
SAS® 9.1.3
Open Metadata Interface
User’s Guide

SAS® Publishing

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1.3 Open Metadata Interface: User’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.1.3 Open Metadata Interface: User’s Guide
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN-13: 978-1-59047-524-9
ISBN-10: 1-59047-524-0
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, July 2004
2nd printing, December 2004
3rd printing, November 2006
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.
® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

P A R T 1 Using the Interface to Create, Update, and Delete Metadata 1

Chapter 1 � Introduction 3
About This Guide 3

Introduction to the SAS Open Metadata Interface 3

Prerequisite Information 4

Chapter 2 � Adding Metadata Objects 5
Overview of Adding Metadata 5

Introduction to the AddMetadata Method 5

Example of Creating a Repository Object 9

Example of Creating an Application Metadata Object 10

Example of Creating an Object and an Association to an Existing Object 11

Example of Creating Multiple, Related Metadata Objects 12

Example of Creating Multiple, Unrelated Metadata Objects 14

Creating a Metadata Object and an Association to an Object in Another Repository 17

Additional Information 18

Chapter 3 � Updating Metadata Objects 19
Overview of Updating Metadata 19

Using the UpdateMetadata Method 20

Example of Modifying a Metadata Object’s Attributes 24

Example of Modifying an Association 25

Example of Merging Associations 26

Example of Deleting an Association 28

Example of Appending Associations 29

Additional Information 30

Chapter 4 � Deleting Metadata Objects 31
Overview of Deleting Metadata 31

Example of Deleting a Metadata Object 32

Additional Information 33

P A R T 2 Using the Interface to Query Metadata 35

Chapter 5 � Overview 37
Overview of Querying Metadata Objects 37

Example of Listing the Metadata Types in a Namespace 38

Listing the Available Repositories 39

Listing the Metadata Types in a Repository 40

Chapter 6 � Querying All Metadata of a Specified Type 43

iv

Introduction to the GetMetadataObjects Method 43

Expanding a GetMetadataObjects Request to Include Subtypes 45

Expanding a GetMetadataObjects Request to Retrieve Additional Properties 46

Filtering a GetMetadataObjects Request 52

Expanding a GetMetadataObjects Request to Search Additional Repositories 59

Chapter 7 � Querying Specific Metadata Objects 61
Introduction to the GetMetadata Method 61

Retrieving All Properties of a Specified Object 62

Retrieving the Attributes of a Specified Object 64

Retrieving Properties of Associated Objects 65

Retrieving Subtypes 66

Combining GetMetadata Flags 66

Filtering the Associated Objects that are Returned by a GetMetadata Request 67

Using Templates 68

P A R T 3 Using the Interface to Perform Repository Management Tasks 73

Chapter 8 � Creating Relationships Between Repositories 75
Overview 75

Creating Dependency Associations 76

Creating Cross-Repository References 79

Querying Dependency Associations 81

Querying Cross-Repository References 82

Querying Objects Across Multiple Repositories (Federated Query) 83

Deleting a Dependency Association 84

Deleting a Cross-Repository Reference 85

Chapter 9 � Creating a Repository on an External DBMS 87
Overview of Creating a Repository on an External DBMS 87

Software Requirements 87

Host Requirements 88

DBMS Requirements 88

Repository Registration Requirements 88

Oracle Connection Options 88

DB2 Connection Options 90

Using a Repository on an External DBMS 91

Example of Registering a Repository on an External DBMS 91

Chapter 10 � Invoking a Repository Audit Trail 93
Overview 93

Starting the Audit Trail 94

Physical versus Logical Deletion of Metadata Records 97

Usage Considerations 97

Restoring a Metadata Record on Windows Hosts 98

Deleting an Audit Trail 102

v

Changing the Audit Trail Location 103

Turning Off Auditing 103

Chapter 11 � Metadata Locking Options 105
Overview of Metadata Locking Options 105

Using SAS Open Metadata Interface Flags to Lock Objects 105

Promoting Repositories Between Servers 106

Chapter 12 � Using the Change Management Facility 107
Introduction to the Change Management Facility 107

Summary of Change Management Methods 108

Setting Up Primary and Project Repositories 109

How Access Controls are Handled by the Change Management Facility 110

Checking Out Metadata Objects 110

Fetching Metadata 113

Updating Metadata Objects in a Project Repository 114

Adding and Copying Metadata Objects in a Project Repository 114

Deleting a Metadata Object 116

Checking In Metadata Objects 117

Querying the Primary Repository 118

Querying the Project Repository 120

Emptying the Project Repository 121

Default Lock Templates 121

Chapter 13 � Repository Maintenance Tasks 129
Clearing or Deleting a Repository 129

Unregistering and Re-registering a Repository 129

P A R T 4 Model Usage 131

Chapter 14 � Model Usage Scenarios 133
Overview of Model Usage Scenarios 134

Usage Scenario: Creating Metadata Objects that Represent a DBMS 135

Usage Scenario: Creating Metadata for a Cube 137

Usage Scenario: Creating a Prototype 144

Usage Scenario: Creating Metadata for a SAS Library 158

Usage Scenario: Creating Metadata for Tables, Columns, and Keys 163

Usage Scenario: Creating Metadata for a SAS/SHARE Server 171

Usage Scenario: Creating Metadata for a Stored Process 175

Usage Scenario: Creating Tree and Group Objects 183

Usage Scenario: Creating Metadata for a Workspace Server 187

P A R T 5 Appendix 229

Appendix 1 � Recommended Reading 231
Recommended Reading 231

Index 233

vi

1

P A R T1

Using the Interface to Create, Update, and
Delete Metadata

Chapter 1.Introduction 3

Chapter 2.Adding Metadata Objects 5

Chapter 3.Updating Metadata Objects 19

Chapter 4.Deleting Metadata Objects 31

2

3

C H A P T E R

1
Introduction

About This Guide 3
Introduction to the SAS Open Metadata Interface 3

Prerequisite Information 4

About This Guide

This guide describes how to perform basic and advanced metadata management tasks
using the SAS Open Metadata Interface. It also provides sample usage scenarios that
describe how to use the metadata types in the SAS Metadata Model to store metadata.

The SAS Open Metadata Interface uses XML as its transport language. If you are
unfamiliar with XML, see the W3C XML Specifications at www.w3.org/TR/1998/
REC-xml-19980210 before reading this guide.

The examples in this guide show how to issue calls without regard to the
programming environment. For details about writing SAS Open Metadata Interface
clients in specific environments, see the SAS Open Metadata Interface: Reference.

Introduction to the SAS Open Metadata Interface

The SAS Open Metadata Interface is an application programming interface that
provides a set of methods and metadata types for reading and writing metadata about
application elements. The SAS Open Metadata Interface can also be used to do such
things as register repositories, define dependencies between them, define access controls
for repositories and metadata objects, and to perform version control on repositories,
but these are secondary tasks. The primary purpose of the SAS Open Metadata
Interface is to enable you to read and write metadata.

To read or write a metadata object, you must pass a string of properties that describe
that object to the appropriate SAS Open Metadata Interface method. This string
identifies the appropriate metadata type to use to represent the application element
and supplies or queries specific values for the object’s attributes and associations.

This guide is divided into four parts:

� Using the Interface to Create, Update, and Delete Metadata describes how to use
the application programming interface to create and modify metadata. It identifies
the correct method to use to add, update, and delete metadata objects and their
associations.

� Using the Interface to Query Metadata describes how to query metadata. The
interface provides the GetMetadataObjects method to query all objects of a specific
metadata type, and the GetMetadata method to query specific metadata objects.

4 Prerequisite Information � Chapter 1

This section describes how to use method flags and templates to control the
metadata properties that you want to return.

� Using the Interface to Perform Repository Management Tasks describes how to
perform more advanced metadata management tasks, such as defining
relationships between repositories, implementing an object locking scheme, and
using change management methods, among other things.

� Model Usage contains usage scenarios to help you identify the correct metadata
type to use to create metadata representing the most common application elements.

Prerequisite Information

In order to successfully use SAS Open Metadata Interface methods, you must
understand how to use the metadata types documentation in the SAS Open Metadata
Interface: Reference. Review “Overview of the Metadata Model and Model
Documentation” in the reference carefully before attempting to follow the examples in
this guide. Metadata types for application elements are described in “Alphabetical
Listing of SAS Namespace Metadata Types.” This listing is available only in the online
version of the SAS Open Metadata Interface: Reference.

The SAS Open Metadata Interface enables you to instantiate objects for method
parameters and issue method calls directly from the client, or to define all of a method’s
parameters in an XML string and submit it to the server via a generic DoRequest
method. The first approach is referred to as the “standard interface”. The second is
referred to as the “DoRequest method.” The examples in this guide use the DoRequest
method. For detailed information about the interfaces, see “Call Interfaces” in the
reference. Method calls formatted for the DoRequest method can be passed in Java,
Visual Basic, and C++ clients, and in PROC METADATA.

For reference information about the methods used in this book, see “Methods for
Reading and Writing Metadata (IOMI Class)” in the reference.

5

C H A P T E R

2
Adding Metadata Objects

Overview of Adding Metadata 5
Introduction to the AddMetadata Method 5

Creating Associations to New and Existing Objects 6

Creating Associations to Objects in Other Repositories 7

Examples 7

Creating Multiple Objects in an AddMetadata Request 8
Symbolic Names 8

Example of Creating a Repository Object 9

Example of Creating an Application Metadata Object 10

Example of Creating an Object and an Association to an Existing Object 11

Example of Creating Multiple, Related Metadata Objects 12

Example of Creating Multiple, Unrelated Metadata Objects 14
Creating a Metadata Object and an Association to an Object in Another Repository 17

Additional Information 18

Overview of Adding Metadata
The SAS Open Metadata Interface allows you to create metadata objects and their

associations directly or to create the metadata objects first and add associations to them
later.

You create metadata objects with the AddMetadata method. With AddMetadata, you
can

� create an object
� create an object and an association to an existing object
� create an object, an association, and the associated object.

You add associations to existing objects by using the UpdateMetadata method. For
information about using the UpdateMetadata method, see Chapter 3, “Updating
Metadata Objects,” on page 19.

Introduction to the AddMetadata Method
The AddMetadata method enables you to create metadata objects that describe both

metadata repositories and application elements. Adding a metadata object that
describes a metadata repository registers the repository in the metadata server’s
repository manager. A metadata repository must be registered before you can define
application metadata objects in it. Application metadata objects describe application
elements, such as tables, columns, and servers.

6 Creating Associations to New and Existing Objects � Chapter 2

To create any metadata object with the AddMetadata method, you must supply the
following:

� a metadata property string that defines the object to be created
� an identifier that indicates where the object is to be stored
� the namespace (set of metadata types) in which to process the request.

You must also specify the OMI_TRUSTED_CLIENT (268435456) flag. The
OMI_TRUSTED_CLIENT flag is required to write a metadata object in a SAS metadata
repository.

This information is passed as AddMetadata parameters. The parameters are
illustrated here as XML elements that can be submitted to the SAS Metadata Server
using the DoRequest method.

<AddMetadata>
<Metadata>metadata_property_string</Metadata>
<Reposid>repository_identifier</Reposid>
<NS>namespace</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

To create a metadata object describing a repository, you specify:
� a metadata property string defining the repository’s properties
� the repository manager identifier A0000001.A0000001
� the REPOS namespace.

To create a metadata object describing an application element, you specify:
� a metadata property string defining the element’s properties
� a repository identifier
� the SAS namespace.

The metadata property string must be formatted in XML as described in
“Constructing a Metadata Property String” in the SAS Open Metadata Interface:
Reference. At a minimum, the metadata property string must specify the metadata type
and any required properties of the object to be created. Most metadata types have
required attributes. Some also have required associations. Refer to “REPOS Namespace
Metadata Types” in the reference for information about the required and optional
properties of the repository metadata types. See “Alphabetical Listing of SAS
Namespace Metadata Types” in the reference for information about required and
optional properties of application metadata types.

Note: The alphabetical listing is available only in online versions of the reference. �

Although it is not required, it is recommended that you supply values for all of an
object’s attributes and as many associations as possible in order to make your metadata
more meaningful.

Creating Associations to New and Existing Objects
The AddMetadata method creates a new object for every object described in the

<Metadata> element unless the ObjRef attribute is used to specify the object’s instance
identifier. That is, the metadata server will assign a new identifier in all of the
following cases:

� when you omit the Id attribute from the metadata property string

Adding Metadata Objects � Examples 7

� when you specify the Id attribute with a null value (Id=“ ”)

� when you specify a symbolic name in the Id attribute (Id=“$Table”)

� when you specify a real value in the Id attribute (Id=“A53TPPVI”), in either the
main element or in an association subelement.

Supported only in associated object definitions, the ObjRef attribute signifies to the
server that the reference is to an existing object and instructs the metadata server to
create an object reference to the specified object without modifying the specified object
in any other way.

Creating Associations to Objects in Other Repositories
By default, any new metadata objects are created in the repository specified in the

<Reposid> element. If relationships have been defined between repositories (see
Chapter 8, “Creating Relationships Between Repositories,” on page 75), you can also
create associations and new associated objects in other repositories. This is done by
including the desired repository identifier in the associated object definition. An
association that is defined to an object that exists or is created in another repository is
referred to as a cross-repository reference.

Examples
The following is an example of a metadata property string that creates an object, an

association, and the associated object in the same repository. Note that neither the
main element nor the associated object definition specifies an Id attribute.

<MetadataType Name="String" Desc="String">
<AssociationName>
<AssociatedMetadataType Name="String" Desc="String"/>

</AssociationName>
</MetadataType>

The following is an example of a metadata property string that creates an object and
an association to an existing object in the same repository. Note that the main element
omits the Id attribute and that the associated object definition specifies the Objref
attribute.

<MetadataType Name="String" Desc="String">
<AssociationName>
<AssociatedMetadataType Objref="Objectid" Name="String"/>

</AssociationName>
</MetadataType>

To create a metadata object and an association to an existing object in another
repository, use the Objref attribute in the associated object definition and include the
repository identifier along with the object identifier in the form Reposid.Objectid. (You
can determine the available repositories and their unique identifiers by using the
GetRepositories method. For more information, see “Listing the Available Repositories”
on page 39.)

<MetadataType Name="String" Desc="String">
<AssociationName>
<AssociatedMetadataType Objref="Reposid.Objectid" Name="String"/>

</AssociationName>
</MetadataType>

8 Creating Multiple Objects in an AddMetadata Request � Chapter 2

To create an object and an association to a new associated object in another
repository, specify the Id attribute, the repository identifier, and a symbolic name in the
associated object definition. For example:

<MetadataType Name="String" Desc="String">
<AssociationName>
<AssociatedMetadataType Id="Reposid.SymbolicName" Name="String"/>

</AssociationName>
</MetadataType>

Creating Multiple Objects in an AddMetadata Request
The AddMetadata method supports two ways of creating multiple objects in a single

request.
To create multiple, related associated objects in an AddMetadata request, nest their

object definitions under the association name. For example:

<MetadataType Name="String" Desc="String">
<AssociationName>
<AssociatedMetadataType Name="String" Desc="String"/>
<AssociatedMetadataType Name="String" Desc="String"/>
<AssociatedMetadataType Name="String" Desc="String"/>

</AssociationName>
</MetadataType>

To create multiple, unrelated objects, stack the metadata property strings that define
the metadata objects in the <Metadata> element as follows:

<Metadata>
<MetadataType1 Name="String" Desc="String">
<AssociationName>
<AssociatedMetadataType Name="String" Desc="String"/>

</AssociationName>
</MetadataType1>
<MetadataType2 Name="String" Desc="String">

<AssociationName>
<AssociatedMetadataType Name="String" Desc="String"/>

</AssociationName>
</MetadataType2>
</Metadata>

Symbolic Names
A symbolic name is an alias which is preceded by a dollar sign ($) that you assign to

a metadata object in order to reference a metadata object before it is created. Symbolic
names are used to create associations and new associated objects in other repositories.
They also enable you to create references between multiple, unrelated metadata objects
in a single XML request. See “Example of Creating Multiple, Unrelated Metadata
Objects” on page 14 for more information about this usage.

When used to create an association and a new object in another repository, the
symbolic name has the form Reposid.$Alias and the symbolic name is specified in the
Id= attribute of the association subelement.

When used to create multiple, unrelated objects in the same repository, the form
$Alias is used.

Adding Metadata Objects � Example of Creating a Repository Object 9

The alias can be any name as long as it is preceded by a dollar sign ($). At the
successful completion of AddMetadata or UpdateMetadata processing, the alias and any
references to it are automatically replaced with a real object identifier.

Example of Creating a Repository Object
Creating a repository object registers a repository in a metadata server’s repository

manager. You must register at least one repository in the repository manager before
you can create metadata objects representing application elements. The repository
object provides the metadata server with information necessary to access the metadata.

The following is an example of an AddMetadata request that creates a repository:

<AddMetadata>
<Metadata>

<RepositoryBase
Name="Test repository 1"
Desc="Repository created to illustrate registering

a repository using AddMetadata."
Path="C:\testdat\repository1"/>

</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

In the method call:
� The <AddMetadata> element identifies the method.
� The <Metadata> element contains the metadata property string. In this string,

RepositoryBase is the metadata type used to define a repository object.

Name is a unique name for the repository.

Desc is an optional description of the repository.

Path is the path to an existing directory. The pathname must be
unique and it must point to an empty directory.

� The <Reposid> element specifies the storage location. When defining creating a
repository, you must specify the repository manager identifier A0000001.A0000001.

� The <NS> element identifies the namespace in which to process the request. The
REPOS namespace contains repository metadata types.

� The <Flags> element supplies special processing instructions. The
OMI_TRUSTED_CLIENT flag (268435456) is required to write a metadata object.

� The <Options> element is blank. Options is a required parameter in all SAS Open
Metadata Interface methods; however, AddMetadata currently does not support
any options.

The output from the request is returned in the DoRequest method’s outMetadata
parameter. Here is an example of the output returned by the metadata server:

<!-- Using the ADDMETADATA method. -->

10 Example of Creating an Application Metadata Object � Chapter 2

<RepositoryBase Name="Test repository 1" Desc="Repository created to illustrate
registering a repository using AddMetadata." Path="C:\testdat\repository1"
Id="A0000001.A53TPPVI" Access="0"/>

The output string mirrors the input string; however, the metadata server assigns a
two-part object identifier in the form:

Reposmgrid.Reposid

to the object in its Id attribute. Reposmgrid is the repository manager’s unique object
identifier.Reposid is the repository’s unique object identifier. You will use the unique
repository identifier in the <Reposid> element of AddMetadata calls when you create
metadata objects representing application elements. You can also use the repository
identifier to create relationships between repositories. For more information, see
Chapter 8, “Creating Relationships Between Repositories,” on page 75.

Note: Beginning in SAS 9.0, it is recommended that you register repositories in SAS
Management Console instead of following the steps presented here. When you register
a repository in SAS Management Console, default authorization metadata and
templates to assist you in creating global metadata are also created in the repository.
These items are required to secure a repository and are not available when you register
a repository using the SAS Open Metadata Interface. �

Example of Creating an Application Metadata Object

The following example creates a metadata object describing a SAS library. A SAS
library is represented in the SAS Metadata Model by the SASLibrary metadata type.

<AddMetadata>
<Metadata>

<SASLibrary
Name="NW Sales"
Desc="NW region sales data"
Engine="base"
IsDBMSLibname="0"
Libref="nwsales"/>

</Metadata>
<Reposid>A0000001.A53TPPVI</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

In this method call, note:

� The <Metadata> element specifies the metadata property string. In this string,
SASLibrary is the metadata type and Name, Desc, Engine, IsDBMSLibname, and
Libref are attributes of the SASLibrary metadata type.

� The <Reposid> element specifies the unique identifier of the repository in which to
create the metadata object.

� The <NS> element identifies the namespace to process the request. The SAS
namespace contains metadata types that define application elements.

� The <Flags> element specifies the OMI_TRUSTED_CLIENT (268435456) flag.

Adding Metadata Objects � Example of Creating an Object and an Association to an Existing Object 11

Here is an example of the output returned by the metadata server:

<!-- Using the ADDMETADATA method. -->

<SASLibrary Name="NW Sales" Desc="NW region sales data" Engine="base"
IsDBMSLibname="0" Libref="nwsales" Id="A53TPPVI.A1000001"/>

The output string mirrors the input string except that a two-part object instance
identifier is assigned to the new object in the form:

Reposid.Objectid

Reposid is the repository identifier.Objectid is the metadata object’s unique object
identifier. You will use this unique object identifier any time that you need to reference
the metadata object. In “Example of Creating an Object and an Association to an
Existing Object” on page 11, this identifier is used to create an association to the object.

Example of Creating an Object and an Association to an Existing Object
The following XML string creates a ResponsibleParty object and associates it with

the SASLibrary object created in “Example of Creating an Application Metadata Object”
on page 10. The ResponsibleParty metadata type is used to associate a set of Person
objects with a particular role or responsibility. This ResponsibleParty object is created
with the role of “Owner”.

<AddMetadata>
<Metadata>

<ResponsibleParty Name="LibraryAdministrator"
Desc="NW Region Sales Data"
Role="Owner">
<Objects>

<SASLibrary ObjRef="A53TPPVI.A1000001" Name="NW Sales"/>
</Objects>

</ResponsibleParty>
</Metadata>
<Reposid>A0000001.A53TPPVI</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

The <Reposid>, <NS>, and <Flags> elements contain the same values as in “Example of
Creating an Application Metadata Object” on page 10. In the metadata property string,
note:

� ResponsibleParty is the metadata type.
� Name, Desc, and Role are XML attributes of the ResponsibleParty metadata type.

� Objects is the association name and is specified as a nested element.
� SASLibrary is the metadata type of the associated metadata object.

� The ObjRef attribute in the association subelement instructs the metadata server
to create an association to the specified object instance and also not to modify any
of the object’s other properties.

12 Example of Creating Multiple, Related Metadata Objects � Chapter 2

Here is an example of the output returned by the metadata server:

<!-- Using the ADDMETADATA method. -->

<ResponsibleParty Name="LibraryAdministrator" Desc="NW Region Sales Data"
Role="Owner" Id="A53TPPVI.A2000001">
<Objects>
<SASLibrary ObjRef="A53TPPVI.A1000001" Name="NW Sales"/>

</Objects>
</ResponsibleParty>

The output string mirrors the input string except that a two-part object instance
identifier is assigned to the ResponsibleParty object.

Example of Creating Multiple, Related Metadata Objects

The following XML string creates a table object, its related column objects, and an
association to a SASLibrary object in a single method call. The SAS Metadata Model
supports several metadata types for describing tables. Here the PhysicalTable metadata
type is used to represent a table that is materialized in a file system. A PhysicalTable
object is associated to a Column object via a Columns association. The request creates
four column objects that describe the contents of the table as nested subelements. A
PhysicalTable object is associated to a SASLibrary object via a TablePackages
association.

<AddMetadata>
<Metadata>

<PhysicalTable Name="Sales Offices" Desc="Sales offices in NW region">
<TablePackages>

<SASLibrary ObjRef="A53TPPVI.A1000001" Name="NW Sales"/>
</TablePackages>
<Columns>

<Column
Name="City"
Desc="City of Sales Office"
ColumnName="City"
SASColumnName="City"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32."/>

<Column
Name="Address"
Desc="Street Address of Sales Office"
ColumnName="Address"
SASColumnName="Street_Address"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"

Adding Metadata Objects � Example of Creating Multiple, Related Metadata Objects 13

SASFormat="$Char32."
SASInformat="$32."/>

<Column
Name="Manager"
Desc="Name of Operations Manager"
ColumnName="Manager"
SASColumnName="Manager"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32."/>

<Column
Name="Employees"
Desc="Number of employees"
ColumnName="Employees"
SASColumnName="Employees"
ColumnType="6"
SASColumnType="N"
ColumnLength="3"
SASColumnLength="3"
SASFormat="3.2"
SASInformat="3.2"/>

</Columns>
</PhysicalTable>

</Metadata>
<Reposid>A0000001.A53TPPVI</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

The <Reposid>, <NS>, and <Flags> elements contain the same values as in
“Example of Creating an Application Metadata Object” on page 10. In the metadata
property string, note:

� The PhysicalTable metadata type is specified in the main XML element.
� The second element defines the TablePackages association to the SAS library. Use

of the Objref attribute instructs the metadata server to create the association to
the specified existing object.

� The column definitions are nested under the Columns association name.

� For each column:
� the ColumnName=, ColumnType=, and ColumnLength= attributes describe

the names and values of the items in a DBMS
� the SASColumnName=, SASColumnType=, and SASColumnLength=

attributes indicate their corresponding values in a SAS table
� A ColumnType value of 12 indicates VARCHAR; a ColumnType value of 6

indicates FLOAT.

For more information about the properties defined for the PhysicalTable and
Column metadata types, see their descriptions in the “Alphabetical Listing of SAS
Namespace Metadata Types” in the SAS Open Metadata Interface: Reference. This

14 Example of Creating Multiple, Unrelated Metadata Objects � Chapter 2

listing is available only in online versions of the reference. See SAS Help and
Documentation or SAS OnlineDoc.

Here is an example of the output returned by the metadata server:

<!-- Using the ADDMETADATA method. -->

<PhysicalTable Name="Sales Offices" Desc="Sales offices in NW region"
Id="A53TPPVI.A4000001">
<TablePackages>
<SASLibrary ObjRef="A53TPPVI.A1000001" Name="NW Sales"/>

</TablePackages>
<Columns>
<Column Name="City" Desc="City of Sales Office" ColumnName="City"
SASColumnName="City" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
Id="A53TPPVI.A5000001">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>

</Column>
<Column Name="Address" Desc="Street Address of Sales Office"
ColumnName="Address" SASColumnName="Street_Address" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32." Id="A53TPPVI.A5000002">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>

</Column>
<Column Name="Manager" Desc="Name of Operations Manager" ColumnName="Manager"
SASColumnName="Manager" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
Id="A53TPPVI.A5000003">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>

</Column>
<Column Name="Employees" Desc="Number of employees" ColumnName="Employees"
SASColumnName="Employees" ColumnType="6" SASColumnType="N" ColumnLength="3"
SASColumnLength="3" SASFormat="3.2" SASInformat="3.2" Id="A53TPPVI.A5000004">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000001"/>
</Table>

</Column>
</Columns>
</PhysicalTable>

The output string mirrors the input string except that a two-part object instance
identifier is assigned to each new metadata object.

Example of Creating Multiple, Unrelated Metadata Objects

The following method calls shows another way to format an AddMetadata request
that creates multiple objects. The request creates a second table object, named “Sales

Adding Metadata Objects � Example of Creating Multiple, Unrelated Metadata Objects 15

Associates”, and creates objects representing the table’s columns by stacking their
metadata property strings. A Column object cannot be created without an association to
a table object. Therefore, a symbolic name is assigned to the PhysicalTable object to
enable the column objects to reference the PhysicalTable object before it is created.

<AddMetadata>
<Metadata>
<PhysicalTable Id="$Employees" Name="Sales Associates"

Desc="Sales associates in NW region">
<TablePackages>

<SASLibrary ObjRef="A53TPPVI.A1000001" Name="NW Sales"/>
</TablePackages>

</PhysicalTable>

<Column
Name="Name"
Desc="Name of employee"
ColumnName="Employee_Name"
SASColumnName="Employee"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$Employees"/>
</Table>

</Column>

<Column
Name="Address"
Desc="Home Address"
ColumnName="Employee_Address"
SASColumnName="Home_Address"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$Employees"/>
</Table>

</Column>

<Column
Name="Title"
Desc="Job grade"
ColumnName="Title"
SASColumnName="Title"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"

16 Example of Creating Multiple, Unrelated Metadata Objects � Chapter 2

SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$Employees"/>
</Table>

</Column>

</Metadata>
<Reposid>A0000001.A53TPPVI</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

The <Reposid>, <NS>, and <Flags> elements contain the same values as in “Example of
Creating an Application Metadata Object” on page 10. In the <Metadata> element, note:

� There are multiple metadata property strings, stacked one after the other.

� The metadata property string defining the PhysicalTable metadata type is the
top-most string. This property string includes an Id attribute that assigns the
symbolic name $Employees.

� A separate metadata property string is used to define each Column object.

� The Column definitions each define a Table association to the PhysicalTable by
specifying the Objref attribute and referencing the symbolic name $Employees.

Here is an example of the output returned by the metadata server:

<!-- Using the ADDMETADATA method. -->

<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates"
Desc="Sales associates in NW region">

<TablePackages>
<SASLibrary ObjRef="A53TPPVI.A1000001" Name="NW Sales"/>

</TablePackages>
</PhysicalTable>
<Column Name="Name" Desc="Name of employee" ColumnName="Employee_Name"

SASColumnName="Employee" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32." Id="A53TPPVI.A5000005">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>
</Table>

</Column>
<Column Name="Address" Desc="Home Address" ColumnName="Employee_Address"

SASColumnName="Home_Address" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32." Id="A53TPPVI.A5000006">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>
</Table>

</Column>
<Column Name="Title" Desc="Job grade" ColumnName="Title" SASColumnName="Title"

ColumnType="12" SASColumnType="C" ColumnLength="32" SASColumnLength="32"
SASFormat="$Char32." SASInformat="$32." Id="A53TPPVI.A5000007">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>
</Table>

</Column>

Adding Metadata Objects � Creating a Metadata Object and an Association to an Object in Another Repository 17

Note that the symbolic name is replaced by with the PhysicalTable object’s unique
object identifier in the output.

Creating a Metadata Object and an Association to an Object in Another
Repository

Before a reference can be created between two repositories, a relationship must have
been defined between the repositories. This topic contains two AddMetadata requests:

� The first request creates a second repository and defines a dependency association
to the repository created in “Example of Creating a Repository Object” on page 9.

� The second request creates a Person object in the new repository, and associates
the Person object with the ResponsibleParty object created in “Example of
Creating an Object and an Association to an Existing Object” on page 11. A Person
object has a Responsibilities association to a ResponsibleParty object.

For more information about defining relationships between repositories, see Chapter
8, “Creating Relationships Between Repositories,” on page 75.

This requests creates the second repository:

<AddMetadata>
<Metadata>

<RepositoryBase
Name="Test repository 2"
Desc="Second test repository."
Path="C:\testdat\repository2">
<DependencyUses>
<RepositoryBase ObjRef="A0000001.A53TPPVI" Name="Test repository 1"/>

</DependencyUses>
</RepositoryBase>
</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

In the request, note:
� The <Metadata> element specifies the RepositoryBase metadata type and defines

a DependencyUses association to another RepositoryBase object.
� The subelement defining the second RepositoryBase object specifies the unique

repository identifier of Test repository 1 in the Objref attribute.
� The <Reposid> element specifies the repository manager identifier.
� The <NS> element specifies the REPOS namespace.
� The <Flags> parameter specifies the OMI_TRUSTED_CLIENT flag (268435456).

Here is an example of the output returned by the metadata server:

<!-- Using the ADDMETADATA method. -->

<RepositoryBase Name="Test repository 2" Desc="Second test repository."
Path="C:\testdat\repository2" Id="A0000001.A5KD78HW" Access="0">

18 Additional Information � Chapter 2

<DependencyUses>
<RepositoryBase ObjRef="A0000001.A53TPPVI" Name="Test repository 1"/>

</DependencyUses>
</RepositoryBase>

Note that the Test repository 2 has the unique repository identifier
A0000001.A5KD78HW.

The following AddMetadata request creates the Person object in Test repository 2.

<AddMetadata>
<Metadata>

<Person Name="John Doe" Desc="NW Region DB Administrator">
<Responsibilities>
<ResponsibleParty ObjRef="A53TPPVI.A2000001" Name="LibraryAdministrator"/>
</Responsibilities>

</Person>
</Metadata>
<Reposid>A0000001.A5KD78HW</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

In this request, note the following:
� The <Metadata> subelement that defines the Responsibilities association to the

ResponsibleParty object specifies the Objref attribute.

� The Objref attribute specifies the unique repository identifier assigned to Test
repository 1 in the target object’s identifier.

� The <Reposid> element specifies the unique repository identifier assigned to Test
repository 2.

Here is an example of the output returned by the metadata server:

<!-- Using the ADDMETADATA method. -->

<Person Name="John Doe" Desc="NW Region DB Administrator" Id="A5KD78HW.A1000001">
<Responsibilities>

<ResponsibleParty ObjRef="A53TPPVI.A2000001" Name="LibraryAdministrator"/>
</Responsibilities>
</Person>

Person object A5KD78HW.A1000001 was successfully created in repository
A0000001.A5KD78HW.

Additional Information
For more information about the metadata types used in these examples, see the

“Alphabetical Listing of SAS Namespace Metadata Types” in the SAS Open Metadata
Interface: Reference. This listing is available only in online versions of the reference.
For reference information about the AddMetadata method, see “AddMetadata” in
“Methods for Reading and Writing Metadata (IOMI Class)” in the reference.

19

C H A P T E R

3
Updating Metadata Objects

Overview of Updating Metadata 19
Using the UpdateMetadata Method 20

Function= Attribute 21

Associated Object Identifier and Value 22

Examples 23

Summary of Function Directives 23
Associated Object Identifier Summary 24

Deleting Associations 24

Example of Modifying a Metadata Object’s Attributes 24

Example of Modifying an Association 25

Example of Merging Associations 26

Example of Deleting an Association 28
Example of Appending Associations 29

Additional Information 30

Overview of Updating Metadata

The SAS Open Metadata Interface provides the UpdateMetadata method for
updating the properties of an existing metadata object. Using the UpdateMetadata
method, you can

� modify an existing metadata object’s attributes

� add an association between two existing metadata objects

� add an association between the existing metadata object and a new metadata object

� modify an associated object’s properties.

� delete an association.

The UpdateMetadata method does not allow you to directly create new objects. For
information about directly creating a metadata object, see Chapter 2, “Adding Metadata
Objects,” on page 5. UpdateMetadata can only add associated objects indirectly as a
result of defining an association.

The UpdateMetadata method also cannot be used to directly delete a metadata
object. The UpdateMetadata method might indirectly delete dependent objects in order
to enforce cardinality rules when an association is deleted. For example, if a table is
updated to remove an association to a given column, then the column object, which is
dependent on the table, will be deleted as well. However, a column cannot be updated
to remove its association to a table and be deleted. For information to directly delete a
metadata object, see Chapter 4, “Deleting Metadata Objects,” on page 31.

20 Using the UpdateMetadata Method � Chapter 3

Using the UpdateMetadata Method

The UpdateMetadata method enables you to add or modify any attribute or
association in the metadata type documentation that is not marked as “required for
add.” An association that is marked as “required for add” typically indicates the object
is a dependent object. A dependent object cannot be modified. To modify the properties
of a dependent metadata object, you must delete the object and create a new one with
the desired properties.

To modify an object’s attributes, specify the metadata object, the attributes that you
want to modify, and their new values in a metadata property string and submit it to the
UpdateMetadata method in the <Metadata> parameter. The following is an example of
an UpdateMetadata method call that is formatted for the DoRequest method.

<UpdateMetadata>
<Metadata>
<Metadata_Type Id="reposid.objectid" Attribute1="new_value"

Attribute2="new_value" Attribute3="new_value"/>
</Metadata>
<NS>SAS</NS>
<--- OMI_TRUSTED_CLIENT Flag --->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the request, note the following:

� The <Metadata> parameter identifies the metadata type, the object instance, and
the attributes that you want to modify. A two-part object instance identifier is
used in the object definition to identify the repository in which to execute the
request. Attribute1, Attribute2, and Attribute3 are metadata type attributes. The
new values specified for these attributes will replace any existing values in the
repository and any unmodified attributes will remain unchanged.

� The <NS> parameter specifies the namespace in which to process the request.

� The OMI_TRUSTED_CLIENT (268435456) flag is required to update the
metadata object.

To add, modify, or delete an association, or to modify an associated object’s attributes,
specify an association name element and associated object definition in the metadata
property string. Include in the association name element the appropriate Function
directive and in the associated object definition the appropriate identifier and value as
follows:

<UpdateMetadata>
<Metadata>
<MetadataType Id="reposid.objectid">

<AssociationName Function="directive">
<AssociatedMetadataType Id |Objref="value"/>

</AssociationName>
</MetadataType>

</Metadata>
<NS>SAS</NS>
<--- OMI_TRUSTED_CLIENT Flag --->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

Updating Metadata Objects � Function= Attribute 21

In this request, note the following:

� The <Metadata> parameter identifies the metadata type, the object instance, and
the association name and associated object definition that you want to modify.

� The association name element specifies a Function= attribute which specifies a
directive that tells the metadata server how to process the associated object
definition, depending on whether the association name supports a single or a
multiple association.

� The associated object definition supports a choice of object identifiers and values.
The type of object identifier that you specify in the associated object definition
determines whether to create the associated object, to modify its properties, or to
simply add an association.

� The <NS> parameter specifies the namespace in which to process the request.

� The OMI_TRUSTED_CLIENT (268435456) flag is required to update the
metadata object.

Function= Attribute
Supported only in the association name element of a metadata property string that is

passed to the UpdateMetadata method, the Function= attribute instructs the metadata
server how to process the associated object definitions submitted for the association
name, depending on whether the association is a single or a multiple association.

A single association refers to an association name that has a 0 to 1 or 1 to 1
cardinality defined for it in the metadata type documentation. This means that only
one association of that name is supported between the specified metadata types.

A multiple association refers to an association name that has a 0 to many or 1 to
many cardinality (denoted as 0 to * and 1 to * in the metadata types documentation)
and supports many associations between the specified metadata types.

The Function= attribute supports the directives shown in Function Directives
Supported by the UpdateMetadata Method. If the Function= attribute is omitted from
an UpdateMetadata request, Modify is the default directive for a single association and
Merge is the default directive for a multiple association.

Table 3.1 Function Directives Supported by the UpdateMetadata Method

Directive
Supported for
Single Associations?

Supported for
Multiple
Associations? Description

Append No Yes Appends the specified
associations to the
specified object’s
association element
list without modifying
any of the other
associations on the
list.

Merge Yes Yes Adds or modifies
associations in the
specified object’s
association list as
necessary.

22 Associated Object Identifier and Value � Chapter 3

Directive
Supported for
Single Associations?

Supported for
Multiple
Associations? Description

Modify Yes No Modifies an existing
association or adds an
association if an
association does not
already exist.

Replace Yes Yes Single: Overwrites an
existing association
with the specified
association. Multiple:
Replaces the existing
association list with
the specified
association list. Any
existing associations
that are not
represented in the
new association list
are deleted.

Remove Yes Yes Deletes the specified
associations from the
specified object’s
association list
without modifying any
of the other
associations in the list.

Associated Object Identifier and Value
The following table describes the identifiers and values that are supported in an

associated object definition and their behavior when used in the UpdateMetadata
method.

Table 3.2 Identifiers and Values Supported in an Associated Object Definition

Identifier and Value Result

Id="”, Id=“SymbolicName”,
or no identifier

Creates an association and the associated object. For more
information about symbolic names, see “Symbolic Names” on page 8.

Id="real_value" Modifies the specified object with the specified properties, if the object
is found. If the object is not found, the requested update fails.

ObjRef=“real_value” Creates an association to, but does not modify the properties of the
specified object, if the object is found. If the object is not found, the
requested update fails.

Updating Metadata Objects � Summary of Function Directives 23

Examples

The following is an example of an association name element and an associated object
definition that adds an association to an existing object in the same repository:

<AssociationName Function="Directive">
<AssociatedMetadataType Objref="Objectid" Name="Name"/>

</AssociationName>

Note the use of the Objref attribute and an object identifier in the associated object
definition.

The following is an example of an association name element and an associated object
definition that adds an association and a new object in the same repository:

<AssociationName Function="Directive">
<AssociatedMetadataType Id="" Name="Name"/>

</AssociationName>

Note the use of the Id attribute with a null value in the associated object definition.
Another way to create the associated object is to omit an object identifier from the
associated object definition.

The following is an example of an association name element and an associated object
definition that modifies an existing associated object in the same repository:

<AssociationName Function="Directive">
<AssociatedMetadataType Id="Objectid" Name="Name"

Desc="This is a new description for this associated object."/>
</AssociationName>

Note the use of the Id attribute with a real object identifier in the associated object
definition.

To create an association to an existing object in another repository using the
UpdateMetadata method, specify the ObjRef attribute and include the object’s
repository identifier in the object instance identifier of the associated object definition.
For example:

<AssociationName Function="Directive">
<AssociatedMetadataType Objref="Reposid.Objectid" Name="Name"/>

</AssociationName>

To create an association and a new object in another repository, specify the Id
attribute, a repository identifier and a symbolic name in the object instance identifier of
the associated object definition. For example:

<AssociationName Function="Directive">
<AssociatedMetadataType Id="Reposid.SymbolicName" Name="Name"/>

</AssociationName>

Summary of Function Directives

� To add associations to an existing association element list without modifying the
properties of the existing associated objects, specify Function=“Append”.

� To add new associations and modify the properties of the existing associated
objects as necessary, specify Function=“Merge”.

� To overwrite an existing association or association list with a new association or
association list, specify Function=“Replace”.

24 Associated Object Identifier Summary � Chapter 3

� To remove an association without modifying any other associations in an existing
association list, specify Function="Remove".

� To modify the properties of the associated object in a single association, specify
Function=“Modify”.

Associated Object Identifier Summary
� To add an association and create the associated object, either omit the Id attribute

or specify a null or symbolic identifier (Id=“” or Id=“SymbolicName”) in the
associated object definition and define properties for the associated object.

� To add an association to an existing object, specify the associated object’s unique
instance identifier in the ObjRef attribute. The ObjRef attribute will prevent you
from updating any of the object’s other properties.

� To add an association to an existing object and modify the associated object’s
properties, specify the associated object’s unique instance identifier in the Id
attribute and specify the attributes to be modified.

Deleting Associations
To delete an association, specify the Replace or Remove directives in the Function=

attribute of the association name element.
� The Replace directive replaces any existing associations with the specified

association object definition or list of association object definitions. Use this
directive with care to prevent accidentally overwriting associations that you want
to keep.

� The Remove directive removes the association to the specified associated object
definition from the list of associations maintained for that association name
without affecting other associations.

Deleting an association does not delete the associated object, unless the associated
object is a dependent object. A dependent object is one that requires an association to
another metadata object in order to exist. Metadata types that have required
associations are noted in the metadata type documentation as having a 1 to 1
cardinality in their Associations table.

If you wish to delete an object’s associated objects in addition to its associations, you
must delete each object individually using the DeleteMetadata method. For more
information, see Chapter 4, “Deleting Metadata Objects,” on page 31.

The UpdateMetadata method does not include dependent objects that it might have
deleted in its output as a matter of course. To print the dependent objects deleted by an
update operation, set the OMI_RETURN_LIST (1024) flag in the UpdateMetadata
request.

For an example of deleting an association, see “Example of Deleting an Association”
on page 28.

Example of Modifying a Metadata Object’s Attributes
The following is an example of an UpdateMetadata request that modifies an object’s

attributes. The specified attributes and values will replace those stored for the object of
the specified metadata type and object instance identifier.

Note: The SAS Open Metadata Interface supports two call interfaces. This and
other examples in this section are formatted for the DoRequest method. For more
information, see “Call Interfaces” in the SAS Open Metadata Interface: Reference. �

Updating Metadata Objects � Example of Modifying an Association 25

<UpdateMetadata>
<Metadata>

<SASLibrary
Id="A53TPPVI.A1000001"
Engine="oracle"
IsDBMSLibname="1"/>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the request, note the following:
� The Id attribute is used in the main element and it specifies a real value. If the

object is not found, the request will fail.
� The request submits new values for SASLibrary object A53TPPVI.A1000001’s

Engine and IsDBMSLibname attributes. Unmodified attributes will remain
unchanged.

Example of Modifying an Association
The following is an example of an UpdateMetadata request that adds a single

association (one that has a 0 to 1 or 1 to 1 cardinality in the metadata type
documentation). PhysicalTable object A53TPPVI.A4000001 is updated to add a
PrimaryPropertyGroup association to a PropertyGroup object. A PhysicalTable object
has a 0 to 1 cardinality to a PropertyGroup object in a PrimaryPropertyGroup
association.

<UpdateMetadata>
<Metadata>

<PhysicalTable Id="A53TPPVI.A4000001">
<PrimaryPropertyGroup Function="Modify">

<PropertyGroup Id="" Name="Read Options"/>
</PrimaryPropertyGroup>

</PhysicalTable>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the request, note the following:
� The main element specifies the Id attribute with a real value.
� The association name element (PrimaryPropertyGroup) specifies the Function

attribute with the Modify directive, which is required to modify single associations.
� Use of the Id attribute in the associated object definition with a null value

instructs the metadata server to create the PrimaryPropertyGroup association and
the required PropertyGroup object if they do not already exist, and to modify the
properties of the PropertyGroup object if it does exist.

26 Example of Merging Associations � Chapter 3

To replace an existing PrimaryPropertyGroup association with a new one, you would
need to specify Function=“Replace”.

Example of Merging Associations

The following Update examples illustrate the use of the Merge directive. Merge is
the default directive for multiple associations when the Function attribute is omitted
from an UpdateMetadata request. It is useful for adding and modifying associations
without fear of overwriting any existing associations.

The first example adds UniqueKey and ForeignKey associations to the table objects
created in Chapter 2, “Adding Metadata Objects,” on page 5. The update request
consists of two main parts:

� It adds a UniqueKeys association to PhysicalTable A53TPPVI.A4000002 and
identifies the table’s Name column (A53TPPVI.A5000005) as the keyed column.

� It associates the UniqueKey with PhysicalTable A53TPPVI.A4000001 by creating
a ForeignKeys association. The ForeignKey object identifies the table’s Employees
column (A53TPPVI.A5000004) as its keyed column.

<UpdateMetadata>
<Metadata>

<PhysicalTable Id="A53TPPVI.A4000002">
<UniqueKeys Function="Merge">

<UniqueKey Id="" Name="Sales Associates in NW Region">
<KeyedColumns Function="Merge">
<Column Objref="A53TPPVI.A5000005" Name="Name"/>

</KeyedColumns>
<ForeignKeys Function="Merge">
<ForeignKey Id="" Name="Link to Sales Associates table">
<Table>

<PhysicalTable Objref="A53TPPVI.A4000001"
Name="Sales offices in NW Region"/>

</Table>
<KeyedColumns Function="Merge">

<Column Objref="A53TPPVI.A5000004" Name="Employees"/>
</KeyedColumns>

</ForeignKey>
</ForeignKeys>

</UniqueKey>
</UniqueKeys>

</PhysicalTable>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the request, note the following:

� The Id attribute in the main element specifies a real value.

� The null Id values in the <UniqueKey> and <ForeignKey> subelements instruct
the to create new, associated objects.

Updating Metadata Objects � Example of Merging Associations 27

� The ObjRef attribute in the <Column> element specifies to create an association to
an existing object.

� The Function directive in the <UniqueKeys>, <KeyedColumns>, and
<ForeignKeys> association elements specifies to merge the new associations with
any existing associations defined in the association lists of the specified tables and
columns. Merge is the default directive for multiple associations, so the directives
could have been omitted from the request.

� The Table association is a single association. The default directive for single
associations is Modify, which will modify an existing association or add it if the
association does not exist. Use of the Objref attribute prevents the table’s other
attributes from being modified.

Here is an example of the output returned by the metadata server:

<!-- Using the UPDATEMETADATA method. -->

<PhysicalTable Id="A53TPPVI.A4000002">
<UniqueKeys>
<UniqueKey Id="A53TPPVI.A8000001" Name="Sales Associates in NW Region">
<KeyedColumns>
<Column Objref="A53TPPVI.A5000005" Name="Name"/>
</KeyedColumns>
<ForeignKeys>
<ForeignKey Id="A53TPPVI.A9000001" Name="Link to Sales Associates table">
<Table>
<PhysicalTable Objref="A53TPPVI.A4000001" Name="Sales offices in NW Region"/>
</Table>
<KeyedColumns>
<Column Objref="A53TPPVI.A5000004" Name="Employees"/>
</KeyedColumns>
<PartnerUniqueKey>
<UniqueKey ObjRef="A53TPPVI.A8000001"/>
</PartnerUniqueKey>
</ForeignKey>
</ForeignKeys>
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>
</Table>
</UniqueKey>
</UniqueKeys>
</PhysicalTable>

The request created seven associations and two new objects (UniqueKey and
ForeignKey).

The following example updates the UniqueKey object created in the previous request
to modify the Name attribute of the keyed column and to add an association to a second
keyed column.

<UpdateMetadata>
<Metadata>

<UniqueKey Id="A53TPPVI.A8000001">
<KeyedColumns>

<Column Id="A53TPPVI.A5000005" Name="EmployeeName"/>
<Column Objref="A53TPPVI.A5000006" Name="Address"/>

</KeyedColumns>
</UniqueKey>

28 Example of Deleting an Association � Chapter 3

</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the request, note the use of the Id and Objref attributes.

� Use of the Id attribute to identify the original keyed column allows the column’s
properties to be updated.

� Use of the Objref attribute to identify the newly associated column creates the
association and does not modify any of the column object’s other attributes.

� A function directive is omitted from the request because KeyedColumns is a
multiple association and the default value of Merge is appropriate for the
operation.

Here are the results of a GetMetadata request that lists the UniqueKey object’s
KeyedColumns associations:

<!-- Using the GETMETADATA method. -->

<UniqueKey Id="A53TPPVI.A8000001" Name="Sales Associates in NW Region">
<KeyedColumns>
<Column Id="A53TPPVI.A5000005" Name="EmployeeName" Desc="Name of employee"/>
<Column Id="A53TPPVI.A5000006" Name="Address" Desc="Home Address"/>
</KeyedColumns>
</UniqueKey>

Column A53TPPVI.A5000005’s Name attribute was changed from “Name” to
“EmployeeName.”

Example of Deleting an Association

The following example deletes the keyed column association added in the second
example of “Example of Merging Associations” on page 26.

<UpdateMetadata>
<Metadata>

<UniqueKey Id="A53TPPVI.A8000001">
<KeyedColumns Function="Remove">

<Column Id="A53TPPVI.A5000006" Name="Address"/>
</KeyedColumns>

</UniqueKey>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

The Function=“Remove” directive instructs the server to remove the specified
association from the UniqueKey object’s KeyedColumns association list. If
Function=“Replace” had been specified, the existing KeyedColumns association list
would have been replaced with the specified association.

Updating Metadata Objects � Example of Appending Associations 29

Here are the results of a GetMetadata call that requests a revised list of the
UniqueKey object’s KeyedColumns associations:

<!-- Using the GETMETADATA method. -->

<UniqueKey Id="A53TPPVI.A8000001" Name="Sales Associates in NW Region">
<KeyedColumns>
<Column Id="A53TPPVI.A5000005" Name="EmployeeName" Desc="Name of employee"/>
</KeyedColumns>
</UniqueKey>

Example of Appending Associations

The following example adds an association and a new Column object to PhysicalTable
A53TPPVI.A4000002 using the Append directive.

<UpdateMetadata>
<Metadata>

<PhysicalTable Id="A53TPPVI.A4000002">
<Columns Function="Append">

<Column Id="" Name="Salary"/>
</Columns>

</PhysicalTable>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT Flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

In the example, the null Id value in the associated object definition indicates the
associated object is to be created. Here is an example of the output returned by the
metadata server:

<!-- Using the UPDATEMETADATA method. -->

<PhysicalTable Id="A53TPPVI.A4000002">
<Columns Function="Append">
<Column Id="A53TPPVI.A500002U" Name="Salary">
<Table>
<PhysicalTable ObjRef="A53TPPVI.A4000002"/>
</Table>
</Column>
</Columns>
</PhysicalTable>

The association to the new object is added to the existing association list without
affecting other associated objects. Here is the output of a GetMetadata request that
lists the Column objects associated with PhysicalTable A53TPPVI.A4000002.

<!-- Using the GETMETADATA method. -->

<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates">
<Columns>

30 Additional Information � Chapter 3

<Column Id="A53TPPVI.A5000005" Name="EmployeeName" Desc="Name of employee"/>
<Column Id="A53TPPVI.A5000006" Name="Address" Desc="Home Address"/>
<Column Id="A53TPPVI.A5000007" Name="Title" Desc="Job grade"/>
<Column Id="A53TPPVI.A500002U" Name="Salary" Desc=""/>
</Columns>
</PhysicalTable>

Additional Information

For reference information about the UpdateMetadata method, see “UpdateMetadata”
in “Methods for Reading and Writing Metadata (IOMI Class)” in the SAS Open
Metadata Interface: Reference.

31

C H A P T E R

4
Deleting Metadata Objects

Overview of Deleting Metadata 31
Deleting a Repository 32

Example of Deleting a Metadata Object 32

Additional Information 33

Overview of Deleting Metadata
A metadata object is deleted by using the DeleteMetadata method. The

DeleteMetadata method does not allow for deletion of specific properties. To delete a
metadata object’s properties, you must use the UpdateMetadata method. For more
information, see Chapter 3, “Updating Metadata Objects,” on page 19.

To delete a metadata object, you must submit a metadata property string that
identifies the metadata object to the DeleteMetadata method. The property string must
specify the object’s two-part object instance identifier (Reposid.Objectid), so that the
metadata server knows in which repository to process the request. You must also
specify the OMI_TRUSTED_CLIENT (268436480) flag in the request. This flag is
required to write to a SAS metadata repository.

When a metadata object is deleted, all of its associations and dependent objects are
automatically deleted as well. A dependent object is one that requires an association to
another metadata object in order to exist. Metadata types that have required
associations are noted in the metadata type documentation as having a 1 to 1
cardinality in their Associations table. An example of a dependent object is a Column
object. A Column object cannot exist without an association to a table object. When a
table object is deleted, all of its associated Column objects are deleted as well. This is
referred to as a “cascading delete”.

Cardinality rules are enforced on the current repository and on any repositories on
which the current repository depends. That is, when a delete request is received, the
metadata server will delete both dependent objects found in the current repository and
in any repositories to which the repository has a DependencyUses association. If any
dependent objects exist in repositories to which the target repository has a
DependencyUsedBy association, you will need to delete these objects directly. For more
information about repository dependencies, see Chapter 8, “Creating Relationships
Between Repositories,” on page 75.

You can identify associated objects that exist in repositories that have a
DependencyUsedBy association by issuing a GetMetadata request that sets the
OMI_ALL (1) and the OMI_DEPENDENCY_USED_BY (16384) flags before deleting a
metadata object. These flags will list the Id and Name attributes of all objects
associated with the specified metadata object in all repositories to which the host
repository has a relationship. Then use the metadata type documentation to determine
which associations are to dependent objects.

32 Deleting a Repository � Chapter 4

In addition, you might want to identify metadata objects that have a 0 to 1
cardinality. Objects that have this cardinality are associated only with the metadata
object to be deleted, but can exist on their own. An example of such an object is a Note
defined for a PhysicalTable. Any associated Note objects will remain in a repository
after a PhysicalTable object is deleted, even though they might have been created solely
to describe the PhysicalTable object.

The DeleteMetadata method does not include dependent objects that it might have
deleted in its output as a matter of course. To print the dependent objects deleted by a
delete operation, set the OMI_RETURN_LIST (1024) flag in the DeleteMetadata
request. OMI_RETURN_LIST returns a complete list of deleted object Ids.

Multiple metadata objects can be deleted in a DeleteMetadata request by stacking the
metadata property strings that identify them in the <Metadata> element. The following
is an example of a DeleteMetadata request that stacks metadata property strings:

<DeleteMetadata>
<Metadata>
<MetadataType1 Id="Reposid.Objectid" Name="Name"/>
<MetadataType2 Id="Reposid.Objectid" Name="Name"/>
<MetadataType3 Id="Reposid.Objectid" Name="Name"/>

</Metadata>
<!--- OMI_TRUSTED_CLIENT Flag --->

<NS>SAS</NS>
<Flags>268436480</Flags>
<Options/>
</DeleteMetadata>

Nested deletions are not supported. That is, the DeleteMetadata method does not
allow you to specify associated objects to be deleted, unless you identify them in the
method call as shown above.

CAUTION:
The DeleteMetadata method is destructive. Its changes cannot be reversed. When using
this method, verify the delete request before issuing the method call. �

Deleting a Repository
The method call for deleting a repository is formatted similarly to a method call

deleting an application metadata object with two exceptions. To delete a repository, you
specify:

� the REPOS namespace
� one of several flags that indicate whether you want to delete the whole repository,

simply clear the repository’s contents, or whether you only want to unregister the
repository.

For more information, see “Clearing or Deleting a Repository” on page 129.

Example of Deleting a Metadata Object
The following is an example of DeleteMetadata request that deletes a SASLibrary

object and a PhysicalTable object.

<DeleteMetadata>
<Metadata>

<SASLibrary Id="A7654321.A2000001"/>

Deleting Metadata Objects � Additional Information 33

<PhysicalTable Id="A7654321.A400000C"/>
</Metadata>
<NS>SAS</NS>
<!--OMI_TRUSTED_CLIENT flag-->
<Flags>268436480</Flags>
<Options/>
</DeleteMetadata>

The request deletes the specified objects and any Column objects associated with the
PhysicalTable that exist in both the current repository and any repositories on which
the current repository depends.

Additional Information

For reference information about the DeleteMetadata method, see “DeleteMetadata”
in “Methods for Reading and Writing Metadata (IOMI Class)” in the SAS Open
Metadata Interface: Reference.

34

35

P A R T2

Using the Interface to Query Metadata

Chapter 5.Overview 37

Chapter 6.Querying All Metadata of a Specified Type 43

Chapter 7.Querying Specific Metadata Objects 61

36

37

C H A P T E R

5
Overview

Overview of Querying Metadata Objects 37
Namespaces 37

Repositories 37

Metadata Objects 38

Example of Listing the Metadata Types in a Namespace 38

Listing a Metadata Type’s Subtypes 39
Listing the Available Repositories 39

Listing the Metadata Types in a Repository 40

Overview of Querying Metadata Objects
The SAS Open Metadata Interface provides methods to get information about

namespaces, repositories, and metadata objects.

Namespaces
A namespace refers to the metadata model that can be accessed by the SAS Metadata

Server. The SAS Open Metadata Interface defines two namespaces:
� The REPOS namespace contains repository metadata types.
� The SAS namespace contains all other metadata types.

Other applications might define additional metadata types in special-purpose
namespaces.

The GetNamespaces method enables you to identify the namespaces defined in a
particular repository manager. If a special-purpose namespace has been defined, you
can use the SAS Open Metadata Interface GetTypes and GetTypeProperties methods to
list the types in the namespace and their properties. Then you can use the GetSubtypes
and IsSubtypeOf methods to determine the type hierarchy, if one exists. Together, these
methods are referred to as management methods because they enable you to get
information about the metadata environment. This information provides useful
background information when preparing to create metadata objects.

For usage information, see “Example of Listing the Metadata Types in a Namespace”
on page 38.

Repositories
A repository is a collection of metadata that is stored and can be accessed from a

central location. However, before you can store metadata in a repository, you must store

38 Metadata Objects � Chapter 5

metadata about the repository itself, including information about its physical location,
the engine used to access the data, and other pertinent details. Creation of a repository
metadata object registers the repository in the repository manager and enables the
repository to be accessed by the SAS Open Metadata Interface.

You can determine the repositories that have been registered in a repository manager
by using the GetRepositories method. The GetRepositories method lists the repository
identifier and name of the repositories registered in a particular repository manager. A
repository identifier is required to add metadata to a repository. For usage information,
see “Listing the Available Repositories” on page 39.

You might also want to query a repository for the following reasons:

� to identify the repository’s relationships with other repositories

� to determine the repository’s current state and default access mode.

See “Querying Dependency Associations” on page 81 for instructions to query a
repository’s relationships with other repositories. A repository’s current state and
access mode is obtained by using the GetRepositories method and setting the OMI_ALL
flag (1). For instructions, see “Listing the Available Repositories” on page 39.

Metadata Objects
A metadata object consists of a group of attributes and associations that uniquely

describe a particular entity. The entity can be an application element or a repository.
The SAS Open Metadata Interface provides two methods for reading metadata objects:

� the GetMetadata method is provided to query the properties of a specific metadata
object instance

� the GetMetadataObjects method is provided to query all metadata of a specified
metadata type.

The methods support flags and options that enable you to expand or to filter your
query requests. For usage information, see Chapter 6, “Querying All Metadata of a
Specified Type,” on page 43 and Chapter 7, “Querying Specific Metadata Objects,” on
page 61.

For reference information about the SAS Open Metadata Interface query methods,
see “Methods for Reading and Writing Metadata (IOMI Class)” in the SAS Open
Metadata Interface: Reference.

Example of Listing the Metadata Types in a Namespace

The SAS Open Metadata Interface provides the GetTypes method for listing the
metadata types in a namespace. The following is an example of a GetTypes request that
is formatted for the DoRequest method:

<GetTypes>
<Types/>
<NS>SAS</NS>
<Flags/>
<Options/>

</GetTypes>

The <NS>, <Flags>, and <Options> XML elements are input parameters. This
example does not specify any flags or options. The <Types> element is an output
parameter.

Overview � Listing the Available Repositories 39

The <Types> element will return information similar to the following for each
metadata type in the specified namespace (“SAS” in this example). For brevity, only the
first line of the output is shown.

<Type Id="AbstractExtension" Desc="Abstract Extension" HasSubtypes="1"/>

In the output:
� Id= is a metadata type name
� Desc= is a system-supplied description of the metadata type
� HasSubtypes is a boolean indicator that identifies whether a metadata type has

subtypes. A value of 1 indicates that the type has subtypes. A value of 0 indicates
that it does not.

Listing a Metadata Type’s Subtypes
To list a metadata type’s subtypes, you use the GetSubtypes method. Here is an

example of a GetSubtypes request to list the subtypes of the AbstractExtension
metadata type:

<GetSubtypes>
<Supertype>AbstractExtension</Supertype>
<Subtypes/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetSubtypes>

The <SuperType>, <NS>, <Flags>, and <Options> XML elements are input
parameters. In the request, the <Supertype> XML element specifies the
AbstractExtension metadata type. The <NS> element specifies the SAS namespace.
The request does not specify any flags or options.

The <Subtypes> element is an output parameter. Here is an example of the output
received from the metadata server:

<!-- Using the GETSUBTYPES method. -->

<SubTypes>
<Type Id="Extension" Desc="Object Extensions" HasSubtypes="0"/>
<Type Id="NumericExtension" Desc="Numeric Extension" HasSubtypes="0"/>
</SubTypes>

The AbstractExtension metadata type has two subtypes: Extension and
NumericExtension.

Listing the Available Repositories
You can list the repositories registered on a metadata server by using the

GetRepositories method. The following is an example of a GetRepositories request that
is formatted for the DoRequest method.

<GetRepositories>
<Repositories/>
<Flags>0</Flags>
<Options/>

</GetRepositories>

40 Listing the Metadata Types in a Repository � Chapter 5

The request retrieves the Id and Name attributes of all repositories registered on the
current metadata server. Here is an example of the output returned by the metadata
server:

<!-- Using the GETREPOSITORIES method. -->

<Repositories>
<Repository Id="A0000001.A53TPPVI" Name="Test repository 1"

Desc="Repository created to illustrate registering a repository
using AddMetadata." DefaultNS="SAS"/>

<Repository Id="A0000001.A5KD78HW" Name="Test repository 2"
Desc="Second test repository." DefaultNS="SAS"/>

</Repositories>

The current repository manager has two repositories registered in it: Test repository
1 and Test repository 2.

To list the repositories’ Access and PauseState attributes, set the OMI_ALL flag (1)
in the GetRepositories request.

� The Access attribute stores a repository’s default access mode. A value of 0
indicates that a repository is available for read, write, and update access. A value
of 1 indicates that it is read-only.

� The PauseState attribute indicates whether a repository has been temporarily
paused to another state. A repository that has a state value in the PauseState
attribute will remain in that state until it is resumed. A repository is generally
paused in order to perform a backup.

To request attributes for a specific repository, use the GetMetadata method.

Listing the Metadata Types in a Repository

After adding metadata objects, you can identity which metadata types are
represented in a repository by using the GetTypes method with the OMI_SUCCINCT
(2048) flag. When used with OMI_SUCCINCT and its corresponding <Reposid>
element, the GetTypes method returns the metadata types for which metadata has been
defined in a specific repository.

This is an example of a GetTypes request that specifies the OMI_SUCCINCT flag:

<GetTypes>
<Types/>
<NS>SAS</NS>
<!-- specify the OMI_SUCCINCT flag -->
<Flags>2048</Flags>
<Options>
<!-- include <Reposid> XML element and a repository identifier -->
<Reposid>A0000001.A53TPPVI</Reposid>

</Options>
</GetTypes>

The <NS>, <Flags>, <Options>, and <Reposid> XML elements are input parameters.

� The <NS> element specifies the namespace to examine.

� The <Flags> element specifies the OMI_SUCCINCT flag (2048).

� The <Options> element passes the <Reposid> element to the server.

� The <Reposid> element specifies the target repository identifier.

Overview � Listing the Metadata Types in a Repository 41

The <Types> element is an output parameter. The following is example of the output
returned by the metadata server:

<!-- Using the GETTYPES method. -->

<Types>
<Type Id="Column" Desc="Columns" HasSubtypes="0"/>
<Type Id="PhysicalTable" Desc="Physical Table" HasSubtypes="1"/>
<Type Id="ResponsibleParty" Desc="Responsible Party" HasSubtypes="0"/>
<Type Id="SASLibrary" Desc="SAS Library" HasSubtypes="0"/>
</Types>

The repository contains metadata objects of four metadata types: Column,
PhysicalTable, ResponsibleParty, and SASLibrary.

� Id= specifies the metadata type.

� Desc= returns a system-supplied description of the metadata type.

� When OMI_SUCCINCT is set, HasSubtypes has no meaning.

To list actual objects of each type, you must use the GetMetadataObjects method.
See Chapter 6, “Querying All Metadata of a Specified Type,” on page 43.

42

43

C H A P T E R

6
Querying All Metadata of a
Specified Type

Introduction to the GetMetadataObjects Method 43
Review of Terms 44

Expanding a GetMetadataObjects Request to Include Subtypes 45

Expanding a GetMetadataObjects Request to Retrieve Additional Properties 46

Specifying GetMetadata Flags in a GetMetadataObjects Request 46

Combining GetMetadata and GetMetadataObjects Flags 46
Retrieving All Properties for All Objects 47

Limiting OMI_ALL Output 49

Retrieving All Attributes of All Objects 50

Retrieving Specific Properties of All Objects 51

Filtering a GetMetadataObjects Request 52

<XMLSelect> Element Form and Search Criteria Syntax 52
Object Component 53

Attribute Criteria Component 54

Association Path Component 55

Understanding Association Paths 55

Searching by Date, Time, and Datetime Values 56
Examples 57

Single Attribute Search on the Metadata Type in the <Type> Element 57

Single Attribute Search on a Subtype of the <Type> Element 57

Selecting Objects Whose Attributes “Begin With” a Value 58

Selecting Objects Whose Attributes Have a Missing Value or Blank String 58
Specifying Concatenated Attributes 58

Searching By Association Name 58

Searching by Association Name and Attribute Criteria 58

Specifying Concatenated Association Paths 58

Specifying the <XMLSelect> Element in a GetMetadataObjects Call 59

Using OMI_XMLSELECT with Other Flags 59
Expanding a GetMetadataObjects Request to Search Additional Repositories 59

Introduction to the GetMetadataObjects Method

The SAS Open Metadata Interface provides the GetMetadataObjects method for
retrieving metadata objects of a specified metadata type. The default behavior of the
GetMetadataObjects method is to retrieve general, identifying information for each
object of the specified type in the specified repository. The method also provides flags
and options that enable you to expand or to filter the object request.

The following is an example of a GetMetadataObjects request that does not contain
flags or options. The request returns a list of all objects of type PhysicalTable in Test

44 Review of Terms � Chapter 6

repository 1 and their Id and Name attributes. The call is formatted for the DoRequest
method.

<GetMetadataObjects>
<!--Reposid specifies Test repository 1 -->
<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>
</GetMetadataObjects>

In the request, note the following:

� The <Reposid> element specifies a repository identifier.

� The <Type> element specifies the name of the metadata type whose objects you
want to list.

� The <NS> element specifies the namespace in which to process the request.

� The <Flags> and <Options> elements, though empty here, support flags and
additional XML elements that you can use to expand or filter the
GetMetadataObjects request.

You can expand a GetMetadataObjects request to include subtypes, to retrieve
specific properties, and to include additional repositories in the query. For more
information, see “Expanding a GetMetadataObjects Request to Include Subtypes”
on page 45, “Expanding a GetMetadataObjects Request to Retrieve Additional
Properties” on page 46, and “Expanding a GetMetadataObjects Request to Search
Additional Repositories” on page 59.

You filter a GetMetadataObjects request by specifying an XMLSELECT flag
(128) and by specifying search criteria in an <XMLSelect> element. For more
information, see “Filtering a GetMetadataObjects Request” on page 52.

The <Objects> element is an output parameter. Here is an example of the output
returned by the metadata server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"/>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates"/>
</Objects>

Test repository 1 has two objects of metadata type PhysicalTable defined.

Review of Terms
An attribute is a characteristic of a metadata type that defines the metadata type.

For example, in addition to its Id and Name attributes, a PhysicalTable has Desc,
MetadataCreated, MetadataUpdated, ChangeState, DBMSType, IsCompressed,
IsDBMSView, IsEncrypted, MemberType, NumRows, SASTableName, and TableName
attributes.

An association is a relationship between a metadata type and another metadata type.
For example, the PhysicalTable metadata type has a Columns association to metadata
objects describing its columns. In addition, it supports associations to metadata types
defining keys, indexes, transformations, etc.

Querying All Metadata of a Specified Type � Expanding a GetMetadataObjects Request to Include Subtypes 45

A metadata object is an instance of a metadata type that is uniquely defined by its
attribute values and associations.

General, identifying information refers to the Id and Name attributes of a metadata
object. For more information, see “Identifying Metadata” in “Methods for Reading and
Writing Metadata (IOMI Class)” in the SAS Open Metadata Interface: Reference.

In this documentation, the term “properties” is used to collectively refer to an object’s
attributes and associations.

Expanding a GetMetadataObjects Request to Include Subtypes
The GetMetadataObjects method supports the OMI_INCLUDE_SUBTYPES (16) flag

to enable you to list all subtypes of the metadata type specified in the <Type> element.
A subtype is a metadata type that inherits properties from a supertype. A supertype
can have many subtypes. You can view the supertype/subtype relationships defined in
the SAS Metadata Model in the “Hierarchical Listing of SAS Namespace Metadata
Types” in the “SAS Namespace Metadata Types” section of the SAS Open Metadata
Interface: Reference.

When OMI_INCLUDE_SUBTYPES is set, the GetMetadataObjects method retrieves
all objects of all possible subtypes of the specified metadata type in addition to all
objects of the specified metadata type. This prevents you from having to query each
subtype for information individually. If you want to retrieve information about some
subtypes but not others, use the hierarchical listing to assess the hierarchical level at
which to target your request.

The following is an example of a GetMetadataObjects request that sets
OMI_INCLUDE_SUBTYPES and specifies to retrieve all subtypes of supertype
DataTable.

<GetMetadataObjects>
<! -- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>DataTable</Type>
<Objects/>
<NS>SAS</NS>
<! -- Specify OMI_INCLUDE_SUBTYPES (16) flag -->
<Flags>16</Flags>
<Options/>

</GetMetadataObjects>

The DataTable supertype has the following subtypes defined for it in the SAS
Metadata Model: ExternalTable, JoinTable, PhysicalTable, QueryTable,
RelationalTable, and WorkTable. OMI_INCLUDE_SUBTYPES will return all metadata
objects of these subtypes that have been defined in Test repository 1.

Here is an example of the output returned by the metadata server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"/>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates"/>
</Objects>

Thus far, Test repository 1 contains two objects of subtype PhysicalTable and no
objects of the other subtypes.

The default behavior of the GetMetadataObjects method is to return the Id and Name
properties for all objects that are found. When OMI_INCLUDE_SUBTYPES is set with

46 Expanding a GetMetadataObjects Request to Retrieve Additional Properties � Chapter 6

OMI_GET_METADATA (256) and GetMetadata flags, the GetMetadataObjects method
will retrieve the requested properties for all subtype objects. For more information, see .

Expanding a GetMetadataObjects Request to Retrieve Additional
Properties

You expand a GetMetadataObjects method call to retrieve additional properties by
setting the OMI_GET_METADATA (256) flag and specifying flags defined for the
GetMetadata method in the GetMetadataObjects request.

The OMI_GET_METADATA flag executes a GetMetadata request for each metadata
object that is returned by the GetMetadataObjects method. When
OMI_GET_METADATA is set without specifying any other GetMetadata flags, the
GetMetadata method returns the Id and Name attributes for each object returned by
GetMetadataObjects. Specifying one or more other GetMetadata flags with
OMI_GET_METADATA enables you to retrieve specific properties or categories of
properties for each metadata object. For an overview of the flags supported for the
GetMetadataObjects and GetMetadata methods, see “Summary Table of IOMI Flags” in
“Methods for Reading and Writing Metadata (IOMI Class” in the SAS Open Metadata
Interface: Reference.

This document describes how the following GetMetadata flags are used in a
GetMetadataObjects request:

� OMI_ALL (1) — Gets all of the properties of the requested object and general,
identifying information about any objects that are associated with the requested
objects.

� OMI_ALL_SIMPLE (8) — Gets all of the attributes of the requested objects.

� OMI_SUCCINCT (2048) — Suppresses retrieval of properties that do not contain
values or that contain a null value.

� OMI_TEMPLATES (4) — Instructs the metadata server to look in the <Options>
element for one or more user-defined templates that specify which metadata
properties to return. The templates are specified in a <Templates> element.

Specifying GetMetadata Flags in a GetMetadataObjects Request
To specify a GetMetadata flag in a GetMetadataObjects request, simply add the flag’s

value to that of the OMI_GET_METADATA flag and any other GetMetadataObjects
flags that you have already set. For example, if OMI_XMLSELECT (128) is already set
and you want to specify OMI_GET_METADATA (256) and OMI_ALL_SIMPLE (8) to
retrieve all of the attributes of each object, add their values together (128+256+8=392)
and specify the sum in the <Flags> element.

Combining GetMetadata and GetMetadataObjects Flags
The flags described in this section can be combined with other GetMetadataObjects

flags.

� When GetMetadata flags are used with OMI_INCLUDE_SUBTYPES (16), the
GetMetadataObjects method will return the specified properties for all subtypes of
the specified metadata type in addition to all objects of the specified type.

� When GetMetadata flags are used with OMI_XMLSELECT (128), the
GetMetadataObjects method will retrieve the specified properties only for
metadata objects that meet <XMLSelect> search criteria.

Querying All Metadata of a Specified Type � Retrieving All Properties for All Objects 47

� When GetMetadata flags are used with OMI_DEPENDENCY_USES (8192) or
OMI_DEPENDENCY_USED_BY (16384), the GetMetadataObjects method will
return the specified properties for objects of the specified type in the repository in
which the request was executed and all repositories that either use or are used by
the target repository.

Retrieving All Properties for All Objects
The following is an example of a GetMetadataObjects request that sets the

OMI_GET_METADATA (256) and OMI_ALL (1) flags. The OMI_ALL flag will list all
attributes and associations for all PhysicalTable objects returned by the
GetMetadataObjects request.

<GetMetadataObjects>
<!-- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<!-- Specify OMI_GET_METADATA(256) + OMI_ALL (1) flags -->
<Flags>257</Flags>
<Options/>

</GetMetadataObjects>

In the request, note the following:
� The <Reposid> element specifies to execute the request in Test repository 1.
� The <Type> element specifies to retrieve all objects of the PhysicalTable metadata

type.
� The <Flags> element specifies a number representing the sum of the

OMI_GET_METADATA and OMI_ALL flags.

The following is an example of the output returned by the metadata server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices" DBMSType=""
Desc="Sales offices in NW region" IsCompressed="0" IsEncrypted="0"
LockedBy="" MemberType="" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" NumRows="-1" SASTableName="" TableName="">

<AccessControls/>
<Aggregations/>
<AnalyticTables/>
<Changes/>
<Columns>
<Column Id="A53TPPVI.A5000001" Name="City" Desc="City of Sales Office"/>
<Column Id="A53TPPVI.A5000002" Name="Address" Desc="Street Address of Sales Office"/>
<Column Id="A53TPPVI.A5000003" Name="Manager" Desc="Name of Operations Manager"/>
<Column Id="A53TPPVI.A5000004" Name="Employees" Desc="Number of employees"/>
</Columns>
<Documents/>
<Extensions/>
<ExternalIdentities/>
<ForeignKeys/>
<Groups/>
<Implementors/>

48 Retrieving All Properties for All Objects � Chapter 6

<Indexes/>
<Keywords/>
<ModelResults/>
<Notes/>
<PrimaryPropertyGroup/>
<Properties/>
<PropertySets/>
<ReachThruCubes/>
<ResponsibleParties/>
<Roles/>
<SASPasswords/>
<SourceClassifierMaps/>
<SourceTransformations/>
<SpecSourceTransformations/>
<SpecTargetTransformations/>
<TablePackage/>
<TargetClassifierMaps/>
<TargetTransformations/>
<Timestamps/>
<TrainedModelResults/>
<Trees/>
<UniqueKeys/>
<UsedByPrototypes/>
<UsingPrototype/>
</PhysicalTable>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates" DBMSType=""

Desc="Sales associates in NW region" IsCompressed="0" IsEncrypted="0"
LockedBy="" MemberType="" MetadataCreated="05Feb2002:09:50:56"
MetadataUpdated="05Feb2002:09:50:56" NumRows="-1" SASTableName="" TableName="">

<AccessControls/>
<Aggregations/>
<AnalyticTables/>
<Changes/>
<Columns>
<Column Id="A53TPPVI.A5000005" Name="Name" Desc="Name of employee"/>
<Column Id="A53TPPVI.A5000006" Name="Address" Desc="Home Address"/>
<Column Id="A53TPPVI.A5000007" Name="Title" Desc="Job grade"/>
</Columns>
<Documents/>
<Extensions/>
<ExternalIdentities/>
<ForeignKeys/>
<Groups/>
<Implementors/>
<Indexes/>
<Keywords/>
<ModelResults/>
<Notes/>
<PrimaryPropertyGroup/>
<Properties/>
<PropertySets/>
<ReachThruCubes/>
<ResponsibleParties/>
<Roles/>

Querying All Metadata of a Specified Type � Retrieving All Properties for All Objects 49

<SASPasswords/>
<SourceClassifierMaps/>
<SourceTransformations/>
<SpecSourceTransformations/>
<SpecTargetTransformations/>
<TablePackage/>
<TargetClassifierMaps/>
<TargetTransformations/>
<Timestamps/>
<TrainedModelResults/>
<Trees/>
<UniqueKeys/>
<UsedByPrototypes/>
<UsingPrototype/>
</PhysicalTable>
</Objects>

The OMI_ALL flag retrieves all of the attributes and associations for each object,
including those for which no value has been defined. This is useful when you want to
view both actual and potential properties of all of the objects.

Limiting OMI_ALL Output

To limit a GetMetadataObjects request to return only properties that have values
defined for them, you can additionally set the OMI_SUCCINCT (2048) flag. Here is an
example of the output of the previous GetMetadataObjects request when
OMI_SUCCINCT is added to the other flags.

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"
Desc="Sales offices in NW region" IsCompressed="0" IsEncrypted="0"
MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" NumRows="-1">

<Columns>
<Column Id="A53TPPVI.A5000001" Name="City" Desc="City of Sales Office"/>
<Column Id="A53TPPVI.A5000002" Name="Address" Desc="Street Address of Sales Office"/>
<Column Id="A53TPPVI.A5000003" Name="Manager" Desc="Name of Operations Manager"/>
<Column Id="A53TPPVI.A5000004" Name="Employees" Desc="Number of employees"/>
</Columns>
</PhysicalTable>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates"
Desc="Sales associates in NW region" IsCompressed="0" IsEncrypted="0"
MetadataCreated="05Feb2002:09:50:56" MetadataUpdated="05Feb2002:09:50:56"
NumRows="-1">

<Columns>
<Column Id="A53TPPVI.A5000005" Name="Name" Desc="Name of employee"/>
<Column Id="A53TPPVI.A5000006" Name="Address" Desc="Home Address"/>
<Column Id="A53TPPVI.A5000007" Name="Title" Desc="Job grade"/>
</Columns>
</PhysicalTable>
</Objects>

50 Retrieving All Attributes of All Objects � Chapter 6

Retrieving All Attributes of All Objects

The following is an example of a GetMetadataObjects request that sets the
OMI_GET_METADATA (256), OMI_ALL_SIMPLE (8), and OMI_SUCCINCT (2048)
flags. OMI_SIMPLE is a GetMetadata flag that returns all of the attributes defined for
a metadata object (OMI_ALL returns all attributes and associations). When
OMI_ALL_SIMPLE is set in a GetMetadataObjects request, the flag returns all of the
attributes of all of the objects returned by the GetMetadataObjects request.

The request specifies to retrieve all of the attributes of all Column objects in Test
repository 1.

<GetMetadataObjects>
<!-- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>Column</Type>
<Objects/>
<NS>SAS</NS>
<!-- Specify OMI_GET_METADATA (256) + OMI_ALL_SIMPLE (8)

+ OMI_SUCCINCT (2048) flags -->
<Flags>2312</Flags>
<Options/>

</GetMetadataObjects>

Here is the output returned by the metadata server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<Column Id="A53TPPVI.A5000001" Name="City" BeginPosition="0" ColumnLength="32"

ColumnName="City" ColumnType="12" Desc="City of Sales Office" EndPosition="0"
IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" SASColumnLength="32" SASColumnName="City"
SASColumnType="C" SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32."
SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000002" Name="Address" BeginPosition="0" ColumnLength="32"
ColumnName="Address" ColumnType="12" Desc="Street Address of Sales Office"
EndPosition="0" IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" SASColumnLength="32"
SASColumnName="Street_Address" SASColumnType="C" SASExtendedLength="0"
SASFormat="$Char32." SASInformat="$32." SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000003" Name="Manager" BeginPosition="0" ColumnLength="32"
ColumnName="Manager" ColumnType="12" Desc="Name of Operations Manager"
EndPosition="0" IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" SASColumnLength="32" SASColumnName="Manager"
SASColumnType="C" SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32."
SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000004" Name="Employees" BeginPosition="0" ColumnLength="3"
ColumnName="Employees" ColumnType="6" Desc="Number of employees" EndPosition="0"
IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" SASColumnLength="3" SASColumnName="Employees"
SASColumnType="N" SASExtendedLength="0" SASFormat="3.2" SASInformat="3.2"
SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000005" Name="Name" BeginPosition="0" ColumnLength="32"
ColumnName="Employee_Name" ColumnType="12" Desc="Name of employee" EndPosition="0"
IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:50:56"

Querying All Metadata of a Specified Type � Retrieving Specific Properties of All Objects 51

MetadataUpdated="05Feb2002:09:50:56" SASColumnLength="32"
SASColumnName="Employee" SASColumnType="C" SASExtendedLength="0"
SASFormat="$Char32." SASInformat="$32." SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000006" Name="Address" BeginPosition="0" ColumnLength="32"
ColumnName="Employee_Address" ColumnType="12" Desc="Home Address"
EndPosition="0" IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:50:56"
MetadataUpdated="05Feb2002:09:50:56" SASColumnLength="32"
SASColumnName="Home_Address" SASColumnType="C" SASExtendedLength="0"
SASFormat="$Char32." SASInformat="$32." SASPrecision="0" SASScale="0"/>

<Column Id="A53TPPVI.A5000007" Name="Title" BeginPosition="0" ColumnLength="32"
ColumnName="Title" ColumnType="12" Desc="Job grade" EndPosition="0"
IsDiscrete="0" IsNullable="0" MetadataCreated="05Feb2002:09:50:56"
MetadataUpdated="05Feb2002:09:50:56" SASColumnLength="32" SASColumnName="Title"
SASColumnType="C" SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32."
SASPrecision="0" SASScale="0"/>

</Objects>

The OMI_SUCCINCT flag has no effect on OMI_ALL_SIMPLE. OMI_ALL_SIMPLE
returns all attributes of all objects of the requested type, including those that do not
have values or have null values.

Retrieving Specific Properties of All Objects
The following is an example of a GetMetadataObjects request that retrieves specific

properties of all objects of the specified metadata type. The example sets the
OMI_GET_METADATA (256) and OMI_TEMPLATES (4) flags and supplies a template
that defines the properties to retrieve in a <Templates> XML element.

<GetMetadataObjects>
<!-- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>PhysicalTable</Type>
<Objects/>
<NS>SAS</NS>
<!-- Specify OMI_GET_METADATA(256) + OMI_TEMPLATE (4) flags -->
<Flags>260</Flags>
<Options>
<Templates>
<PhysicalTable DBMSType="" IsCompressed="" IsEncrypted=""

MemberType="">
<Extensions/>

</PhysicalTable>
</Templates>
</Options>

</GetMetadataObjects>

In the request, the template specifies to retrieve the DBMSType=, IsCompressed=,
IsEncrypted=, and MemberType= attributes for each of the PhysicalTable objects in
repository A53TPPVI. In addition, the template specifies to retrieve any associated
Extension objects that might have been defined for each PhysicalTable object. Here is
an example of the output returned by the metadata server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices" DBMSType=""

52 Filtering a GetMetadataObjects Request � Chapter 6

IsCompressed="0" IsEncrypted="0" MemberType="">
<Extensions/>
</PhysicalTable>
<PhysicalTable Id="A53TPPVI.A4000002" Name="Sales Associates" DBMSType=""

IsCompressed="0" IsEncrypted="0" MemberType="">
<Extensions/>
</PhysicalTable>
</Objects>

The metadata server returns the requested properties in addition to the Id and Name
attributes that are returned by default.

For information about how to create a template, see “Using Templates” on page 68.

Filtering a GetMetadataObjects Request

The GetMetadataObjects method supports an OMI_XMLSELECT (128) flag to enable
you to filter the objects that are retrieved by the SAS Metadata Server. The
OMI_XMLSELECT flag instructs the metadata server to look in the <Options> element
for search criteria specified in an <XMLSelect> element. The <XMLSelect> search
syntax enables you to filter the objects that are selected by

� attributes

� association name

� associated metadata type

� a combination of the above.

In addition, the syntax supports concatenated attribute and path criteria through the
use of logical operators. Concatenation of attribute criteria enables inclusive and
exclusive filtering in an object request. For example, you could specify to select objects
that have a Name= attribute value of ’John Doe’ or ’Jane Doe’. Or you could specify to
select objects that have the attribute/value pairs Name=’John Doe’ and Title=’Manager’.

Concatenation of association paths permits filtering of object requests at multiple
association levels. For example, you could specify to select Document objects that have
a ResponsibleParties association to any ResponsibleParty objects that have a Persons
association to any Person objects that have a Locations association to a Location object
that has an Area= attribute value of ’New York’.

For more information, see:

� “<XMLSelect> Element Form and Search Criteria Syntax” on page 52

� “Understanding Association Paths” on page 55
� “Searching by Date, Time, and Datetime Values” on page 56

� “Examples” on page 57

� “Using OMI_XMLSELECT with Other Flags” on page 59

<XMLSelect> Element Form and Search Criteria Syntax
The <XMLSelect> element is specified in the <Options> element in the form:

<XMLSelect search="criteria"/>

The syntax of criteria is:

Object[AttributeCriteria][AssociationPath]

Querying All Metadata of a Specified Type � <XMLSelect> Element Form and Search Criteria Syntax 53

The brackets denote optional criteria and are also part of the search string
specification. For example, a statement that specifies attribute criteria and association
path criteria is specified as:

Object[AttributeCriteria][AssociationPath]

A statement that specifies only attribute criteria is specified as:

Object[AttributeCriteria]

A statement that specifies only association path criteria is specified as:

Object[AssociationPath]

A statement that specifies a subelement as the criteria is specified as:

Object

Attribute criteria are concatenated by specifying logical operators within the
brackets. For example:

Object[AttributeCriteria and|or AttributeCriteria]

If only attribute criteria are specified, the server will accept search strings that omit
the Object component, as follows:

AttributeCriteria and|or AttributeCriteria

(AttributeCriteria and|or AttributeCriteria)

Path criteria are concatenated by placing a forward-slash character (/) between the
path specifications inside the brackets. For example:

Object[AssociationPath1/AssociationPath2]

A detailed description of each syntax component is provided in the sections that follow.

Object Component
The Object component is required for all but simple attribute criteria searches and

specifies the object class type. Valid values are a metadata type name or an asterisk (*).
� The metadata type name can be the same metadata type name that is specified in

the GetMetadataObjects <Type> element or a subtype of the metadata type. Refer
to the metadata type descriptions in the SAS Open Metadata Interface: Reference
to determine the subtypes of a metadata type.

� An * is a short-hand method of referring to the metadata type named in the
<Type> element.

The Object component is specified once outside of the brackets of the other search
components. For example:

MetadataType[AttributeCriteria][AssociationPath]

or

MetadataType[AttributeCriteria]

or

*[AssociationPath]

54 <XMLSelect> Element Form and Search Criteria Syntax � Chapter 6

Attribute Criteria Component
The AttributeCriteria component is optional and enables you to filter the objects that

are retrieved to those matching a specified attribute/value pair. The syntax of
AttributeCriteria is:

[@attrname cop ’value’ lop AttributeCriterian]

where:
� @attrname specifies an attribute name; for example, “@Name” or “@Desc”
� cop is a comparison operator. The supported comparison operators are described in

the following table:

Table 6.1 Comparison Operators Supported in Attribute Criteria

Symbol or Mnemonic Description

=, eq, or EQ equal to

?, contains, or CONTAINS contains the specified character string

=: begins with the specified character string

� ’value’ is a character or numeric string, a blank, or a . (period – to denote a
missing numeric value), enclosed within single quotation marks.

Note: Searches of date, time, and datetime values are handled differently than
searches of other values. For more information, see “Searching by Date, Time, and
Datetime Values” on page 56. �

� lop AttributeCriteria is an optional, concatenated AttributeCriteria string that is
appended to the first by the logical operator “and” or “or”. An example of
concatenated attribute criteria is:

[@Name = ’John Doe’ or @Name = ’Jane Doe’]

The string is an example of an inclusive search: it instructs the metadata server
to select for retrieval all metadata objects that have the Name attribute value of
’John Doe’ or ’Jane Doe’.

Compound attribute criteria are also supported. Use parentheses to control
evaluation order. For example:

search="*[@ProductName=’SAS/CONNECT’ and
(@Name contains ’test - SAS/CONNECT Server’ or @Name=’test’)]"

In this example, the expression contained within the parenthesis is evaluated
first.

Note: When single or concatenated attribute criteria is used, the attribute test is
applied only if all of the specified attribute names are valid for the object. That is, if one
of the attribute names in the attribute string is misspelled, then no objects are selected.

If the OMI_INCLUDE_SUBTYPES flag is set with OMI_XMLSELECT, the type and
subtype objects to be tested may support a different set of attribute names. Only objects
that contain all of the specified attribute names will be tested for a match. �

Querying All Metadata of a Specified Type � Understanding Association Paths 55

Association Path Component
The AssociationPath component is optional and specifies an association name, an

associated object, and optional attribute criteria. The syntax of AssociationPath is:

[AssociationName/AssociatedObject [AttributeCriteria]/AssociationPathn]

where:

� AssociationName specifies an association name that has been and is a required
component.

� AssociatedObject is a metadata type or an asterisk, as described in “Object
Component” on page 53, and is a required component.

� AttributeCriteria is an optional AttributeCriteria string, as described in “Attribute
Criteria Component” on page 54.

� /AssociationPathn is an optional association path that is concatenated to the first
by using a slash (/). The / functions like an “and” operator.

An example of concatenated association paths is:

[ResponsibleParties/ResponsibleParty/Persons/Person/Locations/
Location[Area=’New York’]]

The concatenation operators are bolded. This example concatenates three
attribute-criteria strings:

� ResponsibleParties/ResponsibleParty

� Persons/Person

� Locations/Location[Area=’New York’]

The previous example did not specify an Object component. The AssociationPath
criteria will not be applied unless it is preceded by an Object component. For more
information, see “Understanding Association Paths” on page 55.

Understanding Association Paths
The term “association path” refers to a set of objects that are identified in the form:

[AssociationName/AssociatedObject[AttributeCriteria]]

However, to better understand how the metadata server processes this component, it is
important to consider the association path within the context of the complete search
criteria syntax, which prepends an Object component to the path:

Object[AssociationName/AssociatedObject[AttributeCriteria]]

The Object component sets the scope of the retrieval request:

� If Object is an asterisk (*), then AssociationName can refer to any association
name defined for the metadata type specified in the GetMetadataObjects <Type>
element.

� If Object is a metadata type, then AssociationName refers to a specific association
name that is defined for the specified metadata type.

The value specified for the Object component can have profound effect on the request
when the OMI_INCLUDE_SUBTYPES (16) flag is specified with OMI_XMLSELECT.
When OMI_INCLUDE_SUBTYPES is set, the metadata server retrieves subtypes for
the metadata type identified in the Object component of the search criteria. If an
asterisk is specified, this selects for retrieval all subtypes of the metadata type
indicated in the <Type> element.

56 Searching by Date, Time, and Datetime Values � Chapter 6

The AssociatedObject component also supports a metadata type name or an asterisk:

� If AssociatedObject is an asterisk, the metadata server selects for retrieval objects
of all subelement types supported by the specified association name.

� If AssociatedObject is a metadata type, the metadata server selects for retrieval
only objects of the specified metadata type.

As an example, consider the following search path specifications:

[ReportLocation/]

Report[ReportLocation/Email]

The first request specifies to select all objects of the metadata type specified in the
<Type> element that have a ReportLocation association to any objects that qualify as
subelement objects. The second request restricts the retrieval request to Report objects
that have a ReportLocation association to an Email object.

Report is a subtype of Classifier. If Classifier is the metadata type specified in the
<Type> element and the OMI_INCLUDE_SUBTYPES flag is set, specifying an * in the
first object position potentially selects objects of up to 12 subtypes. Classifier is a
supertype of the Cube, DataTable, Dimension, ExternalTable, Index, JoinTable,
PhysicalTable, QueryTable, RelationalTable, Report, TableCollection, and WorkTable
metadata types. Of these metadata types, only Report supports the ReportLocation
association. In addition, the ReportLocation association supports 18 potential
subelement types. Specifying an asterisk in the second position selects objects of all 18
types. Specifying Email selects for retrieval only Email objects. When choosing whether
to specify a metadata type or an asterisk, consult the SAS Namespace Metadata Types
documentation. For some metadata types and associations, specifying an asterisk or a
metadata type can make a big difference in the number of objects that are selected for
retrieval (and the number of objects that need to be searched before a selection is made,
thereby affecting performance).

The AttributeCriteria component enables you to qualify the subelement objects that
are retrieved to those containing specified attributes. For example, the following
request retrieves Report objects that have a ReportLocation association to objects of
type Document that also have the attribute TextType=“XML”.

Report[ReportLocation/Document[@TextType=’XML’]]

When attribute criteria are specified in a query that has an * in the AssociatedObject
component, the attribute criteria is applied to all subelements.

Concatenating pathnames further filters a retrieval request. For example, the
following request selects for retrieval Report objects that have a ReportLocation
association to Document objects that have the attribute TextType=“XML” and a
ResponsibleParties association to a ResponsibleParty object that has the Name=
attribute value “Jane Doe.”

Report[ReportLocation/Document[@TextType=’XML’]/ResponsibleParties/ResponsibleParty
[@Name=’Jane Doe’]]

Searching by Date, Time, and Datetime Values
In the current release, searches by date or by time are not supported. However, the

metadata server supports limited datetime queries on the MetadataCreated and
MetadataUpdated attributes using two operators:

� LT (or lt)

� GT (or gt)

Querying All Metadata of a Specified Type � Examples 57

The supported DATETIME formats are:
� ddmmmyyyy:hh:mm:ss.s

� ddmmmyyyy:hh:mm:ss

� a SAS date value that represents a ddmmmyyyy:hh:mm:ss value.

Note: The “<” and “>” operators are not supported; nor is the DATE format
ddmmmyyyy.

Datetime queries are supported only in the standard call interface. For more
information about SAS Open Metadata Interface call interfaces, see “Call Interfaces” in
“Open Client Requirements” in the SAS Open Metadata Interface: Reference.

Objects are persisted to disk with a GMT datetime value; therefore, an object created
in local time might have a different datetime value on disk. For example, an object
created at ’30May2003:16:20:01’ CST could have a persisted datetime value of
’30May2003:21:20:01’. To accommodate the storage conversion, the server converts
values that you specify in an <XMLSelect> search string to GMT for you. However, the
datetime values returned by the server will look different than the values that you
submitted in the search string. �

The following are examples of queries in the supported formats:

<XMLSELECT search="*[@MetadataCreated GT ’27May2003:09:20:17.2’]"/>
<XMLSELECT search="*[@MetadataCreated LT ’27May2010:09:20:17’]"/>
<XMLSELECT search="*[@MetadataCreated GT ’1309907400’]"/>

In the third example, ’1309907400’ is the SAS date value for ’30May2003:19:03:11’
GMT.

To retrieve objects created on a specific date, submit a concatenated datetime query
as follows:

<XMLSELECT search="*[@MetadataCreated GT ’28May2003:00:00:00’
and @MetadataCreated LT ’28May2003:23:59:59.9’]"/>

This request will retrieve all objects created between 00:00:00 and 23:59:59.9 on May
28, 2003.

Examples

Single Attribute Search on the Metadata Type in the <Type> Element
The following <XMLSelect> element selects all objects that have a Name= attribute

value of ’John Doe’:

<Type>Person</Type>
...
<XMLSelect search="*[@Name=’John Doe’]"/>
or
<XMLSelect search="Person[@Name=’John Doe’]"/>

Single Attribute Search on a Subtype of the <Type> Element
The following <XMLSelect> element selects PhysicalTable objects that have a

DBMSType= attribute value of ’Oracle’:

<Type>RelationalTable</Type>
...

58 Examples � Chapter 6

<XMLSelect search="PhysicalTable[@DBMSType=’Oracle’]"/>

Selecting Objects Whose Attributes “Begin With” a Value
The following <XMLSelect> element selects Person objects that have a Name=

attribute value that begins with ’John’:

<XMLSelect search="Person[@Name =:’John’]">

Selecting Objects Whose Attributes Have a Missing Value or Blank String
The following <XMLSelect> element selects WorkTable objects that have a missing

numeric value in the NumRows attribute:

<XMLSelect search="WorkTable[@NumRows=’.’]"/>

The following <XMLSelect> element selects WorkTable objects that have a blank
string in the MemberType attribute:

<XMLSelect search="WorkTable[@MemberType=’’]"/>

Specifying Concatenated Attributes
The following <XMLSelect> element selects objects that have either the Name=

attribute value of ’John Doe’ or ’Jane Doe’:

<XMLSelect search="*[@Name=’John Doe’ OR @Name=’Jane Doe’]"/>

It is an example of an exclusive search. It will return objects that have either of
these two names in the Name attribute. The logical operators AND and OR can be
specified in uppercase or lowercase letters.

Searching By Association Name
The following <XMLSelect> element selects objects that have any objects associated

with them through the ResponsibleParties association:

<XMLSelect search="*[ResponsibleParties/*]"/>

It is an example of a simple Path specification (ObjectAssociationName/
AssociatedObject).

Searching by Association Name and Attribute Criteria
The following <XMLSelect> element selects any objects that have a Role= attribute

value of OWNER associated with them through the ResponsibleParties association:

<XMLSelect search="*[ResponsibleParties/*[@Role=’OWNER’]]"/>

It is an example of a Path specification with embedded attribute criteria
(AssociationName/AssociatedObject[AttributeCriteria]).

Specifying Concatenated Association Paths
The following <XMLSelect> element specifies concatenated association paths.

<XMLSelect search="*[ResponsibleParties/*[@Role=’OWNER’]/
Persons/Person[@Name=’John Doe’]]"/>

The first path selects objects that have a Role= attribute value of OWNER associated
with them through the ResponsibleParties association. The second path selects Person

Querying All Metadata of a Specified Type � Expanding a GetMetadataObjects Request to Search Additional Repositories 59

objects that have a Name= attribute value of ’John Doe’ associated with them through
the Persons association name (AssociationName/AssociatedObject[AttributeCriteria]/
AssociationName/AssociatedObject[AttributeCriteria]).

The following <XMLSelect> element selects objects owned by any type of object with
a Name= attribute value of ’John Doe’:

<XMLSelect search="*[ResponsibleParties/*[@Role=’OWNER’]/
Persons/*[@Name=’John Doe’]]"/>

This request is identical to the preceding example, except that an asterisk is
substituted for the Person object to signify any object in the second path.

Specifying the <XMLSelect> Element in a GetMetadataObjects Call
The following example illustrates how the <XMLSelect> element is specified in a

GetMetadataObjects request:

<GetMetadataObjects>
<Reposid>A0000001.A50TC1Z2</Reposid>
<!-- specify the initial object set -->
<Type>Document</Type>
<NS>SAS</NS>
<!-- set the OMI_XMLSELECT flag -->
<Flags>128</Flags>
<Options>
<!-- specify a search string in the <XMLSelect> element -->
<XMLSelect search="*[ResponsibleParties/*[@Role=’OWNER’]/
Persons/*[@Name=’Joe E. Accountant’]]"/>
</Options>

</GetMetadataObjects>

The <XMLSelect> element is specified as a nested element of the <Options> element.

Using OMI_XMLSELECT with Other Flags
By default, XML searches are not case-sensitive. A case-sensitive search can be

performed by specifying the OMI_MATCH_CASE (512) flag in addition to the
OMI_XMLSELECT flag.

If the OMI_INCLUDE_SUBTYPES (16) flag is specified with OMI_XMLSELECT, the
server will retrieve subtypes for the metadata type identified in the first object
component of the search criteria. If an asterisk is specified, this selects for retrieval all
subtypes of the metadata type indicated in the Type parameter. If a metadata type is
specified, the server will retrieve subtypes only for that metadata type.

Expanding a GetMetadataObjects Request to Search Additional
Repositories

A GetMetadataObjects request that searches multiple repositories is called a
federated query. A federated query is a GetMetadataObjects request that sets either or
both of the OMI_DEPENDENCY_USES (8192) and OMI_DEPENDENCY_USED_BY
(16384) flags to search for objects of a specified type in other repositories.

60 Expanding a GetMetadataObjects Request to Search Additional Repositories � Chapter 6

� OMI_DEPENDENCY_USES specifies to retrieve objects of the specified type from
all repositories that have a DependencyUses association to the specified repository
in the repository chain. That is, it returns objects from repositories that the
specified repository depends on or uses.

� OMI_DEPENDENCY_USED_BY specifies to retrieve objects of the specified type
from all repositories that have a DependencyUsedBy association to the specified
repository in the repository chain. It returns objects from repositories that depend
upon or are used by the specified repository.

Before a federated query can be performed, the specified dependency must have been
established between the repositories being queried. In “Creating a Metadata Object and
an Association to an Object in Another Repository” on page 17, we created a
DependencyUses association between Test repository 2 and Test repository 1. This
means that Test repository 2 uses Test repository 1. We also created a Person object in
Test Repository 2.

The following is an example of a federated query that searches repositories that
either use or are used by Test repository 1 for objects of metadata type Person.

<GetMetadataObjects>
<!-- Reposid parameter specifies Test repository 1 -->

<Reposid>A0000001.A53TPPVI</Reposid>
<Type>Person</Type>
<Objects/>
<NS>SAS</NS>

<!-- Specify OMI_DEPENDENCY_USES (8192) and OMI_DEPENDENCY_USED_BY (16384) flags -->
<Flags>24576</Flags>
<Options/>

</GetMetadataObjects>

Here is example output received from the server:

<!-- Using the GETMETADATAOBJECTS method. -->

<Objects>
<Person Id="A5KD78HW.A1000001" Name="John Doe"/>
</Objects>

The query found one Person object, whose object instance identifier indicates that it
came from Test Repository 2. Test Repository 1 is used by Test repository 2. For more
information about dependency relationships, see Chapter 8, “Creating Relationships
Between Repositories,” on page 75.

61

C H A P T E R

7
Querying Specific Metadata
Objects

Introduction to the GetMetadata Method 61
Retrieving All Properties of a Specified Object 62

Retrieving the Attributes of a Specified Object 64

Retrieving Properties of Associated Objects 65

Retrieving Subtypes 66

Combining GetMetadata Flags 66
Filtering the Associated Objects that are Returned by a GetMetadata Request 67

Using Templates 68

Creating a Template 68

Using a Template to Specify Search Criteria 69

Additional GetMetadata Examples 69

Additional GetMetadataObjects Examples 70

Introduction to the GetMetadata Method
To retrieve properties for a specific metadata object, the SAS Open Metadata

Interface provides the GetMetadata method. The default behavior of the GetMetadata
method is to return the metadata object and properties specified in the <Metadata>
element. The properties can include the XML attributes of the specified metadata object
and association names. As an example, consider the following GetMetadata request:

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001" Name="" Desc="" ColumnType="" SASFormat="">
<Table/>
</Column>

</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>
</GetMetadata>

In the <Metadata> element, the property string specifies to retrieve the following:

� the Column object that has the object instance identifier A53TPPVI.A5000001.
The A53TPPVI portion of the identifier specifies the repository to look in;
A5000001 is the unique object identifier.

� the Name, Desc, ColumnType, and SASFormat attributes of the Column object.

� any objects that are associated to the Column object via the Table association
name. A Column can have one table object associated with it. See the
“Alphabetical Listing of SAS Namespace Metadata Types” in the SAS Open

62 Retrieving All Properties of a Specified Object � Chapter 7

Metadata Interface: Reference for a list of the association names defined for a given
metadata type and their cardinalities. This listing is available only in online
versions of the reference.

Here is an example of the output returned by the metadata server:

<!-- Using the GETMETADATA method. -->

<Column Id="A53TPPVI.A5000001" Name="City" Desc="City of Sales Office"
ColumnType="12" SASFormat="$Char32.">
<Table>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"/>
</Table>

</Column>

The metadata server returns values for the requested attributes of the specified
Column object and general, identifying information (Id and Name) about the associated
PhysicalTable object.

To retrieve additional properties for the specified object and attributes for associated
objects, the GetMetadata method supports the following flags:

� OMI_ALL (1) — Gets all of the attributes and associations of the requested object
and general, identifying information about any associated objects.

� OMI_ALL_SIMPLE (8) — Gets simply the attributes of the requested object.
� OMI_INCLUDE_SUBTYPES (16) — Gets metadata objects that are subtypes of

the requested object in addition to the request metadata object.
� OMI_SUCCINCT (2048) — Suppresses retrieval of properties that do not contain

values or that contain a null value.
� OMI_TEMPLATE (4) — Instructs the metadata server to look in the <Options>

element for one or more user-defined templates that define additional metadata
properties to return. The templates can request additional properties for the
specified metadata object and the attributes of associated metadata objects. The
templates are specified in a <Templates> element.

The use of the flags is described in:
� “Retrieving All Properties of a Specified Object” on page 62
� “Retrieving the Attributes of a Specified Object” on page 64
� “Retrieving Subtypes” on page 66
� “Combining GetMetadata Flags” on page 66

The GetMetadata method also supports search strings to filter the associated objects
that are retrieved. For more information, see “Filtering the Associated Objects that are
Returned by a GetMetadata Request” on page 67.

Retrieving All Properties of a Specified Object
To retrieve all of a metadata object’s properties, the GetMetadata method provides

the OMI_ALL (1) flag. Here is an example of a GetMetadata request that sets the
OMI_ALL flag.

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001"/>
</Metadata>
<NS>SAS</NS>

Querying Specific Metadata Objects � Retrieving All Properties of a Specified Object 63

<!--OMI_ALL flag -->
<Flags>1</Flags>
<Options/>
</GetMetadata>

In the request, note the following:
� The <Metadata> element specifies simply a metadata type and an object instance

identifier. Here that is Column A53TPPVI.A5000001.
� The <NS> parameter specifies the namespace in which to process the request.
� The <Flags> element specifies the number representing the OMI_ALL flag.

Here is an example of the output returned by the metadata server:

<!-- Using the GETMETADATA method. -->

<Column Id="A53TPPVI.A5000001" BeginPosition="0" ColumnLength="32"
ColumnName="City" ColumnType="12" Desc="City of Sales Office" EndPosition="0"
IsDiscrete="0" IsNullable="0" LockedBy="" MetadataCreated="05Feb2002:09:37:00"
MetadataUpdated="05Feb2002:09:37:00" Name="City" SASAttribute=""
SASColumnLength="32" SASColumnName="City" SASColumnType="C" SASExtendedColumnType=""
SASExtendedLength="0" SASFormat="$Char32." SASInformat="$32." SASPrecision="0"
SASScale="0" SortOrder="" SummaryRole="">

<AccessControls/>
<AnalyticColumns/>
<Changes/>
<DisplayForKey/>
<Documents/>
<Extensions/>
<ExternalIdentities/>
<ForeignKeyAssociations/>
<Groups/>
<Implementors/>
<Indexes/>
<Keys/>
<Keywords/>
<MLAggregations/>
<Notes/>
<PrimaryPropertyGroup/>
<Properties/>
<PropertySets/>
<QueryClauses/>
<ResponsibleParties/>
<SourceFeatureMaps/>
<SourceTransformations/>
<SpecSourceTransformations/>
<SpecTargetTransformations/>
<Table>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"
Desc="Sales offices in NW region"/>

</Table>
<TargetFeatureMaps/>
<TargetTransformations/>
<Timestamps/>
<Trees/>

<UniqueKeyAssociations/>
<UsedByPrototypes/>

64 Retrieving the Attributes of a Specified Object � Chapter 7

<UsingAggregations/>
<UsingPrototype/>
</Column>

The OMI_ALL flag retrieves all possible attributes and associations for the specified
Column object, including those for which values have not been defined. To limit the
output to properties that have values, you can additionally set the OMI_SUCCINCT
(2048) flag. Simply add the value of OMI_SUCCINCT to OMI_ALL (2048 + 1= 2049)
and specify the sum in the <Flags> element. The OMI_SUCCINCT flag instructs the
metadata server to omit any properties that are empty or have a null value from the
output.

Retrieving the Attributes of a Specified Object
To retrieve only a metadata object’s attributes, set the OMI_ALL_SIMPLE (8) flag in

the GetMetadata request. The following is an example of a GetMetadata request that
sets the OMI_ALL_SIMPLE flag:

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001"/>
</Metadata>
<NS>SAS</NS>
<!--OMI_ALL_SIMPLE flag -->
<Flags>8</Flags>
<Options/>
</GetMetadata>

In the request:
� The <Metadata> element specifies simply a metadata type and an object instance

identifier.
� The <NS> parameter specifies the namespace in which to process the request.
� The <Flags> element specifies the number representing the OMI_ALL_SIMPLE

flag.

Here is an example of the output returned by the metadata server:

<!-- Using the GETMETADATA method. -->

<Column Id="A53TPPVI.A5000001" BeginPosition="0" ColumnLength="32"
ColumnName="City" ColumnType="12" Desc="City of Sales Office"
EndPosition="0" IsDiscrete="0" IsNullable="0" LockedBy=""
MetadataCreated="05Feb2002:09:37:00" MetadataUpdated="05Feb2002:09:37:00"
Name="City" SASAttribute="" SASColumnLength="32" SASColumnName="City"
SASColumnType="C" SASExtendedColumnType="" SASExtendedLength="0"
SASFormat="$Char32." SASInformat="$32." SASPrecision="0" SASScale="0"
SortOrder="" SummaryRole=""/>

The GetMetadata method retrieves all possible attributes for the specified Column
object, including those for which values have not been defined. To limit the output to
attributes that have values, additionally set the OMI_SUCCINCT (2048) flag. Any
attributes that are null or empty will be omitted from the returned metadata.

Querying Specific Metadata Objects � Retrieving Properties of Associated Objects 65

Retrieving Properties of Associated Objects
To retrieve properties for associated objects, the GetMetadata method supports the

OMI_TEMPLATES (4) flag and templates. A template is an additional property string
that is specified in the <Options> element in a <Templates> element. The default
behavior of the GetMetadata method is to return specified properties for the metadata
object identified in the <Metadata> element and the Id= and Name= attributes for any
associated objects. That is, any attributes specified for associated (nested) objects in the
main property string are ignored.

A template enables you to request additional attributes for the main object in the
GetMetadata request as well as specific attributes for associated objects and additional
associated objects. Any properties identified in the template are retrieved in addition to
the properties requested in the <Metadata> element or requested by other GetMetadata
flags.

The following is an example of a GetMetadata request that specifies a template.

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001" Name="" Desc="" ColumnType=""
SASFormat="">
<Table/>
</Column>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TEMPLATE -->
<Flags>4</Flags>
<Options>
<Templates>

<Column Id="" ColumnLength="" BeginPosition="" EndPosition=""/>
<PhysicalTable Id="" Name="" Desc="" DBMSType="" MemberType=""/>

</Templates>
</Options>
</GetMetadata>

In the request, note the following:

� The <Metadata> element specifies a metadata type, an object instance identifier,
four of the metadata type’s attributes, and an association name.

� The <NS> element specifies the namespace in which to process the request.

� The <Flags> element specifies the number representing the OMI_TEMPLATE flag.

� The <Options> element contains a <Template> element and two templates. The
first template specifies additional attributes to retrieve for the Column object
identified in the <Metadata> element. The second template specifies attributes to
retrieve for the PhysicalTable object that is associated with the Column.

66 Retrieving Subtypes � Chapter 7

Here is an example of the output returned by the metadata server:

<!-- Using the GETMETADATA method. -->

<Column Id="A53TPPVI.A5000001" Name="City" Desc="City of Sales Office"
ColumnType="12" SASFormat="$Char32." ColumnLength="32" BeginPosition="0"
EndPosition="0">

<Table>
<PhysicalTable Id="A53TPPVI.A4000001" Name="Sales Offices"

Desc="Sales offices in NW region" DBMSType="" MemberType=""/>
</Table>
</Column>

The request retrieved the values of the Name, Desc, ColumnType, SASFormat,
ColumnLength, BeginPosition, and EndPosition attributes of the specified Column
object. In addition, it retrieved the Id, Name, Desc, DBMSType, and MemberType
attributes of the Column object’s associated PhysicalTable object.

For information about how to create a template, see Using Templates.

Retrieving Subtypes
The GetMetadata method provides the OMI_INCLUDE_SUBTYPES (16) flag for

retrieving the subtypes of a metadata object. A subtype is a metadata type that inherits
properties from another metadata type and stores additional properties. The flag can be
useful for retrieving common metadata for related metadata types.

OMI_INCLUDE_SUBTYPES cannot be set in a GetMetadata call unless
OMI_TEMPLATES (4) is also set. When OMI_INCLUDE_SUBTYPES is set, the
GetMetadata method returns the metadata requested in the <Templates> element for
the metadata object identified in the <Metadata> parameter and any subtypes.

Combining GetMetadata Flags
When OMI_SUCCINCT (2048) is added to any flag combination, only attributes that

are non-null and association containers that hold associated objects are returned.
When OMI_ALL (1) and OMI_ALL_SIMPLE (8) are set together, the behavior is the

same as if OMI_ALL was set alone. The server returns all possible attributes for the
requested object and the Id and Name attributes of all possible associated objects.

When OMI_ALL_SIMPLE (8) is set with OMI_TEMPLATE (4), the server returns all
possible attributes for the specified object and attributes for associated objects that are
specified in the template.

When OMI_ALL (1) is set with OMI_TEMPLATE (4), the server returns all possible
attributes for the specified object, the Id and Name attributes of all possible associated
objects, and any additional attributes for associated objects specified in the template.

When OMI_INCLUDE_SUBTYPES (16) is set with OMI_TEMPLATE (4), the server
returns the properties requested in the template for the specified object and any
subtypes of the specified object. When OMI_INCLUDE_SUBTYPES is set without
OMI_TEMPLATE, it is ignored.

Querying Specific Metadata Objects � Filtering the Associated Objects that are Returned by a GetMetadata Request 67

Filtering the Associated Objects that are Returned by a GetMetadata
Request

The GetMetadata method supports search criteria in the property strings specified in
both the <Metadata> element and in the <Templates> element to filter the associated
objects that are retrieved by a given request. The search criteria enables you to select
to retrieve only associated objects that match a specified attribute=value pair. The
search strings are specified on the association name element of the XML property string
in the form:

<AssociationName search="AttributeCriteria"/>

In the <Metadata> element, the search string would look like this:

<Metadata>
<MetadataType>

<AssociationName search="AttributeCriteria"/>
</MetadataType>

</Metadata>

In the <Templates> element, the search string would look like this:

<Templates>
<MetadataType>

<AssociationName search="AttributeCriteria"/>
</MetadataType>

</Templates>

AttributeCriteria supports the same syntax as the <XMLSelect> AttributeCriteria
component. The criteria is described in “Attribute Criteria Component” on page 54.

An example of a GetMetadata request that specifies a search string is shown below:

<GetMetadata>
<Metadata>

<Column Id="A53TPPVI.A5000001" Name="" Desc="">
<Indexes search="@IsUnique=’Yes’"/>
</Column>

</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>
</GetMetadata>

The request retrieves Index objects associated with the specified Column object that
have the value “Yes” in the IsUnique attribute.

When a search string is specified in both the <Metadata> element and in a template,
the following rules apply:

� If the search criteria is specified for different association names in the <Metadata>
and <Templates> elements, both will be applied.

� If the search criteria is specified for the same association name in both the
<Metadata> and <Templates> elements, the template definition is ignored.

For an example of a GetMetadata request that specifies a search string in the
<Template> element, see “Additional GetMetadata Examples” on page 69.

68 Using Templates � Chapter 7

Using Templates
A template is a property string that you specify in a <Templates> element. In a

GetMetadata or GetMetadataObjects method call, the <Templates> element is passed in
the <Options> element to request additional properties for the metadata type specified
in the main element of the method call, its subtypes, or its associated objects. The
purpose of the template is to expand or to filter the properties requested by other
GetMetadata and GetMetadataObjects parameters.

This section describes how to create a template and contains additional examples of
GetMetadata and GetMetadataObject requests that specify templates.

Creating a Template
A template is an XML property string that describes the information that will be

returned for a particular metadata type. The string includes the attributes and
associations that should be returned for that type. The string should not request
properties for nested subelements. Instead, additional templates should be created to
request properties for associated objects.

As an example, the following is a template for a PhysicalTable object that returns its
object Id, the date when the table was created, and the columns associated with the
table:

<PhysicalTable Id="" CreatedDT="">
<Columns/>

</PhysicalTable>

To retrieve properties for the requested Column objects, you would submit an
additional template that looks like this:

<Column Name="" SASFormat=""/>

The metadata server will retrieve the Name and SASFormat attributes for the
column objects requested by the first template.

Templates are passed to the metadata server in a <Templates> element in the
<Options> element of a method call. When the <Templates> element is used, the
OMI_TEMPLATE (4) flag (or other appropriate template flag) must also be set to
instruct the metadata server to look for the element. The following is an example of a
<Templates> element that passes the two templates previously described:

<Templates>
<PhysicalTable Id="" CreatedDT="">
<Columns/>

</PhysicalTable>
<Column Name="" SASFormat=""/>

</Templates>

The metadata type specified in a template can be the same one specified in the
<Metadata> element of the GetMetadata request (or the <Type> element in a
GetMetadataObjects method call), a subtype, or the metadata type of an associated
object. In the preceding examples, the object requested in the main element is assumed
to be the PhysicalTable metadata type.

The order of the templates in the <Templates> element is not important unless the
OMI_INCLUDE_SUBTYPES (16) flag is also set. The default behavior of the metadata
server is to search for objects of every type listed in the <Templates> element, and to
retrieve the specified properties if found. When OMI_INCLUDE_SUBTYPES is set, the
metadata server cycles through the templates iteratively, beginning with the first

Querying Specific Metadata Objects � Additional GetMetadata Examples 69

template and proceeding in order to the last, and retrieves the specified properties of
the specified type and its subtypes. If a template for a subtype is found before one for
its supertype, then the subtype’s template is applied, and no more searching is done for
that particular type.

Using a Template to Specify Search Criteria
The GetMetadata method supports search criteria on association names both in the

metadata property strings specified in the <Metadata> element and in a template to
filter the associated objects that are retrieved by a given request. The search criteria
enable you to select to retrieve only associated objects matching a specified attribute/
value pair.

An example of a template that specifies search criteria is:

<PhysicalTable Id="">
<Columns search="@SASAttribute=’XV_A_UNICODE’"/>

</PhysicalTable>

This example specifies to retrieve only Column objects that have a value of
“XV_A_UNICODE” in the SASAttribute attribute, meaning that the columns they
describe support unicode data. For a detailed description of search criteria syntax, and
for information about the behavior when a search string is specified in both the
<Metadata> element and a template, see “Filtering the Associated Objects that are
Returned by a GetMetadata Request” on page 67.

Additional GetMetadata Examples
The following is an example of a GetMetadata request that specifies search criteria

in both the <Metadata> element and in a template. Even though the search criteria are
specified on the same association name, both requests are honored because they specify
different attribute criteria.

<GetMetadata>
<Metadata>
<Document Id="A5000002.A7000001">
<ResponsibleParties search="@Name=’Jim’"/>

</Document>
</Metadata>
<NS>SAS</NS>
<Flags>4</Flags>
<Options>
<Templates>
<Document Id="" Name="" TextType="">
<ResponsibleParties search="@Role=’owner’"/>
</Document>

</Templates>
</Options>
</GetMetadata>

The following is an example of a GetMetadata request that filters associated objects
at several levels:

<GetMetadata>
<Metadata>
<Document Id="A5000002.A7000001"/>
</Metadata>

70 Additional GetMetadataObjects Examples � Chapter 7

<NS>SAS</NS>
<Flags>4</Flags>
<Options>

<Templates>
<Document Id="" Name="" TextType="">
<ResponsibleParties search="@Role=’OWNER’"/>

</Document>
<ResponsibleParty Id="" Name="">
<Persons search="@Name?’Joe’"/>

</ResponsibleParty>
<Person Id="" Name="" Title=""/>

</Templates>

The first template requests attributes for a Document object and filters objects that
have a ResponsibleParties association using the Role attribute. The second template
requests attributes for the returned ResponsibleParty objects and specifies a second
filter to retrieve only Person objects that have a Name attribute value of ’Joe’. The third
template requests the Id, Name, and Title attributes of the returned Person objects.

Additional GetMetadataObjects Examples
In order to retrieve properties for the objects returned by the GetMetadataObjects

method, you must set the OMI_GET_METADATA (256) flag and one or more other
GetMetadata flags. When OMI_TEMPLATE (4) is set and a template is specified in a
GetMetadataObjects request, the properties specified in the template are returned in
addition to any properties requested by other flags and options. By including search
criteria, a template can also be used to filter the associated objects that are retrieved.

The following is an example of a GetMetadataObjects request that uses templates to
retrieve attributes for objects of the requested metadata type and their associated
objects. The request retrieves the Id, Name, and TextType attributes of all Document
objects in the named repository. In addition, the request retrieves the Id, Name, and
Role attributes of all ResponsibleParty objects that are associated with the Document
objects.

<GetMetadataObjects>
<Reposid>A00000001.A50TC12Z</Reposid>
<Type>Document</Type>
<Objects/>
<NS>SAS</NS>
<!-- OMI_GET_METADATA(256) + OMI_TEMPLATE(4) -->
<Flags>260</Flags>
<Options>

<Templates>
<Document Id="" Name="" TextType="">

<ResponsibleParties/>
</Document>
<ResponsibleParty Id="" Name="" Role=""/>

</Templates>
</Options>

</GetMetadataObjects>

The following is an example of a GetMetadataObjects request that uses an
<XMLSelect> element to filter the initial set of objects that are retrieved and a
template to filter the associated objects. The <XMLSelect> element specifies to retrieve
only Document objects that contain the word ’Customer’ in the Name attribute. The

Querying Specific Metadata Objects � Additional GetMetadataObjects Examples 71

template specifies to retrieve only associated ResponsibleParty objects that have the
Role attribute value of OWNER.

<GetMetadataObjects>
<Reposid>A00000001.A50TC12Z</Reposid>
<Type>Document</Type>
<Objects/>
<NS>SAS</NS>

<!-- OMI_XMLSELECT(128) + OMI_GET_METADATA(256) + OMI_TEMPLATE(4) -->
<Flags>388</Flags>
<Options>

<XMLSelect search="@Name contains ’Customer’"/>
<Templates>

<Document Id="" Name="" TextType="">
<ResponsibleParties search="@Role=’OWNER’"/>

</Document>
</Templates>

</Options>
</GetMetadataObjects>

72

73

P A R T3

Using the Interface to Perform Repository
Management Tasks

Chapter 8.Creating Relationships Between Repositories 75

Chapter 9.Creating a Repository on an External DBMS 87

Chapter 10.Invoking a Repository Audit Trail 93

Chapter 11.Metadata Locking Options 105

Chapter 12.Using the Change Management Facility 107

Chapter 13.Repository Maintenance Tasks 129

74

75

C H A P T E R

8
Creating Relationships Between
Repositories

Overview 75
Creating Dependency Associations 76

Example of Adding a Dependency to a Repository 77

Creating Cross-Repository References 79

Example 79

Querying Dependency Associations 81
Example of Querying Dependency Associations for a Single Repository 81

Example of Querying Dependency Associations for All Repositories 81

Querying Cross-Repository References 82

Example of Querying Cross-Repository References 83

Querying Objects Across Multiple Repositories (Federated Query) 83

Example of a Federated Query 84
Deleting a Dependency Association 84

Example 85

Deleting a Cross-Repository Reference 85

Example 85

Overview

The SAS Open Metadata Architecture permits relationships to be defined between
repositories.

� A relationship links two repositories so that you can create cross-repository
references between the repositories. A cross-repository reference is an association
that exists between metadata objects in different repositories. An example of a
cross-repository reference is a UsingPackages association that is created between a
SASLibrary object that exists in a Corporate repository and a SASLibrary object
that exists in a Department repository. A cross-repository reference cannot be
created unless a relationship exists between the repositories.

� When linking multiple repositories, relationships can be used to create a
repository chain. The existence of a chain enables you to query metadata objects
across the repositories. For example, if a repository chain were defined that
included a Corporate repository, a Department repository, and a Group repository,
you could request to list all metadata objects of type SASLibrary that exist in
these repositories from the perspective of any repository in the chain. A query that
includes multiple repositories is known as a “federated query”.

A relationship is created by defining a dependency association between two
repositories. A dependency association is an association that marks a repository as
“using” or “being used by” another repository.

76 Creating Dependency Associations � Chapter 8

Note: A user must have Administrative User status on the SAS Metadata Server
in order to add a dependency association to a repository. For more information about
this privilege, see the SAS Intelligence Platform: Security Administration Guide. �

Creating Dependency Associations

A dependency association is created by defining a DependencyUses or a
DependencyUsedBy association between two repository objects. A repository object is
an object that is created using a metadata type from the REPOS namespace of the SAS
Open Metadata Interface. The only repository metadata type supported at this time is
RepositoryBase.

� A repository that is defined as having a DependencyUses association to another
repository is said to use the other repository.

� A repository that is defined as having a DependencyUsedBy association to another
repository is said to be used by the other repository.

The “direction” of the association is significant in two ways:

� Cross-repository references are stored in the repository that has the
DependencyUses association. Therefore, queries of cross-repository references in
the repository that has a DependencyUses association are much faster than queries
of the repository that has the DependencyUsedBy association. When defining a
dependency association between two repositories, define the DependencyUses
association for the repository that is expected to be queried the most frequently.

� In a federated query, the “uses” and “used by” relationships determine what
repositories are included in the object search. For example, if a repository chain
were defined such that a Group repository had a DependencyUses association to a
Department repository, and the Department repository had a DependencyUses
association to a Corporate repository, a query of each repository would have the
results summarized in Table 1. A graphic representation of the repository chain is
provided in Figure 1.

Table 8.1 Repositories Searched in a Federated Query

Repository Queried Flag Repositories Searched

Group OMI_DEPENDENCY_USES All

Group OMI_DEPENDENCY_USED_BY Group

Department OMI_DEPENDENCY_USES Department, Corporate

Department OMI_DEPENDENCY_USED_BY Department, Group

Corporate OMI_DEPENDENCY_USES Corporate

Corporate OMI_DEPENDENCY_USED_BY All

Display 8.1 Representation of a Repository Chain

Creating Relationships Between Repositories � Example of Adding a Dependency to a Repository 77

Rules for creating dependency associations are as follows:
� The repositories in a relationship must use the same metadata server.
� A repository chain cannot contain loops or cycles. Example of a Valid

Configuration and a Loop illustrates what is considered a valid configuration and
what is considered a loop.

Display 8.2 Example of a Valid Configuration and a Loop

� When a repository chain is defined, cross-repository references can be created only
between repositories that have a direct dependency. For example, if a dependency
association is defined between a Corporate repository and a Department
repository, and another is defined between the Department repository and a Group
repository, then you cannot create cross-repository references between the
Corporate repository and the Group repository. In order to create references
between them, you must also define a dependency association between the
Corporate and the Group repositories.

A dependency association can be created when a repository is created (using the
AddMetadata method) or it can be added to an existing repository (using the
UpdateMetadata method). For an example of how a dependency association is created,
see “Example of Adding a Dependency to a Repository” on page 77. To learn more about
cross-repository references, see “Creating Cross-Repository References” on page 79. To
learn more about federated queries, see “Querying Objects Across Multiple Repositories
(Federated Query)” on page 83.

Example of Adding a Dependency to a Repository
The following example creates three repositories – Corporate, Department, and

Group1 – then after the repositories are created, uses the UpdateMetadata method to
add relationships between them.

This method call creates the repositories:

<AddMetadata>
<Metadata>
<!-- Create Corporate repository -->
<RepositoryBase Name="corporate" Desc="Corporate repository"

Path="c:\testdat\xrpos\corporate"/>
<!-- Create Department repository -->
<RepositoryBase Name="dept" Desc="Department repository"

Path="c:\testdat\xrpos\dept"/>

78 Example of Adding a Dependency to a Repository � Chapter 8

<!-- Create Group 1 repository -->
<RepositoryBase Name="group1" Desc="Group1 repository"

Path="c:\testdat\xrpos\group1"/>
</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

This is the output returned by the metadata server:

<RepositoryBase Name="corporate" Desc="Corporate repository"
Path="c:\testdat\xrpos\corporate" Id="A0000001.A3WB4KWB" Access="0" RepositoryType=""/>
<RepositoryBase Name="dept" Desc="Department repository"
Path="c:\testdat\xrpos\dept" Id="A0000001.A3POH2A5" Access="0" RepositoryType=""/>
<RepositoryBase Name="group1" Desc="Group1 repository"
Path="c:\testdat\xrpos\group1" Id="A0000001.A39V7REZ" Access="0" RepositoryType=""/>

The following method call creates dependency associations between the repositories.

<UpdateMetadata>
<Metadata>
<!-- Update Corporate repository -->
<RepositoryBase Id="A0000001.A3WB4KWB">

<DependencyUsedBy>
<!-- Specify Department repository -->

<RepositoryBase Objref="A0000001.A3POH2A5"/>
</DependencyUsedBy>

</RepositoryBase>
<!-- Update Department repository -->
<RepositoryBase Id="A0000001.A3POH2A5"/>

<DependencyUsedBy>
<!-- Specify Group 1 repository -->
<RepositoryBase Objref="A0000001.A39V7REZ"/>

</DependencyUsedBy>
</RepositoryBase>
</Metadata>
<NS>REPOS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

Here is the output returned by the metadata server:

<RepositoryBase Id="A0000001.A3WB4KWB">
<DependencyUsedBy>

<RepositoryBase Objref="A0000001.A3POH2A5"/>
</DependencyUsedBy>
</RepositoryBase>
<RepositoryBase Id="A0000001.A3POH2A5">

<DependencyUsedBy>
<RepositoryBase Objref="A0000001.A39V7REZ"/>

</DependencyUsedBy>
</RepositoryBase>

Creating Relationships Between Repositories � Example 79

A DependencyUsedBy association is created between the Corporate repository and
the Department repository and between the Department repository and the Group1
repository. This means the Group1 repository uses the Department repository and the
Department repository uses the Corporate repository. In the method calls, note:

� the AddMetadata request specifies the repository manager identifier
(A0000001.A0000001) in the <Reposid> element

� both calls specify the REPOS namespace
� both calls specify the OMI_TRUSTED_CLIENT flag (268435456), which is

required for write operations.

Creating Cross-Repository References
As previously stated, a cross-repository reference is an association that is created

between objects in different repositories. A dependency association must have been
established between the repositories in question before a cross-repository reference can
be created.

Like other associations, cross-repository references can be added both to objects that
already exist, or can be defined when the objects are created.

� To create a cross-repository reference to an existing object, simply specify its
repository identifier along with its object instance identifier in the form
reposid.instanceid in the ObjRef attribute of the XML subelement defining the
association.

� To create a cross-repository reference and a new object in a foreign repository,
specify the repository identifier and a symbolic name for the object using the Id
attribute. Use of the Id attribute with a symbolic name is equivalent to passing a
null value in the Id attribute; it indicates to the server that a new object is to be
created. A symbolic name is an alias that is preceded by $ (dollar sign). The alias
enables you to refer back to the object that is being created before the server
assigns it an identifier, and is automatically replaced by the real identifier when
the object is created in the specified repository.

Example
The following XML method calls create a SASLibrary object in each of the three

repositories and creates cross-references between the objects.
This method call creates a SASLibrary object in the Group 1 repository named

Group1Lib:

<AddMetadata>
<Metadata>
<!-- Metadata specifies library object named Group1Lib -->

<SASLibrary Name="Group1Lib" Desc="Group 1 Library"/>
</Metadata>
<!-- Reposid specifies Group 1 repository -->
<Reposid>A0000001.A39V7REZ</Reposid>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

This is the information returned by the metadata server:

<SASLibrary Name="Group1Lib" Desc="Group 1 Library" Id="A39V7REZ.A1000001"/>

80 Example � Chapter 8

This method call creates a SASLibrary object in the Corporate repository named
CorpLib:

<AddMetadata>
<Metadata>
<!-- Metadata specifies library object named CorpLib -->

<SASLibrary Name="CorpLib" Desc="Corporate Library"/>
</Metadata>
<!-- Reposid specifies the Corporate repository -->
<Reposid>A0000001.A3WB4KWB</Reposid>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

This is the output returned by the metadata server:

<SASLibrary Name="CorpLib" Desc="Corporate Library" Id="A3WB4KWB.A1000001"/>

This method call creates a SASLibrary object in the Department repository named
DeptLib and creates cross-repository references between DeptLib, CorpLib, and
Group1Lib. The cross-repository references are created at the same time as DeptLib
because library will have an association to the other two libraries and the Department
repository has a dependency association with both of the other repositories.

<AddMetadata>
<Metadata>
<!-- Metadata specifies library object named DeptLib -->
<SASLibrary Name="DeptLib" Desc="Department library">
<!-- The next two statements create an association to DeptLib -->
<UsingPackages>

<!-- ObjRef= specifies the Corporate library -->
<SASLibrary ObjRef="A3WB4KWB.A1000001" Name="CorpLib"/>

</UsingPackages>
<UsedByPackages>

<!-- ObjRef= specifies the Group1Lib -->
<SASLibrary ObjRef="A39V7REZ.A1000001" Name="Group1Lib"/>

</UsedByPackages>
</SASLibrary>

</Metadata>
<!-- Reposid specifies the Department repository -->
<Reposid>A0000001.A3POH2A5</Reposid>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

Here is the output returned by the metadata server:

<SASLibrary Name="DeptLib" Desc="Department library" Id="A3POH2A5.A1000001">
<UsingPackages>
<SASLibrary ObjRef="A3WB4KWB.A1000001" Name="CorpLib"/>

</UsingPackages>
<UsedByPackages>
<SASLibrary ObjRef="A39V7REZ.A1000001" Name="Group1Lib"/>

</UsedByPackages>

Creating Relationships Between Repositories � Example of Querying Dependency Associations for All Repositories 81

</SASLibrary>

A UsingPackages association is created between DeptLib and CorpLib. A
UsedByPackages association is created between DeptLib and Group1Lib.

Querying Dependency Associations
Information about dependency associations is stored in the repository manager and

can be retrieved by using the GetMetadata method or the GetMetadataObjects method.
� Use the GetMetadata method to retrieve dependency information for a specific

repository.
� Use the GetMetadataObjects method to retrieve dependency information for all

repository objects in the repository manager.

When GetMetadataObjects is used, the OMI_GET_METADATA (256) flag and a
GetMetadata flag that enables you to retrieve associations, such as OMI_ALL (1) or
OMI_TEMPLATE (4), must also be set.

Example of Querying Dependency Associations for a Single Repository
The following is an example of a GetMetadata request that queries the dependency

associations defined for the Corporate repository.

<GetMetadata>
<Metadata>
<!-- Corporate repository -->
<RepositoryBase Id="A0000001.A3WB4KWB" Name="corporate">

<DependencyUses/>
<DependencyUsedBy/>

</RepositoryBase>
</Metadata>
<NS>REPOS</NS>
<Flags>0</Flags>
<Options/>
</GetMetadata>

Here is the output received from the metadata server:

<RepositoryBase Id="A0000001.A3WB4KWB" Name="corporate">
<DependencyUses/>
<DependencyUsedBy>

<RepositoryBase Id="A0000001.A3POH2A5" Name="dept" Desc="Department repository"/>
</DependencyUsedBy>

</RepositoryBase>

The Corporate repository does not have any DependencyUses associations defined for
it. It has one DependencyUsedBy association to the Department repository.

Example of Querying Dependency Associations for All Repositories
The following is an example of a method call that retrieves the dependency

associations defined for all repositories registered in a repository manager:

<GetMetadataObjects>
<!--Specify repository manager identifier -->

82 Querying Cross-Repository References � Chapter 8

<Reposid>A0000001.A0000001</Reposid>
<Type>RepositoryBase</Type>
<Objects/>
<NS>REPOS</NS>
<!-- Specify OMI_GET_METADATA (256) + OMI_TEMPLATE (4) flags -->
<Flags>260</Flags>
<Options>
<Templates>
<RepositoryBase Id="" Name="" Desc="">
<DependencyUses/>
</RepositoryBase>

</Templates>
</Options>
</GetMetadataObjects>

In the call, note:

� the <Reposid> element specifies the repository manager identifier

� the <Type> element specifies the RepositoryBase metadata type

� the <Flags> element specifies OMI_GET_METADATA (256) and OMI_TEMPLATE
(4)

� the <Options> element includes a <Templates> element that requests the Id=,
Name=, and Desc= attributes and all DependencyUses associations found for each
object.

The output returned by the metadata server is as follows:

<RepositoryBase Id="A0000001.A3WB4KWB" Name="corporate" Desc="Corporate repository">
<DependencyUses/>
</RepositoryBase>
<RepositoryBase Id="A0000001.A3POH2A5" Name="dept" Desc="Department repository">
<DependencyUses>
<RepositoryBase Id="A0000001.A3WB4KWB" Name="corporate" Desc="Corporate repository">

<DependencyUses/>
</RepositoryBase>
</DependencyUses>
</RepositoryBase>
<RepositoryBase Id="A0000001.A39V7REZ" Name="group1" Desc="Group1 repository">
<DependencyUses>
<RepositoryBase Id="A0000001.A3POH2A5" Name="dept" Desc="Department repository">
<DependencyUses>
<RepositoryBase Id="A0000001.A3WB4KWB" Name="corporate" Desc="Corporate repository">
<DependencyUses/>
</RepositoryBase>
</DependencyUses>
</RepositoryBase>
</DependencyUses>
</RepositoryBase>

Querying Cross-Repository References

Information about cross-repository references is obtained by using the GetMetadata
method. The GetMetadata method retrieves specified attributes and associations for a
specific metadata object. Because cross-repository references are stored in the

Creating Relationships Between Repositories � Querying Objects Across Multiple Repositories (Federated Query) 83

repository that has a DependencyUses association, no additional flags are required to
retrieve cross-repository references when a repository that has a DependencyUses
association is queried. However, when querying a repository that has a
DependencyUsedBy association, the OMI_DEPENDENCY_USED_BY (16384) flag must
be set to retrieve the cross-repository references. The OMI_DEPENDENCY_USED_BY
flag instructs the metadata server to search the partner repository’s association list.

Example of Querying Cross-Repository References
The following example queries the Department repository for objects that have

UsingPackages and UsedByPackages associations defined.

<GetMetadata>
<Metadata>
<!-- Specify DeptLib and request information about the associations -->
<SASLibrary Id="A3POH2A5.A1000001">
<UsingPackages/>
<UsedByPackages/>

</SASLibrary>
</Metadata>
<NS>SAS</NS>
<!-- No flags are included-->
<Flags>0</Flags>
<Options/>
</GetMetadata>

Here is the output returned by the metadata server:

<SASLibrary Id="A36LIBAV.A1000001">
<UsingPackages>

<SASLibrary Id="A3ZX5267.A1000001" Name="CorpLib"
Desc="Corporate Library"/>

</UsingPackages>
<UsedByPackages/>

</SASLibrary>

Note that the server returns information about the cross-reference between CorpLib
and DeptLib but not about DeptLib and Group1Lib. This is because information about
cross-repository references is stored in the repository that has a DependencyUses
association, and the Department repository has a DependencyUsedBy association to the
Group1 repository.

Querying Objects Across Multiple Repositories (Federated Query)

When a repository chain has been defined, you can retrieve all objects of a specified
type from all or some of the repositories in the chain by using the GetMetadataObjects
method. This is referred to as a federated query. To perform a federated query, simply
specify the metadata type of the objects that you want to retrieve in the <Type>
element, then set one or both of the OMI_DEPENDENCY_USES (8192) or
OMI_DEPENDENCY_USED_BY (16384) flags.

� OMI_DEPENDENCY_USED_BY instructs the metadata server to search for
objects in repositories that have a DependencyUsedBy association in relation to
the repository in which the request was issued.

84 Example of a Federated Query � Chapter 8

� OMI_DEPENDENCY_USES instructs the metadata server to search repositories
that have a DependencyUses association in relation to the repository in which the
request was issued.

� When set together, the flags instruct the server to search repositories on both sides
of the repository chain.

Note that queries that cross three or more repositories have more overhead
associated with them than a query between two repositories. In addition, a query that
sets the OMI_DEPENDENCY_USES flag is considerably faster than one that sets the
OMI_DEPENDENCY_USED_BY flag.

The default behavior of the GetMetadataObjects method is to return general,
identifying information for each object of the specified type. To retrieve additional
properties for each type, you can set the OMI_GET_METADATA (256) flag and one or
more other GetMetadata flags. However, exercise caution when using these flags. When
a GetMetadata request is issued from within a federated query, the server retrieves the
specified properties for each object returned by GetMetadataObjects in each repository,
including any cross-repository references defined for each object, under the constraints
described in “Querying Cross-Repository References” on page 82. When repositories
that have a DependencyUsedBy association are queried, this can result in significant
processing overhead.

Example of a Federated Query

The following is an example of a federated query. Issued from the Corporate
repository, it retrieves all SASLibrary objects in repositories that have a
DependencyUsedBy association in the repository chain.

<GetMetadataObjects>
<!-- Corporate repository -->
<Reposid>A0000001.A3WB4KWB</Reposid>
<Type>SASLibrary</Type>
<Objects/>
<NS>SAS</NS>
<!-- OMI_DEPENDENCY_USED_BY flag -->
<Flags>16384</Flags>
<Options/>
</GetMetadataObjects>

Here is the output returned by the metadata server:

<Objects>
<SASLibrary Id="A3WB4KWB.A1000001" Name="CorpLib"/>
<SASLibrary Id="A3POH2A5.A1000001" Name="DeptLib"/>
<SASLibrary Id="A39V7REZ.A1000001" Name="Group1Lib"/>

</Objects>

No GetMetadata flags are set; therefore, the server retrieves only the Id and Name
attributes of each object.

Deleting a Dependency Association

A dependency association is deleted by using the UpdateMetadata method.

Creating Relationships Between Repositories � Example 85

Example
The following method call removes the dependency association between the

Department repository and the Group 1 repository. Specifying the Function=“Replace”
directive on the DependencyUsedBy association name without specifying any
association subelements deletes any associations of that name defined for the specified
RepositoryBase object.

<UpdateMetadata>
<Metadata>
<!--Metadata specifies Department repository -->
<RepositoryBase Id="A0000001.A3POH2A5">
<DependencyUsedBy Function="Replace"/>

</RepositoryBase>
</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

Here is the output returned by the metadata server:

<RepositoryBase Id="A0000001.A3POH2A5">
<DependencyUsedBy Function="Replace"/>

</RepositoryBase>

The request deletes all DependencyUsedBy associations that might have been
defined for the Department repository.

Deleting a Cross-Repository Reference
Cross-repository references are also removed by using the UpdateMetadata method,

from the repository that has a DependencyUses association.

Example
The following UpdateMetadata request removes the UsingPackages and

UsedByPackages associations defined for DeptLib in the Department repository.
Specifying the Function=“Replace” directive on each association name without
specifying any association subelements deletes any associations of those names defined
for the specified SASLibrary object.

<UpdateMetadata>
<Metadata>
<!-- Metadata specifies DeptLib and associations to be deleted -->
<SASLibrary Id="A3POH2A5.A1000001" Name="DeptLib">
<UsingPackages Function="Replace"/>
<UsedByPackages Function="Replace"/>

</SASLibrary>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>

86 Example � Chapter 8

<Options/>
</UpdateMetadata>

Here is the output returned by the metadata server:

<SASLibrary Id="A3POH2A5.A1000001" Name="DeptLib">
<UsingPackages Function="Replace"/>
<UsedByPackages Function="Replace"/>

</SASLibrary>

The cross-reference between CorpLib and DeptLib is removed, but the cross-reference
between DeptLib and Group1Lib remains. This is because the Replace directive is
executed on the current repository and the cross-reference between DeptLib and
Group1Lib is stored in the Group 1 repository (the repository that has the
DependencyUses association in that particular association). To remove the
cross-reference between DeptLib and Group1Lib, you must update the Group1
repository.

87

C H A P T E R

9
Creating a Repository on an
External DBMS

Overview of Creating a Repository on an External DBMS 87
Software Requirements 87

Host Requirements 88

DBMS Requirements 88

Repository Registration Requirements 88

Oracle Connection Options 88
DB2 Connection Options 90

Using a Repository on an External DBMS 91

Example of Registering a Repository on an External DBMS 91

Register an Oracle Repository 91

Register a DB2 Repository 91

Overview of Creating a Repository on an External DBMS

The SAS Metadata Server enables you to create and use SAS metadata repositories
on the Oracle and IBM DB2 external database management systems.

SAS metadata repositories are SAS libraries. Like base engine libraries, DBMS
libraries and tables are accessed by passing engine-connection and LIBNAME options
to the appropriate LIBNAME engine.

You create SAS metadata repositories on an external DBMS by specifying an
alternate engine and passing SAS/ACCESS LIBNAME options at repository
registration. The SAS Metadata Server repository manager is also a SAS metadata
repository. You can define the server’s repository manager in an external DBMS by
specifying an alternate engine and passing SAS/ACCESS LIBNAME options in the
omaconfig.xml server configuration file. For information about modifying the
omaconfig.xml file, see the SAS Intelligence Platform: System Administration Guide.

Software Requirements

A host that will create or access a repository that exists on an external DBMS must
have SAS software, the appropriate DBMS client software, and the appropriate SAS/
ACCESS interface software. For example, in addition to SAS 9.1,

� an Oracle client needs the latest version of Oracle Client software and SAS/
ACCESS Interface to Oracle software

� a DB2 client needs the latest version of DB2 Client software and SAS/ACCESS
Interface to DB2 under UNIX and PC hosts software.

88 Host Requirements � Chapter 9

The SAS/ACCESS software and DBMS software must be installed on the same
machine as SAS software.

Host Requirements
Both SAS/ACCESS to DB2 software and SAS/ACCESS to Oracle software use shared

libraries. When a metadata server is running in a UNIX host environment, you must
specify the location of the shared libraries in a system environment variable, and
sometimes indicate the software version of the DBMS that you have installed at your
site. For DB2, you must also set the INSTHOME environment variable to your DB2
home directory. For Oracle, you must set the ORACLE_HOME environment variable to
your Oracle home directory.

The environment variables are platform-specific. See the Configuration Guide for
SAS Foundation for UNIX Environments for information about the environment
variables that are appropriate for your environment. This document is included in your
SAS Installation Kit.

DBMS Requirements
The libraries in which repositories will be created and their subordinate tables can

be created by the metadata server, via SAS/ACCESS software, or you can create the
tables in the database before registering a repository.

Repository Registration Requirements
The metadata server uses the following parameters to register (create) a repository

or repository manager on an external DBMS:

ENGINE= specifies the engine to use to access the repository. This can be the
default base engine or a SAS/ACCESS engine, such as Oracle or
DB2.

NAME= is a name for the repository. The repository name is required.

DESC= is an optional description of the repository.

PATH= is the location of the repository directory. When creating a
repository on an external DBMS, this parameter is left blank. The
location of the DBMS table is identified using database-specific
engine-connection and SAS/ACCESS LIBNAME options in the
Options parameter.

OPTIONS= specifies options for accessing the external DBMS. For more
information, see “Oracle Connection Options” on page 88 and “DB2
Connection Options” on page 90.

Oracle Connection Options
SAS/ACCESS Interface to Oracle requires the following engine-connection and

LIBNAME options to connect to and register a repository on Oracle.

Creating a Repository on an External DBMS � Oracle Connection Options 89

PATH=
specifies an alias representing the Oracle driver, node, and database. If you do not
know how to create an alias representing the necessary Oracle driver, node, and
database for your repository, ask your database administrator to provide you with
one.

USER=
specifies an Oracle user name. If the user name contains blanks or national
characters, enclose the name in quotation marks. If you omit an Oracle user name
and password, the default Oracle user ID OPS$sysid is used, if it is enabled.
USER= must be used with PASSWORD=.

PASSWORD=
specifies an Oracle password that is associated with the Oracle user name. If you
omit PASSWORD=, the password for the default Oracle user ID OPS$sysid is
used, if it is enabled.

CONNECTION=shared
specifies that all tables that are opened for reading by this LIBNAME or libref
share this connection.

DBCHAR_CONSTANT_IS_SPOOFED=YES
this option is required and is only valid when used for access to SAS Metadata
Repositories by the Oracle engine.

INSERTBUFF=1
specifies the number of rows in a single Oracle insert operation. A value of 1 of is
required.

PRESERVE_NAMES=YES
preserves spaces, special characters, and mixed case in DBMS column and table
names.

READBUFF=1
specifies the number of rows in a single Oracle fetch. A value of 1 of is required.

REREAD_EXPOSURE=YES
specifies that the SAS/ACCESS engine will behave like a random access engine for
the scope of the connection.

SCHEMA=schema_name
enables you to register multiple repositories using the same Oracle user account.
When SCHEMA= is omitted, the software uses the default schema, which is the
requesting user ID, to create the repository. A schema_name such as “SASrmgr” is
recommended when creating the repository manager. The schema_name must be a
valid SAS name that is unique for the USER=, PASSWORD=, and PATH.

SPOOL=NO
prevents spooling in the Oracle engine. Spooling data by the Oracle engine is
unnecessary because the SAS Metadata Server uses the SAS In Memory Database
for the repository tables. Although the SAS Metadata Server should not cause
spooling to occur in the Oracle engine, explicitly setting the option to NO should
guarantee that no spooling is done.

UTILCONN_TRANSIENT=NO
specifies that a utility connection is maintained for the lifetime of the libref.

For a more detailed description of Oracle engine-connection and LIBNAME options,
see “SAS/ACCESS LIBNAME Statement: Oracle Specifics” in the SAS Language
Reference: Dictionary.

90 DB2 Connection Options � Chapter 9

DB2 Connection Options
The metadata server requires that you specify the following engine-connection and

LIBNAME options to connect to and create a repository on DB2.

DATABASE= (DB=)database_name
specifies the DB2 data source or database to which you want to connect.

USER=userid
enables you to connect to a DB2 database with a user ID that is different from the
user ID requesting the connection. The USER= and PASSWORD= connections are
optional in DB2. If you specify USER=, you must also specify PASSWORD=. If
USER= is omitted, your default user ID for your operating environment is used.

PASSWORD=passwd
specifies the DB2 password that is associated with your DBMS user ID, if the
USER= option is specified.

CONNECTION=SHARED
specifies that all tables that are opened for reading by this LIBNAME or libref
share this connection.

DBCHAR_CONSTANT_IS_SPOOFED=YES
this option is required and is only valid when used for access to SAS Metadata
Repositories by the DB2 engine.

PRESERVE_NAMES=YES
preserves spaces, special characters, and mixed case in DBMS column and table
names.

REREAD_EXPOSURE=YES
specifies that the SAS/ACCESS engine will behave like a random access engine for
the scope of the connection.

SCHEMA=schema_name
enables you to register multiple repositories using the same DB2 user account.
When SCHEMA= is omitted, the software uses the default schema, which is the
requesting user ID, to create the repository. A schema_name such as "SASrmgr" is
recommended when creating the repository manager. The schema_name must be a
valid SAS name that is unique for the USER=, PASSWORD=, and DB=.

SPOOL=NO
prevents spooling in the DB2 engine. Spooling data by the DB2 engine is
unnecessary because the SAS Metadata Server uses the SAS In Memory Database
for the repository tables. Although the SAS Metadata Server should not cause
spooling to occur in the DB2 engine, explicitly setting the option to NO should
guarantee that no spooling is done.

INSERTBUFF=1
specifies the number of rows in a single DB2 insert operation. A value of 1 of is
required.

READBUFF=0
specifies the number of rows in each DB2 fetch. A value of 0 is required.

UTILCONN_TRANSIENT=NO
specifies that a utility connection is maintained for the lifetime of the libref.

For a detailed description of these options, see “SAS/ACCESS LIBNAME Statement:
DB2 Specifics” in the SAS Language Reference: Dictionary.

Creating a Repository on an External DBMS � Register a DB2 Repository 91

Using a Repository on an External DBMS
Client requests to a repository on an external DBMS are processed the same way as

they are when the repository is a SAS library.

Example of Registering a Repository on an External DBMS
You can register a repository on an external DBMS by using the SAS Open Metadata

Interface or by using SAS Management Console. The following are examples of
registering a repository using the SAS Open Metadata Interface. In the requests, note
that a repository is created by instantiating an object of metadata type RepositoryBase.
For information about the metadata types used to represent repositories, see “REPOS
Namespace Metadata Types” in the SAS Open Metadata Interface: Reference. For more
information about the AddMetadata method, see “Methods for Reading and Writing
Metadata (IOMI Class)” in the reference.

Register an Oracle Repository
The following method call creates a repository named Scratch1 in an Oracle database

identified by the alias “alien”. The request is formatted for the DoRequest method.

<AddMetadata>
<Metadata>
<RepositoryBase

Engine="oracle"
Name="scratch1"
Desc="test repository"
PATH=""
Options="path=alien user=ot1 password=ot11
reread_exposure=yes preserve_names=yes dbchar_constant_is_spoofed=yes
connection=shared readbuff=1 insertbuff=1 spool=no utilconn_transient=no">

</RepositoryBase>
</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<!-- OMI_TRUSTED_CLIENT flag -- >
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

Register a DB2 Repository
The following method call creates a repository named Scratch1 in a DB2 database

named “sample”. The request is formatted for the DoRequest method.

<AddMetadata>
<Metadata>
<RepositoryBase

Engine="db2"
Name="scratch1"
Desc="test repository"

92 Register a DB2 Repository � Chapter 9

Path=""
Options="db=sample user=ot1 password=Lupin1 reread_exposure=yes
preserve_names=yes dbchar_constant_is_spoofed=yes
connection=shared spool=no readbuff=0 insertbuff=1
utilconn_transient=no">

</RepositoryBase>
</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<!-- OMI_TRUSTED_CLIENT flag -- >
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

The following example creates two repositories named Scratch2 and Scratch3 in a
DB2 database called “sample”. Note the use of the SCHEMA= SAS/ACCESS LIBNAME
option. When SCHEMA= is not used, the software uses the default schema, which is the
user ID, to create the repository. The request is formatted for the DoRequest method.

<AddMetadata>
<Metadata>
<RepositoryBase
Engine="db2"
Name="scratch2"
Desc="test repository 2"
Path=""
Options="db=sample schema=ot18 user=ot1 password=Lupin1
reread_exposure=yes preserve_names=yes dbchar_constant_is_spoofed=yes
connection=shared spool=no readbuff=0 insertbuff=1 utilconn_transient=no">

</RepositoryBase>
<RepositoryBase
Engine="db2"
Name="scratch3"
Desc="test repository 3"
Path=""
Options="db=sample schema=ot19 user=ot1 password=Lupin1
reread_exposure=yes preserve_names=yes dbchar_constant_is_spoofed=yes
connection=shared spool=no readbuff=0 insertbuff=1 utilconn_transient=no">

</RepositoryBase>
</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<!-- OMI_TRUSTED_CLIENT flag -- >
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

93

C H A P T E R

10
Invoking a Repository Audit Trail

Overview 93
Starting the Audit Trail 94

AuditType Attribute 94

AuditPath Attribute 94

Audit File Format 95

Example of Using AddMetadata to Enable Auditing 96
Example of Using UpdateMetadata to Enable Auditing 96

Physical versus Logical Deletion of Metadata Records 97

Example of Migrating Deleted Records 97

Usage Considerations 97

Recovering Audit Records 98

Restoring a Metadata Record on Windows Hosts 98
Example: Listing Audit Files 98

Example: Listing Audit File Variable Names 99

Example: Viewing Audit File Records 100

Example: Restoring Audit Records 101

Deleting an Audit Trail 102
Changing the Audit Trail Location 103

Turning Off Auditing 103

Overview

The SAS Metadata Server supports saving information about changes to metadata in
a set of audit files. The information in the audit files can be used to restore the metadata
to a previous state. The information in the audit files is referred to as an “audit trail.”

Auditing is performed on individual repositories and is enabled by specifying values
for four new attributes for RepositoryBase metadata objects:

AuditType turns auditing on and off and specifies the type of records that will
be logged.

AuditPath specifies an existing directory where the audit trail is to be created.

AuditEngine specifies the engine with which to create the audit files.

AuditOptions specifies engine connection options.

The audit trail stores information about added, deleted, and updated records and
supports audit files created with the base engine. A subsequent release will support
additional engines.

94 Starting the Audit Trail � Chapter 10

Starting the Audit Trail
Auditing is enabled by specifying values for a repository’s AuditType and AuditPath

attributes. Values for the AuditType and AuditPath attributes can be assigned in the
AddMetadata method that creates a repository. Values can be added to existing
repositories by using the UpdateMetadata method. The UpdateMetadata method is also
used to change the audit trail location and to turn off auditing. For examples of how to
issue the method calls, see “Example of Using AddMetadata to Enable Auditing” on
page 96, “Example of Using UpdateMetadata to Enable Auditing” on page 96, “Changing
the Audit Trail Location” on page 103, and “Turning Off Auditing” on page 103.

AuditType Attribute
The AuditType attribute is required in any method call related to auditing. In calls

that turn auditing on and off, it specifies the action to perform and the type of records
to audit. When a call is made to update an audit attribute, such as the AuditPath, the
AuditType attribute enables auditing at the new location. Only one audit trail location
is supported for a repository. Changing the AuditPath turns off auditing in the previous
location and turns auditing on in the new location.

The AuditType attribute supports six values:

1 turns on auditing and writes an audit record for all added metadata
records.

2 turns on auditing and writes an audit record for all deleted
metadata records.

4 turns on auditing and writes an audit record for all updated
metadata records.

7 turns on auditing and writes an audit record for all record types
(Add, Delete, and Update).

0 (zero) turns off auditing and indicates that auditing has been
disabled.

-1 a system-supplied value (representing a missing value) that
indicates auditing has not been initiated for the repository.

When AuditType=“2” is set, the audit trail writes an audit record for each metadata
object that is directly or indirectly deleted from a repository. A metadata object is
directly deleted when it is specified in a DeleteMetadata method call and can be
indirectly deleted by the DeleteMetadata or UpdateMetadata method, if it is dependent
on another object that is deleted. The DeleteMetadata method also supports flags that
enable you to delete all objects in a repository, to unregister a repository, and to destroy
a repository. Audit records are not written for DeleteMetadata calls that set these flags.

When AuditType=“4” is set, the audit trail writes two audit records for each update
transactions: a before-update image and an after-update image. For more information,
see “Audit File Format” on page 95.

AuditPath Attribute
The AuditPath attribute is required to turn on auditing; omit it from method calls

that disable auditing. AuditPath identifies the location to write the audit trail. The
specified directory must exist, it must be empty, and it must be a different location than

Invoking a Repository Audit Trail � Audit File Format 95

the repository directory. It is recommended that you use the same name for the
AuditPath directory as the repository directory and create it in an Audit subdirectory of
the server directory. For example:

repository path: omasvr/repository1

audit path: omasvr/audit/repository1

Storing the audit trail in a subdirectory of the server directory enables audit files to
inherit the file and directory access permissions set for the server directory.

Audit File Format
The audit trail consists of a copy of the repository’s metadata for the type of records

being audited. For example, the audit trail stores a copy of all added, deleted, and
updated metadata records.

In addition, each record has the following variables assigned to it:

ATID contains a 36-character Global Unique Identifier (GUID). An
example of a GUID is 46629670-59C4-4AE8-B089-2E861ED884C5.

ATIME contains a datetime value indicating when the audit record was
created.

ATYPE contains a letter indicating the audit record type:
� “N” identifies an added (new) metadata record
� “D” identifies a deleted metadata record
� “B” identifies an before-update metadata record
� “A” identifies an after-update metadata record.

DELETED contains a datetime value indicating when the record was deleted.
Records that were logically deleted in a repository by previous
releases of SAS software and migrated to the audit file will have the
DELETED variable set to the datetime when the record was
logically deleted. Otherwise, the DELETED value will be missing.
For more information about migrating records from previous
releases, see “Example of Migrating Deleted Records” on page 97.

The _ATID_ and _ATIME_ values in the audit file records are the same for all
records created by a single method call. For example, all before- and after-record
images for all metadata records updated by a single UpdateMetadata method call will
have the same _ATID_ and _ATIME_ values. Also, the audit records for all metadata
records created by a single AddMetadata call will have the same _ATID_ and _ATIME_
values, and the audit records for all metadata records deleted by a single
DeleteMetadata method call will have the same _ATID_ and _ATIME_ values.

Audit records are stored according to metadata type in separate files in the audit
directory. For example, all deleted PhysicalTable records are stored in a PhysicalTable
container, deleted Column records are stored in a Column container, and so on. You can
list the audit files created for a repository by using PROC DATASETS. PROC
DATASETS can also be used to list the variables in an audit file. To read the records in
an audit file, you use PROC PRINT. For more information, see “Example: Listing Audit
Files” on page 98, “Example: Listing Audit File Variable Names” on page 99, and
“Example: Viewing Audit File Records” on page 100.

96 Example of Using AddMetadata to Enable Auditing � Chapter 10

Example of Using AddMetadata to Enable Auditing
The following is an example of an AddMetadata method call that creates a repository

and turns on auditing. The call is formatted for the inMetadata parameter of the
DoRequest method.

<AddMetadata>
<Metadata>
<RepositoryBase

Name="repository1"
Desc="my repository"
Path="omasvr/repository1"
AuditPath="omasvr/audit/repository1"
AuditType="2"/>

</Metadata>
<Reposid>A0000001.A0000001</Reposid>
<NS>REPOS</NS>
<!--OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

In the metadata property string, note:
� the Path and AuditPath attributes specify directories of the same name, but

different locations.
� the AuditType attribute specifies “2”, which turns on auditing of deleted records.

AuditType is an optional attribute. Omitting AuditType causes the repository to be
created without an audit trail.

In the remainder of the call, note:
� the <NS> element specifies the REPOS namespace, which is required to write to a

repository.
� the <Reposid> element specifies the repository manager identifier. The repository

manager manages repositories.
� the <Flags> element specifies the OMI_TRUSTED_CLIENT flag (268435456),

which is required to write a metadata object.

Example of Using UpdateMetadata to Enable Auditing
The following is an example of an UpdateMetadata method call that turns on

auditing. The call is formatted for the inMetadata parameter of the DoRequest method.

<UpdateMetadata>
<Metadata>
<RepositoryBase

Id="A0000001.A1234566"
Name="Repository2"
AuditPath="audit/repository2"
AuditType="7"/>

</Metadata>
<NS>REPOS</NS>
<!--OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

Invoking a Repository Audit Trail � Usage Considerations 97

</UpdateMetadata>

In the metadata property string, note:
� the Id and Name attributes identify an existing repository for which to enable

auditing.
� there is no need to specify a Path attribute for the repository.
� the AuditType attribute specifies the value “7”, which creates audit records for

added and updated metadata records in addition to deleted metadata records.
� the AuditPath attribute specifies the location to write the audit trail.

The other elements are the same as in the AddMetadata request.

Physical versus Logical Deletion of Metadata Records
The default behavior of the SAS 9.0 Metadata Server was to logically, rather than

physically, delete metadata records from a repository. This allowed a record of deleted
metadata objects to be kept until an auditing capability was added to the server. In the
current release of the SAS Metadata Server, the default was changed to physically
delete any new metadata records that are deleted; however, any logical records created
by the previous server remain in a repository.

You can migrate logical records that exist in a repository to the audit trail by issuing
a DeleteMetadata method on the desired repository(ies) that sets the OMI_PURGE
(1048576) flag. The OMI_PURGE flag removes previously deleted metadata records
from a repository without disturbing the current metadata objects. For the migration to
be successful, repository auditing must have been enabled with AuditType=“2”. For an
example of the method call, see “Example of Migrating Deleted Records” on page 97.

Example of Migrating Deleted Records
The following is an example of a DeleteMetadata method call that migrates logically

deleted records from the specified repository to the audit trail. For the migration to be
successful, repository auditing must have been enabled with AuditType=“2” (delete).
The migration will not work if auditing was enabled with AuditType=“7” (all).

<DeleteMetadata>
<Metadata>

<RepositoryBase Id="A0000001.A1234566"/>
</Metadata>
<NS>REPOS</NS>
<!--OMI_TRUSTED_CLIENT (268435456) and OMI_PURGE (1048576) flags -->
<Flags>269484032</Flags>
<Options/>

</DeleteMetadata>

The OMI_PURGE flag removes previously deleted metadata records from the
repository without disturbing the current metadata objects. Meanwhile, an audit record
is created for every metadata object deleted by the DeleteMetadata method.

Usage Considerations
The auditing functionality is not intended to provide system backups. A system

backup is a copy of a repository usually made using operating system tools on a daily

98 Recovering Audit Records � Chapter 10

basis. The system backup provides a complete repository image for protection from a
catastrophic disk failure. The audit restore provides recovery for a logically damaged
repository. This could happen if an update destroyed or corrupted the metadata.

For information about backing up a repository, see “Backing Up the Metadata
Server” in the SAS Intelligence Platform: System Administration Guide.

Recovering Audit Records
Metadata that has gaps in data may corrupt a repository if restored. Incomplete data

can result from:

� turning repository auditing on and off

� not auditing all the metadata record types in a repository

� not auditing all of the repositories on a server, particularly if cross-references are
supported between the repositories.

As this release does not support a rollback mechanism, it cannot be used to restore a
damaged repository to its original state. However, you can use information in the audit
trail to restore specific records. When restoring a deleted record, note that a metadata
record can have multiple dependent records that might have been indirectly deleted as
well. When deleting records, you can set the OMI_RETURN_LIST flag to keep track of
the dependent records. The OMI_RETURN_LIST flag returns a list of deleted object
IDs, as well as any cascading object IDs that were deleted.

The general steps for restoring a metadata record from the audit trail are described
in “Restoring a Metadata Record on Windows Hosts” on page 98.

Restoring a Metadata Record on Windows Hosts

The SAS metadata audit trail can be used to restore specific metadata records to a
repository. The process for restoring metadata in this release is accomplished through
the use of SAS programs and not the metadata server.

Caution: The repository must be paused to an offline state before data is restored. A
repository can be paused by issuing a PAUSE action in PROC METAOPERATE. A
repository that is paused must eventually be resumed. This is done by issuing a
RESUME action in PROC METAOPERATE. See “METAOPERATE Procedure” in “SAS
Language Metadata Interfaces” section of the SAS Open Metadata Interface: Reference
for details.

Example: Listing Audit Files
The audit trail stores records according to metadata type. A separate audit file is

maintained for each metadata type that an audit record has been written. You can list
the audit file names comprising an audit trail using PROC DATASETS. First, assign an
AUDIT libref to the location specified in the AuditPath attribute; then, specify the libref
in the Library= statement, as follows:

libname audit ’repos\audit\repos1’;
proc datasets library=audit;
run;
quit;

Invoking a Repository Audit Trail � Example: Listing Audit File Variable Names 99

Here is an example of the information that is written to the SAS Log:

Directory

Libref AUDIT
Engine V9
Physical Name U:\tkmeta\repos\audit\repos1
File Name U:\tkmeta\repos\audit\repos1

Member File
Name Type Size Last Modified
1 CNTAINER DATA 5120 28OCT2002:12:06:22
2 EMAIL DATA 17408 28OCT2002:12:09:21
3 MRRGSTRY DATA 9216 28OCT2002:12:06:22
4 PERSON DATA 17408 28OCT2002:12:09:21
5 PHONE DATA 17408 28OCT2002:12:09:21

The CNTAINER and MRRGSTRY files are audit control files. They do not contain
audit records. In this example, there are three audit files: EMAIL, PERSON, and
PHONE.

Example: Listing Audit File Variable Names
The variable names in an audit file can also be listed using PROC DATASETS. To list

the variable names, specify an audit file name in the CONTENTS statement. In this
example, the CONTENTS statement specifies the audit file PERSON.

libname audit ’repos\audit\repos1’;
proc datasets library=audit;

contents data=audit.person;
run;
quit;

Here is the information written to the SAS Log:

DATASETS Procedure Monday, October 28, 2002

Data Set Name AUDIT.PERSON Observations 2
Member Type DATA Variables 17
Engine V9 Indexes 0
Created Monday, October 28, 2002 Observation Length 1504
Last Modified Monday, October 28, 2002 Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS
Encoding any Any encoding

Engine/Host Dependent Information

Data Set Page Size 16384
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 10
Obs in First Data Page 2
Number of Data Set Repairs 0

100 Example: Viewing Audit File Records � Chapter 10

File Name U:\tkmeta\repos\audit\repos1\person.sas7bdat
Release Created 9.0100A0
Host Created XP_PRO

Alphabetic List of Variables and Attributes

Variable Type Len
13 CHNGSTT Char 128
1 CLASNAME Char 70
3 DEFCREDT Num 8
4 DEFMODDT Num 8
5 DELETED Num 8
6 EXPLABEL Char 80

11 ICON Char 80
7 ID Char 34
8 LDESC Char 400

12 LOCKEDBY Char 64
9 MRACCESS Num 8
2 OBJNAME Char 120

14 TITLE Char 400
10 VERSION Num 8
17 _ATID_ Char 72
16 _ATIME_ Num 8
15 _ATYPE_ Char 2

In this example there are 14 repository variables and three audit variables:
ATYPE, _ATIME_ and _ATID_.

Example: Viewing Audit File Records
To view audit file records, use PROC PRINT. The following example prints the

contents of the PERSON audit file:

libname audit ’repos\audit\repos1’;
proc print data=audit.person;

var clasname id objname ldesc deleted;
run;

The VAR statement specifies the variables to print. Here is the information written
to the SAS Log:

12:12 Monday, October 28, 2002
Obs CLASNAME
1 O M S p e r s o n
2 O M S p e r s o n

Obs ID
1 A 5 J Z B Y C 7 . A 1 0 0 0 0 0 1
2 A 5 J Z B Y C 7 . A 1 0 0 0 0 0 2

Obs OBJNAME
1 W i l l
2 C a r l a

Obs LDESC
1 S t u d e n t

Invoking a Repository Audit Trail � Example: Restoring Audit Records 101

2 S t u d e n t

Obs DELETED
1 1351447597.5
2 1351447598.2

There are two deleted metadata records stored in the PERSON audit file.

CLASNAME displays the records’ SAS Metadata Server object class name.

ID displays the records’ unique object instance identifier.

OBJNAME displays the value in the records’ Name attribute.

LDESC displays the value in the records’ Desc attribute.

DELETED displays a SAS datetime value indicating when each record was
deleted.

Example: Restoring Audit Records
The following is an example of a DATA step that restores the metadata record

describing “Carla” to a repository.

/* Set the repository and audit librefs */
libname repos ’repos\repos1’;
libname audit ’repos\audit\repos1’;

/* Select audit records to be restored */
/* the DELETED field is set to missing which activates the record. */
data work.select (drop=find);
set audit.person(drop= _ATYPE_ _ATIME_ _ATID_);
/* find ’A5JZBYC7.A1000002’ */

find=’A’ || ’00’x ||
’5’ || ’00’x ||
’J’ || ’00’x ||
’Z’ || ’00’x ||
’B’ || ’00’x ||
’Y’ || ’00’x ||
’C’ || ’00’x ||
’7’ || ’00’x ||
’.’ || ’00’x ||
’A’ || ’00’x ||
’1’ || ’00’x ||
’0’ || ’00’x ||
’0’ || ’00’x ||
’0’ || ’00’x ||
’0’ || ’00’x ||
’0’ || ’00’x ||
’2’ || ’00’x ;

DELETED = . ;
if ID = find then OUTPUT;

run;

/* Print the selected audit records. */
proc print data=work.select;

var clasname id objname ldesc deleted;
run;

102 Deleting an Audit Trail � Chapter 10

/* Append selected audit records to the repository file. */
data repos.person;

set repos.person work.select;
run;

Here is the output written to the SAS Output window:

12:12 Monday, October 28, 2002

Obs CLASNAME
1 O M S p e r s o n

Obs ID
1 A 5 J Z B Y C 7 . A 1 0 0 0 0 0 2

Obs OBJNAME
1 C a r l a

Obs LDESC
1 S t u d e n t

Obs DELETED
1 .

Here is the information written to the SAS Log:

NOTE: Libref REPOS was successfully assigned as follows:
Engine: V9
Physical Name: U:\tkmeta\repos\repos1

NOTE: Libref AUDIT was successfully assigned as follows:
Engine: V9
Physical Name: U:\tkmeta\repos\audit\repos1

NOTE: There were 2 observations read from the data set AUDIT.PERSON.
NOTE: The data set WORK.SELECT has 1 observations and 14 variables.
NOTE: DATA statement used (Total process time):

real time 0.73 seconds
cpu time 0.04 seconds

NOTE: There were 1 observations read from the data set WORK.SELECT.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

NOTE: There were 4 observations read from the data set REPOS.PERSON.
NOTE: There were 1 observations read from the data set WORK.SELECT.
NOTE: The data set REPOS.PERSON has 5 observations and 14 variables.
NOTE: DATA statement used (Total process time):

real time 0.14 seconds
cpu time 0.01 seconds

Deleting an Audit Trail

The audit trail is deleted by deleting the audit files in the audit directory. The audit
files can be deleted using PROC DATASETS. The audit trail should be deleted when its
companion repository has been deleted.

Invoking a Repository Audit Trail � Turning Off Auditing 103

Here is a sample program that deletes an audit trail:

/* delete all audit files */

libname audit ’repos\audit\repos1’;

proc datasets library=audit KILL;

run;

quit;

Changing the Audit Trail Location
The following is an example of an UpdateMetadata request that changes the audit

trail location. The audit trail location is specified in the AuditPath attribute of a
RepositoryBase object.

<UpdateMetadata>
<Metadata>

<RepositoryBase
Id="A0000001.A1234566"
Name="Repository2"
AuditType="2"
AuditPath="omasvr/audit/repository2"/>

</Metadata>
<NS>REPOS</NS>
<!--OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

Any location specified in the AuditPath attribute that does not exactly match the
current registration is considered a new location. For example, a relative pathname and
an absolute pathname are considered different locations. As a result of the method call,
audit records for Repository2 are written to the omasvr/audit/repository2 directory
instead of the audit/repository2 directory.

Turning Off Auditing
The following is an example of an UpdateMetadata method call that turns off

auditing. The call is formatted for the inMetadata parameter of the DoRequest method.

<UpdateMetadata>
<Metadata>

<RepositoryBase
Id="A0000001.A1234566"
AuditType="0"/>

</Metadata>
<NS>REPOS</NS>
<!--OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

104 Turning Off Auditing � Chapter 10

</UpdateMetadata>

The AuditType value of “0” turns off auditing and signifies that auditing was
disabled for Repository2. Here is sample output from a GetMetadata method call on a
repository that had auditing disabled:

Information received from server :
<GetMetadata>

<Metadata>
<RepositoryBase Id="A0000001.A1234566" Access="0" AuditEngine=""
AuditOptions="" AuditPath="omasvr/audit/repository2" AuditType="0"
Desc="" Engine="" MetadataCreated="24Oct2002:12:55:15"
MetadataUpdated="24Oct2002:12:55:15" Name="Repository2" Options=""
Path="omasvr/repository2" RepositoryType=""/>

</Metadata>
<NS>REPOS</NS>
<Flags>
</Flags>
<Options/>
</GetMetadata>

The AuditType attribute is “0” but the AuditPath attribute continues to show the
location of the audit trail.

105

C H A P T E R

11
Metadata Locking Options

Overview of Metadata Locking Options 105
Using SAS Open Metadata Interface Flags to Lock Objects 105

Promoting Repositories Between Servers 106

Overview of Metadata Locking Options

The SAS Open Metadata Interface enables you to control concurrent access to
metadata by multiple users in a number of ways:

� You can perform object-level locking within a given repository by setting the SAS
Open Metadata Interface OMI_LOCK and OMI_UNLOCK flags.

� You can impose a change management process in which metadata objects are
locked and checked from a primary repository to a project repository by using the
SAS Open Metadata Interface change management facility.

� You can set up dedicated metadata servers representing the phases of the
metadata development life cycle and promote repositories between the servers.

� You can use a combination of these mechanisms.

In order to use any of these mechanisms, a user must have a registered identity on
the SAS Metadata Server. For information about creating a metadata identity for a
user or a group, see the SAS Intelligence Platform: Security Administration Guide.

For more information about the change management facility, see Chapter 12, “Using
the Change Management Facility,” on page 107.

Using SAS Open Metadata Interface Flags to Lock Objects

The SAS Open Metadata Interface provides the OMI_LOCK, OMI_UNLOCK, and
OMI_UNLOCK_FORCE flags to lock metadata objects. The flags represent the simplest
of the concurrency controls provided by the SAS Open Metadata Architecture. Before
making an update, you simply issue a GetMetadata method call on the objects that you
wish to modify that sets the OMI_LOCK flag. The software locks the specified object
and any associated objects specified by GetMetadata flags and options, and updates the
objects’ LockedBy attribute with the metadata identifier representing the calling user.
The objects remain locked from update by users other than the calling identity until an
UpdateMetadata method is issued that sets the OMI_UNLOCK or
OMI_UNLOCK_FORCE flags.

OMI_UNLOCK releases a lock held by the calling user and is the recommended
method of releasing a lock. OMI_UNLOCK_FORCE unlocks a lock held by another user

106 Promoting Repositories Between Servers � Chapter 11

and is intended to be used as an emergency override mechanism. While locked, objects
can be read by other users; they simply cannot be updated by other users until the user
holding the lock completes his update.

The LockedBy attribute is set and cleared automatically by the lock flags and can be
queried to determine whether an object is locked and who holds the lock. The LockedBy
attribute cannot be changed or cleared with the UpdateMetadata method.

In SAS 9.1, object-level locking is supported only in the SAS Open Metadata
Interface. That is, you must write a SAS Open Metadata Interface client to lock objects,
update them, then unlock them. For information about writing a SAS Open Metadata
Interface client, see “Open Client Requirements” in the SAS Open Metadata Interface:
Reference. For more information about the GetMetadata and UpdateMetadata methods,
see “GetMetadata” and “UpdateMetadata” in “Methods for Reading and Writing
Metadata (IOMI Class)” in the reference.

Promoting Repositories Between Servers
Repository promotion is the most restrictive of the concurrency controls. It involves

maintaining multiple metadata servers and versions of repositories.
The promotion process is implemented by using the Metadata Manager plug-in to

SAS Management Console. The Metadata Manager contains Replication and Promotion
wizards that enables you to create a job definition for copying a repository and its
contents from one metadata server to another. The replication process copies a
repository on the source metadata server and recreates it on the target metadata server
using the same repository and object identifiers. The promotion process copies a
repository on the source metadata server and recreates it on the target metadata server
while modifying certain repository attributes.

Before using SAS Management Console, you must set up and start a SAS Metadata
Server for each life cycle phase that you wish to represent. For example, if you plan to
support development, test, and production environments, set up a SAS Metadata Server
for each of these environments. For more information about setting up and managing a
replication or promotion, see the SAS Intelligence Platform: System Administration
Guide.

107

C H A P T E R

12
Using the Change Management
Facility

Introduction to the Change Management Facility 107
Summary of Change Management Methods 108

Setting Up Primary and Project Repositories 109

Registering Users 109

Assigning Users Permissions to the Primary and Project Repositories 110

How Access Controls are Handled by the Change Management Facility 110
Checking Out Metadata Objects 110

Lock Templates 111

Issuing a CheckoutMetadata Call 112

LockedBy Attribute 112

ChangeState Attribute 112

Fetching Metadata 113
Updating Metadata Objects in a Project Repository 114

Adding and Copying Metadata Objects in a Project Repository 114

Deleting a Metadata Object 116

Checking In Metadata Objects 117

Association Handling 117
Change Objects 118

Querying the Primary Repository 118

Querying the Project Repository 120

Emptying the Project Repository 121

Default Lock Templates 121
Document Lock Template 121

ExternalTable Lock Template 121

Job Lock Template 122

PhysicalTable Lock Template 125

Report Lock Template 126

SASLibrary Lock Template 126
ServerComponent Lock Template 126

ServerContext Lock Template 127

TextStore Lock Template 127

Tree Lock Template 127

Introduction to the Change Management Facility
The SAS Open Metadata Interface provides an optional change management facility

for controlling concurrent access to metadata. Concurrent access is the ability for
multiple users to safely update metadata at any given time. For example, an enterprise
may have an environment set up that allows developers to make changes to metadata
in an area that is independent of the existing “primary” metadata. The change

108 Summary of Change Management Methods � Chapter 12

management facility will allow changes to occur to existing metadata without
interfering with existing usage. In addition, as changes are made, information relative
to the change is maintained. This information can be used to track change history in
determining who made the change to the object, when the change was made, and how it
related to other objects in the metadata.

The facility consists of a set of methods that enable users to “check out” metadata
that they wish to update from a primary repository to a project repository, then check it
back in again when the update is complete. During checkout, metadata in the primary
repository is locked to other users. The primary repository represents your stable
environment of non-changing metadata and the project repository represents a
development area where changes are made and tested. When metadata in a primary
repository is locked by a user, other users may see the metadata in order to continue
their work, but they will not be allowed to update it. When the modified metadata has
been fully tested and is “checked in” to the primary repository, any subsequent reads by
another user will reflect the changes just created. The change history is created as the
objects are checked in to the primary repository from the project repository.

The facility also provides FetchMetadata and CopyMetadata methods. A “fetch”
operation copies metadata objects from a primary repository to a project repository
without locking them. Fetched metadata objects can be modified without fear of
updating the corresponding primary repository object. Fetching metadata objects is
useful when a developer needs to complete the most robust testing while only locking
objects from other users that require changes. CopyMetadata is provided as a way to
create new metadata objects in the project repository that can be added to a primary
repository. For example, an enterprise may need to create a new primary repository
that is a hybrid of other repositories. In this case, the developer could copy metadata
from the two sources into a new project, modify it as needed, and incorporate the entire
project into a new primary repository. The CopyMetadata method allows a metadata
object to be copied from a project repository or a primary repository source.

In order to use the change management facility, you must set up a primary and a
project repository, register users who will update the primary repository, and use change
management methods to move metadata between the primary and project repositories.

Summary of Change Management Methods
The change management methods exist in the IOMI class and include:

Table 12.1 Change Management Methods

Method Description

CheckoutMetadata Locks and copies metadata objects from a
primary repository to a project repository.

CheckinMetadata Copies metadata objects from a project repository
to a primary repository and unlocks them.

CopyMetadata Copies metadata objects within a repository or
between repositories.

Using the Change Management Facility � Registering Users 109

Method Description

FetchMetadata Copies metadata objects from a primary
repository to a project repository without locking
them.

UndoCheckoutMetadata Deletes and unlocks metadata objects that were
checked out to a project repository by mistake.
Also deletes fetched objects from the project
repository.

See “Methods for Reading and Writing Metadata (IOMI Class)” in the SAS Open
Metadata Interface: Reference for reference information about the methods.

Setting Up Primary and Project Repositories
A primary repository is a base-level or “production” repository. Objects in a primary

repository are not updated directly when using the change management facility. There
can be more than one primary repository for any given project repository.

The project repository is a playpen repository where metadata objects are modified.
This repository is empty except for metadata objects copied from a primary repository to
the project repository by using the CheckoutMetadata or FetchMetadata methods and
new objects created for the purpose of updating the primary repository. New objects are
created by using AddMetadata or CopyMetadata. There can be more than one project
repository for any given primary repository.

In order for change management to be implemented between two repositories, you
must establish a relationship between the repositories. A relationship is established by
creating a DependencyUses or a DependencyUsedBy association between the
repositories. For the purpose of change management, it is recommended that the
project repository have a DependencyUses association to any primary repositories. This
causes any cross-repository references created by change management methods to be
stored in the project repository, which makes the references easier to query, particularly
if multiple primary repositories are defined for a given project repository.

You are led through the steps for creating the necessary dependencies when you
select to create a Project repository using the Add Repository wizard of the Metadata
Manager plug-in of SAS Management Console. You can also create dependencies when
you create a repository using the SAS Open Metadata Interface. The SAS Open
Metadata Interface also allows you to add dependencies to existing repositories. For
more information about creating repositories using SAS Management Console, see the
Help for the Add Repository wizard. For information about creating repository
dependencies using the SAS Open Metadata Interface, see Chapter 8, “Creating
Relationships Between Repositories,” on page 75.

Registering Users
In order to use change management methods, a user must have an identity (Person

or IdentityGroup metadata object) and associated Login object(s) defined for him or her
on the metadata server. These identities are created in the SAS Management Console
User Manager plug-in. You create Person metadata objects when you add a New User
in the SAS Management Console User Manager. You create IdentityGroup metadata
objects when you add a New Group in the User Manager. (An IdentityGroup represents
a group of users that log into the server using a shared login.)

110 Assigning Users Permissions to the Primary and Project Repositories � Chapter 12

Identities are protected resources on a metadata server. A user requires
Administrative User status on the server in order to create a metadata identity for an
individual user. Only Administrative Users and users that have been granted specific
permissions to an existing user or group identity can update the identity. For more
information about user and group management, see the SAS Intelligence Platform:
Security Administration Guide.

Assigning Users Permissions to the Primary and Project Repositories
An identity must have CheckinMetadata permission to a primary repository in order

to update it with changes from a project repository. An Administrative User can assign
the CheckinMetadata permission in the primary repository’s Default ACT or on
individual objects within a primary repository. An identity that has CheckinMetadata
permission in a primary repository also needs ReadMetadata and WriteMetadata
permission in the corresponding project repository, so that the objects can be written to
the project repository when they are checked-out. ReadMetadata and WriteMetadata
permission must be assigned in the project repository’s Default ACT. The Default ACT
is the only access control evaluated when making an authorization decision for an
object in a project repository.

The Default ACT created for a project repository has different default settings than a
Default ACT created for a custom or foundation repository. The Default ACT for a
project repository denies the PUBLIC group ReadMetadata and WriteMetadata
permission to the repository and to all objects in the repository, and grants
ReadMetadata and WriteMetadata permission to the repository owner. The repository
owner is the user ID that created the repository. The repository owner must modify a
project repository’s Default ACT to grant ReadMetadata and WriteMetadata permission
to other users. For information about how to assign permissions, see the SAS
Intelligence Platform: Security Administration Guide.

How Access Controls are Handled by the Change Management Facility
In order to maintain the integrity of authorizations that might have been defined to

protect the metadata in a primary repository, authorization metadata (AccessControl,
AccessControlEntry, AccessControlTemplate, SecurityRule, SecurityRuleSchema,
SecurityContainmentRule, Permission, and PermissionCondition metadata objects)
cannot be checked out from a primary repository to a project repository. Also, SAS
Management Console prevents objects of these types from being created in a project
repository. The Default ACT is the only access control evaluated when making an
authorization decision for an object in a project repository.

Checking Out Metadata Objects
The CheckoutMetadata method is the primary form of object movement from a

primary repository to a project repository. Conceptually, the method
� locks the requested object in the primary repository
� copies it to the specified project repository
� stores the metadata identifier of the person who locked the object in the LockedBy

attribute of the primary repository object
� stores information about the object’s modified status in the ChangeState attribute

of both the original and copied metadata objects.

Using the Change Management Facility � Lock Templates 111

When an object is checked out, associated objects specified in a are checked out as
well. If a default template does not exist for a type, or you wish to override the default
lock template, you can specify your own lock template by setting the
OMI_LOCK_TEMPLATE (65536) flag and supplying a list of associated objects that you
wish to include, in template form, in a <LockTemplates> element in the <Options>
element.

Lock Templates
A lock template is an XML property string that specifies a set of associated objects

that are processed in addition to the metadata object specified in a CheckoutMetadata,
FetchMetadata, or CopyMetadata request. Because metadata objects are so
interconnected, checkout of a single object is not very useful and could be dangerous to
metadata integrity. To maintain metadata integrity, the change management facility
uses lock templates to enable associated objects to be checked out, fetched, and copied
as a group.

The change management facility provides a default lock template for the metadata
types described in . You can specify your own lock template in any of these methods by
setting the OMI_LOCK_TEMPLATE (65536) flag and supplying a template identifying
the associated objects that you wish to include in a <LockTemplates> element in the
<Options> element.

A lock template specifies a metadata type and the association names identifying the
associated objects that you wish to retrieve. For example, if you are checking out a
SASLibrary object and want to additionally check out all Property metadata objects
associated with it, you would specify the following template in the <LockTemplates>
element:

<SASLibrary>
<Properties/>
</SASLibrary>

’SASLibrary’ is the metadata type whose associated objects you are interested in.
’Properties’ is the association name that represents the relationship between
SASLibrary and Property metadata objects.

To additionally check out PropertyType objects defined for each Property object that
is retrieved, additionally specify the following template:

<Property>
<OwningType/>
</Property>

In this template, ’Property’ is the metadata type whose associated objects you are
interested in and ’OwningType’ is the association name that represents the relationship
between Property and PropertyType metadata objects.

The templates are submitted together in the <Options> element as follows:

<Options>
<LockTemplates>
<SASLibrary>

<Properties/>
</SASLibrary>
<Property>

<OwningType/>
</Property>
</LockTemplates>
</Options>

112 Issuing a CheckoutMetadata Call � Chapter 12

Note: The lock template used to check out or fetch a metadata object must be used
to undo its checkout. Consult the “Alphabetical Listing of SAS Namespace Types” in the
SAS Open Metadata Interface: Reference to determine the association names required
to retrieve associated objects. This listing is available only in online versions of the
reference. �

Issuing a CheckoutMetadata Call

The following is an example of a CheckoutMetadata call. The CheckoutMetadata
method locks and copies specified metadata objects to a specified project repository. You
identify the metadata object to be checked out by passing a metadata property string
consisting of the object’s metadata type and a unique two-part primary repository object
identifier in the method’s inMetadata parameter (<Metadata> element). You can specify
multiple metadata objects in a CheckoutMetadata request by stacking their property
strings in the inMetadata parameter. You identify the target project repository in the
ProjReposid parameter (<ProjReposid> element). The following is an example of a
stacked CheckoutMetadata request:

<CheckoutMetadata>
<Metadata>

<PhysicalTable ID="PrimaryReposid.Objectid"/>
<PhysicalTable ID="PrimaryReposid.Objectid"/>

</Metadata>
<ProjReposid>Reposmgrid.ProjectReposid</ProjReposid>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</CheckoutMetadata>

The request locks and copies two PhysicalTable objects from a primary repository to
a project repository. A default lock template is associated with the PhysicalTable
metadata type, therefore, any Column, Key, Property, Index, Document, TextStore,
Extension, and Role objects associated with the PhysicalTable objects will be checked
out as well.

LockedBy Attribute

When a metadata object is checked out from a primary repository to a project
repository, the metadata identifier of the person who initiated the action is stored in the
primary metadata object’s LockedBy attribute. An unlocked object has an empty string
in the LockedBy attribute. You can determine which objects in a primary repository are
locked by querying which objects have a value in the LockedBy attribute. For more
information, see “Querying the Primary Repository” on page 118.

ChangeState Attribute

When a metadata object is copied from a primary repository to a project repository by
using the CheckoutMetadata or FetchMetadata methods, information describing the
action is recorded in a ChangeState attribute in one or both of the objects. Every
metadata type in the SAS Metadata Model has a ChangeState attribute, which is used
exclusively by the change management facility.

Using the Change Management Facility � Fetching Metadata 113

In a primary repository object, the ChangeState attribute stores an empty string or
the value:

Checked-out to: <ProjIdentifier>

An empty string indicates the object is available for reading and writing in the
primary repository. The value indicates the object is currently locked and checked-out
to a project repository and stores the unique 17-character identifier of the object’s
project repository counterpart. The ChangeState attribute of a fetched object contains
an empty string because a fetched object is not locked, and could be fetched to more
than one project repository. In a primary repository, the ChangeState attribute can be
queried to determine which objects are checked out and to what project repository. For
more information, see “Querying the Primary Repository” on page 118.

In a project repository object, the value of the ChangeState attribute has the form:

CMState:SrcIdentifier

where

� CMState identifies the process that copied the object into the project repository:
one of Checkout, Fetch, New, or an empty string. Objects created in a project
repository by using the AddMetadata or CopyMetadata method either have an
empty string or the word “New” in this position.

� SrcIdentifier is either the 17-character identifier of the object’s primary repository
counterpart or an empty string. For new objects, it is recommended that you
update this attribute to supply the unique eight-character identifier of a
destination primary repository.

The change management facility uses the ChangeState attribute to determine a
project repository object’s disposition at checkin as follows:

� an object whose CMState is Checkout will be used to update the primary
repository object identified in SrcIdentifier.

� an object whose CMState is Fetch will be ignored.

� an object whose CMState is New or an empty string will be created in the primary
repository identified in SrcIdentifier.

� an object whose SrcIdentifier is an empty string will be created in the first
repository found that has a DependencyUsedBy association to the project
repository during checkin.

In a project repository, you can query the ChangeState attribute to determine how a
given object came to be in the project repository, to which primary repository a project
repository object belongs, and to identify new objects. For more information, see
“Querying the Project Repository” on page 120.

Fetching Metadata
The FetchMetadata method creates object instances in the project repository that

cannot be copied back to the corresponding primary repository. This enables you to
modify the fetched object without fear of affecting the corresponding primary object.

Like CheckoutMetadata, the FetchMetadata method copies the specified metadata
object and any objects identified in the object’s from a primary repository to the
specified project repository. Unlike CheckoutMetadata, the objects are not locked in the
primary repository.

You identify the metadata object to fetch using its metadata type and unique object
instance identifier in the method’s <Metadata> element. You can fetch multiple

114 Updating Metadata Objects in a Project Repository � Chapter 12

metadata objects by stacking their property strings in the <Metadata> element. You can
specify an alternate, user-defined lock template by setting the OMI_LOCK_TEMPLATE
flag and submitting a lock template in a <LockTemplates> element in the <Options>
element. For information about how to create a lock template, see . The following is an
example of a FetchMetadata request that specifies an alternate lock template:

<FetchMetadata>
<Metadata>

<PhysicalTable ID="PrimaryReposid.Objectid"/>
</Metadata>
<ProjectReposid>Reposmgrid.ProjectReposid</ProjectReposid>
<NS>SAS</NS>
<!-- OMI_LOCK_TEMPLATE flag -->
<Flags>65536</Flags>
<Options>
<LockTemplates>

<PhysicalTable/>
<UniqueKeys/>

</PhysicalTable/>
</LockTemplates>

</FetchMetadata>

The specified lock template overrides the default lock template for a PhysicalTable
object and retrieves only objects that have a UniqueKeys association to the specified
PhysicalTable object. For more information, see “FetchMetadata” in “Methods for
Reading and Writing Metadata (IOMI Class)” in the SAS Open Metadata Interface:
Reference.

Updating Metadata Objects in a Project Repository

All metadata objects in a project repository are referenced using a project repository
identifier. For example, an UpdateMetadata call modifying an object to create an
association to another existing object identifies the objects as shown below:

<UpdateMetadata>
<Metadata>
<PhysicalTable Id="projectReposid.Objectid">

<TablePackage>
<SASLibrary ObjRef="projectReposid.Objectid"/>

</TablePackage>
</PhysicalTable>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

Adding and Copying Metadata Objects in a Project Repository

New metadata objects created in a project repository by using the AddMetadata,
CopyMetadata, or UpdateMetadata methods are created with the repository identifier

Using the Change Management Facility � Adding and Copying Metadata Objects in a Project Repository 115

of the project repository. In environments where a single project repository serves
multiple primary repositories, it is recommended that you specify the target primary
repository by defining a value for the ChangeState attribute along with the object’s
other properties.

The following is an example of an AddMetadata method call that creates a metadata
object and an associated metadata object in a project repository and defines values for
their ChangeState attributes.

<AddMetadata>
<Metadata>

<!--Specify the target repository IDs in the ChangeState attribute-->
<SASLibrary
Name="Test library 1"
Desc="Library object created in project repository"
ChangeState="New:AFXFGX9C"/>

<Tables>
<PhysicalTable

Name="Test table 1"
Desc="Table object created in project repository"
ChangeState="New:AFXFGX9C"/>

</Tables>
</SASLibrary>

</Metadata>
<!--Specify the project repository ID in the <Reposid> element-->
<Reposid>A0000001.A5NZA58I</Reposid>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

The form of a ChangeState attribute value is described in . In this example, “New”
indicates the objects’ state; “AFXFGX9C” is the eight-character identifier of the target
primary repository. When specifying a SrcIdentifier for a new metadata object, there is
no need to specify a full 17-character repository identifier.

The following is an example of an UpdateMetadata method call that creates an
association and a new associated object that will ultimately reside in a different
primary repository than the main object.

<UpdateMetadata>
<Metadata>

<!-- Main element references project repository in object ID -->
<SASLibrary Id="A5NZA58I.A0000033" Name="Test library 1"/>

<Tables>
<!-- Subelement omits Id= attribute to indicate a new object is to be

created and identifies target repository in ChangeState attribute -->
<PhysicalTable

Name="Test table 3"
Desc="Table object destined for different primary repository"
ChangeState="New:ALCLMNOC"/>

</Tables>
</SASLibrary>

</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>

116 Deleting a Metadata Object � Chapter 12

<Options/>
</UpdateMetadata>

The ChangeState attribute of the associated object specifies a different primary
repository identifier than the one defined for Text Library 1 in the preceding
AddMetadata example.

You can use UpdateMetadata to specify a ChangeState value for an object created by
CopyMetadata.

A project repository object whose ChangeState attribute is an empty string will be
copied to the first repository found that has a DependencyUsedBy association to the
project repository during checkin.

For more information about adding metadata objects with AddMetadata, see Chapter
2, “Adding Metadata Objects,” on page 5. For information about adding and updating
metadata objects with UpdateMetadata, see Chapter 3, “Updating Metadata Objects,”
on page 19. For reference information about AddMetadata and UpdateMetadata, and
more information about CopyMetadata, see “Methods for Reading and Writing
Metadata (IOMI Class” in the SAS Open Metadata Interface: Reference.

Deleting a Metadata Object
The method used to delete a metadata object from a project repository depends on

whether the object will also be deleted from the primary repository:
� A metadata object that will be deleted from the primary repository is deleted using

DeleteMetadata.
� A metadata object that will remain in the primary repository (it was checked out

by mistake or was copied into the project repository using the FetchMetadata
method) is removed using UndoCheckoutMetadata.

The following is an example of a DeleteMetadata request that is executed on a
project repository:

<DeleteMetadata>
<Metadata>
<!-- Identify the object by its project repository identifier -->

<PhysicalTable Id="A5NZA58I.AA000002"/>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268436480</Flags>
<Options/>

</DeleteMetadata>

The following is an example of an UndoCheckoutMetadata request:

<UndoCheckoutMetadata>
<Metadata>
<!--Identify the object by its project repository identifier -->

<PhysicalTable Id="A5NZA58I.AB000004"/>
</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</UndoCheckoutMetadata>

Note: The same lock template used to check out or fetch a metadata object should
be used to undo the checkout.

Using the Change Management Facility � Association Handling 117

The DeleteMetadata method does not support lock templates. The DeleteMetadata
method will delete any associated objects that are dependent on the deleted objects.
However, if you wish to delete other associated objects, you will need to issue additional
DeleteMetadata requests. For more information about deleting metadata objects with
DeleteMetadata, see Chapter 4, “Deleting Metadata Objects,” on page 31. For reference
information about DeleteMetadata and UndoCheckoutMetadata, see “Methods for
Reading and Writing Metadata (IOMI Class)” in the SAS Open Metadata Interface:
Reference. �

Checking In Metadata Objects

Checkin is the process of integrating the changes from a project repository into the
corresponding primary repository. Checkin of individual metadata objects is not
supported; the CheckinMetadata method copies all eligible objects in a project
repository to their corresponding primary repositories at once. An “eligible” metadata
object is one that was copied to the project repository using CheckoutMetadata or
created in the project repository using AddMetadata, CopyMetadata, or
UpdateMetadata. Objects copied into the project repository using FetchMetadata are
ineligible. Conceptually, the CheckinMetadata method

� updates and unlocks checked metadata objects in their corresponding primary
repository

� copies and creates new metadata objects in the primary repository identified in
their ChangeState attribute

� deletes metadata objects deleted by DeleteMetadata from their corresponding
primary repository

� updates the primary repository’s association list, as described in “Association
Handling” on page 117.

� creates a Change object in each primary repository that stores information about
the changes.

� removes checked and new metadata objects from the project repository. Fetched
objects remain in the project repository, unless the OMI_CI_DELETE_ALL (33)
flag is set to delete them. You can keep copies of checked and new metadata
objects in the project repository by setting the OMI_CI_NODELETE (524288) flag
in the CheckinMetadata request. For more information about these flags, see
“CheckinMetadata” in “Methods for Reading and Writing Metadata (IOMI Class)”
in the SAS Open Metadata Interface: Reference.

Association Handling
Information about a metadata object’s associations is maintained separately from its

attributes in an association list. When an object is checked out to a project repository,
both its attributes and association list are copied; however, only the attributes are
locked. The association list in the primary repository can still be updated if the partner
object in the association is updated. For example, if you check out a PhysicalTable
object that has a Groups association to a Group object, but do not also check out the
Group object, then the association list can still be modified by updating the Group
object’s Members association. (Group has a Members association to PhysicalTable.) To
protect the integrity of an object’s associations, it is recommended that you check out all
important associated objects when checking out an object. You can check these objects
out individually, or create a user-defined lock template to check them out.

118 Change Objects � Chapter 12

At checkin, the change management facility compares the contents of the association
list in the project repository to the association list in the primary repository and applies
updates as follows:

1 Associations marked as deleted in the project repository association list are
deleted from the primary repository association list.

2 New associations in the project repository association list are written to the
primary repository association list.

3 Associations that exist in both the project and primary repository association lists
are overwritten by those in the project association list.

4 Associations that exist only in the primary association list are left alone.

The association order is modified as little as possible.

Change Objects
The CheckinMetadata method creates a Change object in each primary repository in

which it copies or deletes metadata objects. This Change object stores information
about the checkin, including the date and time the Change object was created (and
thus, the time its corresponding changes were integrated into the primary repository), a
name and a description for the change as supplied in the CheckinMetadata
ChangeName and ChangeDesc parameters (<ChangeName> and <ChangeDesc>
elements), and two associations:

ChangeIdentity links the Change object to the identity object (Person or Group)
representing the user who made the change.

Objects links the Change object to the metadata objects in the primary
repository that were part of the change.

The purpose of the Change object is to enable you to query the primary repository for
information about an update. For more information, see “Querying the Primary
Repository” on page 118.

Querying the Primary Repository
You might want to query the objects in a primary repository to determine which

objects are available for update, which objects are locked, who locked them, and what
changes were made.

You can determine which objects are available for update in a primary repository by
querying which objects have an empty string in the LockedBy attribute. The LockedBy
attribute stores a value for objects locked by using either the OMI_LOCK flag or the
CheckoutMetadata method. An empty string indicates an object is not locked. Use the
GetMetadataObjects method to query the objects as follows:

<GetMetadataObjects>
<!--Specify primary repository ID -->
<Reposid>A0000001.A3N4OMZV</Reposid>
<Type>Root</Type>
<Objects/>
<NS>SAS</NS>
<!-- OMI_INCLUDE_SUBTYPES, OMI_XMLSELECT, OMI_GET_METADATA, OMI_TEMPLATES flags -->
<Flags>404</Flags>
<Options>

Using the Change Management Facility � Querying the Primary Repository 119

<!-- Specify XMLSelect search of LockedBy attribute -->
<XMLSelect search="*[@LockedBy = ’ ’]"/>
<Templates>

<!-- Specify to retrieve Id= and LockedBy= attribute values -->
<Root Id="" LockedBy=""/>

</Templates>
</Options>

</GetMetadataObjects>

In the request, note:

� The <Type> element specifies the Root metadata type.

� The OMI_INCLUDE_SUBTYPES flag is set to return all metadata types that are
subtypes of Root.

� The OMI_GET_METADATA and OMI_TEMPLATES flags are set to submit a
template that retrieves the Id and LockedBy attributes for all objects.

� The OMI_XMLSELECT flag is set and <XMLSelect> search string is specified to
filter the request to select objects that have an empty string in the LockedBy
attribute.

To identify the objects locked by a given identity (user or group), specify the
metadata identifier of the identity in the search string.

To determine which objects are checked-out by the CheckoutMetadata method, issue
the same method call as above but specify the ChangeState attribute and a value in the
<XMLSelect> search string instead of the LockedBy attribute. For example:

<GetMetadataObjects>
<!--Specify primary repository ID -->
<Reposid>A0000001.A3N4OMZV</Reposid>
<Type>Root</Type>
<Objects/>
<NS>SAS</NS>
<!-- OMI_INCLUDE_SUBTYPES, OMI_XMLSELECT, OMI_GET_METADATA, OMI_TEMPLATES flags -->
<Flags>404</Flags>
<Options>
<!--Specify XMLSelect search of ChangeState attribute -->
<XMLSelect search="*[@ChangeState CONTAINS ’Checked-out to’]"/>
<Templates>

<!-- Specify to retrieve Id=, ChangeState=, and LockedBy= attribute values -->
<Root Id="" ChangeState="" LockedBy=""/>

</Templates>
</Options>

</GetMetadataObjects>

The search string will return all objects that have the words ’Checked-out to:’ in the
ChangeState attribute. To determine which objects are checked out to a specific project
repository, include the project repository’s 17-character identifier in the search string.

To obtain information about changes to a primary repository, issue a
GetMetadataObjects call that specifies the Change metadata type in the <Type>
element and sets the OMI_GET_METADATA (256), OMI_ALL (1), and
OMI_SUCCINCT (2048) flags as follows:

<GetMetadataObjects>
<!--Repository of primary repository -->
<Reposid>A0000001.A5WW3LXC</Reposid>
<Type>Change</Type>
<Objects/>

120 Querying the Project Repository � Chapter 12

<NS>SAS</NS>
<!-- OMI_GET_METADATA, OMI_ALL, and OMI_SUCCINCT flags -->
<Flags>2305</Flags>
<Options/>

</GetMetadataObjects>

In the call:
� The OMI_GET_METADATA and OMI_ALL flags specify to retrieve all properties

for all Change objects that are found.
� The OMI_SUCCINCT flag limits the request to properties that have values

defined for them. The output will be the Id, Name, and Desc attributes of all
Change objects as well as any objects that have a ChangeIdentity and Objects
association to each Change object. The ChangeIdentity association will list the
identity object representing the user who made the change. The Objects
association will list all metadata objects affected by a change.

Querying the Project Repository
You might want to query the objects in a project repository to determine which came

from a given repository and to identify how they came to be in the project repository
(checkout, fetch, or new). All of this information can be obtained by querying the project
repository objects’ ChangeState attribute.

The following GetMetadataObjects example queries a project repository to determine
which objects originated in primary repository AFXFGX9C.

<GetMetadataObjects>
<!--Repository of project repository -->
<Reposid>A0000001.A5NZA58I</Reposid>
<Type>Root</Type>
<Objects/>
<NS>SAS</NS>
<!-- OMI_INCLUDE_SUBTYPES, OMI_XMLSELECT, OMI_GET_METADATA, and OMI_TEMPLATES flags -->
<Flags>404</Flags>
<Options>
<XMLSelect search="*[@ChangeState CONTAINS ’AFXFGX9C’]"/>
<Templates>
<Root Id="" Name="" LockedBy=""/>

</Templates>
</Options>

</GetMetadataObjects>

In the call:

� The <Type> element specifies the Root metadata type.
� The OMI_INCLUDE_SUBTYPES flag is set to return all metadata types that are

subtypes of Root.
� The OMI_XMLSELECT flag is set and an <XMLSelect> search string specifies to

filter the request to select objects that have the value ’AFXFGX9C’ in the
ChangeState attribute.

� The OMI_GET_METADATA and OMI_TEMPLATES flags are set to pass a
template to retrieve the Id, Name, and LockedBy attributes for the selected objects.

Using the Change Management Facility � ExternalTable Lock Template 121

To identify fetched objects, issue the same method call modifying the search string as
follows:

search="*[@ChangeState CONTAINS ’Fetch’]"

To identify new objects, issue the method call with the search string:

search="*[@ChangeState CONTAINS ’New’ or @ChangeState = ’ ’]"

For more information about the GetMetadataObjects method, see Chapter 6,
“Querying All Metadata of a Specified Type,” on page 43.

Emptying the Project Repository

To clear a repository whose objects have already been checked in, issue a
DeleteMetadata request on the repository, setting the OMI_REINIT (2097152) flag. The
OMI_REINIT flag deletes all metadata objects from a repository without deleting the
repository itself and reinitializes the repository.

Note: A user must have Administrative User status on the SAS Metadata Server in
order to delete or clear a repository. �

Default Lock Templates

To protect metadata integrity, the change management facility supports a set of
default lock templates for certain metadata types. Default lock templates are defined
for the Document, ExternalTable, Job, PhysicalTable, Report, SASLibrary,
ServerComponent, ServerContext, TextStore, and Tree metadata types. If a default
template does not exist for a type, then only the indicated object is processed (no
associated objects), unless you specify a user-defined lock template.

The associated objects defined in each default lock templates are shown in the
sections that follow.

Document Lock Template
<Document>
<Documents/>
<Notes/>
<Extensions/>

</Document>

ExternalTable Lock Template
<ExternalTable>
<Columns/>
<OwningFile/>
<Extensions/>
<Notes/>
<Documents/>
<Properties/>

</ExternalTable>

122 Job Lock Template � Chapter 12

<Document>
<Documents/>
<Notes/>
<Extensions/>
</Document>

Job Lock Template
<Job>

<JobActivities/>
<SourceCode/>
<Extensions/>
<Notes/>
<Documents/>
<Properties/>
<TransformationSources/>
<TransformationTargets/>

</Job>
<TransformationActivity>

<Steps/>
<TransformationTargets/>
<SourceCode/>
<Extensions/>
<Notes/>
<Documents/>
<Properties/>

</TransformationActivity>
<TransformationStep>

<SuccessorDependencies/>
<PredecessorDependencies/>
<Transformations/>
<SourceCode/>
<Extensions/>
<Notes/>
<Documents/>
<Properties/>
<UsingPrototype/>
<PropertySets/>

</TransformationStep>
<Select>

<ClassifierTargets/>
<ClassifierSources/>
<FeatureMaps/>
<AssociatedRowSelector/>
<HavingForSelect/>
<GroupByForSelect/>
<WhereForSelect/>
<OrderByForSelect/>
<SourceCode/>
<Extensions/>
<Notes/>
<Documents/>
<Properties/>
<PropertySets/>

Using the Change Management Facility � Job Lock Template 123

<SubstitutionVariables/>
</Select>
<ClassifierMap>
<FeatureMaps/>
<ClassifierTargets/>
<ClassifierSources/>
<AssociatedRowSelector/>
<SourceCode/>
<Extensions/>
<Notes/>
<Documents/>
<Properties/>
<PropertySets/>
<SubstitutionVariables/>

</ClassifierMap>
<RowSelector>
<SourceCode/>

</RowSelector>
<OrderByClause>
<Columns/>
</OrderByClause>
<FeatureMap>
<FeatureSources/>
<FeatureTargets/>
<SourceCode/>
<Extensions/>
<Notes/>
<Documents/>
<Properties/>
<SubstitutionVariables/>

</FeatureMap>
<WorkTable>
<Columns/>
</WorkTable>
<PhysicalTable>
<Columns/>
<UniqueKeys/>
<Properties/>
<Indexes/>
<Documents/>
<Notes/>
<Extensions/>
<Roles/>
<PropertySets/>
<ForeignKeys/>

</PhysicalTable>
<Column>
<Documents/>
<Notes/>
<Extensions/>
<UniqueKeyAssociations/>
<Keys/>

</Column>
<Index>

124 Job Lock Template � Chapter 12

<Documents/>
<Notes/>
<Extensions/>

</Index>
<Property>

<SpecTargetTransformations/>
<StoredConfiguration/>

</Property>
<Prototype>

<PrototypeProperties/>
<Properties/>

</Prototype>
<Transformation>

<SourceCode/>
<SourceSpecifications/>

</Transformation>
<PropertySet>

<Properties/>
</PropertySet>
<Variable>

<AssociatedObject/>
</Variable>
<UniqueKey>

<ForeignKeys/>
</UniqueKey>
<ForeignKey>

<KeyAssociations/>
</ForeignKey>
<Cube>

<TargetTransformations/>
<Aggregations/>
<AssociatedFile/>
<Dimensions/>
<Hierarchies/>
<Measures/>
<Properties/>
<PropertySets/>
<Documents/>
<Notes/>
<Extensions/>

</Cube>
<Aggregation>

<AggregateAssociations/>
<Levels/>
<AggregationTables/>
<Properties/>

</Aggregation>
<AggregateAssociation>

<AggregatedColumns/>
<MeasureOrLevel/>
</AggregateAssociation>

<Dimension>
<TargetTransformations/>
<Hierarchies/>

Using the Change Management Facility � PhysicalTable Lock Template 125

<Levels/>
<Measures/>
<DefaultMeasure/>
<Properties/>
<Notes/>

</Dimension>
<Hierarchy>
<Levels/>
<OLAPProperties/>
<Notes/>
<Properties/>

</Hierarchy>
<Measure>
<TargetTransformations/>
<DefaultForDimension/>
<MLAggregations/>
<Notes/>

</Measure>
<Level>
<MLAggregations/>
<Notes/>
<Properties/>

</Level>
<Document>
<Documents/>
<Notes/>
<Extensions/>

</Document>

PhysicalTable Lock Template
<PhysicalTable>
<Columns/>
<UniqueKeys/>
<Properties/>
<Indexes/>
<Documents/>
<Notes/>
<Extensions/>
<Roles/>

</PhysicalTable>
<Column>
<Documents/>
<Notes/>
<Extensions/>
<UniqueKeyAssociations/>
<Keys/>

</Column>
<Index>
<Documents/>
<Notes/>
<Extensions/>

</Index>
<PropertySet>

126 Report Lock Template � Chapter 12

<Properties/>
</PropertySet>
<UniqueKey>

<ForeignKeys/>
</UniqueKey>
<ForeignKey>

<KeyAssociations/>
</ForeignKey>
<Document>

<Documents/>
<Notes/>
<Extensions/>

</Document>

Report Lock Template
<Report>

<ReportLocation/>
<FileRefs/>
<Documents/>
<Notes/>
<Extensions/>
<Properties/>
<PropertySets/>

</Report>

SASLibrary Lock Template
<SASLibrary>

<UsingPackages/>
<Properties/>
<Documents/>
<Notes/>
<Extensions/>

</SASLibrary>
<DatabaseSchema>

<Documents/>
<Notes/>
<Extensions/>

</DatabaseSchema>
<Document>

<Documents/>
<Notes/>
<Extensions/>

</Document>

ServerComponent Lock Template
<ServerComponent>

<Properties/>
<ServiceTypes/>
<SourceConnections/>

Using the Change Management Facility � Tree Lock Template 127

<InitProcesses/>
<DescriptiveComponent/>

</ServerComponent>
<Connection>

<Properties/>
</Connection>

ServerContext Lock Template
<ServerContext>

<UsingComponents/>
</ServerContext>
<LogicalServer>

<UsingComponents/>
<InitProcesses/>

</LogicalServer>
<ServerComponent>

<Properties/>
<ServiceTypes/>
<SourceConnections/>
<InitProcesses/>
<DescriptiveComponent/>

</ServerComponent>
<Connection>

<Properties/>
</Connection>

TextStore Lock Template
<TextStore>
<Documents/>
<Notes/>
<Extensions/>

</TextStore>
<PropertySet>
<Properties/>

</PropertySet>
<Document>
<Documents/>
<Notes/>
<Extensions/>

</Document>

Tree Lock Template
<Tree>
<Documents/>
<Notes/>
<Extensions/>

</Tree>
<Document>
<Documents/>

128 Tree Lock Template � Chapter 12

<Notes/>
<Extensions/>

</Document>

129

C H A P T E R

13
Repository Maintenance Tasks

Clearing or Deleting a Repository 129
Unregistering and Re-registering a Repository 129

Clearing or Deleting a Repository
There may be times when you want to clear the contents of a repository, for example,

to repopulate it with metadata. If many individual metadata objects have been deleted
from a repository, you might also want to remove any structures that might have been
left by the deleted objects in order to maintain performance efficiency. You might also
have a need to destroy the repository itself.

You can do all of these things by using the DeleteMetadata method, specifying a
RepositoryBase object instance, and setting one of the OMI_DELETE, OMI_PURGE,
OMI_REINIT, or OMI_TRUNCATE flags.

� Set OMI_REINIT (2097152) to clear a repository if your wish is to repopulate it
completely with different metadata.

� Set OMI_TRUNCATE (4194304) if you want to repopulate a repository using
metadata object containers created for the previous repository.

� Set OMI_PURGE (1048576) to remove the remnants of any individually deleted
metadata objects.

� Set OMI_DELETE (32) to destroy a repository. OMI_DELETE destroys the
contents of a repository and also removes its registration from the repository
manager.

Be sure to specify the REPOS namespace in the method call.

Note: You must have Administrative User status on the SAS Metadata Server in
order to clear or delete a repository. For more information about this privilege, see the
SAS Intelligence Platform: Security Administration Guide. �

CAUTION:
You should not combine the REPOS namespace flags. Each one should be run
independently of the others. Combining them will potentially yield undesirable
results. �

Unregistering and Re-registering a Repository
A repository is unregistered by issuing a DeleteMetadata method on its

RepositoryBase object instance in the REPOS namespace and setting only the
OMI_TRUSTED_CLIENT flag.

130 Unregistering and Re-registering a Repository � Chapter 13

A repository is re-registered by issuing the AddMetadata method (omitting the
repository’s identifier from the Id= attribute) and specifying the repository directory in
the Path attribute. The metadata server reads the CNTAINER and MRRGSTRY files
found at the path location and uses the repository identifier from them to create a new
registration.

Note: A user must have Administrative User status on the SAS Metadata Server in
order to unregister and re-register a repository. For more information about this
privilege, see the SAS Intelligence Platform: Security Administration Guide. �

131

P A R T4

Model Usage

Chapter 14.Model Usage Scenarios 133

132

133

C H A P T E R

14
Model Usage Scenarios

Overview of Model Usage Scenarios 134
Usage Scenario: Creating Metadata Objects that Represent a DBMS 135

Purpose 135

Requirements 135

Creating Objects that Represent a DBMS 135

Usage Scenario: Creating Metadata for a Cube 137
Purpose 137

Requirements 137

Creating Metadata Objects 137

Sample PROC OLAP Code 143

Usage Scenario: Creating a Prototype 144

Purpose 144
Requirements 144

Description of a Prototype 144

Prototype Objects 144

Prototype and Properties 144

Prototype and Property 145
PropertyGroups and Properties 146

XML Example 147

Example of Creating a Prototype 147

Usage Scenario: Creating Metadata for a SAS Library 158

Purpose 158
Requirements 158

Defining a Library 158

Examples of SAS Library Objects 159

Library with Tables in a Directory 159

Library with Tables in a Foreign Database 160

XML Representation of Metadata Objects that Define a SAS Library, Directory, and Data Sets 161
XML Representation of Metadata Objects Used to Define a SAS Library with Tables in a Foreign

Database 162

Usage Scenario: Creating Metadata for Tables, Columns, and Keys 163

Purpose 163

Requirements 164
Creating a SASLibrary and PhysicalTable Objects 164

Creating a Column Objects and Keys 165

XML Representation of SASLibrary and Physical Table Objects 168

XML Representation of Column Objects for Period Table 169

XML Representation of Column Objects for Sales Table 170
XML Representation of Keys 171

Usage Scenario: Creating Metadata for a SAS/SHARE Server 171

Purpose 171

134 Overview of Model Usage Scenarios � Chapter 14

Requirements 171
Software Deployment Metadata Types 172

Example 173

XML Representation of Metadata Objects Representing a SAS/SHARE Server, Libraries, and
Connections 174

Usage Scenario: Creating Metadata for a Stored Process 175
Purpose 175

Requirements 175

Description of a Stored Process 175

How to Define A Stored Process 176

XML Representation of Metadata Objects for a Stored Process 179

Usage Scenario: Creating Tree and Group Objects 183
Purpose 183

Requirements 183

Trees and Groups 183

Tree, Group, and Members 183

Tree Hierarchy, Groups, Members, SoftwareComponent 184
XML Representation of a Single Tree and Two Group Objects 185

XML Representation of a Tree Hierarchy 186

Usage Scenario: Creating Metadata for a Workspace Server 187

Purpose 187

Requirements 187
Description of a Server 187

Workspace Server Metadata Objects 187

DeployedComponent Types and Properties 188

ServerComponent and Initialization 190

TCPIPConnection and Property Objects 191

Putting All of the Pieces Together 193
Prototype Objects 195

Prototype and Properties 195

Prototype and Property 195

PropertyGroups and Properties 196

XML Example 197
XML Representation of Metadata Objects for a Workspace Server 198

Overview of Model Usage Scenarios
This section describes how to the use the SAS namespace metadata types to create

metadata objects for the most commonly used application elements. It describes which
metadata types to use to represent actual objects and the relationships between these
objects. It also provides sample XML requests that show how to create the actual
metadata objects.

The information is presented in a series of scenarios that describe how to use the
metadata types in different situations. Note that the XML requests included represent
only one way of creating the metadata, in order to demonstrate how to use the
metadata types.

These usage scenarios assume the reader has general understanding of the
submodels of the SAS Metadata Model. For more information about these submodels,
see “SAS Namespace Metadata Types” in the SAS Open Metadata Interface: Reference.
Readers who are not familiar with the general concepts of the SAS Open Metadata
Architecture should also refer to Getting Started with SAS Open Metadata Interface.

� describes the metadata types that represent DBMSs, database schemas, and the
metadata types used to represent SAS software’s access to DBMS information.

Model Usage Scenarios � Creating Objects that Represent a DBMS 135

� “Usage Scenario: Creating Metadata for a Cube” on page 137 describes the
metadata types used to represent a cube.

� describes how to create a prototype.
� describes the metadata types used to define a SAS library.
� describes how to create metadata for tables, columns, and relational keys.
� describes how to use the metadata types that represent software deployment

information, that is, information about how to run and access installed software
and the resources (files and data) that the software can access.

� describes how to define a stored process and how to define parameters for the
stored process using PropertyGroups.

� describes how to use the metadata types that represent an application hierarchy.
� describes how to define a SAS Integration Technologies workspace server using

metadata types from the Software Deployment submodel. This scenario also
includes information on creating a prototype for the server using the Property
submodel.

Usage Scenario: Creating Metadata Objects that Represent a DBMS

Purpose
This usage scenario describes how to define a DBMS server. You must use metadata

types from several SAS Metadata Model submodels to define a DBMS server, including
the Software Deployment Submodel, Resource Submodel, and Relational Submodel. For
more information about these submodels, see “SAS Namespace Metadata Types” in the
SAS Open Metadata Interface: Reference. This example focuses on how to create the
DBMS and define the server context of the SAS System that will be used to access the
DBMS data.

Requirements
This usage scenario assumes the reader has general understanding of the Software

Deployment Submodel, Resource Submodel, and Relational Submodel of the SAS
Metadata Model. For more information about these submodels, see “SAS Namespace
Metadata Types” in the SAS Open Metadata Interface: Reference. Readers who are not
familiar with the general concepts of the SAS Open Metadata Architecture should also
refer to Getting Started with SAS Open Metadata Interface.

Creating Objects that Represent a DBMS
Figure 14.1 on page 136 depicts the metadata objects that represent the information

necessary to access tables in a DBMS from SAS software.

136 Creating Objects that Represent a DBMS � Chapter 14

Figure 14.1 Metadata Objects that Represent the Information Necessary to Access
DBMS Tables from SAS Software

The metadata type ServerComponent is used to represent installed, runnable
software such as the Oracle DBMS represented in this scenario. A ServerContext is
used to define an application context by grouping non-homogeneous servers together
which each can access the same resources. Resources include file system directories,
database schemas, and SAS libraries which are represented by metadata types subtyped
from DeployedDataPackage. There is an association between a ServerComponent and/
or ServerContext and the DeployedDataPackage objects that it can access. If the
software is configured as a server, in this example the Oracle DBMS, the information
used to access the server is contained in one of the Connection metadata types.

In the previous diagram, the Oracle DBMS is a type of ServerComponent. The
association labeled “1” in the figure is called SourceConnections from the
ServerComponent’s perspective and Source from the Connection’s perspective. The
SourceConnections is the list of Connection objects that can be used by other software
to access the server. There may be many Connection objects, for example, one that
contains OLEDB connection information, JDBC connection information, or SAS
software connection information. There are several attributes which describe the
protocols supported by the Connection object. The CommunicationProtocol attribute
contains a value such as APPC or TCPIP that describes the communication protocol
used to access the component. The ApplicationProtocol contains a value such as HTTP,
RMI, Bridge, or SHARE. Each Connection object has a Source association with one and
only one ServerComponent object.

Model Usage Scenarios � Creating Metadata Objects 137

Each ServerContext and ServerComponent may also have a list of data packages it
can access. This association is labeled “2” in the figure. The Oracle DBMS has an
association to its DatabaseSchema object. The SAS software has an association to its
SASLibrary object. The list of packages available to a ServerComponent is the
association named DataPackages. From the package’s perspective, the list of
ServerComponent objects that can access it are in its ServerComponents association.

A SASLibrary may be associated with a single DatabaseSchema. This association is
labeled “4” in the figure. If a SASLibrary is associated with a DatabaseSchema, it also
needs the connection information for the server, and that association is labeled “5” in
the figure. From the SASLibrary object’s perspective, this association is called
LibraryConnection. From the Connection object’s perspective, the association is called
Libraries.

There is a subtype of DeployedDataPackage called RelationalSchema that has an
association to DataTable objects. SASLibrary and DatabaseSchema are subtypes of
RelationalSchema. The association labeled "3" in the figure is inherited from
RelationalSchema and is called Tables from the RelationalSchema perspective and
TablePackage from the DataTable perspective. PhysicalTable inherits this association
from DataTable. This example uses PhysicalTable objects because the objects represent
actual tables residing in a DBMS or file system. PhysicalTable objects should be
associated with a DatabaseSchema, if they reside in a DBMS, or a SASLibrary, if they
are SAS data sets.

Usage Scenario: Creating Metadata for a Cube

Purpose
This usage scenario describes how to create metadata representing a cube. A cube is

represented using metadata types from several submodels, including the Analysis
Submodel, the Relational Submodel, and the Transform Submodel. This scenario
depicts only one usage pattern.

Developers are discouraged from creating or consuming cube metadata using the
SAS Open Metadata Interface. Instead, cubes should be defined by using either SAS
OLAP Cube Studio or PROC OLAP. Sample PROC OLAP code that shows how to create
the cube metadata object and the related cube metadata is provided.

Requirements
This usage scenario assumes that the reader has a general understanding of the

Analysis Submodel, the Relational Submodel, and the Transform Submodel of the SAS
Metadata Model. For more information about these submodels, see “SAS Namespace
Metadata Types” in the SAS Open Metadata Interface: Reference. It also assumes that
the reader has at least introductory knowledge of OLAP concepts. If you are not familiar
with OLAP concepts, see the SAS OLAP Cube Studio or PROC OLAP documentation.

Creating Metadata Objects
A cube is a set of data that is organized and structured in a hierarchical,

multidimensional arrangement. The cube is usually derived from a subset of a data
warehouse. Unlike relational databases, which use two-dimensional data structures
(often in the form of columns and rows in a spreadsheet), OLAP cubes are logical,

138 Creating Metadata Objects � Chapter 14

multidimensional models that can have numerous dimensions and levels of data.
Metadata about a cube consists of information about the dimensions, levels, and
measures; information about the relational tables that contain the data from which a
cube is derived; and information about the transformation that creates the cube.

Figure 14.2 on page 138 shows the metadata that needs to be defined to represent a
typical input table.

Figure 14.2 Metadata Objects Used to Define an Input Table

Model Usage Scenarios � Creating Metadata Objects 139

The SAS Metadata Model defines several metadata types that represent tables.
Cubes are built from tables described by the PhysicalTable metadata type. The
PhysicalTable metadata type is used to represent a relational table or data set that
physically resides in a file system or DBMS. A PhysicalTable must have an associated
SAS library, directory, and server. These are represented by the SASLibrary, Directory,
and ServerComponent metadata types. A table’s columns are represented by the
Column metadata type. As shown in Figure 14.2 on page 138, the ServerComponent
has a DeployedComponents association to the SASLibrary metadata type (numbered 1
in the figure), the SASLibrary metadata type has a DataPackages association to the
Directory metadata type (numbered 2), the SASLibrary has a Tables associations to the
PhysicalTable metadata type (numbered 3) and the PhysicalTable has a Columns
association (numbered 4) to the Column metadata objects representing its columns.

Figure 14.3 on page 139 shows the process that creates the cube.

Figure 14.3 Metadata Objects Used to Create a Cube

The process of creating a cube is represented by the ClassifierMap metadata type
and associated TransformationStep, TransformationActivity, and Job metadata types.

140 Creating Metadata Objects � Chapter 14

The cube has a TargetClassifierMaps association (numbered 7 in the figure) to the
ClassifierMap metadata type, and the ClassifierMap has a ClassifierSources association
(numbered 6) to the PhysicalTable metadata type. The CubeType attribute on the Cube
is set to “MOLAP” to indicate that the cube is built from a detail table with no
aggregate data in relational tables. The CubeName attribute for the Cube is left blank
until PROC OLAP physically creates the cube. The Name attribute for the
ClassifierMap metadata type should be set to “Load Map” and the TransformRole
attribute should be set to “BASE.” The ClassifierMap also has a Steps association
(numbered 5) to the TransformationStep metadata type, the TransformationStep has an
Activities association (numbered 4) to the TransformationActivity metadata type, and
the TransformationActivity has a Jobs association (numbered 3) to the Job metadata
type. The Job metadata type has a Properties association (numbered 1) to a Property
metadata type, and the Property metadata type has an OwningType association
(numbered 2) to a PropertyType metadata type. The Name attribute and PropertyName
attribute of the Property object associated with the Job are both set to “Editable”, and
the DefaultValue attribute is set to “0.” The PropertyType has the Name attribute set
to “Boolean”, and the SQLType attribute set to “-7.” The TransformationStep also has a
Properties association (numbered 1) to a Property metadata type and the Property has
an OwningType association (numbered 2) to a PropertyType metadata type. The Name
attribute and the PropertyName attribute of the Property associated with the
TransformationStep both are set to “CLASS.” The DefaultValue attribute for the
Property is set to “com.sas.olapadmin.designer.model.CodeGeneration,” and the Role
attribute is set to “TRANSFORMATIONSTEP.” The PropertyType has the Name
attribute set to “String” and the SQLType set to “12.”

The Cube metadata type also has an AssociatedFile association (numbered 8) to a
File metadata type, and the File has a Directories association (numbered 9) to a
Directory metadata type. The File represents the storage location for the cube. The
FileExtension attribute of the File is set to “CUBE,” and the TextRole attribute is set to
”METAUTILITY.” The Cube has an AssociatedOLAPSchema association (numbered 10)
to an OLAPSchema metadata type, and the OLAPSchema has a DeployedComponents
association (numbered 11) to a ServerContext metadata type. The OLAPSchema is used
to group cubes together to be processed by an OLAP Server. The OLAP Server is
represented by a ServerContext metadata type.

Finally, the Cube has a Properties association (numbered 1) to two Property
metadata types, and each Property has an OwningType association (numbered 2) to a
PropertyType metadata type. The first Property has the Name and PropertyName
attributes set to “Version.” The DefaultValue is set to “2.” All cubes created with SAS
9.1 have the version number set to “2.” The PropertyType for the Version Property has
the Name attribute set to “Integer” and the SQLType attribute set to “4.” The second
Property has the Name and PropertyName attributes set to “NO_NWAY.” This attribute
indicates if the cube will have an NWAY aggregation saved with the cube. If the
DefaultValue attribute for the Property is set to “NO,” then an NWAY is saved. If it is
set to “YES,” then the NWAY is not saved. The PropertyTyep for the NO_NWAY
Property has the Name attribute set to “String” and the SQLType set to “12.”

Figure 14.4 on page 141 shows the dimensions, levels, and hierarchies for a cube.
The cube in this example has a single dimension called Geography. The Geography
dimension has a two levels, Country and Region, and one hierarchy called Geography.
Each level is derived from a single column in the input table.

Model Usage Scenarios � Creating Metadata Objects 141

Figure 14.4 Metadata Objects Used to Define Dimensions, Levels, and Hierarchies
of a Cube

The Cube has a Dimensions association to a Dimension metadata type (numbered 2
in the figure) and a Hierarchies association (numbered 1) to a Hierarchy metadata type.
The Dimension and the Hierarchy metadata types both have a Levels association
(numbered 3) to a Level metadata type. The Dimension has the DimensionType
attribute set to “STANDARD.” The Levels association from the Hierarchy to the Level
is an order list of Level metadata types, while the Levels association from the
Dimension to the Level is not. Each Level has a TargetFeatureMap association
(numbered 4) to a FeatureMap metadata type, and the FeatureMap has a
FeatureSources association (numbered 8) to a Column metadata type. The
TransformRole attribute of the FeatureMap is set to “ONETOONE.” The Cube has a
TargetClassifierMaps association (numbered 4) to a ClassifierMap metadata type. The
ClassifierMap has a ClassifierSources association (numbered 7) to a Physical Table
metadata type and a FeatureMaps association (numbered 6) to each FeatureMap. The
PhysicalTable has a Columns association (numbered 9) to the Column metadata types.

Figure 14.5 on page 142 shows the measures for a cube. The cube in this example has
a single measure, ActualSUM, which is derived from a single column on the input table.

142 Creating Metadata Objects � Chapter 14

Figure 14.5 Metadata Objects Used to Define the Measures of a Cube

The Cube has a Dimensions association (numbered 1 in the figure) to two Dimension
metadata objects. The first Dimension represents the dimension described in Figure
14.4 on page 141. The second Dimension represents the Measures dimension and must
have the DimensionType set to “MEASURES.” The Dimension and the Cube both have
a Measures association (numbered 3) to a Measure metadata type, the Measure has a
TargetFeatureMap association (numbered 5) to a FeatureMap metadata type, and the
FeatureMap has a FeatureSources association (numbered 7) to a Column. The Statistic
attribute is set to “SUM,” and the IsStoredStatistic is set to “1” for the Measure. The
TransformRole attribute for the FeatureMap is set to “TRNSFORM.” The Cube
metadata type has a TargetClassifierMaps association (numbered 2) to a ClassifierMap.
The ClassifierMap has a FeatureMaps association (numbered 4) to the FeatureMap and
a ClassifierSources association (numbered 7) to a PhysicalTable metadata type. The
PhysicalTable has a Columns association (numbered 8) to a Column metadata type.

Figure 14.6 on page 143 shows the aggregations for the cube. The cube in this
example has two aggregations. The first aggregation has the levels Country and
Region. The second aggregation has only the Country level. The Cube has an
Aggregations association (numbered 1 in the figure) to the Aggregation metadata types.
Each Aggregation has a Levels association (numbered 2) to a Level metadata type. The
first Aggregation has its Name attribute set to “Default” and the NWAY attribute set to
“1.” This aggregation represents the NWAY (sometimes called the default) aggregation.
Its Levels association (numbered 2) must contain each Level. The second Aggregation
has its Name attribute set to “Aggr1” and the NWAY attribute set to “0.” Its Levels
association only contains the Country Level.

Model Usage Scenarios � Sample PROC OLAP Code 143

Figure 14.6 Metadata Objects Used to Define the Aggregations of a Cube

Sample PROC OLAP Code
The following sample PROC OLAP code shows how to create the metadata objects

shown in the figures for this usage scenario.

LIBNAME OLAPLIB BASE "c:\olaptestfiles" ;

PROC OLAP Data=OLAPLIB.PRDSALE cube=prdmddb Path="c:\v9cubes";
METASVR host="hostname" port=9999 protocol=bridge userid=""
pw="" repository="Foundation" olap_schema="Olap Schema";

DIMENSION Geography hierarchies=(Geography) CAPTION=’Geography’;
HIERARCHY Geography levels=(COUNTRY REGION) CAPTION=’Geography’ DEFAULT ;
LEVEL REGION CAPTION=’Region’ ;
LEVEL COUNTRY CAPTION=’Country’ ;

MEASURE ACTUALSUM STAT=SUM COLUMN=ACTUAL CAPTION=’Sum of ACTUAL’ FORMAT=DOLLAR12.2 ;

AGGREGATION COUNTRY;

RUN;

144 Usage Scenario: Creating a Prototype � Chapter 14

Usage Scenario: Creating a Prototype

Purpose
This usage scenario describes how to create a prototype using the Property

Submodel. The example focuses on creating a SAS/CONNECT connection prototype. An
XML representation of the prototype is included to show how to construct prototype
objects and their properties.

Requirements
This usage scenario assumes the reader has a general understanding of the Property

Submodel and Software Deployment Submodel of the SAS Metadata Model. For more
information about these submodels, see “SAS Namespace Metadata Types” in the SAS
Open Metadata Interface: Reference. Readers who are not familiar with the general
concepts of SAS Open Metadata Architecture should also refer to Getting Started with
SAS Open Metadata Interface.

Description of a Prototype
A prototype is a template used for creating other metadata objects or sets of

metadata objects that represent a concept. The prototype includes all possible valid
options or properties that may be used to describe the metadata object that is
represented by the prototype. The prototype may then be used to drive a user interface
that will aid a user in the creation of metadata.

Prototype Objects
A Prototype object is used to as a template for creating other metadata objects. This

example describes a prototype for a SAS/CONNECT connection. A Prototype object
contains an attribute that contains the metadata type described by the prototype, in
this case a SASClientConnection, and has associations to other objects that define the
attributes and associations for the object.

Prototype and Properties
In this example, the prototype describes the information needed for a SAS/CONNECT

connection. Its attribute, MetadataType, identifies which type is being described.
Prototype objects may have AttributeProperty objects that describe the settings of the
attributes of the templated metadata type. In this example, the AttributeProperty for
ClassIdentifier indicates the only valid setting for this attribute for a Workspace Server.

Prototype objects may also have AssociationProperty objects that describe the
characteristics of associated objects. In this case, the AssociationProperty connects a
prototype of a TCPIPConnection object to the prototype of a SASClientConnection.

Prototype objects locate AttributeProperty and AssociationProperty objects through
the PrototypeProperties association or through PropertyGroup objects.

Objects created by using a prototype definition may maintain an association to the
prototype that was used to create them through the UsingPrototype association.

Figure 14.7 on page 145 depicts a prototype for a SASClientConnection, an
AttributeProperty, and an AssociationProperty. The associations indicated by the

Model Usage Scenarios � Prototype and Property 145

number “1” in the figure represent the association called PrototypeProperties. A
Prototype object can have a PrototypeProperties association to AttributeProperty and
AssociationProperty objects. That is, a SAS/CONNECT server can have both a class
identifier and source connections defined as properties. The association from the
AssociationProperty object to the SAS/CONNECT Connection Prototype (numbered “2”
in the figure) is called AssociatedPrototypes and is used to link prototype definitions
together.

Figure 14.7 Metadata Objects that Represent a Prototype for a
SASClientConnection

Prototype and Property
The TCPIPConnection that describes a Bridge connection has Property objects that

describe the encryption level and algorithms. A prototype also uses Property objects to
contain that information, but the Properties and PropertySet associations are not used.
Unfortunately, due to our subtyping structure, these associations are available to a
Prototype object. However, these associations should never be used.

If a prototype requires Property objects, then it should have a top-level
PropertyGroup object associated to it through the PrimaryPropertyGroup association.
PropertyGroup objects are used to logically group AttributeProperty,
AssociationProperty, and Property objects. This grouping is primarily used to organize
these objects for a user interface.

Figure 14.8 on page 146 depicts how to group properties. Each prototype has a single
top-level PropertyGroup, in this case named Connection Information. Each
PropertyGroup may have subgroups. The association between the Prototype and its
top-level group is called a PrimaryPropertyGroup association (number “1” in Figure
14.8 on page 146). The association between the top-level PropertyGroup and its
subgroups (numbered “2” in the figure) is called SubpropertyGroups.

146 PropertyGroups and Properties � Chapter 14

Figure 14.8 Metadata Objects for Grouping Properties

PropertyGroups and Properties
Figure 14.9 on page 147 depicts the relationship between the subtypes of

AbstractProperty objects and PropertyGroups. When used as part of a prototype
definition, a Property object must be associated to a only one PropertyGroup.
AttributeProperty and AssociationProperty are associated using the GroupedProperties
association (numbered “1” in Figure 14.9 on page 147).

Model Usage Scenarios � Example of Creating a Prototype 147

Figure 14.9 Relationship between the Subtypes of AbstractProperty Objects and
PropertyGroup Objects

XML Example
See Example of Creating a Prototype to view the XML representation of the

prototype for a SAS/CONNECT server. This is the actual prototype which would be
installed by SAS Management Console when initializing a new repository. This
prototype is used by the server wizard to aid a user in creating a metadata definition
for a SAS/CONNECT server.

Example of Creating a Prototype
<AddMetadata>

<Metadata>
<PropertyType Id="$String" Name="String" SQLType="12"/>
<PropertyType Id="$Boolean" Name="Boolean" SQLType="-7"/>

148 Example of Creating a Prototype � Chapter 14

<PropertyType Id="$Integer" Name="Integer" SqlType="4"/>
<PropertyType Id="$File" Name="File" SqlType="12"/>
<PropertyType Id="$StringArray" Name="String Array" SqlType="2003">

<ElementType>
<PropertyType ObjRef="$String"/>

</ElementType>
</PropertyType>
<PropertyType Id="$AuthenticationTypes" Name="AuthenticationTypes" SqlType="12">

<StoredConfiguration>
<TextStore Name="Enumeration of Authentication Types"

TextRole="config"
TextType="xml"
StoredText="<Configuration>

<Enumeration>
<Value name="user/password"/>
<Value name="none"/>
<Value name="password"/>
<Value name="certificate"/>
</Enumeration>
</Configuration>"/>

</StoredConfiguration>
</PropertyType>
<PropertyType Id="$EncryptionKeySizes" Name="EncryptionKeySizes" SqlType="12">

<StoredConfiguration>
<TextStore Name="Enumeration of Encryption Key Sizes"

TextRole="config"
TextType="xml"
StoredText="<Configuration>

<Enumeration>
<Value name="0"/>
<Value name="40"/>
<Value name="128"/>
</Enumeration>
</Configuration>"/>

</StoredConfiguration>
</PropertyType>
<PropertyType Id="$CommunicationProtocols" Name="CommunicationProtocols"

SqlType="12">
<ElementType>

<PropertyType ObjRef="$String"/>
</ElementType>
<StoredConfiguration>

<TextStore Name="Communication Protocols Enumeration"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<Enumeration>
<Value name="TCP"/>
<Value name="APPC"/>
<Value name="XMS"/>
</Enumeration>
</Configuration>"/>

</StoredConfiguration>
</PropertyType>

Model Usage Scenarios � Example of Creating a Prototype 149

<Prototype Id="$CONNSASConn" Name="SAS/CONNECT Connection"
MetadataType="SASClientConnection">
<PrimaryPropertyGroup>

<PropertyGroup Id="$ConnectionInformation" Name="Connection Information">
<SubpropertyGroups>

<PropertyGroup Id="$SignonInformation"
Name="SIGNON Types"
Desc="Select one of the following types of signon."
Minimum="1"
Maximum="1" >
<SubpropertyGroups>

<PropertyGroup Id="$Scriptless"
Name="Scriptless"
Desc=""
Minimum="1"
Maximum="1"/>

</SubpropertyGroups>
</PropertyGroup>
<PropertyGroup Id="$AdvancedOptions"

Name="Advanced Options"
Desc="" />

</SubpropertyGroups>
</PropertyGroup>

</PrimaryPropertyGroup>
<PrototypeProperties>

<AttributeProperty Name="Communication Protocol"
PropertyName="CommunicationProtocol"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="TCP">
<OwningType>

<PropertyType ObjRef="$CommunicationProtocols"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNSASConn"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$ConnectionInformation"/>
</AssociatedPropertyGroup>

</AttributeProperty>
<AttributeProperty Name="Application Protocol"

PropertyName="ApplicationProtocol"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="CONNECT">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNSASConn"/>

150 Example of Creating a Prototype � Chapter 14

</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$ConnectionInformation"/>
</AssociatedPropertyGroup>

</AttributeProperty>
<AssociationProperty

Name="Authentication Domain"
AssociationName="Domain"
PartnerName="Connections"
MetadataType="AuthenticationDomain"
IsExpert="0"
IsVisible="1"
IsUpdateable="1"
Minimum=""
Maximum="1">
<StoredConfiguration>
<TextStore Name="Authentication Domains"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>AuthenticationDomain</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_Persist_"/>
<Parm Name="_ReposID_"/>
<Parm Name="_Prototype_"/>
<Parm Name="New Authentication Domain"/>

</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>

<ConfiguredComponent
Name="PrototypePropertiesDialog Java Class"
ClassIdentifier="com.sas.workspace.visuals.
PrototypePropertiesDialog"/>

</Customizers>
<AssociatedPrototypes>

<Prototype ObjRef="$CONNSASConn"/>
<Prototype ObjRef="$AuthDomain"/>

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$CONNSASConn"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$ConnectionInformation"/>
</AssociatedPropertyGroup>

Model Usage Scenarios � Example of Creating a Prototype 151

</AssociationProperty>
<AttributeProperty

Name="Remote Host"
PropertyName="RemoteAddress"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNSASConn"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$ConnectionInformation"/>
</AssociatedPropertyGroup>

</AttributeProperty>
<AttributeProperty

Name="Service/Port"
PropertyName="Service"
IsExpert="0"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNSASConn" />
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$ConnectionInformation"/>
</AssociatedPropertyGroup>

</AttributeProperty>
</PrototypeProperties>
<Properties>

<Property
Name="Script"
PropertyName="Script"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$File"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$SignonInformation"/>
</AssociatedPropertyGroup>

</Property>

152 Example of Creating a Prototype � Chapter 14

<Property
Name="Prompt for Userid/Password"
PropertyName="Prompt"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">
<OwningType>

<PropertyType ObjRef="$Boolean"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$Scriptless"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="No Userid/Password"
PropertyName="NoPrompt"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="1">
<OwningType>

<PropertyType ObjRef="$Boolean"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$Scriptless"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="SAS Command"
PropertyName="SASCMD"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$SignonInformation"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Remote Session Macvar"
PropertyName="macvar"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

Model Usage Scenarios � Example of Creating a Prototype 153

<PropertyType ObjRef="$String"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$AdvancedOptions"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Execute Remote Submits Synchronously"
PropertyName="ConnectWait"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="1">
<OwningType>

<PropertyType ObjRef="$Boolean"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$AdvancedOptions"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Display Status Window"
PropertyName="ConnectStatus"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="1">
<OwningType>

<PropertyType ObjRef="$Boolean"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$AdvancedOptions"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Transmission Buffer Size"
PropertyName="Tbufsize"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$AdvancedOptions"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Requires Encryption"
PropertyName="Encryption"

154 Example of Creating a Prototype � Chapter 14

IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">
<OwningType>

<PropertyType ObjRef="$Boolean"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$AdvancedOptions"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Encryption Algorithm Names"
PropertyName="EncryptionAlgorithms"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$AdvancedOptions"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Encryption Algorithm Key Size"
PropertyName="EncryptionKeySize"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$EncryptionKeySizes"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$AdvancedOptions"/>
</AssociatedPropertyGroup>

</Property>
</Properties>

</Prototype>
<Prototype Id="$CONNDC" Name="SAS/CONNECT Server"

Desc="This server defines a SAS/CONNECT Server for SAS 9."
MetadataType="ServerComponent">
<Extensions>

<Extension Name="UITreeCategory"
Value="SAS Servers.SAS Application Server Components"
ExtensionType="VARCHAR" />

</Extensions>
<Associations>

<AssociationProperty

Model Usage Scenarios � Example of Creating a Prototype 155

Name=""
AssociationName="SourceConnections"
PartnerName="Source"
Minimum="1"
Maximum="1"
MetadataType="ServerComponent">

<AssociatedPrototypes>
<Prototype ObjRef="$CONNSASConn" />

</AssociatedPrototypes>
<OwningPrototype>
<Prototype ObjRef="$CONNDC" />

</OwningPrototype>
</AssociationProperty>

</Associations>
<PrimaryPropertyGroup>

<PropertyGroup Id="$CONNECTServer"
Name="CONNECT Server Properties"/>

</PrimaryPropertyGroup>
<PrototypeProperties>

<AttributeProperty
Name="ClassIdentifier"
PropertyName="ClassIdentifier"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="028e4060-d545-11d5-880d-aa0004006d06">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNDC"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$CONNECTServer"/>
</AssociatedPropertyGroup>

</AttributeProperty>
<AttributeProperty

Name="Major Version Number"
PropertyName="Major"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="9">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNDC"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$CONNECTServer"/>
</AssociatedPropertyGroup>

156 Example of Creating a Prototype � Chapter 14

</AttributeProperty>
<AttributeProperty

Name="Minor Version Number"
PropertyName="Minor"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNDC"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$CONNECTServer"/>
</AssociatedPropertyGroup>

</AttributeProperty>
<AttributeProperty

Name="Product Name"
PropertyName="ProductName"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="SAS/CONNECT">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNDC"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$CONNECTServer"/>
</AssociatedPropertyGroup>

</AttributeProperty>
<AttributeProperty

Name="Software Version"
PropertyName="SoftwareVersion"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="9.0">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNDC"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$CONNECTServer"/>
</AssociatedPropertyGroup>

Model Usage Scenarios � Example of Creating a Prototype 157

</AttributeProperty>
<AttributeProperty

Name="Vendor"
PropertyName="Vendor"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="SAS Institute">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$CONNDC"/>
</OwningPrototype>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$CONNECTServer"/>
</AssociatedPropertyGroup>

</AttributeProperty>
</PrototypeProperties>

</Prototype>
<Prototype Id="$AuthDomain" Name="Authentication Domain"

MetadataType="AuthenticationDomain">
<PrimaryPropertyGroup>

<PropertyGroup Name="Primary Group" >
<GroupedProperties>

<AttributeProperty
Name="Name"
PropertyName="Name"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$AuthDomain" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Description"
PropertyName="Desc"
IsExpert="0"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$AuthDomain" />

158 Usage Scenario: Creating Metadata for a SAS Library � Chapter 14

</OwningPrototype>
</AttributeProperty>

</GroupedProperties>
</PropertyGroup>

</PrimaryPropertyGroup>
</Prototype>

</Metadata>
<Reposid>_ReposID_</Reposid>
<Ns>SAS</Ns>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

Usage Scenario: Creating Metadata for a SAS Library

Purpose
This usage scenario describes the metadata objects used to define a SAS library. An

XML representation of the metadata objects is provided.

Requirements
This usage scenario assumes the reader has a general understanding of the Resource

Submodel, Software Deployment Submodel, and Relational Submodel of the SAS
Metadata Model. For more information about these submodels, see “SAS Namespace
Metadata Types” in the SAS Open Metadata Interface: Reference. Readers who are not
familiar with the general concepts of the SAS Open Metadata Architecture should also
refer to Getting Started with SAS Open Metadata Interface.

Defining a Library
The primary metadata type used to describe a SAS library is the SASLibrary type. It

has attributes for the engine type, the libref name, and whether the library is already
pre-assigned in the SAS session. A library has the IsPreassigned flag set to true if the
library is assigned during initialization of the SAS session. SASLibrary is a subtype of
RelationalSchema, because the SAS library concept acts much like a schema in that it
is a grouping of tables (or data sets). RelationalSchema is a subtype of
DeployedDataPackage because it contains data items.

In most situations, a SASLibrary will be associated with another
DeployedDataPackage through the UsingPackages association to describe the physical
location of the tables. This associated DeployedDataPackage could be a Directory,
DatabaseSchema, or another SASLibrary object. The Directory object contains a
DirectoryName attribute which is the name of the directory in the file system. If the
IsRelative attribute is set to false (0), then it is assumed that the file system name is
complete. If it is set to true (1), then there should be associated directory objects. The
DirectoryName of these objects should be pre-pended to the DirectoryName of the base
Directory object. When creating multiple levels of relative directory names, the relative
names must be stored in such a way that simply pre-pending the relative name will
create a valid directory name. This includes any required delimiters.

Model Usage Scenarios � Examples of SAS Library Objects 159

Tables may be associated to one and only one RelationalSchema. If the tables reside
in a DMBS, they should be associated to a DBMS schema, which in turn is associated
to a SASLibrary. If the tables reside in a directory, then they should be associated
directly to a SASLibrary. If there are multiple ways of specifying the directory, such as
c:\mystuff and \\mypc\mystuff, then the Alias association should be used. Each of
these scenarios is described in the examples below.

Examples of SAS Library Objects

Library with Tables in a Directory
Figure 14.10 on page 159 shows the metadata objects used to describe a SAS library,

directory, and data sets. The library is represented with the SASLibrary object, a
Directory object describes the physical location of the data, and the data set is a
PhysicalTable object. The ServerContext object describes which SAS software systems
can use this library definition.

Figure 14.10 Metadata Objects that Define a SAS Library, Directory, and Data Sets

160 Library with Tables in a Foreign Database � Chapter 14

The SAS software that can use this library definition is associated to the SASLibrary
through the DeployedComponents association (numbered “1” in the figure). The
Directory is associated to the SASLibrary through the UsingPackages association
(numbered “2” in the figure). This association is used to identify the “physical location”
which can be represented by a Directory object, DatabaseSchema object, or in the case
of concatenated libraries, a SASLibrary object. The DirectoryName attribute of
Directory contains the pathname of the directory. This attribute should always end
with the proper directory delimiter, in this case a “/”. The PhysicalTables are associated
to the SASLibrary through the Tables association (numbered “3” in the figure). If a
library has tables associated to it, then it is the primary or owning library.

See XML Representation of Metadata Objects that Define a SAS Library, Directory,
and Data Sets to view the XML representation of the metadata objects shown in Figure
14.10 on page 159.

Library with Tables in a Foreign Database
Figure 14.11 on page 161 shows the metadata objects used to describe a SAS library,

directory and data sets. The library is represented by a SASLibrary object, the schema
is represented by a DatabaseSchema object, and the relational table is represented by a
PhysicalTable object. The ServerContext object describes which SAS software systems
can use this library definition. The DeployedComponent is used to represent the
database server where the schema and tables reside. The SASClientConnection defines
the connection used by the SAS application to access the data in the foreign database.

Model Usage Scenarios � XML Representation of Metadata Objects that Define a SAS Library, Directory, and Data Sets 161

Figure 14.11 Metadata Objects Used to Define a SAS Library with Tables in a
Foreign Database

The database is a ServerComponent which has connection information used by SAS
software in the SASClientConnection object. From the ServerComponent for the DBMS,
the connection information is found through the SourceConnections association (number
“1“ in Figure 14.11 on page 161). The DatabaseSchema is an owning package (it has
tables associated to it through the Tables association (numbered “3” in the figure) and is
associated to the ServerComponent through the DeployedComponents association
(numbered “2” in the figure). The SASLibrary is associated to the DatabaseSchema
which it can access through the UsingPackages association (number “4”) and to the SAS
Software which used this library using the DeployedComponents association (number
“2”). SASLibrary uses the LibraryConnection to get the connection information for the
library (number “5”).

See XML Representation of Metadata Objects Used to Define a SAS Library with
Tables in a Foreign Database to view the XML representation of the metadata objects
shown in Figure 14.11 on page 161.

XML Representation of Metadata Objects that Define a SAS Library,
Directory, and Data Sets

<SASLibrary Id="A1234567.A1000001"
Name="Sales Library"
Desc="Sales Library"
Engine="base"

162 XML Representation of Metadata Objects Used to Define a SAS Library with Tables in a Foreign Database � Chapter 14

IsDBMSLibname="0"
Libref="SALES"
IsPreassigned="0">
<DeployedComponents>

<ServerContext Id="A1234567.A4000001"
Name="AppServer"
ProductName="SAS"
ClassIdentifier="SAS Application Server"
Vendor="SAS Institute" />

</DeployedComponents>
<UsingPackages>

<Directory Name="Sales Data Directory"
Id="A1234567.A2000001"
Desc="Directory for Sales Data"
DirectoryName="/data/sales/"/>

</UsingPackages>
<Tables>

<PhysicalTable Id="A1234567.A3000001"
Name="Invoice"
Desc="Invoice Demo Table"
SASTableName="Invoice"
TableName="INVOICE"
MemberType="DATA"/>

</Tables>
</SASLibrary>

XML Representation of Metadata Objects Used to Define a SAS
Library with Tables in a Foreign Database

<SASLibrary Id="A34OVRO3.AO00002T"
Engine="DB2UNXPC"
IsDBMSLibname="1"
IsPreassigned="0"
Libref="CWM"
Name="CWM Library">

<DeployedComponents>
<ServerContext Id="A34OVRO3.AP000001"

ClassIdentifier="SAS Application Server"
IsLicensed="0"
Major="9"
Minor="0"
Name="AppServer"
ProductName="SAS"
SoftwareVersion="9.0"
Vendor="SAS Institute"/>

</DeployedComponents>
<LibraryConnection>

<SASClientConnection Objref="A34OVRO3.AK00002T"/>
</LibraryConnection>
<UsingPackages>

<DatabaseSchema Id="A34OVRO3.AN00002T" Name="DB2Schema">
<Tables>
<PhysicalTable Id="A34OVRO3.AS000001"

DBMSType="DB2UNXPC"

Model Usage Scenarios � Purpose 163

IsCompressed="0"
IsEncrypted="0"
MemberType="DATA"
Name="PERIOD"
NumRows="-1"
SASTableName="PERIOD"
TableName="PERIOD"/>

<PhysicalTable Id="A34OVRO3.AS000002"
DBMSType="DB2UNXPC"
IsCompressed="0"
IsEncrypted="0"
MemberType="DATA"
MetadataCreated="14May2002:18:08:21"
MetadataUpdated="14May2002:18:08:21"
Name="PRODUCT"
NumRows="-1"
SASTableName="PRODUCT"
TableName="PRODUCT"/>

</Tables>
<DeployedComponents>

<ServerComponent Id="A34OVRO3.AI00002U"
ClassIdentifier="DB2UNXPC"
IsLicensed="0"
Major="7"
Minor="2"
Name="My Server"
ProductName="DB2UNXPC"
SoftwareVersion="7.2"
Vendor="International Business Machines Corporation">

<SourceConnections>
SASClientConnection Id="A34OVRO3.AK00002T"

ApplicationProtocol="DB2UDBPROTOCOL"
AuthenticationType="user/password"
CommunicationProtocol="TCP"
Name="Connection: My Server" Port="0"/>

</SourceConnections>
</ServerComponent>

</DeployedComponents>
</DatabaseSchema>

</UsingPackages>
</SASLibrary>

Usage Scenario: Creating Metadata for Tables, Columns, and Keys

Purpose
This usage scenario describes how to create PhysicalTable, Column, and key objects.

164 Requirements � Chapter 14

Requirements
This usage scenario assumes that the reader has general understanding of the

Resource Submodel and Relational Submodel of the SAS Metadata Model. For more
information about these submodels, see “SAS Namespace Metadata Types” in the SAS
Open Metadata Interface: Reference. Readers who are not familiar with the general
concepts of the SAS Open Metadata Architecture should also refer to Getting Started
with SAS Open Metadata Interface.

Creating a SASLibrary and PhysicalTable Objects
Figure 14.12 on page 164 depicts the metadata objects that represent the SAS library

Sales Information and its four tables: PERIOD, PRODUCT, SALES, and STORE.

Figure 14.12 Metadata Objects that Represent SAS Library “Sales Information”
and its four tables: “Period”, “Product”, “Sales” and “Store”

The metadata type SASLibrary is used to represent SAS libraries. SASLibrary is a
subtype of RelationalSchema, which is a subtype of DeployedDataPackage, and inherits
all of the attributes and associations of its supertype.

There are several metadata types that represent tables. PhysicalTable is the
metadata type used to represent a relational table or data set that physically resides in
a file system or DBMS. RelationalTable is used to represent tables that do not have a
physical mapping, for example, a table created using a data modeling tool. WorkTable
is used to represent a transient table; that is, a table that resides in the SAS WORK
library.

These objects can be created using the following XML request. See XML
Representation of SASLibrary and PhysicalTable Objects to view the XML
representation of the metadata objects shown in Figure 14.12 on page 164.

In the sample XML request, the first element is “AddMetadata”, which identifies the
method that is invoked on the SAS Metadata server. The next element is “Metadata”,
which indicates that the elements that follow are metadata objects.

Model Usage Scenarios � Creating a Column Objects and Keys 165

The element SASLibrary defines the SAS library and has the attributes Name,
Libref, and Engine. Also included is the IsPreassigned attribute, which should be set to
“true” if the library will be pre-assigned during initialization of the associated
DeployedComponent. A metadata object of type SASLibrary will be created with those
attributes set to the values provided in the document.

All of the immediate subelements of a metadata type are names of associations. The
subelements of SASLibrary define the associations between SASLibrary and other
metadata objects. In this example, Tables is a subelement of SASLibrary and defines a
relationship with a set of tables. This association is numbered “1” the figure. The
association Tables is inherited from SASLibrary’s supertype: RelationalSchema. The
Tables association is defined between the metadata type RelationalSchema and the
DataTable type.

Each end of the association is named. A RelationalSchema object refers to its
associated objects by using the XML tag Tables. DataTable objects refer to their
associated RelationalSchema objects by using the XML tag TablePackages.

Any subtype of RelationalSchema and DataTable can use the Tables/TablePackages
association to create an association between the two objects. SASLibrary is a subtype of
RelationalSchema, so it inherits this association. PhysicalTable is subtype of
DataTable, so it also inherits this association.

If you refer back to the XML, there are four PhysicalTable objects defined inside the
Tables element. All of the elements inside the Tables will be associated with the
SASLibrary.

PhysicalTable has three name attributes: Name, SASTableName, and TableName.
The Name attribute is a descriptive or display name. The SASTableName attribute is
the name used by SAS software to refer to the table. The TableName attribute is only
used if the table resides in a DBMS and the DBMS name is different than the name
used by SAS. In this case, TableName is the DBMS name for the table.

When this XML document was sent to the server, it created five new metadata
objects. The server allocated the following identifiers for the objects: for the
SASLibrary, the ID is ABCDEFGH.A1000001; for the PERIOD table, the ID is
ABCDEFGH.A2000001; for the SALES table, the ID is ABCDEFGH.A2000002; and so
on.

Creating a Column Objects and Keys
Figure 14.13 on page 166 depicts the columns and keys associated with the PERIOD

table. The column named PERIOD_ID has a primary key associated with it.

166 Creating a Column Objects and Keys � Chapter 14

Figure 14.13 Metadata Objects that Represent the Columns and Keys Associated
with PhysicalTable “Period”

Column is the metadata type used to represent columns in a table. A unique key or a
primary key is represented by the metadata type UniqueKey. The attribute IsPrimary
defaults to 0, which means the key is not a primary key. This attribute should be set to
1 if the key is a primary key.

These objects can be created using the following XML request. See XML
Representation of Column Objects for Period Table to view the XML representation of
the metadata objects shown in Figure 14.13 on page 166.

The Column object requires an association to a DataTable object or an object that is a
subtype of DataTable. In this example, each Column element has a subelement Table,
which is the name of the association to a DataTable. This association is identified with
the number “1” in second figure. Because the metadata object for the table already
exists, it is referred to by using the ObjRef attribute with the value of the identifier of
the table. This syntax is explained fully in Chapter 2, “Adding Metadata Objects,” on
page 5.

The first Column also has objects associated with it via the Keys association. Any
type of key can be associated with a Column using the Keys association. In this
example, the column named PERIOD_ID is associated with the unique key named
PERIOD_ID_KEY. This association is identified with the number “2” in the figure.

A key has a required association to both a table and a set of columns. The
association between a UniqueKey and a DataTable from the UniqueKey’s perspective is
called Table. From the DataTable, it is called UniqueKeys. This association is identified
by the number “3”. From the Column’s perspective, the association is named Keys; from
the Key’s perspective, it is named KeyedColumns. In the XML request, the UniqueKey

Model Usage Scenarios � Creating a Column Objects and Keys 167

element has the subelement Table followed by a reference to the PhysicalTable’s
identifier.

When this request was executed on the server, it created five new objects: four
Column objects and one UniqueKey object. The PERIOD_ID column was given the
identifier ABCDEFGH.A3000001, and the primary key was given the identifier
ABCDEFGH.A4000001.

Figure 14.14 on page 167 depicts the columns associated with the SALES table. The
column named PERIOD_ID has a foreign key associated with it.

Figure 14.14 Metadata Objects that Represent the Columns and Keys Associated
with PhysicalTable “Sales”

These Column objects can be created using the following XML request. See XML
Representation of Column Objects for Sales Table to view the XML representation.

After this request is executed on the server, the Column objects are created, and the
association numbered “1” in the figure is created between the PhysicalTable object and
the Column objects. PERIOD_ID column in the SALES table is given the identifier
ABCDEFGH.A3000007.

The foreign key, its required associations, and additional objects are created using
the following XML request. See XML Representation of Keys to view the XML
representation.

The foreign key named PERIOD_ID_FOREIGN_KEY is associated with the
PERIOD_ID column in the SALES table through the KeyedColumns association, which
is numbered “2” in the figure. It is also associated with the SALES table through the
Table association, which is numbered “3”.

168 XML Representation of SASLibrary and Physical Table Objects � Chapter 14

ForeignKey objects have two additional required associations: they must have an
association with a UniqueKey and a set of KeyAssociation objects. These associations
are depicted in Figure 14.15 on page 168.

Figure 14.15 Metadata Objects that are Associated with ForeignKey Objects

The ForeignKey object’s association with the primary key in the PERIOD table is
created through the PartnerUniqueKey association in the XML. This association is
numbered “1” in Figure 14.15 on page 168.

All ForeignKey objects have a set of KeyAssociation objects, one for each column
associated with the foreign key. This association numbered “2” in the figure.

The KeyAssociation object associates one column of the unique key with the
corresponding column in the foreign key. From the KeyAssociation object, these
associations are called the UniqueKeyColumn and the ForeignKeyColumn. These
associations are identified by the numbers “3” and “4” in the figure. In this example,
there is only one column for each key, so there is only one KeyAssociation object
created. The KeyAssociation object has an association to one column in the UniqueKey
and one column in the ForeignKey. This association is used to easily identify which
columns correspond in a unique key/foreign key relationship. If the characteristics of
one of the columns changes, it is easy to identify the associated columns and change
their characteristics as well.

XML Representation of SASLibrary and Physical Table Objects
<AddMetadata>

<Metadata>
<SASLibrary Name="Sales Information" Libref="SALEINFO" Engine="Base">

<UsingPackages>
<Directory DirectoryName="/data" Name="/data" IsRelative="0"/>

</UsingPackages>
<Tables>
<PhysicalTable Name="PERIOD" SASTableName="PERIOD"/>
<PhysicalTable Name="SALES" SASTableName="SALES"/>
<PhysicalTable Name="PRODUCT" SASTableName="PRODUCT"/>
<PhysicalTable Name="STORE" SASTableName="STORE"/>

Model Usage Scenarios � XML Representation of Column Objects for Period Table 169

</Tables>
</SASLibrary>

</Metadata>
<Reposid>A0000001.ABCDEFGH</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

XML Representation of Column Objects for Period Table
<AddMetadata>
<Metadata>

<Column SASColumnType="N"
SASColumnName="PERIOD_ID"
ColumnLength="10"
Name="PERIOD_ID">
<Table>

<PhysicalTable ObjRef="ABCDFEGH.A2000001"/>
</Table>
<Keys>

<UniqueKey IsPrimary="1" Name="PERIOD_ID_KEY">
<Table>
<PhysicalTable Objref="ABCDFEGH.A2000001"/>

</Table>
</UniqueKey>

</Keys>
</Column>
<Column SASColumnType="N"

SASColumnName="WEEK_IN_YEAR"
ColumnLength="10"
Name="WEEK_IN_YEAR">
<Table>

<PhysicalTable ObjRef="ABCDFEGH.A2000001"/>
</Table>

</Column>
<Column SASColumnType="N"

SASColumnName="MONTH_IN_YEAR"
ColumnLength="10"
Name="MONTH_IN_YEAR">
<Table>

<PhysicalTable ObjRef="ABCDFEGH.A2000001"/>
</Table>

</Column>
<Column SASColumnType="N"

SASColumnName="YEAR"
ColumnLength="10"
Name="YEAR"
ColumnName="YEAR">
<Table>

<PhysicalTable ObjRef="ABCDFEGH.A2000001"/>
</Table>

</Column>
</Metadata>

170 XML Representation of Column Objects for Sales Table � Chapter 14

<Reposid>A0000001.ABCDEFGH</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

XML Representation of Column Objects for Sales Table
<AddMetadata>

<Metadata>
<Column SASColumnType="N"

SASColumnName="PERIOD_ID"
ColumnLength="10"
Name="PERIOD_ID">
<Table>

<PhysicalTable ObjRef="ABCDEFGH.A2000002"/>
</Table>

</Column>
<Column SASColumnType="N"

SASColumnName="QUANTITY"
ColumnLength="10"
Name="QUANTITY">
<Table>

<PhysicalTable ObjRef="ABCDEFGH.A2000002"/>
</Table>

</Column>
<Column SASColumnType="N"

SASColumnName="REVENUE"
ColumnLength="10"
Name="REVENUE">
<Table>

<PhysicalTable ObjRef="ABCDEFGH.A2000002"/>
</Table>

</Column>
<Column SASColumnType="N"

SASColumnName="COST"
ColumnLength="10"
Name="COST">
<Table>

<PhysicalTable ObjRef="ABCDEFGH.A2000002"/>
</Table>

</Column>
</Metadata>
<Reposid>A0000001.ABCDEFGH</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

Model Usage Scenarios � Requirements 171

XML Representation of Keys
<AddMetadata>
<Metadata>

<ForeignKey Name="PERIOD_ID_FOREIGN_KEY">
<KeyedColumns>

<Column ObjRef="ABCDEFGH.A3000007"/>
</KeyedColumns>
<Table>

<PhysicalTable Objref="ABCDEFGH.A2000002"/>
</Table>
<PartnerUniqueKey>

<UniqueKey Objref="ABCDEFGH.A4000001"/>
</PartnerUniqueKey>
<KeyAssociations>

<KeyAssociation Name="KeyAssoc0">
<ForeignKeyColumn>

<Column Objref="ABCDEFGH.A3000007"/>
</ForeignKeyColumn>
<UniqueKeyColumn>

<Column Objref="ABCDEFGH.A3000001"/>
</UniqueKeyColumn>

</KeyAssociation>
</KeyAssociations>

</ForeignKey>
</Metadata>
<Reposid>A0000001.ABCDEFGH</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

Usage Scenario: Creating Metadata for a SAS/SHARE Server

Purpose
This scenario describes how to use the metadata types that represent software

deployment information; that is, information about how to run and access installed
software and the resources (files and data) that the software can access. An XML
representation is included to show how to create software deployment objects and their
associations.

Requirements
This usage scenario assumes the reader has a general understanding of the Property

Submodel and Software Deployment Submodel of the SAS Metadata Model. For more
information about these submodels, see “SAS Namespace Metadata Types” in the SAS
Open Metadata Interface: Reference. Readers who are not familiar with the general
concepts of the SAS Open Metadata Architecture should also refer to Getting Started
with SAS Open Metadata Interface.

172 Software Deployment Metadata Types � Chapter 14

Software Deployment Metadata Types
This scenario depicts metadata objects that represent a SAS/SHARE server, the

information used by a JDBC driver to access the server, and the SAS library ("Sales
Information"). Figure 14.16 on page 172 shows these metadata objects and their
associations.

Figure 14.16 Metadata Objects Representing a SAS/SHARE Server, Libraries, and
Connections

The metadata type ServerComponent represents a configured instance of an installed
and runnable deployed component. This metadata type contains attributes that
describe the software, such as name, vendor, version, and number. ServerComponent
objects may be associated with a Transformation using the InitInfo association. The
Transformation contains associations to other objects that provide startup information
for the server. Startup information may include scripts, properties, login information
for the startup process, log files, or any other information used at startup time. The
DeployedDataPackage association identified by the number “2” in the figure represents
the data packages, such as directories, schemas or libraries, that are available to the
server. In this scenario, the DataPackages association refers to a SASLibrary.

ServerComponent objects may also be associated with Connection objects using the
SourceConnections association (identified by the number "1" in the figure). The
connections may describe how other software components communicate with this object
or how this component should communicate with other software components. The
model has very few types to represent different connections. These types include:
COMConnection, TCPIPConnection, and SASClientConnection. Each of these types
contain a subset of attributes that are common for each type of connection. Associated
Properties (identified by the number “3” in the figure) are used to provide additional
information for specific connection types. In this example, we use a
SASClientConnection to represent the SAS/SHARE JDBC connection. Additional
properties that would be stored with this connection object include the server name,
physical name, libref, and encryption algorithm key size. The SAS Management

Model Usage Scenarios � Example 173

Console uses Prototypes (see also Usage Scenario: Creating a Prototype) to determine
which properties are appropriate when creating connections.

Example
See XML Representation of Metadata Objects Representing a SAS/SHARE Server,

Libraries, and Connections to view the XML representation of the metadata objects
shown in Figure 14.16 on page 172.

The ServerComponent, which represents the server, is the first object that is created.
The subelement SourceConnections is the name of one of the associations from a
ServerComponent to Connection objects. The Connection objects in the
SourceConnections describe how to access this server (the ServerComponent). This
association is numbered “1” in the figure.

Connection objects have a set of protocol attributes. For example, the information
required for a DCOM connection is different from the information required for a
CORBA connection. The CommunicationProtocol attribute of the Connection object
describes the network protocol used to access the server, such as TCP or APPC. The
ApplicationProtocol describes the application level protocol used by the application to
communicate with the server. For example, the application protocol could be DCOM,
CORBA, HTTP, RMI, Telnet, or in this case, the proprietary protocol, "SHARE". For
TCPIP communication, the RemoteAddress is required, in addition to the port or service
used by the server. For this type of connection, there is more information than is
needed. This information is stored in PropertyObjects and associated with the
Properties association (numbered “3” in the figure). The Property objects each must
have a PropertyType which is associated using the OwningType association. This
association is not pictured, but is represented in the XML request. Note that three of
the properties expect the value of the property to be set as a string. Each of these
properties point to a Property object already defined in the metadata for a string. The
encryption algorithm key size property has an enumerated list of possible values. This
enumeration is a TextStore object that is associated using the StoredConfiguration
association on the PropertyType.

The metadata type SASClientConnection is a subtype of the metadata type
Connection and contains information about how to access a SAS/SHARE server from a
Java or other open client. For example, the SAS/SHARE driver for JDBC could use the
information in this object to create the URL used to connect to the server. In order to
find available SAS/SHARE servers, the JDBC application could search the repository
for SASClientConnection objects that have the attribute ApplicationProtocol value set
to “Share”. These would provide connection information for all of the SAS/SHARE
servers registered in the repository.

A ServerComponent can also have a set of Connection objects that are available
through the ProviderConnections. These are the Connection objects used by this
component to access other components. If the JDBC application was registered in the
repository as a ServerComponent, its ProviderConnections could contain the
TCPIPConnection objects it uses to access servers.

A ServerComponent could have Connection objects in both lists. For example, server
one may forward a request to server two. Server one would have a connection object in
SourceConnections that describes how to connect to it (Server one). Server one’s
ProviderConnections would contain the Connection object that describes how to connect
to Server Two.

The other association to ServerComponent in this example is DataPackages
(numbered “2” in the figure). The DataPackages identify data packages, which are SAS
libraries, file system directories, DBMS catalogs, or schemas, that can be accessed by
this ServerComponent. For SAS software, the DataPackages is the list of SASLibrary
objects that are accessible. In this XML example, the SASLibrary object has already

174 XML Representation of Metadata Objects Representing a SAS/SHARE Server, Libraries, and Connections � Chapter 14

been created, so the XML contains a reference to the existing object using the ObjRef
attribute.

XML Representation of Metadata Objects Representing a SAS/SHARE
Server, Libraries, and Connections

<AddMetadata>
<Metadata>

<ServerComponent Name="SAS/SHARE server on mymachine.com">
<SourceConnections>

<SASClientConnection Name="SAS/SHARE JDBC Connection"
ApplicationProtocol="SHARE"
CommunicationProtocol= "TCP"
Port="5010"
RemoteAddress="d1234.na.sas.com">
<Properties>

<Property Name="Encryption Algorithm Key Size"
PropertyName="EncryptionKeySize"
DefaultValue="0">
<OwningType>

<PropertyType Objref="$EncKey"/>
</OwningType>

</Property>
<Property Name="Server Name"

PropertyName="ServerName"
DefaultValue="sdfsd" >
<OwningType>

<PropertyType Objref="ABCDEFGH.A2000001"/>
</OwningType>

</Property>
<Property Name="PhysicalName"

PropertyName="LibraryPhysName"
DefaultValue="sdsf" >
<OwningType>

<PropertyType Objref="ABCDEFGH.A2000001"/>
</OwningType>

</Property>
<Property Name="Libref"

PropertyName="ClientLibref"
DefaultValue="myLib" >
<OwningType>

<PropertyType Objref="ABCDEFGH.A2000001"/>
</OwningType>

</Property>
</Properties>

</SourceConnections>
<DataPackages>

<SASLibrary ObjRef="ABCDEFGH.A7000001"/>
</DataPackages>

</ServerComponent>
<PropertyType Id="$EncKey" Name="EncryptionKeySizes"

SQLType="12"
<StoredConfiguration>

<TextStore Name="Enumeration of Encryption Key Sizes"

Model Usage Scenarios � Description of a Stored Process 175

TextRole="config"
TextType="xml"
StoredText="<Configuration>

<Enumeration>
<Value name="0"/>
<Value name="40"/>
<Value name="128"/>

</Enumeration>
</Configuration>" />

</StoredConfiguration>
</PropertyType>

</Metadata>
<Reposid>A0000001.ABCDEFGH</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options />

</AddMetadata>

Usage Scenario: Creating Metadata for a Stored Process

Purpose
This usage scenario describes how to define a stored process. It explains how to define

parameters for the stored process using PropertyGroups. An example XML request is
included that represents one way to create the metadata for this usage scenario.

The scenario depicts one usage pattern for the model, which integrates several
submodels. It is not recommended that developers directly create or consume stored
process metadata. Instead stored processes should be defined using the Stored Process
Manager plug-in for SAS Management Console.

Requirements
This usage scenario assumes the reader has a general understanding of the Software

Deployment Submodel, Transform Submodel, and Property Submodel of the SAS
Metadata Model. For more information about these submodels, see “SAS Namespace
Metadata Types” in the SAS Open Metadata Interface: Reference. Readers who are not
familiar with the general concepts of the SAS Open Metadata Architecture should also
refer to Getting Started with SAS Open Metadata Interface.

Description of a Stored Process
A stored process is a set of metadata objects that define the information necessary to

run a process. This includes information about where the process can be run, the code
that should be run, parameters that need to be supplied by a user or another process,
the physical inputs to the process, and the outputs of the process.

176 How to Define A Stored Process � Chapter 14

How to Define A Stored Process
In this scenario, we define the Product Sales Demo. Central to defining a stored

process is the ClassifierMap type. The ClassifierMap is a subtype of a transformation
and is used to show the flow of data through a process. The ClassifierMap has
properties that an application needs to determine what the process is and how to run it.
The ClassifierMap is differentiated from other transformation types by the
ClassifierSource and ClassifierTarget associations. A Classifier and its subtypes
represent data in the model and may have features. For example, a PhysicalTable is a
type of Classifier which has features called Columns. The process which represents the
Product Sales demo consists of stored SAS code, which runs against a SAS data set to
produce a sales report. The SAS code is associated to the ClassifierMap via the
SourceCode association (numbered “4” in Figure 14.17 on page 176). Source code may
be any type of text object, including a TextStore (used for code stored in the repository),
Document (a URI to an external document), SASCatalogEntry, ArchiveFile (Zip file),
ArchiveEntry (an entry in the Zip file), or a File. In this scenario, the source code is
stored in a File named PrdSale.sas. The File has a Directories association (numbered
"5" in the figure) to the directory where the file is located. In addition, an application
may choose to store Notes about the process and an external identifier for the process.
Note text is stored in a TextStore object and associated to the ClassifierMap via a Notes
association (numbered “2” in the figure). The external identifier is stored in an
ExternalIdentity object and associated with the ClassifierMap via an ExternalIdentities
association (numbered “3” in the figure). An ExternalIdentity is an identifier that is
assigned by an external source, a GUID in this scenario, but may be any string that
uniquely identifies this process to the application.

The application also needs to know where the process can run, which LogicalServer
to use, and how to access it. The ComputeLocations association (numbered “1” in the
figure) has a list of the LogicalServer(s) that can run the process. In this scenario, the
LogicalServer is a SAS Workspace Server, because SAS is necessary to run the SAS code.

Figure 14.17 Metadata Objects Used to Define Stored Process for the Product
Sales Demo

Model Usage Scenarios � How to Define A Stored Process 177

The SAS Workspace Server is defined, in part, using the LogicalServer type (Figure
14.18 on page 177). (Also see Usage Scenario: Creating Metadata for a Workspace
Server.) Once we know which component to use, we may need additional information
about how to access this component. The LogicalServer has a ServerComponent
associated using the UsingComponents association (number “4” in the second figure).
The ServerComponent has a SourceConnections association (numbered "2" in figure) to
a TCPIPConnection. The TCPIPConnection gives the information necessary for the
process to connect to the Workspace Server and has information about the
AuthenticationDomain for this server. The TCPIPConnection object is associated to the
AuthenticationDomain via a Domain association (number “5” in the second figure).

In addition, the Workspace Server LogicalServer object has a UsedByComponents
association (number “3” in the second figure) to a ServerContext object, which has
associations to the DataPackages that are known to this server. In this example, two
objects have a DataPackages association to the Workspace Server: a Directory and a
SASLibrary (numbered “1” in the second figure). When a SASLibrary is defined, often
the directory information will also be stored. This occurs via the UsingComponents
association between the ServerComponent and the LogicalServer (number 4 in the
figure). The SAS Management Console supports the creation of library definitions.
Refer to Usage Scenario: Creating Metadata for a SAS Library for more information.

Figure 14.18 Metadata Objects for Defining a SAS Workspace Server

We now know where the code is for this process and where we can run this process.
We now need to know something about the inputs (ClassifierSources) and outputs
(ClassifierTargets). Note that only types which inherit from the Classifier type may be
part of this association. Generally, types which are considered classifiers represent

178 How to Define A Stored Process � Chapter 14

objects that have structure. Some examples of classifiers are data tables, reports, and
cubes. The input and/or output information may or may not be embedded in the source
code. However, even if it is part of the source code, this should be documented as part
of this process to facilitate impact analysis. If a source is changed or moved, it is
helpful to know all the processes that may be affected by the change.

In this scenario, a SAS data set is the only source and is associated to the
ClassifierMap via the ClassifierSources association (number “1” in Figure 14.19 on page
178). A SAS data set is represented by the PhysicalTable type and has an
TablePackages association that helps to locate the dataset. In this scenario, it is
associated to a SASLibrary (number “2” in the third figure). Note that this library is a
library that is known to the SAS Workspace Server where the process is run.

The output, or ClassifierTarget, for this scenario is a Report, illustrated by the
association between the ClassifierMap and Report objects (number “3” in the third
figure). The Report is stored as an Archive file in this example. An ArchiveFile contains
all the elements that are used by the report that was created. The Report could be
output to any ContentLocation, including a Stream (stream of data), Email, File, or
TextStore (represents text stored in the metadata repository). For a complete list of
ContentLocation types, refer to the documentation for the ContentLocation metadata
type in SAS Namespace Metadata Types in the SAS Open Metadata Interface: Reference.

Figure 14.19 Metadata Objects for Creating a Report

This stored process requires a user to submit two parameters. These parameters are
defined using Property objects in a PropertyGroup (Figure 14.20 on page 179). The
PropertyGroup is associated to the ClassifierMap using the PrimaryPropertiesGroup
association (number “1” in the fourth figure) and to Properties using the
GroupedProperties association (number “2” in the fourth figure). Each Property object
represents one of the parameters necessary for the stored process to run. The Property
objects also require an OwningPropertyType association to a PropertyType object
(number “3” in the fourth figure). The PropertyType gives information about the
expected format of the property value. In this case, it is a simple string, but it could

Model Usage Scenarios � XML Representation of Metadata Objects for a Stored Process 179

represent a more complex type like arrays or may have associated enumeration or local
information. The associated configuration information would be stored in a Text object.

We now know what the parameters are but need to have a way for a user to enter
values for the parameters. The ClassifierMap has a Customizers association (number
“4” in the fourth figure) to a DeployedComponent. The DeployedComponent in this
scenario is a .jsp that provides a user interface for input of the parameter values.

Figure 14.20 Metadata Objects that Store Properties for a Stored Process

See XML Representation of Metadata Objects for a Stored Process to view the XML
representation.

XML Representation of Metadata Objects for a Stored Process
<AddMetadata>
<Metadata>

<PropertyType
Id="$String"
Name="String"
SQLType="12" />

<LogicalServer
Id="$LogicalWorkspaceServer"

180 XML Representation of Metadata Objects for a Stored Process � Chapter 14

Name="My Test Server"
Desc="This is a test StoredProcessServer. Use at your own risk."
ClassIdentifier="15931E31-667F-11D5-8804-00C04F35AC8C"
ProductName="SAS Integration Technologies"
Vendor="SAS Institute">

<ServiceTypes>
<ServiceType Name="Logical IOM Server" />

</ServiceTypes>
<UsingComponents>

<ServerComponent
Id="$WorkspaceServer"
Name="SAS"
ProductName="SAS"
ClassIdentifier="440196D4-90F0-11D0-9F41-00A024BB830C"
Desc="SAS V9.0"
Vendor="SAS"
SoftwareVersion="9.0">
<SourceConnections>

<TCPIPConnection
Id="$C1"
Name="Workspace Server"
ApplicationProtocol="bridge"
Port="4059"
HostName="sunidb2.unx.sas.com"
AuthenticationType="User/Password"
CommunicationProtocol="TCP">
<Domain>

<AuthenticationDomain
Name="Sun"
Desc="Authentication Domain for Workspace Server">

</AuthenticationDomain>
</Domain>

</TCPIPConnection>
</SourceConnections>

</ServerComponent>
</UsingComponents>
<UsedbyComponents>

<ServerContext>
<DataPackages>

<Directory
Name="Stored Process Directory"
Id="$SPDir"
Desc="Directory for Stored Processes"
DirectoryName="file:/pub/sas/sprocess"/>
<SASLibrary

Name="Sales Data"
Id="$Lib"
Desc="Sales Library" Engine="base"
IsDBMSLibname="0"
Libref="Sales"
IsPreassigned="0">
<UsingPackages>

<Directory
Name="Sales Data Directory"

Model Usage Scenarios � XML Representation of Metadata Objects for a Stored Process 181

Desc="Directory for Sales Data"
DirectoryName="/dept/sales/data"/>

</UsingPackages>
<Tables>

<PhysicalTable
Name="Product Sales"
Id="$SalesTbl"
TableName="ProdSal"
MemberType="Data" />

</Tables>
</SASLibrary>

</Directorty>
</DataPackages>

</ServerContext>
</UsedbyComponents>

</LogicalServer>
<ClassifierMap

TransformRole="StoredProcess"
Name="Product Sales Demo"
Desc="An example of a sales report that runs against the product

sales data set">
<Notes>
<TextStore

Name="Abstract"
TextRole="Abstract"
StoredText="This text is the Product Sales Demo abstract"/>

</Notes>
<Customizers>
<DeployedComponent

Platform="SERVLET"
Name="DefaultInputForm"
ClassIdentifier="/jsp/html/portal/DefaultInputForm.jsp"/>

</Customizers>
<ComputeLocations>
<LogicalServer ObjRef="$LogicalWorkspaceServer"/>

</ComputeLocations>
<SourceCode>
<File

Name="Source Code"
Desc="Source code for Product Sales Demo"
FileName="prdsale1.sas"
IsARelativeName="1">
<Directories>

<Directory ObjRef="$SPDir"/>
</Directories>

</File>
</SourceCode>
<PrimaryPropertyGroup>
<PropertyGroup

Id="$ParameterPropertyGroup"
Name="ParameterPropertyGroup">
<GroupedProperties>

<Property
Name="Country"

182 XML Representation of Metadata Objects for a Stored Process � Chapter 14

Desc="Country for which the report is run"
IsRequired="1"
PropertyName="pCountry"
PropertyRole="Parameter">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>

</Property>
<Property

Name="Year"
Desc="Year for which the report is run"
IsRequired="1"
PropertyName="pYear"
PropertyRole="Parameter">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>

</Property>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>
<ClassifierTargets>

<Report>
<ReportLocation>

<ArchiveFile
Name="ResultPackage"
FileName="TEMPFILE"/>

</ReportLocation>
</Report>

</ClassifierTargets>
<ClassifierSources>

<PhysicalTable Objref="$SalesTbl" />
</ClassifierSources>
<ExternalIdentities>

<ExternalIdentity
Name="GUID"
Context="GUID"
Identifier="4ed904:e6118d4944:-7ffe-10.26.1.47"/>

</ExternalIdentities>
</ClassifierMap>

</Metadata>
<Reposid>A0000001.A529V630</Reposid>
<Ns>SAS</Ns>
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

Model Usage Scenarios � Tree, Group, and Members 183

Usage Scenario: Creating Tree and Group Objects

Purpose
This usage scenario describes how to use the metadata types that represent an

application hierarchy. The application hierarchy is used to group metadata in a
meaningful way for an application.

Requirements
This usage scenario assumes the reader has a general understanding of the Grouping

Submodel and Software Deployment Submodel of the SAS Metadata Model. For more
information about these submodels, see “SAS Namespace Metadata Types” in the SAS
Open Metadata Interface: Reference. Readers who are not familiar with the general
concepts of SAS Open Metadata Architecture should also refer to Getting Started with
SAS Open Metadata Interface.

Trees and Groups
The SAS Metadata Model provides the following metadata types for grouping

metadata objects together:
� Tree - used to create a tree hierarchy.
� Group - used to group objects together.

These metadata types have an association called Members, which can be associated
with any other object. Usually, a Tree metadata object is created that contains
references to other Tree objects as well as Groups. All of these objects are associated to
the Tree through the Members association. To create the tree hierarchy, the trees are
nested. A ParentTree has associations to its SubTrees. In addition, a tree object may be
associated with a SoftwareComponent. This association gives the tree context via an
application. The hierarchy of the tree is traversed through the ParentTree and
SubTrees associations.

Tree, Group, and Members
The scenario depicted in Figure 14.21 on page 184 is a single Tree with two Groups,

each of which contain two objects. There is a Group that contains Person objects and a
Group that contains PhysicalTable objects.

184 Tree Hierarchy, Groups, Members, SoftwareComponent � Chapter 14

Figure 14.21 Metadata Objects Used to Represent a Single Tree with Two Groups

The following XML request shows how to create the Tree and Group objects. In this
example, the Person and PhysicalTable objects are already created in the repository.
See XML Representation of a Single Tree and Two Group Objects to view the XML
representation.

The Tree object named “All my metadata" has two Group objects in its Members
association. The Tree could have other objects in this list, but this simple example only
has Group objects. Each Group has a reference to the tree it is a part of, the reference
being a symbolic reference to the Tree. The association is represented by the number
“1” in the figure. Each Group also has a Members association to two other objects.
These associations are represented by the number “2” in the figure.

Tree Hierarchy, Groups, Members, SoftwareComponent

The scenario in Figure 14.22 on page 185 depicts a Tree hierarchy in which two trees
are nested. Each Tree has a Group and/or other members. There is also an association
from one Tree to a SoftwareComponent.

Model Usage Scenarios � XML Representation of a Single Tree and Two Group Objects 185

Figure 14.22 Metadata Objects that Represent a Tree Hierarchy

The following XML request creates the Tree and Group objects. In this example, the
Person and PhysicalTable objects are already created in the repository. See XML
Representation of a Tree Hierarchy to view the XML representation.

The Tree has several Members associations (numbered “3” in the second figure), a
SubTrees association (numbered “2” in the second figure), and a SoftwareComponents
association (numbered “1” in the second figure). The Group objects are associated to the
Tree objects using the Members association. From the Group, the association is Trees.
Trees are associated to other trees using the ParentTree/SubTrees association. Note
that a Tree can have only one ParentTree association but can have multiple Subtrees.
In our example, there is only one SubTree. The Tree also has an association to a
SoftwareComponent. This association helps an application determine which trees
contain information for this application.

XML Representation of a Single Tree and Two Group Objects
<AddMetadata>
<Metadata>

<Tree Id="$1" Name="All my metadata" >
<Members>

<Group Name="People">
<Members>

<Person ObjRef="ABCDEFGH.A8000001"/>
<Person ObjRef="ABCDEFGH.A8000002"/>

</Members>
</Group>
<Group Name="Data">
<Members>

186 XML Representation of a Tree Hierarchy � Chapter 14

<PhysicalTable ObjRef="ABCDEFGH.A2000001"/>
<PhysicalTable ObjRef="ABCDEFGH.A2000002"/>

</Members>
</Group>

</Members>
</Tree>

</Metadata>
<Reposid>A0000001.ABCDEFGH</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

XML Representation of a Tree Hierarchy
<AddMetadata>

<Metadata>
<Tree Id="$1" Name="All my metadata" >

<Members>
<Group Name="Data">

<Members>
<Person ObjRef="ABCDEFGH.A8000001"/>
<Person ObjRef="ABCDEFGH.A8000002"/>

</Members>
</Group>
</Members>
<SubTrees>

<Tree Id="$2" Name="Child Tree">
<Members>

<Group Name="AGroup"/>
<PhysicalTable ObjRef="ABCDEFGH.A2000001"/>
<PhysicalTable ObjRef="ABCDEFGH.A2000002"/>

</Members>
</Tree>

</SubTrees>
<SoftwareComponents >

<SoftwareComponent Name="myComponent" />
</SoftwareComponents>

</Tree>
</Metadata>
<Reposid>A0000001.ABCDEFGH</Reposid>
<NS>SAS</NS>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

Model Usage Scenarios � Description of a Server 187

Usage Scenario: Creating Metadata for a Workspace Server

Purpose
This usage scenario describes how to define a server. The example focuses on using

the Property submodel to describe a SAS Integration Technologies Workspace server
and explains how to create a template for this type of server. An XML representation is
included to show how to construct Prototype objects and their properties.

Requirements
This usage scenario assumes the reader has a general understanding of the Property

Submodel, Software Deployment Submodel, and Transform Submodel of the SAS
Metadata Model. For more information about these submodels, see “SAS Namespace
Metadata Types” in the SAS Open Metadata Interface: Reference. Readers who are not
familiar with the general concepts of the SAS Open Metadata Architecture should also
refer to Getting Started with SAS Open Metadata Interface.

Description of a Server
A server is described in metadata using a set of DeployedComponent types (used to

describe installed software) that has associated Connection objects (used to describe
how to communicate with the server). IOM servers, DBMSs, and other servers are all
described using these metadata types. There are several subtypes of Connection that
provide additional information based on the communication protocol. For example,
TCPIPConnection contains additional attributes used by TCP/IP communication, such
as the host name and the port number.

DeployedComponent and its subtypes, along with TCPIPConnection, are generic
types. Specific information about the software or the connection is provided through
associated Property objects.

Workspace Server Metadata Objects
Figure 14.23 on page 188 depicts the main objects used to describe a Workspace

server. A ServerContext allows an application to group non-homogeneous servers
together that share resources. The resources that are shared include SAS Libraries and
directories. The ServerContext has an associated LogicalServer (number “1” in the
figure). The LogicalServer is used to group homogeneous servers together. The servers
grouped by the LogicalServer would typically be used for pooling or load balancing.
However, it is important to note that even a single workspace server would be
represented using a set of ServerContext, LogicalServer, and ServerComponent types.
The ServerComponent represents the actual Workspace server. A ServerComponent
type represents a configured instance of installed software. One installation of SAS, for
example, may have several configurations of a server, each with different resources or
options defined. The installation of the software is represented by a
DeployedComponent type. Each of these software deployment types inherit from the
DeployedComponent type. Each DeployedComponent has a ClassIdentifier attribute
that is used to identify the kind of component. The ClassIdentifier can be a unique
identifier, such as the GUID generated through CDTool, or a Java class name (including
the package), or some other unique string. In this example, the ServerContext has a

188 DeployedComponent Types and Properties � Chapter 14

class identifier of SAS Application Server. The LogicalServer and the ServerComponent
both use 440196D4-90F0-11D0-9F41-00A024BB830C.

The ServiceType object describes the kinds of services available from the server and
is associated to each of the DeployedComponent types (see "4" in the figure). In this
case, the ServerComponent is tagged as an IOM server. The spawner uses this
information to locate the servers it should start. The LogicalServer has a service type of
Logical IOM Server and the ServerContext has a service type of Data Service.

The TCPIPConnection object describes how to access the server and is associated to
the ServerComponent using the SourceConnections association (number “2” in the
figure). The AuthenticationDomain object describes the authentication domain used by
the server when accessed using this connection information (number “3” in the figure).

Figure 14.23 Metadata Objects Used to Describe a Workspace Server

DeployedComponent Types and Properties
Both the workspace server objects and the connection object require more

information than is defined in the DeployedComponent types or a TCPIPConnection.
The additional information is contained in Property objects. Figure 14.24 on page 189
depicts the ServerComponent and its associated Property and PropertyType objects.

Model Usage Scenarios � DeployedComponent Types and Properties 189

Figure 14.24 Property Objects for a WorkSpace Server

The Workspace server must provide information about how to start and manage it.
These are not specific attributes of ServerComponent, so the information is kept in
Property objects. The Property objects shown in Figure 14.24 on page 189 are the
default settings for the server. The associations numbered “1” depict the association of a
Property object to its owning object, in this example, a ServerComponent. This
association (from the owning object’s perspective) is called Properties. All of the default
Property objects should be available through this association.

If there are valid alternative values for Property objects, other than the default
values, then PropertySet objects are used. If someone wants to find ALL of the default

190 ServerComponent and Initialization � Chapter 14

Property objects, they will find them through the Properties association. If they are
looking for a specific set of Property objects, then they should obtain a PropertySet
object through the PropertySets association. The Property objects are available from
the PropertySet object through the SetProperties association.

A PropertySet is also required to have a complete set of Property objects for a
particular usage. There may be duplicate Property objects available through the
Properties association, as well as through PropertySet objects, but that is because each
of these are required to provide a complete set. An application should be able to obtain
either the Property objects in the Properties association, or those in a PropertySet, and
have all of the required information needed. There is no merging of Property objects
through these associations, and there is no hierarchy of Property objects allowed
through these associations.

The Property object contains the name of the property used by a program
(PropertyName). The value of the Property is saved in the DefaultValue attribute if it is
a single value, or in an associated Text object if it refers to an array of values. This
usage of the Text object is explained later in the TCPIPConnection and Property
Objects“TCPIPConnection and Property Objects” on page 191 section. Each Property
object has a set of attributes that describe whether the Property is required, can be
updated, and should be visible in a user interface. If a Property indicates that it is
required, it does NOT mean that the model requires the Property; it means that a value
must be provided for proper usage of this object. If a Property indicates that it cannot
be updated, then the DefaultValue contains the only valid setting for the Property.

Each Property object must be associated to a PropertyType object that describes the
SQL type of information stored in the DefaultValue or associated Text object. The
association between a Property and its PropertyType (numbered “2” in the second
figure) is called OwningType. From the PropertyType, this association is called
TypedProperties.

ServerComponent and Initialization
If the ServerComponent requires initialization information that should be stored in

other metadata types, such as file names and locations, login information, or SAS
library information, then a Transformation object that describes initialization process
should be defined to associate that information to the ServerComponent. Figure 14.25
on page 190 depicts an example of an initialization process.

Figure 14.25 Metadata Objects Used to Define an Initialization Process that Uses
a File and Login as Input

Model Usage Scenarios � TCPIPConnection and Property Objects 191

There are two metadata types that represent processes. Processes that do not
represent data flow are represented as a Transformation object, in this case, the
initialization process. Processes that represent data flow, for example a SAS procedure
that accepts input data and creates output data, are represented as ClassifierMaps.

This example shows an initialization process that uses a file and login as input to the
process. The ServerComponent locates its initialization processes through the
InitProcesses association (number “1” in the third figure). The Transformation identifies
the inputs to the initialization process through the TransformationSources association
(number “2” in the third figure).

TCPIPConnection and Property Objects
The metadata type TCPIPConnection provides connection information for SAS/

SHARE, SAS/CONNECT, and SAS Integration Technologies servers as well as DBMSs
and other types of servers. The TCPIPConnection object has a set of attributes that
contain generic information used to access a server accessible through TCP/IP, but it
does not contain all of the specific information required for a particular server. For
example, servers provided by SAS may require a set of encryption options as part of the
connection information. Other options and their values may be needed to complete a
connection to a server. Rather than create a large number of subtypes of
TCPIPConnection, one can be tailored to include specific connection information for each
type of server. Additional connection information is contained in the Property objects.

Figure 14.26 on page 192 depicts the metadata objects that contain the information
needed to connect to a SAS Integration Technologies server using Bridge protocol.

192 TCPIPConnection and Property Objects � Chapter 14

Figure 14.26 Metadata Objects Representing a SAS Integration Technologies
Server Connection

Figure 14.26 on page 192 is very similar to Figure 14.24 on page 189, but it includes
additional information about the Property values and constraint information for the
PropertyType.

Just like DeployedComponent, TCPIPConnection contains generic connection
information used to communicate with any server accessible through TCP/IP. In this
example, there are two Property objects that contain additional information used to
establish the connection: one for the RequiredEncryptionLevel and one for the
ServerEncryptionAlgorithms. These Property objects represent the default values and
are accessible from the TCPIPConnection object through the Properties association
(number "1" in fourth figure).

The Property for EncryptionAlgorithms differs from the other Property objects
because the type of the object is Array. A PropertyType that has an SQLType of Array

Model Usage Scenarios � Putting All of the Pieces Together 193

should use the ElementType association (number "3" in fourth figure) to find the type of
the elements of the array. The valid values of the EncryptionAlgorithm PropertyType
are constrained to a list of four values: RC2, RC4, DES and Triple DES. This list is
stored in a Text object, in this case, the subtype TextStore. The association between the
Text object and PropertyType is called StoredConfiguration (number “4” in fourth figure).

Putting All of the Pieces Together
Figure 14.27 on page 194 depicts all of the objects used to describe this Workspace

server.

194 Putting All of the Pieces Together � Chapter 14

Figure 14.27 Summary of Objects Used to Describe the WorkSpace Server

.

Model Usage Scenarios � Prototype and Property 195

Prototype Objects
We just described how to use Property objects to store additional information for an

object, but how do you describe a property sheet that describes all of the information
required for a scenario? Which Property objects should be included?

A Prototype object is used as a template for creating other metadata objects. In this
example, we describe a Prototype for a Workspace server. A Prototype object contains
an attribute that contains the metadata type described by the Prototype, in this case, a
DeployedComponent, and has associations to other objects that define the attributes
and associations for the object.

Prototype and Properties
In this example, the Prototype describes the information needed for a Workspace

server. Its attribute, MetadataType, identifies which type is being described. Prototype
objects may have AttributeProperty objects that describe the settings of the attributes
of the templated metadata type. In this example, the AttributeProperty for
ClassIdentifier indicates the only valid setting for this attribute for a Workspace Server.

Prototype objects may also have AssociationProperty objects that describe the
characteristics of associated objects. In this case, the AssociationProperty connects a
Prototype of a TCPIPConnection object to the Prototype of a DeployedComponent.

Prototype objects locate AttributeProperty and AssociationProperty objects through
the PrototypeProperties association or through PropertyGroup objects.

Objects created by using a Prototype definition may maintain an association to the
Prototype that was used to create them through the UsingPrototype association.

Figure 14.28 on page 195 depicts a Prototype for a DeployedComponent and an
AttributeProperty and an AssociationProperty. The numbers “1” and “2” in the sixth
figure represent the association called PrototypeProperties from the Prototype. The
association from the AssociationProperty is called AssociatedPrototypes (numbered “3”
in sixth figure) and is used to link prototype definitions together.

Figure 14.28 WorkSpace Server Prototype

Prototype and Property
The TCPIPConnection that describes a Bridge connection has Property objects that

describe the encryption level and algorithms. A Prototype also uses Property objects to

196 PropertyGroups and Properties � Chapter 14

contain that information, but the Properties and PropertySet associations are not used.
Unfortunately, due to our subtyping structure, these associations are available to a
Prototype object. However, these associations should never be used.

If a Prototype requires Property objects, then it should have a top-level
PropertyGroup object associated to it through the PrimaryPropertyGroup association.
PropertyGroup objects are used to logically group AttributeProperty,
AssociationProperty, and Property objects. This grouping is primarily used to organize
these objects for a user interface.

Each Prototype has a single top-level PropertyGroup, in this case named Server
Information. Each PropertyGroup may have subgroups. The association between the
Prototype and its top level group is identified as a PrimaryPropertyGroup (number “1”
in Figure 14.29 on page 196). The association between the top level PropertyGroup and
its subgroups is SubpropertyGroups (number “2” in the seventh figure). The subgroup
Operating System has two subgroups labeled ’OS/390’ and ’Other’. This association is
numbered “3” in the seventh figure and is also known as SubpropertyGroups.

Figure 14.29 WorkSpace Server Bridge Connection Prototype

PropertyGroups and Properties
Figure 14.30 on page 197 depicts the relationship between the subtypes of

AbstractProperty objects and PropertyGroups. When used as part of a Prototype
definition, a Property object must be associated to a only one PropertyGroup.
AttributeProperty and AssociationProperty are associated using the GroupedProperties
association (number “1” in eighth figure).

Model Usage Scenarios � XML Example 197

Figure 14.30 Relationship between the Subtypes of AbstractProperty Objects and
PropertyGroup Objects

XML Example
See XML Representation of Metadata Objects for a Workspace Server to view the

XML representation.

198 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

XML Representation of Metadata Objects for a Workspace Server
<AddMetadata>

<Metadata>
<PropertyType Id="$String" Name="String" SQLType="12"/>
<PropertyType Id="$Boolean" Name="Boolean" SQLType="-7"/>
<PropertyType Id="$Integer" Name="Integer" SqlType="4"/>
<PropertyType Id="$StringArray" Name="String Array" SqlType="2003">

<ElementType>
<PropertyType ObjRef="$String"/>

</ElementType>
</PropertyType>
<PropertyType Id="$IOMClassIds" Name="IOMClassIds" SqlType="12">

<StoredConfiguration>
<TextStore

Name="Enumeration of IOM Class Ids"
TextRole="config"
TextType="xml"
StoredText=
"<Configuration>
<Enumeration>
<Value name="440196D4-90F0-11D0-9F41-00A024BB830C">Workspace</Value>
<Value name="class id goes here">friendly name goes here</Value>
</Enumeration>
</Configuration>"/>

</StoredConfiguration>
</PropertyType>
<PropertyType Id="$AuthenticationTypes"

Name="AuthenticationTypes"
SqlType="12">

<StoredConfiguration>
<TextStore

Name="Enumeration of Authentication Types"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<Enumeration>
<Value name="user/password"/>
<Value name="none"/>
<Value name="password"/>
<Value name="certificate"/>
</Enumeration>
</Configuration>"/>

</StoredConfiguration>
</PropertyType>
<PropertyType Id="$SASEncryptionAlgorithms"

Name="SASEncryptionAlgorithms"
SqlType="2003">

<ElementType>
<PropertyType ObjRef="$String"/>

</ElementType>
<StoredConfiguration>
<TextStore

Name="SAS Encryption Algorithms Enumeration"

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 199

TextRole="config"
TextType="xml"
StoredText="<Configuration>

<Enumeration>
<Value name="RC2"/>
<Value name="RC4"/>
<Value name="DES"/>
<Value name="Triple DES"/>
<Value name="SAS Proprietary"/>
</Enumeration>
</Configuration>"/>

</StoredConfiguration>
</PropertyType>
<PropertyType Id="$SASEncryptionLevel"

Name="SASEncryptionLevel"
SqlType="12">

<StoredConfiguration>
<TextStore

Name="SAS Encryption Level Enumeration"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<Enumeration>
<Value name="none"/>
<Value name="credentials"/>
<Value name="everything"/>
</Enumeration>
</Configuration>"/>

</StoredConfiguration>
</PropertyType>
<PropertyType Id="$BalancingAlgorithmType"

Name="BalancingAlgorithmType"
SqlType="12">

<StoredConfiguration>
<TextStore

Name="Enumeration of Balancing Algorithms"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<Enumeration>
<Value name="Cost"/>
<Value name="Response Time"/>
</Enumeration>
</Configuration>"/>

</StoredConfiguration>
</PropertyType>
<Prototype Id="$IOMServer"

Name="Workspace Server"
Desc="This server defines a SAS Workspace Server for

Version 9.0 of the SAS System."
MetadataType="ServerComponent">

<Extensions>
<Extension Name="UITreeCategory"

Value="SAS Servers.SAS Application Server Components"

200 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

ExtensionType="VARCHAR" />
</Extensions>
<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group">
<GroupedProperties>

<AttributeProperty
Name="Class Identifier"
PropertyName="ClassIdentifier"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="440196D4-90F0-11D0-9F41-00A024BB830C">
<OwningType>

<PropertyType ObjRef="$IOMClassIds"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$IOMServer"/>
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Major Version Number"
PropertyName="Major"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="9">
<OwningType>

<PropertyType ObjRef="$Integer"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$IOMServer"/>
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Minor Version Number"
PropertyName="Minor"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">
<OwningType>

<PropertyType ObjRef="$Integer"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$IOMServer" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Product Name"
PropertyName="ProductName"
IsExpert="0"

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 201

IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="SAS Workspace">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$IOMServer" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Software Version"
PropertyName="SoftwareVersion"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="9.0">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$IOMServer" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Vendor"
PropertyName="Vendor"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="SAS Institute">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$IOMServer" />
</OwningPrototype>

</AttributeProperty>
<AssociationProperty

Name="ServiceType"
AssociationName="ServiceTypes"
PartnerName="DeployedComponents"
MetadataType="ServiceType"
IsExpert="0"
IsVisible="0"
IsUpdateable="0"
Minimum="2"
Maximum="2">
<StoredConfiguration>

<TextStore
Name="ServiceTypeDefaultValue"

202 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

TextRole="config"
TextType="xml"
StoredText="<Configuration>

<DefaultValues>
<Value name="IOM Server"/>

</DefaultValues>
</Configuration>"/>

</StoredConfiguration>
<OwningPrototype>

<Prototype ObjRef="$IOMServer"/>
</OwningPrototype>

</AssociationProperty>
<AssociationProperty

Name="SourceConnections"
AssociationName="SourceConnections"
PartnerName="Source"
MetadataType="OpenClientConnection"
IsExpert="0" Minimum="1">
<AssociatedPrototypes>

<Prototype Objref="$IOMServer"/>
<Prototype Objref="$BridgeConnection"/>
<Prototype Objref="$MultiBridgeConnection"/>
<Prototype Objref="$COMConnection"/>

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$IOMServer"/>
</OwningPrototype>

</AssociationProperty>
<AssociationProperty

Name="Used By Components"
AssociationName="UsedByComponents"
PartnerName="UsingComponents"
MetadataType="LogicalServer"
IsExpert="0"
Minimum="1">
<AssociatedPrototypes>

<Prototype Objref="$IOMServer"/>
<Prototype Objref="$LoadBalancing"/>
<Prototype Objref="$Pooling"/>

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$IOMServer"/>
</OwningPrototype>

</AssociationProperty>
</GroupedProperties>
<SubpropertyGroups>

<PropertyGroup Name="Launch Commands" >
<GroupedProperties>
<Property

Name="Command"
PropertyName="Command"
Desc="Required for servers with Bridge connections"
IsExpert="1"
IsRequired="0"

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 203

IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>

</Property>
<Property

Name="Object Server Parameters"
PropertyName="ObjectServerParms"
Desc="Parameters to override what the spawner passes to

SAS on the -objectserverparms option"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>

</Property>
</GroupedProperties>

</PropertyGroup>
<PropertyGroup Name="Credentials" >

<GroupedProperties>
<AssociationProperty

Name="Login Group"
AssociationName="InitProcesses"
PartnerName="DeployedComponents"
MetadataType="Transformation"
IsExpert="1"
IsVisible="1"
IsUpdateable="1"
Minimum="0"
Maximum="1">
<StoredConfiguration>

<TextStore
Name="Initialization Processes"
TextRole="config"
TextType="xml"
StoredText=

"<Configuration>
<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>Transformation</Type>
<NS>SAS</NS>
<Flags>392</Flags>
<Options>
<XMLSELECT search="@TransformRole=’Initialization’"/>
</Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>

204 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_"/>
<Parm Name="_ReposID_"/>
<Parm Name="_Prototype_"/>
<Parm Name="New Initialization Process"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent

Name="PrototypePropertiesDialog Java Class"
ClassIdentifier=
"com.sas.workspace.visuals.PrototypePropertiesDialog"/>

</Customizers>
<AssociatedPrototypes>

<Prototype Objref="$IOMServer"/>
<Prototype Objref="$ServerLoginProc"/>

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$IOMServer" />
</OwningPrototype>

</AssociationProperty>
</GroupedProperties>

</PropertyGroup>
<PropertyGroup Name="Properties">
<SubPropertyGroups>
<PropertyGroup Id="$StandardProperties"

Name="Common Properties"/>
<PropertyGroup Id="$ServerProperties"

Name="Specific Properties"
Minimum="1"
Maximum="1">

<SubPropertyGroups>
<PropertyGroup Id="$LoadBalanceProperties"

Name="LoadBalanced"
Minimum=""
Maximum=""/>

<PropertyGroup Id="$PoolingProperties"
Name="Pooling"
Minimum=""
Maximum=""/>

</SubPropertyGroups>
</PropertyGroup>

</SubPropertyGroups>
</PropertyGroup>
<PropertyGroup

Name="File Navigation"
Desc="Select the initial directory where file navigation

begins on the server."
Minimum="1"
Maximum="1">

<GroupedProperties>
<Property Name="SAS User Root"

PropertyName="FileNavigation"

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 205

IsExpert="1"
IsRequired="0"
IsUpdateable="0"
IsVisible="1"
DefaultValue=".">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
</Property>
<Property Name="System Root"

PropertyName="FileNavigation"
IsExpert="1"
IsRequired="0"
IsUpdateable="0"
IsVisible="1"
DefaultValue="$">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
</Property>
<Property Name="Specify Path"

PropertyName="FileNavigation"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
</Property>

</GroupedProperties>
</PropertyGroup>
<PropertyGroup Name="MVS Support">

<GroupedProperties>
<Property Name="Bound Library"

PropertyName="MVSBoundLibrary"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
</Property>

</GroupedProperties>
</PropertyGroup>

</SubpropertyGroups>
</PropertyGroup>

</PrimaryPropertyGroup>
<Properties>
<Property

Name="Availability Timeout"

206 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

PropertyName="AvailabilityTimeout"
Desc="Number of milliseconds to wait for available server"
IsExpert="1"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$LoadBalanceProperties"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Run Server Forever"
PropertyName="ServerRunForever"
IsExpert="1"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="1">

<OwningType>
<PropertyType ObjRef="$Boolean"/>

</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$StandardProperties"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Shut Server Down After (s)"
Desc="Applicable only if the server is not set to run forever."
PropertyName="ServerShutdownAfter"
IsExpert="1"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$StandardProperties"/>
</AssociatedPropertyGroup>

</Property>
<Property Name="Start Size"

PropertyName="StartSize"
IsExpert="1"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">

<OwningType>
<PropertyType ObjRef="$Integer"/>

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 207

</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$LoadBalanceProperties"/>
</AssociatedPropertyGroup>

</Property>
<Property Name="Recycle Activation Limit"

PropertyName="RecycleActivationLimit"
Desc="Number of times this server will be used

before it is restarted"
IsExpert="1"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$StandardProperties"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Maximum Cost"
PropertyName="MaxCost"
Desc="Maximum cost value this server can afford"
IsExpert="1"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">
<OwningType>

<PropertyType ObjRef="$Integer"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$LoadBalanceProperties"/>
</AssociatedPropertyGroup>

</Property>
<Property

Name="Startup Cost"
PropertyName="StartupCost"
Desc="Cost associated with starting this server"
IsExpert="1"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">
<OwningType>

<PropertyType ObjRef="$Integer"/>
</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$LoadBalanceProperties"/>
</AssociatedPropertyGroup>

</Property>
<Property

208 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

Name="Maximum Clients"
PropertyName="MaxClients"
IsExpert="1"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="1">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<AssociatedPropertyGroup>

<PropertyGroup ObjRef="$PoolingProperties"/>
</AssociatedPropertyGroup>

</Property>
</Properties>

</Prototype>
<Prototype

Id="$BridgeConnection" Name="Bridge Connection"
Desc="Specifies a TCP/IP port to which the spawner listens

for clients connecting to SAS."
MetadataType="TCPIPConnection">

<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group" >

<GroupedProperties>
<AttributeProperty

Name="Communication Protocol"
PropertyName="CommunicationProtocol"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="TCP">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$BridgeConnection" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Application Protocol"
PropertyName="ApplicationProtocol"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="Bridge">
<OwningType>

<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$BridgeConnection" />
</OwningPrototype>

</AttributeProperty>

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 209

<AttributeProperty
Name="Authentication Type"
PropertyName="AuthenticationType"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="user/password">
<OwningType>

<PropertyType ObjRef="$AuthenticationTypes"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$BridgeConnection"/>
</OwningPrototype>

</AttributeProperty>
<AssociationProperty

Name="Authentication Domain"
AssociationName="Domain"
PartnerName="Connections"
MetadataType="AuthenticationDomain"
IsExpert="0"
IsRequired="1"
IsVisible="1"
IsUpdateable="1"
Minimum=""
Maximum="1">

<StoredConfiguration>
<TextStore Name="Authentication Domains"

TextRole="config"
TextType="xml"
StoredText=
"<Configuration>
<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>AuthenticationDomain</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_Persist_"/>
<Parm Name="_ReposID_"/>
<Parm Name="_Prototype_"/>
<Parm Name="New Authentication Domain"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent
Name="PrototypePropertiesDialog Java Class"
ClassIdentifier=

210 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

"com.sas.workspace.visuals.PrototypePropertiesDialog"/>
</Customizers>
<AssociatedPrototypes>

<Prototype ObjRef="$BridgeConnection"/>
<Prototype ObjRef="$AuthDomain"/>

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$BridgeConnection"/>
</OwningPrototype>

</AssociationProperty>
<AttributeProperty

Name="Host Name"
PropertyName="HostName"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>
<Prototype ObjRef="$BridgeConnection" />

</OwningPrototype>
</AttributeProperty>
<AttributeProperty

Name="Port Number"
PropertyName="Port"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<OwningPrototype>
<Prototype ObjRef="$BridgeConnection" />

</OwningPrototype>
</AttributeProperty>

</GroupedProperties>
<SubpropertyGroups>

<PropertyGroup Name="Service" >
<GroupedProperties>
<AttributeProperty

Name="Service"
PropertyName="Service"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="sasobjspawn">
<OwningType>

<PropertyType ObjRef="$String"/>

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 211

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$BridgeConnection" />
</OwningPrototype>

</AttributeProperty>
</GroupedProperties>

</PropertyGroup>
<PropertyGroup Name="Encryption" >

<GroupedProperties>
<Property

Name="Server Encryption Algorithms"
PropertyName="ServerEncryptionAlgorithms"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$SASEncryptionAlgorithms"/>

</OwningType>
</Property>
<Property

Name="Required Encryption Level"
PropertyName="RequiredEncryptionLevel"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$SASEncryptionLevel"/>

</OwningType>
</Property>

</GroupedProperties>
</PropertyGroup>

</SubpropertyGroups>
</PropertyGroup>

</PrimaryPropertyGroup>
</Prototype>
<Prototype Id="$MultiBridgeConnection"

Name="MultiBridge Connection"
Desc="Specifies a TCP/IP port that clients may get redirected

to when using Load Balancing."
MetadataType="TCPIPConnection">

<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group" >
<GroupedProperties>

<AttributeProperty
Name="Communication Protocol"
PropertyName="CommunicationProtocol"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"

212 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

DefaultValue="TCP">
<OwningType>
<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>
<Prototype ObjRef="$MultiBridgeConnection" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Application Protocol"
PropertyName="ApplicationProtocol"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="MultiBridge">

<OwningType>
<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>
<Prototype ObjRef="$MultiBridgeConnection" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Authentication Type"
PropertyName="AuthenticationType"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="user/password">

<OwningType>
<PropertyType ObjRef="$AuthenticationTypes"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$MultiBridgeConnection" />
</OwningPrototype>

</AttributeProperty>
<AssociationProperty

Name="Authentication Domain"
AssociationName="Domain"
PartnerName="Connections"
MetadataType="AuthenticationDomain"
IsExpert="0"
IsRequired="1"
IsVisible="1"
IsUpdateable="1"
Minimum=""
Maximum="1">

<StoredConfiguration>
<TextStore

Name="Authentication Domains"
TextRole="config"
TextType="xml"

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 213

StoredText="<Configuration>
<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>AuthenticationDomain</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_Persist_"/>
<Parm Name="_ReposID_"/>
<Parm Name="_Prototype_"/>
<Parm Name="New Authentication Domain"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent
Name="PrototypePropertiesDialog Java Class"
ClassIdentifier=

"com.sas.workspace.visuals.PrototypePropertiesDialog"/>
</Customizers>
<AssociatedPrototypes>
<Prototype ObjRef="$MultiBridgeConnection" />
<Prototype ObjRef="$AuthDomain" />

</AssociatedPrototypes>
<OwningPrototype>
<Prototype ObjRef="$MultiBridgeConnection" />

</OwningPrototype>
</AssociationProperty>
<AttributeProperty

Name="Host Name"
PropertyName="HostName"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>
<Prototype ObjRef="$MultiBridgeConnection" />

</OwningPrototype>
</AttributeProperty>
<AttributeProperty

Name="Port Number"
PropertyName="Port"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"

214 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
<OwningPrototype>
<Prototype ObjRef="$MultiBridgeConnection" />

</OwningPrototype>
</AttributeProperty>

</GroupedProperties>
<SubpropertyGroups>

<PropertyGroup Name="Service" >
<GroupedProperties>
<AttributeProperty

Name="Service"
PropertyName="Service"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="sasobjspawn">

<OwningType>
<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>
<Prototype ObjRef="$MultiBridgeConnection" />

</OwningPrototype>
</AttributeProperty>

</GroupedProperties>
</PropertyGroup>
<PropertyGroup Name="Encryption" >

<GroupedProperties>
<Property Name="Server Encryption Algorithms"

PropertyName="ServerEncryptionAlgorithms"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$SASEncryptionAlgorithms"/>

</OwningType>
</Property>
<Property Name="Required Encryption Level"

PropertyName="RequiredEncryptionLevel"
IsExpert="1"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$SASEncryptionLevel"/>

</OwningType>
</Property>

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 215

</GroupedProperties>
</PropertyGroup>

</SubpropertyGroups>
</PropertyGroup>

</PrimaryPropertyGroup>
</Prototype>
<Prototype Id="$COMConnection" Name="COM Connection"

Desc="Specifies a hostname where clients can connect to SAS
using COM protocol." MetadataType="COMConnection">

<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group" >

<GroupedProperties>
<AttributeProperty

Name="Communication Protocol"
PropertyName="CommunicationProtocol"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="COM">

<OwningType>
<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>

<Prototype ObjRef="$COMConnection" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Application Protocol"
PropertyName="ApplicationProtocol"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="COM">

<OwningType>
<PropertyType ObjRef="$String"/>
</OwningType>
<OwningPrototype>
<Prototype ObjRef="$COMConnection" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Host Name"
PropertyName="HostName"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

216 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

<Prototype ObjRef="$COMConnection" />
</OwningPrototype>

</AttributeProperty>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>

</Prototype>
<Prototype Id="$ServerLoginProc"

Name="Server Login Process"
MetadataType="Transformation">

<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group" >

<GroupedProperties>
<AttributeProperty

Name="Name"
PropertyName="Name"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="Initialization Login">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$ServerLoginProc" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Transform Role"
PropertyName="TransformRole"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="Initialization">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$ServerLoginProc" />
</OwningPrototype>

</AttributeProperty>
<AssociationProperty

Name="Login"
AssociationName="TransformationSources"
PartnerName="SourceTransformations"
MetadataType="Login"
IsExpert="0"
IsVisible="1"
IsUpdateable="1"
Minimum="0"
Maximum="1">

<StoredConfiguration>

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 217

<TextStore Name="Logins"
TextRole="config"
TextType="xml"
StoredText=
"<Configuration>
<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>Login</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_"/>
<Parm Name="_ReposID_"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent
Name="LoginDialog Java Class"
ClassIdentifier="com.sas.workspace.visuals.LoginDialog"/>

</Customizers>
<OwningPrototype>

<Prototype ObjRef="$ServerLoginProc" />
</OwningPrototype>

</AssociationProperty>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>

</Prototype>
<Prototype Id="$LoadBalancing"

Name="Load Balancing"
Desc="This will allow you to set load balancing properties on

the logical server."
MetadataType="LogicalServer">

<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group" >

<GroupedProperties>
<AssociationProperty

Name="Transformation"
AssociationName="InitProcesses"
PartnerName="DeployedComponents"
MetadataType="Transformation" >

<AssociatedPrototypes>
<Prototype Objref="$LoadBalancing"/>
<Prototype Objref="$LoadBalancingTransformation"/>

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$LoadBalancing" />
</OwningPrototype>

218 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

</AssociationProperty>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>

</Prototype>
<Prototype Id="$Pooling"

Name="Pooling"
Desc="This will allow you to set pooling properties on the

logical server."
MetadataType="LogicalServer">

<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group" >

<GroupedProperties>
<AssociationProperty

Name="Transformation"
AssociationName="InitProcesses"
PartnerName="DeployedComponents"
MetadataType="Transformation">

<AssociatedPrototypes>
<Prototype Objref="$Pooling"/>
<Prototype Objref="$PoolingTransformation"/>

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$Pooling" />
</OwningPrototype>

</AssociationProperty>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>

</Prototype>
<Prototype Id="$LoadBalancingTransformation"

Name="Load Balancing"
Desc="This will allow you to set load balancing properties

on the logical server."
MetadataType="Transformation">

<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group" >

<GroupedProperties>
<AttributeProperty

Name="Transform Role"
PropertyName="TransformRole"
IsExpert="0"
IsRequired="1"
IsUpdateable="0"
IsVisible="0"
DefaultValue="Load Balancing">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$LoadBalancingTransformation" />
</OwningPrototype>

</AttributeProperty>
<Property Name="Balancing Algorithm"

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 219

PropertyName="BalancingAlgorithm"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
Desc="Algorithm to use when determining which server

to sent client to"
DefaultValue="tklbCost">

<OwningType>
<PropertyType ObjRef="$BalancingAlgorithmType"/>

</OwningType>
</Property>
<Property Name="Response Refresh Rate"

PropertyName="ResponseRefreshRate"
IsExpert="0"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="-1">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
</Property>
<Property Name="Cost Per Client"

PropertyName="PerClientCost"
Desc="Default cost value added or subtracted when a client

connects or disconnects"
IsExpert="0"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="100">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
</Property>
<Property Name="Server Specifies Cost"

PropertyName="SeverSpecifiedCost"
IsExpert="0"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
Desc="If checked, the servers in this Logical Server are

responsible for updating the spawner of their current
cost"

DefaultValue="0">
<OwningType>

<PropertyType ObjRef="$Boolean"/>
</OwningType>

</Property>
<AssociationProperty

Name="Logins"
AssociationName="TransformationSources"
PartnerName="SourceTransformations"

220 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

MetadataType="Login"
IsExpert="0"
IsVisible="1"
IsUpdateable="1"
Minimum="0"
Maximum="">

<StoredConfiguration>
<TextStore

Name="Logins"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>Login</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_"/>
<Parm Name="_ReposID_"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent
Name="LoginDialog Java Class"
ClassIdentifier="com.sas.workspace.visuals.LoginDialog"/>
</Customizers>
<OwningPrototype>

<Prototype ObjRef="$LoadBalancingTransformation"/>
</OwningPrototype>

</AssociationProperty>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>

</Prototype>
<Prototype Id="$PoolingTransformation"

Name="Pooling"
Desc="This will allow you to set pooling properties on the

logical server."
MetadataType="Transformation">

<PrimaryPropertyGroup>
<PropertyGroup Name="Primary Group" >

<GroupedProperties>
<AttributeProperty

Name="Transform Role"
PropertyName="TransformRole"
IsExpert="0"
IsRequired="1"

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 221

IsUpdateable="0"
IsVisible="0"
DefaultValue="Pooling">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$PoolingTransformation" />
</OwningPrototype>

</AttributeProperty>
<AssociationProperty

Name="Puddles"
AssociationName="TransformationSources"
PartnerName="SourceTransformations"
MetadataType="Group"
IsExpert="0"
IsVisible="1"
IsUpdateable="1"
Minimum="1"
Maximum="">

<StoredConfiguration>
<TextStore

Name="Groups"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>Group</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_"/>
<Parm Name="_ReposID_"/>
<Parm Name="_Prototype_"/>
<Parm Name="New Puddle"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent
Name="PrototypePropertiesDialog Java Class"
ClassIdentifier=
"com.sas.workspace.visuals.PrototypePropertiesDialog"/>

</Customizers>
<AssociatedPrototypes>

<Prototype Objref="$PoolingTransformation" />
<Prototype Objref="$PoolingGroup"/>

</AssociatedPrototypes>

222 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

<OwningPrototype>
<Prototype ObjRef="$PoolingTransformation" />

</OwningPrototype>
</AssociationProperty>

</GroupedProperties>
</PropertyGroup>

</PrimaryPropertyGroup>
</Prototype>
<Prototype Id="$PoolingGroup" Name="PoolingGroup" MetadataType="Group">
<PrimaryPropertyGroup>

<PropertyGroup Name="Primary Group" >
<GroupedProperties>

<AttributeProperty
Name="Name"
PropertyName="Name"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">
<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>
<Prototype ObjRef="$PoolingGroup" />

</OwningPrototype>
</AttributeProperty>
<Property Name="Minimum Available Servers"

PropertyName="MinAvail"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
</Property>
<Property Name="Minimum Number of Servers"

PropertyName="MinSize"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="0">

<OwningType>
<PropertyType ObjRef="$Integer"/>

</OwningType>
</Property>
<AssociationProperty

Name="Login"
AssociationName="Members"
PartnerName="Groups"
MetadataType="Login"

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 223

IsExpert="0"
IsVisible="1"
IsUpdateable="1"
Minimum="1"
Maximum="1">

<StoredConfiguration>
<TextStore

Name="Logins"
TextRole="config"
TextType="xml"
StoredText=
"<Configuration>
<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>Login</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_"/>
<Parm Name="_ReposID_"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent
Name="LoginDialog Java Class"
ClassIdentifier="com.sas.workspace.visuals.LoginDialog"/>

</Customizers>
<OwningPrototype>
<Prototype ObjRef="$PoolingGroup" />

</OwningPrototype>
</AssociationProperty>
<AssociationProperty

Name="Identities"
AssociationName="Members"
PartnerName="Groups"
MetadataType="Identity"
IsExpert="0"
IsVisible="1"
IsUpdateable="1"
Minimum="1"
Maximum="">

<StoredConfiguration>
<TextStore

Name="Members"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<MetadataRequest>

224 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>Identity</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>
</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_"/>
<Parm Name="_ReposID_"/>
<Parm Name="_Prototype_"/>
<Parm Name="New Member"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent
Name="PrototypePropertiesDialog Java Class"
ClassIdentifier=

"com.sas.workspace.visuals.PrototypePropertiesDialog"/>
</Customizers>
<AssociatedPrototypes>

<Prototype ObjRef="$PoolingGroup" />
<Prototype ObjRef="$Identity" />

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$PoolingGroup" />
</OwningPrototype>

</AssociationProperty>
<AssociationProperty

Name="Identity Groups"
AssociationName="Members"
PartnerName="Groups"
MetadataType="Identity"
IsExpert="0"
IsVisible="1"
IsUpdateable="1"
Minimum="1"
Maximum="">

<StoredConfiguration>
<TextStore

Name="Members"
TextRole="config"
TextType="xml"
StoredText="<Configuration>

<MetadataRequest>
<GetMetadataObjects>
<Reposid>_ReposID_</Reposid>
<Type>IdentityGroup</Type>
<NS>SAS</NS>
<Flags>264</Flags>
<Options></Options>

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 225

</GetMetadataObjects>
</MetadataRequest>
<ClassParameters>
<Parm Name="_ParentComponent_"/>
<Parm Name="_ObjectStore_"/>
<Parm Name="_ReposID_"/>
<Parm Name="_Prototype_"/>
<Parm Name="New Member"/>
</ClassParameters>
</Configuration>"/>

</StoredConfiguration>
<Customizers>
<ConfiguredComponent
Name="PrototypePropertiesDialog Java Class"
ClassIdentifier=

"com.sas.workspace.visuals.PrototypePropertiesDialog"/>
</Customizers>
<AssociatedPrototypes>

<Prototype ObjRef="$PoolingGroup" />
<Prototype ObjRef="$Identity" />

</AssociatedPrototypes>
<OwningPrototype>

<Prototype ObjRef="$PoolingGroup" />
</OwningPrototype>

</AssociationProperty>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>

</Prototype>
<Prototype Id="$Identity" Name="Identity" MetadataType="Identity">
<PrimaryPropertyGroup>

<PropertyGroup Name="Primary Group" >
<GroupedProperties>

<AttributeProperty
Name="Name"
PropertyName="Name"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>
<Prototype ObjRef="$Identity" />

</OwningPrototype>
</AttributeProperty>
<AttributeProperty

Name="Description"
PropertyName="Desc"
IsExpert="0"
IsRequired="0"
IsUpdateable="1"

226 XML Representation of Metadata Objects for a Workspace Server � Chapter 14

IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$Identity" />
</OwningPrototype>

</AttributeProperty>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>

</Prototype>
<Prototype Id="$AuthDomain" Name="Authentication Domain"

MetadataType="AuthenticationDomain">
<PrimaryPropertyGroup>

<PropertyGroup Name="Primary Group" >
<GroupedProperties>

<AttributeProperty
Name="Name"
PropertyName="Name"
IsExpert="0"
IsRequired="1"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$AuthDomain" />
</OwningPrototype>

</AttributeProperty>
<AttributeProperty

Name="Description"
PropertyName="Desc"
IsExpert="0"
IsRequired="0"
IsUpdateable="1"
IsVisible="1"
DefaultValue="">

<OwningType>
<PropertyType ObjRef="$String"/>

</OwningType>
<OwningPrototype>

<Prototype ObjRef="$AuthDomain"/>
</OwningPrototype>

</AttributeProperty>
</GroupedProperties>

</PropertyGroup>
</PrimaryPropertyGroup>

</Prototype>
</Metadata>
<Reposid>_ReposID_</Reposid>

Model Usage Scenarios � XML Representation of Metadata Objects for a Workspace Server 227

<Ns>SAS</Ns>
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

228

229

P A R T5

Appendix

Appendix 1.Recommended Reading 231

230

231

A P P E N D I X

1
Recommended Reading

Recommended Reading 231

Recommended Reading

Here is the recommended reading list for this title:
� Getting Started with SAS Open Metadata Interface
� SAS Open Metadata Interface: Reference

� SAS Java Metadata Interface: User’s Guide

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

232

Your Turn

If you have comments or suggestions about SAS® 9.1.3 Open Metadata Interface: User’s
Guide, please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

66

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2006 SAS Institute Inc. All rights reserved. 403726US.0806

SAS® Publishing gives you the tools to
flourish in any environment with SAS®!

Whether you are new to the workforce or an experienced professional, you need to distinguish yourself
in this rapidly changing and competitive job market. SAS® Publishing provides you with a wide range of
resources— including publications, online training, and software —to help you set yourself apart.

Expand Your Knowledge with Books from SAS® Publishing
SAS® Press offers user-friendly books for all skill levels, covering such topics as univariate and multivariate
statistics, linear models, mixed models, fixed effects regression, and more. View our complete catalog and get
free access to the latest reference documentation by visiting us online.

s u p p o r t . s a s . c o m / p u b s

SAS® Self-Paced e-Learning Puts Training at Your Fingertips
You are in complete control of your learning environment with SAS Self-Paced e-Learning! Gain immediate
24/7 access to SAS training directly from your desktop, using only a standard Web browser. If you do not have
SAS installed, you can use SAS® Learning Edition for all Base SAS e-learning.

s u p p o r t . s a s . c o m / s e l f p a c e d

Build Your SAS Skills with SAS® Learning Edition
SAS skills are in demand, and hands-on knowledge is vital. SAS users at all levels, from novice to advanced,
will appreciate this inexpensive, intuitive, and easy-to-use personal learning version of SAS. With SAS Learning
Edition, you have a unique opportunity to gain SAS software experience and propel your career in new and
exciting directions.

s u p p o r t . s a s . c o m / L E

	Table of Contents
	Contents

	Using the Interface to Create, Update, and Delete Metadata
	Introduction
	About This Guide
	Introduction to the SAS Open Metadata Interface
	Prerequisite Information

	Adding Metadata Objects
	Overview of Adding Metadata
	Introduction to the AddMetadata Method
	Creating Associations to New and Existing Objects
	Creating Associations to Objects in Other Repositories
	Examples
	Creating Multiple Objects in an AddMetadata Request
	Symbolic Names

	Example of Creating a Repository Object
	Example of Creating an Application Metadata Object
	Example of Creating an Object and an Association to an Existing Object
	Example of Creating Multiple, Related Metadata Objects
	Example of Creating Multiple, Unrelated Metadata Objects
	Creating a Metadata Object and an Association to an Object in Another Repository
	Additional Information

	Updating Metadata Objects
	Overview of Updating Metadata
	Using the UpdateMetadata Method
	Function= Attribute
	Associated Object Identifier and Value
	Summary of Function Directives
	Associated Object Identifier Summary
	Deleting Associations

	Example of Modifying a Metadata Object’s Attributes
	Example of Modifying an Association
	Example of Merging Associations
	Example of Deleting an Association
	Example of Appending Associations
	Additional Information

	Deleting Metadata Objects
	Overview of Deleting Metadata
	Deleting a Repository

	Example of Deleting a Metadata Object
	Additional Information

	Using the Interface to Query Metadata
	Overview
	Overview of Querying Metadata Objects
	Namespaces
	Repositories
	Metadata Objects

	Example of Listing the Metadata Types in a Namespace
	Listing a Metadata Type’s Subtypes

	Listing the Available Repositories
	Listing the Metadata Types in a Repository

	Querying All Metadata of a Specified Type
	Introduction to the GetMetadataObjects Method
	Review of Terms

	Expanding a GetMetadataObjects Request to Include Subtypes
	Expanding a GetMetadataObjects Request to Retrieve Additional Properties
	Retrieving All Properties for All Objects
	Retrieving All Attributes of All Objects
	Retrieving Specific Properties of All Objects

	Filtering a GetMetadataObjects Request
	<XMLSelect> Element Form and Search Criteria Syntax
	Understanding Association Paths
	Searching by Date, Time, and Datetime Values
	Examples
	Specifying the <XMLSelect> Element in a GetMetadataObjects Call
	Using OMI_XMLSELECT with Other Flags

	Expanding a GetMetadataObjects Request to Search Additional Repositories

	Querying Specific Metadata Objects
	Introduction to the GetMetadata Method
	Retrieving All Properties of a Specified Object
	Retrieving the Attributes of a Specified Object
	Retrieving Properties of Associated Objects
	Retrieving Subtypes
	Combining GetMetadata Flags
	Filtering the Associated Objects that are Returned by a GetMetadata Request
	Using Templates
	Creating a Template
	Using a Template to Specify Search Criteria
	Additional GetMetadata Examples
	Additional GetMetadataObjects Examples

	Using the Interface to Perform Repository Management Tasks
	Creating Relationships Between Repositories
	Overview
	Creating Dependency Associations
	Example of Adding a Dependency to a Repository

	Creating Cross-Repository References
	Example

	Querying Dependency Associations
	Example of Querying Dependency Associations for a Single Repository
	Example of Querying Dependency Associations for All Repositories

	Querying Cross-Repository References
	Example of Querying Cross-Repository References

	Querying Objects Across Multiple Repositories (Federated Query)
	Example of a Federated Query

	Deleting a Dependency Association
	Example

	Deleting a Cross-Repository Reference
	Example

	Creating a Repository on an External DBMS
	Overview of Creating a Repository on an External DBMS
	Software Requirements
	Host Requirements
	DBMS Requirements
	Repository Registration Requirements
	Oracle Connection Options
	DB2 Connection Options
	Using a Repository on an External DBMS
	Example of Registering a Repository on an External DBMS
	Register an Oracle Repository
	Register a DB2 Repository

	Invoking a Repository Audit Trail
	Overview
	Starting the Audit Trail
	AuditType Attribute
	AuditPath Attribute
	Audit File Format
	Example of Using AddMetadata to Enable Auditing
	Example of Using UpdateMetadata to Enable Auditing

	Physical versus Logical Deletion of Metadata Records
	Example of Migrating Deleted Records

	Usage Considerations
	Recovering Audit Records

	Restoring a Metadata Record on Windows Hosts
	Example: Listing Audit Files
	Example: Listing Audit File Variable Names
	Example: Viewing Audit File Records
	Example: Restoring Audit Records

	Deleting an Audit Trail
	Changing the Audit Trail Location
	Turning Off Auditing

	Metadata Locking Options
	Overview of Metadata Locking Options
	Using SAS Open Metadata Interface Flags to Lock Objects
	Promoting Repositories Between Servers

	Using the Change Management Facility
	Introduction to the Change Management Facility
	Summary of Change Management Methods
	Setting Up Primary and Project Repositories
	Registering Users
	Assigning Users Permissions to the Primary and Project Repositories

	How Access Controls are Handled by the Change Management Facility
	Checking Out Metadata Objects
	Lock Templates
	Issuing a CheckoutMetadata Call

	Fetching Metadata
	Updating Metadata Objects in a Project Repository
	Deleting a Metadata Object
	Checking In Metadata Objects
	Association Handling
	Change Objects

	Querying the Primary Repository
	Querying the Project Repository
	Emptying the Project Repository
	Default Lock Templates
	Document Lock Template
	ExternalTable Lock Template
	Job Lock Template
	PhysicalTable Lock Template
	Report Lock Template
	SASLibrary Lock Template
	ServerComponent Lock Template
	ServerContext Lock Template
	TextStore Lock Template
	Tree Lock Template

	Repository Maintenance Tasks
	Clearing or Deleting a Repository
	Unregistering and Re-registering a Repository

	Model Usage
	Model Usage Scenarios
	Overview of Model Usage Scenarios
	Usage Scenario: Creating Metadata Objects that Represent a DBMS
	Purpose
	Requirements
	Creating Objects that Represent a DBMS

	Usage Scenario: Creating Metadata for a Cube
	Purpose
	Requirements
	Creating Metadata Objects
	Sample PROC OLAP Code

	Usage Scenario: Creating a Prototype
	Purpose
	Requirements
	Description of a Prototype
	Prototype Objects
	Prototype and Property
	PropertyGroups and Properties
	XML Example
	Example of Creating a Prototype

	Usage Scenario: Creating Metadata for a SAS Library
	Purpose
	Requirements
	Defining a Library
	Examples of SAS Library Objects
	Library with Tables in a Foreign Database
	XML Representation of Metadata Objects that Define a SAS Library, Directory, and Data Sets
	XML Representation of Metadata Objects Used to Define a SAS Library with Tables in a Foreign Database

	Usage Scenario: Creating Metadata for Tables, Columns, and Keys
	Purpose
	Requirements
	Creating a SASLibrary and PhysicalTable Objects
	Creating a Column Objects and Keys
	XML Representation of SASLibrary and Physical Table Objects
	XML Representation of Column Objects for Period Table
	XML Representation of Column Objects for Sales Table
	XML Representation of Keys

	Usage Scenario: Creating Metadata for a SAS/SHARE Server
	Purpose
	Requirements
	Software Deployment Metadata Types
	Example
	XML Representation of Metadata Objects Representing a SAS/SHARE Server, Libraries, and Connections

	Usage Scenario: Creating Metadata for a Stored Process
	Purpose
	Requirements
	Description of a Stored Process
	How to Define A Stored Process
	XML Representation of Metadata Objects for a Stored Process

	Usage Scenario: Creating Tree and Group Objects
	Purpose
	Requirements
	Trees and Groups
	Tree, Group, and Members
	Tree Hierarchy, Groups, Members, SoftwareComponent
	XML Representation of a Single Tree and Two Group Objects
	XML Representation of a Tree Hierarchy

	Usage Scenario: Creating Metadata for a Workspace Server
	Purpose
	Requirements
	Description of a Server
	DeployedComponent Types and Properties
	ServerComponent and Initialization
	TCPIPConnection and Property Objects
	Putting All of the Pieces Together
	Prototype Objects
	Prototype and Property
	PropertyGroups and Properties
	XML Example
	XML Representation of Metadata Objects for a Workspace Server

	Appendix
	Recommended Reading
	Recommended Reading

	Your Turn

