
SAS Publishing

Getting Started with

SAS® 9.1.3 Open
Metadata Interface
Second Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006.
Getting Started with SAS ® 9.1.3 Open Metadata Interface, Second Edition. Cary, NC: SAS
Institute Inc.

Getting Started with SAS® 9.1.3 Open Metadata Interface, Second Edition
Copyright © 2002–2006, SAS Institute Inc., Cary, NC, USA
ISBN-13: 978–159994–304–6
ISBN-10: 1–59994–304–2
All rights reserved. Produced in the United States of America.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 2007
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Contents

P A R T 1 Concepts 1

Chapter 1 � Using This Guide 3
Purpose 3

Before You Begin 4

Example Scenario 4

Chapter 2 � Introduction to Metadata Concepts 5
What Is Metadata? 5

What Is Metadata Management? 6

What Is the SAS Open Metadata Architecture? 6

Chapter 3 � Planning a Repository 9
Deciding What Information Should Be Stored 9

Introduction to the SAS Metadata Model 10

Selecting Metadata Types for Our Study 11

Chapter 4 � Using the SAS Open Metadata Interface 15
Overview of Using the SAS Open Metadata Interface 15

Connecting to the SAS Metadata Server 16

Issuing a Method Call 16

Using PROC METADATA to Issue a Method Call 19

P A R T 2 Preparation 21

Chapter 5 � Setting Up a SAS Metadata Server 23
Overview of Setting up a SAS Metadata Server 23

Creating Directories for the SAS Metadata Server, Repository Manager, and a
Repository 23

Setting Directory and File Access Permissions 24

Setting System Access Permissions 26

Starting the SAS Metadata Server 29

Registering a SAS Metadata Repository 30

P A R T 3 Working with Metadata 39

Chapter 6 � Adding Metadata Objects to the Repository 41
Overview of Adding Metadata Objects 41

Determining the Repository ID 43

Writing a Metadata Property String 44

Creating the Clinical Studies Tree 45

Creating the Study 2 Tree 46

iv

Creating the Study 1 Tree and Business Information Objects 46

Creating Objects for the Study 1 Tables 49

Creating the TransformationActivity, TextStore, and ServerComponent Objects 58

Chapter 7 � Querying the Repository 63
Overview of Querying the Repository 63

Listing All Objects of a Given Metadata Type 63

Requesting Properties for Specific Objects 64

Using a Search String to Filter a Metadata Request 69

Chapter 8 � Updating Metadata Objects in the Repository 71
Updating Metadata Objects in the Repository 71

Chapter 9 � Deleting Metadata Objects in the Repository 73
Deleting Metadata Objects in the Repository 73

Chapter 10 � Stopping the SAS Metadata Server 75
Overview of Stopping the SAS Metadata Server 75

Stopping the Server Using SAS Management Console 75

Stopping the Server Using PROC METAOPERATE 76

P A R T 4 Appendix 77

Appendix 1 � Recommended Reading 79
Recommended Reading 79

Index 81

1

P A R T1

Concepts

Chapter 1.Using This Guide 3

Chapter 2.Introduction to Metadata Concepts 5

Chapter 3.Planning a Repository 9

Chapter 4.Using the SAS Open Metadata Interface 15

2

3

C H A P T E R

1
Using This Guide

Purpose 3
Before You Begin 4

Software Requirements 4

Additional Reading 4

Example Scenario 4

Tasks Overview 4

Purpose
This guide is designed to introduce metadata programmers to the SAS Open

Metadata Architecture and the SAS Open Metadata Interface. It provides a brief
introduction to metadata, metadata management, and the benefits of using the SAS
Open Metadata Architecture to store technical details about an application. It also
walks readers through the steps necessary to set up a personal SAS Metadata Server
and a SAS Metadata Repository for a sample application on Windows XP.

Readers will learn how to identify what information they need to represent in
metadata and how to select the metadata types that are best suited to represent the
information. The guide also provides sample SAS Open Metadata Interface method
calls that create, update, query, and delete metadata.

This guide uses a sample scenario to guide you through the steps of using the SAS
Open Metadata Interface. The scenario is not intended to represent the only way that
the interface can be used to create metadata. Rather, it is provided as a very simple
example of one way that it can be used.

To get the most out of this guide, acquaint yourself with the metadata concepts in
Chapter 2, “Introduction to Metadata Concepts,” on page 5 before reading “Example
Scenario” on page 4 and Chapter 3, “Planning a Repository,” on page 9. Then read
Chapter 5, “Setting Up a SAS Metadata Server,” on page 23, Chapter 4, “Using the SAS
Open Metadata Interface,” on page 15 and Chapter 6, “Adding Metadata Objects to the
Repository,” on page 41 for information to set up a SAS Metadata Server and write a
SAS Open Metadata Interface client to create your own sample repository.

Note: This guide does not describe how to setup and use a SAS Metadata Server in
an enterprise environment. For information about how to setup and use a SAS
Metadata Server in an enterprise environment, see the administrative documentation
for the SAS Intelligence Platform. �

4 Before You Begin � Chapter 1

Before You Begin

Software Requirements
This guide explains how to set up a personal SAS Metadata Server and use a SAS

Open Metadata Interface client in a Windows XP operating environment. To follow
along, you need

� SAS 9.1.3 software
� SAS Integration Technologies software (shipped with SAS software)
� SAS Management Console software (SAS Management Console software must be

installed from the SAS Client-Side Components CD-ROM that is shipped along
with SAS software.)

� the appropriate software for the intended programming environment. The SAS
Open Metadata Interface supports Java, Visual Basic, C++, and SAS clients.

Additional Reading
This guide introduces basic XML and XSL concepts. If you are not familiar with

these languages, we recommend the following information sources:
� XML Web page: http://www.w3.org/TR/1998/REC-xml-19980210
� Java and XML (O’Reilly Java Tools), by Brett McLaughlin and Mike Loukides

(Cambridge, Mass: O’Reilly, 2000).
� XSLT: Programmer’s Reference, by Michael Kay.

Example Scenario
As a statistician for a major pharmaceuticals company, Dr. Joe E. Doe maintains

hundreds of SAS tables that contain the results of clinical trials for a new cancer
inhibitor. He must report the results of these trials to the Food and Drug
Administration in order to gain acceptance of the drug, and he wants to use the SAS
Open Metadata Architecture to track his data. The SAS Open Metadata Architecture
will provide

� a common model for storing the study metadata
� centralized access to this metadata
� the ability to reuse the metadata for other clinical trials projects
� ease of metadata transformation.

Tasks Overview
These are the steps for using the SAS Open Metadata Architecture:
1 Decide what information should be stored.
2 Select the appropriate metadata types.
3 Set up a SAS Metadata Server and a SAS Metadata Repository.
4 Add metadata objects.
5 Query metadata objects.
6 Update and delete metadata objects in the repository.

5

C H A P T E R

2
Introduction to Metadata
Concepts

What Is Metadata? 5
What Is Metadata Management? 6

What Is the SAS Open Metadata Architecture? 6

Benefits of the SAS Open Metadata Architecture 7

What Is Metadata?
Metadata is information about the data resources in an organization, or in simpler

terms, data about data. Typically in the IT industry, we talk about “inventory data,”
“personnel data,” “budget data,” and “payroll data.” The first word, a modifier, describes
the data and classifies it as belonging to a certain business function. This is metadata.
It tells us what the data is.

Metadata is also information about how the data is used. To understand this
definition, consider the following example: "$100.00" is a piece of data. It could be
payroll data, personnel data, inventory data, or budget data. Under the expanded
definition,

� metadata is information that provides meaning and context to the piece of data. It
tells us that "$100.00" is a monetary amount in U.S. dollars, expressed in terms of
dollars and cents.

� metadata also tells us how to understand the way the data is expressed or
represented. Metadata helps us to understand the data.

In any organization, there are two types of metadata:

Technical
metadata

describes the physical nature of the data, how the data was created,
and how it is managed. This type of metadata is often
machine-readable. Borrowing from the previous example, the fact
that $100.00 is a monetary value and how it is expressed is physical
data. Other examples of physical metadata might answer questions
such as

� What is the origin of the data? Does it come from an external
source, or is it generated internally?

� Where does the data reside? Is it in a SAS table or some other
structure?

� On which server is the structure stored?

Informational
metadata

describes business rules and definitions on which the data is based.
This type of metadata is often intended for people rather than
machines. It is informational metadata that tells us whether the
$100.00 value is payroll data, personnel data, inventory data, or

6 What Is Metadata Management? � Chapter 2

budget data. Informational metadata would also answer questions
such as

� Who is responsible for the accuracy of the data? How can I
contact him or her?

� What business process produced this data? How do I execute
the business process?

� Which applications should (and do) have access to this data?

What Is Metadata Management?
If metadata helps us to understand data, metadata management enables us to use

the metadata. Metadata creation is time-consuming and expensive. To be truly useful,
once stored, metadata must be centrally available and easy to maintain.

The primary goals of metadata management are
� to promote metadata conformity to enable sharing of metadata by an

organization’s applications. Metadata that is defined for one application can be
copied and easily adapted for use by another application.

� to provide a common, centralized method of searching and managing distinct
collections of metadata.

Both goals lower the costs of metadata development and maintenance by promoting
standardization and reducing redundancy. Furthermore, when these goals are achieved,
metadata can provide meaningful and valuable information, for example,

� impact analysis of technical changes within an organization
� comprehensive technical reporting about the organization’s application systems.

Impact analysis gauges the effect of a single technical change on all of the
applications in an organization. For example, if an organization stores metadata about
its computer systems, it can use that metadata to easily determine which applications
will be affected by taking a specific server offline. Or, if all applications store client
address information in an address object and a change is needed in the way this
information is stored – for example, to surface street address, city/state, and country as
three separate fields instead of one – the change is easy to identify, make, and
propagate.

As electronic data transfers and e-commerce increase, the soundness of the metadata
supporting these transactions will become as important as the data itself. Support for
industry metadata models and data interchange standards enables organizations to
respond quickly and economically to rapidly evolving, external reporting obligations.

What Is the SAS Open Metadata Architecture?
The SAS Open Metadata Architecture is a general-purpose metadata management

facility that provides common metadata services to SAS applications. The metadata
architecture provides

� the SAS Metadata Server, a central, shared location for storing metadata
� the SAS Open Metadata Interface, an application programming interface (API)

that provides access to the server from a variety of programming environments,
including Java, COM/DCOM, and SAS

� the SAS Metadata Model, a set of metadata types that are used for saving
metadata on the server

� Benefits of the SAS Open Metadata Architecture 7

� an XML transport format and XML representation of metadata, which makes it
easy to transform the metadata to HTML and other standard XML
representations, like the Object Management Group’s Common Warehouse
Metamodel (CWM).

Benefits of the SAS Open Metadata Architecture
� The SAS Metadata Model defines metadata types for the most commonly used

technical entities and provides a mechanism for extending the metadata types
with application-specific attributes and associations. This enables SAS
applications to use a common model for most metadata objects while retaining the
custom features that make them unique.

� Metadata objects are stored in application-specific repositories, which are managed
by a repository manager. This tiered management approach enables metadata to
be maintained separately yet accessed centrally through the repository manager,
and guards the integrity of application-specific metadata while enabling global
searching.

� A single tool set can be used to create, access, and manage metadata for all of your
SAS applications.

� Support for the XML transport format and industry standard metadata models
increases the likelihood of compatibility between SAS applications and other
software applications.

8

9

C H A P T E R

3
Planning a Repository

Deciding What Information Should Be Stored 9
Introduction to the SAS Metadata Model 10

Selecting Metadata Types for Our Study 11

Choosing a Metadata Type to Represent Data Tables 11

Choosing a Metadata Type to Represent a Program 12

Choosing a Metadata Type to Represent Software 13
Choosing Metadata Types to Represent Documentation and People 13

Choosing a Metadata Type to Represent a Group 14

Deciding What Information Should Be Stored

The first step in deciding what information to store is determining what information
you want to save. The following questions can help you to identify the metadata that
you need to track:

� What is the data that you want to describe?

� What is the origin of the data, for example: what business process(es) produced
the data? What technical process(es) produced the data?

� Who is responsible for the data?

� How is the data stored?

Focusing on our usage scenario, at the most basic level, Dr. Joe E. Doe’s clinical
trials consist of the following items:

� data describing the participants in the study

� data describing their visits to a doctor

� SAS programs that analyze the input and return a result that can be used to
gauge the drug’s efficacy

� documentation that describes the study variables and the hypotheses being tested

� study notes and other documentation.

This gives us a general idea of what information we need store. For more specific
input, we need to look at the contents of an individual study.

Let us assume that we have a study, which we will call Study 1, that has the
following contents:

� Patient data is stored in a SAS table named “Patient Information.” This table
contains columns that store the patient ID, initials, sex, date of birth, sponsor
patient ID, weight in pounds, and weight in kilograms. The weight in kilograms is
calculated by dividing the weight in pounds by 2.2.

10 Introduction to the SAS Metadata Model � Chapter 3

� The data describing doctor visits is stored in a table called “PatientVisits.” This
table contains columns that store the patient ID, systolic blood pressure, diastolic
blood pressure, visit number, and occurrence number.

� The SAS program used in this study is a DATA step that merges the tables to
create a third table called “Study1Output.” Study1Output contains three columns:
patient ID, visit number, and a calculated column called SBPW_Coefficient.
SBPW_Coefficient is created by multiplying the values of two of the columns in the
input tables (Systolic_Blood_Pressure and Weight_In_Lb) and dividing by 100.

� The main study documentation is stored in an HTML file and the study notes are
stored as text.

� Dr. Joe E. Doe is the person responsible for the clinical study, and SAS is the
program that analyzed the data.

All of the information can be described by a set of metadata objects. From this
project inventory, we suspect a need for the following types of objects:

� table objects
� column objects
� some kind of person or responsible party object
� an object describing the DATA step
� an object that describes SAS
� documentation objects.

We know that we will also need a way to relate this study to other clinical studies
owned by Dr. Joe E. Doe.

It is now time to learn about the SAS Metadata Model.

Introduction to the SAS Metadata Model
The SAS Metadata Model defines a set of metadata types for representing

application entities. Each metadata type has a set of attributes, for example, the name
of the entity, its description, and defining characteristics, and a set of associations that
describe the entity’s relationship to other entities. The metadata type definitions are
structured in a hierarchy, and each metadata type inherits the attributes and
associations of its supertype.

The SAS Metadata Model defines metadata types that describe approximately 150
entities. To help you determine the correct metadata type to use to represent a
particular application entity, the model is broken into submodels, each of which consists
of a set of related metadata types. In alphabetical order, these submodels are

Analysis
contains the metadata types used to describe statistical transformations,
multidimensional data sources, and OLAP information.

Authorization
includes metadata types that are used to define access controls. Metadata objects
based on these metadata types can be associated with metadata objects describing
people, repositories, and application elements to control access both to the
metadata and the data that the metadata describes.

Business Information
contains the metadata types used to describe people, their responsibilities, and
information about how to contact them, as well as business documentation and
other descriptive information.

� Choosing a Metadata Type to Represent Data Tables 11

Foundation
contains the basic metadata types of the model, from which all other types are
derived, and some utility metadata types.

Grouping
contains metadata types that are used to group metadata objects together in a
particular context, as well as to construct a hierarchy of metadata objects.

Mining
includes metadata types that are used to store analytic information associated
with data mining.

Property
contains metadata types used to describe prototypes of metadata objects,
parameters for processes, and properties or options for SAS libraries, data sets,
connections to servers, or software commands.

Relational
contains the metadata types used to describe relational tables and other entities in
a relational database system, such as indexes, columns, keys, and schemas.

Resource
contains the metadata types used to describe data resources such as files,
directories, SAS libraries, SAS catalogs and catalog entries.

Software Deployment
contains the metadata types used to describe software, servers, and connection
information.

Transform
contains the metadata types used to describe a transformation of data. This can be
a logical to physical mapping, or a set of steps that transforms input data to a
final result.

XML
contains metadata types that are used to describe XML constructs such as SXLE
map definitions and XPath location paths.

To see a listing of the metadata types that are included in each submodel, see “SAS
Namespace Submodels” in the SAS Open Metadata Interface: Reference. To see a
complete list of the metadata types that are defined in the SAS Metadata Model, refer
to the “Alphabetical Listing of SAS Namespace Metadata Types” in the reference. This
listing is available in online versions of the guide only. Look for it in SAS Help and
Documentation or SAS OnlineDoc.

Selecting Metadata Types for Our Study
Selecting an appropriate metadata type is a matter of comparing the metadata types

that are defined in each category to see which one best meets your needs. The following
paragraphs walk you through the thought processes for selecting the metadata types for
our clinical studies project. We begin by selecting a metadata type to represent the
study tables.

Choosing a Metadata Type to Represent Data Tables
A table is a form of data set. Metadata types that describe data sets (which are a form

of relational table) are included in the Relational submodel. The Relational submodel
also includes a metadata type for columns, which are defined separately from data sets.

12 Choosing a Metadata Type to Represent a Program � Chapter 3

Several metadata types are used to define data sets, including PhysicalTable,
QueryTable, RelationalTable, and WorkTable. To determine which metadata type best
suits your needs, check the descriptions and compare the attributes and associations of
each metadata type in the “Alphabetical Listing of SAS Namespace Types”. In this
example, we use the PhysicalTable metadata type to represent the three Study 1 tables.
The PhysicalTable metadata type is described as a “materialized” data set that is stored
in a database or a file system. The other metadata types in the Relational submodel
describe tables that result from a query or are otherwise transitory in nature. For this
example, we use this icon to represent metadata objects of the PhysicalTable metadata
type:

A metadata object is an instance of a metadata type. We use the Column metadata
type to create our column objects, and represent these with this icon:

Choosing a Metadata Type to Represent a Program
Programs such as the DATA step program in our example are described by metadata

types that are part of the Transform submodel. A simple SAS program that does not
have a requirement on any previously run program or a requirement for any
postprocessing is represented by the Transformation metadata type. The
Transformation metadata type has associations to other metadata types that describe
the input to the transformation and the output from the transformation. In Study 1,
the data describing the patients and the doctor visits are the input for the
transformation, and a new data set is the output of the transformation. We use the
following icon to represent metadata objects of the Transformation metadata type:

The Transformation metadata type also requires an association to a metadata type
that either contains or describes the source code for the program. The metadata types
that describe textual information stored on the metadata server or text stored in a file
are part of the Resource submodel. The Resource submodel also contains metadata
types for representing file system directories, SAS catalogs, and SAS catalog entries.
The actual text for the source code can be stored in a metadata object, or you can use a
metadata object to identify the location of the source code. In this example, we use the
TextStore metadata type to save a copy of the source code (DATA step) on the SAS
Metadata Server. We use the following icon represent metadata objects of the TextStore
metadata type:

� Choosing Metadata Types to Represent Documentation and People 13

Choosing a Metadata Type to Represent Software
Metadata types that describe software and where the software is installed are part of

the Software Deployment submodel. Installed and runnable software like SAS or a
Java Virtual Machine are represented by the metadata type DeployedComponent and
its subtypes. The computer where the software is installed is represented by the
metadata type Machine. The software in our example is a SAS server, so we will use
the ServerComponent subtype of the DeployedComponent metadata type to represent
it. We use the following icons to represent metadata objects of the ServerComponent
and Machine metadata types, respectively:

Choosing Metadata Types to Represent Documentation and People
The remaining information, concerning documentation and the responsible party, is

represented by metadata types that are part of the Business Information submodel.
The Document metadata type is provided to represent information about the location of
a document as a URI (Universal Resource Identifier). In this example, we want to store
the URL for a document on a Web server. We use the following icon to represent
metadata objects of the Document metadata type:

Frequently, the information that you want to save will not be represented by a single
metadata type, but by a set of metadata types. This is true for the person responsible
for the analysis. The Business Information submodel contains metadata types for
identifying the person, his role, and contact information, such as e-mail address, phone
number, and physical address. The metadata types that we will use in this example are
ResponsibleParty, Person, and Email, which we represent as follows:

14 Choosing a Metadata Type to Represent a Group � Chapter 3

Choosing a Metadata Type to Represent a Group
The last submodel that we will look at is the Grouping submodel. The Grouping

submodel consists of two metadata types: Group and Tree. For our example, we use the
Tree metadata type to impose a hierarchy on the metadata objects that we define to
describe Study 1. We will define a Tree metadata object named “Clinical Studies” under
which we can group all of the clinical studies, for example, Study 1, Study 2, and so on.
We use the following icon to represent the Tree metadata type:

Now that we know what kind of information to save and which metadata types to
use to represent the entities, we need to get some administrative tasks out of the way.
Follow the steps in Chapter 5, “Setting Up a SAS Metadata Server,” on page 23 to set
up a SAS Metadata Server, then read Chapter 4, “Using the SAS Open Metadata
Interface,” on page 15 and Chapter 6, “Adding Metadata Objects to the Repository,” on
page 41 and we will begin creating metadata objects. A metadata object is an instance
of a metadata type that is stored in a SAS Metadata Repository.

15

C H A P T E R

4
Using the SAS Open Metadata
Interface

Overview of Using the SAS Open Metadata Interface 15
Connecting to the SAS Metadata Server 16

Issuing a Method Call 16

Using PROC METADATA to Issue a Method Call 19

Overview of Using the SAS Open Metadata Interface
The SAS Open Metadata Interface can be executed from a Java, Visual Basic, C++,

or SAS client. The interface contains three method classes:
� the IOMI class contains methods for reading and writing metadata.
� the IServer class contains methods for controlling SAS metadata repositories and

the SAS Metadata Server
� the ISecurity class contains methods for requesting authorizations from the SAS

Open Metadata Architecture authorization facility.

In this guide, we are concerned about the IOMI class. The IOMI class provides an
XML-based interface to metadata; that is, programmers create, update, and query
metadata on the SAS Metadata Server by submitting method calls that specify XML
metadata property strings to the server. For information about how to write a metadata
property string, see “Writing a Metadata Property String” on page 44.

A client issues methods from all classes by connecting to the SAS Metadata Server
and instantiating objects for method parameters. The IOMI method class supports two
call interfaces:

� the standard interface instantiates objects for all method parameters in the client,
and parses the methods within the client.

� a messaging interface, implemented via a DoRequest method, instantiates objects
for DoRequest parameters in the client and submits methods that read and write
metadata to the metadata server in an XML string via the DoRequest method’s
inMetadata parameter. When the DoRequest method is used, the SAS Metadata
Server parses the method call.

The examples in this guide are formatted in XML so that they can be submitted to
the metadata server via the DoRequest method. For an example of how to issue a
DoRequest method call from a Java, Visual Basic, or C++ client, see “Program-Specific
Method Examples” in the SAS Open Metadata Interface: Reference.

Most SAS clients provide a client-specific interface to metadata and execute SAS
Open Metadata Interface method calls under the covers. An exception is PROC
METADATA. PROC METADATA enables users to issue SAS Open Metadata Interface
method calls that are formatted for the DoRequest method from a SAS program. See
“Using PROC METADATA to Issue a Method Call” on page 19 for more information.

16 Connecting to the SAS Metadata Server � Chapter 4

Connecting to the SAS Metadata Server
All SAS Open Metadata Interface clients must connect to a running metadata server

before they can issue method calls.

SAS Open
Metadata
Interface

SAS Metadata
Server

Repositories

metadata
metadata

The SAS Metadata Server uses the Integrated Object Model (IOM) provided by SAS
Integration Technologies. IOM provides distributed object interfaces to Base SAS
software features and enables you to use industry-standard languages, programming
tools, and communication protocols to develop client programs that access Base SAS
features on IOM servers.

To connect to a SAS Metadata Server, a Java, Visual Basic, or C++ client must
invoke the appropriate IOM interface for the programming environment, supply server
connection properties, and reference the type library that is appropriate to the method
class it intends to use. For details about these requirements, see “Connecting to the
SAS Metadata Server” in the SAS Open Metadata Interface: Reference.

PROC METADATA enables you to specify server connection properties by using
procedure statements or system options.

The following is the minimum information that all clients must specify to connect to
a running SAS Metadata Server:

1 The hostname or ip address of the computer hosting the server.
2 The port number specified in the command that was used to start the metadata

server. (Multiple users connect to the same server by specifying the same
hostname and port number.)

3 A valid user ID and password on the SAS Metadata Server.

Java, Visual Basic, and C++ clients must additionally specify the following
information:

� The SAS Metadata Server identifier for Java clients. This property must have the
value "2887e7d7-4780-11d4-879f-00c04f38f0db".

� The SAS Metadata Server identifier for Windows clients. This property must have
the value "SASOMI.OMI".

� The network protocol. The valid value is "bridge".

Issuing a Method Call
Each metadata-related method takes a set of parameters that are used to drive the

behavior of the method. SAS Open Metadata Interface clients must define object
variables for these parameters.

The SAS Open Metadata Interface supports two interfaces for issuing
metadata-related method calls. These interfaces are described in “Call Interfaces” in

� Issuing a Method Call 17

“Open Client Requirements” in the SAS Open Metadata Interface: Reference. The
examples in this guide format method requests for the DoRequest method. See
DoRequest in “Methods for Reading and Writing Metadata (IOMI Class)” in the
reference.

The DoRequest method allows you to code metadata-related methods and all of their
parameters in XML and pass the XML to the metadata server in a generic inMetadata
parameter. The server parses the XML string, issues the method call, and returns
output in a generic outMetadata parameter. The syntax of the DoRequest method is as
follows:

rc = DoRequest(inMetadata,outMetadata);

The format of the XML input string accepted in the inMetadata parameter is:

<MethodName>
<Parameter1>Value</Parameter1>
<Parameter2>Value</Parameter2>
<Parametern>Value</Parametern>
...
</MethodName>

where <MethodName> is the name of an IOMI class method and <Parametern>
represent the parameters required by a given method. Most IOMI class methods
contain one or more of the following parameters:

<Metadata></Metadata>
specifies an XML metadata property string that defines the metadata object type
and properties to be added, deleted, retrieved, or updated.

<NS></NS>
specifies the namespace to use as the context for the request. Method calls that
create, modify, or query application metadata are issued in the SAS namespace.
Method calls that query repositories are issued in the REPOS namespace.

<Flags></Flags>
specifies additional commands for processing the method call, specified in numeric
form. Multiple flags are specified by adding their numbers together and including
the sum in the Flags parameter.

<Options></Options>
specifies additional parameters for processing the call.

<Reposid></Reposid>
specifies a repository identifier.

<Type></Type>
specifies a metadata type.

<Supertype></Supertype>
specifies an abstract metadata type that has subtypes defined in the SAS
Metadata Model.

See the method descriptions in “Methods for Reading and Writing Metadata (IOMI
Class)” in the SAS Open Metadata Interface: Reference for information about the
parameters required by specific methods.

An example of an AddMetadata method call that is formatted for the DoRequest
method is shown below:

<AddMetadata>
<Metadata>
<Column Id="" Name="New Column">

18 Issuing a Method Call � Chapter 4

<Table>
<PhysicalTable Objref="A2345678.A2000001" Name="Test Table"/>

</Table>
</Column>
</Metadata>
<Reposid>A0000001.A2345678</Reposid>
<NS>SAS</NS>
<!--OMI_TRUSTED_CLIENT flag-->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

In the example, <AddMetadata> is the method name, and <Metadata>, <Reposid>,
<NS>, <Flags> and <Options> are AddMetadata parameters. The XML elements that
are nested within the <Metadata></Metadata> tags comprise a metadata property
string that defines the metadata object to be added.

You can submit two or more method calls in one server request by enclosing the XML
method calls between <Multiple_Requests> elements as follows:

<Multiple_Requests>
<AddMetadata>
<Metadata>
<Column Id="" Name="New Column">
<Table>

<PhysicalTable Objref="A2345678.A2000001" Name="Test Table"/>
</Table>

</Column>
</Metadata>
<Reposid>A0000001.A2345678</Reposid>
<NS>SAS</NS>
<!--OMI_TRUSTED_CLIENT flag-->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

<GetMetadata>
<Metadata>
<PhysicalTable Id="A2345678.A2000001" Name="TestTable">
<Columns/>
</PhysicalTable>

</Metadata>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>
</GetMetadata>
</Multiple_Requests>

In the preceding example, the first XML method request issues an AddMetadata
method call to add a column to PhysicalTable A2345678.A2000001 and the second
request — a GetMetadata method call— gets the columns defined for the table to verify
the column’s addition.

� Using PROC METADATA to Issue a Method Call 19

Using PROC METADATA to Issue a Method Call

PROC METADATA accepts method calls that are formatted for the inMetadata
parameter of the DoRequest method. To submit the preceding AddMetadata method
call to the metadata server using PROC METADATA, issue the following statements in
the Program Editor:

PROC METADATA
SERVER="host_name_of_computer_running_the_server"
PORT=port_number
USERID="userid"
PASSWORD="password"
PROTOCOL=BRIDGE

IN="<AddMetadata>
<Metadata>
<Column Id="" Name="New Column">
<Table>
<PhysicalTable Objref="A2345678.A2000001" Name="Test Table"/>
</Table>
</Column>
</Metadata>
<Reposid>A0000001.A2345678</Reposid>
<NS>SAS</NS>
<!--OMI_TRUSTED_CLIENT flag-->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>";

RUN;

The first five statements supply server connection properties. The IN statement
passes the XML-formatted method request to the server.

For more information about PROC METADATA, see the “METADATA Procedure” in
the SAS Open Metadata Interface: Reference.

20

21

P A R T2

Preparation

Chapter 5.Setting Up a SAS Metadata Server 23

22

23

C H A P T E R

5
Setting Up a SAS Metadata
Server

Overview of Setting up a SAS Metadata Server 23
Creating Directories for the SAS Metadata Server, Repository Manager, and a Repository 23

Setting Directory and File Access Permissions 24

Setting System Access Permissions 26

Starting the SAS Metadata Server 29

Registering a SAS Metadata Repository 30

Overview of Setting up a SAS Metadata Server
This topic leads you through the steps for setting up a personal SAS Metadata

Server under Windows XP. These instructions assume that the software described in
“Before You Begin” on page 4 is installed.

Note: Do not use these instructions to set up an enterprise SAS Metadata Server.
The recommended method for setting up an enterprise SAS Metadata Server is using
the SAS Configuration Wizard as directed in the SAS Intelligence Platform: Installation
Guide. The SAS Intelligence Platform: Installation Guide is the intended starting point
for all production SAS 9 server deployments. These instructions are provided solely to
enable you to set up a personal server for this tutorial. �

To set up a personal SAS Metadata Server on Windows XP:
1 Create directories for the SAS Metadata Server, repository manager, and a

repository.
2 Set directory and file access permissions.
3 Set system access permissions.
4 Start the metadata server.
5 Register a repository.

Each step is described in the sections that follow.

Creating Directories for the SAS Metadata Server, Repository Manager,
and a Repository

You will need to create directories for the SAS Metadata Server, the repository
manager, and at least one repository. The default behavior of the metadata server is to
look for the repository manager in a subdirectory of the server directory that is named

24 Setting Directory and File Access Permissions � Chapter 5

"rposmgr" and to assign it the libref RPOSMGR. If you wish to specify a different
location for the repository manager or to assign it a different libref, you must change
the SAS Metadata Server’s default configuration. The server’s configuration is managed
by creating an omaconfig.xml file in the server directory. For more information about
the omaconfig.xml file, see the SAS Intelligence Platform: System Administration
Guide. To keep things simple, we’ll respect the default configuration in this example.

As long as they are not nested within the rposmgr directory, directories for
repositories can be created in any location that the SAS Metadata Server can access.
For convenience, we’ll create the repository directory locally as a subdirectory of the
metadata server directory, at the same level as the rposmgr directory. To create the
directories:

1 Create a folder and name it omaserver.
2 Open the omaserverfolder.
3 Within the omaserver folder, create two subfolders.
4 Name the first folder rposmgr.
5 Name the second folder myrepos.

By creating the rposmgr and myrepos directories as subdirectories of the omaserver
directory, the directories can inherit the directory and file access permissions that we
set for the metadata server directory. Creating the subdirectories as parallel directories
prevents contention between them.

Setting Directory and File Access Permissions
To set up or maintain a repository manager and repository, you must have full access

to the repository manager and repository directories. Because the rposmgr and
myrepos directories are subdirectories of the omaserver directory, we can set the
necessary permissions one time for the omaserver directory and the subdirectories will
inherit the permissions.

To set the permissions:
1 Highlight the omaserver folder icon and select to view its properties. The

omaserver Properties window displays as follows:

Setting Up a SAS Metadata Server � Setting Directory and File Access Permissions 25

2 Switch to the Security tab. The Group or user names: field lists the identities that
have access to this directory and the permissions that are assigned to them.

26 Setting System Access Permissions � Chapter 5

3 Grant or verify that the following permissions are set:

� Your identity has Full Control to the directory.

� The administrator identity has appropriate permissions to allow the
company’s backup procedures to run correctly.

� Click the Advanced button.

4 In the Advanced Security Settings for omaserver window:

a Select the Replace permission entries on all child objects with entries shown
here that apply to child objects checkbox, then click Apply.

b A confirmation dialog will ask you to verify that you want to change the
permissions for the child objects. Click Yes.

c The software will return you to the omaserver Properties window. Click OK
to close the window.

Setting System Access Permissions

On Windows XP, the operating system account that is used to invoke the SAS
Metadata Server is not required to have any special user rights. However, all server
accessors (everyone who will use the server) must have the Log on as a batch job user
right set.

Setting Up a SAS Metadata Server � Setting System Access Permissions 27

For an enterprise SAS Metadata Server, we recommend that customers create a
group, add all server users to the group, and then assign the right to the group. To
assign the Log on as a batch job user right:

1 From the Windows XP Start menu, select Start->Settings->Control Panel.
2 In the Control Panel, open Administrative Tools.
3 In Administrative Tools, open Local Security Policy.
4 In the Local Security Settings window, select User Rights Assignment.
5 Scroll the list of policies until you find Logon as a batch job.

6 Double-click the policy name. The software opens the Logon as a batch job
Properties window.

28 Setting System Access Permissions � Chapter 5

7 In the Logon as a batch job Properties window, click Add User or Group. The
software opens the Select Users or Groups window.

8 Add your user name or the name of a group in which you are a member as shown
in the examples provided by the user interface.

9 Click OK to close the Select Users or Groups window.

10 Close the other windows.

11 Restart the computer that is hosting the server so that the updates can take effect.

You are now ready to start the SAS Metadata Server.

Setting Up a SAS Metadata Server � Starting the SAS Metadata Server 29

Starting the SAS Metadata Server
You are required to start the SAS Metadata Server from the directory that is defined

for the SAS Metadata Server. To start the metadata server, create an executable file in
the omaserver directory that contains the following comand, and then execute the file.
For this example, name the executable file “startsrv.bat”.

"where_your_SAS_is_installed\sas.exe" -nosplash -noterminal -noautoexec
-sasuser sasusrms -rsasuser -log "C:\logs\omaserver.log" -memsize max
-logparm "rollover=auto open=replaceold write=immediate" -linesize max
-pagesize max -objectserver -objectserverparms
"protocol=bridge port=XXXX classfactory=2887E7D7-4780-11D4-879F-00C04F38F0DB"

In the command:
� replace where_your_SAS_is_installed with the path to the directory where SAS is

installed on the host computer (typically C:\Program Files\SAS\SAS System\9.1)
� NOSPLASH, NOTERMINAL, NOAUTOEXEC, SASUSER, and RSASUSER are

environment control parameters

NOSPLASH
suppresses the display of the SAS splash screen.

NOTERMINAL
specifies to run the server in batch mode.

NOAUTOEXEC
specifies not to process the SAS autoexec file, even if one exists. Processing of
the file can result in unpredictable server behavior.

SASUSER="library-specification"
specifies the SAS data library to contain the server’s profile catalog. This
library must be dedicated to the metadata server. We recommend that you
name it sasusrms or sasuser.

RSASUSER
limits access to the SASUSER library to read-only mode.

� LOG=, LOGPARM=, PAGESIZE=, and LINESIZE= are log output parameters

LOG="directory-name"
specify an existing directory to which to write the server log file.

LOGPARM="WRITE=value ROLLOVER=value OPEN=value"
controls when SAS log files are opened and closed. Specify the parameter
"WRITE=IMMEDIATE"; otherwise, the server buffers log entries in memory.
If your server runs in a 24/7 environment, you might also want to specify
"ROLLOVER=AUTO OPEN=REPLACEOLD" to partition the log into daily or
weekly reports.

PAGESIZE=value
specifies the number of lines that make up a page of SAS output. A setting of
MAX is recommended to reduce the occurrence of SAS log page headings and
carriage controls.

LINESIZE=value
specifies the line size of SAS output. A setting of MAX is recommended to
reduce log entry wrap-around.

� OBJECTSERVER and OBJECTSERVERPARMS invoke an Integrated Object
Model server of the specified parameters.

30 Registering a SAS Metadata Repository � Chapter 5

PROTOCOL=bridge
identifies the network protocol used to communicate with the server. The
valid value is bridge.

PORT=port-number
specifies the TCP port on which the server will listen for requests and that
clients will use to connect to the server. The port-number value must be a
unique four-digit number between 0 and 64K. The default port number is
8561.

CLASSFACTORY=factory-number
specifies the type of IOM server to instantiate. The value
2887e7d7-4780-11d4-879f-00c04f38f0db identifies a SAS Metadata Server.

This is the minimum set of parameters needed to start a SAS Metadata Server. For
information about additional parameters that invoke optional functionality, see the SAS
Intelligence Platform: System Administration Guide.

You are now ready to register a repository.

Registering a SAS Metadata Repository
Before you can manage a repository, it must be identified to the repository manager

in a registration process. The recommended method for registering a repository is using
SAS Management Console. SAS Management Console is a SAS Open Metadata
Interface client that connects to the SAS Metadata Server and provides a user interface
for managing SAS Metadata Repositories.

Note: You must be an administrative user of the server in order to be able to register
a repository. You are an administrative user if you connect to the metadata server using
the user ID that was used to start the server, or if your user ID is listed in an
adminUsers.txt file in the metadata server directory. For more information about the
adminUsers.txt file, see the SAS Intelligence Platform: System Administration Guide. �

To register a repository:
1 Select Programs->SAS->SAS Management Console from the Windows XP Start

menu. The software displays a window similar to the following:

Setting Up a SAS Metadata Server � Registering a SAS Metadata Repository 31

2 Before you can use SAS Management Console, you must connect to a running SAS
Metadata Server. In the Open a Metadata Profile window, select Create a new
metadata profile, and click OK . The software opens the Metadata Profile
Wizard to guide you through the steps of entering server connection properties.

3 Click Next to begin the wizard.
4 The Metadata Profile window of the wizard prompts you to enter a name to

identify the server. This can be any name up to 200 characters.

32 Registering a SAS Metadata Repository � Chapter 5

Note: If you do not select the Open this metadata profile by default
check box, you will be prompted for server connection information each time you
open SAS Management Console. Click Next to continue. �

5 The Connection Information window collects server connection properties. In the
appropriate field, enter

Machine the host name or Internet Protocol address of the computer on
which you started the SAS Metadata Server process.

Port the port number that you specified in the startsrv.bat command
file. This is the port to which the metadata server listens for
requests.

Username enter an authenticated user ID on the metadata server. The
SAS Metadata Server supports several authentication options.
In this example, we are relying on host authentication. Specify
your user ID on the computer that is hosting the metadata
server.

Password enter the password associated with the user ID.

The following screen capture shows a typical set of connection properties.

Setting Up a SAS Metadata Server � Registering a SAS Metadata Repository 33

Click Next to continue.

6 The Repository Selection window allows you to define a default repository. Select
Add Repository to define a repository.

7 The software opens the Create Repository Wizard, which enables you to create
repositories of three types:

� Foundation is a "base" or "master" repository on which other repositories rely
for shared information such as metadata identities and default authorization
settings.

� Project is a repository that is used to isolate changes from a production
environment. A metadata developer uses a project repository as a playpen for
making changes to a foundation or custom repository.

� Custom is a repository that is dependent on a foundation repository or
another custom repository.

34 Registering a SAS Metadata Repository � Chapter 5

SAS Management Console requires that you create a foundation repository as
the first repository on a metadata server. This repository will store metadata
definitions that are shared by all repositories that you might define.

Click Next to continue.The software opens the General Information window.

8 In the General Information window, enter a name and a description for the
repository as follows:

Name is a unique name for the repository.

Description is an optional descriptive phrase for the repository.

The following screen capture shows values we might enter for our clinical trials
repository.

Setting Up a SAS Metadata Server � Registering a SAS Metadata Repository 35

Click Next to continue. The software opens the Definition of Data Source
window.

9 In the Definition of Data Source window, enter the data source information for the
repository:

Engine is the engine used to access this repository. Valid values are
Base, DB2, and Oracle. Base, representing the SAS base
engine, is the default engine if one is not specified.

Path is the physical path to the repository directory. This is a
required parameter when Base is selected as the engine. When
creating a repository that uses the DB2 or Oracle engines,
leave this field blank. The DB2 and Oracle engines get their
path information from the Options field.

Options specifies LIBNAME and engine-connection options required to
create a repository on an external DBMS. This exercise
describes how to create a repository using the SAS Base engine.
See the SAS Management Console help or the SAS Intelligence
Platform: System Administration Guide for information about
the options required to create a repository on DB2 or Oracle.

This repository
will be under
change
management

When checked, specifies that metadata in the repository will be
checked-out to and updated in a project repository. When left
unchecked, indicates that metadata will be updated in place.
For this exercise, we will leave this option unchecked, so we
can directly update metadata in the repository.

The following graphic shows the values for our clinical trials repository.

Click Next to continue.

10 The wizard displays a Current Settings window for you to review the repository
properties.

36 Registering a SAS Metadata Repository � Chapter 5

Click Finish to save the settings and create the repository.
11 The software displays an informational message as it initializes the repository.

Foundation repositories have a set of default resource templates and authorization
metadata created in them. When the initialization is complete, it displays a
window to inform you that the initialization was successful. Click OK to continue.

12 The software will display a window informing you that you must pause the server
in order to apply the authorization settings.

Click Yes . Warning: If you click No , the directory and system access controls
you defined in the previous steps will be the only security enforced on the
repository.

13 The software will return you to the Repository Selection window. Select your new
repository and click Finish to store the new metadata profile and repository
information.

Setting Up a SAS Metadata Server � Registering a SAS Metadata Repository 37

You are now ready to create metadata.

38

39

P A R T3

Working with Metadata

Chapter 6.Adding Metadata Objects to the Repository 41

Chapter 7.Querying the Repository 63

Chapter 8.Updating Metadata Objects in the Repository 71

Chapter 9.Deleting Metadata Objects in the Repository 73

Chapter 10.Stopping the SAS Metadata Server 75

40

41

C H A P T E R

6
Adding Metadata Objects to the
Repository

Overview of Adding Metadata Objects 41
Concepts 42

Tasks 43

Determining the Repository ID 43

Writing a Metadata Property String 44

Creating the Clinical Studies Tree 45
Creating the Study 2 Tree 46

Creating the Study 1 Tree and Business Information Objects 46

Creating Objects for the Study 1 Tables 49

Creating the TransformationActivity, TextStore, and ServerComponent Objects 58

Overview of Adding Metadata Objects
This section describes the SAS Open Metadata Interface method calls necessary to

add objects representing the metadata types identified in“Selecting Metadata Types for
Our Study” on page 11 to the Clinical Trials repository. As a refresher, we identified the
need to define the following:

� PhysicalTable objects describing the Study 1 input tables and output table
� Column objects describing the columns in each table
� Person, ResponsibleParty, and Email objects describing the study owner (Dr. Joe

E. Doe)
� Transformation and text objects to represent and store the DATA step program

that processed the input and output tables and notes about the transformation
� a Documentation object
� ServerComponent and Machine objects describing SAS and its host environment
� Tree objects for grouping the Study 1 objects into one project, and the Study 1

project together with other projects owned by Dr. Joe E. Doe.

These metadata types will enable us to build a repository containing the following
objects and relationships:

42 Concepts � Chapter 6

Concepts
At this point, it is important to discuss some SAS Metadata Model concepts and

terms:
� The relationship between two metadata types (represented as a branch in this

diagram) is referred to as an association.
� The associations supported for each metadata type are predefined by the SAS

Metadata Model and they have a name (not shown in this diagram), which is
referred to as the association name.

� Every relationship in the SAS Metadata Model is represented by two associations.
That is, the association has a different name depending on which of the metadata
types is used to refer to the association. For example, when defining an association
between the Tree metadata type and the Document metadata type, the Tree has a
Documents association to the Document (indicating the document is one of several
possible documents that is associated with the Tree). When defining an association
between the Document metadata type and a Tree, the association will have a Trees
association name (Tree is one of several possible Trees to which the document is

Adding Metadata Objects to the Repository � Determining the Repository ID 43

related). The partner metadata type in the relationship is referred to as the
association subelement.

� A cardinality is assigned to each association name. The cardinality indicates the
number of objects that are supported in the association and whether the
association is required or optional. The cardinality of any given association is
described in the metadata type documentation in “Alphabetical Listing of SAS
Namespace Metadata Types” in the SAS Open Metadata Interface: Reference. This
listing is only available in online versions of the reference. Look for it in SAS Help
and Documentation or SAS OnlineDoc.

Tasks
Metadata objects are added to SAS metadata repositories by using the AddMetadata

method. We will create the objects and associations shown above in the following order:
1 Clinical Studies tree
2 Study 2 tree
3 Study 1 tree and business information objects
4 Table objects
5 TransformationActivity, TextStore, and ServerComponent objects.

The examples represent one way the metadata can be added. This is by no means the
only way it can be done.

Before you can add any metadata objects to a metadata repository, you must know
the repository’s metadata identifier. You must also know how to write an XML
metadata property string. For more information, see “Determining the Repository ID”
on page 43 and “Writing a Metadata Property String” on page 44.

Determining the Repository ID
Every object in a SAS metadata repository has a unique identifier. The SAS

Metadata Server assigns an object instance identifier of the form
REPOSID.INSTANCEID to each metadata object upon the successful completion of an
AddMetadata call. A repository is no exception. A repository identifier is assigned to the
repository when it is registered in the SAS Metadata Server repository manager,
although this identifier is in the form REPOSMGRID.REPOSID.

To obtain a repository’s unique identifier, you must issue the GetRepositories method.
The following is an example of a GetRepositories method call that is formatted for the
inMetadata parameter of the DoRequest method:

<GetRepositories>
<Repositories/>
<Flags>0</Flags>
<Options/>
</GetRepositories>

This is the output returned by the SAS Metadata Server:

<! --Using the DOREQUEST method. -->
<! -- Information received from server : -->
<GetRepositories>
<Repositories>

<Repository Id="A0000001.A5ROO9ZW" Name="Clinical Trials"
Desc="Clinical studies belonging to Dr. Joe E. Doe" DefaultNS="SAS"/>

44 Writing a Metadata Property String � Chapter 6

</Repositories>
<Flags>0</Flags>
<Options/>
</GetRepositories>

It shows that one repository (A5ROO9ZW) has been defined in the current repository
manager (A0000001). A0000001.A5ROO9ZW is the value we will use to identify the
Clinical Studies repository in our AddMetadata calls.

Writing a Metadata Property String
Methods that read or write a metadata object must submit a string of properties that

describe that object to the SAS Metadata Server. This property string is passed to the
metadata server in the inMetadata parameter of the method call.(When a method is
submitted to the metadata server via the DoRequest method, the metadata property
string is enclosed in <Metadata> tags.)

A metadata object is described by
� its metadata type
� attributes that are specific to the metadata object, such as its ID, name,

description, and other characteristics
� its associations with other metadata objects.

The SAS Open Metadata Interface supports the following XML elements for defining
a metadata property string:

Metadata type
identifies the metadata type that you want to read or write, within angle brackets.
This example shows the XML element that is used to represent the PhysicalTable
metadata type.

<PhysicalTable></PhysicalTable>

A shorthand method of specifying this tag set is:

<PhysicalTable/>

Metadata type attributes
specify attributes of the metadata type as XML attributes (within the angle
brackets of the metadata type). This example specifies the PhysicalTable metadata
object that has NE Sales in the Name attribute.

<PhysicalTable Name="NE Sales"/>

Association name and association subelement elements
describe the relationship between the metadata type named in the main XML
element and another metadata type as nested XML elements, as follows:

<PhysicalTable Name="NE Sales"/>
<Columns>

<Column/>
</Columns>

</PhysicalTable>

The association name is a label that describes the relationship between the main
element and the subelement.The association subelement identifies the partner
metadata object in the relationship. In this example, Columns is the association name
and Column is the association subelement. The main metadata object, PhysicalTable,
has a Columns association to an object of metadata type Column.

Adding Metadata Objects to the Repository � Creating the Clinical Studies Tree 45

Note: In order to meet XML parsing rules, the metadata type, attribute, and
association element and subelement names that you specify in the metadata property
string must exactly match those published in the metadata type documentation. �

We can now begin adding metadata objects to our example repository.

Creating the Clinical Studies Tree

The following AddMetadata method call creates a Tree object to represent the
top-level node of the clinical study information. It is an example of a simple
AddMetadata method call: it specifies to add a single object containing the attributes
specified in the <Metadata> element to the repository identified in the <Reposid>
element. The remaining parameters are required in every AddMetadata method call.
The <NS> element specifies the namespace in which to execute the request. All
requests that add application objects must be executed in the SAS namespace. The
<Flags> element specifies the OMI_TRUSTED_CLIENT (268435456) flag. This flag is
required in all method calls that add or update metadata in a repository. The
<Options> element is supported to enable you to specify optional parameters. At this
time, the AddMetadata method does not support any optional parameters.

<AddMetadata>
<Metadata>
<Tree
Desc="Top level node for clinical study information."
Name="Clinical Studies"
TreeType="Clinical Study">
</Tree>
</Metadata>
<Reposid>A0000001.A5ROO9ZW</Reposid>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

This is the output returned by the SAS Metadata Server:

<!-- Using the DOREQUEST method. -->
<!-- Information received from server : -->
<AddMetadata><Metadata><Tree Name="Clinical Studies" Desc="Top level
node for clinical study information." TreeType="Clinical Study"
Id="A5ROO9ZW.AK00000A"/></Metadata>
<Reposid>A0000001.A5ROO9ZW</Reposid><NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag --><Flags>268435456</Flags>
<Options/></AddMetadata>

The output mirrors the input, except the attribute Id="A5ROO9ZW.AK00000A" is
appended to the metadata property string. We will save this value and use it to create
references from other objects.

References to objects that have been defined, but for which an identifier has not yet
been assigned, can be made by using a symbolic name. These concepts are described in
greater detail in the sections that follow.

46 Creating the Study 2 Tree � Chapter 6

Creating the Study 2 Tree
The following AddMetadata method call creates a Tree object to represent Study 2 as

well as an association between the Clinical Studies Tree and the new Study 2 Tree. In
addition to the metadata type and metadata type attributes, the metadata property
string specifies an association name element and association subelement (shown in bold
text) to create the association.

Note in the association subelement that an ObjRef= attribute is used to identify the
Clinical Studies Tree as the partner type in the association. The ObjRef= attribute
signals to the server that a relative reference to an existing object should be created.
The absence of an identifier, or specifying Id= with no value in the association
subelement, indicates to the server that a new object is to be created.

<AddMetadata>
<Metadata>
<Tree Desc="All information dealing with Study 2."

Name="Study 2"
TreeType="Clinical Study">

<ParentTree>
<Tree ObjRef="A5ROO9ZW.AK00000A"/>

</ParentTree>
</Tree>

</Metadata>
<Reposid>A0000001.A5ROO9ZW</Reposid>
<NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>
</AddMetadata>

The output returned by the server is as follows:

<!-- Using the DOREQUEST method. -->
<!-- Information received from server : -->
<AddMetadata><Metadata>
<Tree Desc="All information dealing with Study 2." Name="Study 2"
TreeType="Clinical Study" Id="A5ROO9ZW.AK00000B">
<ParentTree><Tree ObjRef="A5ROO9ZW.AK00000A"/></ParentTree></Tree>
</Metadata><Reposid>A0000001.A5ROO9ZW</Reposid><NS>SAS</NS>
<!-- OMI_TRUSTED_CLIENT flag --><Flags>268435456</Flags>
<Options/></AddMetadata>

The Study 2 Tree has been assigned the ID value A5ROO9ZW.AK00000B. The
association name element and subelement are stored as properties of the metadata
object.

Creating the Study 1 Tree and Business Information Objects
The following AddMetadata method call adds objects for the Study 1 Tree and

Business Information metadata objects identified in“Selecting Metadata Types for Our
Study” on page 11 to the Clinical Studies repository. This example creates multiple
objects in one method call by stacking multiple metadata property strings in the
<Metadata> element. In addition, symbolic names are used as identifiers to enable

Adding Metadata Objects to the Repository � Creating the Study 1 Tree and Business Information Objects 47

associations to be created between the objects until real identifiers can be assigned. The
example has been segmented so that explanatory text can be provided.

The first metadata property string in the <Metadata> element defines the Study 1
Tree and creates an association between the Study 1 Tree and the Clinical Studies Tree:

<AddMetadata>
<Metadata>

<Tree
Desc="All information dealing with Study 1."
Id="$Study1"
Name="Study 1"
TreeType="Clinical Study">
<ParentTree>

<Tree ObjRef="A5ROO9ZW.AK00000B"/>
</ParentTree>

</Tree>

Id=, Desc, Name, and TreeType= are attributes of the Tree metadata type. The Id=
attribute specifies the symbolic name $Study1. A symbolic name is simply an alias that
is preceded by a dollar sign ($). The alias enables you to refer back to the object that is
being created before the server assigns it an identifier. This alias enables the Business
Information objects that describe the tree to be defined and associated with the Study 1
Tree in the same request that defines the Tree object. The ParentTree association name
specifies that the Study 1 Tree is created as a subtree of the Clinical Studies tree, which
is identified in the request by Objref=“A5ROO9ZW.AK00000B”.

The second metadata property string defines the Document object:

<Document
Desc="Documentation for clinical study."
Name="Specification For Clinical Study 1"
URI="http://webserver.xyz.com/doc/Study.html"
URIType="URL">
<Trees>

<Tree ObjRef="$Study1"/>
</Trees>

</Document>

Desc, Name, URI, and URIType are attributes of the Document metadata type. In
the SAS Open Metadata Architecture, a Document is a Web page that contains
documentation pertinent to the object to which this document is related. The URI
attribute of the Document object specifies the URL of the Web document. The URIType
attribute identifies the type of location. The Trees association name, Tree subelement,
and the symbolic name $Study1 create an association to the Study 1 object that was
defined in the first metadata property string. The symbolic name will be replaced with
a real Id= value at the successful completion of the AddMetadata request.

The following metadata property strings define the ResponsibleParty, Person, and
Email objects.

<ResponsibleParty
Desc="Owner of clinical studies."
Id="$ResponsibleParty1"
Name="Owner of Study 1"
Role="OWNER">
<Objects>

<Tree ObjRef="$Study1"/>
</Objects>
<Persons>

48 Creating the Study 1 Tree and Business Information Objects � Chapter 6

<Person ObjRef="$Person1"/>
</Persons>

</ResponsibleParty>
<Person

Desc="Manager of clinical studies."
Id="$Person1"
Name="Joe E. Doe"
Title="Manager of Clinical Studies">

</Person>
<Email

Address="J.E.Doe@xyz.com"
Desc="Primary e-mail address."
Name="e-mail address for Joe E. Doe">
<Persons>

<Person ObjRef="$Person1"/>
</Persons>

</Email>
</Metadata>

<Reposid>A0000001.A5ROO9ZW</Reposid>
<Ns>SAS</Ns>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

</AddMetadata>

Each of the property strings define and reference symbolic names to create
associations between each other and the Study 1 Tree that was defined in the first
metadata property string. Specifically:

� The symbolic name $ResponsibleParty1 is defined but is not referenced.

� The symbolic name $Study1 is used to create an Objects association between the
ResponsibleParty object and the Study 1 Tree object.

� The symbolic name $Person1 is used to create a Persons association between the
ResponsibleParty object and a Person object, which has not yet been defined.

� The symbolic name $Person1 is used to create a Persons association between the
Email object and the Person object.

The following is the output returned by the SAS Metadata Server.

<!-- Using the DOREQUEST method. -->
<!-- Information received from server : -->
<AddMetadata>
<Metadata>
<Tree Desc="All information dealing with Study 1." Id="A5ROO9ZW.AK00000E"
Name="Study 1" TreeType="Clinical Study"><ParentTree>
<Tree ObjRef="A5ROO9ZW.AK00000A"/></ParentTree></Tree>
<Document Desc="Documentation for clinical study." Name="Specification For Clinical
Study 1" URI="http://webserver.xyz.com/doc/Study.html" URIType="URL"
Id="A5ROO9ZW.AN000003"><Trees><Tree ObjRef="A5ROO9ZW.AK00000E"/>
</Trees></Document><ResponsibleParty Desc="Owner of clinical studies."
Id="A5ROO9ZW.AO000003" Name="Owner of Study 1" Role="OWNER">
<Objects><Tree ObjRef="A5ROO9ZW.AK00000E"/></Objects>
<Persons><Person ObjRef="A5ROO9ZW.AP000003"></Persons></ResponsibleParty>
<Person Desc="Manager of clinical studies." Id="A5ROO9ZW.AP000003"
Name="Joe E. Doe" Title="Manager of Clinical Studies"/>
<Email Address="J.E.Doe@xyz.com" Desc="Primary e-mail address." Name="e-mail address

Adding Metadata Objects to the Repository � Creating Objects for the Study 1 Tables 49

for Joe E. Doe" Id="A5ROO9ZW.AQ000003"><Persons>
<Person ObjRef="A5ROO9ZW.AP000003"></Persons></Email></Metadata>
<Reposid>A0000001.A5ROO9ZW</Reposid><NS>SAS</NS><!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags><Options/></AddMetadata>

The metadata identifiers assigned to the new objects are highlighted.
Next, we will create metadata objects describing the Study 1 tables.

Creating Objects for the Study 1 Tables
In “Deciding What Information Should Be Stored” on page 9, we described the need

to create table objects describing two input tables named “Patient Information” and
“Visit Information” and an output table named “Study 1 Output”. The following
AddMetadata method call creates these objects. As in the previous example, the objects
are defined by stacking multiple metadata property strings in the method’s <Metadata>
element and symbolic names are used to define associations between the objects. Also,
as in the preceding example, the example is segmented to allow explanatory text to be
interspersed among the sample code.

The first part of the AddMetadata example contains the metadata property strings
that define the properties for the Patient Information table and its columns:

<AddMetadata>
<Metadata>
<PhysicalTable
Desc="Information describing an individual patient."
Id="$PatientInformation"
MemberType="DATA"
Name="Patient Information"
SASTableName="Patient_Information"
TableName="Patient_Information">
<Trees>

<Tree ObjRef="A5ROO9ZW.AK00000E"/>
</Trees>

</PhysicalTable>
<Column
Name="Patient ID"
Desc="Patient Information"
ColumnName="Patient_ID"
SASColumnName="Patient_ID"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$PatientInformation"/>
</Table>

</Column>
<Column
Name="Initials"
Desc="Patient Initials"
ColumnName="Initials"

50 Creating Objects for the Study 1 Tables � Chapter 6

SASColumnName="Initials"
ColumnType="12"
SASColumnType="C"
ColumnLength="3"
SASColumnLength="3"
SASFormat="$Char3."
SASInformat="$3.">
<Table>

<PhysicalTable ObjRef="$PatientInformation"/>
</Table>

</Column>
<Column

Name="Sex"
Desc="Sex of Patient"
ColumnName="Sex"
SASColumnName="Sex"
ColumnType="12"
SASColumnType="C"
ColumnLength="1"
SASColumnLength="1"
SASFormat="$Char1."
SASInformat="$1.">
<Table>

<PhysicalTable ObjRef="$PatientInformation"/>
</Table>

</Column>
<Column

Name="Date Of Birth"
Desc="Date Of Birth"
ColumnName="Date_Of_Birth"
SASColumnName="Date_Of_Birth"
ColumnType="91"
SASColumnType="N"
ColumnLength="9"
SASColumnLength="9"
SASFormat="date9."
SASInformat="date9.">
<Table>

<PhysicalTable ObjRef="$PatientInformation"/>
</Table>

</Column>
<Column

Name="Sponsor Patient ID"
Desc="Sponsor Patient Information"
ColumnName="Sponsor_Patient_ID"
SASColumnName="Sponsor_Patient_ID"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$PatientInformation"/>

Adding Metadata Objects to the Repository � Creating Objects for the Study 1 Tables 51

</Table>
</Column>
<Column
Name="Weight In Pounds"
Desc="Patient Weight In Pounds"
ColumnName="Weight_In_Lb"
SASColumnName="Weight_In_Lb"
ColumnType="6"
SASColumnType="N"
ColumnLength="6"
SASColumnLength="6"
SASFormat="6.2"
SASInformat="6.2">
<Table>

<PhysicalTable ObjRef="$PatientInformation"/>
</Table>

</Column>
<Column
Id="$WeightInKgColumn"
Name="Weight In Kilograms"
Desc="Patient Weight In Kilograms"
ColumnName="Weight_In_Kg"
SASColumnName="Weight_In_Kg"
ColumnType="6"
SASColumnType="N"
ColumnLength="6"
SASColumnLength="6"
SASFormat="6.2"
SASInformat="6.2">
<Table>

<PhysicalTable ObjRef="$PatientInformation"/>
</Table>

</Column>

In the metadata property strings, note:
� The symbolic name $PatientInformation is defined in the PhysicalTable object

definition and is later referenced in the Column object definitions to create a Table
association between the column objects and the table object.

� The PhysicalTable definition creates a Trees association to the Study 1 Tree object.
� The Column object definitions specify attributes both as they are defined in a

DBMS and as they are defined by SAS software.
� The Column object definitions specify an integer in the ColumnType attribute. For

example:

<Column
Name="Visit Name"
Desc="Visit Name"
ColumnName="Visit_Name"
SASColumnName="Visit_Name"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">

52 Creating Objects for the Study 1 Tables � Chapter 6

<Table>
<PhysicalTable ObjRef="$PatientInformation"/>

</Table>
</Column>

The ColumnType attribute describes the SQL type of a DBMS column as an
integer value. The integer "12" corresponds to the VARCHAR SQL type. In other
column definitions in this example, the integer "6" corresponds to the FLOAT SQL
type and the integer "4" corresponds to the INTEGER SQL type. See the
description of the ColumnType attribute in the documentation for the Column
metadata type for a complete list of supported integer and SQL type values. This
and other metadata type descriptions are found in the “Alphabetical Listing of
SAS Namespace Metadata Types,” which is available only in online versions of the
SAS Open Metadata Interface: Reference.

� The symbolic name $WeightInKgColumn is assigned to the Weight in Kilograms
column and is not yet referenced.

The following metadata property string defines an Extension object for the Patient
Information table’s Weight In Kilograms column object.

<Extension
Desc="Algorithm for column."
Name="Algorithm"
Value="Weight_In_Lb\2.2">
<OwningObject>

<Column ObjRef="$WeightInKgColumn"/>
</OwningObject>

</Extension>

The extension contains an algorithm for converting pounds to kilograms. The
symbolic name $WeightInKgColumn is used to define an OwningObject association
between the Extension and the Weight In Kilograms column object.

The following metadata property strings define the properties for the Visit
Information table and its columns:

<PhysicalTable
Desc="Information describing a patient visit."
Id="$PatientVisit"
MemberType="DATA"
Name="Visit Information"
SASTableName="Patient_Visit"
TableName="Patient_Visit">
<Trees>

<Tree ObjRef="A5ROO9ZW.AK00000E"/>
</Trees>

</PhysicalTable>
<Column

Name="Visit Name"
Desc="Visit Name"
ColumnName="Visit_Name"
SASColumnName="Visit_Name"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">

Adding Metadata Objects to the Repository � Creating Objects for the Study 1 Tables 53

<Table>
<PhysicalTable ObjRef="$PatientVisit"/>

</Table>
</Column>
<Column
Name="Sponsor Patient ID"
Desc="Sponsor Patient ID"
ColumnName="Sponsor_Patient_ID"
SASColumnName="Sponsor_Patient_ID"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$PatientVisit"/>
</Table>

</Column>
<Column
Name="Patient ID"
Desc="Patient ID"
ColumnName="Patient_ID"
SASColumnName="Patient_ID"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$PatientVisit"/>
</Table>

</Column>
<Column
Name="Systolic Blood Pressure"
Desc="Systolic Blood Pressure"
ColumnName="Systolic_Blood_Pressure"
SASColumnName="Systolic_Blood_Pressure"
ColumnType="4"
SASColumnType="N"
ColumnLength="4"
SASColumnLength="4"
SASFormat="4.0"
SASInformat="4.0">
<Table>

<PhysicalTable ObjRef="$PatientVisit"/>
</Table>

</Column>
<Column
Name="Diastolic Blood Pressure"
Desc="Diastolic Blood Pressure"
ColumnName="Diastolic_Blood_Pressure"
SASColumnName="Diastolic_Blood_Pressure"

54 Creating Objects for the Study 1 Tables � Chapter 6

ColumnType="4"
SASColumnType="N"
ColumnLength="4"
SASColumnLength="4"
SASFormat="4.0"
SASInformat="4.0">
<Table>

<PhysicalTable ObjRef="$PatientVisit"/>
</Table>

</Column>
<Column

Name="Visit Number"
Desc="Visit Number"
ColumnName="Visit_Number"
SASColumnName="Visit_Number"
ColumnType="4"
SASColumnType="N"
ColumnLength="4"
SASColumnLength="4"
SASFormat="4.0"
SASInformat="4.0">
<Table>

<PhysicalTable ObjRef="$PatientVisit"/>
</Table>

</Column>
<Column

Name="Occurrence Number"
Desc="Occurrence Number"
ColumnName="Occurrence_Number"
SASColumnName="Occurrence_Number"
ColumnType="4"
SASColumnType="N"
ColumnLength="4"
SASColumnLength="4"
SASFormat="4.0"
SASInformat="4.0">
<Table>

<PhysicalTable ObjRef="$PatientVisit"/>
</Table>

</Column>

In these metadata property strings:
� The symbolic name $PatientVisit is assigned to the Visit Information table object

and is used to create a Table association between each of the columns and the table.
� The PhysicalTable definition creates a Trees association to the Study 1 Tree object.

Finally, the following metadata property strings define the Study 1 output table and
its columns and complete the AddMetadata call:

<PhysicalTable
Desc="Information output from Study 1."
Id="$Study1Output"
MemberType="DATA"
Name="Study 1 Output"
SASTableName="Study_1_Output"
TableName="Study_1_Output">

Adding Metadata Objects to the Repository � Creating Objects for the Study 1 Tables 55

<Trees>
<Tree ObjRef="A5ROO9ZW.AK00000E"/>

</Trees>
</PhysicalTable>
<Column
Name="Patient ID"
Desc="Patient Information"
ColumnName="Patient_ID"
SASColumnName="Patient_ID"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$Study1Output"/>
</Table>

</Column>
<Column
Name="Visit Name"
Desc="Visit Name"
ColumnName="Visit_Name"
SASColumnName="Visit_Name"
ColumnType="12"
SASColumnType="C"
ColumnLength="32"
SASColumnLength="32"
SASFormat="$Char32."
SASInformat="$32.">
<Table>

<PhysicalTable ObjRef="$Study1Output"/>
</Table>

</Column>
<Column
Name="Normalized SBPW Coefficient"
Desc="Normalized SBPW Coefficient"
ColumnName="SBPW_Coefficient"
SASColumnName="SBPW_Coefficient"
ColumnType="6"
SASColumnType="N"
ColumnLength="8"
SASColumnLength="8"
SASFormat="8.2"
SASInformat="8.2">
<Table>

<PhysicalTable ObjRef="$Study1Output"/>
</Table>

</Column>
</Metadata>
<Reposid>A0000001.A5ROO9ZW</Reposid>
<Ns>SAS</Ns>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>

56 Creating Objects for the Study 1 Tables � Chapter 6

<Options/>
</AddMetadata>

� The symbolic name $Study1Output is assigned to the Study 1 Output table object
and is used to create a Table association between each of the columns and the table.

� The PhysicalTable definition creates a Trees association to the Study 1 Tree object.

The following is the output returned by the SAS Metadata Server.

<!-- Using the DOREQUEST method. -->
<!-- Information received from server : -->
<AddMetadata>
<Metadata>
<PhysicalTable Id="A5ROO9ZW.AR000004" Desc="Information describing an
individual patient." MemberType="DATA" Name="Patient Information"
SASTableName="Patient_Information" TableName="Patient_Information"><Trees>
<Tree ObjRef="A5ROO9ZW.AK00000E"/></Trees></PhysicalTable>
<Column Name="Patient ID" Desc="Patient Information" ColumnName="Patient_ID"
SASColumnName="Patient_ID" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
Id="A5ROO9ZW.AS00000M"><Table><PhysicalTable ObjRef="A5ROO9ZW.AR000004"/>
</Table></Column>
<Column Name="Initials" Desc="Patient Initials" ColumnName="Initials"
SASColumnName="Initials" ColumnType="12" SASColumnType="C" ColumnLength="3"
SASColumnLength="3" SASFormat="$Char3." SASInformat="$3."
Id="A5ROO9ZW.AS00000N"><Table><PhysicalTable ObjRef="A5ROO9ZW.AR000004"/>
</Table></Column>
<Column Name="Sex" Desc="Sex of Patient" ColumnName="Sex" SASColumnName="Sex"
ColumnType="12" SASColumnType="C" ColumnLength="1" SASColumnLength="1"
SASFormat="$Char1." SASInformat="$1." Id="A5ROO9ZW.AS00000O"><Table>
<PhysicalTable ObjRef="A5ROO9ZW.AR000004"/></Table></Column>
<Column Name="Date Of Birth" Desc="Date Of Birth" ColumnName="Date_Of_Birth"
SASColumnName="Date_Of_Birth" ColumnType="91" SASColumnType="N" ColumnLength="9"
SASColumnLength="9" SASFormat="date9." SASInformat="date9."
Id="A5ROO9ZW.AS00000P"><Table><PhysicalTable ObjRef="A5ROO9ZW.AR000004"/>
</Table></Column>
<Column Name="Sponsor Patient ID" Desc="Sponsor Patient Information"
ColumnName="Sponsor_Patient_ID" SASColumnName="Sponsor_Patient_ID" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32." Id="A5ROO9ZW.AS00000Q"><Table><PhysicalTable
ObjRef="A5ROO9ZW.AR000004"/></Table></Column>
<Column Name="Weight In Pounds" Desc="Patient Weight In Pounds"
ColumnName="Weight_In_Lb" SASColumnName="Weight_In_Lb" ColumnType="6"
SASColumnType="N" ColumnLength="6" SASColumnLength="6" SASFormat="6.2"
SASInformat="6.2" Id="A5ROO9ZW.AS00000R"><Table>
<PhysicalTable ObjRef="A5ROO9ZW.AR000004"/></Table></Column>
<Column Id="A5ROO9ZW.AS00000S" Name="Weight In Kilograms"
Desc="Patient Weight In Kilograms" ColumnName="Weight_In_Kg"
SASColumnName="Weight_In_Kg" ColumnType="6" SASColumnType="N" ColumnLength="6"
SASColumnLength="6" SASFormat="6.2" SASInformat="6.2"><Table>
<PhysicalTable ObjRef="A5ROO9ZW.AR000004"/></Table></Column>
<Extension Desc="Algorithm for column." Name="Algorithm" Value="Weight_In_Lb\2.2"
Id="A5ROO9ZW.AB0000H8"><OwningObject><Column ObjRef="A5ROO9ZW.AS00000S"/>
</OwningObject></Extension>
<PhysicalTable Desc="Information describing a patient visit."
Id="A5ROO9ZW.AR000005" MemberType="DATA" Name="Visit Information"

Adding Metadata Objects to the Repository � Creating Objects for the Study 1 Tables 57

SASTableName="Patient_Visit" TableName="Patient_Visit"><Trees><Tree
ObjRef="A5ROO9ZW.AK00000E"/></Trees></PhysicalTable>
<Column Name="Visit Name" Desc="Visit Name" ColumnName="Visit_Name"
SASColumnName="Visit_Name" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
Id="A5ROO9ZW.AS00000T"><Table><PhysicalTable ObjRef="A5ROO9ZW.AR000005"/>
</Table></Column>
<Column Name="Sponsor Patient ID" Desc="Sponsor Patient ID"
ColumnName="Sponsor_Patient_ID" SASColumnName="Sponsor_Patient_ID" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32." Id="A5ROO9ZW.AS00000U"><Table><PhysicalTable
ObjRef="A5ROO9ZW.AR000005"/></Table></Column>
<Column Name="Patient ID" Desc="Patient ID" ColumnName="Patient_ID"
SASColumnName="Patient_ID" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
Id="A5ROO9ZW.AS00000V"><Table><PhysicalTable ObjRef="A5ROO9ZW.AR000005"/>
</Table></Column>
<Column Name="Systolic Blood Pressure" Desc="Systolic Blood Pressure"
ColumnName="Systolic_Blood_Pressure" SASColumnName="Systolic_Blood_Pressure"
ColumnType="4" SASColumnType="N" ColumnLength="4" SASColumnLength="4"
SASFormat="4.0" SASInformat="4.0" Id="A5ROO9ZW.AS00000W"><Table>
<PhysicalTable ObjRef="A5ROO9ZW.AR000005"/></Table></Column>
<Column Name="Diastolic Blood Pressure" Desc="Diastolic Blood Pressure"
ColumnName="Diastolic_Blood_Pressure" SASColumnName="Diastolic_Blood_Pressure"
ColumnType="4" SASColumnType="N" ColumnLength="4" SASColumnLength="4"
SASFormat="4.0" SASInformat="4.0" Id="A5ROO9ZW.AS00000X"><Table>
<PhysicalTable ObjRef="A5ROO9ZW.AR000005"/></Table></Column>
<Column Name="Visit Number" Desc="Visit Number" ColumnName="Visit_Number"
SASColumnName="Visit_Number" ColumnType="4" SASColumnType="N" ColumnLength="4"
SASColumnLength="4" SASFormat="4.0" SASInformat="4.0" Id="A5ROO9ZW.AS00000Y">
<Table><PhysicalTable ObjRef="A5ROO9ZW.AR000005"/></Table></Column>
<Column Name="Occurrence Number" Desc="Occurrence Number"
ColumnName="Occurrence_Number" SASColumnName="Occurrence_Number" ColumnType="4"
SASColumnType="N" ColumnLength="4" SASColumnLength="4" SASFormat="4.0"
SASInformat="4.0" Id="A5ROO9ZW.AS00000Z"><Table><PhysicalTable
ObjRef="A5ROO9ZW.AR000005"/></Table></Column>
<PhysicalTable Desc="Information output from Study 1." Id="A5ROO9ZW.AR000006"
MemberType="DATA" Name="Study 1 Output" SASTableName="Study_1_Output"
TableName="Study_1_Output"><Trees>
<Tree ObjRef="A5ROO9ZW.AK00000E"/></Trees></PhysicalTable>
<Column Name="Patient ID" Desc="Patient Information" ColumnName="Patient_ID"
SASColumnName="Patient_ID" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
Id="A5ROO9ZW.AS000010"><Table><PhysicalTable ObjRef="A5ROO9ZW.AR000006"/>
</Table></Column>
<Column Name="Visit Name" Desc="Visit Name" ColumnName="Visit_Name"
SASColumnName="Visit_Name" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."
Id="A5ROO9ZW.AS000011"><Table><PhysicalTable ObjRef="A5ROO9ZW.AR000006"/>
</Table></Column>
<Column Name="Normalized SBPW Coefficient" Desc="Normalized SBPW Coefficient"
ColumnName="SBPW_Coefficient" SASColumnName="SBPW_Coefficient" ColumnType="6"
SASColumnType="N" ColumnLength="8" SASColumnLength="8" SASFormat="8.2"
SASInformat="8.2" Id="A5ROO9ZW.AS000012"><Table><PhysicalTable

58 Creating the TransformationActivity, TextStore, and ServerComponent Objects � Chapter 6

ObjRef="A5ROO9ZW.AR000006"/></Table></Column></Metadata>
<Reposid>A0000001.A5ROO9ZW</Reposid><NS>SAS</NS><!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags><Options/></AddMetadata>

The metadata identifiers assigned to the new objects are highlighted.
Now we will create the TransformationActivity, TextStore, and ServerComponent

objects.

Creating the TransformationActivity, TextStore, and ServerComponent
Objects

The following AddMetadata method call creates the TransformationActivity,
TextStore, and ServerComponent objects described in “Selecting Metadata Types for
Our Study” on page 11.

The first metadata property string in the <Metadata> element defines the
TransformationActivity object:

<AddMetadata>
<Metadata>
<TransformationActivity

Desc="Program for calculating drug efficacy."
Id="$TransformationActivity1"
Name="Program For Calculating Drug Efficacy">
<TransformationSources>

<PhysicalTable ObjRef="A5ROO9ZW.AR000004"/>
<PhysicalTable ObjRef="A5ROO9ZW.AR000005"/>

</TransformationSources>
<TransformationTargets>

<PhysicalTable ObjRef="A5ROO9ZW.AR000006"/>
</TransformationTargets>
<Trees>

<Tree ObjRef="A5ROO9ZW.AK00000E"/>
</Trees>

</TransformationActivity>

In the metadata property string:
� The symbolic name $TransformationActivity1 is assigned to enable other objects to

create an association to the TransformationActivity object.
� A TransformationSources association is defined between the

TransformationActivity object and the Patient Information and Patient Visit
objects that were defined in “Creating Objects for the Study 1 Tables” on page 49.
Real identifiers are specified in the ObjRef=attribute.

� A TransformationTargets association is defined between the
TransformationActivity object and the Study 1 Output table object that was
defined in the previous AddMetadata request.

� A Trees association is defined between the TransformationActivity object and the
Study 1 Tree object defined in the previous AddMetadata request.

The following metadata property strings define the TextStore objects that contain the
study notes and the DATA step that performs the transformation.

<TextStore
Desc="Details About The Program For Calculating Normalized SBPW Coefficient."
Name="Details About The Program For Calculating Normalized SBPW Coefficient"

Adding Metadata Objects to the Repository � Creating the TransformationActivity, TextStore, and ServerComponent Objects 59

StoredText="The Normalized SBPW Coefficient is used to look
for correlations between Systolic Blood Pressure, Weight,
and reactions described in the Visit_Name column."

TextRole="NOTE"
TextType="TEXT">
<Objects>

<TransformationActivity ObjRef="$TransformationActivity1"/>
</Objects>

</TextStore>
<TextStore
Desc="Source code for calculating Normalized SBPW Coefficient."
Name="Source code for calculating Normalized SBPW Coefficient"
StoredText=" proc sort data=Patient_Information; by Patient_ID;run;\n

proc sort data=Patient_Visit; by Patient_ID;run;\n
data Study_1_Output;\n

keep Patient_ID Visit_Name SBPW_Coefficient;\n
format SBPW_Coefficient 8.2;\n
merge Patient_Visit Patient_Information;\n
by Patient_ID;\n
SBPW_Coefficient=(Systolic_Blood_Pressure * Weight_In_Lb)/100;\n
run;"

TextRole="SOURCE"
TextType="DATASTEP">
<AssociatedTransformation>

<TransformationActivity ObjRef="$TransformationActivity1"/>
</AssociatedTransformation>

</TextStore>

In each string, the text stores are specified in a StoredText attribute. The TextRole
and TextType attributes describe the content of the text. In addition, the symbolic name
$TransformationActivity1 creates an Objects association between each TextStore object
and the TransformationActivity object.

Finally, the following metadata property string defines the ServerComponent object,
which describes the software that performs the transformation, and the elements which
complete the AddMetadata call.

<ServerComponent
Desc="SAS Software"
IsLicensed="1"
Major="9"
Minor="0"
Name="SAS Software on olive.us.xyz.com"
ProductName="The SAS System"
SoftwareVersion="9.0"
Vendor="SAS Institute">
<ComputeTasks>

<TransformationActivity ObjRef="$TransformationActivity1"/>
</ComputeTasks>

</ServerComponent>
</Metadata>
<Reposid>A0000001.A5ROO9ZW</Reposid>
<Ns>SAS</Ns>
<!-- OMI_TRUSTED_CLIENT flag -->
<Flags>268435456</Flags>
<Options/>

60 Creating the TransformationActivity, TextStore, and ServerComponent Objects � Chapter 6

</AddMetadata>

In the metadata property string:

� The ProductName, SoftwareVersion, and Vendor attributes provide the software
name, version, and vendor (SAS System, Version 9, from SAS Institute).

� the Major and Minor attributes identify the major and minor release numbers
associated with the software, and a value of 1 in the IsLicensed attribute indicates
the software is a licensed component.

� the symbolic name $TransformationActivity1 creates a ComputeTasks association
between the ServerComponent object and the TransformationActivity object that
was defined at the beginning of the AddMetadata request.

The following is the output returned by the SAS Metadata Server:

<!-- Using the DOREQUEST method. -->
<!-- Information received from server : -->
<AddMetadata>
<Metadata>
<TransformationActivity Desc="Program for calculating drug efficacy."
Id="A5ROO9ZW.AM000002" Name="Program For Calculating Drug Efficacy">
<TransformationSources><PhysicalTable ObjRef="A5ROO9ZW.AR000004"/>
<PhysicalTable ObjRef="A5ROO9ZW.AR000005"/></TransformationSources>
<TransformationTargets><PhysicalTable ObjRef="A5ROO9ZW.AR000006"/>
</TransformationTargets>
<Trees><Tree ObjRef="A5ROO9ZW.AK00000E"/></Tree></TransformationActivity>
<TextStore Desc="Details About The Program For Calculating Normalized
SBPW Coefficient." Name="Details About The Program For Calculating Normalized
SBPW Coefficient" StoredText="The Normalized SBPW Coefficient is used to
look for correlations between Systolic Blood Pressure, Weight,and reactions
described in the Visit_Name column." TextRole="NOTE" TextType="TEXT"
Id="A5ROO9ZW.AF00009D"><Objects><TransformationActivity ObjRef="A5ROO9ZW.AM000002"/>
</Objects></TextStore>
<TextStore Desc="Source code for calculating Normalized SBPW Coefficient."
Name="Source code for calculating Normalized SBPW Coefficient"
StoredText=" proc sort data=Patient_Information; by Patient_ID;run;\n
proc sort data=Patient_Visit; by Patient_ID;run;\n
data Study_1_Output;\n
keep Patient_ID Visit_Name SBPW_Coefficient;\n
format SBPW_Coefficient 8.2;\n
merge Patient_Visit Patient_Information;\n
by Patient_ID;\n
SBPW_Coefficient=(Systolic_Blood_Pressure * Weight_In_Lb)/100;\n
run;" TextRole="SOURCE" TextType="DATASTEP" Id="A5ROO9ZW.AF00009E">
<AssociatedTransformation><TransformationActivity ObjRef="A5ROO9ZW.AM000002"/>
<TransformationActivity ObjRef="A5ROO9ZW.AM000002"/></TextStore>
<ServerComponent Desc="SAS Software" IsLicensed="1" Major="9" Minor="0"
Name="SAS Software on olive.us.xyz.com" ProductName="The SAS System"
SoftwareVersion="9.1.3" Vendor="SAS Institute" Id="A5ROO9ZW.AT000001">
<ComputeTasks><TransformationActivity ObjRef="A5ROO9ZW.AM000002"/>
</ComputeTasks></ServerComponent></Metadata><Reposid>A0000001.A5ROO9ZW</Reposid>
<NS>SAS</NS><!-- OMI_TRUSTED_CLIENT flag --><Flags>268435456</Flags><Options/>
</AddMetadata>

The repository has been populated with metadata objects.
For more information about adding objects, see the AddMetadata method in

“Methods for Reading and Writing Metadata (IOMI Class)” in the SAS Open Metadata

Adding Metadata Objects to the Repository � Creating the TransformationActivity, TextStore, and ServerComponent Objects 61

Interface: Reference. Also see “Adding Metadata Objects” in the SAS Open Metadata
Interface: User’s Guide.

We are now ready to query the repository.

62

63

C H A P T E R

7
Querying the Repository

Overview of Querying the Repository 63
Listing All Objects of a Given Metadata Type 63

Requesting Properties for Specific Objects 64

Using a Search String to Filter a Metadata Request 69

Overview of Querying the Repository
Now that we have objects in our Clinical Studies repository, we can use the SAS

Open Metadata Interface to list them and to query their attributes and associations.
The SAS Open Metadata Interface provides the GetMetadata and GetMetadataObjects
methods for performing queries.

� The GetMetadataObjects method gets all metadata objects of a specified type when
passed the repository and type.

� The GetMetadata method gets a specified metadata object from a repository.

This section contains method calls that show you how to
� list objects of a given metadata type
� request properties for a specific object
� use a search string to filter an object request.

These simple calls get you started using the SAS Open Metadata Interface query
methods. For a detailed description of the methods and information about advanced
features, see the SAS Open Metadata Interface: User’s Guide.

Listing All Objects of a Given Metadata Type
You list metadata objects by using the GetMetadataObjects method. The

GetMetadataObjects method retrieves all objects of the specified metadata type and
provides options for expanding and filtering the request. The following XML input
string shows how to format a GetMetadataObjects request to return all objects that are
of metadata type Tree.

<GetMetadataObjects>
<Reposid>A0000001.A5ROO9ZW</Reposid>
<Type>Tree</Type>
<Objects/>
<NS>SAS</NS>
<Flags>0</Flags>

64 Requesting Properties for Specific Objects � Chapter 7

<Options/>
</GetMetadataObjects>

The <Reposid> element identifies the repository to query. The <Type> element
specifies the requested metadata type.

The following is the output returned by the SAS Metadata Server:

<GetMetadataObjects>
<Reposid>A0000001.A5ROO9ZW</Reposid>
<Type>Tree</Type>
<Objects>
<Tree Id="A5ROO9ZW.AK00000A" Name="Clinical Studies"/>
<Tree Id="A5ROO9ZW.AK00000B" Name="Study 2"/>
<Tree Id="A5ROO9ZW.AK00000E" Name="Study 1"/>
</Objects>
<NS>SAS</NS>
<Flags>0</Flags>
<Options/>

</GetMetadataObjects>

The metadata objects that were found are listed in the <Objects> element.
The GetMetadataObjects method returns general, identifying information about an

object (the Id= and Name= attributes) by default. You can request additional attributes
for each of the objects retrieved by GetMetadataObjects by setting the
OMI_GET_METADATA flag in the method call and one or more other GetMetadata
method flags. To request additional attributes and information for a specific object
returned by GetMetadataObjects, you must use the GetMetadata method.

For more information, see the GetMetadataObjects method in “Methods for Reading
and Writing Metadata (IOMI Class)” in the SAS Open Metadata Interface: Reference
and “Querying All Metadata of a Specified Type” in the SAS Open Metadata Interface:
User’s Guide.

Requesting Properties for Specific Objects
To retrieve properties for a specific metadata object, use the GetMetadata method.

The GetMetadata method enables you to retrieve
� specific properties for the requested object
� a particular category of properties for the requested object (all attributes, all

associations, and so forth)
� properties for associated objects
� a combination of the above.

Here are some usage suggestions:
� Identify the requested object and any specific attributes and associations that you

want to retrieve in the <Metadata> element.
� Use SAS Open Metadata Interface flags to request categories of properties or to

indicate that special processing is needed. For information about available flags,
see the documentation for the GetMetadata method in “Methods for Reading and
Writing Metadata (IOMI Class)” in the SAS Open Metadata Interface: Reference.

� To request information about associated objects, use flags or templates. A template
is an additional metadata property string that is passed to the metadata server in
a <Templates> XML element in the <Options> element of a GetMetadata method
call. The OMI_TEMPLATE (4) flag must also be set so that the server knows to

Querying the Repository � Requesting Properties for Specific Objects 65

look for this element. The properties specified in a template augment the
properties requested by other GetMetadata parameters. For detailed information
about the use of templates, see first “Querying Specific Metadata Objects” and
then “Using Templates” in the SAS Open Metadata Interface: User’s Guide.

The following is an example of a GetMetadata method call that uses a template to
request specific attributes of the objects that are associated with the Study 1 Tree. To
assist you in following the example, template components are bolded.

<GetMetadata>
<Metadata>

<Tree Id="A5ROO9ZW.AK00000E">
<Members/>
<ResponsibleParties/>

</Tree>
</Metadata>
<NS>SAS</NS>
<!-- OMI_TEMPLATES flag-->
<Flags>4</Flags>
<Options>

<Templates>
<Tree

Desc=""
Id=""
Name=""
TreeType=""/>

<Document
Desc=""
Id=""
Name=""
URI=""
URIType=""/>

<PhysicalTable
Desc=""
Id=""
MemberType=""
Name=""
SASTableName=""
TableName="">
<Columns/>

</PhysicalTable>
<Column

Name=""
Id=""
Desc=""
ColumnName=""
SASColumnName=""
ColumnType=""
SASColumnType=""
ColumnLength=""
SASColumnLength=""
SASFormat=""
SASInformat="">
<Extensions/>

</Column>
<Extension

66 Requesting Properties for Specific Objects � Chapter 7

Desc=""
Name=""
Value=""/>

<TransformationActivity
Desc=""
Id=""
Name="">
<ComputeLocations/>
<Notes/>
<SourceCode/>
<TranformationSources/>
<TransformationTargets/>

</TransformationActivity>
<ServerComponent

Desc=""
Id=""
IsLicensed=""
Major=""
Minor=""
Name=""
ProductName=""
SoftwareVersion=""
Vendor=""/>

<TextStore
Desc=""
Name=""
StoredText=""
TextRole=""
TextType=""/>

<ResponsibleParty
Desc=""
Id=""
Name=""
Role="">
<Persons/>

</ResponsibleParty>
<Person

Desc=""
Id=""
Name=""
Title="">
<EmailAddresses/>

</Person>
<Email

Address=""
Desc=""
Id=""
Name=""/>

</Templates>
</Options>

</GetMetadata>

In the request, note the following:

� The <Metadata> element identifies the top-level node in the object hierarchy and
the associations that are queried.

Querying the Repository � Requesting Properties for Specific Objects 67

� The <Flags> element contains the OMI_TEMPLATE (4) flag.

� The <Templates> element contains 11 templates, which request specific attributes
of associated objects of type Tree, Document, PhysicalTable, Column, Extension,
TransformationActivity, ServerComponent, TextStore, ResponsibleParty, Person,
and Email.

The following is the output returned by the SAS Metadata Server:

<!-- Using the DOREQUEST method. -->
<!-- Information received from server : -->
<GetMetadata><Metadata><Tree Id="A5ROO9ZW.AK00000E" Desc="All information
dealing with Study 1." Name="Study 1" TreeType="Clinical Study"><Members>
<Document Id="A5ROO9ZW.AN000003" Desc="Documentation for clinical study."
Name="Specification For Clinical Study 1"
URI="http://webserver.xyz.com/doc/Study.html" URIType="URL"/>
<PhysicalTable Id="A5ROO9ZW.AR000004" Desc="Information describing
an individual patient." MemberType="DATA" Name="Patient Information"
SASTableName="Patient_Information" TableName="Patient_Information"><Columns>
<Column Id="A5ROO9ZW.AS00000M" Name="Patient ID" Desc="Patient Information"
ColumnName="Patient_ID" SASColumnName="Patient_ID" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000N" Name="Initials" Desc="Patient Initials"
ColumnName="Initials" SASColumnName="Initials" ColumnType="12"
SASColumnType="C" ColumnLength="3" SASColumnLength="3" SASFormat="$Char3."
SASInformat="$3."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000O" Name="Sex" Desc="Sex of Patient" ColumnName="Sex"
SASColumnName="Sex" ColumnType="12" SASColumnType="C" ColumnLength="1"
SASColumnLength="1" SASFormat="$Char1." SASInformat="$1."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000P" Name="Date Of Birth" Desc="Date Of Birth"
ColumnName="Date_Of_Birth" SASColumnName="Date_Of_Birth" ColumnType="91"
SASColumnType="N" ColumnLength="9" SASColumnLength="9" SASFormat="date9."
SASInformat="date9."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000Q" Name="Sponsor Patient ID" Desc="Sponsor Patient
Information" ColumnName="Sponsor_Patient_ID" SASColumnName="Sponsor_Patient_ID"
ColumnType="12" SASColumnType="C" ColumnLength="32" SASColumnLength="32"
SASFormat="$Char32." SASInformat="$32."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000R" Name="Weight In Pounds" Desc="Patient Weight
In Pounds" ColumnName="Weight_In_Lb" SASColumnName="Weight_In_Lb"
ColumnType="6" SASColumnType="N" ColumnLength="6" SASColumnLength="6"
SASFormat="6.2" SASInformat="6.2"><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000S" Name="Weight In Kilograms" Desc="Patient Weight
In Kilograms" ColumnName="Weight_In_Kg" SASColumnName="Weight_In_Kg"
ColumnType="6" SASColumnType="N" ColumnLength="6" SASColumnLength="6"
SASFormat="6.2" SASInformat="6.2"><Extensions/><Extension Id="A5ROO9ZW.AB0000H8"
Desc="Algorithm for column." Name="Algorithm" Value="Weight_In_Lb\2.2"/>
</Extensions></Column></Columns></PhysicalTable>
<PhysicalTable Id="A5ROO9ZW.AR000005" Desc="Information describing a patient
visit." MemberType="DATA" Name="Visit Information" SASTableName="Patient_Visit"
TableName="Patient_Visit"><Columns><Column Id="A5ROO9ZW.AS00000T"
Name="Visit Name" Desc="Visit Name" ColumnName="Visit_Name"
SASColumnName="Visit_Name" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."><Extensions/>
</Column><Column Id="A5ROO9ZW.AS00000U" Name="Sponsor Patient ID"
Desc="Sponsor Patient ID" ColumnName="Sponsor_Patient_ID" SASColumnName=

68 Requesting Properties for Specific Objects � Chapter 7

"Sponsor_Patient_ID" ColumnType="12" SASColumnType="C" ColumnLength="32"
SASColumnLength="32" SASFormat="$Char32." SASInformat="$32."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000V" Name="Patient ID" Desc="Patient ID"
ColumnName="Patient_ID" SASColumnName="Patient_ID" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000W" Name="Systolic Blood Pressure" Desc="Systolic
Blood Pressure" ColumnName="Systolic_Blood_Pressure" SASColumnName=
"Systolic_Blood_Pressure" ColumnType="4" SASColumnType="N" ColumnLength="4"
SASColumnLength="4" SASFormat="4.0" SASInformat="4.0"><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000X" Name="Diastolic Blood Pressure" Desc="Diastolic
Blood Pressure" ColumnName="Diastolic_Blood_Pressure"
SASColumnName="Diastolic_Blood_Pressure" ColumnType="4" SASColumnType="N"
ColumnLength="4" SASColumnLength="4" SASFormat="4.0"
SASInformat="4.0"><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000Y" Name="Visit Number" Desc="Visit Number"
ColumnName="Visit_Number" SASColumnName="Visit_Number" ColumnType="4"
SASColumnType="N" ColumnLength="4" SASColumnLength="4" SASFormat="4.0"
SASInformat="4.0"><Extensions/></Column>
<Column Id="A5ROO9ZW.AS00000Z" Name="Occurrence Number" Desc="Occurrence Number"
ColumnName="Occurrence_Number" SASColumnName="Occurrence_Number" ColumnType="4"
SASColumnType="N" ColumnLength="4" SASColumnLength="4" SASFormat="4.0"
SASInformat="4.0"><Extensions/></Column></Columns></PhysicalTable>
<PhysicalTable Id="A5ROO9ZW.AR000006" Desc="Information output from Study 1."
MemberType="DATA" Name="Study 1 Output" SASTableName="Study_1_Output"
TableName="Study_1_Output"><Columns>
<Column Id="A5ROO9ZW.AS000010" Name="Patient ID" Desc="Patient Information"
ColumnName="Patient_ID" SASColumnName="Patient_ID" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS000011" Name="Visit Name" Desc="Visit Name"
ColumnName="Visit_Name" SASColumnName="Visit_Name" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS000012" Name="Normalized SBPW Coefficient"
Desc="Normalized SBPW Coefficient" ColumnName="SBPW_Coefficient"
SASColumnName="SBPW_Coefficient" ColumnType="6" SASColumnType="N"
ColumnLength="8" SASColumnLength="8" SASFormat="8.2" SASInformat="8.2">
<Extensions/></Column></Columns></PhysicalTable>
<TransformationActivity Id="A5ROO9ZW.AM000002" Desc="Program for calculating
drug efficacy." Name="Program For Calculating Drug Efficacy"><ComputeLocations>
<ServerComponent Id="A5ROO9ZW.AT000001" Desc="SAS Software" IsLicensed="1"
Major="9" Minor="0" Name="SAS Software on olive.us.xyz.com" ProductName="The SAS
System" SoftwareVersion="9.1.3" Vendor="SAS Institute"/></ComputeLocations>
<Notes><TextStore Id="A5ROO9ZW.AF00009D" Desc="Details About The Program For
Calculating Normalized SBPW Coefficient." Name="Details About The Program For
Calculating Normalized SBPW Co" StoredText="The Normalized SBPW Coefficient is
used to look for correlations between Systolic Blood Pressure, Weight,and
reactions described in the Visit_Name column." TextRole="NOTE" TextType="TEXT"/>
</Notes><SourceCode>
<TextStore Id="A5ROO9ZW.AF00009E" Desc="Source code for calculating Normalized
SBPW Coefficient." Name="Source code for calculating Normalized SBPW Coefficient"
StoredText=" proc sort data=Patient_Information; by Patient_ID;run;\n procsort
data=Patient_Visit; by Patient_ID;run;\n data Study_1_Output;\n keep Patient_ID

Querying the Repository � Using a Search String to Filter a Metadata Request 69

Visit_Name SBPW_Coefficient;\n format SBPW_Coefficient 8.2;\n merge Patient_Visit
Patient_Information;\n by Patient_ID;\n SBPW_Coefficient=(Systolic_Blood_Pressure
* Weight_In_Lb)/100;\n run;" TextRole="SOURCE" TextType="DATASTEP"/></SourceCode>
<TransformationTargets><PhysicalTable Id="A5ROO9ZW.AR000006" Desc="Information
output from Study 1." MemberType="DATA" Name="Study 1 Output"
SASTableName="Study_1_Output" TableName="Study_1_Output"><Columns>
<Column Id="A5ROO9ZW.AS000010" Name="Patient ID" Desc="Patient Information"
ColumnName="Patient_ID" SASColumnName="Patient_ID" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS000011" Name="Visit Name" Desc="Visit Name"
ColumnName="Visit_Name" SASColumnName="Visit_Name" ColumnType="12"
SASColumnType="C" ColumnLength="32" SASColumnLength="32" SASFormat="$Char32."
SASInformat="$32."><Extensions/></Column>
<Column Id="A5ROO9ZW.AS000012" Name="Normalized SBPW Coefficient"
Desc="Normalized SBPW Coefficient" ColumnName="SBPW_Coefficient"
SASColumnName="SBPW_Coefficient" ColumnType="6" SASColumnType="N" ColumnLength="8"
SASColumnLength="8" SASFormat="8.2" SASInformat="8.2"><Extensions/></Column>
</Columns></PhysicalTable></TransformationTargets></TransformationActivity>
</Members><ResponsibleParties><ResponsibleParty Id="A5ROO9ZW.AO000003"
Desc="Owner of clinical studies." Name="Owner of Study 1" Role="OWNER">
<Persons><Person Id="A5ROO9ZW.AP000003" Desc="Manager of clinical studies."
Name="Joe E. Doe" Title="Manager of Clinical Studies"><EmailAddresses>
<Email Id="A5ROO9ZW.AQ000003" Address="J.E.Doe@xyz.com" Desc="Primary e-mail
address." Name="e-mail address for Joe E. Doe"/></EmailAddresses></Person>
</Persons></ResponsibleParty></ResponsibleParties></Tree>
</Metadata><NS>SAS</NS><Flags>4</Flags><Options><Templates>
<Tree Desc="" Id="" Name="" TreeType=""/><Document Desc="" Id="" Name=""
URI="" URIType=""/><PhysicalTable Desc="" Id="" MemberType="" Name=""
SASTableName="" TableName=""><Columns/></PhysicalTable>
<Column Name="" Id="" Desc="" ColumnName="" SASColumnName="" ColumnType=""
SASColumnType="" ColumnLength="" SASColumnLength="" SASFormat=""
SASInformat=""><Extensions/></Column><Extension Desc="" Name="" Value=""/>
<TransformationActivity Desc="" Id="" Name=""><ComputeLocations/><Notes/>
<SourceCode/><TransformationSources/><TransformationTargets/>
</TransformationActivity><ServerComponent Desc="" Id="" IsLicensed="" Major=""
Minor="" Name="" ProductName="" SoftwareVersion="" Vendor=""/><TextStore Desc=""
Name="" StoredText="" TextRole="" TextType=""/>
<ResponsibleParty Desc="" Id="" Name="" Role=""><Persons/></ResponsibleParty>
<Person Desc="" Id="" Name="" Title=""><EmailAddresses/></Person>
<Email Address="" Desc="" Id="" Name=""/></Templates><Options/></GetMetadata>

Using a Search String to Filter a Metadata Request
You can filter the metadata objects returned by the SAS Metadata Server by including

an <XMLSelect> element in the <Options> element of the GetMetadataObjects call.
The <XMLSelect> element enables you to pass a search string to the server. When you
specify the <XMLSelect> element, you must also set the OMI_XMLSELECT (128) flag
so that the server knows to look for the element in the <Options> element.

The <XMLSelect> search syntax is described in “Filtering a GetMetadataObjects
Request” in “ Querying All Metadata of a Specified Type” in the SAS Open Metadata
Interface: User’s Guide. In the following example, we will use a subset of that
functionality to perform a simple attribute=value search. The following

70 Using a Search String to Filter a Metadata Request � Chapter 7

GetMetadataObjects method call uses the <XMLSelect> element to return TextStore
objects that have the value "SOURCE" in the TextRole= attribute. All other objects are
filtered from the object request.

<GetMetadataObjects>
<Reposid>A0000001.A5ROO9ZW</Reposid>
<Type>TextStore</Type>
<Objects/>
<NS>SAS</NS>
<!--OMI_XMLSelect flag-->
<Flags>128</Flags>
<Options>
<XMLSelect search="@TextRole = ’SOURCE’"/>

</Options>
</GetMetadataObjects>

In the search string, note the following:

� The "at" symbol (@) denotes that the attached string is an attribute name. We are
searching for the TextRole attribute.

� The equal sign (=) invokes a matching operation.

� SOURCE is the value to match, specified within single quotation marks. Matches
are case-insensitive unless the OMI_MATCH_CASE (512) flag is also set.

The following is an example of the output returned by the SAS Metadata Server:

<!-- Using the DOREQUEST method. -->
<!-- Information received from server : -->
<GetMetadataObjects><Reposid>A0000001.A5ROO9ZW</Reposid><Type>TextStore</Type>
<Objects><TextStore Id="A5ROO9ZW.AF00009E" Name="Source code for calculating
Normalized SBPW Coefficient"/></Objects><NS>SAS</NS><Flags>128</Flags>
<Options><XMLSelect search="@TextRole = ’SOURCE’"/></Options>
</GetMetadataObjects>

71

C H A P T E R

8
Updating Metadata Objects in
the Repository

Updating Metadata Objects in the Repository 71

Updating Metadata Objects in the Repository

Suppose we encounter an error in the DATA step code that we stored in one of the
TextStore objects and need to replace it with a corrected version. The SAS Open
Metadata Interface provides the UpdateMetadata method for updating existing objects.
The following XML input string contains a sample UpdateMetadata call. The call
specifies to replace the text in the StoredText attribute of TextStore
A5ROO9ZW.AF00009E with the text supplied in the method call.

<UpdateMetadata>
<Metadata>
<TextStore

Id="A5ROO9ZW.AF00009E"
StoredText=
"proc sort data=Patient_Information; by Patient_ID;run;\n
proc sort data=Patient_Visit; by Patient_ID;run;\n
data Study_1_Output;\n
keep Patient_ID Visit_Name SBPW_Coefficient;\n
format SBPW_Coefficient 8.2;\n
merge Patient_Visit Patient_Information;\n
by Patient_ID;\n
SBPW_Coefficient = (Systolic_Blood_Pressure * Weight_In_Lb)/100;\n
run;">

</TextStore>
</Metadata>
<NS>SAS</NS>
<!--OMI_TRUSTED_CLIENT flag-->
<Flags>268435456</Flags>
<Options/>

</UpdateMetadata>

The method output exactly mirrors the method input, so it is not provided here.
The UpdateMetadata method can also be used to add or modify associations between

objects. For more information, see UpdateMetadata in “Methods for Reading and
Writing Metadata (IOMI Class)” in the SAS Open Metadata Interface: Reference. Also
see “Updating Metadata Objects” in the SAS Open Metadata Interface: User’s Guide.

72

73

C H A P T E R

9
Deleting Metadata Objects in
the Repository

Deleting Metadata Objects in the Repository 73

Deleting Metadata Objects in the Repository

You delete metadata objects from a repository by using the DeleteMetadata method.
The following XML input string contains a sample DeleteMetadata call. The call deletes
the TextStore object that contains the text describing the Study 1 transformation.

<DeleteMetadata>
<Metadata>
<TextStore Id="A5ROO9ZW.AF00009D"/>

</Metadata>
<NS>SAS</NS>
<!--OMI_TRUSTED_CLIENT + OMI_RETURN_LIST flags-->
<Flags>268436480</Flags>
<Options/>

</DeleteMetadata>

Here is the output returned by the SAS Metadata Server:

<!-- Using the DOREQUEST method. -->
<!-- Information received from server : --><DeleteMetadata>
<Metadata><TextStore Id="A5ROO9ZW.AF00009D"/></Metadata></Metadata>
<NS>SAS</NS><!--OMI_TRUSTED_CLIENT + OMI_RETURN_LIST flags-->
<Flags>268436480</Flags><Options/></DeleteMetadata>

The <Metadata> element identifies the metadata object to be deleted. In the <Flags>
element, we have set two flags. The OMI_TRUSTED_CLIENT (268435456) flag is
required when you update, add, or delete metadata in a repository. We have opted to
include the OMI_RETURN_LIST (1024) flag in order to verify the operation as well.
The OMI_RETURN_LIST flag returns a list of deleted object IDs as well as the IDs of
any dependent objects that might have been deleted. A dependent object is an object
that has a 1:1 cardinality to the deleted object, and therefore cannot exist without the
deleted object, so the server will delete it as well. TextStore object
A5ROO9ZW.AF00009D has no dependent objects; therefore, the method output mirrors
the method input. For more information, see DeleteMetadata in “Methods for Reading
and Writing Metadata (IOMI Class)” in the SAS Open Metadata Interface: Reference.
Also see “Deleting Metadata Objects” in the SAS Open Metadata Interface: User’s Guide.

74

75

C H A P T E R

10
Stopping the SAS Metadata
Server

Overview of Stopping the SAS Metadata Server 75
Stopping the Server Using SAS Management Console 75

Stopping the Server Using PROC METAOPERATE 76

Overview of Stopping the SAS Metadata Server

Note: You must be an administrative user of a SAS Metadata Server in order to
stop the metadata server. You are an administrative user if you connect to the
metadata server using the same user ID that was used to start the metadata server, or
if your user ID is listed in an adminUsers.txt file in the directory defined for the
metadata server. For more information about the adminUsers.txt file, see the SAS
Intelligence Platform: System Administration Guide. �

The steps outlined in this section are intended to be used to stop a personal SAS
Metadata Server. Do not use them to stop an enterprise SAS Metadata Server. An
enterprise SAS Metadata Server is configured to run as a service and is depended upon
by other servers. Stopping an enterprise SAS Metadata Server using one of the
methods described here could adversely affect these other servers.

A personal SAS Metadata Server can be stopped by using SAS Management Console
or by using PROC METAOPERATE.

Stopping the Server Using SAS Management Console
1 From the SAS Management Console main window, expand the Metadata Manager

node. The software will expand the tree view to display an icon representing the
Active Server and folders for other metadata server definitions, resource
templates, and job definitions.

2 With your mouse, right-click the Active Server, and select Stop from the File
pop-up menu.

76 Stopping the Server Using PROC METAOPERATE � Chapter 10

3 The software will open a dialog box asking you to confirm the operation. Click OK .

Stopping the Server Using PROC METAOPERATE

The following is an example of the statements required to stop a SAS Metadata
Server using PROC METAOPERATE:

PROC METAOPERATE
SERVER="host_name_of_computer_running_the_server"
PORT=port_number
USERID="userid"
PASSWORD="password"
PROTOCOL=BRIDGE

ACTION=STOP;
RUN;

The first five statements are server connection parameters. The sixth statement
specifies the STOP action.

77

P A R T4

Appendix

Appendix 1.Recommended Reading 79

78

79

A P P E N D I X

1
Recommended Reading

Recommended Reading 79

Recommended Reading

Here is the recommended reading list for this title:
� SAS Open Metadata Interface: Reference

� SAS Open Metadata Interface: User’s Guide

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

80

Your Turn

If you have comments or suggestions about Getting Started with SAS® 9.1.3 Open
Metadata Interface, Second Edition, please send them to us on a photocopy of this page,
or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	Contents

	Concepts
	Using This Guide
	Purpose
	Before You Begin
	Software Requirements
	Additional Reading

	Example Scenario
	Tasks Overview

	Introduction to Metadata Concepts
	What Is Metadata?
	What Is Metadata Management?
	What Is the SAS Open Metadata Architecture?
	Benefits of the SAS Open Metadata Architecture

	Planning a Repository
	Deciding What Information Should Be Stored
	Introduction to the SAS Metadata Model
	Selecting Metadata Types for Our Study
	Choosing a Metadata Type to Represent Data Tables
	Choosing a Metadata Type to Represent a Program
	Choosing a Metadata Type to Represent Software
	Choosing Metadata Types to Represent Documentation and People
	Choosing a Metadata Type to Represent a Group

	Using the SAS Open Metadata Interface
	Overview of Using the SAS Open Metadata Interface
	Connecting to the SAS Metadata Server
	Issuing a Method Call
	Using PROC METADATA to Issue a Method Call

	Preparation
	Setting Up a SAS Metadata Server
	Overview of Setting up a SAS Metadata Server
	Creating Directories for the SAS Metadata Server, Repository Manager, and a Repository
	Setting Directory and File Access Permissions
	Setting System Access Permissions
	Starting the SAS Metadata Server
	Registering a SAS Metadata Repository

	Working with Metadata
	Adding Metadata Objects to the Repository
	Overview of Adding Metadata Objects
	Concepts
	Tasks

	Determining the Repository ID
	Writing a Metadata Property String
	Creating the Clinical Studies Tree
	Creating the Study 2 Tree
	Creating Objects for the Study 1 Tables
	Creating the TransformationActivity, TextStore, and ServerComponent Objects

	Querying the Repository
	Overview of Querying the Repository
	Listing All Objects of a Given Metadata Type
	Requesting Properties for Specific Objects
	Using a Search String to Filter a Metadata Request

	Updating Metadata Objects in the Repository
	Updating Metadata Objects in the Repository

	Deleting Metadata Objects in the Repository
	Deleting Metadata Objects in the Repository

	Stopping the SAS Metadata Server
	Overview of Stopping the SAS Metadata Server
	Stopping the Server Using SAS Management Console
	Stopping the Server Using PROC METAOPERATE

	Appendix
	Recommended Reading
	Recommended Reading

