
SAS/IntrNet®

9.1: htmSQL

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS/IntrNet® 9.1: htmSQL.
Cary, NC: SAS Institute Inc.

SAS/IntrNet® 9.1: htmSQL

Copyright © 2004, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise,
without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

Published July 2002, July 2004, December 2004, March 2006

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Table of Contents
What's New in SAS/IntrNet 9 and 9.1htmSQL..1

 About htmSQL...2

Understanding How htmSQL Works: the Technical View...3

htmSQL Input Files..5

Syntax for htmSQL Directives...7

Specifying Values for Userids and Passwords..22

Automatic Variables...23

Formats for Variable Values and Labels..26

Invoking htmSQL...30

Configuring Your Web Server to Recognize htmSQL Input Files..33

A Step−by−Step Guide to Creating an htmSQL Web Page..36

Tips and Techniques for Using htmSQL..38

Requirements...40

The htmSQL Configuration File...41

Defining a Data Source...47

Instructions for Invoking dsdef...52

 Configuring TCP/IP...53

Getting Started Exercises...54

retail1.hsql Sample Input File..56

Sample Data Source File..57

retail2.hsql Sample Input File..58

i

What's New in SAS/IntrNet 9 and 9.1
htmSQL

Overview
htmSQL for SAS/IntrNet 9 and 9.1 includes a new administration option and more flexibility for coding
directives.

Note:

This section describes the features of SAS/IntrNet: htmSQL that are new or enhanced since SAS 8.2.

Details

The new SET configuration option enables administrators to set default values for name and value
pairs.

•

Parameter values for htmSQL directives can now be delimited with either double or single quotation
marks.

•

1

About htmSQL
Users of today's information highway demand up−to−the−minute information that's easy to access and read.
htmSQL meets the challenge by integrating your SAS data with Web interface technology.

htmSQL is a CGI program that enables you to perform SQL processing from a Web page. You provide an
input file containing SQL statements that are embedded in HTML; htmSQL performs updates and queries on
your data source and then formats any results. Because htmSQL uses the Web for information delivery, your
users can easily access your SAS data from anywhere on your network.

With htmSQL, you design the Web page−−it can be as simple or as sophisticated as you want, and you can
use whatever HTML elements your browser supports. You can display the results of any number of SQL
statements on a single page and embed the results anywhere in a page. htmSQL dynamically processes the
SQL in response to user requests, ensuring that the most current SAS data is processed.

htmSQL is available for the UNIX, Windows, and z/OS platforms.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported
on the MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also
applies to OS/390 and MVS, unless otherwise stated.

2

Understanding How htmSQL Works: the Technical
View
htmSQL is a CGI program that is written in the C language and resides on your Web server. It can process
special directives that are embedded in an HTML file. These directives describe one or more SQL statements
and incorporate formatted results into the Web page that is created by the HTML file.

htmSQL passes your SQL to a SAS/SHARE server, performs the requested updates and queries, and retrieves
the results sets. The desired page is created dynamically and returned through the Web server to the browser.
See the data flow and required components in the following diagram:

The Web server calls htmSQL each time it receives a URL that specifies the htmSQL program name. htmSQL
supports both the GET and POST CGI methods for sending form data.

htmSQL reads the input file for information that is contained within any of its directives. It processes this
information and returns the results to the Web server. It returns all HTML information to the Web server just
as it appears in the input file.

The following example illustrates a URL for htmSQL:

http://yourserver/dir/executable_file/filename.hsql?query_string

yourserver is your Web server host name (and port, if required).•
dir is the path of the Web server CGI program directory that contains htmSQL.•
executable_file is the htmSQL program name. For UNIX and z/OS, the program name is htmSQL.
For Windows, the program name is htmSQL.exe.

•

filename.hsql is your htmSQL input file. Each file can contain multiple SQL statements and also can
include other input files by reference.

•

query_string specifies values for one or more of the variables that are referenced in the input file.
The variable name and value pairs are separated by ampersands ()and are specified using the
following format:

var1=value1&var2=value2&...varN=valueN

•

Note: Some Web servers can be configured to recognize an input file by its file extension and to automatically
call the appropriate CGI program to process the file. If your Web server can be configured this way, you can
omit the path to htmSQL when you specify the URL (that is, you can omit the dir and executable_file

3

values). Consult your Web server documentation for details on whether and how your server can be so
configured.

For more information about CGI and CGI scripting, refer to the Common Gateway Interface documentation
provided by W3C at www.w3.org/CGI.

Processing an htmSQL Input File

htmSQL uses a defined set of processing rules to process the information in the input file:

htmSQL sends all text and characters that are not part of htmSQL (such as HTML tags and newline
indicators) to stdout exactly as they occur in the file. If a variable reference appears in this text,
htmSQL resolves the reference before sending the text to stdout.

•

htmSQL collects the information that is contained in the SQL section and sends it to the SAS server
as a complete SQL statement that is to be executed. Each variable reference that is in the SQL section
is resolved to the current value of the variable. htmSQL ignores newline indicators in the SQL
section.

•

For SQL queries, htmSQL retrieves a row of the results set and writes it to stdout according to the
information that is included in the eachrow section. Variable references that correspond to column
values are resolved. htmSQL repeats this step for each row in the results set.

•

For SQL statements that perform update functions, htmSQL processes the success section if the return
code is zero and the error section if the return code is not equal to zero.

•

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported
on the MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also
applies to OS/390 and MVS, unless otherwise stated.

4

htmSQL Input Files
In order for htmSQL to create your Web page, you must first provide htmSQL with an input file. This file
contains the HTML and SQL that you want processed.

When someone wants to access your Web page, they pass a URL that contains the name and location of the
input file to htmSQL. The URL can also contain information used to resolve variable references that are in the
input file.

If you are new to htmSQL, you can follow the link at the bottom of this page to try the sample exercise that
we provide.

General Structure of an htmSQL Input File

An input file can contain zero or more of the following elements:

variable references. The references can be to columns selected in queries, to variables specified in the
URL, or to variables that htmSQL automatically defines and supplies values for. The references are
replaced by the current value of the variable.

•

complete query sections, delimited by the {query} and {/query} directive pair. Each query
section contains at least one SQL/eachrow section pair and can contain multiple pairs. For each SQL
section, you can include a norows section.

The SQL section is delimited by the {sql} and {/sql} directive pair and specifies how to
construct a query that htmSQL sends to a SAS/SHARE server.

♦

The eachrow section is delimited by the {eachrow} and {/eachrow} directive pair and
describes how to display the results set.

♦

The norows section is delimited by the {norows} and {/norows} directive pair and
contains the steps to take when the previous SQL section does not return any rows.

♦

•

complete update sections, delimited by the {update} and {/update} directive pair. Each update
section contains one or more SQL sections. For each SQL section you can include success and error
sections.

The SQL section is delimited by the {sql} and {/sql} directive pair and specifies how to
construct an SQL statement that htmSQL sends to a SAS/SHARE server.

♦

The success section is delimited by the {success} and {/success} directive pair and
contains the steps to take when the SQL is processed with a return code of zero. The success
section can also contain a norows section.

♦

The error section is delimited by the {error} and {/error} directive pair and contains
the steps to take when the SQL is processed with a nonzero return code.

♦

•

{library} directive. The {library} directive can be included in both the query and update
sections and defines a high−level qualifier that you use in the names of tables and views in your SQL
queries and statements.

•

{label} directive. The {label} directive enables you to display the label for a column in a results
set.

•

included files. Use the {include} directive to specify another file for htmSQL to process before
continuing with the current file.

•

htmSQL comments. All text contained between {* and a closing brace } is considered an htmSQL
comment and is not written to stdout.

•

5

Everything else in the input file is written, as is, to stdout. This includes text, HTML, and newline
characters.

For more information about the elements that you can use in an input file, see Syntax for htmSQL Directives.
For step−by−step instructions on creating and using an htmSQL input file, see A Step−by−Step Guide to
Creating an htmSQL Web Page.

For introductory exercises in using htmSQL, see Getting Started Exercises.

6

Syntax for htmSQL Directives
htmSQL directives are commands that process SQL statements and results sets for your Web page. For more
information on the structure of htmSQL input files, see htmSQL Input Files.

The following rules apply to all of the directives:

directives are delimited by braces {}•
all htmSQL keywords (directives, parameters, parameter values) are not case sensitive•
unless otherwise noted, parameter values can be delimited by either double or single quotation marks•
white space within a directive is ignored•
no line breaks are allowed in the middle of any string that is delimited by quotation marks (").•

The following directives and syntax elements are available:

{query}•
{sql}•
{eachrow}•
{norows}•
{update}•
{success}•

{error}•
variable reference
({&varname})

•

{library}•
{label}•
{include}•
comment ({* ...})•

{query}

Syntax:

{query datasrc="htmSQL−ds" server="host:port"
 userid="id" password="pw" sapw="sapw"} ... {/query}

datasrc="htmSQL−ds"
htmSQL−ds is a name or a variable reference that identifies an htmSQL data source.

Examples:

 {query datasrc="sales data"}
 {query datasrc="{&dsrc}"}

A data source specifies a SAS/SHARE server and the libraries that are available through the server.
Data sources are defined in data source definition files. To define a data source, use the dsdef program
that is provided with htmSQL.

server="host:port"
host:port specifies the SAS/SHARE server to connect to. You can use the server= parameter
instead of the datasrc= parameter to specify the SAS/SHARE server. When used alone, the
server= parameter must specify both the host name and the port for the SAS/SHARE server.

You can also use server= together with datasrc= to override the host and port that are specified
in a data source definition. When used together with the datasrc= parameter, the server=
parameter can specify the host name, the port, or both for the SAS/SHARE server. If you specify only
one of these items, you must include a colon (:) to indicate which one you are specifying.

7

Note: If any libraries are defined in the data source definition that is specified by the datasrc=
parameter, then htmSQL attempts to define those same libraries to the server that is specified by the
server= parameter.

The host name can be specified as a fully qualified domain name or it can be specified in any
shortened form that is sufficient to enable network services to identify it.

The port can be specified as a number or as a service name that is defined in the TCP/IP SERVICES
file.

Users who are familiar with the SAS syntax for specifying a server name can use a period (.) instead
of a colon (:) to separate the host name and port. All of the other syntax rules for the server= option
still apply.

The following are examples of valid syntax:

 {query server="klondike.acme.com:5228"}

 {query server="penn.sylvania:6500"}

 {query server="yukon.sasshr1"}

 {query datasrc="finance" server="testsrv:"}

 {query datasrc="sales &Marketing" server=":5010"}

 {query datasrc="alaska" server="yukon:sasshr1"}

Tip: If you are just getting started with htmSQL and do not want to define a data source definition
file, you can use the server= parameter instead of defining a data source. And, if you specify a port
number instead of a service name for this parameter, you also do not need to add an entry to your
TCP/IP SERVICES file.

userid="id" (conditionally optional)
id is a userid for the system that the SAS/SHARE server runs on. If your server is running in secured
mode, you must specify a userid. This can be done by specifying a value for this parameter or by
specifying a userid in your data source definition. You do not have to specify userids in both places. If
the data source definition contains a userid, then the userid that you specify for this parameter
overrides the userid that is stored in the data source definition.

password="pw" (conditionally optional)
pw is the password for the userid that is specified in the userid= parameter. If your server is
running in secured mode, you must specify a password. This can be done by specifying a value for
this parameter or by specifying a password in your data source definition. You do not have to specify
passwords in both places. If the data source definition contains a password, then the password that
you specify for this parameter overrides the password that is stored in the data source definition.

sapw="sapw" (optional)
sapw is the SAS/SHARE server access password for users. This must be the same password that is
specified in

the UAPW= option of the SERVER procedure that was used to define the SAS/SHARE
server. You must specify a password if user access to the server is password protected and if
this password is not already specified in your data source definition.

◊

the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO
statement.

◊

The password that you specify for this parameter overrides the password that is stored in the data

8

source definition.

Description: The {query} and {/query} directive pair delimits the query section. An input file can
contain multiple query sections. Query sections can be nested within the eachrow and norows sections of a
query section and within the success, error, and norows sections of an update section. Each query section must
contain at least one SQL/eachrow section pair and can contain multiple pairs.

The SQL section is delimited by the {sql} and {/sql} directive pair and contains the query to be
sent to the SAS/SHARE server.

•

The eachrow section is delimited by the {eachrow} and {/eachrow} directive pair. htmSQL
applies the details in the eachrow section to the results set that is generated by the SQL section that
immediately precedes that eachrow section. The eachrow section is processed once for each row in
the results set.

•

A query section can also contain a norows section, a {library} directive, and other text, including HTML
and variable references. The text can appear prior to sections, between sections, and after sections.

The following example illustrates a typical query section:

 {query datasrc="data_source_name"}

 {sql}
 [SQL query here]
 {/sql}

 <p>This text is always output.</p>

 {norows}
 [Things to do if no rows are returned]
 {/norows}

 <p>This text is output only when some rows are returned.</p>

 {eachrow}
 [HTML formatting here]
 {/eachrow}

 <p>More text that is output only when some rows are returned.</p>

 {/query}

{sql}

Syntax: {sql empty="success"|"error" error="noprint"} ... {/sql}

empty="success"|"error" (optional)
The value for empty= specifies whether processing transfers to the success section
(empty="success") or error section (empty="error") if the SQL section resolves to an empty
section. The default value is error.

Note: This parameter is used only for SQL sections that are within update sections.
error="noprint" (optional)

Specify error="noprint" if you want to suppress error messages that are produced by htmSQL
during SQL processing.

9

Note: If you do not specify this option and your SQL statement contains a SAS data set password,
then you risk exposing the password because htmSQL includes the SQL statement along with the
SQL error message.

Description: The {sql} and {/sql} directive pair delimits the SQL section. The SQL section is a part of
both the query and update sections and contains the SQL statements that are to be sent to the SAS/SHARE
server. You can use any SQL statement that is supported by the SAS SQL processor. You can have only one
SQL statement per SQL section, but you can have multiple SQL sections within both the query and update
sections.

For more information about using SQL statements with SAS data, see the SAS Procedures Guide.

SQL for a Query Section

In a query section, the information between the beginning and ending {sql} directives must begin with the
SELECT keyword and must contain one valid SQL query.

An SQL query can be either static or variable.

If you want each of your users to use the same query every time they access your Web page, write a
static query. Static queries consist of expressions and clauses that contain constant values and no
variable references.

•

With a variable query, the users of your Web page can customize the query by specifying their own
values for search parameters. The query is written using variable references that are given values
when users access the Web page.

For example, if your data contains a DATE column, and you want users to be able to specify their
own dates to search on, you can place a variable reference in the query for DATE. The following
example illustrates this query:

 {sql}
 select NAME, TITLE, DEPT from EMPDB.EMPLOYEE
 where START='{&DATE}'
 {/sql}

The values that users provide can be specified on the htmSQL URL or collected from an HTML form
that you link them to. If you nest a query in the eachrow section of another query section, your nested
query can refer to variables in the results set of the encompassing query.

•

SQL for an Update Section

In an update section, the information between the beginning and ending {sql} directives must begin with the
ALTER, CREATE, DELETE, DROP, INSERT, or UPDATE keyword and must contain one valid SQL
statement.

Note: The Webmaster can disable ALTER, CREATE, DELETE, DROP, INSERT, and UPDATE statements
by specifying the READONLY option in the htmSQL configuration file.

The following example SQL sections are placed consecutively in an update section. The first section creates a
data set named def.play, and the second section inserts values into it.

 {sql}
 create table def.play

10

 (a numeric, b numeric, c numeric, d char, e char);
 {/sql}

 {sql}
 insert into def.play
 set a=1, b=2, c=3, d='xx', e='yy';
 {/sql}

{eachrow}

Syntax:

{eachrow n="n1" first="n2" last="n3"
 closequery="yes|no"} ... {/eachrow}

n="n1" (optional)
n1 is the total number of rows that you want htmSQL to get. A value of max tells htmSQL to get all
the rows in the results set. The default value is max.

Note: The n= and last= parameters are mutually exclusive. When you specify both of them,
whichever parameter is specified last is the one that is used. For example, if you specify

 {eachrow last="15" n="10"}

then the last row that is retrieved is row 10.
first="n2" (optional)

n2 is the number of the first row that you want htmSQL to get. The default value is 1.
last="n3" (optional)

n3 is the number of the last row that you want htmSQL to get. A value of max specifies the last row
in the results set. For example, if you specify the following:

 {eachrow first="20" last="max"}

you get all but the first nineteen rows in the results set.

Note: The n= and last= parameters are mutually exclusive. When you specify both of them,
whichever parameter is specified last is the one that is used. For example, if you specify

 {eachrow n="10" last="15"}

then the last row that is retrieved is row 15.
closequery="yes|no" (optional)

closequery="yes" tells htmSQL to send the SAS/SHARE server a message that causes the
server to terminate query processing when htmSQL finishes processing the eachrow section. When
the SAS/SHARE server terminates query processing, it closes the input tables and frees the memory
associated with this query. If you do not specify this parameter or if you specify
closequery="no", then query processing is not terminated until htmSQL finishes processing the
main input file.

Specify this parameter

if your htmSQL input file contains more than 64 queries to the same SAS/SHARE server◊
if you want to perform a DROP or ALTER TABLE on a table that the query refers to.◊

11

Note: If you specify this parameter, then no references to the columns of the results set are allowed
after the eachrow section.

Description: The {eachrow} and {/eachrow} directive pair delimits the eachrow section. The eachrow
section is a part of the query section and contains instructions on how to format the results that are generated
by the SQL section that immediately precedes that eachrow section. The formatting information is applied to
each row of the results set and can include any valid HTML tag and variable reference. The variable
references contained in the eachrow section are resolved for each row of output as that row is formatted.

Note: Because htmSQL sends all HTML information to stdout exactly as it is encountered, eachrow
sections that are enclosed within HTML PRE elements may not format the way that you expect them to. If
your {eachrow} directive is followed by a line break, htmSQL sends that line break to stdout and causes
the output to appear double−spaced. The following lines

 <pre>
 {eachrow}
 X: {&x} Y: {&y}
 {/eachrow}
 </pre>

are sent to stdout (the Web browser) as

 <pre>

 X: 1 Y: A

 X: 2 Y: B

 X: 3 Y: C

 </pre>

and the Web browser displays following double−spaced output on the Web page:

 X: 1 Y: A

 X: 2 Y: B

 X: 3 Y: C

You can avoid double−spacing by putting the {eachrow} directive on the same row as the variables:

 <pre>
 {eachrow}X: {&x} Y: {&y}
 {/eachrow}
 </pre>

Nested Sections

If you want to submit more SQL statements from within your eachrow section, you can do one of the
following:

nest one or more SQL sections (with accompanying eachrow and norows sections) in the eachrow
section. All queries are sent to the data source that is specified by the encompassing {query}
directive.

•

12

Note that you can also nest a {library} directive; however, we recommend that you nest them
only if your {library} directive contains variable references that change as the eachrow section is
processed. Otherwise, if the parameters in the {library} directive have static values, then place
the {library} directive before the eachrow section to avoid unnecessary processing.
nest a complete query section in the eachrow section, and use the {query} directive to specify a
different data source. The SQL, eachrow, and norows sections that are within the nested section will
work with data from this new data source.

•

nest a complete update section in the eachrow section to update data from the same data source or
from a different data source.

•

Note: htmSQL does not limit the number of times that you can nest query sections or SQL/eachrow section
pairs within eachrow sections. However, beyond a certain point, you may experience poor performance or
your system can run out of memory.

{norows}

Syntax: {norows} ... {/norows}

Description: The {norows} and {/norows} directive pair delimits the norows section. The norows
section is a part of the query and success sections. In this section, you include the HTML elements and
htmSQL directives that you want htmSQL to process when the previous SQL section does not return or
update any rows. After processing a norows section in a query section, htmSQL skips to either the next SQL
section or to the end of the query section, whichever comes first. After processing a norows section in a
success section, htmSQL skips to the end of the success section.

When an SQL section returns or updates at least one row of data, htmSQL ignores the norows section and
continues processing the input file starting with the first line after the norows section.

Nested Sections

If you want to submit more SQL statements from within your norows section, you can do one of the
following:

nest one or more SQL sections (with accompanying {library} directive and eachrow, success,
error, and norows sections when necessary) in the norows section. All SQL statements are sent to the
data source that is specified by the encompassing {query} or {update} directives.

•

nest a complete query or update section in the norows section. The SQL, eachrow, success, error, and
norows sections that are within the nested section will work with data from the data source that is
specified on the {query} or {update}directive.

•

Note: htmSQL does not limit the number of times that you can nest sections within norows sections.
However, beyond a certain point, you may experience poor performance or your system can run out of
memory.

{update}

Syntax:

{update datasrc="htmSQL−ds" server="host:port"
 userid="id" password="pw" sapw="sapw"} ... {/update}

datasrc="htmSQL−ds"

13

htmSQL−ds is a name or a variable reference that identifies an htmSQL data source.

Examples:

 {update datasrc="employee_data"}
 {update datasrc="{&dsrc}"}

A data source specifies a SAS/SHARE server and the libraries that are available through the server.
Data sources are defined in data source definition files. To define a data source, use the dsdef program
that is provided with htmSQL.

server="host:port"
host:port specifies the SAS/SHARE server to connect to. You can use the server= parameter
instead of the datasrc= parameter to specify the SAS/SHARE server. When used alone, the
server= parameter must specify both the host name and the port for the SAS/SHARE server.

You can also use server= together with datasrc= to override the host and port that are specified
in a data source definition. When used together with the datasrc= parameter, the server=
parameter can specify the host name, the port, or both for the SAS/SHARE server. If you specify only
one of these items, you must include a colon (:) to indicate which one you are specifying.

Note: If any libraries are defined in the data source definition that is specified by the datasrc=
parameter, then htmSQL attempts to define those same libraries to the server that is specified by the
server= parameter.

The host name can be specified as a fully qualified domain name or it can be specified in any
shortened form that is sufficient to enable network services to identify it.

The port can be specified as a number or as a service name that is defined in the TCP/IP SERVICES
file.

Users who are familiar with the SAS syntax for specifying a server name can use a period (.) instead
of a colon (:) to separate the host name and port. All of the other syntax rules for the server= option
still apply.

The following are examples of valid syntax:

 {update server="klondike.acme.com:5228"}

 {update server="penn.sylvania:6500"}

 {update server="yukon.sasshr1"}

 {update datasrc="finance" server="testsrv:"}

 {update datasrc="sales &Marketing" server=":5010"}

 {update datasrc="alaska" server="yukon:sasshr1"}

Tip: If you are just getting started with htmSQL and do not want to define a data source definition
file, you can use the server= parameter instead of defining a data source. And, if you specify a port
number instead of a service name for this parameter, you also do not need to configure a TCP/IP
SERVICES file for htmSQL.

userid="id" (conditionally optional)
id is a userid for the system that the SAS/SHARE server runs on. If your server is running in secured
mode, you must specify a userid. This can be done by specifying a value for this parameter or by

14

specifying a userid in your data source definition. You do not have to specify userids in both places. If
the data source definition contains a userid, then the userid that you specify for this parameter
overrides the userid that is stored in the data source definition.

password="pw" (conditionally optional)
pw is the password for the userid that is specified in the userid= parameter. If your server is
running in secured mode, you must specify a password. This can be done by specifying a value for
this parameter or by specifying a password in your data source definition. You do not have to specify
passwords in both places. If the data source definition contains a password, then the password that
you specify for this parameter overrides the password that is stored in the data source definition.

sapw="sapw" (optional)
sapw is the SAS/SHARE server access password for users. This must be the same password that is
specified in

the UAPW= option of the SERVER procedure that was used to define the SAS/SHARE
server. You must specify a password if user access to the server is password protected and if
this password is not already specified in your data source definition.

◊

the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO
statement.

◊

The password that you specify for this parameter overrides the password that is stored in the data
source definition.

Description: The {update} and {/update} directive pair delimits the update section. An input file can
contain multiple update sections. Update sections can be nested within the success, norows, and error sections
of an update section and within the eachrow and norows sections of a query section. Each update section must
contain at least one SQL section and can contain multiple sections. The update section can also contain a
success section and an error section.

The SQL section is delimited by the {sql} and {/sql} directive pair and contains the SQL
statement that is to be sent to the SAS/SHARE server. The allowed SQL statements are ALTER,
CREATE, DELETE, DROP, INSERT, and UPDATE.

Note: The Webmaster can disable these SQL statements by specifying the READONLY option in the
htmSQL configuration file.

•

The success section is delimited by the {success} and {/success} directive pair and contains
instructions on what to do if the SQL statement returns with a return code of zero. The success section
can contain a norows section for instances where no rows are updated.

•

The error section is delimited by the {error} and {/error} directive pair and contains
instructions on what to do if the SQL statement returns with a return code that is not equal to zero.

•

An update section can also contain a {library} directive and other text, including HTML and variable
references. The text can appear prior to sections, between sections, and after the sections.

The following example illustrates a typical update section:

 {update datasrc="data_source_name"}

 {sql}
 [SQL statement here]
 {/sql}

 {success}
 [Things to do if the return code is 0]
 {norows}
 [Things to do if no rows are returned]

15

 {/norows}
 {/success}

 {error}
 [Things to do if the return code is not 0]
 {/error}

 {/update}

{success}

Syntax: {success} ... {/success}

Description: The {success} and {/success} directive pair delimits the success section. The success
section is a part of the update section. In this section, you include the HTML elements and htmSQL directives
that you want htmSQL to process when the previous SQL section completes with a return code of zero.

When an SQL section returns with a return code that is not equal to zero, htmSQL ignores the success section.

The success section can include a norows section for instances where no rows are updated.

Nested Sections

If you want to submit more SQL statements from within your success section, you can do one of the
following:

nest one or more SQL sections (with accompanying {library} directive and success, error, and
norows sections when necessary) in the success section. All SQL statements are sent to the data
source that is specified by the encompassing {update} directive.

•

nest a complete update section in the success section, and use the {update} directive to specify a
different data source. The SQL, success, error, and norows sections that are within the nested section
will work with data from this new data source.

•

nest a complete query section in the success section to query data from the same data source or from a
different data source.

•

Note: htmSQL does not limit the number of times that you can nest sections within success sections.
However, beyond a certain point, you may experience poor performance or your system can run out of
memory.

{error}

Syntax: {error} ... {/error}

Description: The {error} and {/error} directive pair delimits the error section. The error section is a
part of the update section. In this section, you include the HTML elements and htmSQL directives that you
want htmSQL to process when the previous SQL section completes with a nonzero return code.

When an SQL section returns with a return code of zero, htmSQL ignores the error section.

16

Nested Sections

If you want to submit more SQL statements from within your error section, you can do one of the following:

nest one or more SQL sections (with accompanying {library} directive and success, error, and
norows sections when necessary) in the error section. All SQL statements are sent to the data source
that is specified by the encompassing {update} directive.

•

nest a complete update section in the error section, and use the {update} directive to specify a
different data source. The SQL, success, error, and norows sections that are within the nested section
will work with data from this new data source.

•

nest a complete query section in the error section to query data from the same data source or from a
different data source.

•

Note: htmSQL does not limit the number of times that you can nest sections within error sections. However,
beyond a certain point, you may experience poor performance or your system can run out of memory.

Variable Reference

Syntax:

{&varname format=formats before="string1"
 between="string2" after="string3"}

&varname
varname is the name of the variable. If the variable you want to reference was specified in the URL
with more than one value, you can use the following syntax to reference a single specific value, a
range of values, or all values:

&varname[n] references the nth value that the variable contains where n>=1.

&varname[m..n]references all values from the mth value to the nth value where m<=1<n and
the variable contains two or more values.

&varname[*] references all values that the variable contains.

In the first two instances above, m and n can be references to numeric variables.
format=formats

formats is a single formatting option (format=value) or a comma−delimited list of options
enclosed in parentheses (format=(value,...,valueN)). Do not use quotation marks to delimit
the values. This is an optional parameter. See Formats for Variable Values and Labels for a list of
formatting options.

before="string1"
between="string2"
after="string3"

These parameters enable you to output strings of characters before, between, and after variable values.

You can use an unlimited number of characters in your strings (note that the maximum number of
characters that you can use depends on how much memory your system has). If you want to include
double quotation marks within your string, then delimit the string with single quotation marks or use
two double quotations marks within your string. For example, both of the following values will return
the string "How are you?".

17

 between='"How are you?"'
 between="""How are you?"""

To include single quotation marks within your string, delimit the string with double quotation marks
or use two single quotation marks within your string. For example, both of the following values will
return the string What's up?.

 before="What's up?"
 before='What''s up?'

The default value for before= is a null string ("").
The default value for between= is a blank space (" ").
The default value for after= is a null string ("").

Description: A variable reference is a string that htmSQL replaces with the value of a variable. Variables are
symbols that are defined on the URL, columns that are selected by a query, or symbols that htmSQL
automatically defines and supplies values for.

When htmSQL encounters a variable reference, it replaces the reference with the current value of the variable.
If the reference is to a column in a results set and

the variable reference occurs before the SQL section, then the variable is undefined and cannot be
resolved. The variable reference is written to stdout unresolved.

•

the variable reference occurs between the SQL section and the eachrow section, then htmSQL
replaces the variable reference with the variable's value from the first row of the results set.

•

the variable reference occurs within an eachrow section, then htmSQL replaces the variable reference
with the current row's value for the variable.

•

the variable reference occurs after the eachrow section, then htmSQL replaces the variable reference
with the variable's value from the last row of the results set.

•

Resolution of Nested Variable References

htmSQL also supports the resolution of nested variable references. That is, the value of a variable can itself be
a variable that htmSQL can resolve. For example, if you have a variable named taxi, and the value of taxi
is the variable name driver,

 {&taxi} −−−−−> driver

and the value of driver is Bob,

 {&driver} −−−−−> Bob

then, when you specify {&{&taxi}}, htmSQL resolves the nested references to a value of Bob.

 {&{&taxi}} −−−−−> Bob

htmSQL can resolve an infinite number of these nested variable references.

Examples

The following are examples of variable references:

 {&myname}
 {&weekdays[1..7]}

18

 {&theworld[*]}
 {&array1[{&counter}]}
 {&array2[{&begin}..{&end}]}
 {&months[1..12] before="(" between="," after=")"}
 {&{&varname}}
 {&{&sys.colname[*]}}

{library}

Syntax: {library sqlname="table−qualifier" path="library−path"}

Note: The keyword libname is a synonym for library.

sqlname="table−qualifier"
table−qualifier is the high−level qualifier you use in your SQL for the names of tables and views that
reside in this SAS data library. This qualifier corresponds to the libref in a SAS program.

You can use the keyword libref as a synonym for sqlname.
path="library−path"

library−path is the pathname of the SAS data library.

Description: The {library} directive can be included in both the query and update sections and defines a
high−level qualifier that you use in the names of tables and views in your SQL queries and statements. Use
this directive when the SAS library that contains the tables and views that you want to access is

not predefined to the SAS/SHARE server through which the library is accessed and•
not defined as part of a data source that specifies that server.•

Notes:

When you specify a value for sqlname (or libref), you can use that high−level qualifier for any
update or query section that specifies the same values for the datasrc= and server= parameters.

•

You can also specify the same high−level qualifier for two different libraries if they are on different
servers. If you specify the same high−level qualifier for two libraries that are on the same server, then
the second value overrides the first one.

•

{label}

Syntax:

{label var="varname1 varname2 ... varnameN" format=formats
 before="string1" between="string2" after="string3"}

var="varname1 varname2 ... varnameN"
varname1 varname2 ... varnameN are the names of variables whose labels you want to display.
You can specify one or more variable names; separate the variable names with single spaces.

You can also use a variable reference for a value. For example,

 var="{&mylabel}"
 var="{&sys.colname[*]}"

format=formats

19

formats is a single formatting option (format=value) or a comma−delimited list of options
enclosed in parentheses (format=(value,...,valueN)). Do not use quotation marks to delimit
the values. This is an optional parameter. See Formats for Variable Values and Labels for a list of
formatting options.

before="string1"
between="string2"
after="string3"

These parameters enable you to output strings of characters before, between, and after labels.

You can use an unlimited number of characters in your strings (note that the maximum number of
characters that you can use depends on how much memory your system has). The only character that
is not allowed is the double quotation mark ("). If you want to include double quotation marks within
your string, then delimit the string with single quotation marks or use two double quotations marks
within your string. For example, both of the following values will return the string "How are
you?".

 between='"How are you?"'
 between="""How are you?"""

To include single quotation marks within your string, delimit the string with double quotation marks
or use two single quotation marks within your string. For example, both of the following values will
return the string What's up?.

 before="What's up?"
 before='What''s up?'

The default value for before= is a null string ("").
The default value for between= is a blank space (" ").
The default value for after= is a null string ("").

Description: The {label} directive enables you to display the label for a variable that is in a results set. The
label is either returned from the data set or set in the SQL statement. If you want to display the label using a
particular format, you can specify the format= parameter.

{include}

Syntax:

{include file="web−server−host−pathname"
 vars="var1=value1&var2=value2&..."}

file="web−server−host−pathname"
web−server−host−pathname is the pathname (either absolute or relative) for a file that is to be
processed as an htmSQL input file. If the pathname is relative, then it is relative to either the current
working directory for htmSQL or to the path of the calling input file−−see your setting for the
RELATIVE run−time configuration option.

You can use a variable reference to specify the filename. For example:

 {include file="/dept/web/{&proj}.hsql"}

Note: The value for the file= parameter must be a physical pathname on the Web server machine. It
is not a URL.

20

vars="var1=value1&var2=value2&..."
var1=value1&var2=value2 is one or more variable name and value pairs that the included
input file requires.

The variables that you specify exist in the scope of the included file. This scoping is done so that a
variable that is set by both the input file and the included file can retain separate values for each file.
When htmSQL finishes processing the included file and returns to the calling input file, the value of
the variable is restored to the value that it had before the included file was called. If a variable is only
defined for the included file, then you cannot access it after htmSQL returns to the calling file.

The following example uses an input file named emps.hsql that requires values for the variables
name and status:

 {include file="emps.hsql" vars="name={&emp}&status=EXEMPT"}

Note from the example that you can use one or more variable references (such as {&emp}) in the
value for the vars parameter.

Description: The {include} directive enables you to include other HTML files into the current file. The
included file can be a simple HTML file or another htmSQL input file. If it is an htmSQL input file, then it
must be complete; it cannot contain a partial query or update section.

The {include} directive cannot appear inside any other htmSQL directive section.

Comment

Syntax: {* your comments here}

Description: All text contained between {* and the closing brace } is considered an htmSQL comment and is
not written to stdout. You can comment out single directives or entire sections with one pair of comment
braces. The following example shows an entire query section that is commented out:

 {*
 {query datasrc="employee"}
 {sql}
 select * from empdb.employee
 {/sql}
 {eachrow}
 lastname: {&lname} firstname: {&fname}
 {/eachrow}
 {/query}
 }

Note: HTML comments are considered text and are written to stdout along with the other text in the input
file.

21

Specifying Values for Userids and Passwords
You can specify values for the userid= and password= parameters in any of three ways:

Hard−code the values.1.
Collect the password or userid through an HTML form. The value is passed to htmSQL along with the
CGI request for your input file. You specify the password or userid by using a variable reference as
the value of this parameter. The following example illustrates the use of variable references as the
values of the userid= and password= parameters.

{update datasrc="employee1" userid="{&userid}" password="{&password}"}

2.

In the htmSQL input file, perform a query that retrieves the userid or password from a
userid/password data set. In subsequent query and update sections, you can use a variable reference to
refer to the value in either a userid= or password= parameter (see previous example).

3.

The first of these three methods is not very secure; the second method is secure only if you are using secure
sockets or secure HTTP; the third method is fairly secure and, if your Web server supports client
authentication, can be used to supply a different userid and password for each user.

22

Automatic Variables
htmSQL automatically defines a number of variables that contain htmSQL processing information. The
following sections list the variables and examples of variable values and usage:

Date and time variables•
SQL−related variables•
Miscellaneous variables•

htmSQL also provides a sample input file named autovars.hsql that lists values for many of the automatic
variables.

Date and Time Variables

The format of the date and time variable information is determined by the LC_TIME and LANG environment
variables and according to the NLS installation on your Web server machine.

Variable
Name Description Example Value

sys.ampm the time of day before or after noon (AM or PM) PM
sys.date the current date in ddMmmyy or ddMmmyyyy format (depending on

the value of the YEARDIGITS run−time configuration option) 04Apr2000

sys.datetime the current date in ddMmmyy hh:mm:ss TZ or ddMmmyyyy
hh:mm:ss TZ format (depending on the value of the YEARDIGITS
run−time configuration option)

04Apr2000 16:30:52
EDT *

sys.fulldate the current date, including the weekday and date Friday, April 04, 1997
sys.fulldatetime the current date, including the weekday, date, time, and time zone Friday, April 04, 1997

04:30:52 PM EDT *

sys.month the month of the year September
sys.month3 the month of the year (abbreviated) Sep
sys.monthday the day of the month 05
sys.monthnum the month of the year expressed numerically 09
sys.seconds the second of the minute 47
sys.time the time of day using a 12−hour clock 3:36
sys.time24 the time of day using a 24−hour clock 15:36
sys.tz the time zone EDT *

sys.weekday the day of the week Saturday
sys.weekday3 the day of the week (abbreviated) Sat
sys.year the calendar year 1997
sys.year2 the last 2 digits of the calendar year 97

*For the Windows platforms, the value for the time zone is not abbreviated (for example, Eastern Daylight
Time).

23

SQL−Related Variables

The following list contains variables for information that is related to an SQL statement:

sys.colname
The column names in a results set. Use the following syntax to reference a single specific value, a
range of values, or all values:

&sys.colname[n] references the nth column name in the results set where n>=1.

&sys.colname[m..n]references all column names from the mth value to the nth value where
m<=1<n and the results set contains two or more columns.

&sys.colname[*] references all the column names in the results set.

For example, for the following SQL statement,

{sql}select * from employee.names{/sql}

the selected columns are first, middle, and last. The following are some example references
and their resolved values:

{&sys.colname[1]} −−−−−> first
{&sys.colname[2..3]} −−−−−> middle last
{&sys.colname[*]} −−−−−> first middle last

sys.qrow
The number of the current row in the results set. The following example shows how to include the
SYS.QROW variable in an eachrow section:

{eachrow}
{&sys.qrow} {&lastname} {&firstname} {&middleinit}
{/eachrow}

Each row that is output would contain the number of the row and the three values that correspond to
the other three variable references. The output might look something like the following:

1 Doe John D.
2 Doe Jane R.
3 Doe Sam E.

sys.query
The last SQL query that is processed. All the characters in the query are included except for

newline characters◊
leading blank spaces that are before the SELECT keyword.◊

sys.updrows
sys.updcount

The number of rows that are inserted, deleted, or updated by the last INSERT, DELETE, or UPDATE
statement.

sys.updrc
The return code from the last INSERT, DELETE, or UPDATE statement.

Miscellaneous Variables

Variable Name Description Example Value

24

sys.dirurl the URL directory path (with no filename) for the top−level
input file /myfiles/

sys.filetime the date and time of the last modification of the current input
file

Monday, May 05, 1997
02:05:45 PM EDT *

sys.fileurl the URL pathname for the top−level input file /myfiles/myinput.hsql
sys.url the URL for invoking htmSQL (not including the pathname

of the input file) /cgi−bin/htmSQL

sys.version the version number for htmSQL 2.0
*For the Windows platforms, the value for the time zone is not abbreviated (for example, Eastern Daylight
Time).

25

Formats for Variable Values and Labels
htmSQL supports formats in two different ways:

by providing the format= parameter which enables you to explicitly specify a format with variable
references and directives.

•

by using the format that is associated with the data set column.•

Specified Formats

The following values can be used for the format= parameter of htmSQL variable references and directives:

comma
formats numeric values using commas to separate every three digits. When you specify a format of
w.d with the comma format, you must specify either a 0 or 2 for the value of d (the number of
decimal places to the right of the decimal character). If you specify any other value for d, then d
defaults to a value of 2. When d is equal to 2, htmSQL outputs a decimal point followed by two
fraction digits.

The following is an example of how to use this format:

{&abc format=(comma, 10.2)}

commax
formats numeric values using periods to separate every three digits. When you specify a format of
w.d with the commax format, you must specify either a 0 or 2 for the value of d (the number of
decimal places to the right of the decimal character). If you specify any other value for d, then d
defaults to a value of 2. When d is equal to 2, the htmSQL outputs a comma followed by two fraction
digits.

The following is an example of how to use this format:

{&abcx format=(commax, 10.2)}

dollar
formats numeric values using a leading dollar sign ($) or currency symbol and using commas to
separate every 3 digits. If you specify a format of w.d with the dollar format, and you specify a
nonzero value for d (the number of decimal places to the right of the decimal character), then
htmSQL outputs a decimal point followed by two fraction digits.

The following are examples of how to use this format:

{&abc format=(dollar, 15.2)}
{&abc format=dollar}

dollarx
formats numeric values using a leading dollar sign ($) or currency symbol and using periods to
separate every 3 digits. If you specify a format of w.d with the dollarx format, and you specify a
nonzero value for d (the number of decimal places to the right of the decimal character), then
htmSQL outputs a comma followed by two fraction digits.

The following are examples of how to use this format:

{&abcx format=(dollarx, 15.2)}
{&abc format=dollarx}

26

exp
formats numeric values in scientific notation. For example, if the numeric variable abc has a value of
−13454, then if you use the following variable reference,

{&abc format=(exp, 10.3)}

htmSQL formats the value as −1.345e+04.
hex

formats numeric values in hex. If you use the w.d format with the hex format, htmSQL ignores the d
value.

htmlescape
causes each of the following special characters to be replaced by the corresponding character entity
reference whenever htmSQL encounters the special character in a variable value:

Special Character Character Entity Reference
left angle bracket (<) <

right angle bracket (>) >

ampersand (&) &

double quotation mark (") "

Use this option if the variable's value includes special characters that should be rendered as is when
the output Web page is displayed.

left
causes htmSQL to print the value of a numeric variable with no leading blanks.

notrim
retains the trailing blank spaces in the variable value. Retaining trailing blanks enables you to line up
values on the Web page more easily. If you do not specify format=notrim, htmSQL discards
trailing blanks in the variable value when it resolves the reference.

Note: Because most browsers collapse consecutive blank spaces, the notrim format is most effective
when it is used with the <PRE> HTML element.

right
right aligns character variable values and pads enough blank spaces on the left to fill up the field
width. For example, if the variable linename contains the string "line01", then

:{&linename format=10}: appears as

:line01 :

and :{&linename format=(right, 10)}: appears as

: line01:

Note: Because most browsers collapse consecutive blank spaces, the right format is most effective
when it is used with the <PRE> HTML element.

urlencode
causes the value of the variable to be URL−encoded. When the values are URL−encoded, the spaces
are replaced with plus signs (+). All other nonalphanumeric characters are replaced with escape
sequences (%xx), where xx is the hex representation of the ASCII code point.

Use this option when you include variable references in the values for the ACTION or HREF attributes
of HTML elements.

27

w.d
w specifies the width of the print field. The allowed values for w are integers from 1 to 32767. d is
the precision specifier (specifies the number of decimal places to the right of the decimal character).
The maximum value for d depends on the exponent of the largest numeric value that an operating
system can store in a double. If you do not specify a value for d, the default value is 0.

You can specify a value either for w, for d, or for both. If you specify d by itself, you must precede it
with a period (.). The value for d is useful only for numeric values and is ignored for variables
containing character and integer values. Note that the following format values are all equivalent:
format=8., format=8, and format=8.0.

Note to SAS software users:

The htmSQL implementation of field widths (w) for numeric values differs from the SAS
implementation. For SAS software, w is generally an absolute specification for the field width, and
SAS software changes the formatting of the number to accommodate the width (by doing such things
as reducing precision and changing formats). For numeric values in htmSQL, the w width
specification is a minimum and is adjusted upward, if necessary, to accommodate the numeric value
and the precision specifier (d).

The htmSQL implementation of field widths (w) for character data is the same as the SAS
implementation. Both implementations indicate the exact number of characters to format, either
truncating or blank−padding as necessary.

zero
pads enough zeros on the left of numeric values to fill up the field width. Without the zero format,
numeric values are left−padded with blanks. The zero format is ignored when either the left or exp
formats are used.

Associated Formats

When you refer to a column in a query results set, if you do not specify the format= parameter but
the column has one of the following formats associated with it, then htmSQL uses the associated
format to resolve the reference:

w.d♦
COMMAw.d♦
COMMAXw.d♦
DOLLARw.d♦
DOLLARXw.d♦
Ew.♦
Zw.d♦

•

When you refer to a column in a query results set, if the column has a date, time, or datetime format
associated with it, the following formats are used:

For date values:
Regardless of what date format your column has, htmSQL always outputs date values as
either ddMmmyy or ddMmmyyyy, where

dd is the day of the month⋅
Mmm is the first three letters of the month of the year⋅

•

28

yy and yyyy are the last two and four digits of the year, respectively (depending on
the value of the YEARDIGITS run−time configuration option).

⋅

For time values:
Regardless of what time format your column has, htmSQL always outputs time values as
hh:mm:ss, where

hh is the hour of the day using a 24−hour clock⋅
mm is the minute of the hour⋅
ss is the second of the minute. Note that htmSQL does not handle fractions of
seconds.

⋅

For datetime values:
Regardless of what datetime format your column has, htmSQL always outputs datetime
values as ddMmmyy hh:mm:ss or ddMmmyyyy hh:mm:ss, where

dd is the day of the month⋅
Mmm is the first three letters of the month of the year⋅
yy and yyyy are the last two and four digits of the year, respectively (depending on
the value of the YEARDIGITS run−time configuration option)

⋅

there are two spaces separating the date value and the time value⋅
hh is the hour of the day using a 24−hour clock⋅
mm is the minute of the hour⋅
ss is the second of the minute. Note that htmSQL does not handle fractions of
seconds.

⋅

Note: If you want to use other date, time, or datetime formats, you can use the PUT() function in
your SQL query to change the format.

29

Invoking htmSQL
You can invoke htmSQL

from the Web

by creating an HTML form♦
by specifying a URL for your Web page♦

•

from the command line prompt.•

From the Web

From your Web browser, you can either use an HTML form or specify a URL to invoke htmSQL.

Creating an HTML form

The HTML form must use the URL for your Web page as the value of the ACTION attribute of the HTML
FORM element. You can also use the optional METHOD attribute to specify the CGI method to use for sending
form data:

<form action="http://yourserver/dir/executable_file/input−file" [method=get|post]>

yourserver is your Web server host name (and port, if required).•
dir is the path of the Web server CGI program directory that contains htmSQL.•
executable_file is the htmSQL program name. For UNIX and z/OS, the program name is htmSQL.
For Windows, the program name is htmSQL.exe.

•

input−file is your input file as a relative pathname under the Web server's root directory (which can
include a Web server alias).

•

GET and POST are the two CGI methods for sending form data.

method=get
your Web browser sends the form data to the Web server as part of the URL. The Web server
passes the form data to htmSQL through the environment variable QUERY_STRING.

method=post
your Web browser sends the form data to the Web server as part of the body of the HTTP
request. htmSQL reads the form data from stdin.

•

On the form, use HTML INPUT elements to collect variable values. For the NAME attribute of the INPUT
element, use the same variable names that you use for your variable references. When the form is submitted,
the browser automatically generates the query string

var1=value1&var2=value2&...varN=valueN

from the form input and appends it to the URL that is specified by the ACTION attribute (for the GET method)
or sends it in the body of the HTTP request (for the POST method).

Note: Some Web servers can be configured to recognize an input file by its file extension and to automatically
call the appropriate CGI program to process the file. If your Web server can be configured this way, you can
omit the path to htmSQL when you specify the URL (that is, you can omit the dir and executable_file
values). Consult your Web server documentation for details on whether and how your server can be so
configured.

30

Specifying a URL for your Web page

Specify the URL either on an existing Web page or on your Web browser command line. A URL for htmSQL
must include the pathname for an input file and must be of the form:

http://yourserver/dir/executable_file/input−file[?query−string]

yourserver is your Web server host name (and port, if required).•
dir is the path of the Web server CGI program directory that contains htmSQL.•
executable_file is the htmSQL program name. For UNIX and z/OS, the program name is htmSQL.
For Windows, the program name is htmSQL.exe.

•

input−file is your input file as a relative pathname under the Web server's root directory (which can
include a Web server alias).

•

query−string specifies values for one or more of the variables that are referenced in the input file.
This parameter is optional. The variable name and value pairs are separated by ampersands (&) and
are specified using the following format:

var1=value1&var2=value2&...varN=valueN

Be sure to properly encode any nonalphabetic characters that are in the query string: spaces become
plus signs (+) and other characters are replaced by a percent sign (%) and the two−digit ASCII
representation.

•

The following example shows a URL that is used to invoke htmSQL:

http://support.sas.com/cgi_bin/htmSQL/empdata.hsql?first=fname&last=lname&middle=mi

Note: Some Web servers can be configured to recognize an input file by its file extension and to automatically
call the appropriate CGI program to process the file. If your Web server can be configured this way, you can
omit the path to htmSQL when you specify the URL (that is, you can omit the dir and executable_file
values). Consult your Web server documentation for details on whether and how your server can be so
configured.

From the command line prompt

The output that htmSQL generates is sent to stdout (usually your terminal display). You can capture the
generated output by redirecting stdout to a file. Use this method of invocation to test an htmSQL input file
or to produce a static page that contains SAS data.

The following is the syntax for the htmSQL command (parameters that are within square brackets ([]) are
optional):

htmSQL input−file ["query−string"] [−rc config−file] [−dsf datasrc−file]

input−file specifies the pathname for your input file.•
query_string specifies values for one or more of the variables that are referenced in the input file.
The variable name and value pairs are separated by ampersands ()and are specified using the
following format:

var1=value1&var2=value2&...varN=valueN

You do not need to encode nonalphabetic characters that are in the query string.

•

31

−rc config−file specifies the pathname of the configuration file to use. You can name the file
whatever you want and locate the file in whichever path you choose. htmSQL will not run if the
specified file cannot be opened.

This parameter is optional. For information on running htmSQL without explicitly specifying a
configuration pathname, see Specifying and Naming the Configuration File.

•

−dsf datasrc−file specifies the pathname of the data source definition file. If you specify a simple
filename, htmSQL looks in the current directory for the file. This option overrides any data source
definition file that is specified in the configuration file. The file does not have to be named
htmSQL.datasrc, htmSQL.dsf, or HTMSQL DATASRC.

•

the −rc and −dsf parameters can be placed anywhere after the htmSQL command name.•

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported
on the MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also
applies to OS/390 and MVS, unless otherwise stated.

32

Configuring Your Web Server to Recognize htmSQL
Input Files
When you configure your Web server to recognize htmSQL input files, you no longer have to specify the
pathname of the htmSQL executable in the URL that you use for invoking htmSQL. For example, instead of
the following URL

 http://support.sas.com/cgi−bin/htmSQL/myinput/myfile.hsql

you can use

 http://support.sas.com/myinput/myfile.hsql

and the Web server knows to automatically invoke htmSQL to process the input file.

The following sections provide some instructions on how to configure various Web servers to recognize
htmSQL input files.

Note: This section discusses only servers that we have tested and is not an exhaustive discussion of the topic.
If you encounter problems when configuring your Web server or for more information about configuring your
Web server, consult your Web server documentation.

Apache

To configure the Apache Web server (version 1.1 or later), add the following lines to the srm.conf file. The
lines that begin with the pound sign (#) are comment lines that are already in the srm.conf file that is included
in the Apache download package.

 # AddHandler allows you to map certain file extensions to "handlers",
 # actions unrelated to filetype. These can be either built into the server
 # or added with the Action command (see below)
 # Format: AddHandler action−name ext1

 AddHandler htmSQL .hsql

 # Action lets you define media types that will execute a script whenever
 # a matching file is called. This eliminates the need for repeated URL
 # pathnames for oft−used CGI file processors.
 # Format: Action media/type /cgi−script/location
 # Format: Action handler−name /cgi−script/location

 Action htmSQL /cgi−bin/htmSQL

Peer Web Services and Internet Information Server (IIS)

Internet Information Server (IIS) 6.0

To set up htmSQL on IIS 6.0, complete the following steps within the IIS Administrator:

In IIS, right−click the individual Web site or the Web Sites folder, and then click Properties.1.
On the Home Directory tab, click Configuration.2.
Under Application Configuration, click Add, and then click the Mappings tab.3.

33

With the Add/Edit Application Extension Mapping dialog box open, click Browse to select the
htmsql.exe file from the local path on the Web server.

Note: You must type the path to a valid file in the Executable text box or the OK button remains
unavailable. The easiest way to ensure that you enter a valid path is to select the file by using the
Browse button.

4.

After the path appears in the Executable text box, click in the Executable text box to initialize the
path.

5.

Click in the Extension space, and then type .hsql as the filename extension.

Note: You must enter the period (.) in front of the extension in the Extension text box, or the OK
button remains unavailable.

6.

Click OK.7.
Configure IIS to allow the hsql MIME type. This can be done by completing the following steps:

In the left window of the IIS Administrator, right−click your machine name and select
Properties.

1.

Add a MIME type of .hsql, application/octet−stream.2.

8.

Right−click the directory where the htmsql.exe file is located (for example, cgi−bin) and allow scripts
and executables. If your IIS6 Web Server does not already have a scripts directory or a cgi−bin
directory, you will need to create one. After you create this directory, on the Virtual Directory tab,
specify Scripts and Executables for the value of Execution Permissions.

Some versions of IIS might have a check box called Execute (such as ISAPI applications or CGI).
If you have this selection, then the box should be checked.

9.

Right−click the directory where the Web site is located (for example, MyWeb) and allow scripts and
executables.

10.

Enable Web Service Extensions for the htmsql.exe file. This can be done by completing the following
steps:

In the left window of the IIS Administrator, select your machine name. Then select the Web
Service Extensions folder. The Web Service Extensions folder is under the folder that
specifies the name of your machine. For example, if your machine name is SUSAN2, then
there should be three folders under SUSAN2 (called Application Pools, Web Sites, and Web
Service Extensions).

1.

Browse to the EXE for htmSQL and click Allow (to permit the htmsql.exe file to be
executed). Otherwise, the status will be DENY.

2.

11.

Start your Share server.12.

For more information about running CGI Tools on Microsoft IIS 6.0 Web Server, see FAQ #3893 at
support.sas.com/faq in our FAQ database.

Internet Information Server (IIS) 5.0 and Earlier, and Peer Web Services

To configure Microsoft Peer Web Services for Windows NT workstations or the Microsoft Internet
Information Server (IIS) for Windows NT servers, you must add two string values for the following key in the
Windows registry on your Web server machine:

 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\ScriptMap]

Use the Registry Editor (regedit) to add the following string values:

 ".hsql"="c:\directory_for_htmSQL_executable\htmSQL.exe"

34

 ".hsq"="c:\directory_for_htmSQL_executable\htmSQL.exe"

Ensure that you change directory_for_htmSQL_executable to the directory in which you installed htmSQL.

Note: You must also turn on the execute bit for the directory that contains the .hsq or .hsql files.

35

A Step−by−Step Guide to Creating an htmSQL Web
Page
The following steps guide you through the process of creating and displaying a Web page with htmSQL:

Construct your SQL statement. Decide whether you want to vary any part of it (that is, use variable
references). For example

select name, address, city, zip
 from def.mailresp
 where incr="{&incr}" and ager="{&ager}"
 order by city, zip

where incr and ager are variables that you define on the URL when you invoke htmSQL.

1.

Decide how you want to organize the results−−perhaps in a table or in a preformatted section.2.
Decide how you want your Web page to look and where you want to place the various elements of
your page (be sure to include titles, headings, images, and any query results).

3.

If necessary, ask your Webmaster to add data sources to your data source definition file. To define a
data source, the Webmaster uses the dsdef program that is provided with htmSQL.

4.

If you want to update data, use an update section in your input file. In the update section, include

an SQL section that contains the SQL you wrote in step 1. The SQL keywords that are
allowed in an update section are ALTER, CREATE, DELETE, DROP, INSERT, and
UPDATE.

♦

a success section that contains the steps to take if the SQL is processed with a return code of
zero.

♦

an error section that contains the steps to take if the SQL is processed with a nonzero return
code.

♦

5.

To perform a query and display data from the results set, use a query section at the location where you
want your query results to be displayed. In the query section, include

an SQL section that contains the SQL you wrote in step 1. Use variable references for the
parts you want to vary, such as column values in a WHERE clause and column names in an
ORDER BY clause.

♦

an eachrow section that contains the text and HTML that is to accompany each row of the
results set (depending on what you decided in step 2). Use variable references in the
appropriate places for the columns you want to display.

If you want the results shown as preformatted text, the eachrow section should be
contained within an HTML PRE element.

◊

If you want the results shown in an HTML table, the eachrow section should be
contained within an HTML TABLE element. Between {eachrow} and
{/eachrow}, the row details should be contained within an HTML TR element.

◊

♦

Continuing with the example:

{query datasrc="demos"}

{sql}
 select name, address, city, zip
 from def.mailresp
 where incr="{&incr}" and ager="{&ager}"
 order by city, zip
{/sql}

6.

36

{eachrow}
{&name}

{&address}

{&city}, TX {&zip}<p>
{/eachrow}

{/query}

You can test your file by invoking htmSQL from a command line prompt and passing the file and any
required variables on the command line:

htmSQL mailres3.hsql "incr=20K to 39K&ager=30 to 39" > file1.out.html

where mailres3.hsql is the name of an input file.

The string that is enclosed within the quotation marks (") specifies values for the variables that are
used by the input file. See Invoking htmSQL for more information about htmSQL command line
options.

You can then display file1.out.html in a Web browser to ensure that what htmSQL produced is what
you want.

7.

After you test your input file, you can link to your new Web page

from an HTML form, or♦
by specifying the URL for your Web page either on an existing Web page or on your Web
browser command line.

♦

8.

You can see the complete example input file that is described on this page by visiting the following URL:
www2.sas.com/htmSQL/mailres3.txt.

37

Tips and Techniques for Using htmSQL
This page includes tips and hints that other users have found useful.

Checking the version number•
Comparing floating point values•
Unique namespaces•
Using existing connections•
Using SAS formats and the PUT() function•
Using user−defined formats•

Checking the Version Number

To find out which version of htmSQL you are running, invoke htmSQL without specifying an input file.
htmSQL displays the version number at the end of the usage page that it displays.

Comparing Floating Point Values

Numeric values in htmSQL are always represented as floating point values. When comparing numeric values
in htmSQL, you must ensure that the values you compare can be represented exactly in floating point
notation. That is, the value you specify must be able to remain the same after going through conversions from
binary floating point to string and vice versa (these conversions are necessary for SQL functions). Some
floating point values, namely fractions, cannot be exactly reproduced following conversions.

Be aware that when you use the SAS TIME() and DATETIME() functions to generate your time and date
values, your generated values are likely to contain fractions because SAS dates and times are stored as
floating point values.

If you want to use a WHERE clause that compares fractional values or htmSQL variable references with
numeric columns that contain fractional values (for example, WHERE x=1.22 or WHERE
x={&myfloat}), you can apply any of the following strategies:

Truncate date and time values to integer values before you store them. Note that htmSQL does not
output the fractional part of dates and times.

•

Use the PUT() function to change the floating point value into a different format before you store it.•

Unique Namespaces

For any given scope, there is one namespace for variable names (that is, there is only one list in which
variable names are stored). Each input file has a separate scope. Include files have separate scopes so they also
have separate namespaces.

If, in a query, you select a variable with the same name as a variable that was passed in on the query string or
that was selected in a previous query, then the original value of that variable is replaced by your newly
selected value.

It is also possible to overwrite the value of an automatic variable if you pass a value for an automatic variable
in the query string of a URL.

38

Using Existing Connections

htmSQL recognizes when a {query} directive uses the same parameters as the previous {query}
directive. Instead of making a new connection, htmSQL uses the existing connection, which saves in
execution time.

Using SAS Formats and the PUT() Function

If you want to format data using a SAS format that is not supported by htmSQL, you can use the PUT()
function in your SQL statement to specify that format. For example, if you want to use the SAS mmddyy8.
format to format a date, then write an SQL statement like the following SELECT statement:

 select put(datevar,mmddyy8.) as datevar ...

The value that is returned in the datevar variable is a character value in the mmddyy8. format. You can
then provide more formatting for the variable by using the format option. For example,

 {&datevar format=left}

applies a format that htmSQL supports (left) onto the date variable.

Note that if you use the following select statement,

 select datevar format=mmddyy8...

htmSQL does not format the datevar variable using the mmddyy8. format. Instead a numeric value is
returned and is formatted using the default date format.

Using User−defined Formats

If you want to use a format that you yourself defined, then you must provide a libname definition in the SAS
program that starts your SAS server. For example:

 libname myfmts '/u/joeuser/formats';
 options fmtsearch=myfmts;
 .
 .
 .
 proc serverid=shr1...;

After you define your formats in this way, you can use the PUT() function to specify the format in your SQL
code.

39

Requirements
Before you can use htmSQL

you must know your SAS data, be able to write valid SQL statements, and understand HTML tags•
your Web server must run under UNIX, Windows, or z/OS•
your network must include a version of SAS software with licenses for

SAS/SHARE software♦
SAS/IntrNet software.♦

•

If your data is in an external DBMS, you must also have the SAS/ACCESS software for that DBMS.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported
on the MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also
applies to OS/390 and MVS, unless otherwise stated.

40

The htmSQL Configuration File
The htmSQL configuration file contains the values for the htmSQL run−time configuration options.

Specifying and naming the configuration file•
Customizing the configuration file•

Specifying and Naming the Configuration File

htmSQL can run both with and without a configuration file. If you want it to run with a configuration file,
htmSQL can automatically locate your file if you follow our rules for naming and locating the file. Or if you
need to name or locate the file in a manner different from what is required, you can explicitly specify the file's
pathname in either the −rc parameter or the HTMSQL_CFG Web server environment variable.

If you want htmSQL to automatically locate your file, you must do both of the following:

Name the configuration file

executable_name.cfg

where executable_name is the name of the htmSQL executable file. For example, if the name of
your htmSQL executable file is htmSQL, then name the configuration file htmSQL.cfg. If the
name of your htmSQL executable file is htmSQL.exe, then you still name the configuration file
htmSQL.cfg.

If you rename the executable file, then you must also rename the configuration file to match.

Note for UNIX users who are upgrading:

If you are upgrading from a previous release of htmSQL and your configuration file is named
.htmSQLrc, then you can keep that name (that is, you do not need to follow the above rule for naming
the file).

•

Put the configuration file in a location that htmSQL knows about. htmSQL looks for the configuration
file

first in the current directory1.
then in the directory where the htmSQL executable file is located2.
and if it still cannot find the file, htmSQL looks in

/usr/local/lib/IntrNet/htmSQL (for UNIX and z/OS)◊
C:\Program Files\SAS Software (for Windows)◊

3.

•

Note: If htmSQL does not find a configuration file, then it will run without a configuration file. If htmSQL
finds a configuration file but cannot open it, then htmSQL will not run.

If you want to give an explicit name and location ...

If you want to explicitly specify the name and location of your configuration file, then provide either a relative
or absolute pathname for one of the following:

the −rc parameter when you run htmSQL from the command line•

41

the HTMSQL_CFG Web server environment variable.•

You can name your configuration file whatever you want and locate the file in whichever path you choose.

Both of the values are optional, but if you specify both values, then the value of the −rc parameter takes
precedence over the value of the HTMSQL_CFG environment variable.

Note: If htmSQL cannot open the file, then htmSQL will not run.

Customizing the Configuration File

A default configuration file is downloaded with the htmSQL package. Modify the preset options to match
your needs.

The syntax rules for the file are as follows:

all options must be specified as option = value on a single line unless a continuation character
is specified

•

option names are not case sensitive•
whitespace around the option names and values is not significant•
blank lines are ignored•
any line that begins with !, #, or * is ignored.•

The following configuration options are available:

CONTENT−TYPE•
CONTINUATION•
DATASRCFILE•
EXPORT•
FULLHEADER•
INCLUDE•
LAST−MODIFIED•
NOINCLUDE•

PATHSEPARATOR•
PRAGMA•
READONLY•
REFRESH•
RELATIVE•
SET•
YEARDIGITS•

Options

CONTENT−TYPE
The CONTENT−TYPE option specifies the string to be included in the Content−type HTTP
header that is output by htmSQL. If this option is not specified, the header defaults to text/html. If
the option is specified with no value, then no Content−type header is generated. For example

CONTENT−TYPE =

CONTINUATION
The CONTINUATION option specifies the list of continuation characters that can be used in your
configuration file. If the last non−blank character of the line is a continuation character, then at run
time, the continuation character (and all blank spaces that immediately precede and follow the
continuation character) is replaced with the contents of the next line (minus leading white space).

If you continue an option value to the next line and the first character of the continued text is
an !, #, or *, then do not place the character in column 1 because htmSQL will interpret it as

◊

42

a comment character and ignore the rest of that line.
The CONTINUATION option itself cannot be continued from one line to the next (that is, the
CONTINUATION option must be specified on a single line).

◊

If the CONTINUATION option is not specified, then the continuation character defaults to the
backward slash (\).

For example:

 CONTINUATION = +\,
 DATASRCFILE = /local/disk1/htmSQL/htmSQL.datasrc: \
 /local/disk1/htmSQL/alt.datasrc: +
 # /local/disk2/hr/apps/per.dsf: \
 /local/disk2/hr/apps/per2.dsf: ,
 /local/disk2/fac/apps/fac.datasrc

at run time is

 DATASRCFILE = /local/disk1/htmSQL/htmSQL.datasrc:/local/disk1/htmSQL/alt.datasrc:
 /local/disk2/hr/apps/per2.dsf:/local/disk2/fac/apps/fac.datasrc

DATASRCFILE
The DATASRCFILE option specifies the pathnames of one or more data source definition files to use.
If this option is not specified, then the pathname defaults to

/usr/local/lib/IntrNet/htmSQL/htmSQL.datasrc (for UNIX and z/OS)◊
C:\Program Files\SAS Software\htmSQL.dsf (for Windows).◊

If you specify more than one data source definition file, then specify a path separator character
between the pathnames. (Path separator characters are listed in the PATHSEPARATOR option.)
htmSQL loads the definitions from the files in the order they are specified; if the same data source or
SAS/SHARE server is specified in two files, then the later definition overrides the earlier one.

Some examples:

For UNIX and z/OS:

 DATASRCFILE = /usr/local/SAS/htmSQL/data_sources
 DATASRCFILE = /local/htmSQL/htmSQL.datasrc:/local/htmSQL/alt.datasrc

For Windows:

 PATHSEPARATOR = ;
 DATASRCFILE = c:\htmSQL\mydata.src
 DATASRCFILE = c:\htmSQL\mydata.src;c:\htmSQL\yourdata.src

EXPORT
The EXPORT option enables the Webmaster to make Web server environment variables available as
htmSQL variables. The default htmSQL configuration file that comes with the htmSQL package
exports the following environment variables. The Webmaster can add to or delete from this list:

EXPORT = HTTP_USER_AGENT, REMOTE_ADDR, REMOTE_HOST, REMOTE_USER

Although htmSQL variable names are not case sensitive, environment variable names are case
sensitive. The Webmaster must specify the proper case when referring to a variable in the EXPORT
option, but anyone creating an htmSQL input file can use uppercase, lowercase, or a combination of
the two cases.

43

Note: Because htmSQL does not distinguish between upper− and lowercase, the Webmaster can only
export one environment variable whose case−normalized name is a given sequence of characters (for
example, you cannot export both the HOME and the home environment variables).

FULLHEADER
The FULLHEADER option specifies whether htmSQL generates a complete set of HTTP headers. This
option is intended for Web servers that require CGI programs to generate a full set of HTTP headers
(typically, the Web server generates these header lines).

The values for this option are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant).

When the value of FULLHEADER is YES, Y, TRUE, or T or if no value is specified, then htmSQL
generates a complete set of HTTP headers, which consists of the following lines:

 HTTP/1.0 200 OK
 MIME−Version: 1.0

plus the Content−type HTTP header, as indicated by the CONTENT−TYPE option. If the
CONTENT−TYPE option is specified with no value, then the FULLHEADER option is ignored.

When the value of FULLHEADER is NO, N, FALSE, or F or if the option is not specified, then the
complete set of headers is not generated.

INCLUDE
The INCLUDE option specifies a list of filename patterns. The patterns are specified with path
separator characters in between them. Any input filename must match at least one of the patterns in
the list. If this option is not specified, input filenames are not required to match any pattern. If both
this option and the NOINCLUDE option are specified, any input file must match at least one pattern in
the INCLUDE list and must not match any pattern in the NOINCLUDE list. The following example
allows only files whose names end in .hsql or .hsq:

INCLUDE = *.hsql:*.hsq

LAST−MODIFIED
The LAST−MODIFIED option specifies whether htmSQL generates a Last−Modified HTTP
header, which shows the date and time at which htmSQL executes.

The values for this option are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant).

When the value of LAST−MODIFIED is YES, Y, TRUE, or T or if the option is not specified or is
specified without a value, then a Last−Modified header is generated.

If the value is NO, N, FALSE, or F, the header is not generated.

Example:

LAST−MODIFIED = TRUE

NOINCLUDE
The NOINCLUDE option specifies a list of filename patterns. The patterns are specified with path
separator characters in between them. Any input filename must not match any of the patterns in the
list. If this option is not specified, then the value defaults to an empty list. If both this option and the
INCLUDE option are specified, any input file must match at least one pattern in the INCLUDE list and
must not match any pattern in the NOINCLUDE list. The following example disallows any input file
whose name begins with local or etc or includes a subdirectory named "private":

PATHSEPARATOR = ;
NOINCLUDE = c:\local*;c:\etc*;c:*\private*

44

PATHSEPARATOR
The PATHSEPARATOR option specifies the list of characters that can be used to separate pathnames
or path patterns in the values of the INCLUDE, NOINCLUDE, and DATASRCFILE options.

Specifying one separator character between pathnames and patterns is sufficient, although you are
allowed to specify more than one character. For example,

PATHSEPARATOR = ;
INCLUDE = *.hsq;*.hsql;;*.html

If this option is not specified, then the path separator character defaults to the colon (:).
PRAGMA

The PRAGMA option specifies the string to be included in the Pragma HTTP header that is output by
htmSQL. If the PRAGMA option is not specified or is specified without a value, then the Pragma
header is not generated.

Example:

PRAGMA = no−cache

READONLY
The READONLY option specifies whether the SQL UPDATE, INSERT, DELETE, CREATE, DROP,
and ALTER statements are allowed in htmSQL input files.

The values for this option are YES, Y, TRUE, T, NO, N, FALSE, and F (case is not significant).
Specify YES, Y, TRUE, or T to prevent users from using these SQL statements. If the READONLY
option is not specified, then the statements are allowed.

Example:

READONLY = YES

REFRESH
The REFRESH option specifies the string to be included in the Refresh HTTP header that is output
by htmSQL. When the browser receives the Refresh header, it automatically reloads the document
after a delay of a specified number of seconds. When you specify the REFRESH option, you must
specify the number of seconds that the browser delays. You can optionally specify a URL that
designates an alternate Web page to load at time of refresh.

If the REFRESH option is not specified or is specified without a value, then the Refresh header is
not generated.

Some examples:

REFRESH = 3
REFRESH = 3,URL=http://support.sas.com

Note that you can achieve the same refresh effect (on browsers that support them) on a per−page basis
by including an HTML META element in the htmSQL input file.

For example:

<META HTTP−EQUIV="Refresh" CONTENT="3;URL=http://support.sas.com">

RELATIVE
The RELATIVE option specifies whether the relative pathnames of included input files are specified
with respect to the location of the calling input file or with respect to the working directory. By

45

default, htmSQL treats relative pathnames of included input files as being relative to that of the
calling input file (a value of CALLING). If you want to change the default so that htmSQL regards the
pathname as being relative to the working directory, then specify a value of WORKING. For example,

RELATIVE = WORKING

SET
The SET option enables you to specify default values for variables. You can specify one or more
variable name and value pairs. The pairs are separated by ampersands (&) and are specified using the
following format:

SET var1=value1&var2=value2&...varN=valueN

The values can contain URL−encoded data.

You can specify multiple instances of the SET option in a configuration file. For example

SET var1=value1&var2=value2
SET var3=value3

YEARDIGITS
The YEARDIGITS option specifies the number of digits that htmSQL uses in the year portion of its
date and datetime formats. You can specify a value of either 2 or 4. For example,

YEARDIGITS = 4

If this option is not specified, then the value of YEARDIGITS defaults to 2. Note that this option also
affects certain automatic variables.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported
on the MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also
applies to OS/390 and MVS, unless otherwise stated.

46

Defining a Data Source
A data source identifies a SAS/SHARE server that htmSQL can get data from. A data source definition can
also include SAS data libraries or an external database management system (DBMS) that htmSQL accesses
through that server.

After the Webmaster defines a data source, an htmSQL programmer can access it by specifying its name in
the query or update section of an htmSQL input file.

Creating a Data Source Definition File

A program called dsdef is supplied with htmSQL. Use dsdef to define data sources for htmSQL. dsdef
prompts the user for data source information and then creates or updates a data source definition file. For
invocation and syntax information about dsdef, see Instructions for Invoking dsdef.

Note: The data source definition file should only be modified by the Webmaster. The file could be corrupted
if it is simultaneously modified by multiple people.

Using dsdef

dsdef prompts for information about data sources, SAS data libraries, and SAS/SHARE servers. If the data
source, library, or server that you specify was defined previously, dsdef puts the existing attribute values in
square brackets ([]) next to the prompts for new values. You can accept the existing value by not entering a
new value and pressing the Enter key.

The following dialog is generated by dsdef. To get more information about each step, select the number that
precedes the prompt.

Note: User input is indicated by bold print.

1 SystemPrompt> dsdef<return>

 Configure data sources for htmSQL
 =================================

 Use this program to create or modify the definition of one or more data
 sources for htmSQL.

 A data source specifies exactly one SAS/SHARE server and may also specify
 one or more SAS data libraries or an external DBMS to be accessed through
 the server.

 Data source names can be any length and can contain any character except a
 double quote ("). They are case sensitive and must be entered in an htmSQL
 input file exactly as they are defined.

 In the dialog that follows, default or previously specified values are shown
 in square brackets ([]); to accept such a value, press return or enter.
 The only required values in a data source definition are the data source
 name and server name. You can omit all other values by press return or
 enter when you are prompted for them.

 When you have finished defining data sources, you can save your changes
 by pressing return or enter at the 'Enter a Data Source Name' prompt.

47

 You can cancel your changes by entering a 'c' instead.

2 Enter a Data Source Name to configure: datasrc1<return>

 Enter information for: datasrc1

3 Description: sample data source<return>
4 SAS/SHARE server name (host.service): node1.server1<return>
5 Require SAS SQL processor to undo partial updates? (usually NO): <return>
6 DBMS to pass SQL to (omit for SAS data): <return>
7 Options to pass when connecting to DBMS: <return>

 Enter information for: Server node1.server1

8 SAS/SHARE server host IP name (fully qualified) or address [node1]: <return>
9 Userid for SAS/SHARE server host: <return>

10 Password for specified userid: <return>
11 SAS/SHARE server user access password: pword<return>

12 Enter a library in data source "datasrc1" to configure: userlib1<return>

 Enter information for: datasrc1 USERLIB1

13 Description: a sample library<return>
14 Library path name: sasuser/<return>
15 SAS engine the SAS/SHARE server should use: <return>
16 Options (only ACCESS=READONLY and SLIBREF=server−libref supported): <return>

17 Enter a library in data source "datasrc1" to configure: <return>

18 Enter a Data Source Name to configure: datasrc2<return>

 Enter information for: datasrc2

3 Description: sample data source 2<return>
4 SAS/SHARE server name (host.service): node1.server1<return>
5 Require SAS SQL processor to undo partial updates? (usually NO): <return>
6 DBMS to pass SQL to (omit for SAS data): <return>
7 Options to pass when connecting to DBMS: <return>

19 Do you want to update configuration for server node1.server1? <return>

17 Enter a library in data source "datasrc1" to configure: <return>

18 Enter a Data Source Name to configure: <return>

A Step−by−Step Explanation of dsdef

The following steps explain the information that you must provide to the dsdef program.

48

At the system command line prompt, enter dsdef. If you want to save your data source definition
file in a directory other than the default directory, you must specify the −config option and the
pathname for the file. The following example illustrates this:

dsdef −config c:\htmSQL\mydata.dsf

If −config is not specified, the definition is written to a default pathname. If the definition file
already exists, it is updated; otherwise, it is created.

Note: To end the program, enter c to cancel without saving or press the Enter key to save your data
source information and then end the program. Depending on where you are in the program, you may
need to press the Enter key more than once to completely exit the program.

1.

At the Enter a Data Source Name to configure: prompt, enter the name of your data
source. This is the value you specify for the datasrc= parameter of the {query} or {update}
directive that you specify in your htmSQL input (.hsql) file.

A data source name can be of any length and can contain any character (including blank spaces)
except for the following characters: []{}()"?*=!@,:;. Use a name that you can remember and
type accurately. Note that case is significant in data source names.

2.

At the Description (): prompt, enter a description of the data source. This value is optional.
The description can be up to 1024 characters long.

3.

At the SAS/SHARE server name (host.service): prompt, enter the name of the
SAS/SHARE server for this data source. Specify a two−part name (host.service or host.port), where

host is the node name of the machine where the server runs♦
service is the service name that is specified

when the SAS/SHARE server is defined as a service in the TCP/IP SERVICES file◊
for the ID= option of the PROC SERVER statement that is used to define the
SAS/SHARE server

◊

♦

port is the port number of the SAS/SHARE server.

Note: If you use a port number to identify a SAS/SHARE server, then you do not need to
modify the SERVICES file on the Web server machine.

♦

This two−part name is the same name that you specify in a LIBNAME or PROC SQL CONNECT TO
statement in a SAS program.

4.

At the Require SAS SQL processor to undo partial updates? (usually
NO): prompt, specify the setting for the UNDO_POLICY option of the SAS SQL processor. The
following values are valid:

n, N, no, or NO (default value)
resets the UNDO_POLICY to NONE. NONE specifies that if the UPDATE or INSERT of a
row fails, then any rows that were updated or inserted by that SQL statement (before the
failure) remain inserted or updated.

y, Y, yes, or YES
retains the default value (REQUIRED) of UNDO_POLICY. REQUIRED specifies that if the
UPDATE or INSERT of a row fails, then any rows that were updated or inserted by that SQL
statement (before the failure) are undone.

5.

At the DBMS to pass SQL to (omit for SAS data): prompt, if your data is in an
external DBMS, specify the SAS/ACCESS engine for the DBMS. Example values are DB2, ORACLE,
and SQLDS. If your data is in a SAS library, do not specify a value.

6.

At the Options to pass when connecting to DBMS: prompt, enter any options that are
required for connecting to the external DBMS. The exact options that are available and the exact

7.

49

option names depend on the DBMS that you specify for step 6 and for the SAS/ACCESS view engine
for that DBMS. The connection options correspond to the DBMS arguments that are documented in
the SQL Procedure Pass−Through facility's documentation for that SAS/ACCESS view engine.
Example values are USERID=userid and PASSWORD=password, where userid and password are
the userid and password for the DBMS.
At the SAS/SHARE server host IP name (fully qualified) or address
[node1]: prompt, enter the server's nodename. If you do not enter a nodename, this value defaults
to the nodename that you specified in step 4 (in this example, node1 is the default value). In a
complex environment, you may need to specify a fully qualified domain address for the server such as
server1.unx.sas.com.

8.

At the Userid for SAS/SHARE server host: prompt, enter a userid for the system that the
server runs on. This is an optional value that you specify if the server is running in secured mode;
otherwise, the value is ignored.

If you omit the userid from the data source definition, the htmSQL programmer must specify the
userid in the htmSQL input file by using the userid= parameter of the {query} or {update}
directive.

9.

At the Password for specified userid: prompt, enter the password for the userid that you
specified in step 9. This is an optional value that you specify if the server is running in secured mode;
otherwise, the value is ignored.

If the server is running in secured mode and you omit the password from the data source definition,
the htmSQL programmer must specify the password in the htmSQL input file by using the
password= parameter of the {query} or {update} directive.

10.

At the SAS/SHARE server user access password: prompt, enter the server access
password for users. This is an optional value. This must be the same password that is specified in

the UAPW= option of the SERVER procedure that was used to define the SAS/SHARE
server. You must specify a password if user access to the server is password protected.

♦

the SAPW= option of the LIBNAME statement and the SQL procedure's CONNECT TO
statement.

♦

11.

If the SAS library that contains your data is not predefined to the SAS/SHARE server, then at the
Enter a library in data source "datasrc1" to configure: prompt, enter a
libref for the library. htmSQL programmers use this libref as the high−level qualifier for the table
names in the SQL queries and statements that their applications send to the SAS/SHARE server. Steps
13 through 16 request additional information about this library.

The library name can be up to eight characters long. The first character must be a letter or an
underscore. Subsequent characters can be letters, numeric digits, or underscores. Blanks and special
characters are not allowed.

12.

At the Description (): prompt, enter a description of the library. This value is optional. The
description can be up to 1024 characters long.

13.

At the Library path name: prompt, enter the physical name of the library. This must include a
valid pathname for the operating system in which your server library is stored.

14.

At the SAS engine the SAS/SHARE server should use: prompt, specify the SAS
engine that is required for writing to and reading from this server library. This option is required only
if you do not want the SAS/SHARE server to use the engine that the server selects by default. For
information about other engines, see the description of the LIBNAME statement in the SAS
companion for the operating system in which your server library is stored.

15.

At the Options (only ACCESS=READONLY and SLIBREF=server−libref
supported): prompt, specify one or both of the following values (these values are optional):

16.

50

SLIBREF=server−libref
specifies the server's library reference name for the library.

ACCESS=READONLY
gives users read−only access to the SAS data sets in the library.

At the Enter a library in data source "datasrc1" to configure: prompt, you
can either enter the name of another server library or you can press the Enter key if you do not want
to add any more libraries to this data source.

Note: If you do specify another library, dsdef takes you through steps 13 through 16 for that library. If
you do not specify another library, dsdef proceeds to step 18.

17.

At the Enter a Data Source Name to configure: prompt, you can either enter the name
of another data source or you can press the Enter key if you do not want to add any more data
sources.

Note: If you do specify another data source, dsdef takes you through steps 3 through 7 for that data
source. If you do not specify another data source, the dsdef program ends.

18.

If in step 4 you specify a SAS/SHARE server that is already defined for the data source, dsdef
prompts to see if you want to update the server configuration information. You can either enter yes
or press the Enter key for no.

Note: If you do specify yes, dsdef takes you through steps 8 through 11 so you can update the
information for that server. Otherwise, dsdef proceeds to step 12.

19.

51

Instructions for Invoking dsdef
dsdef is a line−mode configuration program that defines data sources for use with htmSQL. It enables you to
configure data sources and the SAS/SHARE servers and libraries that you include in the data sources.

Syntax: dsdef −config pathname

−config pathname (optional)
pathname specifies the pathname (including the filename) for the data source definition file. You can
use −c as an alias for −config.

The definition information is written to the definition file specified by the −config option. If
−config is not specified, the definition is written to a default pathname of

/usr/local/lib/IntrNet/htmSQL/htmSQL.datasrc (for UNIX and z/OS)◊
C:\Program Files\SAS Software\htmSQL.dsf (for Windows).◊

If you name your definition file something other than the default pathname, you must specify the
following line in the htmSQL configuration file

 datasrcfile = pathname

where pathname is the full pathname of your data source definition file.

If the definition file already exists, it is updated; otherwise, it is created.

Note: The directory for the data source definition file must exist before you invoke dsdef; otherwise,
no file is created.

Examples

For UNIX and z/OS:

dsdef −config /usr/local/data_source/employee.data_source
dsdef −c /myfiles/financial.datasrc

For Windows:

dsdef −config c:\mydata\datasources\personal.dsf
dsdef −c m:\network\central\datasources\mis.datasource

For a detailed description of the dsdef dialog, see Using dsdef.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported
on the MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also
applies to OS/390 and MVS, unless otherwise stated.

52

Configuring TCP/IP
htmSQL uses TCP/IP to communicate with a SAS/SHARE server. To enable communication between your
Web server and a SAS/SHARE server through TCP/IP, you must perform the following configuration steps:

Specify one of the following options on the SAS command or in an OPTIONS statement when you
start the SAS/SHARE SERVER procedure (PROC SERVER):

COMAMID=TCP♦
COMAUX1=TCP.♦

•

Define the SAS/SHARE server in the TCP/IP SERVICES file that is on the SAS/SHARE server
machine and on the Web server machine.

Note: If you use a port number to identify a SAS/SHARE server, then you do not need to modify the
SERVICES file on the Web server machine.

For UNIX and z/OS, the SERVICES file is

/etc/services

♦

For Windows NT and Windows 2000, the SERVICES file is

%SYSTEMROOT%/system32/drivers/etc/SERVICES

where %SYSTEMROOT% is the directory where Windows NT is installed.

♦

Each entry in the SERVICES file associates a service name with the port number and
communications protocol that are used by that service. For htmSQL, use the name of the
SAS/SHARE server as the service name. An entry for a SAS/SHARE server has the form

<server−name> <port number>/tcp # <comments>

The server name must be 1−8 characters long and is generally case sensitive. The first character must
be a letter or underscore; the remaining seven characters can include letters, digits, underscores, the
dollar sign ($), or the at sign (@). You specify this same server name when you define the server for
your data source (either in the data source definition file or in the server= parameter of the
{query} or {update} directive).

•

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported
on the MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also
applies to OS/390 and MVS, unless otherwise stated.

53

Getting Started Exercises
The following exercises illustrate the steps that your organization must follow to install htmSQL and run
htmSQL applications. The first exercise requires no data source definition file and does not require that you
modify the TCP/IP SERVICES file on your Web server machine.

Notes:

Our exercises assign each step to either the Webmaster or the programmer. However, depending on
the way your organization is set up, you may have other people performing the tasks.

•

For more htmSQL samples, see your htmSQL administrator for the URL of the samples that are
installed with the htmSQL software. The default URL is

 http://yourserver/sasweb/IntrNet9/htmSQL/samples.html

where yourserver is your Web server host name.

•

Exercise 1: The Basics

In the samples directory, we provide an example htmSQL input file (retail1.hsql) that you can modify and use.
This exercise shows how to customize and run the example file.

Note: You do not need to save the example htmSQL input file that is shown in this documentation. All of the
example files in these exercises are supplied in the samples directory.

Webmaster: Install htmSQL by following the instructions in the README file that is in the
download package.

1.

Webmaster: Define your SAS/SHARE server in the TCP/IP SERVICES file on the SAS/SHARE
server machine.

2.

Webmaster: Ensure that a SAS/SHARE server is running. The following SAS commands can be
used to start a SAS/SHARE server. Our exercise uses an example value of shr10 for the server ID;
replace shr10 with the service name that you defined in step 2.

options comamid=tcp;
 proc server id=shr10;
 run;

3.

Programmer: Edit the {query} directive in the example input file that is in the samples directory:

Change sampnode.pc.sas.com to the IP name of the SAS/SHARE server machine.♦
Change 5000 to the port number that is assigned to the service name that you defined in step
2.

♦

In our exercise, the SAS/SHARE server, shr10, is running on sampnode.pc.sas.com. Service
shr10 is assigned to port 5000.

4.

Programmer: Invoke htmSQL to process the example input file. To run our example from the
command line, change to the samples directory and issue the following command:

 htmSQL retail1.hsql param=1992

5.

54

Exercise 2: Something More Advanced

In the samples directory, we also provide two files that demonstrate how to use a data source definition with
htmSQL. This example htmSQL input file (retail2.hsql) and example data source definition file (retail.datasrc
for UNIX and z/OS and retail.dsf for Windows) perform the same task as the input file in exercise 1 but give
you the ability to centralize the definition of your data.

Note: You do not need to save the example htmSQL input file and data source definition file that are shown in
this documentation. All of the example files in these exercises are supplied in the samples directory.

Webmaster: Install htmSQL by following the instructions in the README file that is in the
download package.

1.

Webmaster: Define your SAS/SHARE server in the TCP/IP SERVICES file on both the
SAS/SHARE server machine and on the Web server machine.

2.

Webmaster: Ensure that a SAS/SHARE server is running. The following SAS commands can be
used to start a SAS/SHARE server. Our exercise uses an example value of shr10 for the server ID;
replace shr10 with the service name that you defined in step 2.

options comamid=tcp;
 proc server id=shr10;
 run;

3.

Webmaster: Modify the example data source definition file that is in the samples directory (you can
use a text editor to make these changes):

Change sampnode.pc.sas.com to the IP name of the SAS/SHARE server machine.♦
Change all occurrences of sampnode.shr10 to node.service where

node is the node name of the server machine◊
service is the service name that is specified in the TCP/IP SERVICES file in step 2
(which is also the value for the ID= option of the PROC SERVER statement in step
3).

◊

In our exercise, the SAS/SHARE server, shr10, is running on sampnode.pc.sas.com.

♦

4.

Programmer: Invoke htmSQL to process the example input file. To run our example from the
command line, change to the samples directory and issue one of the following commands:

For UNIX and z/OS:

 htmSQL retail2.hsql param=1992 −dsf retail.datasrc

For Windows:

 htmSQL retail2.hsql param=1992 −dsf retail.dsf

5.

Note: z/OS is the successor to the OS/390 and MVS operating systems. SAS/IntrNet 9.1 for z/OS is supported
on the MVS, OS/390, and z/OS operating systems and, throughout this document, any reference to z/OS also
applies to OS/390 and MVS, unless otherwise stated.

55

retail1.hsql Sample Input File
{*−−*}
{* Note: You do not need to save this file from your Web browser. *}
{* This file is available in the htmSQL "samples" subdirectory. *}
{* *}
{* This input file produces a Web page that lists sales information *}
{* that is stored in the 'retail' SAS data set of the SASHELP library.*}
{*−−*}

<HEAD><TITLE>htmSQL: Retail Data</TITLE></HEAD>
<BODY BGCOLOR="FFFFFF">

{*−−*}
{* The following section queries the SAS server that is identified by *}
{* the server= parameter and dynamically generates the sales *}
{* information. *}
{*−−*}

{query server="sampnode.pc.sas.com:5000"}
{sql}
select sales,date,year,month,day
from sashelp.retail where
year = {&PARAM}
{/sql}

{*−−*}
{* We use a table to show the sales information. *}
{*−−*}

<TABLE BORDER=1 ALIGN=LEFT>
 <TR>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Sales</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Date</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Year</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Month</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Day</TH>
 </TR>

{*−−*}
{* Each row of our results set corresponds to a row in the table *}
{*−−*}

 {eachrow}
 <TR>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&sales}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&date}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&year}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&month}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&day}</TD>
 </TR>
 {/eachrow}
</TABLE>

{*−−*}
{* End the query section. *}
{*−−*}

{/query}
</BODY>

56

Sample Data Source File
{*−−*}
{* Note: You do not need to save this file from your Web browser. *}
{* This file is available in the htmSQL "samples" subdirectory. *}
{* *}
{* This input file produces a Web page that lists sales information *}
{* that is stored in the 'retail' SAS data set of the SASHELP library.*}
{*−−*}

<HEAD><TITLE>htmSQL: Retail Data</TITLE></HEAD>
<BODY BGCOLOR="FFFFFF">

{*−−*}
{* The following section queries the SAS server that is identified by *}
{* the data source and dynamically generates the sales information. *}
{*−−*}

{query datasrc="retail"}
{sql}
select sales,date,year,month,day
from sashelp.retail where
year = {&PARAM}
{/sql}

{*−−*}
{* We use a table to show the sales information. *}
{*−−*}

<TABLE BORDER=1 ALIGN=LEFT>
 <TR>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Sales</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Date</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Year</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Month</TH>
 <TH ALIGN=CENTER VALIGN=MIDDLE BGCOLOR="FF0000" NOWRAP>Day</TH>
 </TR>

{*−−*}
{* Each row of our results set corresponds to a row in the table *}
{*−−*}

 {eachrow}
 <TR>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&sales}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&date}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&year}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&month}</TD>
 <TD ALIGN=LEFT VALIGN=MIDDLE NOWRAP>{&day}</TD>
 </TR>
 {/eachrow}
</TABLE>

{*−−*}
{* End the query section. *}
{*−−*}

{/query}
</BODY>

57

retail2.hsql Sample Input File
*−−−
*
* Notes about this sample htmSQL data source file.
*
* o You do not need to save this file from your Web browser.
* This file is available in the htmSQL "samples" subdirectory.
*
* o This data source definition file specifies one data source
* named 'retail'.
*
* o The retail data source specifies the SAS/SHARE server
* 'sampnode.shr10'.
*
* o The server name is derived as follows:
*
* The SAS/SHARE server is running on sampnode.pc.sas.com
* (machine name). The id (which is also the TCP/IP service name)
* is shr10. The following job is running on
* sampnode.pc.sas.com:
*
* options comamid=tcp;
* proc server id=shr10;
* run;
*
* o A data source definition file can include one or more
* libraries. However, because the library we are using,
* SASHELP, is already predefined to the server, you do
* not need to define it in the data source file.
*
* o Note that the 'retail' data source is referenced in
* the associated 'retail.hsql' file. Similarly, the 'sashelp'
* library is also referenced in 'retail.hsql'.
*
*−−−

* −−
* Identify Data Sources
*
* In this example, the data source is named 'retail'.
*
* −−

Data Source Name:retail=sas

* −−
* Define Method
* −−

Method tcp:COMMEXE=wqetcp
Methods:tcp=

* −−
* Define Server
*
* In this example, the server is called 'sampnode.shr10'.
*
* −−

Server sampnode.shr10:AM=tcp

58

Server sampnode.shr10:SASSHARE=yes
Server sampnode.shr10:Server Version=6
Server sampnode.shr10:ServerAddress=sampnode.pc.sas.com
Server sampnode.shr10:TraceFlags=0
Servers:sampnode.shr10=

* −−
* Define Data Sources
*
* In this example, the data source is named 'retail'.
* Note that this data source is identified under the
* 'Identify Data Sources' section of this file.
*
* −−

retail:Description=Retail Data Source
retail:Server=sampnode.shr10
retail:UndoRequired=y

59

Your Turn

If you have comments or suggestions about SAS/IntrNet 9.1: htmSQL, please send
 them to us on a photocopy of this page or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	What's New in SAS/IntrNet 9 and 9.1htmSQL
	 About htmSQL
	Understanding How htmSQL Works: the Technical View
	htmSQL Input Files
	Syntax for htmSQL Directives
	Specifying Values for Userids and Passwords
	Automatic Variables
	Formats for Variable Values and Labels
	Invoking htmSQL
	Configuring Your Web Server to Recognize htmSQL Input Files
	A Step-by-Step Guide to Creating an htmSQL Web Page
	Tips and Techniques for Using htmSQL
	Requirements
	The htmSQL Configuration File
	Defining a Data Source
	Instructions for Invoking dsdef
	 Configuring TCP/IP
	Getting Started Exercises
	retail1.hsql Sample Input File
	Sample Data Source File
	retail2.hsql Sample Input File

