the default namespace of the
repository.

Methods for Reading and Writing Metadata (IOMI Class) � Example 1: Standard Interface 163

Parameter Type Direction Description

flags L in The flags that are supported for this method. This flag is
optional. For no flags, a 0 should be passed.

OMI_SUCCINCT=2048
Specifies to list metadata types for which objects exist in a
given repository. The repository is identified in a
<Reposid> element in the Options parameter.

options C in An indicator for options. This method supports one option:

<Reposid>
Specifies a unique repository identifier, in the form

A0000001.RepositoryId

where A0000001 is the repository manager identifier. The
<Reposid> element must be specified in conjunction with
the OMI_SUCCINCT flag.

Details
The GetTypes method has two behaviors, depending on whether the

OMI_SUCCINCT (2048) flag and its corresponding <Reposid> element are specified.

� Used without the flag, the method returns an XML string that lists all of the
metadata types defined in the specified namespace.

� Used with the flag, the method returns information only for metadata types for
which objects exist in the specified repository.

In either case, the XML string is returned in the Types parameter and has a
HasSubTypes attribute that indicates whether a type has any subtypes. If this
attribute has a value of 0, then the type does not have any subtypes. If it has a value of
1, then the type does have subtypes.

The following examples show how to issue a GetTypes method call without regard to
the programming environment. Examples are given that use the standard interface and
the DoRequest method. For additional examples, see “Program-Specific GetTypes
Examples” on page 224.

For an example of a GetTypes request that sets the OMI_SUCCINCT (2048) flag, see
“Listing the Types in a Repository” in “Overview” of querying metadata in the SAS
Open Metadata Interface: User’s Guide.

Example 1: Standard Interface
The following GetTypes request, formatted for the standard interface, lists the

metadata types defined in the SAS namespace.

ns= "SAS";
flags= 0;
options= "";

rc = GetTypes(types, ns, flags, options);

164 Example 2: DoRequest Method � Chapter 7

This is a partial example of the output returned by the metadata server:

<!-- XML string returned -->
<Types>

<Type Id="AbstractColumn" Desc="Abstract Column" HasSubTypes="1"/>
<Type Id="AbstractGroup" Desc="Abstract Group" HasSubTypes="1"/>
<Type Id="ApplicationTree" Desc="The root object for an application."
HasSubTypes="0"/>

...
</Types>

Example 2: DoRequest Method
This is an example of the same request formatted for the inMetadata parameter of

the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->
<GetTypes>

<Types/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetTypes>

Related Methods
� “GetNamespaces” on page 155
� “GetSubtypes” on page 158

IsSubtypeOf
Determines if one metadata type is a subtype of another
Category:Management Methods

Syntax
rc = IsSubTypeOf(type, supertype, result, ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

type C in The name of the metadata type that might be a subtype of
supertype.

supertype C in The name of the metadata type that might be a supertype of type.

result N out The returned indicator. 0 indicates that type is not a subtype of
supertype. 1 indicates that it is a subtype.

ns C in The namespace to use as the context for the request.

Methods for Reading and Writing Metadata (IOMI Class) � UndoCheckoutMetadata 165

Parameter Type Direction Description

flags L in This method does not support any flags. Reserved for future use.

For no flags, a 0 should be passed.

options B in An indicator for options. This method supports one option:

<DOAS Credential="credHandle"/>
Specifies an alternate calling identity for the request. For
more information, see “<DOAS> Option” on page 131.

The following examples show how to issue an IsSubType method call without regard
to the programming environment. Examples are given that use the standard interface
and the DoRequest method. For additional examples, see “Program-Specific
IsSubtypeOf Examples” on page 227.

Example 1: Standard Interface
The following IsSubtypeOf request, formatted for the standard interface, determines

whether WorkTable is a subtype of DataTable.

ns="SAS";
flags=0;
options="";

rc = IsSubtypeOf(WorkTable, DataTable, result, ns, flags, options);

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadata parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<IsSubtypeOf>
<Type>WorkTable</Type>
<Supertype>DataTable</Supertype>
<Result/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

<IsSubtypeOf>

Related Methods
� “GetSubtypes” on page 158

UndoCheckoutMetadata
Deletes the specified object from the project repository and unlocks its corresponding

primary object

166 Syntax � Chapter 7

Category: Change management methods

Syntax
rc = UndoCheckoutMetadata(inMetadata, outMetadata, ns, flags, options);

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in The metadata property string that identifies the metadata
objects to be deleted and unlocked.

outMetadata C out The property string returned from the metadata server.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for this method. All of the flags are optional.
For no flags, a 0 should be passed.

OMI_LOCK_TEMPLATE= 65536
Overrides the default lock template with a user-defined
template submitted in the Options parameter.

OMI_RETURN_LIST=1024
Includes the object identifiers of any associated objects that
were unchecked in the method output.

options C in An indicator for options. This method supports one option:

<LockTemplates>
Specifies a user-defined lock template that overrides the
default lock template associated with the specified object.
The <LockTemplates> element must be specified in
conjunction with the OMI_LOCK_TEMPLATE flag.

Details
The UndoCheckoutMetadata method enables you to remove from the project

repository objects that may have been checked out by mistake. It also enables you to
delete metadata objects copied to the project repository by FetchMetadata.

To undo checkout of an object, specify its metadata type and project repository object
instance identifier in the inMetadata parameter. The corresponding primary object
identified in the metadata object’s ChangeState attribute is immediately unlocked and
the specified object is deleted from the project repository.

When a metadata object is unchecked, any associated objects identified in the object’s
default lock template are unchecked as well. An object must be unchecked using the
same lock template that was used to check out or fetch it. That is, if a user-defined lock
template was used to check out or fetch the object, then this same template must be
passed in the UndoCheckoutMetadata method. For more information, see “Using the
Change Management Facility” in the SAS Open Metadata Interface: User’s Guide.

Methods for Reading and Writing Metadata (IOMI Class) � Syntax 167

By default, the outMetadata parameter lists only the object(s) specified in the
inMetadata parameter. Set the OMI_RETURN_LIST flag to include associated objects
that were unchecked in the output.

Be sure to check the return code of an UndoCheckoutMetadata method call. A
nonzero return code indicates that a failure occurred while trying to write the
metadata. When a nonzero return code is returned, none of the changes indicated by
the method call are made.

Example 1: Standard Interface
The following UndoCheckoutMetadata request, formatted for the standard interface,

deletes PhysicalTable object B700005N from project repository A3VTX83H and any
associated objects specified in the default lock template. Any corresponding objects in
the primary repository that were locked are unlocked as well. The OMI_RETURN_LIST
(1024) flag specifies to list the associated objects that are deleted.

inMetadata="<PhysicalTable Id="A3VTX83H.B700005N"/>";
outMetadata="";
ns= "SAS";
flags=1024;
options= "";

rc = UndoCheckoutMetadata(inMetadata, outMetadata, ns, flags, options);

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadata parameter of the DoRequest method.

<UndoCheckoutMetadata>
<Metadata>

<PhysicalTable Id="A3VTX83H.B700005N"/>
</Metadata>
<Ns>SAS</Ns>

<!--OMI_RETURN_LIST flag-->
<Flags>1024</Flags>
<Options/>
</UndoCheckoutMetadata>

Related Methods
� “CheckoutMetadata” on page 137
� “CheckinMetadata” on page 135
� “FetchMetadata” on page 146

UpdateMetadata
Updates specified metadata in a repository
Category: Write Methods

Syntax
rc = UpdateMetadata(inMetadata, outMetadata, ns, flags, options);

168 Parameters � Chapter 7

Parameters

Parameter Type Direction Description

rc N out The return code for the method. For more information, see
“Return Code” on page 118.

inMetadata C in A metadata property string that identifies the object to be
updated. For the general format of this string, see “Constructing
a Metadata Property String” on page 118.

outMetadata C out The property string returned from the metadata server.

ns C in The namespace to use as the context for the request.

flags L in The flags supported for this method. The
OMI_TRUSTED_CLIENT flag is required; all other flags are
optional.

OMI_IGNORE_NOTFOUND = 134217728
Prevents an update operation from being aborted when a
request specifies to update an object that does not exist.

OMI_RETURN_LIST = 1024
Returns the object identifiers of any dependent objects that
were deleted as a result of the update operation in the
outMetadata parameter.

OMI_TRUSTED_CLIENT = 268435456
Determines if the client can call this method. This flag is
required.

OMI_UNLOCK=131072
Unlocks a lock that is held by the calling user.

OMI_UNLOCK_FORCE=262144
Unlocks a lock that is held by another user.

options C in An indicator for options. This method supports one option:

<DOAS Credential="credHandle"/>
Specifies an alternate calling identity for the request. For
more information, see “<DOAS> Option” on page 131.

Details

The UpdateMetadata method enables you to update the properties of existing objects.
It will issue an error if the object to be updated does not exist, unless the
OMI_IGNORE_NOTFOUND (134217728) flag is set.

You can modify both an object’s attributes and associations, unless the association is
designated as “required for add” in the metadata type documentation.

You specify directives on the association name element in the input metadata
property string to indicate whether the association is being appended, modified,
removed, or replaced. Different directives are supported for single and multiple
associations. For information about these directives and general UpdateMetadata

Methods for Reading and Writing Metadata (IOMI Class) � Example 2: DoRequest Method 169

usage, see “Updating Metadata Objects” in the SAS Open Metadata Interface: User’s
Guide.

You must have a registered identity on the host metadata server in order to set the
OMI_UNLOCK (131072) and OMI_UNLOCK_FORCE (262144) flags. These flags
unlock objects that were previously locked by the OMI_LOCK flag or that were locked
by the change management facility. The OMI_LOCK flag is set in a GetMetadata
method call to provide basic concurrency controls in preparation for an update. For an
overview of the multiuser concurrency controls supported by the SAS Open Metadata
Interface, see “Locking Metadata Objects” in the SAS Open Metadata Interface: User’s
Guide. When OMI_UNLOCK (131072) or OMI_UNLOCK_FORCE (262144) is set, any
associated objects that were locked are automatically unlocked as well.

Be sure to check the return code of an UpdateMetadata method call. A nonzero
return code indicates that a failure occurred while trying to write the metadata. When
a nonzero return code is returned, none of the changes indicated by the method call are
made.

The following examples show how to issue a simple UpdateMetadata method call
without regard to the programming environment. Examples are given that use the
standard interface and the DoRequest method. For additional examples, see
“Program-Specific UpdateMetadata Examples” on page 231.

Example 1: Standard Interface
The following is an example of an UpdateMetadata method call that is formatted for

the standard interface. The specified attributes and values will replace those stored for
the object of the specified metadata type and object instance identifier.

<!-- Create a metadata list to be passed to UpdateMetadata -->

inMetadata= "<PhysicalTable Id="A2345678.A2000001"
Name="Sales Table"
DataName="Sales"
Desc="Sales for first quarter"/>";

ns= "SAS";
flags= 268435456; <!- OMI_TRUSTED_CLIENT flag ->
options= "";

rc = UpdateMetadata(inMetadata, outMetadata, ns, flags, options);

The following is an example of the output returned by the metadata server:

<!-- outMetadata XML string returned -->
<PhysicalTable Id="A2345678.A2000001"

Name="Sales Table"
DataName="Sales"
Desc="Sales for first quarter"/>

Example 2: DoRequest Method
The following XML string shows how to format the method call in Example 1 for the

inMetadata parameter of the DoRequest method.

<!-- XML string for inMetadata= parameter of DoRequest method call -->

<UpdateMetadata>
<Metadata>

170 Related Methods � Chapter 7

<PhysicalTable Id="A2345678.A2000001"
Name="Sales Table"
DataName="Sales"
Desc="Sales for first quarter"/>

</Metadata>
<NS>SAS</NS>
<!- OMI_TRUSTED_CLIENT flag ->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

Related Methods
� “DeleteMetadata” on page 141

� “GetMetadata” on page 148

171

C H A P T E R

8
Security Methods (ISecurity
Class)

Overview of the ISecurity Class 171
Using the ISecurity Class 172

FreeCredentials 172

Syntax 172

Parameters 173

Details 173
Example 173

Related Methods 173

GetAuthorizations 173

Syntax 173

Parameters 173

Details 174
Examples 174

Related Methods 175

GetCredentials 175

Syntax 175

Parameters 175
Details 175

Example 175

Related Methods 176

GetIdentity 176

Syntax 176
Parameters 176

Details 176

Examples 177

Related Methods 177

IsAuthorized 177

Syntax 178
Parameters 178

Details 178

Examples 179

Related Methods 179

Overview of the ISecurity Class

The methods described in this section are provided in the ISecurity method class and
can be used in a Java, Visual Basic, or C++ thin client that you create to restrict access
to metadata resources. The methods can be used to authorize access both to metadata
and to the data that is represented by the metadata.

172 Using the ISecurity Class � Chapter 8

ISecurity methods are available only through the standard interface. For more
information, see “Call Interfaces” on page 13.

The following information applies to all of the ISecurity methods:
� The parameter rc returns void. Errors are surfaced through the exception

handling in the IOM mechanism.
� resource is a Uniform Resource Name (URN) in the form:

OMSOBJ:MetadataType/objectId

� In the current release, the methods assume the calling user and any user IDs
specified by the calling program have been authenticated prior to calling the SAS
Metadata Server and that the caller is a “trusted user” of the metadata server.

� The methods base authorization decisions on user and access control metadata
that is stored in SAS metadata repositories. Appropriate metadata must be
defined in order for authorization decisions to be made. User metadata is defined
by using the SAS Management Console User Manager plug-in or by extracting
user and group definitions from an enterprise source using macros. Access control
metadata is defined using the Authorization Manager plug-in to SAS Management
Console. For information about the plug-ins, see the SAS Management Console
documentation. For information about the access controls supported by the SAS
Open Metadata Architecture authorization facility and the complete collection of
tools to manage them, see the SAS Intelligence Platform: Security Administration
Guide.

Using the ISecurity Class
The ISecurity class enables you to
� get and free a credential handle for an authenticated user
� determine whether an authenticated user is authorized to access a resource with a

specific permission
� determine which identity object represents the authenticated user in the metadata

server
� issue special calls, for example, to determine a user’s authorizations on all parts of

an OLAP cube.

For more information, see the descriptions of the ISecurity methods.

FreeCredentials
Frees the credential handle obtained by GetCredentials
Category: Authorization Methods

Syntax
rc = FreeCredentials(credHandle);

Security Methods (ISecurity Class) � Parameters 173

Parameters

Parameter Type Direction Description

credHandle string in The credential handle to free.

Details

The FreeCredentials method frees the metadata server-side credentials associated
with a credential handle returned by the GetCredentials method. Each credential
handle returned by the GetCredentials method should be freed.

Example

Note: The FreeCredentials method is supported only in the standard interface.
The following is a Java example of a FreeCredentials method call. �

FreeCredentials(credHandle_value);

Related Methods
� “GetCredentials” on page 175

GetAuthorizations

Gets a variety of authorization information, depending on the type of authorization
requested

Category: Authorization Methods

Syntax
rc = GetAuthorizations(authType, credHandle, resource, permission, authorizations);

Parameters

Parameter Type Direction Description

authType string in The type of authorization to perform.

credHandle string in A credential handle identifying a user identity or an empty
string.

resource string in A resource identifier.

174 Details � Chapter 8

Parameter Type Direction Description

permission string in A mnemonic representation of the permission for which
authorization is being sought. This parameter can be an empty
string for some authType values.

authorizationsstring out A returned two-dimensional string. The content and structure of
this array will vary depending on the authorization type
specified in the authType parameter.

Details
The GetAuthorizations method performs special authorization-related queries. The

input required for processing the query and the format and content of the information
returned is determined by the authType parameter. Currently, the only supported
authType value is “Cube”.

“Cube” returns an array of strings[*][4]. The number of rows depends on the
structure of the cube and each row has four columns:

Type
indicates the metadata type in the row. This will be either “Hierarchy”,
“Dimension”, “Measure”, or “Level”.

Name
returns the Name attribute of the type instance.

Authorized
returns a “Y” or “N” indicating whether the permission being sought has been
granted to the user in this component of the cube structure.

PermissionCondition
returns a condition that must be enforced on this particular cube component to
allow access. For more information about permission conditions, see the description
of the “IsAuthorized” on page 177 method permissionCondition parameter.

If the credHandle parameter is an empty string, a credential handle is returned for
the user making the request.

Examples

Note: The GetAuthorizations method is supported only in the standard interface. �

The following are Java examples of a GetAuthorizations call.
The following GetAuthorizations call returns a matrix containing resource

authorization decisions on cube A5J52Z80.AT000005 for the user identified by
credHandle_value. Specifying the ReadMetadata and Read permissions in the
Permissions parameter returns only authorizations with these permissions.

String type = "Cube";
String resource = "OMSOBJ:Cube/A5J52Z80.AT000005";
String permission = "ReadMetadata,Read";

StringHolder permissionCondition = new org.omg.CORBA.StringHolder();

Security Methods (ISecurity Class) � Example 175

com.sas.iom.SASIOMDefs.VariableArray2dOfStringHolder returnAuthorizations =
new com.sas.iom.SASIOMDefs.VariableArray2dOfStringHolder();

GetAuthorizations(type,credHandle_value,resource,permission,returnAuthorizations);

The following is an example of a GetAuthorizations call that passes an empty string
in the credHandle parameter to return authorizations for the requesting user.

GetAuthorizations(type,"",resource,permission,returnAuthorizations);

Related Methods
� “IsAuthorized” on page 177

GetCredentials
Returns a handle to a provider-specific credential
Category: Authorization Methods

Syntax
rc = GetCredentials(credHandle,subject);

Parameters

Parameter Type Direction Description

credHandle string out The returned credential handle representing the subject.

subject string in The user ID of the authenticated user for whom a credential is
sought or an empty string.

Details
The GetCredentials method returns a credential handle for the user identified in the

subject parameter. If the subject parameter contains an empty string, a credential
handle is returned for the user making the request.

A credential handle is a token representing a user’s authorizations on the SAS
Metadata Server that can be stored on an interim server to reduce the number of
authorization requests that are made to the server on behalf of a given user. A
credential describes the privilege attributes (identity and group memberships) of the
subject, as registered in the metadata server. Every credential handle that is returned
by the GetCredentials method should be freed using the FreeCredentials method.

Example
Note: The GetCredentials method is supported only in the standard interface. �

176 Related Methods � Chapter 8

The following is a Java example of a GetCredentials call that returns a handle for
the user identified by MYDOMAIN\MYUSERID.

String subject = new String("myDomain\myUserID");
StringHolder credHandle = new org.omg.CORBA.StringHolder();

GetCredentials(subject,credHandle);

Related Methods
� “FreeCredentials” on page 172

� “GetIdentity” on page 176

GetIdentity

Gets identity metadata for the specified user
Category: Authorization Methods

Syntax
rc = GetIdentity(credHandle,identity);

Parameters

Parameter Type Direction Description

credHandle string in The credential handle identifying a user identity, an empty
string, or a user ID in the form "LOGINID:userid”.

identity string out The metadata object identifier of the identity represented by the
credential handle.

Details
Given a credential handle, the GetIdentity method will return a URN-like string

representing the metadata object identifier of the identity that corresponds to the
credential handle. An “identity” refers to the Person or IdentityGroup metadata object
describing a user in a SAS metadata repository.

The URN-like string is in the form

OMSOBJ: MetadataType/objectId

where

� MetadataType is the IdentityGroup or Person metadata type

� objectId is a unique object instance identifier in the form reposid.objectId.

Security Methods (ISecurity Class) � IsAuthorized 177

If the credHandle parameter is an empty string, the returned identifier represents
the requesting user.

If the user ID of the user on whose behalf the call is made is known, specify it in the
form “LOGINID:userid” to eliminate the need to issue GetCredentials and
FreeCredentials calls prior to GetIdentities. In the “LOGINID:userid” string

� LOGINID specifies to search for Login objects

� userid is the value of a Login object’s userID attribute.

Examples

Note: The GetIdentity method is supported only in the standard interface. �

The following are Java examples of a GetIdentity call.

// GetIdentity() returns a URN-like string representing the metadata object
// identifier of an identity specified in the first parameter. The first
// parameter can be specified in one of three ways:

StringHolder identityValue = new org.omg.CORBA.StringHolder();

// 1) The first parameter is an empty string:
// GetIdentity() returns the Identity associated with
// the current connection to the SAS Metadata Server.

GetIdentity("",identityValue);

// 2) The first parameter is a valid credential handle:
// Here the returned Identity corresponds to the credential handle
// obtained in the previous call to GetCredentials().

GetIdentity(credHandle.value,identityValue);

// 3) The first parameter is a user ID with the prefix: ’LOGINID:’
// Here the returned Identity corresponds to specified user ID.

String loginId = new String("LOGINID:myUserID");
GetIdentity(credHandle.value,identityValue);

Related Methods
� “GetCredentials” on page 175

IsAuthorized

Determines whether an authenticated user is authorized to access a resource with a
specific permission

Category: Authorization Methods

178 Syntax � Chapter 8

Syntax
rc = IsAuthorized(credHandle,resource,permission,permissionCondition,authorized);

Parameters

Parameter Type Direction Description

credHandle string in The credential handle identifying a user identity
or an empty string.

resource string in A resource identifier.

permission string in The name of a metadata permission(s).

permissionCondition string out The returned permission condition(s) associated
with the data access.

authorized boolean out A boolean value that indicates whether access to a
resource is granted or denied.

Details
If the credHandle parameter is an empty string, a credential handle is returned for

the user making the request.The resource parameter identifies the application element
to which access is requested. It accepts a Uniform Resource Name (URN) in the form

OMSOBJ: metadataType/objectId

The Permission parameter accepts the name of a Permission metadata object that is
defined in a SAS metadata repository. A Permission object is just another metadata
object in a SAS metadata repository. As new applications are added or if users need
additional permissions, then additional Permission objects can be added to the
repository. The standard Permission objects are:

ReadMetadata indicates a user can read a metadata object.

WriteMetadata indicates a user can write a metadata object.

Read indicates a user can read the data represented by a metadata object.

Write indicates a user can write the data represented by a metadata object.

The Permissions parameter accepts multiple, comma-delimited permissions (for
example, “ReadMetadata, WriteMetadata, Read, Write, Administer”). When multiple
permissions are passed, the isAuthorized method parses them and permits access only
if the specified user has access based on the sum of the specified permissions.

The permissionCondition parameter is used in association with “data” permissions
such as Read and Write. It indicates that a permission is granted, but only if the
specific condition is met. The syntax of the permission condition is not defined; it is
specific to the resource being protected and the technology responsible for enforcing the
security of the resource. For example, a permissionCondition for a table would likely be
a SQL Where clause, but for an OLAP Dimension it would be an MDX expression
identifying the level members that can be accessed in the dimension.

Security Methods (ISecurity Class) � Related Methods 179

Note: In the current release, PermissionCondition objects are supported only for
OLAP Dimensions. �

It is possible for a user to have multiple conditions associated with their access to a
resource. In this case, the permissionCondition parameter will be returned with
multiple strings embedded. Each embedded condition will be separated from the
preceding condition by the string “<!–CONDITION–>” If you receive a
permissionCondition, you must check to see if it contains multiple conditions by
searching for <!–CONDITION–> in the returned string. If multiple conditions are
found, then they should be used to filter data such that the result is a union of the data
returned for each condition individually. In other words, the conditions would be ORed
together.

Examples

Note: The IsAuthorized method is supported only in the standard interface. �

The following are Java examples of an IsAuthorized call.
This example determines if the user represented by credHandle_value has

ReadMetadata permission to the PhysicalTable object identified as
’A5J52Z80.AK000001’.

String resource = "OMSOBJ:PhysicalTable/A5J52Z80.AK000001";
String permission = "ReadMetadata";

StringHolder permissionCondition = new org.omg.CORBA.StringHolder();
BooleanHolder authorized = new org.omg.CORBA.BooleanHolder();

IsAuthorized(credHandle_value,resource,permission,permissionCondition,authorized);

The following example passes an empty string to return an authorization decision for
the requesting identity.

IsAuthorized("",resource,permission,permissionCondition,authorized);

Related Methods
� “GetAuthorizations” on page 173

180

181

C H A P T E R

9
Repository and Server Control
Methods (IServer Class)

Overview of the IServer Class 181
Using the IServer Class 182

Pause 182

Syntax 182

Details 182

Example 184
Refresh 184

Syntax 184

Details 184

Examples 185

Resume 186

Syntax 186
Details 186

Standard Interface Example 187

Status 187

Syntax 187

Details 188
Standard Interface Example 188

DoRequest Example 188

Stop 189

Syntax 189

Details 189
Example 189

Overview of the IServer Class
The methods described in this section are provided in the IServer method class and

can be used in a Java, Visual Basic, or C++ thin client that you create to perform
repository and server administrative tasks. For example, you can pause client activity
on all or specific repositories, including the repository manager, in preparation for
performing a backup. You can also refresh a running server to change its configuration
options.

In the examples, note the following:
� serverObject is an instantiation of the IServer method class.
� repositoryObject is an instantiation of the RepositoryBase metadata type.
� The parameter rc captures the return code of the method.

Note: A user must have unrestricted user or administrative user status on the
metadata server in order to pause, refresh, and resume repositories and the repository

182 Using the IServer Class � Chapter 9

manager, and to stop the metadata server. Anyone can issue the Status method. For
more information about the administrative privileges supported on the metadata server,
see the SAS Intelligence Platform: Security Administration Guide. �

Using the IServer Class
The IServer class contains methods that enable you to perform the following tasks:

� pause and resume the SAS Metadata Server. Client activity on the SAS Metadata
Server must be paused prior to updating or deleting a repository object or updating
the repository manager. After repository and repository manager updates are
completed, client activity must be resumed by using a Resume method.

� refresh the SAS Metadata Server to recover memory or to change certain server
configuration options.

� poll the SAS metadata server to determine its status.

� shut down (stop) the SAS Metadata Server.

Pause

Temporarily limits the availability of a repository, the repository manager, or all
repositories

Category: Repository Control

Syntax
rc=Pause(options);

Parameter Type Direction Description

rc N out The return code for the method. Indicates whether the server
ran the method call (rc=0) or not (rc=1).

options C in An indicator for options. This method supports one option:

<REPOSITORY>
specifies an XML property string that identifies a
repository to pause.

Details
The Pause method is issued on a running server to temporarily limit the access mode

specified in a repository’s Access attribute. The values supported in the Access attribute
are described in “RepositoryBase” on page 109. To determine the access mode in force
for a given repository, issue a GetRepositories method, setting the OMI_ALL (1) flag.
The GetRepositories method will return a list of all repositories registered on the
metadata server, as well as the values in their Access and PauseState attributes. A
value in the PauseState attribute indicates a repository has been paused.

When executed without options, the Pause method quiesces client activity in all
repositories on the metadata server, except the repository manager, and changes them

Repository and Server Control Methods (IServer Class) � Details 183

to an OFFLINE state. This closes all repository files on the server and de-assigns the
librefs to the repositories.

The <Repository> XML element enables you to optionally identify a specific
repository to pause, including the repository manager, and a pause state of READONLY
instead of OFFLINE. The <Repository> XML element is passed in the Options
parameter and has the form

<REPOSITORY Id="Reposid|REPOSMGR|ALL" State="OFFLINE|READONLY">

where
� Id= is required and specifies the unique 8-character or 17-character identifier of a

repository, or the keywords REPOSMGR or ALL. The REPOSMGR value pauses
the repository manager. The ALL value pauses all repositories on the server
except the repository manager. If Id= is omitted or specified without a value, it has
the same effect as specifying Id="ALL".

� State= specifies OFFLINE or READONLY. READONLY permits clients to read
metadata in the specified repository or repository manager, but prevents them
from writing to it. OFFLINE disables read and write access to a repository or the
repository manager. If a State value is omitted from the <Repository> element, the
default state is READONLY.

� Multiple specific repositories can be paused at once by stacking their <Repository>
elements in the Options parameter.

The values REPOSMGR, ALL, OFFLINE, and READONLY must be specified in
uppercase letters.

When Pause is issued with one or more <Repository> tags, the metadata server
processes only the indicated repositories and/or repository manager by closing all
repository files and de-assigning the repository libref. Those paused for READONLY
are re-assigned readonly librefs.

A repository (or repository manager) that is paused must be resumed using the
“Resume” on page 186 method. The repository files cannot be re-opened until the
repositories are resumed.

The metadata server must pause, resume, and refresh repositories when no other
activity is taking place in the server, so it automatically delays other client requests
until these services are complete. This may have a small effect on server performance.

Because of the pervasive nature of the method, a foundation repository should not be
paused to an OFFLINE state without also pausing all repositories that depend on it.
When a foundation repository is paused for OFFLINE, all permissions, inheritance
rules, and user registrations it contains will no longer be available to dependent
repositories. A request for a permission that is not found will be denied. When identity
metadata cannot be found, the requesting user is treated as PUBLIC. When inheritance
rules cannot be found, the only access controls evaluated when making an authorization
decision are those directly on an object and those defined on a repository’s Default ACT.

The Pause method is supported only in the standard interface. For more information,
see “Call Interfaces” on page 13.

A user must have unrestricted user or administrative user status on the metadata
server in order to pause the metadata server.

184 Refresh � Chapter 9

Example

The following example pauses a repository for READONLY.

<!--Pause repository A5H9YT45 for READONLY-->
options=’<Repository Id="A5H9YT45" State="READONLY"/>’;

rc=Pause(options);

Refresh

Changes SAS Metadata Server configuration and invocation options on a running
metadata server. Also pauses and resumes a repository in a single step.

Category: Server Control/Repository Control

Syntax

rc=Refresh(options);

Parameter Type Direction Description

rc N out The return code for the method. Indicates whether the server
ran the method call (rc=0) or not (rc=1).

options C in An indicator for options. This method supports two options:

<ARM>
an XML element that specifies one or more ARM system
options.

<REPOSITORY>
an XML element that identifies a repository to pause and
resume.

Details

Refresh is issued on a running metadata server. It has two uses:

� It can quiesce client activity on the server long enough to invoke the specified
server configuration option(s) and then automatically resume the server.
Currently, one configuration option is supported. The <ARM> XML element
specifies one or more ARM system options as follows:

<ARM ARMSUBSYS="(ARM_NONE|ARM_OMA)" ARMLOC="fileref|filename">

The ARMSUBSYS= option permits you to enable or disable ARM logging. If ARM
logging is already enabled, specifying ARMLOC= writes the ARM log to a new
location. Note that absolute and relative pathnames are read as different
locations. See the SAS Intelligence Platform: System Administration Guide for
more information about SAS OMA ARM logging, including syntax details.

Repository and Server Control Methods (IServer Class) � Examples 185

� It can pause and resume a repository in a single step. The memory footprint of the
server can be reduced by pausing and resuming one or more repositories because
the files associated with the repositories are closed. Subsequent client requests
will reopen the files as they are needed. The repository to pause is identified in
the <Repository> XML element in the form:

<REPOSITORY Id="Reposid|REPOSMGR|ALL" State="READONLY|OFFLINE"/>

For syntax details, see the “Pause” on page 182 method.

When used with the <Repository> element, the Refresh method clears a repository’s
PauseState attribute.

Executing the Refresh method without options has no effect.
The metadata server must pause, resume, and refresh repositories when no other

activity is taking place in the server, so it automatically delays other client requests
until these services are complete. This may have a small effect on server performance.

The Refresh method is supported only in the standard interface. For more
information, see “Call Interfaces” on page 13.

A user must have unrestricted user or administrative user status on the metadata
server in order to refresh the metadata server.

Examples
The following example enables ARM_OMA logging.

options=’<ARM armsubsys="(ARM_OMA)" armloc="myARM.log"/>’;
rc=serverObject.Refresh(options);

The following example disables ARM_OMA logging.

options=’<ARM armsubsys="(ARM_NONE)"/>’;
rc=serverObject.Refresh(options);

The following example pauses and resumes a repository to temporarily take it offline,
for example, to reduce its memory footprint.

options=’<Repository Id="A5H9YT45" State="offline"/>’;
rc=serverObject.Refresh(options);

186 Resume � Chapter 9

Resume
Restores client activity in one or more repositories
Category: Repository Control

Syntax
rc=Resume(options);

Parameter Type Direction Description

rc N out The return code for the method. Indicates whether the server
ran the method call (rc=0) or not (rc=1).

options C in An indicator for options. This method supports one option:

<REPOSITORY>
specifies an XML property string identifying a repository to
resume.

Details
The Resume method restores client activity in a repository that has been paused by

the Pause method. When executed without options, the Resume method restores client
activity in all repositories, except the repository manager. A <Repository> XML element
enables you to identify a specific repository in which to restore activity or to restore
activity on the repository manager.

The <Repository> XML element is passed in the options parameter and has the form

<REPOSITORY ID="Reposid|REPOSMGR|ALL">

where ID= is the unique 8-character or 17-character identifier of a repository,
REPOSMGR, or ALL. The default, ALL, resumes activity in all repositories, except the
repository manager. The values REPOSMGR and ALL must be specified in uppercase
letters.

The Resume method restores a repository to the access mode specified in its Access
attribute and clears the value in the repository’s PauseState attribute. See
“RepositoryBase” on page 109 for more information about these attributes.

Note: In order for security rules to be reloaded correctly after a Pause, a foundation
repository and its dependent repositories should be resumed at the same time. �

The Resume method is supported only in the standard interface. For more
information, see “Call Interfaces” on page 13.

A user must have unrestricted user or administrative user status on the metadata
server in order to resume the metadata server.

Repository and Server Control Methods (IServer Class) � Syntax 187

Standard Interface Example
The following example resumes a paused repository.

<!--Resume repository A5H9YT45 to its normal access mode-->
options=’<Repository Id="A5H9YT45"/>’;

rc=Resume(options);

Status
Polls the SAS Metadata Server and returns SAS Metadata Server and SAS Metadata

Model version information
Category: Server Control

Syntax
rc=Status(inmeta, outmeta, options);

Parameter Type Direction Description

rc N out The return code for the method. Indicates whether the server
ran the method call (rc=0) or not (rc=1).

inmeta string in An XML string that requests additional information to be
returned from the metadata server.

<ModelVersion/> requests the SAS Metadata Model version
number.

<PlatformVersion/> requests the SAS Metadata Server version
number.

<State/> requests the server’s availability.

<Version/> deprecated in SAS 9.1.3, Service Pack 3.

outmeta string out An output string that mirrors the content of the inmeta
parameter except that it has return values filled in.

options C in An indicator for options. No options are supported at this time.

188 Details � Chapter 9

Details

The inmeta parameter is a string that contains one or more XML elements that
request information.

The outmeta parameter mirrors the inmeta parameter and returns the following
values:

<ModelVersion/>
returns the SAS Metadata Model version number in the form X.XX, for example,
5.01. The model version is incremented when there is a change to the metadata
model. A change includes the addition, modification, or removal of metadata types,
attributes, and associations. The integer part of the version number is the
“repository format” number. When this number is incremented, it is an indication
that the underlying data structure has changed and a conversion of the tables
should be performed. It is possible that a server written for format 5 to use
repositories that are format 4 without conversion; however, there will likely be a
performance penalty and some features will not be available. The decimal part of
the version number indicates that a model change was made, but there is no need
for conversion. This would be the case if a new metadata type or association was
added to the model.

<PlatformVersion/>
returns the SAS version number of the metadata server in the form X.X.X.X. For
example, for a metadata server that is running SAS 9.1.3, Service Pack 3, the
platform version number is 9.1.3.3. When the server installation is updated to use
SAS 9.2, the platform version number will be 9.2.0.0.

<State/>
a value of 0 indicates the metadata server is running; a value of 1 indicates that
all repositories, and therefore the server, are paused to an OFFLINE state; no
response means the server is down.

<Version/>
the use of this element is deprecated beginning with SAS 9.1.3, Service Pack 3. In
previous releases of SAS software, it returned the SAS Metadata Model version
number.

The Status method does not check the availability of SAS Metadata Repositories. To
determine the availability of the repositories registered on the metadata server, you
must use the GetRepositories method. See “GetRepositories” on page 156 for more
information.

Standard Interface Example
<!--Determine availability and version numbers of the
SAS Metadata Model and metadata server-->
inmeta=’<State/> <ModelVersion/> <PlatformVersion/>’
outmeta=’’
options=’’

rc=Status(inmeta,outmeta,options);

DoRequest Example
<!--Determine availability and version numbers of the
SAS Metadata Model and metadata server-->

Repository and Server Control Methods (IServer Class) � Details 189

<Status>
<Metadata>
<State/>
<ModelVersion/>
<PlatformVersion/>
</Metadata>
<Options/>
</Status>

Stop
Shuts down the SAS Metadata Server
Category: Server Control

Syntax
serverObject.Stop(options);

Parameter Type Direction Description

options C in An indicator for options. No options are supported at this time.

Details
A return code of 0 indicates that the metadata server was successfully stopped. A

return code other than 0 indicates that the metadata server failed to stop.
The Stop method is supported only in the standard interface.
A user must have unrestricted user or administrative user status on the metadata

server in order to stop the server. For more information about these privileges, see the
SAS Intelligence Platform: Security Administration Guide.

Example
<!--Stops the metadata server-->
options=’’

rc=Stop(options);

190

191

C H A P T E R

10
Program-Specific Method
Examples

Overview to Program-Specific Method Examples 193
Program-Specific AddMetadata Examples 193

Java Example of an AddMetadata Call 193

Standard Interface 193

DoRequest Method 194

Visual Basic Example of an AddMetadata Call 195
Standard Interface 195

DoRequest Method 195

Visual C++ Example of an AddMetadata Call 196

Standard Interface 196

DoRequest Method 196

Program-Specific DeleteMetadata Examples 197
Java Example of a DeleteMetadata Call 197

Standard Interface 197

DoRequest Method 198

Visual Basic Example of a DeleteMetadata Call 199

Standard Interface 199
DoRequest Method 199

Visual C++ Example of a DeleteMetadata Call 200

Standard Interface 200

DoRequest Method 200

Program-Specific GetMetadata Examples 201
Java Example of a GetMetadata Call 201

Standard Interface 201

DoRequest Method 202

Visual Basic Example of a GetMetadata Call 203

Standard Interface 203

DoRequest Method 203
Visual C++ Example of a GetMetadata Call 204

Standard Interface 204

DoRequest Method 205

Program-Specific GetMetadataObjects Examples 205

Java Example of a GetMetadataObjects Call 205
Standard Interface 205

DoRequest Method 206

Visual Basic Example of a GetMetadataObjects Call 207

Standard Interface 207

DoRequest Method 207
Visual C++ Example of a GetMetadataObjects Call 208

Standard Interface 208

DoRequest Method 209

192 Contents � Chapter 10

Program-Specific GetNamespaces Examples 209
Java Example of a GetNamespaces Call 209

Standard Interface 209

DoRequest Method 210

Visual Basic Example of a GetNamespaces Call 211

Standard Interface 211
DoRequest Method 211

Visual C++ Example of a GetNamespaces Call 212

Standard Interface 212

DoRequest Method 212

Program-Specific GetRepositories Examples 213

Java Example of a GetRepositories Call 213
Standard Interface 213

DoRequest Method 213

Visual Basic Example of a GetRepositories Call 214

Standard Interface 214

DoRequest Method 215
Visual C++ Example of a GetRepositories Call 215

Standard Interface 215

DoRequest Method 216

Program-Specific GetSubtypes Examples 216

Java Example of a GetSubtypes Call 216
Standard Interface 216

DoRequest Method 217

Visual Basic Example of a GetSubtypes Call 218

Standard Interface 218

DoRequest Method 218

Visual C++ Example of a GetSubtypes Call 219
Standard Interface 219

DoRequest Method 219

Program-Specific GetTypeProperties Examples 220

Java Example of a GetTypeProperties Call 220

Standard Interface 220
DoRequest Method 221

Visual Basic Example of a GetTypeProperties Call 221

Standard Interface 221

DoRequest Method 222

Visual C++ Example of a GetTypeProperties Call 222
Standard Interface 222

DoRequest Method 223

Program-Specific GetTypes Examples 224

Java Example of a GetTypes Call 224

Standard Interface 224

DoRequest Method 224
Visual Basic Example of a GetTypes Call 225

Standard Interface 225

DoRequest Method 226

Visual C++ Example of a GetTypes Call 226

Standard Interface 226
DoRequest Method 227

Program-Specific IsSubtypeOf Examples 227

Java Example of an IsSubtypeOf Call 227

Standard Interface 227

DoRequest Method 228

Program-Specific Method Examples � Java Example of an AddMetadata Call 193

Visual Basic Example of an IsSubtypeOf Call 229
Standard Interface 229

DoRequest Method 229

Visual C++ Example of an IsSubtypeOf Call 230

Standard Interface 230

DoRequest Method 231
Program-Specific UpdateMetadata Examples 231

Java Example of an UpdateMetadata Call 231

Standard Interface 231

DoRequest Method 232

Visual Basic Example of an UpdateMetadata Call 233

Standard Interface 233
DoRequest Method 233

Visual C++ Example of an UpdateMetadata Call 234

Standard Interface 234

DoRequest Method 235

Overview to Program-Specific Method Examples

This section contains Java, Visual Basic, and Visual C++ examples of the method
calls described in “Overview of the IOMI Class Methods” on page 117. The IOMI
samples are code fragments that can be used in conjunction with the sample IOMI
connection code presented in “Sample Java IOMI Client” on page 24, “Sample Visual
Basic OMI Client” on page 28, and “Sample Visual C++ IOMI Client” on page 31 to
build a SAS Open Metadata Interface client. The examples show how to issue each
method call using both the standard interface and the DoRequest method.

Program-Specific AddMetadata Examples

The following code fragments create a PhysicalTable object by using first the
standard interface and then the DoRequest method.

Java Example of an AddMetadata Call

Standard Interface

JAVA Example of Standard Interface

private void addMetadata() {

int returnFromOMI;
String inMetadata;
String Reposid;
StringHolder outMetadata;
String Namespace;

194 Java Example of an AddMetadata Call � Chapter 10

int Flag;
String Options;

inMetadata="<PhysicalTable Name=\"New Table\" Desc=\"New Table added
through API\"/>";
Reposid="A0000001.A2345678";
outMetadata = new org.omg.CORBA.StringHolder();
Namespace="SAS";
Flag = 268435456;
Options = "";

try {
returnFromOMI = connection.AddMetadata(inMetadata, Reposid, outMetadata,

Namespace, Flag, Options);
}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<AddMetadata>" +
"<Metadata>" +
"<PhysicalTable Name=\"New Table\" Desc=\"New Table added
through API\"/>" +
"</Metadata>" +
"<Reposid>A0000001.A2345678</Reposid>" +
"<NS>SAS</NS>" +
"<Flags>268435456</Flags>" +
"<Options/>" +
"</AddMetadata>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

Program-Specific Method Examples � Visual Basic Example of an AddMetadata Call 195

System.out.println(e);
}

}

Visual Basic Example of an AddMetadata Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inMetadata As String
Dim Reposid As String
Dim outMetadata As String
Dim Namespace As String
Dim Flag As Long
Dim Options As String

inMetadata="<PhysicalTable Name=""New Table"" Desc=""New Table added
through API""/>"
Reposid="A0000001.A2345678"
Namespace="SAS"
Flag = 268435456
Options = ""

returnFromOMI = obOMI.AddMetadata(inMetadata, Reposid, outMetadata,
Namespace, Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

inputXML = "<AddMetadata>" + _
"<Metadata>" + _
"<PhysicalTable Name=""New Table"" Desc=""New Table added

196 Visual C++ Example of an AddMetadata Call � Chapter 10

through API""/>" + _
"</Metadata>" + _
"<Reposid>A0000001.A2345678</Reposid>" + _
"<NS>SAS</NS>" + _
"<Flags>268435456</Flags>" + _
"<Options/>" + _
"</AddMetadata>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of an AddMetadata Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString inMetadataStr("<PhysicalTable Name=\"New Table\" Desc=\"New Table
added through API\"/>");

BSTR inMetadata = inMetadataStr.AllocSysString();

CString ReposidStr("A0000001.A2345678");
BSTR Reposid = ReposidStr.AllocSysString();

CString outMetadataStr("");
BSTR outMetadata = outMetadataStr.AllocSysString();

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 268435456;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->AddMetadata(inMetadata, Reposid, &outMetadata;,
Namespace, Flag, Options);

}

DoRequest Method

Program-Specific Method Examples � Java Example of a DeleteMetadata Call 197

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<AddMetadata>"
"<Metadata>"
"<PhysicalTable Name=\"New Table\" Desc=\"New Table

added through API\"/>"
"</Metadata>"
"<Reposid>A0000001.A2345678</Reposid>"
"<NS>SAS</NS>"
"<Flags>268435456</Flags>"
"<Options/>"
"</AddMetadata>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific DeleteMetadata Examples

The following code fragments delete a SASLibrary object and a PhysicalTable object
by using first the standard interface and then the DoRequest method.

Java Example of a DeleteMetadata Call

Standard Interface

JAVA Example of Standard Interface

private void deleteMetadata() {

int returnFromOMI;
String inMetadata;
StringHolder outMetadata;
String Namespace;
int Flag;

198 Java Example of a DeleteMetadata Call � Chapter 10

String Options;

inMetadata="<SASLibrary Id=\"A2345678.A2000001\"/>
<PhysicalTable Id=\"A2345678.A2000001\"/>";

outMetadata = new org.omg.CORBA.StringHolder();
Namespace="SAS";
Flag = 268436480;
Options = "";

try {
returnFromOMI = connection.DeleteMetadata(inMetadata, outMetadata,
Namespace, Flag, Options);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<DeleteMetadata>" +
"<Metadata>" +
"<SASLibrary Id=\"A2345678.A2000001\" />" +
"<PhysicalTable Id=\"A2345678.A3000001\"/>" +
"</Metadata>" +
"<NS>SAS</NS>" +
"<Flags>268436480</Flags>" +
"<Options/>" +
"</DeleteMetadata>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

Program-Specific Method Examples � Visual Basic Example of a DeleteMetadata Call 199

System.out.println(e);
}

}

Visual Basic Example of a DeleteMetadata Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inMetadata As String
Dim outMetadata As String
Dim Namespace As String
Dim Flag As Long
Dim Options As String

inMetadata="<SASLibrary Id=""A2345678.A2000001""/>
<PhysicalTable Id=""A2345678.A3000001""/>"
Namespace="SAS"
Flag = 268436480
Options = ""

returnFromOMI = obOMI.DeleteMetadata(inMetadata, outMetadata, Namespace,
Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

inputXML = "<DeleteMetadata>" + _
"<metadata>" + _
"<SASLibrary Id=""A2345678.A2000001""/>" + _

200 Visual C++ Example of a DeleteMetadata Call � Chapter 10

"<PhysicalTable Id=""A2345678.A3000001""/>" + _
"</Metadata>" + _
"<NS>SAS</NS>" + _
"<Flags>268436480</Flags>" + _
"<Options/>" + _
"</DeleteMetadata>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of a DeleteMetadata Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString inMetadataStr("<SASLibrary Id=\"A2345678.A2000001\"/>
<PhysicalTable Id=\"A2345678.A3000001\"/>");
BSTR inMetadata = inMetadataStr.AllocSysString();

CString outMetadataStr("");
BSTR outMetadata = outMetadataStr.AllocSysString();

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 268436480;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->DeleteMetadata(inMetadata, &outMetadata;, Namespace,
Flag, Options);

}

DoRequest Method

Visual C++ Example of DoRequest Method

Program-Specific Method Examples � Java Example of a GetMetadata Call 201

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<DeleteMetadata>"
"<Metadata>"
"<SASLibrary Id=\"A2345678.A2000001\"/>"
"<PhysicalTable Id=\"A2345678.A3000001\"/>"
"</Metadata>"
"<NS>SAS</NS>"
"<Flags>268436480</Flags>"
"<Options/>"
"</DeleteMetadata>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific GetMetadata Examples

The following code fragments retrieve the name, description, and columns of the
PhysicalTable object with the Id value of A2345678.A2000001, by using first the
standard interface and then using the DoRequest method.

Java Example of a GetMetadata Call

Standard Interface

JAVA Example of Standard Interface

private void getMetadata() {

int returnFromOMI;
String inMetadata;
StringHolder outMetadata;
String Namespace;
int Flag;
String Options;

202 Java Example of a GetMetadata Call � Chapter 10

inMetadata="<PhysicalTable Id=\"A2345678.A2000001\" Name=\"\"
Desc=\"\">
<Columns/>

</PhysicalTable>";
outMetadata = new org.omg.CORBA.StringHolder();
Namespace="SAS";
Flag = 0;
Options = "";

try {
returnFromOMI = connection.GetMetadata(inMetadata, outMetadata,
Namespace, Flag, Options);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<GetMetadata>" +
"<Metadata>" +
"<PhysicalTable Id=\"A5K2EL3N.A4000001\ Name=\"\" Desc=\"\">
<Columns/>
</PhysicalTable>" +
"</Metadata>" +
"<NS>SAS</NS>" +
"<Flags>0</Flags>" +
"<Options/>" +
"</GetMetadata>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

Program-Specific Method Examples � Visual Basic Example of a GetMetadata Call 203

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

Visual Basic Example of a GetMetadata Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inMetadata As String
Dim outMetadata As String
Dim Namespace As String
Dim Flag As Long
Dim Options As String

inMetadata="<PhysicalTable Id=""A2345678.A2000001""
Name="""" Desc="""">
<Columns/></PhysicalTable>"

Namespace="SAS"
Flag = 0
Options = ""

returnFromOMI = obOMI.GetMetadata(inMetadata, outMetadata,
Namespace, Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

204 Visual C++ Example of a GetMetadata Call � Chapter 10

inputXML = "<GetMetadata>" + _
"<Metadata>" + _
"<PhysicalTable Id=""A2345678.A200001""

Name="""" Desc="""">
<Columns/>

</PhysicalTable>" + _
"</Metadata>" + _
"<NS>SAS</NS>" + _
"<Flags>0</Flags>" + _
"<Options/>" + _
"</GetMetadata>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of a GetMetadata Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString inMetadataStr("<PhysicalTable Id=\"A2345678.A2000001\"
Name=\"\" Desc=\"\">
<Columns/></PhysicalTable>");

BSTR inMetadata = inMetadataStr.AllocSysString();

CString outMetadataStr("");
BSTR outMetadata = outMetadataStr.AllocSysString();

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 0;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->GetMetadata(inMetadata, &outMetadata;,
Namespace, Flag, Options);

}

Program-Specific Method Examples � Java Example of a GetMetadataObjects Call 205

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<GetMetadata>"
"<Metadata>"
"<PhysicalTable Id=\"A2345678.A2000001\"

Name=\"\"
Desc=\"\">

<Columns/>
</PhysicalTable>"
"</Metadata>"
"<NS>SAS</NS>"
"<Flags>0</Flags>"
"<Options/>"
"</GetMetadata>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific GetMetadataObjects Examples

The following code fragments retrieve all objects of type PhysicalTable by using first
the standard interface and then the DoRequest method.

Java Example of a GetMetadataObjects Call

Standard Interface

JAVA Example of Standard Interface

206 Java Example of a GetMetadataObjects Call � Chapter 10

private void getMetadataObjects() {

int returnFromOMI;
String Reposid;
String AType;
StringHolder Objects;
String Namespace;
int Flag;
String Options;

Reposid="A0000001.A2345678";
AType="PhysicalTable";
Objects = new org.omg.CORBA.StringHolder();
Namespace="SAS";
Flag = 0;
Options = "";

try {
returnFromOMI = connection.GetMetadataObjects(Reposid, AType,

Objects, Namespace,Flag, Options);
}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<GetMetadataObjects>" +
"<Reposid>A0000001.A2345678</Reposid>" +
"<Type>PhysicalTable</Type>" +
"<Objects/>" +
"<NS>SAS</NS>" +
"<Flags>0</Flags>" +
"<Options/>" +

Program-Specific Method Examples � Visual Basic Example of a GetMetadataObjects Call 207

"</GetMetadataObjects>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

Visual Basic Example of a GetMetadataObjects Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim Reposid As String
Dim AType As String
Dim Objects As String
Dim Namespace As String
Dim Flag As Long
Dim Options As String

Reposid="A0000001.A2345678"
AType="PhysicalTable"
Namespace="SAS"
Flag = 0
Options = ""

returnFromOMI = obOMI.GetMetadataObjects(Reposid, AType,
Objects, Namespace, Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

208 Visual C++ Example of a GetMetadataObjects Call � Chapter 10

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

inputXML = "<GetMetadataObjects>" + _
"<Reposid>A0000001.A2345678</Reposid>" + _
"<Type>PhysicalTable</Type>" + _
"<subtypes/>" + _
"<NS>SAS</NS>" + _
"<Flags>0</Flags>" + _
"<Options/>" + _
"</GetMetadataObjects>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of a GetMetadataObjects Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString ReposidStr("A0000001.A2345678");
BSTR Reposid = ReposidStr.AllocSysString();

CString ATypeStr("PhysicalTable");
BSTR AType = ATypeStr.AllocSysString();

CString ObjectsStr("");
BSTR Objects = ObjectsStr.AllocSysString();

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 0;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

Program-Specific Method Examples � Java Example of a GetNamespaces Call 209

returnFromOMI=pIOMI->GetMetadataObjects(Reposid, AType,
&Objects;, Namespace, Flag, Options);

}

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<GetMetadataObjects>"
"<Reposid>A0000001.A2345678</Reposid>"
"<Type>PhysicalTable</Type>"
"<Objects/>"
"<NS>SAS</NS>"
"<Flags>0</Flags>"
"<Options/>"
"</GetMetadataObjects>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific GetNamespaces Examples
The following code fragments issue a GetNamespaces call by using first the standard

interface and then the DoRequest method.

Java Example of a GetNamespaces Call

Standard Interface

JAVA Example of Standard Interface

210 Java Example of a GetNamespaces Call � Chapter 10

private void getNamespaces() {

int returnFromOMI;
StringHolder Namespace;
int Flag;
String Options;

Namespace = new org.omg.CORBA.StringHolder();
Flag = 0;
Options = "";

try {
returnFromOMI = connection.GetNamespaces(Namespace, Flag, Options);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<GetNamespaces>" +
"<Namespaces/>" +
"<Flags>0</Flags>" +
"<Options/>" +
"</GetNamespaces>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}
catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

Program-Specific Method Examples � Visual Basic Example of a GetNamespaces Call 211

Visual Basic Example of a GetNamespaces Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim Namespace As String
Dim Flag As Long
Dim Options As String

Flag=0
Options=""

returnFromOMI = obOMI.GetNamespaces(Namespace, Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

inputXML = "<GetNamespaces>" + _
"<Namespaces/>" + _
"<Flags>0</Flags>" + _
"<Options/>" + _
"</GetNamespaces>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

212 Visual C++ Example of a GetNamespaces Call � Chapter 10

Visual C++ Example of a GetNamespaces Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString NamespaceStr("");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 0;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->GetNamespaces(&Namespace;,Flag,Options);

}

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<GetNamespaces>"
"<Namespaces/>"
"<Flags>0</Flags>"
"<Options/>"
"</GetNamespaces>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

Program-Specific Method Examples � Java Example of a GetRepositories Call 213

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific GetRepositories Examples
The following code fragments issue a GetRepositories method call by using first the

standard interface and then the DoRequest method.

Java Example of a GetRepositories Call

Standard Interface

JAVA Example of Standard Interface

private void getRepositories() {

int returnFromOMI;
StringHolder Repositories;
int Flag;
String Options;

Repositories = new org.omg.CORBA.StringHolder();
Flag = 0;
Options = "";

try {
returnFromOMI = connection.GetRepositories(Repositories, Flag, Options);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

214 Visual Basic Example of a GetRepositories Call � Chapter 10

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<GetRepositories>" +
"<Repositories/>" +
"<Flags>0</Flags>" +
"<Options/>" +
"</GetRepositories>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

Visual Basic Example of a GetRepositories Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim Repositories As String
Dim Flag As Long
Dim Options As String

Flag = 0
Options = ""

returnFromOMI = obOMI.GetRepositories(Repositories, Flag, Options)

End Sub

Program-Specific Method Examples � Visual C++ Example of a GetRepositories Call 215

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

inputXML = "<GetRepositories>" + _
"<Repositories/>" + _
"<Flags>0</Flags>" + _
"<Options/>" + _
"</GetRepositories>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of a GetRepositories Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString RepositoriesStr("");
BSTR Repositories = RepositoriesStr.AllocSysString();

long Flag = 0;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->GetRepositories(&Repositories;,Flag,Options);

}

216 Program-Specific GetSubtypes Examples � Chapter 10

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<GetRepositories>"
"<Repositories/>"
"<Flags>0</Flags>"
"<Options/>"
"</GetRepositories>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific GetSubtypes Examples
The following code fragments retrieve the Subtypes for supertype DataTable by using

first the standard interface and then the DoRequest method.

Java Example of a GetSubtypes Call

Standard Interface

JAVA Example of Standard Interface

private void getSubtypes() {

int returnFromOMI;
String SuperType;
StringHolder Subtypes;
String Namespace;
int Flag;
String Options;

Program-Specific Method Examples � Java Example of a GetSubtypes Call 217

SuperType="DataTable";
Subtypes = new org.omg.CORBA.StringHolder();
Namespace="SAS";
Flag = 0;
Options = "";

try {
returnFromOMI = connection.GetSubtypes(SuperType, Subtypes, Namespace,

Flag, Options);
}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<GetSubtypes>" +
"<Supertype>DataTable</Supertype>" +
"<Subtypes/>" +
"<NS>SAS</NS>" +
"<Flags>0</Flags>" +
"<Options/>" +
"</GetSubtypes>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

218 Visual Basic Example of a GetSubtypes Call � Chapter 10

Visual Basic Example of a GetSubtypes Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim SuperType As String
Dim Subtypes As String
Dim Namespace As String
Dim Flag As Long
Dim Options As String

SuperType="DataTable"
Namespace="SAS"
Flag = 0
Options = ""

returnFromOMI = obOMI.GetSubtypes(SuperType, Subtypes, Namespace,
Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

inputXML = "<GetSubtypes>" + _
"<Supertype>DataTable</Supertype>" + _
"<Subtypes/>" + _
"<NS>SAS</NS>" + _
"<Flags>0</Flags>" + _
"<Options/>" + _
"</GetSubtypes>"

Program-Specific Method Examples � Visual C++ Example of a GetSubtypes Call 219

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)
End Sub

Visual C++ Example of a GetSubtypes Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString SuperTypeStr("DataTable");
BSTR SuperType = SuperTypeStr.AllocSysString();

CString SubtypesStr("");
BSTR Subtypes = SubtypesStr.AllocSysString();

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 0;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->GetSubtypes(SuperType, &Subtypes;, Namespace,
Flag, Options);

}

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<GetSubtypes>"

220 Program-Specific GetTypeProperties Examples � Chapter 10

"<Supertype>DataTable</Supertype>"
"<Subtypes/>"
"<NS>SAS</NS>"
"<Flags>0</Flags>"
"<Options/>"
"</GetSubtypes>";

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific GetTypeProperties Examples

The following code fragments issue a GetTypeProperties call for metadata type
Column by using first the standard interface and then the DoRequest method.

Java Example of a GetTypeProperties Call

Standard Interface

JAVA Example of Standard Interface

private void getTypeProperties() {

int returnFromOMI;
String AType;
StringHolder Properties;
String Namespace;
int Flag;
String Options;

AType="Column";
Properties = new org.omg.CORBA.StringHolder();
Namespace="SAS";
Flag = 0;
Options = "";

try {
returnFromOMI = connection.GetTypeProperties(AType, Properties, Namespace,

Flag, Options);
}

catch (com.sas.iom.SASIOMDefs.GenericError e)

Program-Specific Method Examples � Visual Basic Example of a GetTypeProperties Call 221

{
System.out.println(e);

}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<GetTypeProperties>" +
"<Type>Column</Type>" +
"<Properties/>" +
"<NS>SAS</NS>" +
"<Flags>0</Flags>" +
"<Options/>" +
"</GetTypeProperties>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

Visual Basic Example of a GetTypeProperties Call

Standard Interface

VB Example of Standard Interface

222 Visual C++ Example of a GetTypeProperties Call � Chapter 10

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim AType As String
Dim Properties As String
Dim Namespace As String
Dim Flag As Long
Dim Options As String

AType="Column"
Namespace="SAS"
Flag = 0
Options = ""

returnFromOMI = obOMI.GetTypeProperties(AType, Properties, Namespace,
Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

inputXML = "<GetTypeProperties>" + _
"<Type>Column</Type>" + _
"<Properties/>" + _
"<NS>SAS</NS>" + _
"<Flags>0</Flags>" + _
"<Options/>" + _
"</GetTypeProperties>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of a GetTypeProperties Call

Standard Interface

Program-Specific Method Examples � Visual C++ Example of a GetTypeProperties Call 223

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString ATypeStr("Column");
BSTR AType = ATypeStr.AllocSysString();

CString PropertiesStr("");
BSTR Properties = PropertiesStr.AllocSysString();

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 0;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->GetTypeProperties(AType, &Properties;, Namespace,
Flag, Options);

}

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<GetTypeProperties>"
"<Type>Column</Type>"
"<Properties/>"
"<NS>SAS</NS>"
"<Flags>0</Flags>"
"<Options/>"
"</GetTypeProperties>";

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;

224 Program-Specific GetTypes Examples � Chapter 10

BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific GetTypes Examples
The following code fragments issue a GetTypes method call using first the standard

interface and then using the DoRequest method.

Java Example of a GetTypes Call

Standard Interface

JAVA Example of Standard Interface

private void getTypes() {

int returnFromOMI;
StringHolder Types;;
String Namespace;
int Flag;
String Options;

Types = new org.omg.CORBA.StringHolder();
Namespace="SAS";
Flag = 0;
Options = "";

try {
returnFromOMI = connection.GetTypes(Types, Namespace, Flag, Options);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

Program-Specific Method Examples � Visual Basic Example of a GetTypes Call 225

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<GetTypes>" +
"<Types/>" +
"<NS>SAS</NS>" +
"<Flags>0</Flags>" +
"<Options/>" +
"</GetTypes>";

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

Visual Basic Example of a GetTypes Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim Types As String
Dim Namespace As String
Dim Flag As Long
Dim Options As String

Namespace="SAS"
Flag = 0
Options = ""

returnFromOMI = obOMI.GetTypes(Types, Namespace, Flag, Options)

End Sub

226 Visual C++ Example of a GetTypes Call � Chapter 10

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String
Dim outputXML As String

inputXML = "<GetTypes>" + _
"<Types/>" + _
"<NS>SAS</NS>" + _
"<Flags>0</Flags>" + _
"<Options/>" + _
"</GetTypes>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of a GetTypes Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString TypesStr("");
BSTR Types = TypesStr.AllocSysString();

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 0;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

Program-Specific Method Examples � Java Example of an IsSubtypeOf Call 227

returnFromOMI=pIOMI->GetTypes(&Types;, Namespace, Flag, Options);

}

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<GetTypes>"
"<Types/>"
"<NS>SAS</NS>"
"<Flags>0</Flags>"
"<Options/>"
"</GetTypes>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific IsSubtypeOf Examples
The following code fragments issue an IsSubtypeOf method call by using first the

standard interface and then the DoRequest method. The purpose of the call is to
determine whether the JoinTable metadata type is a subtype of the DataTable
metadata type.

Java Example of an IsSubtypeOf Call

Standard Interface

JAVA Example of Standard Interface

228 Java Example of an IsSubtypeOf Call � Chapter 10

private void isSubTypeOf() {

int returnFromOMI;
String AType;
String Supertype;
BooleanHolder Result;
String Namespace;
int Flag;
String Options;

AType="JoinTable";
Supertype="DataTable";
Result = new org.omg.CORBA.BooleanHolder();
Namespace="SAS";
Flag=0;
Options="";

try {
returnFromOMI = connection.IsSubtypeOf(AType, Supertype, Result,
Namespace, Flag, Options);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<IsSubtypeOf>" +
"<Supertype>DataTable</Supertype>" +
"<Type>JoinTable</Type>" +
"<Result/>" +
"<NS>SAS</NS>" +
"<Flags>0</Flags>" +
"<Options/>" +
"</IsSubtypeOf>";

Program-Specific Method Examples � Visual Basic Example of an IsSubtypeOf Call 229

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}
catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

Visual Basic Example of an IsSubtypeOf Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim AType As String
Dim Supertype As String
Dim Result As Boolean
Dim Namespace As String
Dim Flag As Long
Dim Options As String

AType="JoinTable"
Supertype="DataTable"
Namespace="SAS"
Flag=0
Options=""

returnFromOMI = obOMI.IsSubtypeOf(AType, Supertype, Result,
Namespace, Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String

230 Visual C++ Example of an IsSubtypeOf Call � Chapter 10

Dim outputXML As String

inputXML = "<IsSubtypeOf>" + _
"<Supertype>DataTable</Supertype>" + _
"<Type>JoinTable</Type>" + _
"<Result/>" + _
"<NS>SAS</NS>" + _
"<Flags>0</Flags>" + _
"<Options/>" + _
"</IsSubtypeOf>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of an IsSubtypeOf Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString ATypeStr("JoinTable");
BSTR AType = ATypeStr.AllocSysString();

CString SupertypeStr("DataTable");
BSTR Supertype = SupertypeStr.AllocSysString();

VARIANT_BOOL Result;
CString ResultStr("");

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 0;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->IsSubtypeOf(AType,Supertype,&Result;,
Namespace,Flag,Options);

if (Result == VARIANT_TRUE) {
ResultStr ="True";

}

Program-Specific Method Examples � Java Example of an UpdateMetadata Call 231

else if (Result == VARIANT_FALSE) {
ResultStr = "False";

}

}

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<IsSubtypeOf>"
"<Supertype>DataTable</Supertype>"
"<Type>JoinTable</Type>"
"<Result/>"
"<NS>SAS</NS>"
"<Flags>0</Flags>"
"<Options/>"
"</IsSubtypeOf>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

Program-Specific UpdateMetadata Examples

The following code fragments issue an UpdateMetadata method call by using first
the standard interface and then the DoRequest method. The examples submit new
attribute values for an object of metadata type Event.

Java Example of an UpdateMetadata Call

Standard Interface

JAVA Example of Standard Interface

232 Java Example of an UpdateMetadata Call � Chapter 10

private void updateMetadata() {

int returnFromOMI;
String inMetadata;
StringHolder outMetadata;
String Namespace;
int Flag;
String Options;

inMetadata="<Event Id=\"A5TBRRNR.AE0000AD\" Name=\"Updated Event 01\"
Desc=\"Updated Event\"/>";

outMetadata = new org.omg.CORBA.StringHolder();
Namespace="SAS";
Flag = 268435456;
Options = "";

try {
returnFromOMI = connection.UpdateMetadata(inMetadata, outMetadata,
Namespace, Flag, Options);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

DoRequest Method

JAVA Example of DoRequest Method

private void runToMsg() {

int returnFromOMI;
String inputXML;
StringHolder outputXML;

outputXML = new org.omg.CORBA.StringHolder();

inputXML = "<UpdateMetadata>" +
"<Metadata>" +
"<Event Id=\"A5TBRRNR.AE0000AD\" Name=\"Updated Event 01\"

Desc=\"Updated Event\"/>" +
"</Metadata>" +
"<NS>SAS</NS>" +
"<Flags>268435456</Flags>" +
"<Options/>" +
"</UpdateMetadata>";

Program-Specific Method Examples � Visual Basic Example of an UpdateMetadata Call 233

try {
returnFromOMI = connection.DoRequest(inputXML, outputXML);

}

catch (com.sas.iom.SASIOMDefs.GenericError e)
{

System.out.println(e);
}

}

Visual Basic Example of an UpdateMetadata Call

Standard Interface

VB Example of Standard Interface

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inMetadata As String
Dim outMetadata As String
Dim Namespace As String
Dim Flag As Long
Dim Options As String

inMetadata="<Event id=""A5TBRRNR.AE0000AD"" Name=""Updated Event 01""
Desc=""Updated Event""/>"

Namespace="SAS"
Flag = 268435456
Options = ""

returnFromOMI = obOMI.UpdateMetadata(inMetadata, outMetadata,
Namespace, Flag, Options)

End Sub

DoRequest Method

VB Example of DoRequest Method

Private Sub runtomsg_Click()

Dim returnFromOMI As Long
Dim inputXML As String

234 Visual C++ Example of an UpdateMetadata Call � Chapter 10

Dim outputXML As String

inputXML = "<UpdateMetadata>" + _
"<Metadata>" + _
"<Event id=""A5TBRRNR.AE0000AD"" Name=""Updated Event 01""
Desc=""Updated Event""/>" + _

"</Metadata>" + _
"<NS>SAS</NS>" + _
"<Flags>268435456</Flags>" + _
"<Options/>" + _
"</UpdateMetadata>"

returnFromOMI = obOMI.DoRequest(inputXML, outputXML)

End Sub

Visual C++ Example of an UpdateMetadata Call

Standard Interface

Visual C++ Example of Standard Interface

void COmiVCPlusDlg::OnRuntomethod()
{

long returnFromOMI;

CString inMetadataStr("<Event Id=\"A5TBRRNR.AE0000AD\"
Name=\"Updated Event 01\" Desc=\"Updated Event\"/>");

BSTR inMetadata = inMetadataStr.AllocSysString();

CString outMetadataStr("");
BSTR outMetadata = outMetadataStr.AllocSysString();

CString NamespaceStr("SAS");
BSTR Namespace = NamespaceStr.AllocSysString();

long Flag = 268435456;

CString OptionsStr("");
BSTR Options = OptionsStr.AllocSysString();

returnFromOMI=pIOMI->UpdateMetadata(inMetadata, &outMetadata;,
Namespace, Flag, Options);

}

Program-Specific Method Examples � Visual C++ Example of an UpdateMetadata Call 235

DoRequest Method

Visual C++ Example of DoRequest Method

void COmiVCPlusDlg::OnRuntomsg()
{

long returnFromOMI;

CString inputXMLStr("<UpdateMetadata>"
"<Metadata>"
"<Event Id=\"A5TBRRNR.AE0000AD\" Name=\"Updated Event 01\"
Desc=\"Updated Event\"/>"

"</Metadata>"
"<NS>SAS</NS>"
"<Flags>268435456</Flags>"
"<Options/>"
"</UpdateMetadata>");

BSTR inputXML = inputXMLStr.AllocSysString();

CString outputXMLStr;
BSTR outputXML = outputXMLStr.AllocSysString();

returnFromOMI = pIOMI->DoRequest(inputXML, &outputXML;);
}

236

237

P A R T4

SAS Language Metadata Interfaces

Chapter 11.Procedures 239

Chapter 12.DATA Step Functions 271

Chapter 13.System Options 305

238

239

C H A P T E R

11
Procedures

METADATA Procedure 240
Procedure Syntax 240

Server Connection Statements 241

Input Statement 241

Output Statements 242

Informational Statements 242
Execution Statement 243

Examples 243

Example of a Simple Method Call 243

Example of Specifying Server Connection Statements 243

Example of Filerefs in the IN= and OUT= Statements 244

Example of the HEADER= Statement 244
Example of the VERBOSE Statement 245

METALIB Procedure 245

Metadata Types Updated by PROC METALIB 246

Understanding Support for Dependent Repositories 246

How PROC METALIB Works 246
Procedure Syntax 247

Server Connection and Library Identification Statement 248

Statement for Specifying Metadata Changes 251

Table Selection Statements 251

Reporting Statement 252
Statements That Control Change Execution 253

Obtaining Metadata Identifiers 253

Obtaining Metadata Identifiers Using the METABROWSE Command 254

Obtaining Metadata Identifiers in SAS Management Console 255

Listing Table Definitions in Dependent Repositories 255

Understanding REPORT Statement Output 256
Table Addition Report Description 257

Table Update Report Description 257

Table Deletion Report Description 259

Examples 260

Synchronizing Metadata with the Physical Data Source 260
Identifying Needed Metadata Updates Without Applying Changes 261

Using PROC METALIB to Add or Update a Table 261

Using PROC METALIB to Update the Metadata for a Specific Table 261

Deleting Obsolete Table Definitions 262

Excluding Tables from Processing 262
METAOPERATE Procedure 262

Procedure Syntax 263

Server Connection Statements 263

240 METADATA Procedure � Chapter 11

Action Statements 264
Repository Identification Statement 267

Execution Statement 267

Examples 267

Example of ACTION=PURGE 267

Example of ACTION=EMPTY 267
Examples of ACTION=PAUSE 267

Example of ACTION=RESUME 268

Example of ACTION=STATUS 268

Example of ACTION=STOP 269

METADATA Procedure

The METADATA procedure sends an XML string containing a SAS Open Metadata
Interface method call to a SAS Metadata Server. Procedure statements specify the
information necessary to connect to the server, to submit the method call, and to
optionally store the output XML to a file. You must know how to format a SAS Open
Metadata Interface method call in order to use this procedure. The method calls must
be formatted for the inMetadata parameter of the DoRequest method. For information
about the DoRequest format, see “DoRequest” on page 144.

Procedure Syntax
Use the following syntax to execute the METADATA Procedure. Note that unlike

most SAS procedures, which end individual statements with a semicolon (;), the PROC
METADATA statements are all submitted as one string. That is, only one semicolon is
used, and this semicolon is placed after the last statement that is submitted before the
RUN statement. See “Examples” on page 243 for specific usage.

PROC METADATA

Server Connection Statements

<SERVER= "host-name">

<PORT= port–number>

<USERID= "userid">

<PASSWORD= "password">

<PROTOCOL= BRIDGE>

Input Statement

IN= fileref | "XML–formatted–method–call"<;>

Output Statements

<OUT= fileref><;>

<HEADER= NONE | SIMPLE | FULL><;>

Procedures � Input Statement 241

Informational Statements

<REPOSITORY= "repository-identifier"><;>
<VERBOSE><;>

Execution Statement

RUN;

Server Connection Statements
The server connection statements are optional in the METADATA procedure but are

required to connect to a SAS Metadata Server. If you omit these statements, then the
values of the system options METASERVER, METAPORT, METAUSER, METAPASS
and METAPROTOCOL are used. For more information about these system options, see
“SAS Metadata System Options” on page 305. If these system values are empty or
incomplete, a dialog box will be posted to acquire the option values. Once entered, the
values are stored as system options for the remainder of the current session.

Note: When specifying connection parameters, be sure to enter or omit quotation
marks as documented. If you enter quotation marks where they should be omitted, or
vice versa, the connection will fail. �

SERVER=
specifies the host name or network IP (Internet Protocol) address of the computer
hosting the SAS Metadata Server that you want to access, for example,
SERVER="d6292.us.company.com". The value “localhost” can be used if the SAS
session is connecting to a metadata server on the same computer.

PORT=
specifies the TCP port to which the SAS Metadata Server listens for connections.
For example, port=8561. It should be the same port number that was used to start
the SAS Metadata Server.

USERID=
specifies an authenticated user ID. See the SAS Intelligence Platform: Security
Administration Guide for information about authentication requirements.

PASSWORD=
specifies the password corresponding to the authenticated user ID.

PROTOCOL=
specifies the network protocol for communicating with the SAS Metadata Server.
The valid value is:

BRIDGE
specifies that the connection will use the SAS Bridge protocol.

For more information, see “Example of Specifying Server Connection Statements” on
page 243.

Input Statement
IN=

specifies an XML-formatted SAS Open Metadata Interface method call or a fileref
that points to an XML file that contains a SAS Open Metadata Interface method
call.

242 Output Statements � Chapter 11

PROC METADATA uses the SAS Open Metadata Interface DoRequest method to
submit method calls to the metadata server. The DoRequest method provides a generic
way of submitting metadata-related method calls to the server. For information about
how to format a method request for the DoRequest method, see “DoRequest” on page
144. To view a list of metadata-related methods, see Chapter 7, “Methods for Reading
and Writing Metadata (IOMI Class),” on page 115.

You also need to know how to construct a metadata property string that defines or
queries metadata. For information to help you write a metadata property string, see
“Constructing a Metadata Property String” on page 118. For a listing of the metadata
types defined in the SAS Metadata Model, see the “Alphabetical Listing of SAS
Namespace Metadata Types.” This listing is available only in online versions of the
SAS Open Metadata Interface: Reference. Look for it in SAS Help and Documentation
or on SAS OnlineDoc.

For an example of specifying the IN= statement, see “Example of a Simple Method
Call” on page 243 and “Example of Filerefs in the IN= and OUT= Statements” on page
244.

Output Statements
OUT=

optionally specifies a fileref in which to store the output returned by the SAS
Metadata Server. In most cases, the server returns an output XML string that
mirrors the input string, except that the requested values are filled in. If the
OUT= statement is omitted, procedure output is written to the SAS Log.

HEADER=
specifies an encoding declaration for the output XML. The declaration specifies the
character-set encoding for browsers and parsers to use when processing national
language characters in the output XML file. Valid values are:

NONE
omits an encoding declaration. Browsers and parsers might not handle
national language characters appropriately.

SIMPLE
inserts the static header "<? xml version=1.0?>", which instructs the browser
or parser to detect the encoding.

FULL
creates an XML declaration that specifies the SAS session encoding. When
HEADER=FULL, the encoding value is taken from the ENCODING= option
specified in the FILENAME statement that was used to identify the output
XML file to the SAS system or from the ENCODING= system option.

For an example of specifying output statements, see “Example of the HEADER=
Statement” on page 244.

Informational Statements
The following statements are used to supply or obtain information from the metadata

server:

REPOSITORY=
specifies the name of the repository to use when resolving $METAREPOSITORY
substitution. PROC METADATA allows you to specify the substitution variable
$METAREPOSITORY within your input XML. The substitution variable is

Procedures � Examples 243

resolved to the repository identifier of the repository named in REPOSITORY=. If
you do not specify REPOSITORY= on the procedure, the value of the
METAREPOSITORY system option is used. REPOS is an alias for REPOSITORY.

VERBOSE=
specifies to print the input XML string after it has been through pre-processing.

For an example of specifying informational statements, see “Example of the
VERBOSE Statement” on page 245.

Execution Statement
RUN;

executes the METADATA procedure. RUN is a required statement.

Examples

Example of a Simple Method Call
The following PROC METADATA example issues a GetTypes method call.

PROC METADATA

IN="<GetTypes>
<Types/>
<Ns>SAS</Ns>
<Flags/>
<Options/>
</GetTypes>";

RUN;

This example omits server connection statements, therefore, the software will use the
system option values of METASERVER, METAPORT, METAUSER, METAPASS,
METAREPOSITORY, and METAPROTOCOL to connect to the metadata server. If these
system option values are empty or blank, then a dialog box is posted to acquire the
connection information.

Example of Specifying Server Connection Statements
The following is an example of a PROC METADATA call that specifies server

connection statements with the IN= statement. If the request is issued on the same
host computer where the metadata server is running, the value “localhost” can be
specified in the SERVER= statement. The procedure issues a GetRepositories method
to list all repositories on the metadata server:

PROC METADATA

SERVER="host_name"
PORT=port_number
USERID="cubtest"
PASSWORD="cubtest1"

IN="<GetRepositories>
<Repositories/>
<Flags/>

244 Examples � Chapter 11

<Options/>
</GetRepositories>";

RUN;

Example of Filerefs in the IN= and OUT= Statements
The following example shows how filerefs are used in the IN= and OUT= statements:

filename output "output.xml";
filename input "input.xml";

PROC METADATA

SERVER="host_name"
PORT=port_number
USERID="cubtest"
PASSWORD="cubtest1"
IN=input
OUT=output;

RUN;

The example submits the contents of input.xml to the metadata server and stores the
server’s response in output.xml.

Example of the HEADER= Statement
The following examples show how the HEADER=SIMPLE and HEADER=FULL

options are used.

filename out "u:\out.xml" encoding=ebcdic;

PROC METADATA

header=simple
out=out

IN="<GetTypes>
<Types/>
<Ns>SAS</Ns>
<Flags/>
<Options/>
</GetTypes>";

RUN;

Inserts the static header "<?xml version="1.0" ?>" in the output XML file identified
by the fileref "OUT".

filename out "u:\out.xml" encoding=ebcdic;

PROC METADATA

header=full
out=out
IN="<GetTypes>

<Types/>
<Ns>SAS</Ns>

Procedures � METALIB Procedure 245

<Flags/>
<Options/>
</GetTypes>";

RUN;

Inserts the header "<?xml version="1.0" encoding="ebcdic1047"?>" in the output XML
file identified by the fileref "OUT". "ebcdic1047" is the encoding for western EBCDIC.
For a list of encoding values, see "ENCODING= Values in SAS Language Elements" in
the SAS National Language Support (NLS): User’s Guide.

Example of the VERBOSE Statement
The following example illustrates the behavior of the VERBOSE statement. PROC

METADATA issues a GetMetadataObjects request to list all of the objects of type
PhysicalTable that are defined in the active repository. The active repository identifier
is substituted where $METAREPOSITORY appears in the XML. The name of the active
repository we are using is "My Repository".

PROC METADATA

REPOS="My Repository"

IN="<GetMetadataObjects>
<Reposid>$METAREPOSITORY</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<Ns>SAS</Ns>
<Flags/>
<Options/>
</GetMetadataObjects>"

VERBOSE;
RUN;

The VERBOSE statement returns the following preprocessed XML, which includes
the repository identifier referenced by $METAREPOSITORY.

NOTE: Input XML:

<GetMetadataObjects>
<Reposid>A0000001.A5K2EL3N</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<Ns>SAS</Ns>
<Flags/>
<Options/>
</GetMetadataObjects>

METALIB Procedure
The METALIB procedure synchronizes table definitions in a SAS metadata

repository with current information from the physical library data source.
� For any tables in the physical library that have no metadata in the metadata

repository, the procedure will add table metadata.
� For any tables in the physical library that do have metadata in the repository, the

procedure will update the table definitions to match the corresponding physical

246 Metadata Types Updated by PROC METALIB � Chapter 11

tables. The procedure will update information about a table’s columns, indexes,
unique keys, foreign keys, and key associations.

� For any table definitions that exist in the metadata repository but do not have a
corresponding table in the physical library, the procedure will optionally delete the
metadata.

By default, the procedure adds and updates metadata for all table definitions that
are associated with the specified SASLibrary, including those that exist in dependent
repositories. Optional statements enable you to modify the procedure’s behavior as
follows:

� to select or exclude specific tables from processing

� to suppress the metadata add action, the metadata update action, or both

� to delete obsolete and duplicate table definitions from the SAS metadata repository

� to generate a report of needed metadata changes without actually applying the
changes

Metadata Types Updated by PROC METALIB
The procedure adds, updates, and deletes metadata of the following metadata types:

PhysicalTable, Column, Index, UniqueKey, ForeignKey, and KeyAssociation. For more
information about these metadata types, see their descriptions in the “Alphabetical
Listing of SAS Namespace Metadata Types” in online versions of this guide.

Understanding Support for Dependent Repositories
A SASLibrary metadata object represents a SAS library statement. This library

statement can be stored in one repository, and metadata objects describing the tables
referenced by the library can be stored in the same or a different repository, as long as
the repositories have a dependency relationship defined between them. A dependency
relationship enables cross-references to be defined between the objects in repositories.

In a dependency relationship, one repository functions like a parent and the other
like a child. In the SAS Business Intelligence environment, the foundation repository is
always a parent to a custom repository. A custom repository can also be a parent to
another custom or a project repository.

A SASLibrary object can exist in either a parent or a child repository. PROC
METALIB will add new table definitions to the repository that contains the specified
SASLibrary object, regardless of whether it is a parent or a child. When updating and
deleting table definitions, however, the default behavior of the procedure is to evaluate
associated table definitions that exist in the specified repository and all of its children
repositories. When a table definition in a dependent repository is updated, any new
column, index, or key definitions are added to the dependent repository.

How PROC METALIB Works
By default, PROC METALIB uses the SAS names of the tables found in the physical

location referenced by the SASLibrary metadata object to determine what metadata
changes need to be made. A table definition in a SAS Metadata Repository stores the
SAS name of the table that it describes in the SASTableName attribute. The table
definitions that are associated with a given SASLibrary object are tracked in the
repository’s association list.

Procedures � Procedure Syntax 247

For each SAS name found in the referenced physical location, the procedure checks
the association list to see if a matching table definition exists.

� If a matching table definition does not exist, one is created.
� When a matching table definition is found, the definition is updated.
� If more than one matching table definition exists in the association list, only the

first definition is updated. When more than one table definition stores the same
SAS name in the SASTableName attribute, the additional table definitions are
considered to be duplicates.

� If a table definition exists that does not correspond to one of the SAS names, it is
ignored, unless the UPDATE_RULE=(DELETE) statement is set in the procedure.
When UPDATE_RULE=(DELETE) is set, table definitions that do not correspond
to the SAS name of a physical table are deleted, including duplicate definitions.

When the SELECT statement is set, the procedure can behave in either of two ways.
The SELECT statement enables you to select tables or table definitions for processing.
Tables are identified by specifying their SAS name. Table definitions are identified by
specifying the value stored in their SASTableName attribute or by specifying the table
definition’s unique 17–character metadata identifier.

� When you specify a table name or SASTableName value in the SELECT
statement, the procedure functions similarly to the way it does in default mode:

� It checks the SASLibrary object’s association list to see if a matching table
definition exists.

� If a table definition is not found, one is created in the repository that contains
the SASLibrary object.

� When a matching table definition is found, it is updated. If duplicate
definitions exist, the duplicates are ignored.

� If a matching table definition exists, but a physical table with that SAS name
does not exist, then the table definition is ignored, unless
UPDATE_RULE=(DELETE) is set. When UPDATE_RULE=(DELETE) is set,
all table definitions that contain the specified name in their SASTableName
attribute, including duplicates, are deleted.

� When you specify a table definition’s metadata identifier in the SELECT
statement, only the specified table definition is processed, as follows:

� The specified table definition is updated, rather than the first table definition
found in the association list.

� When UPDATE_RULE=(DELETE) is set, duplicate table definitions are not
deleted.

For syntax information, see “Table Selection Statements” on page 251.

Procedure Syntax
PROC METALIB;

Server Connection and Library Identification Statement

OMR <=> (LIBID = "library-identifier"
| LIBRARY = "library-name"
| LIBURI = "URI-format"

<USER = "authorized-userid">
<PASSWORD = "associated-password">

248 Server Connection and Library Identification Statement � Chapter 11

<METASERVER = "hostname">

<REPID = "repository-identifier" | REPNAME = "repository-name">
<PROTOCOL= BRIDGE>
<PORT="port-number">);

Statement for Specifying Metadata Changes

<UPDATE_RULE <=> (<NOADD> <DELETE> <NODELDUP>
<NOUPDATE>);>

Table Selection Statements

<EXCLUDE <=> (<">table-name-1<"> <<">table-name-n<">>);>
<SELECT <=> (<">table-name-1<"> <<">table-name-n<">>

| table-identifier-1 <table-identifier-n>);>

Reporting Statement

<REPORT;>

Statements That Control Change Execution

<NOEXEC;>
<QUIT | EXIT;>
RUN;

Server Connection and Library Identification Statement
The OMR statement supports metadata server connection parameters and identifies

the physical library that will be examined. The server connection parameters are
optional. When the server connection parameters are omitted from the OMR statement,
the values of the METASERVER, METAPORT, METAUSER, METAPASS, and
METAREPOSITORY system options are used to connect to the metadata server. For
details about these system options, see the SAS Language Reference: Dictionary.

Tip: To determine what system option settings are active in your SAS
session, submit the following procedure statement:

proc options group=meta; run;

To override the settings with new ones, submit an OPTIONS
statement.

If these system options are not set or if they provide incomplete information, then a
dialog box is posted to acquire the necessary server connection values.

The library identification parameter (LIBID=, LIBRARY=, or LIBURI=) is required.
Refer to the following descriptions for more information about the required and optional
OMR statement parameters.

LIBID= | LIBRARY= | LIBURI=
LIBID=, LIBRARY=, or LIBURI= identify the physical library that will be
examined by referencing the SASLibrary metadata object that represents the
physical library in a SAS Metadata Repository. Use only one of these parameters
in the OMR statement.

Procedures � Server Connection and Library Identification Statement 249

LIBID=
specifies the 8-character metadata identifier of the SASLibrary object that
represents the physical library that you want to examine.

LIBRARY=
specifies the value stored in a SASLibrary metadata object’s Name attribute.

LIBURI=
specifies a SASLibrary metadata object by using one of the SAS Open
Metadata Architecture Uniform Resource Identifier (URI) formats. The URI
formats are described in Table 11.1 on page 249.

Table 11.1 URI Formats

Format type Description

id specifies the 8-character metadata
identifier of the SASLibrary object that
you want to access. This format is similar
to specifying LIBID=. An example of
specifying LIBURI with an id value is
LIBURI="id=A9000001". Use of single- or
double-quotation marks to enclose the
identifier is supported, but not required.

type/id is the metadata type name and metadata
object identifier of the SASLibrary object
that you want to access, for example,
LIBURI="SASLibrary/A9000001".
Because the metadata type required by
PROC METALIB is always SASLibrary,
this format is basically the same as
specifying LIBID=. Use of single or double
quotation marks to enclose the identifier is
optional.

type-@search-criteria is the object’s metadata type name
followed by a search string, which is in the
form of an attribute=value pair, for
example,
LIBURI="SASLibrary-@name=’oralib’" or
LIBURI="SASLibrary-@engine=’base’".

The -@ (dash and "at" sign) characters are
required. This URI format must be
enclosed in double-quotation marks, and
the attribute value must be enclosed in
single-quotation marks.

LIBID=, LIBRARY=, or LIBURI= is typically specified along with the REPID=
or REPNAME= argument to indicate the active repository. The active repository is
the one that contains the specified SASLibrary object. If you omit a repository
identification parameter from the OMR statement, then PROC METALIB will
search for the specified library in the repository identified in the
METAREPOSITORY system option.

250 Server Connection and Library Identification Statement � Chapter 11

For information about how to obtain these SASLibrary and repository
identifiers, see “Obtaining Metadata Identifiers” on page 253.

USER=
is an optional parameter that specifies an authorized user ID on the metadata
server. An authorized user ID is one that has been authenticated by the metadata
server and has ReadMetadata and WriteMetadata permission to the specified
SASLibrary. METAUSER= is an alias for USER=.

PASSWORD=
is an optional parameter that specifies the password stored for the authorized user
ID on the metadata server. PW= and METAPASS= are aliases for PASSWORD=.

METASERVER=
is an optional parameter that specifies the IP address or host name of the
computer that is hosting the metadata server. IPADDR= and SERVER= are
aliases for METASERVER=.

REPID= | REPNAME=
are optional parameters that identify the repository that contains the specified
SASLibrary metadata object.

REPID= supports an 8–character repository identifier as a value.
REPNAME= specifies the name stored in the repository’s Name attribute.

METAREPOSITORY= is an alias for REPNAME=.
Use either REPID= or REPNAME=. If you specify both, REPID= takes

precedence over REPNAME=.
For information about how to obtain these repository identifiers, see “Obtaining

Metadata Identifiers” on page 253.

PORT=XXXX
is an optional parameter that specifies the TCP port to which the SAS Metadata
Server listens for requests and that clients use to connect to the server. XXXX is a
unique number from 0-64K. METAPORT= is an alias for PORT=.

PROTOCOL=
is an optional parameter that specifies the network protocol for connecting to the
metadata server. The valid value is BRIDGE. METAPROTOCOL= is an alias for
PROTOCOL=.

Note: Both the library identification parameter and the optional server connection
parameters must be submitted to the OMR statement within parentheses. �

Note: The equal sign (=) between the OMR keyword and the parenthesized list is
optional. The quotation marks around parameter values are also optional, except for
PORT= and PROTOCOL=. The PORT= value must be quoted. The PROTOCOL= value
should not be quoted. �

Procedures � Table Selection Statements 251

Statement for Specifying Metadata Changes
UPDATE_RULE is an optional statement that enables you to override one or both of

the METALIB procedure’s default add and update actions and to specify additional or
optional actions that you want to perform. Valid arguments are:

NOADD
specifies not to add table metadata to the metadata repository for physical tables
that have no metadata.

NOUPDATE
specifies not to update existing table metadata to resolve discrepancies with the
corresponding physical tables.

DELETE
specifies to delete table metadata if a corresponding physical table is not found in
the specified library.

NODELDUP
specifies not to delete duplicate table definitions in the SAS metadata repository. A
duplicate table definition is one that has the same SASTableName value as the
table being processed. Duplicate table definitions are deleted by default when
DELETE is specified. NODELDUP is valid only when DELETE is also specified.

For more information about add, update, and delete processing, see “Table Addition
Report Description” on page 257, “Table Update Report Description” on page 257, and
“Table Deletion Report Description” on page 259.

Note: Arguments must be submitted within parentheses. The equal sign (=) between
the UPDATE_RULE keyword and the parenthesized list of arguments is optional. �

Note: An error is returned if you specify both NOADD and NOUPDATE and omit
DELETE. The procedure must be given an action to perform if both of the default
actions are suppressed. �

Table Selection Statements
The default behavior of the METALIB procedure is to update all of the table

definitions associated with a SASLibrary metadata object in SAS Metadata Repositories
with information from all of the tables found in the physical location referenced by the
SASLibrary metadata object.

SELECT <=> (<">table-name-1<"> <<">table-name-n<">>
| table-identifier-1 <table-identifier-n>) ;

is an optional statement that specifies a specific table or table definition to process.
You can specify multiple tables or table definitions. However, do not specify both a
table name and a metadata identifier in the SELECT statement. The SELECT
statement will fail if you submit both a table name and a metadata identifier.

EXCLUDE <=> (<">table-name-1<"> <<">table-name-n<">>) ;
is an optional statement that specifies a single table or a list of tables to exclude
from processing.

252 Reporting Statement � Chapter 11

Table-name is the SAS name of a table in the physical location referenced by the
specified SASLibrary metadata object. It can also be the value stored in the
SASTableName attribute of a table definition in a SAS Metadata Repository. A table
definition in a SAS Metadata Repository stores the SAS name of a physical table in the
SASTableName attribute.

Note: Do not confuse the table definition’s Name= attribute with the
SASTableName= attribute. The Name= attribute stores a user-defined name that was
assigned to the metadata object when it was created. This is sometimes the SAS name
of the physical table that it describes but it does not have to be. �

Table-identifier is a table definition’s 17–character metadata identifier, in the form
Reposid.Objectid.

For information about how PROC METALIB processes table names and metadata
identifiers, see “How PROC METALIB Works” on page 246. For instructions to obtain a
table definition’s metadata identifier, see “Obtaining Metadata Identifiers” on page 253.

Note: The SELECT and EXCLUDE statements are mutually exclusive; only one
statement can be used in a single execution of the METALIB procedure. �

Note: Table names and identifiers must be submitted within parentheses, as shown.
Use of quotation marks around table names is optional, unless the table name contains
special or mixed-case characters. If table names that contain special or mixed-case
characters are not quoted, the procedure will convert the names to uppercase letters.
For example, if you submit the following statement:

SELECT (tab1 tab2 tab3 "Table4");

tab1, tab2, and tab3 will be uppercased because they are not quoted.
Do not quote a table definition’s metadata identifier. The procedure expects a

two-part identifier. If you use quotation marks, the identifier must be quoted as follows:
"A0001234"."A9375BC45". �

Note: When selecting and excluding tables, be aware that the tables you select can
affect the associated objects that are updated. For example, both the primary key and
foreign key tables must be selected for foreign key metadata to be updated. The
primary key and foreign key tables must also be in the same repository. �

Reporting Statement

REPORT;
is an optional statement that creates a SAS output listing that summarizes
metadata changes. The default report destination is a SAS output listing. The
SAS Output Delivery System (ODS) can be used to print the output listing in
different report formats, such as HTML and RTF.

Procedures � Obtaining Metadata Identifiers 253

When ODS is used, a SAS output listing will be produced in addition to the
specified ODS output, unless you specifically suppress the output listing using
ODS.

For information about the content of the REPORT output listing, see
“Understanding REPORT Statement Output” on page 256.

Statements That Control Change Execution

NOEXEC;
is an optional statement that prevents the indicated metadata changes from being
applied.

NOEXEC is typically used with the REPORT statement to enable you to identify
any needed metadata changes before they are made. Running PROC METALIB
with the NOEXEC and REPORT statements prior to running PROC METALIB in
default mode can help prevent unwanted metadata changes from being made.

QUIT | EXIT;
are optional statements that enable you to terminate execution of the METALIB
procedure when the procedure statements are submitted in line mode.These
statements terminate the procedure immediately and abort any processing that
might have occurred.

RUN;
executes the METALIB procedure.

Obtaining Metadata Identifiers
The SAS Metadata Server uses a 17-character identifier to identify any given

metadata resource (metadata object) on the metadata server. The 17–character
identifier, which looks like A32V87R9.A9000001, is composed of three parts:

� The first eight characters (A32V87R9, in the example) identify the repository in
which the metadata resource is stored

� The ninth character is always a period
� The second set of eight characters (A9000001, in the example) uniquely identifies

the resource in the named repository.

254 Obtaining Metadata Identifiers � Chapter 11

The METALIB procedure requires you to specify identifiers for metadata objects of
the following types:

Repository
identifies a particular metadata repository on the SAS Metadata Server.

SASLibrary
describes a physical library that is accessed by a SAS LIBNAME engine

You can also optionally specify the 17–character identifier of table definition in the
SELECT statement.

When supplying input to the METALIB procedure, use the appropriate portion of the
resource’s 17–character identifier to identify the item. For example, if a SASLibrary
object has the 17–character metadata object identifier ’A32V87R9.A9000001’, use the
first eight characters (’A32V87R9’) in the REPID= argument to identify the repository
and use the second set of eight characters (A9000001) in the LIBID= argument to
identify the SASLibrary.

A table definition is identified by its full 17-character metadata identifier.
You can determine the metadata identifiers of library and table definitions that exist

in the same repository by using either the METABROWSE command, or by using the
SAS Management Console Data Library Manager. For instructions to use these tools,
see “Obtaining Metadata Identifiers Using the METABROWSE Command” on page 254
and “Obtaining Metadata Identifiers in SAS Management Console” on page 255.

For information about how to obtain the metadata identifiers of table definitions that
exist in dependent repositories, see “Listing Table Definitions in Dependent
Repositories” on page 255.

Obtaining Metadata Identifiers Using the METABROWSE Command
The METABROWSE command is a SAS language interface that enables authorized

users to browse the details of metadata on the SAS Metadata Server.
To use the METABROWSE command to obtain a SASLibrary metadata object

identifier:

1 Issue the METABROWSE command at a SAS command prompt.
2 When prompted, enter metadata server connection parameters.
3 In the Metadata Browser window, select and expand the node representing the

repository that contains the library definition.
4 Scroll the list of metadata types until you find “SASLibrary” and expand the

SASLibrary node. The available library definitions are listed alphabetically under
the node.

5 Highlight the definition that represents the library that you want to examine. The
library’s properties will display in the righthand pane of the Metadata Browser
window.

6 The library’s 17–character metadata identifier is in the ID field of the properties
pane.

Procedures � Obtaining Metadata Identifiers 255

Obtaining Metadata Identifiers in SAS Management Console
SAS Management Console is a java application that provides a single point of control

for managing resources that are used throughout the Intelligence Value Chain. It also
enables you to browse the metadata on a SAS Metadata Server. To obtain a SASLibrary
metadata object’s identifier using SAS Management Console:

1 Open SAS Management Console: Start � Programs � SAS � SAS Management
Console.

2 When prompted, enter metadata server connection parameters.
3 Expand the Data Library Manager in the navigation tree.
4 Expand the SAS Libraries node in the navigation tree.
5 Right-click a library name with your mouse, and select Properties from the pop-up

menu.
6 The 17–character identifier is displayed on the General tab of the Properties

window in an ID field under the Name field.

Listing Table Definitions in Dependent Repositories
To view table definitions that exist in dependent repositories, issue the following

XML method call in PROC METADATA:

<GetMetadata>
<Metadata>

<SASLibrary Id="A5KI3PIS.AZ0000GP"
<Tables/>

</SASLibrary>
</Metadata>
<NS>SAS</NS>
<! -- OMI_DEPENDENCY_USED_BY flag -- >
<Flags>16384</Flags>
<Options/>

</GetMetadata>

The GetMetadata method enables you to get all or specified properties of a specific
metadata object. This request specifies to retrieve all metadata objects that have a
Tables association to the SASLibrary object identified in the Id= attribute in the
repository that contains the SASLibrary object. Setting the
OMI_DEPENDENCY_USED_BY flag (16384) specifies to include dependent repositories
in the search.

Note: Be sure to replace the Id= value shown above with a real 17–character
metadata identifier. �

The SAS Metadata Server will return output similar to the following:

<GetMetadata>
<Metadata>
<SASLibrary Id="A5KI3PIS.AZ0000GP">
<

256 Understanding REPORT Statement Output � Chapter 11

Tables>
<PhysicalTable Id="A5KI3PIS.B00000M9" Name="SameReposAsLib" Desc=""/>
<PhysicalTable Id="A5SGOWT6.AA000001" Name="InDepRepos" Desc=""/>
</Tables>
</SASLibrary></Metadata>
<NS>SAS</NS>
<Flags>16384</Flags>
<Options/>
</GetMetadata>

In this example, SASLibrary A5KI3PIS.AZ0000GP has two table definitions
associated with it: one exists in the same repository as the library definition (indicated
by the A5KI3PIS in the first part of the table definition’s two-part metadata identifier).
The second table definition, which is preceded by a different identifier (A5SGOWT6), is
in a dependent repository. (Note that the Name= attribute stores the metadata name of
each table definition, not the value in the SASTableName attribute.)

Sometimes more than one table definition exists that has the same name. To identify
the repositories to which the definitions belong, issue the following method call:

<GetRepositories>
<Repositories>
<Flags>0</Flags>
</GetRepositories>

The GetRepositories method lists the Id=, Name=, and Desc= attributes of all
repositories registered on a SAS Metadata Server, as follows:

<GetRepositories>
<Repositories>
<Repository Id="A0000001.A5KI3PIS" Name="Foundation"

Desc="Main repository" DefaultNS="SAS"/>
<Repository Id="A0000001.A5SGOWT6" Name="Test"

Desc="Test repository" DefaultNS="SAS"/>
<Flags>0</Flags>
</GetRepositories>

For information about how to issue the XML calls using PROC METADATA, see
“METADATA Procedure” on page 240.

Understanding REPORT Statement Output
The default behavior of the METALIB procedure is to print the following summary

information in the SAS log:
� the total number of tables that were analyzed
� the number of tables that would be or were updated
� the number of tables that would be or were added
� if UPDATE_RULE=(DELETE) is set, the number of table definitions that would be

or were deleted

The REPORT statement is supported to additionally create an output listing that
summarizes the metadata additions, deletions, and updates that would be or were
made. When REPORT is specified with NOEXEC, the output listing summarizes
needed metadata changes, but the procedure does not apply any of the changes to the
SAS Metadata Repository. When REPORT is specified alone, the listing summarizes
changes that were actually made to the SAS Metadata Repository.

Procedures � Understanding REPORT Statement Output 257

The following sections describe the output listings that are created when the
METALIB procedure adds, updates, and deletes table and associated metadata.

Table Addition Report Description
The following is an example of the output listing that is created when PROC

METALIB is executed with the REPORT statement and one or more table definitions
are added to the SAS Metadata Repository.

The METALIB Procedure

Summary Report for Library sas91 lib2
Repository Meta Proc repos

17MAR2005

Metadata Summary Statistics

Total tables analyzed 2
Tables Updated 0
Tables Added 2
Tables matching data source 0
Tables not found 0

--
Tables Added

--

Metadata Name Metadata ID SAS Name

COUNTRY A5HJ58JU.AX001LPV COUNTRY
POSTAL A5HJ58JU.AX001LPW POSTAL

In the output listing:

Metadata Name
is the metadata name of the table definition that was added. This value is stored
in the table definition’s Name= attribute.

Metadata ID
is the table definition’s 17-character unique object identifier.

SAS Name
is the SAS table name of the physical table. This value stored in the table
definition’s SASTableName= attribute.

In this example, two table definitions were created, one for a SAS table named
COUNTRY and another for a SAS table named POSTAL. Metadata about each table’s
columns, indexes, and keys is also created, as associated Column, Index, UniqueKey,
ForeignKey, and KeyAssociation metadata objects, but these are not included in the
listing. To see what associated metadata was created for a table, follow the steps for
obtaining each table’s SASTableName value using the METABROWSE command or
SAS Management Console and refresh the display to show the new data. The property
sheets for the new tables will contain information about associated metadata.

Table Update Report Description
The METALIB procedure’s update functionality updates table attribute values as

well as the attribute values of associated objects to match those found in the specified
physical library. The following is an example of the SAS output listing that is generated
for a PROC METALIB update operation when REPORT is specified.

258 Understanding REPORT Statement Output � Chapter 11

The METALIB Procedure

Summary Report for Library sas91 lib2
Repository Meta Proc repos

25JAN2005

Metadata Summary Statistics

Total tables analyzed 3
Tables Updated 3
Tables Deleted 0
Tables Added 0
Tables matching data source 0
Tables not found 0

Tables Updated

Table | Updates

Name | Metadata ID |Metadata | Metadata ID | SAS Name | Metadata | Change
| |Name | | | Type |

NDX_MULTICOL|A5HJ58JU.AX001H35|multi_col|A5HJ58JU.B30011T5|Multi--col |Index |Column
silver
added

SCOTT |A5HJ58JU.AX001FJN|a |A5HJ58JU.AY001H0L|a |Column|SASColumnLength
|b |A5HJ58JU.AY001JBR|b |Column|IsNullable

UKEYS |A5HJ58JU.AX001D8C|UKEYS.stat_key|A5HJ58JU.B4000U3D|stat_key|UniqueKey|Added

In the output listing:

Name
is the metadata name of the table definition that was modified.

Metadata ID
is the table definition’s unique 17-character metadata identifier.

Metadata Name
is the metadata name of the affected associated object.

Metadata ID
is the associated object’s unique 17-character metadata identifier.

SAS Name
is the SAS name of the item described by the metadata.

� For an index, this is the value stored in the IndexName= attribute.

� For a column, this is the value stored in the SASColumnName= attribute.

� For a non-primary unique key, this is a two-part identifier in the form
SASTableName.data-source-key-name.

� For a primary unique key, this is a two-part identifier in the form
SASTableName.Primary.

� For a foreign key, this is a two-part identifier in the form
primary-table-SASTableName.foreign-table-SASTableName.

Metadata Type
is the metadata type of the associated object.

Procedures � Understanding REPORT Statement Output 259

Change
is a system-generated description of the change that was made. This can be a
one-word description, such as “Added” or “Deleted”, or an attribute name, to
indicate that the attribute’s value was modified. It can also be a “Column” or a
“Column Order” message, followed by the name of the column that was affected by
a change. The METALIB procedure changes a table’s Columns association to make
the metadata column order match the data source column order. Affected columns
are listed separately in the listing. The column order in the listing indicates the
new metadata column order.

The information in this particular example is read as follows:
1 An index associated with the table named NDX_MULTICOL, which has the ID

A5HJ58JU.AX001H35, was updated to add a definition for column named “Silver.”
The associated index has the SAS Name “multi_col” and the metadata ID
A5HJ58JU.B30011T5.

2 The table named SCOTT had two updates:

a The associated column that has the SAS Name “a” and the metadata ID
A5HJ58JU.AY001H0L had its SASColumnLength attribute updated.

b The associated column that has the SAS Name “b” and the metadata ID
A5HJ58JU.AY001JBR had its IsNullable attribute updated.

3 A UniqueKey definition was added to the table named UKEYS. This UniqueKey
has the metadata name UKEYS.stat_key, the metadata ID A5HJ58JU.B4000U3D,
and the SAS Name “stat_key”.

Table Deletion Report Description
The following is an example of the output listing that is created when PROC

METALIB is executed by specifying UPDATE_RULE=(DELETE) without a SELECT
statement. REPORT and NOEXEC are also specified, which means that the listing will
report changes that are needed but have not yet been applied in the SAS Metadata
Repository.

The METALIB Procedure

Summary Report of Potential Changes for Library sas91 lib2
Repository Meta Proc repos

15FEB2005

Metadata Summary Statistics

Total tables analyzed 3
Tables to be Updated 0
Tables to be Deleted 3
Tables to be Added 0
Tables matching data source 0
Tables not found 0

Tables to be Deleted

Metadata Name Metadata ID SAS Name

SCOTT3 A5HJ58JU.AX001IMQ SCOTT
SCOTT2 A5HJ58JU.AX001IMP SCOTT
SCOTT A5HJ58JU.AX001FJN SCOTT

260 Examples � Chapter 11

In the output listing:

Metadata Name
is the value in the obsolete table definition’s Name attribute.

Metadata ID
contains the obsolete table definition’s unique 17-character metadata identifier.

SAS Name
is the value in the obsolete table definition’s SASTableName attribute.

Information about associated metadata that is deleted (Column, Index, and key
metadata) is not included in the listing. To see what associated metadata would be
deleted by the procedure, view the tables’ property sheets using either the
METABROWSE command or the SAS Management Console.

This particular output listing indicates that a physical table with a SAS name of
“SCOTT” could not be found in the specified library, although a table definition exists
for it. In fact, three table definitions have the value “SCOTT” in the SASTableName
attribute: “SCOTT,” “SCOTT2,” and “SCOTT3,” and all three exist in repository
A5HJ58JU. To delete the table definitions and their associated metadata, execute
PROC METALIB again omitting the NOEXEC option.

Examples

Synchronizing Metadata with the Physical Data Source

To periodically check for and correct any discrepancies between the table definitions
stored for a specified SASLibrary in SAS Metadata Repositories with the tables at the
physical data source, issue the METALIB procedure with the following statements:

ods html file="C:\update_rep.html";
ods listing close;

proc metalib;
omr (libid="library-identifier"

repid="repository-identifier");
update_rule=(delete);
report;

run;

The OMR statement identifies the library that will be examined and the repository
where the library definition is stored. Because server connection statements are
omitted from the OMR statement, the procedure will connect to the metadata server
using the parameters set in the METASERVER, METAPORT, METAUSER, and
METAPASS system options.

The UPDATE_RULE statement instructs the metadata server to delete obsolete table
definitions (table definitions in the metadata repository that do not correspond to a
physical table in the specified SAS library) in addition to the default actions of add and
update.

The REPORT statement instructs the procedure to write the changes that were made
to the metadata. The ODS statement specifies the file name and format for the report.
Unless SAS is instructed otherwise, the report will also be written to a SAS output
listing. In this example, the statement ods listing close; suppresses creation of the
SAS output listing.

Procedures � Examples 261

Identifying Needed Metadata Updates Without Applying Changes
To check for needed updates without making any changes, submit the statements

shown in “Synchronizing Metadata with the Physical Data Source” on page 260 and
also include the NOEXEC statement as in the example below:

ods html file="C:\noexec_rep.html";

proc metalib;
omr (libid="library-identifier"

repid="repository-identifier");
update_rule (delete);
report;
noexec;

run;

The NOEXEC statement instructs PROC METALIB not to apply the changes to the
SAS Metadata Repository.

The REPORT statement writes information about needed changes both to the SAS
log and to the file named in the ODS statement. The output will consist of three listings
like the ones shown in “Understanding REPORT Statement Output” on page 256.

Using PROC METALIB to Add or Update a Table
To use PROC METALIB to add or update metadata for a physical table that has the

SAS name “mytable”, issue the procedure as follows:

proc metalib;
omr (libid="library-identifier"

repid="repository-identifier");
select (mytable);
report;

run;

When you omit the UPDATE_RULE statement, PROC METALIB seeks to update or
add the specified metadata. The procedure will first look for an existing table definition
that stores the value “mytable” in its SASTableName attribute. If a table definition
cannot be found, the procedure will create a new table definition.

Using PROC METALIB to Update the Metadata for a Specific Table
To update the metadata for a specific table, it is recommended that you issue PROC

METALIB with a SELECT statement that specifies the table definition’s metadata
identifier as follows:

proc metalib;
omr (libid="library-identifier"

repid="repository-identifier");
select (A7892350.B00265DX);
report;

run;

The first part of the two-part metadata identifier (A7892350) identifies the repository
that contains the table definition; the second part (B00265DX) identifies the table
definition in the repository. By using a metadata identifier, if duplicate table definitions
exist, you are assured that you are updating the correct one. You can also directly
specify table definitions that exist in dependent repositories using a metadata identifier.

When you use a metadata identifier to identify a table definition that is stored in a
dependent repository, be sure to use the appropriate repository ID. The SAS

262 METAOPERATE Procedure � Chapter 11

Management Console Data Library Manager plugin does not list table definitions that
exist in dependent repositories. See “Listing Table Definitions in Dependent
Repositories” on page 255 for instructions to obtain the metadata identifiers of table
definitions that exist in dependent repositories.

Deleting Obsolete Table Definitions
To delete obsolete table definitions that are associated with the specified SASLibrary,

issue PROC METALIB with the UPDATE_RULE statement, as follows:

proc metalib;
omr (libid="library-identifier"

repid="repository-identifier");
update_rule (delete noadd noupdate);
report;

run;

Specifying DELETE invokes the delete metadata action. Specifying NOADD and
NOUPDATE suppresses the default add and update actions. Omitting the SELECT
statement instructs the procedure to examine all tables and table definitions. See “How
PROC METALIB Works” on page 246 for a description of how obsolete table definitions
are identified.

Excluding Tables from Processing
By default, PROC METALIB seeks to update all table definitions associated with the

specified SASLibrary object. It will also add table definitions for tables that do not have
definitions in the SAS Metadata Repository. To exclude one or more tables from being
processed, for example, if you do not want a metadata definition created for a particular
physical table, issue the procedure with the following statements:

proc metalib;
omr (libid="library-identifier"

repid="repository-identifier");
exclude (mytable);
report;

run;

The EXCLUDE statement specifies to exclude the physical table that has the SAS name
“mytable” from processing. If a table definition exists that has the value “mytable” in
its SASTableName attribute, it will not be updated. If a table definition does not exist,
one will not be created. However, definitions will continue to be updated and created for
other physical tables found in the specified library.

METAOPERATE Procedure
The METAOPERATE procedure enables you to perform administrative tasks

associated with the SAS Metadata Server and SAS Metadata Repositories in batch
mode. Using PROC METAOPERATE you can

� unregister, delete, purge, or empty a metadata repository
� pause one or more repositories or the repository manager to change their state,

and then resume them to their original state, for example, to temporarily set a
repository to READONLY

� refresh the server to recover memory or to change certain configuration options,
like enabling or disabling Applications Response Measurement (ARM) logging

Procedures � Server Connection Statements 263

� stop or get the status of the SAS Metadata Server.

Procedure statements connect to the metadata server and supply the necessary
parameters to perform the desired action.

Procedure Syntax
Use the following syntax to execute the METAOPERATE Procedure. Note that

unlike most SAS procedures, which end individual statements with a semicolon (;), the
PROC METAOPERATE statements are all submitted as one string. That is, only one
semicolon is used, and this semicolon is placed after the last statement that is
submitted before the RUN statement. See the Examples section for specific usage.

PROC METAOPERATE

Server Connection Statements
<SERVER= "host-name">
<PORT= port-number>
<USERID= "userid">
<PASSWORD="password">
<PROTOCOL= BRIDGE>

Action Statements

ACTION=PAUSE | RESUME | REFRESH | UNREGISTER | DELETE |
PURGE | EMPTY | STATUS | STOP | NOAUTOPAUSE

<OPTIONS= "pause_options | resume_options | refresh_options"><;>

Repository Identification Statement

<REPOSITORY="repository-name"><;>

Execution Statement

RUN;

Server Connection Statements
The server connection statements establish communication with the SAS Metadata

Server. The statements are optional in the METAOPERATE procedure but are required
to connect to the SAS Metadata Server. If you omit these statements then the values of
the system options METASERVER, METAPORT, METAUSER, METAPASS, and
METAPROTOCOL are used. For more information about these system options, see
“SAS Metadata System Options” on page 305. If the connection parameters are empty or
incomplete, a dialog box will be posted to acquire the parameter values. Once entered,
the values are stored as system options for the remainder of the current session.

Note: When specifying connection parameters, be sure to enter or omit quotation
marks as documented. If you enter quotation marks where they should be omitted, or
vice versa, the connection will fail. �

264 Action Statements � Chapter 11

SERVER=
specifies the host name or network IP (Internet Protocol) address of the computer
hosting the SAS Metadata Server that you want to access, for example,
SERVER="d6292.us.company.com". The value “localhost” can be used if the SAS
session is connecting to a server on the same computer.

PORT=
specifies the TCP port to which the SAS Metadata Server listens for connections.
For example, port=8561. This is the port number that was used to start the SAS
Metadata Server.

USERID=
specifies an authenticated user ID. See the SAS Intelligence Platform: Security
Administration Guide for information about authentication requirements.

PASSWORD=
specifies the password that corresponds to the authenticated user ID.

PROTOCOL=
specifies the network protocol for communicating with the SAS Metadata Server.
The valid value is BRIDGE.

BRIDGE specifies that the connection will use the SAS Bridge protocol.

Action Statements
ACTION=

specifies the action that you want to perform. ACTION is a required statement.

Note: A user must have administrative user status on the metadata server in
order to execute all actions except STATUS. For more information about this
privilege, see the SAS Intelligence Platform: Security Administration Guide. �

PAUSE
suspends client activity in one or all repositories or the repository manager
and enables you to temporarily change their state. The repositories to pause
and their new state are identified in a <Repository> XML element that is
passed to the metadata server in the OPTIONS statement.

When one or more repositories are paused by using the <Repository>
element, the default Pause state is READONLY. A state value of READONLY
allows clients to read metadata in the specified repository or repository
manager but prevents them from writing to it. Executing a PAUSE action
without specifying a <Repository> element pauses all repositories on the
metadata server, except the repository manager, to an OFFLINE state. A
state value of OFFLINE disables read and write access to the specified
repositories.

You can determine a repository’s current state by issuing a GetRepositories
method call via PROC METADATA and checking the repository’s PauseState
attribute. For more information, see “GetRepositories” on page 156 and
“METADATA Procedure” on page 240.

For examples of specifying a PAUSE action, see “Examples of
ACTION=PAUSE” on page 267.

Procedures � Action Statements 265

Note: A repository that is paused must be resumed to restore client
activity to its normal state. A repository is resumed by executing PROC
METAOPERATE and specifying ACTION=RESUME. �

RESUME
restores client activity in a paused repository to its normal state. You can
determine a repository’s normal state by issuing a GetRepositories method
call via PROC METADATA and checking its Access attribute. For more
information, see “GetRepositories” on page 156 and “METADATA Procedure”
on page 240. The repository to resume is identified in a <Repository> XML
element that is passed to the metadata server in the OPTIONS statement.
Specifying the RESUME action without a <Repository> element restores
client activity in all repositories on the metadata server and the repository
manager. For more information about the <Repository> element, see the
description of the OPTIONS statement. For an example of specifying a
RESUME action, see “Example of ACTION=RESUME” on page 268.

REFRESH
The REFRESH action has two uses:

� It can pause client activity on the SAS Metadata Server long enough to
invoke the server configuration option(s) specified in the OPTIONS
statement and then automatically resume it. Currently, one server
configuration option can be changed using the REFRESH action. ARM
logging can be enabled or disabled by passing an <ARM> XML element
in the OPTIONS statement.

� It can be used to pause and resume client activity in one or more
repositories in a single step. This is useful for recovering memory on the
metadata server and for reloading authorization inheritance rules. The
repositories to refresh are identified in <Repository> XML elements that
are passed to the metadata server in the OPTIONS statement.

Invoking the REFRESH action without an OPTIONS statement has no effect.
For more information about the <ARM> and <Repository> elements, see the
description of the OPTIONS statement.

UNREGISTER
removes metadata about how to access the specified repository from the
repository manager without disturbing the metadata records in the repository.

DELETE
deletes the specified repository and the metadata necessary to access it from
the repository manager.

Note: Do not use PROC METAOPERATE to delete a project repository.
Project repositories should be deleted by using SAS Management Console. �

PURGE
removes logically deleted metadata records from the specified repository
without disturbing the current metadata records. For an example of
specifying a PURGE action, see “Example of ACTION=PURGE” on page 267.

EMPTY
deletes the metadata records in the specified repository without disturbing
the repository’s registration in the repository manager. For an example of
specifying a EMPTY action, see “Example of ACTION=EMPTY” on page 267.

STATUS
returns the metadata server’s SAS version number, host operating
environment, the user ID that started the server, the SAS Metadata Model
version number, and information about the server’s current state.

266 Action Statements � Chapter 11

STOP
stops all client activity immediately and terminates the metadata server.
Metadata in repositories is unavailable until the metadata server is
restarted. For an example of specifying a STOP action, see “Example of
ACTION=STOP” on page 269.

NOAUTOPAUSE
Each of the UNREGISTER, DELETE, PURGE, and EMPTY actions issue an
implicit PAUSE without options before performing the action, and an implicit
RESUME after the action, in order to quiesce client activity on the server
before changing repository attributes or dependencies. This was required in
9.0 servers and is optional in 9.1 servers. To turn off this behavior, specify
the NOAUTOPAUSE option on the procedure. NOAUTOPAUSE should also
be specified for the PAUSE action when a <Repository> XML element is
passed in the OPTIONS statement.

OPTIONS=
Specifies an optional quoted string containing one or more XML elements that
specify options for the PAUSE, RESUME, or REFRESH actions. The supported
XML elements are:

<REPOSITORY ID="Reposid|REPOSMGR|ALL" STATE="READONLY|OFFLINE"/>

ID=
is required for each of the PAUSE, RESUME, and REFRESH actions, and
specifies the unique 8-character or 17-character identifier of a repository,
REPOSMGR to indicate the repository manager, or ALL. ALL indicates that
all repositories on the server except the repository manager should be paused,
resumed, or refreshed.

STATE=
optionally specifies a state for the PAUSE action. If the STATE parameter is
omitted, the default pause state is READONLY. READONLY access allows
clients to read metadata in the specified repository or repository manager but
prevents them from writing to it. OFFLINE disables read and write access to
the specified repositories or the repository manager. The STATE parameter is
ignored by the RESUME and REFRESH actions.

<ARM ARMSUBSYS="(ARM_NONE|ARM_OMA|ARM_DSIO)" ARMLOC="fileref|filename"/>

specifies one or more ARM system options to enable or disable ARM_OMA
logging. If ARM logging is already enabled, specifying ARMLOC= writes the ARM
log to a new location. Note that relative and absolute pathnames are read as
different locations. For more information, see “Using the ARM_OMA Subsystem to
Obtain Raw Performance Data for the SAS Metadata Server” in the SAS
Intelligence Platform: System Administration Guide.

Note: To ensure that the options string is parsed correctly by the metadata
server, all double-quotation marks in the XML elements need to be marked in
some way to indicate that they should be treated as characters. This can be done
by alternating single and double quotation marks or double and double-double
quotation marks to distinguish the string literal from a quoted value as follows:

’<ARM ARMSUBSYS="(ARM_OMA)" ARMLOC="fileref"/>’
"<ARM ARMSUBSYS=""(ARM_OMA)"" ARMLOC=""fileref""/>"

�

Procedures � Examples 267

Repository Identification Statement
REPOSITORY=

specifies the repository identifier of an existing repository. The REPOSITORY
statement is required when the ACTION is UNREGISTER, DELETE, PURGE, or
EMPTY. REPOS= is an alias for REPOSITORY=.

Execution Statement
RUN;

executes the METAOPERATE procedure.

Examples

Example of ACTION=PURGE
The following PROC METAOPERATE example connects to a metadata server that is

running on the same host as the SAS session and purges logically deleted metadata
records from the specified repository.

PROC METAOPERATE
SERVER="localhost"
PORT=8591
USERID="myuserid"
PASSWORD="mypassword"
PROTOCOL=BRIDGE

ACTION=PURGE
REPOS="MyRepos";

RUN;

Example of ACTION=EMPTY
The following example deletes the metadata records in the specified repository

without disturbing the repository’s registration in the repository manager. Since the
connection statements are omitted, the procedure will use the values of the
METASERVER, METAPORT, METAUSER, METAPASS, and METAPROTOCOL system
options to establish the connection or present a connection dialog box if none are found.
The EMPTY action is useful for clearing a repository that will be repopulated.

PROC METAOPERATE

ACTION=EMPTY
REPOS="MyRepos";

RUN;

Examples of ACTION=PAUSE
The following example connects to a metadata server that is running on another host

and issues a PAUSE action to temporarily change client activity on repository
A5234567 to an OFFLINE state.

268 Examples � Chapter 11

PROC METAOPERATE
SERVER="d6292.us.company.com"
PORT=8591
USERID="myuserid"
PASSWORD="mypassword"
PROTOCOL=BRIDGE

ACTION=PAUSE
OPTIONS="<Repository Id=""A5234567"" State=""OFFLINE""/>"
NOAUTOPAUSE;

RUN;

The following example connects to the server and issues a PAUSE action to change
client activity on all repositories and the repository manager to a READONLY state.
The State parameter is omitted from the options string because the default Pause state
is READONLY.

PROC METAOPERATE
SERVER="d6292.us.company.com"
PORT=8591
USERID="myuserid"
PASSWORD="mypassword"
PROTOCOL=BRIDGE

ACTION=PAUSE
OPTIONS="<Repository Id=""ALL""/>

<Repository Id=""REPOSMGR""/>"
NOAUTOPAUSE;

RUN;

Example of ACTION=RESUME

The following example connects to the server and issues a RESUME action to restore
client activity on all repositories and the repository manager:

PROC METAOPERATE
SERVER="d6292.us.company.com"
PORT=2222
USERID="myuserid"
PASSWORD="mypassword"
PROTOCOL=BRIDGE

ACTION=RESUME
OPTIONS="<Repository Id=""ALL""/>"

<Repository Id=""REPOSMGR""/>"
NOAUTOPAUSE;

RUN;

Example of ACTION=STATUS

The following example connects to a metadata server that is running on the same
host as the SAS session and issues a STATUS action:

Procedures � Examples 269

PROC METAOPERATE
SERVER="localhost"
PORT=8591
USERID="myuserid"
PASSWORD="mypassword"
PROTOCOL=BRIDGE

ACTION=STATUS;

RUN;

The following is an example of the output returned by a STATUS request:

NOTE: Server ctomr1.na.company.com SAS Version is 9.01.01B0P02122003.
NOTE: Server ctomr1.na.company.com Operating System is WIN_SRV.
NOTE: Server ctomr1.na.company.com Operating System Family is WIN.
NOTE: Server ctomr1.na.company.com Operating System Version is .
NOTE: Server ctomr1.na.company.com started by sasjeb.
NOTE: Server ctomr1.na.company.com Metadata Model is Version 3.01.
NOTE: Server ctomr1.na.company.com is RUNNING on February 19, 2003 01:55:30.

Example of ACTION=STOP
The following example connects to a metadata server that is running on the same

host as the SAS session and issues a STOP action. The STOP action quiesces all client
activity and terminates the metadata server.

PROC METAOPERATE
SERVER="localhost"
PORT=8591
USERID="myuserid"
PASSWORD="mypassword"
PROTOCOL=BRIDGE

ACTION=STOP;

RUN;

270

271

C H A P T E R

12
DATA Step Functions

SAS Metadata DATA Step Functions 273
Connection Information 273

Referencing Metadata Objects in the DATA Step 274

Performance Issues 274

Summary Table of Metadata DATA Step Functions 275

METADATA_DELASSN Function 276
Syntax 276

Arguments 276

Return Values 276

Example 276

Related Functions 277

METADATA_DELOBJ Function 278
Syntax 278

Arguments 278

Return Values 278

Example 278

Related Functions 279
METADATA_GETATTR Function 279

Syntax 279

Arguments 279

Return Values 279

Example 280
Related Functions 280

METADATA_GETNASL Function 280

Syntax 280

Arguments 281

Return Values 281

Details 281
Example: 281

Related Functions 282

METADATA_GETNASN Function 282

Syntax 282

Arguments 282
Return Values 283

Details 283

Example 283

METADATA_GETNATR Function 284

Syntax 284
Arguments 284

Return Values 284

Details 285

272 Contents � Chapter 12

Examples 285
Example 1: Using an Object URI 285

Example 2: Using a Repository URI 285

Related Functions 286

METADATA_GETNOBJ Function 286

Syntax 286
Arguments 286

Return Values 287

Details 287

Examples 287

Example 1 : Determining How Many Machine Objects Exist 287

Example 2 : Looping Through Each Repository on a Server 287
Related Functions 288

METADATA_GETNPRP Function 288

Syntax 288

Arguments 288

Return Values 289
Details 289

Example 289

Related Functions 290

METADATA_GETNTYP Function 290

Syntax 290
Arguments 290

Return Values 290

Details 291

Example 291

METADATA_GETPROP Function 291

Syntax 291
Arguments 292

Return Values 292

Example 292

Related Functions 293

METADATA_NEWOBJ Function 293
Syntax 293

Arguments 293

Return Values 293

Example 294

Related Functions 295
METADATA_PAUSED Function 295

Syntax 295

Return Values 295

Example 295

METADATA_PURGE Function 295

Syntax 296
Argument 296

Return Value 296

Details 296

Example 296

METADATA_RESOLVE Function 297
Syntax 297

Arguments 297

Return Values 297

Examples 298

Example 1: Using an Object URI 298

DATA Step Functions � Connection Information 273

Example 2: Using a Repository URI 298
METADATA_SETASSN Function 299

Syntax 299

Arguments 299

Return Values 299

Example 300
Related Functions 301

METADATA_SETATTR Function 301

Syntax 301

Arguments 301

Return Values 301

Example 302
Related Functions 302

METADATA_SETPROP Function 302

Syntax 302

Arguments 302

Return Values 303
Example 303

Related Functions 303

METADATA_VERSION Function 303

Syntax 303

Return Values 304
Example 304

SAS Metadata DATA Step Functions
SAS provides a family of metadata DATA step functions to get attributes,

associations, and properties from metadata objects. These functions also enable you to
set and update attributes, associations, and properties for metadata objects.

For more information about the SAS Metadata Model, see “Overview of SAS
Namespace Submodels” on page 46.

Connection Information
Before you can use the metadata DATA step functions, you must establish a

connection with the SAS Metadata Server by using the SAS metadata system options.
The METASERVER, METAPORT, METAUSER, and METAPASS options individually
specify the metadata server connection properties for a given user. The
METAPROTOCOL option sets the network protocol for communicating with the SAS
Metadata Server and the METAREPOSITORY option specifies the name of the default
repository to use on the SAS Metadata Server.

The following option statements set the metadata system options to connect to the
SAS Metadata Server:

options metaserver="a123.us.company.com"
metaport=9999
metauser="metaid"
metapass="metapwd"
metaprotocol=bridge
metarepository="myrepos";

For more information about these system options, see “SAS Metadata System
Options” on page 305.

274 Referencing Metadata Objects in the DATA Step � Chapter 12

Referencing Metadata Objects in the DATA Step
The SAS Open Metadata Architecture uses Uniform Resource Identifier (URI)

formats to identify metadata objects. A URI is a generic set of all names and addresses,
which are short strings that refer to objects.

When you reference a metadata object on the server, typically you use the generated
ID for the metadata object. The object ID has the general form of
“A3YBDKS4.AH000001”.

When you use the SAS metadata DATA step functions, you must reference objects
using one of the following URI formats:

� Reference by ID only

omsobj:
A3YBDKS4.AH000001

This format includes the unique instance identifier that is assigned to the
metadata object. This format is the least efficient metadata resource reference.

� Reference by type and id

omsobj:
LogicalServer/A3YBDKS4.AH000001

This format includes the metadata object type and the unique instance
identifier that is assigned to the metadata object. This format is the most efficient
metadata resource reference.

� Reference by type and search parameters

omsobj:
LogicalServer?@Name=’My Logical Server’

This format includes the metadata object type and an attribute value, such as
the name. This format is generally more efficient than just a reference by ID,
provided that your type parameter is not Root.

The parameters after the “?” correspond to a valid query with an <XMLSelect
search="criteria"> specification. The syntax of the criteria is

object[attribute_criteria][association_path]

For more information, see “Filtering a GetMetadataObjects Request” in “Querying
All Metadata of a Specified Type” in the SAS Open Metadata Interface: User’s Guide .

Notes:

� The omsobj: prefix is case insensitive.

� Slashes in the URI can be either a forward slash (/) or a backward slash (\).

� Escape characters are supported with the %nn URL escape syntax. For more
information, see the URLENCODE function in the SAS Language Reference
Dictionary.

Performance Issues
For performance reasons, metadata objects are cached by URI within a DATA step or

SCL program. To refresh the metadata object with the most recent data from the
server, purge the URI with the METADATA_PURGE function.

DATA Step Functions � Summary Table of Metadata DATA Step Functions 275

For best performance, always resolve your URI into an ID instance. This will fully
exploit the object caching and reduce the number of reads from the server. For example,
if you make several function calls on the object “OMSOBJ:LogicalServer?@Name=’foo ’”,
first use the METADATA_RESOLVE or METADATA_GETNOBJ function to convert the
object to “OMSOBJ:LogicalServer\A1234567.A1234567”. URIs in the ID instance form
usually require only one read from the server per DATA step or SCL program.

Summary Table of Metadata DATA Step Functions
The following table lists the SAS metadata DATA step functions in alphabetical order.

Name Description

METADATA_DELASSN Deletes all objects that make up the specified
association

METADATA_DELOBJ Deletes the first object specified by the input URI

METADATA_GETATTR Returns the named attribute for the object
specified by the URI

METADATA_GETNASL Returns the nth named association for the object
URI

METADATA_GETNASN Returns the nth associated object of the
association specified

METADATA_GETNATR Returns the nth attribute on the object specified
by the URI

METADATA_GETNOBJ Returns the nth object matching the specified
URI

METADATA_GETNPRP Returns the nth property on the object specified
by the input URI

METADATA_GETNTYP Returns the nth object type on the server

METADATA_GETPROP Returns the named property for the object
specified by the input URI

METADATA_NEWOBJ Creates a new metadata object

METADATA_PAUSED Determines whether the server is paused

METADATA_PURGE Purges the specified URI

METADATA_RESOLVE Resolves a metadata URI into a specific object
on the current metadata server

METADATA_SETASSN Modifies an association list for an object

METADATA_SETATTR Sets the named attribute for the object specified
by the input URI

METADATA_SETPROP Sets the named property for the object specified
by the input URI

METADATA_VERSION Returns the server model version number

276 METADATA_DELASSN Function � Chapter 12

METADATA_DELASSN Function
Deletes all objects that make up the specified association

Syntax
rc = METADATA_DELASSN(uri,asn);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

asn in Association name

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 The deletion was unsuccessful. See the SAS log
for details

-3 No objects match the URI

Example

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length uri $256

curi $256
curi1 $256
curi2 $256;

DATA Step Functions � Arguments 277

rc=0;

/* Create a PhysicalTable object. */

rc=metadata_newobj("PhysicalTable",
uri,
"My Table");

put rc=;
put uri=;

/* Create a couple of columns on the new PhysicalTable object. */

rc=metadata_newobj("Column",
curi,
"Column1",
"myrepos",
uri,
"Columns");

put rc=;
put curi=;

rc=metadata_newobj("Column",
curi1,
"Column2",
"myrepos",
uri,
"Columns");

put rc=;
put curi1=;

rc=metadata_newobj("Column",
curi2,
"Column3",
"myrepos",
uri,
"Columns");

put rc=;
put curi2=;

rc=metadata_delassn(uri,"Columns");
put rc=;
rc=metadata_delobj(uri);
put rc=;

run;

Related Functions

� “METADATA_SETASSN Function” on page 299

� “METADATA_GETNASN Function” on page 282

278 METADATA_DELOBJ Function � Chapter 12

METADATA_DELOBJ Function

Deletes the first object specified by the input URI

Syntax
rc = METADATA_DELOBJ(uri);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 The deletion was unsuccessful. See the SAS log
for details

-3 No objects match the given URI

Example

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;

DATA Step Functions � Return Values 279

rc=metadata_delobj("omsobj:Property?@Name=’My Object’");
put rc=;

run;

Related Functions
� “METADATA_DELASSN Function” on page 276
� “METADATA_GETNOBJ Function” on page 286

� “METADATA_GETNTYP Function” on page 290
� “METADATA_NEWOBJ Function” on page 293

METADATA_GETATTR Function

Syntax
rc = METADATA_GETATTR(uri, attr, value);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

attr in Attribute of the metadata
object

value out Value of the specified attribute

Return Values

Argument Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 The attribute was not found

-3 No objects matches the URI

280 Example � Chapter 12

Example

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;

length name $200
desc $200
modified $100;

rc=metadata_getattr("omsobj:Machine?@Name=’bluedog’","Name",name);
put rc=;
put name=;

rc=metadata_getattr("omsobj:Machine?@Name=’bluedog’","Desc",desc);
put rc=;
put desc=;

rc=metadata_getattr("omsobj:Machine?@Name=’bluedog’","MetaUpdated",modified);
put rc=;
put modified=;

run;

Related Functions
� “METADATA_GETNATR Function” on page 284
� “METADATA_SETATTR Function” on page 301

METADATA_GETNASL Function
Returns the nth named association for the object URI

Syntax
rc = METADATA_GETNASL(uri, n, asn);

DATA Step Functions � Example: 281

Arguments

Argument Direction Description

uri in Universal Resource Identifier

n in Numeric index value

asn out Association name

Return Values

Value Description

n The number of objects that match the URI

-1 Unable to connect to the metadata server

-3 No objects match the given URI

-4 n is out of range

Details
Use the METADATA_GETNASL function to iterate through all of the possible

associations of an object.

Example:

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length assoc $256;
rc=1;
n=1;

282 Related Functions � Chapter 12

do while(rc>0);

/* Walk through all possible associations of this object. */

rc=metadata_getnasl("omsobj:Machine?@Name=’bluedog’",
n,
association);

put assoc=;
n=n+1;

end;
run;

Related Functions
� “METADATA_GETNASN Function” on page 282
� “METADATA_SETASSN Function” on page 299

METADATA_GETNASN Function
Returns the nth associated object of the association specified

Syntax
rc = METADATA_GETNASN(uri, asn, n, nuri);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

asn in Association name

n in Numeric index value

nuri out The Universal Resource
Identifier of the nth associated
object

DATA Step Functions � Example 283

Return Values

Value Description

n The number of associated objects

-1 Unable to connect to the metadata server

-3 No objects match the given URI

-4 n is out of range

Details
Use the METADATA_GETNASN function to iterate through the associated objects on

a metadata object.

Example

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length uri $256
text $256;

rc=1;
arc=0;
n=1;

do while(rc>0);

/* Walk through all the notes on this machine object. */

rc=metadata_getnasn("omsobj:Machine?@Name=’bluedog’",
"Notes",
n,
uri);

arc=1;
if (rc>0) then arc=metadata_getattr(uri,"StoredText",text);
if (arc=0) then put text=;
n=n+1;

284 METADATA_GETNATR Function � Chapter 12

end;
run;

METADATA_GETNATR Function
Returns the nth attribute on the object specified by the URI

Syntax
rc = METADATA_GETNATR(uri, n, attr, value);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

n in Numeric index value

attr out Attribute of the metadata
object

value out Value of specified attribute

Return Values

Value Description

n The number of attributes on the given URI

-1 Unable to connect to the metadata server

-2 No attributes are defined on the object

-3 No objects match the given URI

-4 n is out of range

DATA Step Functions � Examples 285

Details
Use the METADATA_GETNATR function to iterate through all of the attributes

defined for an object.

Examples

Example 1: Using an Object URI
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length attr $256

value $256;
rc=1;
n=1;
do while(rc>0);

/* Walk through all the attributes on this machine object. */

rc=metadata_getnatr("omsobj:Machine?@Name=’bluedog’",
n,
attr,
value);

if (rc>0) then put n=;
if (rc>0) then put attr=;
if (rc>0) then put value=;

n=n+1;

end;
run;

Example 2: Using a Repository URI
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;

length id $20
type $256
attr $256

286 Related Functions � Chapter 12

value $256;

rc=metadata_resolve("omsobj:RepositoryBase?@Name=’myrepos’",type,id);

put rc=;
put id=;
put type=;
n=1;
rc=1;
do while(rc>=0);

rc=metadata_getnatr("omsobj:RepositoryBase?@Name=’myrepos’",n,attr,value);
if (rc>=0) then put attr=;
if (rc>=0) then put value=;
n=n+1;

end;
run;

Related Functions
� “METADATA_GETATTR Function” on page 279
� “METADATA_SETATTR Function” on page 301

METADATA_GETNOBJ Function
Returns the nth object matching the specified URI

Syntax
rc = METADATA_GETNOBJ(uri, n, nuri);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

n in Numeric index value

nuri out n th object matching the given
URI

DATA Step Functions � Examples 287

Return Values

Value Description

n The number of objects matching the input URI

-1 Unable to connect to the metadata server

-3 No objects match the given URI

-4 n is out of range

Details
Use the METADATA_GETNOBJ function to iterate through all of the objects that

match the given URI.

Examples

Example 1 : Determining How Many Machine Objects Exist

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length uri $256;
nobj=0;
n=1;

/* Determine how many machine objects are in this repository. */

nobj=metadata_getnobj("omsobj:Machine?@Id contains ’.’",n,uri);
put nobj=; /* Number of machine objects found. */
put uri=; /* URI of the first machine object. */

run;

Example 2 : Looping Through Each Repository on a Server

options metaserver="a123.us.company.com"
metaport=9999

288 Related Functions � Chapter 12

metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length uri $256;
nobj=1;
n=1;

/* Determine how many repositories are on this server. */

do while(nobj >= 0);

nobj=metadata_getnobj("omsobj:RepositoryBase?@Id contains ’.’",n,uri);
put nobj=; /* Number of repository objects found. */
put uri=; /* Nth repository. */
n=n+1;

end;
run;

Related Functions
� “METADATA_DELOBJ Function” on page 278

� “METADATA_NEWOBJ Function” on page 293

METADATA_GETNPRP Function

Returns the n th property on the object specified by the input URI

Syntax
rc = METADATA_GETNPRP(uri, n, prop, value);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

n in Numeric index value

prop out Abstract property string

value out Value of specified property
string

DATA Step Functions � Example 289

Return Values

Value Description

n The number of properties for the given URI

-1 Unable to connect to the metadata server

-2 No properties are defined for the object

-3 No objects match the given URI

-4 n is out of range

Details
Use the METADATA_GETNPRP function to iterate through all properties defined on

an object.

Example
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length prop $256

value $256;
rc=1;
n=1;

do while(rc>0);

/* Walk through all the properties on this machine object. */

rc=metadata_getnprp("omsobj:Machine?@Name=’bluedog’",
n,
prop,
value);

if (rc>0) then put n=;
if (rc>0) then put prop=;
if (rc>0) then put value=;
n=n+1;

290 Related Functions � Chapter 12

end;
run;

Related Functions
� “METADATA_GETPROP Function” on page 291
� “METADATA_SETPROP Function” on page 302

METADATA_GETNTYP Function
Returns the nth object type on the server

Syntax
rc = METADATA_GETNTYP(n, type);

Arguments

Argument Direction Description

n in Numeric index value

type out Metadata type

Return Values

Value Description

n The number of objects matching the input URI

-1 Unable to connect to the metadata server

-4 n is out of range

DATA Step Functions � Syntax 291

Details
Use the METADATA_GETNTYP function to iterate through all possible object types

on a server.

Example
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length type $256;
rc=1;
n=1;

do while(rc>0);

/* Walk through all possible types on this server. */
rc=metadata_getntyp(n,type);
put type=;
n=n+1;

end;
run;

METADATA_GETPROP Function
Returns the named property for the object specified by the input URI

Syntax
rc = METADATA_GETPROP(uri, prop, value);

292 Return Values � Chapter 12

Arguments

Argument Direction Description

uri in Universal Resource Identifier

prop in Abstract property string

value out Value of specified property
string

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 Named property is undefined

-3 No objects match the given URI

Example
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length value $200;
rc=metadata_getprop("omsobj:Machine?@Name=’bluedog’","Property 1",value);
if rc=0 then put value=;

run;

DATA Step Functions � Return Values 293

Related Functions
� “METADATA_GETNPRP Function” on page 288
� “METADATA_SETPROP Function” on page 302

METADATA_NEWOBJ Function
Creates a new metadata object

Syntax
rc = METADATA_NEWOBJ(type, uri<,name><,repos><,parent><,asn>);

Arguments

Argument Direction Description

type in The metadata type

uri out Universal Resource Identifier

name in Name attribute for the new
metadata object

repos in Repository identifier of an
existing repository; by default,
the new object is created in the
default repository

parent out Parent of the new metadata
object

asn in Association name

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 Unable to create object, see the SAS log for
details

294 Example � Chapter 12

Example

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length uri $256;

curi $256;
rc=0;

/* Create a PhysicalTable object. */

rc=metadata_newobj("PhysicalTable",
uri,
"My Table");

put uri=;

/* Create a couple of columns on the new PhysicalTable object. */

rc=metadata_newobj("Column",
curi,
"Column1",
"myrepos",
uri,
"Columns");

put curi=;

rc=metadata_newobj("Column",
curi,
"Column2",
"myrepos",
uri,
"Columns");

put curi=;

rc=metadata_newobj("Column",
curi,
"Column3",
"myrepos",
uri,
"Columns");

put curi=;
run;

DATA Step Functions � METADATA_PURGE Function 295

Related Functions
� “METADATA_DELOBJ Function” on page 278

� “METADATA_GETNOBJ Function” on page 286

METADATA_PAUSED Function

Determines whether the server specified by the METASERVER system option is
paused

Syntax
rc = METADATA_PAUSED();

Return Values

Value Description

0 Server is not paused

1 Server is paused

-1 Unable to connect to the metadata server

Example
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
rc=metadata_paused();
if rc eq 0 then put ’server is not paused’;
else if rc eq 1 then put ’server is paused’;

run;

METADATA_PURGE Function

Purges the specified URI

296 Syntax � Chapter 12

Syntax
rc = METADATA_PURGE(<uri>);

Argument
If no argument is specified, the entire connection is purged from the cache.

Argument Direction Description

uri in Universal Resource Identifier

Return Value

Value Description

0 Object successfully purged

Details
For performance reasons, metadata objects are cached by URI within a DATA step.

To refresh the metadata object with the latest data from the server, purge the URI with
the METADATA_PURGE function.

Example
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length association $256;
rc=1;
n=1;

do while(rc>0);

/* This will make this DATA step run much slower by */
/* purging the object cache, which requires the metadata */
/* server to be accessed again. */

DATA Step Functions � Return Values 297

/* Compare run timings by commenting out the purge. */

rc=metadata_purge("omsobj:Machine?@Name=’bluedog’");

/* Walk through all possible associations of this object. */

rc=metadata_getnasl("omsobj:Machine?@Name=’bluedog’",
n,
association);

put asn=;
n=n+1;

end;
run;

METADATA_RESOLVE Function

Resolves a metadata URI into a specific object on the current metadata server

Syntax
rc = METADATA_RESOLVE(uri, type, id);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

type out Metadata type

id out Unique identifier for an object

Return Values

Value Description

N Number of objects that match the given URI

0 No objects match the given URI

-1 Unable to connect to the metadata server

298 Examples � Chapter 12

Examples

Example 1: Using an Object URI

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length id $20
type $256;
rc=metadata_resolve("omsobj:Machine?@Name=’bluedog’",type,id);
put rc=;
put id=;
put type=;

run;

Example 2: Using a Repository URI

options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;

length id $20
type $256
attr $256
value $256;

rc=metadata_resolve("omsobj:RepositoryBase?@Name=’myrepos’",type,id);

put rc=;
put id=;
put type=;
n=1;
rc=1;
do while(rc>=0);

rc=metadata_getnatr("omsobj:RepositoryBase?@Name=’myrepos’",n,attr,value);
if (rc>=0) then put attr=;
if (rc>=0) then put value=;
n=n+1;

end;
run;

DATA Step Functions � Return Values 299

METADATA_SETASSN Function

Modifies an association list for an object

Syntax
rc = METADATA_SETASSN(uri, asn, mod, auri1<,auri2,...aurin>);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

asn in Association name

mod in Modification to be performed on the metadata
object; valid values are

APPEND appends the specified
associations to the
specified object’s
association element list
without modifying any of
the other associations on
the list.

REMOVE deletes the specified
associations from the
specified object’s
association element list
without modifying any of
the other associations on
the list.

aurin in The Universal Resource Identifier of the
associated object

Return Values
Number of objects matching the input URI.

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-3 No objects match the input URI

300 Example � Chapter 12

Value Description

-4 Unable to perform modification; see the SAS log
for details

-5 Invalid modification

-6 Unable to resolve association list URIs

Example
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
length uri $256;
rc=0;

/* Create a TextStore object. */

rc=metadata_newobj("TextStore",
uri,
"My TextStore");

put uri=;

rc=metadata_setassn("omsobj:Machine?@Name=’bluedog’",
"Notes",
"Append",
uri);

put rc=;

rc=metadata_setassn("omsobj:Machine?@Name=’bluedog’",
"Notes",
"Remove",
uri);

put rc=;

run;

DATA Step Functions � Return Values 301

Related Functions
� “METADATA_DELASSN Function” on page 276
� “METADATA_GETNASN Function” on page 282

METADATA_SETATTR Function
Sets the named attribute for the object specified by the input URI

Syntax
rc = METADATA_SETATTR(uri, attr, value);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

attr in Attribute of the metadata
object

value in Value of specified attribute

Return Values

Value Description

0 Successful completion

-1 Unable to connect to the metadata server

-2 Unable to set the attribute

-3 No objects match the given URI

302 Example � Chapter 12

Example
options metaserver="a123.us.company.com"

metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
rc=metadata_setattr("omsobj:Machine?@Name=’bluedog’","Desc",

"My New Description"); put rc=; run;

Related Functions
� “METADATA_GETATTR Function” on page 279
� “METADATA_GETNATR Function” on page 284

METADATA_SETPROP Function
Sets the named property for the object specified by the input URI

Syntax
rc = METADATA_SETPROP(uri, prop, value);

Arguments

Argument Direction Description

uri in Universal Resource Identifier

prop in Abstract property string

value in Value of specified property
string

DATA Step Functions � Syntax 303

Return Values

Value Description

1 New property was created and set

0 Existing property was successfully set

-1 Unable to connect to the metadata server

-2 Unable to set the attribute

-3 No objects match the given URI

-4 Unable to create a new property

Example
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
rc=metadata_setprop("omsobj:Machine?@Name=’bluedog’","New Property",
"my value"); put rc=; run;

Related Functions
� “METADATA_GETPROP Function” on page 291
� “METADATA_GETNPRP Function” on page 288

METADATA_VERSION Function
Returns the server model version number

Syntax
ver = METADATA_VERSION();

304 Example � Chapter 12

Return Values

Value Description

ver Server model version number

-1 Unable to connect to the metadata server

Example
options metaserver="a123.us.company.com"
metaport=9999
metaprotocol=bridge
metauser="metaid"
metapass="metapwd"
metarepository="myrepos";

data _null_;
ver=metadata_version();
put ver=;

run;

305

C H A P T E R

13
System Options

SAS Metadata System Options 305
Connection Options 305

Using the Individual Options 305

CONFIG.SYS Examples 306

Using a Stored User Connection Profile 306

Encryption Options 306
Resource Options 307

SAS Metadata System Options

SAS provides a family of metadata system options to define the default SAS
Metadata Server connection, encryption, and resource options that SAS clients will use.
Usually these options are set at installation in the CONFIG.SAS file. However, you can
use any SAS language interface to change the values at any time.

Connection Options
The connection options are required to establish a connection with the SAS Metadata

Server. These options include METASERVER, METAPORT, METAPROTOCOL,
METAUSER, METAPASS, METAPROFILE, and METACONNECT.

The METASERVER, METAPORT, METAUSER, and METAPASS options individually
specify the metadata server connection properties for a given user. The METAPROFILE
and METACONNECT options specify a stored metadata server connection profile.

Using the Individual Options
The value of METAPROTOCOL determines which other options must be specified in

order to establish the server connection. METAPROTOCOL supports two values: COM
and BRIDGE. COM specifies the native COM protocol and is experimental in the
current release.

The following table summarizes the options required by each protocol.

System option COM BRIDGE

METASERVER Optional; if an interface is not
specified, then the local COM
is used.

Required

METAPORT Optional Required

306 CONFIG.SYS Examples � Chapter 13

System option COM BRIDGE

METAUSER Optional Required*

METAPASS Optional Required*

* If METAUSER and METAPASS are not set and you are running interactively, SAS
will present a logon dialog box to acquire these option values for the session. If you are
not running interactively, you will have to either specify them using the OPTIONS
statement or in the SAS client.

CONFIG.SYS Examples
To set the default metadata server to use the COM protocol with an IP address of

“10.20.11.112” and port of 9999, you would add the following lines to the config file:

-METAPROTOCOL COM
-METASERVER "10.20.11.112"
-METAPORT 9999

To set the default metadata server to use the BRIDGE protocol, an IP address of
“10.20.11.112”, a port of 9999, the user ID “sasuser” and the password “sasuser1”, you
would add the following lines to the config file.

-METAPROTOCOL BRIDGE
-METASERVER "10.20.11.112"
-METAPORT 9999
-METAUSER "sasuser"
-METAPASS "sasuser1"

Notes:
1 In a network environment, METAUSER should specify a fully qualified user ID,

for example, SERVERNAME\USERID.
2 Use PROC PWENCODE to encode the password value to be stored in METAPASS.

Using a Stored User Connection Profile
The METAPROFILE and METACONNECT options reference a stored metadata

server connection profile that you create using the METACON command.
METAPROFILE specifies the physical path of an XML document that contains
metadata user profiles. METACONNECT identifies which named connection in the user
profiles to use.

The following is a CONFIG.SYS example that invokes a user connection profile
named “Mike’s profile”.

-METAPROFILE "!SASROOT\metauser.xml"
-METACONNECT "Mike’s profile"

Encryption Options
The METAENCRYPTLEVEL and METAENCRYPTALG options are used to encrypt

the metadata server connection if SAS/SECURE is licensed. See their descriptions in
the SAS Language Reference: Dictionary for details.

System Options � Resource Options 307

Resource Options
There are three resource options: METAREPOSITORY, METAID, and

METAAUTORESOURCES.
METAREPOSITORY specifies the name of the default repository to use on the SAS

Metadata Server. If METAREPOSITORY is not specified or specifies an invalid value, a
warning is written to the SAS Log and the first repository on the server is used. Using
$METAREPOSITORY in your XML with PROC METADATA will resolve to the
repository identifier corresponding to the repository named by the option.

METAID is an identifier unique to the current installation of SAS. The purpose of
this option is to identify metadata objects that are associated with a particular
installation of SAS. The installation process sets this option automatically and writes
out a representation of what has been installed, identified by the unique METAID it
has generated.

METAAUTORESOURCES identifies general system resources to be assigned at SAS
startup. The resources are defined in a repository on the SAS Metadata Server. For
example, in SAS Management Console, you can define resources describing a SAS
OLAP Server or a SAS Stored Process Server. The resources include a list of librefs
(library references), which are then stored as a metadata object in a repository.
METAAUTORESOURCES= then identifies which predefined list of librefs to assign at
startup. METAAUTORESOURCES= accepts a URI or unique metadata object instance
identifier as a resource identifier.

For a detailed description of the metadata family of system options, see the SAS
Language Reference: Dictionary.

308

Your Turn

We want your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing gives you the tools to flourish
in any environment with SAS!
Whether you are new to the workforce or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart.

SAS® Press Series
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from the SAS Press Series. Written by experienced SAS professionals from
around the world, these books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information—SAS documentation. We
currently produce the following types of reference documentation: online help that is built into the software,
tutorials that are integrated into the product, reference documentation delivered in HTML and PDF—free on
the Web, and hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Learning Edition 4.1
Get a workplace advantage, perform analytics in less time, and prepare for the SAS Base Programming
exam and SAS Advanced Programming exam with SAS® Learning Edition 4.1. This inexpensive, intuitive
personal learning version of SAS includes Base SAS® 9.1.3, SAS/STAT®, SAS/GRAPH®, SAS/QC®, SAS/ETS®,
and SAS® Enterprise Guide® 4.1. Whether you are a professor, student, or business professional, this is a
great way to learn SAS.

s u p p o r t . s a s . c o m / L E

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2006 SAS Institute Inc. All rights reserved. 428713_1US.0307

	Contents
	What’s New
	Overview of the SAS Open Metadata Interface
	Details of SAS Open Metadata Interface Enhancements

	Understanding the SAS Open Metadata Interface
	Introduction
	About This Book
	Prerequisites
	What Is the SAS Open Metadata Architecture?
	What Can I Do with the SAS Open Metadata Interface?
	How Does the SAS Open Metadata Architecture Work?
	Important Concepts
	Accessing Application Metadata
	Creating Repositories
	Controlling the SAS Metadata Server
	Security
	Authorization Facility

	Open Client Requirements
	Types of SAS Open Metadata Interface Clients
	Connecting to the SAS Metadata Server
	Server Connection Parameters
	SAS Open Metadata Interface Method Classes

	Call Interfaces
	Comparison of the Standard Interface and the DoRequest Method
	IOMI Parameter Names

	Java IOMI Class Signature Summary Table
	Visual Basic IOMI Class Signature Summary Table
	Visual C++ IOMI Class Signature Summary Table
	Sample Java IOMI Client
	Class Libraries
	Sample Java IOMI Class Connection Program

	Sample Visual Basic OMI Client
	Type Libraries
	Sample Visual Basic OMI Class Connection Program

	Sample Visual C++ IOMI Client
	Type Libraries
	Sample Visual C++ IOMI Class Connection Program
	vcToOMIDlg.h
	vcToOMIDlg.cpp

	Using Server Output

	SAS Metadata Model
	Overview of the SAS Metadata Model and Model Documentation
	Namespaces
	Understanding Associations
	Cardinality

	Overview of the SAS Metadata Model Documentation
	Using the Metadata Types Reference
	Legend for Attributes Table
	Legend for Associations Table

	SAS Metadata Model Conventions
	Date, Time, and DateTime Values
	"V" in Length Attribute

	SAS Namespace Submodels
	Overview of SAS Namespace Submodels
	Submodels in the SAS Metadata Model

	Analysis Submodel
	Metadata Types
	Container Metadata Types
	Aggregation Metadata Types
	Other Metadata Types
	Usage

	Authorization Submodel
	Metadata Types
	Usage

	Business Information Submodel
	Metadata Types
	Usage

	Foundation Submodel
	Metadata Types
	Basic Metadata Types
	Extension Metadata Types
	Identity Metadata Types
	Role Metadata Types
	Usage

	Grouping Submodel
	Metadata Types
	Usage

	Mining Submodel
	Metadata Types
	Usage

	Property Submodel
	Metadata Types
	Usage

	Relational Submodel
	Metadata Types
	Container Metadata Types
	Table Metadata Types
	Column Metadata Types
	Key Metadata Types
	Other Metadata Types
	Usage

	Resource Submodel
	Metadata Types
	Container Types
	Content Types
	Other Metadata Types
	Usage

	Software Deployment Submodel
	Metadata Types
	Software Metadata Types
	Connection Metadata Types
	Service Metadata Types
	Other Metadata Types
	Usage

	Transform Submodel
	Metadata Types
	Abstract Metadata Types
	Event Metadata Type
	Query Metadata Types
	Process Metadata Types
	Scheduling Metadata Types
	Usage

	XML Submodel
	Metadata Types
	Usage

	Hierarchical Listing of Metadata Types

	Hierarchy and Association Diagrams
	Overview to Hierarchy and Association Diagrams
	Understanding the Diagrams

	Diagrams for Analysis Metadata Types
	Analysis Hierarchy
	Level, Measure Hierarchy
	Dimension Associations
	Physical Associations
	OLAP Schema
	Cube Associations

	Diagrams for Authorization Metadata Types
	Authorization Hierarchy
	Authorization Associations
	Security Rules Hierarchy
	Security Rules Associations

	Diagrams for Business Information Metadata Types
	Business Information Hierarchy
	Root Associations
	Person Associations

	Diagrams for Foundation Metadata Types
	Foundation Hierarchy
	Root Associations
	Identity Associations

	Diagrams for Grouping Metadata Types
	Grouping Hierarchy
	Grouping Associations

	Diagrams for Mining Metadata Types
	Mining Hierarchy
	Target Associations
	Analytic Table and Column Associations
	ModelResult Associations

	Diagrams for Property Metadata Types
	Property Hierarchy
	Property Associations
	Configuration Associations
	Prototype Associations
	Locale Associations
	PropertyType Array Associations

	Diagrams for Relational Metadata Types
	Key Hierarchy
	Column Hierarchy
	Table Hierarchy
	DeployedDataPackage Hierarchy
	Schema, Table, Role, and Column Associations
	Table, Password, and Index Associations
	Table and Key Associations
	Threaded Kernel Table Services Data Source Name Associations
	Table Collection Associations

	Diagrams for Resource Metadata Types
	Resource Hierarchy
	Report, SASFileRef Associations
	DeployedDataPackage, File Associations
	Resource Content Type, Devices Associations
	SASLibrary, SASCatalog Associations

	Diagrams for Software Deployment Metadata Types
	Software Deployment Hierarchy
	Login, DeployedComponent Associations
	DeployedComponent, ServiceType Association
	DeployedComponent Associations
	DeployedComponent, NamedService Association
	SASLibrary, Database Associations
	SoftwareComponent, Root Association
	Connection, Script File Associations
	Connection, SASPassword Associations

	Diagrams for Transformation Metadata Types
	Transformation Hierarchy
	Root, Transformation Associations
	Transformation Associations Overview
	Event Associations
	ClassifierMap Associations
	Join Associations
	Job Associations
	Variable Associations
	Workflow Associations

	Diagrams for XML Metadata Types
	XML Hierarchy
	XML Associations

	REPOS Namespace Metadata Types
	Overview of REPOS Namespace Metadata Types
	Type Hierarchy

	Repository
	Overview
	Attributes
	Usage
	Using GetMetadataObjects

	RepositoryBase
	Overview
	Attributes
	Association elements
	RepositoryBase Usage

	Method Classes
	Methods for Reading and Writing Metadata (IOMI Class)
	Overview of the IOMI Class Methods
	Using the IOMI Class
	Introduction to IOMI Methods
	Return Code
	Other Method Output

	Constructing a Metadata Property String
	Quotation Marks and Special Characters

	Identifying Metadata
	Functional Index to IOMI Methods
	Using IOMI Flags
	Specifying a Flag
	Corresponding XML Elements
	Flag Behavior When Multiple Flags Are Used

	Summary Table of IOMI Flags
	Summary Table of IOMI Options
	<DOAS> Option
	Specifying the <DOAS> Option
	Example 1: Standard Interface
	Example 2: DoRequest Method

	AddMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	CheckinMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	CheckoutMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	CopyMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	DeleteMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	DoRequest
	Syntax
	Parameters
	Details
	Example

	FetchMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetMetadataObjects
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetNamespaces
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetRepositories
	Syntax
	Parameters
	Details
	Examples

	GetSubtypes
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetTypeProperties
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	GetTypes
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	IsSubtypeOf
	Syntax
	Parameters
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	UndoCheckoutMetadata
	Syntax
	Details

	UpdateMetadata
	Syntax
	Parameters
	Details
	Example 1: Standard Interface
	Example 2: DoRequest Method
	Related Methods

	Security Methods (ISecurity Class)
	Overview of the ISecurity Class
	Using the ISecurity Class

	FreeCredentials
	Syntax
	Related Methods

	GetAuthorizations
	Syntax
	Parameters
	Details
	Examples
	Related Methods

	GetCredentials
	Syntax
	Parameters
	Details
	Example
	Related Methods

	GetIdentity
	Syntax
	Parameters
	Details
	Examples
	Related Methods

	IsAuthorized
	Syntax
	Parameters
	Details
	Examples
	Related Methods

	Repository and Server Control Methods (IServer Class)
	Overview of the IServer Class
	Using the IServer Class

	Pause
	Syntax
	Details

	Refresh
	Syntax
	Details
	Examples

	Resume
	Syntax
	Details

	Status
	Syntax
	Details

	Stop
	Syntax
	Details

	Program-Specific Method Examples
	Overview to Program-Specific Method Examples
	Program-Specific AddMetadata Examples
	Java Example of an AddMetadata Call
	Visual Basic Example of an AddMetadata Call
	Visual C++ Example of an AddMetadata Call

	Program-Specific DeleteMetadata Examples
	Java Example of a DeleteMetadata Call
	Visual Basic Example of a DeleteMetadata Call
	Visual C++ Example of a DeleteMetadata Call

	Program-Specific GetMetadata Examples
	Java Example of a GetMetadata Call
	Visual Basic Example of a GetMetadata Call
	Visual C++ Example of a GetMetadata Call

	Program-Specific GetMetadataObjects Examples
	Java Example of a GetMetadataObjects Call
	Visual Basic Example of a GetMetadataObjects Call
	Visual C++ Example of a GetMetadataObjects Call

	Program-Specific GetNamespaces Examples
	Java Example of a GetNamespaces Call
	Visual Basic Example of a GetNamespaces Call
	Visual C++ Example of a GetNamespaces Call

	Program-Specific GetRepositories Examples
	Java Example of a GetRepositories Call
	Visual Basic Example of a GetRepositories Call
	Visual C++ Example of a GetRepositories Call

	Program-Specific GetSubtypes Examples
	Java Example of a GetSubtypes Call
	Visual Basic Example of a GetSubtypes Call
	Visual C++ Example of a GetSubtypes Call

	Program-Specific GetTypeProperties Examples
	Java Example of a GetTypeProperties Call
	Visual Basic Example of a GetTypeProperties Call
	Visual C++ Example of a GetTypeProperties Call

	Program-Specific GetTypes Examples
	Java Example of a GetTypes Call
	Visual Basic Example of a GetTypes Call
	Visual C++ Example of a GetTypes Call

	Program-Specific IsSubtypeOf Examples
	Java Example of an IsSubtypeOf Call
	Visual Basic Example of an IsSubtypeOf Call
	Visual C++ Example of an IsSubtypeOf Call

	Program-Specific UpdateMetadata Examples
	Java Example of an UpdateMetadata Call
	Visual Basic Example of an UpdateMetadata Call
	Visual C++ Example of an UpdateMetadata Call

	SAS Language Metadata Interfaces
	Procedures
	METADATA Procedure
	Procedure Syntax
	Server Connection Statements
	Input Statement
	Output Statements
	Informational Statements
	Execution Statement
	Examples

	METALIB Procedure
	Metadata Types Updated by PROC METALIB
	Understanding Support for Dependent Repositories
	How PROC METALIB Works
	Procedure Syntax
	Server Connection and Library Identification Statement
	Statement for Specifying Metadata Changes
	Table Selection Statements
	Reporting Statement
	Statements That Control Change Execution
	Obtaining Metadata Identifiers
	Understanding REPORT Statement Output
	Examples

	METAOPERATE Procedure
	Procedure Syntax
	Server Connection Statements
	Action Statements
	Repository Identification Statement
	Execution Statement
	Examples

	DATA Step Functions
	SAS Metadata DATA Step Functions
	Connection Information
	Referencing Metadata Objects in the DATA Step
	Performance Issues
	Summary Table of Metadata DATA Step Functions

	METADATA_DELASSN Function
	Syntax
	Arguments

	METADATA_DELOBJ Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_GETATTR Function
	Syntax
	Arguments
	Return Values
	Example
	Related Functions

	METADATA_GETNASL Function
	Syntax
	Arguments
	Return Values
	Details
	Example:
	Related Functions

	METADATA_GETNASN Function
	Syntax
	Arguments
	Return Values
	Details
	Example

	METADATA_GETNATR Function
	Syntax
	Arguments
	Return Values
	Details
	Examples
	Related Functions

	METADATA_GETNOBJ Function
	Syntax
	Return Values
	Details
	Examples
	Related Functions

	METADATA_GETNPRP Function
	Syntax
	Return Values
	Details
	Example
	Related Functions

	METADATA_GETNTYP Function
	Syntax
	Return Values
	Details
	Example

	METADATA_GETPROP Function
	Syntax
	Return Values
	Example
	Related Functions

	METADATA_NEWOBJ Function
	Syntax
	Return Values
	Example
	Related Functions

	METADATA_PAUSED Function
	Syntax
	Example

	METADATA_PURGE Function
	Syntax
	Return Value
	Details
	Example

	METADATA_RESOLVE Function
	Syntax
	Return Values
	Examples

	METADATA_SETASSN Function
	Syntax
	Return Values
	Example
	Related Functions

	METADATA_SETATTR Function
	Syntax
	Return Values
	Example
	Related Functions

	METADATA_SETPROP Function
	Syntax
	Return Values
	Example
	Related Functions

	METADATA_VERSION Function
	Syntax
	Example

	System Options
	SAS Metadata System Options
	Connection Options
	CONFIG.SYS Examples
	Encryption Options
	Resource Options

