
SAS® 9.1.3 OLAP Server
User’s Guide
Second Edition

SAS® Publishing

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006.
SAS ® 9.1.3 OLAP Server: User’s Guide, Second Edition. Cary, NC: SAS Institute Inc.

SAS® 9.1.3 OLAP Server: User’s Guide, Second Edition
Copyright © 2006, SAS Institute Inc., Cary, NC, USA
ISBN 13: 978-1-59047-821-9
ISBN 10: 1-59047-821-5
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, March 2006
2nd printing, October 2006
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

Documentation Enhancements v

New Tools for Data Loading and Cube Building vi

New Options Added to the PROC OLAP Statement vi

New Functions vii

New Tuning Capabilities for the Query Thread Pool vii

New Tuning Options Window vii

Improved Performance vii

Improved Querying Capability viii

Improved Aggregation Tuning viii

Additional Enhancements viii

Chapter 1 � OLAP Introduction and Overview 1
What Is OLAP? 1

What Is a Cube? 3

Understanding the Cube Structure 4

SAS Servers 4

Why You Should Use Cubes 6

Analyzing Your Data 7

Chapter 2 � Building Cubes 11
Background 11

Defining Member Properties 13

Defining Distinct Count Measures 14

Defining a Default Hierarchy 15

Defining Multiple Hierarchies for a Dimension 15

Defining Ragged and Unbalanced Hierarchies for a Dimension 16

Cube Design-Aggregations 19

SAS OLAP Cube Size Specifications 21

Chapter 3 � Cube Building Examples 23
Building a Cube from a Detail Table 23

Building a Cube from a Summary Table 32

Building a Cube from a Star Schema 38

Chapter 4 � Modifying and Updating Cubes 47
Updating a Cube 48

Refreshing Cube Metadata 48

Tuning Cube Aggregations 49

Specifying Tuning and Performance Options in Cube Aggregations 52

Multiple Language Support and Dimension Table Translations 54

iv

Adding SAS System Options to a Cube 55

Synchronizing a Cube 56

Exporting and Importing Cubes 56

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP 62

Specifying GIS Map Information for a Dimension 65

Specifying Calculated Members 65

Chapter 5 � Using SAS OLAP Cubes 69
Using a Cube with ADO MD 69

Using a Cube with OLE DB for OLAP 69

Using a Cube with Additional SAS Products 70

Using a Cube with Third-Party Clients 73

Appendix 1 � The OLAP Procedure 77
The OLAP Procedure 78

Syntax: OLAP Procedure 78

PROC OLAP Statement 79

METASVR Statement 85

DIMENSION Statement 86

LEVEL Statement 89

PROPERTY Statement 91

HIERARCHY Statement 93

MEASURE Statement 95

AGGREGATION Statement 99

DROP_AGGREGATION Statement 101

DEFINE Statement 102

UNDEFINE Statement 104

USER_DEFINED_TRANSLATIONS Statement 105

Tables Used to Define Cubes 107

Naming Guidelines for SAS OLAP Server 108

Loading Cubes 109

Maintaining Cubes 113

Specialized Options for PROC OLAP 115

Appendix 2 � SAS OLAP Cube Studio Messages 117
Cube Designer Error Messages 117

Dimension Designer Error Messages 124

Specify Map Error Messages 127

Miscellaneous Error Messages 127

Appendix 3 � SAS OLAP Cube Studio Accessibility Features 129
SAS OLAP Cube Studio Accessibility Features 129

Appendix 4 � Recommended Reading 131
Recommended Reading 131

Glossary 133

Index 141

v

What’s New

Overview
The SAS OLAP Server enables users to develop and deploy scalable Online

Analytical Processing (OLAP) applications. In addition, automated data loading and
cube building are available through the use of a new administration interface called
SAS OLAP Cube Studio, which was developed using Java technology.

OLAP queries are performed using the Multidimensional Expressions (MDX) query
language in client applications that are connected to the SAS OLAP Server by using the
following:

� the SQL Pass-Through Facility for OLAP, which is designed to process MDX
queries within the PROC SQL environment

� open access technologies such as OLE DB for OLAP, ADO MD, and Java

New and enhanced features in SAS OLAP Server include the following:
� new tools for data loading and cube building
� new options added to the PROC OLAP statement
� new functions
� new tuning capabilities for the query thread pool
� new tuning options window
� improved performance
� improved querying capability
� improved aggregation tuning
� additional enhancements

Note: This section describes the features of the SAS OLAP Server that are new or
enhanced since SAS 8.2. �

Documentation Enhancements
The SAS OLAP Server: Administrator’s Guide is no longer available under that title.

The content of that document has been merged into the new administrative document

vi What’s New

set for SAS Intelligence Platform. The other SAS OLAP Server documents, the SAS
OLAP Server: User’s Guide and the SAS OLAP Server: MDX Guide remain available
under their existing titles.

The content of the SAS OLAP Server: Administrator’s Guide is now available in the
following documents:

SAS Intelligence Platform: Application Server Administration Guide
describes the configuration, tuning, and management of SAS OLAP Servers, along
with the other servers that are defined as part of the logical SAS Application
Server.

SAS Intelligence Platform: Desktop Application Administration Guide
describes the administration of SAS OLAP Cube Studio.

SAS Intelligence Platform: System Administration Guide
describes SAS OLAP Server monitoring, start/stop/restart, cube data import/export.

SAS Intelligence Platform: Security Administration Guide
describes security issues for SAS OLAP cubes, including a newly updated section
about member-level security.

SAS Intelligence Platform: Data Administration Guide
describes how to define libraries and schemas for SAS OLAP cubes.

The administrative document set for the SAS Intelligence Platform is available in the
SAS Online Documentation at http://support.sas.com/onlinedoc/913/docMainpage.jsp.
The home page for the administrative document set is available at http://
support.sas.com/documentation/configuration/913admin.html.

New Tools for Data Loading and Cube Building

The OLAP procedure, in addition to cube building, includes options for handling
ragged hierarchies, defining global calculated members and named sets, assigning
properties to levels, and optimizing cube creation and query performance. It also
supports multiple hierarchies and drill-through tables.

SAS OLAP Cube Studio is an alternative Java interface to the OLAP procedure. This
interface is also integrated with SAS Data Integration Studio.

New Options Added to the PROC OLAP Statement

The following options have been added to the PROC OLAP statement:

COMPACT_NWAY
when building a cube from a star schema, this option enables additional
summarizations during the cube build that can decrease the size of the NWAY
aggregation.

IGNORE_MISSING_DIMKEYS=TERSE | VERBOSE
when building a cube from a star schema, this option enables the continuation of
the build when the fact table is found to contain keys that are not present in any
of the dimension tables. The log receives information about the number and
location of the missing keys.

For more information about these new options, see the SAS OLAP Server: User’s Guide.

What’s New vii

New Functions
The following functions are new:
� A Specify Map function has been added to SAS OLAP Cube Studio. The Specify

Map function enables you to store ESRI Geographic Information System (GIS)
spatial map information in the SAS Metadata Repository. This GIS information
can then be read by the SAS OLAP Server and returned during a cube query.

� The Export Cube and Import Cube functions enable you to copy cube metadata
from a source repository to a target repository, and if needed, to another server.
The Export Cube function enables you to extract a cube’s metadata from the
source repository and save it in a file that you specify. All information about a
cube, including its dimensions, hierarchies, levels, measures, notes, properties,
calculated measures, aggregations, and security settings, will be extracted. The
Import Cube function then enables you to save the cube metadata to another
metadata repository on another metadata server.

� The Define Distinct Count function enables you to store NUNIQUE (Distinct
Count) statistics as measures with a SAS OLAP cube. You can add or delete a
distinct count measure either with PROC OLAP or in the Cube Designer wizard,
within SAS OLAP Cube Studio. You can add or delete a Distinct Count measure.
You can also modify the name, caption, format, units, and description of the
measure.

� The Synchronize Levels function enables you to synchronize a cube when the input
table for an existing cube has encountered a column name change. This function
finds the name differences between the cube and its input table and changes the
hierarchy level names to match the input table column names.

New Tuning Capabilities for the Query Thread Pool
New tuning capabilities for the query thread pool are now available for each of your

SAS OLAP Servers. Tuning the query thread pool enables you to optimize performance
based on the number and frequency of query requests that are received by a SAS OLAP
Server.

New Tuning Options Window
A tuning Options window has been added to the Manual Tuning function and the

Advanced Aggregation Tuning plug-in. The Options window enables you to specify
certain performance options on the PROC OLAP statement when adding or modifying
aggregations for a cube. In this window you can view the current values and change the
values when needed.

Improved Performance
Server performance is recorded and analyzed by using the Application Response

Measurement (ARM) system.
The new multi-threaded data storage and server functionality provide faster cube

performance. The data can be stored in a multidimensional form (MOLAP) or in a form
that includes existing aggregations from presummarized data sources.

viii What’s New

Improved Querying Capability
An SQL Pass-Through Facility for OLAP is available in SAS for use in querying

cubes.
A subquery cache can now be enabled, disabled, and sized for each of your SAS

OLAP Servers. The new cache stores subqueries that generate empty result sets.

Improved Aggregation Tuning
Aggregations can be added to or deleted from existing cubes. In addition, further

enhancements for aggregation tuning have been made:
� The AGGREGATION statement and SAS OLAP Cube Studio’s Manual Tuning

function have been enhanced for use with cubes that employ aggregated data from
other tables or for use with cubes that have no NWAY aggregation.

� The Advanced Aggregation Tuning plug-in provides a point-and-click interface that
enables you to create and add aggregations to the list of existing aggregations that
might already be defined for the cube.

Additional Enhancements

� The metadata structure is improved, and metadata is stored with the cube.
� Caching and logging can be enabled or disabled.
� Support for ad hoc calculations and time dimensions is improved.
� The start-up file generator has been removed from the SAS OLAP Server Monitor

plug-in for SAS Management Console. SAS OLAP Servers are now automatically
installed as Windows services; server start-up options are set by an INI file that is
installed by the SAS Deployment wizard.

� When creating a cube dimension in SAS OLAP Cube Studio’s Cube Designer
wizard, a hierarchy for a dimension will automatically be created when no
hierarchy has been explicitly defined and you click the Finish button in this
window. This default hierarchy includes all levels that were specified for the
current dimension and the order they were listed in for the dimension.

� The Calculated Members plug-in provides a point-and-click interface that enables
you to add new measures or modify existing measures for the selected cube.

1

C H A P T E R

1
OLAP Introduction and Overview

What Is OLAP? 1
Data Storage and Access 2

Benefits of OLAP 2

OLAP Variations 3

MOLAP — Multidimensional OLAP 3

ROLAP — Relational OLAP 3
HOLAP — Hybrid OLAP 3

What Is a Cube? 3

Understanding the Cube Structure 4

SAS Servers 4

SAS Servers and SAS OLAP 4

SAS Metadata Server 5
SAS Workspace Server 5

SAS OLAP Server 5

SAS Stored Process Server 6

Why You Should Use Cubes 6

Cube Usage and Storage Space Reduction 6
Multi-Threading Capabilities 7

Easy Setup and Maintenance 7

Data Management: Choosing Your Own Tool 7

Analyzing Your Data 7

Data Preparation and Dimension Design 7
Data Tables Used to Define SAS OLAP Cubes 8

Detail Tables 8

Fact Tables and Dimension Tables 8

Aggregation Tables 8

Drill-Through Tables 9

Aggregation Design 9

What Is OLAP?
Online Analytical Processing (OLAP) is a technology that is used to create decision

support software. OLAP enables application users to quickly analyze information that
has been summarized into multidimensional views and hierarchies. By summarizing
predicted queries into multidimensional views prior to run time, OLAP tools provide the
benefit of increased performance over traditional database access tools. Most of the
resource-intensive calculation that is required to summarize the data is done before a
query is submitted.

2 Data Storage and Access � Chapter 1

Data Storage and Access
Decision makers are asked to make timely and accurate decisions that are based on

the past performance and behavior of an organization as well as on future trends and
directives. To make effective business decisions, business analysts must have access to
the data that their company generates and responds to. This access must include
timely queries, summaries, and reviews of numerous levels and combinations of large,
recurrent amounts of data. The information that business analysts review determines
the quality of their decisions.

Organizations usually have databases and data stores that maintain repeated and
frequent business transaction data. This provides simple yet detailed storage and
retrieval of specific data events. However, these data storage systems are not well
suited for analytical summaries and queries that are typically generated by decision
makers. For decision makers to reveal hidden trends, inconsistencies, and risks in a
business, they must be able to maintain a certain degree of momentum when querying
the data. An answer to one question usually leads to additional questions and review of
the data. Simple data stores do not successfully support this type of querying.

A second type of storage, the data warehouse, is better suited for this. Data is
maintained and organized so that complicated queries and summaries can be run.
OLAP further organizes and summarizes specific categories and subsets of data from
the data warehouse. This results in a robust and detailed level of data storage with
efficient and fast query returns. SAS OLAP cubes can be built from either partially or
completely denormalized data warehouse tables. Stored, precalculated summarizations
called aggregations, can be added to the cube to improve cube access performance.
Aggregations can either be pre-built relational tables, or you can let the cube create its
own optimized aggregates.

Benefits of OLAP
The ability to have coherent and relevant information is the reason OLAP has gained

in popularity. OLAP systems help reveal evasive inconsistencies and trends in data
that might not have been seen before. OLAP users can intuitively search data that has
been consolidated and summarized within the OLAP structure. In addition, OLAP tools
allow for tasks such as sales forecasting, asset analysis, resource planning, budgeting,
and risk assessment. OLAP systems also provide the following benefits:

� fast access, calculations, and summaries of an organization’s data
� support for multiple user access and multiple queries
� the ability to handle multiple hierarchies and levels of data
� the ability to presummarize and consolidate data for faster query and reporting

functions
� the ability to expand the number of dimensions and levels of data as a business

grows.

To fully understand the benefits of OLAP and the details of its effective
implementation, it helps to examine the technology from two perspectives—first, from
that of the users and second, from that of the information technology (IT)
administrators who are responsible for OLAP implementation. The users, typically
business analysts and executives, expect the data to be organized according to categories
that reflect the way in which they think about the enterprise. For IT administrators,
OLAP can present a long list of technical issues, including these concerns:

� storage requirements and associated costs
� client and server capabilities

OLAP Introduction and Overview � What Is a Cube? 3

� maintenance activities such as update and backup
� performance considerations such as the amount of time that is required to build a

multidimensional model
� the ability of the OLAP solution to integrate with current or planned data

warehouse strategies and architectures.

OLAP Variations
OLAP technology can be further defined by the methods for storing and accessing

data and by the performance of queries against that data. SAS OLAP supports three
different variations of OLAP technology:

� MOLAP
� ROLAP
� HOLAP

MOLAP — Multidimensional OLAP
MOLAP (multidimensional online analytical processing) is a type of OLAP that

stores summaries of detail data (aggregates) in multidimensional database structures.
MOLAP cubes are most suited for slicing and dicing of data and are used when
performance and query speed is critical. A unique feature of MOLAP is that calculations
are predetermined and created with the cube. Whereas MOLAP is well suited for
complex queries and calculations, it is limited in the amount of data it can handle.

ROLAP — Relational OLAP
ROLAP (relational online analytical processing) is a type of OLAP in which

multidimensional data is stored in a relational database such as a SAS table or an
ORACLE table. ROLAP is more scalable than other OLAP types and handles extensive
amounts of data well. Although performance can be somewhat slow, ROLAP is limited
only by the size of the relational database it is identified with.

ROLAP data is stored in either a flat file or with a star schema. With ROLAP, each
instance of slicing and dicing of data is part of an SQL query (or multiple SQL queries)
and is comparable to a WHERE clause in the SQL statement.

HOLAP — Hybrid OLAP
HOLAP (hybrid online analytical processing) is a type of OLAP in which relational

OLAP (ROLAP) and multidimensional OLAP (MOLAP) are combined. In HOLAP, the
source data is usually stored using a ROLAP strategy, and aggregations are stored
using a MOLAP strategy. It combines the best features of both ROLAP and MOLAP.
This combination usually results in the smallest amount of storage space. In HOLAP,
aggregates can be precalculated and can be linked into a hybrid storage model.

What Is a Cube?
One of the advantages of OLAP is how data and its relationships are stored and

accessed. OLAP systems house data in structures that are readily available for detailed
queries and analytics. Cubes are central to the OLAP storage process.

A cube is a set of data that is organized and structured in a hierarchical,
multidimensional arrangement. The cube is usually derived from a subset of a data

4 Understanding the Cube Structure � Chapter 1

warehouse. Unlike relational databases that use two-dimensional data structures (often
in the form of columns and rows in a spreadsheet), OLAP cubes are logical,
multidimensional models that can have numerous dimensions and levels of data. Also,
an organization typically has different cubes for different types of data.

One of the challenges of OLAP cube data storage and retrieval is the growth of data
and how that growth affects the number of dimensions and levels in a cube hierarchy.
As the number of dimensions increases over time, so does the number of data cells on an
exponential scale. To maintain the efficiency and speed of the OLAP queries, the cube
data is often presummarized into various consolidations and subtotals (aggregations).

Note: The SAS OLAP Server term cube is synonymous with the terms hyper-cube
and multi-cube. �

Understanding the Cube Structure
OLAP cubes organize data in a hierarchical arrangement. Data is structured

according to dimensions and measures.
Dimensions group the data along natural categories. (Examples of dimensions are

Time, Products, Organization). Typically, dimensions offer different levels of grouping
(for example, the Time dimension can be grouped by Years, Months, Days, etc.). Levels
are organized into one or more hierarchies, typically from a coarse-grained level (for
example, Year) down to the most detailed one (for example, Day). The individual
category values (for example, 2002 or 21Jan2002) are called members.

Measures are the data values that are summarized and analyzed. Examples of
measures are sales figures or operational costs. The data for measures is located in
cells. Cells are the intersection of one member for every dimension.

Presummarized data in a cube is stored in aggregations. Aggregations are the basis
for fast response to data queries in OLAP applications. An aggregation is possible at
each intersection of a level of one or more dimensions. The selection of aggregations to
presummarize is one of the major factors that determine query response time and cube
size.

SAS Servers

SAS Servers and SAS OLAP
SAS OLAP uses a combination of SAS servers to store cube metadata, to store the

physical cube structure, and to query cubes after they are created. Several types of SAS
servers are available to handle different workload types and processing intensities. The
term server refers to a program or programs that wait for and fulfill requests from
client programs for data or services.

The SAS servers use the SAS Integrated Object Model (IOM), which is a set of
distributed object interfaces that make SAS software features available to client
applications when SAS is executed on a server. Each server uses a different set of IOM
interfaces and has a different purpose. The following servers are used by SAS OLAP:

� the SAS Metadata Server
� the SAS Workspace Server
� the SAS OLAP Server

OLAP Introduction and Overview � SAS OLAP Server 5

In addition to the other servers that SAS OLAP uses to store and process cube data,
the SAS Stored Process Server is used in several different client applications that
access SAS OLAP cubes and report on OLAP cube data.

SAS Metadata Server
The SAS Metadata Server controls access to a central repository of metadata that is

shared by all of the applications in the system. It enables all users to access consistent
and accurate data. The SAS Metadata Server stores the metadata that defines the
cubes. It is a multi-user server that enables users to manage metadata in one or more
metadata repositories by using the SAS Open Metadata Interface.

Note: The SAS Open Metadata Interface is an object-oriented application
programming interface (API) that interacts with the SAS Metadata Server. SAS OLAP
Cube Studio is an example of an application that is compliant with the SAS Open
Metadata Interface. �

The SAS Metadata Server uses the Integrated Object Model (IOM) that is provided
by SAS Integration Technologies. IOM provides distributed object interfaces to Base
SAS software features. It enables you to use industry-standard languages,
programming tools, and communication protocols to develop client programs that access
these services on IOM servers.

In the SAS OLAP Server, all relevant structural information is contained within the
cube and most of it is also replicated within the SAS Open Metadata Architecture. This
is done so you can do the following:

� disassociate the cube definition process from cube creation, thus enabling you to
create a cube by using its stored definition

� define and enforce security at the SAS Open Metadata Architecture level
� manage and control the data source in the centralized SAS Metadata Repository

You can find documentation about the SAS Open Metadata Architecture in the SAS
Intelligence Platform: System Administration Guide and the SAS Intelligence Platform:
Data Administration Guide.

SAS Workspace Server
The SAS Workspace Server enables client applications to submit SAS code to a SAS

session using an application programming interface (API). The SAS Workspace Server
provides access to SAS software features such as the SAS language, SAS libraries, the
server file system, results content, and formatting services.

A program called the object spawner runs on a workspace server’s host machine. The
spawner listens for incoming client requests and launches server instances as needed.
You can run as many instances of workspace servers as are needed to support your
workload.

SAS OLAP Server
SAS OLAP Server is a scalable server that provides multi-user access to the data

that is stored in SAS OLAP cubes. This server is designed to reduce the load on
traditional back-end storage systems by quickly delivering summarized views,
irrespective of the amount of data that underlies the summaries.

Processing data by using a multi-threaded kernel enables you to take advantage of
your server’s parallel processing abilities. SAS OLAP Server accepts data queries in the

6 SAS Stored Process Server � Chapter 1

industry-standard MDX query language, which opens it up to a variety of clients. The
following features are also included:

� the SAS OLAP Cube Studio user interface, which is an alternative Java interface
for building and maintaining cubes

� PROC OLAP for programmatically building and maintaining cubes
� server management by using SAS Management Console
� support for processing external aggregates
� support for OLE DB for OLAP

Note: OLAP queries are performed by using the Multidimensional Expressions
(MDX) query language in client applications that are connected to the OLAP server by
using OLE DB for OLAP (an extension of OLE DB that is used by COM-based clients),
or through a similarly designed Java interface. �

SAS Stored Process Server
In addition to the other servers that SAS OLAP uses to store and process cube data,

the SAS Stored Process Server is used to execute SAS Stored Processes. A stored
process is a SAS program that is stored on a server and can be executed as required by
requesting applications. SAS Stored Processes can be used in several different client
applications that access SAS OLAP cubes and report on OLAP cube data, including the
following:

� SAS Enterprise Guide
� SAS Data Integration Studio
� SAS Information Map Studio
� SAS Web Report Studio

The ability to store your SAS programs on the server provides an effective method for
change control management. For example, instead of embedding the SAS code into
client applications, you can centrally maintain and manage this code from the server.
This gives you the ability to change your SAS programs and at the same time ensure
that every client that invokes a stored process will always get the latest version
available.

Stored process servers have MultiBridge connections, which enable multiple
processes on different ports of the same server. A program called the object spawner
runs on a stored process server’s host machine. The spawner listens for incoming client
requests and launches server instances as needed.

Why You Should Use Cubes
SAS cubes are designed to offer efficient data storage, fast data access, easy data

maintenance, and flexibility in data management. The following sections explore cubes
and multidimensional storage.

Cube Usage and Storage Space Reduction
While cubes are the format of choice to guarantee fast query response times against

your data warehouse, SAS OLAP cubes are also often a very space efficient choice for
data storage. In many cases, a basic cube without additional aggregations can be
smaller than the input data because the process of creating the cube consolidates

OLAP Introduction and Overview � Data Preparation and Dimension Design 7

records. SAS OLAP cubes use the hierarchy information for efficient aggregations
storage. SAS OLAP cubes also deal efficiently with data sparsity by using virtual
placeholders for empty cells. This removes the need for any physical representation of
empty cells. A good rule of thumb is, the larger your input data, the greater the storage
gain by loading data into a cube.

Multi-Threading Capabilities
Loading data into cubes and executing queries against the cube take advantage of

the multi-threading capabilities of your server machine. Aggregations are created in
parallel at cube build time. The creation of individual aggregations takes advantage of
the Parallel Group-By capabilities of SAS’ data engine. At query execution, the
multi-threading capabilities of your server machine are fully used to concurrently serve
queries by multiple users. Both query evaluation and data access are executed in
parallel. To further increase query performance and reduce disk access, you can allocate
additional memory on your server to be used for an in-memory aggregation cache.

Easy Setup and Maintenance
A cube is the physical representation of your logical dimensional model. The tools

that are provided to update and maintain the cube reflect the multidimensional model,
which makes both setup and maintenance of your cube as intuitive as possible. SAS’
thin-client, Web-based administrator interface, SAS Management Console, enables you
to set up and manage OLAP servers. SAS OLAP Cube Studio provides the workspace
and cube designer tools that you need to create and maintain cubes. You can also use
the SAS OLAP procedure to create and maintain cubes in a batch environment.

Data Management: Choosing Your Own Tool
If you create your own aggregations by using data management tools such as SQL,

PROC SUMMARY, or the tools of your preferred relational database management
system (RDBMS), then you can link those aggregations to your cubes without
replicating the data within the cube. Any queries against those aggregations are
executed by the appropriate SQL engine, and take advantage of any capabilities that
engine might have. This allows you the flexibility to use the data management tools of
your choice. It also allows you to distribute your data for your cube aggregations across
multiple database systems, servers, and platforms. If you choose to let the cube builder
create the aggregations, then you can control where to store the data and index files for
each aggregation.

Analyzing Your Data

Data Preparation and Dimension Design
The goal of an OLAP system is to have data that is organized, available, and

presented as relevant information to decision makers. OLAP cubes are based on data
from data warehouses. A data warehouse consists of data that is extracted from

8 Data Tables Used to Define SAS OLAP Cubes � Chapter 1

transactional systems at regular intervals. The extraction process works very closely
with data quality control, making sure that the data is complete and accurate.
Extensive data cleansing (which includes eliminating variant spellings of names) can be
part of this task.

Building a data warehouse also implies transforming data that is optimized for
transactional processing into data that is optimized for user-driven analysis. Part of
that process is grouping facts and attributes into entities that correspond to the users’
view of the organization. These groupings are known as dimensions. For related
information, see the SAS online documentation for SAS Data Integration Studio.

An established technique for implementing a dimensional model is to create star join
schemas that are based on the data. SAS OLAP cubes can be loaded from star schemas,
or from further denormalized tables or views that include some or all dimensions in the
fact table.

Data Tables Used to Define SAS OLAP Cubes

Detail Tables
A detail, or base, table is any table defined in a SAS Metadata Repository that

contains the measures and levels for a cube. The detail table consists of unsummarized
data that must include one column for each level and one numeric analysis column for
each set of measures that will be generated.

Fact Tables and Dimension Tables
A star schema uses a set of input tables that are defined in the SAS Metadata

Repository. The set of tables includes a single fact table and one or more dimension
tables. The fact table must contain one numeric analysis column for each set of
measures that will be generated. For levels, the fact table will either contain the
columns for the levels of a dimension or it will contain a key column that links the fact
table with a dimension table that contains the columns for the levels of a dimension.
These statements are also true for star schemas:

� A dimension can be in the fact table. In this case, all the level columns are in the
fact table and no fact or dimension key is required.

� If the dimension levels are defined in a dimension table, all the level columns for
that dimension must be contained in the same dimension table.

� Both the dimension keys and fact keys are single columns, not combinations of
columns.

� The dimension key can also be a level in the dimension.

Aggregation Tables
Aggregation tables are fully summarized external relational tables that are used to

build cubes. All aggregation tables must contain a column for each measure in the cube
where the statistic for the measure is one of the following: N, NMISS, SUM, MAX,
MIN, or USS. Columns for derived measures cannot be stored on the aggregation table
and are ignored if they exist. Derived measures are always computed at query time. An
aggregation table can be used in two ways:

� as an NWAY data source for the cube. In this case, the table must contain a
column for every level in the cube and a column for every stored measure.

OLAP Introduction and Overview � Aggregation Design 9

� as a subaggregation for the cube. In this case, the table must include a column for
each level of the aggregation and a column for every stored measure.

Drill-Through Tables
Drill-through tables are views maintained by the user that represent all of the input

data used to define a cube. The drill-through table name can be set either when the
cube is first created or during an update. Drill-through tables can be used by client
applications to provide a view from processed data into the underlying data source.

Aggregation Design
Efficient drilling or traversing of the cube data is a key factor in flexible and quick

decision making and analysis. In order to maintain speed and consistency in reporting,
data is usually precalculated or aggregated. An important factor in query performance
is good aggregation design, which includes decisions about total storage space, available
build time, storage location, and storage format.

When planning your data storage and design, it is helpful to approximate the size of
aggregations. A basis for estimating aggregation size is the number of distinct values in
a dimension level, otherwise known as cardinality. The other factor that determines
aggregations size is density. Density is a measure of how many members of each
dimension in an aggregation occur in combination with the members of the other
dimensions (for example, there might not be sales of a specific product on a specific
date). The total cube size as well as the resources that are available for the cube build
process determine the build time that is needed. It is also important to note that build
time should not exceed the cube update interval.

Aggregation size and available hardware influence your choices for aggregation
partitioning. You can separate aggregations into multiple files. A reduced file size
might accelerate OLAP server access time, particularly if multiple processors are
available for multi-threaded processing. You can use preaggregated summary tables,
the cube’s own efficient aggregation storage, or a combination of both. Using indexes on
either storage type might increase query performance, while also increasing storage
space and build time.

After an initial aggregation design is chosen, subsequent cube builds enable you to
optimize the cube’s performance and size by adding or removing aggregations. You can
analyze the OLAP users’ behavior by using Application Response Measurement (ARM)
logs, showing which aggregations are needed most and would be the most efficient.

10

11

C H A P T E R

2
Building Cubes

Background 11
Preparations for Building a Cube 12

Storage Location Requirements for Cube Metadata and Related Objects 13

Defining Member Properties 13

Property Statement 14

Cube Designer 14
Defining Distinct Count Measures 14

Defining a Default Hierarchy 15

Defining Multiple Hierarchies for a Dimension 15

Hierarchies Statement 16

Cube Designer 16

Defining Ragged and Unbalanced Hierarchies for a Dimension 16
Defining Ragged and Unbalanced Hierarchies in SAS OLAP Cube Studio 17

Defining Ragged and Unbalanced Hierarchies with PROC OLAP 17

Ragged Hierarchies and Unique Member Names 19

Cube Design-Aggregations 19

MOLAP Aggregation Storage 20
ROLAP Aggregation Storage 20

Choosing MOLAP or ROLAP Aggregation Storage 20

SAS OLAP Cube Size Specifications 21

Background

At this point in the cube-building process, the collecting and scrubbing of the data
should be finished as well as planning a dimensional design. After you have collected
and analyzed your data, you are ready to create the cube. When you define the cube,
you define the dimensions and measures for the cube along with information about how
aggregations should be created and stored. There are two methods of creating a cube:

� You can submit PROC OLAP code by using either the SAS Program Editor or a
batch job. If you use PROC OLAP, the cube is created, and then the cube
definition is stored in a metadata repository. This is referred to as the “long” form
of PROC OLAP.

� You can use the Cube Designer interface in SAS OLAP Cube Studio to define and
create the cube. The Cube Designer first stores the cube definition in a metadata
repository, and then submits a shorter form of PROC OLAP code to create the
cube. This is referred to as the “short” form of PROC OLAP.

Note: The Cube Designer can also be launched from SAS Data Integration Studio. �

12 Preparations for Building a Cube � Chapter 2

Preparations for Building a Cube
To build a cube by using either PROC OLAP or SAS OLAP Cube Studio, you must

complete several preliminary tasks:
� Configure a metadata server.
� Define an OLAP server in the metadata. The server does not need to be running

to create cubes, but it must be defined in the metadata.
� Analyze the data to determine the location of the table(s) that will be used to build

your cubes and what dimensions and measures will be created.
� Define the table(s) that will be used to create the cube in the metadata. You do

this by using SAS Data Integration Studio or by using SAS OLAP Cube Studio
and SAS Management Console as follows:

� Use SAS Management Console to define, in the metadata, the server that will
be used to access the tables. This is a SAS application server with a
workspace server component.

� Use SAS Management Console to define, in the metadata, the SAS library
that contains the table.

� In SAS OLAP Cube Studio, specify the server that will be used to access the
tables. To set the server, select Tools � OptionsOr, if the shortcut bar is
displayed, select Options to set the server.

� In SAS OLAP Cube Studio, select Source Designer to load the table
definitions (or other information source) as follows:

� From the shortcut bar, select Tools � Source Designer or select
Source Designer

� Select a Source Type (SAS, ODBC, etc.), and then select Next.
� If you have not specified a server, or if the server that is specified is not

valid, then you will be prompted again for a server.
� Select the SAS Library that contains the tables that you want to define,

and then select Next.
� Select the tables to define, and then select Next.
� Select Finish. The table definitions are loaded into the metadata.

� If you start to create a cube and do not see the table that you need to
continue, then you can select the Define Table button in any of the
windows that prompt for tables.

� In the Finish window of the cube designer, you are given the option to create the
physical cube. The metadata definition is always stored as you leave the Finish
window. However, you can defer creation of the physical cube. If you choose to
create the cube as you leave the Finish window, then you must have a SAS
Workspace Server defined that you can submit PROC OLAP code to. This server is
defined in SAS Management Console.

Note: For further information about the different data types that you can use to
load cubes from, see “Loading Cubes” on page 109. �

Note: The SAS Metadata Server enables duplicate librefs to be defined in the
metadata. To ensure that the correct SAS library definition is found on the metadata
server, you should assign the libref by using the LIBNAME statement for the metadata
engine before submitting the PROC OLAP code. Otherwise, PROC OLAP will select the
first library definition that it finds with your specified libref, and it will associate your

Building Cubes � Defining Member Properties 13

cube metadata with that definition. The selected library definition might or might not
contain a description of the SAS data set that was actually used to build your cube. For
more information about using the LIBNAME statement for the metadata engine, see
“Statements” in SAS Language Reference: Dictionary. �

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example: When you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

For further information about preliminary setup and configuration steps see the SAS
Intelligence Platform: System Administration Guide and the SAS Intelligence Platform:
Data Administration Guide.

Storage Location Requirements for Cube Metadata and Related
Objects

When storing metadata that describes a cube, the metadata objects that describe the
cube and the cube’s associated libraries and source tables must be stored in the same
repository, or the metadata that describes the cube must be in a custom repository that
is dependent on the repository that contains the library and table objects. Otherwise,
you will not be able to create the cube. In addition, the library and table objects that
are referenced by a cube must always be in the same repository. The following options
illustrate these conditions:

� The library, table, and cube objects can be in a Foundation repository.
� The library, table, and cube objects can be in Project A, which is dependent on the

Foundation repository.
� The library and table objects can be in the Foundation repository, and the cube

object can be in Project A.
� The cube object cannot be in the Foundation repository, and the library and table

objects cannot be in Project A.
� The table object cannot be in the Foundation repository, and the library and cube

objects cannot be in Project A.
� The library object cannot be in the Foundation repository, and the table and cube

objects cannot be in Project A.

Defining Member Properties
When you create a SAS OLAP cube, the information that is relevant to the cube is

defined with the cube hierarchy, measures, and aggregations (summaries) that will be
stored with the cube. Additional information that is part of the cube member data can
be included in the cube definition as a member property.

Member properties are attributes of dimension members that provide an additional
gradation of information to users of the cube data. Member property information is
usually not as significant as the levels and members within a dimension, and therefore,
does not qualify as a level or member. However, it often has additional analytical value
that can be useful at query time.

A member property is assigned to a level within a hierarchy, and a level can have
multiple properties that are assigned to it. For hierarchy placement, a member
property is assigned (by default) to all hierarchies that the select level is in. However,
you can remove one or more (but not all) of the hierarchies that the member property is
assigned to.

14 Property Statement � Chapter 2

When you create a member property, you must specify the name, column, and level.
Member property names can be shared across a cube but must be unique for a specific
level within a specific hierarchy. You can also specify a caption, description, and format.
The format that you specified here will be used instead of the format in the data set.

Property Statement
The PROPERTY statement is used with the PROC OLAP statement when you define

a cube:

PROPERTY zipcode-region
column=post_code
hierarchy=geographic
level=region;

Cube Designer
You can also establish member properties with the Member Property dialog box that

is part of the Cube Designer interface in SAS OLAP Cube Studio. This is accessed after
measures are defined, when you create a cube or edit a cube. Select Add to create a
member property. At the Define a Member Property dialog box, enter the member
property name, level, column, and caption.

Defining Distinct Count Measures
You can define distinct count statistics as measures with a cube using either the SAS

OLAP Cube Studio, Define Distinct Count Measures function or the PROC OLAP
MEASURE statement and the NUNIQUE statistic.

Define Distinct
Count Measures

You can define a distinct count statistic on the Cube Designer wizard
in SAS OLAP Cube Studio. On the Select Measures window, click
the Define Distinct Count button. The Define Distinct Count
Measures window opens. This window enables you to store
NUNIQUE (Distinct Count) statistics as measures with a cube. You
can add or delete a Distinct Count measure on this window. To
create the Distinct Count measure, select the level and hierarchy for
the new measure. Selecting the level in a tree structure (dimension,
hierarchy, level) will automatically assign the dimension and
hierarchy to that measure. A name will automatically be generated
for the Distinct Count measure consisting of the level name,
“NUNIQUE”, and the parent hierarchy name. By default, Distinct
Count measures will have the word “NUNIQUE” in their measure
name.

Note: Only one level-hierarchy combination can be defined for a
measure. After a level-hierarchy combination has been used to
create a Distinct Count measure, the combination cannot be used
again. �

Note: If the level or hierarchy is deselected, then any associated
defined Distinct Count measures will be deleted from the cube. �

You can modify the name, caption, format, units, and description
for a Distinct Count measure in the Cube Designer - Measure

Building Cubes � Defining Multiple Hierarchies for a Dimension 15

Details window. Distinct Count measures are displayed on the Edit
details for each measure table with the other selected measures.
The Distinct Count measures are also listed on the Default
Measure drop-down box and can be selected as a default measure.

NUNIQUE You can define a distinct count statistic using the MEASURE
statement and the NUNIQUE statistic. The LEVEL and
HIERARCHY options for the MEASURE statement are used with
the NUNIQUE statistic and will be ignored for non-NUNIQUE
statistics if specified.

Note: The LEVEL name is optional. If it is omitted then the
level name is assumed to be the name specified for the NUNIQUE
measure. The HIERARCHY name is only required if the level is in
multiple hierarchies. For further information about using the
NUNIQUE statistic see the “MEASURE Statement” on page 95. �

Defining a Default Hierarchy
When you define cube dimensions, levels, and hierarchies in SAS OLAP Cube Studio,

a default hierarchy for a dimension will automatically be created if a hierarchy is not
explicitly defined. This default hierarchy includes all levels that were specified for the
current dimension and the order they were listed in for the dimension. In addition, if
you define multiple hierarchies and do not select a default, then the default is
automatically assigned to the first hierarchy that is created for the dimension. On the
Dimension Designer — Hierarchy window, you can click the Default button to set a
selected hierarchy as the default for the dimension.

Defining Multiple Hierarchies for a Dimension
SAS OLAP cubes are organized into dimensions and levels of data. The levels are

then arranged into hierarchies. After an initial hierarchy has been created, you can
define additional hierarchies for a single dimension of a cube. This enables you to have
multiple possible drill paths of the same data. When you create more than one
hierarchy for a dimension, the levels have some restrictions:

� A level in a dimension might be used in more than one hierarchy within that
dimension. However, levels cannot be used in hierarchies that are not defined
within the dimension that the level is defined in.

� Each level must be used in at least one hierarchy.
� Levels from the same dimension that are picked for an aggregation must be in the

drill order for at least one hierarchy in that dimension.
� You cannot share levels between dimensions.

You can arrange the levels in a hierarchy in any order. The one exception to this is
the Time dimension. Levels in hierarchies in the Time dimension must follow a
prescribed order that is determined by the numerical value that is assigned to the type.
This order is from the smallest value (Years, 16) to the greatest value (Seconds, 3,096).
You can only have one time dimension for a cube. The dimension hierarchies also have
some restrictions:

� The first hierarchy that is defined for the dimension is designated as the default.
When there are multiple hierarchies, you can designate the default hierarchy for
the dimension.

16 Hierarchies Statement � Chapter 2

� Hierarchy names must be unique across the cube. If there is a single hierarchy for
a dimension, then its name must be the name of the dimension. Also, dimension
and hierarchy names cannot be the same as a level name within that dimension.

� For any cube loaded with a star schema, in which a dimension table represents
multiple hierarchies for that dimension, the dimension key that is used to join the
dimension table to the fact table will be used for all hierarchies of that dimension.

Hierarchies Statement
The HIERARCHY statement is used with the PROC OLAP statement when you

define a cube:

hierarchy campaigns
levels=(campaign_type campaign sub_campaign);

Cube Designer
You can establish multiple hierarchies by using the Cube Designer - Dimensions

window, which is located in the SAS OLAP Cube Studio Cube Designer. To add a
hierarchy to an existing dimension, select a dimension, and then click Modify. This
opens the Dimension Designer - General window. It is populated with the values for the
selected dimension. Select Next until you reach the Dimension Designer - Hierarchy
window. Select Add to create an additional hierarchy.

Note: You can modify existing hierarchies by selecting a hierarchy and clicking
Modify. You can also assign a default hierarchy by selecting a hierarchy and clicking
Default. The first hierarchy is automatically the default hierarchy. �

Note: An exception to defining multiple hierarchies for a dimension is the Time
dimension. Levels in hierarchies in the Time dimension must follow a prescribed order
that is determined by the numeric value that is assigned to the type. This order is from
the smallest value (Year, 16) to the greatest value (Seconds, 3,096). �

In the Dimension Designer - Define a Hierarchy window, you can define a new
hierarchy and select the different levels and their order for the hierarchy.

Defining Ragged and Unbalanced Hierarchies for a Dimension
Dimension levels are arranged in one or more hierarchies. Hierarchies, by process of

ordering, have a branching arrangement, and the different member levels have parent
and child relationships. For instance, at company X the sales staff are located in
different regions and cities in different countries. A balanced hierarchy might look like
this:

� Global sales president (top of hierarchy)
� Sales presidents (per country)
� Regional sales managers
� City sales managers.

Because of differences in the cube data, hierarchies are often not balanced and possibly
have missing members. For example, some sales regions might not have sales managers
assigned to a specific city. Or, some countries might not have sales regions, just cities.
These real-world scenarios would create hierarchies that have missing member data
and possibly ragged hierarchies. This affects the drillpath of the cube data.

Building Cubes � Defining Ragged and Unbalanced Hierarchies with PROC OLAP 17

You can also drill to missing members within a path and continue to drill down to
members that are present.

Defining Ragged and Unbalanced Hierarchies in SAS OLAP Cube Studio
The Cube Designer in SAS OLAP Cube Studio enables you to specify the missing

members for a hierarchy and the type of data that is missing. Here are the Cube
Designer windows that enable you to specify missing member information:

Ragged
Hierarchies

Located in the Cube Designer General - Advanced Cube Options
window, this tab enables you to specify character and numeric
missing member information. By default, no missing member
information is indicated with the value None.

Dimension
Designer - Level
Properties

� Ragged - Ignore Missing Members specifies whether to
ignore or use global or hierarchy-specific ragged hierarchy
settings. To ignore settings, set this property to True. To use
the settings, set this property to False. By default, this is set
to False.

� Ragged - Designate Missing Members specifies that the
Cube Designer use the specified string to identify missing
values and override any global or hierarchy-specific ragged
hierarchy settings. You can use up to 256 characters. The
value of the True/False setting in Ragged - Ignore Missing
Members controls whether or not you override any global or
hierarchy-specific ragged hierarchy settings.

Dimension
Designer -
Define a
Hierarchy

You can select one of these options from the Ragged Hierarchies tab:
� Ignore. From this drop-down list, select True to ignore the

global missing member settings that you entered at the
Advanced Cube Options dialog box. Select False to use the
global settings for the current hierarchy.

� Character. For this hierarchy only, enter a maximum of 256
characters that will be used to identify missing character
members.

� Numeric. For this hierarchy only, enter a maximum of 256
characters that will be used to identify missing numeric
members.

Defining Ragged and Unbalanced Hierarchies with PROC OLAP
To create ragged and unbalanced hierarchies with PROC OLAP, you specify options

that allow the procedure to skip over members of levels that have captions with
specified values. The presence of these skipped members constitutes a ragged or
unbalanced hierarchy. In a ragged hierarchy, skipped members in a given level can
have descendants; skipped members are used to enable drill-down through empty
levels. In an unbalanced hierarchy, the skipped members do not have descendants;
members are skipped in order to create hierarchies where certain branches do extend to
all available levels.

For an example of the creation of a ragged hierarchy, assume that a cube defines
information about sales representatives. The Geography hierarchy is defined to have
the levels Country, State, Region, and City. In this particular sales organization, the

18 Defining Ragged and Unbalanced Hierarchies with PROC OLAP � Chapter 2

state of Nebraska has no regions, but it does have sales representatives in a number of
cities. This ragged hierarchy can be shown as follows:

Cube Sales Representatives

Hierarchy ...Geography...
|

Levels: |
Country ...USA...

|
State ...Montana Nebraska North Carolina...

| | | | | |
Region East West --0-- Central East West

| | | | | |
City | Billings... | | | Asheville...

| | | Greenville...
Helena... | Charlotte...

|
...Council Bluffs, Lincoln, Sioux City...

The Geography hierarchy is ragged because of the need to skip the Region level, and
because the skipped member (Nebraska) has descendants.

To create the ragged hierarchy shown above, the Nebraska member needs to be
defined with one member at the Region level. That member needs to have a caption
that matches the value of the EMPTY_CHAR= option that is defined in the respective
HIERARCHY statement (for option details, see “The OLAP Procedure” on page 78).

In the resulting cube, drilling down from Nebraska takes you directly from the State
level to the City level.

For an example of the creation of an unbalanced hierarchy, assume that a cube named
Employees has a hierarchy named Organizations. In that hierarchy there are various
divisions, departments, and groups. As show below, some departments lack groups:

Cube Employees

Hierarchy ...Organizations...
|

Levels: |
Div ...R&D Sales Tech Support...

| | |
Dept Java Platform | Java Support Platform Support

| | | | |
Group | | | --0-- --0--

| | |
| | Global Marketing U.S.
| |
| Hosts Performance Unit Test
|

Client Mid-Tier Server

The preceding hierarchy is unbalanced because the Tech Support level has no
descendants at the Group level. To implement this unbalanced hierarchy, the levels
Java Support and Platform Support would have to be defined with captions that
matched the value of the EMPTY= option in their respective LEVEL statements.

The options that implement ragged and unbalanced hierarchies are found in the
PROC OLAP statement, HIERARCHY statement, and LEVEL statement. In the PROC
OLAP and HIERARCHY statements you can specify separate caption values for

Building Cubes � Cube Design-Aggregations 19

character and numeric levels using the options EMPTY_CHAR= and EMPTY_NUM=.
Similarly, the EMPTY= option of the LEVEL statement allows you to specify separate
values for each level in a hierarchy, regardless of any similar values that were specified
in preceding HIERARCHY and PROC OLAP statements.

The HIERARCHY and LEVEL statements also provide the IGNORE_EMPTY option,
which specifies that any prior specifications of EMPTY_CHAR= or EMPTY_NUM= are
to be ignored for that hierarchy or level.

Ragged Hierarchies and Unique Member Names
In a ragged hierarchy, the parent of a member might not be at the level directly above

that member. Furthermore, not all children of a member are necessarily at the same
level. This can lead to a situation where two children have the same unique name.

For example, in a geography hierarchy you might have the levels state, county, and
city. The state Washington might have a child at the county level called Olympia and
another child at the city level, also named Olympia. The city member is not a
descendant of the county member of the same name. It is a child of Washington.

In a ragged hierarchy, levels can have an unconventional structure, and unpopulated
levels are not assigned a token or placeholder. As a result, the unique name for the
county member is Geography.[All Geography].Washington.Olympia, and the
unique name for the city member is Geography.[All
Geography].Washington.Olympia.

The result of this anomaly is that the city member cannot be asked for by a unique
name in a query, either through MDX or an OLE DB for OLAP (ODBO) request for
metadata. It will be returned in any set that contains it so the data that is associated
with it is not lost. The same applies to the children of a member such as Olympia.
Because the server searches through the hierarchy to validate member names, a
request by name for a child of Olympia the city will result in a bad member name error.
This is because the server actually searches under the county Olympia.

This situation occurs only when two members with the same name share a parent.
Any number of Olympia(s)could exist under other parents with no unusual results.

Cube Design-Aggregations
When determining how to efficiently deliver the data in a multidimensional cube,

fast query response is extremely important. This is accomplished by storing
summarized data. Any combination of dimension levels can become a stored
aggregation. Which aggregations are being stored has a direct effect on the SAS OLAP
Server CPU usage, file I/O, and query response times. The aggregations that are being
stored also affect cube build time and the absolute cube file size. Therefore, it is a
trade-off between a single instance of resource use at cube build time and multiple
instances of resource use at cube query time.

The aggregated data values for SAS OLAP cubes can be stored either with the cube
in the cube’s internal format or external to the cube in relational summary tables.

MOLAP MOLAP aggregation storage is the cube-internal storage for
aggregations. MOLAP aggregation tables are created as part of the
cube creation step.

ROLAP ROLAP aggregation storage is the cube-external summary tables.
ROLAP summary tables need to be pre-calculated from the input
data (using tools such as SQL or PROC MEANS/PROC SUMMARY)
and made known to the cube at cube creation time.

20 MOLAP Aggregation Storage � Chapter 2

MOLAP Aggregation Storage
SAS MOLAP aggregation storage maintains the cube data in the same table format

as the format that is used by the SAS Scalable Performance Data (SPD) Engine.
MOLAP aggregation storage takes advantage of key contraction and allows data access
by using the cube’s internal data representation directly.

MOLAP aggregation storage of SAS OLAP cubes has the same threading and
scalability features as the files used by the SAS SPD Engine. The data and the index
section of the files are stored in different physical files. This enables parallel access to
the data and index sections. The data and index files themselves are stored in
partitions, enabling parallel data retrieval within the same file. The partitions of the
data and the index section can be distributed over multiple disc controllers, thus adding
a further boost to the threaded and partitioned architecture by reducing contention and
possible bottlenecks in the physical I/O.

ROLAP Aggregation Storage
ROLAP tables used in SAS OLAP cubes can be SAS data sets, SAS data views, or

any tables or views accessible through a SAS engine. This extends the choice of
available storage options for SAS OLAP cubes to include SPDE, SPDS, and any
RDBMS product for which a SAS/ACCESS software product is available. ROLAP
aggregation tables must conform to the structure of the input data. The columns that
feed the dimension levels must have the same column names and attributes that were
used in the input data when loading the cube. In addition, all aggregations must be
stored in fully de-normalized form. Here are some guidelines to make aggregation
columns for measures available:

� Each ROLAP aggregation table must include all columns for the cube’s measures
with stored statistics.

� SAS OLAP cube aggregations store the following statistics: SUM, N, NMISS, USS,
MIN, and MAX. Other available statistics are derived from the stored statistics by
internal calculations. For example, in order to include a measure for the AVG
statistic in your cube, you need to make columns available in your ROLAP
aggregation tables that were generated by using SUM and N (count).

ROLAP data requests can also run against the data that was used to create and load
the cube, whether from a detail table or a star schema. The cube’s input data can be
used in place of the aggregation with the combination of the lowest level of all
dimensions (often called NWAY or NWAY aggregation, which is a name borrowed from
PROC MEANS/PROC SUMMARY where it denotes the combination of all CLASS
variables).

Choosing MOLAP or ROLAP Aggregation Storage
MOLAP aggregation storage is optimized for SAS OLAP Server internal processing

and has a minimal data-size footprint. It uses threaded, parallel data access and is
tunable to any hardware environment. MOLAP aggregation storage is convenient
because it doesn’t require additional data management steps.

ROLAP aggregation storage enables you to use existing ROLAP schemas and reuse
legacy SAS OLAP Server SAS 8 HOLAP structures. ROLAP aggregation storage
enables users to use database systems and data servers of their choice to store and
serve cube aggregation data. Existing processes can be used to create and access
aggregation data to off-load and distribute data access, I/O, and rollup to server
systems of the user’s choice.

Building Cubes � SAS OLAP Cube Size Specifications 21

A hybrid approach is possible. For example, users with existing ROLAP structures
can build a “light” SAS OLAP cube with no additional stored aggregations and add
MOLAP aggregations to further tune the cube performance.

SAS OLAP Cube Size Specifications
When creating SAS OLAP cubes there are some size specifications for the various

components of the cube.

Dimensions and hierarchies
A cube can have a maximum of 128 hierarchies. The number of dimensions is 128
or less, if multiple hierarchies per dimension are used. There is no limit to the
number of hierarchies per dimension.

Levels
The maximum number of levels for a cube is 256. There can be up to 19 levels per
hierarchy.

Members
There is no limit to the number of members per cube. An individual hierarchy has
an upper limit on the number of members. This limit is determined by the
following formula:

log2(numer members in first level of hier)+log2(number members
in second level of hier)+.....+log2(number members in nth level
of hier) must be < 64

Measures
The maximum number of measures per cube is 1024.

Number of cubes per schema
Whereas there are no absolute restrictions for the number of cubes per OLAP
Schema, assigning a large number of cubes to a schema should be avoided. This is
because the cubes compete for the OLAP server’s cube cache and data cache at the
time they are accessed and handled by the server.

Properties
The maximum number of properties per level is 256.

22

23

C H A P T E R

3
Cube Building Examples

Building a Cube from a Detail Table 23
SAS OLAP Cube Studio 23

Saving a Cube’s PROC OLAP Code 26

PROC OLAP 27

Building a Cube from a Summary Table 32

Building a Cube from a Star Schema 38

Building a Cube from a Detail Table

SAS OLAP Cube Studio
You can build an OLAP cube by using the Cube Designer in SAS OLAP Cube Studio.

In this example, we are using data from a recent product marketing campaign. We
want to establish measures and summaries of various aspects of our data such as
geographic location of potential customers, age of potential customers, and revenue
summaries. Our data is held in a detail table called olapsio.campnrml.

1 Define the metadata profile. The File menu options for New Metadata Profile and
Open Metadata Profile allow you to define and connect to a metadata server. At
the Open a Metadata Profile dialog box, you can choose to either create a new
metadata profile or edit an existing one. Enter the machine information of the
metadata server that you will connect to and retrieve a data source from.

� At the Connection Information dialog box, enter the machine ID, port, your
user ID, and password.

Note: These options are the equivalent of the METASVR statement
options:

� HOST=
� PORT=
� USERID=
� PW=.

�

� At the Repository Selection dialog box, select a default repository.

2 Enter general cube information.
� After you have established a metadata server, you can begin to create a cube.

Select Cube Designer from the shortcut menu. At the Cube Designer –

24 SAS OLAP Cube Studio � Chapter 3

General dialog box, enter the general cube information. For input type, you
select Detail Table.

� Cube Name

� Description

� Repository

� OLAP Schema

� Path in the file system to store the cube

� Input Type

Note: These options are equivalent to the PROC OLAP and METASVR
statement options:

� CUBE=

� DESC=

� REPOSITORY=

� OLAP_SCHEMA=

� PATH=.

�

� At the Cube Designer – Input dialog box, select a data source or detail table
for your cube. If one does not exist for your data, select Define Table, and
then define the source that you will import your metadata from.

Note: These options are equivalent to the

� Source Designer function in the Tools Menu

� DATA|FACT= option for PROC OLAP.

�

� At the Cube Designer - Drill-Through dialog box, you select or define an
optional drill-through table. Drill-through tables can be used by client
applications to provide a view from processed data into the underlying data
source.

If a drill-through table does not exist for your data, select Define Table,
and then define the source that you will import your metadata from.

Note: These options are equivalent to the

� Source Designer function in the Tools Menu

� DRILLTHROUGH_TABLE | DT_TABLE | DT_TBL= option for PROC OLAP.

�

The Table Options button that is available at both the Cube Designer - Input
and the Cube Designer - Drill-Through dialog boxes, opens the Table Options
dialog box. It enables you to specify data set options that are used to open the
data set. For example, you could enter a WHERE clause or subsetting information
that is then applied to the selected table when it is opened. The options are stored
as part of the cube and then reapplied when the data is accessed at run time. You
can also specify data set options in the Dimension Designer – General window (for
use with star schemas) and the Stored Aggregates window (for use with
summarized tables). For more information, see “Data Set Options” in SAS
Language Reference: Concepts.

Cube Building Examples � SAS OLAP Cube Studio 25

3 Define dimensions, levels, and hierarchies. Now that your basic metadata server
and cube information has been entered, you can define the different dimensions
and their respective levels and hierarchies. For this example, you will define the
following dimensions and levels:

� Campaigns
� campaign type

� campaign

� subcampaign.

� Campaign Dates

� campaign start year
� campaign start month

� campaign start day.

� Geographic

� division

� region
� client_id.

� Customer Age

� age group1

� age group2.

� Products

� product group
� product type.

Define the dimensions for the cube. For each dimension you will define the
dimension, its levels, and its hierarchies.

� At the Cube Designer - Dimensions dialog box, select the Add button. This
opens the Dimension Designer - General dialog box. Enter the following
information:

� dimension name
� caption

� description

� type of dimension (standard or time)
� sort order.

Note: If you are using a star schema, enter the Dimension Tables
Definition information. �

� Select Dimension Levels from the Dimension Designer - Levels dialog box.

� Next, define properties such as format, time type, and sort order from the
Dimension Designer - Level Properties dialog box.

� Next, define hierarchies for the levels from the Dimension Designer - Define a
Hierarchy dialog box.

� Repeat this process for each dimension.

Note: Use the DIMENSION, HIERARCHY, and LEVEL statements here. For
time-specific levels in a dimension, the LEVEL statement is required. Also, there
can be only one time-specific dimension and one GEO-specific dimension per
cube. �

26 SAS OLAP Cube Studio � Chapter 3

4 Define measures. You can now define the measures for the cube. In your example,
you want measures for revenue totals and the number of customers you tracked
during the campaigns. Define the measures for the cube at the Cube Designer -
Select Measures dialog box.

Modify any measure attributes such as Measure Captions and Formats at the
Cube Designer - Measure Details dialog box.

Note: The MEASURE statement is used here. �

5 Define member properties. You can now define the member properties for any
needed cube members. A member property is an attribute of a dimension member.
A member property is also an optional cube feature that is created in a dimension
to provide users with additional information about members. For this example,
you can define the zip code or postal code as a member property. Define member
properties at the Cube Designer - Member Property dialog box.

At the Define a Member Property dialog box, enter the member property name,
level, column, and caption.

Note: The PROPERTY= statement is used here. �

6 Define aggregations. You can now define the aggregations for the cube.
Aggregations are summaries of detailed data that are stored with a cube or
referred to by a cube. They can help contribute to faster query response. Define
the aggregations for the cube from the Cube Designer - Generated Aggregations
dialog box.

Select the levels for the aggregation with the Specify a generated user-defined
aggregation dialog box.

Note: The AGGREGATION= statement is used here. �

7 Build the cube. You can now build the cube. You can choose to build the cube and
register it to the metadata repository, or you can register the cube to the metadata
repository. At the Cube Designer - Finish dialog box, review the settings for the
cube, and then select one of the cube creations options.

Select whether to save the generated PROC OLAP code. At the Save PROC
OLAP Code dialog box, enter the file location where you want to save the resulting
code.

Select the Finish button from the Cube Designer - Finish dialog box.

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

Saving a Cube’s PROC OLAP Code
In SAS OLAP Cube Studio, you can elect to save the PROC OLAP code that is

generated when a cube is built. The code is saved to a text file that you specify. The
information saved in the file includes the following items:

� the SAS LIBNAME statement

� any FMTSEARCH statements

� any additional SAS code

� the PROC OLAP statement

� the METASVR statement

� all other PROC OLAP statements.

Cube Building Examples � PROC OLAP 27

You can access the Save PROC OLAP Code window by using one of the following
methods:

1 On the navigation tree in SAS OLAP Cube Studio, right-click on a cube and select
Save PROC OLAP code.

2 In the Finish window in the Cube Designer wizard, right-click the Save PROC
OLAP Code button.

The Save PROC OLAP Code window opens. In the Path field, enter the name and
location of the file that you are saving to. An example is c:/temp/olapcode.txt.

PROC OLAP
You can build an OLAP cube with PROC OLAP and execute it in a SAS session.

Running PROC OLAP registers your cube and its sources in a metadata repository. It
also creates the files that make up the cube. These are the possible input types for an
OLAP cube:

� a fact table (specified in the PROC OLAP statement DATA= option)

� dimension tables (specified in the DIMENSION statement DIMTBL= option)

� presummarized tables (specified in the AGGREGATION statement TABLE=
option)

Note: You use the DATA= option when you use a detail table as the input. �

In this example, you are using data from a recent product marketing campaign. You
want to establish measures and summaries of various aspects of your data such as
geographic location of potential customers, age of potential customers, and revenue
summaries. Our data is held in a table called olapsio.campnrml.

1 Define the metadata profile and general information. You use the PROC OLAP
and METASVR statements here. The fact table is specified in the PROC OLAP
statement DATA= option. The METASRV statement is used to establish the
metadata connection. It identifies the metadata repository in which existing cube
metadata information exists or in which metadata about a new cube should be
stored. The statement is also used to provide a user’s identification and password
for the identified repository. Also the DRILLTHROUGH_TABLE= option is used
here to indicate the drill-through table. Drill-through tables can be used by client
applications to provide a view from processed data into the underlying data source.

proc olap cube=Campaign1
path="c:\cubes"
drillthrough_table=olapsio.campnrml
;

metasvr host=localhost
port=9999
protocol=bridge
userid=userid
pw=pw
repository=Foundation
olap_schema="OLAP Schema"
;

In OLAP Cube Studio, you define the above options in the following windows:

� Metadata Profile

� Connection Information

28 PROC OLAP � Chapter 3

� Cube Wizard - General
� Cube Wizard - Input.

2 Define dimensions, levels, and hierarchies. Now that your basic metadata server
and cube information has been entered, you can define the different dimensions
and their respective levels and hierarchies. For this example, you define the
following dimensions and levels:

� Campaigns
� campaign type
� campaign
� subcampaign.

� Campaign Dates
� campaign start year
� campaign start month
� campaign start day

� Geographic
� division
� region
� client_id.

� Customer Age
� age group1
� age group2.

� Products
� product group
� product type.

You use the DIMENSION, HIERARCHY, and LEVEL statements here.

Note: For time-specific levels in a dimension, the LEVEL statement is
required. Also, there can be only one time-specific dimension. �

dimension campaigns
hierarchies=(campaigns)
caption="Campaigns"
sort_order=ascformatted
;

hierarchy campaigns
levels=(campaign_type campaign sub_campaign)
;

dimension campaign_dates
hierarchies=(campaign_dates)
caption="Campaign launch dates"
type=time
;

hierarchy campaign_dates
levels=(campaign_start_year

campaign_start_month
campaign_start)

;

Cube Building Examples � PROC OLAP 29

level campaign_start_year
type=year
;

level campaign_start_month
type=months
;

level campaign_start
type=days
;

dimension geographic
hierarchies=(geographic)
caption="Geographic"
;

hierarchy geographic
levels=(division region client_id)
;

dimension customer_age
hierarchies=(customer_age)
caption="Customer age"
;

hierarchy customer_age
levels=(age_group_1 age_group_2)
;

dimension products
hierarchies=(products)
caption="Products"
;

hierarchy products
levels=(product_group product_type)
;

In OLAP Cube Studio, the above options are defined in the following windows:

� Dimension Designer - General

� Dimension Designer - Levels

� Dimension Designer - Level Properties

� Dimension Designer - Define a Hierarchy.

3 Define measures. You can now define the measures for the cube, both stored and
derived. A measure is an input column and a roll-up rule (statistic). Only certain
measures are physically stored. Other measures are derived from the stored
measures at run time. In this example, you want measures for revenue totals and
the number of customers you tracked during the campaigns.

You use the MEASURE statement here.

measure revenue_sum
column=revenue
stat=sum
format=dollar15.2
;

measure number_of_customers_sum
column=number_of_customers
stat=sum
format=12.0
;

30 PROC OLAP � Chapter 3

In OLAP Cube Studio, the above options are defined in the following windows:
� Cube Designer - Select Measures

� Cube Designer - Measure Details.

4 Define member properties. You can now define the member properties for any
needed cube members. A member property is an attribute of a dimension member.
A member property is also an optional cube feature that is created in a dimension
to provide users with additional information about members. For this example,
you can define the zip code or postal code as a member property.

You use the PROPERTY statement here.

property zipcode-region
column=post_code
hierarchy=geographic
level=region
;

In OLAP Cube Studio, the above options are defined in the following windows:

� Cube Designer

� Member Property

� Define a Member Property.

5 Define aggregations. You can now define the aggregations for the cube.
Aggregations are summaries of detailed data that is stored with a cube or referred
by a cube. Their existence can reduce cube query time. If all aggregations are to
be generated at the time of cube creation (MOLAP cube), then you can select
specific aggregations that must be created in addition to the NWAY, which is the
only aggregation that PROC OLAP makes by default.

You use the AGGREGATION statement here.

aggregation product_group product_type
age_group_1 age_group_2
division region
;

Note: The input type – presummarized tables – can also be specified in the
AGGREGATION statement by using the TABLE= option. �

In OLAP Cube Studio, the above options are defined in the following windows:

� Cube Designer - Generate Aggregations

� Specify a generated user-defined aggregation.

6 Build the cube. You can now build the cube. Execute the PROC OLAP statement
within the SAS System or in batch-mode. Here is the complete PROC OLAP code.

proc olap data=olapsio.campnrml
cube=Campaign1
path="c:\cubes"
;

metasvr host=localhost
port=9999
protocol=bridge
userid=userid
pw=pw
repository=Foundation
olap_schema="OLAP Schema"
;

Cube Building Examples � PROC OLAP 31

dimension campaigns
hierarchies=(campaigns)
caption="Campaigns"
sort_order=ascformatted
;

hierarchy campaigns
levels=(campaign_type campaign sub_campaign)
;

dimension campaign_dates
hierarchies=(campaign_dates)
caption="Campaign launch dates"
type=time
;

hierarchy campaign_dates
levels=(campaign_start_year

campaign_start_month
campaign_start)

;
level campaign_start_year

type=year
;

level campaign_start_month
type=months
;

level campaign_start
type=days
;

dimension geographic
hierarchies=(geographic)
caption="Geographic"
;

hierarchy geographic
levels=(division region client_id)
;

dimension customer_age
hierarchies=(customer_age)
caption="Customer age"
;

hierarchy customer_age
levels=(age_group_1 age_group_2)
;

dimension products
hierarchies=(products)
caption="Products";

hierarchy products
levels=(product_group product_type)
;

measure revenue_sum
column=revenue
stat=sum
format=dollar15.2;

measure number_of_customers_sum
column=number_of_customers
stat=sum

32 Building a Cube from a Summary Table � Chapter 3

format=12.0
;

aggregation product_group product_type
age_group_1 age_group_2
division region
;

run;

Note: Any libraries must be specified prior to running the PROC OLAP code. �

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

Building a Cube from a Summary Table

In this example, you can build a cube with fully summarized data. A summary table
is a data source that contains a crossing of all dimensions for a cube. In this example,
the data for the Campaign cube has been summarized into a table called
CAMPAIGN_SUMMARY. The table contains a column

� for each of the levels that you want

� for each of the stored measures, total revenue, and total number of customers

� for the member property and zip code region

The table contains only the NWAY. The data set was produced with the following SAS
code:

proc summary data=olaplib.campaign
nway
noprint
;

class campaign_type campaign
sub_campaign campaign_start_year
campaign_start_month campaign_start
division region client_id
age_group_1 age_group_2
product_group product_type
;

var revenue number_of_customers
;

id post_code
;

output out=olaplib.campaign_summary
sum=totrev totcust
;

run;

To create the cube by using SAS Cube Studio, follow these steps:

1 Start SAS Cube Studio and connect to the appropriate metadata server.

2 Define the campaign_summary table in the metadata by using the Source Designer.

3 To create a cube, select Cube Designer from the shortcut menu.

Cube Building Examples � Building a Cube from a Summary Table 33

4 At the Cube Designer - General dialog box, enter the following information:
� Cube Name
� Description
� Repository
� OLAP Schema
� Path in file system to store the cube
� Input Type.

For input type, select Fully Summarized Table.
5 At the Cube Designer - Input dialog box, select a data source or detail table for

your cube. For this example, select the campaign_summary table.

Note: If a detail table does not exist for your data, then select Define Table
and define the source that you will import your metadata from. �

Note: When you create a cube from a detail table or star schema, it is the
equivalent of specifying the DATA= or FACT= options in the PROC OLAP
statement. When you select Fully Summarized Table, this is the same as not
specifying DATA= or FACT= and then specifying an AGGREGATION statement
that has all levels listed and has the TABLE= option specified with the table
name. Here is an example:

aggregation campaign campaign_type /
table=olaplib.campaign_summary
name=’Default’
;

�

6 On the Cube Designer - Drill-Through panel, select a drill-through table. When
selecting a drill-through table (and you use a fully summarized table to load the
cube) you should select the table that was used to create the summarized table. In
this example, that is the campaign table. Select the radio button Select
drill-through table from list, and then select the Campaign table.

7 Now that your basic metadata server and cube information has been entered, you
can define the different dimensions and their respective levels and hierarchies.
This example cube has these dimensions:

� Campaigns
� campaign type
� campaign
� subcampaign.

� Campaign Dates
� campaign start year
� campaign start month
� campaign start day.

� Geographic
� division
� region
� client_id.

� Customer Age
� age group1
� age group2.

34 Building a Cube from a Summary Table � Chapter 3

� Products
� product group
� product type.

Define the dimensions for the cube. For each dimension, define the dimension, its
levels, and its hierarchies.

� At the Cube Designer - Dimensions dialog box, select the Add button. This
opens the Dimension Designer - General dialog box. Enter the following
information:

� dimension name
� caption
� description
� type of dimension (standard or time)
� sort order.

� Select the necessary dimension levels at the Dimension Designer - Levels
dialog box.

� Define properties such as format, time type, and sort order at the Dimension
Designer - Level Properties dialog box.

� Define hierarchies for the levels at the Dimension Designer - Define a
Hierarchy dialog box.

� Repeat this process for each dimension.

Note: You use the DIMENSION, HIERARCHY, and LEVEL statements here.
For time-specific levels in a dimension, the LEVEL statement is required. Also,
there can only be one time-specific dimension and one GEO-specific dimension per
cube. �

8 You can now select the stored (base) measures for the cube in the Cube Designer -
Select Stored Measures window. When loading from a detail table, the base and
derived measures are generated from a single column in the detail table. For
example, a detail table that has a column ACTUAL can have two measures –
ACTUAL_SUM and ACTUAL_AVG – that are created from the column. However,
with a fully summarized table, you must have one column for any base measure
that you want to include in the cube. The base statistics are SUM, N, NMISS,
MIN, MAX, and USS. Measures that are created with these statistics must have a
single column in the summarized table. For this example, we have two base or
stored measures: TOTREV and TOTCUST. Select the two columns in this window.

Note: This step is equivalent to using the AGGR_COLUMN option in the
MEASURE statement. �

9 In the Cube Designer - Assign Stored Measures window, you can specify the
Statistic and Analysis Group options for the stored statistics. Select SUM as the
statistic for both the TOTREV and TOTCUST measures. For Analysis group,
specify REVENUE for TOTREV and NUMBER_OF_CUSTOMERS for TOTCUST.
If the table contained two measures from the same analysis column, both of the
base measures would have the same analysis group specified. For example, if
campaign_summary contained a column called REVN, which is the number of
non-missing values for the REVENUE column, then we could have a base measure
REVN with the statistic of count (N) and an analysis group of REVENUE.

Note: The analysis group is equivalent to the COLUMN|ANALYSIS option in
the MEASURE statement. �

10 In the Cube Designer – Select Derived Measures window, specify any measures
that will be derived from the base or stored measures. Each derived measure is

Cube Building Examples � Building a Cube from a Summary Table 35

based on a set of required stored measures. If the stored measures for an analysis
group do not include all those required for a specific derived measure, then that
measure cannot be included in the cube. For example, TOTREV is the SUM of the
REVENUE group. You cannot include AVGREV because you do not have the N or
count of the REVENUE group in the stored measures.

11 In the Cube Designer - Edit Measure Details window, specify captions, formats,
and other information about the measures that are listed.

12 Define the member properties for any needed cube members. A member property
is an attribute of a dimension member. A member property is also an optional
cube feature that is created in a dimension to provide users with additional
information about members. Define member properties at the Cube Designer -
Member Property dialog box.

At the Define a Member Property dialog box, enter the member property name,
level, column, and caption.

Note: You use the PROPERTY= statement here. �

13 Define the aggregations for the cube. Aggregations are summaries of detailed data
that is stored with a cube or referred by a cube. They can contribute to faster
query response. If you have additional aggregation tables, select them in the Cube
Designer - Aggregation Tables window.

14 Define the stored aggregations in the Cube Designer - Stored Aggregations
window. These are aggregations that are contained in the additional input tables
that were selected in the Cube Designer - Aggregation Tables window.

Note: Defining aggregations in this panel is equivalent to using the
AGGREGATION statement with the TABLE= option. �

15 In the Cube Designer - Generated Aggregations window, define additional
aggregations that will be generated when the cube is built.

16 Build the cube. In the Cube Designer - Finish window, you can select whether or
not you want the cube to be physically created after the metadata is saved. When
you select the Finish button, the metadata for the cube is always saved. If you
select Save the metadata and create the cube, the short form of the PROC
OLAP code is generated along with the necessary LIBNAME statements and
submitted to an application server. You can also select whether to save the PROC
OLAP code that is generated. At the Save PROC OLAP Code dialog box, enter the
file location where you want to save the resulting code.

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

Here is the complete PROC OLAP code:

proc olap cube=Summary1
drillthrough_table=olaplib.CAMPAIGN_SUMMARY
path="c:\cubes"
description="Summary1"
;

metasvr host=localhost
port=9999
protocol=bridge
userid=userid pw=pw
repository=Foundation
olap_schema="OLAP Schema"

36 Building a Cube from a Summary Table � Chapter 3

;
dimension Campaigns

hierarchies=(Campaigns)
caption=’Campaigns’
sort_order=ascending
;

hierarchy Campaigns
levels=(Campaign_Type Campaign Sub_Campaign)
caption=’Campaigns’
default
;

level Campaign_Type
caption=’Campaign Type’
sort_order=ascending
;

level Campaign
caption=’Campaign ID’
sort_order=ascending
;

level Sub_Campaign
caption=’Sub Campaign’
sort_order=ascending
;

dimensioon CampaignDates
hierarchies=(CampaignDates)
caption=’CampaignDates’
type=time
sort_order=ascending
;

hierarchy CampaignDates
levels=(Campaign_Start_Year

Campaign_Start_Month Campaign_Start)
caption=’CampaignDates1’
default
;

level Campaign_Start_Year
type=year
caption=’Campaign Start Year’
sort_order=ascending
;

level Campaign_Start_Month
type=months
caption=’Campaign Start Month’
sort_order=ascending
;

level Campaign_Start
type=days
caption=’Campaign Start’
sort_order=ascending
;

dimension Geographic
hierarchies=(Geographic)
caption=’Geographic’
sort_order=ascending

Cube Building Examples � Building a Cube from a Summary Table 37

;
hierarchy Geographic

levels=(Division Region Client_ID)
caption=’Geographic’
default
;

level Division
caption=’Division’
sort_order=ascending
;

level Region
caption=’IFA Region’
sort_order=ascending
;

level Client_ID
caption=’Client id’
sort_order=ascending
;

dimension CustomerAge
hierarchies=(CustomerAge)
caption=’CustomerAge’
sort_order=ascending
;

hierarchy CustomerAge
levels=(Age_Group_1 Age_Group_2)
caption=’AgeGroup1’
default
;

level Age_Group_1
caption=’Age Group 1’
sort_order=ascending
;

level Age_Group_2
caption=’Age Group 2’
sort_order=ascending
;

dimension Products
hierarchies=(Products)
caption=’Products’
sort_order=ascending
;

hierarchy Products
levels=(Product_Group Product_Type)
caption=’Products1’
default
;

level Product_Group
caption=’Product Group’
sort_order=ascending
;

level Product_Type
caption=’Product Code’
sort_order=ascending
;

38 Building a Cube from a Star Schema � Chapter 3

measure totrevSUM
stat=sum
analysis=Revenue
aggr_column=totrev
caption=’Sum of Revenue’
format=BEST12.
default
;

measure totcustSUM
stat=sum
analysis=Number_Of_Customers
aggr_column=totcust
caption=’Sum of Number_Of_Customers’
format=BEST12.
;

run;

Building a Cube from a Star Schema
In this example, you can build a cube from a star schema. A star schema is a data

source that contains tables in a database in which a single fact table is connected to
multiple dimension tables. In this example, an international retail company sells sports
and outdoor products.

To create the cube by using SAS Cube Studio, complete these steps:
1 Start SAS OLAP Cube Studio and connect to the appropriate metadata server.
2 To begin creating a cube, select Cube Designer from the shortcut menu.
3 In the Cube Designer - General window, enter the following information:

� Cube Name
� Description
� Repository
� OLAP Schema
� Path in file system to store the cube
� Input Type.

For input type, select Star Schema.
4 In the Cube Designer - Input window, select a data source or detail table for your

cube. For this example select the ORDER_FACT table. If a detail table does not exist
for your data, select Define Table, and then define the source that you will
import your metadata from.

Note: When you build the dimensions using PROC OLAP, and if you use a fact
table from a star schema, use the FACT= option. Additionally, use FACT= option
to read a star schema, then use the DIMTBL= option to specify the dimension
tables. �

Note: If the cube is built from a star schema, then the keys that link the
dimension table and the fact table are also defined by using the DIMKEY= and
FACTKEY= options. See the “DIMENSION Statement” on page 86 for further
information. �

5 In the Cube Designer - Drill-Through window, determine whether or not you will
have a drill-through table. In this example, you will not use a drill-through table,
so you can select the option No table for Drill-Through.

Cube Building Examples � Building a Cube from a Star Schema 39

6 In the Cube Designer - Dimension Tables window, select dimension tables that are
associated with the ORDER_FACT star schema that you specified as the data
source for the cube. For this example, select the following tables:

� CUSTOMER_DIM
� GEOGRAPHY_DIM
� ORGANIZATION_DIM_MOD_LEVELLED
� TIME_DIM.

7 Now that your basic metadata server and cube information has been entered,
define the different dimensions and their respective levels and hierarchies. This
example cube has these dimensions and levels:

� Time
� Year_ID
� Quarter
� Month_Name
� Week_Name
� Date_ID.

For the Time dimension, the following star schema information is also
included:

Table TIME_DIM

Key Date_ID

Fact Key Order_Date

� Customers
� Customer_Name
� Customer_Age
� Customer_Gender
� Customer_Group
� Customer_Type.

For the Customers dimension, the following star schema information is
also included:

Table CUSTOMER_DIM

Key Customer_Id

Fact Key Customer_Id

� Geography
� Continent_Name
� Country
� State
� Region
� Province

40 Building a Cube from a Star Schema � Chapter 3

� County
� City.

For the Geography dimension, the following star schema information is
also included:

Table GEOGRAPHY_DIM

Key Street_Id

Fact Key Street_Id

� Organization
� Employee_Name
� Job_Title
� Salary
� Gender
� Company
� Department
� Org_Group
� Section.

For the Organization dimension, the following star schema information is
also included:

Table ORGANIZATION_DIM

Key Employee_Id

Fact Key Employee_Id

Define the dimensions for the cube. For each dimension, you define the dimension,
its levels, and its hierarchies.

� At the Cube Designer - Dimensions dialog box, select the Add button. This
opens the Dimension Designer - General dialog box. Enter the following
information:

� dimension name
� caption
� description
� type of dimension (standard or time)
� sort order.

When you define the dimensions for a cube based on a star schema, you will
need to provide additional information about the dimensions in the
Dimension Designer - General window. On the Star Schema Dimension
Tables Definition panel, enter the following information:

� Table
� Key
� Fact Key
� Data Set Options.

Cube Building Examples � Building a Cube from a Star Schema 41

� Select the necessary dimension levels at the Dimension Designer - Levels
dialog box.

� Define properties such as format, time type, and sort order at the Dimension
Designer - Level Properties dialog box.

� Define hierarchies for the levels at the Dimension Designer - Define a
Hierarchy dialog box.

� Repeat this process for each dimension.

Note: You use the DIMENSION, HIERARCHY, and LEVEL statements here.
For time-specific levels in a dimension, the LEVEL statement is required. Also,
there can be only one time-specific dimension and one GEO-specific dimension per
cube. �

8 Specify the columns or measures for the cube. In the Cube Designer - Selected
Measures window, select the following columns and associated Sum statistics:

� Total_Retail_Price /Sum
� Quantity /Sum
� CostPrice_Per_Unit /Sum
� Discount /Sum.

9 Specify detail information for the measures. In the Cube Designer - Measure
Details window, enter any necessary information for the different measures:

� Caption
� Format
� Unit
� Description.

For the measure Total_Retail_Price, enter a format value of DOLLAR12.2. For
the measure CostPrice_Per_Unit, enter a format value of DOLLAR10.2.

10 Specify member property information for the levels in the cube. In the Cube
Designer - Member Property window, select the Add button to create a new
member property. In the Define a Member Property window, enter the following
information about the member property:

� Name
� Level
� Column
� Format
� Caption Description
� Selected Hierarchies.

In this example, the following member properties are created:

Property Name Level Column Caption
Selected
Hierarchy

WeekDay_Number_US date weekday_no US WeekDay
Number

WeekDay_Number_EU date weekday_eu EU WeekDay
Number

Week_Number_EU week_name week_no EU Week Number YWD

Month_Number month_name month_no Month

Number

YMD

42 Building a Cube from a Star Schema � Chapter 3

Property Name Level Column Caption
Selected
Hierarchy

Month_Number month_name month_no Month

Number

YQMD

Holiday_US date Holiday_US US

Holidays

11 Specify the aggregations for the cube. Aggregations are summaries of detailed
data that is stored with a cube or referred by a cube. They can contribute to faster
query response. In the Cube Designer - Generated Aggregations window, select the
Add button to specify aggregations and associated levels. Order the levels for the
aggregations to follow the hierarchy drill path. The aggregations include

� RegionalCustomerUse
� QuarterlyCustomerUse
� YearlyCustomerUse
� WorldwideStaff
� WorldwideSalaries.

Note: When you create cubes in SAS OLAP Cube Studio, a default
aggregation, which is the NWAY aggregation, is automatically created and listed
in the Cube Designer - Generated Aggregations window. �

12 Build the cube. In the Cube Designer - Finish window, select whether or not you
want the cube to be physically created after the metadata is saved. When you click
Finish, the metadata for the cube is always saved. If you select Save the
metadata and create the cube, the short form of the PROC OLAP code is
generated along with the necessary LIBNAME statements and submitted to an
application server. You can also select whether to save the PROC OLAP code that
is generated. At the Save PROC OLAP Code dialog box, enter the file location
where you want to save the resulting code.

Note: When a SAS OLAP cube is created, a directory for that cube is also created.
This directory is assigned the same name as the cube, but in uppercase letters. For
example, when you save a cube in c:\olapcubes and name the cube Campaigns, the
cube is saved in the directory c:\olapcubes\CAMPAIGNS. �

Here is the complete PROC OLAP code:

proc olap cube=Star
path="c:\cubes"
fact=olapsio.ordfact
;

metasvr host=localhost
port=9999
protocol=bridge
userid=userid
pw=pw
repository=Foundation
olap_schema="OLAP Schema"
;

dimension Time
hierarchies=(YWD YMD YQMD)
type=time

Cube Building Examples � Building a Cube from a Star Schema 43

dimtbl=olapsio.timedim
dimkey=date_ID
factkey=order_date
;

hierarchy YWD
caption="Year-Week-Day"
levels=(Year_ID Week_Name Date_ID
;

hierarchy YMD
caption="Year-Month-Day"
levels=(Year_ID Month_Name Date_ID)
;

hierarchy YQMD
caption="Year-Quarter-Month-Day"
levels=(Year_ID Quarter Month_name Date_ID)
;

level year_ID
type=year
;

level quarter
type=quarters
;

level month_name
type=months
;

level week_name
type=weeks
;

level date_ID
type=days
;

property WeekDay_Number_US
caption="US WeekDay Number"
column=weekday_no
level=date
;

property WeekDay_Number_EU
caption="EU WeekDay Number"
column=weekday_eu
level=date
;

property Week_Number_EU
caption="EU Week Number"
column=week_no
hierarchy=YWD
level=week_name
;

property Month_Number
caption="Month Number"
column=month_no
hierarchy=YMD
level=month_name
;

property Month_Number

44 Building a Cube from a Star Schema � Chapter 3

caption="Month Number"
column=month_no
hierarchy=YQMD
level=month_name
;

property Holidays_US
caption="US Holidays"
column=Holiday_us
level=date
;

dimension Customers
hierarchies=(PersonalData CompanyUsage)
dimtbl=olapsio.custdim
dimkey=customer_id
factkey=customer_id
;

hierarchy PersonalData
levels=(Customer_Name Customer_Age Customer_Gender)
;

hierarchy CompanyUsage
empty_char=_missing_
levels=(Customer_Group Customer_Type)
;

dimension Geography
hierarchies=(Geography)
dimtbl=olapsio.geogdim
dimkey=street_id
factkey=street_id
;

hierarchy Geography
empty_char=_missing_
levels=(Continent_Name Country

State Region Province
County City)

;
dimension Organization

hierarchies=(PersonalStats Organization)
dimtbl=olapsio.orgdim
dimkey=employee_id
factkey=employee_id
;

hierarchy PersonalStats
levels=(Employee_name Job_Title Salary Gender)
;

hierarchy Organization
empty_char=_missing_
levels=(Company Department

Org_Group Section Job_Title)
;

measure DiscountSum
stat=sum
column=Discount
;

measure CostPrice_Per_UnitSum

Cube Building Examples � Building a Cube from a Star Schema 45

stat=sum
column=CostPrice_Per_Unit
format=DOLLAR10.2
;

measure QuantitySum
column=Quantity
caption=’Sum of Quantity’
;

measure Total_Retail_PriceSum
stat=sum
column=Total_Retail_Price
format=DOLLAR12.2
;

aggregation Continent_Name Country State
Region Customer_Group Customer_Type
/ name=’RegionalCustomerUse’
;

aggregation Year Quarter Customer_Group Customer_Type
/ name=’QuarterlyCustomerUse’
;

aggregation Year Customer_Group Customer_Type
/ name=’YearlyCustomerUse’
;

aggregation Continent_Name Country
State Region Province Company
Department Org_Group Section
/ name=’WorldwideStaff’
;

aggregation Continent_Name Country State
Region Province Employee_Name
Job_Title Salary
/ name=’WorldwideSalaries’
;

run;

46

47

C H A P T E R

4
Modifying and Updating Cubes

Updating a Cube 48
Refreshing Cube Metadata 48

MDX DDL REFRESH Statement 49

Tuning Cube Aggregations 49

Using the Manual Tuning Function 50

Using the Advanced Aggregation Tuning Plug-In 51
Using PROC OLAP to Tune Aggregations 51

Monitoring OLAP Server Performance 52

Specifying Tuning and Performance Options in Cube Aggregations 52

Setting Options on the Cube Designer Wizard 52

Global Tab 52

Aggregation Tab 53
Setting Options on the Manual Tuning Function or the Advanced Aggregation Tuning Plug-in 53

Setting Options with PROC OLAP 54

Multiple Language Support and Dimension Table Translations 54

SAS OLAP Cube Studio and Dimension Table Translations 55

PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement 55
SAS Servers and Character Encoding 55

Adding SAS System Options to a Cube 55

Synchronizing a Cube 56

Exporting and Importing Cubes 56

Exporting Cubes 57
Importing Cubes 57

Managing Cube Data 58

Cube and Aggregation Path Settings 58

User Privilege Considerations 58

Repository Considerations 59

Creating Connection Points 59
File Naming Considerations 59

Multi-Language Cubes 59

Manually Copying and Moving SAS OLAP Cubes 60

Manually Copying or Moving SAS OLAP Cube Files 60

Manually Copying MOLAP Files 60
Manually Copying ROLAP Files 61

Changing a Cube’s Data and Index Paths 62

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP 62

Conversion Issues 62

VALIDVARNAME 63
Data Types 63

PROC SQL Syntax 63

SQL Pass-Through Example 64

48 Updating a Cube � Chapter 4

Specifying GIS Map Information for a Dimension 65
Specifying Calculated Members 65

Using the Calculated Members Plug-in 66

Selecting Calculation Types 66

Simple Calculations 66

Time Analysis Calculations 67
Custom Calculations 67

Updating a Cube
A cube can be updated after its initial creation in order to optimize cube performance

and to add or remove aggregations. Any cube update changes elements of both the
physical cube and its metadata registration. You can update a cube in either SAS OLAP
Cube Studio or with PROC OLAP code.

� To update an existing cube in SAS OLAP Cube Studio, select the cube that you
want to modify, right-click, and select the Edit Cube Structure option. You can
also access this function from the Actions menu. This opens the Cube Designer
Wizard. Make any necessary changes to the cube. At the Cube Designer - Finish
dialog box, review the settings for the cube and select one of the cube creations
options. SAS OLAP Cube Studio deletes the cube, and then rebuilds it with the
changes that you entered.

� To update a cube by using PROC OLAP code, modify the code as needed and save
the updated code. Use the DELETE option, the DELETE_PHYSICAL option, or
both from the PROC OLAP statement to delete the cube. Resubmit the modified
code to rebuild the cube. See the DELETE and DELETE_PHYSICAL options for
the “PROC OLAP Statement” on page 79 for further information. Here are three
possible usage scenarios:

If you are changing captions and descriptions or the dimensions or measures,
You must use DELETE to remove the physical cube and the metadata
registration. This is because you are submitting the full PROC OLAP syntax
with changes.

If the input table has new data and you only want to refresh the cube,
You should use DELETE_PHYSICAL to delete only the physical cube. You
can then submit the shorter form of the PROC OLAP syntax with only the
PROC OLAP statement and METASVR statement.

If you are optimizing cube performance by adding or deleting aggregations,
You should not use the DELETE or DELETE_PHYSICAL options. This is
because you are updating the cube in its current state.

Refreshing Cube Metadata
You can refresh the metadata for calculated members and named sets that are

associated with a cube by using the Refresh Cubes function, which is available from the
SAS OLAP Cube Studio toolbar. The refresh cubes function reads the information about
calculated members and named sets that is stored on the metadata server. The refresh
cubes function then updates the OLAP server metadata for the cube. You must be
connected to a server and have administrative permissions in order to select the
Refresh Cubes function.

With the Refresh Cubes function, you can select from a list of one or more cubes to
refresh. You can also select a check box that selects all cubes. The cubes listed are

Modifying and Updating Cubes � Tuning Cube Aggregations 49

those cubes that are assigned to the current OLAP schema and that physically exist.
When you have selected the cubes that you want to refresh, select OK. The refresh
command is then sent to all cubes that were selected.

After the selected cubes have been refreshed, you are prompted to check other
servers that the current OLAP schema is associated with.

MDX DDL REFRESH Statement
The REFRESH statement can be sent manually. You can send the REFRESH

statement for each additional server that the schema is associated with.

REFRESH CUBE (cubename | "_ALL_")

Where cubename specifies a single cube to refresh for the current server connection. Or
ALL specifies that all cubes are refreshed for the current server connection. Here are
some examples.

This example uses the REFRESH statement to refresh the metadata associated with
a cube named OrionStar.

refresh cube [OrionStar]

This example uses the REFRESH statement to refresh the metadata for all cubes
managed by the connected server.

refresh cube _ALL_

You can use the OLAP MDX SQL Pass-Through facility to send the DLL REFRESH
statement to a server. Here is an example.

proc sql noerrorstop;
connect to olap (&olapcon);
execute
(

refresh cube [OrionStar]
) by olap;

proc sql noerrorstop;
connect to olap (&olapcon);
execute
(

refresh cube _ALL_
) by olap;

Tuning Cube Aggregations

When a cube is created, aggregations can be specified by the user. Aggregations are
usually created to improve query performance. After a cube is created and queries are
run against the cube, users might discover that certain aggregations are not being used,
and adjustments and changes to the aggregations are needed. You might want to
change the levels in an aggregation, add another aggregation, or entirely remove an
aggregation.

Tuning aggregations is important for improving query response times. After you
have created and executed reports for your cubes, you can determine what are the most
common queries generated or what are the least common queries generated. These can
then be compared to the aggregations available. It is recommended to add those

50 Using the Manual Tuning Function � Chapter 4

aggregations that are commonly used (those that may only need a modification of an
existing aggregation) and delete those that are not necessary.

There are three possible options to modify the aggregations for a cube:

� Manual Tuning (within SAS OLAP Cube Studio)

� Advanced Aggregation Tuning plug-in (within SAS OLAP Cube Studio)

� PROC OLAP

Using the Manual Tuning Function
The Manual Tuning function in SAS OLAP Cube Studio allows you to adjust and

improve an existing cube by adding, dropping, or modifying aggregations. Manual
Tuning requires an active IOM server connection. When you select Manual Tuning you
are prompted for a SAS IOM Server. If no valid server is available, the Manual Tuning
window will not open. In addition, only MOLAP cubes that have an existing physical
cube, along with a SAS Metadata Repository registration, can use the Manual Tuning
function.

You can access the Manual Tuning function within SAS OLAP Cube Studio by
selecting an existing cube and right-clicking to display the menu that lists the Manual
Tuning function. Or, you can also access it from the main OLAP Cube Studio menu
under the Actions menu.

The Manual Tuning window lists the defined aggregations for the selected cube.
When you finish making selections and select OK, the PROC OLAP statements are
submitted to the IOM application server and the cube data is updated. With the
Manual Tuning Window you can

� Add an aggregation - select Add to create a new aggregation. Enter the
aggregation name and select the levels for the aggregation. Select Apply to save
and validate the aggregation. If the aggregation is a duplicate or it is not in
hierarchy order, you will receive an error message.

� Delete an aggregation - select an aggregation from the list box, and then select
Delete.

� Modify an aggregation - select an aggregation from the list box, and then select
Modify. The bottom panel populates with the aggregation values, and you can
select or deselect the levels. When you finish modifying the aggregation levels,
select Apply to save the changes. Select Apply to validate the aggregation. If the
aggregation is not in hierarchy order, you will receive an error message.

Here are some guidelines for using Manual Tuning:

� Manual Tuning is available only for MOLAP cubes.

� Levels that are specified for an aggregation must follow at least one existing
hierarchy.

� When you modify aggregations, you cannot modify the aggregation name.

� If the cube has an NWAY aggregation, it will display, but it cannot be modified or
deleted.

� You cannot add duplicate aggregations in the Manual Tuning window. A duplicate
aggregation has the same name as another aggregation or the same list of levels
as another aggregation. When you add an aggregation to a cube and select Apply.
Validation will occur to ensure that the aggregation to add is not a duplicate and
that its levels follow a hierarchy order.

Note: If a cube has presummarized aggregations, the Modify function will not be
active if a presummarized aggregation is selected. �

Modifying and Updating Cubes � Using PROC OLAP to Tune Aggregations 51

Using the Advanced Aggregation Tuning Plug-In
The Advanced Aggregation Tuning function provides automatic generation of cube

aggregations. It is additive in nature. Aggregations created with the Advanced
Aggregation Tuning function are added to the list of existing aggregations that may
already be defined for the cube. It is available as a plug-in component for SAS OLAP
Cube Studio.

Within the Advanced Aggregation Tuning plug-in, a generated list of aggregations is
created. This list is then further processed to remove any aggregations that already
exist in the cube. The Advanced Aggregation Tuning function includes two aggregation
generation methods, Cross-Dimensional and ARM Analysis.

Cross-
Dimensional up
to number of
levels:

Cross-Dimensional tuning is recommended when a cube is first
created and no ARM log exists yet. It constructs aggregations using
the different combinations of levels across all hierarchies. You can
use the spin selector to change the maximum number of levels to
use in the hierarchies, starting at the top level of the hierarchy and
going down in the hierarchy drillpath order.

Arm Analysis ARM Analysis is recommended for optimal cube tuning. It is the
preferred method to generate aggregations for cube tuning. Arm
Analysis constructs aggregations using the ARM log (created when
the cube is queried with ARM logging turned on).

ARM analysis requires that ARM logging be turned on and that
an arm log already exist and be available in order for queries to be
performed against the cube. The ARM log is used to deduce which
aggregations to generate that will most likely have positive impact
on query performance. It is only as effective as the amount of ARM
data provided and whether the ARM log data truly reflects the cube
query patterns going to be done. You can type in the name of log file
or use the Browse button to select a file on a local machine. If you
want to select a file that is on a remote machine, you can map the
drive for remote access on your local machine. Generated
aggregations will be listed in descending order by Count (the
number of times that a query needed the aggregation). The Count
and Elapsed Time (wall time) are displayed in the table with each
generated aggregation.

With either aggregation generation method, you select the aggregations to add to the
cube from a generated list.

Using PROC OLAP to Tune Aggregations
To modify an aggregation through PROC OLAP, use the DROP_AGGREGATION

statement to delete the aggregation, and then use the AGGREGATION statement to
define the new aggregation.

� DROP_AGGREGATION level-name1 < level-name2 ...level-nameN > /
NAME=‘aggregation-name’ ;

� AGGREGATION level-name1 / < NAME=‘aggregation-name’ > ;

For more information about the DROP_AGGREGATION and AGGREGATION
statements, see “The OLAP Procedure” on page 78.

52 Monitoring OLAP Server Performance � Chapter 4

Monitoring OLAP Server Performance
SAS OLAP Server performance is monitored and logged with the Application

Response Measurement (ARM) interface. The ARM interface provides built-in logging
capabilities and generates log records that indicate query content and query start and
completion times. From this data, information regarding aggregation usage, individual
query response times, or throughput can be determined. Traditionally, ARM enables
system administrators to monitor application executions, run times, performance, and
completion. SAS OLAP Server uses ARM to monitor

� application behavior
� user behavior and usage
� server loads
� cube optimization (query response time)
� cube metrics—counts of connections and queries.

For more information, see “Monitoring Performance Using Application Response
Measurement (ARM)” in SAS Language Reference: Concepts.

Specifying Tuning and Performance Options in Cube Aggregations
When you build cubes, you can set various options that improve and optimize cube

creation and query performance. These options can be set for all aggregations in a cube
or for a specific aggregation. Additionally, these options can be set by using the PROC
OLAP options or in SAS OLAP Cube Studio. These options are stored with the cube
metadata in the SAS Metadata Repository.

Setting Options on the Cube Designer Wizard
In the Cube Designer - Generated Aggregations window, an Advanced button is

provided for access to tuning options. Select the Advanced button to open the
Performance Options window. There are two tabs for setting tuning options, the Global
tab and Aggregation tab.

Global Tab
The global performance options are applied to all aggregations for the cube. These

performance options include the
� amount of memory (in megabytes) that is available for aggregation creation
� maximum number of threads that are used to create an aggregation index
� number of aggregations to create in parallel
� partition size (in megabytes) of aggregation table partitions
� number of observations (in kilobytes) to include in the index component file

segment
� location of index component files
� location of partitions in which to place aggregation table data
� aggregation tables that are stored in compressed format.

For specific information about these functions, see the Performance Options - Global tab
in SAS OLAP Cube Studio Help.

Modifying and Updating Cubes � Setting Options on the Manual Tuning Function or the Advanced Aggregation Tuning Plug-in 53

Aggregation Tab
The aggregation-specific performance options are applied to an individual

aggregation for the cube and override the global option settings for that aggregation.
You can define and modify performance options for an aggregation or delete options for
an aggregation. The aggregation-specific performance options include the

� partition size (in megabytes) of aggregation table partitions
� number of observations (in kilobytes) to include in the index component file
� location of index component files
� location of partitions in which to place aggregation table data
� aggregation tables stored in compressed format
� aggregations created with indexes

For specific information about these functions, see the Performance Options - Define
Aggregation Options dialog box in SAS OLAP Cube Studio Help.

Setting Options on the Manual Tuning Function or the Advanced
Aggregation Tuning Plug-in

When you add aggregations to a cube, using either the Manual Tuning or the
Advanced Aggregation Tuning function, it is sometimes necessary to change the original
settings for certain performance options to more optimal values. It is also possible to
change the values without having to rebuild the cube.

The Options window enables you to specify certain performance options on the PROC
OLAP statement when adding or modifying aggregations for a cube. On this window
you can view the current values and change the values when needed. If you change one
of the performance option values, the option will be added onto the PROC OLAP
statement when the tuning code is submitted. The procedure will then add the new
values into the metadata. When you first open the window, the current set values of the
options will be listed. The following performance tuning options are available:

Number of
aggregations to
create in
parallel

the number of concurrent aggregations that will be built. This value
must be greater than or equal to zero. This is the equivalent of the
PROC OLAP CONCURRENT option.

Maximum
number of
threads to use

the number of threads to use when creating aggregations. This
value must be greater than or equal to zero and less than 65536.
This is the equivalent of the PROC OLAP MAXTHREADS option.

Memory to use
creating
aggregations

the amount of memory to use when creating aggregations. This
value must be greater than or equal to 32 and less than 10239. This
is the equivalent of the PROC OLAP INDEXSORTSIZE option.

Note: If no aggregation changes are made or if the only changes made are deletions
of aggregations, changes made to the tuning options will not be saved. �

54 Setting Options with PROC OLAP � Chapter 4

Setting Options with PROC OLAP
You can set options for all aggregations in a cube or for a specific aggregation. To set

options for all aggregations, set the options in the PROC OLAP statement. To set
options for a single aggregation, set the options in the PROC OLAP - Aggregation
statement. The options include

INDEXSORTSIZE=n
specifies the amount of memory in megabytes that is available when aggregations
are created. The default is the system’s available memory.

MAXTHREADS=n
specifies the maximum number of threads that are used to asynchronously create
the aggregation indexes.

CONCURRENT=n
specifies the maximum number of aggregations to create in parallel.

WORKPATH=pathname
specifies one or more locations for temporary work files.

DATAPATH=(’pathname1’ ...’pathnameN’)
specifies the location of one or more partitions in which to place aggregation table
data.

INDEXPATH=(’pathname1’ ...’pathnameN’)
specifies the locations of the index component files that correspond to each
aggregation table partition as specified by the DATAPATH= option.

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation tables in a compressed format on
disk.

INDEX | NOINDEX
specifies whether or not to create the aggregations with indexes.

PARTSIZE=partition-size
specifies the partition size in megabytes of the aggregation table partitions and
their corresponding index components.

SEGSIZE=rows-per-segment
specifies the number of observations (table rows) in kilobytes to include in the
index component file segment.

Note: INDEXSORTSIZE=, MAXTHREADS=, and CONCURRENT= are only
available in the PROC OLAP statement. �

For more information about these options, see “PROC OLAP Statement” on page 79 and
“AGGREGATION Statement” on page 99.

Multiple Language Support and Dimension Table Translations

OLAP cube data is often generated in one language but needed in other languages.
For example, a company’s OLAP cube data might be stored in English, but users who
speak Spanish and Turkish need access to it. So, the member values as well as the
captions that are assigned to dimensions, hierarchies, levels, etc., need to be translated.
Multiple language support is available only for cubes that are loaded from star schemas.

Modifying and Updating Cubes � Adding SAS System Options to a Cube 55

It is used to read your alternate locale data sets and create locale-specific metadata for
use at query time. Query results are returned in the language of the requested locale.

You can specify language support when building a cube either in the Cube Designer
Wizard or with PROC OLAP code. There are 56 possible language locales, and English
is the default language.

SAS OLAP Cube Studio and Dimension Table Translations
In the Cube Designer - General window, select the Advanced button. If you selected

Star Schema as the input type in the Cube Designer - General window, you will see the
Dimension Table Translations tab. From the Available Languages/Locales list box,
select the needed languages for the translation tables. The first language in the
Selected Languages/Locales list box is the default language.

PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement
The USER_DEFINED_TRANSLATIONS statement is used in conjunction with the

DIMENSION statement options DIMTABLEMEMPREF= and DIMTABLELIBREF=.
For more information, see the “DIMENSION Statement” on page 86.

SAS Servers and Character Encoding
If your server metadata contains characters other than those typically found in

English, then you must be careful to start your server with an encoding= or locale=
system option that accommodates those characters. For example, a SAS server started
with the default US English locale cannot read metadata that contains Japanese
characters. SAS will fail to start and log a message indicating a transcoding failure.

In general, different SAS jobs or servers can run different encodings (such as ASCII/
EBCDIC or various Asian DBCS encodings) as long as the encoding that is used by the
particular job or server can represent all the characters of the data being processed. In
the context of server start up, this requires that you review the characters used in the
metadata describing your server (as indicated by the server= objectserverparm) to
ensure that SAS runs under an encoding that supports those characters.

Adding SAS System Options to a Cube
When you build an OLAP cube, it is often necessary to include additional SAS code

that must run prior to the creation of the cube. This includes the creation of
user-written formats, PROC statements, and format search paths for the formats that
are used on input tables. The Advanced Cube Options window that is accessed from the
Cube Designer - General window provides the two entry tabs, Submit SAS Code and
Format Search Path. Both tabs provide entry fields for SAS code. You can enter any
text in the fields. There is no validation of the text that is entered. However, error
messages are sent to the SAS log.

The text is saved to the cube metadata in the SAS Metadata Repository and is used
every time the cube is created. You can edit or remove the text after it is initially
entered. Highlight the text and make any needed changes, or use the Delete key to
remove the text. Select OK to save your changes.

Submit SAS
Code

You can use this field to enter a PROC statement or any SAS code
that you want to submit before the cube is created. SAS code is
submitted before any format search path.

56 Synchronizing a Cube � Chapter 4

Format Search
Path

You can use this field to enter names of catalogs or libraries for the
format search path. The catalogs and libraries must be separated by
a blank and will be searched in the order in which they are listed.
You use the SAS system option FMTSEARCH= here.

Note: For more information about SAS formats, see “Formats” in
SAS Language Reference: Dictionary. �

Note: When you build a cube with SAS OLAP Cube Studio, the format search path
is saved with the cube metadata in the SAS Metadata Repository and used every time
the cube is recreated. However, if you submit PROC OLAP code through a SAS session,
outside of SAS OLAP Cube Studio, the format search path is ignored. PROC OLAP will
not read the information from the SAS Metadata Repository or write the information to
the SAS Metadata Repository. �

Synchronizing a Cube
The SAS OLAP Cube Studio — Synchronize Levels function enables you to

synchronize a cube when the input table for an existing cube has encountered a column
name change. This function finds the name differences between the cube and its input
table and changes the hierarchy level names to match the input table column names.
You can access the Synchronize Levels function in SAS OLAP Cube Studio from the
Actions menu or by right-clicking a cube. If you are not connected to a workspace
server when you select a cube, you will be prompted to select a workspace server.

Sometimes it is necessary to change a variable name in the input table that a cube is
based on. However, this can result in the level names for an existing cube to be out of
date. For example, if an input table for a cube has a hierarchy of Year, Quarter, Month,
Day, and the column name “Month” is changed to “Mois” (the French spelling of Month),
then the cube hierarchy level name "Month" will be out of sync with the input table’s
column name "Mois." The Synchronize Levels function enables you to update the
hierarchy with the new month name.

The Synchronize Levels function obtains the cube metadata from the Object
Metadata Repository and compares the names between the input table and the cube
hierarchy. If a discrepancy is found, a new cube file and definition are created with the
new level name. The level name of the existing cube is then updated to reflect the new
column name.

The Synchronize Levels function is available for a cube if the cube physically exists
and you have writemetadata permissions for that cube. In addition, if you are in a
change-managed environment, you must be in the project repository.

Note: If the default Level caption is used (the Level name), then the Level caption is
also updated. You need to update any existing reports or MDX queries that use the old
level name. You also need to update any permission conditions or calculated members
that reference the old level name. You cannot update an unregistered cube. �

Exporting and Importing Cubes
When administering SAS OLAP cubes it is sometimes necessary to copy or move the

cubes. Some possible activities include the following:
� copying cubes from one environment to another
� archiving cubes for backup purposes
� moving cubes from a development system into production

Modifying and Updating Cubes � Importing Cubes 57

SAS OLAP Server cubes are collections of files that are typically large and have a
physical component (the files that make up the cube), and a metadata component (the
cube’s registration in a metadata repository). Both the cube files and registration need
to be kept in sync when you copy or move cubes. The SAS OLAP Cube Studio Export
Cube and Import Cube functions enable you to copy cube metadata from a source
repository to a target repository, and if needed, to another server.

The Export Cube function extracts a cube’s metadata from the source repository and
saves it in a file that is specified by the user. All information about a cube, including its
dimensions, hierarchies, levels, measures, notes, properties, calculated measures,
aggregations, and security settings, will be extracted. The Import Cube function then
enables you to save the cube metadata to another metadata repository on another
metadata server.

Exporting Cubes
The Export Cube function extracts a cube’s metadata from the current repository and

saves it in a file that is specified by the user. All information about a cube, including its
dimensions, hierarchies, levels, measures, notes, properties, calculated measures,
aggregations, and security settings, will be extracted. You can launch the Export Cube
function by right-clicking a cube object in the Cube Studio Navigation Tree and
selecting Export Cube. This opens the Export Cube to File window.

When exporting cube metadata, you must provide a name for the file that you are
exporting the metadata to. If you have not previously created an export file, then the
default filename displayed will be user-default-directory\cubename.xml.

If you have previously created an export file, then the directory of the filename
displayed will be the last directory that you exported cube metadata to. The filename
will be composed of last-export-directory-used\cubename.xml. The name of the cube
that you selected will be entered along with a .xml extension.

Note: The exported file should not be edited or changed by the user. �

Importing Cubes
The Import Cube function imports a cube’s metadata from a previously exported file

and enables you to save the cube metadata to another metadata repository on another
metadata server. All information about a cube, including its dimensions, hierarchies,
levels, measures, notes, properties, calculated measures, aggregations, and security
settings, will be imported.

You can launch the Import Cube function by clicking Import Cube on the SAS OLAP
Cube Studio Shortcut Bar. You can also select it from the SAS OLAP Cube Studio Tools
menu. This opens the Import Cube from File window. In the Import file field, you
can enter the name and location of the file that you will import. You can also click the
Browse button to select a file. If you have not selected an import file before, then the
selected file that is shown by default is user-current-directory\extractedcube.xml. If you
have selected an import file before, then the last selected file is displayed by default.

In addition to these considerations, all connection points for the cube must exist in
the target repository with the same names in order for the cube to import correctly. The
following metadata connection points must exist:

� the OLAP schema for the cube

� all of the tables (input, dimension, drill-through, and aggregation) and columns
that are associated with the cube. The table in the target repository must have the
same Library name as the table that is located where the cube was exported from

58 User Privilege Considerations � Chapter 4

� any UniqueKey, ForeignKey, and KeyAssociation objects required by star schemas

� the identities, groups, and permissions for the security settings

Note: If a cube with the same name as the import cube already exists in the OLAP
schema, an error message appears. �

Managing Cube Data

After selecting a cube to import, you need to indicate whether you want to create new
cube data, refer to the existing cube data, or manually move the cube. On the Cube
Import Wizard — Manage Cube Data window, select one of the following options:

Yes, the cube
data will be
created after
import

You will create new cube data after the cube metadata is imported.
This is the default setting.

No, the cube
data will not
be created
after import

New cube data will not be created. The cube will refer to the
existing cube data from the cube that you selected or you will
manually move the cube data to the new file locations.

Note: If the cube must be created after the import, the option No, the cube data
will not be created after import will be disabled. This will happen if the
imported cube metadata indicates that the cube has not been created. It will also be
disabled if you have changed a path that is associated with an aggregation. This is
because cube data cannot be moved if an aggregation path changes. �

Cube and Aggregation Path Settings

After selecting a cube to import, you can verify and edit path settings for both the
cube and the cube’s aggregations. On the Cube Import Wizard— Substitute Cube Paths
window you can view and edit settings for both Global paths and Aggregation paths.

Global Paths The path values for the imported cube are displayed in the left
column, under the heading Exported Value. You can choose to
modify the Import Value.

Aggregation
Paths

The aggregation path values of the imported cube are displayed for
each aggregation, including the default aggregation. You can choose
to modify the Import Value.

When you have finished editing the cube data and path settings you can finalize the
import process on the Cube Import Wizard — Wizard Finish window. In this window,
you can review the filename and storage path of the file that you are importing. You
can also review the cube name and the OLAP schema for the cube. Click Finish to
import the file. The cube metadata will be imported into your current repository.

User Privilege Considerations
It is recommended that the person performing the cube export or import be the

AdminUser or someone who has full access to the cube. This is because other users
might have restrictions on parts of the cube that could result in a partial cube being
exported and imported.

Modifying and Updating Cubes � Multi-Language Cubes 59

Repository Considerations
It is also recommended that all information about a cube be stored in the same

repository and that you export and import a cube into the same type of repository. For
example: If you export from a foundation repository, then you should import into a
foundation repository. Or if you export from a custom repository, then you import into
another custom repository. An export from one type of repository to a different type of
repository (for example, foundation to custom) is not supported at this time. Also,
export from and import into project repositories is not supported.

Creating Connection Points
Certain metadata must exist prior to importing a cube. All metadata connection

points for the cube must exist in the target repository with the same names. If a
metadata connection object is not found in the repository, then the import will fail. The
following metadata connection points must exist:

� the OLAP schema for the cube - OLAP schemas can be created using the OLAP
Schema wizard in SAS OLAP Cube Studio.

� the tables (input, dimension, drill through and aggregation) and columns that are
associated with the cube - the table in the target repository must have the same
Library name as the table that is located where the cube was exported from. Use
the Source Designer in SAS OLAP Cube Studio, SAS Management Console, or
SAS Data Integration Studio to load the table and column definitions.

� any UniqueKey, ForeignKey, and KeyAssociation objects required by star schema -
keys can be created using the Property Sheet for a table in SAS Management
Console or SAS Data Integration Studio.

� the identities, groups, and permissions for the security settings - security settings
can be created using the Authorization Manager in SAS Management Console.

Note: Foreign key associations must exist for your fact tables. However, if the
foreign key association does not exist on the fact table for your star schema cube, the
import will succeed but the error will be detected when you build the cube or edit the
cube metadata using the Cube Designer. �

File Naming Considerations
When exporting cube metadata, you must provide a name for the file that you are

exporting the metadata to. If you have not previously created an export file, then the
file will be saved in the user-default-directory. The filename will be composed of
user-default-directory\cubename.xml.

If you have previously created an export file, then the file will be saved in the last
directory that you exported cube metadata to. The filename will be composed of
last-export-directory-used\cubename.xml.

When importing cube metadata, if you have not selected an import file before, then
the selected file shown by default is user-default-directory\extractedcube.xml. If you
have selected an import file before, then the last selected file is displayed by default.

Note: An existing OLAP cube cannot be renamed. �

Multi-Language Cubes
You can export and import multi-language cubes. However, only the dimension tables

for the server language (the first language in the UDT statement) are verified for

60 Manually Copying and Moving SAS OLAP Cubes � Chapter 4

registration. You must ensure that all the tables are present. If one of the tables is
missing when the cube is imported, the import will still be successful, but the cube
might not rebuild correctly.

Manually Copying and Moving SAS OLAP Cubes
After copying a cube’s metadata using the Export and Import functions, you can

choose to manually copy the cube files from one location to another instead of reusing
the existing cube files or rebuilding the entire cube. Copying the physical components of
a cube involves copying some or all of the cube files including MOLAP aggregation
tables or ROLAP aggregation and drill-through tables. Specifically, you can manually
copy the following:

Manually Copying or Moving SAS OLAP Cube Files
The core files of a SAS OLAP cube are created in a subdirectory that has the same

name as the cube in the cube’s path. The cube’s path is specified with either of the
following:

� the SAS OLAP Cube Studio, Cube Designer Wizard. In the Cube Designer -
General window, enter a file path in the Path field.

� the PATH= option in PROC OLAP.

For example, if you create the cube "OrionStar" in the cube path
myserver\testolap\testcubes, then the cube files are stored in the path
myserver\testolap\testcubes\OrionStar. When you choose to copy or move the cube to
your target cube path, you should perform the following steps:

1 Create a subdirectory with the cube’s name. For example, if you want to copy or
move the cube to otherserver\prodolap\prodcubes, you would create the directory
otherserver\prodolap\prodcubes\OrionStar.

2 Copy or move the cube files to the target cube subdirectory. This includes the
following files:

� cubename.cube (in our example; OrionStar.cube)
� captiontrees
� fmtcaps
� mbrtrees
� propcaps (does not exist for all cubes)

You can use standard operating system functions to copy or move the files.

Note: You should ensure that the target files have the same operating system
permissions as your original files. �

Manually Copying MOLAP Files
SAS 9.1.3 OLAP cubes store aggregated data values in tables that have the same file

structure as SAS Scalable Performance Data (SPD) Engine tables. These files cannot be
moved using operating system commands. They must be moved by the SAS PROC
COPY utility. This is necessary in order to correctly update the internal structure of the
SPD files as they store path information in their header portion.

By default, the cube’s aggregation table and index files are stored in the cube
subdirectory in the cube’s path. However, you can specify alternate locations for the
data and index portion of the aggregation tables. For more information, see “Changing
a Cube’s Data and Index Paths” on page 62.

Modifying and Updating Cubes � Manually Copying and Moving SAS OLAP Cubes 61

To copy the aggregation files for the OrionStar cube (assuming the aggregation files
are in the cube path), you assign libref IN to the original location and the libref OUT to
the new location. Both LIBNAME statements should use the SPD Engine. You can
then use the PROC COPY statement to copy the files:

libname in spde "\\myserver\testolap\testcubes\OrionStar";
libname out spde "\\otherserver\prodolap\prodcubes\OrionStar"
proc copy in=in out=out;
run;

If you have specified an alternate location for the data and index files as described in
“Changing a Cube’s Data and Index Paths” on page 62, then you must use the
INDEXPATH= and DATAPATH= options on the target LIBNAME statement (that is,
the OUT libref):

libname in spde "\\myserver\testolap\testcubes\OrionStar";
libname out spde "\\otherserver\prodolap\prodcubes\OrionStar"
indexpath=("\\otherserver\olapindexes") datapath=("\\otherserver\olapdata");
proc copy in=in out=out /* move */;
run;

There are some specific restrictions that apply to using the PROC COPY statement.
You can only copy or move cube data by using PROC COPY under the following
conditions:

� if you have not specified a specific index path or data path by clicking the Advanced
button in the Generated Aggregations window. In this case the aggregations are
stored in the cube path and will be moved with the PROC COPY statement.

� if you have specified a global index path or data path only in the Performance
Options window. All aggregation files will be stored in the global path and will be
moved with the PROC COPY statement so long as you have specified
INDEXPATH= or DATAPATH= on the SPDE LIBNAME statement.

Note: If you have specified INDEXPATH= or DATAPATH= on specific aggregations,
you cannot use PROC COPY to move your MOLAP aggregation tables. You will need to
recreate the cube, using the short form of PROC OLAP, in order to get the aggregation
files in the correct location. �

Manually Copying ROLAP Files

SAS OLAP cubes can use ROLAP tables for the following uses:

� drill-through tables

� aggregation tables

� input data (if you used the NO_NWAY option)

� format catalogs (used by any of the above)

These tables can be stored in many formats including SAS tables, SPD Engine tables,
SPDS tables, and tables in external RDBM systems. You can use PROC COPY to copy
or move SAS tables, SPD Engine tables, and SPDS tables. You can use standard
operating system functions to copy or move tables in external RDBM systems.

When you copy or move any of these files, you should verify that your target SAS
OLAP Server has access to those files. In addition, you will need to change the
LIBNAME specifications to point to the new file locations. Libnames for an OLAP
server are allocated by using an AUTOEXEC file during the SAS OLAP Server
invocation or by using pre-assigned libraries.

62 Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP � Chapter 4

Changing a Cube’s Data and Index Paths

In the Cube Designer wizard, the Performance Options window (for Generated
Aggregations) contains two settings that you can modify:

� Location of index component files

� Location of partitions in which to place aggregation table data

You can access the Performance Options window by clicking the Advanced button in the
Cube Designer - Generated Aggregations window. Select the Global tab. These options
are comparable to the INDEXPATH= and DATAPATH= options in PROC OLAP. For
more information about aggregation performance options, see “Performance Options -
Global Tab” in the SAS OLAP Cube Studio Help.

Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP

The SQL Pass-Through facility enables a SAS user to connect to an OLAP server and
execute cube queries within the PROC SQL environment. PROC SQL establishes a
connection to an OLAP server by using the PROC SQL CONNECT statement.

After a connection is made to the OLAP server, multiple queries can be submitted by
using the OLAP query language, Multidimensional Expressions (MDX). These queries
are run against existing OLAP cubes. A PROC SQL query is then closed after all
observations (rows) of data are returned.

To disconnect from the server, you must submit the PROC SQL DISCONNECT
statement.

The main function of the SQL Pass-Through facility for OLAP is to query data, but
MDX commands can be submitted that create named sets, globally scoped sets,
drill-through paths, and other OLAP components. Additionally, named sets that are
created by using MDX can then be used to run queries. It is important to note the
following conditions:

� These sets are only available during the current PROC SQL session.

� Other PROC SQL sessions cannot access or reference these sets.

� After a PROC SQL connection is disconnected, any session-created sets are
discarded.

Any libraries that are required for cube queries are obtained from the metadata
repository when the cube is first loaded on the server. These libraries are dynamically
assigned when PROC SQL establishes a connection to an OLAP server.

Conversion Issues
OLAP cube data is multidimensional and flexible in regard to data name lengths and

restrictions. However, when PROC SQL sends a query to the OLAP server, data is
returned in a flattened, tabular format that contains rows (observations) and columns
(variables).

The SAS OLAP Server has unique naming conventions that specify valid column
names, lengths, and types. Column names that are returned from SAS OLAP can
contain characters (periods, spaces, brackets) and can be unrestrained in length.
Additionally, OLAP types can be variable-length strings, floating-point numbers, or
integers. This differs from SAS data set naming conventions, and some conversion is
necessary.

Modifying and Updating Cubes � PROC SQL Syntax 63

VALIDVARNAME
The SQL Pass-Through facility supports the existing SAS option VALIDVARNAME.

You can specify the VALIDVARNAME option to control variable names. The current
default setting for VALIDVARNAME is V7, and variable names can be a maximum of
32 characters in length. Each variable must start with a letter or the underscore
character and can contain letters, underscores, and numbers. Uppercase and lowercase
letters are also allowed.

When converting column names to SAS variable names, the SQL Pass-Through
facility for OLAP will

� truncate the column name to the maximum size that is allowed.

� replace any invalid characters with an underscore.

� use a numeric suffix to differentiate between duplicate variable names that are
generated during the data conversion.

Note: For additional information about naming restrictions for SAS OLAP Server,
see “Naming Guidelines for SAS OLAP Server” on page 108. �

Note: For further information about the VALIDVARNAME= system option, see
“VALIDVARNAME=System Option” and “Names in the SAS Language” in the SAS
Language Reference: Dictionary. �

Data Types
OLAP query results that contain member names or strings are converted to a fixed

length CHAR type. All OLAP numeric types are converted to standard SAS numeric
types (8-byte floating point). Missing values are handled by standard SAS conventions.

PROC SQL Syntax
Here is an example of the basic syntax that is used to connect to an OLAP server and

execute a cube query:

proc sql;
connect to dbms-name (connection options);
execute (MDX query);
select . . . from connection to remote | alias (dbms-query);
disconnect from dbms-name;
quit;

CONNECT TO REMOTE
establishes a connection to a remote DBMS or to remote SAS data through a SAS
server. This statement is required. Remote SQL Pass-Through (RSPT) does not
support implicit connection.

DBMS=dbms-name
specifies the name of the remote DBMS that you want to connect to. For SAS
OLAP Server, the dbms-name is saseolap or olap.

DISCONNECT FROM REMOTE | alias
ends the connection to the remote DBMS or to the SAS SQL processor in the
server SAS session.

EXECUTE (SQL-statement) BY REMOTE | alias
specifies an SQL statement to be executed by the SAS SQL processor or by the
remote DBMS in the server SAS session.

64 SQL Pass-Through Example � Chapter 4

SELECT . . . FROM CONNECTION TO REMOTE | alias (dbms-query);
specifies the connection to the remote SAS SQL processor or the remote DBMS as
the source of data for the SELECT statement and the recipient of the dbms-query.

Here are the bridge server connection-options:

HOST=machine-name
specifies either the DNS name or the IP address of the machine that is hosting the
OLAP server.

PORT=port-number | SERVICE=service-name
either the port-number or service-name is required. The port-number specifies the
numeric value of the port on which the OLAP server resides. The service-name is
used to look up the port number of the machine that is hosting the OLAP server.

USER=userid
a string that specifies the user’s identification for the specified OLAP server. If
included, this option is enclosed within parentheses with the required arguments
and any other options.

PASS=password
a string that specifies the password for the user who is identified with the USER=
option. If included, this option is enclosed within parentheses with the required
arguments and any other options.

This is the COM server connection-option:

machine-name
specifies either the DNS name or the IP address of the machine that is hosting the
OLAP server. This is the only argument that is used for COM server connections.

Note: For detailed information about PROC SQL syntax see “Overview of the
Pass-Through Facility” in SAS/ACCESS for Relational Databases: Reference and
“Syntax for Remote SQL Pass-Through (RSPT) Facility” in SAS/SHARE User’s Guide. �

SQL Pass-Through Example
In the following example, PROC SQL connects to the pass-through facility for OLAP

to create a new data set named temp, which contains all the variables that are returned
from the multidimensional expression (MDX) defined in the SELECT query. The OLAP
server returns query results in a tabular format known as a flattened rowset. The table
rows become the observations of the output data set, and the table columns become the
variables. After all the rows are returned, PROC SQL closes the query. The server
connection is terminated when the program encounters a DISCONNECT statement or
when the PROC SQL step ends.

Note: Because the OLAP server does not impose the same restrictions on column
names, types, and lengths that SAS imposes on data sets, some conversion might be
required. �

100 proc sql;
101 connect to olap (host=localhost service=olap1);
102 create table temp as select * from connection to olap
103 (
104 select { dealers.dealer.members } on 0,
105 { [cars].[Car].members,
106 [cars].[Color].members } on 1
107 from mddbcars

Modifying and Updating Cubes � Specifying Calculated Members 65

108);
109 disconnect from olap;
110 quit;

Specifying GIS Map Information for a Dimension
The SAS OLAP Cube Studio Specify Map function allows you to store ESRI

Geographic Information System (GIS) spatial map information in the SAS Metadata
Repository. This GIS information can then be read by the SAS OLAP Server and
returned during a cube query. You can set up the ESRI ArcGIS server information in
the metadata repository by using the Map Service Manager plug-in in SAS
Management Console. Users can access the functionality through the SAS Web OLAP
Viewer and SAS Web OLAP Viewer for Java.

The Specify Map function enables you to identify a geography-based dimension and
then assign ESRI spatial map information to that dimension. To define GIS information
for a SAS OLAP cube, you identify a dimension as a geographic-type dimension (GEO)
in the Dimension Designer - General window. You can have only one GEO dimension
per cube. After a dimension has been marked as a GEO-type dimension, the Specify
Map button becomes active on the Cube Designer - Dimensions window.

Note: The Specify Map button is dimmed until a GEO dimension has been specified
for a cube. �

The Specify Map window enables you to assign ESRI spatial map information to
levels of the GEO-type dimension. You can add map information to an existing cube,
modify map information for a cube, or delete the map information from a cube. When
ESRI map information is added to a cube, the property objects for the mapped cube
levels are listed in the Cube Designer’s Member Property window. From here you can
modify the format, caption, and description for the member property. These member
properties are named SAS_SPATIAL_ID by default.

Note: If a dimension is changed from type GEO to Standard or Time, all the map
information is removed. �

For further information on the Specify Map window, see the SAS OLAP Cube Studio
Help.

Specifying Calculated Members
After you have built a cube, you might find it necessary to add members or measures

to the cube. You can add calculated members to a cube in the following ways:
� manually by submitting PROC OLAP code with the DEFINE statement. See

“DEFINE Statement” on page 102.
� using the Calculated Members plug-in in SAS OLAP Cube Studio.

The Calculated Members plug-in enables you to add new members for the Measures
dimension. A calculated member is a definition (for a dimension member) that you
create and store with the cube. The calculated member value is generated later during
query time. You can also define a calculated member as a measure.

66 Using the Calculated Members Plug-in � Chapter 4

Using the Calculated Members Plug-in
The Calculated Members plug-in can be accessed from the SAS OLAP Cube Studio

Shortcuts Bar or from the Tools menu. Click Calculated Members to open the Cube
List dialog box. In this dialog box, select a cube from the repository tree and select OK.
The Calculations for cube dialog box opens.

On the Calculations for cube dialog box you can add new calculated members or
modify existing members for the selected cube. The list box displays all calculated
members that are defined in the metadata for the selected cube. Select Add to launch
the New Member Wizard and define a new calculated member.

To modify an existing member, select the member and then click Edit. The Edit a
Calculated Member dialog box opens.

Selecting Calculation Types
When you click Add in the Calculations for cube dialog box, the New Member Wizard

is launched. On this window, you select the type of calculation that you want to create.
You can select one of the following types:

� Simple Calculations to create a simple calculation formula. See “Simple
Calculations” on page 66.

� Time Analysis Calculations to create a time-based calculation formula. See “Time
Analysis Calculations” on page 67.

� Custom Calculations to enter a custom calculation formula. See “Custom
Calculations” on page 67.

Simple Calculations
On this window, you select the variables to create a simple calculation. You can

select one of the following calculation types:
� Sum
� Difference
� Ratio
� Percent Increase
� Percent Decrease
� Distinct Count

The Formula drop-down lists for the members are populated with all measures,
including calculated measures. The Formula panel changes depending on the
calculation-type radio button you select. When a formula is selected, the Formula panel
is populated with drop-down lists appropriate for the selected calculation. A member
must be selected in each list. The member selections for the different formulas are
preserved across formulas within a type.

If you select Distinct Count, a selection tree is displayed. Each dimension has a
node that expands into its hierarchies and then into the levels for each hierarchy. One
variable in the hierarchy tree must be selected.

For further information on the Simple Calculations window, see the SAS OLAP Cube
Studio Help.

Modifying and Updating Cubes � Using the Calculated Members Plug-in 67

Time Analysis Calculations
On this window, you select the variables to create a Time calculation. You can select

one of the following calculation types:

� Opening Balance

� Closing Balance

� Rolling Total

� Average Over Time

� Compare Parallel Periods

� Compare Consecutive Periods

The Formula panel changes depending on the time-calculation radio button that you
select. The Existing measure drop-down list is populated with all measures, including
calculated measures. The Time period drop-down list is populated with members from
the Time dimension. A member must be selected in each list. The member selections
for the different formulas are preserved across formulas within a type.

Note: This option is not available if there are no Time-type dimensions for the
cube. �

For further information on the Time Analysis Calculations window, see the SAS
OLAP Cube Studio Help.

Custom Calculations
On this window, you enter the variables to create a custom calculation. You can enter

the following:

Parent
dimension

specifies a parent dimension for the new calculated member that you
are creating. The default dimension is Measures. If you select a
dimension other than Measures, this field will initially be populated
with the unique name for the default hierarchy’s all member.

Parent member specifies a parent member for the new calculated member. Use the
Browse button to display a tree of valid members for the dimension.
If you select the Browse button and the cube physically exists, you
will be prompted to log on to an OLAP server, if you haven’t already.

Note: If the cube exists, you must connect to the OLAP server
so that the valid members can be retrieved from the server. If the
cube does not exist or a connection cannot be made to the OLAP
server, the valid members displayed in the tree will be the all
members for each of the hierarchies for the dimension. �

Name specifies a name for the custom calculation.

Formula specifies an MDX formula for the new calculated member.

Click Verify to validate the MDX formula entered in the Formula text box. This
function is only available for cubes that physically exist. When you select Verify, the
Log on to an OLAP server dialog box opens. Select a server and enter a user ID and
password. A connection will be made to the selected OLAP server. Click Clear to clear
the contents of the Formula text box.

The Generated MDX text area allows you to view the MDX code that currently exists
for the selected cube and any new MDX code that is entered in the Formula text box.

For further information on the Custom Calculations window, see the SAS OLAP
Cube Studio Help.

68

69

C H A P T E R

5
Using SAS OLAP Cubes

Using a Cube with ADO MD 69
Using a Cube with OLE DB for OLAP 69

Using a Cube with Additional SAS Products 70

SAS Products That Use SAS OLAP Cubes 70

SAS Enterprise Guide 70

SAS AppDev Studio 70
SAS Information Map Studio 71

SAS Web Report Studio 71

SAS Web OLAP Viewer 72

SAS Web OLAP Viewer for Java 72

SAS Web OLAP Viewer for .NET 73

Using a Cube with Third-Party Clients 73
Microsoft Excel 2000 and Excel 2002 PivotTable 73

Saving a PivotTable as a Web Page 75

Microsoft Office Web Components 2000 and 2002 PivotTable 75

ProClarity Professional 76

Using a Cube with ADO MD

Applications gain access to SAS OLAP cubes through ADO MD. ADO MD is an
industry standard programming interface to multidimensional data. It offers the same
functionality as OLE DB for OLAP but in a simpler programming model. Accessing
SAS OLAP cubes through ADO MD requires the SAS OLAP Data Provider, which is a
component of SAS Integration Technologies. The SAS OLAP Data Provider is installed
with the SAS Integration Technologies Client for Windows 9.1. See the SAS Data
Providers: ADO/OLE DB Cookbook for more information about IOM data provider
usage with ADO MD.

Using a Cube with OLE DB for OLAP

In addition to ADO MD, applications gain access to SAS OLAP cubes through OLE
DB for OLAP, an industry standard set of programmable Component Object Model
(COM) interfaces that expose multidimensional data. For SAS OLAP cubes, the OLE
DB interfaces are exposed by the SAS OLAP Data Provider, a component of SAS
Integration Technologies. The SAS OLAP Data Provider enables applications to
perform data analysis by providing a means to view schema information, submit MDX
queries, and retrieve results. The SAS OLAP Data Provider is installed with the SAS

70 Using a Cube with Additional SAS Products � Chapter 5

Integration Technologies Client for Windows 9.1. See the SAS Data Providers: ADO/
OLE DB Cookbook for more information about IOM data provider usage.

Using a Cube with Additional SAS Products

SAS Products That Use SAS OLAP Cubes
The following additional SAS products access SAS OLAP cubes:
� “SAS Enterprise Guide” on page 70
� “SAS AppDev Studio” on page 70
� “SAS Information Map Studio” on page 71
� “SAS Web Report Studio” on page 71
� “SAS Web OLAP Viewer” on page 72
� SQL Pass-Through Facility for OLAP. For more information, see “Accessing OLAP

Cubes from SAS: SQL Pass-Through Facility for OLAP” on page 62.

Note: The SQL Pass-Through Facility for OLAP does not require additional
licensing. �

See the product help and documentation for these products for information on how to
access SAS OLAP cubes.

SAS Enterprise Guide
SAS Enterprise Guide is a project-oriented Windows application that is designed to

enable quick access to much of the analytic power of SAS software for statisticians,
business analysts, and SAS programmers.

SAS Enterprise Guide is an ODBO-compliant OLAP Viewer. When accessing OLAP
cubes via ODBO, SAS OLAP Server acts as an Open OLAP Provider and Enterprise
Guide is an Open OLAP Consumer.

SAS Enterprise Guide provides an OLAP-specific tool called the OLAP Analyzer. The
OLAP Analyzer (formerly named the MDDB Viewer) has been simplified by the
development of a new user interface and wizards for common tasks. You can view the
detailed data that makes up any tuple (that is, a pairing of items from two dimensions)
in your OLAP cube. In addition, you can add calculated members, or formulas, to a
dimension in an OLAP cube. The calculated members can be computed from other
members or values and must return either strings or numeric values.

SAS Enterprise Guide also enables you to create SAS Stored Processes and to store
that code in a repository that is available to a SAS Stored Process Server. (Stored
processes are SAS programs that are stored on a server and are executed by client
applications.) Stored processes are used for Web reporting and analytics, among other
things.

For more information about SAS Enterprise Guide, see the SAS Enterprise Guide
Help, which is available from within the product.

SAS AppDev Studio
SAS AppDev Studio provides a single interface for the development of thin- and

power-client business intelligence applications. SAS AppDev Studio supports every

Using SAS OLAP Cubes � SAS Web Report Studio 71

major Web standard on both the server and the client side. CIOs can choose SAS as
their standard for business intelligence with the knowledge that the analytical power of
SAS can be deployed throughout the organization, regardless of the applications
development and information distribution architecture.

Using tools that are part of SAS AppDev Studio, you can develop applet-based or
servlet-based (including JavaServer Pages) OLAP applications.

For information, examples, and reference information on this product, consult the
following sources:

� SAS AppDev Studio Help
� SAS AppDev Studio Developer’s Site at the SAS Customer Support Center,

support.sas.com/rnd/appdev.

SAS Information Map Studio
SAS information maps can translate business questions into the necessary MDX code

to access SAS 9.1 OLAP structures. SAS Information Map Studio is a Java application
that enables data modelers and data architects to create and manage SAS Information
Maps, which are business metadata about your physical data. Information maps enable
you to surface your data warehouse data in business terms that typical business users
understand, while storing key information that is needed to build appropriate queries.
Information maps provide the following benefits:

� Users are shielded from the complexities of the physical data.
� Data storage is transparent to the consumers of information maps, regardless of

whether the underlying data is relational or multidimensional, or whether the
data is in a SAS data set or in a third-party database system.

� Business formulas and calculations are predefined, which makes them usable on a
consistent basis.

� Users can easily query data for answers to business questions without having to
know query languages.

For more information about SAS Information Map Studio, see the SAS Information
Map Studio Help, which is available from within the SAS Information Map Studio
product.

SAS Web Report Studio
SAS Web Report Studio is a Web-based application that enables you to create, view,

and organize reports. You can use SAS Web Report Studio to perform these
OLAP-specific tasks:

� drill and expand tables and graphs
� support ragged and unbalanced hierarchies
� pivot individual crosstab dimensions
� switch dimensions and measures with Data Selection box
� synchronize report components to display a common drill state or have them

remain independent

In addition to OLAP-specific tasks, you can perform the following tasks:

Creating reports Beginning with a simple and intuitive view of your data provided by
SAS Information Maps (created in SAS Information Map Studio),
you can create reports based on either relational or
multidimensional data sources. You can use the Report Wizard to

72 SAS Web OLAP Viewer � Chapter 5

quickly create simple reports or the Edit Report view to create
sophisticated reports that have multiple data sources, each of which
can be filtered. These reports can include various combinations of
list tables, crosstabulation tables, and graphs. Using the Edit
Report view, you can adjust the style to globally change colors and
fonts. You can also insert stored processes that take the results from
a block of SAS code and embed those results directly into a report.

Viewing and
working with
reports

While viewing reports using a thin client (a Web browser), you can
filter, sort, and rank the data that is shown in tables,
crosstabulations, and graphs. With multidimensional data, you can
drill down on data in crosstabulations and graphs and drill through
to the underlying data.

Organizing
reports

You can create folders and subfolders for organizing your reports.
Information consumers can use keywords to find the reports that
they need. Reports can be shared with others or kept private.

Printing and
exporting
reports

You can preview a report in PDF and print the report, or save and
e-mail it later. You have control over many printing options,
including page orientation, page range, and size of the tables and
graphs. You can also export data as a spreadsheet and export
graphs as images.

For more information about using SAS Web Report Studio, see the SAS Web Report
Studio Help, which is available from within the product. For information about
administrative tasks associated with SAS Web Report Studio, see the SAS Intelligence
Platform: Web Application Administration Guide, which is available at
support.sas.com.

SAS Web OLAP Viewer
SAS Web OLAP Viewer is a data exploration tool designed for business analysts who

need to look at large volumes of data quickly from varying perspectives. It lets business
users look at data from multiple angles, drill into detail data, and save their
information for easy Web-based report creation.

SAS Web OLAP Viewer surfaces SAS 9 OLAP cubes, OLAP Information Maps, and
OLAP-based data explorations. It provides an easy-to-use interface from which you can
select a data source, view the data, and customize your view with features such as
sorting and filtering. With SAS Web OLAP Viewer you can perform these tasks:

� apply filters and rankings to cubes
� calculate new measures
� sort data values
� add totals and subtotals
� save and reload changes to your data view
� create PDF for printing
� export to Excel

There are two versions of the SAS Web OLAP Viewer: SAS Web OLAP Viewer for
Java and SAS Web OLAP Viewer for .NET. For further information on SAS Web OLAP
Viewer, see the SAS Web OLAP Viewer Help.

SAS Web OLAP Viewer for Java
SAS Web OLAP Viewer for Java is a standalone, browser-based, data exploration

tool. It is a Java Web application and is available as part of the SAS BI Server or SAS

Using SAS OLAP Cubes � Microsoft Excel 2000 and Excel 2002 PivotTable 73

Enterprise BI Server. It provides you advanced OLAP navigation and the ability to use
ESRI maps to visualize data. You can access OLAP data with SAS Web OLAP Viewer
for Java in two ways:

� By using SAS Information Maps, you can control the way users access data
sources.

� By using direct access to cubes, you can reduce the amount of preparation work
that is necessary before data access.

SAS Web OLAP Viewer for Java also enables you to design new calculated measures
at runtime. You can then publish your views as reports in SAS Web Report Studio.

SAS Web OLAP Viewer for .NET
SAS Web OLAP Viewer for .NET is a Microsoft .NET Web application. It provides

you advanced OLAP navigation and the ability to edit MDX queries directly. SAS Web
OLAP Viewer for .NET can access any standards-compliant OLE DB for OLAP data
source, such as the following:

� SAS OLAP Server
� Microsoft Analysis Services

SAS Web OLAP Viewer for .NET also enables you to design new calculated measures
at runtime. Calculated measures let you use the full power of MDX to create
calculations based on measures within your OLAP data source. You can distribute your
results in the following ways:

� exporting slices from your OLAP data source to flat tables or Microsoft Excel
spreadsheets

� exporting slices to SAS Enterprise Guide for further analysis using analytics or
forecasts

Using a Cube with Third-Party Clients
The SAS OLAP Server exposes multidimensional data through OLE DB for OLAP

interfaces. Supporting these industry standard interfaces enables the SAS OLAP
Server to integrate with third-party clients. The user interfaces for these clients vary
widely. To ensure successful integration with the SAS OLAP Server, usage guidelines
for some third-party clients have been established.

Microsoft Excel 2000 and Excel 2002 PivotTable
To view SAS OLAP cubes in Microsoft Excel, you must identify the server where your

cubes are stored and the cube you want to analyze with the PivotTable and PivotChart
Wizard.

1 In Microsoft Excel, select Data � PivotTable and PivotChart Report. This
opens the PivotTable and PivotChart Wizard.

2 At the PivotTable and PivotChart Wizard, select the radio buttons for External
data source and PivotTable. Select Next.

3 In the PivotTable and PivotChart Wizard window, select Get Data. This opens the
Choose Data Source window.

� On the OLAP Cubes tab, select <New Data Source>.
� Select OK. This opens the Create New Data Source window.

� In field 1, enter the name that you want to associate with the cube data
you are accessing.

74 Microsoft Excel 2000 and Excel 2002 PivotTable � Chapter 5

Note: This is the name that Excel uses to store your work. �
� In field 2, select SAS OLAP Data Provider 9.1.
� In field 3, select the Connect button. This opens the Data Link

Properties window. In the Data Source field, enter the name of the SAS
9 OLAP Server you are accessing. If necessary, enter your user ID and
password for accessing the server. Select the SAS Protocol (Bridge,
Com, or Corba). If you select Bridge, then you must specify the SAS
Service Name/Port. Select OK.

� If the connection to the server is successful, field 4 will be active.

Note: A successful connection depends on several factors such as
accurate data source and port information, accurate user account
information, and whether the server is running and can be accessed.
For details about SAS Protocol, SAS Service Name, and other connection
properties, see “SAS OLAP Provider Connection Properties” in the SAS
Data Providers: ADO/OLE DB Cookbook. �

Select the cube that you want to analyze in Excel.

Note: If field 4 is active, but there are no cubes shown in the drop
down box, this means the OLAP server was unable to locate any cubes.
A possible cause is that your OLAP server is not associated with the
correct OLAP schema. You can determine the OLAP schema assigned to
your OLAP server from the SAS Management Console. Then in SAS
OLAP Cube Studio, verify that the OLAP schema has cubes. For more
information about OLAP schemas see the SAS Intelligence Platform:
Data Administration Guide. �

� You must select the radio button Save my user ID and password in
the data source definition when you connect to a secure server. If
you select the radio button, then a message window opens that informs
you how the user ID and password will be stored in the data source
definition. At this point you must confirm your selection of the radio
button. There are variations in performance between Microsoft Excel
2000 and Microsoft Excel 2002. If you do not select the radio button,
then when you connect to a secure server, the connection will fail in one
of these ways:

� In Microsoft Excel 2000, you will return to the Choose Data Source
window in the PivotTable and PivotChart Wizard.

� In Microsoft Excel 2002, the Data Link Properties window reloads,
which allows you to re-enter the data source information.

� When you finish entering information in the Create New Data Source
window, select OK. At this point Excel saves the data as a Microsoft
query (OQY) file that you can later reference and load in Excel.

After completing the fields in the Create New Data Source window, you return
to the Choose Data Source window. You see your new data source listed on the
OLAP Cubes panel. Select OK. This returns you to the PivotTable and PivotChart
Wizard window. Select Next. This loads the PivotTable and PivotChart Wizard.

4 At On the PivotTable and PivotChart Wizard, select where you want to put the
PivotTable. You can choose to place the PivotTable in a New worksheet or in the
Existing worksheet. Select Finish. The PivotTable is loaded.

5 At the worksheet and PivotTable menu, select cube data items to populate the
columns and rows of the PivotTable. Use the drag-and-drop selection method to
move the data buttons to the PivotTable. For the PivotTable data area, select the
data buttons that are measures of the cube data.

Using SAS OLAP Cubes � Microsoft Office Web Components 2000 and 2002 PivotTable 75

6 From this point, use standard Microsoft Excel functionality to view cube data.

Note: You must have Microsoft Query installed to view OLAP cubes in Microsoft
Excel. �

Saving a PivotTable as a Web Page
When you save a PivotTable as a static Web page in Microsoft Excel 2002, the user

password is not automatically saved with the HTML file that is generated. For Excel
2002 PivotTables that are connected to a secure OLAP server, this can result in an
error message when the HTML file is loaded into Internet Explorer.

In Microsoft Excel 2002, when you selectFile � Save as Web Page a message
window displays stating that the user password will not be saved. You then have an
opportunity to continue saving the HTML file or not. If you choose to save the HTML
file without the password, an error message might be displayed when the user tries to
load the HTML file in Microsoft Internet Explorer. To prevent this error message, you
can manually edit the HTML file to include the user password. For example, in this
connection tag, you would add the password option, password=mypass; to the
<Connection> string.

<Connection>Provider=sas.OLAPProvider.9.1;User ID=&userid;Data
Source=SAS OLAP Provider Server;Location=&location;
Mode=ReadWrite|Share Deny None;SAS Logical Name="";
SAS Machine DNS Name=&SASMachineDNSName ;
SAS Port=&Port;SAS Protocol=2;
SAS Server Type=2</Connection>

Microsoft Office Web Components 2000 and 2002 PivotTable
For the Microsoft Office Web Components 2000 and 2002 PivotTable user interface,

the PivotTable connection string must specify the provider and data source. Specifically,
the connection string must specify

� Provider=sas.OLAPProvider.9.1
� the data source as a URL/URI style string that contains all the necessary

connection properties:

olapServerName&Property1=value&property2=Value&property3=value

The string must begin with the name of the OLAP Server to which you are
connecting. To list additional connection properties, follow the server name with
“&” and list “property name=property value” pairs, delimited by “&”.

Note: All connection properties, with the exception of provider, must be
specified within the data source string. �

Note: For a description of these properties see the SAS Data Providers: ADO/
OLE DB Cookbook. In particular, see the sections “Connections and Data Sources”
and “Connecting to a Remote SAS OLAP server.” �

Here is an example of an HTML page using a Microsoft Office 2000 PivotTable in
conjunction with the SAS OLAP Server. The data source string specifies an OLAP
server with the name mktg.unx.com, a SAS port of 6176, and the ProtocolBridge for
SAS protocol defined as 2.

<HTML>
<BODY ONLOAD = "Setup_PT()">
<OBJECT ID="PivotTable1"

CLASSID="CLSID:0002E520-0000-0000-C000-000000000046"

76 ProClarity Professional � Chapter 5

style="HEIGHT: 500px; WIDTH: 500px">
</OBJECT>
<SCRIPT language=VBScript>

Sub Setup_PT()

constr="Provider=sas.OLAPProvider.9.1;Data
Source=mktg.unx.com&SAS Port=6176

&Location=localhost&SAS Protocol=2’’
PivotTable1.ConnectionString=constr
PivotTable1.DataMember="CAMPAIGN"
PivotTable1.ActiveView.AutoLayout

End Sub
</SCRIPT>

</BODY>
</HTML>

For Microsoft Office 2002 PivotTable Web Components, use
CLASSID=“CLSID:0002E552-0000-0000-C000-000000000046”.

ProClarity Professional
You can access SAS OLAP cubes from within ProClarity Professional. The following

steps show you how to load a SAS OLAP cube for analysis:
1 From the File menu, select Options � OLAP Provider � Change ProviderSAS

OLAP Data Provider 9.1 � OKOn the OLAP Provider tab of the Options
window, SAS OLAP Data Provider 9.1 should now appear as the current provider.
Select OK.

2 From the File menu, select Open Cube. This opens the Connect window.
3 In the Server field, enter the name of the SAS OLAP server that you are

connecting to as well as the user name and password. Select OK. This loads the
Open Cube window.

4 In the Open Cube window, select a cube to open. Select OK. The cube is loaded into
the ProClarity workspace.

5 From this point, use standard ProClarity functionality to manipulate the SAS
OLAP cube.

Note: The ProClarity interface currently enables you to specify the data source that
you are connecting to as well as the user name and password. However, it does not
allow you to specify other provider properties that might be necessary to establish a
server connection such as SAS Port or SAS Protocol. For further information about how
to set additional SAS Provider properties, see the SAS Data Providers: ADO/OLE DB
Cookbook. �

Note: In ProClarity you can access and view measures by selecting View � MDX
Editor. The cube measures are displayed in the lower metadata window. However,
when viewing SAS OLAP cubes in ProClarity, user-defined measures are not
recognized. �

77

A P P E N D I X

1
The OLAP Procedure

The OLAP Procedure 78
Syntax: OLAP Procedure 78

PROC OLAP Statement 79

Options 79

METASVR Statement 85

Required Argument 85
Options 85

DIMENSION Statement 86

Required Arguments 87

Options 87

LEVEL Statement 89

Required Arguments 90
Options 90

PROPERTY Statement 91

Required Arguments 92

Options 92

HIERARCHY Statement 93
Required Arguments 93

Options 94

MEASURE Statement 95

Required Arguments 95

Options 98
AGGREGATION Statement 99

Required Arguments 100

Options 100

DROP_AGGREGATION Statement 101

Required Arguments 102

DEFINE Statement 102
Required Arguments 104

UNDEFINE Statement 104

Required Arguments 105

USER_DEFINED_TRANSLATIONS Statement 105

Required Argument 106
SAS Servers and Character Encoding 106

Tables Used to Define Cubes 107

Naming Guidelines for SAS OLAP Server 108

Loading Cubes 109

Loading Cubes from a Detail Table 109
Loading Cubes from a Star Schema 110

Loading Cubes Using Summarized Data 112

Maintaining Cubes 113

78 The OLAP Procedure � Appendix 1

Building a Cube from an Existing Definition 113
Adding Aggregations to an Existing Cube 114

Deleting Aggregations from an Existing Cube 114

Deleting Cubes 115

Specialized Options for PROC OLAP 115

Options for Managing Ragged Hierarchies 115
Options Used for Performance 116

The OLAP Procedure

The OLAP procedure is one of the tools in SAS 9.1 that you can use to create and
delete cubes, and add and delete aggregations.

Note: You can also use the Cube Designer wizard to maintain OLAP cubes. The
Cube Designer wizard can be launched from SAS Data Integration Studio and SAS
OLAP Cube Studio. Help on using the wizard to build cubes is available from within
both applications. �

In addition to the basic cube creation tasks, PROC OLAP also enables you to

� build cubes with ragged hierarchies

� control options that can be used to optimize cube creation and query performance

� specify data set options on detail, fact, dimension, and drill-through tables

� create TIME dimensions

� design dimensions that have more than one hierarchy

� define global calculated members and named sets

� include SAS code when you submit PROC OLAP in batch mode

� read alternate locale data sets and create locale-specific metadata for use at query
time

Syntax: OLAP Procedure

PROC OLAP < option(s)>;

METASVR OLAP_SCHEMA=’schema-name’ < option(s)>;

DIMENSION dim-name HIERARCHIES=(hier–name) <option(s)>;

HIERARCHY hier-name LEVELS=(level–name1<level–name2 ... level-nameN>)
<option(s)>;

LEVEL level-name <option(s)>;

PROPERTY prop-name LEVEL=level-name<option(s)>;

MEASURE measure-name STAT=statname < option(s)>;

AGGREGATION level-list </option(s)>;

DROP_AGGREGATION level-name1 < level-name2 ...level-nameN> /
NAME=’aggregation-name’ ;

DEFINE MEMBER | SET ’member-or-set-name’ AS ’mdx-expression’ ;

UNDEFINE MEMBER | SET ’member-or-set-name’ ;

USER_DEFINED_TRANSLATIONS one or more of 56 locale specifications;

PROC OLAP � Options 79

PROC OLAP Statement
The PROC OLAP statement specifies the input data source, cube name, and path.

This statement can also be used to
� specify options that might improve query performance
� delete cubes
� specify global settings for handling missing hierarchy members in ragged and

unbalanced hierarchies.

PROC OLAP <option(s)>;

Options
Note: For information about options that can be used to optimize cube creation and

query performance, see “Options Used for Performance” on page 116. �

COMPACT_NWAY
specifies that the cube build will include an additional summarization step that is
designed to decrease the size of the NWAY aggregation and improve viewing
performance. The amount of improvement depends on the nature of the data. The
cubes that improve the most are those that have the largest number of rows that
can be included in the additional summarization step.

Candidates for compaction are cubes that are built from star schema, where the
cube does not define levels for all columns in all dimension tables. This can result
in a fact table that contains many rows that belong to the same leaf member of a
given hierarchy. These are the rows that are summarized to decrease the size of
the NWAY aggregation.

For example, assume that a cube is built from a star schema that contains a
Time dimension table. The Time table contains columns for year, quarter, month,
and day, along with a primary key column. If the cube is defined so that the day
column is not specified as a level of a time hierarchy, then there are up to 31 key
values that refer to each unique combination of year, quarter, and month.
Together, these key values define a unique leaf member of that hierarchy. These
are the values that are summarized at build time.

The amount of compaction in the NWAY aggregation is determined by the
number of source rows that can be summarized. The number of summarized rows
depends on the number of unique key values in the fact table that refer to the same
leaf member of a hierarchy. Another compaction factor is the number of rows in the
fact table that contain unique combinations of keys; these rows are not compacted.

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation tables in a compressed format on
disk.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a COMPRESS option in the
AGGREGATION statement. �
Default: NOCOMPRESS

CONCURRENT=n
specifies the maximum number of aggregations to create in parallel. This option
does not apply to the NWAY aggregation, which is always built first (unless the
NO_NWAY option is set).
Default: 2, which is based on the results of a special algorithm that takes into

consideration the number of aggregations that are being created and the

80 Options � Appendix 1

number of processors that are available. The algorithm assumes that CPU
resources should be reserved for creating aggregation indexes.

Tip: So that each built index has a fair share of the assigned INDEXSORTSIZE
memory, INDEXSORTSIZE is divided by the CONCURRENT value. The value
of INDEXSORTSIZE should give each concurrent index build enough memory to
at least hold a table PARTSIZE. For best performance, INDEXSORTSIZE
divided by CONCURRENT should be greater than PARTSIZE.

CUBE=cube-name
specifies a valid SAS name for the cube to be created or updated. For naming
guidelines, see “Naming Guidelines for SAS OLAP Server” on page 108.

DATA | FACT=dsname
specifies the data source for the cube. The unsummarized data source can be any
SAS data file, including files that are supported by SAS access engines. If you load
the cube from a star schema, then the dsname is the name of the fact table that
contains the analysis variables from which to derive the measures for the cube.
The fact table must also contain fact keys that correspond to dimension tables in
the star schema.

You can also provide data set options along with DATA | FACT=. Options are
stored within the cube and reapplied when the data is accessed at run time. For
more information, see “Data Set Options” in SAS Language Reference: Concepts.

Note: This option is not required if you want to define the cube by using input
data from a fully summarized external data source (a crossing of all dimensions
known as an NWAY); in that case, you specify the data source for the cube by
using the TABLE= option in the AGGREGATION statement. �

Interaction: If you load the cube from a star schema, then you must use the
DIMENSION statement to

specify the dimension table name (the DIMTBL= option)

specify the dimension (primary) key column (the DIMKEY= option)

specify the column (foreign key) in the fact table that corresponds to the
dimension key column (the FACTKEY= option).

DATAPATH=(’pathname’ ...’pathnameN’)
specifies the location of one or more partitions in which to place aggregation table
data. The data is distributed by cycling through each partition location according
to the partition size (set using the PARTSIZE= option). For example, if you specify
DATAPATH=(’c:\data1’ ’d:\data2’), then PROC OLAP places the first
partition of each aggregation table into directory c:\data1, the second partition of
each table into directory d:\data2, the third partition of each table into c:\data1,
and so on. It is also possible to have aggregation tables that use less than the
specified number of partitions. For example, your cube might contain an
aggregation table that fits entirely into c:\data1.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a DATAPATH= option in the
AGGREGATION statement. �

Default: The cube subdirectory of the location that is specified by the PATH=
option in the PROC OLAP statement

DELETE
deletes the physical cube that is specified with the CUBE= option. It also deletes
the cube’s definition, which is stored in the metadata repository.

PROC OLAP � Options 81

If either the physical cube, its registration, or both are not present, then the
DELETE option behaves as explained in the following table:

Note: The DELETE option should only be used if you are recreating a cube
from a completely different dataset or table. The use of the DELETE option will
remove all information about a cube including security information and
information maps. �

Table A1.1 How the DELETE Option Behaves If the Physical Cube or Its Registration Is Not Present

Physical cube exists Registration exists DELETE option behaves this way

No Yes The physical cube is not deleted. The
registration is deleted. If there is a
registration, and you use the DELETE
option, the registration is always deleted
and you cannot recreate the cube from
the registration. You can only recreate
the cube from the registration when you
use the DELETE_PHYSICAL option.

No No Fails because there is nothing to delete.

Yes No Fails because the cube cannot be located
without its registration information. You
must manually delete the cube.

DELETE_PHYSICAL
deletes the physical cube that is specified with the CUBE= option but leaves the
cube definition intact. This enables you to build a new cube based on the saved
cube definition.

If either the physical cube or its registration, or both are not present, then the
DELETE_PHYSICAL option behaves as explained in the following table:

Table A1.2 How the DELETE_PHYSICAL Option Behaves If the Physical Cube or Its registration Is Not Present

Physical cube exists Registration
exists

DELETE_PHYSICAL option behaves
this way

No Yes Fails because there is no physical cube to
delete.

No No Fails because there is nothing to delete.

Yes No Fails because the cube cannot be located
without its registration information. You
must manually delete the cube.

DESC | DESCRIPTION=’cube-description’
specifies any number of characters to be stored as descriptive text. If the text
includes blank spaces or any characters that are not permitted in a valid SAS
name, then enclose the text within quotation marks.

DRILLTHROUGH_TABLE | DT_TABLE | DT_TBL=table-name
specifies an optional drill-through table. Drill-through tables can be used by client
applications to provide a view from processed data into the underlying data source.
You can specify the DATA | FACT= table or a different table that includes the
necessary data and columns.

82 Options � Appendix 1

You can also specify data set options with this option. Options are stored within
the cube and reapplied when the data is accessed at run time. For more
information, see “Data Set Options” in SAS Language Reference: Concepts.

EMPTY_CHAR=‘string’
specifies the text string that identifies members of character levels that are to be
skipped or disregarded. Members are skipped in order to create ragged or
unbalanced hierarchies, as described in “Defining Ragged and Unbalanced
Hierarchies with PROC OLAP” on page 17.

To be skipped, a member in a character level must have a caption whose value
matches the value of the EMPTY_CHAR= option. For example, if a member in a
character level is skipped, and if the caption of that member is Empty, then the
EMPTY_CHAR= option is specified as follows:

empty_char=’Empty’

The maximum length of the quoted string is 256 characters.
Interaction: When specified in the PROC OLAP statement, the

EMPTY_CHAR= option can be overridden by the EMPTY_CHAR= or
IGNORE_EMPTY options in a HIERARCHY statement or by the EMPTY= or
IGNORE_EMPTY options in a LEVEL statement.
To skip members in numeric levels, use the EMPTY_NUM= option.
See also “Naming Guidelines for SAS OLAP Server” on page 108.

EMPTY_NUM=‘string’
specifies the text string that identifies members of numeric levels that are to be
skipped or disregarded. Members are skipped in order to create ragged or
unbalanced hierarchies, as described in “Defining Ragged and Unbalanced
Hierarchies with PROC OLAP” on page 17.

To be skipped, a member in a numeric level must have a caption whose value
matches the value of the EMPTY_NUM= option. For example, if a member in a
numeric level is skipped, and if the caption of that member is Empty, then the
EMPTY_NUM= option is specified as follows:

empty_num=’Empty’

The maximum length of the quoted string is 256 characters.
Interaction: When specified in the PROC OLAP statement, the EMPTY_NUM=

option can be overridden by the EMPTY_NUM= or IGNORE_EMPTY options in
a HIERARCHY statement or by the EMPTY= or IGNORE_EMPTY options in a
LEVEL statement.
Note: If there is no format that is associated with the member value, then

BEST12 is used as the format. �
To skip members in character levels, use the EMPTY_CHAR= option.
See also “Naming Guidelines for SAS OLAP Server” on page 108.

IGNORE_MISSING_DIMKEYS=TERSE | VERBOSE
specifying this option when building a cube from a star schema causes SAS to
ignore an error condition, log the error, and continue building the cube. The error
condition is detected when the fact table contains foreign key values that are not
present in one of the contributing dimension tables. By default, and when this
option is not specified, any missing dimension keys stop the build of the cube.
When IGNORE_MISSING_DIMKEYS=TERSE is specified, the cube build
continues and the fact table row with the missing key is ignored (it is not built
into the cube). The SAS log receives an entry that lists the total number of key
values that are missing from each dimension table. Specifying a value of
VERBOSE produces the same behavior, except that the log receives additional
details; the missing keys are listed for each dimension table.

PROC OLAP � Options 83

INDEX | NOINDEX
specifies whether or not to create the aggregations with indexes. For faster cube
creation and adding and deleting aggregations, you can set this option to
NOINDEX; however, the lack of indexes will adversely affect query performance.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify an INDEX option in the
AGGREGATION statement. �
Default: INDEX

INDEXPATH=(’pathname’ ...’pathnameN’)
specifies the locations of the index component files that correspond to each
aggregation table partition as specified by the DATAPATH= option.

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify an INDEXPATH= option in the
AGGREGATION statement. �

Note: Indexes are not created for aggregations that have fewer than 1,024
records. �
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

INDEXSORTSIZE=n
specifies the amount of memory in megabytes that is available when aggregations
are being created.
Default: The system’s available memory
Tip: So that each built index has a fair share of the assigned INDEXSORTSIZE

memory, INDEXSORTSIZE is divided by the CONCURRENT value. The value
of INDEXSORTSIZE should give each concurrent index build enough memory to
at least hold a table PARTSIZE. For best performance, INDEXSORTSIZE
divided by CONCURRENT should be greater than PARTSIZE.

MAXTHREADS=n
specifies the maximum number of threads that are used to asynchronously create
the aggregation indexes. The processing engine calculates how many threads are
needed based on the number of indexes that are being created and the
INDEXSORTSIZE= value. This option sets a limit on the number of threads
regardless of the number that is calculated by the processing engine. However, if
the processing engine determines that fewer than the maximum number of
threads is needed, then only the calculated number of threads are used.
Default: The value of the SAS system option SPDEMAXTHREADS or 0. If the

value is 0, then the processing engine determines the number of threads based
on the number of indexes that are created plus the available memory. The
maximum value is 65,536 threads.

NO_NWAY
prevents PROC OLAP from automatically creating an NWAY aggregation (the
crossing of all dimension levels) for the new cube. The automatically created
NWAY is usually the largest in the cube and most resembles the content of the
unsummarized data source.
Interaction: If you use this option, then the input data source that is specified

with the DATA= or FACT= option must be available at run time; otherwise,
queries that are not covered by other aggregations will fail.

PARTSIZE=partition-size
specifies the partition size in megabytes of the aggregation table partitions and
their corresponding index components.

84 Options � Appendix 1

Note: This option applies to the automatically created NWAY and all
aggregations that do not explicitly specify a PARTSIZE= option in the
AGGREGATION statement. �

Default: 128 megabytes. The minimum value is 16 megabytes.

PATH=’pathname’
specifies the physical or logical path to the location of a new cube. Within the
specified path, the cube is stored in a directory that uses the name of the cube in
uppercase letters. For example, if you enter the path’c:\v9cubes’ and the cube
name is MrktData, then the cube is stored in ’c:\v9cubes\MRKTDATA’. Enclose
the path within quotation marks.

REGISTER_ONLY
specifies that metadata for a cube is to be registered, but the cube is not to be
physically built. All of the metadata for the cube is added to the SAS Metadata
Repository. The physical cube can be built later using the existing metadata
definition, as specified in Building a Cube from an Existing Definition in the help
for SAS OLAP Cube Studio. Note that all data sets must physically exist at
registration time. The data sets can be empty—they do not need to contain data.
Complete data sets are required when the cube is physically built.

SEGSIZE=rows-per-segment
specifies the number of observations (table rows) in the file segment of the index
component. The value is expressed in multiples of 1,024. The minimum value is 1
(1,024 rows). The segmented indexes are used to optimize the processing of
WHERE expressions. Each parallel thread is given a segment of the table to
evaluate that is equal to the value of the SEGSIZE= option multiplied by 1,024.

Note: This option applies to the NWAY aggregation and all aggregations that
do not explicitly specify a SEGSIZE= option in the AGGREGATION statement. �

Default: 8 (8 x 1,024 = 8,192 rows)

SYNCHRONIZE_LEVELS
checks for SAS column name changes and cube level name changes in an existing
cube. This option will find the name differences and change the level names to
match the column names. When the SYNCHRONIZE_LEVELS option is set, only
the METASVR statement is allowed. No other option or statement can be used.

Note: All source and aggregation column names for a level must be the same. �

WORKPATH=(’pathname1’ ...’pathnameN’)
specifies one or more locations for temporary work files.

Default: For all operating environments except z/OS and VMS, if the
WORKPATH= option is not specified, PROC OLAP uses the SPDEUTILLOC=
system option. If SPDEUTILLOC= is not specified, PROC OLAP uses the
UTILLOC= system option. If UTILLOC= is not specified, or if you do not have
write access to the specified path, the follow message is generated:

ERROR: Cannot create temporary index for proc olap.
NOTE: The SAS System stopped processing this step
because of errors.

For z/OS and VMS, PROC OLAP uses the SPDEUTILLOC= system option only.

Note: The SPDE options are honored by PROC OLAP only if the
REGISTER_ONLY option is set on the PROC OLAP statement, and only if the
long form of the procedure is used to build a cube. The long form of the procedure
is used when you run a SAS program that contains PROC OLAP code. The short
form of the procedure is used by SAS OLAP Cube Studio. �

PROC OLAP � Options 85

METASVR Statement

The METASVR statement identifies the SAS metadata repository in which existing
cube metadata information exists or in which metadata about a new cube is stored.

METASVR OLAP_SCHEMA=’schema-name’ < option(s)>;

The METASVR statement options can be used to override the metadata repository
connection values that are specified through SAS start-up options.

Note: During an interactive SAS session, if connection information is not available
either through start-up settings or through a METASVR statement, then the user is
prompted for the missing information. For more information about SAS start-up
options, see SAS Language Reference: Dictionary. �

Following is an example of a METASVR statement with all of its options set:

metasvr olap_schema=’Banking Schema’
repository=’financial repository’
host=’misdept.us.mar.com’
port=9999
protocol=bridge
userid=jjones
pw=’my password’;

Required Argument
OLAP_SCHEMA=’schema-name’

is a string that specifies the name of the schema that has been defined in a SAS
metadata repository. The name can be a maximum of 32 characters. The OLAP
schema specifies which group of cubes that a SAS OLAP Server can access. Each
OLAP schema can be accessed by multiple SAS OLAP Servers; however, each SAS
OLAP Server has access to only one OLAP schema. When using embedded blanks
or special characters in the schema name, enclose the name in quotation marks.

Options
HOST=’metadata-server-host-name’

is a string that specifies the IP address of the metadata repository host. An
example is ’misdept.us.mar.com’. The address can be a maximum of 256
characters. When using lowercase letters, embedded blanks, or special characters
in the host name, enclose the name in quotation marks.

PORT=port-number
specifies the numeric value of the port on which the metadata repository resides.

PROTOCOL=BRIDGE | COM
specifies the protocol that is used to connect to the specified metadata repository.

PW=’password’
is a string that specifies the password for the user identified with the USERID=
option. The password can be a maximum of 512 characters. When using lowercase
letters, embedded blanks, or special characters in the password, enclose the
password in quotation marks.

86 DIMENSION Statement � Appendix 1

REPOSITORY=’repos-name’
is a string that specifies the name of a SAS metadata repository in which existing
cube metadata information exists or in which metadata about a new cube is
stored. The name can be a maximum of 60 characters. When using lowercase
letters, embedded blanks, or special characters in the repository name, enclose the
name in quotation marks.

USERID=’userid’
is a string that specifies the user’s identification for the specified metadata
repository. The identification can be a maximum of 256 characters. When using
lowercase letters, embedded blanks, or special characters in the user ID, enclose
the user ID in quotation marks.

DIMENSION Statement

The DIMENSION statement defines the logical and hierarchical relationships
between the variables in the input data.

DIMENSION dim-name HIERARCHIES=(hier–nam ... hier-nameN) <option(s)>;

At least one DIMENSION statement must be specified when the cube is created. The
DIMENSION statement is not used when adding or deleting aggregations from cubes.

The maximum number of dimensions that can be defined in a cube is determined by
combining the number of dimensions with the number of multiple hierarchies that are
defined in those dimensions. The maximum value of that sum is 128. Mathematically,
the sum is expressed as follows:

MaxDims = NumDims + NumMultipleHeirarchies = 128

All hierarchies other than the first hierarchy in each dimension apply to the total.
Here are some examples of cubes that are defined with the maximum number of

dimensions:

128 dimensions, each dimension has 1 hierarchy

127 dimensions, 1 dimension has 2 hierarchies

126 dimensions, 1 dimension has 3 hierarchies

126 dimensions, 2 dimensions have 2 hierarchies

The DIMENSION statement does not create aggregations. To create aggregations,
use the AGGREGATION statement.

A DIMENSION statement must include the name of at least one hierarchy in its
HIERARCHIES= option. In addition, a HIERARCHY statement must include the name
of at least one level in its LEVELS= option. Note that you cannot use the same level in
more than one dimension.

You can use LEVEL statements to specify a time period for each level in a TIME
dimension. You can also use LEVEL statements to supply information such as a
level-specific sort order or a level description.

The following example uses one DIMENSION statement, two HIERARCHY
statements, and three optional LEVEL statements to define a fully specified dimension.
In the example, the same levels are being used in different ways.

dimension time
hierarchies=(Year_Months Year_Quarters)
;
hierarchy Year_Months

levels=(year month day)

PROC OLAP � Options 87

;
hierarchy Year_Quarters

levels=(year quarter day)
;

level year
type=year
caption=’Year’
;

level quarter
type=quarters
caption=’Quarter’
;

level month
type=months
caption=’Month’
;

level day
type=days
caption=’Day’
;

Required Arguments
dim-name

names a dimension by using a valid SAS name up to 32 characters. For naming
guidelines, see “Naming Guidelines for SAS OLAP Server” on page 108.

HIERARCHIES=(hier-name...hier-nameN)
specifies the name of one or more hierarchies as defined by HIERARCHY
statements.

Options
CAPTION=’string’

specifies a maximum of 256 characters that can be used to create a meaningful
description of the dimension. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: dim-name

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the dimension. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: dim-name

DIMKEY=dimension-table-column
specifies the name of the column in the dimension table that is specified in the
DIMTBL= option. That column must contain values that correspond to fact key
values in the fact table and be a value that corresponds to a unique combination of
level values in the fact table.

88 Options � Appendix 1

Note: The corresponding fact key is specified with the FACTKEY= option. The
fact table is specified with the FACT= option in the PROC OLAP statement. �

For example, for a dimension that is composed of three levels—NAME, ADDRESS,
and INCOME—a dimension key named CUSTOMER_ID might exist. In this
dimension, each unique value of CUSTOMER_ID corresponds to a unique
combination of NAME, ADDRESS, and INCOME.

Table A1.3 Sample Dimension Data That Illustrates How Unique DIMKEY Values Correspond to Unique
Combinations of Level Values

CUSTOMER_ID NAME ADDRESS INCOME

1 Juan hostel 2000

2 Shelly apartment 2000

3 Paul house 25000

4 Makoto castle 250000000

DIMTBL=libname.memname
specifies the valid, two-level SAS name for a dimension table in the star schema
that is specified with the FACT= option in the PROC OLAP statement. The
dimension table must contain one column for each dimension level name (specified
with the LEVELS= option in HIERARCHY statements) and one column for the
dimension key. However, if the dimension key is also a level, then the dimension
table needs to have only as many columns as there are levels in the dimension.
Member metadata for the dimension is derived from the information in the level
columns of the dimension table.

You can also specify data set options with DIMTBL=. Options are stored within
the cube and reapplied when the data is accessed at run time. For more
information, see “Data Set Options” in SAS Language Reference: Concepts.

Note: The fact table does not have to contain all of the members. However, the
fact table cannot contain any members that are not described by the level
columns. �

Note: The same dimension tables can be used to load cubes that have some,
but not all, dimensions in common. This means that it is possible for multiple
cubes to share the same dimension data. �

Note: If you are building a cube that will contain multiple national languages,
then replace the DIMTBL= option with DIMTABLELIBREF= and
DIMTABLEMEMPREF= options. In addition, you must create a
USER_DEFINED_TRANSLATIONS statement. �

DIMTABLELIBREF=
specifies the library for the data sets that exist, for this dimension, in each
language that is specified by the USER_DEFINED_TRANSLATIONS statement.
The library is associated with the dimension and not the language. You cannot put
different languages in different libraries, but you can put different dimensions in
different libraries. This option is required if you are using the Multiple Language
Support capabilities of the SAS OLAP Server. It is also used in conjunction with
the DIMTABLEMEMPREF= option.

Note: If you are building a cube that will contain multiple national languages,
then DIMTABLELIBREF= and DIMTABLEMEMPREF= are required instead of
DIMTBL=. �

PROC OLAP � LEVEL Statement 89

DIMTABLEMEMPREF=
specifies the member prefix for the translated dimension tables. The member
prefix is the prefix of the data set name. The suffix of the name is provided by the
USER_DEFINED_TRANSLATIONS statement. For example, if the member prefix
is dealdim_ and the suffix is da_DK, then PROC OLAP looks for a data set named
dealdim_da_DK.sas7bdat in the library that is specified by the
DIMTABLELIBREF= option. DIMTABLEMEMPREF= is required if you are using
the Multiple Language Support capabilities of the SAS OLAP Server. It is used in
conjunction with the DIMTABLELIBREF= option and the
USER_DEFINED_TRANSLATIONS statement. This option follows the “Naming
Guidelines for SAS OLAP Server” on page 108.

Note: If you are building a cube that will contain multiple national languages,
then DIMTABLELIBREF= and DIMTABLEMEMPREF= are required instead of
DIMTBL=. �

FACTKEY=fact-table-column
specifies the name of the column in the fact table that corresponds to the
dimension table column that is specified with the DIMKEY= option. The name
does not have to match the DIMKEY name. Referring back to the previously
discussed example, the FACTKEY name could be CUST_NO even though the
DIMKEY name is CUSTOMER_ID. However, even if the names are different, the
underlying data must match. For example, you must match numeric columns with
numeric columns and character columns with character columns. In addition, if
the FACTKEY is a character column, then it must be the same length as the
DIMKEY column. If the FACTKEY is a numeric column, then it is handled as a
decimal precision number (rather than as an integer).

SORT_ORDER=ASCENDING | DESCENDING | ASCFORMATTED |
DESFORMATTED | DSORDER

specifies a sort order for all levels in the dimension. Values that are returned from
queries display in this order by default.
Default: ASCENDING
Interaction: This setting is overridden if sort order is set in a LEVEL statement.
Tip: To specify a sort order for each level within a dimension, set the

SORT_ORDER= option in each LEVEL statement. Values that are returned
from queries display in this order.

Note: The sort order can be changed at query time using the MDX ORDER
functions.

TYPE=TIME | GEO
identifies the dimension as a TIME or GEO dimension. The GEO type is used
when defining ESRI map information for a cube.
Requirement: You must set this option for a TIME or GEO dimension. TIME

and GEO are the only valid values for this option.
Interaction: You can use LEVEL statements to specify the time period of each

level in the TIME dimension. Specifying TYPE=TIME also allows you to use the
MDX time series functions during data query.

LEVEL Statement
The LEVEL statement provides additional information about a level specified with

the LEVELS= option in a HIERARCHY statement, and enables you to set options for
ragged hierarchies.

90 Required Arguments � Appendix 1

LEVEL level-name <option(s)>;

For TIME dimensions, you can use LEVEL statements to specify a time period for
each level in the dimension. However, if you specify the time period for one level, then
you must specify the time period for all levels. You also use LEVEL statements to
supply information such as a level description or a level-specific sort order. You can
have a maximum of 256 levels per cube and a maximum of 19 levels per hierarchy.

Note: Levels that are shared between hierarchies share the values of the options
EMPTY_CHAR=, EMPTY_NUM=, EMPTY=, and IGNORE_EMPTY. These options are
used to create ragged or unbalanced heirarchies, as described in “Defining Ragged and
Unbalanced Hierarchies with PROC OLAP” on page 17. �

Note: Levels use formats as specified in the input data source. To override the
format, you can use a SAS FORMAT statement. �

Note: When you rebuild a cube that has been physically deleted, the rebuilt cube
still uses the formats that were originally used to build the cube and were saved in the
cube’s metadata. This means that the rebuilt cube does not automatically include any
formatting changes that you might have made in the input data source. To manually
specify the new formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

Required Arguments
level-name

specifies a valid SAS name for the level that matches the name of a corresponding
column in the input data. (You can use a column as a level even if it is also being
used as a measure.) This is the same name that is used in the LEVELS= option in
the HIERARCHY statement. Level names must be unique within a cube. For
naming guidelines, see “Naming Guidelines for SAS OLAP Server” on page 108.

Options
CAPTION=’string’

specifies a maximum of 256 characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the text includes blank spaces or special characters
that are not permitted in a valid SAS name, then enclose the caption within
quotation marks.
Default: The column’s label in the input data source. If there is no label

available, the default is the level name.

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the text includes blank spaces or any characters that
are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: The value of the CAPTION= option if one exists; otherwise, the

column’s label. If there is no label available, the default is the level name.

EMPTY=‘string’
specifies the text string that identifies members that are to be skipped or
disregarded. Members are skipped in order to create ragged or unbalanced
hierarchies, as described in “Defining Ragged and Unbalanced Hierarchies with
PROC OLAP” on page 17.

PROC OLAP � PROPERTY Statement 91

To be skipped, a member must have a caption whose value matches the value of
the EMPTY= option. For example, if a member is skipped, and if the caption of
that member is Empty, then the EMPTY= option is specified as follows:

empty=’Empty’

The maximum length of the quoted string is 256 characters.
Interaction: The EMPTY= option overrides for that level any specification of

EMPTY_CHAR=, EMPTY_NUM=, or IGNORE_EMPTY that might have been
specified in the respective HIERARCHY or PROC OLAP statement.
See also “Naming Guidelines for SAS OLAP Server” on page 108.

IGNORE_EMPTY
specifies that any value of the EMPTY_CHAR= option (for character levels) or
EMPTY_NUM= option (for numeric levels) that was specified in the respective
HIERARCHY or PROC OLAP statement is to be ignored. The level is not to be
skipped in the cube build. For further information, see “Defining Ragged and
Unbalanced Hierarchies with PROC OLAP” on page 17.

SORT_ORDER=ASCENDING | DESCENDING | ASCFORMATTED |
DESFORMATTED | DSORDER

specifies a sort order for a level within a dimension. Values that are returned from
queries display in this order.
Default: If a sort order is not specified in the DIMENSION statement or in the

LEVEL statement, then the default order of ASCENDING is applied.
Interaction: This setting overrides the SORT_ORDER= setting in the

DIMENSION statement.

TYPE=YEAR | HALF_YEARS | QUARTERS | MONTHS | WEEKS | DAYS |
HOURS | MINUTES | SECONDS

if you specify the TYPE=TIME option in the DIMENSION statement, then you can
use this LEVEL statement option to specify the time period for the dimension
levels.
Requirement: If you specify a time period for one level in the TIME dimension,

then you must specify the time period for all levels in the dimension. With
regard to drill path, identify the levels from the most general time period to the
most specific.

PROPERTY Statement
The PROPERTY statement assigns properties to specific levels within specified

hierarchies.

PROPERTY prop-name LEVEL=level-name <option(s)>;

Each level can have more than one property assigned to it by using multiple
PROPERTY statements. Property names must match the name of a column in the
input data source, or you must use the COLUMN= option to specify the column name.

In the following example, the COLUMN= option is used in the first two PROPERTY
statements because the column name is different from the property name. In this way,
the property named Population can be assigned to both the country level and the
state level in the geo hierarchy. The level state has two properties: Population
and West_of_Miss.

property Population
column=p_country

92 Required Arguments � Appendix 1

hierarchy=geo
level=country
;

property Population
column=p_state
hierarchy=geo
level=state
;

property West_of_Miss
hierarchy=geo
level=state
;

Required Arguments
prop-name

specifies a valid SAS name for the property. Usually this is the name of a column
in the input data source. If it is not the name of a column, then you must include
the COLUMN= option to specify the column name. For naming guidelines, see
“Naming Guidelines for SAS OLAP Server” on page 108.

LEVEL=level-name
specifies the name of the level that you are assigning the property to.

Options
CAPTION=’string’

specifies a maximum of 256 characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the caption includes blank spaces or special characters
that are not permitted in a valid SAS name, then enclose the caption within
quotation marks.

Default: The column’s label if it exists, otherwise the property name.

COLUMN=column-name
specifies the name of a column from the input data source. You must use this
option if the column name is not the same as the property name.

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the level. Third-party applications that report on cube data might
display this description. If the description includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: The value of the CAPTION= option if one exists; otherwise, the
column’s label.

HIERARCHY=(hier-name ... hier-nameN)
specifies the name of one or more hierarchies that contain the level. If you do not
include the HIERARCHY option, then the property is automatically assigned to all
occurrences of the level in all of the hierarchies in which it appears; otherwise, the
property is assigned to the level only in the specified hierarchies.

PROC OLAP � Required Arguments 93

HIERARCHY Statement
The HIERARCHY statement specifies the navigational order of the levels in a

dimension.

HIERARCHY hier-name LEVELS=(level–name1 <level–name2 ...level-nameN>)
<option(s)>;

You must define at least one hierarchy for each dimension. Specifically, each
DIMENSION statement must identify at least one unique HIERARCHY statement.

The maximum number of hierarchies that can be defined in a dimension is
determined only by the maximum number of hierarchies that can be defined in a cube.
The maximum number of hierarchies that can be defined in a cube is determined by
combining the number of multiple hierarchies with the number of dimensions. The
maximum value of that sum is 128. Mathematically, the sum is expressed as follows:

MaxHiers = NumMultHiers + NumDimensions = 128

All hierarchies other than the first hierarchy in each dimension apply to the total.
Here are some examples of cubes that meet the maximum number of hierarchies:
128 dimensions, each dimension has 1 hierarchy
127 dimensions, 1 dimension has 2 hierarchies
126 dimensions, 1 dimension has 3 hierarchies
126 dimensions, 2 dimensions have 2 hierarchies

Levels in the same dimension can be shared between hierarchies. Every level in a
dimension must be assigned to a hierarchy in the dimension. You can have a maximum
of 19 levels per hierarchy. There is no limit to the number of hierarchies per dimension.

Following is an example of a HIERARCHY statement that specifies three levels:

hierarchy Geography
levels=(country region division);

Required Arguments
hier-name

specifies a valid SAS name for the hierarchy. This name is also used in the
HIERARCHIES= option in the DIMENSION statement. The hier-name cannot be
the same as any of its level names. Hierarchy names must be unique within the
cube. If the hierarchy that you are defining is the only one in the dimension, then
the hierarchy name must match the dimension name. For other naming
guidelines, see “Naming Guidelines for SAS OLAP Server” on page 108.

LEVELS=(level-name1 <level-name2 ...level-nameN>)
specifies a valid SAS name for at least one level. These names correspond to
columns in your input data and are used in any optional LEVEL statements.
Level names must be unique within a cube and cannot be the same as the
hier-name. (You can use a column as a level even if it is also being used as a
measure.) Enter one or more names, separated by a space. Enter the level names
in the order in which you want them to be used, beginning with the top level. For
naming guidelines, see “Naming Guidelines for SAS OLAP Server” on page 108.
Requirement: If the hierarchy is part of a TIME dimension, then the levels

must be listed in order from most general to least general based on their
assigned TYPE. For example, a TYPE=YEAR level must be listed before a
TYPE=QUARTER level.

94 Options � Appendix 1

Options
CAPTION=’string’

specifies a maximum of 256 characters that can be used to create a meaningful
description of the hierarchy. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: hier-name

DEFAULT
identifies a hierarchy as the default hierarchy for the dimension that is defined by
the DIMENSION statement.

Default: The first hierarchy listed for the dimension

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the hierarchy. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: the hierarchy caption, which may be the default, hier-name.

EMPTY_CHAR=’string’
specifies the text string that identifies members of character levels that are to be
skipped or disregarded. Members are skipped in order to create ragged or
unbalanced hierarchies, as described in “Defining Ragged and Unbalanced
Hierarchies with PROC OLAP” on page 17.

To be skipped, a member in a character level must have a caption whose value
matches the value of the EMPTY_CHAR= option. For example, if a member in a
character level is skipped, and if the caption of that member is Empty, then the
EMPTY_CHAR= option is specified as follows:

empty_char=’Empty’

The maximum length of the quoted string is 256 characters.

Interaction: When specified in the HIERARCHY statement, the
EMPTY_CHAR= option overrides (for that hierarchy) any specification of the
EMPTY_CHAR= option in the PROC OLAP statement. In turn, the
EMPTY_CHAR= option in the HIERARCHY statement is overridden by the
EMPTY= or IGNORE_EMPTY options in the LEVEL statements in that
hierarchy.
To skip members in numeric levels, use the EMPTY_NUM= option.
See also “Naming Guidelines for SAS OLAP Server” on page 108.

EMPTY_NUM=‘string’
specifies the text string that identifies members of numeric levels that are to be
skipped or disregarded. Members are skipped in order to create ragged or
unbalanced hierarchies, as described in “Defining Ragged and Unbalanced
Hierarchies with PROC OLAP” on page 17.

To be skipped, a member in a numeric level must have a caption whose value
matches the value of the EMPTY_NUM= option. For example, if a member in a
numeric level is skipped, and if the caption of that member is Empty, then the
EMPTY_NUM= option is specified as follows:

empty_num=’Empty’

PROC OLAP � Required Arguments 95

The maximum length of the quoted string is 256 characters.

Interaction: When specified in the HIERARCHY statement, the EMPTY_NUM=
option overrides (for that hierarchy) any specification of the EMPTY_NUM=
option in the PROC OLAP statement. In turn, the EMPTY_NUM= option in the
HIERARCHY statement is overridden by the EMPTY= or IGNORE_EMPTY
options in the LEVEL statements in that hierarchy.

Note: If there is no format that is associated with the member value, then
BEST12 is used as the format. �

To skip members in character levels, use the EMPTY_CHAR= option.
See also “Naming Guidelines for SAS OLAP Server” on page 108.

IGNORE_EMPTY
specifies that, for this hierarchy, any values that were specified for the
EMPTY_CHAR= and EMPTY_NUM= options in the PROC OLAP statement are to
be ignored. This option can be overridden by specifications of EMPTY_CHAR= and
EMPTY_NUM= in the same HIERARCHY statement. The IGNORE_EMPTY
option can also be overridden in subsequent LEVEL statements using the
EMPTY= option. For further information, see “Defining Ragged and Unbalanced
Hierarchies with PROC OLAP” on page 17.

MEASURE Statement
The MEASURE statement defines the cube’s measures and indicates how they map

to the input data.

MEASURE measure-name STAT=statname <option(s)>;

Include one MEASURE statement for each measure in the cube. Each cube must
have at least one measure. Measure names must be unique. You can have a maximum
of 1,024 measures per cube.

Note: All cube aggregations have identical measures. �

Required Arguments
measure-name

specifies a valid SAS name for the measure. The name must be unique. For
naming guidelines, see “Naming Guidelines for SAS OLAP Server” on page 108.

STAT= statname
specifies the statistic for the measure. The following base statistics are available:
N, NMISS, NUNIQUE, SUM, MAX, MIN, or USS. In addition, these derived
statistics are also available: AVG, RANGE, CSS, VAR, STD, STDERR, CV, T, PRT,
LCLM, or UCLM.

When specifying the NUNIQUE statistic with the MDXfunction
DISTINCTCOUNT, it will return empty data when there is not a valid crossing of
data. This can be removed when the axis uses non-empty. In addition, the
NUNIQUE statistic will not be supported for cubes that contain ragged or
unballanced hierarchies.

Note: At least one non-NUNIQUE measure must be defined. �
New cubes that are based on a data source that contains existing summarized

data (where such data has been indicated in at least one AGGREGATION
statement via the TABLE= option), must include measure statements for the

96 Required Arguments � Appendix 1

stored statistics required for each derived statistic that you want to create for the
new cube. For example, if you want to calculate AVG, you must create measures
for N and SUM, as well as AVG.

Note: MOLAP aggregations do not require the N and SUM. �
The following table indicates which stored statistics are required for each

derived statistic:

Table A1.4 Stored Statistics Required for Each Derived Statistic

Derived Statistics Required Stored Statistics

AVG N, SUM

CSS N, SUM, USS

RANGE MIN, MAX

VAR, STD, STDERR, CV, T,
PRT, LCLM, UCLM

N, SUM, USS

Note: For information about statistic formulas, see “Keywords and Formulas”
in Base SAS Procedures Guide. �

For cubes that are not loaded from a fully summarized data source (that is, you
specified a data source by using the DATA | FACT= option), some statistics use
formats taken from the input data source. Specifically, if the statistic is SUM, MIN,
MAX, RANGE, AVG, STD, STDERR, LCLM, or UCLM, then PROC OLAP uses the
format that is assigned to the column specified by the COLUMN | ANALYSIS=
option. The following table lists the formats used for the other supported statistics:

Table A1.5 Default Formats Used for Statistics

Statistic Format Used

CSS BEST.

CV 8.2

N 12.0

NMISS 10.0

PRT 6.4

T 7.3

USS BEST.

VAR BEST.

For cubes that are loaded from a fully summarized data source (that is, you
specified the data source by using the AGGREGATION statement), the default
format is BEST12.

To override the default formats, you can either set the FORMAT= option or use
a SAS FORMAT statement.

Note: The FORMAT= option also overrides a FORMAT statement. �

Note: When you rebuild a cube that has been physically deleted, the rebuilt
cube still uses the formats originally saved in the cube’s metadata. This means
that the rebuilt cube does not automatically include any formatting changes that
you might have made in the input data source. To manually specify the new
formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

PROC OLAP � Required Arguments 97

COLUMN | ANALYSIS=anlvar
specifies the name of a numeric column that is contained in the cube’s input data
source. (You can use a column as a measure even if it is also being used as a level.)

If the cube is based on an unsummarized data source, then anlvar is the name
of the column in that data source from which the measure will be calculated. Use
COLUMN= to specify the column.

If the cube is based on a summarized data source, then anlvar can be the name
of the numeric column in the data source that was used as the analysis variable
for the pre-calculated measure. Use ANALYSIS= to specify the column. It can also
be a name that identifies a logical association between measures with the same
anlvar name.

For example, if your cube has three measures, N, SUM, and AVERAGE, and if
those measures were derived from the same analysis variable, then you could
specify ANALYSIS=Sales to logically link the three measures through their shared
analysis variable. You would also identify the analysis variable in the
AGGR_COLUMN= option.

As a further illustration, assume that you were building a cube with an NWAY
aggregation that was specified using a summarized SAS dataset. The dataset
contains the columns Country, Region, Division, Year, Quarter, Month,
SumOfSales, and NumOfSales. You would use two MEASURES statements, one
for SumOfSales and another for NumOfSales, as follows.

measure Sales_Sum
stat=sum
aggr_column="SumOfSales"
analysis="Sales"
desc=’Sum of Sales’
units=’Dollars’
format=dollar10.2
;

measure Sales_N
stat=n
aggr_column="NumOfSales"
analysis="Sales"
desc=’Number of Sales’
units=’Dollars’
format=dollar10.2
;

The Sales column becomes logically linked with the physical columns
SumOfSales and NumOfSales.

If the cube consists of a combination of summarized and unsummarized data
sources, then anlvar refers to both a physical and a logical entity. For example,
you might have a cube that requires a physical analysis variable to create a
crossing but that same cube already contains other, higher level aggregations. In
this case, the analysis variable is also used to logically link the measures in the
pre-existing aggregations that were derived from the same input column. You
would also identify the analysis variable in the AGGR_COLUMN= option.

Default: measure-name

Interaction: An unsummarized data source is specified with the DATA | FACT=
option in the PROC OLAP statement. A summarized data source is specified
with the TABLE= option in an AGGREGATION statement.

Note: The COLUMN argument is not required for the NUNIQUE statistic and will
be ignored for the NUNIQUE statistic if specified. �

98 Options � Appendix 1

Options
AGGR_COLUMN=input-column

specifies the name of the numeric column in the summarized input data that
contains the values for the measure. The source of the summarized input data is
specified in the AGGREGATION statement. This option is valid only for stored
statistics.
Default: measure-name

CAPTION=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the measure. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.
Default: The default is based on the statistic and the COLUMN= value, as

shown in the following table. For example, if the statistic is SUM and the
COLUMN= value is Sales, then the default caption is Sum of Sales.

Table A1.6 Defaults for the CAPTION= Option If No Caption Is Specified

Statistic Used for Measure Default Caption

AVG Average measure-column-name

CSS Corrected Sum of Squares of
measure-column-name

CV Measure-column-name Coefficient of
Variation

LCLM Measure-column-name Lower Confidence
Limit

MAX Maximum measure-column-name

MIN Minimum measure-column-name

N Number of Values for measure-column-name

NMISS Number of Missing Values for
measure-column-name

NUNIQUE Number of Unique Values for level-name in
hierarchy-name

PRT Probability of Greater Absolute Value for
measure-column-name

RANGE Measure-column-name Range

STD Measure-column-name Standard Deviation

STDERR Measure-column-name Standard Error of
Mean

SUM Sum of measure-column-name

T Measure-column-name T Value

UCLM Measure-column-name Upper Confidence
Limit

PROC OLAP � AGGREGATION Statement 99

Statistic Used for Measure Default Caption

USS Measure-column-name Uncorrected Sum of
Squares

VAR Measure-column-name Variance

DEFAULT
identifies a measure as the default measure for the cube.

Default: The measure defined in the first MEASURE statement

DESC | DESCRIPTION=’string’
specifies any number of characters that can be used to create a meaningful
description of the measure. Third-party applications that report on cube data
might display this description. If the text includes blank spaces or any characters
that are not permitted in a valid SAS name, then enclose the text within quotation
marks.

Default: measure-name

FORMAT=sas-format-name
specifies the SAS format to be used to display the value of the measure. This
format overrides the default format (see STAT= for more information) and any
format that is specified in a SAS FORMAT statement.

Note: When you rebuild a cube that has been physically deleted, the rebuilt
cube still uses the formats that were originally saved in the cube’s metadata. This
means that the rebuilt cube does not automatically include any formatting
changes that you might have made in the input data source. To manually specify
the new formats, edit and rebuild the cube by using SAS OLAP Cube Studio. �

HIERARCHY=’string’
specifies the hierarchy in which the level resides. This option is used only with the
NUNIQUE statistic. If there is only one hierarchy, then the option may be omitted.

Note: The HIERARCHY= option will be ignored for non-NUNIQUE statistics if
specified. �

LEVEL= ’string’
specifies the level for which a unique count will be determined. This option is used
only with the NUNIQUE statistic. The default is the Measure name.

Note: The LEVEL= option will be ignored for non-NUNIQUE statistics if
specified. �

UNITS=’string’
specifies a maximum of 256 characters that can be used to create a meaningful
description of the measure’s units (for example, “pounds sterling”). Third-party
applications that report on cube data might display this description. If the text
includes blank spaces, mixed-case letters, special characters, then enclose the text
within quotation marks.

AGGREGATION Statement
The AGGREGATION statement defines an aggregation of the cube based on level

information that you provide.

AGGREGATION level-name <level-name2 level-name3 ...level-nameN> / <option(s)>;

100 Required Arguments � Appendix 1

You can specify level names that are associated with an unsummarized data source,
or you can specify level names that match columns in a table that contains existing
aggregated data. The levels can exist in more than one dimension. You do not need to
include dimension names because level names must be unique across dimensions.

Here is an example of an AGGREGATION statement that specifies three levels and
uses the NAME= option. The slash character (/)is required to separate level names
from option specifications.

aggregation country prodtype year /
name=’Product Types by Country’;

Required Arguments
level-name

is the level that is to be used to create the aggregation. Additional level names are
optional. Names are separated by spaces. Names are separated from option
specifications with a required slash character (/). You do not have to include all
levels that are specified in all HIERARCHY statements, but the names that you
do specify must match the names that are used in the HIERARCHY statements.
You can include a TABLE= option to identify a table that contains existing
aggregated information for your specified levels. The levels that you specify must
match columns in the input table.
Restriction: Levels must be listed in drill-path order. You cannot specify an

aggregation that contains a summary level that could never be requested. For
example, if your TIME hierarchy contains the levels Year, Month, and Day, you
could specify Year and Month as an aggregation but not Month by itself.

Options
Note: For information about options that can be used to optimize cube creation and

query performance, see “Options Used for Performance” on page 116Syntax Options
Used for Performance. �

COMPRESS | NOCOMPRESS
specifies whether or not to store the aggregation table in a compressed format on
disk.
Default: NOCOMPRESS

DATAPATH=(’pathname’ ...’pathnameN’)
specifies the location of one or more partitions in which to place aggregation table
data. The data is distributed by cycling through each partition location according
to the partition size. This is set by using the PARTSIZE= option. For example, if
you specify DATAPATH=(’c:\data1’ ’d:\data2’), then PROC OLAP places the
first partition of the aggregation table into directory c:\data1, the second
partition of the table into directory d:\data2, the third partition of the table into
c:\data1, and so on. It is also possible to have aggregation tables that use fewer
than the specified number of partitions. For example, your aggregation table
might fit entirely into c:\data1.
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

INDEX | NOINDEX
specifies whether or not to create the specified aggregation with indexes. For
faster cube creation and updates, you can set this option to NOINDEX; however,
the lack of indexes might adversely affect query performance.

PROC OLAP � DROP_AGGREGATION Statement 101

Note: Indexes are not created for aggregations that have fewer than 1,024
records. �
Default: INDEX

INDEXPATH=(’pathname’ ...’pathnameN’)
specifies the locations of the index component files that correspond to each
aggregation table partition as specified by the DATAPATH= option.
Default: The cube subdirectory of the location that is specified by the PATH=

option in the PROC OLAP statement

NAME=’aggregation-name’
specifies a maximum of 256 characters as the name of the aggregation. If the
name includes blank spaces or any characters that are not permitted in a valid
SAS name, then the name must be enclosed within quotation marks. The name is
stored with the cube’s metadata.
Default: A name assigned by SAS such as AGGR1.

PARTSIZE=partition-size
specifies the partition size in megabytes of the aggregation table partitions and
their corresponding index components.
Default: 128 megabytes. The minimum value is 16.

SEGSIZE=rows-per-segment
specifies the number of observations (table rows) in the file segment of the index
component. The value is expressed in multiples of 1,024. The minimum value is 1
(1,024 rows). The segmented indexes are used to optimize the processing of
WHERE expressions. Each parallel thread is given a segment of the table to
evaluate that is equal to the value of the SEGSIZE= option multiplied by 1,024.
Default: 8 (8 x 1,024 = 8,192 rows)
Interaction: The value of this option overrides for the current aggregation any

such value that was specified for all aggregations in the PROC OLAP statement.

TABLE=libname.dataset
specifies the name of a SAS data set or data view that contains the data for one
aggregation. Every level that is listed in the AGGREGATION statement must
match a column that contains aggregation information in the specified table. Place
this option after the list of level names.

Analysis columns in the table are mapped to the numeric columns that are
specified with the AGGR_COLUMN= option in MEASURE statements.

You can also set data set options with TABLE=. Options are stored within the
cube and reapplied when the data is accessed at run time. For more information,
see “Data Set Options” in SAS Language Reference: Concepts.
Restriction: You cannot use the TABLE= option in an AGGREGATION

statement that is used to add an aggregation to an existing cube.

DROP_AGGREGATION Statement
The DROP_AGGREGATION statement removes an aggregation from the specified

cube.

DROP_AGGREGATION level-name1 < level-name2 ...level-nameN> /
NAME=aggregation-name;

You can specify the levels that are in the aggregation, or the name of the
aggregation, or both the levels and the name. The slash character (/)is required to
separate level names from option specifications.

102 Required Arguments � Appendix 1

Required Arguments
At least one of the following arguments is required for a DROP_AGGREGATION

statement:

level-name1
specifies the names of the level that is in the aggregation that you want to drop.
Additional levels can be specified using blank spaces to separate the level names,
as shown in the following example.

drop_aggregation Year Month Product /
name=Sales ;

NAME=’aggregation-name’
specifies the name of the aggregation that you want to drop. If the name includes
blank spaces or any characters that are not permitted in a valid SAS name, then
the name must be enclosed within quotation marks.

DEFINE Statement
The DEFINE statement defines a global calculated member or a named set for any

cube that is registered in a SAS metadata repository.

DEFINE MEMBER | SET ’member-or-set-name’ AS ’mdx-expression’ ;

A calculated member is a dimension member that has been calculated from the
member values in the input table. Only the definition of the member is stored; the
value is calculated when a query is submitted. A named set is an alias for a specified
MDX expression. Named sets are often used to make complex MDX queries easier to
read and maintain.

The defined calculated members and named sets are available to any session that
creates a query in the context of the SAS OLAP server and the schema defined in the
METASRV statement of the PROC OLAP code that is used to create the global member
or set.

DEFINE statements can apply to more than one cube, so the CUBE= option is not
required to use this statement. The METASVR statement verifies that the cube
definition exists in the metadata repository.

The DEFINE statement can be used alone as shown in this example, which defines
two calculated members and one named set. The METASVR is the only other required
statement. To define multiple sets or calculated members, separate option values with a
comma.

proc olap;
metasvr olap_schema=’Services Schema’

repository=’services’
host=’misdept.us.mar.com’
port=9999
protocol=bridge
userid=jjones
pw=’my password’
;

defne member ’[mddbcars].[Measures].[avg]’ as
’[Measures].[sales_sum]/[Measures].[sales_n]’,

member ’[sales].[Measures].[stat1]’ as
’[Measures].[qty] +1’,

PROC OLAP � DEFINE Statement 103

set ’[campaign].[myset]’ as
’[campaign_dates].[All campaign_dates].children’

;
run;

The DEFINE statement can also be used with a PROC OLAP program that creates a
cube or with a program that adds aggregations to or deletes aggregations from an
existing cube. Cube builds, additions, and deletions occur before the DEFINE statement
is processed, so the DEFINE statement is not processed if those statements fail.

proc olap data=olapsio.cars
cube=mddbcars
path=’d:\services\’
;

metasvr olap_schema=’Services Schema’
repository=’cars’
host=’misdept.us.mar.com’
port=9999
protocol=bridge
userid=jjones
pw=’my password’
;

dimensoion date
hierarchies=(date)
sort_order=scending
;

hierarchy date
LEVELS=(dte)
;

level dte
;

dimension cars
hierarchies=(cars
sort_order=ascending)
;

hierarchy cars
levels=(car color)
;

dimension dealers
hierarchies=(dealers)
sort_order=ascending
;

hierarchy dealers
levels=(dealer dest)
;

measure sales_sum
column=sales
stat=sum
format=dollar15.2
;

measure sales_n
column=sales
stat=n
format=12.0
;

104 Required Arguments � Appendix 1

define member ’[mddbcars].[Measures].[avg]’ as
’[Measures].[sales_sum] / [Measures].[sales_n]’
;

run;

Required Arguments
MEMBER | SET

indicates whether you are creating a calculated member or a named set.

’member-or-set-name’
specifies the name of the member or set that you are creating. If you are creating
a calculated member, then this value specifies a name for the member that will be
calculated by the MDX expression. If you are creating a named set, then this
value is the alias for the specified MDX expression.

AS ’mdx-expression’
specifies the MDX expression.

UNDEFINE Statement
The UNDEFINE statement deletes from a SAS metadata repository one or more

global calculated members or named sets.

UNDEFINE MEMBER | SET ‘member-or-set-name’ ;

To delete multiple calculated members or named sets in a single UNDEFINE
statement, use commas to separate instances of MEMBER | SET ‘member-or-set-name’.

For additional information on calculated members and named sets, see “DEFINE
Statement” on page 102.

The following example shows how a single UNDEFINE statement can be used to
delete from a metadata repository two calculated members and one named set.

proc olapl;
metasvr olpa_schema=’Services Schema’

repository=’services’
host=’misdept.us.mar.com’
port=9999
protocol=bridge
userid=jjones
pw=’my password’
;

undefine member ’[carsCube].[Measures].[avg]’,
member ’[sales].[Measures].[stat1]’,
set ’[campaign].[myset]’
;

run;

PROC OLAP � USER_DEFINED_TRANSLATIONS Statement 105

Required Arguments
MEMBER | SET

indicates whether you are deleting a global calculated member or a named set.

’member-or-set-name’
specifies the name of the member or set that is to be deleted from the metadata
repository. Cube names and dimension names are required for each
member-or-set-name. Square brackets ([,])are optional inside the quotation marks
of member-or-set-name, as shown in the preceding example.

USER_DEFINED_TRANSLATIONS Statement

The USER_DEFINED_TRANSLATIONS statement is required to use the Multiple
Language Support capabilities of the SAS OLAP Server. This statement specifies the
locales that are associated with the data sets that you specify in the DIMENSION
statement.

USER_DEFINED_TRANSLATIONS locale < locale2 ...localeN> ;

Note: Alternative statement names are UDT and
USER_DEFINED_TRANSLATION. �

PROC OLAP uses the UDT statement information, along with DIMENSION
statement options, to read your alternate locale data sets and create locale-specific
metadata for use at query time. Query results are returned in the language of the
requested locale. The Multiple Language Support feature is available only for cubes
that are loaded from a star schema. The alternate locale data set names consist of a
prefix, which indicates the member, and a suffix, which indicates the language. The
DEFINE statement supplies the suffix. The DIMTABLEMEMPREF= option in the
DIMENSION statement specifies the member prefix. For example, if the member prefix
is dealdim_ and the suffix is pl_PL, then PROC OLAP looks for a data set named
dealdim_pl_PL.sas7bdat in the library that is specified by the DIMTABLELIBREF=
option.

The following sample code looks for these dimension data sets in the mylib library.
The default locale is the first locale specified in the UDT statement. Additionally, the
default locale does not use the suffix that is defined by the UDT statement. In this
example, Polish is the default locale, so the suffix is not used.

dimension date
hierarchies=(date)
sort_order=ascending
dimtablelibref=mylib
dimtablemempref=ctimedim_
factkey=dte
dimkey=dte
;

hierarchy date levels=(dte)
;

level dte
;

dimension cars
hierarchies=(cars)
sort_order=ascending

106 Required Argument � Appendix 1

dimtablelibref=mylib
dimtablemempref=cardim_
factkey=carkey
dimkey=carkey
;

dimension cars
levels=(car color)
;

dimension dealers
hierarchies=(dealers)
sort_order=ascendng
dimtablelibref=mylib
dimtablemempref=dealdim_
factkey=dealerkey
dimkey=dealerkey
;

hierarchy dealers
levels=(dealer dest)
;

user_defined_translations
pl_PL /* Polish as used in Poland */
en_US /* English as used in the United States */
ja_JP /* Japanese as used in Japan */
;

Table A1.7 Locales and Associated Data Set Names

Locale Dimension Data Sets

English ctimedim_en_US cardim_en_US dealdim_en_US

Japanese ctimedim_ja_JP cardim_ja_JP dealdim_ja_JP

Polish ctimedim_ cardim_ dealdim_

Required Argument
locale

specifies the locales that correspond to the data sets contained in the library that
is specified by the DIMTABLELIBREF= option in the DIMENSION statement.
Separate locales with a space.

SAS Servers and Character Encoding
If your server metadata contains characters other than those typically found in

English, then you must be careful to start your server with an ENCODING= or
LOCALE= system option that accommodates those characters. For example, a SAS
server started with the default US English locale cannot read metadata that contains
Japanese characters. SAS will fail to start and will log a message indicating a
transcoding failure.

In general, different SAS jobs or servers can run different encodings (such as ASCII/
EBCDIC or various Asian DBCS encodings) as long as the encoding that is used by the
particular job or server can represent all the characters of the data being processed. In
the context of server start up, this requires that you review the characters used in the

PROC OLAP � Tables Used to Define Cubes 107

metadata describing your server (as indicated by the SERVER= objectserverparm) to
ensure that SAS runs under an encoding that supports those characters.

Tables Used to Define Cubes
There are five types of tables that can be used to define a cube:
� detail tables
� fact tables and dimension tables (for cubes that are based on star schemas)
� aggregation tables
� drill-through tables

Detail Tables
A detail, or base, table is any table that is defined in a SAS metadata repository that

contains the columns for the measures and levels of a cube. A detail table consists of
unsummarized data that must include one column for each level and one numeric
analysis column for each set of measures that will be generated.

Fact Tables and Dimension Tables
A star schema refers to a set of input tables that are defined in a SAS metadata

repository. A set of tables includes a single fact table and one or more dimension tables.
A fact table must contain one numeric analysis column for each set of measures that
will be generated. For levels, a fact table will either contain the columns for the levels
of a dimension or contain a key column that links the fact table with a dimension table
that contains the columns for the levels of a dimension.

The following statements are also true for star schemas:
� A fact table can contain a dimension. When this occurs, all the level columns are

contained in the fact table and no fact or dimension key is required.
� If the dimension levels are defined in a dimension table, then all the level columns

for that dimension must be contained in the same dimension table.
� Both the dimension keys and the fact keys are single columns, not combinations of

columns.
� The dimension key can also be a level in the dimension.

Aggregation Tables
Aggregation tables are fully summarized, external relational tables. All aggregation

tables must contain a column for each measure in the cube where the statistic for the
measure is one of the following: N, NMISS, SUM, MAX, MIN, or USS. Columns for
derived measures cannot be stored on the aggregation table and are ignored if they
exist. Derived measures are always computed at query time. (See the STAT= option in
the MEASURE statement for more information about stored and derived statistics.)

An aggregation table can be used in two ways:
� As an NWAY data source for the cube. In this case, the table must contain a

column for every level in the cube and a column for every stored measure.
� As a subaggregation for the cube. In this case, the table must include a column for

each level of the aggregation and a column for every stored measure.

Drill-Through Tables
Drill-through tables are views, data sets, or other data files maintained by the user

that represent all of the relevant input data that is used to define a cube. This data is
later accessed when performing drill-through actions from a client. PROC OLAP checks
that the drill-through table has the correct level and measure names but never looks at
the actual data contents of the table. The name of the drill-through table is stored in
the cube’s metadata in place of a detail or fact table name. (The detail or fact table

108 Naming Guidelines for SAS OLAP Server � Appendix 1

name is still referred to when an action is performed on a cube.) The drill-through table
name can be set either when the cube is first created or during an update.

Drill-through tables can be used by client applications to provide a view from
processed data into the underlying data source.

Naming Guidelines for SAS OLAP Server
For SAS OLAP Server, names
� can be up to 32 characters in length.
� can contain mixed-case letters. SAS stores and writes the variable name in the

same case that is used in the first reference to the variable. However, when SAS
processes a variable name, SAS internally converts it to uppercase. You cannot,
therefore, use the same variable name with a different combination of uppercase
and lowercase letters to represent different variables. For example, cat, Cat, and
CAT all represent the same variable.

� can contain characters other than Latin alphabet letters, numerals, and
underscores, including embedded blanks. An exception to this is the dot character
(.), which is an invalid character. You can do this by setting the SAS system option
VALIDVARNAME=ANY. When this is set, PROC OLAP interprets the name as a
SAS name literal, which is a token that is expressed as a string within quotation
marks, followed by the letter n. Here are some examples:

dimesion ’Product@Work Dimension’n
hierarchies=(’Product@Work Hierarchy’n)
;

hierarchy "Product@Work Hierarchy"n
levels=(prodtype product)
;

The PROC saves the case of the FIRST LOGICAL ENCOUNTER of an object
name in the PROC script and saves it as the final stored name in the cube
metadata. Therefore, the logical order of statement processing is as follows:

DIMENSION
HIERARCHY
LEVEL
AGGREGATION
MEASURE
PROPERTY.

Every DIMENSION statement is processed before any HIERARCHY statement
and every HIERARCHY statement is processed before any LEVEL statement.
This rule affects hierarchy and level names only. The stored hierarchy names are
copied from the DIMENSION statement and the stored level names are copied
from the first HIERARCHY statement listed in the PROC that uses this level.
Here is an example:

hierarchy Time
levels=(Year Month Day)
;

dimension Time
hierarchies=(Time)
;

level year

PROC OLAP � Loading Cubes from a Detail Table 109

type=year
;

In this example the hierarchy name is stored in the cube as “Time” rather than
“TimE”. The level name for year is stored as “Year” rather than “YEAR”. The
AGGREGATION statement does not affect the case of the level names that are
stored in the cube metadata.

Note: For further information about the VALIDVARNAME= system option, see
“VALIDVARNAME=System Option” and “Names in the SAS Language” in SAS
Language Reference: Dictionary. �

Loading Cubes

Loading Cubes from a Detail Table
The following table lists the PROC OLAP statements and options that you use to

load a cube from a detail table. The detail table has a column for each level and at least
one numeric analysis column from which one or more measures can be generated.

Table A1.8 Statements and Options Used for Loading Cubes from a Detail Table

Use these statements Use these options

AGGREGATION The AGGREGATION statement is optional unless you are creating
additional aggregations, in which case, you must specify the names of
the contiguous levels to be used to create the aggregation. Use the
TABLE= option for cubes that are loaded from fully summarized
tables.

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

LEVEL DESC=

CAPTION=

TYPE=

The LEVEL statement is optional unless you want to specify time
periods for each level in a TIME dimension. If you specify a time
period for one level, then you must specify a time period for all levels.
To specify a time period, you use the TYPE= option.

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

110 Loading Cubes from a Star Schema � Appendix 1

Use these statements Use these options

AGGR_COLUMN Required if you use the
AGGREGATION statement with
the TABLE= option

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

PROC OLAP DATA= Required

CUBE= Required

PATH= Required

DESC= Optional

NO_NWAY Optional

Loading Cubes from a Star Schema
The following table lists the PROC OLAP statements and options that you use to

load a cube from a star schema. A star schema is a set of input tables that are defined
in a repository. The set of tables includes a single fact table and one or more dimension
tables. The fact table must contain at least one numeric analysis column for each set of
measures that will be generated.

Table A1.9 Statements and Options Used to Load Cubes from a Star Schema

Use these statements Use these options

PROC OLAP FACT= Required

CUBE= Required

PATH= Required

DESC= Optional

NO_NWAY Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PROC OLAP � Loading Cubes from a Star Schema 111

Use these statements Use these options

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

TYPE=GEO Required only for GEO (ESRI
Map) dimensions

SORT_ORDER= Optional

DIMTBL= Required for cubes that support
one locale. If the cube will
contain multiple national
languages, replace this option
with DIMTABLELIBREF= and
DIMTABLEMEMPREF=.

DIMKEY= Required

FACTKEY= Required

DIMTABLELIBREF= Required if you are building a
cube that will contain multiple
national languages. Replaces
DIMTBL=.

DIMTABLEMEMPREF= Required if you are building a
cube that will contain multiple
national languages. Replaces
DIMTBL=.

LEVEL The LEVEL statement is optional
unless you want to specify time
periods for each level in a TIME
dimension. If you specify a time
period for one level, then you
must specify a time period for all
levels. To specify a time period,
you use the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required if you use the
AGGREGATION statement with
the TABLE= option

112 Loading Cubes Using Summarized Data � Appendix 1

Use these statements Use these options

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

AGGREGATION The AGGREGATION statement
is optional unless you are
creating additional aggregations,
in which case, you must specify
the names of the contiguous
levels to be used to create the
aggregation. Use the TABLE=
option for cubes that contain
aggregated data from tables
other than the input data source.

Loading Cubes Using Summarized Data

The following table lists the PROC OLAP statements and options that you use to
load cubes from a fully summarized data source (a crossing of all dimensions also
known as an NWAY):

Table A1.10 Statements and Options Used to Load Cubes from Fully Summarized Data

Use these statements Use these options

PROC OLAP CUBE= Required

PATH= Required

DESC= Optional

METASVR OLAP_SCHEMA= Required

REPOSITORY= Optional

HOST= Optional

PORT= Optional

PROTOCOL= Optional

USERID= Optional

PW= Optional

DIMENSION HIERARCHIES= Required

DESC= Optional

CAPTION= Optional

TYPE=TIME Required only for TIME
dimensions

SORT_ORDER= Optional

PROC OLAP � Building a Cube from an Existing Definition 113

Use these statements Use these options

LEVEL The LEVEL statement is optional
unless you want to specify time
periods for each level in a TIME
dimension. If you specify a time
period for one level, then you
must specify a time period for all
levels. To specify a time period,
you use the TYPE= option.

HIERARCHY LEVELS= Required

DESC= Optional

CAPTION= Optional

MEASURE STAT= Required

COLUMN | ANALYSIS= Required

AGGR_COLUMN= Required

DESC= Optional

CAPTION= Optional

UNITS= Optional

FORMAT= Optional

DEFAULT= Optional

AGGREGATION names of the contiguous levels to
be used to create the aggregation

Required (additional
AGGREGATION statements
without the TABLE= option can
be used to create aggregations
other than the automatically
defined NWAY)

TABLE= Required

Maintaining Cubes

Building a Cube from an Existing Definition
It is possible to have cube definitions in the SAS metadata repository that do not

have associated physical cubes. For example, you can use the DELETE_PHYSICAL=
option in the PROC OLAP statement to delete a cube but leave its definition intact. You
can also use SAS OLAP Cube Studio to save only the definition of a new cube.

The following table lists the PROC OLAP statements and options that you use to
build a cube from an existing metadata definition:

114 Adding Aggregations to an Existing Cube � Appendix 1

Table A1.11 Statements and Options Used to Build a Cube from an Existing Definition

Use these statements Use these options

PROC OLAP CUBE=

METASVR OLAP_SCHEMA=

Adding Aggregations to an Existing Cube
The following table lists the PROC OLAP statements and options that you use to add

aggregations to an existing cube.

Table A1.12 Statements and Options Used to Add Aggregations to an Existing Cube

Use these statements Use these options

PROC OLAP CUBE= Required

METASVR OLAP_SCHEMA= Required

AGGREGATION Names of the contiguous levels to
be used to create the aggregation

Required

NAME= Optional

DATAPATH= Optional

INDEXPATH= Optional

COMPRESS | NOCOMPRESS Optional

INDEX | NOINDEX Optional

PARTSIZE= Optional

SEGSIZE= Optional

Note: You can add and delete aggregations in the same PROC OLAP script. �

Note: You cannot add aggregations to a cube that contains aggregated data from a
source other than the input data source. �

Deleting Aggregations from an Existing Cube
The following table lists the PROC OLAP statements and options that you use to

delete aggregations from an existing cube.

Table A1.13 Statements and Options Used to Drop Aggregations from an Existing Cube

Use these statements Use these options

DROP_AGGREGATION Specify one or more level names that correspond to
the aggregations that you want to remove, or use
the aggregation name to specify the aggregation
that you want to remove.

METASVR OLAP_SCHEMA=

PROC OLAP CUBE=

Note: You can add and delete aggregations in the same PROC OLAP script. �

PROC OLAP � Options for Managing Ragged Hierarchies 115

Note: You cannot delete aggregations from a cube that contains aggregated data
from a source other than the input data source. �

Deleting Cubes
The following table lists the PROC OLAP statements and options that you use to

delete existing cubes.
If you use the DELETE option, then both the physical cube and its definition, which

is stored in the metadata server, are deleted.

Table A1.14 Statements and Options Used to Delete a Cube and Its Metadata

Use these statements Use these options

METASVR OLAP SCHEMA=

PROC OLAP CUBE=

DELETE

If you use the DELETE_PHYSICAL option, then only the physical cube is deleted;
the definition remains intact.

Table A1.15 Statements and Options Used to Delete a Cube but Retain Its Metadata

Use these statements Use these options

METASVR OLAP_SCHEMA=

PROC OLAP CUBE=

DELETE_PHYSICAL

Specialized Options for PROC OLAP

Options for Managing Ragged Hierarchies
If a hierarchy is balanced, then all of its branches descend to the same level, and

each member has a parent level that is positioned immediately above it. However,
hierarchies are not always balanced and sometimes they contain missing hierarchy
members. To manage missing hierarchy members, you can use these four options,
which were created specifically for ragged hierarchies:

Table A1.16 Options That Can Be Set to Manage Missing Hierarchy Members in Ragged Hierarchies

These options Are available in these statements

EMPTY_CHAR= PROC OLAP and HIERARCHY

EMPTY_NUM= PROC OLAP and HIERARCHY

116 Options Used for Performance � Appendix 1

These options Are available in these statements

EMPTY= LEVEL

IGNORE_EMPTY HIERARCHY and LEVEL

Options Used for Performance
When you create a cube, you can set some options that can be used to optimize cube

creation and query performance. If you set the options in the PROC OLAP statement,
then the settings are applied to all aggregations in the cube. If you set the options in the
AGGREGATION statement, then the options apply to that specific aggregation. Options
set for individual aggregations override any options set in the PROC OLAP statement.

The options are
� COMPACT_NWAY
� COMPRESS | NOCOMPRESS
� CONCURRENT=
� DATAPATH=
� INDEXPATH=
� INDEXSORTSIZE=
� MAXTHREADS=
� NOINDEX | INDEX
� PARTSIZE=
� SEGSIZE= .

Note: INDEXSORTSIZE=, MAXTHREADS=, and CONCURRENT= are available
only on the PROC OLAP statement. �

For an explanation of these options, see the PROC OLAP statement and the
AGGREGATION statement.

117

A P P E N D I X

2
SAS OLAP Cube Studio Messages

Cube Designer Error Messages 117
Dimension Designer Error Messages 124

Specify Map Error Messages 127

Miscellaneous Error Messages 127

Cube Designer Error Messages

Table A2.1 Cube Designer Error Messages

Error Message Comment

An aggregation cannot be named Default.
Please enter another name.

This message is received on the Generated or
User-Defined Aggregation pages. Rename the
aggregation to a valid SAS name.

The map information is incorrect. To correct the
information, select Yes and then display the
Specify Map page for the geographic dimension.
Select No to remove all the map information.

This message is received on the Dimension page
when specifying GIS map information for a
dimension.

The GEO dimension was changed to a
STANDARD dimension and all map information
has been removed.

This message is received on the Dimension page
when specifying GIS map information for a
dimension.

At least one dimension must be defined. This message is received on the Dimension page.
You must define a dimension for the cube.

A problem was encountered reading the map
information.

This message is received on the Dimension page
when specifying GIS map information for a
dimension.

The <table name> table is used in a dimension
but is not selected. Select OK to remove the
dimension and aggregations created from this
table or Cancel so you can select the table.

This message is received on the Dimension
Tables page when removing the table associated
with existing dimensions.

The <table name> tables are used in a
dimension but are not selected. Select OK to
remove the dimension and aggregations created
from these tables or select Cancel so you can
select the tables.

This message is received on the Dimension
Tables page when removing more than one table.

118 Cube Designer Error Messages � Appendix 2

Error Message Comment

One or more tables must be selected as
Dimension tables.

This message is received on the Dimension
Tables page when a dimension table is not
selected.

The user-defined aggregation already exists. This message is received on the Generated
Aggregations page when the selected levels
match the levels in another aggregation.

The selected user-defined aggregation already
exists.

This message is received on the Stored
Aggregations page when the selected levels
match the levels in another aggregation.

<level name> level does not follow drill-path
order.

This message is received on either the
Generated or User-Defined Aggregations page.
The selected levels must match the drill order of
at least one hierarchy.

Member Property name already exists for this
level and hierarchy

This message is received on the Define a
Member Property page. Click OK on the
message and the duplicate member property
name is checked. You must change the name for
this member property to a unique name.

The aggregation name already exists. This message is received on either the
Generated or User-Defined Aggregations page.
You must enter a different aggregation name.

Changes to metadata definitions detected. The
library definition for the Drill-Through table is
missing.

The dimension table metadata is checked on
various functions in SAS OLAP Cube Studio,
including the Create cube, Synchronize cube,
Properties, Edit Cube Structure, and Manual
Tuning dialog boxes. It is also checked on the
Finish page of the Cube Designer wizard. If you
receive this message, open Data Integration
Studio and replace the missing libref for the
table.

Note: You can also receive the message when
creating code in SAS Data Integration Studio.

Changes to metadata definitions detected. The
library definition for the Drill-Through table is
missing. Processing will continue.

See SAS Intelligence Platform and specifically
SAS Management Console documentation for
further information about metadata definitions.

Changes to metadata definitions detected. The
library definition for one of the input tables is
missing. Cube metadata will be saved, but the
cube cannot be created.

See SAS Intelligence Platform and specifically
SAS Management Console documentation for
further information about metadata definitions.

Changes to metadata definitions detected. The
PROC OLAP code cannot be generated because
the library definition for one of the input tables
is missing.

See SAS Intelligence Platform and specifically
SAS Management Console documentation for
further information about metadata definitions.

SAS OLAP Cube Studio Messages � Cube Designer Error Messages 119

Error Message Comment

Problems with dimension key metadata
definitions have been automatically resolved.
Use the Dimension Designer to verify
automatically selected dimension keys. Do you
accept the current dimension keys?

There are several locations in SAS OLAP Cube
Studio where star schema metadata is verified,
including the Create, Manual Tuning, and Save
PROC OLAP code dialog boxes and the
Synchronize levels function.

The error is possibly with the dimension keys.
You need to edit the cube structure and make
sure automatically selected keys are acceptable.

Note: You can also receive the message when
generating code in SAS Data Integration Studio.

Problems with dimension key metadata
definitions for the <dimension name> dimension
have been automatically resolved. Use the
Dimension Designer to verify automatically
selected dimension keys.

See SAS Intelligence Platform and specifically
SAS Management Console documentation for
further information about metadata definitions.

Changes to cube metadata definitions detected.
Edit the cube structure for automatic resolutions
to the detected changes. Selecting Cancel at any
time will not save metadata changes.

This message is received when there are changes
to the input columns for levels and measures,
and when aggregate columns for measures have
been removed from the metadata. You will
receive this message any time you receive other
metadata messages. In addition, you will only
be able to use the Edit Cube Structure function.

You should open SAS Data Integration Studio to
create new metadata for the missing items. You
can then return to SAS OLAP Cube Studio and
use the Edit Cube Structure function to repair
the cube metadata.

Changes to metadata definitions detected. The
<dimension name> star schema dimension is
missing a key column definition. Modify the
dimension in the Cube Designer to redefine the
key column.

See SAS Intelligence Platform and specifically
SAS Management Console documentation for
further information about metadata definitions.

Changes to metadata definitions detected. The
<dimension name> Dimension does not have all
the tables for selected languages. Use the Cube
Designer to verify selected languages or define
language tables needed for this dimension.

See SAS Intelligence Platform and specifically
SAS Management Console documentation for
further information about metadata definitions.

Incomplete cube metadata detected. No input
table. The cube must be deleted.

This message is received in the workspace when
accessing various SAS OLAP Cube Studio
Navigation Tree selections, including Create,
Properties, and Edit Cube Structure.

Changes to metadata definitions detected. The
PROC OLAP code cannot be saved because the
library definition for one of the input tables is
missing.

This message is specific to libref problems when
you are selecting Save PROC OLAP code
from the workspace or from the Finish page.

Changes to metadata definitions detected. The
dimension key column for the <dimension
name> dimension has changed. Modify the
dimension to redefine the dimension key column.

This message is received if the keys cannot be
repaired.

120 Cube Designer Error Messages � Appendix 2

Error Message Comment

The updates to the cube could not be saved. The
deletion of the existing cube failed.

This message is received on the Finish page if
the code submitted to the application server
failed to delete the cube. The Cube Designer
wizard cannot determine why the delete
function failed. You should check the application
server and try again.

The code to create the cube could not be
submitted because the connection to a SAS
Workspace Server failed.

You must be connected to a workspace server to
create the physical cube. You should establish a
connection to an application server and try to
create the cube again.

The updates to the cube could not be saved. The
existing cube must first be deleted. However, the
connection to a SAS Workspace Server failed
and the delete code could not be submitted.

This message is received when an existing cube
needs to be deleted, but there is no application
server connection. You should establish a
connection to an application server and try to
delete the cube again.

A cube type of HOLAP is specified, but no
aggregation tables are identified. Pressing
Finish will revert the cube type to MOLAP.

This message is received when you have clicked
to the Finish page and a HOLAP-type cube does
not have any aggregations. This is only a
warning. You do not have to create stored
aggregations.

Cube name must be unique. You must enter a cube name that does not
already exist within the selected OLAP schema.

Input type selection has changed. Clicking OK
will remove the cube’s current input-related
definitions if they have been specified.

This message is received when the input type on
the General page has changed.

The connection to a SAS Workspace Server
failed. Unable to display the Browse dialog box.

This message is received when a connection to a
workspace server has not been established and
the Browse button is selected for either the
Path or Work Path on the General page.
Establish a connection to a workspace server
and try again.

There are no OLAP schemas defined in the
metadata.

This message is received when the Next button
is selected on the General page and an OLAP
schema has not been defined in the active
metadata repository. Assign an OLAP schema to
the active metadata repository and then define
the cube.

An OLAP schema is not defined for this cube.
Please select an OLAP Schema.

This message is received when an OLAP schema
has not been selected on the General page.
Select an OLAP schema from the drop-down list.

All stored aggregation definitions will be
removed.

This message is received when the input type is
changed to detail table or star schema, and the
check box for The cube will also use
aggregated data from other tables
option has not been selected.

SAS OLAP Cube Studio Messages � Cube Designer Error Messages 121

Error Message Comment

You have changed the group name for a stored
measure. Do you want to change the group
name for all measures in that group? If you
select no, the derived measures may be affected.

This message is received when you are defining
stored measures for a cube and you change the
Analysis Group name for a measure on the
Assign Stored Measures page. Select Yes to
change the group name for all measures in the
analysis group.

A table must be selected as input to the cube. This message is received on the Input page
when you have not selected an input source for
the cube you are creating. You must specify the
data source that provides the input data for your
cube.

Table selection has changed. Clicking OK will
remove current cube definitions.

This message is received on the Input page
when you reselect the input table. Selecting OK
will reset all definitions in the cube.

The <statistic name> statistic is already used
with the <group name> analysis group.

This message is received when you are defining
stored measures for a cube and you assign a
statistic that is already used on the Assign
Stored Measures page.

The <measure name> derived measure is not
possible.

This message is received when you are selecting
measures for a cube. If stored aggregations exist
for the cube, a derived measure cannot be
created unless all required stored measures
have already been created.

All aggregation column names must be the same
on all tables. Select Back to select the correct
tables, or don’t select any tables.

This message is received on either the Select
Measures page or the Generated Aggregations
page. A table must have matching column
names with other tables for the cube. You can
modify the table in SAS Data Integration Studio
and add the correct columns.

Measure name already exists for this cube. The measure name already exists. You must
specify a different measure name.

A measure name must be specified. You must specify a name for the measure.

Setting the format to blank will set the format
to the default format. There is no default format
for this measure.

This message is received on the Measure Details
page for HOLAP and MOLAP measures. If a
format is not entered or selected and no default
format exists, then this message is received.

Setting the format to blank will set the format
to the default format. The default format for
this measure is <format>.

This message is received on the Measure Details
page for HOLAP and MOLAP measures. If a
format is not entered or selected, then the
default format will be used.

At least one measure must be defined for the
cube.

This message is received on the Select Measures
page. At least one measure must be selected for
the cube.

122 Cube Designer Error Messages � Appendix 2

Error Message Comment

One or more derived measures statistics is not
possible with the given groups. Do you want to
continue?

This message is received when you are changing
group names or statistics for a cube that has
derived measures. The Assign Statistics Group
page determines if any existing derived
measures are invalid. You will receive this
message if there are invalid derived
measures.You should replace the incorrect
statistics with valid statistics.

A group name must be assigned for each
measure.

This message is received on the Assign Stored
Measures page. An analysis group name must
be assigned for each measure.

A statistic must be assigned for each measure. This message is received on the Assign Stored
Measures page. A statistic must be assigned for
each measure.

No derived measures are possible with the
currently defined stored measures. Check
assigned analysis groups to make sure stored
measures needed for a derived statistic have the
same analysis group.

This message is received on the Select Derived
Measures page. If you have stored measures
already created for the cube, you cannot create
derived measures for the cube. You can modify
the analysis groups for these measures.

The limit of 1024 measures has been exceeded. This message is received on the Select Measures
page when you have exceeded the limit of 1024.

At least one non-Distinct Count
(non-NUNIQUE) measure must be defined.

This message is received on the Select Measures
page. You must select a measure from the list of
available measures.

The SAS_SPATIAL_ID properties cannot be
deleted here. To delete the property, edit the
map information for the GEO dimension.

This message is received on the Member
Property page. When ESRI map information is
added to a cube, the property objects for the
mapped cube levels are listed with the cube’s
member properties. These member properties
are named SAS_SPATIAL_ID by default and
cannot be deleted on this page.

You must specify an aggregate column for all
stored measures. A stored measure is a measure
that has SUM, N, NMISS, MIN, MAX or USS as
the statistic.

This message is received on the Map Measures
to Aggregated Columns page. When specifying
stored measures, you must indicate an
aggregate column.

You must select an aggregation table. This message is received on the Specify a Stored
User-Defined Aggregation page, which is
accessed from the Stored Aggregations page.
You must select an aggregation table when
adding a stored aggregation.

A hierarchy is required to define a member
property.

This message is received on the Define a Member
Property page. You must have a hierarchy in the
Selected Hierarchies list.

You must select a level to define a member
property.

This message is received on the Define a
Member Property page. You must have a level
selected for the member property.

SAS OLAP Cube Studio Messages � Cube Designer Error Messages 123

Error Message Comment

You must select levels to define a user
aggregation.

This message is received on the Manual Tuning
dialog box. You must have one or more levels
listed in the Selected list.

A name is required to define a member property. This message is received on the Define a
Member Property page. You must enter a name
for the member property.

The aggregation name is required. This message is received on the Generated
Aggregations page when adding an aggregation.
When specifying an aggregation, you must enter
a name.

You must select a property for the level. This message is received on the Member
Property page. A column representing a member
property hasn’t been assigned to the level.
Select a property for the level.

All stored measure names must be contained
within the aggregation tables. Select the correct
aggregation tables or don’t select any tables to
continue.

This message is received on the Measure Map
page and the Generated Aggregations page. If
the input to the cube is fully summarized, then
the names of columns in the input table must
match the names of the columns in a selected
aggregation table. If not, then a different
aggregation table needs to be selected.

Ragged hierarchy options for the <dimension
name> Dimension must be corrected in Cube
Designer.

This message is received when there is a
problem with the current definition for ragged
hierarchies. You must define the correct ragged
hierarchy options for the cube. Click the
Advanced button on the General page of the
Cube Designer wizard. Select the Ragged
Hierarchies tab and define the ragged
hierarchies.

The specified cube name is not unique within
the OLAP schema. Please enter a new name
and select OK to complete the Cube Designer.
Or select Cancel to return to the Cube Designer
Finish page.

This message is received on the Cube Designer
Finish page. While creating a cube, a different
cube with the same name was saved to the
application server. You should return to the
General page and enter a new cube name.

A valid path must be entered to save the PROC
OLAP code.

This message is received on the Save PROC
OLAP Code dialog box when saving PROC OLAP
code to a text file. You must enter a valid file
system path to save the PROC OLAP code to.

The value for the COMPACT_NWAY option
must be 0 or 1.

This message is received on the Advanced page
that is accessed from the General page in the
Cube Designer. This message is set internally to
either 0 or 1 and is rarely received.

The <hierarchy name> levels must go from the
most general time period to the most specific.
The <level name> level does not follow this rule.
Please modify the <hierarchy name> hierarchy.

When defining the hierarchy for a time
dimension, you must list the levels in a specific
order, going from general to specific in nature.

124 Dimension Designer Error Messages � Appendix 2

Error Message Comment

Cannot add new measures. The maximum
number of measures for a cube has been reached.

This message is received on the Select Measures
page if the limit of 1024 measures is exceeded.
It applies only to MOLAP-type cubes.

The aggregation table for this aggregation was
deleted. Please delete this aggregation or go
back and add the table that this aggregation
was defined from.

This message is received when you modify a
stored aggregation and the associated
aggregation table has been removed. In this
case the stored aggregations for the cube should
also be removed.

Aggregation tables have not been selected. This
will prevent any user-defined stored
aggregations. Select OK to continue or Cancel to
select aggregation tables.

This message is received on the Aggregation
Tables page. You have not selected an
aggregation table for the cube.

The aggregation tables you selected do not
contain any levels within your cube. This will
prevent any user-defined stored aggregations.
Select OK to continue or Cancel to select
aggregation tables.

This message is received on the Aggregation
Tables page. If there are not any columns in the
table that has been selected, then it is
impossible to map the levels to that table. You
can select another table or modify the table
columns in SAS Data Integration Studio.

Dimension Designer Error Messages

Table A2.2 Dimension Designer Error Messages

Error Message Comment

Enter a name for the dimension that is unique
to a level name.

This message is received at the end of the
Dimension Designer wizard on the Hierarchy
page. When a new dimension is created, it is
validated by SAS OLAP Cube Studio. If the
dimension name matches one of the level names
you will receive this message. Change the name
of the dimension to something other than one of
the selected level names.

Dimension name already exists for this cube. This message is received on the Dimension
Designer General page. The dimension name
given matches the name of an existing
dimension. You must enter a different
dimension name.

Only one GEO dimension allowed for a cube. This message is received on the Dimension
Designer General page. There can be only one
GEO-type dimension for a cube. Change the
dimension type to STANDARD or TIME.

SAS OLAP Cube Studio Messages � Dimension Designer Error Messages 125

Error Message Comment

Hierarchy name already exists for this
dimension.

This message is received on the Dimension
Designer Define a Hierarchy page. The
hierarchy name has already been created for
this dimension. You must enter a different
hierarchy name.

Hierarchy name already exists for this cube. The hierarchy name has already been created
for this cube. You must enter a different
hierarchy name.

Only one TIME dimension allowed for a cube. This message is received on the Dimension
Designer General page. You can only have one
TIME dimension for a cube. Change the
dimension type to STANDARD or GEO.

The hierarchy name cannot be the same as a
level name.

This message is received on the Define a
Hierarchy page. You cannot assign a name to a
hierarchy that is the same as that for a level.
You must enter a unique name.

The <level name> level is not defined in any
hierarchy.

This message is received on the Hierarchy page.
You must use all levels selected for the
dimension in at least one hierarchy. If a level
isn’t used, you must either remove the level or
assign it to a hierarchy.

A dimension name is required. Enter a new
name that is not a level name.

This message is received on the Dimension
Designer wizard. The dimension name must be
unique and different from the names of the
levels assigned to the dimension.

A dimension table must be selected. This message is received on the Dimension
Designer General page when defining star
schema dimension tables. You must select a
dimension table from the list box.

Dimension name is required. This message is received on the Dimension
Designer General page if a name is not given.
You must enter a name for the dimension.

A dimension key is required. This message is received on the Dimension
Designer General page when defining star
schema dimension tables. You must select a key
from the list box.

A fact key is required. This message is received on the Dimension
Designer General page when defining star
schema dimension tables. You must select a fact
key from the list box.

Hierarchy name is required. This message is received on the Define a
Hierarchy page. You must enter a name for the
hierarchy.

You must select levels. This message is received on several locations,
including the Dimension Designer Wizard,
Manual Tuning dialog box, and the Defined
Aggregations page. You must select one or more
levels from the list of available levels.

126 Dimension Designer Error Messages � Appendix 2

Error Message Comment

You must select levels for the hierarchy. This message is received on the Define a
Hierarchy page. You must select one or more
levels from the list of available levels.

The <hierarchy name> hierarchy still contains
different ragged hierarchy options. Please
modify any hierarchy and specify the ragged
options you would like for all hierarchies.

This message is received on the Define a
Hierarchy page. You must enter the correct
ragged hierarchy information.

The hierarchies contain different ragged
hierarchy options. Please modify any hierarchy
and specify the ragged options you would like for
all hierarchies.

This message is received on the Define a
Hierarchy page. You must enter the correct
ragged hierarchy information.

Cannot add new dimensions. The maximum
number of dimensions for a cube has been
reached.

This message is received on the Cube Designer
Dimensions page when the limit of 128
dimensions has been met.

Cannot add new hierarchies. The maximum
number of hierarchies for a cube has been
reached.

This message is received on the Hierarchy page
when the limit of 128 hierarchies has been met.

Cannot add new levels. The maximum number
of levels for a cube has been reached.

This message is received on the Cube Designer
Dimensions page when the limit of 256 levels
has been met. You will receive this message
specifically on the following pages:

� the Cube Designer Dimensions page if you
try to add another dimension

� the Dimension Designer Levels page if you
try to create a new level

Cannot add new levels. The maximum number
of levels for a dimension has been reached.

This message is received on the Dimension
Designer Levels page if the number of selected
levels exceeds 19.

Cannot add new member properties. The
maximum number of member properties has
been reached.

This message is received on the Member
Property page. You cannot have more than 256
member properties per cube.

The WEEKS level type is not allowed if
HALF_YEARS, QUARTERS or MONTHS are
selected within the hierarchy.

This message is received on the Dimension
Designer Levels page. You must select the
correct combination of levels for a TIME-type
dimension.

SAS OLAP Cube Studio Messages � Miscellaneous Error Messages 127

Specify Map Error Messages

Table A2.3 Specify Map Error Messages

Error Message Comment

Some of the map information is missing. Please
correct the problems.

This message is received on the Specify Map for
Dimension page.

A column appropriate for the selected field ID
must be selected.

This message is received on the Specify Map for
Dimension page. You must select a Field ID
column.

A map layer has been assigned but no field ID
has been assigned.

This message is received on the Specify Map for
Dimension page. You must assign a field ID.

There are no map field IDs associated with the
selected map layer.

This message is received on the Specify Map for
Dimension page and refers to an MdException
problem with the metadata server. This
message is uncommon.

There are no map layers associated with the
selected map service.

This message is received on the Specify Map for
Dimension page.

No layers have been assigned to the levels. This message is received on the Specify Map for
Dimension page. You must assign map layers to
the cube levels.

A map server has been selected but no map
service is selected.

This message is received on the Specify Map for
Dimension page. You must select a map service.

There are no map services associated with the
selected map server.

This message is received on the Specify Map for
Dimension page.

Miscellaneous Error Messages

Table A2.4 Miscellaneous Error Messages

Cube Studio Category Error Message Comment

Cube Studio A valid SAS name must be
entered.

You must enter a valid SAS
name. This message is
received when SAS OLAP
Cube Studio verifies the names
for the cube, dimensions,
hierarchies, measures, and
member properties.

Model The cube is missing the version
property object.

The version property object
must be identified.

128 Miscellaneous Error Messages � Appendix 2

Cube Studio Category Error Message Comment

Model Cube metadata version
<version number> is not
supported.

This message is received when
you attempt to create a model
using a cube with a higher
version than the model. This
message appears before any
Cube Designer pages appear.

Performance Option (CONCURRENT) The number
of aggregations to create in
parallel must be an integer
greater than or equal to 0.

This message is received on the
Global Performance Options
page if you enter a concurrent
value below 0.

Performance Option (INDEXSORTSIZE) The
amount of memory (in
megabytes) available for
aggregation creation must be
between 32 and 10239.

This message is received on the
Global Performance Options
page if you enter an index sort
size between 32 and 10239.

Performance Option (MAXTHREADS) The
maximum number of threads
used to create the aggregation
index must be between 0 and
65536.

This message is received on the
Global Performance Options
page if you enter a maximum
number of threads that is less
than or equal to 0 or greater
than or equal to 65536.

Performance Option (PARTSIZE) The number of
aggregations to create in
parallel must be 16 or more.

This message is received on the
Generated
Aggregations
Performance Options
tabs for either Global or
Aggregation options. The
setting for Partition size
(in megabytes) of
aggregation table
partitions must be 16 or
more.

Performance Option (SEGSIZE) The number of
observations (in kilobytes) to
include in the index component
file segment must be 1 or more.

This message is received on the
Generated
Aggregations
Performance Options
tabs for either Global or
Aggregation options. The
setting for Number of
observations (in
kilobytes) to include
in the index
component file
segment must be 1 or more.

129

A P P E N D I X

3
SAS OLAP Cube Studio
Accessibility Features

SAS OLAP Cube Studio Accessibility Features 129

SAS OLAP Cube Studio Accessibility Features
SAS OLAP Cube Studio includes the following accessibility and compatibility

features that improve usability of the product for users with disabilities. These features
are related to accessibility standards for electronic information technology that were
adopted by the U.S. Government under Section 508 of the U.S. Rehabilitation Act of
1973, as amended.

For further information on accessibility features in SAS, see Accessibility Features in
SAS under Windows and Default Key Settings for Interactive SAS Sessions under
Windows in SAS OnlineDoc.

Note: If you have questions or concerns about the accessibility of SAS products,
send e-mail to accessibility@sas.com. �

Table A3.1 Window Manipulation Keys

Window Manipulation Key Action

ALT+F4 Closes active applications on the desktop.
ALT+F4 Closes SAS OLAP Cube Studio.

ALT+F6 Switches to the next window between modeless
secondary windows and their primary window.

ALT+SPACEBAR Opens the title bar icon and displays the
program menu of the leftmost icon on the title
bar.

ALT+TAB Provides a pop-up menu of active applications,
identified by their product graphics.

ALT+TAB+SHIFT Reverses direction through the pop-up menu.

ALT+HYPHEN Displays the shortcut menu for the active MDI
window.

ALT+ESC Navigates active applications on the desktop
and then desktop shortcut bar items. Releasing
the ESC key selects an application.

130 SAS OLAP Cube Studio Accessibility Features � Appendix 3

Window Manipulation Key Action

ALT+ESC+SHIFT Reverses the navigation direction of active
applications on the desktop and the desktop
shortcut bar. Navigates windows in reverse
order.

ALT+ENTER Displays the properties of a selected item while
you are working in a window.

PRINT SCREEN Copies a screen image to the clipboard.

ALT+ PRINT SCREEN Copies an active window image to the Windows
clipboard.

Table A3.2 Actions Performed with the ALT Key.

Action Procedure

Move the application window In SAS OLAP Cube Studio, select the ALT key
and perform the following steps:

1 Choose Move from title bar menu.

2 Use the arrow keys to move the window.

3 Press ENTER to accept or ESC to cancel.

Size the application window In SAS OLAP Cube Studio, select the ALT key
and perform the following steps:

1 Choose Size from title bar menu.

2 Use an arrow key to choose which window
border to move.

3 Resize the window with the appropriate
arrow keys.

4 Press ENTER to accept or ESC to cancel.

Minimize/Maximize the application window In SAS OLAP Cube Studio, perform the
following steps:

1 Choose Minimize from the title bar
menu.

2 Choose Maximize from the title bar
menu.

Restore the application window In SAS OLAP Cube Studio, select the ALT key
and select Restore from title bar menu. The
application is returned to its original state.

131

A P P E N D I X

4
Recommended Reading

Recommended Reading 131

Recommended Reading

Here is the recommended reading list for this title:
� Administrator for Enterprise Clients: User’s Guide
� SAS Data Providers: ADO/OLE DB Cookbook

� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Management Console: User’s Guide

� SAS Intelligence Platform: System Administration Guide
� SAS Intelligence Platform: Data Administration Guide
� SAS OLAP Server: Concepts and Excerpts from “MDX Solutions with Microsoft

SQL Server Analysis Services”
� SAS OLAP Server: MDX Guide

� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

132

133

Glossary

aggregation
a summary of detail data that is stored with or referred to by a cube. Aggregations
support rapid and efficient answers to business questions.

aggregation table
a table that contains pre-calculated totals. Aggregation tables can be referred to by
cubes, reducing the amount of time that is required for building the cubes.

ARM (Application Response Measurement)
an application programming interface that was developed by an industry partnership
and which is used to monitor the availability and performance of software
applications. ARM monitors the application tasks that are important to a particular
business.

base table
a table that contains detail data that is used for building cubes or aggregation tables.

calculated member
in a dimension, a member whose value is derived from the values of other members.

child
within a dimension hierarchy, a descendant in level n-1 of a member that is at level
n. For example, if a Geography dimension includes the levels Country and City, then
Bangkok would be a child of Thailand, and Hamburg would be a child of Germany.

cube
a logical set of data that is organized and structured in a hierarchical,
multidimensional arrangement. A cube is a directory structure, not a single file. A
cube includes measures, and it can have numerous dimensions and levels of data.

custom repository
in the SAS Open Metadata Architecture, a metadata repository that must be
dependent on a foundation repository or custom repository, thus allowing access to
metadata definitions in the repository or repositories on which it depends. A custom
repository is used to specify resources that are unique to a particular data collection.
For example, a custom repository could define sources and targets that are unique to
a particular data warehouse. The custom repository would access user definitions,
group definitions, and most server metadata from the foundation repository. See also
foundation repository, project repository.

134 Glossary

data cleansing
the process of eliminating inaccuracies, irregularities, and discrepancies from data.

data scrubbing
another term for data cleansing. See data cleansing.

data sparsity
a characteristic of a multidimensional data source in which there is a relatively high
proportion of empty cells (which indicate missing data values) to filled cells.

data warehouse
a collection of data that is extracted from one or more sources for the purpose of
querying and analysis.

descendant
in a dimension hierarchy, a member that resides at a lower level in relation to other
members in the hierarchy. For example, if a Geography dimension includes the levels
Country, State, and City, then California and Los Angeles would be descendants of
USA.

detail data
nonsummarized (or partially summarized) factual information that pertains to a
single area of interest, such as sales figures, inventory data, or human-resource data.

dimension
a group of closely related hierarchies. Hierarchies within a dimension typically
represent different groupings of information that pertains to a single concept. For
example, a Time dimension might consist of two hierarchies: (1) Year, Month, Date,
and (2) Year, Week, Day. See also hierarchy.

dimension table
in a star schema, a table that contains the data for one of the dimensions. The
dimension table is connected to the star schema’s fact table by a primary key. The
dimension table contains fields for each level of each hierarchy that is included in the
dimension.

drill down
in a view of an OLAP cube, to start at one level of a dimension hierarchy and to click
through one or more lower levels until you reach the data that you are interested in.

drill up
in a view of an OLAP cube, to start at one level of a dimension hierarchy and to click
through one or more higher levels until you reach the level of summarized data that
you are interested in.

drill-through table
a view, data set, or other data file that contains data that is used to define a cube.
Drill-through tables can be used by client applications to provide a view from
processed data into the underlying data source.

fact
a single piece of factual information in a data table. For example, a fact can be an
employee name, a customer’s phone number, or a sales amount. It can also be a
derived value such as the percentage by which total revenues increased or decreased
from one year to the next.

fact table
the central table in a star schema. The fact table contains the individual facts that
are being stored in the database as well as the keys that connect each particular fact
to the appropriate value in each dimension.

Glossary 135

foreign key
a column or combination of columns in one table that references the corresponding
primary key in another table. A foreign key must have the same attributes as the
primary key that it references.

foundation repository
in the SAS Open Metadata Architecture, a metadata repository that is used to
specify metadata for global resources that can be shared by other repositories. For
example, a foundation repository is used to store metadata that defines users and
groups on the metadata server. Only one foundation repository should be defined on
a metadata server. See also custom repository, project repository.

granularity
the relative level of detail that a data item represents. From the top of a dimension
to the bottom, granularity increases. For example, in a Time dimension that consists
of a Year-Month-Day hierarchy, Month is more granular than Year, and Day is more
granular than Month.

hierarchy
an arrangement of members of a dimension into levels that are based on parent-child
relationships. Members of a hierarchy are arranged from more general to more
specific. For example, in a Time dimension, a hierarchy might consist of the members
Year, Quarter, Month, and Day. In a Geography dimension, a hierarchy might consist
of the members Country, State or Province, and City. More than one hierarchy can be
defined for a dimension. Each hierarchy provides a navigational path that enables
users to drill down to increasing levels of detail. See also member, level.

HOLAP (hybrid online analytical processing)
a type of OLAP in which relational OLAP (ROLAP) and multidimensional OLAP
(MOLAP) are combined. In HOLAP, the source data is usually stored using a ROLAP
strategy, and aggregations are stored using a MOLAP strategy. This combination
usually results in the smallest amount of storage space. In HOLAP, aggregates can
be pre-calculated and can be linked into a hybrid storage model.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

leaf member
the lowest-level member of a hierarchy. Leaf members do not have any child
members.

level
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.

logical server
in the SAS Metadata Server, the second-level object in the metadata for SAS servers.
A logical server specifies one or more of a particular type of server component, such
as one or more SAS Workspace Servers.

MDDB (multidimensional database)
another term for cube. See cube.

MDX (multidimensional expressions) language
a standardized, high-level language that is used for querying multidimensional data
sources. The MDX language is the multidimensional equivalent of SQL (Structured
Query Language).

136 Glossary

measure
a special dimension that contains summarized numeric data values that are
analyzed. Total Sales and Average Revenue are examples of measures. For example,
you might drill down within the Clothing hierarchy of the Product dimension to see
the value of the Total Sales measure for the Shirts member.

member
a name that represents a particular data element within a dimension. For example,
September 1996 might be a member of the Time dimension. A member can be either
unique or non-unique. For example, 1997 and 1998 represent unique members in the
Year level of a Time dimension. January represents non-unique members in the
Month level, because there can be more than one January in the Time dimension if
the Time dimension contains data for more than one year.

metadata profile
a definition of where a metadata server is located. The definition includes a host
name, a port number, and a list of one or more metadata repositories. In addition,
the metadata profile can contain a user’s login information and instructions for
connecting to the metadata server automatically.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application. A SAS Metadata Repository is an
example.

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

MOLAP (multidimensional online analytical processing)
a type of OLAP that stores aggregates in multidimensional database structures.

multi-threading
See threading.

navigate
to purposefully move from one view of the data in a table (or in some other data
structure, such as a cube) to another. Drilling down and drilling up are two examples
of navigation.

NWAY aggregation
the aggregation that has the minimum set of dimension levels that is required for
answering any business question. The NWAY aggregation is the aggregation that has
the finest granularity. See also granularity.

OLAP (online analytical processing)
a software technology that enables users to dynamically analyze data that is stored
in multidimensional database (MDDB) tables.

OLAP schema
a group of cubes. A cube is assigned to an OLAP schema when it is created, and an
OLAP schema is assigned to a SAS OLAP Server when the server is defined in the
metadata. A SAS OLAP Server can access only the cubes that are in its assigned
OLAP schema.

OLE DB for OLAP
an OLAP API that is used to link OLAP clients and servers by means of a
multidimensional expressions (MDX) language. See also MDX (multidimensional
expressions) language.

Glossary 137

parallel I/O
a method of input and output that takes advantage of multiple CPUs and multiple
controllers, with multiple disks per controller to read or write data in independent
threads.

parallel processing
a method of processing that divides a large job into several smaller jobs that can be
executed in parallel on multiple CPUs.

parent
within a dimension hierarchy, the ancestor in level n of a member in level n-1. For
example, if a Geography dimension includes the levels Country and City, then
Thailand would be the parent of Bangkok, and Germany would be the parent of
Hamburg. The parent value is usually a consolidation of all of its children’s values.

primary key
a column or combination of columns that uniquely identifies a row in a table.

project repository
a repository that must be dependent on a foundation repository or custom repository
that will be managed by the Change Management Facility. A project repository is
used to isolate changes from a foundation repository or from a custom repository. The
project repository enables metadata programmers to check out metadata from a
foundation repository or custom repository so that the metadata can be modified and
tested in a separate area. Project repositories provide a development/testing
environment for customers who want to implement a formal change management
scheme. See also custom repository, foundation repository.

ROLAP (relational online analytical processing)
a type of OLAP in which the multidimensional data is stored in a relational database.

roll up
to summarize (or apply some other type of calculation or formula to) data values at
one level of a dimension hierarchy in order to derive values for a parent level. For
example, sales figures for January can be rolled up to Quarter1, and employee data
for one department can be rolled up to the division level.

SAS application server
a server that provides SAS services to a client. In the SAS Open Metadata
Architecture, the metadata for a SAS application server specifies one or more server
components that provide SAS services to a client.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In the
SAS ARM interface, the ARM API is implemented as an ARM agent. In addition,
SAS supplies ARM macros, which generate calls to the ARM API function calls, and
ARM system options, which enable you to manage the ARM environment and to log
internal SAS processing transactions. See also ARM (Application Response
Measurement).

SAS format
a pattern or set of instructions that SAS uses to determine how the values of a
variable (or column) should be written or displayed. SAS provides a set of standard
formats and also enables you to define your own formats.

SAS informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

138 Glossary

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Repository
one or more files that store metadata about application elements. Users connect to a
SAS Metadata Server and use the SAS Open Metadata Interface to read metadata
from or write metadata to one or more SAS Metadata Repositories. The metadata
types in a SAS Metadata Repository are defined by the SAS Metadata Model.

SAS Metadata Repository
a repository that is used by the SAS Metadata Server to store and retrieve metadata.
See also SAS Metadata Server.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to
one or more SAS Metadata Repositories. The SAS Metadata Server uses the
Integrated Object Model (IOM), which is provided with SAS Integration Technologies,
to communicate with clients and with other servers.

SAS name
a name that is assigned to items such as SAS variables and SAS data sets. The first
character must be a letter or an underscore. Subsequent characters can be letters,
numbers, or underscores. Blanks and special characters (except the underscore) are
not allowed. The maximum length of a SAS name depends on the language element
that it is assigned to. Many SAS names, such as names of DATA step variables and
array names, can be 32 characters long. Others, such as librefs and filerefs, have a
maximum length of 8 characters.

SAS OLAP Cube Studio
a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its
main feature is the Cube Designer wizard, which guides you through the process of
registering and creating cubes.

SAS OLAP Server
a SAS server that provides access to multidimensional data. The data is queried
using the multidimensional expressions (MDX) language.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

schema
a map or model of the overall data structure of a database. An OLAP schema
specifies which group of cubes an OLAP server can access.

scrubbing
another term for data cleansing. See data cleansing.

slice
a subset of data from a cube, where the data in the slice pertains to one or more
members of one or more dimensions. For example, from a cube that contains data
about customer feedback, one slice might pertain to feedback on one particular
product (one member of the Product dimension). Another slice might pertain to
feedback on that product from customers residing in particular geographic areas who
submitted their feedback during a certain time period (one member of the Product
dimension, multiple members of the Geography dimension, one or more members of
the Time dimension).

Glossary 139

SMP (symmetric multiprocessing)
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller.

sparsity
See data sparsity.

SPD (Scalable Performance Data) Engine
a SAS engine that is able to deliver data to applications rapidly because it organizes
the data into a streamlined file format. The SPD Engine divides a problem (such as a
WHERE clause) into smaller problems that can be processed in parallel. See also
parallel processing.

SQL (Structured Query Language)
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system objects.

star schema
tables in a database in which a single fact table is connected to multiple dimension
tables. This is visually represented in a star pattern. SAS OLAP cubes can be
created from a star schema.

stored statistics
statistics that are stored in a cube. Stored statistics can be used to derive
higher-level statistics. Examples include sum, minimum, and maximum.

thread
a single path of execution of a process in a single CPU, or a basic unit of program
execution in a thread-enabled operating system. In an SMP environment, which uses
multiple CPUs, multiple threads can be spawned and processed simultaneously.
Regardless of whether there is one CPU or many, each thread is an independent flow
of control that is scheduled by the operating system. See also SMP (symmetric
multiprocessing), thread-enabled operating system, threading.

thread-enabled operating system
an operating system that can coordinate symmetric access by multiple CPUs to a
shared main memory space. This coordinated access enables threads from the same
process to share data very efficiently.

threading
a high-performance method of data I/O or data processing in which the I/O or
processing is divided into multiple threads that are executed in parallel. In the
boss-worker model of threading, the same code for the I/O or calculation process is
executed simultaneously in separate threads on multiple CPUs. In the pipeline
model, a process is divided into steps, which are then executed simultaneously in
separate threads on multiple CPUs. See also parallel I/O, parallel processing, SMP
(symmetric multiprocessing).

Time dimension
a dimension that divides time into levels such as Year, Quarter, Month, and Day.

tuple
a data object that contains two or more components. In OLAP, a tuple is a slice of
data from a cube. It is a selection of members (or cells) across dimensions in a cube.
It can also be viewed as a cross-section of member data in a cube. For example,
([time].[all time].[2003], [geography].[all geography].[u.s.a.], [measures].[actualsum])
is a tuple that contains data from the Time, Geography, and Measures dimensions.

140 Glossary

wizard
an interactive utility program that consists of a series of dialog boxes, windows, or
pages. Users supply information in each dialog box, window, or page, and the wizard
uses that information to perform a task.

Index 141

Index

A
ADO MD

cubes with 69
Advanced Aggregation Tuning plug-in 51

setting tuning and performance options 53
AGGR_COLUMN= option

MEASURE statement (OLAP) 98
aggregation design 9
AGGREGATION statement

OLAP procedure 99
aggregation storage 19

choosing MOLAP or ROLAP 20
MOLAP 20
ROLAP 20

aggregation tables 8
defining cubes with 107

aggregations 2, 4
adding to cubes 114
deleting from cubes 101, 114

ANALYSIS argument
MEASURE statement (OLAP) 97

ARM analysis tuning 51

B
base tables 8

C
calculated members

adding to cubes 65
Calculated Members plug-in 66

calculation types 66
custom calculations 67
simple calculations 66
time analysis calculations 67

CAPTION= option
DIMENSION statement (OLAP) 87
HIERARCHY statement (OLAP) 94
LEVEL statement (OLAP) 90
MEASURE statement (OLAP) 98
PROPERTY statement (OLAP) 92

cells 4
character encoding

SAS servers and 55, 106
COLUMN argument

MEASURE statement (OLAP) 97

COLUMN= option
PROPERTY statement (OLAP) 92

COMPACT_NWAY option
PROC OLAP statement 79

COMPRESS option
AGGREGATION statement (OLAP) 100
OLAP procedure 54
PROC OLAP statement 79

CONCURRENT= option
OLAP procedure 54
PROC OLAP statement 79

connection points
exporting and importing cubes 59

copying cubes 60
count statistics 14
cross-dimensional tuning 51
cube aggregations

importing cubes 58
performance options 52
tuning 49
tuning options 52

Cube Designer 11
building cubes from detail tables 23
defining member properties 14
defining multiple hierarchies 16
defining ragged and unbalanced hierar-

chies 17
dimension table translations 55
error messages 117
setting tuning and performance options 52

cube metadata
refreshing 48
storage location requirements 13

CUBE= option
PROC OLAP statement 80

cube structure 4
cubes 3

accessing from SQL Pass-Through facility 62
adding aggregations to 114
adding calculated members 65
adding system options to 55
ADO MD with 69
aggregation storage 19
building 11
building from detail tables 23
building from existing definition 113
building from star schema 38
building from summary tables 32
changing data and index paths 62
copying 60

creating the physical cube 12
data management 7
data storage with 6
default hierarchy 15
defining member properties 13
defining with data tables 8
defining with tables 107
deleting 115
deleting aggregations from 101, 114
directories for 13
distinct count measures 14
exporting 56
importing 56
loading from detail tables 109
loading from star schema 110
loading with summarized data 112
maintenance 7
Microsoft Excel 2000 with 73
Microsoft Excel 2002 PivotTable with 73
moving 60
multi-threading and 7
multiple hierarchies 15
OLE DB for OLAP with 69
preparations for building 12
ProClarity Professional with 76
ragged and unbalanced hierarchies 16
SAS products with 70
saving OLAP procedure code 26
setup 7
size specifications 21
synchronizing 56
tables for creating cubes in metadata 12
third-party clients with 73
updating 48

D
data access 2
data analysis 7
data management 7
DATA= option

PROC OLAP statement 80
data path 62
data preparation 7
data storage 2

cubes for 6
data tables

defining cubes 8
data warehouse 2

142 Index

DATAPATH= option
AGGREGATION statement (OLAP) 100
OLAP procedure 54
PROC OLAP statement 80

default hierarchy 15
DEFAULT option

HIERARCHY statement (OLAP) 94
MEASURE statement (OLAP) 99

Define Distinct Count Measures function 14
DEFINE statement

OLAP procedure 102
DELETE option

PROC OLAP statement 80
DELETE_PHYSICAL option

PROC OLAP statement 81
DESC= option

DIMENSION statement (OLAP) 87
HIERARCHY statement (OLAP) 94
LEVEL statement (OLAP) 90
MEASURE statement (OLAP) 99
PROC OLAP statement 81
PROPERTY statement (OLAP) 92

detail tables 8
building cubes from 23
defining cubes with 107
loading cubes from 109

dimension design 7
Dimension Designer

error messages 124
DIMENSION statement

OLAP procedure 86
dimension table translations 54
dimension tables 8

defining cubes with 107
dimensions 4

GIS map information for 65
multiple hierarchies for 15
ragged and unbalanced hierarchies for 16

DIMKEY= option
DIMENSION statement (OLAP) 87

DIMTABLELIBREF= option
DIMENSION statement (OLAP) 88

DIMTABLEMEMPREF= option
DIMENSION statement (OLAP) 89

DIMTBL= option
DIMENSION statement (OLAP) 88

directories for cubes 13
distinct count measures 14
drill-through tables 9

defining cubes with 107
DRILLTHROUGH_TABLE= option

PROC OLAP statement 81
DROP_AGGREGATION statement

OLAP procedure 51, 101

E
EMPTY= option

LEVEL statement (OLAP) 90
EMPTY_CHAR= option

HIERARCHY statement (OLAP) 94
PROC OLAP statement 82

EMPTY_NUM= option
HIERARCHY statement (OLAP) 94
PROC OLAP statement 82

error messages
Cube Designer 117
Dimension Designer 124
miscellaneous 127
Specify Map 127

exporting cubes 56
creating connection points 59
file naming 59
manually copying and moving cubes 60
multi-language cubes 59
repository considerations 59
user privileges 58

F
FACT= option

PROC OLAP statement 80
fact tables 8

defining cubes with 107
FACTKEY= option

DIMENSION statement (OLAP) 89
filenames

exporting and importing cubes 59
FORMAT= option

MEASURE statement (OLAP) 99

G
GIS map information 65

H
hierarchies

default hierarchy 15
multiple hierarchies for a dimension 15
ragged and unbalanced 16

HIERARCHIES= argument
DIMENSION statement (OLAP) 87

HIERARCHY= option
PROPERTY statement (OLAP) 92

HIERARCHY statement
OLAP procedure 16, 93

HOLAP 3
HOST= option

METASVR statement (OLAP) 85
hybrid OLAP (HOLAP) 3
hyper-cubes

See cubes

I
IGNORE_EMPTY option

HIERARCHY statement (OLAP) 95
LEVEL statement (OLAP) 91

importing cubes 56
creating connection points 59
cube and aggregation path settings 58
file naming 59
managing cube data 58
manually copying and moving cubes 60
multi-language cubes 59
repository considerations 59

user privileges 58
INDEX option

AGGREGATION statement (OLAP) 100
OLAP procedure 54
PROC OLAP statement 83

index path 62
INDEXPATH= option

AGGREGATION statement (OLAP) 101
OLAP procedure 54
PROC OLAP statement 83

INDEXSORTSIZE= option
OLAP procedure 54
PROC OLAP statement 83

Integrated Object Model (IOM) 5
IOM 5

J
Java

SAS Web OLAP Viewer for 72

L
language support 54
LEVEL= argument

PROPERTY statement (OLAP) 92
LEVEL statement

OLAP procedure 89
levels 4
LEVELS= argument

HIERARCHY statement (OLAP) 93
library definitions 12
librefs 12
loading cubes

from detail tables 109
from star schema 110
with summarized data 112

M
Manual Tuning function 50

setting tuning and performance options 53
MAXTHREADS= option

OLAP procedure 54
PROC OLAP statement 83

MEASURE statement
OLAP procedure 15, 95

measures 4
defining distinct count statistics 14

MEMBER argument
DEFINE statement (OLAP) 104
UNDEFINE statement 105

member properties 13
members 4

unique names 19
metadata

refreshing cube metadata 48
storage for cube metadata 13
tables for creating cubes in 12

METASVR statement
OLAP procedure 85

Microsoft Excel 2000
cubes with 73

Index 143

Microsoft Excel 2002 PivotTable
cubes with 73
saving as Web page 75

Microsoft Office Web Components 2000 and
2002 PivotTable 75

MOLAP 3
aggregation storage 20
manually copying cube files 60

moving cubes 60
multi-cubes

See cubes
multi-language cubes

exporting and importing cubes 59
multi-threading 7
multidimensional online and analytical processing

See MOLAP
multiple hierarchies 15
multiple language support 54

N
NAME= argument

DROP_AGGREGATION statement
(OLAP) 102

NAME= option
AGGREGATION statement (OLAP) 101

naming guidelines
SAS OLAP Server 108

.NET
SAS Web OLAP Viewer for 73

NO_NWAY option
PROC OLAP statement 83

NUNIQUE statistic
MEASURE statement (OLAP) 15

O
object spawner 5
OLAP 1

benefits of 2
data storage and access 2
variations of 3

OLAP procedure 78
AGGREGATION statement 99
building cubes 27
COMPRESS option 54
CONCURRENT= option 54
DATAPATH= option 54
DEFINE statement 102
defining distinct count measures 15
defining member properties 14
defining multiple hierarchies 16
defining ragged and unbalanced hierar-

chies 17
DIMENSION statement 86
dimension table translations 55
DROP_AGGREGATION statement 51, 101
HIERARCHY statement 16, 93
INDEX option 54
INDEXPATH= option 54
INDEXSORTSIZE= option 54
LEVEL statement 89
MAXTHREADS= option 54
MEASURE statement 15, 95

METASVR statement 85
overview 78
PARTSIZE= option 54
performance options 116
PROC OLAP statement 79
PROPERTY statement 14, 91
ragged hierarchy options 115
REFRESH statement 49
refreshing cube metadata 49
saving code for cubes 26
SEGSIZE= option 54
setting tuning and performance options 54
syntax 78
tuning cube aggregations 51
UNDEFINE statement 104
USER_DEFINED_TRANSLATIONS state-

ment 55, 105
WORKPATH= option 54

OLAP_SCHEMA= argument
METASVR statement (OLAP) 85

OLE DB for OLAP
cubes with 69

Online Analytical Processing
See OLAP

P
PARTSIZE= option

AGGREGATION statement (OLAP) 101
OLAP procedure 54
PROC OLAP statement 83

PATH= option
PROC OLAP statement 84

path settings 58
performance

cube aggregations 52
OLAP procedure options for 116

physical cubes 12
PivotTable and PivotChart Wizard 73
PORT= option

METASVR statement (OLAP) 85
PROC OLAP statement 79
ProClarity Professional

cubes with 76
PROPERTY statement

OLAP procedure 14, 91
PROTOCOL= option

METASVR statement (OLAP) 85
PW= option

METASVR statement (OLAP) 85

R
ragged hierarchies 16

OLAP procedure options for 115
unique member names and 19

REFRESH statement
OLAP procedure 49

refreshing cube metadata 48
REGISTER_ONLY option

PROC OLAP statement 84
relational OLAP

See ROLAP

repository
exporting and importing cubes 59

REPOSITORY= option
METASVR statement (OLAP) 86

ROLAP 3
aggregation storage 20
manually copying cube files 61

S
SAS AppDev Studio 70
SAS Enterprise Guide 70
SAS Information Map Studio 71
SAS Metadata Server 5
SAS OLAP Cube Studio

building cubes 23
SAS OLAP Server 5

monitoring performance 52
naming guidelines 108

SAS Open Metadata Interface 5
SAS servers 4

character encoding and 55, 106
SAS Stored Process Server 6
SAS Web OLAP Viewer 72

for Java 72
for .NET 73

SAS Web Report Studio 71
SAS Workspace Server 5
SEGSIZE= option

AGGREGATION statement (OLAP) 101
OLAP procedure 54
PROC OLAP statement 84

SET argument
DEFINE statement (OLAP) 104
UNDEFINE statement 105

SORT_ORDER= option
DIMENSION statement (OLAP) 89
LEVEL statement (OLAP) 91

Specify Map
error messages 127

SQL Pass-Through facility
accessing cubes from 62
conversion issues 62
example 64
SQL procedure syntax 63

SQL procedure 63
star schemas

building cubes from 38
input tables 8
loading cubes from 110

STAT= argument
MEASURE statement (OLAP) 95

summarized data
loading cubes with 112

summary tables
building cubes from 32

synchronizing cubes 56
system options

adding to cubes 55

T
TABLE= option

AGGREGATION statement (OLAP) 101

144 Index

tables
defining, for creating cubes in metadata 12
defining cubes with 107

third-party clients
cubes with 73

time analysis calculations 67
tuning cube aggregations 49

Advanced Aggregation Tuning plug-in 51
ARM analysis tuning 51
cross-dimensional tuning 51
DROP_AGGREGATION statement for 51
Manual Tuning function 50
monitoring OLAP server performance 52
specifying tuning options 52

TYPE= option
DIMENSION statement (OLAP) 89

LEVEL statement (OLAP) 91

U
unbalanced hierarchies 16

UNDEFINE statement

OLAP procedure 104

unique member names 19

UNITS= option

MEASURE statement (OLAP) 99

user privileges

exporting and importing cubes 58

USER_DEFINED_TRANSLATIONS statement

OLAP procedure 55, 105

USERID= option
METASVR statement (OLAP) 86

V
VALIDVARNAME= system option 63

W
Web pages

saving Microsoft Excel 2002 PivotTable as 75
WORKPATH= option

OLAP procedure 54
PROC OLAP statement 84

Your Turn

If you have comments or suggestions about SAS 9.1.3 OLAP Server: User’s Guide,
Second Edition, please send them to us on a photocopy of this page, or send us
electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

66

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2006 SAS Institute Inc. All rights reserved. 403726US.0806

SAS® Publishing gives you the tools to
flourish in any environment with SAS®!

Whether you are new to the workforce or an experienced professional, you need to distinguish yourself
in this rapidly changing and competitive job market. SAS® Publishing provides you with a wide range of
resources— including publications, online training, and software —to help you set yourself apart.

Expand Your Knowledge with Books from SAS® Publishing
SAS® Press offers user-friendly books for all skill levels, covering such topics as univariate and multivariate
statistics, linear models, mixed models, fi xed effects regression, and more. View our complete catalog and get
free access to the latest reference documentation by visiting us online.

s u p p o r t . s a s . c o m / p u b s

SAS® Self-Paced e-Learning Puts Training at Your Fingertips
You are in complete control of your learning environment with SAS Self-Paced e-Learning! Gain immediate
24/7 access to SAS training directly from your desktop, using only a standard Web browser. If you do not have
SAS installed, you can use SAS® Learning Edition for all Base SAS e-learning.

s u p p o r t . s a s . c o m / s e l f p a c e d

Build Your SAS Skills with SAS® Learning Edition
SAS skills are in demand, and hands-on knowledge is vital. SAS users at all levels, from novice to advanced,
will appreciate this inexpensive, intuitive, and easy-to-use personal learning version of SAS. With SAS Learning
Edition, you have a unique opportunity to gain SAS software experience and propel your career in new and
exciting directions.

s u p p o r t . s a s . c o m / L E

66

	Table of Contents
	Contents

	What’s New
	Overview
	Documentation Enhancements
	New Tools for Data Loading and Cube Building
	New Options Added to the PROC OLAP Statement
	New Functions
	New Tuning Capabilities for the Query Thread Pool
	New Tuning Options Window
	Improved Performance
	Improved Querying Capability
	Improved Aggregation Tuning
	Additional Enhancements

	OLAP Introduction and Overview
	What Is OLAP?
	Data Storage and Access
	Benefits of OLAP
	OLAP Variations

	What Is a Cube?
	Understanding the Cube Structure
	SAS Servers
	SAS Servers and SAS OLAP
	SAS Metadata Server
	SAS Workspace Server
	SAS OLAP Server
	SAS Stored Process Server

	Why You Should Use Cubes
	Cube Usage and Storage Space Reduction
	Multi-Threading Capabilities
	Easy Setup and Maintenance
	Data Management: Choosing Your Own Tool

	Analyzing Your Data
	Data Preparation and Dimension Design
	Data Tables Used to Define SAS OLAP Cubes
	Aggregation Design

	Building Cubes
	Background
	Preparations for Building a Cube
	Storage Location Requirements for Cube Metadata and Related Objects

	Defining Member Properties
	Property Statement
	Cube Designer

	Defining Distinct Count Measures
	Defining a Default Hierarchy
	Defining Multiple Hierarchies for a Dimension
	Hierarchies Statement
	Cube Designer

	Defining Ragged and Unbalanced Hierarchies for a Dimension
	Defining Ragged and Unbalanced Hierarchies in SAS OLAP Cube Studio
	Defining Ragged and Unbalanced Hierarchies with PROC OLAP
	Ragged Hierarchies and Unique Member Names

	Cube Design-Aggregations
	MOLAP Aggregation Storage
	ROLAP Aggregation Storage
	Choosing MOLAP or ROLAP Aggregation Storage

	SAS OLAP Cube Size Specifications

	Cube Building Examples
	Building a Cube from a Detail Table
	SAS OLAP Cube Studio
	PROC OLAP

	Building a Cube from a Summary Table
	Building a Cube from a Star Schema

	Modifying and Updating Cubes
	Updating a Cube
	Refreshing Cube Metadata
	MDX DDL REFRESH Statement

	Tuning Cube Aggregations
	Using the Manual Tuning Function
	Using the Advanced Aggregation Tuning Plug-In
	Using PROC OLAP to Tune Aggregations
	Monitoring OLAP Server Performance

	Specifying Tuning and Performance Options in Cube Aggregations
	Setting Options on the Cube Designer Wizard
	Setting Options on the Manual Tuning Function or the Advanced Aggregation Tuning Plug- in
	Setting Options with PROC OLAP

	Multiple Language Support and Dimension Table Translations
	SAS OLAP Cube Studio and Dimension Table Translations
	PROC OLAP and the USER_DEFINED_TRANSLATIONS Statement
	SAS Servers and Character Encoding

	Adding SAS System Options to a Cube
	Synchronizing a Cube
	Exporting and Importing Cubes
	Exporting Cubes
	Importing Cubes
	User Privilege Considerations
	Repository Considerations
	Creating Connection Points
	File Naming Considerations
	Multi-Language Cubes
	Manually Copying and Moving SAS OLAP Cubes

	Accessing OLAP Cubes from SAS: SQL Pass-Through Facility for OLAP
	Conversion Issues
	PROC SQL Syntax
	SQL Pass-Through Example

	Specifying GIS Map Information for a Dimension
	Specifying Calculated Members
	Using the Calculated Members Plug-in

	Using SAS OLAP Cubes
	Using a Cube with ADO MD
	Using a Cube with OLE DB for OLAP
	Using a Cube with Additional SAS Products
	SAS Products That Use SAS OLAP Cubes
	SAS Enterprise Guide
	SAS AppDev Studio
	SAS Information Map Studio
	SAS Web Report Studio
	SAS Web OLAP Viewer

	Using a Cube with Third-Party Clients
	Microsoft Excel 2000 and Excel 2002 PivotTable
	Microsoft Office Web Components 2000 and 2002 PivotTable
	ProClarity Professional

	The OLAP Procedure
	The OLAP Procedure
	Syntax: OLAP Procedure
	PROC OLAP Statement
	Options

	METASVR Statement
	Required Argument
	Options

	DIMENSION Statement
	Required Arguments
	Options

	LEVEL Statement
	Required Arguments
	Options

	PROPERTY Statement
	Required Arguments
	Options

	HIERARCHY Statement
	Required Arguments
	Options

	MEASURE Statement
	Required Arguments
	Options

	AGGREGATION Statement
	Required Arguments
	Options

	DROP_AGGREGATION Statement
	Required Arguments

	DEFINE Statement
	Required Arguments

	UNDEFINE Statement
	Required Arguments

	USER_DEFINED_TRANSLATIONS Statement
	Required Argument
	SAS Servers and Character Encoding

	Tables Used to Define Cubes
	Naming Guidelines for SAS OLAP Server
	Loading Cubes
	Loading Cubes from a Detail Table
	Loading Cubes from a Star Schema
	Loading Cubes Using Summarized Data

	Maintaining Cubes
	Building a Cube from an Existing Definition
	Adding Aggregations to an Existing Cube
	Deleting Aggregations from an Existing Cube
	Deleting Cubes

	Specialized Options for PROC OLAP
	Options for Managing Ragged Hierarchies
	Options Used for Performance

	SAS OLAP Cube Studio Messages
	Cube Designer Error Messages
	Dimension Designer Error Messages
	Specify Map Error Messages
	Miscellaneous Error Messages

	SAS OLAP Cube Studio Accessibility Features
	SAS OLAP Cube Studio Accessibility Features

	Recommended Reading
	Recommended Reading

	Glossary
	Index

