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What’s New in SAS High-Performance
Forecasting 2.2

Overview
Note: This section describes the features of SAS High-Performance Forecasting that
are new or enhanced since SAS 9.0.

SAS High-Performance Forecasting has a new release numbering scheme. SAS
High-Performance Forecasting 2.2 provides new procedures, features, and func-
tionality while maintaining all the capabilities of SAS 9.1.3 High-Performance
Forecasting software.

New features, procedures, and functions have been added to SAS High-Performance
Forecasting as follows:

• New features have been added to the HPF procedure.

• New procedures have been added for creating model specifications and model
selection lists:

– PROC HPFARIMASPEC
– PROC HPFESMSPEC
– PROC HPFEXMSPEC
– PROC HPFIDMSPEC
– PROC HPFSELECT
– PROC HPFUCMSPEC

• The new HPFEVENTS procedure has been added for creating calendar events.

• New procedures have been added for computations:

– PROC HPFDIAGNOSE
– PROC HPFENGINE

• The new HPFRECONCILE procedure has been added for reconciliation of
hierarchical forecasts.

• New experimental functions have been added for forecast scoring:

– HPFSCSIG function
– HPFSCSUB function
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Details

High-Performance Forecasting Release Numbering Scheme
SAS High-Performance Forecasting has a new release numbering scheme. SAS
High-Performance Forecasting 2.2 provides the same features and functionality as
SAS 9.1.3 High-Performance Forecasting software, and includes new procedures,
functions, and features.

HPF Procedure
The HPF procedure has the following new features:

• New options related to forecast model selection:

– HOLDOUTPCT= option
– SEASONTEST= option
– SELECT= option

• The new NBACKCAST= option is related to forecast model initialization.

• The new IDM statement is related to intermittent demand models.

• New options related to out-of-sample forecast performance statistics:

– BACK= option
– PRINT=PERFORMANCE option
– PRINT=PERFORMANCESUMMARY option
– PRINT=PERFORMANCEOVERALL option

• New options related to the processing of the data:

– NOTSORTED option
– REPLACEBACK option
– SORTNAMES option

• New options related to printed and graphical output:

– PLOT= option
– PRINT=STATES option

• The new MAXERROR= option is related to the message log.

HPFARIMASPEC Procedure
The new HPFARIMASPEC procedure is used to create an Autoregressive Integrated
Moving Average (ARIMA) model specification file. The output of the procedure is
an XML file that stores the intended ARIMA model specification. This XML speci-
fication file can be used to populate the model repository used by the HPFENGINE
procedure. (Likewise, the XML files generated by the other model specification pro-
cedures in this section can also be used to populate the model repository used by
PROC HPFENGINE.)
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HPFESMSPEC Procedure

The new HPFESMSPEC procedure is used to create an Exponential Smoothing
Model (ESM) specification file. The output of the procedure is an XML file that
stores the intended ESM model specification.

HPFEXMSPEC Procedure

The new HPFEXMSPEC procedure is used to create an External Model (EXM)
specification file. The output of the procedure is an XML file that stores the intended
EXM model specification.

HPFIDMSPEC Procedure

The HPFIDMSPEC procedure is used to create an Intermittent Demand Model
(IDM) specification file. The output of the procedure is an XML file that stores the
intended IDM model specification.

HPFSELECT Procedure

The new HPFSELECT procedure is used to create model selections lists. A model
selection list contains references to candidate model specifications stored in the model
repository. The output of the procedure is an XML file that stores the intended model
selection list.

The HPFSELECT procedure has the following experimental features:

• external variable mapping (EXMMAP= option)

• external forecast function (EXMFUNC= option)

HPFUCMSPEC Procedure

The new HPFUCMSPEC procedure is used to create an Unobserved Component
Model (UCM) specification file. The output of the procedure is an XML file that
stores the intended UCM model specification.

HPFEVENTS Procedure

The HPFEVENTS procedure provides a way to create and manage events associated
with time series. The procedure can create events, read events from an events data
set, write events to an events data set, and create dummies based on those events, if
date information is provided.

A SAS event is used to model any incident that disrupts the normal flow of the process
that generated the time series. Examples of commonly used events include natural
disasters, retail promotions, strikes, advertising campaigns, policy changes, and data
recording errors.

An event has a reference name, a date or dates associated with the event, and a set of
qualifiers. The event exists separately from any time series; however, the event may

ix
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be applied to one or more time series. When the event is applied to a time series, a
dummy variable is generated that may be used to analyze the impact of the event on
the time series.

HPFDIAGNOSE Procedure

The new HPFDIAGNOSE procedure is an automatic modeling procedure to find
the best model among ARIMA Models, Exponential Smoothing Models, and
Unobserved Component Models.

The HPFDIAGNOSE procedure has the following functionality:

• intermittency test

• functional transformation test

• simple differencing and seasonal differencing test

• tentative simple ARMA order identification

• tentative seasonal ARMA order identification

• outlier detection

• significance test of events

• transfer functions identification

• intermittent demand model

• exponential smoothing model

• unobserved component model

HPFENGINE Procedure

The new HPFENGINE procedure provides large-scale automatic forecasting of trans-
actional or time series data. The HPFENGINE procedure extends the foundation built
by PROC HPF, enabling the user to determine the list of models over which automatic
selection is performed.

The use of many forecast model families is supported when HPFENGINE is used in
conjunction with new procedures that generate generic model specifications. Among
these models are the following:

• ARIMA

• Unobserved Component Models (UCM)

• Exponential Smoothing Models (ESM)

• Intermittent Demand Models (IDM)

• External Models (EXM)

x
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Furthermore, users can completely customize the operation by defining their own
code to generate forecasts.

For models with inputs, the STOCHASTIC statement is especially helpful for auto-
matically forecasting those inputs that have no future values.

Also supported is the generation of a portable forecast score. The output of the
SCORE statement is a file or catalog entry that, when used with the new function
HPFSCSUB, can be used to efficiently generate forecasts outside of the HPFENGINE
procedure.

The new HPFDIAGNOSE procedure produces output that is compatible with
HPFENGINE. As a result, the task of candidate model specification can be entirely
automated.

HPFRECONCILE Procedure

The new HPFRECONCILE procedure provides the following functionality:

• large-scale reconciliation of hierarchical forecasts by using predictions, stan-
dard errors, and confidence limits reconciliation

• the following methods of reconciliation:

– top-down reconciliation
– bottom-up reconciliation

• constrained reconciliation using an interior-point quadratic programming tech-
nique that combines statistical forecasts reconciliation with judgmental con-
straints (overrides)

• replaces functionality of the %HPFRECON macro

HPFSCSIG Function

The experimental HPFSCSIG function generates a sample signature for subsequent
use by the HPFSCSUB function.

HPFSCSUB Function

The experimental HPFSCSUB function uses score files to produce forecasts outside
of the HPFENGINE procedure. Being a function, it is particularly well suited for
use within other SAS programming contexts, such as the DATA step, or procedures
that permit the specification of functions, such as the NLP procedure. The only input
required is a reference to the score function, the horizon, and future values of any
inputs.

xi
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Chapter 1
Introduction
Overview of SAS High-Performance

Forecasting Software
SAS High-Performance Forecasting software provides a large-scale automatic fore-
casting system. The software provides for the automatic selection of time series mod-
els for use in forecasting time-stamped data.

Given a time-stamped data set, the software provides the following automatic fore-
casting process:

• accumulates the time-stamped data to form a fixed-interval time series

• diagnoses the time series using time series analysis techniques

• creates a list of candidate model specifications based on the diagnostics

• fits each candidate model specification to the time series

• generates forecasts for each candidate fitted model

• selects the most appropriate model specification based on either in-sample or
holdout-sample evaluation using a model selection criterion

• refits the selected model specification to the entire range of the time series

• creates a forecast score from the selected fitted model

• generate forecasts from the forecast score

• evaluates the forecast using in-sample analysis

The software also provides for out-of-sample forecast performance analysis.

For time series data without causal inputs (input variables or calendar events), the
HPF procedure provides a single, relatively easy to use batch interface that supports
the preceding automatic forecasting process. The HPF procedure uses exponential
smoothing models (ESM) and intermittent demand models (IDM) in an automated
way to extrapolate the time series. The HPF procedure is relatively simple to use and
requires only one procedure call.

For time series data with or without causal inputs (input variables and/or calendar
events), the software provides several procedures that provide a batch interface that
supports the preceding automatic forecasting process with more complicated models.
These procedures must be used in the proper sequence in order to get the desired
results. Forecasting time series of this nature normally requires more than one proce-
dure call.

Input variables are recorded in the time-stamped data set. These input variables may
or may not be incorporated in time series models used to generate forecasts.
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Calendar events are specified using the HPFEVENTS procedure. These event defi-
nitions are used to generate discrete-valued indicator variables or dummy variables.
These event definitions are stored in a SAS data set. These indicator variables may
or may not be incorporated in time series models used to generate forecasts.

Given the specified calendar events and input variables, the HPFDIAGNOSE pro-
cedure diagnoses the time series and decides which, if any, of the calendar events
or input variables are determined to be useful in forecasting the time series. The
HPFDIAGNOSE procedure automatically generates candidate model specifications
and a model selection list using time series analysis techniques. These model specifi-
cations and model selection lists can then be used to automatically generate forecasts.

The user can specify model specifications using one of the following model specifi-
cation procedures:

• PROC HPFARIMASPEC enables the user to specify one of the family
of AutoRegressive Integrated Moving Average with eXogenous inputs
(ARIMAX) models.

• PROC HPFESMSPEC enables the user to specify one of the family of expo-
nential smoothing models (ESM).

• PROC HPFEXMSPEC allows the forecast to be generated by an external
source.

• PROC HPFIDMSPEC enables the user to specify one of the family of inter-
mittent demand models (IDM).

• PROC HPFSELECT enables the user to specify a model selection list. The
model selection list references one or more candidate model specifications and
specifies how to choose the appropriate model for a given time series.

• PROC HPFUCMSPEC enables the user to specify one of the family of unob-
served component models (UCM).

Regardless of whether the model specifications or model selection lists are specified
or automatically generated, the HPFENGINE procedure uses these files to automat-
ically select an appropriate forecasting model, estimate the model parameters, and
forecast the time series.

Most of the computational effort associated with automatic forecasting is time series
analysis, diagnostics, model selection, and parameter estimation. Forecast scoring
files summarize the time series model’s parameter estimates and the final states (his-
torical time series information). These files can be used to quickly generate the fore-
casts required for the iterative nature of scenario analysis, stochastic optimization,
and goal seeking computations. The HPFSCSUB function can be used to score time
series information.

6
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Uses of SAS High-Performance Forecasting Software

HPF software provides tools for a wide variety of applications in business, govern-
ment, and academia. Major uses of HPF procedures include: forecasting, forecast
scoring, market response modeling, and time series data mining.

Contents of SAS High-Performance Forecasting Software

Procedures

HPF software includes the following SAS procedures:

HPFARIMASPEC The HPFARIMASPEC procedure is used to create an
Autoregressive Integrated Moving Average (ARIMA)
model specification file. The output of the procedure
is an XML file that stores the intended ARIMA model
specification. This XML specification file can be used to
populate the model repository used by the HPFENGINE
procedure. (Likewise, the XML files generated by the
other model specification procedures in this section can
also be used to populate the model repository used by
PROC HPFENGINE.)

HPFDIAGNOSE The HPFDIAGNOSE procedure is an automatic mod-
eling procedure to find the best model among ARIMA
Models, Exponential Smoothing Models, and Unobserved
Component Models.

The HPFDIAGNOSE procedure has the following func-
tionality:

• intermittency test
• functional transformation test
• simple differencing and seasonal differencing test
• tentative simple ARMA order identification
• tentative seasonal ARMA order identification
• outlier detection
• significance test of events
• transfer functions identification
• intermittent demand model
• exponential smoothing model
• unobserved component model

HPFENGINE The HPFENGINE procedure provides large-scale auto-
matic forecasting of transactional or time series data. The
HPFENGINE procedure extends the foundation built by
PROC HPF, enabling the user to determine the list of mod-
els over which automatic selection is performed.

7
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The use of many forecast model families is supported
when HPFENGINE is used in conjunction with new ex-
perimental procedures that generate generic model speci-
fications. Among these models are

• ARIMA
• Unobserved Component Models (UCM)
• Exponential Smoothing Models (ESM)
• Intermittent Demand Models (IDM)
• External Models (EXM)

Furthermore, users may completely customize the opera-
tion by defining their own code to generate forecasts.

For models with inputs, the STOCHASTIC statement is
especially helpful for automatically forecasting those in-
puts that have no future values.

Also supported is the generation of a portable forecast
score. The output of the SCORE statement is a file or
catalog entry which, when used with the new function
HPFSCSUB, can be used to efficiently generate forecasts
outside of the HPFENGINE procedure.

The new HPFDIAGNOSE procedure produces output that
is compatible with HPFENGINE. As a result, the task of
candidate model specification can be entirely automated.

HPFESMSPEC The HPFESMSPEC procedure is used to create an
Exponential Smoothing Model (ESM) specification file.
The output of the procedure is an XML file that stores the
intended ESM model specification.

HPFEVENTS The HPFEVENTS procedure provides a way to create and
manage events associated with time series. The procedure
can create events, read events from an events data set, write
events to an events data set, and create dummies based on
those events, if date information is provided.

A SAS event is used to model any incident that disrupts the
normal flow of the process that generated the time series.
Examples of commonly used events include natural dis-
asters, retail promotions, strikes, advertising campaigns,
policy changes, and data recording errors.

An event has a reference name, a date or dates associated
with the event, and a set of qualifiers. The event exists
separately from any time series; however, the event may
be applied to one or more time series. When the event is
applied to a time series, a dummy variable is generated that
may be used to analyze the impact of the event on the time
series.

8
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HPFEXMSPEC The HPFEXMSPEC procedure is used to create an
External Model (EXM) specification file. The output of
the procedure is an XML file that stores the intended
EXM model specification.

HPFIDMSPEC The HPFIDMSPEC procedure is used to create an
Intermittent Demand Model (IDM) specification file. The
output of the procedure is an XML file that stores the
intended IDM model specification.

HPFRECONCILE The HPFRECONCILE procedure reconciles forecasts of
time series data at two different levels of aggregation.
Optionally, the HPFRECONCILE procedure can disaggre-
gate forecasts from upper level forecasts or aggregate fore-
casts from lower level forecasts. Additionally, the pro-
cedure enables the user to specify the direction and the
method of reconciliation, equality constraints and bounds
on the reconciled values at each point in time.

HPFSELECT The HPFSELECT procedure is used to create model se-
lections lists. A model selection list contains references to
candidate model specifications stored in the model reposi-
tory. The output of the procedure is an XML file that stores
the intended model selection list.

HPFUCMSPEC The HPFUCMSPEC procedure is used to create an
Unobserved Component Model (UCM) specification file.
The output of the procedure is an XML file that stores the
intended UCM model specification.

HPFSCSIG The HPFSCSIG function generates a sample signature for
subsequent use by the HPFSCSUB function.

HPFSCSUB The HPFSCSUB function uses score files to produce fore-
casts outside of the HPFENGINE procedure. Being a func-
tion, it is particularly well suited for use within other SAS
programming contexts, such as the DATA step, or proce-
dures that permit the specification of functions, such as the
NLP procedure. The only input required is a reference to
the score function, the horizon, and future values of any
inputs.

About This Book
This book is a user’s guide to HPF software. Since HPF software is a part of the SAS
System, this book assumes that you are familiar with Base SAS software and have the
books SAS Language: Reference and SAS Procedures Guide available for reference.
It also assumes that you are familiar with SAS data sets, the SAS DATA step, and
with basic SAS procedures such as PROC PRINT and PROC SORT.

9
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Chapter Organization

The new features added to HPF software since the publication of SAS High-
Performance Forecasting Software: Changes and Enhancements for Release 8.2 are
summarized in “What’s New in SAS 9, 9.1, 9.1.2, and 9.1.3 SAS High-Performance
Forecasting.” If you have used this software in the past, you may want to skim this
chapter to see what is new.

10
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Following the brief “What’s New” section, this book is divided into three major parts.

• Part One contains general information to aid you in working with HPF soft-
ware.

The current chapter provides an overview of this software and summarizes re-
lated SAS Institute publications, products, and services.

This chapter is followed by an “Examples” chapter.

• Part Two, the “Procedure Reference,” contains the chapters that explain the
SAS procedures that make up HPF software. The chapters documenting each
of the procedures appear in alphabetical order by procedure name and are or-
ganized as follows:

1. Each chapter begins with an “Overview” section that gives a brief de-
scription of the procedure.

2. The “Getting Started” section provides a tutorial introduction on how to
use the procedure.

3. The “Syntax” section is a reference to the SAS statements and options
that control the procedure.

4. The “Details” section discusses various technical details.
5. The “Examples” section contains examples of the use of the procedure.
6. The “References” section contains technical references on methodology.

• Part Three provides a summary of and computational details on the SAS High-
Performance Forecasting System, an interactive forecasting menu system. Two
of the chapters in Part Three document the details of the forecasting process.

Typographical Conventions

This book uses several type styles for presenting information. The following list
explains the meaning of the typographical conventions used in this book:

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However,
you can enter these elements in your own SAS programs
in lowercase, uppercase, or a mixture of the two.

UPPERCASE BOLD is used in the “Syntax” sections’ initial lists of SAS state-
ments and options.

oblique is used for user-supplied values for options in the syntax
definitions. In the text, these values are written in italic.

helvetica is used for the names of variables and data sets when they
appear in the text.

bold is used to refer to matrices and vectors, and to refer to com-
mands (e.g., end or cd.)

11



General Information � Introduction

italic is used for terms that are defined in the text, for emphasis,
and for references to publications.

monospace is used for example code. In most cases, this book uses
lowercase type for SAS code.

Options Used in Examples

Output of Examples

For each example, the procedure output is numbered consecutively starting with 1,
and each output is given a title. Each page of output produced by a procedure is
enclosed in a box.

Most of the output shown in this book is produced with the following SAS System
options:

options linesize=80 pagesize=200 nonumber nodate;

The template STATDOC.TPL is used to create the HTML output that appears in the
online (CD) version. A style template controls stylistic HTML elements such as
colors, fonts, and presentation attributes. The style template is specified in the ODS
HTML statement as follows:

ODS HTML style=statdoc;

If you run the examples, you may get slightly different output. This is a function of
the SAS System options used and the precision used by your computer for floating-
point calculations.

Graphics Options

The examples that contain graphical output are created with a specific set of options
and symbol statements. The code you see in the examples creates the color graphics
that appear in the online (CD) version of this book. A slightly different set of op-
tions and statements is used to create the black-and-white graphics that appear in the
printed version of the book.

If you run the examples, you may get slightly different results. This may occur be-
cause not all graphic options for color devices translate directly to black-and-white
output formats. For complete information on SAS/GRAPH software and graphics
options, refer to SAS/GRAPH Software: Reference.

12
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The following GOPTIONS statement is used to create the online (color) version of
the graphic output.

filename GSASFILE ’<file-specification>’;

goptions reset=all
gaccess=GSASFILE gsfmode=replace
fileonly
transparency dev = gif
ftext = swiss lfactor = 1
htext = 4.0pct htitle = 4.5pct
hsize = 5.5in vsize = 3.5in
noborder cback = white
horigin = 0in vorigin = 0in ;

The following GOPTIONS statement is used to create the black-and-white version of
the graphic output, which appears in the printed version of the manual.

filename GSASFILE ’<file-specification>’;

goptions reset=all
gaccess=GSASFILE gsfmode=replace
fileonly
dev = pslepsf
ftext = swiss lfactor = 1
htext = 3.0pct htitle = 3.5pct
hsize = 5.5in vsize = 3.5in
border cback = white
horigin = 0in vorigin = 0in;

In most of the online examples, the plot symbols are specified as follows:

symbol1 value=dot color=white height=3.5pct;

The SYMBOLn statements used in online examples order the symbol colors as fol-
lows: white, yellow, cyan, green, orange, blue, and black.

In the examples appearing in the printed manual, symbol statements specify
COLOR=BLACK and order the plot symbols as follows: dot, square, triangle, circle,
plus, x, diamond, and star.

13
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Where to Turn for More Information
This section describes other sources of information about HPF software.

Accessing the SAS High-Performance Forecasting Sample
Library

The HPF Sample Library includes many examples that illustrate the use of this soft-
ware, including the examples used in this documentation. To access these sample pro-
grams, select Help from the menu and select SAS Help and Documentation. From
the Contents list, choose Learning to Use SAS and then Sample SAS Programs.

Online Help System

You can access online help information about HPF software in two ways, depending
on whether you are using the SAS windowing environment in the command line mode
or the pull-down menu mode.

If you are using a command line, you can access the help menus by typing help on
the SAS windowing environment command line. Or you can or issue the command
help ARIMA (or another procedure name) to bring up the help for that particular
procedure.

If you are using the SAS windowing environment pull-down menus, you can pull-
down the Help menu and make the following selections:

• SAS Help and Documentation

• SAS Products (on the Contents tab)

• SAS High-Performance Forecasting

The content of the Online Help System follows closely the one of this book.

SAS Institute Technical Support Services

As with all SAS Institute products, the SAS Institute Technical Support staff is avail-
able to respond to problems and answer technical questions regarding the use of HPF
software.

Related SAS Software
Many features not found in HPF software are available in other parts of the SAS
System. If you do not find something you need in this software, you may find it in
one of the following SAS software products.

14
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Base SAS Software
The features provided by HPF software are extensions to the features provided by
Base SAS software. Many data management and reporting capabilities you will need
are part of Base SAS software. Refer to SAS Language: Reference and the SAS
Procedures Guide for documentation of Base SAS software.

The following sections summarize Base SAS software features of interest to users of
HPF software. See Chapter 2 (SAS/ETS User’s Guide) for further discussion of some
of these topics as they relate to time series data and HPF software.

SAS DATA Step

The DATA step is your primary tool for reading and processing data in the SAS
System. The DATA step provides a powerful general purpose programming language
that enables you to perform all kinds of data processing tasks. The DATA step is
documented in SAS Language: Reference.

Base SAS Procedures

Base SAS software includes many useful SAS procedures. Base SAS procedures
are documented in the SAS Procedures Guide. The following is a list of Base SAS
procedures you may find useful:

CATALOG for managing SAS catalogs

CHART for printing charts and histograms

COMPARE for comparing SAS data sets

CONTENTS for displaying the contents of SAS data sets

COPY for copying SAS data sets

CORR for computing correlations

CPORT for moving SAS data libraries between computer systems

DATASETS for deleting or renaming SAS data sets

FREQ for computing frequency crosstabulations

MEANS for computing descriptive statistics and summarizing or collapsing
data over cross sections

PLOT for printing scatter plots

PRINT for printing SAS data sets

RANK for computing rankings or order statistics

SORT for sorting SAS data sets

SQL for processing SAS data sets with Structured Query Language

STANDARD for standardizing variables to a fixed mean and variance

SYLK for translating spreadsheets to batch SAS programs. The SYLK
procedure is experimental. The documentation can be found
at http://support.sas.com/documentation/onlinedoc by selecting
“Base SAS” from the Product-Specific Documentation list
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TABULATE for printing descriptive statistics in tabular format

TIMEPLOT for plotting variables over time

TRANSPOSE for transposing SAS data sets

UNIVARIATE for computing descriptive statistics

Global Statements

Global statements can be specified anywhere in your SAS program, and they re-
main in effect until changed. Global statements are documented in SAS Language:
Reference. You may find the following SAS global statements useful:

FILENAME for accessing data files

FOOTNOTE for printing footnote lines at the bottom of each page

%INCLUDE for including files of SAS statements

LIBNAME for accessing SAS data libraries

OPTIONS for setting various SAS system options

RUN for executing the preceding SAS statements

TITLE for printing title lines at the top of each page

X for issuing host operating system commands from within your SAS
session

Some Base SAS statements can be used with any SAS procedure, including HPF
procedures. These statements are not global, and they only affect the SAS procedure
they are used with. These statements are documented in SAS Language: Reference.

The following Base SAS statements are useful with HPF procedures:

BY for computing separate analyses for groups of observations

FORMAT for assigning formats to variables

LABEL for assigning descriptive labels to variables

WHERE for subsetting data to restrict the range of data processed or to select
or exclude observations from the analysis

SAS Functions

SAS functions can be used in DATA step programs and in the COMPUTAB and
MODEL procedures. The following kinds of functions are available:

• character functions for manipulating character strings

• date and time functions, for performing date and calendar calculations

• financial functions, for performing financial calculations such as depreciation,
net present value, periodic savings, and internal rate of return

16



Related SAS Software

• lagging and differencing functions, for computing lags and differences

• mathematical functions, for computing data transformations and other mathe-
matical calculations

• probability functions, for computing quantiles of statistical distributions and
the significance of test statistics

• random number functions, for simulation experiments

• sample statistics functions, for computing means, standard deviations, kurtosis,
and so forth

Formats, Informats, and Time Intervals

Base SAS software provides formats to control the printing of data values, informats
to read data values, and time intervals to define the frequency of time series.

SAS/GRAPH Software

SAS/GRAPH software includes procedures that create two- and three-dimensional
high-resolution color graphics plots and charts. You can generate output that graphs
the relationship of data values to one another, enhance existing graphs, or simply
create graphics output that is not tied to data. SAS/GRAPH software can produce

• charts

• plots

• maps

• text

• three-dimensional graphs

With SAS/GRAPH software you can produce high-resolution color graphics plots of
time series data.

SAS/STAT Software

SAS/STAT software is of interest to users of HPF software because many econometric
and other statistical methods not included in HPF software are provided in SAS/STAT
software.

SAS/STAT software includes procedures for a wide range of statistical methodolo-
gies, including

• logistic regression

• censored regression

• principal component analysis

• structural equation models using covariance structure analysis

• factor analysis
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• survival analysis

• discriminant analysis

• cluster analysis

• categorical data analysis; log-linear and conditional logistic models

• general linear models

• mixed linear and nonlinear models

• generalized linear models

• response surface analysis

• kernel density estimation

• LOESS regression

• spline regression

• two-dimensional kriging

• multiple imputation for missing values

SAS/IML Software

SAS/IML software gives you access to a powerful and flexible programming lan-
guage (Interactive Matrix Language) in a dynamic, interactive environment. The
fundamental object of the language is a data matrix. You can use SAS/IML soft-
ware interactively (at the statement level) to see results immediately, or you can store
statements in a module and execute them later. The programming is dynamic be-
cause necessary activities such as memory allocation and dimensioning of matrices
are done automatically.

You can access built-in operators and call routines to perform complex tasks such as
matrix inversion or eigenvector generation. You can define your own functions and
subroutines using SAS/IML modules. You can perform operations on an entire data
matrix. You have access to a wide choice of data management commands. You can
read, create, and update SAS data sets from inside SAS/IML software without ever
using the DATA step.

SAS/IML software is of interest to users of HPF software because it enables you
to program your own econometric and time series methods in the SAS System. It
contains subroutines for time series operators and for general function optimization.
If you need to perform a statistical calculation not provided as an automated feature
by HPF or other SAS software, you can use SAS/IML software to program the matrix
equations for the calculation.

Kalman Filtering and Time Series Analysis in SAS/IML

SAS/IML software includes a library for Kalman filtering and time series analysis
which provides the following functions:

• generating univariate, multivariate, and fractional time series

• computing likelihood function of ARMA, VARMA, and ARFIMA models
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• computing an autocovariance function of ARMA, VARMA, and ARFIMA
models

• checking the stationarity of ARMA and VARMA models

• filtering and smoothing of time series models using Kalman method

• fitting AR, periodic AR, time-varying coefficient AR, VAR, and ARFIMA
models

• handling Bayesian seasonal adjustment model

SAS/INSIGHT Software

SAS/INSIGHT software is a highly interactive tool for data analysis. You can ex-
plore data through a variety of interactive graphs including bar charts, scatter plots,
box plots, and three-dimensional rotating plots. You can examine distributions and
perform parametric and nonparametric regression, analyze general linear models and
generalized linear models, examine correlation matrixes, and perform principal com-
ponent analyses. Any changes you make to your data show immediately in all graphs
and analyses. You can also configure SAS/INSIGHT software to produce graphs and
analyses tailored to the way you work.

SAS/INSIGHT software is an integral part of the SAS System. You can use it to ex-
amine output from a SAS procedure, and you can use any SAS procedure to analyze
results from SAS/INSIGHT software.

SAS/INSIGHT software includes features for both displaying and analyzing data in-
teractively. A data window displays a SAS data set as a table with columns of the
table displaying variables and rows displaying observations. Data windows provide
data management features for editing, transforming, subsetting, and sorting data. A
graph window displays different types of graphs: bar charts, scatter plots, box plots,
and rotating plots. Graph windows provide interactive exploratory techniques such
as data brushing and highlighting. Analysis windows display statistical analyses in
the form of graphs and tables. Analysis window features include

• univariate statistics

• robust estimates

• density estimates

• cumulative distribution functions

• theoretical quantile-quantile plots

• multiple regression analysis with numerous diagnostic capabilities

• general linear models

• generalized linear models

• smoothing spline estimates

• kernel density estimates
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• correlations

• principal components

SAS/INSIGHT software may be of interest to users of HPF software for interactive
graphical viewing of data, editing data, exploratory data analysis, and checking dis-
tributional assumptions.

SAS/OR Software

SAS/OR software provides SAS procedures for operations research and project plan-
ning and includes a menu-driven system for project management. SAS/OR software
has features for

• solving transportation problems

• linear, integer, and mixed-integer programming

• nonlinear programming and optimization

• scheduling projects

• plotting Gantt charts

• drawing network diagrams

• solving optimal assignment problems

• network flow programming

SAS/OR software may be of interest to users of HPF software for its mathematical
programming features. In particular, the NLP procedure in SAS/OR software solves
nonlinear programming problems and can be used for constrained and unconstrained
maximization of user-defined likelihood functions.

SAS/QC Software

SAS/QC software provides a variety of procedures for statistical quality control and
quality improvement. SAS/QC software includes procedures for

• Shewhart control charts

• cumulative sum control charts

• moving average control charts

• process capability analysis

• Ishikawa diagrams

• Pareto charts

• experimental design

SAS/QC software also includes the SQC menu system for interactive application of
statistical quality control methods and the ADX Interface for experimental design.
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Other Statistical Tools

Many other statistical tools are available in Base SAS, SAS/STAT, SAS/OR,
SAS/QC, SAS/INSIGHT, and SAS/IML software. If you do not find something you
need in HPF software, you may find it in SAS/STAT software and in Base SAS soft-
ware. If you still do not find it, look in other SAS software products or contact the
SAS Institute Technical Support staff.
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Example 2.1. Simple Forecasting Task

This scenario shows the use of HPF on SASHELP.PRICEDATA in the most simple
forecasting task:

Forecast SALE for different regions and products (by groups) using PRICE1-
PRICE17 as predictors.

The HPFDIAGNOSE procedure is used in its default mode to find good models for
each series, and the HPFENGINE procedure is used to forecast using these models.

Perform the following steps.

1. Generate models using HPFDIAGNOSE OUTEST=EST.

2. Estimate model parameters for the models chosen by HPFDIAGNOSE.

3. Forecast using the estimated models (no more fitting).

*Step1 ;
proc hpfdiag data=sashelp.pricedata

outest=est
modelrepository=work.mycat
criterion=mape;
id date interval=month;
by region product;
forecast sale;
input price1-price17;

run;

*Step2 ;
proc hpfengine data=sashelp.pricedata inest=est outest=fest

modelrepository=work.mycat
print=(select estimates);
id date interval=month;
by region product;
forecast sale / task=select ;
control price1-price17;

run;
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*Step3 ;
proc hpfengine data=sashelp.pricedata inest=fest

modelrepository=work.mycat
print=(forecasts);
id date interval=month;
by region product;
forecast sale / task=forecast ;
control price1-price17;

run;
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Chapter 3
Working with Time Series Data
Overview

This chapter discusses working with time series data in the SAS System. The follow-
ing topics are included:

• dating time series and working with SAS date and datetime values

• subsetting data and selecting observations

• storing time series data in SAS data sets

• specifying time series periodicity and time intervals

• plotting time series

• using calendar and time interval functions

• computing lags and other functions across time

• transforming time series

• transposing time series data sets

• interpolating time series

• reading time series data recorded in different ways

In general, this chapter focuses on using features of the SAS programming language
and not on features of SAS/ETS software. However, since SAS/ETS procedures
are used to analyze time series, understanding how to use the SAS programming
language to work with time series data is important for the effective use of SAS/ETS
software.

You do not need to read this chapter to use SAS/ETS procedures. If you are already
familiar with SAS programming you may want to skip this chapter, or you may refer
to sections of this chapter for help on specific time series data processing questions.

Time Series and SAS Data Sets

Introduction

To analyze data with the SAS System, data values must be stored in a SAS data
set. A SAS data set is a matrix or table of data values organized into variables and
observations.

The variables in a SAS data set label the columns of the data matrix and the observa-
tions in a SAS data set are the rows of the data matrix. You can also think of a SAS
data set as a kind of file, with the observations representing records in the file and
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the variables representing fields in the records. (Refer to SAS Language: Reference,
Version 6 for more information about SAS data sets.)

Usually, each observation represents the measurement of one or more variables for
the individual subject or item observed. Often, the values of some of the variables in
the data set are used to identify the individual subjects or items that the observations
measure. These identifying variables are referred to as ID variables.

For many kinds of statistical analysis, only relationships among the variables are of
interest, and the identity of the observations does not matter. ID variables may not be
relevant in such a case.

However, for time series data the identity and order of the observations are crucial. A
time series is a set of observations made at a succession of equally spaced points in
time.

For example, if the data are monthly sales of a company’s product, the variable mea-
sured is sales of the product and the thing observed is the operation of the company
during each month. These observations can be identified by year and month. If the
data are quarterly gross national product, the variable measured is final goods produc-
tion and the thing observed is the economy during each quarter. These observations
can be identified by year and quarter.

For time series data, the observations are identified and related to each other by their
position in time. Since the SAS system does not assume any particular structure to the
observations in a SAS data set, there are some special considerations needed when
storing time series in a SAS data set.

The main considerations are how to associate dates with the observations and how
to structure the data set so that SAS/ETS procedures and other SAS procedures will
recognize the observations of the data set as constituting time series. These issues are
discussed in following sections.

Reading a Simple Time Series

Time series data can be recorded in many different ways. The section "Reading Time
Series Data" later in this chapter discusses some of the possibilities. The example
below shows a simple case.

The following SAS statements read monthly values of the U.S. Consumer Price Index
for June 1990 through July 1991. The data set USCPI is shown in Figure 3.1.

data uscpi;
input year month cpi;

datalines;
1990 6 129.9
1990 7 130.4
1990 8 131.6
1990 9 132.7
1990 10 133.5
1990 11 133.8
1990 12 133.8
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1991 1 134.6
1991 2 134.8
1991 3 135.0
1991 4 135.2
1991 5 135.6
1991 6 136.0
1991 7 136.2
;

proc print data=uscpi;
run;

Obs year month cpi

1 1990 6 129.9
2 1990 7 130.4
3 1990 8 131.6
4 1990 9 132.7
5 1990 10 133.5
6 1990 11 133.8
7 1990 12 133.8
8 1991 1 134.6
9 1991 2 134.8

10 1991 3 135.0
11 1991 4 135.2
12 1991 5 135.6
13 1991 6 136.0
14 1991 7 136.2

Figure 3.1. Time Series Data

When a time series is stored in the manner shown by this example, the terms series
and variable can be used interchangeably. There is one observation per row, and one
series/variable per column.

Dating Observations
The SAS System supports special date, datetime, and time values, which make it
easy to represent dates, perform calendar calculations, and identify the time period of
observations in a data set.

The preceding example used the ID variables YEAR and MONTH to identify the
time periods of the observations. For a quarterly data set, you might use YEAR and
QTR as ID variables. A daily data set might have the ID variables YEAR, MONTH,
and DAY. Clearly, it would be more convenient to have a single ID variable that could
be used to identify the time period of observations, regardless of their frequency.

The following section, "SAS Date, Datetime, and Time Values," discusses how the
SAS System represents dates and times internally and how to specify date, datetime,
and time values in a SAS program. The section "Reading Date and Datetime Values
with Informats" discusses how to control the display of date and datetime values in
SAS output and how to read in date and time values from data records. Later sections
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discuss other issues concerning date and datetime values, specifying time intervals,
data periodicity, and calendar calculations.

SAS date and datetime values and the other features discussed in the following sec-
tions are also described in SAS Language: Reference. Reference documentation on
these features is also provided in Chapter 3, “Date Intervals, Formats, and Functions.”
(SAS/ETS User’s Guide)

SAS Date, Datetime, and Time Values

Year 2000 Compliance

SAS software correctly represents dates from 1582 AD to the year 20,000 AD. If
dates in an external data source are represented with four-digit-year values SAS can
read, write and compute these dates. If the dates in an external data source are two-
digit years, SAS software provides informats, functions, and formats to read, manip-
ulate, and output dates that are Year 2000 compliant. The YEARCUTOFF= system
option can also be used to interpret dates with two-digit years by specifying the first
year of a 100-year span that will be used in informats and functions. The default
value for the YEARCUTOFF= option is 1920.

SAS Date Values

The SAS System represents dates as the number of days since a reference date. The
reference date, or date zero, used for SAS date values is 1 January 1960. Thus, for
example, 3 February 1960 is represented by the SAS System as 33. The SAS date for
17 October 1991 is 11612.

Dates represented in this way are called SAS date values. Any numeric variable in a
SAS data set whose values represent dates in this way is called a SAS date variable.

Representing dates as the number of days from a reference date makes it easy for the
computer to store them and perform calendar calculations, but these numbers are not
meaningful to users. However, you never have to use SAS date values directly, since
SAS automatically converts between this internal representation and ordinary ways
of expressing dates, provided that you indicate the format with which you want the
date values to be displayed. (Formatting of date values is explained in a following
section.)

SAS Date Constants

SAS date values are written in a SAS program by placing the dates in single quotes
followed by a D. The date is represented by the day of the month, the three letter
abbreviation of the month name, and the year.

For example, SAS reads the value ’17OCT1991’D the same as 11612, the SAS date
value for 17 October 1991. Thus, the following SAS statements print DATE=11612.

data _null_;
date = ’17oct1991’d;
put date=;

run;

32



Dating Observations

The year value can be given with two or four digits, so ’17OCT91’D is the same
as ’17OCT1991’D. (The century assumed for a two-digit year value can be con-
trolled with the YEARCUTOFF= option in the OPTIONS statement. Refer to the
SAS Language: Reference for information on YEARCUTOFF=.)

SAS Datetime Values and Datetime Constants

To represent both the time of day and the date, the SAS System uses datetime values.
SAS datetime values represent the date and time as the number of seconds the time
is from a reference time. The reference time, or time zero, used for SAS datetime
values is midnight, 1 January 1960. Thus, for example, the SAS datetime value for
17 October 1991 at 2:45 in the afternoon is 1003329900.

To specify datetime constants in a SAS program, write the date and time in single
quotes followed by DT. To write the date and time in a SAS datetime constant, write
the date part using the same syntax as for date constants, and follow the date part
with the hours, the minutes, and the seconds, separating the parts with colons. The
seconds are optional.

For example, in a SAS program you would write 17 October 1991 at 2:45 in the
afternoon as ’17OCT91:14:45’DT. SAS reads this as 1003329900. Table 3.1 shows
some other examples of datetime constants.

Table 3.1. Examples of Datetime Constants
Datetime Constant Time
’17OCT1991:14:45:32’DT 32 seconds past 2:45 p.m., 17 October 1991
’17OCT1991:12:5’DT 12:05 p.m., 17 October 1991
’17OCT1991:2:0’DT 2 AM, 17 October 1991
’17OCT1991:0:0’DT midnight, 17 October 1991

SAS Time Values

The SAS System also supports time values. SAS time values are just like datetime
values, except that the date part is not given. To write a time value in a SAS program,
write the time the same as for a datetime constant but use T instead of DT. For exam-
ple, 2:45:32 p.m. is written ’14:45:32’T. Time values are represented by a number of
seconds since midnight, so SAS reads ’14:45:32’T as 53132.

SAS time values are not very useful for identifying time series, since usually both
the date and the time of day are needed. Time values are not discussed further in this
book.

Reading Date and Datetime Values with Informats

The SAS System provides a selection of informats for reading SAS date and datetime
values from date and time values recorded in ordinary notations.

A SAS informat is an instruction that converts the values from a character string
representation into the internal numerical value of a SAS variable. Date informats
convert dates from ordinary notations used to enter them to SAS date values; datetime
informats convert date and time from ordinary notation to SAS datetime values.
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For example, the following SAS statements read monthly values of the U.S.
Consumer Price Index. Since the data are monthly, you could identify the date with
the variables YEAR and MONTH, as in the previous example. Instead, in this exam-
ple the time periods are coded as a three-letter month abbreviation followed by the
year. The informat MONYY. is used to read month-year dates coded this way and to
express them as SAS date values for the first day of the month, as follows.

data uscpi;
input date: monyy7. cpi;

datalines;
jun1990 129.9
jul1990 130.4
aug1990 131.6
sep1990 132.7
oct1990 133.5
nov1990 133.8
dec1990 133.8
jan1991 134.6
feb1991 134.8
mar1991 135.0
apr1991 135.2
may1991 135.6
jun1991 136.0
jul1991 136.2
;

The SAS System provides informats for most common notations for dates and times.
See Chapter 3 (SAS/ETS User’s Guide) for more information on the date and datetime
informats available.

Formatting Date and Datetime Values

The SAS System provides formats to convert the internal representation of date and
datetime values used by SAS to ordinary notations for dates and times. Several dif-
ferent formats are available for displaying dates and datetime values in most of the
commonly used notations.

A SAS format is an instruction that converts the internal numerical value of a SAS
variable to a character string that can be printed or displayed. Date formats convert
SAS date values to a readable form; datetime formats convert SAS datetime values
to a readable form.

In the preceding example, the variable DATE was set to the SAS date value for the
first day of the month for each observation. If the data set USCPI were printed or
otherwise displayed, the values shown for DATE would be the number of days since
1 January 1960. (See the "DATE with no format" column in Figure 3.2.) To display
date values appropriately, use the FORMAT statement.

The following example processes the data set USCPI to make several copies of the
variable DATE and uses a FORMAT statement to give different formats to these
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copies. The format cases shown are the MONYY7. format (for the DATE vari-
able), the DATE9. format (for the DATE1 variable), and no format (for the DATE0
variable). The PROC PRINT output in Figure 3.2 shows the effect of the different
formats on how the date values are printed.

data fmttest;
set uscpi;
date0 = date;
date1 = date;
label date = "DATE with MONYY7. format"

date1 = "DATE with DATE9. format"
date0 = "DATE with no format";

format date monyy7. date1 date9.;
run;

proc print data=fmttest label;
run;

DATE with DATE with
MONYY. DATE with DATE.

Obs format cpi no format format

1 JUN1990 129.9 11109 01JUN1990
2 JUL1990 130.4 11139 01JUL1990
3 AUG1990 131.6 11170 01AUG1990
4 SEP1990 132.7 11201 01SEP1990
5 OCT1990 133.5 11231 01OCT1990
6 NOV1990 133.8 11262 01NOV1990
7 DEC1990 133.8 11292 01DEC1990
8 JAN1991 134.6 11323 01JAN1991
9 FEB1991 134.8 11354 01FEB1991
10 MAR1991 135.0 11382 01MAR1991

Figure 3.2. SAS Date Values Printed with Different Formats

The appropriate format to use for SAS date or datetime valued ID variables de-
pends on the sampling frequency or periodicity of the time series. Table 3.2 shows
recommended formats for common data sampling frequencies and shows how the
date ’17OCT1991’D or the datetime value ’17OCT1991:14:45:32’DT is displayed
by these formats.

Table 3.2. Formats for Different Sampling Frequencies
ID values Periodicity FORMAT Example
SAS Date Annual YEAR4. 1991

Quarterly YYQC6. 1991:4
Monthly MONYY7. OCT1991
Weekly WEEKDATX23. Thursday, 17 Oct 1991

DATE9. 17OCT1991
Daily DATE9. 17OCT1991

SAS Datetime Hourly DATETIME10. 17OCT91:14
Minutes DATETIME13. 17OCT91:14:45
Seconds DATETIME16. 17OCT91:14:45:32
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See Chapter 3 (SAS/ETS User’s Guide) for more information on the date and datetime
formats available.

The Variables DATE and DATETIME

SAS/ETS procedures enable you to identify time series observations in many dif-
ferent ways to suit your needs. As discussed in preceding sections, you can use a
combination of several ID variables, such as YEAR and MONTH for monthly data.

However, using a single SAS date or datetime ID variable is more convenient and
enables you to take advantage of some features SAS/ETS procedures provide for pro-
cessing ID variables. One such feature is automatic extrapolation of the ID variable
to identify forecast observations. These features are discussed in following sections.

Thus, it is a good practice to include a SAS date or datetime ID variable in all the
time series SAS data sets you create. It is also a good practice to always give the date
or datetime ID variable a format appropriate for the data periodicity.

You can name a SAS date or datetime valued ID variable any name conforming to
SAS variable name requirements. However, you may find working with time series
data in SAS easier and less confusing if you adopt the practice of always using the
same name for the SAS date or datetime ID variable.

This book always names the dating ID variable "DATE" if it contains SAS date values
or "DATETIME" if it contains SAS datetime values. This makes it easy to recognize
the ID variable and also makes it easy to recognize whether this ID variable uses SAS
date or datetime values.

Sorting by Time

Many SAS/ETS procedures assume the data are in chronological order. If the data are
not in time order, you can use the SORT procedure to sort the data set. For example

proc sort data=a;
by date;

run;

There are many ways of coding the time ID variable or variables, and some ways
do not sort correctly. If you use SAS date or datetime ID values as suggested in the
preceding section, you do not need to be concerned with this issue. But if you encode
date values in nonstandard ways, you need to consider whether your ID variables will
sort.

SAS date and datetime values always sort correctly, as do combinations of numeric
variables like YEAR, MONTH, and DAY used together. Julian dates also sort cor-
rectly. (Julian dates are numbers of the form yyddd, where yy is the year and ddd is
the day of the year. For example 17 October 1991 has the Julian date value 91290.)

Calendar dates such as numeric values coded as mmddyy or ddmmyy do not sort
correctly. Character variables containing display values of dates, such as dates in the
notation produced by SAS date formats, generally do not sort correctly.
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Subsetting Data and Selecting Observations
It is often necessary to subset data for analysis. You may need to subset data to

• restrict the time range. For example, you want to perform a time series analysis
using only recent data and ignoring observations from the distant past.

• select cross sections of the data. (See the section "Cross-sectional Dimensions
and BY Groups" later in this chapter.) For example, you have a data set with
observations over time for each of several states, and you want to analyze the
data for a single state.

• select particular kinds of time series from an interleaved form data set. (See the
section "Interleaved Time Series and the –TYPE– Variable" later in this chap-
ter.) For example, you have an output data set produced by the FORECAST
procedure that contains both forecast and confidence limits observations, and
you want to extract only the forecast observations.

• exclude particular observations. For example, you have an outlier in your time
series, and you want to exclude this observation from the analysis.

You can subset data either by using the DATA step to create a subset data set or by
using a WHERE statement with the SAS procedure that analyzes the data.

A typical WHERE statement used in a procedure has the form

proc arima data=full;
where ’31dec1993’d < day < ’26mar1994’d;
identify var=close;

run;

For complete reference documentation on the WHERE statement refer to SAS
Language: Reference.

Subsetting SAS Data Sets

To create a subset data set, specify the name of the subset data set on the DATA
statement, bring in the full data set with a SET statement, and specify the subsetting
criteria with either subsetting IF statements or WHERE statements.

For example, suppose you have a data set containing time series observations for
each of several states. The following DATA step uses a WHERE statement to ex-
clude observations with dates before 1970 and uses a subsetting IF statement to select
observations for the state NC:

data subset;
set full;
where date >= ’1jan1970’d;
if state = ’NC’;

run;
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In this case, it makes no difference logically whether the WHERE statement or the
IF statement is used, and you can combine several conditions on one subsetting state-
ment. The following statements produce the same results as the previous example:

data subset;
set full;
if date >= ’1jan1970’d & state = ’NC’;

run;

The WHERE statement acts on the input data sets specified in the SET statement be-
fore observations are processed by the DATA step program, whereas the IF statement
is executed as part of the DATA step program. If the input data set is indexed, using
the WHERE statement can be more efficient than using the IF statement. However,
the WHERE statement can only refer to variables in the input data set, not to variables
computed by the DATA step program.

To subset the variables of a data set, use KEEP or DROP statements or use KEEP=
or DROP= data set options. Refer to SAS Language: Reference for information on
KEEP and DROP statements and SAS data set options.

For example, suppose you want to subset the data set as in the preceding example,
but you want to include in the subset data set only the variables DATE, X, and Y. You
could use the following statements:

data subset;
set full;
if date >= ’1jan1970’d & state = ’NC’;
keep date x y;

run;

Using the WHERE Statement with SAS Procedures
Use the WHERE statement with SAS procedures to process only a subset of the input
data set. For example, suppose you have a data set containing monthly observations
for each of several states, and you want to use the AUTOREG procedure to analyze
data since 1970 for the state NC. You could use the following:

proc autoreg data=full;
where date >= ’1jan1970’d & state = ’NC’;
... additional statements ...

run;

You can specify any number of conditions on the WHERE statement. For example,
suppose that a strike created an outlier in May 1975, and you want to exclude that
observation. You could use the following:

proc autoreg data=full;
where date >= ’1jan1970’d & state = ’NC’

& date ^= ’1may1975’d;
... additional statements ...

run;
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Using SAS Data Set Options

You can use the OBS= and FIRSTOBS= data set options to subset the input data set.

For example, the following statements print observations 20 through 25 of the data
set FULL.

proc print data=full(firstobs=20 obs=25);
run;

You can use KEEP= and DROP= data set options to exclude variables from the input
data set. Refer to SAS Language: Reference for information on SAS data set options.

Storing Time Series in a SAS Data Set
This section discusses aspects of storing time series in SAS data sets. The topics
discussed are the standard form of a time series data set, storing several series with
different time ranges in the same data set, omitted observations, cross-sectional di-
mensions and BY groups, and interleaved time series.

Any number of time series can be stored in a SAS data set. Normally, each time
series is stored in a separate variable. For example, the following statements augment
the USCPI data set read in the previous example with values for the producer price
index.

data usprice;
input date monyy7. cpi ppi;
format date monyy7.;
label cpi = "Consumer Price Index"

ppi = "Producer Price Index";
datalines;
jun1990 129.9 114.3
jul1990 130.4 114.5
aug1990 131.6 116.5
sep1990 132.7 118.4
oct1990 133.5 120.8
nov1990 133.8 120.1
dec1990 133.8 118.7
jan1991 134.6 119.0
feb1991 134.8 117.2
mar1991 135.0 116.2
apr1991 135.2 116.0
may1991 135.6 116.5
jun1991 136.0 116.3
jul1991 136.2 116.0
;

proc print data=usprice;
run;
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Obs date cpi ppi

1 JUN1990 129.9 114.3
2 JUL1990 130.4 114.5
3 AUG1990 131.6 116.5
4 SEP1990 132.7 118.4
5 OCT1990 133.5 120.8
6 NOV1990 133.8 120.1
7 DEC1990 133.8 118.7
8 JAN1991 134.6 119.0
9 FEB1991 134.8 117.2
10 MAR1991 135.0 116.2
11 APR1991 135.2 116.0
12 MAY1991 135.6 116.5
13 JUN1991 136.0 116.3
14 JUL1991 136.2 116.0

Figure 3.3. Time Series Data Set Containing Two Series

Standard Form of a Time Series Data Set

The simple way the CPI and PPI time series are stored in the USPRICE data set in
the preceding example is termed the standard form of a time series data set. A time
series data set in standard form has the following characteristics:

• The data set contains one variable for each time series.

• The data set contains exactly one observation for each time period.

• The data set contains an ID variable or variables that identify the time period
of each observation.

• The data set is sorted by the ID variables associated with date time values, so
the observations are in time sequence.

• The data are equally spaced in time. That is, successive observations are a
fixed time interval apart, so the data set can be described by a single sampling
interval such as hourly, daily, monthly, quarterly, yearly, and so forth. This
means that time series with different sampling frequencies are not mixed in the
same SAS data set.

Most SAS/ETS procedures that process time series expect the input data set to contain
time series in this standard form, and this is the simplest way to store time series in
SAS data sets. There are more complex ways to represent time series in SAS data
sets.

You can incorporate cross-sectional dimensions with BY groups, so that each BY
group is like a standard form time series data set. This method is discussed in the
section "Cross-sectional Dimensions and BY Groups."

You can interleave time series, with several observations for each time period identi-
fied by another ID variable. Interleaved time series data sets are used to store several
series in the same SAS variable. Interleaved time series data sets are often used
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to store series of actual values, predicted values, and residuals, or series of fore-
cast values and confidence limits for the forecasts. This is discussed in the section
"Interleaved Time Series and the –TYPE– Variable" later in this chapter.

Several Series with Different Ranges

Different time series can have values recorded over different time ranges. Since a
SAS data set must have the same observations for all variables, when time series with
different ranges are stored in the same data set, missing values must be used for the
periods in which a series is not available.

Suppose that in the previous example you did not record values for CPI before August
1990 and did not record values for PPI after June 1991. The USPRICE data set could
be read with the following statements:

data usprice;
input date monyy7. cpi ppi;
format date monyy7.;

datalines;
jun1990 . 114.3
jul1990 . 114.5
aug1990 131.6 116.5
sep1990 132.7 118.4
oct1990 133.5 120.8
nov1990 133.8 120.1
dec1990 133.8 118.7
jan1991 134.6 119.0
feb1991 134.8 117.2
mar1991 135.0 116.2
apr1991 135.2 116.0
may1991 135.6 116.5
jun1991 136.0 116.3
jul1991 136.2 .
;

The decimal points with no digits in the data records represent missing data and are
read by the SAS System as missing value codes.

In this example, the time range of the USPRICE data set is June 1990 through July
1991, but the time range of the CPI variable is August 1990 through July 1991, and
the time range of the PPI variable is June 1990 through June 1991.

SAS/ETS procedures ignore missing values at the beginning or end of a series. That
is, the series is considered to begin with the first nonmissing value and end with the
last nonmissing value.
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Missing Values and Omitted Observations

Missing data can also occur within a series. Missing values that appear after the
beginning of a time series and before the end of the time series are called embedded
missing values.

Suppose that in the preceding example you did not record values for CPI for
November 1990 and did not record values for PPI for both November 1990 and March
1991. The USPRICE data set could be read with the following statements.

data usprice;
input date monyy. cpi ppi;
format date monyy.;

datalines;
jun1990 . 114.3
jul1990 . 114.5
aug1990 131.6 116.5
sep1990 132.7 118.4
oct1990 133.5 120.8
nov1990 . .
dec1990 133.8 118.7
jan1991 134.6 119.0
feb1991 134.8 117.2
mar1991 135.0 .
apr1991 135.2 116.0
may1991 135.6 116.5
jun1991 136.0 116.3
jul1991 136.2 .
;

In this example, the series CPI has one embedded missing value, and the series PPI
has two embedded missing values. The ranges of the two series are the same as
before.

Note that the observation for November 1990 has missing values for both CPI and
PPI; there is no data for this period. This is an example of a missing observation.

You might ask why the data record for this period is included in the example at all,
since the data record contains no data. However, if the data record for November
1990 were deleted from the example, this would cause an omitted observation in the
USPRICE data set. SAS/ETS procedures expect input data sets to contain observa-
tions for a contiguous time sequence. If you omit observations from a time series
data set and then try to analyze the data set with SAS/ETS procedures, the omitted
observations will cause errors. When all data are missing for a period, a missing
observation should be included in the data set to preserve the time sequence of the
series.
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Cross-sectional Dimensions and BY Groups

Often, a collection of time series are related by a cross-sectional dimension. For
example, the national average U.S. consumer price index data shown in the previous
example can be disaggregated to show price indexes for major cities. In this case
there are several related time series: CPI for New York, CPI for Chicago, CPI for Los
Angeles, and so forth. When these time series are considered one data set, the city
whose price level is measured is a cross-sectional dimension of the data.

There are two basic ways to store such related time series in a SAS data set. The first
way is to use a standard form time series data set with a different variable for each
series.

For example, the following statements read CPI series for three major U.S. cities:

data citycpi;
input date monyy7. cpiny cpichi cpila;
format date monyy7.;

datalines;
nov1989 133.200 126.700 130.000
dec1989 133.300 126.500 130.600
jan1990 135.100 128.100 132.100
feb1990 135.300 129.200 133.600
mar1990 136.600 129.500 134.500
apr1990 137.300 130.400 134.200
may1990 137.200 130.400 134.600
jun1990 137.100 131.700 135.000
jul1990 138.400 132.000 135.600
;

The second way is to store the data in a time series cross-sectional form. In this
form, the series for all cross sections are stored in one variable and a cross-section ID
variable is used to identify observations for the different series. The observations are
sorted by the cross-section ID variable and by time within each cross section.

The following statements indicate how to read the CPI series for U.S. cities in time
series cross-sectional form:

data cpicity;
input city $11. date monyy7. cpi;
format date monyy7.;

datalines;
Chicago nov1989 126.700
Chicago dec1989 126.500
Chicago jan1990 128.100
Chicago feb1990 129.200
Chicago mar1990 129.500
Chicago apr1990 130.400
Chicago may1990 130.400
Chicago jun1990 131.700
Chicago jul1990 132.000
Los Angeles nov1989 130.000
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Los Angeles dec1989 130.600
Los Angeles jan1990 132.100
... etc. ...
New York may1990 137.200
New York jun1990 137.100
New York jul1990 138.400
;

proc sort data=cpicity;
by city date;

run;

When processing a time series cross-section-form data set with most SAS/ETS pro-
cedures, use the cross-section ID variable in a BY statement to process the time series
separately. The data set must be sorted by the cross-section ID variable and sorted
by date within each cross section. The PROC SORT step in the preceding example
ensures that the CPICITY data set is correctly sorted.

When the cross-section ID variable is used in a BY statement, each BY group in the
data set is like a standard form time series data set. Thus, SAS/ETS procedures that
expect a standard form time series data set can process time series cross-sectional
data sets when a BY statement is used, producing an independent analysis for each
cross section.

It is also possible to analyze time series cross-sectional data jointly. The TSCSREG
procedure expects the input data to be in the time series cross-sectional form de-
scribed here. See Chapter 28 (SAS/ETS User’s Guide) for more information.

Interleaved Time Series

Normally, a time series data set has only one observation for each time period, or
one observation for each time period within a cross section for a time series cross-
sectional form data set. However, it is sometimes useful to store several related time
series in the same variable when the different series do not correspond to levels of a
cross-sectional dimension of the data.

In this case, the different time series can be interleaved. An interleaved time series
data set is similar to a time series cross-sectional data set, except that the observations
are sorted differently, and the ID variable that distinguishes the different time series
does not represent a cross-sectional dimension.

Some SAS/ETS procedures produce interleaved output data sets. The interleaved
time series form is a convenient way to store procedure output when the results consist
of several different kinds of series for each of several input series. (Interleaved time
series are also easy to process with plotting procedures. See the section "Plotting
Time Series" later in this chapter.)

For example, the FORECAST procedure fits a model to each input time series and
computes predicted values and residuals from the model. The FORECAST procedure
then uses the model to compute forecast values beyond the range of the input data and
also to compute upper and lower confidence limits for the forecast values.
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Thus, the output from PROC FORECAST consists of five related time series for each
variable forecast. The five resulting time series for each input series are stored in
a single output variable with the same name as the input series being forecast. The
observations for the five resulting series are identified by values of the ID variable
–TYPE–. These observations are interleaved in the output data set with observations
for the same date grouped together.

The following statements show the use of PROC FORECAST to forecast the variable
CPI in the USCPI data set. Figure 3.4 shows part of the output data set produced by
PROC FORECAST and illustrates the interleaved structure of this data set.

proc forecast data=uscpi interval=month lead=12
out=foreout outfull outresid;

var cpi;
id date;

run;

proc print data=foreout;
run;

Obs date _TYPE_ _LEAD_ cpi

37 JUN1991 ACTUAL 0 136.000
38 JUN1991 FORECAST 0 136.146
39 JUN1991 RESIDUAL 0 -0.146
40 JUL1991 ACTUAL 0 136.200
41 JUL1991 FORECAST 0 136.566
42 JUL1991 RESIDUAL 0 -0.366
43 AUG1991 FORECAST 1 136.856
44 AUG1991 L95 1 135.723
45 AUG1991 U95 1 137.990
46 SEP1991 FORECAST 2 137.443
47 SEP1991 L95 2 136.126
48 SEP1991 U95 2 138.761

Figure 3.4. Partial Listing of Output Data Set Produced by PROC FORECAST

Observations with –TYPE–=ACTUAL contain the values of CPI read from the input
data set. Observations with –TYPE–=FORECAST contain one-step-ahead predicted
values for observations with dates in the range of the input series, and contain forecast
values for observations for dates beyond the range of the input series. Observations
with –TYPE–=RESIDUAL contain the difference between the actual and one-step-
ahead predicted values. Observations with –TYPE–=U95 and –TYPE–=L95 contain
the upper and lower bounds of the 95% confidence interval for the forecasts.

Using Interleaved Data Sets as Input to SAS/ETS Procedures
Interleaved time series data sets are not directly accepted as input by SAS/ETS pro-
cedures. However, it is easy to use a WHERE statement with any procedure to subset
the input data and select one of the interleaved time series as the input.

For example, to analyze the residual series contained in the PROC FORECAST
output data set with another SAS/ETS procedure, include a WHERE

45



General Information � Working with Time Series Data

–TYPE–=’RESIDUAL’; statement. The following statements perform a spec-
tral analysis of the residuals produced by PROC FORECAST in the preceding
example:

proc spectra data=foreout out=spectout;
var cpi;
where _type_=’RESIDUAL’;

run;

Combined Cross Sections and Interleaved Time Series Data Sets

Interleaved time series output data sets produced from BY-group processing of time
series cross-sectional input data sets have a complex structure combining a cross-
sectional dimension, a time dimension, and the values of the –TYPE– variable. For
example, consider the PROC FORECAST output data set produced by the following.

data cpicity;
input city $11. date monyy7. cpi;
format date monyy7.;

datalines;
Chicago nov1989 126.700
Chicago dec1989 126.500
Chicago jan1990 128.100
... etc. ...
New York may1990 137.200
New York jun1990 137.100
New York jul1990 138.400
;

proc sort data=cpicity;
by city date;

run;

proc forecast data=cpicity interval=month lead=2
out=foreout outfull outresid;

var cpi;
id date;
by city;

run;

The output data set FOREOUT contains many different time series in the single vari-
able CPI. BY groups identified by the variable CITY contain the result series for
the different cities. Within each value of CITY, the actual, forecast, residual, and
confidence limits series are stored in interleaved form, with the observations for the
different series identified by the values of –TYPE–.
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Output Data Sets of SAS/ETS Procedures

Some SAS/ETS procedures produce interleaved output data sets (like PROC
FORECAST), while other SAS/ETS procedures produce standard form time series
data sets. The form a procedure uses depends on whether the procedure is normally
used to produce multiple result series for each of many input series in one step (as
PROC FORECAST does).

The way different SAS/ETS procedures store result series in output data sets is sum-
marized in Table 3.3.

Table 3.3. Form of Output Data Set for SAS/ETS Procedures

Procedures producing standard form output data sets with fixed names for result
series:
• ARIMA
• SPECTRA
• STATESPACE

Procedures producing standard form output data sets with result series named by
an OUTPUT statement:
• AUTOREG
• PDLREG
• SIMLIN
• SYSLIN
• X11

Procedures producing interleaved form output data sets:
• FORECAST
• MODEL

See the chapters for these procedures for details on the output data sets they create.

For example, the ARIMA procedure can output actual series, forecast series, residual
series, and confidence limit series just as the FORECAST procedure does. The PROC
ARIMA output data set uses the standard form because PROC ARIMA is designed
for the detailed analysis of one series at a time and so only forecasts one series at a
time.

The following statements show the use of the ARIMA procedure to produce a forecast
of the USCPI data set. Figure 3.5 shows part of the output data set produced by
the ARIMA procedure’s FORECAST statement. (The printed output from PROC
ARIMA is not shown.) Compare the PROC ARIMA output data set shown in Figure
3.5 with the PROC FORECAST output data set shown in Figure 3.4.

proc arima data=uscpi;
identify var=cpi(1);
estimate q=1;
forecast id=date interval=month lead=12 out=arimaout;
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run;

proc print data=arimaout;
run;

Obs date cpi FORECAST STD L95 U95 RESIDUAL

13 JUN1991 136.0 136.078 0.36160 135.369 136.787 -0.07816
14 JUL1991 136.2 136.437 0.36160 135.729 137.146 -0.23725
15 AUG1991 . 136.574 0.36160 135.865 137.283 .
16 SEP1991 . 137.042 0.62138 135.824 138.260 .

Figure 3.5. Partial Listing of Output Data Set Produced by PROC ARIMA

The output data set produced by the ARIMA procedure’s FORECAST statement
stores the actual values in a variable with the same name as the input series, stores
the forecast series in a variable named FORECAST, stores the residuals in a variable
named RESIDUAL, stores the 95% confidence limits in variables named L95 and
U95, and stores the standard error of the forecast in the variable STD.

This method of storing several different result series as a standard form time series
data set is simple and convenient. However, it only works well for a single input
series. The forecast of a single series can be stored in the variable FORECAST, but
if two series are forecast, two different FORECAST variables are needed.

The STATESPACE procedure handles this problem by generating forecast variable
names FOR1, FOR2, and so forth. The SPECTRA procedure uses a similar method.
Names like FOR1, FOR2, RES1, RES2, and so forth require you to remember the
order in which the input series are listed. This is why PROC FORECAST, which is
designed to forecast a whole list of input series at once, stores its results in interleaved
form.

Other SAS/ETS procedures are often used for a single input series but can also be
used to process several series in a single step. Thus, they are not clearly like PROC
FORECAST nor clearly like PROC ARIMA in the number of input series they are
designed to work with. These procedures use a third method for storing multiple re-
sult series in an output data set. These procedures store output time series in standard
form (like PROC ARIMA does) but require an OUTPUT statement to give names to
the result series.

Time Series Periodicity and Time Intervals
A fundamental characteristic of time series data is how frequently the observations
are spaced in time. How often the observations of a time series occur is called the
sampling frequency or the periodicity of the series. For example, a time series with
one observation each month has a monthly sampling frequency or monthly periodicity
and so is called a monthly time series.
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In the SAS System, data periodicity is described by specifying periodic time intervals
into which the dates of the observations fall. For example, the SAS time interval
MONTH divides time into calendar months.

Several SAS/ETS procedures enable you to specify the periodicity of the input data
set with the INTERVAL= option. For example, specifying INTERVAL=MONTH in-
dicates that the procedure should expect the ID variable to contain SAS date values,
and that the date value for each observation should fall in a separate calendar month.
The EXPAND procedure uses interval name values with the FROM= and TO= op-
tions to control the interpolation of time series from one periodicity to another.

The SAS System also uses time intervals in several other ways. In addition to indi-
cating the periodicity of time series data sets, time intervals are used with the interval
functions INTNX and INTCK, and for controlling the plot axis and reference lines
for plots of data over time.

Specifying Time Intervals

Time intervals are specified in SAS Software using interval names like YEAR, QTR,
MONTH, DAY, and so forth. Table 3.4 summarizes the basic types of intervals.

Table 3.4. Basic Interval Types
Name Periodicity
YEAR Yearly
SEMIYEAR Semiannual
QTR Quarterly
MONTH Monthly
SEMIMONTH 1st and 16th of each month
TENDAY 1st, 11th, and 21st of each month
WEEK Weekly
WEEKDAY Daily ignoring weekend days
DAY Daily
HOUR Hourly
MINUTE Every Minute
SECOND Every Second

Interval names can be abbreviated in various ways. For example, you could spec-
ify monthly intervals as MONTH, MONTHS, MONTHLY, or just MON. The SAS
System accepts all these forms as equivalent.

Interval names can also be qualified with a multiplier to indicate multiperiod intervals.
For example, biennial intervals are specified as YEAR2.

Interval names can also be qualified with a shift index to indicate intervals with differ-
ent starting points. For example, fiscal years starting in July are specified as YEAR.7.

Time intervals are classified as either date intervals or datetime intervals. Date
intervals are used with SAS date values, while datetime intervals are used with
SAS datetime values. The interval types YEAR, SEMIYEAR, QTR, MONTH,
SEMIMONTH, TENDAY, WEEK, WEEKDAY, and DAY are date intervals. HOUR,
MINUTE, and SECOND are datetime intervals. Date intervals can be turned into
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datetime intervals for use with datetime values by prefixing the interval name with
’DT’. Thus DTMONTH intervals are like MONTH intervals but are used with date-
time ID values instead of date ID values.

See Chapter 3 (SAS/ETS User’s Guide) for more information about specifying time
intervals and for a detailed reference to the different kinds of intervals available.

Using Time Intervals with SAS/ETS Procedures

The ARIMA, FORECAST, and STATESPACE procedures use time intervals with the
INTERVAL= option to specify the periodicity of the input data set. The EXPAND
procedure uses time intervals with the FROM= and TO= options to specify the pe-
riodicity of the input and the output data sets. The DATASOURCE and CITIBASE
procedures use the INTERVAL= option to control the periodicity of time series ex-
tracted from time series databases.

The INTERVAL= option (FROM= option for PROC EXPAND) is used with the ID
statement to fully describe the observations that make up the time series. SAS/ETS
procedures use the time interval specified by the INTERVAL= option and the ID
variable in the following ways:

• to validate the data periodicity. The ID variable is used to check the data and
verify that successive observations have valid ID values corresponding to suc-
cessive time intervals.

• to check for gaps in the input observations. For example, if
INTERVAL=MONTH and an input observation for January 1990 is fol-
lowed by an observation for April 1990, there is a gap in the input data with
two omitted observations.

• to label forecast observations in the output data set. The values of the ID vari-
able for the forecast observations after the end of the input data set are extrap-
olated according to the frequency specifications of the INTERVAL= option.

Time Intervals, the Time Series Forecasting System and the
Time Series Viewer

Time intervals are used in the Time Series Forecasting System and Time Series
Viewer to identify the number of seasonal cycles or seasonality associated with a
DATE, DATETIME or TIME ID variable. For example, monthly time series have a
seasonality of 12 because there are 12 months in a year; quarterly time series have
a seasonality of 4 because there are 4 quarters in a year. The seasonality is used to
analyze seasonal properties of time series data and to estimate seasonal forecasting
methods.
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Plotting Time Series
This section discusses SAS procedures available for plotting time series data. This
section assumes you are generally familiar with SAS plotting procedures and only
discusses certain aspects of the use of these procedures with time series data.

The Time Series Viewers displays and analyzes time series plots for time series data
sets which do not contain cross-sections. Refer to the Chapter 35, “Getting Started
with Time Series Forecasting,” (SAS/ETS User’s Guide) later in this book.

The GPLOT procedure produces high resolution color graphics plots. Refer to
SAS/GRAPH Software: Reference, Volume 1 and Volume 2 for information about
the GPLOT procedure, SYMBOL statements, and other SAS/GRAPH features.

The PLOT procedure and the TIMEPLOT procedure produce low resolution line
printer type plots. Refer to the SAS Procedures Guide for information about these
procedures.

Using the Time Series Viewer

The following command starts the Time Series Viewer to display the plot of CPI in
the USCPI data set against DATE. (The USCPI data set was shown in the previous
example; the time series used in the following example contains more observations
than previously shown.)

tsview data=uscpi var=cpi timeid=date

The TSVIEW DATA=option specifies the data set to be viewed; the VAR=option
specifies the variable which contains the time series observations; the
TIMEID=option specifies the time series ID variable.

Using PROC GPLOT

The following statements use the GPLOT procedure to plot CPI in the USCPI data
set against DATE. (The USCPI data set was shown in a previous example; the data set
plotted in the following example contains more observations than shown previously.)
The SYMBOL statement is used to draw a smooth line between the plotted points
and to specify the plotting character.

proc gplot data=uscpi;
symbol i=spline v=circle h=2;
plot cpi * date;

run;

The plot is shown in Figure 3.6.
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Figure 3.6. Plot of Monthly CPI Over Time

Controlling the Time Axis: Tick Marks and Reference Lines

It is possible to control the spacing of the tick marks on the time axis. The following
statements use the HAXIS= option to tell PROC GPLOT to mark the axis at the start
of each quarter. (The GPLOT procedure prints a warning message indicating that the
intervals on the axis are not evenly spaced. This message simply reflects the fact that
there is a different number of days in each quarter. This warning message can be
ignored.)

proc gplot data=uscpi;
symbol i=spline v=circle h=2;
format date yyqc.;
plot cpi * date /

haxis= ’1jan89’d to ’1jul91’d by qtr;
run;

The plot is shown in Figure 3.7.

52



Plotting Time Series

Figure 3.7. Plot of Monthly CPI Over Time

The following example changes the plot by using year and quarter value to label the
tick marks. The FORMAT statement causes PROC GPLOT to use the YYQC format
to print the date values. This example also shows how to place reference lines on
the plot with the HREF= option. Reference lines are drawn to mark the boundary
between years.

proc gplot data=uscpi;
symbol i=spline v=circle h=2;
plot cpi * date /

haxis= ’1jan89’d to ’1jul91’d by qtr
href= ’1jan90’d to ’1jan91’d by year;

format date yyqc6.;
run;

The plot is shown in Figure 3.8.
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Figure 3.8. Plot of Monthly CPI Over Time

Overlay Plots of Different Variables

You can plot two or more series on the same graph. Plot series stored in different
variables by specifying multiple plot requests on one PLOT statement, and use the
OVERLAY option. Specify a different SYMBOL statement for each plot.

For example, the following statements plot the CPI, FORECAST, L95, and U95 vari-
ables produced by PROC ARIMA in a previous example. The SYMBOL1 statement
is used for the actual series. Values of the actual series are labeled with a star, and
the points are not connected. The SYMBOL2 statement is used for the forecast se-
ries. Values of the forecast series are labeled with an open circle, and the points
are connected with a smooth curve. The SYMBOL3 statement is used for the upper
and lower confidence limits series. Values of the upper and lower confidence limits
points are not plotted, but a broken line is drawn between the points. A reference line
is drawn to mark the start of the forecast period. Quarterly tick marks with YYQC
format date values are used.

proc arima data=uscpi;
identify var=cpi(1);
estimate q=1;
forecast id=date interval=month lead=12 out=arimaout;

run;

proc gplot data=arimaout;
symbol1 i=none v=star h=2;
symbol2 i=spline v=circle h=2;
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symbol3 i=spline l=5;
format date yyqc4.;
plot cpi * date = 1

forecast * date = 2
( l95 u95 ) * date = 3 /
overlay
haxis= ’1jan89’d to ’1jul92’d by qtr
href= ’15jul91’d ;

run;

The plot is shown in Figure 3.9.

Figure 3.9. Plot of ARIMA Forecast

Overlay Plots of Interleaved Series
You can also plot several series on the same graph when the different series are stored
in the same variable in interleaved form. Plot interleaved time series by using the
values of the ID variable to distinguish the different series and by selecting different
SYMBOL statements for each plot.

The following example plots the output data set produced by PROC FORECAST in a
previous example. Since the residual series has a different scale than the other series,
it is excluded from the plot with a WHERE statement.

The –TYPE– variable is used on the PLOT statement to identify the different series
and to select the SYMBOL statements to use for each plot. The first SYMBOL
statement is used for the first sorted value of –TYPE–, which is –TYPE–=ACTUAL.
The second SYMBOL statement is used for the second sorted value of the –TYPE–
variable (–TYPE–=FORECAST), and so forth.
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proc forecast data=uscpi interval=month lead=12
out=foreout outfull outresid;

var cpi;
id date;

run;

proc gplot data=foreout;
symbol1 i=none v=star h=2;
symbol2 i=spline v=circle h=2;
symbol3 i=spline l=20;
symbol4 i=spline l=20;
format date yyqc4.;
plot cpi * date = _type_ /

haxis= ’1jan89’d to ’1jul92’d by qtr
href= ’15jul91’d ;

where _type_ ^= ’RESIDUAL’;
run;

The plot is shown in Figure 3.10.

Figure 3.10. Plot of Forecast

Residual Plots
The following example plots the residuals series that was excluded from the plot in
the previous example. The SYMBOL statement specifies a needle plot, so that each
residual point is plotted as a vertical line showing deviation from zero.

proc gplot data=foreout;
symbol1 i=needle v=circle width=6;
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format date yyqc4.;
plot cpi * date /

haxis= ’1jan89’d to ’1jul91’d by qtr ;
where _type_ = ’RESIDUAL’;

run;

The plot is shown in Figure 3.11.

Figure 3.11. Plot of Residuals

Using PROC PLOT

The following statements use the PLOT procedure to plot CPI in the USCPI data set
against DATE. (The data set plotted contains more observations than shown in the
previous examples.) The plotting character used is a plus sign (+).

proc plot data=uscpi;
plot cpi * date = ’+’;

run;

The plot is shown in Figure 3.12.
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Plot of cpi*date. Symbol used is ’+’.

cpi |
140 +

|
|
|
|
| ++ +

135 + + + + +
| + +
| +
| +
| +
|

130 + ++
| + +
| + +
| +
|
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125 + + +
| + ++
| +
| +
| +
| +

120 +
|
--+-----------+-----------+-----------+-----------+-----------+-----------+-
JUN1988 JAN1989 JUL1989 FEB1990 AUG1990 MAR1991 OCT1991

date

Figure 3.12. Plot of Monthly CPI Over Time

Controlling the Time Axis: Tick Marks and Reference Lines

In the preceding example, the spacing of values on the time axis looks a bit odd in
that the dates do not match for each year. Because DATE is a SAS date variable,
the PLOT procedure needs additional instruction on how to place the time axis tick
marks. The following statements use the HAXIS= option to tell PROC PLOT to mark
the axis at the start of each quarter.

proc plot data=uscpi;
plot cpi * date = ’+’ /

haxis= ’1jan89’d to ’1jul91’d by qtr;
run;

The plot is shown in Figure 3.13.
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Plot of cpi*date. Symbol used is ’+’.
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Figure 3.13. Plot of Monthly CPI Over Time

The following example improves the plot by placing tick marks every year and adds
quarterly reference lines to the plot using the HREF= option. The FORMAT state-
ment tells PROC PLOT to print just the year part of the date values on the axis. The
plot is shown in Figure 3.14.

proc plot data=uscpi;
plot cpi * date = ’+’ /

haxis= ’1jan89’d to ’1jan92’d by year
href= ’1apr89’d to ’1apr91’d by qtr ;

format date year4.;
run;
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Plot of cpi*date. Symbol used is ’+’.
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Figure 3.14. Plot of Monthly CPI Over Time

Marking the Subperiod of Points

In the preceding example, it is a little hard to tell which month each point is, although
the quarterly reference lines help some. The following example shows how to set
the plotting symbol to the first letter of the month name. A DATA step first makes a
copy of DATE and gives this variable PCHAR a MONNAME1. format. The variable
PCHAR is used in the PLOT statement to supply the plotting character.

This example also changes the plot by using quarterly tick marks and by using the
YYQC format to print the date values. This example also changes the HREF= option
to use annual reference lines. The plot is shown in Figure 3.15.

data temp;
set uscpi;
pchar = date;
format pchar monname1.;

run;

proc plot data=temp;
plot cpi * date = pchar /

haxis= ’1jan89’d to ’1jul91’d by qtr
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href= ’1jan90’d to ’1jan91’d by year;
format date yyqc4.;

run;

Plot of cpi*date. Symbol is value of pchar.
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Figure 3.15. Plot of Monthly CPI Over Time

Overlay Plots of Different Variables

Plot different series in different variables by specifying the different plot requests,
each with its own plotting character, on the same PLOT statement, and use the
OVERLAY option.

For example, the following statements plot the CPI, FORECAST, L95, and U95 vari-
ables produced by PROC ARIMA in a previous example. The actual series CPI is
labeled with the plot character plus (+). The forecast series is labeled with the plot
character F. The upper and lower confidence limits are labeled with the plot character
period (.). The plot is shown in Figure 3.16.

proc arima data=uscpi;
identify var=cpi(1);
estimate q=1;
forecast id=date interval=month lead=12 out=arimaout;

run;
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proc plot data=arimaout;
plot cpi * date = ’+’ forecast * date = ’F’

( l95 u95 ) * date = ’.’ /
overlay
haxis= ’1jan89’d to ’1jul92’d by qtr
href= ’1jan90’d to ’1jan92’d by year ;

run;

Plot of cpi*date. Symbol used is ’+’.
Plot of FORECAST*date. Symbol used is ’F’.
Plot of L95*date. Symbol used is ’.’.
Plot of U95*date. Symbol used is ’.’.

cpi | | | |
150 + | | |

| | | |
| | | |
| | | | . . .
| | | | .. .F F F

140 + | | .. F FF F . .
| | | . .F F FF . .. ..
| | | F ++ + ++ F. . .. |
| | + + ++ + .. |
| | . + +. | |

130 + | .F + ++ F | |
| + + ++ . | |
| . .+ + + +F | |
| ++ + + +. . | | |
| ++ + F | | |

120 + . | | |
| | | |
---+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--

J A J O J A J O J A J O J A J
A P U C A P U C A P U C A P U
N R L T N R L T N R L T N R L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
8 8 8 8 9 9 9 9 9 9 9 9 9 9 9
9 9 9 9 0 0 0 0 1 1 1 1 2 2 2

date

NOTE: 15 obs had missing values. 77 obs hidden.

Figure 3.16. Plot of ARIMA Forecast

Overlay Plots of Interleaved Series

Plot interleaved time series by using the first character of the ID variable to distinguish
the different series as the plot character.

The following example plots the output data set produced by PROC FORECAST in
a previous example. The –TYPE– variable is used on the PLOT statement to supply
plotting characters to label the different series.

The actual series is plotted with A, the forecast series is plotted with F, the lower
confidence limit is plotted with L, and the upper confidence limit is plotted with U.
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Since the residual series has a different scale than the other series, it is excluded from
the plot with a WHERE statement. The plot is shown in Figure 3.17.

proc forecast data=uscpi interval=month lead=12
out=foreout outfull outresid;

var cpi;
id date;

run;

proc plot data=foreout;
plot cpi * date = _type_ /

haxis= ’1jan89’d to ’1jul92’d by qtr
href= ’1jan90’d to ’1jan92’d by year ;

where _type_ ^= ’RESIDUAL’;
run;

Plot of cpi*date. Symbol is value of _TYPE_.
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NOTE: 36 obs hidden.

Figure 3.17. Plot of Forecast
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Residual Plots

The following example plots the residual series that was excluded from the plot in the
previous example. The VREF=0 option is used to draw a reference line at 0 on the
vertical axis. The plot is shown in Figure 3.18.

proc plot data=foreout;
plot cpi * date = ’*’ /

vref=0
haxis= ’1jan89’d to ’1jul91’d by qtr
href= ’1jan90’d to ’1jan91’d by year ;

where _type_ = ’RESIDUAL’;
run;

Plot of cpi*date. Symbol used is ’*’.
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Figure 3.18. Plot of Residuals
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Using PROC TIMEPLOT

The TIMEPLOT procedure plots time series data vertically on the page instead of
horizontally across the page as the PLOT procedure does. PROC TIMEPLOT can
also print the data values as well as plot them.

The following statements use the TIMEPLOT procedure to plot CPI in the USCPI
data set. Only the last 14 observations are included in this example. The plot is
shown in Figure 3.19.

proc timeplot data=uscpi;
plot cpi;
id date;
where date >= ’1jun90’d;

run;

date cpi min max
129.9 136.2
*-------------------------------------------------------*

JUN1990 129.90 |c |
JUL1990 130.40 | c |
AUG1990 131.60 | c |
SEP1990 132.70 | c |
OCT1990 133.50 | c |
NOV1990 133.80 | c |
DEC1990 133.80 | c |
JAN1991 134.60 | c |
FEB1991 134.80 | c |
MAR1991 135.00 | c |
APR1991 135.20 | c |
MAY1991 135.60 | c |
JUN1991 136.00 | c |
JUL1991 136.20 | c|

*-------------------------------------------------------*

Figure 3.19. Output Produced by PROC TIMEPLOT

The TIMEPLOT procedure has several interesting features not discussed here. Refer
to "The TIMEPLOT Procedure" in the SAS Procedures Guide for more information.

Calendar and Time Functions
Calendar and time functions convert calendar and time variables like YEAR,
MONTH, DAY, and HOUR, MINUTE, SECOND into SAS date or datetime values,
and vice versa.

The SAS calendar and time functions are DATEJUL, DATEPART, DAY, DHMS,
HMS, HOUR, JULDATE, MDY, MINUTE, MONTH, QTR, SECOND, TIMEPART,
WEEKDAY, YEAR, and YYQ. Refer to SAS Language Reference for more details
about these functions.
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Computing Dates from Calendar Variables

The MDY function converts MONTH, DAY, and YEAR values to a SAS date value.
For example, MDY(10,17,91) returns the SAS date value ’17OCT91’D.

The YYQ function computes the SAS date for the first day of a quarter. For example,
YYQ(91,4) returns the SAS date value ’1OCT91’D.

The DATEJUL function computes the SAS date for a Julian date. For example,
DATEJUL(91290) returns the SAS date ’17OCT91’D.

The YYQ and MDY functions are useful for creating SAS date variables when the
ID values recorded in the data are year and quarter; year and month; or year, month,
and day, instead of dates that can be read with a date informat.

For example, the following statements read quarterly estimates of the gross national
product of the U.S. from 1990:I to 1991:II from data records on which dates are
coded as separate year and quarter values. The YYQ function is used to compute the
variable DATE.

data usecon;
input year qtr gnp;
date = yyq( year, qtr );
format date yyqc.;

datalines;
1990 1 5375.4
1990 2 5443.3
1990 3 5514.6
1990 4 5527.3
1991 1 5557.7
1991 2 5615.8
;

The monthly USCPI data shown in a previous example contained time ID values
represented in the MONYY format. If the data records instead contain separate year
and month values, the data can be read in and the DATE variable computed with the
following statements:

data uscpi;
input month year cpi;
date = mdy( month, 1, year );
format date monyy.;

datalines;
6 90 129.9
7 90 130.4
8 90 131.6
... etc. ...
;
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Computing Calendar Variables from Dates

The functions YEAR, MONTH, DAY, WEEKDAY, and JULDATE compute calendar
variables from SAS date values.

Returning to the example of reading the USCPI data from records containing date
values represented in the MONYY format, you can find the month and year of each
observation from the SAS dates of the observations using the following statements.

data uscpi;
input date monyy7. cpi;
format date monyy7.;
year = year( date );
month = month( date );

datalines;
jun1990 129.9
jul1990 130.4
aug1990 131.6
sep1990 132.7
... etc. ...
;

Converting between Date, Datetime, and Time Values

The DATEPART function computes the SAS date value for the date part of a SAS
datetime value. The TIMEPART function computes the SAS time value for the time
part of a SAS datetime value.

The HMS function computes SAS time values from HOUR, MINUTE, and SECOND
time variables. The DHMS function computes a SAS datetime value from a SAS date
value and HOUR, MINUTE, and SECOND time variables.

See the “Date, Time, and Datetime Functions” (Chapter 3, SAS/ETS User’s Guide)
section on page 127 for more information on the syntax of these functions.

Computing Datetime Values

To compute datetime ID values from calendar and time variables, first compute the
date and then compute the datetime with DHMS.

For example, suppose you read tri-hourly temperature data with time recorded as
YEAR, MONTH, DAY, and HOUR. The following statements show how to compute
the ID variable DATETIME:

data weather;
input year month day hour temp;
datetime = dhms( mdy( month, day, year ), hour, 0, 0 );
format datetime datetime10.;

datalines;
91 10 16 21 61
91 10 17 0 56
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91 10 17 3 53
91 10 17 6 54
91 10 17 9 65
91 10 17 12 72
... etc. ...
;

Computing Calendar and Time Variables

The functions HOUR, MINUTE, and SECOND compute time variables from SAS
datetime values. The DATEPART function and the date-to-calendar variables func-
tions can be combined to compute calendar variables from datetime values.

For example, suppose the date and time of the tri-hourly temperature data in the
preceding example were recorded as datetime values in the datetime format. The
following statements show how to compute the YEAR, MONTH, DAY, and HOUR
of each observation and include these variables in the SAS data set:

data weather;
input datetime datetime13. temp;
format datetime datetime10.;
hour = hour( datetime );
date = datepart( datetime );
year = year( date );
month = month( date );
day = day( date );

datalines;
16oct91:21:00 61
17oct91:00:00 56
17oct91:03:00 53
17oct91:06:00 54
17oct91:09:00 65
17oct91:12:00 72
... etc. ...
;

Interval Functions INTNX and INTCK
The SAS interval functions INTNX and INTCK perform calculations with date, date-
time values, and time intervals. They can be used for calendar calculations with SAS
date values, to count time intervals between dates, and to increment dates or datetime
values by intervals.

The INTNX function increments dates by intervals. INTNX computes the date or
datetime of the start of the interval a specified number of intervals from the interval
containing a given date or datetime value.

The form of the INTNX function is

INTNX( interval, from, n <, alignment > )
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where:

interval is a character constant or variable containing an interval name.

from is a SAS date value (for date intervals) or datetime value (for date-
time intervals).

n is the number of intervals to increment from the interval containing
the from value.

alignment controls the alignment of SAS dates, within the interval, used to
identify output observations. Can take the values BEGINNING|B,
MIDDLE|M, or END|E.

The number of intervals to increment, n, can be positive, negative, or zero.

For example, the statement NEXTMON = INTNX(’MONTH’,DATE,1); assigns to
the variable NEXTMON the date of the first day of the month following the month
containing the value of DATE.

The INTCK function counts the number of interval boundaries between two dates or
between two datetime values.

The form of the INTCK function is

INTCK( interval, from, to )

where:

interval is a character constant or variable containing an interval name

from is the starting date (for date intervals) or datetime value (for date-
time intervals)

to is the ending date (for date intervals) or datetime value (for date-
time intervals).

For example, the statement NEWYEARS = INTCK(’YEAR’,DATE1,DATE2); as-
signs to the variable NEWYEARS the number of New Year’s Days between the two
dates.

Incrementing Dates by Intervals

Use the INTNX function to increment dates by intervals. For example, suppose you
want to know the date of the start of the week that is six weeks from the week of 17
October 1991. The function INTNX(’WEEK’,’17OCT91’D,6) returns the SAS date
value ’24NOV1991’D.

One practical use of the INTNX function is to generate periodic date values. For
example, suppose the monthly U.S. Consumer Price Index data in a previous exam-
ple were recorded without any time identifier on the data records. Given that you
know the first observation is for June 1990, the following statements use the INTNX
function to compute the ID variable DATE for each observation:
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data uscpi;
input cpi;
date = intnx( ’month’, ’1jun1990’d, _n_-1 );
format date monyy7.;

datalines;
129.9
130.4
131.6
132.7
... etc. ...
;

The automatic variable –N– counts the number of times the DATA step program has
executed, and in this case –N– contains the observation number. Thus –N–-1 is the
increment needed from the first observation date. Alternatively, we could increment
from the month before the first observation, in which case the INTNX function in this
example would be written INTNX(’MONTH’,’1MAY1990’D,–N–).

Alignment of SAS Dates
Any date within the time interval corresponding to an observation of a periodic time
series can serve as an ID value for the observation. For example, the USCPI data in
a previous example might have been recorded with dates at the 15th of each month.
The person recording the data might reason that since the CPI values are monthly
averages, midpoints of the months might be the appropriate ID values.

However, as far as SAS/ETS procedures are concerned, what is important about
monthly data is the month of each observation, not the exact date of the ID value.
If you indicate that the data are monthly (with an INTERVAL=MONTH) option,
SAS/ETS procedures ignore the day of the month in processing the ID variable. The
MONYY format also ignores the day of the month.

Thus, you could read in the monthly USCPI data with midmonth DATE values using
the following statements:

data uscpi;
input date date9. cpi;
format date monyy7.;

datalines;
15jun1990 129.9
15jul1990 130.4
15aug1990 131.6
15sep1990 132.7
... etc. ...
;

The results of using this version of the USCPI data set for analysis with SAS/ETS
procedures would be the same as with first-of-month values for DATE. Although you
can use any date within the interval as an ID value for the interval, you may find
working with time series in SAS less confusing if you always use date ID values
normalized to the start of the interval.
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For some applications it may be preferable to use end of period dates, such as
31Jan1994, 28Feb1994, 31Mar1994, ..., 31Dec1994. For other applications, such
as plotting time series, it may be more convenient to use interval midpoint dates to
identify the observations.

SAS/ETS procedures provide an ALIGN= option to control the alignment of dates
for output time series observations. Procedures supporting the ALIGN= option are
ARIMA, DATASOURCE, EXPAND, and FORECAST. In addition, the INTNX li-
brary function supports an optional argument to specify the alignment of the returned
date value.

To normalize date values to the start of intervals, use the INTNX function with a 0
increment. The INTNX function with an increment of 0 computes the date of the first
day of the interval (or the first second of the interval for datetime values).

For example, INTNX(’MONTH’,’17OCT1991’D,0,’BEG’) returns the date
’1OCT1991’D’.

The following statements show how the preceding example can be changed to nor-
malize the mid-month DATE values to first-of-month and end-of-month values. For
exposition, the first-of-month value is transformed back into a middle-of-month
value.

data uscpi;
input date date9. cpi;
format date monyy7.;
monthbeg = intnx( ’month’, date, 0, ’beg’ );
midmonth = intnx( ’month’, monthbeg, 0, ’mid’ );
monthend = intnx( ’month’, date, 0, ’end’ );

datalines;
15jun1990 129.9
15jul1990 130.4
15aug1990 131.6
15sep1990 132.7
... etc. ...
;

If you want to compute the date of a particular day within an interval, you can use
calendar functions, or you can increment the starting date of the interval by a number
of days. The following example shows three ways to compute the 7th day of the
month:

data test;
set uscpi;
mon07_1 = mdy( month(date), 7, year(date) );
mon07_2 = intnx( ’month’, date, 0, ’beg’ ) + 6;
mon07_3 = intnx( ’day’, date, 6 );

run;
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Computing the Width of a Time Interval

To compute the width of a time interval, subtract the ID value of the start of the next
interval from the ID value of the start of the current interval. If the ID values are SAS
dates, the width will be in days. If the ID values are SAS datetime values, the width
will be in seconds.

For example, the following statements show how to add a variable WIDTH to the
USCPI data set that contains the number of days in the month for each observation:

data uscpi;
input date date9. cpi;
format date monyy7.;
width = intnx( ’month’, date, 1 ) - intnx( ’month’, date, 0 );

datalines;
15jun1990 129.9
15jul1990 130.4
15aug1990 131.6
15sep1990 132.7
... etc. ...
;

Computing the Ceiling of an Interval

To shift a date to the start of the next interval if not already at the start of an interval,
subtract 1 from the date and use INTNX to increment the date by 1 interval.

For example, the following statements add the variable NEWYEAR to the monthly
USCPI data set. The variable NEWYEAR contains the date of the next New Year’s
Day. NEWYEAR contains the same value as DATE when the DATE value is the start
of year and otherwise contains the date of the start of the next year.

data test;
set uscpi;
newyear = intnx( ’year’, date - 1, 1 );
format newyear date.;

run;

Counting Time Intervals

Use the INTCK function to count the number of interval boundaries between two
dates.

Note that the INTCK function counts the number of times the beginning of an interval
is reached in moving from the first date to the second. It does not count the number
of complete intervals between two dates.

For example, the function INTCK(’MONTH’,’1JAN1991’D,’31JAN1991’D) returns
0, since the two dates are within the same month.

The function INTCK(’MONTH’,’31JAN1991’D,’1FEB1991’D) returns 1, since the
two dates lie in different months that are one month apart.
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When the first date is later than the second date, INTCK returns a negative count. For
example, the function INTCK(’MONTH’,’1FEB1991’D,’31JAN1991’D) returns -1.

The following example shows how to use the INTCK function to count the number of
Sundays, Mondays, Tuesdays, and so forth, in each month. The variables NSUNDAY,
NMONDAY, NTUESDAY, and so forth, are added to the USCPI data set.

data uscpi;
set uscpi;
d0 = intnx( ’month’, date, 0 ) - 1;
d1 = intnx( ’month’, date, 1 ) - 1;
nsunday = intck( ’week.1’, d0, d1 );
nmonday = intck( ’week.2’, d0, d1 );
ntuesday = intck( ’week.3’, d0, d1 );
nwedday = intck( ’week.4’, d0, d1 );
nthurday = intck( ’week.5’, d0, d1 );
nfriday = intck( ’week.6’, d0, d1 );
nsatday = intck( ’week.7’, d0, d1 );
drop d0 d1;

run;

Since the INTCK function counts the number of interval beginning dates between
two dates, the number of Sundays is computed by counting the number of week
boundaries between the last day of the previous month and the last day of the current
month. To count Mondays, Tuesdays, and so forth, shifted week intervals are used.
The interval type WEEK.2 specifies weekly intervals starting on Mondays, WEEK.3
specifies weeks starting on Tuesdays, and so forth.

Checking Data Periodicity

Suppose you have a time series data set, and you want to verify that the data period-
icity is correct, the observations are dated correctly, and the data set is sorted by date.
You can use the INTCK function to compare the date of the current observation with
the date of the previous observation and verify that the dates fall into consecutive time
intervals.

For example, the following statements verify that the data set USCPI is a correctly
dated monthly data set. The RETAIN statement is used to hold the date of the pre-
vious observation, and the automatic variable –N– is used to start the verification
process with the second observation.

data _null_;
set uscpi;
retain prevdate;
if _n_ > 1 then

if intck( ’month’, prevdate, date ) ^= 1 then
put "Bad date sequence at observation number " _n_;

prevdate = date;
run;
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Filling in Omitted Observations in a Time Series Data Set

Recall that most SAS/ETS procedures expect input data to be in the standard form,
with no omitted observations in the sequence of time periods. When data are missing
for a time period, the data set should contain a missing observation, in which all
variables except the ID variables have missing values.

You can replace omitted observations in a time series data set with missing obser-
vations by merging the data set with a data set containing a complete sequence of
dates.

The following statements create a monthly data set, OMITTED, from data lines con-
taining records for an intermittent sample of months. (Data values are not shown.)
This data set is converted to a standard form time series data set in four steps.

First, the OMITTED data set is sorted to make sure it is in time order. Second, the first
and last date in the data set are determined and stored in the data set RANGE. Third,
the data set DATES is created containing only the variable DATE and containing
monthly observations for the needed time span. Finally, the data sets OMITTED
and DATES are merged to produce a standard form time series data set with missing
observations inserted for the omitted records.

data omitted;
input date monyy7. x y z;
format date monyy7.;

datalines;
jan1991 ...
mar1991 ...
apr1991 ...
jun1991 ...
... etc. ...
;

proc sort data=omitted;
by date;

run;

data range;
retain from to;
set omitted end=lastobs;
if _n_ = 1 then from = date;
if lastobs then do;

to = date;
output;
end;

run;

data dates;
set range;
date = from;
do while( date <= to );

output;
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date = intnx( ’month’, date, 1 );
end;

keep date;
run;

data standard;
merge omitted dates;
by date;

run;

Using Interval Functions for Calendar Calculations

With a little thought, you can come up with a formula involving INTNX and INTCK
functions and different interval types to perform almost any calendar calculation.

For example, suppose you want to know the date of the third Wednesday in the month
of October 1991. The answer can be computed as

intnx( ’week.4’, ’1oct91’d - 1, 3 )

which returns the SAS date value ’16OCT91’D.

Consider this more complex example: how many weekdays are there between 17
October 1991 and the second Friday in November 1991, inclusive? The following
formula computes the number of weekdays between the date value contained in the
variable DATE and the second Friday of the following month (including the ending
dates of this period):

n = intck( ’weekday’, date - 1,
intnx( ’week.6’, intnx( ’month’, date, 1 ) - 1, 2 ) + 1 );

Setting DATE to ’17OCT91’D and applying this formula produces the answer, N=17.

Lags, Leads, Differences, and Summations
When working with time series data, you sometimes need to refer to the values of a
series in previous or future periods. For example, the usual interest in the consumer
price index series shown in previous examples is how fast the index is changing,
rather than the actual level of the index. To compute a percent change, you need both
the current and the previous values of the series. When modeling a time series, you
may want to use the previous values of other series as explanatory variables.

This section discusses how to use the DATA step to perform operations over time:
lags, differences, leads, summations over time, and percent changes.

The EXPAND procedure can also be used to perform many of these operations; see
Chapter 17, “The EXPAND Procedure,” (SAS/ETS User’s Guide) for more informa-
tion. See also the section "Transforming Time Series" later in this chapter.
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The LAG and DIF Functions

The DATA step provides two functions, LAG and DIF, for accessing previous val-
ues of a variable or expression. These functions are useful for computing lags and
differences of series.

For example, the following statements add the variables CPILAG and CPIDIF to the
USCPI data set. The variable CPILAG contains lagged values of the CPI series. The
variable CPIDIF contains the changes of the CPI series from the previous period; that
is, CPIDIF is CPI minus CPILAG. The new data set is shown in part in Figure 3.20.

data uscpi;
set uscpi;
cpilag = lag( cpi );
cpidif = dif( cpi );

run;

proc print data=uscpi;
run;

Obs date cpi cpilag cpidif

1 JUN90 129.9 . .
2 JUL90 130.4 129.9 0.5
3 AUG90 131.6 130.4 1.2
4 SEP90 132.7 131.6 1.1
5 OCT90 133.5 132.7 0.8
6 NOV90 133.8 133.5 0.3
7 DEC90 133.8 133.8 0.0
8 JAN91 134.6 133.8 0.8

Figure 3.20. USCPI Data Set with Lagged and Differenced Series

Understanding the DATA Step LAG and DIF Functions

When used in this simple way, LAG and DIF act as lag and difference functions.
However, it is important to keep in mind that, despite their names, the LAG and DIF
functions available in the DATA step are not true lag and difference functions.

Rather, LAG and DIF are queuing functions that remember and return argument val-
ues from previous calls. The LAG function remembers the value you pass to it and
returns as its result the value you passed to it on the previous call. The DIF function
works the same way but returns the difference between the current argument and the
remembered value. (LAG and DIF return a missing value the first time the function
is called.)

A true lag function does not return the value of the argument for the "previous call,"
as do the DATA step LAG and DIF functions. Instead, a true lag function returns the
value of its argument for the "previous observation," regardless of the sequence of
previous calls to the function. Thus, for a true lag function to be possible, it must be
clear what the "previous observation" is.
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If the data are sorted chronologically, then LAG and DIF act as true lag and difference
functions. If in doubt, use PROC SORT to sort your data prior to using the LAG and
DIF functions. Beware of missing observations, which may cause LAG and DIF to
return values that are not the actual lag and difference values

The DATA step is a powerful tool that can read any number of observations from any
number of input files or data sets, can create any number of output data sets, and can
write any number of output observations to any of the output data sets, all in the same
program. Thus, in general, it is not clear what "previous observation" means in a
DATA step program. In a DATA step program, the "previous observation" exists only
if you write the program in a simple way that makes this concept meaningful.

Since, in general, the previous observation is not clearly defined, it is not possible
to make true lag or difference functions for the DATA step. Instead, the DATA step
provides queuing functions that make it easy to compute lags and differences.

Pitfalls of DATA Step LAG and DIF Functions

The LAG and DIF functions compute lags and differences provided that the sequence
of calls to the function corresponds to the sequence of observations in the output data
set. However, any complexity in the DATA step that breaks this correspondence
causes the LAG and DIF functions to produce unexpected results.

For example, suppose you want to add the variable CPILAG to the USCPI data set,
as in the previous example, and you also want to subset the series to 1991 and later
years. You might use the following statements:

data subset;
set uscpi;
if date >= ’1jan1991’d;
cpilag = lag( cpi ); /* WRONG PLACEMENT! */

run;

If the subsetting IF statement comes before the LAG function call, the value of
CPILAG will be missing for January 1991, even though a value for December 1990
is available in the USCPI data set. To avoid losing this value, you must rearrange
the statements to ensure that the LAG function is actually executed for the December
1990 observation.

data subset;
set uscpi;
cpilag = lag( cpi );
if date >= ’1jan1991’d;

run;

In other cases, the subsetting statement should come before the LAG and DIF func-
tions. For example, the following statements subset the FOREOUT data set shown
in a previous example to select only –TYPE–=RESIDUAL observations and also to
compute the variable LAGRESID.
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data residual;
set foreout;
if _type_ = "RESIDUAL";
lagresid = lag( cpi );

run;

Another pitfall of LAG and DIF functions arises when they are used to process time
series cross-sectional data sets. For example, suppose you want to add the variable
CPILAG to the CPICITY data set shown in a previous example. You might use the
following statements:

data cpicity;
set cpicity;
cpilag = lag( cpi );

run;

However, these statements do not yield the desired result. In the data set produced
by these statements, the value of CPILAG for the first observation for the first city
is missing (as it should be), but in the first observation for all later cities, CPILAG
contains the last value for the previous city. To correct this, set the lagged variable to
missing at the start of each cross section, as follows.

data cpicity;
set cpicity;
by city date;
cpilag = lag( cpi );
if first.city then cpilag = .;

run;

Alternatives to LAG and DIF Functions

You can also calculate lags and differences in the DATA step without using LAG and
DIF functions. For example, the following statements add the variables CPILAG and
CPIDIF to the USCPI data set:

data uscpi;
set uscpi;
retain cpilag;
cpidif = cpi - cpilag;
output;
cpilag = cpi;

run;

The RETAIN statement prevents the DATA step from reinitializing CPILAG to a
missing value at the start of each iteration and thus allows CPILAG to retain the
value of CPI assigned to it in the last statement. The OUTPUT statement causes the
output observation to contain values of the variables before CPILAG is reassigned
the current value of CPI in the last statement. This is the approach that must be used
if you want to build a variable that is a function of its previous lags.
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You can also use the EXPAND procedure to compute lags and differences. For ex-
ample, the following statements compute lag and difference variables for CPI:

proc expand data=uscpi out=uscpi method=none;
id date;
convert cpi=cpilag / transform=( lag 1 );
convert cpi=cpidif / transform=( dif 1 );

run;

LAG and DIF Functions in PROC MODEL
The preceding discussion of LAG and DIF functions applies to LAG and DIF func-
tions available in the DATA step. However, LAG and DIF functions are also used in
the MODEL procedure.

The MODEL procedure LAG and DIF functions do not work like the DATA step
LAG and DIF functions. The LAG and DIF functions supported by PROC MODEL
are true lag and difference functions, not queuing functions.

Unlike the DATA step, the MODEL procedure processes observations from a single
input data set, so the "previous observation" is always clearly defined in a PROC
MODEL program. Therefore, PROC MODEL is able to define LAG and DIF as true
lagging functions that operate on values from the previous observation. See Chapter
21, “The MODEL Procedure,” (SAS/ETS User’s Guide) for more information on
LAG and DIF functions in the MODEL procedure.

Multiperiod Lags and Higher-Order Differencing
To compute lags at a lagging period greater than 1, add the lag length to the end of
the LAG keyword to specify the lagging function needed. For example, the LAG2
function returns the value of its argument two calls ago, the LAG3 function returns
the value of its argument three calls ago, and so forth.

To compute differences at a lagging period greater than 1, add the lag length to the
end of the DIF keyword. For example, the DIF2 function computes the differences
between the value of its argument and the value of its argument two calls ago. (The
maximum lagging period is 100.)

The following statements add the variables CPILAG12 and CPIDIF12 to the USCPI
data set. CPILAG12 contains the value of CPI from the same month one year ago.
CPIDIF12 contains the change in CPI from the same month one year ago. (In this
case, the first 12 values of CPILAG12 and CPIDIF12 will be missing.)

data uscpi;
set uscpi;
cpilag12 = lag12( cpi );
cpidif12 = dif12( cpi );

run;

To compute second differences, take the difference of the difference. To compute
higher-order differences, nest DIF functions to the order needed. For example, the
following statements compute the second difference of CPI:

79



General Information � Working with Time Series Data

data uscpi;
set uscpi;
cpi2dif = dif( dif( cpi ) );

run;

Multiperiod lags and higher-order differencing can be combined. For example, the
following statements compute monthly changes in the inflation rate, with inflation
rate computed as percent change in CPI from the same month one year ago:

data uscpi;
set uscpi;
infchng = dif( 100 * dif12( cpi ) / lag12( cpi ) );

run;

Percent Change Calculations
There are several common ways to compute the percent change in a time series. This
section illustrates the use of LAG and DIF functions by showing SAS statements for
various kinds of percent change calculations.

Computing Period-to-Period Change

To compute percent change from the previous period, divide the difference of the
series by the lagged value of the series and multiply by 100.

data uscpi;
set uscpi;
pctchng = dif( cpi ) / lag( cpi ) * 100;
label pctchng = "Monthly Percent Change, At Monthly Rates";

run;

Often, changes from the previous period are expressed at annual rates. This is done
by exponentiation of the current-to-previous period ratio to the number of periods in a
year and expressing the result as a percent change. For example, the following state-
ments compute the month-over-month change in CPI as a percent change at annual
rates:

data uscpi;
set uscpi;
pctchng = ( ( cpi / lag( cpi ) ) ** 12 - 1 ) * 100;
label pctchng = "Monthly Percent Change, At Annual Rates";

run;

Computing Year-over-Year Change

To compute percent change from the same period in the previous year, use LAG and
DIF functions with a lagging period equal to the number of periods in a year. (For
quarterly data, use LAG4 and DIF4. For monthly data, use LAG12 and DIF12.)

For example, the following statements compute monthly percent change in CPI from
the same month one year ago:
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data uscpi;
set uscpi;
pctchng = dif12( cpi ) / lag12( cpi ) * 100;
label pctchng = "Percent Change from One Year Ago";

run;

To compute year-over-year percent change measured at a given period within the
year, subset the series of percent changes from the same period in the previous year
to form a yearly data set. Use an IF or WHERE statement to select observations for
the period within each year on which the year-over-year changes are based.

For example, the following statements compute year-over-year percent change in CPI
from December of the previous year to December of the current year:

data annual;
set uscpi;
pctchng = dif12( cpi ) / lag12( cpi ) * 100;
label pctchng = "Percent Change: December to December";
if month( date ) = 12;
format date year4.;

run;

Computing Percent Change in Yearly Averages

To compute changes in yearly averages, first aggregate the series to an annual series
using the EXPAND procedure, and then compute the percent change of the annual
series. (See Chapter 17, “The EXPAND Procedure,” (SAS/ETS User’s Guide) for
more information on PROC EXPAND.)

For example, the following statements compute percent changes in the annual aver-
ages of CPI:

proc expand data=uscpi out=annual from=month to=year;
convert cpi / observed=average method=aggregate;

run;

data annual;
set annual;
pctchng = dif( cpi ) / lag( cpi ) * 100;
label pctchng = "Percent Change in Yearly Averages";

run;

It is also possible to compute percent change in the average over the most recent
yearly span. For example, the following statements compute monthly percent change
in the average of CPI over the most recent 12 months from the average over the
previous 12 months:

data uscpi;
retain sum12 0;
drop sum12 ave12 cpilag12;
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set uscpi;
sum12 = sum12 + cpi;
cpilag12 = lag12( cpi );
if cpilag12 ^= . then sum12 = sum12 - cpilag12;
if lag11( cpi ) ^= . then ave12 = sum12 / 12;
pctchng = dif12( ave12 ) / lag12( ave12 ) * 100;
label pctchng = "Percent Change in 12 Month Moving Ave.";

run;

This example is a complex use of LAG and DIF functions that requires care in han-
dling the initialization of the moving-window averaging process. The LAG12 of CPI
is checked for missing values to determine when more than 12 values have been ac-
cumulated, and older values must be removed from the moving sum. The LAG11
of CPI is checked for missing values to determine when at least 12 values have been
accumulated; AVE12 will be missing when LAG11 of CPI is missing. The DROP
statement prevents temporary variables from being added to the data set.

Note that the DIF and LAG functions must execute for every observation or the
queues of remembered values will not operate correctly. The CPILAG12 calcula-
tion must be separate from the IF statement. The PCTCHNG calculation must not be
conditional on the IF statement.

The EXPAND procedure provides an alternative way to compute moving averages.

Leading Series

Although the SAS System does not provide a function to look ahead at the "next"
value of a series, there are a couple of ways to perform this task.

The most direct way to compute leads is to use the EXPAND procedure. For example

proc expand data=uscpi out=uscpi method=none;
id date;
convert cpi=cpilead1 / transform=( lead 1 );
convert cpi=cpilead2 / transform=( lead 2 );

run;

Another way to compute lead series in SAS software is by lagging the time ID vari-
able, renaming the series, and merging the result data set back with the original data
set.

For example, the following statements add the variable CPILEAD to the USCPI data
set. The variable CPILEAD contains the value of CPI in the following month. (The
value of CPILEAD will be missing for the last observation, of course.)

data temp;
set uscpi;
keep date cpi;
rename cpi = cpilead;
date = lag( date );
if date ^= .;
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run;

data uscpi;
merge uscpi temp;
by date;

run;

To compute leads at different lead lengths, you must create one temporary data set
for each lead length. For example, the following statements compute CPILEAD1 and
CPILEAD2, which contain leads of CPI for 1 and 2 periods, respectively:

data temp1(rename=(cpi=cpilead1)) temp2(rename=(cpi=cpilead2));
set uscpi;
keep date cpi;
date = lag( date );
if date ^= . then output temp1;
date = lag( date );
if date ^= . then output temp2;

run;

data uscpi;
merge uscpi temp1 temp2;
by date;

run;

Summing Series

Simple cumulative sums are easy to compute using SAS sum statements. The fol-
lowing statements show how to compute the running sum of variable X in data set A,
adding XSUM to the data set.

data a;
set a;
xsum + x;

run;

The SAS sum statement automatically retains the variable XSUM and initializes it to
0, and the sum statement treats missing values as 0. The sum statement is equivalent
to using a RETAIN statement and the SUM function. The previous example could
also be written as follows:

data a;
set a;
retain xsum;
xsum = sum( xsum, x );

run;

You can also use the EXPAND procedure to compute summations. For example
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proc expand data=a out=a method=none;
convert x=xsum / transform=( sum );

run;

Like differencing, summation can be done at different lags and can be repeated to
produce higher-order sums. To compute sums over observations separated by lags
greater than 1, use the LAG and SUM functions together, and use a RETAIN state-
ment that initializes the summation variable to zero.

For example, the following statements add the variable XSUM2 to data set A.
XSUM2 contains the sum of every other observation, with even-numbered obser-
vations containing a cumulative sum of values of X from even observations, and
odd-numbered observations containing a cumulative sum of values of X from odd
observations.

data a;
set a;
retain xsum2 0;
xsum2 = sum( lag( xsum2 ), x );

run;

Assuming that A is a quarterly data set, the following statements compute running
sums of X for each quarter. XSUM4 contains the cumulative sum of X for all observa-
tions for the same quarter as the current quarter. Thus, for a first-quarter observation,
XSUM4 contains a cumulative sum of current and past first-quarter values.

data a;
set a;
retain xsum4 0;
xsum4 = sum( lag3( xsum4 ), x );

run;

To compute higher-order sums, repeat the preceding process and sum the summa-
tion variable. For example, the following statements compute the first and second
summations of X:

data a;
set a;
xsum + x;
x2sum + xsum;

run;

The following statements compute the second order four-period sum of X:

data a;
set a;
retain xsum4 x2sum4 0;
xsum4 = sum( lag3( xsum4 ), x );
x2sum4 = sum( lag3( x2sum4 ), xsum4 );

run;
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You can also use PROC EXPAND to compute cumulative statistics and moving win-
dow statistics. See Chapter 17, “The EXPAND Procedure,” (SAS/ETS User’s Guide)
for details.

Transforming Time Series
It is often useful to transform time series for analysis or forecasting. Many time
series analysis and forecasting methods are most appropriate for time series with an
unrestricted range, linear trend, and constant variance. Series that do not conform
to these assumptions can often be transformed to series for which the methods are
appropriate.

Transformations can be useful for the following:

• range restrictions. Many time series cannot have negative values or may be
limited by a maximum possible value. You can often create a transformed
series with an unbounded range.

• nonlinear trends. Many economic time series grow exponentially. Exponential
growth corresponds to linear growth in the logarithms of the series.

• series variability that changes over time. Various transformations can be used
to stabilize the variance.

• non-stationarity. The %DFTEST macro can be used to test a series for non-
stationarity which may then be removed by differencing.

Log Transformation

The logarithmic transformation is often useful for series that must be greater than
zero and that grow exponentially. For example, Figure 3.21 shows a plot of an airline
passenger miles series. Notice that the series has exponential growth and the vari-
ability of the series increases over time. Airline passenger miles must also be zero or
greater.
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Figure 3.21. [Airline Series

The following statements compute the logarithms of the airline series:

data a;
set a;
logair = log( air );

run;

Figure 3.22 shows a plot of the log transformed airline series. Notice that the log
series has a linear trend and constant variance.
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Figure 3.22. Log Airline Series

The %LOGTEST macro can help you decide if a log transformation is appropriate
for a series. See Chapter 4, “SAS Macros and Functions,” (SAS/ETS User’s Guide)
for more information on the %LOGTEST macro.

Other Transformations
The Box-Cox transformation is a general class of transformations that includes the
logarithm as a special case. The %BOXCOXAR macro can be used to find an optimal
Box-Cox transformation for a time series. See Chapter 4 (SAS/ETS User’s Guide) for
more information on the %BOXCOXAR macro.

The logistic transformation is useful for variables with both an upper and a lower
bound, such as market shares. The logistic transformation is useful for proportions,
percent values, relative frequencies, or probabilities. The logistic function transforms
values between 0 and 1 to values that can range from -∞ to +∞.

For example, the following statements transform the variable SHARE from percent
values to an unbounded range:

data a;
set a;
lshare = log( share / ( 100 - share ) );

run;

Many other data transformation can be used. You can create virtually any desired
data transformation using DATA step statements.
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The EXPAND Procedure and Data Transformations

The EXPAND procedure provides a convenient way to transform series. For example,
the following statements add variables for the logarithm of AIR and the logistic of
SHARE to data set A:

proc expand data=a out=a method=none;
convert air=logair / transform=( log );
convert share=lshare / transform=( / 100 logit );

run;

See Table 17.1 (Chapter 17, SAS/ETS User’s Guide) in Chapter 17 (SAS/ETS User’s
Guide) for a complete list of transformations supported by PROC EXPAND.

Manipulating Time Series Data Sets
This section discusses merging, splitting, and transposing time series data sets and
interpolating time series data to a higher or lower sampling frequency.

Splitting and Merging Data Sets

In some cases, you may want to separate several time series contained in one data set
into different data sets. In other cases, you may want to combine time series from
different data sets into one data set.

To split a time series data set into two or more data sets containing subsets of the
series, use a DATA step to create the new data sets and use the KEEP= data set option
to control which series are included in each new data set. The following statements
split the USPRICE data set shown in a previous example into two data sets, USCPI
and USPPI:

data uscpi(keep=date cpi)
usppi(keep=date ppi);

set usprice;
run;

If the series have different time ranges, you can subset the time ranges of the output
data sets accordingly. For example, if you know that CPI in USPRICE has the range
August 1990 through the end of the data set, while PPI has the range from the be-
ginning of the data set through June 1991, you could write the previous example as
follows:

data uscpi(keep=date cpi)
usppi(keep=date ppi);

set usprice;
if date >= ’1aug1990’d then output uscpi;
if date <= ’1jun1991’d then output usppi;

run;
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To combine time series from different data sets into one data set, list the data sets to be
combined in a MERGE statement and specify the dating variable in a BY statement.
The following statements show how to combine the USCPI and USPPI data sets to
produce the USPRICE data set. It is important to use the BY DATE; statement so
observations are matched by time before merging.

data usprice;
merge uscpi usppi;
by date;

run;

Transposing Data Sets

The TRANSPOSE procedure is used to transpose data sets from one form to another.
The TRANSPOSE procedure can transpose variables and observations, or transpose
variables and observations within BY groups. This section discusses some applica-
tions of the TRANSPOSE procedure relevant to time series data sets. Refer to the
SAS Procedures Guide for more information on PROC TRANSPOSE.

Transposing from Interleaved to Standard Time Series Form

The following statements transpose part of the interleaved form output data set
FOREOUT, produced by PROC FORECAST in a previous example, to a standard
form time series data set. To reduce the volume of output produced by the example,
a WHERE statement is used to subset the input data set.

Observations with –TYPE–=ACTUAL are stored in the new variable ACTUAL; ob-
servations with –TYPE–=FORECAST are stored in the new variable FORECAST;
and so forth. Note that the method used in this example only works for a single
variable.

title "Original Data Set";
proc print data=foreout;

where date > ’1may1991’d & date < ’1oct1991’d;
run;

proc transpose data=foreout out=trans(drop=_name_ _label_);
var cpi;
id _type_;
by date;
where date > ’1may1991’d & date < ’1oct1991’d;

run;

title "Transposed Data Set";
proc print data=trans;
run;

The TRANSPOSE procedure adds the variables –NAME– and –LABEL– to the out-
put data set. These variables contain the names and labels of the variables that were
transposed. In this example, there is only one transposed variable, so –NAME– has
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the value CPI for all observations. Thus, –NAME– and –LABEL– are of no interest
and are dropped from the output data set using the DROP= data set option. (If none
of the variables transposed have a label, PROC TRANSPOSE does not output the
–LABEL– variable and the DROP=–LABEL– option produces a warning message.
You can ignore this message, or you can prevent the message by omitting –LABEL–
from the DROP= list.)

The original and transposed data sets are shown in Figure 3.23. (The observation
numbers shown for the original data set reflect the operation of the WHERE state-
ment.)

Original Data Set

Obs date _TYPE_ _LEAD_ cpi

37 JUN1991 ACTUAL 0 136.000
38 JUN1991 FORECAST 0 136.146
39 JUN1991 RESIDUAL 0 -0.146
40 JUL1991 ACTUAL 0 136.200
41 JUL1991 FORECAST 0 136.566
42 JUL1991 RESIDUAL 0 -0.366
43 AUG1991 FORECAST 1 136.856
44 AUG1991 L95 1 135.723
45 AUG1991 U95 1 137.990
46 SEP1991 FORECAST 2 137.443
47 SEP1991 L95 2 136.126
48 SEP1991 U95 2 138.761

Transposed Data Set

Obs date ACTUAL FORECAST RESIDUAL L95 U95

1 JUN1991 136.0 136.146 -0.14616 . .
2 JUL1991 136.2 136.566 -0.36635 . .
3 AUG1991 . 136.856 . 135.723 137.990
4 SEP1991 . 137.443 . 136.126 138.761

Figure 3.23. Original and Transposed Data Sets

Transposing Cross-sectional Dimensions

The following statements transpose the variable CPI in the CPICITY data set shown
in a previous example from time series cross-sectional form to a standard form time
series data set. (Only a subset of the data shown in the previous example is used
here.) Note that the method shown in this example only works for a single variable.

title "Original Data Set";
proc print data=cpicity;
run;

proc sort data=cpicity out=temp;
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by date city;
run;

proc transpose data=temp out=citycpi(drop=_name_ _label_);
var cpi;
id city;
by date;

run;

title "Transposed Data Set";
proc print data=citycpi;
run;

The names of the variables in the transposed data sets are taken from the city names
in the ID variable CITY. The original and the transposed data sets are shown in Figure
3.24.

Original Data Set

Obs city date cpi

1 Chicago JAN90 128.1
2 Chicago FEB90 129.2
3 Chicago MAR90 129.5
4 Chicago APR90 130.4
5 Chicago MAY90 130.4
6 Chicago JUN90 131.7
7 Chicago JUL90 132.0
8 Los Angeles JAN90 132.1
9 Los Angeles FEB90 133.6
10 Los Angeles MAR90 134.5
11 Los Angeles APR90 134.2
12 Los Angeles MAY90 134.6
13 Los Angeles JUN90 135.0
14 Los Angeles JUL90 135.6
15 New York JAN90 135.1
16 New York FEB90 135.3
17 New York MAR90 136.6
18 New York APR90 137.3
19 New York MAY90 137.2
20 New York JUN90 137.1
21 New York JUL90 138.4
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Transposed Data Set

Los_
Obs date Chicago Angeles New_York

1 JAN90 128.1 132.1 135.1
2 FEB90 129.2 133.6 135.3
3 MAR90 129.5 134.5 136.6
4 APR90 130.4 134.2 137.3
5 MAY90 130.4 134.6 137.2
6 JUN90 131.7 135.0 137.1
7 JUL90 132.0 135.6 138.4

Figure 3.24. Original and Transposed Data Sets

The following statements transpose the CITYCPI data set back to the original form
of the CPICITY data set. The variable –NAME– is added to the data set to tell
PROC TRANSPOSE the name of the variable in which to store the observations in the
transposed data set. (If the (DROP=–NAME– –LABEL–) option were omitted from
the first PROC TRANSPOSE step, this would not be necessary. PROC TRANSPOSE
assumes ID –NAME– by default.)

The NAME=CITY option in the PROC TRANSPOSE statement causes PROC
TRANSPOSE to store the names of the transposed variables in the variable CITY.
Because PROC TRANSPOSE recodes the values of the CITY variable to create valid
SAS variable names in the transposed data set, the values of the variable CITY in the
retransposed data set are not the same as the original. The retransposed data set is
shown in Figure 3.25.

data temp;
set citycpi;
_name_ = ’CPI’;

run;

proc transpose data=temp out=retrans name=city;
by date;

run;

proc sort data=retrans;
by city date;

run;

title "Retransposed Data Set";
proc print data=retrans;
run;
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Retransposed Data Set

Obs date city CPI

1 JAN90 Chicago 128.1
2 FEB90 Chicago 129.2
3 MAR90 Chicago 129.5
4 APR90 Chicago 130.4
5 MAY90 Chicago 130.4
6 JUN90 Chicago 131.7
7 JUL90 Chicago 132.0
8 JAN90 Los_Angeles 132.1
9 FEB90 Los_Angeles 133.6
10 MAR90 Los_Angeles 134.5
11 APR90 Los_Angeles 134.2
12 MAY90 Los_Angeles 134.6
13 JUN90 Los_Angeles 135.0
14 JUL90 Los_Angeles 135.6
15 JAN90 New_York 135.1
16 FEB90 New_York 135.3
17 MAR90 New_York 136.6
18 APR90 New_York 137.3
19 MAY90 New_York 137.2
20 JUN90 New_York 137.1
21 JUL90 New_York 138.4

Figure 3.25. Data Set Transposed Back to Original Form

Time Series Interpolation
The EXPAND procedure interpolates time series. This section provides a brief sum-
mary of the use of PROC EXPAND for different kinds of time series interpolation
problems. Most of the issues discussed in this section are explained in greater detail
in Chapter 17 (SAS/ETS User’s Guide).

By default, the EXPAND procedure performs interpolation by first fitting cubic spline
curves to the available data and then computing needed interpolating values from the
fitted spline curves. Other interpolation methods can be requested.

Note that interpolating values of a time series does not add any real information to
the data as the interpolation process is not the same process that generated the other
(nonmissing) values in the series. While time series interpolation can sometimes be
useful, great care is needed in analyzing time series containing interpolated values.

Interpolating Missing Values

To use the EXPAND procedure to interpolate missing values in a time series, specify
the input and output data sets on the PROC EXPAND statement, and specify the time
ID variable in an ID statement. For example, the following statements cause PROC
EXPAND to interpolate values for missing values of all numeric variables in the data
set USPRICE:

93



General Information � Working with Time Series Data

proc expand data=usprice out=interpl;
id date;

run;

Interpolated values are computed only for embedded missing values in the input
time series. Missing values before or after the range of a series are ignored by the
EXPAND procedure.

In the preceding example, PROC EXPAND assumes that all series are measured at
points in time given by the value of the ID variable. In fact, the series in the USPRICE
data set are monthly averages. PROC EXPAND may produce a better interpolation if
this is taken into account. The following example uses the FROM=MONTH option
to tell PROC EXPAND that the series is monthly and uses the CONVERT statement
with the OBSERVED=AVERAGE to specify that the series values are averages over
each month:

proc expand data=usprice out=interpl from=month;
id date;
convert cpi ppi / observed=average;

run;

Interpolating to a Higher or Lower Frequency

You can use PROC EXPAND to interpolate values of time series at a higher or lower
sampling frequency than the input time series. To change the periodicity of time se-
ries, specify the time interval of the input data set with the FROM= option, and spec-
ify the time interval for the desired output frequency with the TO= option. For ex-
ample, the following statements compute interpolated weekly values of the monthly
CPI and PPI series:

proc expand data=usprice out=interpl from=month to=week;
id date;
convert cpi ppi / observed=average;

run;

Interpolating between Stocks and Flows, Levels and Rates

A distinction is made between variables that are measured at points in time and vari-
ables that represent totals or averages over an interval. Point-in-time values are often
called stocks or levels. Variables that represent totals or averages over an interval are
often called flows or rates.

For example, the annual series Gross National Product represents the final goods pro-
duction of over the year and also the yearly average rate of that production. However,
the monthly variable Inventory represents the cost of a stock of goods at the end of
the month.

The EXPAND procedure can convert between point-in-time values and period av-
erage or total values. To convert observation characteristics, specify the input and
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output characteristics with the OBSERVED= option in the CONVERT statement.
For example, the following statements use the monthly average price index values in
USPRICE to compute interpolated estimates of the price index levels at the midpoint
of each month.

proc expand data=usprice out=midpoint from=month;
id date;
convert cpi ppi / observed=(average,middle);

run;

Reading Time Series Data
Time series data can be coded in many different ways. The SAS System can read time
series data recorded in almost any form. Earlier sections of this chapter show how to
read time series data coded in several commonly used ways. This section shows how
to read time series data from data records coded in two other commonly used ways
not previously introduced.

Several time series databases distributed by major data vendors can be read into SAS
data sets by the DATASOURCE procedure. See Chapter 15, “The DATASOURCE
Procedure,” (SAS/ETS User’s Guide) for more information.

The SASECRSP, SASEFAME, and SASEHAVR interface engines enables SAS users
to access and process time series data in CRSPAccess data files, FAME databases,
and HAVER ANALYTICS Data Link Express (DLX) data bases, respectively. See
Chapter 5, “The SASECRSP Interface Engine” (SAS/ETS User’s Guide) Chapter 6,
“The SASEFAME Interface Engine” (SAS/ETS User’s Guide) and Chapter 7, “The
SASEHAVR Interface Engine” (SAS/ETS User’s Guide) for more details.

Reading a Simple List of Values
Time series data can be coded as a simple list of values without dating information
and with an arbitrary number of observations on each data record. In this case, the
INPUT statement must use the trailing "@@" option to retain the current data record
after reading the values for each observation, and the time ID variable must be gen-
erated with programming statements.

For example, the following statements read the USPRICE data set from data records
containing pairs of values for CPI and PPI. This example assumes you know that the
first pair of values is for June 1990.

data usprice;
input cpi ppi @@;
date = intnx( ’month’, ’1jun1990’d, _n_-1 );
format date monyy7.;

datalines;
129.9 114.3 130.4 114.5 131.6 116.5
132.7 118.4 133.5 120.8 133.8 120.1 133.8 118.7
134.6 119.0 134.8 117.2 135.0 116.2 135.2 116.0
135.6 116.5 136.0 116.3 136.2 116.0
;
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Reading Fully Described Time Series in Transposed Form
Data for several time series can be coded with separate groups of records for each
time series. Data files coded this way are transposed from the form required by SAS
procedures. Time series data can also be coded with descriptive information about
the series included with the data records.

The following example reads time series data for the USPRICE data set coded with
separate groups of records for each series. The data records for each series consist
of a series description record and one or more value records. The series description
record gives the series name, starting month and year of the series, number of values
in the series, and a series label. The value records contain the observations of the
time series.

The data are first read into a temporary data set that contains one observation for
each value of each series. This data set is sorted by date and series name, and the
TRANSPOSE procedure is used to transpose the data into a standard form time series
data set.

data temp;
length _name_ $8 _label_ $40;
keep _name_ _label_ date value;
format date monyy.;
input _name_ month year nval _label_ &;
date = mdy( month, 1, year );
do i = 1 to nval;

input value @;
output;
date = intnx( ’month’, date, 1 );

end;
datalines;
cpi 8 90 12 Consumer Price Index
131.6 132.7 133.5 133.8 133.8 134.6 134.8 135.0
135.2 135.6 136.0 136.2
ppi 6 90 13 Producer Price Index
114.3 114.5 116.5 118.4 120.8 120.1 118.7 119.0
117.2 116.2 116.0 116.5 116.3
;

proc sort data=temp;
by date _name_;

run;

proc transpose data=temp out=usprice(drop=_name_ _label_);
by date;
var value;

run;

proc contents data=usprice;
run;

proc print data=usprice;
run;
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The final data set is shown in Figure 3.26.

The CONTENTS Procedure

Data Set Name: WORK.USPRICE Observations: 14
Member Type: DATA Variables: 3
Engine: V8 Indexes: 0
Created: 17:38 Monday, May 3, 1999 Observation Length: 24
Last Modified: 17:38 Monday, May 3, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Alphabetic List of Variables and Attributes-----

# Variable Type Len Pos Format Label
---------------------------------------------------------------------
3 cpi Num 8 16 Consumer Price Index
1 date Num 8 0 MONYY.
2 ppi Num 8 8 Producer Price Index

Obs date ppi cpi

1 JUN90 114.3 .
2 JUL90 114.5 .
3 AUG90 116.5 131.6
4 SEP90 118.4 132.7
5 OCT90 120.8 133.5
6 NOV90 120.1 133.8
7 DEC90 118.7 133.8
8 JAN91 119.0 134.6
9 FEB91 117.2 134.8

10 MAR91 116.2 135.0
11 APR91 116.0 135.2
12 MAY91 116.5 135.6
13 JUN91 116.3 136.0
14 JUL91 . 136.2

Figure 3.26. USPRICE Data Set
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Chapter 4
Date Intervals, Formats, and

Functions
Overview

This chapter summarizes the time intervals, date and datetime informats, date and
datetime formats, and date, time and datetime functions available in the SAS System.
The use of these features is explained in Chapter 3, “Working with Time Series
Data.” The material in this chapter is also contained in the SAS Language: Reference.
Because these features are useful for work with time series data, documentation of
these features is consolidated and repeated here for easy reference.

Time Intervals
This section provides a reference for the different kinds of time intervals supported
by the SAS System. How intervals are used is not discussed here; see Chapter 3,
“Working with Time Series Data,” for an introduction to the use of time intervals.

Some interval names are for use with SAS date values, while other interval names
are for use with SAS datetime values. The interval names used with SAS date val-
ues are YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH, TENDAY, WEEK,
WEEKDAY, and DAY. The interval names used with SAS datetime or time values
are HOUR, MINUTE, and SECOND. Various abbreviations of these names are also
allowed, as described in the section “Summary of Interval Types.”

Interval names for use with SAS date values can be prefixed with ’DT’ to
construct interval names for use with SAS datetime values. The interval
names DTYEAR, DTSEMIYEAR, DTQTR, DTMONTH, DTSEMIMONTH,
DTTENDAY, DTWEEK, DTWEEKDAY, and DTDAY are used with SAS datetime
or time values.

Constructing Interval Names

Multipliers and shift indexes can be used with the basic interval names to construct
more complex interval specifications. The general form of an interval name is as
follows:

NAMEn.s

The three parts of the interval name are:
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NAME the name of the basic interval type. For example, YEAR spec-
ifies yearly intervals.

n an optional multiplier that specifies that the interval is a mul-
tiple of the period of the basic interval type. For example, the
interval YEAR2 consists of two-year, or biennial, periods.

s an optional starting subperiod index that specifies that the inter-
vals are shifted to later starting points. For example, YEAR.3
specifies yearly periods shifted to start on the first of March
of each calendar year and to end in February of the following
year.

Both the multiplier n and the shift index s are optional and default to 1. For exam-
ple, YEAR, YEAR1, YEAR.1, and YEAR1.1 are all equivalent ways of specifying
ordinary calendar years.

Shifted Intervals

Different kinds of intervals are shifted by different subperiods.

• YEAR, SEMIYEAR, QTR, and MONTH intervals are shifted by calendar
months.

• WEEK, WEEKDAY, and DAY intervals are shifted by days.

• SEMIMONTH intervals are shifted by semi-monthly periods.

• TENDAY intervals are shifted by ten-day periods.

• HOUR intervals are shifted by hours.

• MINUTE intervals are shifted by minutes.

• SECOND intervals are shifted by seconds.

If a subperiod is specified, the shift index cannot be greater than the number of subpe-
riods in the whole interval. For example, you could use YEAR2.24, but YEAR2.25
would be an error because there is no twenty-fifth month in a two-year interval. For
interval types that shift by subperiods that are the same as the basic interval type, only
multiperiod intervals can be shifted.

For example, MONTH type intervals shift by MONTH subintervals; thus, monthly
intervals cannot be shifted since there is only one month in MONTH. However,
bimonthly intervals can be shifted, since there are two MONTH intervals in each
MONTH2 interval. The interval name MONTH2.2 specifies bimonthly periods start-
ing on the first day of even-numbered months.
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Alignment of Intervals

Intervals that represent divisions of a year are aligned with the start of the year
(January). MONTH2 periods begin with odd-numbered months (January, March,
May, and so on). Likewise, intervals that represent divisions of a day are aligned
with the start of the day (midnight). Thus, HOUR8.7 intervals divide the day into the
periods 06:00 to 14:00, 14:00 to 22:00, and 22:00 to 06:00.

Intervals that do not nest within years or days are aligned relative to the SAS date
or datetime value 0. The arbitrary reference time of midnight on January 1, 1960, is
used as the origin for nonshifted intervals, and shifted intervals are defined relative to
that reference point. For example, MONTH13 defines the intervals January 1, 1960,
February 1, 1961, March 1, 1962, and so forth, and the intervals December 1, 1959,
November 1, 1958, and so on before the base date January 1, 1960.

Similarly, WEEK2 interval beginning days are aligned relative to the Sunday of the
week of January 1, 1960. The interval specification WEEK6.13 defines six-week
periods starting on second Fridays, and the convention of alignment relative to the
period containing January 1, 1960, tells where to start counting to find out what dates
correspond to the second Fridays of six-week intervals.

See the section “Alignment of SAS Dates” later in this chapter.

Summary of Interval Types

The interval types are summarized as follows.

YEAR
specifies yearly intervals. Abbreviations are YEAR, YEARS, YEARLY, YR,
ANNUAL, ANNUALLY, ANNUALS. The starting subperiod s is in months.

SEMIYEAR
specifies semiannual intervals (every six months). Abbreviations are SEMIYEAR,
SEMIYEARS, SEMIYEARLY, SEMIYR, SEMIANNUAL, SEMIANN.

The starting subperiod s is in months. For example, SEMIYEAR.3 intervals are
March–August and September–February.

QTR
specifies quarterly intervals (every three months). Abbreviations are QTR,
QUARTER, QUARTERS, QUARTERLY, QTRLY, QTRS. The starting subperiod s
is in months.

MONTH
specifies monthly intervals. Abbreviations are MONTH, MONTHS, MONTHLY,
MON.

The starting subperiod s is in months. For example, MONTH2.2 intervals are
February–March, April–May, June–July, August–September, October–November,
and December–January of the following year.

SEMIMONTH
specifies semimonthly intervals. SEMIMONTH breaks each month into two pe-
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riods, starting on the first and sixteenth day. Abbreviations are SEMIMONTH,
SEMIMONTHS, SEMIMONTHLY, SEMIMON.

The starting subperiod s is in SEMIMONTH periods. For example,
SEMIMONTH2.2 specifies intervals from the sixteenth of one month through
the fifteenth of the next month.

TENDAY
specifies 10-day intervals. TENDAY breaks the month into three periods, the first
through the tenth day of the month, the eleventh through the twentieth day of the
month, and the remainder of the month. (TENDAY is a special interval typically
used for reporting automobile sales data.)

The starting subperiod s is in TENDAY periods. For example, TENDAY4.2 defines
40-day periods starting at the second TENDAY period.

WEEK
specifies weekly intervals of seven days. Abbreviations are WEEK, WEEKS,
WEEKLY.

The starting subperiod s is in days, with the days of the week numbered as 1=Sunday,
2=Monday, 3=Tuesday, 4=Wednesday, 5=Thursday, 6=Friday, and 7=Saturday. For
example, WEEK.7 means weekly with Saturday as the first day of the week.

WEEKDAY
WEEKDAY17W

specifies daily intervals with weekend days included in the preceding week day.
Abbreviations are WEEKDAY, WEEKDAYS.

The WEEKDAY interval is the same as DAY except that weekend days are absorbed
into the preceding weekday. Thus there are five WEEKDAY intervals in a calendar
week: Monday, Tuesday, Wednesday, Thursday, and the three-day period Friday-
Saturday-Sunday.

The default weekend days are Saturday and Sunday, but any one to six weekend
days can be listed after the WEEKDAY string and followed by a W. Weekend
days are specified as ’1’ for Sunday, ’2’ for Monday, and so forth. For exam-
ple, WEEKDAY67W specifies a Friday-Saturday weekend. WEEKDAY1W speci-
fies a six-day work week with a Sunday weekend. WEEKDAY17W is the same as
WEEKDAY.

The starting subperiod s is in days.

DAY
specifies daily intervals. Abbreviations are DAY, DAYS, DAILY. The starting subpe-
riod s is in days.

HOUR
specifies hourly intervals. Abbreviations are HOUR, HOURS, HOURLY, HR. The
starting subperiod s is in hours.

MINUTE
specifies minute intervals. Abbreviations are MINUTE, MINUTES, MIN. The start-
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ing subperiod s is in minutes.

SECOND
specifies second intervals. Abbreviations are SECOND, SECONDS, SEC. The start-
ing subperiod s is in seconds.

Examples of Interval Specifications

Table 4.1 shows examples of different kinds of interval specifications.

Table 4.1. Examples of Intervals
Name Kind of Interval
YEAR years starting in January
YEAR.10 fiscal years starting in October
YEAR2.7 biennial intervals starting in July of even years
YEAR2.19 biennial intervals starting in July of odd years
YEAR4.11 four-year intervals starting in November of leap years (frequency

of U.S. presidential elections)
YEAR4.35 four-year intervals starting in November of even years between

leap years (frequency of U.S. midterm elections)
WEEK weekly intervals starting on Sundays
WEEK2 biweekly intervals starting on first Sundays
WEEK1.1 same as WEEK
WEEK.2 weekly intervals starting on Mondays
WEEK6.3 six-week intervals starting on first Tuesdays
WEEK6.11 six-week intervals starting on second Wednesdays
WEEKDAY daily with Friday-Saturday-Sunday counted as the same day (five-

day work week with a Saturday-Sunday weekend)
WEEKDAY17W same as WEEKDAY
WEEKDAY67W daily with Thursday-Friday-Saturday counted as the same day

(five-day work week with a Friday-Saturday weekend)
WEEKDAY1W daily with Saturday-Sunday counted as the same day (six-day

work week with a Sunday weekend)
WEEKDAY3.2 three-weekday intervals (with Friday-Saturday-Sunday counted as

one weekday) with the cycle three-weekday periods aligned to
Monday 4 Jan 1960

HOUR8.7 eight-hour intervals starting at 6 a.m., 2 p.m., and 10 p.m. (might
be used for work shifts)

Date and Datetime Informats
Table 4.2 summarizes the SAS date and datetime informats available in the SAS
System. See Chapter 3, “Working with Time Series Data,” for a discussion of the
use of date and datetime informats. Refer to SAS Language: Reference for a complete
description of these informats.

For each informat, Table 4.2 shows an example of a date or datetime value written in
the style that the informat is designed to read. The date 17 October 1991 and the time
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2:25:32 p.m. are used for the example in all cases. Table 4.2 shows the width range
allowed by the informat and the default width.

Table 4.2. SAS Date and Datetime Informats

Informat Width Default
Example Description Range Width

DATEw. day, month abbreviation, and year: 7-32 7
17oct91 ddMONyy

DATETIMEw.d date and time: ddMONyy:hh:mm:ss 13-40 18
17oct91:14:45:32

DDMMYYw. day, month, year: ddmmyy, dd/mm/yy, 6-32 6
17/10/91 dd-mm-yy, or dd mm yy

JULIANw. year and day of year (Julian dates): yyddd 5-32 5
91290

MMDDYYw. month, day, year: mmddyy, mm/dd/yy, 6-32 6
10/17/91 mm-dd-yy, or mm dd yy

MONYYw. month abbreviation and year 5-32 5
Oct91

NENGOw. Japanese Nengo notation 7-32 10
H.03/10/17

TIMEw.d hours, minutes, seconds: hh:mm:ss 5-32 8
14:45:32 or hours, minutes: hh:mm.

YYMMDDw. year, month, day: yymmdd, yy/mm/dd, 6-32 6
91/10/17 yy-mm-dd, or yy mm dd

YYQw. year and quarter of year: yyQq 4-32 4
91Q4

Date, Time, and Datetime Formats
The SAS date and datetime formats are summarized in Table 4.3 and Table 4.4. A
width value can be specified with each format. The tables list the range of width
values allowed and the default width value for each format.

The notation used by a format is abbreviated in different ways depending on the width
option used. For example, the format MMDDYY8. writes the date 17 October 1991
as 10/17/91, while the format MMDDYY6. writes this date as 101791. In particular,
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formats that display the year show two- or four-digit year values depending on the
width option. The examples shown in the tables are for the default width.

Refer to SAS Language: Reference for a complete description of these formats,
including the variations of the formats produced by different width options. See
Chapter 3, “Working with Time Series Data,” for a discussion of the use of date and
datetime formats.

Date Formats

Table 4.3 lists the date formats available in the SAS System. For each format, an
example is shown of a date value in the notation produced by the format. The date
’17OCT91’D is used as the example.

Table 4.3. SAS Date Formats

Format Width Default
Example Description Range Width

DATEw. day, month abbreviation, year: 5-9 7
17oct91 ddMONyy

DAYw. day of month 2-32 2
17

DDMMYYw. day, month, year: dd/mm/yy 2-8 8
17/10/91

DOWNAMEw. name of day of the week 1-32 9
Thursday

JULDAYw. day of year 3-32 3
290

JULIANw. year and day of year: yyddd 5-7 5
91290

MMDDYYw. month, day, year: mm/dd/yy 2-8 8
10/17/91

MMYYw. month and year: mmMyy 5-32 7
10M1991

MMYYCw. month and year: mm:yy 5-32 7
10:1991

MMYYDw. month and year: mm-yy 5-32 7
10-1991

MMYYPw. month and year: mm.yy 5-32 7
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Table 4.3. (continued)

Format Width Default
Example Description Range Width
10.1991

MMYYSw. month and year: mm/yy 5-32 7
10/1991

MMYYNw. month and year: mmyy 5-32 6
101991

MONNAMEw. name of month 1-32 9
October

MONTHw. month of year 1-32 2
10

MONYYw. month abbreviation and year: 5-7 5
OCT91 MONyy

QTRw. quarter of year 1-32 1
4

QTRRw. quarter in Roman numerals 3-32 3
IV

NENGOw. Japanese Nengo notation 2-10 10
H.03/10/17

WEEKDATEw. day-of-week, month-name dd, yy 3-37 29
Thursday, October 17, 1991

WEEKDATXw. day-of-week, dd month-name yy 3-37 29
Thursday, 17 October 1991

WEEKDAYw. day of week 1-32 1
5

WORDDATEw. month-name dd, yy 3-32 18
October 17, 1991

WORDDATXw. dd month-name yy 3-32 18
17 October 1991

YEARw. year 2-32 4
1991
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Table 4.3. (continued)

Format Width Default
Example Description Range Width

YYMMw. year and month: yyMmm 5-32 7
1991M10

YYMMCw. year and month: yy:mm 5-32 7
1991:10

YYMMDw. year and month: yy-mm 5-32 7
1991-10

YYMMPw. year and month: yy.mm 5-32 7
1991.10

YYMMSw. year and month: yy/mm 5-32 7
1991/10

YYMMNw. year and month: yymm 5-32 7
199110

YYMONw. year and month abbreviation: 5-32 7
1991OCT yyMON

YYMMDDw. year, month, day: yy/mm/dd 2-8 8
91/10/17

YYQw. year and quarter: yyQq 4-6 4
91Q4

YYQCw. year and quarter: yy:q 4-32 6
1991:4

YYQDw. year and quarter: yy-q 4-32 6
1991-4

YYQPw. year and quarter: yy.q 4-32 6
1991.4

YYQSw. year and quarter: yy/q 4-32 6
1991/4

YYQNw. year and quarter: yyq 3-32 5
19914

YYQRw. year and quarter in Roman 6-32 8
1991QIV numerals: yyQrr
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Table 4.3. (continued)

Format Width Default
Example Description Range Width

YYQRCw. year and quarter in Roman 6-32 8
1991:IV numerals: yy:rr

YYQRDw. year and quarter in Roman 6-32 8
1991-IV numerals: yy-rr

YYQRPw. year and quarter in Roman 6-32 8
1991.IV numerals: yy.rr

YYQRSw. year and quarter in Roman 6-32 8
1991/IV numerals: yy/rr

YYQRNw. year and quarter in Roman 6-32 8
1991IV numerals: yyrr

Datetime and Time Formats

Table 4.4 lists the datetime and time formats available. For each format, an example
is shown of a datetime value in the notation produced by the format. The datetime
value ’17OCT91:14:25:32’DT is used as the example.

Table 4.4. SAS Datetime and Time Formats

Format Width Default
Example Description Range Width

DATETIMEw.d ddMONyy:hh:mm:ss 7-40 16
17OCT91:14:25:32

HHMMw.d hour and minute: hh:mm 2-20 5
14:25

HOURw.d hour 2-20 2
14

MMSSw.d minutes and seconds: mm:ss 2-20 5
25:32

TIMEw.d time of day: hh:mm:ss 2-20 8
14:25:32

TODw. time of day: hh:mm:ss 2-20 8
14:25:32
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Alignment of SAS Dates
SAS date values used to identify time series observations produced by SAS/ETS pro-
cedures are normally aligned with the beginning of the time intervals corresponding
to the observations. For example, for monthly data for 1994, the date values identify-
ing the observations are 1Jan94, 1Feb94, 1Mar94, . . . , 1Dec94.

However, for some applications it may be preferable to use end of period dates, such
as 31Jan94, 28Feb94, 31Mar94, . . . , 31Dec94. For other applications, such as plot-
ting time series, it may be more convenient to use interval midpoint dates to identify
the observations.

SAS/ETS procedures provide an ALIGN= option to control the alignment of dates
for output time series observations. Procedures supporting the ALIGN= option are
ARIMA, DATASOURCE, EXPAND, and FORECAST.

ALIGN=
The ALIGN= option allows the following values:

BEGINNING Specifies that dates are aligned to the start of the interval. This is
the default. BEGINNING can be abbreviated as BEGIN, BEG, or
B.

MIDDLE Specifies that dates are aligned to the interval midpoint. MIDDLE
can be abbreviated as MID or M.

ENDING Specifies that dates are aligned to the end of the interval. ENDING
can be abbreviated as END or E.

The ALIGN= option can be specified on the PROC DATASOURCE statement, on
the PROC EXPAND statement, on the PROC FORECAST statement, and on the
FORECAST statement of the ARIMA procedure.

Date, Time, and Datetime Functions
The SAS System provides functions to perform calculations with SAS date, time, and
datetime values. SAS date, time, and datetime functions are used to:

• compute date, time, and datetime values from calendar and time-of-day values.

• compute calendar and time-of-day values from date and datetime values.

• convert between date, time, and datetime values.

• perform calculations involving time intervals.

SAS date, time, and datetime functions are listed in alphabetical order in the follow-
ing. Refer to SAS Language: Reference for a complete description of these functions.
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SAS Date, Time, and Datetime Functions

DATE()
returns today’s date as a SAS date value.

DATEJUL( yyddd )
returns the SAS date value given the Julian date in yyddd or yyyyddd format. For
example, date = DATEJUL(99001); assigns the SAS date value ’01JAN99’D to date,
and date = DATEJUL(1999365); assigns the SAS date value ’31DEC1999’D to date.

DATEPART( datetime )
returns the date part of a SAS datetime value as a date value.

DATETIME()
returns the current date and time of day as a SAS datetime value.

DAY( date )
returns the day of the month from a SAS date value.

DHMS( date, hour, minute, second )
returns a SAS datetime value for date, hour, minute, and second values.

HMS( hour, minute, second )
returns a SAS time value for hour, minute, and second values.

HOLIDAY( holiday, year )
returns a SAS date value for the holiday and year specified. Valid values for holiday
are ‘EASTER’, ‘THANKSGIVING’, ‘BOXING’, ‘CANADA’, ‘CHRISTMAS’,
‘COLUMBUS’, ‘FATHERS’, ‘HALLOWEEN’, ‘USINDEPENDENCE’, ‘LABOR’,
‘MEMORIAL’, ‘MOTHERS’, ‘NEWYEAR’, ‘THANKSGIVINGCANADA’,
‘VALENTINES’, ‘VETERANS’, ‘VETERANSUSG’, ‘VETERANSUSPS’,
‘VICTORIA’, and ‘CANADAOBSERVED’. For example, Easter2000 = HOLIDAY(
‘EASTER’, 2000);

HOUR( datetime )
returns the hour from a SAS datetime or time value.

INTCINDEX( ’interval’, value )
returns the index of the seasonal cycle given an interval and an appropriate SAS
date, datetime, or time value. For example, the seasonal cycle for interval=’DAY’ is
’WEEK’, so INTCINDEX(’DAY’,’01SEP78’D); returns 35 since September 1, 1978,
is the sixth day of the 35th week of the year.

INTCK( interval, date1, date2 )
returns the number of boundaries of intervals of the given kind that lie between the
two date or datetime values.

INTCYCLE( ’interval’ )
returns the interval of the seasonal cycle, given a date, time, or datetime interval.
For example, INTCYCLE(’MONTH’) returns ’YEAR’ since the months January,
February, ..., December constitute a yearly cycle. INTCYCLE(’DAY’) returns
’WEEK’ since Sunday, Monday, ..., Saturday is a weekly cycle.
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INTFMT( ’interval’, ’size’ )
returns a recommended format, given a date, time, or datetime interval for displaying
the time ID values associated with a time series of the given interval. The valid
values of size: ’long’, ’l’, ’short’, ’s’ specify whether the user prefers to use a 2-digit
or 4-digit year when the format refers to a SAS date value.

INTINDEX( ’interval’, value )
returns the seasonal index, given a date, time, or datetime interval and an appropriate
date, time, or datetime value. The seasonal index is a number representing the
position of the date, time, or datetime value in the seasonal cycle of the specified
interval. For example, INTINDEX(’MONTH’,’01DEC2000’D); returns 12 since
monthly data is yearly periodic and DECEMBER is the 12th month of the year.
However, INTINDEX(’DAY,’01DEC2000’D); returns 6 since daily data is weekly
periodic and December 01, 2000 is a Friday, the sixth day of the week. To correctly
identify the seasonal index, the interval format should agree with the date, time,
or datetime value. For example, INTINDEX(’DTMONTH’,’01DEC2000’D);
and INTINDEX(’MONTH’,’01DEC2000:00:00:00’DT); do not return the ex-
pected value of 12. However, both INTINDEX(’MONTH’,’01DEC2000’D); and
INTINDEX(’DTMONTH’,’01DEC2000:00:00:00’DT); return the expected value of
12.

INTNX( interval, date, n <, ’alignment’ > )
returns the date or datetime value of the beginning of the interval that is n inter-
vals from the interval that contains the given date or datetime value. The optional
alignment argument specifies that the returned date is aligned to either the beginning,
middle, or end of the interval. Beginning is the default.

INTSEAS( ’interval’ )
returns the length of the seasonal cycle, given a date, time, or datetime interval. The
length of a seasonal cycle is the number of intervals in a seasonal cycle. For example,
when the interval for a time series is described as monthly, many procedures use
the option INTERVAL=MONTH. Each observation in the data then corresponds to
a particular month. Monthly data is considered to be periodic for a one-year period.
There are 12 months in one year, so the number of intervals (months) in a seasonal
cycle (year) is 12. For quarterly data, there are 4 quarters in one year, so the number
of intervals in a seasonal cycle is 4. The periodicity is not always one year. For
example, INTERVAL=DAY is considered to have a period of one week, and since
there are 7 days in a week, the number of intervals in a seasonal cycle is 7.

INTTEST( ’interval’ )
returns 1 if the interval name is a valid interval, 0 otherwise. For exam-
ple, VALID = INTTEST(’month’); should set VALID to 1, while VALID =
INTTEST(’NotAnInterval’); should set VALID to 0. The INTTEST function can
be useful in verifying which values of multiplier n and the shift index s are valid in
constructing an interval name.

JULDATE( date )
returns the Julian date from a SAS date value. The format of the Julian date is either
yyddd or yyyyddd depending on the value of the system option YEARCUTOFF=.
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For example, using the default system option values, JULDATE( ’31DEC1999’D );
returns 99365, while JULDATE(’31DEC1899’D); returns 1899365.

MDY( month, day, year )
returns a SAS date value for month, day, and year values.

MINUTE( datetime )
returns the minute from a SAS time or datetime value.

MONTH( date )
returns the month of the year from a SAS date value.

NWKDOM( n, weekday, month, year )
returns a SAS date value for the nth weekday of the month and year specified. For
example, Thanksgiving is always the fourth Thursday in November. Thanks2000 =
NWKDOM( 4, 5, 11, 2000); returns the SAS date value for Thanksgiving in the year
2000. The last weekday of a month may be specified using n = 5. Memorial Day
is the last Monday in May. Memorial2002 = NWKDOM( 5, 2, 5, 2002); returns the
SAS date value for Memorial Day in 2002.

QTR( date )
returns the quarter of the year from a SAS date value.

SECOND( date )
returns the second from a SAS time or datetime value.

TIME()
returns the current time of day.

TIMEPART( datetime )
returns the time part of a SAS datetime value.

TODAY()
returns the current date as a SAS date value. (TODAY is another name for the DATE
function.)

WEEKDAY( date )
returns the day of the week from a SAS date value.

YEAR( date )
returns the year from a SAS date value.

YYQ( year, quarter )
returns a SAS date value for year and quarter values.
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Chapter 5
Using the Output Delivery System
Overview

In the latest version of SAS software, all SAS/ETS procedures use the Output
Delivery System (ODS) to manage their output. This includes managing the form
in which the output appears as well as its organization and format. The default for
SAS/ETS procedures is to produce the usual SAS listing file. However, by using
the features of the Output Delivery System, you can make changes to the format and
appearance of your SAS output. In particular, you can

• display your output in hypertext markup language (HTML).

• display your output in Rich-Text-Format (RTF).

• create SAS data sets directly from output tables.

• select or exclude individual output tables.

• customize the layout, format, and headers of your output.

ODS features can provide you with a powerful tool for managing your output. This
chapter provides background material and illustrates typical applications of ODS with
SAS/ETS software.

For complete documentation on the Output Delivery System, refer to SAS Output
Delivery System User’s Guide.



General Information � Using the Output Delivery System

Output Objects and ODS Destinations

All SAS procedures produce output objects that the Output Delivery System delivers
to various ODS destinations, according to the default specifications for the procedure
or to your own specifications.

All output objects (for example, a table of parameter estimates) consist of two com-
ponent parts:

• the data component, which consists of the results computed by a SAS proce-
dure.

• the template, which contains rules for formatting and displaying the results.

When you invoke a SAS procedure, the procedure sends all output to the Output
Delivery System. ODS then routes the output to all open destinations.

You define the form the output should take when you specify an ODS destination.
Supported destinations are as follows:

• Listing destination (the standard SAS listing), which is the default.

• HTML destination, hypertext markup language.

• Output destination, SAS data set.

Future versions of ODS will support the following additional destinations:

• the ODS Output Document for modifying and replaying output without rerun-
ning the procedure that created it.

• Rich Text Format (RTF) for inclusion in Microsoft Word.

• postscript and PCL for high fidelity printers.

You can activate multiple ODS destinations at the same time, so that a single proce-
dure step can route output to multiple destinations. If you do not supply any ODS
statements, ODS delivers all output to the SAS listing, which is the default.

Each output object has an associated template that defines its presentation format.
You can modify the presentation of the output by using the TEMPLATE procedure
to alter these templates or to create new templates. You can also specify stylistic
elements for ODS destinations, such as cell formats and headers, column ordering,
colors, and fonts. For detailed information, refer to the chapter titled “The Template
Procedure” in the SAS Procedures Guide.
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Using the Output Delivery System

The ODS statement is a global statement that enables you to provide instructions
to the Output Delivery System. You can use ODS statements to specify options for
different ODS destinations, select templates to format your output, and select and
exclude output. You can also display the names of individual output tables as they
are generated.

In order to select, exclude, or modify a table, you must first know its name. You can
obtain the table names in several ways:

• For any SAS/ETS procedure, you can obtain table names from the individual
procedure chapter or from the individual procedure section of the SAS online
Help system.

• For any SAS procedure, you can use the SAS Explorer window to view the
names of the tables created in your SAS run (see the section “Using ODS with
the SAS Explorer” on page 122 for more information).

• For any SAS procedure, you can use the ODS TRACE statement to find the
names of tables created in your SAS run. The ODS TRACE statement writes
identifying information to the SAS log (or, optionally, to the SAS listing) for
each generated output table.

Specify the ODS TRACE ON statement prior to the procedure statements that create
the output for which you want information. For example, the following statements
write the trace record for the specific tables created in this AUTOREG procedure
step.

ods trace on;
proc autoreg;

model y1 = time;
model y2 = time;

run;

By default, the trace record is written to the SAS log, as displayed in Figure 5.1.
Alternatively, you can specify the LISTING option, which writes the information,
interleaved with the procedure output, to the SAS listing (see Example 5.1).
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ods trace on;
proc autoreg;

model y1 = time;
model y2 = time;

run;

.

.

.

Output Added:
-------------
Name: ParameterEstimates
Label: Parameter Estimates
Template: ets.autoreg.ParameterEstimates
Path: Autoreg.Model1.OLSEst.ParameterEstimates
-------------

.

.

.

Output Added:
-------------
Name: ParameterEstimates
Label: Parameter Estimates
Template: ets.autoreg.ParameterEstimates
Path: Autoreg.Model2.OLSEst.ParameterEstimates
-------------

Figure 5.1. Partial Contents of the SAS Log: Result of the ODS TRACE Statement

Figure 5.1 displays the trace record, which contains the name of each created table
and its associated label, template, and path. The label provides a description of the
table. The template name displays the name of the template used to format the table.
The path shows the output hierarchy to which the table belongs.
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The fully qualified path is given in the trace record. A partially qualified path consists
of any part of the full path that begins immediately after a period (.) and continues to
the end of the full path. For example, the full path for the parameter estimates for the
first model in the preceding regression analysis is

Autoreg.Model1.OLSEst.ParameterEstimates

Therefore, partially qualified paths for the table are

Autoreg.Model1.OLSEst.ParameterEstimates
Model1.OLSEst.ParameterEstimates
OLSEst.ParameterEstimates
ParameterEstimates

To refer to a table (in order to select or exclude it from display, for example), specify
either the table name or use the table’s fully or partially qualified path. You may
want to use qualified paths when your SAS program creates several tables that have
the same name, as in the preceding example. In such a case, you can use a partially
qualified path to select a subset of tables, or you can use a fully qualified path to select
a particular table.

You specify the tables that ODS selects or excludes with the ODS SELECT or ODS
EXCLUDE statement. Suppose that you want to display only the tables of parameter
estimates from the preceding regression analysis. You can give any of the follow-
ing statements (before invoking the AUTOREG procedure) to display both tables of
parameter estimates. For this example, these statements are equivalent:

ods select Autoreg.Model1.OLSEst.ParameterEstimates
Autoreg.Model2.OLSEst.ParameterEstimates;

ods select Model1.OLSEst.ParameterEstimates
Model2.OLSEst.ParameterEstimates;

ods select OLSEst.ParameterEstimates;

ods select ParameterEstimates;

The first ODS SELECT statement specifies the full path for both tables. The second
statement specifies the partially qualified path for both tables. The third and fourth
statements specify the partial path “OLSEst.ParameterEstimates,” and single name
“ParameterEstimates,” which are shared by both tables.

The Output Delivery System records the specified table names in its internal selection
or exclusion list. ODS then processes the output it receives. Note that ODS maintains
an overall selection or exclusion list that pertains to all ODS destinations, and it
maintains a separate selection or exclusion list for each ODS destination. The list for
a specific destination provides the primary filtering step. Restrictions you specify in
the overall list are added to the destination-specific lists.
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Suppose, for example, that your listing exclusion list (that is, the list of tables you
wish to exclude from the SAS listing) contains the “Summary” table, which you
specify with the statement

ods listing exclude Summary;

and your overall selection list (that is, the list of tables you want to select for all
destinations) contains the tables “Summary” and “ParameterEstimates,” which you
specify with the statement

ods select ParameterEstimates Summary;

The Output Delivery System then sends only the “ParameterEstimates” and
“Summary” tables to all open destinations except the SAS listing. It sends only
the “ParameterEstimates” table to the SAS listing because the table “Summary” is
excluded from that destination.

Some SAS procedures, such as the ARIMA or the MODEL procedure, support run-
group processing, which means that a RUN statement does not end the procedure.
A QUIT statement explicitly ends such procedures; if you omit the QUIT statement,
a PROC or a DATA statement implicitly ends such procedures. When you use the
Output Delivery System with procedures that support run-group processing, it is good
programming practice to specify a QUIT statement at the end of the procedure. This
causes ODS to clear the selection or exclusion list, and you are less likely to encounter
unexpected results.

Using ODS with the SAS Explorer

The SAS Explorer is a new feature that enables you to examine the various parts of
the SAS System. Figure 5.2 displays the Results window from the SAS Explorer. The
Results node retains a running record of your output as it is generated during your
SAS session. Figure 5.2 displays the output hierarchy when the preceding statements
are executed.
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Figure 5.2. The Results Window from the SAS Explorer

When you click on the output table names in the Results window, you link directly to
the output in the output window or, if you specify the HTML destination, in an HTML
browser. The items on the left-hand side of the Results node are output directories.
The items on the right-hand side of the Results node are the names of the actual
output objects. You can also use the Explorer to determine names of the templates
associated with each output table.

Controlling Output Appearance with Templates

A template is an abstract description of how output should appear when it is for-
matted. Templates describe several characteristics of the output, including headers,
column ordering, style information, justification, and formats. All SAS/ETS proce-
dures have templates, which are stored in the SASHELP library.

You can create or modify a template with the TEMPLATE procedure. For example,
you can specify different column headings or different orderings of columns in a
table. You can find the template associated with a particular output table by using the
ODS TRACE statement or the SAS Explorer.

You can display the contents of a template by executing the following statements:

proc template;
source templatename;

run;

where templatename is the name of the template.
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Suppose you want to change the way all of the parameter estimates are displayed
by the AUTOREG procedure. You can redefine the templates that the procedure
uses with PROC TEMPLATE. For example, in order to have the ESTIMATE and
STANDARD ERROR columns always displayed with more digits, you can redefine
the columns used by the procedure to display them:

proc template;
edit ets.autoreg.ParameterEstimates;

edit Estimate; format=Best16.; end;
edit StdErr; format=Best16.; end;

end;
run;

The BESTw. format enables you to display the most information about a value,
according to the available field width. The BEST16. format specifies a field width
of 16. Refer to the chapter on formats in SAS Language Reference: Dictionary for
detailed information.

When you run PROC TEMPLATE to modify or edit a template, the template is stored
in your SASUSER library. You can then modify the path that ODS uses to look up
templates with the ODS PATH statement in order to access these new templates in
a later SAS session. This means that you can create a default set of templates to
modify the presentation format for all your SAS output. (Note that you can specify
the SHOW option in the ODS PATH statement to determine the current path.)

It is important to note the difference between a style template and a table template.
A table template applies only to the specific tables that reference the template. The
preceding statements that modify the “etsug.autoreg.ParameterEstimates” template
provide an example of modifying columns within a table template.

A style template applies to an entire SAS job and can be specified only in the ODS
HTML statement. You can specify a style as follows:

ods html style=Styles.Brown;

A style template controls stylistic elements such as colors, fonts, and presentation
attributes. When you use a style template, you ensure that all your output shares a
consistent presentation style.

You can also reference style information in table templates for individual headers and
data cells. You can modify either type of template with the TEMPLATE procedure.
For information on creating your own styles, refer to SAS Output Delivery System
User’s Guide.
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Interaction Between ODS and the NOPRINT Option

Most SAS/ETS procedures support a NOPRINT option that you can use when you
want to create an output data set but do not want any displayed output. Typically, you
use an OUTPUT statement in addition to the procedure’s NOPRINT option to create
a data set and suppress displayed output.

You can also use the Output Delivery System to create output data sets by using the
ODS OUTPUT statement. However, if you specify the NOPRINT option, the proce-
dure may not send any output to the Output Delivery System. Therefore, when you
want to create output data sets through ODS (using the ODS OUTPUT statement),
and you want to suppress the display of all output, specify

ODS SELECT NONE;

or close the active ODS destinations by giving the command

ODS destinationname CLOSE;

where destinationname is the name of the active ODS destination (for example,
ODS HTML CLOSE).

Note: The ODS statement does not instruct a procedure to generate output: instead, it
specifies how the Output Delivery System should manage the table once it is created.
The requested data table (output) has to be generated by the procedure before ODS
can manage it. You must ensure that the proper options are in effect. For example,
the following code does not create the requested data set Parms.

proc autoreg;
ods output ML.ParameterEstimates=Parms;
model y1 = time;

run;

When you execute these statements, the following line is displayed in the log:

WARNING: Output ’ML.ParameterEstimates’ was not created.

The data set Parms is not created because the table of parameter estimates is gener-
ated only when the METHOD=ML option is specified in the MODEL statement in
the AUTOREG procedure.
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Compatibility Issues with Version 6 Prototypes

• The Version 6 prototype of the ODS output hierarchy is stored in a SAS catalog.
The latest version of SAS software has a more flexible item-store file type used
to store templates and ODS output.

• The Version 6 prototype ODS uses two macro variables (–DISK– and
–PRINT–) to regulate the saving of an output hierarchy. The latest version
of SAS software uses the global ODS statement to accomplish this task.

• The Version 6 PROC TEMPLATE and PROC OUTPUT syntax is not compat-
ible with the latest version of SAS software.

Examples
The following examples display typical uses of the Output Delivery System.

Example 5.1. Creating HTML Output with ODS

This example demonstrates how you can use the ODS HTML statement to display
your output in hypertext markup language (HTML).

The following statements create the data set AR2, which contains a second-order
autocorrelated time series Y. The AUTOREG procedure is then invoked to estimate
the time trend of Y.

The ODS HTML statement specifies the name of the file to contain body of the
HTML output.

data AR2;
ul = 0; ull = 0;
do Time = -10 to 36;

u = + 1.3 * ul - .5 * ull + 2*rannor(12346);
Y = 10 + .5 * time + u;
if Time > 0 then output;
ull = ul; ul = u;

end;
run;

ods html body=’trend.htm’;

title ’Estimated Time Trend of Y’;
proc autoreg;

model Y = Time;
run;
ods html close;

By default, the SAS listing receives all output generated during your SAS run. In
this example, the ODS HTML statement opens the HTML destination, and both des-
tinations receive the generated output. Output 5.1.1 displays the results as they are
displayed in the SAS listing.

126



Examples

Note that you must specify the following statement before you can view your output
in a browser.

ods html close;

If you do not close the HTML destination, your HTML file may contain no output,
or you may experience other unexpected results.

Output 5.1.2 displays the file ’trend.htm’, which is specified in the preceding ODS
HTML statement.

Output 5.1.1. Results for PROC AUTOREG: SAS Listing Output

Estimated Time Trend of Y

The AUTOREG Procedure

Dependent Variable Y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34
MSE 6.32216 Root MSE 2.51439
SBC 173.659101 AIC 170.492063
Regress R-Square 0.8200 Total R-Square 0.8200
Durbin-Watson 0.4752

Standard Approx
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001
Time 1 0.5021 0.0403 12.45 <.0001
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Output 5.1.2. Results for PROC AUTOREG: HTML Output
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Example 5.2. Creating HTML Output with a Table of Contents

The following example uses ODS to display the output in HTML with a table of
contents.

The data are the population of the United States in millions recorded at ten year
intervals starting in 1790 and ending in 1990. The MODEL procedure is used to
estimate a logistic growth curve by nonlinear ordinary least squares.

data uspop;
input pop :6.3 @@;
retain year 1780;
year=year+10;
label pop=’U.S. Population in Millions’;
datalines;

3929 5308 7239 9638 12866 17069 23191 31443
39818 50155 62947 75994 91972 105710 122775 131669
151325 179323 203211 226542 248710
;

ods html body=’uspop.htm’
contents=’uspopc.htm’
frame=’uspopf.htm’;

title ’Logistic Growth Curve Model of U.S. Population’;
proc model data=uspop;

label a = ’Maximum Population’
b = ’Location Parameter’
c = ’Initial Growth Rate’;

pop = a / ( 1 + exp( b - c * (year-1790) ) );
fit pop start=(a 1000 b 5.5 c .02)/ out=resid outresid;

run;
ods html close;

The ODS HTML statement specifies three files. The BODY= option specifies the file
to contain the output generated from the statements that follow. The BODY= option
is the only required option.

The CONTENTS= option specifies a file to contain the table of contents. The
FRAME= option specifies a file to contain both the table of contents and the output.
You open the FRAME= file in your browser to view the table of contents together
with the generated output (see Output 5.2.1). Note that, if you specify the ODS
HTML statement with only the BODY= argument, no table of contents is created.

The MODEL procedure is invoked to fit the specified model. The resulting output is
displayed in Output 5.2.1.
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Output 5.2.1. HTML Output from the MODEL Procedure

The table of contents displayed in Output 5.2.1 contains the descriptive label for each
output table produced in the MODEL procedure step. You can select any label in
the table of contents and the corresponding output will be displayed in the right-hand
side of the browser window.
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Example 5.3. Determining the Names of ODS Tables

In order to select or exclude a table, or to render it as a SAS data set, you must first
know its name. You can obtain the table names in several ways:

• For any SAS/ETS procedure, you can obtain table names from the individual
procedure chapter or from the SAS online Help system.

• For any SAS procedure, you can use the SAS Explorer window to view the
names of the tables created in your SAS run.

• For any SAS procedure, you can use the ODS TRACE statement to find the
names of tables created in your SAS run. The ODS TRACE statement writes
identifying information to the SAS log for each generated output table.

This example uses the ODS TRACE statement with the LISTING option to obtain the
names of the created output objects. By default, the ODS TRACE statement writes
its information to the SAS log. However, you can specify the LISTING option to
have the information interleaved with the procedure output in the SAS listing.

The model will be the U.S. population model from the previous example.

ods trace on/listing;

title ’Logistic Growth Curve Model of U.S. Population’;
proc model data=uspop;

label a = ’Maximum Population’
b = ’Location Parameter’
c = ’Initial Growth Rate’;

pop = a / ( 1 + exp( b - c * (year-1790) ) );
fit pop start=(a 1000 b 5.5 c .02)/ out=resid outresid;

run;

ods trace off;

The purpose of these statements is to obtain the names of the ODS tables produced in
this PROC MODEL run. The ODS TRACE ON statement writes the trace record of
ODS output tables. The LISTING option specifies that the information is interleaved
with the output and written to the SAS listing.

The MODEL procedure is invoked to perform the analysis, the SAS listing receives
the procedure output and the trace record, and the trace is then turned off with the
OFF option.
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Output 5.3.1. The ODS Trace, Interleaved with MODEL Results: Partial Results

The MODEL Procedure

Output Added:
-------------
Name: ResidSummary
Label: Nonlinear OLS Summary of Residual Errors
Template: ets.model.ResidSummary
Path: Model.OLS.ResidSummary
-------------

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq Label

pop 3 18 345.6 19.2020 4.3820 0.9972 0.9969 U.S. Population
in Millions

Output Added:
-------------
Name: ParameterEstimates
Label: Nonlinear OLS Parameter Estimates
Template: ets.model.ParameterEstimates
Path: Model.OLS.ParameterEstimates
-------------

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

a 387.9307 30.0404 12.91 <.0001 Maximum Population
b 3.990385 0.0695 57.44 <.0001 Location Parameter
c 0.022703 0.00107 21.22 <.0001 Initial Growth Rate

As displayed in Output 5.3.1, the ODS TRACE ON statement writes the name, label,
template, and path name of each generated ODS table. For more information on
names, labels, and qualified path names, see the discussion in the section “Using the
Output Delivery System” beginning on page 119.

The information obtained with the ODS TRACE ON statement enables you to request
output tables by name. The examples that follow demonstrate how you can use this
information to select, exclude, or create data sets from particular output tables.
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Example 5.4. Selecting ODS Tables for Display

You can use the ODS SELECT statement to deliver only certain tables to open ODS
destinations. In the following example, the MODEL procedure is used to fit a model
for new one-family home sales.

title ’Modeling One-Family Home Sales’;
data homes;

input year q pop yn cpi @@;
y=yn/cpi;

label q=’New One-Family Houses Sold in Thousands’
pop=’U.S. Population in Millions’
y=’Real Personal Income in Billions’
cpi=’U.S. CPI 1982-1984 = 100’;

datalines;
70 485 205.052 715.6 .388 71 656 207.661 776.8 .405
72 718 209.896 839.6 .418 73 634 211.909 949.8 .444
74 519 213.854 1038.4 .493 75 549 215.973 1142.8 .538
76 646 218.035 1252.6 .569 77 819 220.239 1379.3 .606
78 817 222.585 1551.2 .652 79 709 225.055 1729.3 .726
80 545 227.719 1918.0 .824 81 436 229.945 2127.6 .909
82 412 232.171 2261.4 .965 83 623 234.296 2428.1 .996
84 639 236.343 2668.6 1.039 85 688 238.466 2838.7 1.076
86 750 240.658 3013.3 1.096 87 671 242.820 3194.7 1.136
88 676 245.051 3479.2 1.183 89 650 247.350 3725.5 1.240
90 536 249.975 3945.8 1.307
;

ods select ResidSummary ParameterEstimates;
ods trace on;
ods show;

The ODS SELECT statement specifies that only the two tables “ResidSummary” and
“ParameterEstimates” are to be delivered to the ODS destinations. In this example,
no ODS destinations are explicitly opened. Therefore, only the SAS listing, which
is open by default, receives the procedure output. The ODS SHOW statement dis-
plays the current overall selection list in the SAS log. The ODS TRACE statement
writes the trace record of the ODS output objects to the SAS log. In the following
statements, the MODEL procedure is invoked to produce the output.

proc model data=homes;
parms a b c d;

q = a + b*y + c*lag(y) + d*pop;
%ar(ar_q,1,q)
endo q;
exo y pop;
id year;
fit q / dw;

run;
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Output 5.4.1 displays the results of the ODS SHOW statement, which writes the cur-
rent overall selection list to the SAS log. As specified in the preceding ODS SELECT
statement, only the two ODS tables “ResidSummary” and “ParameterEstimates” are
selected for output.

Output 5.4.1. Results of the ODS SHOW Statement

ods select ResidSummary ParameterEstimates;
ods trace on;
ods show;

Current OVERALL select list is:
1. ResidSummary
2. ParameterEstimates

Partial results of the ODS TRACE statement, which is written to the SAS log, are
displayed in Output 5.4.2.

Output 5.4.2. The ODS TRACE: Partial Contents of the SAS Log

proc model data=homes;
parms a b c d;

q = a + b*y + c*lag(y) + d*pop;
%ar(ar_q,1,q)
endo q;
exo y pop;
id year;

fit q / dw;
run;

Output Added:
-------------
Name: ResidSummary
Label: Nonlinear OLS Summary of Residual Errors
Template: ets.model.ResidSummary
Path: Model.OLS.ResidSummary
-------------

Output Added:
-------------
Name: ParameterEstimates
Label: Nonlinear OLS Parameter Estimates
Template: ets.model.ParameterEstimates
Path: Model.OLS.ParameterEstimates
-------------
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In the following statements, the ODS SHOW statement writes the current overall
selection list to the SAS log. The QUIT statement ends the MODEL procedure.
The second ODS SHOW statement writes the selection list to the log after PROC
MODEL terminates. The ODS selection list is reset to ’ALL,’ by default, when a
procedure terminates. For more information on ODS exclusion and selection lists,
see the section “Using the Output Delivery System” beginning on page 119.

ods show;
quit;
ods show;

The results of the statements are displayed in Output 5.4.3. Before the MODEL
procedure terminates, the ODS selection list includes only the two tables,
“ResidSummary” and “ParameterEstimates.”

Output 5.4.3. The ODS Selection List, Before and After PROC MODEL
Terminates

ods show;

Current OVERALL select list is:
1. ResidSummary
2. ParameterEstimates

quit;

NOTE: PROCEDURE MODEL used:
real time 0.34 seconds
cpu time 0.19 seconds

ods show;

Current OVERALL select list is: ALL

The MODEL procedure supports run-group processing. Before the QUIT statement
is executed, PROC MODEL is active and the ODS selection list remains at its pre-
vious setting before PROC MODEL was invoked. After the QUIT statement, the
selection list is reset to deliver all output tables.

The entire displayed output consists of the two selected tables, as displayed in Output
5.4.4.
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Output 5.4.4. The Listing Output of the ResidSummary and ParameterEstimates
Tables from PROC MODEL

Logistic Growth Curve Model of U.S. Population

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj Durbin
Equation Model Error SSE MSE R-Square R-Sq Watson

q 5 15 86388.2 5759.2 0.6201 0.5188 1.7410

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter Estimate Std Err t Value Pr > |t| Label

a 2622.538 1196.5 2.19 0.0446
b 1.216858 0.3723 3.27 0.0052
c -0.65809 0.3676 -1.79 0.0936
d -14.8418 8.6435 -1.72 0.1065
ar_q_l1 0.478075 0.2480 1.93 0.0730 AR(ar_q) q lag1

parameter
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Example 5.5. Creating an Output Data Set from an ODS Table

The ODS OUTPUT statement creates SAS data sets from ODS tables. In the fol-
lowing example, the AUTOREG procedure is invoked to estimate a large number of
Dickey-Fuller type regressions and part of the resulting procedure output is output to
a SAS data set. The Dickey-Fuller t-statistic is then calculated and PROC MEANS is
used to calculate the empirical critical values.

The data set UNITROOT contains 10,000 unit root time series.

data unitroot;
YLag = 0;
do rep = 1 to 10000;
do time = -50 to 100;
Y = YLag + rannor(123);
if time > 0 then output;
YLag = Y;

end;
end;

run;

Determining the Names of the ODS Tables

The purpose of the following statements is to obtain the names of the output tables
produced in this PROC AUTOREG run. Note that a smaller data set, test, is used for
this trial run. The ODS TRACE statement lists the trace record.

data test;
YLag = 0;
do time = -50 to 100;
Y = YLag + rannor(123);
if time > 0 then output;
YLag = Y;

end;
run;

ods trace on;
proc autoreg data=test;

model Y = YLag;
run;
ods trace off;
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Output 5.5.1. The ODS TRACE: Partial Contents of the SAS Log

ods trace on;
ods listing close;
proc autoreg data=test;

model Y = YLag;
run;

Output Added:
-------------
Name: Dependent
Label: Dependent Variable
Template: ets.autoreg.Dependent
Path: Autoreg.Model1.Dependent
-------------

.

.

.

Output Added:
-------------
Name: ParameterEstimates
Label: Parameter Estimates
Template: ets.autoreg.ParameterEstimates
Path: Autoreg.Model1.OLSEst.ParameterEstimates
-------------

By default, the trace record is written to the SAS log, as displayed in Output 5.5.1.
Note that you can alternatively specify that the information be interleaved with the
procedure output in the SAS listing (see Example 5.3).

Creating the Output Data Set

In the statements that follow, the ODS OUTPUT statement writes the ODS table
“ParameterEstimates” to a SAS data set called myParms. All of the usual data set
options, such as the KEEP= or WHERE= options, can be used in the ODS OUTPUT
statement. Thus, to modify the ParameterEstimates data set so that it contains only
certain variables, you can use the data set options as follows.

ods listing close;
proc autoreg data=unitRoot;

ods output ParameterEstimates = myParms
(keep=Variable Estimate StdErr
where=(Variable=’YLag’)) ;

by rep;
model Y = YLag;

run;
ods listing;

The KEEP= option in the ODS OUTPUT statement specifies that only the variables
Variable, Estimate, and StdErr are written to the data set. The WHERE= option
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selects the specific variable in which we are interested, YLag. The AUTOREG pro-
cedure is again invoked. In order to limit the amount of displayed output, the ODS
exclusion list is set to ALL.

In the following statements, the output data set myParms is used to create the data
set TDISTN which contains the Dickey-Fuller t-statistics. PROC MEANS is then
utilized to tabulate the empirical 1, 5, and 10 percent critical values. The results are
displayed in Output 5.5.2.

data tdistn;
set myParms;
tStat = (Estimate-1)/StdErr;

run;

ods select Means.Summary;
proc means data=tDistn P1 P5 P10 fw=5;

var tStat;
title ’Simulated Dickey-Fuller Critical Values’;

run;

Output 5.5.2. The Empirical Critical Values, Tabulated by PROC MEANS

Simulated Dickey-Fuller Critical Values

The MEANS Procedure

Analysis Variable : tStat

1st 5th 10th
Pctl Ptcl Pctl

-----------------------
-3.51 -2.90 -2.59
-----------------------
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Chapter 6
Statistical Graphics Using ODS

(Experimental)
Overview

Graphics are indispensable for modern statistical analysis. They enrich the analysis
by revealing patterns, identifying differences, and expressing uncertainty that would
not be readily apparent in tabular output. Effective graphics also add visual clarity
to an analytical presentation, and they provoke questions that would not otherwise be
raised, stimulating deeper investigation.

In SAS 9.1, a number of SAS/ETS procedures have been modified to use an exper-
imental extension to the Output Delivery System (ODS) that enables them to create
statistical graphics as automatically as tables. This facility is referred to as ODS
Statistical Graphics (or ODS Graphics for short), and it is invoked when you provide
the experimental ODS GRAPHICS statement prior to your procedure statements.
Any procedures that use ODS Graphics then create graphics, either by default or
when you specify procedure options for requesting specific graphs.

With ODS Graphics, a procedure creates the graphs that are most commonly needed
for a particular analysis. In many cases, graphs are automatically enhanced with use-
ful statistical information or metadata, such as sample sizes and p-values, which are
displayed in an inset box. Using ODS Graphics eliminates the need to save numerical
results in an output data set, manipulate them with a DATA step program, and display
them with a graphics procedure.

The SAS/ETS procedures that use ODS Graphics in SAS 9.1 are listed on page 178.
The plots produced by each procedure and any corresponding options are described
in the procedure chapter. See the “ODS Graphics” subsection in the “Details” section
of each procedure chapter for additional information.

In many ways, creating graphics with ODS is analogous to creating tables with ODS.
You use

• procedure options and defaults to determine which graphs are created

• ODS destination statements (such as ODS HTML) to specify the output desti-
nation for graphics

Additionally, you can use

• graph names in ODS SELECT and ODS EXCLUDE statements to select or
exclude graphs from your output

• ODS styles to control the general appearance and consistency of all graphs

• ODS templates to control the layout and details of individual graphs. A default
template is provided by SAS for each graph.
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In SAS 9.1, the ODS destinations that support ODS Graphics include HTML,
LATEX, PRINTER, and RTF. These are discussed on page 152.

Both tables and graphs are saved in the ODS output file produced for a destination.
However, individual graphs can also be saved in files, which are produced in a spe-
cific graphics image file type, such as GIF or PostScript. This enables you to access
individual graphs for inclusion in a document. For example, you can save graphs
in PostScript files to include in a paper that you are writing with LATEX. Likewise,
you can save graphs in GIF files to include in an HTML document. With the HTML
destination, you can also request an image map format that supports tool tip displays,
which appear when you move a mouse over certain features of the graph.

In common applications of procedures that use ODS Graphics, the default graphs
should suffice. However, when modifications become necessary, you can customize
a particular graph by changing its template, or you can make consistent changes to
all your graphs by selecting a different ODS style or by modifying an existing ODS
style definition:

• As with table definitions, you can access graph template definitions and mod-
ify them with the TEMPLATE procedure. Graph template definitions are writ-
ten in an experimental graph template language, which has been added to the
TEMPLATE procedure in SAS 9.1. This language includes statements for
specifying plot types (such as scatter plots and histograms), plot layouts, and
text elements (such as titles and insets). It also provides support for built-in
computations (such as histogram binning) and evaluation of computational ex-
pressions. Options are available for specifying colors, marker symbols, and
other aspects of plot features.

• ODS style definitions include a number of graph elements that correspond to
general features of statistical graphics, such as titles and fitted lines. The at-
tributes of these elements, such as fonts and colors, provide the defaults for
options in graph templates provided by SAS. Consequently, you can change all
of your graphs in a consistent manner by simply selecting a different style. For
example, by specifying the “Journal” style, you can create gray-scale graphs
and tables that are suitable for publication in professional journals.

Note: Statistical graphics created with ODS are experimental in this release, meaning
that both their appearance and their syntax are subject to change in a future release.

This chapter illustrates the use of ODS Graphics, and it provides general information
on managing your graphics. If you are unfamiliar with ODS, you will find it helpful
to read Chapter 8, “Using the Output Delivery System.” (SAS/ETS User’s Guide)
For complete documentation on the Output Delivery System, refer to the SAS Output
Delivery System User’s Guide.
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How to Use This Chapter

If you are trying out ODS Graphics for the first time, begin by reading the section
“Getting Started” on page 145, which provides the essentials. Additional examples
are given in the chapters for procedures that use ODS Graphics in SAS 9.1.

To take full advantage of ODS Graphics, you will need to learn more about ODS
destinations, output files, and image file types for graphics, as well as ways to access
and include individual graphs in reports and presentations. This is explained in the
section “Managing Your Graphics” on page 152, the section “Graphics Image Files”
on page 162, and the section “Examples” beginning on page 181.

If you need to customize a graph by modifying its template, read the section
“Customizing Graphics with Templates” on page 167 and the series of examples be-
ginning on page 195.

If you need to customize a style definition read the section “Styles for Graphics” on
page 174 and the series of examples beginning on page 206.

Getting Started
This section introduces the use of ODS Graphics with two simple examples, which
illustrate how the ODS GRAPHICS statement and an ODS destination statement are
required to produce graphics. In the first example, no procedure options are required;
basic graphics are produced by default. In the second example, procedure options are
used to request specific plots.

Using the ODS GRAPHICS Statement

This example is taken from the “Getting Started” section of Chapter 21, “The
MODEL Procedure.” (SAS/ETS User’s Guide) It illustrates a situation in which only
the ODS GRAPHICS statement and a supported ODS destination are needed to create
graphical displays.

The SASHELP library contains the data set CITIMON, which, in turn, includes the
variable LHUR, the monthly unemployment figures, and the variable IP, the monthly
industrial production index. Assume that these variables are related by the following
nonlinear equation:

lhur =
1

a · ip + b
+ c + ε

In this equation a, b, and c are unknown coefficients and ε is an unobserved random
error.

The following statements illustrate how to use PROC MODEL to estimate values for
a, b, and c from the data in SASHELP.CITIMON.
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ods html;
ods graphics on;

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;

ods graphics off;
ods html close;

The ODS HTML statement specifies an HTML destination for the output. Note that
the LISTING destination is not supported by ODS Graphics in SAS 9.1. For a dis-
cussion of ODS destinations that are supported, see page 152.

The ODS GRAPHICS statement is specified to request ODS Graphics in addition to
the usual tabular output. Here, the graphical output consists of a studentized residual
plot, a Cook’s D plot, a plot of actual and predicted values, plots of the sample auto-
correlation, partial autocorrelation, and inverse autocorrelation function of residuals,
a QQ plot and a histogram of residuals; these are shown in Figure 6.1 through Figure
6.8, respectively.

The ODS GRAPHICS OFF statement disables ODS Graphics, and the ODS HTML
CLOSE statement closes the HTML destination.

Figure 6.1. Studentized Residuals
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Figure 6.2. Cook’s D for Residuals

Figure 6.3. Predicted and Actual Values
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Figure 6.4. Autocorrelation of Residuals

Figure 6.5. Partial Autocorrelation of Residuals
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Figure 6.6. Inverse Autocorrelation of Residuals

Figure 6.7. QQ Plot of Residuals

149



General Information � Statistical Graphics Using ODS (Experimental)

Figure 6.8. Histogram of Residuals

For more information about ODS Graphics available in the MODEL procedure, see
the “ODS Graphics” (Chapter 21, SAS/ETS User’s Guide) section on page 1333 in
Chapter 21, “The MODEL Procedure.” (SAS/ETS User’s Guide)

A sample program named odsgrgs.sas is available for this example in the SAS
Sample Library for SAS/ETS software.

Using the ODS GRAPHICS Statement and Procedure Options

In this example, new options of the UCM procedure are used to request graphical
displays in addition to the ODS GRAPHICS statement.

The following data from the Connecticut Tumor Registry presents age-adjusted num-
bers of melanoma incidences per 100,000 people for 37 years from 1936 to 1972 The
data have been used in Houghton, Flannery, and Viola (1980).

data melanoma;
input Melanoma_Incidence_Rate @@;
year = mdy(1,1, 1836 + _n_-1 ); /* start year 1936 */
format year year4.;
datalines;
0.9 0.8 0.8 1.3 1.4 1.2 1.7 1.8 1.6 1.5
1.5 2.0 2.5 2.7 2.9 2.5 3.1 2.4 2.2 2.9
2.5 2.6 3.2 3.8 4.2 3.9 3.7 3.3 3.7 3.9
4.1 3.8 4.7 4.4 4.8 4.8 4.8
;

run;
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The following statements request the estimation and forecast of the following model
and plots of the smoothed cycle component and forecasts.

Melanoma_Incidence_Rate = trend + cycle + error

ods html;
ods graphics on;

proc ucm data=melanoma noprint;
id year interval=year;
model Melanoma_Incidence_Rate;
irregular;
level variance=0 noest;
slope variance=0 noest;
cycle rho=1 noest=rho plot=smooth;
estimate back=5;
forecast back=5 lead=10 plot=forecasts print=none;

run;

ods graphics off;
ods html close;

The smoothed cycle component and forecasts plots are displayed in Figure 6.9
and Figure 6.10, respectively. This graphical display are requested by specifying
the ODS GRAPHICS statement prior to the procedure statements, and the experi-
mental PLOTS= (Chapter 30, SAS/ETS User’s Guide) options in the CYCLE and
FORECAST statements. For more information about the graphics available in the
UCM procedure, see the “ODS Graphics” (Chapter 30, SAS/ETS User’s Guide) sec-
tion on page 1892 in Chapter 30, “The UCM Procedure.” (SAS/ETS User’s Guide)

Figure 6.9. Smoothed Cycle Component Plot
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Figure 6.10. Forecasts Plot

A sample program named odsgrgs.sas is available for this example in the SAS
Sample Library for SAS/ETS software.

Managing Your Graphics
This section describes techniques for managing your graphics:

• specifying an ODS destination for graphics

• viewing your graphs in the SAS windowing environment

• referring to graphs by name when using ODS

• selecting and excluding graphs from your output

• modifying the appearance of all your graphs with styles

Specifying an ODS Destination for Graphics
Whenever you use ODS Graphics you must specify a valid ODS destination. The
examples in “Getting Started” illustrate how to specify an HTML destination. Other
destinations are specified in a similar way. For example, you can specify an RTF
destination with the following statements.

ods rtf;
ods graphics on;

...SAS statements...

ods graphics off;
ods rtf close;
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The supported ODS destinations are shown in Table 6.1.

Table 6.1. Destinations Supported by ODS Graphics
Destination Destination Family Viewer
DOCUMENT Not Applicable
HTML MARKUP Browser
LATEX MARKUP Ghostview
PCL PRINTER Ghostview
PDF PRINTER Acrobat
PS PRINTER Ghostview
RTF Microsoft Word

Note: In SAS 9.1 the LISTING destination does not support ODS Graphics. You
must specify a supported ODS destination in order to produce ODS Graphics, as
illustrated by all the examples in this chapter.

Specifying a File for ODS Output

You can specify a file name for your output with the FILE= option in the ODS desti-
nation statement, as in the following example:

ods html file = "test.htm";

The output is written to the file test.htm, which is saved in the SAS current folder.
At startup, the SAS current folder is the same directory in which you start your SAS
session. If you are running SAS with the windowing environment in the Windows
operating system, then the current folder is displayed in the status line at the bottom
of the main SAS window, as shown in Figure 6.11.

Figure 6.11. Current Folder (Right Bottom)

If you do not specify a file name for your output, then SAS provides a default file,
which depends on the ODS destination. This file is saved in the SAS current folder.
You can always check the SAS log to verify the name of the file in which your output
is saved. For example, suppose you specify the following statement at startup:

ods html;
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Then the following message is displayed in the SAS log:

NOTE: Writing HTML Body file: sashtml.htm

The default file names for each destination are specified in the SAS Registry. For
more information, refer to the SAS Companion for your operating system.

Viewing Your Graphs in the SAS Windowing Environment

The mechanism for viewing graphics created with ODS can vary depending on your
operating system, which viewers are installed on your computer, and the ODS desti-
nation you have selected.

If you are using the SAS windowing environment in the Windows operating system
and you specify an HTML destination, then by default the results are displayed in the
SAS Results Viewer as they are being generated. Depending on your configuration,
this may also apply to the PDF and RTF destinations.∗ For information about the
windowing environment in a different operating system, refer to the SAS Companion
for that operating system.

If you do not want to view the results as they are being generated, then select Tools
→ Options → Preferences. . . from the menu at the top of the main SAS window.
Then in the Results tab disable View results as they are generated, as shown in
Figure 6.12.

Figure 6.12. Disabling View of Results as Generated

∗If you are using the LATEX or the PS destinations you must use a PostScript viewer, such as
Ghostview.
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You can change the default to use an external viewer instead of the Results Viewer.
Select Tools → Options → Preferences. . . from the menu at the top of the main SAS
window. Then in the Results tab select Preferred web browser, as shown in Figure
6.13. Your results will then be displayed in the default viewer that is configured in
your computer for the corresponding destination.

Figure 6.13. Selecting an External Browser

You can also choose which browser to use for HTML output. Select Tools → Options
→ Preferences. . . from the menu at the top of the main SAS window. Then in
the Web tab select Other browser, and type (or browse) the path of your preferred
browser, as shown in Figure 6.14.
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Figure 6.14. Changing the Default External Browser

Referring to Graphs by Name

Procedures assign a name to each graph they create with ODS Graphics. This en-
ables you to refer to ODS graphs in the same way that you refer to ODS tables (see
the “Using the Output Delivery System” (Chapter 8, SAS/ETS User’s Guide) section
on page 363 in Chapter 8, “Using the Output Delivery System” (SAS/ETS User’s
Guide)). You can determine the names of graphs in several ways:

• You can look up graph names in the “ODS Graphics” section of chapters for
procedures that use ODS Graphics. See, for example, the “ODS Graphics”
(Chapter 21, SAS/ETS User’s Guide) section on page 1333 in Chapter 21, “The
MODEL Procedure.” (SAS/ETS User’s Guide)

• You can use the Results window to view the names of ODS graphs created
in your SAS session. See the section “Using ODS with the SAS Explorer”
(Chapter 8, SAS/ETS User’s Guide) on page 366 for more information.

• You can use the ODS TRACE ON statement to list the names of graphs created
by your SAS session. This statement adds identifying information in the SAS
log (or, optionally, in the SAS listing) for each graph that is produced. See page
157 for an example, and the “Using the Output Delivery System” (Chapter 8,
SAS/ETS User’s Guide) section on page 363 for more information.

Note that the graph name is not the same as the name of the file containing the graph
(see page 164).
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Selecting and Excluding Graphs

You can use graph names to specify which ODS graphs are displayed with the
ODS SELECT and ODS EXCLUDE statements. See the section “Using the Output
Delivery System” (Chapter 8, SAS/ETS User’s Guide) on page 363 for information
on how to use these statements.

Example

This example revisits the analysis described in the section “Using the ODS
GRAPHICS Statement and Procedure Options” on page 150.

To determine which output objects are created by ODS, you specify the ODS TRACE
ON statement prior to the procedure statements.

ods trace on;

ods html;
ods graphics on;

proc ucm data=melanoma;
id year interval=year;
model Melanoma_Incidence_Rate;
irregular;
level variance=0 noest;
slope variance=0 noest;
cycle rho=1 noest=rho plot=smooth;
estimate back=5;
forecast back=5 lead=10 plot=forecasts print=none;

run;

ods graphics off;
ods html close;

Figure 6.15 displays an extract from the trace record, which is added to the SAS log.
By default, the UCM procedure creates several table objects and two graph objects
named “SmoothedCyclePlot” and “ModelForecastsPlots.” In addition to the name,
the trace record provides the label, template, and path for each output object. Graph
templates are distinguished from table templates by a naming convention that uses the
procedure name in the second level and the word “Graphics” in the third level. For
example, the fully qualified template name for the forecasts plot created by PROC
UCM, as shown in Figure 6.15, is

Ets.UCM.Graphics.ModelForecastsPlot
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Output Added:
-------------
Name: DataSet
Label: Input Data Set
Template: ETS.UCM.DataSet
Path: UCM.DataSet
-------------
.
.
.

Output Added:
-------------
Name: Forecasts
Label: Forecasts
Template: ets.UCM.Forecasts
Path: UCM.Results.Forecasts
-------------
WARNING: Statistical graphics displays created with ODS are

experimental in this release.

Output Added:
-------------
Name: SmoothedCyclePlot
Label: Smoothed Cycle Component
Template: ets.UCM.Graphics.S_Cycle
Path: UCM.Results.SmoothedCyclePlot
-------------

Output Added:
-------------
Name: ModelForecastsPlot
Label: Model and Forecast Plot
Template: ets.UCM.Graphics.ModelForecastsPlot
Path: UCM.Results.ModelForecastsPlot
-------------

Figure 6.15. Extract from the ODS Trace Record in SAS Log
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Note that you can specify the LISTING option in the ODS TRACE ON statement to
write the trace record to the LISTING destination:

ods trace on / listing;

The following statements use the ODS SELECT statement to specify that only the two
graph objects named “Contour” and “SurfacePlot” are to be included in the HTML
output.

ods html;
ods graphics on;

ods select ModelForecastsPlot;

proc ucm data=melanoma noprint;
id year interval=year;
model Melanoma_Incidence_Rate;
irregular;
level variance=0 noest;
slope variance=0 noest;
cycle rho=1 noest=rho plot=smooth;
estimate back=5;
forecast back=5 lead=10 plot=(forecasts) print=none;

run;

ods graphics off;
ods html close;

A sample program named odsgrgs.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Specifying Styles for Graphics

ODS styles control the overall look of your output. A style definition provides for-
matting information for specific visual aspects of your SAS output. For ODS tables
this information typically includes a list of font definitions (each font defines a fam-
ily, size, weight, and style) and a list of colors, which are associated with common
areas of printed output, including titles, footnotes, by-groups, table headers, and table
cells.

Starting with SAS 9, ODS styles also include graphical appearance information such
as line and marker properties in addition to font and color information. Furthermore,
in SAS 9.1, ODS styles include graphics appearance informats for common elements
of statistical graphics created with ODS Graphics. These elements include fitted lines,
confidence and prediction bands, and outliers.

For more information about styles, refer to the “TEMPLATE Procedure: Creating a
Style Definition” in the SAS Output Delivery System User’s Guide.

Specifying a Style

You can specify a style using the STYLE= option in a valid ODS destination,† such as
HTML, PDF, RTF, or PRINTER. Each style produces output with the same content,
but a somewhat different visual appearance. For example, the following statement
request output using the “Journal” style.

ods html style = Journal;

Any SAS-supplied or user-defined style can be used for ODS Graphics. However, of
the SAS-supplied styles for SAS 9.1, four are specifically designed and recommended
for use with ODS Graphics:

• Analysis

• Default

• Journal

• Statistical

Figure 6.16 and Figure 6.17 illustrate the difference between the “Default” and the
“Journal” styles for the HTML destination. Note that the appearance of tables and
graphics is coordinated within a particular style. This is also illustrated in the series
of examples starting with Example 6.11.

For more information about styles for ODS Graphics, see the section “Styles for
Graphics” on page 174 or refer to the “ODS Statistical Graphics and ODS Styles:
Usage and Reference (Experimental)” at
http://support.sas.com/documentation/onlinedoc/base/.

†Style definitions do not apply to the LISTING destination, which uses the SAS monospace format
by default for output tables. The LISTING destination is not a valid destination for ODS Graphics in
SAS 9.1.
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Figure 6.16. HTML Output with Default Style
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Figure 6.17. HTML Output with Journal Style

Graphics Image Files
Accessing your graphs as individual image files is useful when you want to include
them in various types of documents. The default image file type depends on the ODS
destination, but there are other supported image file types that you can specify. You
can also specify the names for your graphics image files and the directory in which
you want to save them.

This section describes the image file types supported by ODS Graphics, and it ex-
plains how to name and save graphics image files.
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Describing Supported Image File Types

If you are using an HTML or a LATEX destination, your graphs are individually
produced in a specific image file type, such as GIF or PostScript.

If you are using a destination in the PRINTER family or the RTF destination, the
graphs are contained in the ODS output file and cannot be accessed as individual
image files. However, you can open an RTF output file in Microsoft Word and then
copy and paste the graphs into another document, such as a Microsoft PowerPoint
presentation; this is illustrated in Example 6.3.

Table 6.2 shows the various ODS destinations supported by ODS Graphics, the
viewer that is appropriate for displaying graphs in each destination, and the image
file types supported for each destination.

Table 6.2. Destinations and Image File Types Supported by ODS Graphics
Destination Destination

Family
Viewer Image File Types

DOCUMENT Not Applicable Not Applicable
HTML MARKUP Browser GIF (default), JPEG, PNG
LATEX MARKUP Ghostview PostScript (default), EPSI, GIF,

JPEG, PNG
PCL PRINTER Ghostview Contained in PostScript file
PDF PRINTER Acrobat Contained in PDF file
PS PRINTER Ghostview Contained in PostScript file
RTF Microsoft Word Contained in RTF file

Note: In SAS 9.1 the LISTING destination does not support ODS Graphics. You
must specify a supported ODS destination in order to produce ODS Graphics, as
illustrated by all the examples in this chapter.
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Naming Graphics Image Files

The names of graphics image files are determined by a base file name, an index
counter, and an extension. By default, the base file name is the ODS graph name
(see page 156). The index counter is set to zero when you begin a SAS session, and
it is increased by one after you create a graph, independently of the graph type or the
SAS procedure that creates it. The extension indicates the image file type.

For instance, if you run the example on page 150 at the beginning of a SAS
session, the two graphics image files created are SmoothedCyclePlot0.gif and
ModelForecastsPlot1.gif. If you immediately rerun this example, then ODS cre-
ates the same graphs in different image files named SmoothedCyclePlot2.gif and
ModelForecastsPlot3.gif.

You can specify the RESET option in the ODS GRAPHICS statement to reset the
index counter to zero. This is useful to avoid duplication of graphics image files if
you are rerunning a SAS program in the same session.

ods graphics on / reset;

Note: The index counter is initialized to zero at the beginning of your SAS session or
if you specify the RESET option in the ODS GRAPHICS statement. Graphics image
files with the same name are overwritten.

You can specify a base file name for all your graphics image files with the
IMAGENAME= option in the ODS GRAPHICS statement. For example:

ods graphics on / imagename = "MyName";

You can also specify

ods graphics on / imagename = "MyName" reset;

With the preceding statement, the graphics image files are named MyName0,
MyName1, and so on.

You can specify the image file type for the HTML or LATEX destinations with the
IMAGEFMT= option in the ODS GRAPHICS statement. For example:

ods graphics on / imagefmt = png;

For more information, see the “ODS GRAPHICS Statement” section on page 179.
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Saving Graphics Image Files

Knowing where your graphics image files are saved and how they are named is par-
ticularly important if you are running in batch mode, if you have disabled the SAS
Results Viewer (see page 154), or if you plan to access the files for inclusion in a doc-
ument. The following discussion assumes you are running SAS under the Windows
operating system. If you are running on a different operating system, refer to the SAS
Companion for your operating system.

Your graphics image files are saved by default in the SAS current folder. If you
are using the SAS windowing environment, the current folder is displayed in the
status line at the bottom of the main SAS window (see also page 153). If you are
running your SAS programs in batch mode, the graphs are saved by default in the
same directory where you started your SAS session.

For instance, suppose the SAS current folder is C:\myfiles. If you specify the ODS
GRAPHICS statement, then your graphics image files are saved in the directory
C:\myfiles. Unlike traditional high resolution graphics created with SAS/GRAPH,
ODS Graphics are not temporarily stored in a catalog in your Work directory.

With the HTML and the LATEX destinations, you can specify a directory for saving
your graphics image files. With the PRINTER and RTF destinations, you can only
specify a directory for your output file. The remainder of this discussion provides
details for each destination type.

HTML Destination

If you are using the HTML destination, the individual graphs are created as GIF
files by default. You can use the PATH= and GPATH= options in the ODS HTML
statement to specify the directory where your HTML and graphics files are saved,
respectively. This also gives you more control over your graphs. For example, if you
want to save your HTML file named test.htm in the C:\myfiles directory, but you
want to save your graphics image files in C:\myfiles\gif, then you specify

ods html path = "C:\myfiles"
gpath = "C:\myfiles\gif"
file = "test.htm";

When you specify the URL= suboption with the GPATH= option, SAS creates rela-
tive paths for the links and references to the graphics image files in the HTML file.
This is useful for building output files that are easily moved from one location to an-
other. For example, the following statements create a relative path to the gif directory
in all the links and references contained in test.htm.

ods html path = "C:\myfiles"
gpath = "C:\myfiles\gif" (url="gif/")
file = "test.htm";
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If you do not specify the URL= suboption, SAS creates absolute paths that are hard-
coded in the HTML file; these may cause broken links if you move the files. For more
information, refer to the ODS HTML statement in the “Dictionary of ODS Language
Statements” (SAS Output Delivery System User’s Guide).

LATEX Destination

LATEX is a document preparation system for high-quality typesetting. The experimen-
tal ODS LATEX statement produces output in the form of a LATEX source file that is
ready to compile in LATEX.

When you request ODS Graphics for a LATEX destination, ODS creates the re-
quested graphs as PostScript files by default, and the LATEX source file includes refer-
ences to these image graphics files. You can compile the LATEX file or you can access
the individual PostScript files to include your graphs in a different LATEX document,
such as a paper that you are writing.

You can specify the PATH= and GPATH= options in the ODS LATEX statement, as
explained previously for the ODS HTML statement. See Example 6.4 for an illustra-
tion.

The ODS LATEX statement is an alias for the ODS MARKUP statement using the
TAGSET=LATEX option. For more information, refer to the ODS MARKUP state-
ment in the “Dictionary of ODS Language Statements” (SAS Output Delivery System
User’s Guide).

If you are using a LATEX destination with the default PostScript image file type, your
ODS graphs are created in gray-scale, regardless of the style you are using. When
you use this destination, it is recommended that you use the “Journal” style to obtain
high quality graphics. For more information about styles, see the “Specifying Styles
for Graphics” section on page 160.

To create color graphics using a LATEX destination, specify JPEG, GIF, or PNG
with the IMAGEFMT= option in the ODS GRAPHICS statement. If you spec-
ify GIF you can use a distiller to obtain a PostScript or a PDF file. If you spec-
ify JPEG you may need to include the \DeclareGraphicsExtensions and the
\DeclareGraphicsRule commands in the preamble of your LATEX file. For more
information, refer to the LATEX documentation for the graphicx package.

PRINTER and RTF Destinations

If you are using a destination in the PRINTER family (PCL, PDF, PS) or the RTF
destination, the graphs are contained in the output file and cannot be accessed as
individual graphics image files. You can specify the path where the output file is to
be saved using the FILE= option of the ODS destination statement. For example,
suppose that you specify

ods pdf file = "test.pdf";

Then your ODS output is saved as the PDF file test.pdf in the SAS current folder
(for example, in C:\myfiles).

166



Customizing Graphics with Templates

You can specify a full path name for your output with the FILE= option. For instance
to save your PDF file to the directory C:\temp you specify

ods pdf file = "C:\temp\test.pdf";

You can always check the SAS log to verify where your output is saved. For example,
the preceding statement would result in the following log message:

NOTE: Writing ODS PDF output to DISK destination
"C:\temp\test.pdf", printer "PDF".

Customizing Graphics with Templates
This section describes how to locate templates for ODS Graphics, and how to display,
edit, and save these templates. It also provides an overview of the graph template
language. Before presenting these details, a review of the TEMPLATE procedure
terminology is helpful.

A template definition is a set of SAS statements that can be run with the TEMPLATE
procedure to create a compiled template. Two common types of template definitions
are table definitions and style definitions. A table definition describes how to display
the output for an output object that is to be rendered as a table, and a style definition
provides formatting information for specific visual aspects of your SAS output.

A third type of template definition is a graph template definition (or graph defini-
tion for short), which controls the layout and details of graphs produced with ODS
Graphics. Graph definitions begin with a DEFINE STATGRAPH statement and end
with an END statement.

A template store is a member of a SAS data library that stores compiled templates
created by the TEMPLATE procedure. Default templates supplied by SAS are saved
in the Sashelp.Tmplmst template store.

In common applications of ODS Graphics, it should not be necessary to modify the
default template for each graph, which is supplied by SAS. However, when cus-
tomization is necessary, you can modify the default template with the graph template
language in the TEMPLATE procedure.

If you are using the SAS windowing environment, the easiest way to display, edit,
and save your templates is by using the Templates window. For detailed information
about managing templates, refer to the “TEMPLATE Procedure: Managing Template
Stores” in the SAS Output Delivery System User’s Guide.

For details concerning the syntax of the graph template language, refer to the
“TEMPLATE Procedure: Creating ODS Statistical Graphics Output (Experimental)”
at http://support.sas.com/documentation/onlinedoc/base/.
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Locating Templates

The first step in customizing a graph is to determine which template was used to
create the original graph. The easiest way to do this is to specify the ODS TRACE
ON statement prior to the procedure statements that created the graph. The fully
qualified template name is displayed in the SAS log. This is illustrated in Example
6.7 and the section “Using the Output Delivery System” (Chapter 8, SAS/ETS User’s
Guide) on page 363. Note that the ODS TRACE ON statement applies to graphs just
as it does to tables.

Displaying Templates

Once you have found the fully qualified name of a template, you can display its
definition using one of these methods:

• Open the Templates window by typing odstemplates (or odst for short) in the
command line, as shown in Figure 6.18. If you expand the Sashelp.Tmplmst
icon, you can browse all the available templates and double-click on any tem-
plate icon to display its definition. This is illustrated in Example 6.7.

Figure 6.18. Requesting the Templates Window in the Command Line

• Use the SOURCE statement in PROC TEMPLATE to display a template defi-
nition in the SAS log. For example, the following statements display the default
definition of the residual Q-Q plot in PROC MODEL.

proc template;
source Ets.Model.Graphics.QQPlot;

run;
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Editing Templates

You can modify the format and appearance of a particular graph by modifying its
template. There are several ways to edit a template definition:

• Find the template icon in the Templates window, right-click on the icon, and
select Edit from the pull-down menu. This opens a Template Editor window
in which you can edit the template definition. This approach is illustrated in
Example 6.7.

• Find the template icon in the Templates window and double-click on the tem-
plate icon to display the template definition. Copy and paste the template defi-
nition into the Program Editor.

• Use the SOURCE statement with the FILE= option in PROC TEMPLATE.
This writes the template definition to a file that you can modify. For example:

proc template;
source Ets.Model.Graphics.QQPlot /

file = "qqtpl.sas";
run;

By default the file is saved in the SAS current folder. Note that with this ap-
proach you have to add a PROC TEMPLATE statement before the template
definition statements and a RUN statement at the end before submitting your
modified definition.

Note: Graph definitions are self-contained and do not support parenting as do table
definitions. For more information about graph definitions and the graph template
language see the “Introducing the Template Language for Graphics” section on page
172.
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Saving Customized Templates

After you edit the template definition you can submit your PROC TEMPLATE state-
ments as you would for any other SAS program:

• If you are using the Template Editor window, select Submit from the Run
menu. For example, see Example 6.7.

• Alternatively, submit your PROC TEMPLATE statements in the Program
Editor.

ODS automatically saves the compiled template in the first template store that it can
update, according to the currently defined ODS path. If you have not changed the
ODS path, then the modified template is saved in the Sasuser.Templat template
store. You can display the current ODS path with the following statement.

ods path show;

By default, the result of this statement is displayed in the SAS log, as illustrated in
Figure 6.19.

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

Figure 6.19. Result of ODS PATH SHOW Statement
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Using Customized Templates

When you create ODS output (either graphs or tables) with a SAS program, ODS
searches sequentially through each element of the ODS PATH list for the first
template that matches the ODS name of each output object requested. This tem-
plate is used to produce the output object. If you have not changed the default
ODS path, then the first template store searched is Sasuser.Templat, followed by
Sashelp.Tmplmst.

Note that you can have templates with the same name in different template stores.
The template that is used is the first one found in the ODS path.

The ODS PATH statement specifies which locations to search for definitions that
were created by PROC TEMPLATE, as well as the order in which to search for them.
You can change the default path by specifying different locations in the ODS PATH
statement. For example, the following statement changes the default ODS path so
that the first template store searched is Work.Mypath.

ods path work.mypath(update) sashelp.tmplmst(read);

The UPDATE option provides update access as well as read access to Work.Mypath.
The READ option provides read-only access to Sashelp.Tmplmst.

For more information, refer to the ODS PATH Statement in the “Dictionary of ODS
Language Statements” (SAS Output Delivery System User’s Guide).

Reverting to Default Templates

Customized templates are stored in Sasuser.Templat or in user-defined template
stores. The default templates provided by SAS are saved in the read-only template
store Sashelp.Tmplmst. Consequently, if you have modified any of the default tem-
plates and you want to create ODS Graphics with the original default templates, one
way to do so is by changing your ODS path as follows.

ods path sashelp.tmplmst(read) sasuser.templat(update);

A second approach, which is highly recommended, is to save all your customized
templates in a user-defined template store (for example Work.Mypath). Then you
can reset the default ODS path with the ODS PATH RESET statement:

ods path reset;

A third approach is to save your customized definition as part of your SAS program
and delete the corresponding template from your Sasuser.Templat template store.

Example 6.7 illustrates all the steps of displaying, editing, saving and using cus-
tomized templates.
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Introducing the Template Language for Graphics

Graph template definitions are written in a graph template language, which has been
added to the TEMPLATE procedure in SAS 9.1. This language includes statements
for specifying plot layouts (such as grids or overlays), plot types (such as scatter
plots and histograms), and text elements (such as titles, footnotes, and insets). It also
provides support for built-in computations (such as histogram binning) and evaluation
of expressions. Options are available for specifying colors, marker symbols, and
other attributes of plot features.

Graph template definitions begin with a DEFINE STATGRAPH statement in PROC
TEMPLATE, and they end with an END statement. You can specify the DYNAMIC
statement to define dynamic variables, the MVAR and NMVAR statements to define
macro variables, and the NOTES statement to provide descriptive information about
the graph.

The statements available in the graph template language can be classified as follows:

• Control statements, which specify conditional or iterative flow of control. By
default, flow of control is sequential. In other words, each statement is used in
the order in which it appears.

• Layout statements, which specify the arrangement of the components of the
graph. Layout statements are arranged in blocks which begin with a LAYOUT
statement and end with an ENDLAYOUT statement. The blocks can be nested.
Within a layout block, you can specify plot, text, and other statement types to
define one or more graph components. Statement options provide control for
attributes of layouts and components.

• Plot statements, which specify a number of commonly used displays, includ-
ing series plots, autocorrelation plots, histograms, and scatter plots. Plot state-
ments are always provided within a layout block. The plot statements include
options to specify which data columns from the source objects are used in the
graph. For example, in the SCATTERPLOT statement used to define a scatter
plot, there are mandatory X= and Y= options that specify which data columns
are used for the x- and y-variables in the plot, and there is a GROUP= option
that specifies a data column as an optional classification variable.

• Text statements, which specify descriptions accompanying the graphs. An
entry is any textual description, including titles, footnotes, and legends, and it
can include symbols to identify graph elements.

As an illustration, the following statements display the template definition of the
Series plot available in PROC TIMESERIES (see “ODS Graphics” (Chapter 29,
SAS/ETS User’s Guide) in Chapter 29, “The TIMESERIES Procedure” (SAS/ETS
User’s Guide)).
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proc template;
link Ets.Timeseries.Graphics.SeriesPlot to

Statgraph.TimeSeries.SeriesPlot;
define statgraph Statgraph.TimeSeries.SeriesPlot;

dynamic title Time Series IntegerTime;
layout Gridded;

EntryTitle TITLE / padbottom=5;
layout Overlay /

XGrid = True
YGrid = True
XAxisOpts = ( Integer = INTEGERTIME );
SeriesPlot x = TIME y = SERIES /

markers = true
markercolor = GraphDataDefault:contrast
markersymbol = GraphDataDefault:markersymbol
markersize = GraphDataDefault:markersize
linecolor = StatGraphDataLine:contrastcolor
linepattern = StatGraphFitLine:linestyle;

EndLayout;
EndLayout;

end;
run;

The DEFINE STATGRAPH statement in PROC TEMPLATE creates the graph tem-
plate definition. The DYNAMIC statement defines dynamic variables. The variable
TITLE provides the title of the graph. The variables TIME and SERIES contain the
time variable and the time series. The variable INTEGERTIME is a binary variable
that can assume a value of TRUE or FALSE depending on whether an ID statement
is specified in the procedure. You can use these dynamic text variables in any text
element of the graph definition.

The overall display is specified with the LAYOUT GRIDDED statement. The title of
the graph is specified with the ENTRYTITLE statement inside a layout overlay block,
which is nested within the main layout. The main plot is a series plot specified with
the SERIESPLOT statement. The options in the SERIESPLOT statement, which
are given after the slash, specify the color, symbol,and size for the markers, and
color and pattern for the lines using indirect references to style attributes of the form
style-element:attribute. The values of these attributes are specified in the
definition of the style you are using, and so they are automatically set to different
values if you specify a different style. For more information about style references
see the “Styles for Graphics” section on page 174.

The second ENDLAYOUT statement ends the main layout block and the END state-
ment ends the graph template definition.

Note: Graph template definitions are self-contained and do not support parenting (in-
heritance) as do table definitions. The EDIT statement is not supported.

For details concerning the syntax of the graph template language, refer to the
“TEMPLATE Procedure: Creating ODS Statistical Graphics Output (Experimental)”
at http://support.sas.com/documentation/onlinedoc/base/.
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Styles for Graphics
This section provides an overview of the style elements for ODS Graphics. It also
describes how to customize a style definition and how to specify a default style for
all your output.

Introducing Style Elements for Graphics

An ODS style definition is composed of a set of style elements. A style element is a
collection of style attributes that apply to a particular feature or aspect of the output.
A value is specified for each attribute in a style definition.

Style definitions control the overall appearance of ODS tables and graphs. For ODS
tables, style definitions specify features such as background color, table borders, and
color scheme, and they specify the fonts, sizes, and color for the text and values
in a table and its headers. For ODS graphs, style definitions specify the following
features:

• background color

• graph dimensions (height and width). See Example 6.13 for an illustration.

• borders

• line styles for axes and grid lines

• fonts, sizes, and colors for titles, footnotes, axis labels, axis values, and data
labels. See Example 6.11 for an illustration.

• marker symbols, colors, and sizes for data points and outliers

• line styles for needles

• line and curve styles for fitted models and predicted values. See Example 6.12
for an illustration.

• line and curve styles for confidence and prediction limits

• fill colors for histogram bars, confidence bands, and confidence ellipses

• colors for box plot features

• colors for surfaces

• color ramps for contour plots

In the templates supplied by SAS for ODS graphs, options for plot features are always
specified with a style reference of the form style-element:attribute rather
than a hard-coded value. For example, the symbol, color, and size of markers for
basic series plots are specified in a template SERIESPLOT statement as follows:

SeriesPlot x=TIME y=SERIES /
markercolor = GraphDataDefault:contrast
markersymbol = GraphDataDefault:markersymbol
markersize = GraphDataDefault:markersize;
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This guarantees a common appearance for markers used in all basic series plots,
which is controlled by the GraphDataDefault element of the style definition that
you are using.

In general, the ODS graph features listed above are determined by style element
attributes unless they are overridden by a statement or option in the graph template.

In order to create your own style definition or to modify a style definition for
use with ODS Graphics, you need to understand the relationships between style
elements and graph features. This information is provided in the section “ODS
Statistical Graphics and ODS Styles: Usage and Reference (Experimental)” at
http://support.sas.com/documentation/onlinedoc/base/.

Style definitions are created and modified with the TEMPLATE procedure. For more
information, refer to the “TEMPLATE Procedure: Creating a Style Definition” in the
SAS Output Delivery System User’s Guide.

Customizing Style Definitions

The default style definitions that SAS provides are stored in the “Styles” directory of
Sashelp.Tmplmst.

You can display, edit, and save style definitions using the same methods available for
modifying template definitions, as explained in the sections beginning on page 168.
In particular, you can display style definitions using one of these methods:

• If you are using the Templates window in the SAS windowing environment,
expand the Sashelp.Tmplmst node under Templates, and then select Styles to
display the contents of this folder.

• Use the SOURCE statement in PROC TEMPLATE. For example, the following
statements display the “Journal” style definition in the SAS log.

proc template;
source Styles.Journal;

run;

Specifying a Default Style

The default style for each ODS destination is specified in the SAS Registry. For
example, the default style for the HTML destination is “Default,” and for the RTF
destination it is “Rtf.”

You can specify a default style for all your output in a particular ODS destination.
This is useful if you want to use a different SAS-supplied style, if you have modified
one of the SAS-supplied styles (see page 175), or if you have defined your own style.
For example, you can specify the “Journal” style for all your RTF output.

The recommended approach for specifying a default style is as follows. Open the
SAS Registry Editor by typing regedit in the command line. Expand the node ODS
→ DESTINATIONS and select a destination (for example, select RTF). Double-
click the Selected Style item, as illustrated in Figure 6.20, and specify a style. This
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can be any SAS-supplied style or a user-defined style, as long as it can be found with
the current ODS path (for example, specify Journal). You can specify a default style
for the HTML, MARKUP, and PRINTER destinations in a similar way.

Figure 6.20. SAS Registry Editor

Note: ODS searches sequentially through each element of the ODS PATH list for the
first style definition that matches the name of the style specified in the SAS Registry.
The first style definition found is used. If you are specifying a customized style as
your default style, the following are useful suggestions:

• If you save your style in Sasuser.Templat, verify that the name of your default
style matches the name of the style specified in the SAS Registry. For example
suppose the “Rtf” style is specified for the RTF destination in the SAS Registry.
You can name your style Rtf and save it in Sasuser.Templat. This blocks the
“Rtf” style in Sashelp.Tmplmst.

• If you save your style in a user-defined template store, verify that this template
store is the first in the current ODS PATH list. Include the ODS PATH statement
in your SAS autoexec file so that it is executed at startup.

For the HTML destination, an alternative approach for specifying a default style is as
follows. From the menu at the top of the main SAS window select Tools → Options
→ Preferences. . . . In the Results tab check the Create HTML box and select a
style from the pull-down menu. This is illustrated in Figure 6.21.
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Figure 6.21. Selecting a Default Style for HTML Destination
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Details

Procedures Supporting ODS Graphics

The following SAS procedures support ODS Graphics in SAS 9.1:

Base SAS

• CORR

SAS/ETS

• ARIMA

• AUTOREG

• ENTROPY

• EXPAND

• MODEL

• SYSLIN

• TIMESERIES

• UCM

• VARMAX

• X12

SAS High-Performance Forecasting

• HPF

SAS/STAT

• ANOVA

• CORRESP

• GAM

• GENMOD

• GLM

• KDE

• LIFETEST

• LOESS

• LOGISTIC

• MI

• MIXED

• PHREG

• PRINCOMP

• PRINQUAL

• REG

• ROBUSTREG

For details on the specific graphs available with a particular procedure, see the “ODS
Graphics” section in the corresponding procedure chapter.

Operating Environments Supporting ODS Graphics

The following operating systems are supported:

• Windows (32- and 64- bit)

• OpenVMS Alpha

• z/OS (OS/390)

• UNIX (AIX, HP-UX, Tru64 UNIX, Solaris, Linux)

For information specific to an operating system, refer to the SAS Companion for that
operating system.
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Creating ODS Graphics in z/OS

Creating ODS Graphics with the z/OS (OS/390) operating system requires the fol-
lowing to be configured by your System Administrator:

• Java

• UNIX File System components

For more information, refer to the sections “Installing UNIX File System
Components” and “Configuring SAS Software for Use with the Java Platform” of
the SAS System Configuration Guide.

In addition, when you specify an ODS HTML destination you must specify the
PATH= or GPATH= option with a valid UNIX directory.

ODS GRAPHICS Statement

The basic syntax for enabling ODS Graphics is

ods graphics on;

You specify this statement prior to your procedure statements, as illustrated in the
“Using the ODS GRAPHICS Statement” section on page 145. Any procedure that
supports ODS Graphics then produces graphics, either by default or when you specify
procedure options for requesting particular graphs.

To disable ODS Graphics, specify

ods graphics off;

The following is a summary of the ODS GRAPHICS statement syntax. You can find
the complete syntax in the section “ODS Graphics Statement” in the “Dictionary of
ODS Language Statements” (SAS Output Delivery System User’s Guide).

Syntax

ODS GRAPHICS < OFF | ON < / options > > ;

enables ODS to create graphics automatically. The default is ON.

Options

ANTIALIAS | NOANTIALIAS
ANTIALIAS = ON | OFF

controls the use of antialiasing to smooth the components of a graph.

OFF

suppresses the use of antialiasing for components other than text.

ON

179



General Information � Statistical Graphics Using ODS (Experimental)

specifies that antialiasing is to be used to smooth jagged edges of all of the
components in a graph.

Text displayed in a graph is always antialiased. If the number of observations in the
ODS output object exceeds 250, then antialiasing is not used, even if you specify the
option ANTIALIAS=ON. The default is ON.

IMAGEFMT = < image-file-type | STATIC | STATICMAP >
specifies the image file type (directly or indirectly) for displaying graphics in ODS
output. The default image file type depends on the ODS destination; it is used when
you specify IMAGEFMT=STATIC. You can also specify other supported image file
types. This option only applies to ODS Graphics, and it has no effect on traditional
high resolution graphics that rely on GOPTIONS values. The default is STATIC.

image-file-type

specifies the type of image you want to add to your graph. If the image file type
is not valid for the active output destination, the default is used instead. Table
6.3 lists the image file types supported for the ODS destinations that are valid
with ODS Graphics.

STATIC

specifies the best quality image file type for the active output destination.

STATICMAP

applies only with the HTML destination and specifies that an HTML image
map is to be created for tool tip support. The image file type used is the same
as with STATIC. For an illustration see Example 6.2. If the number of obser-
vations in the data set exceeds 500, the image map is not generated.

Table 6.3. Supported Destinations and Image File Types
Destination Values for IMAGEFMT= Option
HTML GIF (default), JPEG, PNG
LATEX PS (default), EPSI, GIF, JPEG, PNG
PCL Not applicable
PDF Not applicable
PS Not applicable
RTF Not applicable

Note: For PCL, PDF, PS, and RTF, the IMAGEFMT= option is not applicable be-
cause the graph is contained in the output file. See Table 6.2.

IMAGENAME = <file-name>
specifies the base image file name. The default is the name of the output object. You
can determine the name of the output object by using the ODS TRACE statement.
The base image name should not include an extension. ODS automatically adds
the increment value and the appropriate extension (which is specific to the output
destination that has been selected).

RESET
resets the index counter appended to image file names.
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Note: The index counter is initialized to zero at the beginning of your SAS session or
if you specify the RESET option in the ODS GRAPHICS statement. Graphics image
files with the same name are overwritten.

Examples
This section provides a series of examples which illustrate various tasks that can be
performed with ODS Graphics. The examples are presented in increasing order of
task complexity and should be read sequentially.
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Example 6.1. Selecting and Excluding Graphs

This example illustrates how to select and exclude ODS graphs from your output.

The “Getting Started” example on page 145 uses the MODEL procedure to produce
the plots shown in Figure 6.1 through Figure 6.8.

The ODS TRACE ON statement requests a record of the output objects created by
ODS, which is displayed in the SAS log as shown in Output 6.1.1.

ods trace on;
p

ods html;
ods graphics on;

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;

ods graphics off;
ods html close;
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Output 6.1.1. Partial ODS Trace Record in SAS Log

Output Added:
-------------
Name: ModSummary
Label: Variable Counts
Template: ets.model.ModSummary
Path: Model.ModSum.ModSummary
-------------

.

.

.

Output Added:
-------------
Name: EstSummaryStats
Label: Estimation Summary Statistics
Template: ets.model.EstSummaryStats
Path: Model.OLS.EstSummaryStats
-------------
WARNING: Statistical graphics displays created with ODS are

experimental in this release.

Output Added:
-------------
Name: StudentResidualPlot
Label: Studentized Residuals of LHUR
Template: ETS.Model.Graphics.StudentResidualPlot
Path: Model.OLS.StudentResidualPlot
-------------

Output Added:
-------------
Name: CooksD
Label: Cook’s D for the Residuals of LHUR
Template: ETS.Model.Graphics.CooksD
Path: Model.OLS.CooksD
-------------

.

.

.

Output Added:
-------------
Name: ResidualHistogram
Label: Histogram of Residuals of LHUR
Template: ETS.Model.Graphics.ResidualHistogram
Path: Model.OLS.ResidualHistogram
-------------

You can use the ODS SELECT statement to restrict your output to a particular subset
of ODS tables or graphs. The following statements restrict the output to the Cook’s
D plot, which is shown in Output 6.1.2.
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ods html;
ods graphics on;

p

proc model data=sashelp.citimon;
ods select CooksD;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;

ods graphics off;
ods html close;

Output 6.1.2. Cook’s D Plot

Conversely, you can use the ODS EXCLUDE statement to display all the output with
the exception of a particular subset of tables or graphs. For example, to exclude the
studentized residuals plot from the output you specify

ods exclude StudentResidualPlot;

See the “Selecting and Excluding Graphs” section on page 157 for further informa-
tion.

A sample program named odsgr01.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.2. Creating Graphs with Tool Tips in HTML

This example demonstrates how to request graphics in HTML with tool tip displays,
which appear when you move a mouse over certain features of the graph. When
you specify the HTML destination and the IMAGEFMT=STATICMAP option in the
ODS GRAPHICS statement, then the HTML file output file is generated with an
image map of coordinates for tool tips. The individual graphs are saved as GIF files.

Example 29.3 (Chapter 29, SAS/ETS User’s Guide) of Chapter 29, “The
TIMESERIES Procedure” utilizes the SASHELP.WORKERS data set to study
the time series of electrical workers and its interaction with the series of masonry
workers.

The following statements request a plot of the series of electrical workers using the
PLOT (Chapter 29, SAS/ETS User’s Guide) option in the PROC TIMESERIES state-
ment.

ods html;
ods graphics on / imagefmt = staticmap;

proc timeseries data=sashelp.workers out=_null_
plot=series;
id date interval=month;
var electric;
crossvar masonry;

run;

ods graphics off;
ods html close;

Output 6.2.1 displays the series plot that is included in the HTML output.

Moving the mouse over a data point shows a tool tip with the corresponding identi-
fying information.
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Output 6.2.1. Series Plot with Tool Tips

Note: Graphics with tool tips are only supported for the HTML destination.

A sample program named odsgr02.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.3. Creating Graphs for a Presentation

The RTF destination provides the easiest way to create ODS graphs for inclusion in a
document or presentation. You can specify the ODS RTF statement to create a file that
is easily imported into a word processor (such as Microsoft Word or WordPerfect) or
a presentation (such as Microsoft PowerPoint).

In this example, the following statements request that the output of Example 6.1 be
saved in the file model.rtf.

ods rtf file = "model.rtf";
ods graphics on;

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;

ods graphics off;
ods rtf close;

The output file includes various tables and the following plots: a studentized residual
plot, a Cook’s D plot, a predicted by actual values plot, an autocorrelation of resid-
uals, a partial autocorrelation of residuals, an inverse autocorrelation of residuals, a
QQ plot of residuals, and a histogram of the residuals. The studentized residuals plot
is shown in Output 6.3.1.
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Output 6.3.1. Studentized Residuals Plot

If you are running SAS in the Windows operating system, it is easy to include your
graphs in a Microsoft PowerPoint presentation when you generate RTF output. You
can open the RTF file in Microsoft Word and simply copy and paste the graphs into
Microsoft PowerPoint. In general, RTF output is convenient for exchange of graphi-
cal results between Windows applications through the clipboard.

Alternatively, if you request ODS Graphics using the HTML destination, then your
individual graphs are created as GIF files by default. You can insert the GIF files
into a Microsoft PowerPoint presentation. See “Naming Graphics Image Files” and
“Saving Graphics Image Files” for information on how the image files are named and
saved.

A sample program named odsgr03.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.4. Creating Graphs in PostScript Files

This example illustrates how to create individual graphs in PostScript files, which is
particularly useful when you want to include them in a LATEX document.

The following statements specify a LATEX destination‡ for the output in Example
6.3 with the “Journal” style.

ods latex style=Journal;
ods graphics on;

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;

ods graphics off;
ods latex close;

The “Journal” style displays gray-scale graphs that are suitable for a journal. When
you specify the ODS LATEX destination, ODS creates a PostScript file for each
individual graph in addition to a LATEX source file that includes the tabular output
and references to the PostScript files. By default these files are saved in the SAS
current folder. If you run this example at the beginning of your SAS session, the
studentized residual plot shown in Output 6.4.1 is saved by default in a file named
StudentResidualPlot0.ps. See page 164 for details about how graphics image files
are named.

‡The LATEX destination in ODS is experimental in SAS 9.1.
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Output 6.4.1. Histogram Using Journal Style

If you are writing a paper, you can include the graphs in your own LATEX source file
by referencing the names of the individual PostScript graphics files. In this situation,
you may not find necessary to use the LATEX source file created by SAS.

If you specify PATH= and GPATH= options in the ODS LATEX statement, your
tabular output is saved as a LATEX source file in the directory specified with the PATH=
option, and your graphs are saved as PostScript files in the directory specified with
the GPATH= option. This is illustrated by the following statements:

ods latex path = "C:\temp"
gpath = "C:\temp\ps" (url="ps/")
style = Journal;

ods graphics on;

...SAS statements...

ods graphics off;
ods latex close;

The URL= suboption is specified in the GPATH= option to create relative paths
for graphs referenced in the LATEX source file created by SAS. See the “HTML
Destination” section on page 165 for further information.

A sample program named odsgr04.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.5. Creating Graphs in Multiple Destinations

This example illustrates how to send your output to more than one destination with a
single execution of your SAS statements.

For instance, to create both HTML and RTF output, you can specify the ODS HTML
and the ODS RTF statements before your procedure statements.

ods html;
ods rtf;

...SAS statements...

ods _all_ close;

The ODS –ALL– CLOSE statement closes all open destinations.

You can also specify multiple instances of the same destination. For example, using
the data in the “Using the ODS GRAPHICS Statement and Procedure Options” sec-
tion on page 150, the following statements save the smoothed cycle component plot
to the file smoothcycle.pdf and the forecasts plot to the file forecasts.pdf.

ods pdf file="smoothcycle.pdf";
ods pdf select SmoothedCyclePlot;

ods pdf(id=frcst) file="forecasts.pdf";
ods pdf(id=frcst) select ModelForecastsPlot;

ods graphics on;

proc ucm data=melanoma noprint;
id year interval=year;
model Melanoma_Incidence_Rate;
irregular;
level variance=0 noest;
slope variance=0 noest;
cycle rho=1 noest=rho plot=smooth;
estimate back=5;
forecast back=5 lead=10 plot=forecasts print=none;

run;

ods graphics off;
ods _all_ close;

The ID= option assigns the name srf to the second instance of the PDF destination.
Without the ID= option, the second ODS PDF statement would close the destination
that was opened by the previous ODS PDF statement, and it would open a new in-
stance of the PDF destination. In that case, the file smoothcycle.pdf would contain
no output. For more information, refer to the Example 1 of the ODS PDF statement in
the “Dictionary of ODS Language Statements” (SAS Output Delivery System User’s
Guide).
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Example 6.6. Displaying Graphs Using the DOCUMENT
Procedure

This example illustrates the use of the DOCUMENT destination and the
DOCUMENT procedure to display your ODS graphs. In particular, this is
useful when you want to display your output (both tables and graphs) in one or more
ODS destinations, or when you want to use different styles without rerunning your
SAS program.

In general, when you send your output to the DOCUMENT destination you can use
the DOCUMENT procedure to rearrange, duplicate, or remove output from the re-
sults of a procedure or a database query. You can also generate output for one or more
ODS destinations. For more information, refer to the ODS DOCUMENT statement in
the “Dictionary of ODS Language Statements” and “The DOCUMENT Procedure”
(SAS Output Delivery System User’s Guide).

The following statements repeat the estimation of the model in Example 6.1. The
ODS DOCUMENT statement stores the data for the tables and the plots from this
analysis in an ODS document named lhurDoc. Neither the tables nor the plots are
displayed.

ods listing close;
ods document name=lhurDoc(write);
ods graphics on;

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;
quit;

ods graphics off;
ods document close;
ods listing;

If you want to display, for example, the Q-Q plot of residuals using PROC
DOCUMENT, you first need to determine its name. You can do this by specifying
the ODS TRACE ON statement prior to the procedure statements (see page 156 for
more information). Alternatively, you can type odsdocuments (or odsd for short) in
the command line to open the Documents window, which you can then use to manage
your ODS documents.

The following statements specify an HTML destination and display the residual Q-Q
plot using the REPLAY statement in PROC DOCUMENT.

ods html;

ods select QQPlot;

proc document name = lhurDoc;
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replay;
run;
quit;

ods html close;

By default, the REPLAY statement attempts to replay every output object stored in
the document, but only the Q-Q plot is displayed as specified by the ODS SELECT
statement. The plot is displayed in Output 6.6.1.

Output 6.6.1. Q-Q Plot Displayed by PROC DOCUMENT

As an alternative to running PROC DOCUMENT with an ODS SELECT statement,
you can run PROC DOCUMENT specifying a document path for the Q-Q plot in the
REPLAY statement. This approach is preferable when the document contains a large
volume of output, because PROC DOCUMENT does not attempt to process every
piece of output stored in the document.

You can determine the document path for the Q-Q plot by specifying the LIST state-
ment with the LEVELS=ALL option in PROC DOCUMENT.

proc document name = lhurDoc;
list / levels = all;

run;
quit;

This lists the entries of the QQDoc document, as shown in Output 6.6.2.
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Output 6.6.2. Contents of lhurDoc

Listing of: \Work.Lhurdoc\
Order by: Insertion
Number of levels: All

Obs Path Type
--------------------------------------------------------------------------------

1 \Model#1 Dir
2 \Model#1\ModSum#1 Dir
3 \Model#1\ModSum#1\ModSummary#1 Table
4 \Model#1\ModSum#1\ModVars#1 Tree
5 \Model#2 Dir
6 \Model#2\ModSum#1 Dir
7 \Model#2\ModSum#1\ModSummary#1 Table
8 \Model#2\ModSum#1\ModVars#1 Tree
9 \Model#2\ModSum#1\Equations#1 Tree
10 \Model#2\OLS#1 Dir
11 \Model#2\OLS#1\ConvergenceStatus#1 Table
12 \Model#2\OLS#1\EstSum#1 Dir
13 \Model#2\OLS#1\EstSum#1\DatasetOptions#1 Table
14 \Model#2\OLS#1\EstSum#1\MinSummary#1 Table
15 \Model#2\OLS#1\EstSum#1\ConvCrit#1 Table
16 \Model#2\OLS#1\EstSum#1\ObsUsed#1 Table
17 \Model#2\OLS#1\ResidSummary#1 Table
18 \Model#2\OLS#1\ParameterEstimates#1 Table
19 \Model#2\OLS#1\EstSummaryStats#1 Table
20 \Model#2\OLS#1\StudentResidualPlot#1 Graph
21 \Model#2\OLS#1\CooksD#1 Graph
22 \Model#2\OLS#1\ActualByPredicted#1 Graph
23 \Model#2\OLS#1\ACFPlot#1 Graph
24 \Model#2\OLS#1\PACFPlot#1 Graph
25 \Model#2\OLS#1\IACFPlot#1 Graph
26 \Model#2\OLS#1\QQPlot#1 Graph
27 \Model#2\OLS#1\ResidualHistogram#1 Graph

The document path of the “QQPlot” entry in lhurDoc, as shown in Output 6.6.2, is

\Model#1\OLS#1\QQPlot#1

You can specify this path to display the residual Q-Q plot with PROC DOCUMENT
as follows.

ods html;

proc document name = lhurDoc;
replay \Model#1\OLS#1\QQPlot#1;

run;
quit;

ods html close;

You can also determine the document path from the Results window or the
Documents window. Right-click on the object icon and select Properties.

A sample program named odsgr06.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.7. Customizing Graph Titles and Axes Labels

This example shows how to use PROC TEMPLATE to customize the appearance and
content of an ODS graph. It illustrates the discussion in the section “Customizing
Graphics with Templates” on page 167 in the context of changing the default title and
y-axis label for a Q-Q plot created with the MODEL procedure.

The following statements request a Q-Q plot for residuals using PROC MODEL with
the LHUR series in the library SASHELP.CITIMON for the model in Example 6.1.

ods trace on;
ods html;
ods graphics on;

ods select QQPlot;

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;
quit;

ods graphics off;
ods html close;
ods trace off;

The Q-Q plot is shown in Output 6.7.1.

Output 6.7.1. Default Q-Q Plot from PROC MODEL
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The ODS TRACE ON statement requests a record of all the ODS output objects
created by PROC MODEL. A partial listing of the trace record, which is displayed in
the SAS log, is shown in Output 6.7.2.

Output 6.7.2. Trace Record for Q-Q Plot

Output Added:
-------------
Name: QQPlot
Label: QQ Plot of Residuals of LHUR versus Normal
Template: ETS.Model.Graphics.QQPlot
Path: Model.OLS.QQPlot
-------------

As shown in Output 6.7.2, ODS Graphics creates the Q-Q plot using an
ODS output data object named “QQPlot” and a graph template named
“Ets.Model.Graphics.QQPlot,” which is the default template provided by SAS.
Default templates supplied by SAS are saved in the Sashelp.Tmplmst template
store (see page 167).

To display the default template definition, open the Templates window by typing
odstemplates (or odst for short) in the command line. Expand Sashelp.Tmplmst
and click on the Ets folder, as shown in Output 6.7.3.

Output 6.7.3. The Templates Window

Next, open the Model folder and then open the Graphics folder. Then right-click on
the “QQPlot” template icon and select Edit, as shown in Output 6.7.4.
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Output 6.7.4. Editing Templates in the Template Window

Selecting Edit opens a Template Editor window, as shown in Output 6.7.5. You can
use this window to edit the template.

Output 6.7.5. Default Template Definition for Q-Q Plot

The template definition in Output 6.7.5 is discussed below and in subsequent exam-
ples. It is listed in a more convenient format by the following statements:

proc template;
source Ets.Model.Graphics.QQPlot;
link Ets.Model.Graphics.QQPlot to Ets.Graphics.QQPlot;
define statgraph Ets.Graphics.QQPlot;

dynamic title;
layout Overlay /

yaxisopts=( label="Residual" )
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xaxisopts=( label="Normal Quantile" );
EntryTitle TITLE / pad=( bottom=5 );
SCATTERPLOT

y=eval (SORT(DROPMISSING(RESIDUAL)))
x=eval (PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL)))

-0.375)/(0.25 + N(RESIDUAL)))) /
markerattrs=

( size=GraphDataDefault:markersize
symbol=GraphDataDefault:markersymbol
color=GraphDataDefault:contrastcolor )

legendlabel="Residual"
Name="Data";

lineparm
slope=eval (STDDEV(RESIDUAL))
Y=eval (MEAN(RESIDUAL)) /
lineattrs=

( color=GraphFitLine:contrastcolor
pattern=GraphFitLine:linepattern
thickness=GraphFitLine:linethickness )

legendlabel="Normal" name="Fit" extend=true;
DiscreteLegend "Fit" "Data" /

across=2
border=on
backgroundattrs=( color=GraphWalls:color);

EndLayout;
end;

run;

As an alternative to using the Template Editor window, you can submit the following
statements, which display the “Plot” template definition in the SAS log.

proc template;
source Ets.Model.Graphics.QQPlot;

run;

The SOURCE statement specifies the fully qualified template name. You can copy
and paste the template source into the Program Editor, modify it, and submit it us-
ing PROC TEMPLATE. See the “Editing Templates” section on page 169 for more
information.

In the template, the default title of the Q-Q plot is specified by the ENTRYTITLE
statement. Note that TITLE is a dynamic text variable whose values is passed
by the MODEL procedure, and is QQ Plot of Residual vs Normal in Output
6.7.1). The default label for the y-axis is specified by the LABEL= suboption of
the YAXISOPTS= option for the LAYOUT OVERLAY statement.

Suppose you want to change the default title to My Favorite Title, and you want
the y-axis label to be Residuals of LHUR. First, replace the two ENTRYTITLE
statements with the single statement

ENTRYTITLE "My Favorite Title" / padbottom = 5;
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The PADBOTTOM= option specifies the amount of empty space (in pixel units) at
the bottom of the layout component. In this case it creates an empty space of 5 pixels
between the title and the adjacent layout component, which defines the plot itself.

Next, replace the LABEL= suboption with the following:

label = "Residuals of LHUR"

Note that you can reuse dynamic text variables such as Title in any text element.

You can then submit the modified template definition as you would any SAS program,
for example, by selecting Submit from the Run menu.

After submitting the PROC TEMPLATE statements you should see the following
message in the SAS log:

NOTE: STATGRAPH ’Ets.Model.Graphics.QQPlot’ has been
saved to: SASUSER.TEMPLAT

Note: Graph definitions are self-contained and do not support parenting as do table
definitions. For more information about graph definitions and the graph template
language, see the “Introducing the Template Language for Graphics” section on page
172.

Finally, resubmit the PROC MODEL statements on page 195 to display the Q-Q plot
created with your modified template, as shown in Output 6.7.6.

Output 6.7.6. Q-Q Plot with Modified Title and Y-Axis Label

If you have not changed the default ODS path, the modified template “QQplot” is
used automatically because Sasuser.Templat occurs before Sashelp.Tmplmst in
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the ODS search path. See the “Using Customized Templates” section on page 171
for additional information.

Note that you do not need to rerun the PROC MODEL analysis after you mod-
ify a graph template. After you modify your template, you can submit the PROC
DOCUMENT statements in Example 6.6 to replay the Q-Q plot with the modified
template.

See the “Reverting to Default Templates” section on page 171 for information on how
to revert to the default template.

A sample program named odsgr07.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.8. Modifying Colors, Line Styles, and Markers

This example is a continuation of Example 6.7. Here the objective is to customize
colors, line attributes, and marker symbol attributes by modifying the graph template.

In the “QQPlot” template definition shown in Output 6.7.5, the SCATTERPLOT
statement specifies a scatter plot of normal quantiles versus ordered standard-
ized residuals. The default marker symbol in the scatter plot is specified by the
MARKERATTRS= option of the SCATTERPLOT statement:

symbol = GraphDataDefault:markersymbol

The default value is a reference to the style attribute symbol of the style element
GraphDataDefault. See the “Introducing Style Elements for Graphics” section on
page 174 for more information. The actual value of the marker symbol depends on
the style that you are using. In this case, since the “Default” style is used, the value
of the marker symbol is Circle.

You can specify a filled circle as the marker symbol by modifying the value of the
SYMBOL= option as follows.

symbol = CircleFilled

Note that the value of the option can be any valid marker symbol or a reference to
a style attribute of the form style-element:attribute. It is recommended that
you use style attributes since these are chosen to provide consistency and appropriate
emphasis based on display principles for statistical graphics. If you specify values
directly in a template, you are overriding the style and run the risk of creating a graph
that is inconsistent with the style definition.

For more information about the syntax of the graphics template language and
style elements for graphics, refer to the sections “TEMPLATE Procedure:
Creating ODS Statistical Graphics Output (Experimental)” and “ODS
Statistical Graphics and ODS Styles: Usage and Reference (Experimental)” at
http://support.sas.com/documentation/onlinedoc/base/.

Similarly, you can change the line color and pattern with the COLOR= and
PATTERN= options in the LINEATTRS= option of the LINEPARM statement. The
LINEPARM statement displays a straight line specified by slope and intercept param-
eters. The following statements change the default color of the Q-Q plot line to red,
and the line pattern to dashed.

color = red
pattern = dash

To display these modifications, shown in Output 6.8.1, submit the modified tem-
plate definition and then resubmit the PROC MODEL statements on page 195.
Alternatively, you can replay the plot using PROC DOCUMENT, as in Example 6.6.
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Output 6.8.1. Q-Q Plot with Modified Marker Symbols and Line

A sample program named odsgr08.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.9. Swapping the Axes in a Graph
Sometimes a Q-Q plot is displayed with the normal quantiles plotted along the y-axis
and the ordered variable values plotted along the x-axis. This example, which is a
continuation of Example 6.7 and Example 6.8, illustrates how to interchange the axes
with a simple modification of the graph template.

Begin by swapping the YAXISOPTS= and XAXISOPTS= options, and by swapping
the X= and Y= options in the SCATTERPLOT statement.

Next, modify the LINEPARM statement. In Output 6.8.1, the slope of the line in
the Q-Q plot is σ̂, and y-intercept is µ̂. When you swap the axes, the values of the
slope and y-intercept become 1/σ̂ and −µ̂/σ̂, respectively. The modified template
definition (including the changes from Example 6.7 and Example 6.8) is as follows:

proc template;
source Ets.Model.Graphics.QQPlot;
link Ets.Model.Graphics.QQPlot to Ets.Graphics.QQPlot;
define statgraph Ets.Graphics.QQPlot;

dynamic title;
layout Overlay /

xaxisopts=( label="Residuals of LHUR" )
yaxisopts=( label="Normal Quantile" );

EntryTitle "My Favorite Title" /
pad=( bottom=5 );

SCATTERPLOT
x=eval (SORT(DROPMISSING(RESIDUAL)))
y=eval (PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL)))

-0.375)/(0.25 + N(RESIDUAL)))) /
markerattrs=

( size=GraphDataDefault:markersize
symbol=CircleFilled
color=GraphDataDefault:contrastcolor )

legendlabel="Residual"
Name="Data";

lineparm
slope = eval(1/STDDEV(RESIDUAL))
Yintercept = eval(-MEAN(RESIDUAL)/STDDEV(RESIDUAL)) /
lineattrs=

( color=red
pattern=dash
thickness=GraphFitLine:linethickness )

legendlabel="Normal"
name="Fit"
extend=true;

DiscreteLegend "Fit" "Data" /
across=2
border=on
backgroundattrs=( color=GraphWalls:color)

;
EndLayout;

end;
run;

The resulting Q-Q plot, after submitting the preceding statements and the PROC
MODEL statements on page 195, is shown in Output 6.9.1.
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Output 6.9.1. Q-Q Plot with Swapped Axes

A sample program named odsgr09.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.10. Modifying Tick Marks and Adding Grid Lines

This example, which is a continuation of Example 6.7, Example 6.8, and Example
6.9, illustrates how to modify the tick marks for an axis and suppress grid lines.

You can use the TICKVALUELIST= suboption in the XAXISOPTS= or
YAXISOPTS= options to specify the tick marks for an axis. For example,
you can specify the following to request tick marks ranging from −3 to 3 in the
y-axis for the Q-Q plots in Output 6.9.1:

yaxisopts = (label = "Normal Quantile"
tickvaluelist = (-3 -2 -1 0 1 2))

By default, the Q-Q plot in Output 6.9.1 does not display grid lines. You can request
vertical grid lines only by specifying

type=linear

in the YAXISOPTS= option of the LAYOUT statement.

The result of these changes, after submitting the modified template definition and the
corresponding PROC MODEL statements on page 195, is displayed in Output 6.10.1.

Output 6.10.1. Q-Q Plot with Modified Y-Axis Tick Marks and Grids

A sample program named odsgr10.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.11. Modifying Graph Fonts in Styles

You can modify an ODS style to customize the general appearance of ODS Graphics,
just as you can modify a style to customize the general appearance of ODS tables. The
goal of this example is to customize the fonts used in ODS graphs. It is a continuation
of Example 6.10.

The following statements define a style named NewStyle that replaces the graph
fonts in the “Default” style with italic Times New Roman fonts.

proc template;
define style Styles.NewStyle;
parent = Styles.Default;
replace GraphFonts

"Fonts used in graph styles" /
’GraphDataFont’ = ("Times New Roman",8pt,Italic)
’GraphValueFont’ = ("Times New Roman",10pt,Italic)
’GraphLabelFont’ = ("Times New Roman",12pt,Italic)
’GraphFootnoteFont’ = ("Times New Roman",12pt,Italic)
’GraphTitleFont’ = ("Times New Roman",14pt,Italic Bold);

end;
run;

In general, the following graph fonts are specified in the ODS styles provided by
SAS:

• ’GraphDataFont’ is the smallest font. It is used for text that needs to be
small (labels for points in scatter plots, labels for contours, and so on)

• ’GraphValueFont’ is the next largest font. It is used for axis value (tick
marks) labels and legend entry labels.

• ’GraphLabelFont’ is the next largest font. It is used for axis labels and
legend titles.

• ’GraphFootnoteFont’ is the next largest font. It is used for all footnotes.

• ’GraphTitleFont’ is the largest font. It is used for all titles.

For more information about the DEFINE, PARENT, and REPLACE statements, re-
fer to the “TEMPLATE Procedure: Creating a Style Definition” in the SAS Output
Delivery System User’s Guide.

The Q-Q plots in the preceding examples, beginning with Example 6.6, were created
with the “Default” style; see, for instance, Output 6.10.1. In contrast, the Q-Q plot
displayed in Output 6.11.1 was produced by specifying the NewStyle style in the
following statements.

ods html style = NewStyle;
ods graphics on;

ods select QQPlot;
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proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;
quit;

ods graphics off;
ods html close;

Output 6.11.1. Q-Q Plot Using NewStyle

Although this example illustrates the use of a style with output from a particular pro-
cedure, note that a style is applied to all of your output (graphs and tables) in the
destination for which you specify the style. See the “Specifying a Default Style” sec-
tion on page 175 for information about specifying a default style for all your output.

A sample program named odsgr11.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.12. Modifying Other Graph Elements in Styles

This example, which is a continuation of Example 6.11, illustrates how to modify
additional style elements for graphics, such as the thickness of a line.

The attributes of fitted lines in ODS Graphics are controlled by the style element
StatGraphFitLine, which is defined in the “Default” style. For example, the line
thickness of the normal distribution reference line in Output 6.11.1 is specified in the
graph template by

linethickness = StatGraphFitLine:linethickness

To specify a line thickness of 4 pixels for the line, add the following statements to the
definition of the NewStyle style in Example 6.11.

replace GraphFitLine /
linethickness = 4px;

The complete revised NewStyle style is now defined by the following statements:

proc template;
define style Styles.NewStyle;
parent = Styles.Default;
replace GraphFonts

"Fonts used in graph styles" /
’GraphDataFont’ = ("Times New Roman",8pt,Italic)
’GraphValueFont’ = ("Times New Roman",10pt,Italic)
’GraphLabelFont’ = ("Times New Roman",12pt,Italic)
’GraphFootnoteFont’ = ("Times New Roman",12pt,Italic)
’GraphTitleFont’ = ("Times New Roman",14pt,Italic Bold);

style GraphFit from GraphFit/
linethickness = 4px;

end;
run;

Output 6.12.1 shows the Q-Q plot created by the MODEL statements on page 206
with the new version of NewStyle.
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Output 6.12.1. Q-Q Plot Using NewStyle with Thicker Line

You can use this approach to modify other attributes of the line, such as
transparency, linestyle, contrastcolor, and foreground.

Note: Values specified directly in a graph template override style attributes. If you
have customized a template, changes in a style may not have any effect. For more
information, refer to the “ODS Statistical Graphics and ODS Styles: Usage and
Reference (Experimental)” at http://support.sas.com/documentation/onlinedoc/base/.

A sample program named odsgr12.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Example 6.13. Modifying Graph Sizes Using Styles

This example demonstrates how to modify the size of your ODS graphs using a style
definition.

You can specify the size of a graph in a graph template definition or in a style defini-
tion:

• To modify the size of a particular graph, specify the dimensions with the
HEIGHT= and WIDTH= options in the outermost layout of the graph template
definition.

• To modify the size of all your ODS graphs, specify the dimensions with the
OUTPUTHEIGHT= and OUTPUTWIDTH= options in the style definition.

Dimensions specified in a graph template override those specified in a style.

Continuing the discussion in Example 6.12, you can add the following style element
to the definition of NewStyle to change the size of all your graphs:

style Graph from Graph /
outputwidth = 400px
outputheight = 300px;

With all the changes introduced so far, NewStyle is defined as follows:

proc template;
define style Styles.NewStyle;
parent = Styles.Default;
replace GraphFonts

"Fonts used in graph styles" /
’GraphDataFont’ = ("Times New Roman",8pt,Italic)
’GraphValueFont’ = ("Times New Roman",10pt,Italic)
’GraphLabelFont’ = ("Times New Roman",12pt,Italic)
’GraphFootnoteFont’ = ("Times New Roman",12pt,Italic)
’GraphTitleFont’ = ("Times New Roman",14pt,Italic Bold);

style GraphFit from GraphFit/
linethickness = 4px;

style Graph from Graph /
outputwidth = 400px
outputheight = 300px;

end;
run;

The dimensions of the graph must be specified in pixels. The actual size of the graph
in inches depends on your printer or display device. For example, if the resolution of
your printer is 100 dpi (100 dots per inch) and you want a graph that is 4 inches wide,
you should set the width to 400 pixels.

You can create a smaller version of Output 6.12.1, shown in Output 6.13.1, by spec-
ifying the preceding PROC TEMPLATE statements followed by the MODEL state-
ments on page 206.
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Output 6.13.1. Q-Q Plot Using NewStyle with Smaller Dimensions

An alternative method for including smaller graphs in a document is to start with a
style provided by SAS and define a modified style that increases the size of the graph
fonts while preserving the default width and height attributes. Then you can include
the graph in a document (for example in Microsoft Word) and manually rescale the
graph to a smaller size while maintaining the fonts in a size that is still readable.§

The following style increases the size of the fonts but retains all the other style ele-
ments as assigned in the “Default” style:

proc template;
define style Styles.BigFontStyle;
parent = Styles.Default;
replace GraphFonts

"Fonts used in graph styles" /
’GraphDataFont’ = ("Arial",12pt)
’GraphValueFont’ = ("Arial",15pt)
’GraphLabelFont’ = ("Arial",18pt)
’GraphFootnoteFont’ = ("Arial",18pt)
’GraphTitleFont’ = ("Arial",21pt);

end;
run;

A sample program named odsgr13.sas is available for this example in the SAS
Sample Library for SAS/ETS software.

§In a markup language, such as HTML or LATEX, you can use a resize command.
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Example 6.14. Modifying Panels

This example is taken from the “Getting Started” section of Chapter 66, “The REG
Procedure” (SAS/STAT User’s Guide). It illustrates how to modify the regression
fit diagnostics panel whose annotated version is shown in Output 6.14.1 so that it
displays a subset of component plots. The original panel consists of eight plots and a
summary statistics box. These components are labeled 1 to 9 in Output 6.14.1.

The following data are from a study of 19 children. The variables Height, Weight,
and Age are measured for each child.

data Class;
input Name $ Height Weight Age @@;
datalines;

Alfred 69.0 112.5 14 Alice 56.5 84.0 13 Barbara 65.3 98.0 13
Carol 62.8 102.5 14 Henry 63.5 102.5 14 James 57.3 83.0 12
Jane 59.8 84.5 12 Janet 62.5 112.5 15 Jeffrey 62.5 84.0 13
John 59.0 99.5 12 Joyce 51.3 50.5 11 Judy 64.3 90.0 14
Louise 56.3 77.0 12 Mary 66.5 112.0 15 Philip 72.0 150.0 16
Robert 64.8 128.0 12 Ronald 67.0 133.0 15 Thomas 57.5 85.0 11
William 66.5 112.0 15
;

The following statements invoke the REG procedure to fit a simple linear regression
model in which Weight is the response variable and Height is the independent vari-
able, and select the diagnostic panel in Output 6.14.1.

ods html;
ods graphics on;
ods select DiagnosticsPanel;

proc reg data = Class;
model Weight = Height;

run;
quit;

ods graphics off;
ods html close;
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Output 6.14.1. Diagnostics Panel Annotated to Indicate Layout Structure

In the discussion that follows, the panel is modified so that it includes only the fol-
lowing components:

1. residual by predicted plot

4. residual Q-Q plot

6. Cook’s D plot

7. residual histogram

9. summary statistics box

The panel to be produced is shown in Output 6.14.2. It displays components 1, 4, 6,
and 7 in a 2× 2 lattice, and it displays four of the summary statistics in component 9
in a box at the bottom.

The template that defines the original panel is “Ets.Reg.Graphics.DiagnosticPanel.”
The following listing is abbreviated to show the main structure of the template defi-
nition (see page 168 for details on how to display the complete template definition).
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proc template;
source Stat.Reg.Graphics.DiagnosticsPanel;
define statgraph Stat.Reg.Graphics.DiagnosticsPanel;
notes "Diagnostics Panel";

/* Dynamic Variables */
dynamic _TITLE _MODELLABEL _DEPLABEL _NOBS _NPARM _EDF _MSE _RSquare _AdjRSq;

/* 3x3 LATTICE layout */
layout lattice / columns=3 rows=3 ... ;

sidebar / align=top;
layout overlay / ...
endlayout;

endsidebar;

/* 1. Residual by Predicted */
layout overlay / ... ;

lineparm slope=0 y=0 / extend ... ;
scatterplot y=RESIDUAL x= ... ;

endlayout;

...

/* LAYOUT statements for componenets 2-8 */

...

/* 9. Summary Statistics Box */
layout overlay / pad=( left=5 right=5 );

layout gridded / ... ;
entry halign=left "NObs" / valign=top;
entry halign=right eval (PUT(_NOBS,BEST6.)) / valign=top;
.
.
.
entry halign=left "AdjRSq" / valign=top;
entry halign=right eval (PUT(_ADJRSQ,BEST6.)) / valign=top;

endlayout;
endlayout;

endlayout; /* End of 3x3 LATTICE layout */
end;
run;

The overall display is defined by the LAYOUT LATTICE statement, which specifies
a lattice of components, indicated by the solid grid annotated in Output 6.14.1. The
COLUMNS=3 and ROWS=3 options in the LAYOUT LATTICE statement specify a
3 × 3 lattice, indicated by the dashed grid.

The model label and the graph title (top rectangle in Output 6.14.1) are specified
inside the LATTICE layout with a SIDEBAR statement. The ALIGN=TOP option
positions the sidebar at the top.

Each of the nine components of the lattice is defined by a LAYOUT statement. These
statements define the components from left to right and top to bottom. Components 1
through 7 are defined with LAYOUT OVERLAY statements. Component 8 (RF plot)
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is defined with a LAYOUT LATTICE statement. The last LAYOUT OVERLAY
statement defines a box with summary statistics for the fitted model.

The following abbreviated listing shows the basic structure of the template definition
for a simplified panel that displays components 1, 4, 6, and 7 in a 2 × 2 lattice.¶ For
the complete template definition, refer to the sample program odsgex14.sas in the
SAS Sample Library for SAS/ETS software.

proc template;
ine statgraph Stat.Reg.Graphics.DiagnosticsPanel;
notes "Diagnostics Panel";
dynamic _TITLE _MODELLABEL _DEPLABEL _NOBS _NPARM _EDF _MSE _RSquare _AdjRSq;

/* Begin 2x2 LATTICE layout */
layout lattice /

columns = 2
rows = 2 ...

sidebar / align = top;
layout overlay / pad=( bottom=5 );

entrytitle halign = left ...
endlayout;

endsidebar;

/* 1. Residual By Predicted */
layout overlay /

yaxisopts = ...
lineparm

slope = 0
y = 0 /
extend ...

scatterplot
y = RESIDUAL
x = PREDICTEDVALUE /
markerattrs = ...

endlayout;

/* 4. Q-Q Plot */
layout overlay /

yaxisopts = ...
lineparm

slope = eval(STDDEV(RESIDUAL))
y = ...

scatterplot
y = eval(SORT(DROPMISSING(RESIDUAL)))
x = ...

endlayout;

/* Statements for components 6 and 7 (not listed) */

/* 9. Summary Statistics Box in a SIDEBAR */
sidebar / align = bottom;

layout gridded;
layout lattice /

rows = 1
columns = 4

¶See page 169 for details on how to edit the template definition.
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...
endlayout;

endlayout;
endsidebar;

endlayout; /* End of 2x2 LATTICE layout */
end;
run;

This template is a straightforward modification of the original template. The
COLUMNS=2 and ROWS=2 options in the LAYOUT LATTICE statement request
a 2 × 2 lattice. The LAYOUT statements for components 2, 3, 5, and 8 are deleted.
A subset of the summary statistics are displayed at the bottom of the graph using a
SIDEBAR statement with the ALIGN=BOTTOM option.

After submitting the preceding statements, which create the modified template and
save it in Sasuser.Templat, you can run the following PROC REG statements to
obtain the simplified panel, which is shown in Output 6.14.2.

ods html;
ods graphics on;

ods select DiagnosticsPanel;

proc reg data = Class;
model Weight = Height;

run;
quit;

ods graphics off;
ods html close;
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Output 6.14.2. Simplified Diagnostics Panel

A sample program named odsgr14.sas is available for this example in the SAS
Sample Library for SAS/ETS software.
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Chapter 7
The HPF Procedure
Overview

The HPF (High-Performance Forecasting) procedure provides a quick and automatic
way to generate forecasts for many time series or transactional data in one step. The
procedure can forecast millions of series at a time, with the series organized into
separate variables or across BY groups.

• For typical time series, you can use the following smoothing models:

– Simple
– Double
– Linear
– Damped Trend
– Seasonal
– Winters Method (additive and multiplicative)

• Additionally, transformed versions of these models are provided:

– Log
– Square Root
– Logistic
– Box-Cox

• For intermittent time series (series where a large number of values are zero-
valued), you can use an intermittent demand model such as Croston’s Method
and Average Demand Model.

Experimental graphics are now available with the HPF procedure. For more informa-
tion, see the “ODS Graphics” section on page 257.

All parameters associated with the forecast model are optimized based on the data.
Optionally, the HPF procedure can select the appropriate smoothing model for you
using holdout sample analysis based on one of several model selection criteria.

The HPF procedure writes the time series extrapolated by the forecasts, the series
summary statistics, the forecasts and confidence limits, the parameter estimates, and
the fit statistics to output data sets. The HPF procedure optionally produces printed
output for these results utilizing the Output Delivery System (ODS).

The HPF procedure can forecast both time series data, whose observations are equally
spaced by a specific time interval (e.g., monthly, weekly), or transactional data, whose
observations are not spaced with respect to any particular time interval. Internet, in-
ventory, sales, and similar data are typical examples of transactional data. For trans-
actional data, the data is accumulated based on a specified time interval to form a
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time series. The HPF procedure can also perform trend and seasonal analysis on
transactional data.

Additionally, the Time Series Forecasting System of SAS/ETS software can be used
to interactively develop forecasting models, estimate the model parameters, evaluate
the models’ ability to forecast, and display these results graphically. Refer to Chapter
34, “Overview of the Time Series Forecasting System,” (SAS/ETS User’s Guide) for
details.

Also, the EXPAND procedure can be used for the frequency conversion and transfor-
mations of time series. Refer to Chapter 17, “The EXPAND Procedure,” (SAS/ETS
User’s Guide) for details.

Getting Started
The HPF procedure is simple to use for someone who is new to forecasting, and yet
at the same time it is powerful for the experienced professional forecaster who needs
to generate a large number of forecasts automatically. It can provide results in output
data sets or in other output formats using the Output Delivery System (ODS). The
following examples are more fully illustrated in the “Examples” section on page 260.

Given an input data set that contains numerous time series variables recorded at a spe-
cific frequency, the HPF procedure can automatically forecast the series as follows:

PROC HPF DATA=<input-data-set> OUT=<output-data-set>;
ID <time-ID-variable> INTERVAL=<frequency>;
FORECAST <time-series-variables>;
RUN;

For example, suppose that the input data set SALES contains numerous sales data
recorded monthly, the variable that represents time is DATE, and the forecasts are to
be recorded in the output data set NEXTYEAR. The HPF procedure could be used as
follows:

proc hpf data=sales out=nextyear;
id date interval=month;
forecast _ALL_;

run;

The above statements automatically select the best fitting model, generate forecasts
for every numeric variable in the input data set (SALES) for the next twelve months,
and store these forecasts in the output data set (NEXTYEAR). Other output data
sets can be specified to store the parameter estimates, forecasts, statistics of fit, and
summary data.

If you want to print the forecasts using the Output Delivery System (ODS), then you
need to add PRINT=FORECASTS:
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proc hpf data=sales out=nextyear print=forecasts;
id date interval=month;
forecast _ALL_;

run;

Other results can be specified to output the parameter estimates, forecasts, statistics
of fit, and summary data using ODS.

The HPF procedure can forecast both time series data, whose observations are equally
spaced by a specific time interval (e.g., monthly, weekly), or transactional data, whose
observations are not spaced with respect to any particular time interval.

Given an input data set containing transactional variables not recorded at any specific
frequency, the HPF procedure accumulates the data to a specific time interval and
forecasts the accumulated series as follows:

PROC HPF DATA=<input-data-set> OUT=<output-data-set>;
ID <time-ID-variable> INTERVAL=<frequency>

ACCUMULATE=<accumulation>;
FORECAST <time-series-variables>;

RUN;

For example, suppose that the input data set WEBSITES contains three variables
(BOATS, CARS, PLANES), that are Internet data recorded on no particular time
interval, and the variable that represents time is TIME, which records the time of the
Web hit. The forecasts for the total daily values are to be recorded in the output data
set NEXTWEEK. The HPF procedure could be used as follows:

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats cars planes;

run;

The above statements accumulate the data into a daily time series and automatically
generate forecasts for the BOATS, CARS, and PLANES variables in the input data
set (WEBSITES) for the next seven days and store the forecasts in the output data
set (NEXTWEEK).

The HPF procedure can specify a particular forecast model or select from several
candidate models based on a selection criterion. The HPF procedure also supports
transformed models and holdout sample analysis.

Using the previous WEBSITES example, suppose that you want to forecast the
BOATS variable using the best seasonal forecasting model that minimizes the mean
absolute percent error (MAPE), the CARS variable using the best nonseasonal fore-
casting model that minimizes the mean square error (MSE) using holdout sample
analysis on the last five days, and the PLANES variable using the Log Winters
Method (additive). The HPF procedure could be used as follows:
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proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats / model=bests select=mape;
forecast cars / model=bestn select=mse holdout=5;
forecast planes / model=addwinters transform=log;

run;

The above statements demonstrate how each variable in the input data set can be
modeled differently and how several candidate models can be specified and selected
based on holdout sample analysis or the entire range of data.

The HPF procedure is also useful in extending independent variables in (auto) regres-
sion models where future values of the independent variable are needed to predict the
dependent variable.

Using the WEBSITES example, suppose that you want to forecast the ENGINES
variable using the BOATS, CARS, and PLANES variable as regressor variables.
Since future values of the BOATS, CARS, and PLANES are needed, the HPF pro-
cedure can be used to extend these variables in the future:

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast engines / model=none;
forecast boats / model=bests select=mape;
forecast cars / model=bestn select=mse holdout=5;
forecast planes / model=addwinters transform=log;

run;

proc autoreg data= nextweek;
model engines = boats cars planes;
output out=enginehits p=predicted;

run;

The above HPF procedure statements generate forecasts for BOATS, CARS, and
PLANES in the input data set (WEBSITES) for the next seven days and extend
the variable ENGINES with missing values. The output data set (NEXTWEEK)
of the PROC HPF statement is used as an input data set for the PROC AUTOREG
statement. The output data set of PROC AUTOREG contains the forecast of the vari-
able ENGINE based on the regression model with the variables BOATS, CARS, and
PLANES as regressors. See the AUTOREG procedure for details on autoregression.

The HPF procedure can also forecast intermittent time series (series where a large
number of values are zero-valued). Typical time series forecasting techniques are
less effective in forecasting intermittent time series.

For example, suppose that the input data set INVENTORY contains three variables
(TIRES, HUBCAPS, LUGBOLTS) that are demand data recorded on no particular
time interval, the variable that represents time is DATE, and the forecasts for the total
weekly values are to be recorded in the output data set NEXTMONTH. The models
requested are intermittent demand models, which can be specified as MODEL=IDM
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option. Two intermittent demand models are compared, Croston Model and Average
Demand Model. The HPF procedure could be used as follows:

proc hpf data=inventory out=nextmonth lead=4 print=forecasts;
id date interval=week accumulate=total;
forecast tires hubcaps lugbolts / model=idm;

run;

In the above example, the total demand for inventory items is accumulated on a
weekly basis and forecasts are generated that recommend future stocking levels.

Syntax
The following statements are used with the HPF procedure.

PROC HPF options;
BY variables;
FORECAST variable-list / options;
ID variable INTERVAL= interval options;
IDM options;

Functional Summary

The statements and options controlling the HPF procedure are summarized in the
following table.

Description Statement Option

Statements
specify BY-group processing BY
specify variables to forecast FORECAST
specify the time ID variable ID
specify intermittent demand model IDM

Data Set Options
specify the input data set PROC HPF DATA=
specify to output forecasts only PROC HPF NOOUTALL
specify the output data set PROC HPF OUT=
specify parameter output data set PROC HPF OUTEST=
specify forecast output data set PROC HPF OUTFOR=
specify seasonal statistics output data set PROC HPF OUTSEASON=
specify statistics output data set PROC HPF OUTSTAT=
specify summary output data set PROC HPF OUTSUM=
specify trend statistics output data set PROC HPF OUTTREND=
replace actual values held back FORECAST REPLACEBACK
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Description Statement Option

replace missing values FORECAST REPLACEMISSING
use forecast value to append FORECAST USE=

Accumulation and Seasonality Options
specify accumulation frequency ID INTERVAL=
specify length of seasonal cycle PROC HPF SEASONALITY=
specify interval alignment ID ALIGN=
specify time ID variable values are not sorted ID NOTSORTED
specify starting time ID value ID START=
specify ending time ID value ID END=
specify accumulation statistic ID, FORECAST ACCUMULATE=
specify missing value interpretation ID, FORECAST SETMISSING=
specify zero value interpretation ID, FORECAST ZEROMISS=

Forecasting Horizon, Holdout,
Holdback Options
specify data to hold back PROC HPF BACK=
specify forecast holdout sample size FORECAST HOLDOUT=
specify forecast holdout sample percent FORECAST HOLDOUTPCT=
specify forecast horizon or lead PROC HPF LEAD=
specify horizon to start summation PROC HPF STARTSUM=

Forecasting Model and Selection
Options
specify confidence limit width FORECAST ALPHA=
specify intermittency FORECAST INTERMITTENT=
specify forecast model FORECAST MODEL=
specify median forecats FORECAST MEDIAN
specify backcast initialization FORECAST NBACKCAST=
specify seasonality test FORECAST SEASONTEST=
specify model selection criterion FORECAST SELECT=
specify model transformation FORECAST TRANSFORM=

Intermittent Demand Model Options
specify model for average demand IDM AVERAGE=
specify the base value IDM BASE=
specify model for demand intervals IDM INTERVAL=
specify model for demand sizes IDM SIZE=

Printing and Plotting Control Options
specify graphical output PROC HPF PLOT=
specify printed output PROC HPF PRINT=
specify detailed printed output PROC HPF PRINTDETAILS
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Description Statement Option

Miscellaneous Options
specify that analysis variables are processed in
sorted order

PROC HPF SORTNAMES

limits error and warning messages PROC HPF MAXERROR=

PROC HPF Statement

PROC HPF options;

The following options can be used in the PROC HPF statement.

BACK= n
specifies the number of observations before the end of the data that the multistep
forecasts are to begin. The default is BACK=0.

DATA= SAS-data-set
names the SAS data set containing the input data for the procedure to forecast. If the
DATA= option is not specified, the most recently created SAS data set is used.

LEAD= n
specifies the number of periods ahead to forecast (forecast lead or horizon). The
default is LEAD=12.

The LEAD= value is relative to the last observation in the input data set and not to the
last nonmissing observation of a particular series. Thus, if a series has missing values
at the end, the actual number of forecasts computed for that series will be greater than
the LEAD= value.

MAXERROR= number
limits the number of warning and error messages produced during the execution of
the procedure to the specified value. The default is MAXERRORS=50. This option
is particularly useful in BY-group processing where it can be used to suppress the
recurring messages.

NOOUTALL
specifies that only forecasts are written to the OUT= and OUTFOR= data sets. The
NOOUTALL option includes only the final forecast observations in the output data
sets, not the one-step forecasts for the data before the forecast period.

The OUT= and OUTFOR= data set will only contain the forecast results starting at
the next period following the last observation to the forecast horizon specified by the
LEAD= option.

OUT= SAS-data-set
names the output data set to contain the forecasts of the variables specified in the sub-
sequent FORECAST statements. If an ID variable is specified, it will also be included
in the OUT= data set. The values are accumulated based on the ACCUMULATE=

229



Procedure Reference � The HPF Procedure

option and forecasts are appended to these values based on the FORECAST statement
USE= option. The OUT= data set is particularly useful in extending the independent
variables when forecasting dependent series associated with (auto) regression mod-
els. If the OUT= option is not specified, a default output data set DATAn is created.
If you do not want the OUT= data set created, then use OUT=–NULL–.

OUTEST= SAS-data-set
names the output data set to contain the model parameter estimates and the associated
test statistics and probability values. The OUTEST= data set is particularly useful for
evaluating the significance of the model parameters and understanding the model
dynamics.

OUTFOR= SAS-data-set
names the output data set to contain the forecast time series components (actual,
predicted, lower confidence limit, upper confidence limit, prediction error, prediction
standard error). The OUTFOR= data set is particularly useful for displaying the
forecasts in tabular or graphical form.

OUTSEASON= SAS-data-set
names the output data set to contain the seasonal statistics. The statistics are com-
puted for each season as specified by the ID statement INTERVAL= option or the
SEASONALITY= option. The OUTSEASON= data set is particularly useful when
analyzing transactional data for seasonal variations.

OUTSTAT= SAS-data-set
names the output data set to contain the statistics of fit (or goodness-of-fit statistics).
The OUTSTAT= data set is particularly useful for evaluating how well the model
fits the series. The statistics of fit are based on the entire range of the time series
regardless of whether the HOLDOUT= option is specified.

OUTSUM= SAS-data-set
names the output data set to contain the summary statistics and the forecast sum-
mation. The summary statistics are based on the accumulated time series when the
ACCUMULATE= or SETMISSING= options are specified. The forecast summations
are based on the LEAD=, STARTSUM=, and USE= options. The OUTSUM= data
set is particularly useful when forecasting large numbers of series and a summary of
the results are needed.

OUTTREND= SAS-data-set
names the output data set to contain the trend statistics. The statistics are computed
for each time period as specified by the ID statement INTERVAL= option. The
OUTTREND= data set is particularly useful when analyzing transactional data for
trends.

PRINT= option | (options)
specifies the printed output desired. By default, the HPF procedure produces no
printed output. The following printing options are available:

ESTIMATES prints the results of parameter estimation. (OUTEST= data set)

FORECASTS prints the forecasts. (OUTFOR= data set)
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PERFORMANCE prints the performance statistics for each forecast.

PERFORMANCESUMMARY prints the performance summary for each BY group.

PERFORMANCEOVERALL prints the performance summary for all of the BY
groups.

SEASONS prints the seasonal statistics. (OUTSEASON= data set)

STATISTICS prints the statistics of fit. (OUTSTAT= data set)

STATES prints the backcast, initial, and final states.

SUMMARY prints the summary statistics for the accumulated time series.
(OUTSUM= data set)

TRENDS prints the trend statistics. (OUTTREND= data set)

ALL Same as PRINT=(ESTIMATES FORECASTS STATISTICS
SUMMARY). PRINT=(ALL,TRENDS,SEASONS) prints all
of the options listed above.

For example, PRINT=FORECASTS prints the forecasts, PRINT=(ESTIMATES,
FORECASTS) prints the parameter estimates and the forecasts, and PRINT=ALL
prints all of the above output.

The PRINT= option produces printed output for these results utilizing the Output
Delivery System (ODS). The PRINT= option produces results similar to the data sets
listed next to the above options in parenthesis.

PRINTDETAILS
specifies that output requested with the PRINT= option be printed in greater detail.

SEASONALITY= number
specifies the length of the seasonal cycle. For example, SEASONALITY=3 means
that every group of three observations forms a seasonal cycle. The SEASONALITY=
option is applicable only for seasonal forecasting models. By default, the length of
the seasonal cycle is one (no seasonality) or the length implied by the INTERVAL=
option specified in the ID statement. For example, INTERVAL=MONTH implies
that the length of the seasonal cycle is twelve.

SORTNAMES
specifies that the variables specified in the FORECAST statements are processed in
sorted order.

STARTSUM= n
specifies the starting forecast lead (or horizon) for which to begin summation of the
forecasts specified by the LEAD= option. The STARTSUM= value must be less than
the LEAD= value. The default is STARTSUM=1, that is, the sum from the one-step
ahead forecast to the multistep forecast specified by the LEAD= option.

The prediction standard errors of the summation of forecasts takes into account the
correlation between the multistep forecasts. The DETAILS section describes the
STARTSUM= option in more detail.
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BY Statement

BY variables;

A BY statement can be used with PROC HPF to obtain separate analyses for groups
of observations defined by the BY variables.

FORECAST Statement

FORECAST variable-list / options;

The FORECAST statement lists the numeric variables in the DATA= data set whose
accumulated values represent time series to be modeled and forecast. The options
specify which forecast model is to be used or how the forecast model is selected from
several possible candidate models.

A data set variable can be specified in only one FORECAST statement. Any number
of FORECAST statements can be used. The following options can be used with the
FORECAST statement.

ACCUMULATE= option
specifies how the data set observations are accumulated within each time period
for the variables listed in the FORECAST statement. If the ACCUMULATE=
option is not specified in the FORECAST statement, accumulation is determined
by the ACCUMULATE= option of the ID statement. See the ID statement
ACCUMULATE= option for more details.

ALPHA= number
specifies the significance level to use in computing the confidence limits of the fore-
cast. The ALPHA=value must be between 0 and 1. The default is ALPHA=0.05,
which produces 95% confidence intervals.

HOLDOUT= n
specifies the size of the holdout sample to be used for model selection. The holdout
sample is a subset of actual time series ending at the last nonmissing observation. If
the ACCUMULATE= option is specified, the holdout sample is based on the accu-
mulated series. If the holdout sample is not specified, the full range of the actual time
series is used for model selection.

For each candidate model specified, the holdout sample is excluded from the initial
model fit and forecasts are made within the holdout sample time range. Then, for
each candidate model specified, the statistic of fit specified by the SELECT= option
is computed using only the observations in the holdout sample. Finally, the candidate
model, which performs best in the holdout sample, based on this statistic, is selected
to forecast the actual time series.

The HOLDOUT= option is only used to select the best forecasting model from a list
of candidate models. After the best model is selected, the full range of the actual time
series is used for subsequent model fitting and forecasting. It is possible that one
model will outperform another model in the holdout sample but perform less well
when the entire range of the actual series is used.
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If MODEL=BESTALL and HOLDOUT= options are used together, the last one hun-
dred observations are used to determine whether the series is intermittent. If the series
determined not to be intermittent, holdout sample analysis will be used to select the
smoothing model.

HOLDOUTPCT= number
specifies the size of the holdout sample as a percentage of the length of the time
series. If HOLDOUT=5 and HOLDOUTPCT=10, the size of the holdout sample is
min(5, 0.1T ) where T is the length of the time series with beginning and ending
missing values removed. The default is 100 (100%).

INTERMITTENT= number
specifies a number greater than one which is used to determine whether or not a time
series is intermittent. If the average demand interval is greater than this number then
the series is assumed to be intermittent. This option is used with MODEL=BESTALL
option. The default is INTERMITTENT=1.25.

MEDIAN
specifies that the median forecast values are to be estimated. Forecasts can be based
on the mean or median. By default the mean value is provided. If no transformation
is applied to the actual series using the TRANSFORM= option, the mean and median
forecast values are identical.

MODEL= model-name
specifies the forecasting model to be used to forecast the actual time series. A single
model can be specified or a group of candidate models can be specified. If a group
of models is specified, the model used to forecast the accumulated time series is
selected based on the SELECT= option and the HOLDOUT= option. The default is
MODEL=BEST. The following forecasting models are provided:

NONE No forecast. The accumulated time series is appended with missing
values in the OUT= data set. This option is particularly useful
when the results stored in the OUT= data set are subsequently used
in (auto) regression analysis where forecasts of the independent
variables are needed to forecast the dependent variable.

SIMPLE Simple (Single) Exponential Smoothing

DOUBLE Double (Brown) Exponential Smoothing

LINEAR Linear (Holt) Exponential Smoothing

DAMPTREND Damped Trend Exponential Smoothing

SEASONAL Seasonal Exponential Smoothing

WINTERS Winters Multiplicative Method

ADDWINTERS Winters Additive Method

BEST Best Candidate Smoothing Model (SIMPLE, DOUBLE, LINEAR,
DAMPTREND, SEASONAL, WINTERS, ADDWINTERS)

BESTN Best Candidate Nonseasonal Smoothing Model (SIMPLE,
DOUBLE, LINEAR, DAMPTREND)
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BESTS Best Candidate Seasonal Smoothing Model (SEASONAL,
WINTERS, ADDWINTERS)

IDM|CROSTON Intermittent Demand Model such as Croston’s Method or Average
Demand Model. An intermittent time series is one whose values
are mostly zero.

BESTALL Best Candidate Model (IDM, BEST)

The BEST, BESTN, and BESTS options specify a group of models by which the
HOLDOUT= option and SELECT= option are used to select the model used to fore-
cast the accumulated time series based on holdout sample analysis. Transformed
versions of the above smoothing models can be specified using the TRANSFORM=
option.

The BESTALL option specifies that if the series is intermittent, an intermittent de-
mand model such as Croston’s Method or Average Demand Model (MODEL=IDM)
is selected; otherwise; the best smoothing model is selected (MODEL=BEST).
Intermittency is determined by the INTERMITTENT= option.

The documentation for Chapter 19, “Forecasting Process Details,” describes the
above smoothing models and intermittent models in greater detail.

NBACKCAST= n
specifies the number of observations used to initialize the backcast states. The default
is the entire series.

REPLACEBACK
specifies that actual values excluded by the BACK= option are replaced with one-
step-ahead forecasts in the OUT= data set.

REPLACEMISSING
specifies that embedded missing actual values are replaced with one-step-ahead fore-
casts in the OUT= data set.

SEASONTEST= option
specifies the options related to the seasonality test. This option is used with
MODEL=BEST and MODEL=BESTALL option.

The following options are provided:

SEASONTEST=NONE no test

SEASONTEST=(SIGLEVEL=number) Significance probability value.

Series with strong seasonality have small test probabilities. SEASONTEST=(SIGLEVEL=0)
always implies seasonality. SEASONTEST=(SIGLEVEL=1) always implies no
seasonality. The default is SEASONTEST=(SIGLEVEL=0.01).

SELECT= option
specifies the model selection criterion (statistic of fit) to be used to select from sev-
eral candidate models. This option would often be used in conjunction with the
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HOLDOUT= option. The default is SELECT=RMSE. The following statistics of
fit are provided:

SSE Sum of Square Error

MSE Mean Square Error

RMSE Root Mean Square Error

UMSE Unbiased Mean Square Error

URMSE Unbiased Root Mean Square Error

MAXPE Maximum Percent Error

MINPE Minimum Percent Error

MPE Mean Percent Error

MAPE Mean Absolute Percent Error

MDAPE Median Percent Error

GMAPE Geometric Mean Percent Error

MINPPE Minimum Predictive Percent Error

MAXPPE Maximum Predictive Percent Error

MPPE Mean Predictive Percent Error

MAPPE Symmetric Mean Absolute Predictive Percent Error

MDAPPE Median Predictive Percent Error

GMAPPE Geometric Mean Predictive Percent Error

MINSPE Minimum Symmetric Percent Error

MAXSPE Maximum Symmetric Percent Error

MSPE Mean Symmetric Percent Error

SMAPE Symmetric Mean Absolute Percent Error

MDASPE Median Symmetric Percent Error

GMASPE Geometric Mean Symmetric Percent Error

MINRE Minimum Relative Error

MAXRE Maximum Relative Error

MRE Mean Relative Error

MRAE Mean Relative Absolute Error

MDRAE Median Relative Absolute Error

GMRAE Geometric Mean Relative Absolute Error

MAXERR Maximum Error

MINERR Minimum Error

ME Mean Error

MAE Mean Absolute Error

RSQUARE R-Square
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ADJRSQ Adjusted R-Square

AADJRSQ Amemiya’s Adjusted R-Square

RWRSQ Random Walk R-Square

AIC Akaike Information Criterion

SBC Schwarz Bayesian Information Criterion

APC Amemiya’s Prediction Criterion

SETMISSING= option | number
specifies how missing values (either actual or accumulated) are assigned in the ac-
cumulated time series for variables listed in the FORECAST statement. If the
SETMISSING= option is not specified in the FORECAST statement, missing values
are set based on the SETMISSING= option of the ID statement. See the ID statement
SETMISSING= option for more details.

TRANSFORM= option
specifies the time series transformation to be applied to the actual time series. The
following transformations are provided:

NONE No transformation is applied. This option is the default.

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

AUTO Automatically choose between NONE and LOG based on model
selection criteria.

When the TRANSFORM= option is specified the time series must be strictly positive.
Once the time series is transformed, the model parameters are estimated using the
transformed series. The forecasts of the transformed series are then computed, and
finally, the transformed series forecasts are inverse transformed. The inverse trans-
form produces either mean or median forecasts depending on whether the MEDIAN
option is specified.

The TRANSFORM= option is not applicable when MODEL=IDM is specified.

USE= option
specifies which forecast values are appended to the actual values in the OUT= and
OUTSUM= data sets. The following USE= options are provided:

PREDICT The predicted values are appended to the actual values. This option
is the default.

LOWER The lower confidence limit values are appended to the actual val-
ues.
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UPPER The upper confidence limit values are appended to the actual val-
ues.

Thus, the USE= option enables the OUT= and OUTSUM= data sets to be used for
worst/best/average/median case decisions.

ZEROMISS= option

specifies how beginning and/or ending zero values (either actual or accumulated)
are interpreted in the accumulated time series for variables listed in the FORECAST
statement. If the ZEROMISS= option is not specified in the FORECAST statement,
missing values are set based on the ZEROMISS= option of the ID statement. See the
ID statement ZEROMISS= option for more details.

ID Statement

ID variable INTERVAL= interval options;

The ID statement names a numeric variable that identifies observations in the input
and output data sets. The ID variable’s values are assumed to be SAS date, time,
or datetime values. In addition, the ID statement specifies the (desired) frequency
associated with the actual time series. The ID statement options also specify how
the observations are accumulated and how the time ID values are aligned to form the
actual time series. The information specified affects all variables specified in sub-
sequent FORECAST statements. If the ID statement is specified, the INTERVAL=
option must also be specified. If an ID statement is not specified, the observation
number, with respect to the BY group, is used as the time ID.

The following options can be used with the ID statement.

ACCUMULATE= option
specifies how the data set observations are accumulated within each time period. The
frequency (width of each time interval) is specified by the INTERVAL= option. The
ID variable contains the time ID values. Each time ID variable value corresponds to
a specific time period. The accumulated values form the actual time series, which is
used in subsequent model fitting and forecasting.

The ACCUMULATE= option is particularly useful when there are zero or more than
one input observations coinciding with a particular time period (e.g., transactional
data). The EXPAND procedure offers additional frequency conversions and transfor-
mations that can also be useful in creating a time series.

The following options determine how the observations are accumulated within each
time period based on the ID variable and the frequency specified by the INTERVAL=
option:

NONE No accumulation occurs; the ID variable values must be
equally spaced with respect to the frequency. This is the
default option.
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TOTAL Observations are accumulated based on the total sum of
their values.

AVERAGE | AVG Observations are accumulated based on the average of
their values.

MINIMUM | MIN Observations are accumulated based on the minimum of
their values.

MEDIAN | MED Observations are accumulated based on the median of their
values.

MAXIMUM | MAX Observations are accumulated based on the maximum of
their values.

N Observations are accumulated based on the number of
nonmissing observations.

NMISS Observations are accumulated based on the number of
missing observations.

NOBS Observations are accumulated based on the number of ob-
servations.

FIRST Observations are accumulated based on the first of their
values.

LAST Observations are accumulated based on the last of their
values.

STDDEV | STD Observations are accumulated based on the standard devi-
ation of their values.

CSS Observations are accumulated based on the corrected sum
of squares of their values.

USS Observations are accumulated based on the uncorrected
sum of squares of their values.

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for
specifying how accumulated missing values are treated. If missing values should be
interpreted as zero, then SETMISSING=0 should be used. The DETAILS section
describes accumulation in greater detail.

ALIGN= option
controls the alignment of SAS dates used to identify output observations. The
ALIGN= option accepts the following values: BEGINNING | BEG | B, MIDDLE
| MID | M, and ENDING | END | E. BEGINNING is the default.

END= option
specifies a SAS date, datetime, or time value that represents the end of the data. If the
last time ID variable value is less than the END= value, the series is extended with
missing values. If the last time ID variable value is greater than the END= value,
the series is truncated. For example, END=“&sysdate”D uses the automatic macro
variable SYSDATE to extend or truncate the series to the current date. This option
and the START= option can be used to ensure that data associated with each BY
group contains the same number of observations.
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INTERVAL= interval
specifies the frequency of the input time series. For example, if the input data set
consists of quarterly observations, then INTERVAL=QTR should be used. If the
SEASONALITY= option is not specified, the length of the seasonal cycle is implied
from the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal
cycle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL=
option determines the time periods for the accumulation of observations.

The basic intervals are YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH,
TENDAY, WEEK, WEEKDAY, DAY, HOUR, MINUTE, SECOND. Refer to
SAS/ETS User’s Guide chapter on Date Interval, Foremats, and Functions for the
intervals that can be specified.

NOTSORTED
specifies that the time ID values are not in sorted order. The HPF procedure will sort
the data with respect to the time ID prior to analysis.

SETMISSING= option | number
specifies how missing values (either actual or accumulated) are assigned in the accu-
mulated time series. If a number is specified, missing values are set to number. If a
missing value indicates an unknown value, this option should not be used. If a miss-
ing value indicates no value, a SETMISSING=0 should be used. You would typically
use SETMISSING=0 for transactional data because no recorded data usually implies
no activity. The following options can also be used to determine how missing values
are assigned:

MISSING Missing values are set to missing. This is the default op-
tion.

AVERAGE | AVG Missing values are set to the accumulated average value.

MINIMUM | MIN Missing values are set to the accumulated minimum value.

MEDIAN | MED Missing values are set to the accumulated median value.

MAXIMUM | MAX Missing values are set to the accumulated maximum value.

FIRST Missing values are set to the accumulated first nonmissing
value.

LAST Missing values are set to the accumulated last nonmissing
value.

PREVIOUS | PREV Missing values are set to the previous accumulated non-
missing value. Missing values at the beginning of the ac-
cumulated series remain missing.

NEXT Missing values are set to the next accumulated nonmissing
value. Missing values at the end of the accumulated series
remain missing.

If SETMISSING=MISSING is specified and the MODEL= option specifies a
smoothing model, the missing observations are smoothed over. If MODEL=IDM
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is specified, missing values are assumed to be periods of no demand, that is,
SETMISSING=MISSING is equivalent to SETMISSING=0.

START= option
specifies a SAS date, datetime, or time value that represents the beginning of the
data. If the first time ID variable value is greater than the START= value, the series
is prepended with missing values. If the first time ID variable value is less than the
START= value, the series is truncated. This option and the END= option can be
used to ensure that data associated with each by group contains the same number of
observations.

ZEROMISS= option
specifies how beginning and/or ending zero values (either actual or accumulated) are
interpreted in the accumulated time series. The following options can also be used to
determine how beginning and/or ending zero values are assigned:

NONE Beginning and/or ending zeros unchanged. This is the de-
fault.

LEFT Beginning zeros are set to missing.

RIGHT Ending zeros are set to missing.

BOTH Both beginning and ending zeros are set to missing.

If the accumulated series is all missing and/or zero the series is not changed.

IDM Statement

IDM options;

The IDM statement is used to specify an intermittent demand model. An intermit-
tent demand series can be analyzed in two ways: individually modeling both demand
interval and size component or jointly modeling these components using the aver-
age demand component (demand size divided by demand interval). The IDM state-
ment specifies the two smoothing models to be used to forecast the demand interval
component (INTERVAL= option) and the demand size component (SIZE= option),
or specifies the single smoothing model to be used to forecast the average demand
component (AVERAGE= option). Therefore, two smoothing models (INTERVAL=
and SIZE= options) must be specified or one smoothing model (AVERAGE= option)
must be specified. Only one statement can be specified.

The following examples illustrate typical uses of the IDM statement:

/* default specification */
idm;

/* demand interval model only specification */
idm interval=(transform=log);

/* demand size model only specification */
idm size=(method=linear);

240



Syntax

/* Croston’s Method */
idm interval=(method=simple)

size =(method=simple);

/* Log Croston’s Method */
idm interval=(method=simple transform=log)

size =(method=simple transform=log);

/* average demand model specification */
idm average=(method=bestn);

The default specification uses both the INTERVAL= option and SIZE= option de-
faults for the decomposed (Croston’s) demand model and the AVERAGE= option
defaults for the average demand model.

The following example illustrates how to automatically choose the decomposed de-
mand model using MAPE as the model selection criterion:

idm interval=(method=simple transform=auto select=mape)
size =(method=simple transform=auto select=mape);

forecast sales / model=idm select=mape;

The preceding fits two forecast models (simple and log simple exponential smooth-
ing) to both the demand interval and size components. The forecast model that results
in the lowest in-sample MAPE for each component is used to forecast the component.

The following example illustrates how to automatically choose the average demand
model using MAPE as the model selection criterion:

idm average=(method=simple transform=auto select=mape);
forecast sales / model=idm;

The preceding fits two forecast models (simple and log simple exponential smooth-
ing) to the average demand component. The forecast model that results in the lowest
in-sample MAPE is used to forecast the component.

Combining the above two examples, the following example illustrates how to auto-
matically choose between the decomposed demand model and the average demand
model using MAPE as the model selection criterion:

idm interval=(method=simple transform=auto select=mape)
size =(method=simple transform=auto select=mape)
average =(method=simple transform=auto select=mape);

forecast sales / model=idm select=mape;

The preceding automatically selects between the decomposed demand model and the
average demand model as described previously. The forecast model that results in the
lowest in-sample MAPE is used to forecast the series.
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The following options can be specified in the IDM statement:

INTERVAL=(smoothing-model-options)
specifies the smoothing model used to forecast the demand interval component. See
smoothing model specification options described below.

SIZE=(smoothing-model-options)
specifies the smoothing model used to forecast the demand size component. See
smoothing model specification options described below.

AVERAGE=(smoothing-model-options)
specifies the smoothing model used to forecast the demand average component. See
smoothing model specification options described below.

BASE=AUTO | number
specifies the base value of the time series used to determine the demand series com-
ponents. The demand series components are determined based on the departures from
this base value. If a base value is specified, this value is used to determine the demand
series components. If BASE=AUTO is specified, the time series properties are used to
automatically adjust the time series. For the common definition of Croston’s Method
use BASE=0 which defines departures based on zero. The default is BASE=0.

Given a time series, yt, and base value, b, the time series is adjusted by the base value
to create the base adjusted time series, xt = yt − b. Demands are assumed to occur
when the base adjusted series is nonzero (or when the time series, yt, departs from
the base value, b).

When BASE=AUTO, the base value is automatically determined by the time series
median, minimum, and maximum value and the INTERMITTENT= option value of
the FORECAST statement.

Smoothing Model Specification Options for IDM Statement

The smoothing model options describe how to forecast the demand interval, size, and
average demand components (INTERVAL= option, SIZE= option, and AVERAGE=
option).

If the smoothing model options are not specified, the following are the defaults for
the demand interval, size, and average components.

interval=(transform=auto method=bestn
levelrest=(0.0001 0.9999)
trendrest=(0.0001 0.9999)
damprest =(0.0001 0.9999) select=rmse bounds=(1,.));

size =(transform=auto method=bestn
levelrest=(0.0001 0.9999)
trendrest=(0.0001 0.9999)
damprest =(0.0001 0.9999) select=rmse);

average =(transform=auto method=bestn
levelrest=(0.0001 0.9999)

242



Syntax

trendrest=(0.0001 0.9999)
damprest =(0.0001 0.9999) select=rmse);

The above smoothing model options provide the typical automation in intermittent
demand model selection.

The following describes the smoothing model options:

TRANSFORM= option
specifies the time series transformation to be applied to the demand component. The
following transformations are provided:

NONE No transformation is applied.

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

AUTO Automatically choose between NONE and LOG based on model
selection criteria. This option is the default.

When the TRANSFORM= option is specified, the demand component must be
strictly positive. Once the demand component is transformed, the model parameters
are estimated using the transformed component. The forecasts of the transformed
component are then computed, and finally, the transformed component forecasts are
inverse transformed. The inverse transform produces either mean or median forecasts
depending on whether the MEDIAN option is specified.

MEDIAN
specifies that the median forecast values are to be estimated. Forecasts can be based
on the mean or median. By default the mean value is provided. If no transformation
is applied to the actual series using the TRANSFORM= option, the mean and median
component forecast values are identical.

METHOD= method-name
specifies the forecasting model to be used to forecast the demand component. A sin-
gle model can be specified or a group of candidate models can be specified. If a
group of models is specified, the model used to forecast the accumulated time series
is selected based on the SELECT= option of the IDM statement and the HOLDOUT=
option of the FORECAST statement. The default is METHOD=BESTN. The follow-
ing forecasting models are provided:

SIMPLE Simple (Single) Exponential Smoothing

DOUBLE Double (Brown) Exponential Smoothing

LINEAR Linear (Holt) Exponential Smoothing

DAMPTREND Damped Trend Exponential Smoothing
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BESTN Best Candidate Nonseasonal Smoothing Model (SIMPLE,
DOUBLE, LINEAR, DAMPTREND)

NOSTABLE
specifies that the smoothing model parameters are not restricted to the additive in-
vertible region of the parameter space. By default, the smoothing model parameters
are restricted to be inside the additive invertible region of the parameter space.

LEVELPARM= number
specifies the level weight parameter initial value. See the smoothing model parameter
specifications options below.

LEVELREST=(number,number)
specifies the level weight parameter restrictions. See the smoothing model parameter
specifications options below.

TRENDPARM= number
specifies the trend weight parameter initial value. See the smoothing model parameter
specifications options below.

TRENDREST=(number,number)
specifies the trend weight parameter restrictions. See the smoothing model parameter
specifications options below.

DAMPPARM= number
specifies the damping weight parameter initial value. See the smoothing model pa-
rameter specifications options below.

DAMPREST=(number,number)
specifies the damping weight parameter restrictions. See the smoothing model pa-
rameter specifications options below.

NOEST
specifies that the smoothing model parameters are fixed values. To use this option,
all of the smoothing model parameters must be explicitly specified. By default, the
smoothing model parameters are optimized.

BOUNDS=(number,number)
Specifies the component forecast bound. See the smoothing model forecast bounds
below.

SELECT= option
specifies the model selection criterion (statistic of fit) to be used to select from
several candidate models. This option would often be used in conjunction with
the HOLDOUT= option specified in the FORECAST statement. The default is
SELECT=RMSE. The statistics of fit provided are the same as those provided in
the FORECAST statement.
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Smoothing Model Parameter Specification Options

The parameter options are used to specify smoothing model parameters. If the pa-
rameter restrictions are not specified the default is (0.0001 0.9999), which implies
that the parameters are restricted between 0.0001 and 0.9999. Parameters and their
restrictions are required to be greater than or equal to -1 and less than or equal to
2. Missing values indicate no lower and/or upper restriction. If the parameter initial
values are not specified, the optimizer uses a grid search to find an appropriate initial
value.

Smoothing Model Forecast Bounds Options

Specifies the demand component forecast bounds. The forecast bounds restrict the
component forecasts. The default for demand interval forecasts is BOUNDS=1. The
lower bound for the demand interval forecast must be greater than one. The default
for demand size forecasts is BOUNDS=(.,.) or no bounds. The demand size forecasts
bounds are applied after the forecast is adjusted by the base value.

Details
The HPF procedure can be used to perform trend and seasonal analysis on trans-
actional data. For trend analysis, various sample statistics are computed for each
time period defined by the time ID variable and INTERVAL= option. For sea-
sonal analysis, various sample statistics are computed for each season defined by
the INTERVAL= or the SEASONALITY= option. For example, suppose the trans-
actional data ranges from June 1990 to January 2000, then the trend statistics are
computed for every month: June 1990, July 1990, ..., January 2000. The seasonal
statistics are computed for each season: January, February, ..., December.

The HPF procedure can be used to forecast time series data as well as transactional
data. If the data is transactional, then the procedure must first accumulate the data into
a time series before it can be forecast. The procedure uses the following sequential
steps to produce forecasts, with the options that control the step listed to the right:

1. Accumulation ACCUMULATE= option

2. Missing Value Interpretation SETMISSING= option

3. Diagnostic Tests INTERMITTENT= and SEASONTEST= options

4. Model Selection MODEL=, HOLDOUT=, HOLDOUTPCT=, and SELECT= options

5. Transformations TRANSFORM= option

6. Parameter Estimation MODEL= option

7. Forecasting MODEL= and LEAD= options

8. Inverse Transformation TRANSFORM= and MEDIAN options

9. Statistics of Fit SELECT= option
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10. Summation of Forecasts LEAD= and STARTSUM= options

Each of the above steps is described below.

Accumulation

If the ACCUMULATE= option is specified, data set observations are accumulated
within each time period. The frequency (width of each time interval) is specified by
the INTERVAL= option. The ID variable contains the time ID values. Each time ID
value corresponds to a specific time period. Accumulation is particularly useful when
the input data set contains transactional data, whose observations are not spaced with
respect to any particular time interval. The accumulated values form the actual time
series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

19MAR1999 10
19MAR1999 30
11MAY1999 50
12MAY1999 20
23MAY1999 20

If the INTERVAL=MONTH is specified, all of the above observations fall within
three time periods of March 1999, April 1999, and May 1999. The observations are
accumulated within each time period as follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the
ID variable values are not equally spaced with respect to the specified frequency
(MONTH).

If the ACCUMULATE=TOTAL option is specified:

O1MAR1999 40
O1APR1999 .
O1MAY1999 90

If the ACCUMULATE=AVERAGE option is specified:

O1MAR1999 20
O1APR1999 .
O1MAY1999 30

If the ACCUMULATE=MINIMUM option is specified:

O1MAR1999 10
O1APR1999 .
O1MAY1999 20
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If the ACCUMULATE=MEDIAN option is specified:

O1MAR1999 20
01APR1999 .
O1MAY1999 20

If the ACCUMULATE=MAXIMUM option is specified:

O1MAR1999 30
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=FIRST option is specified:

O1MAR1999 10
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=LAST option is specified:

O1MAR1999 30
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=STDDEV option is specified:

O1MAR1999 14.14
O1APR1999 .
O1MAY1999 17.32

As can be seen from the above examples, even though the data set observations con-
tained no missing values, the accumulated time series may have missing values.

Missing Value Interpretation

Sometimes missing values should be interpreted as unknown values. The forecast-
ing models used by the HPF procedure can effectively handle missing values (see
the “Missing Value Modeling Issues” section on page 248). But sometimes miss-
ing values are known, such as when missing values are created from accumulation
and no observations should be interpreted as no (zero) value. In the former case,
the SETMISSING= option can be used to interpret how missing values are treated.
The SETMISSING=0 option should be used when missing observations are to be
treated as no (zero) values. In other cases, missing values should be interpreted as
global values, such as minimum or maximum values of the accumulated series. The
accumulated and interpreted time series is used in subsequent analyses.
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Diagnostic Tests

The INTERMITTENT= option set the thresholds for categorizing a series as inter-
mittent or non-intermittent. The SEASONTEST= option set the thresholds for cate-
gorizing a series as seasonal or non-seasonal.

Model Selection

When more than one candidate model is specified, forecasts for each candidate model
are compared using the model selection criterion specified by the SELECT= option.
The selection criterion is computed using the multistep forecasts in the holdout sam-
ple range if the HOLDOUT= or HOLDOUTPCT= options are specified, or the one-
step ahead forecasts for the full range of the time series if the HOLDOUT= and
HOLDOUTPCT= options are not specified. The candidate model with the best se-
lection criterion is selected to forecast the time series.

Transformations

If the TRANSFORM= option is specified, the time series is transformed prior to
model parameter estimation and forecasting. Only strictly positive series can be
transformed. An error is generated when the TRANSFORM= option is used with
a nonpositive series.

Parameter Estimation

All parameters associated with the model are optimized based on the data with the
default parameter restrictions imposed. If the TRANSFORM= option is specified,
the transformed time series data are used to estimate the model parameters.

Missing Value Modeling Issues

The treatment of missing values varies with the forecasting model. For the smoothing
models, missing values after the start of the series are replaced with one-step-ahead
predicted values, and the predicted values are applied to the smoothing equations.
See Chapter 19, “Forecasting Process Details,” for greater detail on how missing
values are treated in the smoothing models. For MODEL=IDM, specified missing
values are assumed to be periods of no demand.

The treatment of missing values can also be specified by the user with the
SETMISSING= option, which changes the missing values prior to modeling.

Even though all of the observed data are nonmissing, using the ACCUMULATE=
option can create missing values in the accumulated series.
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Forecasting

Once the model parameters are estimated, one-step ahead forecasts are generated for
the full range of the actual (optionally transformed) time series data, and multistep
forecasts are generated from the end of the observed time series to the future time
period after the last observation specified by the LEAD= option. If there are missing
values at the end of the time series, the forecast horizon will be greater than that
specified by the LEAD= option.

Inverse Transformations

If the TRANSFORM= option is specified, the forecasts of the transformed time series
are inverse transformed. By default, the mean (expected) forecasts are generated. If
the MEDIAN option is specified, the median forecasts are generated.

Statistics of Fit

The statistics of fit (or goodness-of-fit statistics) are computed by comparing the ac-
tual time series data and the generated forecasts. If the TRANSFORM= option was
specified, the statistics of fit are based on the inverse transformed forecasts.

Forecast Summation

The multistep forecasts generated by the above steps are summed from the
STARTSUM= number to the LEAD= number. For example, if STARTSUM=4 and
LEAD=6, the 4-step through 6-step ahead forecasts are summed. The predictions
are simply summed. However, the prediction error variance of this sum is computed
taking into account the correlation between the individual predictions. The upper
and lower confidence limits for the sum of the predictions is then computed based on
the prediction error variance of the sum.

The forecast summation is particularly useful when it is desirable to model in one
frequency yet the forecast of interest is another frequency. For example, if a time
series has a monthly frequency (INTERVAL=MONTH) and you want a forecast for
the third and fourth future months, a forecast summation for the third and fourth
month can be obtained by specifying STARTSUM=3 and LEAD=4.

Variance-related computations are only computed when no transformation is speci-
fied (TRANSFORM=NONE).

Comparison to the Time Series Forecasting System

With the exception of Model Selection, the techniques used in the HPF procedure are
identical to the Time Series Forecasting System of SAS/ETS software. For Model
Parameter Estimation, the default parameter restrictions are imposed.
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Data Set Output

The HPF procedure can create the OUT=, OUTEST=, OUTFOR=, OUTSTAT=,
OUTSUM=, OUTSEASON=, and OUTTREND= data sets. In general, these data
sets will contain the variables listed in the BY statement. In general, if a forecasting
step related to an output data step fails, the values of this step are not recorded or
are set to missing in the related output data set, and appropriate error and/or warning
messages are recorded in the log.

OUT= Data Set

The OUT= data set contains the variables specified in the BY, ID, and FORECAST
statements. If the ID statement is specified, the ID variable values are aligned
and extended based on the ALIGN= and INTERVAL= options. The values of
the variables specified in the FORECAST statements are accumulated based on
the ACCUMULATE= option and missing values are interpreted based on the
SETMISSING= option. If the REPLACEMISSING option is specified, missing val-
ues embedded missing values are replaced by the one step-ahead forecasts.

These variable values are then extrapolated based on their forecasts or extended with
missing values when the MODEL=NONE option is specified. If USE=LOWER
is specified, the variable is extrapolated with the lower confidence limits; if
USE=UPPER, the variable is extrapolated using the upper confidence limits; oth-
erwise, the variable values are extrapolated with the predicted values. If the
TRANSFORM= option is specified, the predicted values will contain either mean
or median forecasts depending on whether or not the MEDIAN option is specified.

If any of the forecasting steps fail for particular variable, the variable values are ex-
tended by missing values.

OUTEST= Data Set

The OUTEST= data set contains the variables specified in the BY statement as well
as the variables listed below. For variables listed in FORECAST statements where the
option MODEL=NONE is specified, no observations are recorded for these variables.
For variables listed in FORECAST statements where the option MODEL=NONE is
not specified, the following variables contain observations related to the parameter
estimation step:

–NAME– Variable name

–MODEL– Forecasting Model

–TRANSFORM– Transformation

–PARM– Parameter Name

–EST– Parameter Estimate

–STDERR– Standard Errors

–TVALUE– t-Values

–PVALUE– Probability Values
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If the parameter estimation step fails for a particular variable, no observations are
recorded.

OUTFOR= Data Set

The OUTFOR= data set contains the variables specified in the BY statement as well
as the variables listed below. For variables listed in FORECAST statements where the
option MODEL=NONE is specified, no observations are recorded for these variables.
For variables listed in FORECAST statements where the option MODEL=NONE is
not specified, the following variables contain observations related to the forecasting
step:

–NAME– Variable name

–TIMEID– Time ID values

PREDICT Predicted Values

STD Prediction Standard Errors

LOWER Lower Confidence Limits

UPPER Upper Confidence Limits

ERROR Prediction Errors

If the forecasting step fails for a particular variable, no observations are recorded.
If the TRANSFORM= option is specified, the values in the variables listed above
are the inverse transform forecasts. If the MEDIAN option is specified, the median
forecasts are stored; otherwise, the mean forecasts are stored.

OUTSTAT= Data Set

The OUTSTAT= data set contains the variables specified in the BY statement as well
as the variables listed below. For variables listed in FORECAST statements where the
option MODEL=NONE is specified, no observations are recorded for these variables.
For variables listed in FORECAST statements where the option MODEL=NONE is
not specified, the following variables contain observations related to the statistics of
fit step:

–NAME– Variable name

–REGION– Statistics of Fit Region

DFE Degrees of Freedom Error

N Number of Observations

NOBS Number of Observations Used

NMISSA Number of Missing Actuals

NMISSP Number of Missing Predicted Values

NPARMS Number of parameters

SSE Sum of Square Error
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MSE Mean Square Error

UMSE Unbiased Mean Square Error

RMSE Root Mean Square Error

URMSE Unbiased Root Mean Square Error

MAPE Mean Absolute Percent Error

MAE Mean Absolute Error

RSQUARE R-Square

ADJRSQ Adjusted R-Square

AADJRSQ Amemiya’s Adjusted R-Square

RWRSQ Random Walk R-Square

AIC Akaike Information Criterion

SBC Schwarz Bayesian Information Criterion

APC Amemiya’s Prediction Criterion

MAXERR Maximum Error

MINERR Minimum Error

MINPE Maximum Percent Error

MAXPE Minimum Percent Error

ME Mean Error

MPE Mean Percent Error

If the statistics of fit step fails for particular variable, no observations are recorded.
If the TRANSFORM= option is specified, the values in the variables listed above
are computed based on the inverse transform forecasts. If the MEDIAN option is
specified, the median forecasts are the basis; otherwise, the mean forecasts are the
basis.

OUTSUM= Data Set

The OUTSUM= data set contains the variables specified in the BY statement as well
as the variables listed below. The OUTSUM= data set records the summary statis-
tics for each variable specified in a FORECAST statement. For variables listed in
FORECAST statements where the option MODEL=NONE is specified, the values
related to forecasts are set to missing. For variables listed in FORECAST statements
where the option MODEL=NONE is not specified, the forecast values are set based
on the USE= option.

Variables related to summary statistics are based on the ACCUMULATE= and
SETMISSING= options:

–NAME– Variable name

–STATUS– Forecasting Status. Nonzero values imply that no forecast was gen-
erated for the series.
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NOBS Number of Observations

N Number of Nonmissing Observations

NMISS Number of Missing Observations

MIN Minimum Value

MAX Maximum Value

MEAN Mean Value

STDDEV Standard Deviation

Variables related to forecast summation are based on the LEAD= and STARTSUM=
options:

PREDICT Forecast Summation Predicted Values

STD Forecast Summation Prediction Standard Errors

LOWER Forecast Summation Lower Confidence Limits

UPPER Forecast Summation Upper Confidence Limits

Variance-related computations are only computed when no transformation is speci-
fied (TRANSFORM=NONE).

Variables related to multistep forecast based on the LEAD= and USE= options:

–LEADn– Multistep Forecast (n ranges from one to LEAD=number). If
USE=LOWER, this variable will contain the lower confidence limits;
if USE=UPPER, this variable will contain the upper confidence limits;
otherwise, this variable will contain the predicted values.

If the forecast step fails for a particular variable, the variables related to forecasting
are set to missing. The OUTSUM= data set contains both a summary of the (accu-
mulated) time series and optionally its forecasts for all series.

OUTSEASON= Data Set

The OUTSEASON= data set contains the variables specified in the BY statement as
well as the variables listed below. The OUTSEASON= data set records the seasonal
statistics for each variable specified in a FORECAST statement.

Variables related to seasonal statistics are based on the INTERVAL= or
SEASONALITY= options:

–NAME– Variable name

–TIMEID– Time ID values

–SEASON– Seasonal index

NOBS Number of Observations
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N Number of Nonmissing Observations

NMISS Number of Missing Observations

MIN Minimum Value

MAX Maximum Value

RANGE Range Value

SUM Summation Value

MEAN Mean Value

STDDEV Standard Deviation

CSS Corrected Sum of Squares

USS Uncorrected Sum of Squares

MEDIAN Median Value

The above statistics are computed for each season.

OUTTREND= Data Set

The OUTTREND= data set contains the variables specified in the BY statement as
well as the variables listed below. The OUTTREND= data set records the trend statis-
tics for each variable specified in a FORECAST statement.

Variables related to trend statistics are based on the INTERVAL= and
SEASONALITY= options:

–NAME– Variable name

–TIMEID– Time ID values

–SEASON– Seasonal index

NOBS Number of Observations

N Number of Nonmissing Observations

NMISS Number of Missing Observations

MIN Minimum Value

MAX Maximum Value

RANGE Range Value

SUM Summation Value

MEAN Mean Value

STDDEV Standard Deviation

CSS Corrected Sum of Squares

USS Uncorrected Sum of Squares

MEDIAN Median Value

The above statistics are computed for each time period.
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Printed Output

The HPF procedure optionally produces printed output for these results utilizing the
Output Delivery System (ODS). By default, the procedure produces no printed out-
put. All output is controlled by the PRINT= and PRINTDETAILS options associated
with the PROC HPF statement. In general, if a forecasting step related to printed out-
put fails, the values of this step are not printed and appropriate error and/or warning
messages are recorded in the log. The printed output is similar to the output data set
and these similarities are described below.

PRINT=SUMMARY

prints the summary statistics and forecast summaries similar to the OUTSUM= data
set.

PRINT=ESTIMATES

prints the parameter estimates similar to the OUTEST= data set.

PRINT=FORECASTS

prints the forecasts similar to the OUTFOR= data set. For MODEL=IDM, a table
containing demand series is also printed.

If the MODEL=IDM option is specified, the demand series predictions table is also
printed. This table is based on the demand index (when demands occurred).

PRINT=PERFORMANCE

prints the performance statistics.

PRINT=PERFORMANCESUMMARY

prints the performance summary for each BY group.

PRINT=PERFORMANCEOVERALL

prints the performance summary for all BY groups.

PRINT=STATES

prints the backcast, initial, and final smoothed states.

PRINT=SEASONS

prints the seasonal statistics similar to the OUTSEASON= data set.

PRINT=STATISTICS

prints the statistics of fit similar to the OUTSTAT= data set.
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PRINT=TRENDS

Prints the trend statistics similar to the OUTTREND= data set.

PRINTDETAILS

The PRINTDETAILS option is the opposite of the NOOUTALL option.

Specifically, if PRINT=FORECASTS and the PRINTDETAILS options are specified,
the one-step ahead forecasts, throughout the range of the data, are printed as well as
the information related to a specific forecasting model such as the smoothing states. If
the PRINTDETAILS option is not specified, only the multistep forecasts are printed.

ODS Table Names

The table below relates the PRINT= options to ODS tables:

Table 7.1. ODS Tables Produced in PROC HPF

ODS Table Name Description Option

ODS Tables Created by the PRINT=SUMMARY option
DescStats Descriptive Statistics
DemandSummary Demand Summary MODEL=IDM option only
ForecastSummary Forecast Summary
ForecastSummmation Forecast Summation

ODS Tables Created by the PRINT=ESTIMATES option
ModelSelection Model Selection
ParameterEstimates Parameter Estimates

ODS Tables Created by the PRINT=FORECASTS option
Forecasts Forecast
Demands Demands MODEL=IDM option only

ODS Tables Created by the PRINT=PERFORMANCE option
Performance Performance Statistics

ODS Tables Created by the PRINT=PERFORMANCESUMMARY option
PerformanceSummary Performance Summary

ODS Tables Created by the PRINT=PERFORMANCEOVERALL option
PerformanceSummary Performance Overall

ODS Tables Created by the PRINT=SEASONS option
SeasonStatistics Seasonal Statistics

ODS Tables Created by the PRINT=STATES option
SmoothedStates Smoothed States
DemandStates Demand States MODEL=IDM option only

ODS Tables Created by the PRINT=STATISTICS option
FitStatistics Statistics of Fit

ODS Tables Created by the PRINT=TRENDS option
TrendStatistics Trend Statistics
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The ODS table ForecastSummary is related to all time series within a BY group. The
other tables are related to a single series within a BY group.

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the HPF procedure.
These graphics are experimental in this release, meaning that both the graphical re-
sults and the syntax for specifying them are subject to change in a future release.

To request these graphs, you must specify the ODS GRAPHICS statement. In ad-
dition, you can specify the PLOT= option in the HPF statement according to the
following syntax. For more information on the ODS GRAPHICS statement, refer to
Chapter 9, “Statistical Graphics Using ODS” (SAS/ETS User’s Guide).

PLOT= option | (options)
specifies the graphical output desired. By default, the HPF procedure produces no
graphical output. The following printing options are available:

ERRORS plots prediction error time series graphics.

ACF plots prediction error autocorrelation function graphics.

PACF plots prediction error partial autocorrelation function graphics.

IACF plots prediction error inverse autocorrelation function graphics.

WN plots white noise graphics.

MODELS plots model graphics.

FORECASTS plots forecast graphics.

MODELFORECASTSONLY plots forecast graphics with confidence limits in the
data range.

FORECASTSONLY plots the forecast in the forecast horzion only.

LEVELS plots smoothed level component graphics.

SEASONS plots smoothed seasonal component graphics.

TRENDS plots smoothed trend (slope) component graphics.

ALL Same as specifying all of the above PLOT= options.

For example, PLOT=FORECASTS plots the forecasts for each series. The PLOT=
option produces printed output for these results utilizing the Output Delivery System
(ODS). The PLOT= statement is experimental for this release of SAS.

ODS Graph Names

PROC HPF assigns a name to each graph it creates using ODS. You can use these
names to reference the graphs when using ODS. The names are listed in Table 7.2.

To request these graphs, you must specify the ODS GRAPHICS statement. In addi-
tion, you can specify the PLOT= option in the HPF statement. For more information
on the ODS GRAPHICS statement, refer to Chapter 9, “Statistical Graphics Using
ODS” (SAS/ETS User’s Guide).
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Table 7.2. ODS Graphics Produced by PROC HPF

ODS Graph Name Plot Description Statement PLOT= Option
DemandErrorsPlot Average Demand

Errors
PROC HPF PLOT=ERRORS

DemandForecastsPlot Average Demand
Forecasts

PROC HPF PLOT=FORECASTS

DemandIntervalHistogram Demand Interval
Histogram

PROC HPF PLOT=MODELS

DemandIntervalPlot Demand Interval
Forecast Plot

PROC HPF PLOT=MODELS

DemandSizeHistogram Demand Size
Histogram

PROC HPF PLOT=MODELS

DemandSizePlot Demand Size Forecast
Plot

PROC HPF PLOT=MODELS

ErrorACFNORMPlot Standardized autocor-
relation of Prediction
Errors

PROC HPF PLOT=ACF

ErrorACFPlot Autocorrelation of
Prediction Errors

PROC HPF PLOT=ACF

ErrorHistogram Prediction Error
Histogram

PROC HPF PLOT=ERRORS

ErrorIACFNORMPlot Standardized inverse
autocorrelation of
Prediction Errors

PROC HPF PLOT=IACF

ErrorIACFPlot Inverse autocorrelation
of Prediction Errors

PROC HPF PLOT=IACF

ErrorPACFNORMPlot Standardized partial
autocorrelation of
Prediction Errors

PROC HPF PLOT=PACF

ErrorPACFPlot Partial autocorrelation
of Prediction Errors

PROC HPF PLOT=PACF

ErrorPlot Plot of Prediction
Errors

PROC HPF PLOT=ERRORS

ErrorWhiteNoiseLogProbPlot White noise log proba-
bility plot of Prediction
Errors

PROC HPF PLOT=WN

ErrorWhiteNoiseProbPlot White noise probabi-
lity plot of Prediction
Errors

PROC HPF PLOT=WN

ForecastsOnlyPlot Forecasts Only Plot PROC HPF PLOT=FORECASTONLY
ForecastsPlot Forecasts Plot PROC HPF PLOT=FORECAST
LevelStatePlot Smoothed Level State

Plot
PROC HPF PLOT=LEVELS

ModelForecastsPlot Model and Forecasts
Plot

PROC HPF PLOT=MODELFORECAST

ModelPlot Model Plot PROC HPF PLOT=MODELS
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Table 7.2. (continued)

ODS Graph Name Plot Description Statement Option
SeasonStatePlot Smoothed Season

State Plot
PROC HPF PLOT=SEASONS

StockingAveragePlot Stocking Average Plot PROC HPF PLOT=FORECASTS
StockingLevelPlot Stocking Level Plot PROC HPF PLOT=FORECASTS
TrendStatePlot Smoothed Trend State

Plot
PROC HPF PLOT=TRENDS
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Examples

Example 7.1. Automatic Forecasting of Time Series Data

This example illustrates how the HPF procedure can be used for the automatic fore-
casting of time series data. Retail sales data is used for this illustration.

The following DATA step creates a data set from data recorded monthly at numerous
points of sales. The data set, SALES, will contain a variable DATE that represents
time and a variable for each sales item. Each value of the DATE variable is recorded
in ascending order and the values of each of the other variables represent a single
time series:

data sales;
format date date9.;
input date date9. shoes socks laces dresses coats shirts ties

belts hats blouses;
datalines;
... data lines omitted ...
;

run;

The following HPF procedure statements automatically forecast each of the monthly
time series.

proc hpf data=sales out=nextyear;
id date interval=month;
forecast _ALL_;

run;

The above statements automatically select the best fitting model and generate fore-
casts for every numeric variable in the input data set (SALES) for the next twelve
months, and stores these forecasts in the output data set (NEXTYEAR).

The following GPLOT procedure statements plot the forecasts related to shoe sales:

title1 "Shoe Department Sales";
axis2 label=(a=-90 r=90 "items" );
symbol1 v = dot i = join l = 1;
symbol2 v = star i = join l = 2;
symbol3 v = circle i = join l = 2;

proc gplot data=nextyear;
plot shoes * date = 1

socks * date = 2
laces * date = 3 / overlay
haxis= ’01JAN1994’d to ’01DEC2000’d by year
href= ’01JAN1999’d
vaxis=axis2;

run;
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The GPLOT procedure results are shown in Output 7.1.1. The historical data is shown
left the horizontal reference line and the forecasts for the next twelve monthly periods
is shown to the right.

Output 7.1.1. Retail Sales Forecast Plots

The following HPF procedure statements are identical to the statements above with
the exception that the PRINT=FORECASTS option is specified:

proc hpf data=sales out=nextyear print=forecasts;
id date interval=month;
forecast _ALL_;

run;

In addition to automatically forecasting each of the monthly time series, the above
statements print the forecasts using the Output Delivery System (ODS), which is par-
tially shown in Output 7.1.2. This output shows the predictions, prediction standard
errors and the upper and lower confidence limits for the next twelve monthly periods.
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Output 7.1.2. Forecast Tables
The HPF Procedure

Forecasts for Variable shoes

Standard
Obs Time Forecasts Error 95% Confidence Limits

62 FEB1999 7548.0041 607.5238 6357.2792 8738.7289
63 MAR1999 7177.1472 699.4400 5806.2701 8548.0244
64 APR1999 5497.5595 780.7609 3967.2964 7027.8227
65 MAY1999 4838.2001 854.5169 3163.3778 6513.0224
66 JUN1999 6728.4521 922.5244 4920.3375 8536.5668
67 JUL1999 6786.1094 985.9738 4853.6362 8718.5826
68 AUG1999 5853.9650 1045.6953 3804.4399 7903.4900
69 SEP1999 7517.0144 1102.2949 5356.5561 9677.4728
70 OCT1999 7100.2489 1156.2315 4834.0769 9366.4210
71 NOV1999 7224.6449 1207.8618 4857.2793 9592.0106
72 DEC1999 6357.1556 1257.4701 3892.5594 8821.7518
73 JAN2000 6492.2657 1305.2871 3933.9500 9050.5815

Example 7.2. Automatic Forecasting of Transactional Data

This example illustrates how the HPF procedure can be used to automatically forecast
transactional data. Internet data is used for this illustration.

The following DATA step creates a data set from data recorded at several Internet Web
sites. The data set, WEBSITES, will contain a variable TIME that represents time
and the variables ENGINE, BOATS, CARS, and PLANES that represent Internet
Web site data. Each value of the TIME variable is recorded in ascending order, and
the values of each of the other variables represent a transactional data series.

data websites;
format time datetime.;
input time datetime. boats cars planes engines;
datalines;
... data lines omitted ...
;

run;

The following HPF procedure statements automatically forecast each of the transac-
tional data series:

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats cars planes;

run;

The above statements accumulate the data into a daily time series and automatically
generate forecasts for the BOATS, CARS, and PLANES variables in the input data
set (WEBSITES) for the next week and stores the forecasts in the output data set
(NEXTWEEK).
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The following GPLOT procedure statements plot the forecasts related to the Internet
data:

title1 "Website Data";
axis2 label=(a=-90 r=90 "Websites" );
symbol1 v = dot i = join l = 1;
symbol2 v = star i = join l = 2;
symbol3 v = circle i = join l = 2;

proc gplot data=nextweek;
plot boats * time = 1

cars * time = 2
planes * time = 3 / overlay
haxis= ’13MAR2000:00:00:00’dt to

’18APR2000:00:00:00’dt by dtweek
href= ’11APR2000:00:00:00’dt
vaxis=axis2;

run;

The GPLOT procedure results are shown in Output 7.2.1. The historical data is shown
to the left of the horizontal reference line and the forecasts for the next twelve monthly
periods are shown to the right.

Output 7.2.1. Internet Data Forecast Plots
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Example 7.3. Specifying the Forecasting Model
In the previous example, the HPF procedure was used to automatically select the
appropriate forecasting model using the root mean square error (RMSE) as the default
selection criterion. This example illustrates how the HPF procedure can be used to
more narrowly specify the possible candidate models. Internet data from the previous
example are used for this illustration.

In this example, we will forecast the BOATS variable using the best seasonal fore-
casting model (BESTS) that minimizes the mean absolute percent error (MAPE), the
CARS variable using the best nonseasonal forecasting model (BESTN) that mini-
mizes the mean square error (MSE) using holdout sample analysis, and the PLANES
variable using Log Winters (additive). The following HPF procedure statements fore-
cast each of the transactional data series based on these requirements:

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats / model=bests select=mape;
forecast cars / model=bestn select=mse holdout=5;
forecast planes / model=addwinters transform=log;

run;

Example 7.4. Extending the Independent Variables for
Multivariate Forecasts

In the previous example, the HPF procedure was used to forecast several transac-
tional series variables using univariate models. This example illustrates how the HPF
procedure can be used to extend the independent variables associated with a multi-
ple regression forecasting problem. Specifically, PROC HPF is used to extend the
independent variables for use in forecasting a regression model.

In this example, we will accumulate and forecast the BOATS, CARS, and PLANES
variables as illustrated in the previous example. In addition, we will accumulate the
ENGINES variable to form a time series that is then extended with missing values
within the forecast horizon with the specification of MODEL=NONE.

proc hpf data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast engines / model=none;
forecast boats / model=bests select=mape;
forecast cars / model=bestn select=mse holdout=5;
forecast planes / model=winters transform=log;

run;

The following AUTOREG procedure statements are used to forecast the ENGINES
variable by regressing on the independent variables (BOATS, CARS, and PLANES).

proc autoreg data= nextweek;
model engines = boats cars planes / noprint;
output out=enginehits p=predicted;

run;
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The output data set (NEXTWEEK) of the PROC HPF statement is used as an in-
put data set for the PROC AUTOREG statement. The output data set of PROC
AUTOREG contains the forecast of the variable ENGINES based on the regres-
sion model with the variables BOATS, CARS, and PLANES as regressors. See
the AUTOREG procedure for details on autoregression models.

The following GPLOT procedure statements plot the forecasts related to the
ENGINES variable:

proc gplot data=enginehits;
plot boats * time = 1

cars * time = 2
planes * time = 3
predicted * time = 4 / overlay
haxis= ’13MAR2000:00:00:00’dt to

’18APR2000:00:00:00’dt by dtweek
href= ’11APR2000:00:00:00’dt
vaxis=axis2;

run;

The GPLOT procedure results are shown in Output 7.4.1. The historical data is shown
left the horizontal reference line and the forecasts for the next four weekly periods is
shown to the right.

Output 7.4.1. Internet Data Forecast Plots
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Example 7.5. Forecasting Intermittent Time Series Data

This example illustrates how the HPF procedure can be used to forecast intermittent
time series data. Inventory demand is used for this illustration.

The following DATA step creates a data set from inventory data recorded at no par-
ticular frequency. The data set, INVENTORY, will contain a variable DATE that
represents time and the demand variables (TIRES, HUBCAPS, and LUGBOLTS),
which represent inventory items. Each value of the DATE variable is recorded in as-
cending order, and the values of each of the other variables represent a transactional
data series.

data inventory;
format date date9.;
input date date9. tires hubcaps lugbolts;
datalines;
... data lines omitted ...
;

run;

The following HPF procedure statements forecast each of the transactional data series
using and intermittent demand model:

proc hpf data=inventory out=nextmonth lead=4 print=forecasts;
id date interval=week accumulate=total;
forecast tires hubcaps lugbolts / model=idm;

run;

The above statements accumulate the data into a weekly time series, and generate
forecasts for the TIRES, HUBCAPS, and LUGBOLTS variables in the input data set
(INVENTORY) for the four weekly periods, and store the forecasts in the output data
set (NEXTMONTH). The PRINT=FORECAST option produces the results partially
shown in Output 7.5.1. The first table records the demand series and predictions. The
second table represents forecasts or recommended stocking levels.
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Output 7.5.1. Forecast Tables
The HPF Procedure

Demands for Variable tires

Demand Demand Estimate of Mean
Demand Intervals Size Demand per Period

Index Time Actual Actual Actual Predict Std

1 Sun, 31 Aug 1997 14 6.0000 0.42857 0.42857 .
2 Sun, 26 Oct 1997 8 4.0000 0.50000 0.42857 0.15082
3 Sun, 1 Mar 1998 18 2.0000 0.11111 0.43002 0.15082
4 Sun, 26 Apr 1998 8 2.0000 0.25000 0.42103 0.15082
5 Sun, 31 May 1998 5 2.0000 0.40000 0.41593 0.15082
6 Sun, 27 Sep 1998 17 6.0000 0.35294 0.41497 0.15082
7 Sun, 3 Jan 1999 14 . . 0.41276 0.15082

Stock = (Interval Actual)*(Predict) - (Size Actual)

Demands for Variable tires

Demand Estimate of Mean Demand per Period
Index Time 95% Confidence Limits Error Stock

1 Sun, 31 Aug 1997 . . 0.0000000 -0.000000
2 Sun, 26 Oct 1997 0.13296 0.72418 0.0714286 -0.571429
3 Sun, 1 Mar 1998 0.13441 0.72563 -.3189115 5.740406
4 Sun, 26 Apr 1998 0.12542 0.71663 -.1710252 1.368201
5 Sun, 31 May 1998 0.12033 0.71154 -.0159339 0.079670
6 Sun, 27 Sep 1998 0.11936 0.71058 -.0620274 1.054465
7 Sun, 3 Jan 1999 0.11716 0.70837 . .

Stock = (Interval Actual)*(Predict) - (Size Actual)

Forecasts for Variable tires

Standard
Obs Time Forecasts Error 95% Confidence Limits

84 Sun, 3 Jan 1999 0.41276 0.15082 0.11716 0.70837
85 Sun, 10 Jan 1999 0.41276 0.15082 0.11716 0.70837
86 Sun, 17 Jan 1999 0.41276 0.15082 0.11716 0.70837
87 Sun, 24 Jan 1999 0.41276 0.15082 0.11716 0.70837

Example 7.6. Illustration of ODS Graphics (Experimental)

This example illustrates the use of experimental ODS graphics.

The following statements utilize the SASHELP.AIR data set to automatically fore-
cast the time series of international airline travel.

The graphical displays are requested by specifying the experimental ODS
GRAPHICS statement and the experimental PLOT= option in the PROC HPF
statement. In this case, all plots are requested. Output 7.6.1 through Output 7.6.4
show a selection of the plots created.

For general information about ODS graphics, refer to Chapter 9, “Statistical Graphics
Using ODS” (SAS/ETS User’s Guide). For specific information about the graphics
available in the HPF procedure, see the “ODS Graphics” section on page 257.
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ods html;
ods graphics on;

proc hpf data=sashelp.air out=_null_ lead=20 back=20 print=all plot=all;
id date interval=month;
forecast air / model=best transform=auto select=mape;

run;

ods graphics off;
ods html close;

Output 7.6.1. Smoothed Trend Plot (Experimental)
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Output 7.6.2. Prediction Error Plot (Experimental)

Output 7.6.3. Prediction Error Standardized ACF Plot (Experimental)
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Output 7.6.4. Forecast Plot (Experimental)

References
Pyle, D. (1999), Data Preparation for Data Mining, San Francisco: Morgan Kaufman
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Chapter 8
The HPFARIMASPEC Procedure
Overview

The HPFARIMASPEC procedure is used to create an ARIMA model specification
file. The output of this procedure is an XML file that stores the intended ARIMA
model specification. This XML specification file can be used for different purposes;
for example, to populate the model repository used by the HPFENGINE procedure
(see Chapter 10, “The HPFENGINE Procedure”). You can specify very general
ARIMA models using this procedure. In particular, any model that can be ana-
lyzed using the ARIMA procedure can be specified; see Chapter 11, “The ARIMA
Procedure” (SAS/ETS User’s Guide). Moreover, the model specification can include
series transformations such as log or Box-Cox transformations.

Getting Started
The following example shows how to create an ARIMA model specification file. In
this example the specification for an Airline model with one input is created.

proc hpfarimaspec repository=work.arima
name=Airline1
label="Airline model with one input";

forecast symbol=Y q=(1)(12) dif=(1, 12) noint
transform=log;

input symbol=X dif=(1, 12);
estimate method=ml;

run;

The options in the PROC HPFARIMASPEC statement are used to specify the lo-
cation of the specification file that will be output. Here the REPOSITORY= option
specifies that the output file be placed in the catalog SASUSER.ARIMA, the NAME=
option specifies that the name of the file be Airline1.xml, and the LABEL= option
specifies a label for this catalog member. The other statements in the procedure spec-
ify the ARIMA model and the options used to control the parameter estimation pro-
cess for the model. The model specification begins with the FORECAST statement
that specifies the following:

• transformation, such as log or Box-Cox, and the differencing orders associated
with the variable that is to be forecast

• autoregressive and moving-average polynomials

• presence or absence of the constant in the model
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Here, according to the FORECAST statement, the model contains no constant term
and has a two-factor moving-average polynomial of orders 1 and 12. The forecast
variable is log transformed and differenced with differencing orders 1 and 12. The
SYMBOL= option in the FORECAST statement can be used to provide a convenient
name for the forecast variable. This name is only a placeholder, and a proper data
variable will be associated with this name when this model specification is used in
actual data analysis.

Next, the INPUT statement provides the transfer function specification associated
with the input variable in the model. In the INPUT statement you can specify

• transformation, such as log or Box-Cox, and the lagging and differencing or-
ders associated with the input variable

• numerator and denominator polynomials associated with the transfer function
input

In this case the input variable is differenced with differencing orders 1 and 12, and
it enters the model as a simple regressor. Here again the SYMBOL= option can be
used to supply a convenient name for the input variable. If a model contains multiple
input variables then each input variable specification has to be given using a separate
INPUT statement.

Lastly, the ESTIMATE statement specifies that the model be estimated using the ML
method of estimation.

Syntax
The HPFARIMASPEC procedure uses the following statements.

PROC HPFARIMASPEC options;
FORECAST options ;
INPUT options;
ESTIMATE options;

Functional Summary

The statements and options controlling the HPFARIMASPEC procedure are summa-
rized in the following table.

Description Statement Option

Model Repository Options
specify the model repository PROC

HPFARIMASPEC
REPOSITORY=

specify the model specification name PROC
HPFARIMASPEC

NAME=

274



Syntax

Description Statement Option

specify the model specification label PROC
HPFARIMASPEC

LABEL=

Options for Specifying Symbolic Series Names
specify a symbolic name for the response series FORECAST SYMBOL=
specify a symbolic name for the input series INPUT SYMBOL=
specify a predefined trend as the input series INPUT PREDEFINED=

Options for Specifying the Model
specify the response series transformation FORECAST TRANSFORM=
specify the response series differencing orders FORECAST DIF=
specify the input series transformation INPUT TRANSFORM=
specify the input series differencing orders INPUT DIF=
specify the input series lagging order INPUT DELAY=
specify the ARIMA part of the model FORECAST
specify the AR polynomial FORECAST P=
specify autoregressive starting values FORECAST AR=
specify the MA polynomial FORECAST Q=
specify moving average starting values FORECAST MA=
indicate absence of a constant in the model FORECAST NOINT
specify a starting value for the mean parameter FORECAST MU=
specify the NOISE variance FORECAST NOISEVAR=
specify the transfer function part of the model INPUT
specify the numerator polynomial of a transfer func-

tion
INPUT NUM=

specify starting values for the numerator polyno-
mial coefficients

INPUT NC=

specify starting value for the zero degree numerator
polynomial coefficient

INPUT NZ=

specify the denominator polynomial of a transfer
function

INPUT DEN=

specify starting values for the denominator polyno-
mial coefficients

INPUT DC=

Options to Control the Parameter Estimation
specify the estimation method ESTIMATE METHOD=
suppress the iterative estimation process ESTIMATE NOEST
specify the maximum number of iterations ESTIMATE MAXITER=
specify convergence criterion ESTIMATE CONVERGE=
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PROC HPFARIMASPEC Statement

PROC HPFARIMASPEC options;

The following options can be used in the PROC HPFARIMASPEC statement:

LABEL= SAS-label
specfies a descriptive label for the model specification to be stored in the SAS
catalog or external file reference. The LABEL= option can also be specified as
SPECLABEL=.

NAME= SAS-name
names the model specification to be stored in the SAS catalog or external file refer-
ence. The NAME= option can also be specified as SPECNAME=.

REPOSITORY= SAS-catalog-name
REPOSITORY= SAS-file-reference

names the SAS catalog or external file reference to contain the model specifica-
tion. The REPOSITORY= option can also be specified as MODELREPOSITORY=,
MODELREP=, or REP=.

FORECAST Statement

FORECAST options;

The FORECAST statement specifies the operations to be performed on the response
series as well as the auto regressive and moving average polynomials in the model.
The presence or absence of a constant in the model is also specified here.

The following options are used in the FORECAST statement.

(SYMBOL|VAR)= variable
specifies a symbolic name for the dependent series. This symbol specification is
optional. If the SYMBOL= option is not specified, Y is used as a default symbol.

DIF= order
DIF= ( order1, order2, ... )

specifies the differencing orders for the dependent series. For example, DIF= (1 12)
specifies that the series be differenced using the operator (1−B)(1−B12). The dif-
ferencing orders can be positive integers or they can be “s”, indicating a placeholder
that will be substituted later with an appropriate value. The use of placeholders is
explained further in Example 8.3.

P= order
P= (lag, ..., lag) ... (lag, ..., lag)
P= (lag, ..., lag)<s1> ... (lag, ..., lag)<sk>

specifies the autoregressive part of the model. By default, no autoregressive parame-
ters are fit.

P=(l1, l2, ..., lk ) defines a model with autoregressive parameters at the specified lags.
P= order is equivalent to P=(1, 2, ..., order).
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A concatenation of parenthesized lists specifies a factored model. For example,
P=(1,2,5)(6,12) specifies the autoregressive model

(1 − φ1,1B − φ1,2B
2 − φ1,3B

5)(1 − φ2,1B
6 − φ2,2B

12)

Optionally, you can specify multipliers after the parenthesized lists. For example,
P=(1)(1)12 is equivalent to P=(1)(12), and P=(1,2)4(1)12(1,2)24 is equivalent to
P=(4,8)(12)(24,48). These multipliers can either be positive integers or they can be
“s”, indicating a placeholder that will be substituted later with an appropriate value.
The use of placeholders in the multiplier specification is explained in Example 8.3.

Q= order
Q= (lag, ..., lag) ... (lag, ..., lag)
Q= (lag, ..., lag)<s1> ... (lag, ..., lag)<sk>

specifies the moving-average part of the model. By default, no moving average pa-
rameters are fit.

The manner of specification of the moving-average part is identical to the specifica-
tion of the autoregressive part described in the P= option.

AR= value ...
lists starting values for the autoregressive parameters.

MA= value ...
lists starting values for the moving-average parameters.

NOCONSTANT
NOINT

suppresses the fitting of a constant (or intercept) parameter in the model. (That is, the
parameter µ is omitted.)

MU= value
specifies the MU parameter.

NOISEVAR= value
specifies the noise variance. This is only useful if you want to specify an externally
published model that is fully specified.

TRANSFORM= option
specifies the transformation to be applied to the time series. The following transfor-
mations are provided:

NONE No transformation applied

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

When the TRANSFORM= option is specified, the intended time series must be
strictly positive.
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INPUT Statement

INPUT options;

The INPUT statements specify the transfer function inputs in the model. A separate
INPUT statement is needed for each of the transfer function inputs. In this statement
you can specify all the features of the transfer function associated with the input
variable under consideration. The following options are used in the INPUT statement.

(SYMBOL|VAR)= variable
specifies a symbolic name for the dependent series. This symbol specification is
optional. If the SYMBOL= option or the PREDEFINED= option is not specified
then X is used as a default symbol. If there are multiple INPUT statements then an
attempt is made to generate a unique set of input symbols.

PREDEFINED= option
associates a predefined trend or a set of seasonal dummy variables with this transfer
function. The SYMBOL= and PREDEFINED= options are mutually exclusive.

In the following list of options, let t represent the observation count from the start of
the period of fit for the model, and let Xt be the value of the time trend variable at
observation t.

LINEAR A linear trend, with Xt = t − c

QUADRATIC A quadratic trend, with Xt = (t − c)2

CUBIC A cubic trend, with Xt = (t − c)3

INVERSE An inverse trend, with Xt = 1/t

SEASONAL Seasonal dummies. For a seasonal cycle of length s, the seasonal
dummy regressors include Xi,t : 1≤i≤(s − 1), 1≤t≤n for mod-
els that include an intercept term, and Xi,t : 1≤i≤(s), 1≤t≤n for
models that do not include an intercept term.

Each element of a seasonal dummy regressor is either zero or one,
based on the following rule:

Xi,t =
{ 1 when i = t

0 otherwise

Note that if the model includes an intercept term, the number of
seasonal dummy regressors is one less than s to ensure that the
linear system is full rank.

DIF= order
DIF= ( order1, order2, ... )

specifies the differencing orders for the input series. See the DIF= option of the
FORECAST statement for additional information.

DELAY= order
specifies the delay, or lag, order for the input series.
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NUM= order
NUM= (lag, ..., lag) ... (lag, ..., lag)
NUM= (lag, ..., lag)<s1> ... (lag, ..., lag)<sk>

specifies the numerator polynomial of the transfer function. See the P= option of the
FORECAST statement for additional information concerning the polynomial order
specification.

DEN= order
DEN= (lag, ..., lag) ... (lag, ..., lag)
DEN= (lag, ..., lag)<s1> ... (lag, ..., lag)<sk>

specifies the denominator polynomial of the transfer function. See the P= option
of the FORECAST statement for additional information concerning the polynomial
order specification.

NC= value ...
lists starting values for the numerator polynomial coefficients.

DC= value ...
lists starting values for the denominator polynomial coefficients.

NZ= value
specifies the scale parameter, i.e., the zero degree coefficient of the numerator.

TRANSFORM= option
specifies the transformation to be applied to the time series. The following transfor-
mations are provided:

NONE No transformation applied

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

When the TRANSFORM= option is specified, the intended time series must be
strictly positive.

ESTIMATE Statement

ESTIMATE options;

This is an optional statement in the procedure. Here you can specify the estimation
method or whether to hold the model parameters fixed to their starting values. You
can also specify some parameters that control the nonlinear optimization process.
The following options are available.

METHOD=ML
METHOD=ULS
METHOD=CLS
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specifies the estimation method to use. METHOD=ML specifies the maximum like-
lihood method. METHOD=ULS specifies the unconditional least-squares method.
METHOD=CLS specifies the conditional least-squares method. METHOD=CLS is
the default.

NOEST
uses the values specified with the AR=, MA=, . . . , etc. as final parameter values. The
estimation process is suppressed except for the estimation of the residual variance.
The specified parameter values are used directly by the next FORECAST statement.
Use of NOEST requires that all parameters be specified via the AR=, MA=, . . . ,
etc. Partially specified models will cause an error when used by the HPFENGINE
procedure. When NOEST is specified, standard errors, t values, and the correlations
between estimates are displayed as 0 or missing. (The NOEST option is useful, for
example, when you wish to generate forecasts corresponding to a published model.)

CONVERGE= value
specifies the convergence criterion. Convergence is assumed when the largest change
in the estimate for any parameter is less than the CONVERGE= option value. If the
absolute value of the parameter estimate is greater than 0.01, the relative change
is used; otherwise, the absolute change in the estimate is used. The default is
CONVERGE=.001.

DELTA= value
specifies the perturbation value for computing numerical derivatives. The default is
DELTA=.001.

MAXITER= n
MAXIT= n

specifies the maximum number of iterations allowed. The default is MAXITER=50.

NOLS
begins the maximum likelihood or unconditional least-squares iterations from the
preliminary estimates rather than from the conditional least-squares estimates that
are produced after four iterations.

NOSTABLE
specifies that the autoregressive and moving-average parameter estimates for the
noise part of the model not be restricted to the stationary and invertible regions, re-
spectively.

SINGULAR= value
specifies the criterion for checking singularity. If a pivot of a sweep operation is
less than the SINGULAR= value, the matrix is deemed singular. Sweep operations
are performed on the Jacobian matrix during final estimation and on the covariance
matrix when preliminary estimates are obtained. The default is SINGULAR=1E-7.
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Examples

Example 8.1. Some Syntax Illustrations
The following code fragments illustrate the HPFARIMASPEC syntax for some of the
commonly needed modeling activities. Suppose that a variety of ARIMA models are
to be fit to a data set that contains a sales series as the forecast variable and several
promotional events as predictor series. In all these cases the model repository is kept
the same, sasuser.arima, and the models are named as model1, model2, ..., to ensure
uniqueness. Note that in a given repository, the models must have unique names.
The symbols for the forecast and input variables are sales and promo1, promo2, ...,
respectively.

/* Two transfer functions */
proc hpfarimaspec repository=work.arima

name=model1;
forecast symbol=sales transform=log

q=(1)(12) dif=(1,12) noint;
input symbol=promo1 dif=(1, 12) den=2;
input symbol=promo2 num=2 delay=3;

run;

/* Box-Cox transform and Estimation Method=ML */
proc hpfarimaspec

repository=work.arima
name=model2;

forecast symbol=sales transform=BoxCox(0.8)
p=2;

estimate method=ml;
run;

/* suppress parameter estimation: in this */
/* case all the parameters must be specified */
proc hpfarimaspec repository=work.arima

name=model3;
forecast symbol=sales transform=log

p=2 ar=0.1 0.8 mu=3.5;
estimate noest method=ml;

run;

/* Supply starting values for the parameters */
proc hpfarimaspec repository=work.arima

name=model4;
forecast symbol=sales transform=log

p=2 ar=0.1 0.8 mu=3.5;
input symbol=promo1

den=1 dc=0.1 nz=-1.5;
run;
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/* Create a generic seasonal Airline model with one input
that is applicable for different season lengths

*/
proc hpfarimaspec

repository=work.arima
name=model5
label="Generic Airline Model with One Input";

forecast symbol=Y q=(1)(1)s dif=(1, s) noint
transform= log;

input symbol=X dif=(1, s);
run;

Example 8.2. How to Include ARIMA Models in a Model
Selection List

One of the primary uses of the HPFARIMASPEC procedure is to add candidate
ARIMA models to a model selection list that can be used by the HPFENGINE pro-
cedure (see Chapter 10, “The HPFENGINE Procedure”). The HPFARIMASPEC
procedure is used to create the ARIMA model specifications and the HPFSELECT
procedure is used to add the specifications to a model selection list (see Chapter 16,
“The HPFSELECT Procedure”). This example illustrates this scenario.

Here the Gas Furnace Data, “Series J” from Box and Jenkins (1976), is used. This
data set contains two series, Input Gas Rate and Output CO2. The goal is to forecast
the output CO2, using the input Gas Rate as a predictor if necessary.

The following DATA step statements read the data in a SAS data set.

data seriesj;
input GasRate CO2 @@;
datalines;
-0.109 53.8 0.000 53.6 0.178 53.5 0.339 53.5
0.373 53.4 0.441 53.1 0.461 52.7 0.348 52.4
/* -- data lines -- --*/
0.034 57.0 0.204 58.0 0.253 58.6 0.195 58.5
0.131 58.3 0.017 57.8 -0.182 57.3 -0.262 57.0
;

Three candidate models are specified, m1, m2, and m3. Out of these three models, m1
is known to be a good fit to the data. It is a transfer function model involving the input
Gas Rate. The other two models are simplified versions of m1. The following syntax
shows how to specify these models and how to create a selection list that combines
them using the HPFSELECT procedure. In the HPFSELECT procedure note the use
of the INPUTMAP option in the SPEC statement. It ties the symbolic variable names
used in the HPFARIMASPEC procedure with the actual variable names in the data
set. If the symbolic names were appropriate to start with, then the INPUTMAP option
need not be used.
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*make spec1;
proc hpfarimaspec repository=work.mycat

name=m1;
forecast symbol=y p=2;
input symbol=x delay=3 num=(1,2) den=1;
estimate method=ml;

run;

*make spec2;
proc hpfarimaspec repository=work.mycat

name=m2;
forecast symbol=y p=2;
input symbol=x delay=3;
estimate method=ml;

run;

*make spec3;
proc hpfarimaspec repository=work.mycat

name=m3;
forecast symbol=y p=2;
estimate method=ml;

run;

*make a selection list that includes m1, m2 and m3;
proc hpfselect repository=work.mycat

name=myselect;

spec m1 / inputmap(symbol=y var=co2)
inputmap(symbol=x var=gasrate);

spec m2 / inputmap(symbol=y var=co2)
inputmap(symbol=x var=gasrate);

spec m3 / inputmap(symbol=y var=co2);
run;

This selection list can now be used in the HPFENGINE procedure for various types
of analyses. The following syntax shows how to compare these models based on the
default comparison criterion, Mean Absolute Percentage Error (MAPE). As expected,
model m1 turns out to be the best of the three compared (see Output 8.2.1).

proc hpfengine data=seriesj
repository=work.mycat
globalselection=myselect
lead=0
print=(select);

forecast co2;
input gasrate;

run;
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Output 8.2.1. Model Selection Based on the MAPE Criterion

Model MAPE Selected

M1 0.31478457 Yes
M2 0.50671996 No
M3 0.53295590 No

Example 8.3. How to Create a Generic Seasonal Model Spec
That Is Suitable for Different Season Lengths

In the case of many seasonal model specifications, it is possible to describe a generic
specification that is applicable in a variety of situations just by changing the season
length specifications at appropriate places. As an example consider the Airline model,
which is very useful for modeling seasonal data. The Airline model for a monthly
series can be specified using the following syntax:

proc hpfarimaspec repository=work.specs
name=MonthlyAirline
label=

"Airline Model For A Series With Season Length 12";
forecast symbol=Y q=(1)(1)12 dif=(1, 12) noint

transform= log;
run;

It is easy to see that the same syntax is applicable to a quarterly series if the multiplier
in the MA specification is changed from 12 to 4 and the seasonal differencing order
is similarly changed from 12 to 4. A generic specification that allows for late binding
of season lengths can be generated by the following syntax:

proc hpfarimaspec repository=work.specs
name=GenericAirline
label="Generic Airline Model";

forecast symbol=Y q=(1)(1)s dif=(1, s) noint
transform= log;

run;

In this syntax the multiplier in the MA specification is changed from 12 to “s”, and
similarly the seasonal differencing order 12 is changed to “s”. This syntax creates a
template for the Airline model that is applicable to different season lengths. When
the HPFENGINE procedure, which actually uses such model specifications to esti-
mate the model and produce the forecasts, encounters such “generic” specification
it automatically creates a proper specification by replacing the placeholders for the
seasonal multiplier and the seasonal differencing order with the value implied by the
ID variable or its SEASONALITY= option. The following example illustrates the
use of this generic spec. It shows how the same spec can be used for monthly and
quarterly series. The parameter estimates for monthly and quarterly series are given
in Output 8.3.1 and Output 8.3.2, respectively.

284



References

/* Create a selection list that contains
the Generic Airline Model */

proc hpfselect repository=work.specs
name=genselect;

spec GenericAirline;
run;

/* Monthly interval */
proc hpfengine data=sashelp.air

repository=work.specs
globalselection=genselect
print=(estimates);

id date interval=month;
forecast air;

run;

Output 8.3.1. Parameter Estimates for the Monthly Series

The HPFENGINE Procedure

Parameter Estimates

Standard Approx
Component Parameter Estimate Error t Value Pr > |t|

AIR MA1_1 0.37727 0.08196 4.60 <.0001
AIR MA2_12 0.57236 0.07802 7.34 <.0001

/* Create a quarterly series to illustrate
accumulating the monthly Airline series to quarterly*/

proc timeseries data=sashelp.air out=Qair;
id date interval=quarter;
var air / accumulate=total;

run;

/* Quarterly interval */
proc hpfengine data=Qair

repository= work.specs
globalselection=genselect
print=(estimates);

id date interval=quarter;
forecast air;

run;
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Output 8.3.2. Parameter Estimates for the Quarterly Series

The HPFENGINE Procedure

Parameter Estimates

Standard Approx
Component Parameter Estimate Error t Value Pr > |t|

AIR MA1_1 0.05892 0.15594 0.38 0.7075
AIR MA2_4 0.50558 0.14004 3.61 0.0008

References
Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and

Control, San Francisco: Holden-Day.
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Chapter 9
The HPFDIAGNOSE Procedure
Overview

The HPFDIAGNOSE procedure provides a comprehensive set of tools for automated
univariate time series model identification. Time series data can have outliers, struc-
tural changes, and calendar effects. In the past, finding a good model for time series
data usually required experience and expertise in time series analysis.

The HPFDIAGNOSE procedure automatically diagnoses the statistical char-
acteristics of time series and identifies appropriate models. The models that
HPFDIAGNOSE considers for each time series include ARIMAX, Exponential
Smoothing, and Unobserved Components models. Log transformation and stationar-
ity tests are automatically performed. The ARIMAX model diagnostics find the AR
and MA orders, detect outliers, and select the best input variables. The Unobserved
Components Model diagnostics find the best components and select the best input
variables.

The HPFDIAGNOSE procedure provides the following functionality:

• intermittency (or interrupted series) test

• functional transformation test

• simple differencing and seasonal differencing tests

• tentative simple ARMA order identification

• tentative seasonal ARMA order identification

• outlier detection

• significance test of events (indicator variables)

• transfer function identification

– intermittency test
– functional transformation for each regressor
– simple differencing order and seasonal differencing order for each regres-

sor
– time delay for each regressor
– simple numerator and denominator polynomial orders for each regressor

• intermittent demand model (automatic selection)

• exponential smoothing model (automatic selection)

• unobserved components model (automatic selection)
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Getting Started
This section outlines the use of the HPFDIAGNOSE procedure and shows examples
of how to create ARIMA, ESM, and UCM model specifications.

The following example prints the diagnostic tests of an ARIMA model. In the
HPFDIAGNOSE statement, the SEASONALITY=12 option specifies the length of
the seasonal cycle of the time series, and the PRINT=SHORT option prints the cho-
sen model specification. The FORECAST statement specifies the dependent variable
(AIR). The ARIMAX statement specifies that an ARIMA model is to be diagnosed.

proc hpfdiag data=sashelp.air seasonality=12 print=short;
forecast air;
arimax;

run;

Figure 9.1 shows the ARIMAX model specification. The log transformation test and
trend test are conducted by default. The log transformation was applied to the de-
pendent series and the seasonal ARIMA (1, 1, 0)(0, 1, 1)12 model was selected. The
default model selection criterion (RMSE) was used. The STATUS column explains
warnings or errors during diagnostic tests. STATUS=OK indicates that the model was
successfully diagnosed.

The HPFDIAGNOSE Procedure

ARIMA Model Specification

Functional Model
Variable Transform Constant p d q P D Q Seasonality Criterion Statistic

AIR LOG NO 1 1 0 0 1 1 12 RMSE 10.8353

ARIMA Model Specification

Variable Status

AIR OK

Figure 9.1. ARIMAX Specification

The following example prints the diagnostic tests of an ESM for airline data. The ID
statement INTERVAL=MONTH option specifies an implied seasonality of 12. The
ESM statement specifies that an ESM model is to be diagnosed.

proc hpfdiag data=sashelp.air print=short;
id date interval=month;
forecast air;
esm;

run;
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Figure 9.2 shows the ESM model specification. The chosen model specification ap-
plied the log transformation and selected a multiplicative seasonal model with a trend
component (WINTERS).

The HPFDIAGNOSE Procedure

Exponential Smoothing Model Specification

Functional Selected Model
Variable Transform Model Component Criterion Statistic

AIR LOG WINTERS LEVEL RMSE 10.6521
TREND
SEASONAL

Figure 9.2. ESM Specification

The following example prints the diagnostic tests of an UCM for airline data. The
UCM statement specifies that a UCM model is to be diagnosed.

proc hpfdiag data=sashelp.air print=short;
id date interval=month;
forecast air;
ucm;

run;

When the column SELECTED=YES, the component is significant. When the column
SELECTED=NO, the component is insignificant in Figure 9.3.

When SELECTED=YES, the STOCHASTIC column has either YES or NO.
STOCHASTIC=YES indicates a component has a statistically significant variance,
indicating the component is changing over time; STOCHASTIC=NO indicates the
variance of a component is not statistically significant, but the component itself is
still significant.

Figure 9.3 shows that the irregular, level, slope, and seasonal components are se-
lected. The irregular, level, and seasonal components have statistically significant
variances. The slope component is constant over the time.
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The HPFDIAGNOSE Procedure

Unobserved Components Model(UCM) Specification

Functional Model
Variable Transform Component Selected Stochastic Seasonality Criterion

AIR LOG IRREGULAR YES YES RMSE
LEVEL YES YES
SLOPE YES NO
SEASON YES YES 12

Unobserved Components Model(UCM)
Specification

Variable Statistic Status

AIR 10.9801 OK

Figure 9.3. Select Components

The following example shows how to pass a model specification created by the
HPFDIAGNOSE procedure to the HPFENGINE procedure.

An ARIMAX model specification file, a model selection list, and a model repos-
itory SASUSER.MYCAT are created by the HPFDIAGNOSE procedure. The
ARIMAX model specification file and the model selection list are contained in the
SASUSER.MYCAT repository.

The OUTEST= data set is used to transmit the diagnostic results to the HPFENGINE
procedure by the INEST= option. The WORK.EST–ONE data set contains the infor-
mation about the data set variable and the model selection list.

proc hpfdiag data=sashelp.air outest=est_one
modelrepository=sasuser.mycat criterion=MAPE;

id date interval=month;
forecast air;
arimax;

run;

proc hpfengine data=sashelp.air print=(select)
modelrepository=sasuser.mycat inest=est_one;

forecast air;
id date interval=month;

run;

Figure 9.4 shows the DIAG0 model specification created by the HPFDIAGNOSE
procedure in the previous example. The model specification is labeled DIAG0 be-
cause the HPFDIAGNOSE procedure uses BASENAME=DIAG by default. The
model selection list is labeled DIAG1 which can be seen in the WORK.EST–ONE
data set.
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The HPFENGINE Procedure

Model Selection
Criterion = MAPE

Model Statistic Selected

diag0 2.9422734 Yes

Model Selection Criterion = MAPE

Model Label

diag0 ARIMA: Log( AIR ) ~ P = 1 D = (1,12) Q = (12) NOINT

Figure 9.4. Model Selection from the HPFENGINE procedure

The following example shows how the HPFDIAGNOSE and HPFENGINE proce-
dures can be used to select a single model specification from among multiple candi-
date model specifications.

In this example the HPFDIAGNOSE procedure creates three model specifications
and adds them to the model repository SASUSER.MYCAT created in the previous
example.

proc hpfdiag data=sashelp.air outest=est_three
modelrepository=sasuser.mycat;

id date interval=month;
forecast air;
arimax;
esm;
ucm;

run;

proc hpfengine data=sashelp.air print=(select)
modelrepository=sasuser.mycat inest=est_three;

forecast air;
id date interval=month;

run;

If new model specification files are added to a model repository that already exists,
then the suffixed number of the model specification file name and the model selection
list file name are sequentially.

This example adds three model specification files, DIAG2, DIAG3, and DIAG4 to the
model repository SASUSER.MYCAT which already contains DIAG0 and DIAG1.

Figure 9.5 shows the three model specifications (DIAG2, DIAG3, DIAG4) found by
the HPFDIAGNOSE procedure.
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The HPFENGINE Procedure

Model Selection
Criterion = RMSE

Model Statistic Selected

diag2 10.835333 No
diag3 10.652082 Yes
diag4 10.980119 No

Model Selection Criterion = RMSE

Model Label

diag2 ARIMA: Log( AIR ) ~ P = 1 D = (1,12) Q = (12) NOINT
diag3 Log Winters Method (Multiplicative)
diag4 UCM: Log( AIR ) = TREND + SEASON + ERROR

Figure 9.5. Model Selection

Default Settings

The following example shows the HPFDIAGNOSE procedure with the default set-
tings.

proc hpfdiag data=aaa print=all;
id date interval=month;
forecast y;

run;

It should be noted that the HPFDIAGNOSE procedure always performs the inter-
mittency test first. If the HPFDIAGNOSE procedure determines that the series is
intermittent, then the above example is equivalent to the following code:

proc hpfdiag data=aaa print=all;
id date interval=month;
forecast y;
idm intermittent=2 base=auto;

run;

However, if the HPFDIAGNOSE procedure determines that the series is not intermit-
tent, then the default settings are equivalent to the following code:

proc hpfdiag data=aaa print=all siglevel=0.05
criterion=rmse holdout=0 holdoutpct=0 prefilter=yes
back=0 errorcontrol=(severity=all stage=all);

id date interval=month;
forecast y;
transform type=auto;
trend dif=auto sdif=auto;
arimax method=minic p=(0:5)(0:2) q=(0:5)(0:2) perror=(5:10)
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outlier=(detect=maybe maxnum=2 maxpct=2
siglevel=0.01 filter=full);

esm method=best;
run;

The Role of the IDM Statement

The HPFDIAGNOSE procedure always performs the intermittency test first regard-
less of which model statement is specified. The IDM statement only controls the
intermittency test using the INTERMITTENT= and BASE= options.

The following example specifies the IDM statement to control the intermittency test.
If the HPFDIAGNOSE procedure determines that the series is intermittent, then an
intermittent demand model is fitted to the data.

However, if the series is not intermittent, ARIMAX and ESM models are fitted to the
data, even though the IDM statement is specified.

proc hpfdiag data=bbb print=all;
id date interval=month;
forecast x;
idm intermittent=2.5 base=auto;

run;

The following example specifies the ESM statement. If the series is intermittent, an
intermittent demand model is fitted to the data, even though the ESM statement is
specified. But, if the series is not intermittent, an ESM model is fitted to the data.
The same is true when the ARIMAX and UCM statements are specified.

proc hpfdiag data=ccc print=all;
id date interval=month;
forecast z;
esm;

run;

Syntax
The HPFDIAGNOSE procedure uses the following statements:

PROC HPFDIAGNOSE options;
BY variables;
EVENT event-names ;
FORECAST variables ;
ID variable INTERVAL= interval options;
INPUT variables ;
TRANSFORM options;
TREND options;
ARIMAX options;
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ESM option;
IDM options;
UCM options;
ADJUST variable = ( variable-list ) / options;

Functional Summary

The statements and options controlling the HPFDIAGNOSE procedure are summa-
rized in the following table.

Description Statement Option

Statements
specifies BY-group processing BY
specifies event definitions EVENT
specifies variables to be forecast FORECAST
specifies the time ID variable ID
specifies input variables INPUT
specifies log transform test and other func-
tional transformation types

TRANSFORM

specifies differencing test TREND
specifies ARIMAX model options ARIMAX
specifies exponential smoothing model ESM
specifies intermittent demand model options IDM
specifies unobserved components model UCM
specifies adjusting the dependent values ADJUST

Model Repository Options
specifies the model repository HPFDIAGNOSE REPOSITORY=
specifies the base name for model specification
files or model selection list files

HPFDIAGNOSE BASENAME=

Data Set Options
specifies the input data set HPFDIAGNOSE DATA=
specifies the mapping/estimate output data set HPFDIAGNOSE OUTEST=
specifies the events data set HPFDIAGNOSE INEVENT=
specifies the events data set organized by BY
groups

HPFDIAGNOSE EVENTBY=

specifies the output data set that contains the
outliers

HPFDIAGNOSE OUTOUTLIER=

Accumulation Options
specifies length of seasonal cycle HPFDIAGNOSE SEASONALITY=
specifies accumulation frequency ID INTERVAL=
specifies interval alignment ID ALIGN=
specifies starting time ID value ID START=
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Description Statement Option

specifies ending time ID value ID END=
specifies accumulation statistic ID, ACCUMULATE=

FORECAST,
INPUT,
ADJUST

specifies missing value interpretation ID, SETMISSING=
FORECAST,
INPUT,
ADJUST

specifies zero value interpretation ID, ZEROMISS=
FORECAST,
INPUT,
ADJUST

specifies trim missing values ID, TRIMMISS=
FORECAST,
INPUT,
ADJUST

Transformation Test Options
specifies the AR order for the log transforma-
tion test

TRANSFORM P=

specifies the type of the functional transforma-
tion

TRANSFORM TYPE=

specifies the method of the forecasts of the
transformed series

TRANSFORM TRANSOPT=

Trend Test Options
specifies the simple differencing TREND DIFF=
specifies the seasonal differencing TREND SDIFF=
specifies the AR order for the augmented unit
root test

TREND P=

ARIMAX Model Options
specifies the ARMA order selection criterion ARIMAX CRITERION=
specifies the range of the AR orders for obtain-
ing the error series used in the MINIC method

ARIMAX PERROR=

specifies the range of the AR orders ARIMAX P=
specifies the range of the MA orders ARIMAX Q=
specifies the range of the denominator orders
of the transfer function

ARIMAX DEN=

specifies the range of the numerator orders of
the transfer function

ARIMAX NUM=

specifies the tentative order identification
method

ARIMAX METHOD=
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Description Statement Option

specifies the outlier detection ARIMAX OUTLIER=
specifies the identification order of the compo-
nents

ARIMAX IDENTIFYORDER=

Unobserved Components Model
Option
specifies the components to test for inclusion
in the UCM model

UCM COMPONENT=

Exponential Smoothing Model Option
specifies the method of the ESM model ESM METHOD=

Significance Level Option
specifies the significance level for diagnostic
tests

HPFDIAGNOSE, SIGLEVEL=

TRANSFORM,
TREND,
ARIMAX,
UCM

specifies the significance level to control con-
fidence limits in the model selection list files

HPFDIAGNOSE ALPHA=

Event Variable Control Option
specifies the maximum number of the events
to be selected

HPFDIAGNOSE SELECTEVENT=

specifies the required option of the event EVENT REQUIRED=

Input Variable Control Options
specifies the maximum number of the input
variables to be selected

HPFDIAGNOSE SELECTINPUT=

specifies the transformation and differencing
of the input variables

HPFDIAGNOSE TESTINPUT=

specifies the required option of the variables INPUT REQUIRED=

Model Selection Options
specifies the model selection criterion HPFDIAGNOSE CRITERION=
specifies the forecast holdout sample size HPFDIAGNOSE HOLDOUT=
specifies the forecast holdout sample percent HPFDIAGNOSE HOLDOUTPCT=
specifies data to hold back HPFDIAGNOSE BACK=
specifies the minimum number of observations
needed to fit a trend or seasonal model

HPFDIAGNOSE MINOBS=

Printing Options
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Description Statement Option

specifies printed output for only the model
specifications

HPFDIAGNOSE PRINT=SHORT

specifies printed output for PRINT=SHORT
and summary of the transformation and trend
tests

HPFDIAGNOSE PRINT=LONG

specifies detailed printed output HPFDIAGNOSE PRINT=ALL
specifies control of message printing in the log HPFDIAGNOSE ERRORCONTROL=

Data Prefilter Option
specifies handling missing and extreme values
prior to diagnostic tests

HPFDIAGNOSE PREFILTER=

PROC HPFDIAGNOSE Statement

PROC HPFDIAGNOSE options ;

The following options can be used in the PROC HPFDIAGNOSE statement:

ALPHA=value
specifies the confidence level size to use in computing the confidence limits in the
model selection list files. The ALPHA= value must be between (0, 1). The default is
ALPHA=0.05, which produces 95% confidence intervals.

BACK= number
specifies the number of observations before the end of the data. If BACK=n and the
number of observation is T , then the first T − n observations are used to diagnose a
series. The default is BACK=0.

BASENAME= SAS-name
prefixes the model specification file name and/or the model selection list file name. If
the BASENAME=MYSPEC, then the model specification files and/or the model se-
lection list files are named MYSPEC0, ..., MYSPEC9999999999. The default SAS-
name starts with DIAG, such as DIAG0, ..., DIAG9999999999. The model speci-
fication files and/or the model selection list files are stored in the model repository
defined by the REPOSITORY= option.

CRITERION=option
specifies the model selection criterion to select the best model. This option would
often be used in conjunction with the HOLDOUT= and HOLDOUTPCT= options.
The default is CRITERION=RMSE. The following statistics of fit are provided:

SSE Sum of Square Error

MSE Mean Square Error

RMSE Root Mean Square Error
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UMSE Unbiased Mean Square Error

URMSE Unbiased Root Mean Square Error

MAXPE Maximum Percent Error

MINPE Minimum Percent Error

MPE Mean Percent Error

MAPE Mean Absolute Percent Error

MDAPE Median Percent Error

GMAPE Geometric Mean Percent Error

MINPPE Minimum Predictive Percent Error

MAXPPE Maximum Predictive Percent Error

MSPPE Mean Predictive Percent Error

MAPPE Symmetric Mean Absolute Predictive Percent Error

MDAPPE Median Predictive Percent Error

GMAPPE Geometric Mean Predictive Percent Error

MINSPE Minimum Symmetric Percent Error

MAXSPE Maximum Symmetric Percent Error

MSPE Mean Symmetric Percent Error

SMAPE Symmetric Mean Absolute Percent Error

MDASPE Median Symmetric Percent Error

GMASPE Geometric Mean Symmetric Percent Error

MINRE Minimum Relative Error

MAXRE Maximum Relative Error

MRE Mean Relative Error

MRAE Mean Relative Absolute Error

MDRAE Median Relative Absolute Error

GMRAE Geometric Mean Relative Absolute Error

MAXERR Maximum Error

MINERR Minimum Error

ME Mean Error

MAE Mean Absolute Error

RSQUARE R-Square

ADJRSQ Adjusted R-Square

AADJRSQ Amemiya’s Adjusted R-Square

RWRSQ Random Walk R-Square

AIC Akaike Information Criterion

SBC Schwarz Bayesian Information Criterion
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APC Amemiya’s Prediction Criterion

DATA= SAS data set
specifies the name of the SAS data set containing the time series. If the DATA=
option is not specified, the most recently created SAS data set is used.

HOLDOUT=number
specifies the size of the holdout sample to be used for model selection. The holdout
sample is a subset of the dependent time series ending at the last nonmissing observa-
tion. The statistics of a model selection criterion are computed using only the holdout
sample. The default is HOLDOUT=0.

HOLDOUTPCT=value
specifies the size of the holdout sample as a percentage of the length of the dependent
time series. If HOLDOUT=5 and HOLDOUTPCT=10, the size of the holdout sample
is min(5, 0.1T ) where T is the length of the dependent time series with beginning
and ending missing values removed. The default is HOLDOUTPCT=0.

INEVENT= SAS data set
specifies the name of the event data set containing the event definitions created by
the HPFEVENTS procedure. If the INEVENT= data set is not specified, only SAS
predefined event definitions can be used in the EVENT statement.

For more information on the INEVENT= option, see Chapter 12, “The HPFEVENTS
Procedure.”

EVENTBY= SAS data set
specifies the name of the event data set that contains the events for specific BY groups
that are created by DATA steps. The events in the EVENT statement are used in all
BY groups, but the events in the EVENTBY= data set are used in the specific BY
group.

INSELECTNAME= SAS-name
specifies the name of a catalog entry that serves as a model selection list. This is the
selection list that includes existing model specification files. A selection list created
by the HPFDIAGNOSE procedure includes the existing model specification files.

ERRORCONTROL= ( SEVERITY= ( severity-options ) STAGE= ( stage-options )
MAXMESSAGE= number )
allows finer control of message printing. The error severity level and the
HPFDIAGNOSE procedure processing stages are set independently. The
MAXMESSAGE=number option controls the number of messages printed.
A logical ’and’ is taken over all the specified options and any message.

Available severity-options are as follows:

LOW specifies low severity, minor issues

MEDIUM specifies medium severity problems

HIGH specifies severe errors

ALL specifies all severity levels of LOW, MEDIUM, and HIGH options
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NONE specifies that no messages from PROC HPFDIAGNOSE are
printed

Available stage-options are as follows:

PROCEDURELEVEL specifies that the procedure stage is option processing and
validation

DATAPREP specifies the accumulation of data and the application of
SETMISS= and ZEROMISS= options

DIAGNOSE specifies the diagnostic process

ALL specifies all PROCEDURELEVEL, DATAPREP, and DIAGNOSE
options

Examples are as follows:

errorcontrol=(severity=(high medium) stage=all);

prints high- and moderate-severity errors at any processing stage of PROC
HPFDIAGNOSE.

errorcontrol=(severity=high stage=dataprep);

prints high-severity errors only during the data preparation.

errorcontrol=(severity=none stage=all);
errorcontrol=(maxmessage=0);

turns off messages from PROC HPFDIAGNOSE.

errorcontrol=( severity=(high medium low)
stage=(procedurelevel dataprep diagnose) );

specifies the default behavior. Also the following code specifies the default behavior:

errorcontrol=(severity=all stage=all)

MINOBS=(SEASON=number TREND=number)

SEASON= specifies that no seasonal model is fitted to any series with fewer
nonmissing observations than number× (season length). The
value of number must be greater than or equal to 1. The default is
number = 2.
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TREND= specifies that no trend model is fitted to any series with fewer non-
missing observations than number. The value of number must be
greater than or equal to 1. The default is number = 1.

OUTEST=SAS data set
contains information that maps data set variables to model symbols and references
model specification files and model selection list files.

OUTOUTLIER=SAS data set
contains information associated with the detected outliers.

PREFILTER=MISSING | YES |EXTREME |BOTH
specifies handling missing and extreme values prior to diagnostic tests.

MISSING Smoothed values for missing data are applied for tentative order
selection and missing values are used for the final diagnostics.

YES Smoothed values for missing data are applied to overall diagnoses.
This option is the default.

EXTREME Extreme values set to missing for a tentative ARIMA model and
extreme values are used for the final ARIMAX model diagnostics.

BOTH Both YES and EXTREME.

If the input variables have missing values, they are always smoothed for the diagnos-
tics.

PRINT=NONE |SHORT | LONG |ALL
specifies the print option.

NONE suppresses the printed output. This option is the default.

SHORT prints the model specifications. This option also prints the only
significant input variables, events, and outliers.

LONG prints the summary of the transform, the stationarity test, and the
determination of ARMA order including PRINT=SHORT.

ALL prints the details of the stationarity test and the determination of
ARMA order. This option prints the detail information about all
input variables and events under consideration.

REPOSITORY= catalog
contains information about model specification files and model selection list files.
The REPOSITORY= option can also be specified as MODELREPOSITORY=,
MODELREP=, or REP=. The default model repository is SASUSER.HPFDFLT.

SEASONALITY=number
specifies the length of the seasonal cycle. The number should be a positive integer.
For example, SEASONALITY=3 means that every group of three observations forms
a seasonal cycle. By default, the length of the seasonal cycle is 1 (no seasonality) or
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the length implied by the INTERVAL= option specified in the ID statement. For
example, INTERVAL=MONTH implies that the length of the seasonal cycle is 12.

SELECTINPUT=SELECT | ALL |number
specifies the maximum number of the input variables to select.

SELECT selects the input variables that satisfy the criteria (noncollinearity,
nonnegative delay, smaller AIC). This option is the default.

ALL selects the input variables that satisfy the criteria (noncollinearity,
nonnegative delay).

number selects the best number input variables that satisfy the criteria (non-
collinearity, nonnegative delay).

SELECTEVENT=SELECT | ALL |number
specifies the maximum number of events to select.

SELECT selects the events that satisfy the criteria (noncollinearity, smaller
AIC). This option is the default.

ALL selects the events that satisfy the criteria (noncollinearity).

number selects the best number of events that satisfy the criteria (non-
collinearity).

SIGLEVEL=value
specifies the cutoff value for all diagnostic tests such as log transformation, station-
arity, tentative ARMA order selection, and significance of UCM components. The
SIGLEVEL=value should be between (0,1) and SIGLEVEL=0.05 is the default. The
SIGLEVEL options in TRANSFORM, TREND, ARIMAX, and UCM statements
control testing independently.

TESTINPUT=TRANSFORM | TREND |BOTH

TRANSFORM specifies that the log transform testing of the input variables is ap-
plied independently of the variable to be forecast.

TREND specifies that the trend testing of the input variables is applied in-
dependently of the variable to be forecast.

BOTH specifies that the log transform and trend testing of the input vari-
ables are applied independently of the variable to be forecast.

If the option is not specified, the same differencing is applied to the input variables
as is used for the variable to be forecast, and no transformation is applied to the input
variables.
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BY Statement

BY variables ;

A BY statement can be used in the HPFDIAGNOSE procedure to process a data set
in groups of observations defined by the BY variables.

ID Statement

ID variable options;

The ID statement names a numeric variable that identifies observations in the input
and output data sets. The ID variable’s values are assumed to be SAS date, time, or
datetime values. In addition, the ID statement specifies the (desired) frequency asso-
ciated with the time series. The ID statement options also specify how the observa-
tions are accumulated and how the time ID values are aligned to form the time series.
The information specified affects all variables specified in subsequent FORECAST
statements. If the ID statement is specified, the INTERVAL= option must also be
specified. If an ID statement is not specified, the observation number, with respect to
the BY group, is used as the time ID.

For more information on the ID statement, see the “ID Statement” section on page
363 in the HPFENGINE procedure.

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period
for the variables listed in the FORECAST statement. If the ACCUMULATE=
option is not specified in the FORECAST statement, accumulation is determined
by the ACCUMULATE= option of the ID statement. The ACCUMULATE=
option accepts the following values: NONE, TOTAL, AVERAGE|AVG,
MINIMUM|MIN, MEDIAN|MED, MAXIMUM|MAX, N, NMISS, NOBS,
FIRST, LAST, STDDEV|STD, CSS, USS. The default is NONE.

ALIGN=option
controls the alignment of SAS dates used to identify output observations. The
ALIGN= option accepts the following values: BEGINNING | BEG | B, MIDDLE
| MID | M, and ENDING | END | E. BEGINNING is the default.

END=option
specifies a SAS date, datetime, or time value that represents the end of the data. If the
last time ID variable value is less than the END= value, the series is extended with
missing values. If the last time ID variable value is greater than the END= value,
the series is truncated. For example, END=“&sysdate” uses the automatic macro
variable SYSDATE to extend or truncate the series to the current date. This option
and the START= option can be used to ensure that data associated with each BY
group contains the same number of observations.

INTERVAL=interval
specifies the frequency of the input time series. For example, if the input data set
consists of quarterly observations, then INTERVAL=QTR should be used. If the
SEASONALITY= option is not specified, the length of the seasonal cycle is implied
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from the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal
cycle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL=
option determines the time periods for the accumulation of observations. Refer to the
SAS/ETS User’s Guide for the intervals that can be specified.

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are assigned in the ac-
cumulated time series for variables listed in the FORECAST statement. If the
SETMISSING= option is not specified in the FORECAST statement, missing values
are set based on the SETMISSING= option of the ID statement. The SETMISSING=
option accepts the following values: MISSING, AVERAGE|AVG, MINIMUM|MIN,
MEDIAN|MED, MAXIMUM|MAX, FIRST, LAST, PREVIOUS|PREV, NEXT. The
default is MISSING.

START=option
specifies a SAS date, datetime, or time value that represents the beginning of the
data. If the first time ID variable value is greater than the START= value, the series
is prepended with missing values. If the first time ID variable value is less than
the END= value, the series is truncated. This option and the END= option can be
used to ensure that data associated with each BY group contains the same number of
observations.

TRIMMISS=option
specifies how missing values (either actual or accumulated) are trimmed from the
accumulated time series for variables listed in the FORECAST statement. The fol-
lowing options are provided:

NONE No missing value trimming is applied.

LEFT Beginning missing values are trimmed.

RIGHT Ending missing values are trimmed.

BOTH Both beginning and ending missing value are trimmed. This option
is the default.

If the TRIMMISS= option is not specified in the FORECAST statement, missing
values are set based on the TRIMMISS= option of the ID statement.

ZEROMISS=option
specifies how beginning and/or ending zero values (either actual or accumulated)
are interpreted in the accumulated time series for variables listed in the FORECAST
statement. If the ZEROMISS= option is not specified in the FORECAST statement,
missing values are set based on the ZEROMISS= option of the ID statement. The
following options are provided:

NONE Beginning and/or ending zeros unchanged. This option is the de-
fault.

LEFT Beginning zeros are set to missing.

RIGHT Ending zeros are set to missing.

BOTH Both beginning and ending zeros are set to missing.
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EVENT Statement

EVENT event-names ;

The EVENT statement names event-names that identify the events in the INEVENT=
data-set or predefined event-keywords or –ALL–.

The EVENT statement names either event-names or –ALL–. The event names iden-
tify the events in the INEVENT=data-set or are the SAS predefined event-keywords.
–ALL– is used to indicate that all simple events in the INEVENT=data set should
be included in processing. If combination events exist in the INEVENT=data set and
are to be included, then they must be specified in a separate EVENT statement. The
HPFDIAGNOSE procedure does not currently process group events, although if the
simple events associated with the group are defined in the INEVENT=data set, they
can be included in processing, either by event-name or using –ALL–.

The EVENT statement requires the ID statement.

For more information on the EVENT statement, see Chapter 12, “The HPFEVENTS
Procedure.”

The following option can be used in the EVENT statement:

REQUIRED=YES | MAYBE |NO
The REQUIRED=YES specifies that the events are always included in the model as
long as the model does not fail to be diagnosed.

The default is REQUIRED=NO.

The same differencing is applied to the events as is used for the variables to be fore-
cast. No functional transformations are applied to the events.

FORECAST Statement

FORECAST variables / options;

Any number of FORECAST statements can be used in the HPFDIAGNOSE proce-
dure. The FORECAST statement lists the variables in the DATA= data set to be di-
agnosed. The variables are dependent or response variables that you wish to forecast
in the HPFENGINE procedure.

The following options can be used in the FORECAST statement:

ACCUMULATE=option
See the ACCUMULATE= option in the “ID Statement” section on page 305 for more
details.

SETMISSING=option |number
See the SETMISSING= option in the “ID Statement” section on page 305 for more
details.

TRIMMISS=option
See the TRIMMISS= option in the “ID Statement” section on page 305 for more
details.
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ZEROMISS=option
See the ZEROMISS= option in the “ID Statement” section on page 305 for more
details.

INPUT Statement

INPUT variables / options;

Any number of INPUT statements can be used in the HPFDIAGNOSE procedure.
The INPUT statement lists the variables in the DATA= data set to be diagnosed as
regressors. The variables are independent or predictor variables to be used to forecast
dependent or response variables.

The following options can be used in the INPUT statement:

REQUIRED=YES | MAYBE |NO
The REQUIRED=YES variables are always included in the model as long as the
model does not fail to be diagnosed. The same differencing is applied to the
REQUIRED=YES variables as is used for the variables to be forecast. No func-
tional transformations are applied to the REQUIRED=YES variables. The delay and
numerator and denominator orders of the REQUIRED=YES variables are set to zero.

The functional transform and differencing of the REQUIRED = MAYBE | NO vari-
ables depend on the request of the TESTINPUT option in the PROC HPFDIAGNOSE
statement.

The default is REQUIRED=NO.

ACCUMULATE=option
See the ACCUMULATE= option in the “ID Statement” section on page 305 for more
details.

SETMISSING=option |number
See the SETMISSING= option in the “ID Statement” section on page 305 for more
details.

TRIMMISS=option
See the TRIMMISS= option in the “ID Statement” section on page 305 for more
details.

ZEROMISS=option
See the ZEROMISS= option in the “ID Statement” section on page 305 for more
details.

TRANSFORM Statement

TRANSFORM <options>;

A TRANSFORM statement can be used to specify the functional transformation of
the series.

The following options can be used in the TRANSFORM statement:
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P=number
specifies the autoregressive order for the log transform test. The default is
P=min(2, [T/10]) where T is the number of observations.

SIGLEVEL=value
specifies the significance level to use as a cutoff value to decide whether or not
the series requires a log transformation. The SIGLEVEL=value should be in
(0,1). The SIGLEVEL= option overrides the value of SIGLEVEL= option in the
HPFDIAGNOSE statement.

TRANSOPT=MEAN | MEDIAN
specifies whether mean or median forecasts are produced. If no transformation is
applied to the series, then the mean and median forecasts are identical.

MEAN The inverse transform produces mean forecasts. This is the default.

MEDIAN The inverse transform produces median forecasts.

TYPE=AUTO | LOG |NONE |SQRT | LOGISTIC |BOXCOX(value)
specifies the type of functional transformation. The following transformations are
provided:

AUTO Automatically choose between NONE and LOG based on model
selection criteria. If the TRANSFORM statement is not specified,
this option is the default.

LOG Logarithmic transformation. If the TYPE= option is not specified,
this option is the default.

NONE No transformation is applied.

SQRT Square-root transformation.

LOGISTIC Logistic transformation.

BOXCOX(value) Box-Cox transformation with a parameter value where the value
is between -5 and 5. The default is BOXCOX(1).

TREND Statement

TREND options;

A TREND statement can be used to test whether or not the dependent series requires
simple or seasonal differencing, or both. The augmented Dickey-Fuller test (Dickey
and Fuller 1979) is used for the simple unit root test.

If the seasonality is less than or equal to 12, the seasonal augmented Dickey-Fuller
(ADF) test (Dickey, Hasza and Fuller 1984) is used for the seasonal unit root test.
Otherwise, an AR(1) seasonal dummy test is used.

The joint simple and seasonal differencing test uses the Hasza-Fuller test (Hasza and
Fuller 1979, 1984) in the special seasonality. Otherwise, proceed with the ADF test
and the season dummy test.
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The following options can be used in the TREND statement:

DIFF=AUTO | NONE |number | (0 : number)

AUTO Tests for simple differencing. This option is the default.

NONE Specifies that no simple differencing is to be used.

number Specifies the simple differencing order. The option number=1
means (1 − B)yt and number=2 means (1 − B)2yt.

(0 : number) Specifies the range of simple differencing order for testing. The
option number can be 0, 1, or 2.

SDIFF=AUTO | NONE |number

AUTO Tests for seasonal differencing. This option is the default.

NONE Specifies the no seasonal differencing is to be used.

number Specifies the seasonal differencing order. The option number=1
means (1 − Bs)yt and number=2 means (1 − Bs)2yt where s is
the seasonal period.

P=number
specifies the autoregressive order for the augmented unit root tests and a seasonality
test. The default is P=min(5, [T/10]) where T is the number of observations.

SIGLEVEL=value
specifies the significance level to use as a cutoff value to decide whether or not the se-
ries needs differencing. The SIGLEVEL=value should be in (0,1). The SIGLEVEL=
option overrides the value of SIGLEVEL= option in the HPFDIAGNOSE statement.

ARIMAX Statement
ARIMAX <options>;

An ARIMAX statement can be used to find an appropriate ARIMAX specification.

The HPFDIAGNOSE procedure performs the intermittency test first. If the series
is intermittent, an intermittent demand model is fitted to the data and the ARIMAX
statement is not applicable. If the series is not intermittent, an ARIMAX model is
fitted to the data.

If a model statement is not specified, the HPFDIAGNOSE procedure diagnoses
ARIMAX and ESM models if the series is not intermittent, but diagnoses an IDM
model if the series is intermittent.

The following options can be used in the ARIMAX statement:

PERROR=(number : number)
specifies the range of the AR order for obtaining the error series used in the MINIC
method. The default is (maxp:maxp+maxq).
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P=(number : number) (number : number)
specifies the range of the nonseasonal and seasonal AR orders. The default is
(0:5)(0:2).

Q=(number : number) (number : number)
specifies the range of the nonseasonal and seasonal MA orders. The default is
(0:5)(0:2).

DEN=(number : number)
specifies the range of the denominator order of the transfer function. The default is
(0:2).

NUM=(number : number)
specifies the range of the numerator order of the transfer function. The default is
(0:2).

CRITERION=AIC |SBC
specifies the criterion for the tentative ARMA order selection. The default is
CRITERION=SBC.

SIGLEVEL=value
specifies the significance level to use as a cutoff value to decide the AR and MA
orders. The SIGLEVEL=value should be in (0,1). The SIGLEVEL= option overrides
the value of SIGLEVEL= option in the HPFDIAGNOSE statement.

ESTMETHOD=CLS | ULS |ML
specifies the method for choosing the tentative ARMA orders (Choi 1992; Tsay and
Tiao 1984).

CLS Conditional Least Squares method. This option is the default.

ULS Unconditional Least Squares method.

ML Maximum Likelihood method.

METHOD=ESACF | MINIC |SCAN
specifies the method for choosing the tentative ARMA orders (Choi 1992; Tsay and
Tiao 1984).

ESACF Extended Sample Autocorrelation Function.

MINIC Minimum Information Criterion. This option is the default.

SCAN Smallest Canonical Correlation Analysis.

OUTLIER=(options)
specifies outlier detection in an ARIMAX model (de Jong and Penzer 1998).

DETECT=YES includes outliers detected in a model if the model that includes the
outliers is successfully diagnosed.

DETECT=MAYBE includes outliers detected in a model if the model that includes
the outliers is successfully diagnosed and has a smaller criterion
than the model without outliers. This option is the default.
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DETECT=NO no outlier detection is performed.

FILTER=FULL | SUBSET chooses a model for outlier detection. If
FILTER=FULL, then use a full model. If FILTER=SUBSET, then
use a subset model that includes nonseasonal AR and MA filters
only. If the data have no seasonality, then the outlier detection
is not affected by the FILTER= option. FILTER=FULL is the
default.

MAXNUM=number includes up to MAXNUM= value outliers in a model.
MAXNUM=2 is the default.

MAXPCT=value includes up to MAXPCT= value outliers in a model. MAXPCT=2
is the default. If MAXNUM=5 and MAXPCT=10, the number of
the outliers is min(5, 0.1T ) where T is the length of the time series
with beginning and ending missing values removed.

SIGLEVEL=value specifies the cutoff value for outlier detection. The
SIGLEVEL=value should be in (0,1). The SIGLEVEL=0.01
is the default. The SIGLEVEL= option overrides the value of
SIGLEVEL= option in the HPFDIAGNOSE statement.

If the OUTLIER= option is not specified, the HPFDIAGNOSE performs the out-
lier detection with the OUTLIER=(DETECT=MAYBE MAXNUM=2 MAXPCT=2
SIGLEVEL=0.01) option as default.

If the PREFILTER=EXTREME option is specified and extreme values are found,
then these values are potential outliers. With the PREFILTER=EXTREME option,
outliers may be detected even if the DETECT=NO option is specified; more than n
number of outliers can be detected even if the MAXNUM=n option is specified.

IDENTIFYORDER= ARIMA | REG |BOTH
IDENTIFY= ARIMA | REG |BOTH

specifies the identification order when inputs and events are specified.

ARIMA finds an ARIMA model for the error series first and then chooses
significant inputs and events. This option is the default.

REG finds a regression model first and then decides the AR and MA
polynomial orders.

BOTH fits models by using two methods and determines the better model.

ESM Statement

ESM <option> ;

An ESM statement can be used to find an appropriate ESM model specification based
on the model selection criterion (McKenzie 1984).

The HPFDIAGNOSE procedure performs the intermittency test first. If the series is
intermittent, an intermittent demand model is fitted to the data and the ESM statement
is not applicable. If the series is not intermittent, an ESM model is fitted to the data.
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If a model statement is not specified, the HPFDIAGNOSE procedure diagnoses
ARIMAX and ESM models if the series is not intermittent, but diagnoses an IDM
model if the series is intermittent.

METHOD=BEST|BESTN|BESTS

BEST fits the best candidate smoothing model (SIMPLE, DOUBLE,
LINEAR, DAMPTREND, SEASONAL, WINTERS,
ADDWINTERS). This is the default.

BESTN fits the best candidate nonseasonal smoothing model (SIMPLE,
DOUBLE, LINEAR, DAMPTREND).

BESTS fits the best candidate seasonal smoothing model (SEASONAL,
WINTERS, ADDWINTERS).

IDM Statement

IDM <options> ;

An IDM statement is used to control the intermittency test. The HPFDIAGNOSE
procedure performs the intermittency test first.

If the series is intermittent, an intermittent demand model is fitted to the data based
on the model selection criterion. However, if the series is not intermittent, ARIMAX
and ESM models are fitted to the data.

If a model statement is not specified, the HPFDIAGNOSE procedure diagnoses
ARIMAX and ESM models if the series is not intermittent, but diagnoses an IDM
model if the series is intermittent.

INTERMITTENT=number
specifies a number greater than one that is used to determine whether or not a time
series is intermittent. If the average demand interval is greater than this number then
the series is assumed to be intermittent. The default is INTERMITTENT=2.

BASE=AUTO |value
specifies the base value of the time series used to determine the demand series com-
ponents. The demand series components are determined based on the departures from
this base value. If a base value is specified, this value is used to determine the demand
series components. If BASE=AUTO is specified, the time series properties are used to
automatically adjust the time series. For the common definition of Croston’s Method
use BASE=0, which defines departures based on zero. The default is BASE=AUTO.
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UCM Statement

UCM <options> ;

A UCM statement can be used to find an appropriate UCM model specification
(Harvey 1989, 2001; Durbin and Koopman 2001).

The HPFDIAGNOSE procedure performs the intermittency test first. If the series is
intermittent, an intermittent demand model is fitted to the data and the UCM state-
ment is not applicable. If the series is not intermittent, a UCM model is fitted to the
data.

The following options can be used in the UCM statement:

COMPONENT=(components)

ALL tests which components and/or variances are significant in the
model. This option is the default. When the series has the
seasonality information, the IRREGULAR, LEVEL, SLOPE, and
SEASON components are included. Otherwise the IRREGULAR,
LEVEL, SLOPE, and CYCLE components are included.

AUTOREG tests if an autoreg component is significant in the model.

CYCLE tests if two cycle components are significant in the model. The
two CYCLE components are included and the LEVEL compo-
nent is added. When the series has the seasonality information,
the CYCLE component is not tested.

DEPLAG tests if a dependent lag component is significant in the model. Only
the order 1 is included.

IRREGULAR tests if an irregular component is significant in the model.

LEVEL tests if a level component is significant in the model.

SEASON tests if a season component is significant in the model. When the
series has the seasonality information, the SEASON component is
not tested.

SLOPE tests if a slope component is significant in the model. The LEVEL
component is added.

SIGLEVEL=value
specifies the significance level to use as a cutoff value to decide which com-
ponent and/or variances are significant. The SIGLEVEL=value should be in
(0,1). The SIGLEVEL= option overrides the value of SIGLEVEL= option in the
HPFDIAGNOSE statement.
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ADJUST Statement

ADJUST variable = ( variable-list ) / options;

The ADJUST statement lists the numeric variables in the DATA= data set whose
accumulated values will be used to adjust the dependent values. Adjustments are
performed before diagnostics.

The numeric variable listed is the variable to which adjustments specified in that
statement will apply. This variable must appear in a FORECAST statement.

The numeric variables used as the source of the adjustments are listed following the
parentheses. For more information see the “Adjustment Operations” section on page
316.

The following options can be used with the ADJUST statement:

OPERATION=option
specifies how the adjustments are applied to the forecast variable. The option de-
termines how the adjustment variables are applied to the dependent variable prior to
diagnostics.

Computations with missing values are handled differently in the ADJUST statement
than in other parts of SAS. If any of the adjustment operations result in a nonmissing
dependent value being added to, subtracted from, divided or multiplied by a missing
value, the nonmissing dependent value is left unchanged. Division by zero produces
a missing value.

The following predefined adjustment operations are provided:

NONE No adjustment operation is performed. This is the default.

ADD Variables listed in the adjustment statement are added to
the dependent variable.

SUBTRACT Variables listed in the adjustment statement are subtracted
from the dependent variable.

MULTIPLY Dependent variable is multiplied by variables listed in the
adjustment statement.

DIVIDE Dependent variable is divided by variables listed in the ad-
justment statement.

MIN Dependent variable is set to the minimum of the dependent
variable and all variables listed in the adjustment state-
ment.

MAX Dependent variable is set to the maximum of the dependent
variable and all variables listed in the adjustment state-
ment.

ACCUMULATE=option
See the ACCUMULATE= option in the “ID Statement” section on page 305 for more
details.
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SETMISSING=option |number
See the SETMISSING= option in the “ID Statement” section on page 305 for more
details.

TRIMMISS=option
See the TRIMMISS= option in the “ID Statement” section on page 305 for more
details.

ZEROMISS=option
See the ZEROMISS= option in the “ID Statement” section on page 305 for more
details.

Details

Adjustment Operations

Pre-adjustment variables may be used to adjust the dependent series prior to model
diagnostics.

If yt is the dependent series and zi,t for i = 1, . . . , M are the M adjustment series,
then the adjusted dependent series, wt, is

w1
t = opi(yt, zi,t)

wi
t = opi(wi−1

t , zi,t) for 1 < i ≤ M

wt = wM
t

where opi represents the ith pre-adjustment operator and wi
t is the ith adjusted de-

pendent series. As can be seen, the pre-adjustment operators are nested and applied
sequentially from i = 1, . . . , M .

Data Preparation

The HPFDIAGNOSE procedure does not use missing data at the beginning and/or
end of the series.

Missing values in the middle of the series to be forecast would be handled with the
PREFILTER=MISSING or PREFILTER=YES option. The PREFILTER=MISSING
option uses smoothed values for missing data for tentative order selection in the
ARIMAX modeling and for tentative components selection in the UCM modeling,
but the original values for the final diagnostics. The PREFILTER=YES option uses
smoothed values for missing data and for all diagnostics.

Extreme values in the middle of the series to be forecast can be handled with the
PREFILTER=EXTREME option in the ARIMA modeling. The HPFDIAGNOSE
procedure replaces extreme values with missing values when determining a tenta-
tive ARIMA model, but the original values are used for the final diagnostics. The
PREFILTER=EXTREME option detects extreme values if the absolute values of
residuals are greater than 3 × STDDEV from a proper smoothed model.
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If there are missing values in the middle of data for the input series, the procedure
uses an interpolation method based on exponential smoothing to fill in the missing
values.

The following data set provides a scenario for explaining the
PREFILTER=EXTREME option.

data air_extreme;
set sashelp.air;
if _n_ = 30 then air = 500;
if _n_ = 50 then air = 500;
if _n_ = 100 then air = 700;

In the following SAS code, the HPFDIAGNOSE procedure diagnoses the new data
set AIR–EXTREME without the PREFILTER=EXTREME option.

proc hpfdiag data=air_extreme print=short;
id date interval=month;
forecast air;
arimax;

run;

In Figure 9.6, the ARIMA(0, 1, 1) model is diagnosed for the time series. The model
has no seasonality and is quite different from the model in Figure 9.1. The three
extreme values mislead the model diagnostic tests.

The HPFDIAGNOSE Procedure

ARIMA Model Specification

Functional Model
Variable Transform Constant p d q P D Q Seasonality Criterion Statistic

AIR NONE NO 0 1 1 0 0 0 12 RMSE 67.1909

ARIMA Model Specification

Variable Status

AIR OK

Figure 9.6. ARIMAX Model Specification without Outliers

In the following SAS code, the HPFDIAGNOSE procedure diagnoses the new data
set AIR–EXTREME with the PREFILTER=EXTREME option.

proc hpfdiag data=air_extreme prefilter=extreme print=short;
id date interval=month;
forecast air;
arimax;

run;
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In Figure 9.7, the ARIMA(1, 1, 0)(0, 1, 0)12 model is diagnosed for the time series.
The required seasonal differencing is detected.

The HPFDIAGNOSE Procedure

ARIMA Model Specification

Functional Model
Variable Transform Constant p d q P D Q Seasonality Criterion Statistic

AIR NONE NO 1 1 0 0 1 0 12 RMSE 85.7080

ARIMA Model Specification

Variable Status

AIR OK

Figure 9.7. ARIMAX Model Specification without Outliers

Figure 9.8 shows that the three extreme values are detected as outliers.

ARIMA Outlier Selection

Approx
Variable Type Obs Time Chi-Square Pr > ChiSq

AIR AO 100 APR1957 1875.29 <.0001
AO 30 JUN1951 1820.42 <.0001
AO 50 FEB1953 1836.58 <.0001

Figure 9.8. Outlier Information

After the three extreme values are included in the ARIMAX model, Figure 9.8 shows
that the statistic of the model selection criterion dramatically drops from 85.7080 to
11.5489.

ARIMA Model Specification After Adjusting for Outliers

Functional Model
Variable Transform Constant p d q P D Q Seasonality Outlier Criterion

AIR NONE NO 1 1 0 0 1 0 12 3 RMSE

ARIMA Model Specification After
Adjusting for Outliers

Variable Statistic Status

AIR 11.5489 OK

Figure 9.9. ARIMAX Model Specification with Outliers
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Functional Transformation

The log transform test compares the MSE or MAPE value after fitting an AR(p)
model to the original data and to the logged data. If the MSE or MAPE value is
smaller for the AR(p) model fitted to the logged data, then the HPFDIAGNOSE pro-
cedure will perform the log transformation.

The next two SAS programs specify the same log transformation test.

proc hpfdiag data=sashelp.air print=all;
id date interval=month;
forecast air;
arimax;

run;

proc hpfdiag data=sashelp.air print=all;
id date interval=month;
forecast air;
arimax;
transform type=auto;

run;

The Functional Transformation Table shown in Figure 9.10 states that the airline data
requires a log transformation.

The HPFDIAGNOSE Procedure

Functional
Transformation Test

Functional
Variable Transform

AIR LOG

Figure 9.10. Log Transformation Test

Stationarity Test

The stationarity test decides whether the data requires differencing. Note that d is the
simple differencing order, and D is the seasonal differencing order.

The next two SAS programs specify the same trend test.

proc hpfdiag data=sashelp.air print=all;
id date interval=month;
forecast air;
arimax;

run;
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proc hpfdiag data=sashelp.air print=all;
id date interval=month;
forecast air;
arimax;
trend diff=auto sdiff=auto;

run;

Simple Differencing Order

The simple augmented Dickey-Fuller test is used to determine the simple differencing
order.

If there is no unit root, then the HPFDIAGNOSE procedure will set d = 0.

If there is a unit root, then the double unit root test is applied; if there is a double unit
root, then the HPFDIAGNOSE procedure will set d = 2, otherwise d = 1.

Figure 9.11 and Figure 9.12 show that the series needs simple differencing because
the null hypothesis test probability is greater than SIGLEVEL=0.05.

Dickey-Fuller Unit Root Test

Type Rho Pr < Rho Tau Pr < Tau

Zero Mean 0.22 0.7335 1.38 0.9580
Single Mean -2.42 0.7255 -1.11 0.7118
Trend 294.41 0.9999 -6.42 <.0001

Figure 9.11. Dickey-Fuller Unit Root Test

Dickey-Fuller Unit Root Test Summary

Zero
Variable Seasonality Mean Mean Trend

AIR 1 YES YES NO

Figure 9.12. Summary of Dickey-Fuller Unit Root Test

Seasonal Differencing Order

The seasonal augmented Dickey-Fuller test is used to identify the seasonal differenc-
ing order. If the seasonality is greater than 12, the season dummy regression test is
used. If there is no seasonal unit root, the HPFDIAGNOSE procedure will set D = 0.
If there is a seasonal unit root, the HPFDIAGNOSE procedure will set D = 1.

Figure 9.13 and Figure 9.14 show that the series needs seasonal differencing because
the null hypothesis test probability is greater than SIGLEVEL=0.05.
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Seasonal Dickey-Fuller Unit Root Test(Seasonality=12)

Type Rho Pr < Rho Tau Pr < Tau

Zero Mean -0.47 0.5112 -0.13 0.4970
Single Mean -6.51 0.2186 -1.59 0.1101

Figure 9.13. Seasonal Dickey-Fuller Unit Root Test

Seasonal Dickey-Fuller Unit Root Test Summary

Zero
Variable Seasonality Mean Mean Trend

AIR 12 YES YES

Figure 9.14. Summary of Seasonal Dickey-Fuller Unit Root Test

Joint Differencing Orders

Hasza-Fuller (Hasza and Fuller 1979, 1984) proposed the joint unit roots test. If the
seasonality is less than or equal to 12, use these tests. If there is a joint unit root, then
the HPFDIAGNOSE procedure will set D = 1 and d = 1.

Figure 9.15 and Figure 9.16 show that the series needs both simple and sea-
sonal differencing because the null hypothesis test probability is greater than
SIGLEVEL=0.05.

Hasza-Fuller Joint Unit Root Test(Seasonality=12)

Critical Values Approx
Type F Value 90% 95% 99% Pr > F

Zero Mean 3.2684 2.5695 3.2600 4.8800 0.0466
Single Mean 3.8360 5.1409 6.3473 8.8400 0.1476
Trend 3.0426 7.2635 8.6820 10.7600 0.2896

Figure 9.15. Joint Unit Root Test

Joint Unit Root Test Summary

Zero
Variable Seasonality Mean Mean Trend

AIR 1, 12 NO YES

Figure 9.16. Summary of Joint Unit Root Test
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Seasonal Dummy Test

If the seasonality is greater than 12, the seasonal dummy test is used to decide the
seasonal differencing order.

The seasonal dummy test compares the criterion (AIC) of two AR(1) models and the
joint significance of the seasonal dummy parameters, where one has seasonal dummy
variables and the other does not have the seasonal dummy variables.

ARMA Order Selection

Tentative Simple Autoregressive and Moving-Average Orders

The tentative simple autoregressive and moving-average orders (AR=p∗ and MA=q∗)
are found using the ESACF, MINIC, or SCAN method.

The next two SAS programs result in the same diagnoses.

proc hpfdiag data=sashelp.air print=all;
id date interval=month;
forecast air;
arimax;

run;

proc hpfdiag data=sashelp.air print=all;
id date interval=month;
forecast air;
arimax method=minic p=(0:5) q=(0:5) criterion=sbc;

run;

Figure 9.17 shows the minimum information criterion among the AR and MA orders.
The AR=3 and MA=0 element has the smallest value in the table.

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 -6.20852 -6.30537 -6.29093 -6.3145 -6.28459 -6.26408
AR 1 -6.31395 -6.28157 -6.26557 -6.28327 -6.25263 -6.23399
AR 2 -6.29952 -6.26759 -6.24019 -6.24605 -6.21542 -6.20335
AR 3 -6.33026 -6.29846 -6.26559 -6.23155 -6.2356 -6.22296
AR 4 -6.31801 -6.28102 -6.24678 -6.24784 -6.21578 -6.19315
AR 5 -6.29745 -6.2603 -6.22433 -6.2265 -6.19536 -6.15861

Figure 9.17. Minimum Information Criterion

Simple Autoregressive and Moving-Average Orders

The simple autoregressive and moving-average orders (p and q) are found by mini-
mizing the SBC/AIC values from the models among 0 ≤ p ≤ p∗ and 0 ≤ q ≤ q∗

where p∗ and q∗ are the tentative simple autoregressive and moving-average orders.
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Seasonal Autoregressive and Moving-Average Orders

The seasonal AR and MA orders (P and Q) are found by minimizing the SBC/AIC
values from the models among 0 ≤ P ≤ 2 and 0 ≤ Q ≤ 2.

Constant

In order to determine whether the model has a constant, two models are fit-
ted: (p, d, q)(P, D, Q)s and C + (p, d, q)(P, D, Q)s. The model with the smaller
SBC/AIC value is chosen.

Estimation Method

The ARIMA model uses the conditional least-squares estimates for the parameters.

Figure 9.18 shows that the simple AR and MA orders are reduced to p = 1 and q = 0
from p∗ = 3 and q∗ = 0. The seasonal AR and MA orders are P = 0 and Q = 1.
The selected model does not have a constant term.

ARIMA Model Specification

Functional Model
Variable Transform Constant p d q P D Q Seasonality Criterion Statistic

AIR LOG NO 1 1 0 0 1 1 12 RMSE 10.8353

ARIMA Model Specification

Variable Status

AIR OK

Figure 9.18. ARIMAX Specification

Transfer Functions in an ARIMAX Model

A transfer function filter has delay, numerator, and denominator parameters. Set
(b, k, r) where b is the delay, k is the numerator order, and r is the denominator order.

Functional Transformation for Input Variables

The default of functional transformation for the inputs is no transformation. The
TESTINPUT=TRANSFORM option specifies that the same functional transforma-
tion is applied to the inputs as is used for the variable to be forecast.

Using the TESTINPUT=TRANSFORM option, you can test whether the log trans-
formation is applied to the inputs.

Simple and Seasonal Differencing Orders for Input Variables

The default of the simple and seasonal differencing for the inputs is the same as the
simple and seasonal differencing applied to the variable to be forecast.

Using the TESTINPUT=TREND option, you can test whether the differencing is
applied to the inputs.
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Cross-Correlations between Forecast and Input Variables

The cross-correlations between the variable (yt) to be forecast and each input vari-
able (xit) are used to identify the delay parameters. The following steps are used to
prewhiten the variable to be forecast in order to identify the delay parameter (b).

1. Find an appropriate ARIMA model for xit and estimate the residual of xit (ex
it).

2. Prewhiten yt using this model and get the residual of yt (ey
it).

3. Compute the cross-correlations between ex
it and ey

it and find the first significant
lag that is zero or larger. If no delay lag is significant, the variable xit is not
included in the model.

Simple Numerator and Denominator Orders

The high-order lag regression model and the transfer function model are compared to
identify the simple numerator and denominator orders.

Fit the high-order lag regression model (lag=15) and get the coefficients. Fit the
transfer function C + (b, k, r) where C is a constant term, b is the delay parameter
found in the previous section, 0 ≤ k ≤ 2, and 0 ≤ r ≤ 2, and get the impulse weight
function (lag=15) of the transfer model. Compare the pattern of the coefficients from
the high-order regression model and the transfer model.

The following SAS code shows how to select significant input variables.

proc hpfdiag data=sashelp.citimon(obs=141) print=all;
forecast conb;
input cciutc eec eegp exvus fm1 fm1d82;
arimax;

run;

The ARIMA Input Selection Table shown in Figure 9.19 states that the EEGP input
variable is selected in the model with differences d = 2, delay=8, and denominator
order=2. Other input variables are not selected because of either unstable or insignif-
icant status.

The HPFDIAGNOSE Procedure

ARIMA Input Selection

Input Functional
Variable Selected Transform d Delay Numerator Denominator Status

CCIUTC NO NONE 2 2 1 1 UnStable
EEC NO NONE 2 2 0 2 UnStable
EEGP YES NONE 2 8 0 2 OK
EXVUS NO Not Significant
FM1 NO Not Significant
FM1D82 NO Not Significant

Figure 9.19. ARIMA Input Selection
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Outliers

Outlier detection is the default in the ARIMAX modeling.

There are two types of outliers: the additive outlier (AO) and the level shift (LS).
For each detected outlier, dummy regressors or indicator variables are created. The
ARIMAX model and the dummy regressors are fitted to the data.

The detection of outliers follows a forward method. First find a significant outlier. If
there are no other significant outliers, detecting outlier stops at this point. Otherwise,
include this outlier into a model as an input and find another significant outlier.

The same functional differencing is applied to the outlier dummy regressors as is used
for the variable to be forecast.

The data came from Hillmer, Larcker, and Schroeder (1983).

data hardware;
input hardware @@;
label hardware="Wholesale Sales of Hardware";
date=intnx(’month’,’01jan67’d,_n_-1);
format date monyy.;

datalines;
626 614 689 686 723 778 711 824 793 831 775 689
692 718 757 769 791 809 836 878 856 935 850 763
761 796 830 902 910 932 931 908 934 995 865 822
763 778 841 845 863 952 909 899 952 963 893 831
773 803 918 967 963 1065 1014 1051 1054 1051 1039 960
930 956 1072 1023 1136 1181 1088 1247 1164 1251 1218 1062
1114 1088 1253 1254 1354 1349 1305 1420 1313 1481 1387 1284
1310 1262 1446 1573 1634 1612 1591 1640 1590 1696 1456 1296
1311 1232 1274 1388 1374 1443 1466 1454 1538 1587 1406 1341
1351 1367 1553 1588 1591 1703 1643 1711 1731 1678 1678 1580
1515 1544 1817 1838 1925 2017 1898 2068 1961 2027 1974 1820
1790 1708 2021 2102 2306 2360 2247 2412 2159 2455 2250 2057
2142 1984 2319 2374 2592 2461 2524 2678 2399 2794 2415
;

The next two SAS programs result in the same outlier analysis.

proc hpfdiag data=hardware print=short;
id date interval=month;
forecast hardware;
arimax;

run;

proc hpfdiag data=hardware print=short;
id date interval=month;
forecast hardware;
arimax outlier=(detect=maybe maxnum=2 maxpct=2 siglevel=0.01);

run;
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Figure 9.20 shows that the two level shifts (LS) occurred at the 96th (DEC1974) and
99th (MAR1975) observations.

The HPFDIAGNOSE Procedure

ARIMA Outlier Selection

Approx
Variable Type Obs Time Chi-Square Pr > ChiSq

hardware LS 99 MAR1975 25.73 <.0001
LS 96 DEC1974 29.64 <.0001

Figure 9.20. Outlier Information

Figure 9.21 shows the ARIMA model specification with two outliers included in the
model.

ARIMA Model Specification After Adjusting for Outliers

Functional Model
Variable Transform Constant p d q P D Q Seasonality Outlier Criterion

hardware NONE NO 2 1 1 2 1 1 12 2 RMSE

ARIMA Model Specification After
Adjusting for Outliers

Variable Statistic Status

hardware 45.9477 OK

Figure 9.21. ARIMAX Specification

OUTOUTLIER

The OUTOUTLIER= data set contains information about the outliers and has the
following variables:

BY variable name Contains BY variables that organize the results in BY groups.

–NAME– Contains variable(s) to be forecast.

–TYPE– Contains a type, either AO for an additive outlier or LS for a level
shift.

–DIRECTION– Contains a direction, either UP for a positive effect or DOWN for
a negative effect.

–OBS– Contains the number of the observation where the outlier happens.

–SASDATE– Contains the SAS date when the outlier happens.

–EVENT– Contains the outlier’s event name.

–ESTIMATE– Contains the coefficient estimate.
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–CHISQ– Contains the chi-square statistic of the coefficient estimate.

–PVALUE– Contains the p-value of the coefficient estimate.

The following SAS code and Figure 9.22 show the OUTOUTLIER= data set that
contains information associated with the output in Figure 9.20.

proc hpfdiag data=hardware outoutlier=outl;
id date interval=month;
forecast hardware;
arimax;

run;

proc print data=outl;

_
D _
I _ E
R S S _
E A _ T _ P

_ _ C S E I C V
N T T _ D V M H A
A Y I O A E A I L

O M P O B T N T S U
b E E N S E T E Q E
s _ _ _ _ _ _ _ _ _

1 hardware LS DOWN 99 01MAR75 LS01MAR1975D -125.695 25.7273 .000000393
2 LS DOWN 96 01DEC74 LS01DEC1974D -115.714 29.6352 .000000052

Figure 9.22. OUTOUTLIER Data Set

Intermittent Demand Model

The HPFDIAGNOSE procedure selects an appropriate intermittent demand model
(IDM) based on the model selection criterion.

If a series is intermittent or interrupted, a proper IDM is selected by either individu-
ally modeling both the demand interval and size component or jointly modeling these
components using the average demand component (demand size divided by demand
interval).

The following example prints the diagnostics of an intermittent demand series. The
INTERMITTENT=2.5 and BASE=0 are specified.

data sales;
input hubcaps @@;

datalines;
0 1 0 0 0 1 0 0 0 0 0 2 0 4 0 0 0 0 1 0
;
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proc hpfdiag data=sales print=all;
forecast hubcaps;
idm intermittent=2.5 base=0;

run;

Figure 9.23 shows that the variable to be forecast is an intermittent demand series.
The Interval/Size demand model and Average demand model were diagnosed for the
time series. The value of the model selection criterion of the Average demand model
is smaller than that of the Interval/Size demand model.

The HPFDIAGNOSE Procedure

Intermittent Demand Model Specification

Demand Functional Selected Model
Variable Model Transform Model Component Criterion Statistic

hubcaps INTERVAL NONE DOUBLE LEVEL RMSE 0.8288
SIZE LOG SIMPLE LEVEL
AVERAGE LOG SIMPLE LEVEL 0.8736

Figure 9.23. Intermittent Demand Model Specification

Exponential Smoothing Model

The HPFDIAGNOSE procedure selects an appropriate exponential smoothing model
(ESM) based on the model selection criterion.

The following example prints the ESM model specification.

proc hpfdiag data=sashelp.gnp print=short;
id date interval=qtr;
forecast gnp;
esm;

run;

The ESM model specification in Figure 9.24 states that the damp-trend exponential
smoothed model was automatically selected.

The HPFDIAGNOSE Procedure

Exponential Smoothing Model Specification

Functional Selected Model
Variable Transform Model Component Criterion Statistic

GNP NONE DAMPTREND LEVEL RMSE 22.0750
TREND
DAMP

Figure 9.24. ESM Specification
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Unobserved Components Model

The UCM statement is used to find the proper components among the level, trend,
seasonal, cycles, and regression effects.

Differencing Variables in a UCM

The variable to be forecast and the events are not differenced regardless of the result
of the TREND statement. Differencing of the input variables follows the result of the
option TESTINPUT=TREND or TESTINPUT=BOTH.

Transfer Function in a UCM

The functional transformation, simple and seasonal differencing, and delay param-
eters for the transfer function in a UCM are the same as those that are used for the
transfer function in an ARIMAX model.

The series that consists of the yearly river flow readings of the Nile, recorded at
Aswan (Cobb 1978), is studied. The data consists of readings from the years 1871 to
1970.

The following DATA step statements read the data in a SAS data set and create
dummy inputs for the shift in 1899 and the unusual years 1877 and 1913.

data nile;
input riverFlow @@;
year = intnx( ’year’, ’1jan1871’d, _n_-1 );
format year year4.;

datalines;
1120 1160 963 1210 1160 1160 813 1230 1370 1140
995 935 1110 994 1020 960 1180 799 958 1140
1100 1210 1150 1250 1260 1220 1030 1100 774 840
874 694 940 833 701 916 692 1020 1050 969
831 726 456 824 702 1120 1100 832 764 821
768 845 864 862 698 845 744 796 1040 759
781 865 845 944 984 897 822 1010 771 676
649 846 812 742 801 1040 860 874 848 890
744 749 838 1050 918 986 797 923 975 815
1020 906 901 1170 912 746 919 718 714 740
;

The series is known to have had a shift in the level starting at the year 1899, and the
years 1877 and 1913 are suspected to be outlying points. The following SAS code
creates the NILE–DATA data set with the Shift1899, Event1877, and Event1913
variables.

data nile_data;
set nile;
if year >= ’1jan1899’d then Shift1899 = 1.0;
else Shift1899 = 0;
if year = ’1jan1913’d then Event1913 = 1.0;
else Event1913 = 0;
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if year = ’1jan1877’d then Event1877 = 1.0;
else Event1877 = 0;

The following SAS codes prints the diagnoses of the UCM model specification.

proc hpfdiag data=nile_data print=short;
id year interval=year;
forecast riverFlow;
input Shift1899 Event1913 Event1877;
ucm;

run;

Figure 9.25 shows the three significant inputs chosen.

The HPFDIAGNOSE Procedure

UCM Input Selection

Input Functional
Variable Selected Transform d Delay

Shift1899 YES NONE 0 0
Event1913 YES NONE 0 0

Figure 9.25. UCM Input Selection

Figure 9.26 shows the UCM model specification for the Nile data. The data has a
significant cycle, level components, and the two inputs.

Unobserved Components Model(UCM) Specification

Functional Model
Variable Transform Component Selected Stochastic Period Criterion Statistic

riverFlow NONE IRREGULAR NO RMSE 116.67
LEVEL YES NO
SLOPE NO
CYCLE1 YES YES 4.1112
CYCLE2 NO
INPUT 2

Unobserved Components
Model(UCM) Specification

Variable Status

riverFlow OK

Figure 9.26. UCM Specification

The following example has the same results as Figure 9.25. The COMPONENTS=
option in the UCM statement specifies level and cycle as components to consider.
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proc hpfdiag data=nile_data print=short;
id year interval=year;
forecast riverFlow;
input Shift1899 Event1913 Event1877;
ucm component=(level cycle);

run;

Holdout Sample

A holdout sample is useful to find models that have better out-of-sample forecasts. If
the HOLDOUT= or HOLDOUTPCT= option is specified, the model selection crite-
rion is computed using only the holdout sample region.

proc hpfdiag data=sashelp.air print=short holdout=10;
id date interval=month;
forecast air;
arimax;

run;

The ARIMA model specification in Figure 9.27 shows that the log test, trend test,
and selection of ARMA orders use only the first part of the series and exclude the last
10 observations that were specified as the holdout sample. The statistic of the model
selection criterion is computed using only the last 10 observations that were specified
as the holdout sample.

The HPFDIAGNOSE Procedure

ARIMA Model Specification

Functional Model
Variable Transform Constant p d q P D Q Seasonality Criterion Statistic

AIR LOG NO 1 1 0 0 1 1 12 RMSE 16.3008

ARIMA Model Specification

HoldOut
Variable Sample Status

AIR 10 OK

Figure 9.27. Use HOLDOUT Option

EVENTS

Calendar effects such as holiday and trading day are defined by the HPFEVENTS
procedure or predefined event-keywords.

The HPEVENTS procedure creates the OUT= data set for the event definitions,
and the HPFDIAGNOSE procedure uses these event definitions by specifying the
INEVENT= option in the ARIMAX or UCM model.
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Events in an ARIMAX Model

The simple and seasonal differencing for the events in an ARIMAX are the same as
those that are used for the variable to be forecast.

No functional transformations are applied to the events.

Events in a UCM

The simple and seasonal differencing for the events in a UCM model are not applied
to the events.

No functional transformations are applied to the events.

The following SAS code shows how the HPEVENTS procedure can be used to create
the event data set, OUT=EVENTDATA.

proc hpfevents data=nile;
id year interval=year;
eventkey Shift1899 = LS01JAN1899D;
eventkey Event1913 = AO01JAN1913D;
eventkey Event1877 = AO01JAN1877D;
eventdata out=eventdata;

run;

The following SAS code shows that the HPFDIAGNOSE procedure uses this event
data by specifying the INEVENT=EVENTDATA option. The EVENT statement
specifies the name of events defined in the INEVENT=EVENTDATA.

proc hpfdiag data=nile print=short inevent=eventdata;
id year interval=year;
forecast riverFlow;
event Shift1899 Event1913 Event1877;
ucm component=(level cycle);

run;

Figure 9.28 shows the three significant events chosen.

The HPFDIAGNOSE Procedure

UCM Event Selection

Event
Name Selected

SHIFT1899 YES
EVENT1913 YES

Figure 9.28. UCM Event Selection

Figure 9.29 shows the UCM model specification for the Nile data. The data has the
significant cycle, level components, and the two events.
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Unobserved Components Model(UCM) Specification

Functional Model
Variable Transform Component Selected Stochastic Period Criterion Statistic

riverFlow NONE LEVEL YES NO RMSE 116.67
CYCLE1 YES YES 4.1112
CYCLE2 NO
EVENT 2

Unobserved Components
Model(UCM) Specification

Variable Status

riverFlow OK

Figure 9.29. UCM Specification

The following program generates the same results as the previous example without
specifying an INEVENT= data set. In this example, SAS predefined event-keywords
are specified in the EVENT statement.

proc hpfdiag data=nile print=short;
id year interval=year;
forecast riverFlow;
event LS01JAN1899D AO01JAN1913D AO01JAN1877D;
ucm component=(level cycle);

run;

HPFENGINE

The HPFDIAGNOSE procedure diagnoses and the HPFENGINE procedure fore-
casts.

There are two ways to communicate between the HPFDIAGNOSE procedure and the
HPFENGINE procedure. One way is that the OUTEST= data set specified in the
HPFDIAGNOSE procedure is specified as the INEST= data set in the HPFENGINE
procedure. The other way is that the HPFSELECT procedure is used to communicate
between the HPFDIAGNOSE procedure and the HPFENGINE procedure.

The ALPHA=, CRITERION=, HOLDOUT=, and HOLDOUTPCT= options can be
changed using the HPFSELECT procedure before these options are transmitted to
the HPFENGINE procedure. Otherwise the values specified in the HPFDIAGNOSE
procedure are transmitted directly to the HPFENGINE procedure.

Missing values in the input series are handled differently in the HPFDIAGNOSE
procedure than in the HPFENGINE procedure. The HPFDIAGNOSE procedure uses
the smoothed missing values for inputs, but the HPFENGINE procedure does not
include the inputs that have missing values. This difference can produce different
statistical results between the two procedures.
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The model specification files created by the HPFDIAGNOSE procedure can
be compared with benchmark model specifications using the HPFESMSPEC,
HPFIDMSPEC, HPFARIMASPEC, and HPFUCMSPEC procedures.

The following example shows how to combine these procedures to diagnose a time
series.

Create a diagnosed model specification.

proc hpfdiag data=sashelp.air outest=est
modelrepository=sasuser.mymodel;
id date interval=month;
forecast air;
arimax;

run;

Create an ARIMA(0, 1, 1)(0, 1, 1)s model specification.

proc hpfarimaspec modelrepository=sasuser.mymodel
specname=benchModel;

forecast var=dep1 dif=1 12 q=(1)(12) noint transform=log;
run;

Create a model selection list that includes a diagnosed model (DIAG0) and a specified
model (BENCHMODEL).

proc hpfselect modelrepository=sasuser.mymodel
selectname=arimaSpec;

select criterion=mape;
spec diag0 / eventmap(symbol=_none_ event=ao135obs)

eventmap(symbol=_none_ event=ao29obs);
spec benchModel / inputmap(symbol=dep1 data=air);

run;

Select a better model from the model specification list.

proc hpfengine data=sashelp.air print=(select)
modelrepository=sasuser.mymodel
globalselection=arimaSpec;

forecast air;
id date interval=month;

run;

Figure 9.30 shows the DIAG0 and BENCHModel model specifications. The
DIAG0.XML is created by the HPFDIAGNOSE procedure and the BENCHModel
is created by the HPFARIMASPEC procedure.
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The HPFENGINE Procedure

Model Selection Criterion = MAPE

Model Statistic Selected

DIAG0 2.7094770 Yes
BENCHMODEL 2.8979097 No

Model Selection Criterion = MAPE

Model Label

DIAG0 ARIMA: Log( AIR ) ~ P = 1 D = (1,12) Q = (12) NOINT
BENCHMODEL ARIMA: Log( DEP1 ) ~ D = (1,12) Q = ((1)(12)) NOINT

Figure 9.30. Model Selection from the HPFENGINE Procedure

OUTEST

The OUTEST= data set contains information that maps data set variables to model
symbols and references the model specification file and model selection list files for
each variable to be forecast. This information is used by the HPFENGINE procedure
for further model selection, parameter estimation, and forecasts.

In addition, this information can be used by the HPFSELECT procedure to create
customized model specification files.

The OUTEST= data set has the following columns;

BY variable name Contains BY variables that organize the results in BY groups.

–NAME– Contains variable(s) to be forecast.

–SELECT– Contains model selection list file names.

The model selection list file contains the information of the values
of CRITERION=, ALPHA=, HOLDOUT=, and HOLDPCT= op-
tions, EVENT and OUTLIER information, and model specification
file names.

–MODEL– Not applicable in the HPFDIAGNOSE procedure.

–SCORE– Not applicable in the HPFDIAGNOSE procedure.

–MODELVAR– Model symbol.

–DSVAR– Data set variable name.

–VARTYPE– DEPENDENT.

Here are two examples. The first has one model specification file with a model selec-
tion list file; the second one has two model select list files and four model specification
files.

The first example uses the BASENAME=AIRSPEC and the new model repository
SASUSER.MYMODEL.
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proc hpfdiag data=sashelp.air outest=est_air
modelrepository=sasuser.mymodel basename=airSpec;
id date interval=month;
forecast air;
arimax;

run;

proc print data=est_air;
run;

Figure 9.31 shows –SELECT–=AIRSPEC1 since BASENAME=AIRSPEC is speci-
fied. Because the new model repository SASUSER.MYMODEL is created, the suffix
number followed by AIRSPEC starts from 0. AIRSPEC0 is the model specification
file and AIRSPEC1 is the model selection list file.

Obs _NAME_ _SELECT_ _MODEL_ _SCORE_ _MODELVAR_ _DSVAR_ _VARTYPE_

1 AIR AIRSPEC1 Y AIR DEPENDENT

Figure 9.31. OUTEST1

The next example uses the new BASENAME=GNPSPEC and the new model repos-
itory SASUSER.MYGNP. The ESM and ARIMAX statement are requested for two
variables to be forecast.

proc hpfdiag data=sashelp.gnp outest=est_gnp
modelrepository=sasuser.myGNP basename=gnpSpec;
id date interval=qtr;
forecast consump invest;
esm;
arimax;

run;

proc print data=est_gnp;

Figure 9.32 shows two observations. Since the model repository SASUSER.MYGNP
is newly created, the suffix number followed by GNPSPEC starts from 0.

The model selection list GNPSPEC2 contains the two model specifications;
GNPSPEC0 is the ARIMAX model specification, and GNPSPEC1 is the ESM
model specification for the variable to be forecast, CONSUMP.

The model selection list GNPSPEC5 contains the two model specifications;
GNPSPEC3 is the ARIMAX model specification, and GNPSPEC4 is the ESM
model specification for the variable to be forecast, INVEST.
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Obs _NAME_ _SELECT_ _MODEL_ _SCORE_ _MODELVAR_ _DSVAR_ _VARTYPE_

1 CONSUMP GNPSPEC2 Y CONSUMP DEPENDENT
2 INVEST GNPSPEC5 Y INVEST DEPENDENT

Figure 9.32. OUTEST2

ODS Table Names

The HPFDIAGNOSE procedure assigns a name to each table it creates. You can use
these names to reference the table when using the Output Delivery System (ODS) to
select tables and create output data sets. These names are listed in Table 9.1:

Table 9.1. ODS Tables Produced Using the HPFDIAGNOSE Procedure

ODS Table Name Description Statement Option

ODS Tables Created by the PRINT=SHORT Option

ARIMAEventSelect ARIMA Event Selection EVENT
ARIMAInputSelect ARIMA Input Selection INPUT
ARIMASpec ARIMA Model Specification ARIMAX
BestModelSpec Selected Model Specification
ESMSpec Exponential Smoothing Model

Specification
ESM

FinalARIMASpec Final ARIMA Model
Specification

ARIMAX

IDMSpec Intermittent Model
Specification

IDM

OutlierInfo ARIMA Outlier Selection ARIMAX
UCMEventSelect UCM Event Selection EVENT
UCMInputSelect UCM Input Selection INPUT
UCMSpec Unobserved Components

Model Specification
UCM

VariableInfo Forecast Variable Information

Additional ODS Tables Created by the PRINT=LONG Option

DFTestSummary Dickey-Fuller Unit Root Test TREND DIFF
JointTestSummary Joint Unit Root Test TREND DIFF, SDIFF
SeasonDFTestSummary Seasonal Dickey-Fuller Unit

Root Test
TREND SDIFF

Transform Functional Transformation Test TRANSFORM TYPE=AUTO

Additional ODS Tables Created by the PRINT=ALL Option

DFTest Dickey-Fuller Unit Root Test TREND DIFF
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Table 9.1. (ODS Tables Continued)

ODS Table Name Description Statement Option
ESACF Extended Sample

Autocorrelation Function
ARIMAX ESACF

ESACFPValues P -values of ESACF ARIMAX ESACF
JointTest Joint Unit Root Test TREND DIFF, SDIFF
MINIC Minimum Information Criterion ARIMAX MINIC
SCAN Squared Canonical Correlation

Estimates
ARIMAX SCAN

SCANPValues P -values of SCAN ARIMAX SCAN
SeasonDFTest Seasonal Dickey-Fuller Unit

Root Test
TREND SDIFF

Examples

Example 9.1. Selection of Input Variables

This example requests testing of the transformation and differencing of the input
variables independent of the variable to be forecast.

proc hpfdiag data=sashelp.citimon(obs=141)
testinput=both selectinput=all print=all;

forecast conb;
input cciutc eec eegp exvus fm1 fm1d82;
arimax;

run;

Output 9.1.1 shows that the ARIMA (0, 2, 1) model is diagnosed for the variable
(CONB) to be forecast.

Output 9.1.1. ARIMAX Specification before Input Selection

The HPFDIAGNOSE Procedure

ARIMA Model Specification

Functional Model
Variable Transform Constant p d q Criterion Statistic Status

CONB NONE NO 0 2 1 RMSE 2318.33 OK

Output 9.1.2 shows that one input variable (EEGP) is selected. The input variable
needs a simple differencing.
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Output 9.1.2. ARIMA Input Selection

The HPFDIAGNOSE Procedure

ARIMA Input Selection

Input Functional
Variable Selected Transform d Delay Numerator Denominator Status

CCIUTC NO NONE 1 4 0 0 UnStable
EEC NO Not Significant
EEGP YES NONE 1 9 2 2 OK
EXVUS NO Not Significant
FM1 NO Not Significant
FM1D82 NO Not Significant

Output 9.1.3 shows the outlier detection information. The 136th observation is de-
tected as a significant level shift (LS); the 120th observation is detected as a signifi-
cant additive outlier (AO).

Output 9.1.3. Outlier Detection

ARIMA Outlier Selection

Approx
Variable Type Obs Chi-Square Pr > ChiSq

CONB LS 136 26.50 <.0001
AO 120 16.76 <.0001

Output 9.1.4 shows that the RMSE model selection criterion with inputs is smaller
than the model selection criterion without inputs and outliers.

Output 9.1.4. ARIMAX Specification after Input Selection

ARIMA Model Specification After Adjusting for Inputs and Outliers

Functional Model
Variable Transform Constant p d q Outlier Input Criterion Statistic

CONB NONE NO 0 2 1 2 1 RMSE 2021.66

ARIMA Model Specification
After Adjusting for
Inputs and Outliers

Variable Status

CONB OK
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Example 9.2. Selection of Events and Input Variables
This example demonstrates how to select events and input variables.

proc hpfevents data=sashelp.gnp;
id date interval=qtr;
eventkey shock=AO105OBS;
eventkey shift=LS85OBS;
eventdata out=eventdata;

run;

proc hpfdiag data=sashelp.gnp print=all inevent=eventdata
testinput=trend;

id date interval=qtr;
forecast gnp;
input consump invest exports govt;
event shock shift;
arimax outlier=(detect=no);

run;

Output 9.2.1 shows the seasonal ARIMA (0, 2, 1)(2, 0, 0)4 model diagnosed for the
variable (GNP) to be forecast.

Output 9.2.1. ARIMAX Specification before Event Input Selection

The HPFDIAGNOSE Procedure

ARIMA Model Specification

Functional Model
Variable Transform Constant p d q P D Q Seasonality Criterion Statistic

GNP NONE YES 0 2 1 2 0 0 4 RMSE 21.2180

ARIMA Model Specification

Variable Status

GNP OK

Output 9.2.2 shows that the SHOCK and SHIFT events are significant.

Output 9.2.2. ARIMA Event Selection

ARIMA Event Selection

Event
Name Selected d D Status

SHOCK YES 2 0 OK
SHIFT YES 2 0 OK
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Output 9.2.3 shows that the input variable, CONSUMP, is selected in the model.

Output 9.2.3. ARIMA Input Selection

ARIMA Input Selection

Input Functional
Variable Selected Transform d D Delay Numerator Denominator

CONSUMP YES NONE 1 0 0 1 1
INVEST NO NONE 1 0 0 1 2
EXPORTS NO NONE 1 0 2 1 0
GOVT NO NONE 1 0 5 2 1

ARIMA Input Selection

Input
Variable Status

CONSUMP OK
INVEST UnStable
EXPORTS UnStable
GOVT UnStable

Output 9.2.4 shows that the RMSE model selection criterion with the events and input
is smaller than that without the events and input.

Output 9.2.4. ARIMAX Specification after Event Input Selection

ARIMA Model Specification After Adjusting for Events and Inputs

Functional Model
Variable Transform Constant p d q P D Q Seasonality Input Event Criterion

GNP NONE YES 0 2 1 2 0 0 4 1 2 RMSE

ARIMA Model Specification After
Adjusting for Events and Inputs

Variable Statistic Status

GNP 15.3422 OK

Example 9.3. Intermittent Demand Series

This example shows that the data is an intermittent demand series.

data inventory;
input tires @@;

datalines;
0 0 0 6 0 4 0 0 0 2 0 2 2 0 0 0 6 0 0 0
;
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proc hpfdiag data=inventory print=all;
forecast tires;

run;

Output 9.3.1 shows that the variable (TIRES) to be forecast is an intermittent demand
series. The Interval/Size demand model and Average demand model were diagnosed
to the data. The value of model selection criterion (RMSE) of the Average demand
model is smaller than that of the Interval/Size demand model.

Output 9.3.1. Intermittent Demand Model Specification

The HPFDIAGNOSE Procedure

Intermittent Demand Model Specification

Demand Functional Selected Model
Variable Model Transform Model Component Criterion Statistic

tires INTERVAL NONE DAMPTREND LEVEL RMSE 0.8754
TREND
DAMP

SIZE LOG LINEAR LEVEL
TREND

AVERAGE NONE LINEAR LEVEL 0.6125
TREND

Example 9.4. Exponential Smoothing Model

This example illustrates the use of exponential smoothing models (ESM).

data investment;
input inv @@;
label inv="Gross Investment";

datalines;
33.1 45. 77.2 44.6 48.1 74.4 113. 91.9 61.3 56.8 93.6
159.9 147.2 146.3 98.3 93.5 135.2 157.3 179.5 189.6
;

proc hpfdiag data=investment print=all;
forecast inv;
esm;

run;

Output 9.4.1 shows that the variable (INV) to be forecast diagnosed the damped-trend
exponential smoothing model.
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Output 9.4.1. Exponential Smoothing Model Specification

The HPFDIAGNOSE Procedure

Exponential Smoothing Model Specification

Functional Selected Model
Variable Transform Model Component Criterion Statistic

inv NONE DAMPTREND LEVEL RMSE 26.2492
TREND
DAMP

Example 9.5. Unobserved Components Model
This example illustrates the use of the UCM statement in the HPFDIAGNOSE pro-
cedure.

data ozone;
input ozone @@;
label ozone = ’Ozone Concentration’

x1 = ’Intervention for post 1960 period’
summer = ’Summer Months Intervention’
winter = ’Winter Months Intervention’;

date = intnx( ’month’, ’31dec1954’d, _n_ );
format date monyy.;
month = month( date );
year = year( date );
x1 = year >= 1960;
summer = ( 5 < month < 11 ) * ( year > 1965 );
winter = ( year > 1965 ) - summer;

datalines;
2.7 2.0 3.6 5.0 6.5 6.1 5.9 5.0 6.4 7.4 8.2 3.9
4.1 4.5 5.5 3.8 4.8 5.6 6.3 5.9 8.7 5.3 5.7 5.7
3.0 3.4 4.9 4.5 4.0 5.7 6.3 7.1 8.0 5.2 5.0 4.7
3.7 3.1 2.5 4.0 4.1 4.6 4.4 4.2 5.1 4.6 4.4 4.0
2.9 2.4 4.7 5.1 4.0 7.5 7.7 6.3 5.3 5.7 4.8 2.7
1.7 2.0 3.4 4.0 4.3 5.0 5.5 5.0 5.4 3.8 2.4 2.0
2.2 2.5 2.6 3.3 2.9 4.3 4.2 4.2 3.9 3.9 2.5 2.2
2.4 1.9 2.1 4.5 3.3 3.4 4.1 5.7 4.8 5.0 2.8 2.9
1.7 3.2 2.7 3.0 3.4 3.8 5.0 4.8 4.9 3.5 2.5 2.4
1.6 2.3 2.5 3.1 3.5 4.5 5.7 5.0 4.6 4.8 2.1 1.4
2.1 2.9 2.7 4.2 3.9 4.1 4.6 5.8 4.4 6.1 3.5 1.9
1.8 1.9 3.7 4.4 3.8 5.6 5.7 5.1 5.6 4.8 2.5 1.5
1.8 2.5 2.6 1.8 3.7 3.7 4.9 5.1 3.7 5.4 3.0 1.8
2.1 2.6 2.8 3.2 3.5 3.5 4.9 4.2 4.7 3.7 3.2 1.8
2.0 1.7 2.8 3.2 4.4 3.4 3.9 5.5 3.8 3.2 2.3 2.2
1.3 2.3 2.7 3.3 3.7 3.0 3.8 4.7 4.6 2.9 1.7 1.3
1.8 2.0 2.2 3.0 2.4 3.5 3.5 3.3 2.7 2.5 1.6 1.2
1.5 2.0 3.1 3.0 3.5 3.4 4.0 3.8 3.1 2.1 1.6 1.3
. . . . . . . . . . . .
;
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proc hpfdiag data=ozone print=all;
id date interval=month;
forecast ozone;
input x1 summer winter;
ucm;

run;

Output 9.5.1 shows that the input SUMMER is selected in the model.

Output 9.5.1. UCM Input Selection

The HPFDIAGNOSE Procedure

UCM Input Selection

Input Functional
Variable Selected Transform d D Delay Status

x1 NO NONE 0 0 11 Not Improved
summer YES NONE 0 0 6 OK
winter NO Not Significant

Output 9.5.2 shows that the variable to be forecast is explained by the irregular, level
and season components, and an input.

Output 9.5.2. Unobserved Components Model Specification

Unobserved Components Model(UCM) Specification

Functional Model
Variable Transform Component Selected Stochastic Seasonality Criterion

ozone NONE IRREGULAR YES YES RMSE
LEVEL YES NO
SLOPE NO
SEASON YES YES 12
INPUT 1

Unobserved Components Model(UCM)
Specification

Variable Statistic Status

ozone 0.9912 OK
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The HPFENGINE Procedure
Overview

The HPFENGINE procedure provides an automatic way to generate forecasts for
many time series or transactional data in one step. The procedure can automatically
choose the best forecast model from a user-defined model list. Specifications for the
candidate forecast models are independent of any data series and can be generated by
the user or chosen from a default set. Supported model families include the following:

• Smoothing

• Intermittent Demand

• Unobserved Component

• ARIMA

Additionally, you can provide user-defined forecasts with data drawn from a SAS
data set or through the use of user-written functions.

All parameters associated with the forecast model are optimized based on the data.
The HPFENGINE procedure selects the appropriate model for each data series based
on one of several model selection criteria.

The procedure operates in a variety of modes. At its most comprehensive, all appro-
priate candidate models from a list are fit to a particular series and the model that
produces the best fit, based on a user-determined criterion, is determined. Forecasts
are then produced from this model. It is also possible to skip the selection process
and fit a particular model and produce subsequent forecasts. Finally, given a set of
parameter estimates and model specifications, the procedure will bypass the fit stage
entirely and calculate forecasts directly.

The HPFENGINE procedure writes the time series extrapolated by the forecasts, the
series summary statistics, the forecasts and confidence limits, the parameter esti-
mates, and the fit statistics to output data sets.

The HPFENGINE procedure can forecast both time series data, whose observations
are equally spaced at a specific time interval, or transactional data, whose observa-
tions are not spaced at any particular time interval. For transactional data, the data
are accumulated at a specified time interval to form a time series.
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Getting Started
In the simplest usage, the HPFENGINE procedure produces results similar to those
of the HPF procedure:

proc hpfengine data=sashelp.air print=(select summary);
id date interval=month;
forecast air;

run;

The GLOBALSELECTION= and REPOSITORY= options assume their respective
default values. Therefore automatic selection is performed for the AIR series in
SASHELP.AIR by using the models specified in the BEST selection list. The se-
lection list BEST is found, together with the smoothing models it references, in
SASHELP.HPFDFLT.

The results of the automatic model selection are displayed in Figure 10.1.

The HPFENGINE Procedure

Model Selection Criterion = RMSE

Model Statistic Selected Label

smsimp . Removed Simple Exponential Smoothing
smdoub . Removed Double Exponential Smoothing
smdamp . Removed Damped-Trend Exponential Smoothing
smlin . Removed Linear Exponential Smoothing
smadwn 12.245596 No Winters Method (Additive)
smwint 10.579085 Yes Winters Method (Multiplicative)
smseas 14.169905 No Seasonal Exponential Smoothing

Figure 10.1. Selection Results

The first four models in the selection list are nonseasonal smoothing models. The
HPFENGINE procedure determined that the series AIR in SASHELP.AIR was sea-
sonal and attempted to fit only seasonal models.

The multiplicative Winters method produced a fit with the smallest root mean square
error (RMSE).

As another example, consider the problem of comparing the performance of multiple
ARIMA models for a particular series. This is done by using the HPFARIMASPEC
procedure to specify the models and grouping together references to those models in
a selection list. Selection lists are built with the HPFSELECT procedure, as shown
in the following program. Selection results and the forecast summary are shown in
Figure 10.2.

proc hpfarimaspec repository=sasuser.mycat
name=arima1;

dependent symbol=air q=1 diflist=1 12 noint transform=log;
run;
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proc hpfarimaspec repository=sasuser.mycat
name=arima2;

dependent symbol=air q=(1,12) diflist=1 12 noint transform=log;
run;

proc hpfselect repository=sasuser.mycat
name=myselect;

select select=rmse holdout=0;
spec arima1 arima2;

run;

proc hpfengine data=sashelp.air print=(select forecasts)
repository=sasuser.mycat globalselection=myselect;

id date interval=month;
forecast air;

run;

The HPFENGINE Procedure

Variable Information

Name AIR
Label international airline travel (thousands)
First JAN1949
Last DEC1960
Number of Observations Read 144

Model Selection Criterion = RMSE

Model Statistic Selected Label

ARIMA1 11.891584 No ARIMA: Log( AIR ) ~ D = (1,12) Q = 1 NOINT
ARIMA2 11.059916 Yes ARIMA: Log( AIR ) ~ D = (1,12) Q = (1,12) NOINT

Forecasts for Variable AIR

Standard
Obs DATE Forecasts Error 95% Confidence Limits

145 JAN1961 450.3513 17.3713 417.2608 485.3439
146 FEB1961 425.6158 20.5676 386.7242 467.3272
147 MAR1961 478.6340 27.0051 427.8837 533.7048
148 APR1961 501.0466 31.8162 441.5784 566.2403
149 MAY1961 512.5109 35.8088 445.9079 586.2004
150 JUN1961 584.8311 44.2775 502.8483 676.3035
151 JUL1961 674.9025 54.7586 573.9404 788.4345
152 AUG1961 667.8935 57.5888 562.1344 787.6937
153 SEP1961 558.3906 50.8322 465.3910 664.4679
154 OCT1961 499.4696 47.7516 412.4199 599.4142
155 NOV1961 430.1668 43.0040 352.0416 520.4285
156 DEC1961 479.4592 49.9391 389.0353 584.5587

Figure 10.2. Selection and Forecast Results
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Syntax
The following statements are used with the HPFENGINE procedure:

PROC HPFENGINE options;
BY variables;
ID variable INTERVAL= interval options;
FORECAST variable-list / options;
INPUT variable-list / options;
STOCHASTIC variable-list / options;
CONTROL variable-list / options;
ADJUST variable = ( variable-list ) / options;
EXTERNAL variable-list / options ;
SCORE ;

Functional Summary

The statements and options controlling the HPFENGINE procedure are summarized
in the following table.

Description Statement Option

Statements
specify BY-group processing BY
specify variables to forecast FORECAST
specify the time ID variable ID
specify input variables INPUT
specify input variables STOCHASTIC
specify input variables CONTROL
specify input forecasts, bounds, PIs EXTERNAL
request creation of score files SCORE

Model Selection Options
specify location of model repository PROC

HPFENGINE
REPOSITORY=

specify model selection list PROC
HPFENGINE

GLOBALSELECTION=

Data Set Options
specify the input data set PROC

HPFENGINE
DATA=

specify the mapping/estimate input data set PROC
HPFENGINE

INEST=

specify the events data set PROC
HPFENGINE

EVENT=
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Description Statement Option

specify the output data set PROC
HPFENGINE

OUT=

specify the mapping/estimate output data set PROC
HPFENGINE

OUTTEST

specify the forecast output data set PROC
HPFENGINE

OUTSTAT

specify the forecast component output data set PROC
HPFENGINE

OUTCOMPONENT

replace missing values PROC
HPFENGINE

REPLACEMISSING

Accumulation Options
accumulation frequency ID INTERVAL=
length of seasonal cycle PROC

HPFENGINE
SEASONALITY=

interval alignment ID ALIGN=
starting time ID value ID START=
ending time ID value ID END=
date format ID FORMAT=
accumulation statistic ID, ACCUMULATE=

FORECAST,
INPUT,
STOCHASTIC,
CONTROL,
EXTERNAL

missing value interpretation ID, SETMISSING=
FORECAST,
INPUT,
STOCHASTIC,
CONTROL,
EXTERNAL

zero value interpretation ID, ZEROMISS=
FORECAST,
INPUT,
STOCHASTIC,
CONTROL,
EXTERNAL

trim missing values ID, TRIMMISS=
FORECAST,
INPUT,
STOCHASTIC,
CONTROL,
EXTERNAL
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Description Statement Option

Forecasting Horizon Options
specify data to hold back PROC

HPFENGINE
BACK=

specify forecast horizon or lead PROC
HPFENGINE

LEAD=

Forecasting Control Options
specify forecasting control options PROC

HPFENGINE
TASK=

Scoring Options
specify location of score repository PROC

HPFENGINE
SCOREREPOSITORY=

Printing and Plotting Options
specify graphical output PROC

HPFENGINE
PLOT=

specify printed output PROC
HPFENGINE

PRINT=

specify detailed printed output PROC
HPFENGINE

PRINTDETAILS

Miscellaneous Options
specify that analysis variables are processed in
sorted order

PROC
HPFENGINE

SORTNAMES

specify error printing options PROC
HPFENGINE

ERRORCONTROL=

PROC HPFENGINE Statement
PROC HPFENGINE options ;

The following options can be used in the PROC HPFENGINE statement.

BACK= n
specifies the number of observations before the end of the data that the multistep
forecasts are to begin. This option is often used to obtain performance statistics.
See the PRINT= option details about printing performance statistics. The default is
BACK=0.

DATA= SAS-data-set
names the SAS data set containing the input data for the procedure to forecast. If the
DATA= option is not specified, the most recently created SAS data set is used.

GLOBALSELECTION= catalog name
specifies the name of a catalog entry that serves as a model selection list. This is the
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selection list used to forecast all series if no INEST= data set is given. It is also the
selection list used if individual model selections are missing in the INEST= data set
when INEST= is provided. If REPOSITORY= is not present, GLOBALSELECTION
defaults to BEST, specified in SASHELP.HPFDFLT.

INEST= SAS-data-set
contains information that maps forecast variables to models or selection lists, and
data set variables to model variables. It may also contain parameter estimates used if
the TASK=FORECAST option is present. INEST= is optional. See the description
of GLOBALSELECTION= for more information.

INEVENT= SAS-data-set
contains information describing predefined events. This data set is usually created
by the HPFEVENTS procedure. This option is only used if events are included in a
model.

LEAD= n
specifies the number of periods ahead to forecast (forecast lead or horizon). The
default is LEAD=12.

The LEAD= value is relative to the last observation in the input data set and not to the
last nonmissing observation of a particular series. Thus, if a series has missing values
at the end, the actual number of forecasts computed for that series will be greater than
the LEAD= value.

OUT= SAS-data-set
names the output data set to contain the forecasts of the variables specified in the sub-
sequent FORECAST statements. If an ID variable is specified, it will also be included
in the OUT= data set. The values are accumulated based on the ACCUMULATE=
option and forecasts are appended to these values. If the OUT= data set is not speci-
fied, an default output data set DATAn is created. If you do not want the OUT= data
set created, then use OUT=–NULL–.

OUTCOMPONENT= SAS-data-set
names the output data set to contain the forecast components. The components in-
cluded in the output depend on the model.

OUTEST= SAS-data-set
contains information that maps forecast variables to model specifications, and data
set variables to model variables and parameter estimates.

An OUTEST= data set will frequently be used as the INEST= data set for subsequent
invocations of PROC HPFENGINE. In such a case, if the FORECAST statement
option TASK=FORECAST is used, forecasts are generated using the parameter esti-
mates found in this data set and are not reestimated.

OUTFOR= SAS-data-set
names the output data set to contain the forecast time series components (actual,
predicted, lower confidence limit, upper confidence limit, prediction error, and pre-
diction standard error). The OUTFOR= data set is particularly useful for displaying
the forecasts in tabular or graphical form.
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OUTSTAT= SAS-data-set
names the output data set to contain the statistics of fit (or goodness-of-fit statistics).
The OUTSTAT= data set is particularly useful for evaluating how well the model fits
the series. The statistics of fit are based on the entire range of the time series.

PRINT= option
specifies the printed output desired. By default, the HPFENGINE procedure produces
no printed output.

The following printing options are available:

ESTIMATES prints the results of parameter estimation.

FORECASTS prints the forecasts.

STATISTICS prints the statistics of fit.

SUMMARY prints the forecast summary.

PERFORMANCE prints the performance statistics for each forecast.

PERFORMANCESUMMARY prints the performance summary for each BY group.

PERFORMANCEOVERALL prints the performance summary for all of the BY
groups.

SELECT prints the label and fit statistics for each model in the selection list.

BIAS prints model bias information.

COMPONENTS prints forecast model components.

CANDIDATES prints parameter estimates for each candidate model fit to the series
forecast series.

ALL Same as specifying PRINT=(ESTIMATES SELECT
FORECASTS STATISTICS BIAS). PRINT=(ALL
CANDIDATES COMPONENTS PERFORMANCE
PERFORMANCESUMMARY PERFORMANCEOVERALL)
prints all the options listed.

PRINTDETAILS
specifies that output requested with the PRINT= option be printed in greater detail.

REPOSITORY= catalog name
is a two-level SAS catalog name specifying the location of the model reposi-
tory. The REPOSITORY= option can also be specified as MODELREPOSITORY=,
MODELREP=, or REP=. The default for this option is SASHELP.HPFDFLT.

SCOREREPOSITORY= catalog name | libref
is a two-level SAS catalog name specifying the location of the model score repository.
This repository is where score files are written if the SCORE statement is used in the
HPFENGINE procedure. There is no default score repository. The presence of a
SCORE statement requires that the SCOREREPOSITORY= option also be present.

SEASONALITY= n
specifies the length of the seasonal cycle. For example, SEASONALITY=3 means
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that every group of three observations forms a seasonal cycle. The SEASONALITY=
option is applicable only for seasonal forecasting models. By default, the length of
the seasonal cycle is 1 (no seasonality) or the length implied by the INTERVAL=
option specified in the ID statement. For example, INTERVAL=MONTH implies
that the length of the seasonal cycle is 12.

SORTNAMES
specifies that the variables specified in the FORECAST statement are processed in
sorted order.

TASK= option
controls the model selection and parameter estimation process. Available options are
as follows:

SELECT performs model selection, estimates parameters of the selected
model, and produces forecasts. This is the default.

SELECT(options) performs model selection, estimates parameters of the selected
model, produces forecasts, and potentially overrides settings in the
model selection list. If a selection list does not specify a particular
item, and that item is specified with a TASK=SELECT option, the
value as set in TASK=SELECT is used. If an option is specified in
selection list, the corresponding value set in TASK=SELECT is not
used unless the OVERRIDE option is also present. The available
options for TASK=SELECT are as follows:

HOLDOUT= n specifies the size of the holdout sample to be
used for model selection. The holdout sample
is a subset of actual time series ending at the last
nonmissing observation.

HOLDOUTPCT= number specifies the size of the holdout sam-
ple as a percentage of the length of the time se-
ries. If HOLDOUT=5 and HOLDOUTPCT=10,
the size of the holdout sample is min(5, 0.1T ),
where T is the length of the time series with be-
ginning and ending missing values removed.

CRITERION= option specifies the model selection criterion
(statistic of fit) to be used to select from several
candidate models. The following list shows the
valid values for the CRITERION= option and
the statistics of fit these option values specify:

SSE Sum of Square Error
MSE Mean Square Error
RMSE Root Mean Square Error
UMSE Unbiased Mean Square Error
URMSE Unbiased Root Mean Square

Error
MAXPE Maximum Percent Error
MINPE Minimum Percent Error
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MPE Mean Percent Error
MAPE Mean Absolute Percent Error
MDAPE Median Absolute Percent

Error
GMAPE Geometric Mean Absolute

Percent Error
MINPPE Minimum Predictive Percent

Error
MAXPPE Maximum Predictive Percent

Error
MSPPE Mean Predictive Percent

Error
MAPPE Symmetric Mean Absolute

Predictive Percent Error
MDAPPE Median Absolute Predictive

Percent Error
GMAPPE Geometric Mean Absolute

Predictive Percent Error
MINSPE Minimum Symmetric Percent

Error
MAXSPE Maximum Symmetric Percent

Error
MSPE Mean Symmetric Percent

Error
SMAPE Symmetric Mean Absolute

Percent Error
MDASPE Median Absolute Symmetric

Percent Error
GMASPE Geometric Mean Absolute

Symmetric Percent Error
MINRE Minimum Relative Error
MAXRE Maximum Relative Error
MRE Mean Relative Error
MRAE Mean Relative Absolute Error
MDRAE Median Relative Absolute

Error
GMRAE Geometric Mean Relative

Absolute Error
MAXERR Maximum Error
MINERR Minimum Error
ME Mean Error
MAE Mean Absolute Error
RSQUARE R-Square
ADJRSQ Adjusted R-Square
AADJRSQ Amemiya’s Adjusted

R-Square
RWRSQ Random Walk R-Square
AIC Akaike Information Criterion

358



Syntax

SBC Schwarz Bayesian
Information Criterion

APC Amemiya’s Prediction
Criterion

INTERMITTENT= number specifies a number greater than one
that is used to determine whether or not a time
series is intermittent. If the average demand in-
terval is greater than this number, then the series
is assumed to be intermittent.

SEASONTEST= option specifies the options related to the sea-
sonality test.
The following values for the SEASONTEST=
option are allowed:
NONE No test.
(SIGLEVEL=number) Significance probability

value to use in testing whether
seasonality is present in the
time series. The value must be
between 0 and 1.

A smaller value of the SIGLEVEL= option
means that stronger evidence of a seasonal
pattern in the data is required before PROC
HPFENGINE will use seasonal models to
forecast the time series. The default is
SEASONTEST=(SIGLEVEL=0.01).

ALPHA= number specifies the significance level to use in com-
puting the confidence limits of the forecast. The
ALPHA=value must be between 0 and 1. As
an example, ALPHA=0.05 produces 95% con-
fidence intervals.

OVERRIDE forces the use of any options listed.
NOALTLIST By default, if none of the models in a se-

lection list can be successfully fit to a series,
PROC HPFENGINE returns to the selection list
SASHELP.HPFDFLT.BEST and restarts the se-
lection process. The NOALTLIST option dis-
ables this action and sets the forecast to missing
if no models can be fit from the initial selection
list. There will be an observation in OUTSUM=,
if requested, corresponding to the variable and
BY group in question, and the –STATUS– vari-
able will be nonzero.

MINOBS=(TREND= n) Normally the models in a selec-
tion list are not subset by trend. Using the
MINOBS=(TREND=) option, a user can spec-
ify that no trend model be fit to any series with
fewer than n nonmissing values.
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Incorporation of a trend is checked only for
smoothing, UCM, and ARIMA models. For the
smoothing case, only simple smoothing is a non-
trend model. For UCM, the absence of a slope
component qualifies it as a non-trend model. For
ARIMA, there must be no differencing of the
dependent variable for PROC HPFENGINE to
consider it a non-trend model.
The value of n must be greater than or equal to
1. The default is n = 1.

MINOBS=(SEASON= n) specifies that no seasonal model be fit
to any series with fewer observations than n mul-
tiplied by the seasonal cycle length. The value of
n must be greater than or equal to 1. The default
is n = 2.

MINOBS=n The MINOBS= option enables the user to spec-
ify that any series with fewer than n nonmissing
values not be fit using the models in the selection
list, but instead be forecast as the mean of the ob-
servations in the series. The value of n must be
greater than or equal to 1. The default is n = 1.

FIT estimates parameters by using the model specified in the INEST=
data set, then forecast. No model selection is performed.

FIT(options) estimates parameters by using the model specified in the INEST=
data set, then forecast, potentially overriding the significance level
in the model selection list used to compute forecast confidence in-
tervals. No model selection is performed. If a selection list does
not specify alpha, and alpha is specified in the TASK=FIT option,
the value as set in TASK=FIT will be in effect. If alpha is specified
in selection list, the corresponding value set in TASK=FIT will not
be used unless the OVERRIDE option is also present. The avail-
able options for TASK=FIT are as follows:

ALPHA= number specifies the significance level to use in com-
puting the confidence limits of the forecast. The
ALPHA=value must be between 0 and 1.

OVERRIDE forces the use of any options listed.

UPDATE estimates parameters by using the model specified in the INEST=
data set, then forecast. TASK=UPDATE differs from TASK=FIT
in that the parameters found in the INEST= data set are used as
starting values in the estimation. No model selection is performed.

UPDATE(options) estimates parameters by using the model specified in the
INEST= data set, using the parameter estimates as starting values,
then forecast, potentially overriding the significance level in the
model selection list used to compute forecast confidence intervals.
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No model selection is performed. If a selection list does not
specify alpha, and alpha is specified in the TASK=UPDATE
option, the value as set in TASK=UPDATE will be in effect. If
alpha is specified in the selection list, the corresponding value
set in TASK=UPDATE will not be used unless the OVERRIDE
option is also present. The available options for TASK=UPDATE
are as follows:

ALPHA= number specifies the significance level to use in com-
puting the confidence limits of the forecast. The
ALPHA=value must be between 0 and 1.

OVERRIDE forces the use of any options listed.

FORECAST forecasts using model and parameters specified in the INEST= data
set. No parameter estimation occurs.

FORECAST(options) forecasts using model and parameters specified in the
INEST= data set, potentially overriding the significance level
in the model selection list used to compute forecast confidence
intervals. No parameter estimation occurs. If a selection list does
not specify alpha, and alpha is specified in the TASK=FORECAST
option, the value as set in TASK=FORECAST will be used. If
alpha is specified in the selection list, the corresponding value set
in TASK=FORECAST will not be used unless the OVERRIDE op-
tion is also present. The available options for TASK=FORECAST
are as follows:

ALPHA= number specifies the significance level to use in com-
puting the confidence limits of the forecast. The
ALPHA=value must be between 0 and 1.

OVERRIDE forces the use of any options listed.

ERRORCONTROL= ( SEVERITY= ( severity-options ) STAGE= ( stage-options )
MAXMESSAGE= number )

allows finer control of message printing. The error severity level and HPFENGINE
procedure processing stages are set independently. A logical ’and’ is taken over all
the specified options, and any message that tests true against the results of the ’and’
is printed.

Available severity-options are as follows:

LOW specifies low severity, minor issues

MEDIUM specifies medium severity problems

HIGH specifies severe errors

ALL specifies all severity levels of LOW, MEDIUM, and HIGH
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NONE specifies that no messages from the HPFENGINE procedure are
printed

Available stage-options are as follows:

PROCEDURELEVEL specifies that the procedure stage is option processing and
validation

DATAPREP specifies the accumulation of data and the application of
SETMISS= and ZEROMISS= options

SELECTION specifies the model selection process

ESTIMATION specifies the model parameter estimation process

FORECASTING specifies the model evaluation and forecasting process

ALL specifies all PROCEDURELEVEL, DATAPREP, SELECTION,
ESTIMATION, and FORECASTING options

Examples are as follows:

errorcontrol=(severity=(high medium) stage=all);

prints high- and moderate-severity errors at any processing stage of PROC
HPFENGINE.

errorcontrol=(severity=high stage=dataprep);

prints high-severity errors only during the data preparation.

errorcontrol=(severity=none stage=all);

turns off messages from PROC HPFENGINE.

errorcontrol=( severity=(high medium low)
stage=(procedurelevel dataprep selection estimation forecasting)

specifies the default behavior. Also the following code specifies the default behavior:

errorcontrol=(severity=all stage=all)

BY Statement

BY variables;

A BY statement can be used with PROC HPFENGINE to obtain separate analyses
for groups of observations defined by the BY variables.
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FORECAST Statement

FORECAST variable-list / options;

The FORECAST statement lists the numeric variables in the DATA= data set whose
accumulated values represent time series to be modeled and forecast.

A data set variable can be specified in only one FORECAST statement. Any number
of FORECAST statements can be used. The following options can be used with the
FORECAST statement.

ACCUMULATE= option
specifies how the data set observations are accumulated within each time period
for the variables listed in the FORECAST statement. If the ACCUMULATE=
option is not specified in the FORECAST statement, accumulation is determined
by the ACCUMULATE= option of the ID statement. See the ID statement
ACCUMULATE= option for more details.

REPLACEMISSING
specifies that embedded missing actual values are replaced with one-step-ahead fore-
casts in the OUT= data set.

SETMISSING= option | number
specifies how missing values (either actual or accumulated) are assigned in the ac-
cumulated time series for variables listed in the FORECAST statement. If the
SETMISSING= option is not specified in the FORECAST statement, missing values
are set based on the SETMISSING= option of the ID statement. See the ID statement
SETMISSING= option for more details.

TRIMMISS= option
specifies how missing values (either actual or accumulated) are trimmed from the
accumulated time series for variables listed in the FORECAST statement. If the
TRIMMISS= option is not specified in the FORECAST statement, missing values
are set based on the TRIMMISS= option of the ID statement. See the ID statement
TRIMMISS= option for more details.

ZEROMISS= option
specifies how beginning and/or ending zero values (either actual or accumulated)
are interpreted in the accumulated time series for variables listed in the FORECAST
statement. If the ZEROMISS= option is not specified in the FORECAST statement,
missing values are set based on the ZEROMISS= option of the ID statement. See the
ID statement ZEROMISS= option for more details.

ID Statement

ID variable options;

The ID statement names a numeric variable that identifies observations in the input
and output data sets. The ID variable’s values are assumed to be SAS date, time,
or datetime values. In addition, the ID statement specifies the (desired) frequency
associated with the actual time series. The ID statement options also specify how
the observations are accumulated and how the time ID values are aligned to form the
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actual time series. The information specified affects all variables specified in sub-
sequent FORECAST statements. If the ID statement is specified, the INTERVAL=
option must also be specified. If an ID statement is not specified, the observation
number, with respect to the BY group, is used as the time ID.

The following options can be used with the ID statement.

ACCUMULATE= option
specifies how the data set observations are accumulated within each time period. The
frequency (width of each time interval) is specified by the INTERVAL= option. The
ID variable contains the time ID values. Each time ID variable value corresponds to
a specific time period. The accumulated values form the actual time series, which is
used in subsequent model fitting and forecasting.

The ACCUMULATE= option is particularly useful when there are zero or more than
one input observations coinciding with a particular time period (e.g., transactional
data). The EXPAND procedure offers additional frequency conversions and transfor-
mations that can also be useful in creating a time series.

The following options determine how the observations are accumulated within each
time period based on the ID variable and the frequency specified by the INTERVAL=
option:

NONE No accumulation occurs; the ID variable values must be
equally spaced with respect to the frequency. This is the
default option.

TOTAL Observations are accumulated based on the total sum of
their values.

AVERAGE | AVG Observations are accumulated based on the average of
their values.

MINIMUM | MIN Observations are accumulated based on the minimum of
their values.

MEDIAN | MED Observations are accumulated based on the median of their
values.

MAXIMUM | MAX Observations are accumulated based on the maximum of
their values.

N Observations are accumulated based on the number of
nonmissing observations.

NMISS Observations are accumulated based on the number of
missing observations.

NOBS Observations are accumulated based on the number of ob-
servations.

FIRST Observations are accumulated based on the first of their
values.

LAST Observations are accumulated based on the last of their
values.
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STDDEV | STD Observations are accumulated based on the standard devi-
ation of their values.

CSS Observations are accumulated based on the corrected sum
of squares of their values.

USS Observations are accumulated based on the uncorrected
sum of squares of their values.

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for
specifying how accumulated missing values are treated. If missing values should be
interpreted as zero, then SETMISSING=0 should be used. The DETAILS section
describes accumulation in greater detail.

ALIGN= option
controls the alignment of SAS dates used to identify output observations. The
ALIGN= option accepts the following values: BEGINNING | BEG | B, MIDDLE
| MID | M, and ENDING | END | E. BEGINNING is the default.

END= option
specifies a SAS date, datetime, or time value that represents the end of the data. If the
last time ID variable value is less than the END= value, the series is extended with
missing values. If the last time ID variable value is greater than the END= value,
the series is truncated. For example, END=“&sysdate”D uses the automatic macro
variable SYSDATE to extend or truncate the series to the current date. This option
and the START= option can be used to ensure that data associated with each BY
group contain the same number of observations.

FORMAT= option
specifies a SAS format used for the DATE variable in the output data sets. The default
format is the same as that of the DATE variable in the DATA= data set.

INTERVAL= interval
specifies the frequency of the input time series. For example, if the input data set
consists of quarterly observations, then INTERVAL=QTR should be used. If the
SEASONALITY= option is not specified, the length of the seasonal cycle is implied
from the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal cy-
cle of length 4. If the ACCUMULATE= option is also specified, the INTERVAL= op-
tion determines the time periods for the accumulation of observations. See SAS/ETS
User’s Guide for the intervals that can be specified.

SETMISSING= option | number
specifies how missing values (either actual or accumulated) are assigned in the accu-
mulated time series. If a number is specified, missing values are set to that number.
If a missing value indicates an unknown value, this option should not be used. If
a missing value indicates no value, a SETMISSING=0 should be used. You would
typically use SETMISSING=0 for transactional data because the absence of recorded
data usually implies no activity. The following options can also be used to determine
how missing values are assigned:
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MISSING Missing values are set to missing. This is the default op-
tion.

AVERAGE | AVG Missing values are set to the accumulated average value.

MINIMUM | MIN Missing values are set to the accumulated minimum value.

MEDIAN | MED Missing values are set to the accumulated median value.

MAXIMUM | MAX Missing values are set to the accumulated maximum value.

FIRST Missing values are set to the accumulated first nonmissing
value.

LAST Missing values are set to the accumulated last nonmissing
value.

PREVIOUS | PREV Missing values are set to the previous accumulated non-
missing value. Missing values at the beginning of the ac-
cumulated series remain missing.

NEXT Missing values are set to the next accumulated nonmissing
value. Missing values at the end of the accumulated series
remain missing.

If SETMISSING=MISSING is specified and the MODEL= option specifies a
smoothing model, the missing observations are smoothed over. If MODEL=IDM
is specified, missing values are assumed to be periods of no demand; that is,
SETMISSING=MISSING is equivalent to SETMISSING=0.

START= option
specifies a SAS date, datetime, or time value that represents the beginning of the
data. If the first time ID variable value is greater than the START= value, the series
is prepended with missing values. If the first time ID variable value is less than
the END= value, the series is truncated. This option and the END= option can be
used to ensure that data associated with each BY group contain the same number of
observations.

TRIMMISS= option
specifies how missing values (either actual or accumulated) are trimmed from the
accumulated time series for variables listed in the FORECAST statement. The fol-
lowing options are provided:

NONE No missing value trimming is applied.

LEFT Beginning missing values are trimmed.

RIGHT Ending missing values are trimmed.

BOTH Both beginning and ending missing values are trimmed. This is the
default.

ZEROMISS= option
specifies how beginning and/or ending zero values (either actual or accumulated) are
interpreted in the accumulated time series. The following options can also be used to
determine how beginning and/or ending zero values are assigned:
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NONE Beginning and/or ending zeros are unchanged. This is the
default.

LEFT Beginning zeros are set to missing.

RIGHT Ending zeros are set to missing.

BOTH Both beginning and ending zeros are set to missing.

If the accumulated series is all missing and/or zero, the series is not changed.

INPUT Statement

INPUT variable-list / options

The INPUT statement lists the numeric variables in the DATA= data set whose accu-
mulated values will be used as deterministic input in the forecasting process.

Future values for input variables must be supplied. If future values are unknown,
consider using either the STOCHASTIC statement or the CONTROL statement. If
it will be necessary to later modify future values using the forecast score function
HPFSCSUB, use the CONTROL statement.

A data set variable can be specified in only one INPUT statement. Any number of
INPUT statements can be used.

The following options can be used with the INPUT statement:

ACCUMULATE=option
specifies how the data set observations are accumulated within each time pe-
riod for the variables listed in the INPUT statement. If the ACCUMULATE=
option is not specified in the INPUT statement, accumulation is determined
by the ACCUMULATE= option of the ID statement. See the ID statement
ACCUMULATE= option for more details.

REQUIRED=YES | NO
enables or disables a check of inputs to models. The kinds of problems checked
include the following:

• errors in functional transformation

• an input consisting of only a constant value or all missing values

• errors introduced by differencing

• multicollinearity among inputs

If REQUIRED=YES, these checks are not performed and no inputs are dropped from
a model. The model might subsequently fail to fit during parameter estimation or
forecasting for any of the reasons in the preceding list.

If REQUIRED=NO, inputs are checked and those with errors, or those judged
collinear, are dropped from the model for the current series and task only. No changes
are persisted in the model specification.
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This option has no effect on models with no inputs.

The default is REQUIRED=YES.

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are assigned in the
accumulated time series for the variables listed in the INPUT statement. If the
SETMISSING= option is not specified in the INPUT statement, missing values are
set based on the SETMISSING= option of the ID statement. See the ID statement
SETMISSING= option for more details.

TRIMMISS=option
specifies how missing values (either actual or accumulated) are trimmed from the
accumulated time series for variables listed in the INPUT statement.

If the TRIMMISS= option is not specified in the INPUT statement, missing values
are set based on the TRIMMISS= option of the ID statement. See the ID statement
TRIMMISS= option for more details.

ZEROMISS=option
specifies how beginning and/or ending zero values (either actual or accumulated) are
interpreted in the accumulated time series for variables listed in the INPUT statement.
If the ZEROMISS= option is not specified in the INPUT statement, missing values
are set based on the ZEROMISS= option of the ID statement. See the ID statement
ZEROMISS= option for more details.

STOCHASTIC Statement

STOCHASTIC variable-list / options;

The STOCHASTIC statement lists the numeric variables in the DATA= data set
whose accumulated values will be used as stochastic input in the forecasting process.

Future values of stochastic inputs need not be provided. By default, they are auto-
matically forecast using one of the following smoothing models.

• Simple

• Double

• Linear

• Damped trend

• Seasonal

• Winters method (additive and multiplicative)

The model with the smallest in-sample MAPE is used to forecast the future values of
the stochastic input.

A data set variable can be specified in only one STOCHASTIC statement. Any num-
ber of STOCHASTIC statements can be used.

The following options can be used with the STOCHASTIC statement:
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ACCUMULATE=option
specifies how the data set observations are accumulated within each time period
for the variables listed in the STOCHASTIC statement. If the ACCUMULATE=
option is not specified in the STOCHASTIC statement, accumulation is deter-
mined by the ACCUMULATE= option of the ID statement. See the ID statement
ACCUMULATE= option for more details.

SELECTION=option
specifies the selection list used to forecast the stochastic variables. The default is
BEST, found in SASHELP.HPFDFLT.

REQUIRED=YES | NO
enables or disables a check of inputs to models. The kinds of problems checked
include the following:

• errors in functional transformation

• an input consisting of only a constant value or all missing values

• errors introduced by differencing

• multicollinearity among inputs

If REQUIRED=YES, these checks are not performed and no inputs are dropped from
a model. The model might subsequently fail to fit during parameter estimation or
forecasting for any of the reasons in the preceding list.

If REQUIRED=NO, inputs are checked and those with errors, or those judged
collinear, are dropped from the model for the current series and task only. No changes
are persisted in the model specification.

This option has no effect on models with no inputs.

The default is REQUIRED=YES.

REPLACEMISSING
specifies that embedded missing actual values be replaced with one-step-ahead fore-
casts in the STOCHASTIC variables.

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are assigned in the ac-
cumulated time series for variables listed in the STOCHASTIC statement. If the
SETMISSING= option is not specified in the STOCHASTIC statement, missing val-
ues are set based on the SETMISSING= option of the ID statement. See the ID
statement SETMISSING= option for more details.

TRIMMISS=option
specifies how missing values (either actual or accumulated) are trimmed from the
accumulated time series for variables listed in the STOCHASTIC statement.

If the TRIMMISS= option is not specified in the STOCHASTIC statement, missing
values are set based on the TRIMMISS= option of the ID statement. See the ID
statement TRIMMISS= option for more details.
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ZEROMISS=option
specifies how beginning and/or ending zero values (either actual or accumulated)
are interpreted in the accumulated time series for variables listed in the FORECAST
statement. If the ZEROMISS= option is not specified in the STOCHASTIC state-
ment, missing values are set based on the ZEROMISS= option of the ID statement.
See the ID statement ZEROMISS= option for more details.

CONTROL Statement
CONTROL variable-list / options;

The CONTROL statement lists the numeric variables in the DATA= data set whose
accumulated values will be used as input in the forecasting process. The future values
of the control variables in the forecast statement are determined by the EXTEND=
option. Only input values used in a CONTROL statement are adjustable in the score
evaluation subroutine HPFSCSUB.

The following options can be used with the CONTROL statement:

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period
for the variables listed in the CONTROL statement. If the ACCUMULATE=
option is not specified in the CONTROL statement, accumulation is determined
by the ACCUMULATE= option of the ID statement. See the ID statement
ACCUMULATE= option for more details.

EXTEND=option
specifies how future values of the control variables are set. The following options are
provided:

NONE Future values are set to missing.

AVERAGE Future values are set to the mean of the values in the fit
range. This is the default.

FIRST Future values are set to the first value found in the fit range.

LAST Future values are set to the last value found in the fit range.

MINIMUM Future values are set to the minimum of the values in the
fit range.

MAXIMUM Future values are set to the maximum of the values in the
fit range.

MEDIAN Future values are set to the median of the values in the fit
range.

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are assigned in the
accumulated time series for variables listed in the CONTROL statement. If the
SETMISSING= option is not specified in the CONTROL statement, missing values
are set based on the SETMISSING= option of the ID statement. See the ID statement
SETMISSING= option for more details.
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TRIMMISS=option
specifies how missing values (either actual or accumulated) are trimmed from the
accumulated time series for variables listed in the CONTROL statement.

If the TRIMMISS= option is not specified in the CONTROL statement, missing val-
ues are set based on the TRIMMISS= option of the ID statement. See the ID statement
TRIMMISS= option for more details.

ZEROMISS=option
specifies how beginning and/or ending zero values (either actual or accumulated)
are interpreted in the accumulated time series for variables listed in the CONTROL
statement. If the ZEROMISS= option is not specified in the CONTROL statement,
missing values are set based on the ZEROMISS= option of the ID statement. See the
ID statement ZEROMISS= option for more details.

ADJUST Statement

ADJUST variable = ( variable-list ) / options;

The ADJUST statement lists the numeric variables in the DATA= data set whose
accumulated values will be used to adjust the dependent values. Adjustments can
be performed before and/or after forecasting. A particular forecast variable can be
referenced by multiple forecast statements.

The first numeric variable listed is the variable to which adjustments specified in
that statement will apply. This variable must appear in a FORECAST statement.
The numeric variables used as the source of the adjustments are listed following the
parentheses. Options determine which adjustments will be applied and when they will
be applied. More information about the use of adjustments is in the details section.

The following options can be used with the ADJUST statement:

OPERATION=(preadjust, postadjust)
specifies how the adjustments are applied to the forecast variable. The preadjust
option determines how the adjustment variables are applied to the dependent variable
prior to forecasting. The postadjust option determines how the adjustment variables
are applied to the forecast results.

Computations with missing values are handled differently in the adjustment statement
than in other parts of SAS. If any of the adjustment operations result in a nonmiss-
ing dependent value being added to, subtracted from, divided by, or multiplied by a
missing value, the nonmissing dependent value is left unchanged. Division by zero
produces a missing value.

The following predefined adjustment operations are provided:

NONE No adjustment operation is performed. This is the default.

ADD Variables listed in the adjustment statement are added to
the dependent variable.

SUBTRACT Variables listed in the adjustment statement are subtracted
from the dependent variable.
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MULTIPLY Dependent variable is multiplied by variables listed in the
adjustment statement.

DIVIDE Dependent variable is divided by variables listed in the ad-
justment statement.

MIN Dependent variable is set to the minimum of the dependent
variable and all variables listed in the adjustment state-
ment.

MAX Dependent variable is set to the maximum of the dependent
variable and all variables listed in the adjustment state-
ment.

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period
for the variables listed in the ADJUST statement. If the ACCUMULATE= op-
tion is not specified in the CONTROL statement, accumulation is determined
by the ACCUMULATE= option of the ID statement. See the ID statement
ACCUMULATE= option for more details.

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are assigned in the
accumulated time series for variables listed in the ADJUST statement. If the
SETMISSING= option is not specified in the ADJUST statement, missing values
are set based on the SETMISSING= option of the ID statement. See the ID statement
SETMISSING= option for more details.

TRIMMISS=option
specifies how missing values (either actual or accumulated) are trimmed from the
accumulated time series for variables listed in the ADJUST statement.

If the TRIMMISS= option is not specified in the ADJUST statement, missing values
are set based on the TRIMMISS= option of the ID statement. See the ID statement
TRIMMISS= option for more details.

ZEROMISS=option
specifies how beginning and/or ending zero values (either actual or accumulated)
are interpreted in the accumulated time series for variables listed in the ADJUST
statement. If the ZEROMISS= option is not specified in the CONTROL statement,
missing values are set based on the ZEROMISS= option of the ID statement. See the
ID statement ZEROMISS= option for more details.

EXTERNAL Statement
EXTERNAL variable-list / options;

The EXTERNAL statement lists the numeric variables in the DATA= data set whose
accumulated values are used as predicted values for an external model, and possibly
prediction standard errors and lower and upper confidence intervals.

Any variables used in an EXMMAP in a selection list, as specified by PROC
HPFSELECT, must appear in an EXTERNAL statement.

372



Details

The following options can be used with the EXTERNAL statement:

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are assigned in the ac-
cumulated time series for variables listed in the EXTERNAL statement. If the
SETMISSING= option is not specified in the EXTERNAL statement, missing val-
ues are set based on the SETMISSING= option of the ID statement. See the ID
statement SETMISSING= option for more details.

TRIMMISS=option
specifies how missing values (either actual or accumulated) are trimmed from the
accumulated time series for variables listed in the EXTERNAL statement.

If the TRIMMISS= option is not specified in the EXTERNAL statement, missing
values are set based on the TRIMMISS= option of the ID statement. See the ID
statement TRIMMISS= option for more details.

ZEROMISS=option
specifies how beginning and/or ending zero values (either actual or accumulated)
are interpreted in the accumulated time series for variables listed in the ADJUST
statement. If the ZEROMISS= option is not specified in the EXTERNAL statement,
missing values are set based on the ZEROMISS= option of the ID statement. See the
ID statement ZEROMISS= option for more details.

SCORE Statement

The SCORE statement, used in conjunction with one or more FORECAST state-
ments, causes the generation of score files. The score files are written to the location
specified by SCOREREPOSITORY=.

Details
The HPFENGINE procedure can be used to forecast time series data as well as trans-
actional data. If the data are transactional, then the procedure must first accumulate
the data into a time series before the data can be forecast. The procedure uses the
following sequential steps to produce forecasts:

1. Accumulation

2. Missing Value Interpretation

3. Pre-forecast Adjustment

4. Diagnostic Tests

5. Model Selection

6. Transformations

7. Parameter Estimation

8. Forecasting
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9. Inverse Transformation

10. Post-forecast Adjustment

11. Statistics of Fit

These steps are described in the following sections.

Accumulation
If the ACCUMULATE= option is specified, data set observations are accumulated
within each time period. The frequency (width of each time interval) is specified by
the INTERVAL= option. The ID variable contains the time ID values. Each time ID
value corresponds to a specific time period. Accumulation is particularly useful when
the input data set contains transactional data, whose observations are not spaced with
respect to any particular time interval. The accumulated values form the actual time
series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

19MAR1999 10
19MAR1999 30
11MAY1999 50
12MAY1999 20
23MAY1999 20

If the INTERVAL=MONTH is specified, all of the preceding observations fall within
the three time periods of March 1999, April 1999, and May 1999. The observations
are accumulated within each time period as follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the
ID variable values are not equally spaced with respect to the specified frequency
(MONTH).

If the ACCUMULATE=TOTAL option is specified:

O1MAR1999 40
O1APR1999 .
O1MAY1999 90

If the ACCUMULATE=AVERAGE option is specified:

O1MAR1999 20
O1APR1999 .
O1MAY1999 30

If the ACCUMULATE=MINIMUM option is specified:

O1MAR1999 10
O1APR1999 .
O1MAY1999 20
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If the ACCUMULATE=MEDIAN option is specified:

O1MAR1999 20
01APR1999 .
O1MAY1999 20

If the ACCUMULATE=MAXIMUM option is specified:

O1MAR1999 30
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=FIRST option is specified:

O1MAR1999 10
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=LAST option is specified:

O1MAR1999 30
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=STDDEV option is specified:

O1MAR1999 14.14
O1APR1999 .
O1MAY1999 17.32

As can be seen from the preceding examples, even though the data set observations
contained no missing values, the accumulated time series might have missing values.

Missing Value Interpretation

Sometimes missing values should be interpreted as unknown values. The forecasting
models used by the HPFENGINE procedure can effectively handle missing values.
But sometimes missing values are known, such as when missing values are created
from accumulation, and no observations should be interpreted as no (zero) value. In
the former case, the SETMISSING= option can be used to interpret how missing
values are treated. The SETMISSING=0 option should be used when missing obser-
vations are to be treated as no (zero) values. In other cases, missing values should
be interpreted as global values, such as minimum or maximum values of the accu-
mulated series. The accumulated and interpreted time series is used in subsequent
analyses.
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Adjustment Operations

Pre-adjustment variables can be used to adjust the dependent series prior to model
parameter estimation, evaluation, and forecasting. After the predictions of the ad-
justed dependent series are obtained from the forecasting mode, the post-adjustment
variables can be used to adjust these forecasts to obtain predictions that more closely
match the original dependent series.

Pre-adjustment (Before Forecasting) Step

If yt is the dependent series and xi,t for i = 1, . . . , M are the M adjustment series,
the adjusted dependent series, wt, is as follows:

wi,t = opb
i(yt, xi,t−ki

) for i = 1

wi,t = opb
i(wi−1,t, xi,t−ki

) for 1 < i ≤ M

wt = wi,t for i = M

where opb
i represents the pre-adjustment operator and ki is the time shift for the ad-

justment series xi,t.

As can be seen, the pre-adjustment operators are nested and applied sequentially from
i = 1, . . . , M .

Pre-adjustment is performed on the historical data only.

Adjusted Forecast Step

wt = F̂ (wt) + εt historical data

ŵt = F̂ (wt) historical data and forecast horizon

where F̂ () represents the fitted forecasting function.

Post-adjustment (After Forecasting) Step

ŵi,t = opa
i (ŵt, xi,t−ki

) for i = M

ŵi,t = opa
i (ŵi+1,t, xi,t−ki

) for 1 ≤ i < M

ŷt = ŵi,t

where opa
i represents the post-adjustment operator for the adjustment series xi,t.

As can be seen, the post-adjustment operators are nested and applied sequentially
from i = M, . . . , 1, which is the reverse of the pre-adjustment step.

Post-adjustment is performed on the historical data as well as the forecast horizon.
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Notes

Typically the pre-adjustment, opb
i , operator and post-adjustment, opa

i , operators are
inverses of each other, that is, opa

i = inverse(opb
i).

For example, if the pre-adjustment operator is subtraction, the post-adjustment oper-
ator is addition, as shown in the following:

wt = yt −
M∑
i=1

xi,t

ŷt = ŵt +
M∑
i=1

xi,t

For example, if the pre-adjustment operator is division, the post-adjustment operator
is multiplication, as shown in the following:

wt = yt

M∏
i=1

1
xi,t

ŷt = ŵt

M∏
i=1

xi,t

Pre-adjustment is often followed by post-adjustment, but the inverse operation is not
required. It is acceptable to pre-adjust, but not post-adjust, and vice versa.

As an example, the following statement adds, before forecasting, the values contained
in the variables firstadj and scndadj to the dependent variable air. After forecasting
air, there is no post-adjustment. The variable air must be specified in a FORECAST
statement.

ADJUST air=(firstadj scndadj) / OPERATION = (ADD,NONE);

Diagnostic Tests

Diagnostic test control is specified in the model selection list and can be set by using
the HPFSELECT procedure. The INTERMITTENT= option in the HPFSELECT
procedure’s DIAGNOSE statement sets the threshold for categorizing a series
as intermittent or nonintermittent. Likewise, the SEASONTEST= option in the
HPFSELECT procedure’s DIAGNOSE statement sets the threshold for categorizing
a series as seasonal or nonseasonal.

377



Procedure Reference � The HPFENGINE Procedure

Model Selection

When more than one candidate model is specified in a model selection list, forecasts
for each candidate model are compared using the model selection criterion specified
by the CRITERION= option in the SELECT statement in PROC HPFSELECT.

The selection criterion is computed using the multistep forecasts in the holdout sam-
ple range if the HOLDOUT= or HOLDOUTPCT= options are specified, or the one-
step-ahead forecasts for the full range of the time series if the HOLDOUT= and
HOLDOUTPCT= options are not specified. The candidate model with the best se-
lection criterion is selected to forecast the time series.

Transformations

If a forecasting model specifies a transformation of the dependent series, the time se-
ries is transformed prior to model parameter estimation and forecasting. Only strictly
positive series can be transformed.

Parameter Estimation

All parameters associated with the model are optimized based on the data with the
default parameter restrictions imposed. If a forecasting model specifies a transforma-
tion of the dependent series, the transformed time series data are used to estimate the
model parameters.

Missing Value Modeling Issues

The treatment of missing values varies with the forecasting model. For the intermit-
tent demand models, specified missing values are assumed to be periods of no de-
mand. For other models, missing values after the start of the series are replaced with
one-step-ahead predicted values, and the predicted values are applied to the smooth-
ing equations. See the "Forecasting" section for more information about how missing
values are treated in the smoothing models.

The treatment of missing values can also be specified by the user with the
SETMISSING= option, which changes the missing values prior to modeling.

Even though all of the observed data are nonmissing, using the ACCUMULATE=
option can create missing values in the accumulated series.

Forecasting

After the model parameters are estimated, one-step-ahead forecasts are generated for
the full range of the actual (optionally transformed) time series data, and multistep
forecasts are generated from the end of the observed time series to the future time
period after the last observation specified by the LEAD= option. If there are missing
values at the end of the time series, the forecast horizon will be greater than that
specified by the LEAD= option.
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Inverse Transformations

If a forecasting model specifies a transformation of the dependent series, the fore-
casts of the transformed time series are inverse transformed. By default, the mean
(expected) forecasts are generated. If the MEDIAN option is specified in one of the
model specification procedures, the median forecasts are generated.

Statistics of Fit

The statistics of fit (or goodness-of-fit statistics) are computed by comparing the ac-
tual time series data and the generated forecasts. If the dependent series was trans-
formed according to the model specification, the statistics of fit are based on the
inverse transformed forecasts.

Data Set Input/Output

The HPFENGINE procedure can create the OUT=, OUTEST=, OUTFOR=,
OUTCOMPONENT=, and OUTSTAT= data sets. In general, if the forecasting
process for a particular time series fails, the output corresponding to this series is
not recorded or is set to missing in the relevant output data set, and appropriate error
and/or warning messages are recorded in the log.

INEST= Data Set

The INEST= data set contains the variables specified in the BY statement as well as
the following variables:

–NAME– Variable name

–SELECT– Name of selection list

–MODEL– Name of model

–MODELVAR– Model variable mapping

–DSVAR– Data set variable mapping

The referenced selection lists, taken together with the data set to model variable map-
pings, drive the forecasting process.

If the FORECAST statement TASK = FORECAST option is specified, other variables
must be present in INEST=. The additional variables are as follows:

–TRANSFORM– Transformation applied

–COMPONENT– Model component (e.g., AR, MA, Trend, etc.)

–FACTOR– Model factor

–LAG– Lag of input

–SHIFT– Shift

–PARM– Parameter name

379



Procedure Reference � The HPFENGINE Procedure

–LABEL– Parameter label

–EST– Parameter estimate

–STDERR– Parameter estimate standard error

–TVALUE– Parameter estimate t-value

–PVALUE– Parameter estimate p-value

–STATUS– Indicates success/failure in estimating parameter

OUT= Data Set

The OUT= data set contains the variables specified in the BY, ID, and FORECAST
statements. If the ID statement is specified, the ID variables are aligned and extended
based on the ALIGN= and INTERVAL= options. The values of the variables speci-
fied in the FORECAST statements are accumulated based on the ACCUMULATE=
option, and missing values are interpreted based on the SETMISSING= option. If
the REPLACEMISSING option is specified, embedded missing values are replaced
by the one-step-ahead forecasts. If any of the forecasting steps fail for a particular
variable, the variable values are extended by missing values.

OUTFOR= Data Set

The OUTFOR= data set contains the variables specified in the BY statement as well
as the following variables:

–NAME– Variable name

–TIMEID– Time ID values

PREDICT Predicted values

STD Prediction standard errors

LOWER Lower confidence limits

UPPER Upper confidence limits

ERROR Prediction errors

If the forecasting step fails for a particular variable, no observations are recorded.
If the TRANSFORM= option is specified, the values in the preceding variables are
the inverse transformed forecasts. If the MEDIAN option is specified, the median
forecasts are stored; otherwise, the mean forecasts are stored.

OUTEST= Data Set

The OUTEST= data set contains the variables specified in the BY statement as well
as the following variables:

–NAME– Variable name

–SELECT– Name of selection list

–MODEL– Name of model
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–MODELVAR– Model variable mapping

–DSVAR– Data set variable mapping

–TRANSFORM– Transformation applied

–COMPONENT– Model component (e.g., AR, MA, Trend, etc.)

–FACTOR– Model factor

–LAG– Lag of input

–SHIFT– Shift

–PARM– Parameter name

–LABEL– Parameter label

–EST– Parameter estimate

–STDERR– Parameter estimate standard error

–TVALUE– Parameter estimate t-value

–PVALUE– Parameter estimate p-value

–STATUS– Indicates success/failure in estimating parameter

An OUTEST= data set is frequently used as the INEST= data set for subsequent
invocations of PROC HPFENGINE. In such a case, if the option TASK=FORECAST
is used, forecasts are generated using the parameter estimates found in this data set
as opposed to being reestimated.

OUTCOMPONENT= Data Set

The OUTCOMPONENT= data set contains the variables specified in the BY state-
ment as well as the following variables:

–NAME– Variable name

–COMP– Name of the component

–TIME– Time ID

–ACTUAL– Dependent series value

–PREDICT– Component forecast

–LOWER– Lower confidence limit

–UPPER– Upper confidence limit

–STD– Prediction standard error

OUTSTAT= Data Set

The OUTSTAT= data set contains the variables specified in the BY statement as well
as the following variables. The following variables contain observations related to
the statistics of fit step:
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NAME Variable name

SSE Sum of squares error

MSE Mean square error

UMSE Unbiased mean square error

RMSE Root mean square error

URMSE Unbiased root mean square error

MAPE Mean absolute percent error

MAE Mean absolute error

RSQUARE R-Square

ADJRSQ Adjusted R-square

AADJRSQ Amemiya’s adjusted R-square

RWRSQ Random walk R-square

AIC Akaike information criterion

SBC Schwarz Bayesian information criterion

APC Amemiya’s prediction criterion

MAXERR Maximum error

MINERR Minimum error

MINPE Minimum percent error

MAXPE Maximum percent error

ME Mean error

MPE Mean Percent error

If the statistics of fit step fails for a particular variable, no observations are recorded.

ODS Table Names

Table 1 relates the PRINT= options to ODS tables.

Table 10.1. ODS Tables Produced in PROC HPFENGINE

ODS Table Name Description Specific Models

ODS Tables Created by the PRINT=SUMMARY Option
Variable Forecast Variable Information
ForecastSummary Forecast Summary
ODS Tables Created by the PRINT=ESTIMATES Option
Variable Forecast Variable Information
ParameterEstimates Parameter Estimates
ODS Tables Created by the PRINT=SELECT Option
Variable Forecast Variable Information
ModelSelection Model Selection Statistics
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Table 10.1. (continued)

ODS Table Name Description Specific Models
ODS Tables Created by the PRINT=FORECASTS Option
Variable Forecast Variable Information
Forecasts Forecast
Demands Demands IDM models only
DemandSummary Demand Summary IDM models only
ODS Tables Created by the PRINT=STATISTICS Option
Variable Forecast Variable Information
FitStatistics Statistics of Fit
ODS Tables Created by the PRINT=BIAS Option
Variable Forecast Variable Information
TestUnbiasedness Bias Test
ParameterEstimates Bias Test Parameter Estimates
ODS Tables Created by the PRINT=CANDIDATES Option
Variable Forecast Variable Information
ParameterEstimates Parameter Estimates
ODS Tables Created by the PRINT=COMPONENTS Option
Variable Forecast Variable Information
ComponentEstimates Parameter Estimates
ODS Tables Created by the PRINT=PERFORMANCE Option
Variable Forecast Variable Information
Performance Performance Statistics
ODS Tables Created by the PRINT=PERFORMANCESUMMARY Option
Variable Forecast Variable Information
PerformanceSummary Performance Summary
ODS Tables Created by the PRINT=PERFORMANCEOVERALL Option
Variable Forecast Variable Information
PerformanceSummary Performance Overall

The ODS table ForecastSummary is related to all time series within a BY group. The
other tables are related to a single series within a BY group.

ODS Graphics (Experimental)

This section describes the use of ODS for creating graphics with the HPFENGINE
procedure. These graphics are experimental, meaning that both the graphical results
and the syntax for specifying them are subject to change in a future release.

To request these graphs, you must specify the ODS GRAPHICS statement. In ad-
dition, you can specify the PLOT= option in the PROC HPFENGINE statement ac-
cording to the following syntax.

PLOT= option | (options)
specifies the graphical output desired. By default, the HPFENGINE procedure pro-
duces no graphical output. The following printing options are available:
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ERRORS plots prediction error time series graphics.

ACF plots prediction error autocorrelation function graphics.

PACF plots prediction error partial autocorrelation function graphics.

IACF plots prediction error inverse autocorrelation function graphics.

WN plots white noise graphics.

FORECASTS plots forecast graphics.

FORECASTSONLY plots the forecast in the forecast horizon only.

COMPONENTS plots the forecast components.

CANDIDATES plots model and error graphics for each candidate model fit to the
series forecast series.

ALL specifies all of the preceding PLOT= options.

For example, PLOT=FORECASTS plots the forecasts for each series. The PLOT=
option produces printed output for these results by using the Output Delivery System
(ODS). The PLOT= statement is experimental for this release of SAS.

ODS Graph Names

PROC HPFENGINE assigns a name to each graph it creates using ODS. You can use
these names to refer to the graphs when using ODS. The names are listed in Table
10.2.

To request these graphs, you must specify the ODS GRAPHICS statement. In addi-
tion, you specify the PLOT= option in the PROC HPFENGINE statement.

Table 10.2. ODS Graphics Produced by PROC HPFENGINE

ODS Graph Name Plot Description Statement PLOT= Option
CandidateErrorHoldoutPlot Plot of Candidate

Model Errors with
Holdout

PROC HPFENGINE PLOT=CANDIDATES

CandidateErrorPlot Plot of Candidate
Model Errors

PROC HPFENGINE PLOT=CANDIDATES

CandidateModelHoldoutPlot Plot of Candidate
Models with Holdout

PROC HPFENGINE PLOT=CANDIDATES

CandidateModelPlot Plot of Candidate
Models

PROC HPFENGINE PLOT=CANDIDATES

ComponentEstimatesPlot Plot of Component
Estimates

PROC HPFENGINE PLOT=COMPONENTS

DemandErrorsPlot Average Demand
Errors

PROC HPFENGINE PLOT=ERRORS

DemandForecastsPlot Average Demand
Forecasts

PROC HPFENGINE PLOT=FORECASTS

DemandIntervalHistogram Demand Interval
Histogram

PROC HPFENGINE PLOT=ALL

DemandIntervalPlot Demand Interval
Forecast Plot

PROC HPFENGINE PLOT=ALL
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Table 10.2. (continued)

ODS Graph Name Plot Description Statement Option
DemandSizeHistogram Demand Size

Histogram
PROC HPFENGINE PLOT=MODELS

DemandSizePlot Demand Size Forecast
Plot

PROC HPFENGINE PLOT=MODELS

ErrorACFNORMPlot Standardized
autocorrelation of
Prediction Errors

PROC HPFENGINE PLOT=ACF

ErrorACFPlot Autocorrelation of
Prediction Errors

PROC HPFENGINE PLOT=ACF

ErrorHistogram Prediction Error
Histogram

PROC HPFENGINE PLOT=ERRORS

ErrorIACFNORMPlot Standardized inverse
autocorrelation of
Prediction Errors

PROC HPFENGINE PLOT=IACF

ErrorIACFPlot Inverse autocorrelation
of Prediction Errors

PROC HPFENGINE PLOT=IACF

ErrorPACFNORMPlot Standardized partial
autocorrelation of
Prediction Errors

PROC HPFENGINE PLOT=PACF

ErrorPACFPlot Partial autocorrelation
of Prediction Errors

PROC HPFENGINE PLOT=PACF

ErrorPlot Plot of Prediction
Errors

PROC HPFENGINE PLOT=ERRORS

ErrorWhiteNoiseLogProbPlot White noise log
probability plot of
Prediction Errors

PROC HPFENGINE PLOT=WN

ErrorWhiteNoisePlot White noise plot of
Prediction Errors

PROC HPFENGINE PLOT=ALL

ErrorWhiteNoiseProbPlot White noise
probability plot of
Prediction Errors

PROC HPFENGINE PLOT=WN

ForecastsOnlyPlot Forecasts Only Plot PROC HPFENGINE PLOT=FORECASTSONLY
ForecastsPlot Forecasts Plot PROC HPFENGINE PLOT=FORECAST
ModelForecastsPlot Model and Forecasts

Plot
PROC HPFENGINE PLOT=ALL

ModelPlot Model Plot PROC HPFENGINE PLOT=ALL
StockingAveragePlot Stocking Average Plot PROC HPFENGINE PLOT=FORECASTS
StockingLevelPlot Stocking Level Plot PROC HPFENGINE PLOT=FORECASTS

Examples
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Example 10.1. The TASK Option

The default selection list is used in this example. The first call to the HPFENGINE
procedure uses the default TASK = SELECT action. A model is selected from the
default list, parameters are estimated, and a forecast is produced.

The second call to PROC HPFENGINE uses the model selected in the first call, esti-
mates parameters, and produces forecasts.

The final call to PROC HPFENGINE reuses the model parameters estimates to fore-
cast the series.

This example demonstrates that consistent forecast results are produced in each of the
three PROC HPFENGINE runs. Many applications only call PROC HPFENGINE
once, with TASK = SELECT, to produce forecasts.

Selection results and forecast summary are shown in Output 10.1.1.

proc hpfengine data=sashelp.air outfor=outselect outest=outest
print=(select forecasts);

id date interval=month;
forecast air;

run;

proc hpfengine data=sashelp.air inest=outest outfor=outfit;
id date interval=month;
forecast air / task = fit;

run;

proc hpfengine data=sashelp.air inest=outest outfor=outforecast;
id date interval=month;
forecast air / task = forecast;

run;

proc compare base=outselect compare=outfit briefsummary;
run;

proc compare base=outselect compare=outforecast briefsummary;
run;
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Output 10.1.1. Selection and Forecast Results

The HPFENGINE Procedure

Model Selection Criterion = RMSE

Model Statistic Selected Label

smsimp . Removed Simple Exponential Smoothing
smdoub . Removed Double Exponential Smoothing
smdamp . Removed Damped-Trend Exponential Smoothing
smlin . Removed Linear Exponential Smoothing
smadwn 12.245596 No Winters Method (Additive)
smwint 10.579085 Yes Winters Method (Multiplicative)
smseas 14.169905 No Seasonal Exponential Smoothing

The COMPARE Procedure
Comparison of WORK.OUTSELECT with WORK.OUTFIT

(Method=EXACT)

NOTE: No unequal values were found. All values compared are exactly equal.

The COMPARE Procedure
Comparison of WORK.OUTSELECT with WORK.OUTFORECAST

(Method=EXACT)

NOTE: No unequal values were found. All values compared are exactly equal.

Example 10.2. Different Types of Input

This example demonstrates the use of different input types in the HPFENGINE pro-
cedure. The output is shown in Output 10.2.1.

data seriesj;
input x y @@;
label x = ’Input Gas Rate’

y = ’Output CO2’;
date = intnx( ’day’, ’01jan1950’d, _n_-1 );
format date DATE.;

/* list only part of data */
datalines;
-0.109 53.8 0.000 53.6 0.178 53.5 0.339 53.5
0.373 53.4 0.441 53.1 0.461 52.7 0.348 52.4
0.127 52.2 -0.180 52.0 -0.588 52.0 -1.055 52.4
-1.421 53.0 -1.520 54.0 -1.302 54.9 -0.814 56.0
:
:

;
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* make spec;
proc hpfarimaspec repository=sasuser.mycat

name=arimasp;
dependent symbol=Y p=2;
input symbol=X num=2 den=1 lag=3;

run;

* make selection list;
proc hpfselect repository=sasuser.mycat

name=myselect;
spec arimasp;

run;

data seriesj_trunc;
set seriesj;
if (date >= ’17oct1950’d) then y = .;

run;

* future values of input are given;
proc hpfengine data=seriesj_trunc outfor=outfor

lead=7
repository=sasuser.mycat
globalselection=myselect;

id date interval=day;
forecast y;
input x;

run;

proc print data=outfor(where=(date >= ’17oct1950’d)) noobs;
title2 ’Results with deterministic input’;
var date predict upper lower;

run;

data seriesj_trunc;
set seriesj;
if (date < ’17oct1950’d);

run;

* future values of input are automatically forecast;
proc hpfengine data=seriesj_trunc outfor=outfor

lead=7
repository=sasuser.mycat
globalselection=myselect;

id date interval=day;
forecast y;
stochastic x;

run;

proc print data=outfor(where=(date >= ’17oct1950’d)) noobs;
title2 ’Results with stochastic input’;
var date predict upper lower;

run;

* future values of input are taken as the average of past values;
proc hpfengine data=seriesj_trunc outfor=outfor

lead=7
repository=sasuser.mycat
globalselection=myselect;

id date interval=day;
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forecast y;
control x / extend=average;

run;

proc print data=outfor(where=(date >= ’17oct1950’d)) noobs;
title2 ’Results with controllable input’;
var date predict upper lower;

run;

Output 10.2.1. Selection and Forecast Results

Results with stochastic input

date PREDICT UPPER LOWER

17OCT1950 57.0684 57.5116 56.6252
18OCT1950 56.4050 57.1794 55.6307
19OCT1950 55.3432 56.3382 54.3481
20OCT1950 54.1800 55.2879 53.0721
21OCT1950 53.1714 54.3183 52.0246
22OCT1950 52.4126 53.5648 51.2603
23OCT1950 51.9055 53.0582 50.7529

Results with controllable input

date PREDICT UPPER LOWER

17OCT1950 57.0684 57.5116 56.6252
18OCT1950 56.4050 57.1794 55.6307
19OCT1950 55.3432 56.3382 54.3481
20OCT1950 54.3326 55.4405 53.2247
21OCT1950 53.5819 54.7288 52.4351
22OCT1950 53.2104 54.3627 52.0582
23OCT1950 53.0632 54.2159 51.9105

Example 10.3. Incorporating Events

This example creates an event called PROMOTION. The event is added as a simple
regressor to each ARIMA specification in the selection list. The output is shown in
Output 10.3.1.

* make data set;
data work_intv;

set sashelp.workers;
if date >= ’01oct80’d then electric = electric+100;
drop masonry;

run;

* define event ’promotion’;
proc hpfevents data=work_intv lead=12;

id date interval=month;
eventdef promotion= ’01oct80’d / TYPE=LS;
eventdata out= evdsout1 (label=’list of events’);
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eventdummy out= evdumout1 (label=’list of events’);
run;

* make specs;
proc hpfarimaspec repository=sasuser.mycat

name=sp1
label="ARIMA(0,1,2)(0,1,1)_12 No Intercept";

dependent symbol=Y q=(1,2)(12) diflist=1 12 noint;
run;

proc hpfarimaspec repository=sasuser.mycat
name=sp2
label="ARIMA(2,1,0)(1,1,0)_12 No Intercept";

dependent symbol=Y p=(1, 2)(12) diflist=1 12 noint;
run;

* make selection list;
proc hpfselect repository=sasuser.mycat

name=myselect
label="My Selection List";

select select=mape holdout=12;
spec sp1 sp2 /

inputmap(symbol=Y data=electric)
eventmap(symbol=_NONE_ event=promotion);

run;

* select, fit and forecast;
proc hpfengine data=work_intv

globalselection=myselect repository=sasuser.mycat
print=(select estimates) inevent=evdsout1;

id date interval=month;
forecast electric;

run;
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Output 10.3.1. Selection and Forecast Results

The HPFENGINE Procedure

Variable Information

Name ELECTRIC
Label electrical workers, thousands
First JAN1977
Last JUL1982
Number of Observations Read 67

Model Selection Criterion = MAPE

Model Statistic Selected Label

SP1 3.3275773 No ARIMA(0,1,2)(0,1,1)_12 No Intercept
SP2 1.8745987 Yes ARIMA(2,1,0)(1,1,0)_12 No Intercept

Parameter Estimates

Standard Approx
Component Parameter Estimate Error t Value Pr > |t|

ELECTRIC AR1_1 0.38213 0.14776 2.59 0.0127
ELECTRIC AR1_2 0.01383 0.14711 0.09 0.9255
ELECTRIC AR2_12 -0.53640 0.14980 -3.58 0.0008
PROMOTION SCALE 95.98147 2.97398 32.27 <.0001

Example 10.4. Using the SCORE Statement
This example demonstrates the use of the SCORE statement to create a forecast score
file. The output is shown in Output 10.4.1.

data air;
set sashelp.air;
controlinput = log(air);

run;

proc hpfarimaspec repository=work.repo name=ar;
dependent symbol=Y q=1 dif=12;
input predefined=LINEAR;
input symbol=controlinput;
input predefined=INVERSE;

run;

proc hpfselect repository=work.repo name=select;
spec ar;

run;

* generate score;
proc hpfengine data=air repository=work.repo out=engineout

globalselection=select scorerepository=work.scores;
id date interval=month;
forecast air;
controllable controlinput / extend=avg;
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score;
run;

filename score catalog "work.scores.scor0.xml";

proc means data=air mean noprint;
var controlinput;
output out=controlmean mean=mean;

run;

data _null_;
set controlmean;
call symput("mean", mean);

run;

data forecasts;
drop p1 p2 p3;
format date monyy.;
date = ’01jan1961’d;
call HPFSCSUB(’score’,3,’CONTROLINPUT’,&mean,&mean,&mean,

’PREDICT’,p1,p2,p3);
forecast = p1; date = intnx(’month’, date, 0); output;
forecast = p2; date = intnx(’month’, date, 1); output;
forecast = p3; date = intnx(’month’, date, 1); output;

run;

data compare;
merge engineout forecasts;
by date;

run;

proc print data=compare(where=(forecast ne .)) noobs;
run;

Output 10.4.1. Selection and Forecast Results

DATE AIR forecast

JAN1961 416.408 416.408
FEB1961 391.715 391.715
MAR1961 419.312 419.312

Example 10.5. HPFENGINE and HPFDIAGNOSE Procedures

The HPFDIAGNOSE procedure is often used in conjunction with the HPFENGINE
procedure. This example demonstrates the interaction between the two. The output
is shown in Output 10.5.1.

proc hpfdiagnose data=sashelp.air
repository=sasuser.mycat
outest=est;

id date interval=month;
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forecast air;
arimax;
ucm;
esm;

run;

proc hpfengine data=sashelp.air inest=est outest=outest
repository=sasuser.mycat
print=(select estimates summary) lead=4;

id date interval=month;
forecast air;

run;

Output 10.5.1. Selection and Forecast Results

The HPFENGINE Procedure

Variable Information

Name AIR
Label international airline travel (thousands)
First JAN1949
Last DEC1960
Number of Observations Read 144

Model Selection Criterion = RMSE

Model Statistic Selected

diag68 10.835333 No
diag69 10.652082 Yes
diag70 10.980119 No

Model Selection Criterion = RMSE

Model Label

diag68 ARIMA: Log( AIR ) ~ P = 1 D = (1,12) Q = (12) NOINT
diag69 Log Winters Method (Multiplicative)
diag70 UCM: Log( AIR ) = TREND + SEASON + ERROR

Parameter Estimates

Standard Approx
Component Parameter Estimate Error t Value Pr > |t|

AIR Level Weight 0.40151 0.03602 11.15 <.0001
AIR Trend Weight 0.0010000 0.0074742 0.13 0.8938
AIR Seasonal Weight 0.63549 0.07525 8.44 <.0001

Forecast Summary

Variable Value JAN1961 FEB1961 MAR1961 APR1961

AIR Predicted 451.3518 427.3583 490.3388 512.3521
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Example 10.6. The ADJUST Statement

This example illustrates the use of a pre-adjustment addition operation. The output is
shown in Output 10.6.1.

data items;
set sashelp.air;
adjair = air;
adjvar = mod(_N_-1, 12) + 1;

run;

* forecast both air and adjair;
proc hpfengine data=items outfor=outfor;

id date interval=month;
forecast air adjair;
adjust adjair = (adjvar ) / operation=(ADD, NONE);

run;

proc print data=outfor(where=(actual=.));
title ’Dependent variable adjust in ADJUST statement’;
var _NAME_ DATE PREDICT;

run;

* adjust adjair outside of HPFENGINE;
data items;

set items;
adjair = air + adjvar;

run;

proc hpfengine data=items outfor=outfor;
id date interval=month;
forecast adjair;

run;

proc print data=outfor(where=(actual=.));
title ’Dependent variable adjust in data step’;
var _NAME_ DATE PREDICT;

run;
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Output 10.6.1. Selection and Forecast Results

Dependent variable adjust in ADJUST statement

Obs _NAME_ DATE PREDICT

145 AIR JAN1961 445.297
146 AIR FEB1961 418.143
147 AIR MAR1961 464.089
148 AIR APR1961 494.026
149 AIR MAY1961 504.958
150 AIR JUN1961 572.595
151 AIR JUL1961 662.704
152 AIR AUG1961 653.774
153 AIR SEP1961 545.893
154 AIR OCT1961 487.715
155 AIR NOV1961 415.259
156 AIR DEC1961 459.607
301 adjair JAN1961 445.790
302 adjair FEB1961 419.644
303 adjair MAR1961 466.855
304 adjair APR1961 497.088
305 adjair MAY1961 509.258
306 adjair JUN1961 577.941
307 adjair JUL1961 668.646
308 adjair AUG1961 660.870
309 adjair SEP1961 554.217
310 adjair OCT1961 497.321
311 adjair NOV1961 426.593
312 adjair DEC1961 472.292

Dependent variable adjust in data step

Obs _NAME_ DATE PREDICT

145 adjair JAN1961 445.790
146 adjair FEB1961 419.644
147 adjair MAR1961 466.855
148 adjair APR1961 497.088
149 adjair MAY1961 509.258
150 adjair JUN1961 577.941
151 adjair JUL1961 668.646
152 adjair AUG1961 660.870
153 adjair SEP1961 554.217
154 adjair OCT1961 497.321
155 adjair NOV1961 426.593
156 adjair DEC1961 472.292
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Chapter 11
The HPFESMSPEC Procedure
Overview

The HPFESMSPEC procedure creates model specifications files for exponential
smoothing models (ESM).

You can specify many types of exponential models using this procedure. In particular,
any model that can be analyzed using the HPF procedure can be specified.

Getting Started
The following example shows how to create an exponential smoothing model speci-
fication file. In this example, a model specification for a Winters method is created.

proc hpfesmspec repository=sasuser.mymodels
name=mywinters
label="Winters Method";

esm method=winters
;

run;

The options in the PROC HPESMSPEC statement are used to specify the location of
the specification file that will be output. Here the REPOSITORY= option specifies
that the output file be placed in a catalog SASUSER.MYMODELS, the NAME= op-
tion specifies that the name of the file be “mywinters.xml”, and the LABEL= option
specifies a label for this catalog member. The ESM statement in the procedure spec-
ifies the exponential smoothing model and the options used to control the parameter
estimation process for the model.

Syntax
The following statements are used with the HPFESMSPEC procedure.

PROC HPFESMSPEC options;
ESM options;

Functional Summary

The statements and options controlling the HPFESMSPEC procedure are summa-
rized in the following table.
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Description Statement Option

Statements
specifies the exponential smoothing model ESM

Model Repository Options
specifies the model repository PROC

HPFESMSPEC
REPOSITORY=

specifies the model specification name PROC
HPFESMSPEC

NAME=

specifies the model specification label PROC
HPFESMSPEC

LABEL=

Exponential Smoothing Model Options
specifies the time series transformation ESM TRANSFORM=
specifies median forecasts ESM MEDIAN
specifies the time series forecasting model ESM METHOD=
specifies that the smoothing model parameters
are fixed values

ESM NOEST

specifies that stable parameter estimates are
not required

ESM NOSTABLE

specifies the model selection criterion ESM SELECT=
specifies the level weight parameter initial
value

ESM LEVELPARM=

specifies the level weight parameter restric-
tions

ESM LEVELREST=

specifies the trend weight parameter initial
value

ESM TRENDPARM=

specifies the trend weight parameter restric-
tions

ESM TRENDREST=

specifies the damping weight parameter initial
value

ESM DAMPPARM=

specifies the damping weight parameter re-
strictions

ESM DAMPREST=

specifies the season weight parameter initial
value

ESM SEASONPARM=

specifies the season weight parameter restric-
tions

ESM SEASONREST=

PROC HPFESMSPEC Statement

PROC HPFESMSPEC options ;

The following options can be used in the PROC HPFESMSPEC statement.
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LABEL= SAS-label
specifies a descriptive label for the model specification to be stored in the SAS
catalog or external file reference. The LABEL= option can also be specified as
SPECLABEL=.

NAME= SAS-name
names the model specification to be stored in the SAS catalog or external file refer-
ence. The NAME= option can also be specified as SPECNAME=.

REPOSITORY= SAS-catalog-name|SAS-file-reference
names the SAS catalog or external file reference to contain the model specifica-
tion. The REPOSITORY= option can also be specified as MODELREPOSITORY=,
MODELREP=, or REP=.

ESM Statement

ESM options ;

The ESM statement is used to specify an exponential model.

The following examples illustrate typical uses of the ESM statement:

/* default specification */
esm;

/* Simple Exponential Smoothing */
esm method=simple;

/* Double Exponential Smoothing */
esm method=double;

/* Linear Exponential Smoothing */
esm method=linear;

/* Damp-Trend Exponential Smoothing */
esm method=damptrend;

/* Seasonal Exponential Smoothing */
esm method=seasonal;

/* Winters Method */
esm method=winters;

/* Additive-Winters Method */
esm method=addwinters;

/* Best Smoothing Model */
esm method=best;

/* Best Non-Seasonal Smoothing Model */
esm method=bestn;

/* Best Seasonal Smoothing Model */
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esm method=bests;

/* Log Simple Exponential Smoothing */
esm method=simple transform=log;

/* Log Double Exponential Smoothing */
esm method=double transform=log;

/* Log Linear Exponential Smoothing */
esm method=linear transform=log;

/* Log Damp-Trend Exponential Smoothing */
esm method=damptrend transform=log;

/* Log Seasonal Exponential Smoothing */
esm method=seasonal transform=log;

/* Log Winters Method */
esm method=winters transform=log;

/* Log Additive-Winters Method */
esm method=addwinters transform=log;

/* Best Log Smoothing Model */
esm method=best transform=log;

/* Best Log Non-Seasonal Smoothing Model */
esm method=bestn transform=log;

/* Best Log Seasonal Smoothing Model */
esm method=bests transform=log;

The following example illustrates how to automatically choose the exponential
smoothing model using MAPE as the model selection criterion:

esm method=simple transform=auto select=mape

The preceding example fits two forecast models (simple and log simple exponential
smoothing) to the time series. The forecast model that results in the lowest MAPE is
used to forecast the time series.

esm method=seasonal transform=auto select=mape

The preceding example fits two forecast models (seasonal and log seasonal exponen-
tial smoothing) to the time series. The forecast model that results in the lowest MAPE
is used to forecast the time series.

esm method=best transform=auto select=mape
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The preceding example fits 14 forecast models (best and log best exponential smooth-
ing) to the time series. The forecast model that results in the lowest MAPE is used to
forecast the time series.

The default specification selects the best exponential smoothing model without trans-
formation (METHOD=BEST TRANSFORM=NONE).

The following options can be specified in the ESM statement:

TRANSFORM= option
specifies the time series transformation to be applied to the time series. The following
transformations are provided:

NONE No transformation is applied. This option is the default.

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

AUTO Automatically choose between NONE and LOG based on model
selection criteria.

When the TRANSFORM= option is specified, the time series must be strictly pos-
itive. Once the time series is transformed, the model parameters are estimated us-
ing the transformed time series. The forecasts of the transformed time series are
then computed, and finally, the transformed time series forecasts are inverse trans-
formed. The inverse transform produces either mean or median forecasts depending
on whether the MEDIAN option is specified.

MEDIAN
specifies that the median forecast values are to be estimated. Forecasts can be based
on the mean or median. By default the mean value is provided. If no transformation
is applied to the actual series using the TRANSFORM= option, the mean and median
time series forecast values are identical.

METHOD= method-name
specifies the forecasting model to be used to forecast the time series. A single model
can be specified or a group of candidate models can be specified. If a group of
models is specified, the model used to forecast the accumulated time series is selected
based on the SELECT= option of the ESM statement and the HOLDOUT= option
of the FORECAST statement. The default is METHOD=BESTN. The following
forecasting models are provided:

SIMPLE Simple (Single) Exponential Smoothing

DOUBLE Double (Brown) Exponential Smoothing

LINEAR Linear (Holt) Exponential Smoothing

DAMPTREND Damped Trend Exponential Smoothing
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SEASONAL Seasonal Exponential Smoothing

WINTERS Winters Multiplicative Method

ADDWINTERS Winters Additive Method

BEST Best Candidate Smoothing Model (SIMPLE, DOUBLE, LINEAR,
DAMPTREND), (SEASONAL, ADDWINTERS, WINTERS)

BESTN Best Candidate Nonseasonal Smoothing Model (SIMPLE,
DOUBLE, LINEAR, DAMPTREND)

BESTS Best Candidate Smoothing Model (SEASONAL, ADDWINTERS,
WINTERS)

NOSTABLE
specifies that the smoothing model parameters are not restricted to the additive in-
vertible region of the parameter space. By default, the smoothing model parameters
are restricted to be inside the additive invertible region of the parameter space.

LEVELPARM= number
specifies the level weight parameter initial value. See the following smoothing model
parameter specifications options.

LEVELREST=(number,number)
specifies the level weight parameter restrictions. See the following smoothing model
parameter specifications options.

TRENDPARM= number
specifies the trend weight parameter initial value. See the following smoothing model
parameter specifications options.

TRENDREST=(number,number)
specifies the trend weight parameter restrictions. See the following smoothing model
parameter specifications options.

DAMPPARM= number
specifies the damping weight parameter initial value. See the following smoothing
model parameter specifications options.

DAMPREST=(number,number)
specifies the damping weight parameter restrictions. See the following smoothing
model parameter specifications options.

SEASONPARM= number
specifies the season weight parameter initial value. See the following smoothing
model parameter specifications options.

SEASONREST=(number,number)
specifies the season weight parameter restrictions. See the following smoothing
model parameter specifications options.

NOEST
specifies that the smoothing model parameters are fixed values. To use this option,
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all of the smoothing model parameters must be explicitly specified. By default, the
smoothing model parameters are optimized.

SELECT= option
specifies the model selection criterion (statistic of fit) to be used to select from sev-
eral candidate models. This option would often be used in conjunction with the
HOLDOUT= option. The default is SELECT=RMSE.

Smoothing Model Parameter Specification Options

The parameter options are used to specify smoothing model parameters. If the pa-
rameter restrictions are not specified the default is (0.0001 0.9999), which implies
that the parameters are restricted between 0.0001 and 0.9999. Parameters and their
restrictions are required to be greater than or equal to -1 and less than or equal to
2. Missing values indicate no lower and/or upper restriction. If the parameter initial
values are not specified, the optimizer uses a grid search to find an appropriate initial
value.
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Chapter 12
The HPFEVENTS Procedure
Overview

The HPFEVENTS procedure provides a way to create and manage events associated
with time series for the purpose of analysis. The procedure can create events, read
events from an events data set, write events to an events data set, and create dummies
based on those events if date information is provided.

A SAS event is used to model any incident that disrupts the normal flow of the process
that generated the time series. Examples of commonly used events include natural
disasters, retail promotions, strikes, advertising campaigns, policy changes, and data
recording error.

An event has a reference name, a date or dates associated with the event, and a set
of qualifiers. The event exists separate from any time series; however, the event may
be applied to one or more time series. When the event is applied to a time series,
a dummy variable is generated that may be used to analyze the impact of the event
on the time series. You can use the HPFEVENTS procedure to apply an event or
events to a time series, create a dummy variable(s), and save dummy variable(s) in
a data set. However, it is not necessary to do this if PROC HPFENGINE or PROC
HPFDIAGNOSE will be used to evaluate the time series and the event(s). PROC
HPFENGINE and PROC HPFDIAGNOSE create and store the dummy variable(s) in
memory for you based on the definition created with PROC HPFEVENTS. You only
need to supply the event definition data set created with the EVENTDATA OUT=
statement to PROC HPFENGINE or PROC HPFDIAGNOSE.

The advantages of using PROC HPFEVENTS are:

• Dummies generated by PROC HPFEVENTS are automatically extended,
shortened, or changed as observations are added and deleted from a time se-
ries. Thus, a single EVENT definition can be used for several time series or for
different spans of the same series.

• PROC HPFEVENTS can be used to define dummies that function equally well
for time series of various intervals, for instance weekly or monthly data. The
same EVENT definition can model daily data or weekly totals.

• EVENT definitions can be stored in a data set. EVENT definitions can later
be changed, new EVENTS added, or additional dummies generated from an
existing data set.

• EVENT definitions stored in a data set can be passed directly to PROC
HPFENGINE and PROC HPFDIAGNOSE. Refer to Chapter 10, “The
HPFENGINE Procedure,” and Chapter 9, “The HPFDIAGNOSE Procedure,”
for details.
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• SAS predefined EVENT definitions can be accessed directly from PROC
HPFENGINE and PROC HPFDIAGNOSE. See the EVENTKEYstatement for
a list of SAS predefined EVENT definitions. Example 12.4 illustrates this fea-
ture.

• PROC HPFEVENTS can generate a data set that can be used in other pro-
cedures such as PROC REG. Refer to Chapter 66, “The REG Procedure,”
(SAS/STAT User’s Guide) . As data is added or deleted from the time series,
PROC HPFEVENTS can automatically generate new dummy variables as re-
quired.

• PROC HPFEVENTS recognizes predefined variables and dates. Thus, events
involving holidays such as Easter and Thanksgiving can be modeled easily,
even though the dates of the events change from year to year.

Getting Started
The HPFEVENTS procedure is simple to use. It provides results in output data sets
that may be interpreted in other SAS procedures.

The following example will create events and dummies and output the event def-
initions to a data set named EVDSOUT1 and dummies to a data set named
EVDUMOUT1. More examples are shown the “Examples” section on page 438.

proc hpfevents data=sashelp.air ;
var air;
id date interval=month end=’31Dec1952’D;
eventdef laborday= LABOR / VALUE=2 ;
eventdef summer= ’01Jun1900’D to ’01Jun2005’D by year /

AFTER=(DURATION=2) LABEL=’jun jul aug’;
eventdef yr1950= ’01Jan1950’D / PULSE=YEAR ;
eventdef levelshift= ’01Jan1950’D / TYPE=LS ;
eventdef novdec= CHRISTMAS / BEFORE=(DURATION=1)

PULSE=MONTH;
eventdef first10obs= 1 to 10;
eventdef everyotherobs= 1 to 200 by 2;
eventdef saturday= ’01Jan1950’D to ’31Jan1950’D by WEEK.7;
eventkey ao15obs;
eventkey ls01Jan1950D / AFTER=(DURATION=5) ;
eventkey garbage ;
eventdata out= evdsout1 (label=’list of events’);
eventdummy out= evdumout1 (label=’dummy variables’);

run;

Features of PROC HPFEVENTS illustrated by the above statements:

LABORDAY PROC HPFEVENTS recognizes that “LABOR” is a date key-
word. When PROC HPFEVENTS creates a dummy variable for
this event, a timing value is generated for each Labor Day that falls
in the span of the time series. Each observation that matches the
date of Labor Day has a value of 2.
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SUMMER The do-list, ‘01Jun1900’D to ‘01Jun2005’D by year, will gen-
erate 106 timing values on the first of June for each year from
1900 to 2005. The pulse for each timing value will last for 3
observations, the observation matching June 1st and the two fol-
lowing. For monthly data, this should generate a pulse for June,
July, and August of each year from 1900 to 2005. If you add
PULSE=MONTH to this statement, then the EVENT always spec-
ifies June, July, and August, regardless of the interval of the
data. If you specify only the timing value ‘01Jun1900’D and add
PERIOD=YEAR, then you have the same effect for all years, even
years before 1900 and after 2005.

YR1950 By specifying a timing value within the year 1950 and using
PULSE=YEAR, this event is a pulse for any observations within
the year 1950.

LEVELSHIFT TYPE=LS has, by default, AFTER=(DURATION=ALL). The
pulse begins at the observation matching January 1, 1950, and con-
tinues to the end of the series. A special missing value of “A”
is shown in the –DUR–AFTER– variable of the events definition
data set to represent AFTER=(DURATION=ALL).

NOVDEC Compare this to the SUMMER event. Here the date keyword
CHRISTMAS is used. CHRISTMAS produces the same re-
sult as a timing value of ‘25Decyyyy’D and PERIOD=YEAR.
BEFORE=(DURATION=1) and PULSE=MONTH specifies the
months of November and December for any year in the span of
the series. If the intent is to specify certain months of the year, this
is preferable to the syntax used in SUMMER.

FIRST10OBS Integers in the timing list always specify observation numbers.
This dummy is always a pulse from observation 1 to observation
10, regardless of the value of the timing ID variable.

EVERYOTHEROBS Like FIRST10OBS, this dummy always specifies every other
observation starting at observation 1 and ending at observation 199.

SATURDAY WEEK.7 in the do-list specifies Saturday dates. The do-list pro-
duces timing values that are the Saturdays in January of 1950. If
the data is daily, there are 4 pulses in January of 1950, one on
each Saturday. If the data is weekly, a pulse is formed for 4 suc-
cessive observations in January of 1950. If the data is monthly and
RULE=ADD, which is the default, then the observation for January
1950 counts the number of Saturdays in January.

AO15OBS AO15OBS is recognized as an event keyword. AO15OBS is a pre-
defined event that means a pulse placed on the 15th observation.

LS01JAN1950D LS01JAN1950D is recognized as an event keyword.
LS01JAN1950D is a predefined event that means a level shift be-
ginning at ‘01Jan1950’D. The qualifier AFTER=(DURATION=5)
modifies the predefined event.
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GARBAGE EVENTKEY GARBAGE is ignored as garbage is not an event key-
word. A warning is printed to the log.

proc print data=evdsout1;
run;

proc print data=evdumout1;
run;

_
_ D
S A _

_ T _ T _ D
K A E E S T

_ E R N I T _ I
_ C Y T D N A E N
N L N D D T R N T
A A A A A R T D R

O M S M T T V D D V
b E S E E E L T T L
s _ _ _ _ _ _ _ _ _

1 laborday SIMPLE LABOR . . . . . .
2 summer SIMPLE . 01JUN1900 01JUN2005 YEAR.6 . . .
3 yr1950 SIMPLE . 01JAN1950 . . . . .
4 levelshift SIMPLE . 01JAN1950 . . . . .
5 novdec SIMPLE CHRISTMAS . . . . . .
6 first10obs SIMPLE . . . . . . .
7 everyotherobs SIMPLE . . . . . . .
8 saturday SIMPLE . 07JAN1950 28JAN1950 WEEK1.7 . . .
9 ao15obs SIMPLE . . . . . . .
10 ls01Jan1950D SIMPLE . 01JAN1950 . . . . .

_
_ D _ _ _

_ O U D S S
S B R U L L
T _ S _ R O O _ _
A E I _ _ B _ P P _ T P _
R N N _ V P E A E E S C _ E L
T D T T A U F F _ _ H P R R A
O O R Y L L O T B A I A U I B

O B B V P U S R E E F F R L O E
b S S L E E E E R F T T M E D L
s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 . . . POINT 2 . 0 0 GROWTH GROWTH 0 0.5 ADD . .
2 . . . POINT 1 . 0 2 GROWTH GROWTH 0 0.5 ADD . jun jul aug
3 . . . POINT 1 YEAR 0 0 GROWTH GROWTH 0 0.5 ADD . .
4 . . . LS 1 . 0 A GROWTH GROWTH 0 0.5 ADD . .
5 . . . POINT 1 MONTH 1 0 GROWTH GROWTH 0 0.5 ADD . .
6 1 10 1 POINT 1 . 0 0 GROWTH GROWTH 0 0.5 ADD . .
7 1 199 2 POINT 1 . 0 0 GROWTH GROWTH 0 0.5 ADD . .
8 . . . POINT 1 . 0 0 GROWTH GROWTH 0 0.5 ADD . .
9 15 . . POINT 1 . 0 0 GROWTH GROWTH 0 0.5 ADD . .
10 . . . LS 1 . 0 5 GROWTH GROWTH 0 0.5 ADD . .

Figure 12.1. Event Definition Data Set Showing All Variables Related to Event
Definitions
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e
v l
e s

l f r 0
e i y 1

l v r o s J
a e s t a a a
b s y l n t h t o n
o u r s o 1 e u 1 1

D r m 1 h v 0 r r 5 9
O A A d m 9 i d o o d o 5
b T I a e 5 f e b b a b 0
s E R y r 0 t c s s y s D

1 JAN1949 112 0 0 0 0 0 1 1 0 0 0
2 FEB1949 118 0 0 0 0 0 1 0 0 0 0
3 MAR1949 132 0 0 0 0 0 1 1 0 0 0
4 APR1949 129 0 0 0 0 0 1 0 0 0 0
5 MAY1949 121 0 0 0 0 0 1 1 0 0 0
6 JUN1949 135 0 1 0 0 0 1 0 0 0 0
7 JUL1949 148 0 1 0 0 0 1 1 0 0 0
8 AUG1949 148 0 1 0 0 0 1 0 0 0 0
9 SEP1949 136 2 0 0 0 0 1 1 0 0 0

10 OCT1949 119 0 0 0 0 0 1 0 0 0 0
11 NOV1949 104 0 0 0 0 1 0 1 0 0 0
12 DEC1949 118 0 0 0 0 1 0 0 0 0 0
13 JAN1950 115 0 0 1 1 0 0 1 4 0 1
14 FEB1950 126 0 0 1 1 0 0 0 0 0 1
15 MAR1950 141 0 0 1 1 0 0 1 0 1 1
16 APR1950 135 0 0 1 1 0 0 0 0 0 1
17 MAY1950 125 0 0 1 1 0 0 1 0 0 1
18 JUN1950 149 0 1 1 1 0 0 0 0 0 1
19 JUL1950 170 0 1 1 1 0 0 1 0 0 0
20 AUG1950 170 0 1 1 1 0 0 0 0 0 0
21 SEP1950 158 2 0 1 1 0 0 1 0 0 0
22 OCT1950 133 0 0 1 1 0 0 0 0 0 0
23 NOV1950 114 0 0 1 1 1 0 1 0 0 0
24 DEC1950 140 0 0 1 1 1 0 0 0 0 0
25 JAN1951 145 0 0 0 1 0 0 1 0 0 0
26 FEB1951 150 0 0 0 1 0 0 0 0 0 0
27 MAR1951 178 0 0 0 1 0 0 1 0 0 0
28 APR1951 163 0 0 0 1 0 0 0 0 0 0
29 MAY1951 172 0 0 0 1 0 0 1 0 0 0
30 JUN1951 178 0 1 0 1 0 0 0 0 0 0
31 JUL1951 199 0 1 0 1 0 0 1 0 0 0
32 AUG1951 199 0 1 0 1 0 0 0 0 0 0
33 SEP1951 184 2 0 0 1 0 0 1 0 0 0
34 OCT1951 162 0 0 0 1 0 0 0 0 0 0
35 NOV1951 146 0 0 0 1 1 0 1 0 0 0
36 DEC1951 166 0 0 0 1 1 0 0 0 0 0
37 JAN1952 171 0 0 0 1 0 0 1 0 0 0
38 FEB1952 180 0 0 0 1 0 0 0 0 0 0
39 MAR1952 193 0 0 0 1 0 0 1 0 0 0
40 APR1952 181 0 0 0 1 0 0 0 0 0 0
41 MAY1952 183 0 0 0 1 0 0 1 0 0 0
42 JUN1952 218 0 1 0 1 0 0 0 0 0 0
43 JUL1952 230 0 1 0 1 0 0 1 0 0 0
44 AUG1952 242 0 1 0 1 0 0 0 0 0 0
45 SEP1952 209 2 0 0 1 0 0 1 0 0 0
46 OCT1952 191 0 0 0 1 0 0 0 0 0 0
47 NOV1952 172 0 0 0 1 1 0 1 0 0 0
48 DEC1952 194 0 0 0 1 1 0 0 0 0 0

Figure 12.2. Event Dummy Data Set
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Often a set of EVENT definitions has only a few variables that apply. For instance,
in the above example, no datetime timing values are specified, so the variables
–STARTDT–, –ENDDT–, and –DTINTRVL– have all missing values. In such a
case, the user can specify the CONDENSE option in the EVENTDATA statement,
and PROC HPFEVENTS automatically determines if any variables in the EVENT
definition data set contain only the default values; those variables are not included
in the output data set. In addition to the missing datetime values, in the example
below, the variables –SLOPE–BEF–, –SLOPE–AFT–, –TCPARM–, –RULE–, and
–PERIOD– also contain default values and are omitted from the condensed data set.
When PROC HPFEVENTS reads a data set, any variables not in the data set are au-
tomatically set to the default value. Thus, it is not necessary to specify CONDENSE
when using the EVENTDATA IN= option. PROC HPFEVENTS automatically reads
condensed data sets. For more details on the CONDENSE option, see “EVENTDATA
OUT= Data Set”.

proc hpfevents data=sashelp.air ;
id date interval=month end=’31Dec1952’D;
eventdata in= evdsout1;
eventdata out= evdsout2 condense;

run;

proc print data=evdsout2;
run;

Obs _NAME_ _KEYNAME_ _STARTDATE_ _ENDDATE_ _DATEINTRVL_ _STARTOBS_

1 laborday LABOR . . . .
2 summer . 01JUN1900 01JUN2005 YEAR.6 .
3 yr1950 . 01JAN1950 . . .
4 levelshift . 01JAN1950 . . .
5 novdec CHRISTMAS . . . .
6 first10obs . . . . 1
7 everyotherobs . . . . 1
8 saturday . 07JAN1950 28JAN1950 WEEK1.7 .
9 ao15obs . . . . 15
10 ls01Jan1950D . 01JAN1950 . . .

_DUR_ _DUR_
Obs _ENDOBS_ _OBSINTRVL_ _TYPE_ _VALUE_ _PULSE_ BEFORE_ AFTER_ _LABEL_

1 . . POINT 2 . 0 0 .
2 . . POINT 1 . 0 2 jun jul aug
3 . . POINT 1 YEAR 0 0 .
4 . . LS 1 . 0 A .
5 . . POINT 1 MONTH 1 0 .
6 10 1 POINT 1 . 0 0 .
7 199 2 POINT 1 . 0 0 .
8 . . POINT 1 . 0 0 .
9 . . POINT 1 . 0 0 .
10 . . LS 1 . 0 5 .

Figure 12.3. Read Previous Event Definition Data Set and Save in Condensed
Format
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Syntax
The following statements are used with the HPFEVENTS procedure.

PROC HPFEVENTS options;
VAR variables;
BY variables;
ID variable INTERVAL= interval options;
EVENTDEF variable= do-list / options;
EVENTKEY <variable=> predefined-event-keyword /options;
EVENTCOMB variable= variable-list / options;
EVENTGROUP <variable=> predefined-event-keyword ;
EVENTGROUP variable= variable-list ;
EVENTDATA options;
EVENTDUMMY options;

Functional Summary

The statements and options controlling the HPFEVENTS procedure are summarized
in the following table.

Description Statement Option

Statements
specify BY-group processing BY
specify event combination EVENTCOMB
specify event definition EVENTDEF
specify group of events EVENTGROUP
use predefined event definition EVENTKEY
specify event data set EVENTDATA
specify dummy data set EVENTDUMMY
specify the time ID variable ID
specify variables to be copied to the dummy
data set

VAR

Data Set Options
specify the input data set PROC HPFEVENTS DATA=
specify an events input data set EVENTDATA IN=
specify an events output data set EVENTDATA OUT=
specify that the events output data set will be
condensed

EVENTDATA CONDENSE

specify a dummy output data set EVENTDUMMY OUT=
specify starting time ID value ID START=
specify ending time ID value ID END=
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Description Statement Option

Dummy Variable Format Options
extend dummy variables past end of series PROC HPFEVENTS LEAD=
specify missing value interpretation ID SETMISSING=
specify frequency of the dummy variable(s) ID INTERVAL=
specify interval alignment ID ALIGN=

Miscellaneous Options
specify that variables in output data sets are in
sorted order

PROC HPFEVENTS SORTNAMES

limit error and warning messages PROC HPFEVENTS MAXERROR=

PROC HPFEVENTS Statement

PROC HPFEVENTS options;

The following options can be used in the PROC HPFEVENTS statement.

DATA= SAS-data-set
names the SAS data set containing the variables used in the VAR, ID, and BY state-
ments. If the DATA= option is not specified, the most recently created SAS data set
is used.

LEAD= n
specifies the number of periods to extend the dummy variable beyond the time series.
The default is LEAD=0.

The LEAD= value is relative to the last observation in the input data set and not to the
last nonmissing observation of a particular series. Thus, if a series has missing values
at the end, the actual number of dummy values beyond the last nonmissing value will
be greater than the LEAD= value.

MAXERROR= number
limits the number of warning and error messages produced during the execution of
the procedure to the specified value. The default is MAXERROR=25. This option
is particularly useful in BY-group processing where it can be used to suppress the
recurring messages.

SORTNAMES
specifies that the events and variables in the output data sets are printed in alphabetical
order.
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BY Statement

BY variables;

A BY statement can be used with PROC HPFEVENTS to obtain separate dummy
variable definitions for groups of observations defined by the BY variables.

ID Statement

ID variable INTERVAL= interval options;

The ID statement names a numeric variable that identifies observations in the input
and output data sets. The ID variable’s values are assumed to be SAS date, time,
or datetime values. In addition, the ID statement specifies the (desired) frequency
associated with the actual time series. The information specified affects all dummy
variables output using the EVENTDUMMY statements. If no dummy variables are
requested, the ID statement has no impact on processing, since the EVENTDEF def-
initions are independent of the time identification values of a time series. If the ID
statement is specified, the INTERVAL= option must also be specified. If an ID state-
ment is not specified, the observation number, with respect to the BY-group, is used
as the time ID. When the observation number is used as the time ID, only EVENT
timing values that are based on observation numbers are applied to the time series
to create dummy variables; timing values based on SAS date or datetime values are
ignored.

The following options can be used with the ID statement.

ALIGN= option
controls the alignment of SAS dates used to identify output observations. The
ALIGN= option accepts the following values: BEGINNING | BEG | B, MIDDLE
| MID | M, and ENDING | END | E. BEGINNING is the default.

END= option
specifies a SAS date, datetime, or time value that represents the end of the data. If
the last time ID variable value is less than the END= value, the series is extended
with missing values. If the last time ID variable value is greater than the END=
value, the series is truncated. For example, END=“&sysdate”D uses the automatic
macro variable SYSDATE to extend or truncate the series to the current date. This
option and the START= option can be used to ensure that data associated with each
BY-group contains the same number of observations.

FORMAT= format
specifies the SAS format for the time ID values. If the FORMAT= option is not
specified, the default format is implied from the INTERVAL= option.

INTERVAL= interval
specifies the frequency of the input time series. For example, if the input data set
consists of quarterly observations, then INTERVAL=QTR should be used. Refer to
SAS/ETS User’s Guide for the intervals that can be specified.

SETMISSING= option | number
specifies how missing values are assigned in the time series copied to the dummy
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data set when there is no observation matching the time ID in the input data set. If a
number is specified, missing values are set to number. If a missing value indicates an
unknown value, this option should not be used. If a missing value indicates no value,
a SETMISSING=0 should be used. You would typically use SETMISSING=0 for
transactional data because no recorded data usually implies no activity. The following
options can also be used to determine how missing values are assigned:

MISSING Missing values are set to missing. This is the default option.

SKIP If the observation for the time ID value is missing in the input data
set, then the corresponding observation is skipped in the dummy
data set. This option may be useful if dummies are to be used
as predictor values and you wish apply the PROC HPFENGINE
ACCUMULATION option to the dummy data.

START= option
specifies a SAS date, datetime, or time value that represents the beginning of the
data. If the first time ID variable value is greater than the START= value, the series
is prepended with missing values. If the first time ID variable value is less than the
START= value, the series is truncated. This option and the END= option can be
used to ensure that data associated with each by group contains the same number of
observations.

EVENTDEF Statement
EVENTDEF SAS-variable-name= timing-value-list / qualifier options;

An EVENTDEF statement can be used with PROC HPFEVENTS to define an event.
Although an event occurs at one or more time values, the event definition is indepen-
dent of the time ID; that is, the event is a function that operates on a time ID variable.
Once defined, the event can be output using the OUT= option of the EVENTDATA
statement. A dummy variable for the event can be output using the OUT= option of
the EVENTDUMMY statement. The dummy variable is created by evaluating the
event with respect to the time ID. If a time ID is not specified using the ID state-
ment, then the BY-group observation number is used as the time ID. More than one
EVENTDEF statement can be specified.

Once defined, an event is referenced using its SAS-variable-name. When the event is
output using the EVENTDATA statement, the event is identified by its SAS-variable-
name. When a dummy is created using the event definition, the dummy variable name
is the same as the event SAS-variable-name.

Each event must have a unique SAS-variable-name. If two event definitions have the
same name, the following rules apply. If two EVENTDEF statements exist using the
same name, the later statement is used. If an event is defined in both an EVENTDEF
statement and in a data set specified using the EVENTDATA statement, the definition
in the EVENTDEF statement is used. Any event defined using an EVENTDEF or
EVENTDATA statement is used rather than a SAS predefined event.

Each EVENTDEF statement must be defined using one or more event timing values.
The timing values may be specified using a list. Each item in the list may be a SAS

418



Syntax

date keyword, an integer, a SAS-date, a SAS-datetime, or a do-list. For example, the
EVENTDEF statement below specifies timing values using each of these methods in
the order listed.

EVENTDEF EVENT1= USINDEPENDENCE 10 ’25Dec2000’D
’01Mar1990:15:03:00’DT
’01Jan2000’D to ’01Mar2000’D by month;

The timing values are interpreted as: any July 4 in the series; the 10th observation;
December 25, 2000; March 1, 1990 at 3:03PM; January 1, 2000; February 1, 2000;
and March 1, 2000. The following two EVENTDEF statements specify identical
timing values.

EVENTDEF MYFIRSTEVENT= ’01Jan2000’D to ’01Mar2000’D by month;
EVENTDEF MYNEXTEVENT= ( ’01Jan2000’D, ’01Feb2000’D, ’01Mar2000’D );

The timing value list can be enclosed in parentheses, and commas can separate the
items in the list. Numbers are always interpreted as observation numbers. The do-list
may be based on observation numbers, SAS-dates, or SAS-datetimes. However, the
first and second values in the list must be of the same type. The SAS grammar always
expects the type of the second value to be the same as the type of the first value, and
tries to interpret the statement in that fashion. The following statement yields erratic
results.

EVENTDEF BADEVENT= ’01Jan2000’D to ’01Mar2000:00:00:00’DT by month;

Either the HPFEVENTS procedure produces a list much longer than expected or the
procedure does not have enough memory to execute. Note: You should never mix
date, datetime, and integer types in a do-list.

Table 12.1 shows the date keywords that can be used in a timing value list and their
definitions.

Table 12.1. Holiday Date Keywords and Definitions
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Date Keyword Definition
EASTER Easter Sunday
THANKSGIVING 4th Thursday in November
BOXING December 26th
CANADA July 1st
CHRISTMAS December 25th
FATHERS 3rd Sunday in June
HALLOWEEN October 31st
USINDEPENDENCE July 4th
LABOR 1st Monday in September
MEMORIAL last Monday in May
MOTHERS 2nd Sunday in May
NEWYEAR January 1st
THANKSGIVINGCANADA 2nd Monday in October
VALENTINES February 14th
VICTORIA Monday on or preceding May 24th
CANADAOBSERVED July 1st, or July 2nd, if July 1st is a Sunday

The date of Easter is calculated using a method described by Montes (2001b).

Table 12.2 shows the seasonal date keywords that can be used in a timing value list
and their definitions.

Table 12.2. Seasonal Date Keywords and Definitions

Date Keyword Definition
SECOND–1, ... SECOND–60 The specified second.
MINUTE–1, ... MINUTE–60 The beginning of the specified minute.
HOUR–1, ... HOUR–24 The beginning of the specified hour.
SUNDAY, ... SATURDAY All SUNDAYs, etc., in the time series.
WEEK–1, ... WEEK–53 The first day of the nth week of the year.

PULSE=WEEK.n shifts this date for n �= 1.
TENDAY–1, ... TENDAY–36 The 1st, 11th, or 21st of the appropriate month.
SEMIMONTH–1, ... SEMIMONTH–24 The 1st or 16th of the appropriate month.
JANUARY, ... DECEMBER The 1st of the specified month.
QTR–1, QTR–2, QTR–3, QTR–4 The first date of the quarter.

PULSE=QTR.n shifts this date for n �= 1.
SEMIYEAR–1, SEMIYEAR–2 The first date of the semiyear.

PULSE=SEMIYEAR.n shifts this date for n �= 1.

When dummies are created, each timing value is evaluated with respect to the time
ID. You should take care to choose the event timing value(s) that are consistent with
the time ID. In particular, date and datetime timing value(s) are ignored when the
time ID is based on the observation number.

The qualifier options define a function to be applied at each timing value. The fol-
lowing qualifier options can be used with the EVENTDEF statement.
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TYPE= option
specifies the type of event variable. Each type uses a different formula to create the
dummy variables. The formula for each TYPE= option is dependent on the other
qualifiers that are specified in the EVENTDEF options. The formula is applied to
each timing value specified in the timing-value list. The TYPE= option accepts the
following values: POINT | LS | RAMP | TR | TEMPRAMP | TC | LIN | LINEAR |
QUAD | CUBIC | INV | INVERSE | LOG | LOGARITHMIC. Table 12.6 illustrates
the basic shape for each TYPE= value. POINT is the default type.

Table 12.3, Table 12.4, and Table 12.5 show the formulas used to calculate the
dummy variables for the event. Table 12.4 shows the formula used for each type
of event when the event extends infinitely both before and after the timing value.
Table 12.5 shows the formula used for each type of event for finite duration val-
ues. In the formulas, ti is the observation specified by the ith timing value in the
timing value list, VALUE=ν, TCPARM=φ, AFTER=(DURATION=n SLOPE=sa),
BEFORE=(DURATION=m SLOPE=sb), and PULSE=interval. Table 12.3 shows
how to calculate tb and te, which are based on the DURATION= values. tb and te are
the beginning and ending observations of the event definition. (For TYPE=RAMP,
the ramp persists past the top of the ramp.) For more information on matching SAS
date values to observations, refer to Chapter 2, “Working with Time Series Data”
(SAS/ETS User’s Guide) and Chapter 3, “Date Intervals, Formats, and Functions”
(SAS/ETS User’s Guide).

When one DURATION= value is finite, and the other is infinite, this is equivalent to
extending the finite portion of the event infinitely in one direction. This principle may
be understood by examining the results of the following EVENTDEF statements:

eventdef monlygg= ’01Jun1951’D / TYPE=RAMP
BEFORE=(SLOPE=GROWTH DURATION=4);

eventdef minfgg= ’01Jun1951’D / TYPE=RAMP
BEFORE=(SLOPE=GROWTH DURATION=4)
AFTER=(SLOPE=GROWTH DURATION=ALL) ;

eventdef minfgd= ’01Jun1951’D / TYPE=RAMP
BEFORE=(SLOPE=GROWTH DURATION=4)
AFTER=(SLOPE=DECAY DURATION=ALL) ;

In the section “Examples” on page 438, Example 12.5 shows how PROC
HPFEVENTS interprets each of these statements.
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Table 12.3. Calculating the Beginning and Ending Observation for Events

BEFORE= PULSE=value Definition of tb
(DURATION=value)
ALL N/A tb = 1, the first observation in the data set

or tb = the observation specified by START=

m = 0 not specified tb = ti (the observation specified by the timing value)

m > 0 not specified tb = ti − m

m ≥ 0 interval tb = the observation specified by the
date INTNX( interval, timing value, -m, ‘begin’ )

AFTER= PULSE=value Definition of te
(DURATION=value)
ALL N/A te = the last observation in the data set

or te = the observation specified by END=

n = 0 not specified te = ti, the observation specified by the timing value

n > 0 not specified te = ti + n

n ≥ 0 interval te = the observation specified by the
date INTNX( interval, timing value, n, ‘end’ )

Table 12.4. Event Types for Infinite Durations (m =ALL and n =ALL)

Type Description Definition
POINT point or pulse ξit = ν, for all t

LS level shift ξit = ν, for all t

RAMP ramp
SLOPE=GROWTH ξit = ν(t − ti), for all t

SLOPE=DECAY ξit = ν(ti − t), for all t

sb = GROWTH ξit = ν(t − ti), if t ≤ ti
sa = DECAY ξit = ν(ti − t), if ti ≤ t

sb = DECAY ξit = ν(ti − t), if t ≤ ti
sa = GROWTH ξit = ν(t − ti), if ti ≤ t

TEMPRAMP temporary ramp TEMPRAMP is the same as RAMP for infinite cases
or TR

TC temporary change
SLOPE=GROWTH ξit = νφ(ti−t), for all t
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Table 12.4. (continued)

Type Description Definition

SLOPE=DECAY ξit = νφ(t−ti), for all t

sb = GROWTH ξit = νφ(ti−t), if t ≤ ti
sa = DECAY ξit = νφ(t−ti), if ti ≤ t

sb = DECAY ξit = νφ(t−ti), if t ≤ ti
sa = GROWTH ξit = νφ(ti−t), if ti ≤ t

LINEAR linear trend ξit = ν(t − ti), for all t
or LIN SLOPE= does not

apply

QUAD quadratic trend ξit = ν(t − ti)2, for all t
SLOPE= does not
apply

CUBIC cubic trend ξit = ν(t − ti)3, for all t
SLOPE= does not
apply

INVERSE inverse trend ξit = ν/t, for all t
or INV SLOPE= does not

apply

LOGARITHMIC log trend ξit = ν log(t), for all t
or LOG SLOPE= does not

apply

Table 12.5. Event Types (for finite m,n)

Type Description Definition
POINT point or pulse ξit = ν, if tb ≤ t ≤ te

ξit = undefined, otherwise

LS level shift ξit = ν, if tb ≤ t ≤ te
ξit = undefined, otherwise

RAMP ramp
m = n = 0 ξit = 0, if t = ti
PULSE=interval ≤ ξit = undefined, otherwise
width of an observation

SLOPE=GROWTH ξit = ν(t − tb)/(te − tb), if tb ≤ t ≤ te
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Table 12.5. (continued)

Type Description Definition
ξit = ν, if t > te
ξit = undefined, otherwise

SLOPE=DECAY ξit = ν, if t < tb
ξit = ν(te − t)/(te − tb), if tb ≤ t ≤ te
ξit = undefined, otherwise

sb = GROWTH ξit = ν(t − tb)/(ti − tb), if tb ≤ t ≤ ti
sa = DECAY ξit = ν(te − t)/(te − ti), if ti ≤ t ≤ te
m > 0, n > 0 ξit = undefined, otherwise

sb = DECAY ξit = ν, if t < tb
sa = GROWTH ξit = ν(ti − t)/(ti − tb), if tb ≤ t ≤ ti
m > 0, n > 0 ξit = ν(t − ti)/(te − ti), if ti ≤ t ≤ te

ξit = ν, if t > te

TEMPRAMP temporary ramp
or TR m = n = 0 ξit = 0, if t = ti

PULSE=interval ≤ ξit = undefined, otherwise
width of an observation

SLOPE=GROWTH ξit = ν(t − tb)/(te − tb), if tb ≤ t ≤ te
ξit = undefined, otherwise

SLOPE=DECAY ξit = ν(te − t)/(te − tb), if tb ≤ t ≤ te
ξit = undefined, otherwise

sb = GROWTH ξit = ν(t − tb)/(ti − tb), if tb ≤ t ≤ ti
sa = DECAY ξit = ν(te − t)/(te − ti), if ti ≤ t ≤ te
m > 0, n > 0 ξit = undefined, otherwise

sb = DECAY ξit = ν(ti − t)/(ti − tb), if tb ≤ t ≤ ti
sa = GROWTH ξit = ν(t − ti)/(te − ti), if ti ≤ t ≤ te
m > 0, n > 0 ξit = undefined, otherwise

TC temporary change
SLOPE=GROWTH ξit = νφ(te−t), if tb ≤ t ≤ te

ξit = undefined, otherwise

SLOPE=DECAY ξit = νφ(t−tb), if tb ≤ t ≤ te
ξit = undefined, otherwise

sb = GROWTH ξit = νφ(ti−t), if tb ≤ t ≤ ti
sa = DECAY ξit = νφ(t−ti), if ti ≤ t ≤ te
m > 0, n > 0 ξit = undefined, otherwise
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Table 12.5. (continued)

Type Description Definition

sb = DECAY ξit = νφ((te−ti)+(t−ti)), if tb ≤ t ≤ ti
sa = GROWTH ξit = νφ(te−t), if ti ≤ t ≤ te
0 < m ≤ n ξit = undefined, otherwise

sb = DECAY ξit = νφ(t−tb), if tb ≤ t ≤ ti
sa = GROWTH ξit = νφ((ti−tb)+(ti−t)), if ti ≤ t ≤ te
0 < n ≤ m ξit = undefined, otherwise

LINEAR linear trend ξit = ν(t − ti), if tb ≤ t ≤ te
or LIN SLOPE= does not

apply

QUAD quadratic trend ξit = ν(t − ti)2, if tb ≤ t ≤ te
SLOPE= does not
apply

CUBIC cubic trend ξit = ν(t − ti)3, if tb ≤ t ≤ te
SLOPE= does not
apply

INVERSE inverse trend ξit = ν/(t − tb + 1), if tb ≤ t ≤ te
or INV SLOPE= does not

apply

LOGARITHMIC log trend ξit = ν log(t − tb + 1), if tb ≤ t ≤ te
or LOG SLOPE= does not

apply

Note that undefined values are set to zero after all timing values have been evaluated.
See the RULE= option for details on evaluating overlapping timing values.

VALUE= number
specifies the event indicator value, ν. The default event indicator value is one
(ν = 1.0). Table 12.5 provides details about the effect of the event indicator value
on the dummy variables. However, for TYPE=POINT | LS | RAMP | TR | TC events
consisting of a single timing value with finite duration, the user can think of the
event indicator value as the maximum amplitude: the values of the dummy should
be bounded below by zero and above by the event indicator value. For trend events
(TYPE = LINEAR | QUAD | CUBIC | INV | LOG ), the event indicator value is the
coefficient of the term.

SHIFT= number
specifies the number of pulses to shift the timing value, δ. The default is not to shift
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the timing value (δ = 0). When the SHIFT= option is used, all timing values in the
list, including those generated by date keywords are shifted. Thus, SHIFT= can be
used with EASTER to specify Ecclesiastical Holidays that are based on Easter. For
example,

EVENTDEF GoodFriday= EASTER / SHIFT=-2 PULSE=DAY;

specifies Good Friday, which is defined as 2 days before Easter (Montes 2001a).

PULSE= interval
specifies the interval to be used with the DURATION= option to determine the width
of the event. The default pulse is one observation. When no DURATION= values
are specified, and the PULSE= option is specified, the DURATION= values are set to
zero. Refer to SAS/ETS User’s Guide for the intervals that can be specified.

BEFORE= ( option-list )
AFTER= ( option-list )

specifies options that control the event definition before and after the timing value.
The DURATION= and SLOPE= options are used within the parentheses in the
BEFORE=( ) and AFTER=( ) options. The SLOPE= option is ignored if the cor-
responding DURATION=0.

DURATION= number
specifies the event duration before the timing value when used in the BEFORE=( )
option or after the timing value when used in the AFTER=( ) option. The event always
occurs at the timing value. You would specify 3 observations before, 1 observation at
the timing value, and 4 after the timing value for a total of 3+1+4 = 8 observations
as follows:

EVENTDEF E1= ’01JAN1950’D / BEFORE=(DURATION=3) AFTER=(DURATION=4);

You would specify 3 weeks before, the week of the timing value, and 4 weeks after the
timing value using a combination of the BEFORE=, AFTER=, and PULSE= options
as follows:

EVENTDEF E1= ’01JAN1950’D / BEFORE=(DURATION=3) AFTER=(DURATION=4)
PULSE=WEEK;

DURATION=ALL implies that the event should be extended to the beginning
(BEFORE=) or end (AFTER=) of the series. If only one DURATION= value is
specified, the other value is assumed to be zero. When neither DURATION= value
is specified, and the PULSE= value is specified, both DURATION= values are set to
zero. When neither DURATION= value is specified, and the PULSE= value is not
specified, then both DURATION= values are assigned default values based on the
TYPE= option. For polynomial trend events (TYPE = LINEAR | QUAD | CUBIC),
the default DURATION= value is ALL for both the BEFORE=( ) option and the
AFTER=( ) option. For other events, the default value for the BEFORE=( ) option
is always zero, and the default event duration for the AFTER=( ) option depends on
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the TYPE= option. Table 12.6 shows default duration values by TYPE= value and
how the basic event shape depends on the duration value. DURATION=ALL is rep-
resented in the event definition data set as a special missing value displayed as “A”.
For more information on special missing values, refer to SAS System Concepts in
SAS Language Reference: Concepts.

Table 12.6. Default DURATION= values When No DURATION= value nor
PULSE= value Is Specified

Non-trend AFTER= Default Shape Shape when finite
TYPE= (DURATION=) AFTER=

(BEFORE= Default duration > 0
Default is 0)

TYPE=POINT default is zero

TYPE=LS default is ALL
(or end of series)

TYPE=RAMP default is ALL ����������

��������

(or end of series)

TYPE= default is ALL ����������

��������

TEMPRAMP (or end of series)
or TR

TYPE=TC default is ALL � �
(or end of series)
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Table 12.6. (continued)

Non-trend AFTER= Default Shape Shape when finite
TYPE= (DURATION=) AFTER=

(BEFORE= Default duration > 0
Default is 0)

TYPE=INV default is ALL � �
or INVERSE (or end of series)

TYPE=LOG or default is ALL � �
LOGARITHMIC (or end of series)
Trend TYPE= BEFORE= Default Shape Shape when finite

and AFTER= BEFORE= and AFTER=
(DURATION=) duration > 0
Default

TYPE=LINEAR default is ALL �����������

��������

TYPE=LIN (or entire series)

TYPE=QUAD default is ALL

�
�
�
�
��

��
�
�
�
�
��

��
(or entire series)

TYPE=CUBIC default is ALL

�� ��
(or entire series)

SLOPE= option
specifies whether a ramp or temporary change type is growth or decay. SLOPE
is ignored unless TYPE=RAMP, TYPE=TR, TYPE=TEMPRAMP, or TYPE=TC.
SLOPE= is also ignored if the corresponding DURATION=0. The SLOPE= value
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in the BEFORE= option controls the slope before the timing value and the SLOPE=
value in the AFTER= option controls the slope after the timing value. The SLOPE=
option accepts the values: GROWTH | DECAY. GROWTH is the default in all cases
except TYPE=TC. For TYPE=TC, the default is BEFORE=(SLOPE=GROWTH) and
AFTER=(SLOPE=DECAY). The following statement

EVENTDEF E1= ’01JAN1950’D / BEFORE=(DURATION=3 SLOPE=GROWTH)
AFTER=(DURATION=4) SLOPE=DECAY)
TYPE=RAMP;

specifies a ramp up, followed by a ramp down. The event dummy observations im-
mediately preceding the timing value contain the following values: 0, 1

3 , 2
3 . The

observation at the timing value has a value of 1. The observations immediately after
the timing value are 3

4 , 2
4 , 1

4 , 0.

TCPARM= number
specifies a parameter 0 ≤ φ ≤ 1 used in the growth/decay equation for TYPE=TC
given in Table 12.5. The TCPARM= value is the rate of growth or decay. A
larger TCPARM= value causes faster growth or decay. TCPARM is ignored unless
TYPE=TC. The default value is 0.5.

RULE=
specifies the action to take when the defined event has multiple timing values which
overlap. When the timing values do not overlap, RULE= has no impact since if there
is only one defined value for an observation, that value is always used. The RULE=
option accepts the following values: ADD | MAX | MIN | MINNZ | MINMAG |
MULT . ADD is the default. Table 12.7 explains how the RULE= option is interpreted
when the value for an observation is defined by multiple timing values. Because the
range of the event associated with a timing value might not include the all the ob-
servations in the series, RULE= might be interpreted differently when using multiple
timing values in one EVENTDEF statement versus defining a combination event us-
ing the EVENTCOMB statement. Thus, the dummy variables TWOTIMING and
TWOEVENTS defined in the following statements are different:

eventdef xmasrp= CHRISTMAS / BEFORE=(SLOPE=GROWTH DURATION=3)
TYPE=RAMP RULE=MIN ;

eventdef easterrp= EASTER / BEFORE=(SLOPE=GROWTH DURATION=3)
TYPE=RAMP RULE=MIN ;

eventdef twotiming= EASTER CHRISTMAS /
BEFORE=(SLOPE=GROWTH DURATION=3)
TYPE=RAMP RULE=MIN ;

eventcomb twoevents= easterrp xmasrp / RULE=MIN ;

In the section “Examples” on page 438, Example 12.1 shows how PROC
HPFEVENTS interprets each of these statements.
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Table 12.7. Definition of RULE= Values

RULE Name Definition
ADD Add Add the values.
MAX Maximum Use the maximum value.
MIN Minimum Use the minimum value.
MINNZ Minimum Nonzero Use the minimum nonzero value.
MINMAG Minimum Magnitude Use the value whose magnitude is the least.
MULT Multiply Multiply the values.

PERIOD= interval
specifies the interval for the frequency of the event. For example, PERIOD=YEAR
should produce a dummy value that is periodic in a yearly pattern. If the PERIOD=
option is omitted, the event is not periodic. The PERIOD= option also does not apply
to observation numbers, which are not periodic, or to date keywords, which have
their own periodicity. Refer to SAS/ETS User’s Guide for the intervals that can be
specified.

LABEL= ’SAS-label’
specifies a label for the dummy variable for this event. ’SAS-label’ is a quoted text
string of up to 256 characters. The default label is “Dummy Variable for Event
<variable-name>” where <variable-name> is the name specified in the EVENT state-
ment. The label is also stored as a description in the EVENTDATA OUT= data set.
If no label is specified, then “.” is displayed in the EVENTDATA OUT= data set, but
the default label is still used for the dummy variable.

EVENTKEY Statement
EVENTKEY <variable=> predefined-event-keyword /options;

EVENTKEY <variable=> user-defined-event-keyword /options;

An EVENTKEY statement can be used to alter a user defined simple event or a SAS
predefined event or to create a new event based on a user defined simple event or a
SAS predefined event.

An EVENTKEY statement can be used with PROC HPFEVENTS to make a SAS
predefined event available for processing. The EVENTKEY statement constructs
a SAS simple EVENT for each SAS predefined event keyword. The SAS prede-
fined events are also available directly through PROC HPFDIAGNOSE and PROC
HPFENGINE. Each EVENTKEY variable has a predefined set of timing values and
qualifiers associated with the predefined event keyword. The options are the same
as in the EVENTDEF statement and can be used to redefine the qualifiers associated
with the predefined event. As shown in the “Getting Started” section on page 410,
the default SAS variable name for the predefined event is the predefined event key-
word. However, the user can specify a SAS variable name for the event. For example,
you can rename the CHRISTMAS predefined EVENT to XMAS using the following
statement:

EVENTKEY XMAS= CHRISTMAS;
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If the user redefines the qualifiers associated with a SAS predefined EVENT and
does not rename the event, then that has the impact of redefining the SAS predefined
event, since any user definition takes precedence over a SAS predefined definition.
The following example produces an event FALLHOLIDAYS with a pulse of 1 day at
Halloween and a pulse of 1 month at Thanksgiving.

EVENTKEY THANKSGIVING / PULSE=MONTH;
EVENTCOMB FALLHOLIDAYS= HALLOWEEN THANKSGIVING;

SAS predefined events are based on either a SAS date keyword or an additive out-
lier or level shift based on a timing value. Table 12.8 describes how to construct a
SAS predefined event keyword. It also gives the default qualifier options for those
predefined events.

An EVENTKEY statement may be used in a similar manner to modify or clone a
user defined simple event. In the following example, the EVENTDEF statement is
used to define a simple event named SPRING. The EVENTKEY statement is used
to modify the SPRING event definition, and then the EVENTKEY statement is used
to create a new event named SPRINGBREAK based on the previously defined user
event named SPRING. So the example defines a total of two events, SPRING and
SPRINGBREAK. The EVENTKEY statement may be used to modify the qualifiers;
it may not be used to modify the timing value(s).

EVENTDEF SPRING = ’20MAR2005’D;
EVENTKEY SPRING / PULSE=DAY;
EVENTKEY SPRINGBREAK = SPRING / PULSE=WEEK;

Suppose that the events above are stored in a data set named SPRINGHOLIDAYS.
The first EVENTKEY statement in the example below would clone SPRING as an
event named FirstDayOfSpring. The second EVENTKEY statement will change the
case of the SPRINGBREAK event name.

EVENTDATA IN=SPRINGHOLIDAYS;
EVENTKEY FirstDayOfSpring = SPRING;
EVENTKEY SpringBreak = springbreak;

Event names that refer to a previously defined event are not case sensitive. However,
event names that are used to create a new event will have the case preserved in the
–NAME– variable of the EVENTDATA OUT= data set and the variable name used
in the EVENTDUMMY OUT= data set.
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Table 12.8. Definitions for EVENTKEY Predefined Event Keywords

Variable Name or Description Qualifier Options
Variable Name Format

AO<obs>OBS Outlier TYPE=POINT VALUE=1
AO<date>D BEFORE=(DURATION=0)

AO<datetime>DT AFTER=(DURATION=0)

LS<obs>OBS Level Shift TYPE=LS VALUE=1
LS<date>D BEFORE=(DURATION=0)

LS<datetime>DT AFTER=(DURATION=ALL)

<date keyword> Date Pulse TYPE=POINT VALUE=1
BEFORE=(DURATION=0)
AFTER=(DURATION=0)

PULSE=DAY

LINEAR Polynomial TYPE=LIN
QUAD Trends TYPE=QUAD
CUBIC TYPE=CUBIC

VALUE=1 BEFORE=(DURATION=ALL)
AFTER=(DURATION=ALL)

default timing value is 0 observation

INVERSE Trends TYPE=INV
LOG TYPE=LOG

VALUE=1 BEFORE=(DURATION=0)
AFTER=(DURATION=ALL)

default timing value is 0 observation

<seasonal Seasonal TYPE=POINT
keywords> PULSE= depends on keyword

VALUE=1 BEFORE=(DURATION=0)
AFTER=(DURATION=0)

timing values based on keyword

The date keywords described in Table 12.1 in the section on the EVENTDEF state-
ment can be used as SAS predefined event keywords. The timing value(s) are as
defined in Table 12.1 and the default qualifiers are as shown in Table 12.8. The sea-
sonal keywords described in Table 12.2 in the section on the EVENTDEF statement
shows the seasonal keywords that can be used as SAS predefined event keywords.
The default qualifiers for seasonal keywords are shown in Table 12.8. Table 12.9
gives a more detailed description of how date and observation numbers are encoded
into AO and LS type predefined events.
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Table 12.9. Details for Encoding Date Information into AO and LS EVENTKEY
Variable Names

Variable Name Format Example Refers to
AO<int>OBS AO15OBS 15th observation
AO<date>D AO01JAN2000D ’01JAN2000’D

AO<date>h<hr>m<min>s<sec>DT AO01Jan2000h12m34s56DT ’01Jan2000:12:34:56’DT
LS<int>OBS LS15OBS 15th observation
LS<date>D LS01JAN2000D ’01JAN2000’D

LS<date>h<hr>m<min>s<sec>DT LS01Jan2000h12m34s56DT ’01Jan2000:12:34:56’DT

EVENTCOMB Statement

EVENTCOMB variable= variable-list /options;

An EVENTCOMB statement can be used with PROC HPFEVENTS to create a new
event from one or more events that have previously been defined.

The following options can be used with the EVENTCOMB statement.

RULE=
specifies the action to take when combining events. The RULE= option accepts the
following values: ADD | MAX | MIN | MINNZ | MINMAG | MULT . ADD | MAX |
MIN | MINNZ | MINMAG . ADD is the default. Table 12.7 explains how the RULE=
option is interpreted. Example 12.1 shows how PROC HPFEVENTS interprets the
RULE= option in the EVENTDEF and EVENTCOMB statements.

LABEL= ’SAS-label’
specifies a label for the dummy variable for this event. ’SAS-label’ is a quoted text
string of up to 256 characters. The default label is “Dummy Variable for Event
<variable-name>” where <variable-name> is the name specified in the EVENT state-
ment. The label is also stored as a description in the EVENTDATA OUT= data set.
If no label is specified, then “.” is displayed in the EVENTDATA OUT= data set, but
the default label is still used for the dummy variable.

EVENTGROUP Statement

EVENTGROUP <variable=> predefined-eventgroup-keyword ;

EVENTGROUP variable= ( variable-list ) ;

An EVENTGROUP statement can be used with PROC HPFEVENTS to create
an event group or make a predefined event group available for processing. The
EVENTGROUP statement constructs a SAS complex EVENT. A complex EVENT
is an event that is represented by multiple dummy variables. For example, seasonal
effects usually require multiple dummy variables. The SAS predefined event groups
are also available directly through PROC HPFENGINE. Each EVENTGROUP pre-
defined group keyword has a predefined set of event keywords associated with the
predefined group. The default SAS variable name for the predefined event is the
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predefined event keyword. However, the user can specify a SAS variable name for
the event. For example, you can rename the DAYS predefined EVENT group to TD
using the following statement:

EVENTGROUP TD= DAYS;

The following option can be used with the EVENTGROUP statement.

LABEL= ’SAS-label’
specifies a description which is stored in the EVENTDATA OUT= data set. If no
label is specified, then “.” is displayed in the EVENTDATA OUT= data set.

Table 12.10 describes the SAS predefined event group keywords. The SEASONAL
group is a PREDEFINED COMPLEX EVENT; the SEASONAL group is interpreted
to be one of the other SEASONAL groups at the time that dummy variables are
created based on the ID statement. The ID statement could be the ID statement asso-
ciated with either PROC HPFEVENTS or PROC HPFENGINE.

Table 12.10. Definitions for EVENTGROUP Predefined Event Group Keywords

Variable Name Description Associated Event Keywords
Seasonal Seasonal Depending on ID statement:

SECOND–1, ... SECOND–60 or
MINUTE–1, ... MINUTE–60 or

HOUR–1, ... HOUR–24 or
SUNDAY, ... SATURDAY or
WEEK–1, ... WEEK–53 or

TENDAY–1, ... TENDAY–36 or
SEMIMONTH–1, ... SEMIMONTH–24 or

JANUARY, ... DECEMBER or
QTR–1, QTR–2, QTR–3, QTR–4 or

SEMIYEAR–1, SEMIYEAR–2
SECONDS Seasonal SECOND–1, ... SECOND–60
MINUTES Seasonal MINUTE–1, ... MINUTE–60

HOURS Seasonal HOUR–1, ... HOUR–24
DAYS Seasonal SUNDAY, ... SATURDAY

WEEKDAYS Seasonal MONDAY, ... FRIDAY
(FRIDAY includes SATURDAY and SUNDAY)

WEEKS Seasonal WEEK–1, ... WEEK–53
TENDAYS Seasonal TENDAY–1, ... TENDAY–36

SEMIMONTHS Seasonal SEMIMONTH–1, ... SEMIMONTH–24
MONTHS Seasonal JANUARY, ... DECEMBER

QTRS Seasonal QTR–1, QTR–2, QTR–3, QTR–4
SEMIYEARS Seasonal SEMIYEAR–1, SEMIYEAR–2

CUBICTREND Trend LINEAR, QUAD, CUBIC
QUADTREND Trend LINEAR, QUAD
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Table 12.8 gives more detail on the seasonal and trend SAS predefined EVENTS that
compose the EVENT groups.

EVENTDATA Statement

EVENTDATA options;

An EVENTDATA statement can be used with PROC HPFEVENTS to input events
from an events data set and to output events to an events data set. Either the IN= or
the OUT= option must be specified.

The following options can be used with the EVENTDATA statement.

IN= SAS-data-set
names an input data set that contains event definitions to be used in the PROC
HPFEVENTS procedure.

OUT= SAS-data-set
names the output data set to contain the event definitions as specified in the
EVENTDATA IN= data sets and the EVENTDEF, EVENTKEY, and EVENTCOMB
statements. The OUT= data set can then be used in other SAS procedures to define
events.

CONDENSE
specifies that the EVENTDATA OUT= data set is condensed; any variables that con-
tain only default values are omitted from the data set. The EVENTDATA IN= option
reads both condensed data sets and data sets that have not been condensed. For more
details, see the “EVENTDATA OUT= Data Set” section on page 436.

EVENTDUMMY Statement

EVENTDUMMY options;

An EVENTDUMMY statement can be used with PROC HPFEVENTS to output
dummy variables for events to a data set. The OUT= option must be specified.

The following option can be used with the EVENTDUMMY statement.

OUT= SAS-data-set
names the output data set to contain the dummy variables for the specified events
based on the ID information as specified in the ID statement. The OUT= data set also
includes variables as specified in the VAR, BY, and ID statements.

VAR Statement

VAR variables;

A VAR statement can be used with PROC HPFEVENTS to copy input variables to
the output dummy data set. Only numeric variables can be specified. If the VAR
statement is omitted, all numeric variables are selected except those appearing in a
BY or ID statement.
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Details

Missing Value Interpretation

When the EVENTDUMMY statement is used to create dummy variables, you may
need to specify the handling of missing observations in the input data set, that is,
where the observation corresponding to a time ID is missing from the data set. In that
case, the input data set does not contain a value for the variables to be copied to the
EVENTDUMMY OUT= data set. Sometimes missing values should be interpreted
as unknown values. The forecasting models used by the HPFENGINE procedure can
effectively handle missing values (see Chapter 10, “The HPFENGINE Procedure”).
In this case, SETMISSING=MISSING can be used. But sometimes missing values
are known, such as when no observations should be interpreted as no (zero) value. In
this case, the SETMISSING=0 option should be used. In other cases, missing time
IDs should be skipped, such as when the data is to be accumulated at a later time. In
this case, SETMISSING=SKIP should be used.

Data Set Output

The HPFEVENTS procedure can create the EVENTDATA OUT= and
EVENTDUMMY OUT= data sets. The EVENTDATA OUT= data set con-
tains the EVENT definitions that may be used for input to another SAS procedure.
The EVENTDUMMY OUT= data set contains the variables listed in the BY
statement, the ID variable, any variables defined by the VAR statement, and any
dummy variables generated by the procedure.

EVENTDATA OUT= Data Set

The EVENTDATA OUT= data set contains the variables listed below. The default
values for the CONDENSE option are also given. When all the observations in the
variable are equal to the default value, the variable can be omitted from the event
definition data set.

–NAME– EVENT variable name. –NAME– is displayed with the case pre-
served. Since –NAME– is a SAS variable name, the event may
be referenced using any case. The –NAME– variable is required;
there is no default.

–CLASS– Class of EVENT: SIMPLE, COMBINATION, PREDEFINED.
The default for –CLASS– is SIMPLE.

–KEYNAME– Contains either a date keyword (SIMPLE EVENT) or a predefined
EVENT variable name (PREDEFINED EVENT) or an event name
(COMBINATION event). All –KEYNAME– values are displayed
in upper case. However, if the –KEYNAME– value refers to an
event name, then the actual name may be of mixed case. The de-
fault for –KEYNAME– is no keyname, designated by “.”.
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–STARTDATE– Contains either the date timing value or the first date timing value
to use in a do-list. The default for –STARTDATE– is no date,
designated by a missing value.

–ENDDATE– Contains the last date timing value to use in a do-list. The default
for –ENDDATE– is no date, designated by a missing value.

–DATEINTRVL– Contains the interval for the date do-list. The default for
–DATEINTRVL– is no interval, designated by “.”.

–STARTDT– Contains either the datetime timing value or the first datetime tim-
ing value to use in a do-list. The default for –STARTDT– is no
datetime, designated by a missing value.

–ENDDT– Contains the last datetime timing value to use in a do-list. The de-
fault for –ENDDT– is no datetime, designated by a missing value.

–DTINTRVL– Contains the interval for the datetime do-list. The default for
–DTINTRVL– is no interval, designated by “.”.

–STARTOBS– Contains either the observation number timing value or the first
observation number timing value to use in a do-list. The default for
–STARTOBS– is no observation number, designated by a missing
value.

–ENDOBS– Contains the last observation number timing value to use in a do-
list. The default for –ENDOBS– is no observation number, desig-
nated by a missing value.

–OBSINTRVL– Contains the interval length of the observation number do-list. The
default for –OBSINTRVL– is no interval, designated by “.”.

–TYPE– Type of EVENT. The default for –TYPE– is POINT.

–VALUE– Value for nonzero observation. The default for –VALUE– is 1.0.

–PULSE– INTERVAL that defines the units for the DURATION values. The
default for –PULSE– is no interval, designated by “.”.

–DUR–BEFORE– Number of durations before the timing value. The default for
–DUR–BEFORE– is 0.

–DUR–AFTER– Number of durations after the timing value. The default for
–DUR–AFTER– is 0.

–SLOPE–BEFORE– For TYPE=RAMP, TYPE=RAMPP, and TYPE=TC, this de-
termines whether the curve is GROWTH or DECAY before the
timing value. The default for –SLOPE–BEFORE– is GROWTH.

–SLOPE–AFTER– For TYPE=RAMP, TYPE=RAMPP, and TYPE=TC, this deter-
mines whether the curve is GROWTH or DECAY after the tim-
ing value. The default for –SLOPE–AFTER– is GROWTH unless
TYPE=TC, then the default is DECAY.

–SHIFT– Number of PULSE=intervals to shift the timing value. The shift
may be positive (forward in time) or negative (backward in time).
If PULSE= is not specified, then the shift is in observations. The
default for –SHIFT– is 0.
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–TCPARM– Parameter for EVENT of TYPE=TC. The default for –TCPARM–
is 0.5.

–RULE– Rule to use when combining events or when timing values of an
event overlap. The default for –RULE– is ADD.

–PERIOD– Frequency interval at which the event should be repeated. If this
value is missing, then the event is not periodic. The default for
–PERIOD– is no interval, designated by “.”.

–LABEL– Label or description for the event. If the user does not specify a
label, then the default label value will be displayed as “.”. For
events which produce dummy variables, either the user-supplied
label or the default label will be used. For COMPLEX events, the
–LABEL– value is merely a description of the group of events.
See the LABEL= option for more information on the default label.

Printed Output

The HPFEVENTS procedure has no printed output other than warning and error mes-
sages as recorded in the log.

Examples

Example 12.1. The Use of Multiple Timing Values in a Single
Event vs. Using Multiple Events and the
EVENTCOMB Statement

This example illustrates how the HPFEVENTS procedure interprets multiple tim-
ing values that overlap and the results of the same timing values used in separate
EVENTDEF statements that are combined using EVENTCOMB. Airline sales data
are used for this illustration.

proc hpfevents data=sashelp.air ;
var air;
id date interval=month start=’01Jan1949’D end=’01Feb1950’D;
eventdef xmasrp= CHRISTMAS / BEFORE=(SLOPE=GROWTH DURATION=3)

TYPE=RAMP RULE=MIN ;
eventdef easterrp= EASTER / BEFORE=(SLOPE=GROWTH DURATION=3)

TYPE=RAMP RULE=MIN ;
eventdef twotiming= EASTER CHRISTMAS /

BEFORE=(SLOPE=GROWTH DURATION=3)
TYPE=RAMP RULE=MIN ;

eventcomb twoevents= easterrp xmasrp / RULE=MIN ;
eventdata out= evdsout1 (label=’EASTER and CHRISTMAS Ramps’);
eventdummy out= evdumout1 (label=’Combining Timing Values’);

run;

proc print data=evdumout1;
run;
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Output 12.1.1. Multiple Timing Values vs. Multiple Events

Obs DATE AIR xmasrp easterrp twotiming twoevents

1 JAN1949 112 0.00000 0.00000 0.00000 0.00000
2 FEB1949 118 0.00000 0.33333 0.33333 0.00000
3 MAR1949 132 0.00000 0.66667 0.66667 0.00000
4 APR1949 129 0.00000 1.00000 1.00000 0.00000
5 MAY1949 121 0.00000 1.00000 1.00000 0.00000
6 JUN1949 135 0.00000 1.00000 1.00000 0.00000
7 JUL1949 148 0.00000 1.00000 1.00000 0.00000
8 AUG1949 148 0.00000 1.00000 1.00000 0.00000
9 SEP1949 136 0.00000 1.00000 0.00000 0.00000
10 OCT1949 119 0.33333 1.00000 0.33333 0.33333
11 NOV1949 104 0.66667 1.00000 0.66667 0.66667
12 DEC1949 118 1.00000 1.00000 1.00000 1.00000
13 JAN1950 115 1.00000 0.00000 0.00000 0.00000
14 FEB1950 126 1.00000 0.33333 0.33333 0.33333

In this example, the ramp for Christmas is defined for observations 9 through 14.
When XMASRP is evaluated, the undefined values in observations 1 through 8 are re-
placed with zeroes. The ramp for Easter is defined for the entire time series, as shown
in the variable EASTERRP. When both timing values are used in one EVENTDEF
statement for variable TWOTIMING, the values from the Easter ramp are used in
observations 1 through 8, and the RULE=MIN is applied to observations 9 through
14. For the EVENTCOMB statement that defines the variable TWOEVENTS, the
RULE=MIN option applies to all observations in the series.

Example 12.2. Using a DATA Step to Construct an Events Data
Set

The following example uses the DATA step to automatically construct potential out-
liers related to the price data found in the data set SASHELP.PRICEDATA.

data orders(keep=date region line product sale);
set SASHELP.PRICEDATA;
format date monyy.;

run;

The following SAS code constructs an EVENTDATA IN= data set for potential out-
liers (identified as sale > 450). Only the –NAME– and –STARTDATE– variable
are needed.

data outliers(keep=_NAME_ _STARTDATE_ );
set orders;
if (sale > 450) then do;

_NAME_ = trim(’AO’)||trim(left(put(YEAR(date),8.)))||’_’
||trim(left(put(MONTH(date),8.)));

_STARTDATE_=date;
end;

else delete;
format _STARTDATE_ monyy.;

run;
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Next, identify which outliers apply to each product.

data product_event_list (keep= region line product _NAME_);
set orders;
if (sale > 450) then do;

_NAME_ = trim(’AO’)||trim(left(put(YEAR(date),8.)))||’_’
||trim(left(put(MONTH(date),8.)));

end;
else delete;

run;

The potential outliers in the data set OUTL–REG1–LINE1–PROD1 apply to Region
1, Line 1, and Product 1.

data outl_reg1_line1_prod1;
set product_event_list;
if ((region ~= 1) | (line ~= 1) | (product ~= 1)) then delete;

run;

Dummy variables are created and duplicate outlier events are eliminated from the
events definition data set.

proc hpfevents data=orders ;
id date interval=month;
by region line product;
eventdata in= outliers ;
eventdata out= outldatabase (label=’outlier definitions’) condense;
eventdummy out= dummies (label=’dummy variables’);

run;

proc print data=outldatabase;
run;

proc print data=outl_reg1_line1_prod1;
run;

Examining the data set OUTL–REG1–LINE1–PROD1 shows that we might want
to look for outliers for May 1998, October 1999, March 2000, February 2001, June
2001, and September 2002.

Output 12.2.1. Potential Outliers for Region 1, Line 1, Product 1

Obs region line product _NAME_

1 1 1 1 AO1998_5
2 1 1 1 AO1999_10
3 1 1 1 AO2000_3
4 1 1 1 AO2001_2
5 1 1 1 AO2001_6
6 1 1 1 AO2002_9
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PROC HPFEVENTS produced this data set, which is condensed and has the duplicate
events eliminated.
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Output 12.2.2. Event Definition Data Set

Obs _NAME_ _STARTDATE_

1 AO1999_1 01JAN1999
2 AO1999_11 01NOV1999
3 AO2000_12 01DEC2000
4 AO2002_1 01JAN2002
5 AO1998_10 01OCT1998
6 AO1999_8 01AUG1999
7 AO2000_4 01APR2000
8 AO2001_1 01JAN2001
9 AO2001_12 01DEC2001
10 AO2002_12 01DEC2002
11 AO2000_11 01NOV2000
12 AO2001_3 01MAR2001
13 AO2001_11 01NOV2001
14 AO2002_2 01FEB2002
15 AO2000_10 01OCT2000
16 AO2001_2 01FEB2001
17 AO2001_4 01APR2001
18 AO2002_3 01MAR2002
19 AO1998_11 01NOV1998
20 AO1999_9 01SEP1999
21 AO2001_7 01JUL2001
22 AO1998_1 01JAN1998
23 AO1998_2 01FEB1998
24 AO1998_3 01MAR1998
25 AO1998_4 01APR1998
26 AO1998_5 01MAY1998
27 AO1998_6 01JUN1998
28 AO1998_7 01JUL1998
29 AO1998_8 01AUG1998
30 AO1998_12 01DEC1998
31 AO1999_2 01FEB1999
32 AO1999_3 01MAR1999
33 AO1999_4 01APR1999
34 AO1999_5 01MAY1999
35 AO1999_6 01JUN1999
36 AO1999_7 01JUL1999
37 AO1999_12 01DEC1999
38 AO2000_1 01JAN2000
39 AO2000_2 01FEB2000
40 AO2000_3 01MAR2000
41 AO2000_5 01MAY2000
42 AO2000_6 01JUN2000
43 AO2000_7 01JUL2000
44 AO2000_8 01AUG2000
45 AO2000_9 01SEP2000
46 AO2001_5 01MAY2001
47 AO2001_6 01JUN2001
48 AO2001_8 01AUG2001
49 AO2001_10 01OCT2001
50 AO2002_4 01APR2002
51 AO2002_5 01MAY2002
52 AO2002_7 01JUL2002
53 AO2002_8 01AUG2002
54 AO2002_9 01SEP2002
55 AO2002_10 01OCT2002
56 AO2002_11 01NOV2002
57 AO1998_9 01SEP1998
58 AO1999_10 01OCT1999
59 AO2001_9 01SEP2001
60 AO2002_6 01JUN2002
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Select the observations related to Region 1, Line 1, Product 1 and scale the dummies
that apply so that they are visible when plotted with the original data.

data pid1;
set dummies;
if ((region ~= 1) | (line ~= 1) | (product ~= 1)) then delete;
else do;

AO1998_5 = 100 * AO1998_5;
AO1999_10 = 100 * AO1999_10;
AO2000_3 = 100 * AO2000_3;
AO2001_2 = 100 * AO2001_2;
AO2001_6 = 100 * AO2001_6;
AO2002_9 = 100 * AO2002_9;

end;
run;

Use PROC GPLOT to visually verify that these potential outliers are appropriate for
the original data.

axis2 label=(angle=90 ’time series data for decomposition’);
symbol1 i=join v=’star’ c=black;
symbol2 i=join v=’circle’ c=red;
legend1 label=none value=(’Dummy for Event AO1998_5’

’Dummy for Event AO1999_10’
’Dummy for Event AO2000_3’
’Dummy for Event AO2001_2’
’Dummy for Event AO2001_6’
’Dummy for Event AO2002_9’
’Amount of Sales’);

proc gplot data=pid1 ;
plot AO1998_5 * date = 2

AO1999_10 * date = 2
AO2000_3 * date = 2
AO2001_2 * date = 2
AO2001_6 * date = 2
AO2002_9 * date = 2
sale * date = 1 / overlay legend=legend1 vaxis=axis2;

run;

443



Procedure Reference � The HPFEVENTS Procedure

Output 12.2.3. Plot of Amount and Dummy

Example 12.3. Preparing a Data Set for PROC HPFENGINE

This example illustrates how the HPFEVENTS procedure can be used to include
events in the automatic forecasting of time series data. The data has been altered
by adding a levelshift of 100 beginning at October, 1980. PROC HPFEVENTS is
used to create an event named PROMOTION as a level shift occurring at October
1, 1980. PROC HPFENGINE identifies the parameter of the event PROMOTION
as 97.6728, which is used in conjunction with the model named SP1 described as
“ARIMA(0, 1, 1) No Intercept”.

* make data set;
data work_intv;

set sashelp.workers;
if date >= ’01oct80’d then electric = electric+100;
drop masonry;

run;

* define event ’promotion’;
proc hpfevents data=work_intv lead=12;

id date interval=month;
eventdef promotion= ’01oct80’d / TYPE=LS;
eventdata out= evdsout1 (label=’list of events’);

run;
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* make specs;
proc hpfarimaspec modelrepository=sasuser.mycat

specname=sp1
speclabel="ARIMA(0,1,1) No Intercept";

dependent symbol=Y q=1 diflist=1 noint;
run;

proc hpfarimaspec modelrepository=sasuser.mycat
specname=sp2
speclabel="ARIMA(0,1,2)(0,1,1)_12 No Intercept";

dependent symbol=Y q=(1,2)(12) diflist=1 12 noint;
run;

* make selection list;
proc hpfselect modelrepository=sasuser.mycat

selectname=myselect
selectlabel="My Selection List";

select select=mape holdout=12;
spec sp1 sp2/

inputmap(symbol=Y var=electric)
eventmap(symbol=_NONE_ event=promotion)
;

run;

proc hpfengine data=work_intv lead=12 outest=outest
globalselection=myselect
modelrepository=sasuser.mycat
inevent=evdsout1;

id date interval=month;
forecast electric / task = select;

run;

proc print data=outest; run;
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Output 12.3.1. Model Selection Using Events
_ _

_ T C
M _ R O

_ O V A M
S _ D _ A N P

_ E M E D R S O
N L O L S T F N
A E D V V Y O E

O M C E A A P R N
b E T L R R E M T
s _ _ _ _ _ _ _ _

1 ELECTRIC MYSELECT SP1 Y ELECTRIC DEPENDENT NONE MA
2 ELECTRIC MYSELECT SP1 PROMOTION PROMOTION EVENT NONE SCALE

_ _ _ _ _
F _ _ _ S T P S
A S _ L S T V V T
C _ H P A C _ D A A A
T L I A B O E E L L T

O O A F R E R S R U U U
b R G T M L E T R E E S
s _ _ _ _ _ _ _ _ _ _ _

1 1 1 0 MA1_1 -0.5260 0.10798 -4.8718 .000007605 0
2 0 0 0 SCALE 97.6728 4.28766 22.7800 2.0879E-32 0
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Example 12.4. Using SAS Predefined Event Keywords
Directly in Other SAS Procedures

In Example 12.3, the user can modify the SAS code to use the EVENTS system
directly without using PROC HPFEVENTS. Instead of creating an event named
PROMOTION, the user can use the SAS predefined event keyword LS01OCT1980D.
This example uses the data set from Example 12.3 and the EVENT statement in
PROC HPFDIAGNOSE to illustrate this method.

proc hpfdiag data=work_intv print=all seasonality=12;
id date interval=month;
forecast electric;
event LS01OCT1980D;
trend diff=1 sdiff=1;
arimax ;

run;

The output from PROC HPFDIAGNOSE shows that a model was selected that in-
cluded the level shift occurring at October 1980.
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Output 12.4.1. Using the EVENT Statement in PROC HPFDIAGNOSE

The HPFDIAGNOSE Procedure

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 5.883729 5.949528 6.02335 6.096772 6.170614 6.241918
AR 1 5.949355 6.023199 6.096221 6.169567 6.243324 6.314554
AR 2 6.023143 6.096346 6.170056 6.24107 6.314917 6.38698
AR 3 6.096554 6.169837 6.240963 6.314829 6.387728 6.459893
AR 4 6.170396 6.243647 6.314666 6.387965 6.461478 6.533759
AR 5 6.241435 6.314684 6.386682 6.459847 6.533716 6.60647

Functional
Transformation Test

Functional
Variable Transform

ELECTRIC NONE

ARIMA Model Specification

Functional Model
Variable Transform Constant p d q P D Q Seasonality Criterion Statistic

ELECTRIC NONE NO 0 1 0 0 1 1 12 RMSE 13.6804

ARIMA Model Specification

Variable Status

ELECTRIC OK

ARIMA Event Selection

Event Name Selected d D Status

LS01OCT1980D YES 1 1 OK

ARIMA Model Specification After Adjusting for Events

Functional Model
Variable Transform Constant p d q P D Q Seasonality Event Criterion

ELECTRIC NONE NO 0 1 0 0 1 1 12 1 RMSE

ARIMA Model Specification
After Adjusting for Events

Variable Statistic Status

ELECTRIC 3.3460 OK
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Example 12.5. Viewing Dummy Variables Using SASGRAPH
This example illustrates how the HPFEVENTS procedure can be used to create dum-
mies. These dummy variables can then be viewed using SASGRAPH. This example
also shows the behavior of ramp variables when used with the SLOPE= option.

proc hpfevents data=sashelp.air ;
var air;
id date interval=month start=’01Jan1951’D end=’31Dec1951’D;
eventdef infgg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=ALL)

AFTER=(SLOPE=GROWTH DURATION=ALL);
eventdef infgd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=ALL)

AFTER=(SLOPE=DECAY DURATION=ALL) ;
eventdef infdg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=ALL)

AFTER=(SLOPE=GROWTH DURATION=ALL) ;
eventdef infdd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=ALL)

AFTER=(DURATION=ALL SLOPE=DECAY) ;

eventdef minfgg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=4)
AFTER=(SLOPE=GROWTH DURATION=ALL) ;

eventdef minfgd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=4)
AFTER=(SLOPE=DECAY DURATION=ALL) ;

eventdef minfdg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=4)
AFTER=(SLOPE=GROWTH DURATION=ALL);

eventdef minfdd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=4)
AFTER=(SLOPE=DECAY DURATION=ALL) ;

eventdef monlygg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=4);
eventdef monlygd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=4)

AFTER=(SLOPE=DECAY);
eventdef monlydg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=4)

AFTER=(SLOPE=GROWTH) ;
eventdef monlydd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=4)

AFTER=(SLOPE=DECAY);

eventdef ninfgg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=ALL)
AFTER=(SLOPE=GROWTH DURATION=2) ;

eventdef ninfgd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=ALL)
AFTER=(SLOPE=DECAY DURATION=2) ;

eventdef ninfdg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=ALL)
AFTER=(SLOPE=GROWTH DURATION=2) ;

eventdef ninfdd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=ALL)
AFTER=(SLOPE=DECAY DURATION=2) ;

eventdef nonlygg= ’01Jun1951’D / TYPE=RAMP AFTER=(SLOPE=GROWTH DURATION=2);
eventdef nonlygd= ’01Jun1951’D / TYPE=RAMP AFTER=(SLOPE=DECAY DURATION=2)

BEFORE=(SLOPE=GROWTH) ;
eventdef nonlydg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY)

AFTER=(SLOPE=GROWTH DURATION=2) ;
eventdef nonlydd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY)

AFTER=(SLOPE=DECAY DURATION=2) ;

eventdef mngg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=4)
AFTER=(SLOPE=GROWTH DURATION=2) ;

eventdef mngd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=GROWTH DURATION=4)
AFTER=(SLOPE=DECAY DURATION=2) ;

eventdef mndg= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=4)
AFTER=(SLOPE=GROWTH DURATION=2) ;
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eventdef mndd= ’01Jun1951’D / TYPE=RAMP BEFORE=(SLOPE=DECAY DURATION=4)
AFTER=(SLOPE=DECAY DURATION=2) ;

eventdata out= rampds (label=’Ramps Using DURATION= and SLOPE=’);
eventdummy out= rampdummies (label=’Dummy Variables for Ramps’);

run;

proc print data=rampdummies;
run;

Output 12.5.1. Ramp Dummy Variables

m m m m
m m m m o o o o

i i i i i i i i n n n n
D n n n n n n n n l l l l

O A A f f f f f f f f y y y y
b T I g g d d g g d d g g d d
s E R g d g d g d g d g d g d

1 JAN1951 145 -5 -5 5 5 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00
2 FEB1951 150 -4 -4 4 4 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00
3 MAR1951 178 -3 -3 3 3 0.25 0.25 0.75 0.75 0.25 0.25 0.75 0.75
4 APR1951 163 -2 -2 2 2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
5 MAY1951 172 -1 -1 1 1 0.75 0.75 0.25 0.25 0.75 0.75 0.25 0.25
6 JUN1951 178 0 0 0 0 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00
7 JUL1951 199 1 -1 1 -1 1.25 0.75 0.25 -0.25 1.00 1.00 0.00 0.00
8 AUG1951 199 2 -2 2 -2 1.50 0.50 0.50 -0.50 1.00 1.00 0.00 0.00
9 SEP1951 184 3 -3 3 -3 1.75 0.25 0.75 -0.75 1.00 1.00 0.00 0.00
10 OCT1951 162 4 -4 4 -4 2.00 0.00 1.00 -1.00 1.00 1.00 0.00 0.00
11 NOV1951 146 5 -5 5 -5 2.25 -0.25 1.25 -1.25 1.00 1.00 0.00 0.00
12 DEC1951 166 6 -6 6 -6 2.50 -0.50 1.50 -1.50 1.00 1.00 0.00 0.00

n n n n
n n n n o o o o
i i i i n n n n
n n n n l l l l m m m m

O f f f f y y y y n n n n
b g g d d g g d d g g d d
s g d g d g d g d g d g d

1 -2.5 -1.5 2.5 3.5 0.0 1.0 0.0 1.0 0.00000 0.00 1.00 1.00000
2 -2.0 -1.0 2.0 3.0 0.0 1.0 0.0 1.0 0.00000 0.00 1.00 1.00000
3 -1.5 -0.5 1.5 2.5 0.0 1.0 0.0 1.0 0.16667 0.25 0.75 0.83333
4 -1.0 0.0 1.0 2.0 0.0 1.0 0.0 1.0 0.33333 0.50 0.50 0.66667
5 -0.5 0.5 0.5 1.5 0.0 1.0 0.0 1.0 0.50000 0.75 0.25 0.50000
6 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.66667 1.00 0.00 0.33333
7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.83333 0.50 0.50 0.16667
8 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.00000 0.00 1.00 0.00000
9 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.00000 0.00 1.00 0.00000
10 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.00000 0.00 1.00 0.00000
11 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.00000 0.00 1.00 0.00000
12 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.00000 0.00 1.00 0.00000
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axis2 label=(angle=90 ’Dummy Variables’);
symbol1 i=join v=’star’ c=black;
symbol2 i=join v=’circle’ c=red;
symbol3 i=join v=’square’ c=red;
legend1 label=none value=(’Ramp with Extended Growth’

’Ramp with Extended Decay’
’Finite Ramp’);

proc gplot data=rampdummies ;
plot minfgg * date = 3

minfgd * date = 2
monlygg * date = 1 / overlay legend=legend1 vaxis=axis2;

run;

Output 12.5.2. Plot of Finite and Extended Dummy Variables

References
Montes, M. (2001a), Calculation of the Ecclesiastical Calendar,

http://www.smart.net/˜mmontes/ec-cal.html.

Montes, M. (2001b), Nature (1876) Algorithm for Calculating the Date of Easter in
the Gregorian Calendar, http://www.smart.net/˜mmontes/nature1876.html.
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Chapter 13
The HPFEXMSPEC Procedure
Overview

The HPFEXMSPEC procedure creates model specifications files for external models
(EXM). External model specifications are used for forecasts that are provided exter-
nal to the system. These external forecasts may have originated from an external
statistical model from another software package, may have been provided by an out-
side organization (e.g., a marketing organization, or government agency), or may be
based on judgment.

External forecasts may or may not provide prediction standard errors. If the predic-
tion standard errors are not provided, they must be computed from the prediction er-
rors and additional information. To properly compute the prediction standard errors,
the autocovariances of model residuals and information about any transformations
applied to the actual time series is needed. Since the autocovariances or transforma-
tions are not known to the system, this information must be specified by the user or
approximated from the actual time series or the prediction errors.

External forecasts may or may not provide lower and upper confidence limits. If
lower and upper confidence limits are not provided, they must be computed from the
prediction standard errors.

The external model specification is a means by which the user can specify information
about how external forecasts were created so that the prediction standard errors and/or
confidence limits can be approximated when they are not provided with the external
forecasts.

Getting Started
The following example shows how to create an external model specification file.

proc hpfexmspec repository=sasuser.mymodels
name=myexternal
label="My External Model";

exm method=wn;
run;

The options in the PROC HPFEXMSPEC statement are used to specify the location
of the specification file that will be output. Here the REPOSITORY= option specifies
that the output file be placed in a catalog SASUSER.MYMODELS, the NAME=
option specifies that the name of the file be “myexternal.xml”, and the LABEL=
option specifies a label for this catalog member. The EXM statement in the procedure
specifies the external model and the options used to control the parameter estimation
process for the model.
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Syntax
The following statements are used with the HPFEXMSPEC procedure.

PROC HPFEXMSPEC options;
EXM options;

Functional Summary

The statements and options controlling the HPFEXMSPEC procedure are summa-
rized in the following table.

Description Statement Option

Statements
specifies exponential smoothing model EXM

Model Repository Options
specifies the model repository PROC

HPFEXMSPEC
REPOSITORY=

specifies the model specification name PROC
HPFEXMSPEC

NAME=

specifies the model specification label PROC
HPFEXMSPEC

LABEL=

External Model Options
specifies the time series transformation EXM TRANSFORM=
specifies median forecasts EXM MEDIAN
specifies the method of creating forecast stan-
dard errors

EXM METHOD=

specifies the number of parameters used to cre-
ate the external forecast

EXM NPARMS=

specifies the number of time lags used to com-
pute the autocorrelations

EXM NLAGPCT=

specifies that the external model parameters
are fixed values

EXM NOEST

PROC HPFEXMSPEC Statement

PROC HPFEXMSPEC options ;

The following options can be used in the PROC HPFEXMSPEC statement.
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LABEL= SAS-label
labels the model specification to be stored in the SAS catalog or external file refer-
ence. The LABEL= option can also be specified as SPECLABEL=.

NAME= SAS-name
names the model specification to be stored in the SAS catalog or external file refer-
ence. The NAME= option can also be specified as SPECNAME=.

REPOSITORY= SAS-catalog-name | SAS-file-reference
names the SAS catalog or external file reference to contain the model specifica-
tion. The REPOSITORY= option can also be specified as MODELREPOSITORY=,
MODELREP=, or REP=.

EXM Statement

EXM options ;

The EXM statement is used to specify an external model used to generate the ex-
ternal forecasts. These options are not needed if the prediction standard errors and
confidence limits are provided.

The following examples illustrate typical uses of the EXM statement:

/* default specification */
exm;

/* Actual Series Autocorrelation */
exm method=acf;

/* Prediction Error Autocorrelation */
exm method=erroracf;

The following options can be specified in the EXM statement:

TRANSFORM= option
specifies the time series transformation that was applied to the actual time series when
generating the external forecast. The following transformations are provided:

NONE No transformation is applied.

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

When the TRANSFORM= option is specified, the actual time series must be strictly
positive. Once the time series is transformed, the model parameters are estimated
using the transformed time series. The forecasts of the transformed time series are
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then computed, and finally, the transformed time series forecasts are inverse trans-
formed. The inverse transform produces either mean or median forecasts depending
on whether the MEDIAN option is specified.

MEDIAN
specifies that the median forecast values were used to generate the external forecasts.
The external forecasts may have been based on the mean or median. By default the
mean value is assumed. If no transformation was used by the external forecasting
method, as specified by the TRANSFORM=NONE option, the mean and median
prediction standard errors and confidence limits are identical.

METHOD= method-name
specifies the external model to be used to approximate the prediction standard errors.
The default is METHOD=ACF. The following forecasting models are provided:

NONE No prediction error autocorrelation.

WN Prediction error autocorrelation is white noise.

ACF Autocorrelation is used.

ERRORACF Prediction error autocorrelation is used.

PERFECT Perfect autocorrelation is assumed.

NPARMS=n
specifies the number of parameters used by the external model to generate the fore-
casts. The default is NPARMS=0.

NLAGPCT=number
specifies the number of time lags as a percentage of the number of computed predic-
tions errors. The default is NLAGPCT=0.25.

SIGMA=number
specifies the prediction standard error for the external model. If the SIGMA= option
is specified with the NOEST option, the prediction mean square error specified by the
SIGMA= option is used. Otherwise, the prediction mean square error is computed
from the prediction errors using the NPARMS= option.

NOEST
specifies that the external model parameters are fixed values. To use this option, all of
the external model parameters must be explicitly specified. By default, the external
model parameters are optimized.

458



Chapter 14
The HPFIDMSPEC Procedure

Chapter Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Functional Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
PROC HPFIDMSPEC Statement . . . . . . . . . . . . . . . . . . . . . . . 462
IDM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Smoothing Model Specification Options for IDM Statement . . . . . . . . . 465
Smoothing Model Parameter Specification Options . . . . . . . . . . . . . . 467
Smoothing Model Forecast Bounds Options . . . . . . . . . . . . . . . . . 467



460



Chapter 14
The HPFIDMSPEC Procedure
Overview

The HPFIDMSPEC procedure creates model specifications files for intermittent de-
mand models (IDM).

You can specify many types of intermittent demand models using this procedure. In
particular, any model that can be analyzed using the HPF procedure can be specified.

Getting Started
The following example shows how to create an intermittent demand model specifica-
tion file. In this example, a model specification for Croston’s method is created.

proc hpfidmspec repository=sasuser.mymodels
name=mycroston
label="Croston Method" ;

idm interval=(method=simple)
size=(method=simple) ;

run;

The options in the PROC HPFIDMSPEC statement are used to specify the location
of the specification file that will be output. Here the REPOSITORY= option speci-
fies that the output file be placed in a catalog SASUSER.MYMODELS, the NAME=
option specifies that the name of the file be “mycroston.xml”, and the LABEL= op-
tion specifies a label for this catalog member. The IDM statement in the procedure
specifies the intermittent demand model and the options used to control the parameter
estimation process for the model.

Syntax
The following statements are used with the HPFIDMSPEC procedure.

PROC HPFIDMSPEC options;
IDM options;

Functional Summary

The statements and options controlling the HPFIDMSPEC procedure are summarized
in the following table.
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Description Statement Option

Statements
specifies the intermittent demand model IDM

Model Repository Options
specifies the model repository PROC

HPFIDMSPEC
REPOSITORY=

specifies the model specification name PROC
HPFIDMSPEC

NAME=

specifies the model specification label PROC
HPFIDMSPEC

LABEL=

Intermittent Demand Model Options
specifies the model for average demand IDM AVERAGE=
specifies the base value IDM BASE=
specifies the model for demand intervals IDM INTERVAL=
specifies the model for demand sizes IDM SIZE=

PROC HPFIDMSPEC Statement

PROC HPFIDMSPEC options ;

The following options can be used in the PROC HPFIDMSPEC statement.

LABEL= SAS-label
specified a descriptive label for the model specification to be stored in the SAS
catalog or external file reference. The LABEL= option can also be specified as
SPECLABEL=.

NAME= SAS-name
names the model specification to be stored in the SAS catalog or external file refer-
ence. The NAME= option can also be specified as SPECNAME=.

REPOSITORY= SAS-catalog-name | SAS-file-reference
names the SAS catalog or external file reference to contain the model specifica-
tion. The REPOSITORY= option can also be specified as MODELREPOSITORY=,
MODELREP=, or REP=.

IDM Statement

IDM options ;

The IDM statement is used to specify an intermittent demand model. An intermit-
tent demand series can be analyzed in two ways: individually modeling both demand
interval and size component, or jointly modeling these components using the aver-
age demand component (demand size divided by demand interval). The IDM state-
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ment specifies the two smoothing models to be used to forecast the demand interval
component (INTERVAL= option) and the demand size component (SIZE= option),
or specifies the single smoothing model to be used to forecast the average demand
component (AVERAGE= option). Therefore, two smoothing models (INTERVAL=
and SIZE= options) must be specified or one smoothing model (AVERAGE= option)
must be specified. Only one statement can be specified.

The following examples illustrate typical uses of the IDM statement:

/* default specification */
idm;

/* demand interval model only specification */
idm interval=(transform=log);

/* demand size model only specification */
idm size=(method=linear);

/* Croston’s Method */
idm interval=(method=simple)

size =(method=simple);

/* Log Croston’s Method */
idm interval=(method=simple transform=log)

size =(method=simple transform=log);

/* average demand model specification */
idm average=(method=bestn);

The default specification uses both the INTERVAL= option and SIZE= option de-
faults for the decomposed (Croston’s) demand model and the AVERAGE= option
defaults for the average demand model.

The following example illustrates how to automatically choose the decomposed de-
mand model using MAPE as the model selection criterion:

idm interval=(method=simple transform=auto select=mape)
size =(method=simple transform=auto select=mape);

forecast sales / model=idm select=mape;

The preceding fits two forecast models (simple and log simple exponential smooth-
ing) to both the demand interval and size components. The forecast model that results
in the lowest in-sample MAPE for each component is used to forecast the component.

The following example illustrates how to automatically choose the average demand
model using MAPE as the model selection criterion:

idm average=(method=simple transform=auto select=mape);
forecast sales / model=idm;
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The preceding fits two forecast models (simple and log simple exponential smooth-
ing) to the average demand component. The forecast model that results in the lowest
in-sample MAPE is used to forecast the component.

Combining the above two examples, the following example illustrates how to auto-
matically choose between the decomposed demand model and the average demand
model using MAPE as the model selection criterion:

idm interval=(method=simple transform=auto select=mape)
size =(method=simple transform=auto select=mape)
average =(method=simple transform=auto select=mape);

forecast sales / model=idm select=mape;

The preceding automatically selects between the decomposed demand model and the
average demand model as described previously. The forecast model that results in the
lowest in-sample MAPE is used to forecast the series.

The following options can be specified in the IDM statement:

INTERVAL=(smoothing-model-options)
specifies the smoothing model used to forecast the demand interval component. See
the following smoothing model specification options.

SIZE=(smoothing-model-options)
specifies the smoothing model used to forecast the demand size component. See the
following smoothing model specification options.

AVERAGE=(smoothing-model-options)
specifies the smoothing model used to forecast the demand average component. See
the following smoothing model specification options.

BASE=AUTO | number
specifies the base value of the time series used to determine the demand series com-
ponents. The demand series components are determined based on the departures from
this base value. If a base value is specified, this value is used to determine the demand
series components. If BASE=AUTO is specified, the time series properties are used to
automatically adjust the time series. For the common definition of Croston’s Method
use BASE=0, which defines departures based on zero. The default is BASE=0.

Given a time series, yt, and base value, b, the time series is adjusted by the base value
to create the base adjusted time series, xt = yt − b. Demands are assumed to occur
when the base adjusted series is nonzero (or when the time series, yt, departs from
the base value, b).

When BASE=AUTO, the base value is automatically determined by the time series
median, minimum, and maximum value and the INTERMITTENT= option value of
the FORECAST statement.
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Smoothing Model Specification Options for IDM Statement

The smoothing model options describe how to forecast the demand interval, size, and
average demand components (INTERVAL= option, SIZE= option, and AVERAGE=
option).

If the smoothing model options are not specified, the following are the defaults for
the demand interval, size, and average components.

interval=(transform=auto method=bestn
levelrest=(0.001 0.999)
trendrest=(0.001 0.999)
damprest =(0.001 0.999) select=rmse bounds=(1,.));

size =(transform=auto method=bestn
levelrest=(0.001 0.999)
trendrest=(0.001 0.999)
damprest =(0.001 0.999) select=rmse);

average =(transform=auto method=bestn
levelrest=(0.001 0.999)
trendrest=(0.001 0.999)
damprest =(0.001 0.999) select=rmse);

The above smoothing model options provide the typical automation in intermittent
demand model selection.

The following describes the smoothing model options:

TRANSFORM= option
specifies the time series transformation to be applied to the demand component. The
following transformations are provided:

NONE No transformation is applied.

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

AUTO Automatically choose between NONE and LOG based on model
selection criteria. This option is the default.

When the TRANSFORM= option is specified, the demand component must be
strictly positive. Once the demand component is transformed, the model parameters
are estimated using the transformed component. The forecasts of the transformed
component are then computed, and finally, the transformed component forecasts are
inverse transformed. The inverse transform produces either mean or median forecasts
depending on whether the MEDIAN option is specified.
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MEDIAN
specifies that the median forecast values are to be estimated. Forecasts can be based
on the mean or median. By default the mean value is provided. If no transformation
is applied to the actual series using the TRANSFORM= option, the mean and median
component forecast values are identical.

METHOD= method-name
specifies the forecasting model to be used to forecast the demand component. A sin-
gle model can be specified or a group of candidate models can be specified. If a
group of models is specified, the model used to forecast the accumulated time series
is selected based on the SELECT= option of the IDM statement and the HOLDOUT=
option of the FORECAST statement. The default is METHOD=BESTN. The follow-
ing forecasting models are provided:

SIMPLE Simple (Single) Exponential Smoothing

DOUBLE Double (Brown) Exponential Smoothing

LINEAR Linear (Holt) Exponential Smoothing

DAMPTREND Damped Trend Exponential Smoothing

BESTN Best Candidate Nonseasonal Smoothing Model (SIMPLE,
DOUBLE, LINEAR, DAMPTREND)

NOSTABLE
specifies that the smoothing model parameters are not restricted to the additive in-
vertible region of the parameter space. By default, the smoothing model parameters
are restricted to be inside the additive invertible region of the parameter space.

LEVELPARM= number
specifies the level weight parameter initial value. See the following smoothing model
parameter specifications.

LEVELREST=(number,number)
specifies the level weight parameter restrictions. See the following smoothing model
parameter specifications.

TRENDPARM= number
specifies the trend weight parameter initial value. See the following smoothing model
parameter specifications.

TRENDREST=(number,number)
specifies the trend weight parameter restrictions. See the following smoothing model
parameter specifications.

DAMPPARM= number
specifies the damping weight parameter initial value. See the following smoothing
model parameter specifications.

DAMPREST=(number,number)
specifies the damping weight parameter restrictions. See the following smoothing
model parameter specifications.
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NOEST
specifies that the smoothing model parameters are fixed values. To use this option,
all of the smoothing model parameters must be explicitly specified. By default, the
smoothing model parameters are optimized.

BOUNDS=(number,number)
Specifies the component forecast bound. See the following smoothing model forecast
bounds.

SELECT= option
specifies the model selection criterion (statistic of fit) to be used to select from
several candidate models. This option would often be used in conjunction with
the HOLDOUT= option specified in the FORECAST statement. The default is
SELECT=RMSE. The statistics of fit provided are the same as those provided in
the FORECAST statement.

Smoothing Model Parameter Specification Options

The parameter options are used to specify smoothing model parameters. If the pa-
rameter restrictions are not specified the default is (0.001 0.999), which implies that
the parameters are restricted between 0.001 and 0.999. Parameters and their restric-
tions are required to be greater than or equal to -1 and less than or equal to 2. Missing
values indicate no lower and/or upper restriction. If the parameter initial values are
not specified, the optimizer uses a grid search to find an appropriate initial value.

Smoothing Model Forecast Bounds Options

Specifies the demand component forecast bounds. The forecast bounds restrict the
component forecasts. The default for demand interval forecasts is BOUNDS=1. The
lower bound for the demand interval forecast must be greater than one. The default
for demand size forecasts is BOUNDS=(.,.) or no bounds. The demand size forecasts
bounds are applied after the forecast is adjusted by the base value.
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Chapter 15
The HPFRECONCILE Procedure
Overview

When the data are organized in a hierarchical fashion, there are often accounting
constraints that link series at different levels of the hierarchy. For example, the sales
of a particular product by a retail company is the sum of the sales of the same product
in all stores belonging to the company. It seems natural to require that the same
constraints hold for the predicted values as well. However, imposing such constraints
during the forecasting process can be difficult or impossible. Therefore, the series
are often forecast independently at different levels so that the resulting forecasts do
not abide by the constraints binding the original series. The after-the-fact process
through which such constraints are enforced is called reconciliation.

The HPFRECONCILE procedure reconciles forecasts of time series data at two dif-
ferent levels of aggregation. Optionally, the HPFRECONCILE procedure can disag-
gregate forecasts from upper-level forecasts or aggregate forecasts from lower-level
forecasts.

Additionally, the procedure enables the user to specify the direction and the method
of reconciliation, equality constraints, and bounds on the reconciled values at each
point in time.

Getting Started
This section outlines the use of the HPFRECONCILE procedure.

Consider the following hierarchical structure of the SASHELP.PRICEDATA data
set.
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Figure 15.1. Hierarchical Structure of SASHELP.PRICEDATA

Forecasts for the dependent variable sale are generated first at level 2, region / prod-
uct, and then at level 1, region. The separate forecasts are then reconciled in a
bottom-up manner by using the HPFRECONCILE procedure.
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/*
/ Forecast series at level 2 (region/product);
/-------------------------------------------------------------*/

*Step 1: model selection;
proc hpfdiagnose data=sashelp.pricedata

outest=lvl2est
modelrepository=work.mycat
prefilter=both
criterion=mape;
id date interval=month;
by region product;
forecast sale;
input price;

run;

*Step 2: estimation and forecasting ;
proc hpfengine data=sashelp.pricedata inest=lvl2est

out=_null_ outest=lvl2fest
modelrepository=work.mycat outfor=lvl2for;
id date interval=month;
by region product;
forecast sale / task=select ;
stochastic price;

run;

/*
/ Forecast aggregated series at level 1 (region);
/-------------------------------------------------------------*/
*Step 1: model selection;
proc hpfdiagnose data=sashelp.pricedata

outest=lvl1est
modelrepository=work.mycat
prefilter=both
criterion=mape;
id date interval=month notsorted;
by region;
forecast sale / accumulate=total;
input price / accumulate=average;

run;

*Step 2: estimation and forecasting;
proc hpfengine data=sashelp.pricedata inest=lvl1est

out=_null_ outest=lvl1fest
modelrepository=work.mycat outfor=lvl1for;
id date interval=month notsorted;
by region;
forecast sale / task=select accumulate=total;
stochastic price /accumulate=average;

run;

/*
/ Reconcile forecasts bottom up with default settings
/-------------------------------------------------------------*/
proc hpfreconcile disaggdata=lvl2for aggdata=lvl1for

direction=BU
outfor=lvl1recfor;

id date interval=month;
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by region product;
run;

Syntax
The HPFRECONCILE procedure is controlled by the following statements:

PROC HPFRECONCILE < options > ;
BY variables < / option > ;
AGGBY variables < / option > ;
ID variable INTERVAL=interval < / options > ;
DISAGGDATA < options > ;
AGGDATA < options > ;

Functional Summary

The statements and options used with the HPFRECONCILE procedure are summa-
rized in the following table.

Description Statement Option

Statements
specify the AGGBY variables AGGBY
specify the BY variables BY
specify the time ID variable ID
specify custom variable names for the
DISAGGDATA= data set

DISAGGDATA

specify custom variable names for the
AGGDATA= data set

AGGDATA

Data Set Options
specify the disaggregated input data set (child
level in the hierarchy)

HPFRECONCILE DISAGGDATA=

specify the aggregated input data set (parent
level in the hierarchy)

HPFRECONCILE AGGDATA=

specify the output data set HPFRECONCILE OUTFOR=
specify the data set that contains the con-
straints on the reconciled forecasts

HPFRECONCILE CONSTRAINT=

specify that the OUTFOR= data sets contain
the RECDIFF variable

HPFRECONCILE RECDIFF

specify the name of the variable that contains
the actual values in the DISAGGDATA= data
set

DISAGGDATA ACTUAL=

specify the name of the variable that contains
the actual values in the AGGDATA= data set

AGGDATA PREDICT=
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Description Statement Option

specify the name of the variable that contains
the predicted values in the DISAGGDATA=
data set

DISAGGDATA ACTUAL=

specify the name of the variable that contains
the predicted values in the AGGDATA= data
set

AGGDATA PREDICT=

specify the name of the variable that con-
tains the lower confidence limit in the
DISAGGDATA= data set

DISAGGDATA LOWER=

specify the name of the variable that contains
the lower confidence limit in the AGGDATA=
data set

AGGDATA LOWER=

specify the name of the variable that con-
tains the upper confidence limit in the
DISAGGDATA= data set

DISAGGDATA UPPER=

specify the name of the variable that contains
the upper confidence limit in the AGGDATA=
data set

AGGDATA UPPER=

specify the name of the variable that contains
the prediction error in the DISAGGDATA=
data set

DISAGGDATA ERROR=

specify the name of the variable that contains
the prediction error in the AGGDATA= data
set

AGGDATA ERROR=

specify the name of the variable that contains
the standard error in the DISAGGDATA= data
set

DISAGGDATA STD=

specify the name of the variable that contains
the standard error in the AGGDATA= data set

AGGDATA STD=

Error Message Options
specify the resolution of error and warning
messages

HPFRECONCILE ERRORTRACE=

Analysis Options
specify the aggregation method HPFRECONCILE AGGREGATE=
specify the confidence level HPFRECONCILE ALPHA=
specify the method of computing confidence
limits

HPFRECONCILE CLMETHOD=

specify the reconciliation direction HPFRECONCILE DIRECTION=
specify the ending time ID value ID END=
specify the frequency ID INTERVAL=
specify the disaggregation function HPFRECONCILE DISAGGREGATION=
specify that only the prediction is to be recon-
ciled

HPFRECONCILE PREDICTONLY

474



Syntax

Description Statement Option

specify the method of computing standard er-
rors

HPFRECONCILE STDMETHOD=

specify boundaries for the standard error HPFRECONCILE STDDIFBD=
specify the starting time ID value ID START=
specify that the loss function be weighted by
the inverse of the prediction variances

HPFRECONCILE WEIGHTED

PROC HPFRECONCILE Statement

PROC HPFRECONCILE options ;

The following options can be used in the PROC HPFRECONCILE statement.

Options related to the input data sets

DISAGGDATA | DATA= SAS-data-set
specifies the name of the SAS data set containing the forecast of the disaggre-
gated time series data. Typically, the DISAGGDATA= data set is generated by the
OUTFOR= statement of the HPFENGINE procedure.

If the DISAGGDATA= data set is not specified, the data set opened last is used.
The dimensions of the DISAGGDATA= data set are greater than the dimensions of
the AGGDATA= data set. The DISAGGDATA= data set must be sorted by the BY
variables and by the ID variable when the latter is specified.

AGGDATA= SAS-data-set
specifies the name of the SAS data set containing the forecasts of the aggregated
time series data. Typically, the AGGDATA= data set is generated by the OUTFOR=
statement of the HPFENGINE procedure. If the AGGDATA= data set is not specified,
only bottom-up reconciliation is allowed.

The AGGDATA data set must contain a proper subset, possibly empty, of the BY vari-
ables present in the DISAGGDATA data set. Such BY variables are called AGGBY
variables. The AGGDATA= data sets must be sorted by the AGGBY variables and
by the ID variable when the latter is specified.

CONSTRAINT= SAS-data-set
specifies the name of the SAS data set containing the constraints for the reconciled
series. See “CONSTRAINT= Data Set” for more details.

Options Related to the Output Data Sets

OUTFOR= SAS-data-set
specifies the name of the output SAS data set that will contain the reconciled values.

OUTRECFAIL= SAS-data-set
specifies the name of the SAS data set containing a summary of the nodes for which
reconciliation failed.
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RECDIFF
If the RECDIFF option is specified, the OUTFOR= data sets will contain a variable
named RECDIFF that is the difference between the reconciled forecasts and the orig-
inal forecasts.

Options Related to Error Messages

ERRORTRACE= option
specifies the resolution at which the error and warning messages should be printed to
the log.

The following values are allowed:

DATA Messages are printed only one time at the end of the procedure run.

AGGBY Messages are printed for each AGGBY group.

ID Messages are printed for each ID value.

The default is ERRORTRACE=DATA.

Options Related to the Analysis

AGGREGATE= TOTAL | AVERAGE
specifies whether the dependent variable in the AGGDATA= data set is the total sum
or the average of the dependent variable in the DISAGGDATA= data set. The default
is AGGREGATE=TOTAL.

ALPHA= n
specifies the level of the confidence limits when CLMETHOD=GAUSSIAN. The
ALPHA= value must be between 0 and 1. When you specify ALPHA=α, the up-
per and lower confidence limits will have a 1 − α confidence level. The default is
ALPHA=.05, which produces 95% confidence intervals. ALPHA values are rounded
to the nearest hundredth.

CLMETHOD= option
specifies the method used to compute confidence limits for the reconciled forecasts.

The following methods are provided:

GAUSSIAN The confidence intervals are computed assuming that the forecasts
are approximately Gaussian.

SHIFT The confidence intervals are computed by recentering the original
confidence intervals around the new forecasts.

The default value is CLMETHOD=SHIFT. See “Details” for more information about
the methods of computing confidence intervals.

DIRECTION= Reconciliation-Direction
specifies the reconciliation direction. The following reconciliation values are al-
lowed:
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BU Bottom-up reconciliation.

TD Top-down reconciliation.

If the AGGDATA= data set is not specified, only DIRECTION=BU is allowed.

The default value is DIRECTION=BU.

See “Details” for more information about the reconciliation directions available in
PROC HPFRECONCILE.

DISAGGREGATION= DIFFERENCE | PROPORTIONAL
specifies the type of loss function for top-down reconciliation.

DISAGGREGATION=PROPORTIONAL is available only when all the forecasts at
a given ID value share the same sign. See “Details” for more information about on
the expressions of the loss function.

The default value is DISAGGREGATION=DIFFERENCE.

PREDICTONLY
specifies that only the predicted value is to be reconciled.

SIGN= option
specifies the sign constraint on the reconciled series. Valid values are as follows:

NONNEGATIVE | POSITIVE if the output series are supposed to be nonnegative.

NONPOSITIVE | NEGATIVE if the output series are supposed to be nonpositive.

STDMETHOD= option
specifies the method used to compute standard errors for the reconciled forecasts.

The following methods are provided:

UNCHANGED Reconciled standard errors are the original standard errors.

AGG Reconciled standard errors are proportional to the original aggre-
gated standard errors.

DISAGG Reconciled standard errors are proportional to the original disag-
gregated standard errors.

The default values are STDMETHOD=DISAGG for top-down reconciliation and
STDMETHOD=AGG for bottom-up reconciliation. However, if the AGGDATA=
data set is not specified for bottom-up reconciliation, then STDMETHOD=DISAGG
is the default. See “Details” for more information about the methods of computing
standard errors.

STDDIFBD= n
specifies a positive number that defines boundaries for the percentage difference
between the original standard error and the reconciled standard error. If the per-
centage difference is greater than the values specified in the STDDIFBD= option,
the reconciled standard error will be equal to the boundary value. For example, if
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STDDIFBD=.3, the reconciled standard errors will be within a 30% band of the orig-
inal standard errors.

The default value is STDDIFBD=.25.

WEIGHTEDExperimental
specifies that the loss function for top-down reconciliation be weighted by the inverse
of the variance of the statistical forecasts.

BY Statement

BY variables <NOTSORTED>;

The BY statement defines separate groups of observations for the DISAGGDATA=
data set. BY variables can be either character or numeric.

All BY variables must exist in the DISAGGDATA= data set. Conversely, only a
subset, or none, of the BY variables must be present in the AGGDATA= data set.
The BY variables that are present in the AGGDATA= data set are called AGGBY
variables. PROC HPFRECONCILE finds the AGGBY variables by comparing the
variables in the BY statement with the variables in the AGGDATA= data set. The
AGGBY groups must follow the same sorting order in both the DISAGGDATA= and
the AGGDATA= data sets. However, some groups can be missing from either data
set if the NOTSORTED option is not specified. When the NOTSORTED option is
specified, all AGGBY groups must be present in both data sets and must follow the
same order. See the AGGBY statement for more details.

AGGBY Statement

AGGBY variables ;

When DIRECTION=BU and the AGGDATA= data set is not specified, the AGGBY
statement can be used to specify the BY variables in the OUTFOR= data set.

If the AGGDATA= data set is specified, the AGGBY statement is ignored.

ID Statement

ID variable INTERVAL=interval < /options > ;

The ID statement names a numeric variable that identifies observations in the input
and output data sets. The ID variable’s values are assumed to be SAS date, time, or
datetime values. In addition, the ID statement specifies the frequency associated with
the time series. If the ID statement is specified, the INTERVAL= option must also be
specified. If an ID statement is not specified, the observation number, with respect to
the BY group, is used as the time ID. If the ID statement is specified, the ID variable
must be present and must have the same frequency in both the DISAGGDATA= data
set and the AGGDATA= data set.

The following options can be used with the ID statement.

IRREGULAR option
specifies whether to allow for irregularities in the ID variable frequency. By de-
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fault, irregularities are not allowed. That is, all ID values corresponding to the
INTERVAL= frequency must be present between the START= and END= values in
both AGGDATA= and DISAGGDATA= data sets.

END= option
specifies a SAS date, datetime, or time value that represents the date at which the
reconciliation should end. If the largest time ID variable value is less than the END=
value, this option has no effect.

INTERVAL= interval
specifies the frequency of the input time series. The frequency must be the same for
all input data sets. For example, if the input data sets consist of quarterly observa-
tions, then INTERVAL=QTR should be used. See the SAS/ETS User’s Guide for the
intervals that can be specified.

START= option
specifies a SAS date, datetime, or time value that represents the time ID value at
which the reconciliation should begin. This option can be used to limit the reconcili-
ation process only to future forecasts—that is, forecasts that are outside the historical
period—and reduce the computational burden. For example, START=“&sysdate”D
uses the automatic macro variable SYSDATE to start the reconciliation at the current
date.

DISAGGDATA Statement

DISAGGDATA < options > ;

The DISAGGDATA statement enables the user to specify custom names for fore-
casting variables in the DISAGGDATA= data set. The default names are ACTUAL,
PREDICT, LOWER, UPPER, ERROR, and STD.

The following options are available:

• ACTUAL=variable-name

• PREDICT=variable-name

• LOWER=variable-name

• UPPER=variable-name

• ERROR=variable-name

• STD=variable-name

AGGDATA Statement

AGGDATA < options > ;

The AGGDATA statement enables the user to specify custom names for forecast-
ing variables in the DISAGGDATA= data set. The default names are ACTUAL,
PREDICT, LOWER, UPPER, ERROR, and STD.

The following options are available:
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• ACTUAL=variable-name

• PREDICT=variable-name

• LOWER=variable-name

• UPPER=variable-name

• ERROR=variable-name

• STD=variable-name

Details
Assume a two-level hierarchical structure as depicted in Figure 15.2.
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Figure 15.2. Hierarchical Structure

Let yt be the aggregate total at time t, and let xt = [x1,t, x2,t, . . . , xm,t]′ be the vector
of disaggregated values at time t, t = 1, . . . , T . As usual, indicate by ŷt and x̂t the
pre-reconciliation statistical model forecasts of yt and xt, respectively. Let ỹt and
x̃t indicate instead the reconciled values. The number of series m can vary with t;
however, for simplicity, it is considered fixed in the following discussion.

At each time t, the values of the series xi,t, i = 1 . . . , m, and yt are bound
by an aggregation constraint. By default, the constraint is assumed to be yt =∑m

i=1 xi,t, which corresponds to the AGGREGATE=TOTAL option of the PROC
HPFRECONCILE statement. If instead the option AGGREGATE=AVERAGE is
specified, the constraint is yt = 1

m

∑m
i=1 xi,t. For example, if the xi’s are the sales at

store level for a retail company, then yt can be either the total sales at company level
or the average sales per store.

If you need to have forecasts at both levels of the hierarchy, it is often more convenient
to produce statistical forecasts separately for each series. However, the resulting
forecasts do not abide by the aggregation constraint that binds the original series. The
after-the-fact process through which the statistical forecasts are modified to enforce
the aggregation constraint is called reconciliation.

By determining whether the upper-level forecasts or the lower-level forecasts are ad-
justed to meet the aggregation constraint, you can distinguish between bottom-up
(BU) and top-down (TD) reconciliation.

Additionally, PROC HPFRECONCILE enables you to impose constraints on the indi-
vidual reconciled forecasts. For example, you can require that x̃1 = 10 and x̃2 ≥ 15.
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Top-Down Reconciliation

The goal of top-down (TD) reconciliation is to adjust the statistical forecasts x̂i,t to
obtain new series {x̃i,t} of reconciled forecasts so that the sum of the reconciled
forecasts at each fixed time t is equal to ŷt, and satisfies the constraints that you
specify in the CONSTRAINT= data set.

The problem can be restated as follows: minimize with respect to x̃ a quadratic loss
function

L(x̃t; x̂t)

subject to the following constraints:

1. the top-down constraint

m∑
i=1

x̃i,t = ŷt

2. the equality constraints

x̃i,t = ei,t i ∈ Et

3. the lower bounds

x̃i,t ≥ li,t i ∈ Lt

4. the upper bounds

x̃i,t ≤ ui,t i ∈ Ut

where Et, Lt, and Ut are subsets of {1, 2, . . . , m}.

When needed, PROC HPFRECONCILE uses an iterative interior-point algorithm to
solve the quadratic optimization problem.

When DISAGGREGATION=DIFFERENCE, the loss function is

L(x̃t; x̂t) = (x̃t − x̂t)′W−1(x̃t − x̂t)

where W is a positive semidefinite matrix of weights independent of x̃t.

If the WEIGHTED option is specified, the matrix W is the diagonal matrix with the
variances of x̂t on the main diagonal. Otherwise, by default, W is the identity matrix
I .

Note that the loss function when DISAGGREGATION=DIFFERENCE is defined for
any value of x̂t.
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When DISAGGREGATION=PROPORTIONAL, the loss function is

L(x̃t; x̂t) = (x̃t − x̂t)′X̂− 1
2 W−1X̂− 1

2 (x̃t − x̂t)

where X̂− 1
2 is a diagonal matrix with the square root of x̂t on the main diagonal.

Notice that when DISAGGREGATION=PROPORTIONS, the loss function is de-
fined only when all x̂i,t are strictly positive. However, the solutions can be ex-
tended to the cases where they are all nonnegative or they are all nonpositive. PROC
HPFRECONCILE checks whether the signs of all forecasts at any given time t are
concordant. If they are not, it uses DISAGGREGATION=DIFFERENCE for only
those time ID values. In such a case, the –RECONSTATUS– variable indicates for
which observations the loss function used in the reconciliation process was different
from the one that you specified in the PROC HPFRECONCILE statement. You can
also use the ERRORTRACE=ID option to print a message to the log for each ID value
for which the forecasts were not reconciled according to your specification.

The case where
∑m

j=1 x̂j,t = 0 and DISAGGREGATION=PROPORTIONS is han-

dled by setting x̃i,t = ŷt

m when AGGREGATE=TOTAL and x̃i,t = ŷt when
AGGREGATE=AVERAGE.

Now consider the case where the only constraint is the top-down constraint and W =
I . Under such hypotheses, the top-down problem admits intuitive solutions.

When DISAGGREGATION=DIFFERENCE, the loss function becomes

L(x̃t; x̂t) =
m∑

i=1

(x̂i,t − x̃i,t)2

This leads to the following solution:

x̃i,t = x̂i,t +
rt

m

where rt is the aggregation error—that is,

rt := ŷt −
m∑

i=1

x̂i,t when AGGREGATE = TOTAL

and

rt := mŷt −
m∑

i=1

x̂i,t when AGGREGATE = AVERAGE

Thus, when DISAGGREGATION=DIFFERENCE, the reconciled forecast x̃i,t is
found by equally splitting the aggregation error rt among the disaggregated forecasts
x̂i,t.
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Notice that even if all statistical forecasts x̂i,t are strictly positive, the recon-
ciled forecasts x̃i,t need not be so if no bounds are specified. In particular,
x̂i,t = 0 does not imply x̃i,t = 0. On the other hand, as previously mentioned,
DISAGGREGATION=DIFFERENCE can be used when the statistical forecasts have
discordant signs.

If DISAGGREGATION=PROPORTIONS, the loss function becomes

L(x̃t; x̂t) =
m∑

i=1

(
x̂i,t − x̃i,t√

x̂i,t

)2

This leads to the following solutions:

x̃i,t =
x̂i,t∑m

j=1 x̂j,t
ŷt when AGGREGATE = TOTAL

and

x̃i,t =
x̂i,t∑m

j=1 x̂j,t
mŷt when AGGREGATE = AVERAGE

Thus, the reconciled forecast x̃i,t is found by disaggregating yt or myt according to
the proportion that x̂i,t represents in the total sum of the disaggregated forecasts.

Missing Predicted Values

When some of the predicted values x̂i,t are missing, the missing values are replaced
by the actual values xi,t, if these are present. This is done to prevent bias between
the aggregated and reconciled forecasts, which results from models in which missing
values in the predictions are generated because of the presence of lagged variables.

Standard Errors

When STDMETHOD=UNCHANGED, the reconciled standard error σ̃i,t of x̃i,t is
equal to the original standard error σ̂i,t of x̂i,t.

When STDMETHOD=DISAGG, the reconciled standard error is proportional to the
original disaggregated standard error and is computed as follows:

σ̃i,t = wσ̂i,t

where w = x̃i,t

x̂i,t
.

When STDMETHOD=AGG, the reconciled standard error of x̃i,t is proportional to
the aggregated standard error. When AGGREGATE=TOTAL, it is

σ̃i,t = p̂i,tσ̂t
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and when AGGREGATE=AVERAGE, it is

σ̃i,t = p̂i,tmσ̂t

where p̂i,t = x̂i,tPm
j=1 x̂j,t

, and σ̂t is the standard deviation of ŷt.

If the selected method for the standard errors fails, PROC HPFRECONCILE tries to
use a different method and displays a warning message in the log. For example, if
STDMETHOD=DISAGG and the standard error is missing in the DISAGGDATA=
data set, STDMETHOD=AGG is used instead, if possible. In such a case, the
–RECONSTATUS– variable identifies the observation that was not reconciled ac-
cording to your preferences. You can also use the ERRORTRACE=ID option to
display a message in the log that identifies the ID values for which the standard error
was not reconciled according to your specification.

Confidence Limits
When CLMETHOD=SHIFT, the reconciled confidence limits are computed by re-
centering the original confidence limits around the reconciled predicted values.

When CLMETHOD=GAUSS, the reconciled confidence limits are computed assum-
ing that the series is Gaussian with standard error equal to the reconciled standard
error.

If the selected method for the confidence limits fails, PROC HPFRECONCILE
tries to use a different method and displays a warning message in the log. For
example, if CLMETHOD=SHIFT and the confidence limits are missing in the
DISAGGDATA= data set, STDMETHOD=GAUSS is used instead. In such a case,
the –RECONSTATUS– variable identifies the observation that was not reconciled
according to your preferences. You can also use the ERRORTRACE=ID option to
display a message in the log that identifies the ID values for which the confidence
limits were not reconciled according to your specification.

Bottom-Up Reconciliation
The goal of bottom-up (BU) reconciliation is to adjust ŷt to obtain a new series
{ỹt} of reconciled forecasts so that {ỹt} satisfies the aggregation constraint. When
AGGREGATE=TOTAL, this is done by setting

ỹt =
m∑

i=1

x̂i,t t = 1, 2, . . .

When AGGREGATE=AVERAGE, this is done by setting

ỹt =
1
m

m∑
i=1

x̂i,t t = 1, 2, . . .

Because the bottom-up problem is exactly identified and admits a unique solution,
additional constraints on ỹt specified in the CONSTRAINT= data set are either al-
ready satisfied by the solution or result in an infeasible problem that will be flagged
by the –RECONSTATUS– variable in the OUTFOR= data set.
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Missing Predicted Values

When some of the predicted values x̂i,t are missing, the missing values are replaced
by the actual values xi,t, if these are present. This is done to prevent bias between
the aggregated and reconciled forecasts, which results from models in which missing
values in the predictions are generated because of the presence of lagged variables.
However, if all predicted values x̂i,t are missing, then the reconciled predicted value
ỹt will also be missing, even though the actual values xi,t might not be missing.

Standard Errors

When STDMETHOD=UNCHANGED, the reconciled standard error σ̃t of ỹt is equal
to the original standard error σ̂t of ŷt.

When STDMETHOD=AGG, the reconciled standard error is proportional to the orig-
inal aggregated standard error and is computed as follows:

σ̃t = wσ̂t

where w = ỹt

ŷt
.

If STDMETHOD=DISAGG, the reconciled standard error σ̃t is equal to the
square root of the sum of the squares of the disaggregated standard errors when
AGGREGATE=TOTAL, and to the square root of the average of the squares of the
disaggregated standard errors when AGGREGATE=AVERAGE.

If the selected method for the standard errors fails, PROC HPFRECONCILE tries
to use a different method and displays a warning message in the log. For exam-
ple, if STDMETHOD=AGG and the standard error is missing in the AGGDATA=
data set, STDMETHOD=DISAGG is used instead, if possible. In such a case, the
–RECONSTATUS– variable identifies the observation that was not reconciled ac-
cording to your preferences. You can also use the ERRORTRACE=ID option to
display a message in the log that identifies the ID values for which the standard error
was not reconciled according to your specification.

Confidence Limits

When CLMETHOD=SHIFT, the reconciled confidence limits are computed by re-
centering the original confidence limits around the reconciled predicted values.

When CLMETHOD=GAUSS, the reconciled confidence limits are computed assum-
ing that the series is Gaussian with standard error equal to the reconciled standard
error.

If the selected method for the confidence limits fails, PROC HPFRECONCILE tries
to use a different method and displays a warning message in the log. For example,
if CLMETHOD=SHIFT and the confidence limits are missing in the AGGDATA=
data set, STDMETHOD=GAUSS is used instead, if possible. In such a case, the
–RECONSTATUS– variable identifies the observation that was not reconciled ac-
cording to your preferences. You can also use the ERRORTRACE=ID option to
display a message in the log that identifies the ID values for which the confidence
limits were not reconciled according to your specification.
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Data Set Input/Output

DISAGGDATA= Data Set

The DISAGGDATA= data set contains the variable(s) specified in the BY statement,
the variable in the ID statement (when this statement is specified), and the following
variables:

–NAME– Variable name

ACTUAL Actual values

PREDICT Predicted values

LOWER Lower confidence limits

UPPER Upper confidence limits

ERROR Prediction errors

STD Prediction standard errors

Typically, the DISAGGDATA= data set is generated by the OUTFOR= option of the
HPFENGINE procedure. See Chapter 10, “The HPFENGINE Procedure,” for more
details.

You can specify custom names for the variables in the DISAGGDATA= data set by
using the DISAGGDATA statement.

AGGDATA= Data Set

The AGGDATA= data set contains a subset or none of the variables specified in the
BY statement, the time ID variable in the ID statement (when this statement is speci-
fied), and the following variables:

–NAME– Variable name

ACTUAL Actual values

PREDICT Predicted values

LOWER Lower confidence limits

UPPER Upper confidence limits

ERROR Prediction errors

STD Prediction standard errors

Typically, the AGGDATA= data set is generated by the OUTFOR= option of the
HPFENGINE procedure. See Chapter 10, “The HPFENGINE Procedure,” for more
details.

You can specify custom names for the variables in the AGGDATA= data set by using
the AGGDATA statement.
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CONSTRAINT= Data Set

The CONSTRAINT= data set specifies the constraints to be applied to the reconciled
forecasts. It contains the BY variables for the level at which reconciled forecasts are
generated. That is, it contains the AGGBY variables when DIRECTION=BU, and
the variables specified in the BY statement when DIRECTION=TD. If the –NAME–
variable is present in the AGGDATA= and DISAGGDATA= data set, it must also be
present in the CONSTRAINT= data set. Additionally, the CONSTRAINT= data set
contains the variable in the ID statement (when this statement is specified), and the
following variables:

EQUALITY specifies an equality constraint for the predicted reconciled values.

UNLOCK A flag that specifies whether the equality constraint should be
strictly enforced. Admissible values are as follows:

0 The equality constraint is locked.
1 The equality constraint is unlocked.

LOWERBD Lower bounds for the reconciled forecasts

UPPERBD Upper bounds for the reconciled forecasts

Locked equality constraints are treated as constraints in the top-down optimization
process, and therefore their value is honored. Unlocked equalities are instead treated
as regular forecasts and, in general, are changed by the reconciliation process.

If the NOTSORTED option is specified in the BY statement, then any BY group in
the CONSTRAINT= data set that is out of order with respect to the BY groups in
the AGGDATA= or DISAGGDATA= data set is ignored without any error or warning
message. If the NOTSORTED option is not specified, then the BY groups in the
CONSTRAINT= data set must be in the same sorted order as the AGGBY groups in
the AGGDATA= data set when DIRECTION=BU, and in the same sorted order as
the BY groups in the DISAGGDATA= data set when DIRECTION=TD; otherwise
processing stops at the first such occurrence of a mismatch.

OUTFOR= Data Set

When DIRECTION=TD, the OUTFOR= data set contains the variables in the
DISAGGDATA= data set and the –RECONSTATUS– variable.

When DIRECTION=BU and the AGGDATA= data set has been specified, the
OUTFOR= data set contains the variables in the AGGDATA= data set and the
–RECONSTATUS– variable. Otherwise, the AGGDATA= data set contains the BY
variables specified in the AGGBY statement, the time ID variable in the ID statement
(when this statement is specified), and the following variables:

–NAME– Variable name

ACTUAL Actual values

PREDICT Predicted values
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LOWER Lower confidence limits

UPPER Upper confidence limits

ERROR Prediction errors

STD Prediction standard errors

–RECONSTATUS– Reconciliation status

If the RECDIFF option of the HPFRECONCILE statement has been specified, the
OUTFOR= data sets will also contain the following variable:

RECDIFF Difference between the reconciled predicted value and the
original predicted value.

The –RECONSTATUS– variable contains a code that specifies whether the recon-
ciliation has been successful or not. A corresponding message is also displayed in
the log. You can use the ERRORTRACE= option to define the resolution at which
the error and warning messages are displayed in the log. The –RECONSTATUS–
variable can take the following values:

0 Success

500 A locked equality constraint has been imposed

1000 ID value out of the range with respect to the START= and END= interval

2000 Insufficient data to reconcile

3000 Reconciliation failed for the predicted value. This implies that it also failed
for the confidence limits and standard error.

4000 Reconciliation failed for the standard error.

5000 Reconciliation failed for the confidence limits.

6000 The constrained optimization problem is infeasible.

7000 The option DISAGGREGATION=PROPORTION has been changed to
DISAGGREGATION=DIFFERENCE for this observation because of a
discordant sign in the input.

8000 The option STDMETHOD= provided by the user has been changed for this
observation.

9000 The option CLMETHOD= provided by the user has been changed for this
observation.

10000 The standard error hit the limits imposed by the STDDIFBD= option.

11000 Multiple warnings have been displayed in the log for this observation.
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Examples

Example 15.1. Reconciling a Hierarchical Tree

The HPFRECONCILE procedure reconciles forecasts between two levels of a hier-
archy. It can also be used recursively for reconciling the whole hierarchy.

Consider the hierarchy structure for the SASHELP.PRICEDATA data set outlined in
Figure 15.1. You can reconcile the hierarchy top down, starting from the top level
0 down to the bottom level 2. At each new iteration, the OUTFOR= data set of the
previous reconciliation step becomes the AGGDATA= data set of the current step.

First you need to compute the statistical forecasts for all levels. The statistical fore-
casts for level 1 and level 2 were already computed in the “Getting Started” section
on page 471, so only the forecasts at the company levels are left to compute.

/*
/ Forecast series at company level
/-------------------------------------------------------------*/

*Step 1: model selection;
proc hpfdiagnose data=sashelp.pricedata

outest=lvl0est
modelrepository=work.mycat
prefilter=both
criterion=mape;
id date interval=month notsorted;
forecast sale / accumulate=total;
input price / accumulate=average;

run;

*Step 2: estimation and forecasting;
proc hpfengine data=sashelp.pricedata inest=lvl0est

out=_null_ outest=lvl0fest
modelrepository=work.mycat outfor=lvl0for;
id date interval=month notsorted;
forecast sale / task=select accumulate=total;
stochastic price /accumulate=average;

run;

First you reconcile the top and region levels. The output data set lvl1recfor contains
the reconciled forecasts at level 1. This data set becomes the AGGDATA= data set
for the next step of TD reconciliation that involves level 1 and level 2. You can check
that the reconciled forecasts at level 2 add up to the forecasts at level 0.

/*
/ Reconcile forecasts top down from company to region
/-------------------------------------------------------------*/
proc hpfreconcile disaggdata=lvl1for aggdata=lvl0for

direction=TD
outfor=lvl1recfor;

id date interval=month;
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by region;
run;

/*
/ Reconcile forecasts top down from region to region/product
/-------------------------------------------------------------*/
proc hpfreconcile disaggdata=lvl2for aggdata=lvl1recfor

direction=TD
outfor=lvl2recfor;

id date interval=month;
by region product;

run;

/*
/ Verify that level 2 forecasts add up to level 0 forecasts
/-------------------------------------------------------------*/
proc timeseries data=lvl2recfor out=toprec ;

id date interval=month notsorted accumulate=total;
var predict;

run;

proc compare base=lvl0for compare=toprec criterion=0.00001;
var predict;

run;

You can also reconcile the hierarchy from the bottom up. In such a case, the
OUTFOR= data set of the previous step becomes the DISAGGDATA= data set of
the current step.

Alternatively, you could choose to reconcile the hierarchy from the middle out from
an intermediate level. In this case, you choose an intermediate level as a start-
ing point, and reconcile all levels above from the bottom up, while reconciling
all levels below from the top down. In the following SAS code, the hierarchy of
SASHELP.PRICEDATA is reconciled from the middle out, starting from level 1.

/*
/ Reconcile forecasts bottom up from region to company
/-------------------------------------------------------------*/
proc hpfreconcile disaggdata=lvl1for aggdata=lvl0for

direction=BU
outfor=lvl0recfor;

id date interval=month;
by region;

run;

/*
/ Reconcile forecasts top down from region to region/product
/-------------------------------------------------------------*/
proc hpfreconcile disaggdata=lvl2for aggdata=lvl1for

direction=TD
outfor=lvl2recfor;

id date interval=month;
by region product;

run;
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You can use the external forecasts feature of the HPFENGINE procedure to generate
summary statistics and statistics of fit for the reconciled forecasts, as shown in the
following SAS statements for the company level.

First, an external model spec is generated using PROC HPFEXMSPEC. The charac-
teristics of estimated models that determine the options for PROC HPFEXMSPEC
can be found in the OUTEST= data set of the HPFENGINE call for the correspond-
ing level. In this case, the lvl0fest data set shows that the estimated model has three
parameters and that the dependent variable sales has not undergone any transforma-
tion.

/*
/ Generate external model spec
/-------------------------------------------------------------*/
proc hpfexmspec modelrepository=work.mycat

specname=lvl0exm;
exm transform=none nparms=3;

run;

Subsequently, a selection list containing the external model is defined with PROC
HPFSELECT.

/*
/ Generate select list
/-------------------------------------------------------------*/
proc hpfselect modelrepository=work.mycat

selectname=lvl0selexm;
spec lvl0exm;

run;

Finally, the EXTERNAL statement of the HPFENGINE procedure is used in con-
junction with the FORECAST statement to generate the OUTSTAT= and OUTSUM=
data sets that correspond to the reconciled forecasts input data set lvl0recfor and the
model specifications contained in the external model lvl0exm.

/*
/ Create OUTSTAT= and OUTSUM= data sets
/-------------------------------------------------------------*/
proc hpfengine data=lvl0recfor(rename=(actual=sales))

out=_NULL_
outstat=lvl0outstat
outsum=lvl0outsum
modelrepository=work.mycat
globalselection=lvl0selexm;

id date interval=month notsorted;
forecast sales;
external sales=(predict=predict lower=lower

upper=upper stderr=std);
run;
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Example 15.2. Aggregating Forecasts

If you do not provide the AGGDATA= input data set, but provide only the
DISAGGDATA= data set, PROC HPFRECONCILE aggregates the forecasts accord-
ing to the BY variable that you specify in the AGGBY option. If you use the options
STDMETHOD=DISAGG and CLMETHOD=GAUSS, you can obtain standard er-
rors and confidence interval as well.

In this example, the forecasts at level 2 of Figure 15.1 are aggregated to find forecasts
at level 1 for the SASHELP.PRICEDATA data set.

/*
/ Aggregate region/product forecasts to region level
/-------------------------------------------------------------*/
proc hpfreconcile disaggdata=lvl2for

direction=BU
outfor=lvl1aggfor
stdmethod=disagg
clmethod=gauss;

id date interval=month;
by region product;
aggby region;

run;

Example 15.3. Disaggregating Forecasts

You can use the HPFRECONCILE procedure to disaggregate top-level forecasts ac-
cording to proportions that you supply. This can be accomplished by creating a
DISAGGDATA= data set that contains the proportions that you want to use in place
of the PREDICT variable.

In this example, the level 1 forecasts of the variable sale in the
SASHELP.PRICEDATA data set are disaggregated to level 2 according to the
historical median proportions.

First, a combination of DATA steps and PROC UNIVARIATE is used to compute the
median proportions and merge them with the level 2 OUTFOR= data set from PROC
HPFENGINE.

/*
/ Compute total sales per region
/-------------------------------------------------------------*/

proc timeseries data=sashelp.pricedata out=lvl1sales ;
id date interval=month notsorted accumulate=total;
by region;
var sale;

run;
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/*
/ Compute sale proportions
/--------------------------------------------------------------*/

proc sort data=sashelp.pricedata out=tmp;
by region date;

run;

data lvl2prop;
merge tmp lvl1sales(rename=(sale=totsale));
by region date;
prop = sale / totsale;

run;

/*
/ Compute median sale proportions
/--------------------------------------------------------------*/

proc sort data=lvl2prop;
by region product;

run;

proc univariate data=lvl2prop noprint;
var prop;
by region product;
output out=lvl2medprop median=medprop;

run;

/*
/ Merge median proportions with level2 OUTFOR
/--------------------------------------------------------------*/
data lvl2medfor;

merge lvl2for lvl2medprop;
by region product;

run;

Then PROC HPFRECONCILE is invoked, using the DISAGGDATA statement to
specify that the variable medprop is to be used instead of the default PREDICT.

Note that the proportions need not sum to one. PROC HPFRECONCILE automati-
cally rescales them to sum to one.

/*
/ Disaggregate level1 forecasts according to median sale
/--------------------------------------------------------------*/

proc hpfreconcile disaggdata=lvl2medfor aggdata=lvl1for
direction=TD
stdmethod=unchanged
clmethod=gauss
outfor=lvl2recmedfor;

disaggdata predict=medprop;
by region product;

run;
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The variable medprop in the OUTFOR=lvl2recmedfor data set contains the disag-
gregated forecasts according to the proportions that you supplied.

In this case the options STDMETHOD=UNCHANGED and CLMETHOD=GAUSS
have been used to obtain standard errors and confidence intervals. However, you need
to be aware that they might not be reliable.

Alternatively, if you are interested in disaggregating the predicted values only, you
can use the PREDICTONLY option as in the following code.

/*
/ Disaggregate level1 predict only
/---------------------------------------------------------------*/
proc hpfreconcile disaggdata=lvl2medfor aggdata=lvl1for

direction=TD
predictonly
outfor=lvl2recmedfor;

disaggdata predict=medprop;
by region product;

run;

Example 15.4. Imposing Constraints

You can impose constraints on the reconciled forecasts by using the CONSTRAINT=
option or the SIGN= option.

In this example, you revisit Example 15.1 and impose different types of constraints on
the reconciled forecasts. Suppose you want all reconciled forecasts to be nonnegative,
and for the month of April 2003 you want the following:

1. Product 1 at Region 1 to have a locked equality of 400

2. Product 2 at Region 1 to have an unlocked equality of 400

3. Product 4 at Region 2 to be less or equal to 300

First you need to create a CONSTRAINT= data set that contains the constraints you
want for the date of April 2003.

/*
/ Create constraint data set
/-------------------------------------------------------------*/
data constraint;

length _name_ $32;
input region product _name_ $ date MONYY7. equality

unlock lowerbd upperbd;
datalines;
1 1 sale Apr2003 400 0 . .
1 2 sale Apr2003 400 1 . .
2 4 sale Apr2003 . . . 300
;

run;
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Then you reconcile the two levels by using the SIGN=NONNEGATIVE option to im-
pose the nonnegativity constraint, and by using the CONSTRAINT= option to impose
your constraints on the reconciled forecasts in April 2003. The PREDICTONLY op-
tion of the HPFRECONCILE statement restricts the reconciliation to the PREDICT
variable.

/*
/ Reconcile forecasts with constraints
/-------------------------------------------------------------*/
proc hpfreconcile disaggdata=lvl2for aggdata=lvl1for

direction=TD
sign=nonnegative
constraint=constraint
outfor=lvl2recfor
predictonly;

id date interval=month;
by region product;

run;
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Chapter 16
The HPFSELECT Procedure
Overview

The HPFSELECT procedure enables you to control the forecasting model selection
process by defining lists of candidate forecasting models. Using model selection lists
created by PROC HPFSELECT, you can control which forecasting model or models
SAS High-Performance Forecasting uses to forecast particular time series.

The HPFSELECT procedure creates model selection files and stores them in a
repository for later use by the HPFENGINE procedure. These model selection
files list model specifications previously created and stored in a model reposi-
tory by the HPFARIMASPEC, HPFESMSPEC, HPFEXMSPEC, HPFIDMSPEC, or
HPFUCMSPEC procedure.

Using PROC HPFSELECT, you can also specify other options that control the fore-
casting model selection process.

Getting Started
The following example shows how to create a model selection list file. Suppose
the model repository MYLIB.MYMODELS contains four model specification files
(A.XML, B.XML, C.XML, and D.XML), and you want to create a model selection
list that will tell PROC HPFENGINE to automatically select between these models
based on the mean absolute percentage error (MAPE). The following SAS statements
accomplish this.

proc hpfselect repository=mylib.mymodels
name=myselect
label="My model selection list";

spec a b c d;
select criterion=mape;

run;

The options in the PROC HPFSELECT statement specify the name and location of
the model selection file that is created. The REPOSITORY= option specifies that the
output file be placed in a catalog MYLIB.MYMODELS, the NAME= option spec-
ifies that the name of the file be “myselect.xml”, and the LABEL= option specifies
a descriptive label for the selection list MYSELECT. The SPEC statement speci-
fies the list of candidate models. These model specifications must also be stored in
MYLIB.MYMODELS. The SELECT statement specifies options that control how
PROC HPFENGINE selects among the candidate models when applying the selec-
tion list MYSELECT to actual time series data.
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Syntax
The following statements are used with the HPFSELECT procedure.

PROC HPFSELECT options;
DIAGNOSE options;
FORECASTOPTIONS options;
SELECT options;
SPECIFICATION specification-list / options;

Functional Summary

The statements and options controlling the HPFSELECT procedure are summarized
in the following table.

Description Statement Option

Statements
specifies the forecasting options FORECASTOPTIONS

Model Repository Options
specifies the model repository PROC

HPFSELECT
REPOSITORY=

specifies the model specification name PROC
HPFSELECT

NAME=

specifies the model specification label PROC
HPFSELECT

LABEL=

Forecasting Options
specifies the confidence limit width FORECASTOPTIONSALPHA=

Model Selection Options
specifies the forecast holdout sample size SELECT HOLDOUT=
specifies the forecast holdout sample percent SELECT HOLDOUTPCT=
specifies the model selection criterion SELECT CRITERION=

Model Specification Options
maps specification symbol to data set variable SPECIFICATIONS INPUTMAP
adds event to specification SPECIFICATIONS EVENTAP
associate external data with specification SPECIFICATIONS EXMMAP
associate external subroutine with specifica-
tion

SPECIFICATIONS EXMFUNC

override specification labels SPECIFICATIONS LABEL
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Description Statement Option

Diagnostic Options
specifies the intermittency test threshold DIAGNOSE INTERMITTENT=
specifies the seasonality test DIAGNOSE SEASONTEST=

PROC HPFSELECT Statement
PROC HPFSELECT options ;

The following options can be used in the PROC HPFSELECT statement.

LABEL= SAS-label
specifies a descriptive label for the model selection to be stored in the SAS catalog or
directory. The LABEL= option can also be specified as SELECTLABEL=.

NAME= SAS-name
names the model selection file to be stored in the SAS catalog or directory. The
NAME= option can also be specified as SELECTNAME=.

REPOSITORY= SAS-catalog-name | SAS-file-reference
names the SAS catalog or directory to contain the model specification. The
REPOSITORY= option can also be specified as MODELREPOSITORY=,
MODELREP=, or REP=.

DIAGNOSE Statement
DIAGNOSE options ;

The DIAGNOSE statement is used to specify diagnostic options.

The following examples illustrate typical uses of the DIAGNOSE statement:

/* same as default options */
diagnose intermittent=2.0 seasontest=(siglevel=0.01);

/* no seasonality */
diagnose seasontest=(siglevel=0);

INTERMITTENT= number
specifies a number greater than one that is used to determine whether or not a time
series is intermittent. If the average demand interval is greater than this number, then
the series is assumed to be intermittent. The default is INTERMITTENT=2.0.

SEASONTEST= option
specifies the options related to the seasonality test.

The following values for the SEASONTEST= options are allowed:
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NONE No test.

(SIGLEVEL=number) Significance probability value to use in testing whether sea-
sonality is present in the time series. The value must be between 0
and 1.

A smaller value of the SIGLEVEL= option means that stronger evidence of a seasonal
pattern in the data is required before PROC HPFENGINE will use seasonal models
to forecast the time series. The default is SEASONTEST=(SIGLEVEL=0.01).

FORECASTOPTIONS Statement

FORECASTOPTIONS options;

The FORECASTOPTIONS statement is used to specify forecasting options.

ALPHA= number
specifies the significance level to use in computing the confidence limits of the fore-
cast. The ALPHA=value must be between 0 and 1. The default is ALPHA=0.05,
which produces 95% confidence intervals.

SELECT Statement

SELECT options;

The SELECT statement is used to specify model selection options.

The following examples illustrate typical uses of the SELECT statement:

/* same as default options */
select criterion=rmse holdout=0 holdoutpct=0;

/* selection criterion mape with absolute holdout size 6 */
select criterion=mape holdout=6;

HOLDOUT= n
specifies the size of the holdout sample to be used for model selection. The holdout
sample is a subset of actual time series ending at the last nonmissing observation.
The default is zero (no holdout sample).

HOLDOUTPCT= number
specifies the size of the holdout sample as a percentage of the length of the time
series. If HOLDOUT=5 and HOLDOUTPCT=10, the size of the holdout sample is
min(5, 0.1T ) where T is the length of the time series with beginning and ending
missing values removed. The default is 100 (100%), which means no restriction on
the holdout sample size based on the series length.

CRITERION= option
specifies the model selection criterion (statistic of fit) to be used to select from sev-
eral candidate models. This option would often be used in conjunction with the
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HOLDOUT= option. The default is CRITERION=RMSE. The following is the list of
valid values for the CRITERION= option and the statistics of fit these option values
specify:

SSE Sum of Square Error

MSE Mean Square Error

RMSE Root Mean Square Error

UMSE Unbiased Mean Square Error

URMSE Unbiased Root Mean Square Error

MAXPE Maximum Percent Error

MINPE Minimum Percent Error

MPE Mean Percent Error

MAPE Mean Absolute Percent Error

MDAPE Median Absolute Percent Error

GMAPE Geometric Mean Absolute Percent Error

MINPPE Minimum Predictive Percent Error

MAXPPE Maximum Predictive Percent Error

MPPE Mean Predictive Percent Error

MAPPE Symmetric Mean Absolute Predictive Percent Error

MDAPPE Median Absolute Predictive Percent Error

GMAPPE Geometric Mean Absolute Predictive Percent Error

MINSPE Minimum Symmetric Percent Error

MAXSPE Maximum Symmetric Percent Error

MSPE Mean Symmetric Percent Error

SMAPE Symmetric Mean Absolute Percent Error

MDASPE Median Absolute Symmetric Percent Error

GMASPE Geometric Mean Absolute Symmetric Percent Error

MINRE Minimum Relative Error

MAXRE Maximum Relative Error

MRE Mean Relative Error

MRAE Mean Relative Absolute Error

MDRAE Median Relative Absolute Error

GMRAE Geometric Mean Relative Absolute Error

MAXERR Maximum Error

MINERR Minimum Error

ME Mean Error

MAE Mean Absolute Error
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RSQUARE R-Square

ADJRSQ Adjusted R-Square

AADJRSQ Amemiya’s Adjusted R-Square

RWRSQ Random Walk R-Square

AIC Akaike Information Criterion

SBC Schwarz Bayesian Information Criterion

APC Amemiya’s Prediction Criterion

SPECIFICATIONS Statement

SPECIFICATIONS specification-list / options;

The SPECIFICATIONS statement is used to list model specifications. There can be
any number of models specifications in the list and any number of SPECIFICATIONS
statements.

The model specifications must be contained in the model repository specified by the
REPOSITORY= option of the HPFSELECT procedure statement.

The following options can be used with the SPECIFICATIONS statement.

INPUTMAP (SYMBOL=string VAR=variable);
associates the symbols in a model specification with variable names in a DATA= data
set.

The SYMBOL= option should match a symbol defined in a model specification. The
VAR= option should match a variable name in a data set. When the model selection
list is used in conjunction with the HPFENGINE procedure, the PROC HPFENGINE
statement DATA= option specifies the input data set that contains the variable.

Mappings are needed because model specifications are generic. For example, suppose
a model specification associates the symbol Y with the dependent variable. If you
want to use this model to forecast the variable OZONE, you map Y to OZONE with
INPUTMAP(SYMBOL=Y VAR=OZONE). If you later want to use the same spec-
ification to forecast SALES, you map Y to SALES with INPUTMAP(SYMBOL=Y
VAR=SALES).

The INPUTMAP option is not required. By default, PROC HPFENGINE attempts
to locate variables in its DATA= data set that match the symbols in each specification
listed in the selection list.

EVENTMAP (SYMBOL=–NONE– EVENT=eventDef <NODIFF>)
EVENTMAP (SYMBOL=string EVENT=eventDef)

associates events with a model specification.

If SYMBOL=–NONE– is used, the event specified in eventDef is added to the model
as a simple regressor. By default, for an ARIMA model, any differencing applied
to the dependent variable is applied in the same manner to the new event input.
Specifying NODIFF indicates no differencing should be performed on the event.
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If the SYMBOL string matches one of the symbols specified as input in either a UCM
or ARIMA model, the event data will be used for the matching input. In this manner,
events can enter models through complex transfer functions. The NODIFF option
does not apply in this case, since differencing will be explicitly described in the input
statement of the model.

If the event referenced by eventDef is a “predefined event” (see the HPFEVENT
procedure) documentation, no INEVENT= option is required for the HPFENGINE
procedure. Otherwise, the event named must be defined in an event data set by using
the HPFEVENT procedure, and that data set must be given to the HPFENGINE pro-
cedure with the INEVENT= option. An error will occur during PROC HPFENGINE
model selection if eventDef is not found in an event data set.

Only UCM and ARIMA models are valid when EVENTMAP is used. If another
model type, such as exponential smoothing, has an EVENTMAP option, the option
is simply ignored.

EXMMAP(options);
associates an external model specification with variable names in a DATA= data set,
thus identifying the source of forecasts and optionally prediction standard errors, and
the lower and upper confidence limits.

Available options are as follows:

PREDICT= var

identifies the variable to supply forecasts and is required.

STDERR= var

identifies the variable to supply the prediction standard error.

LOWER= var

identifies the variable to supply the lower confidence limit.

UPPER= var

identifies the variable to supply the upper confidence limit.

For example, if you want an external model “myexm” to use forecasts from the vari-
able “yhat” in the DATA= data set passed to the HPFENGINE procedure, the appro-
priate statement would be as follows:

spec myexm / exmmap(predict=yhat);

If you also want to use prediction standard errors from the “std” variable in the same
data set, use the following statement:

spec myexm / exmmap(predict=yhat stderr=std);

EXMFUNC(string);
associates an external model specification with a user-defined subroutine. The string
parameter is the signature of the subroutine and has the following form:
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subroutineName(parameters)

where parameters indicate the order, number, and type of arguments in the user-
defined subroutine. The parameter –PREDICT– is required, indicating the return
of forecast values. Optional parameters for return of other data from the user-defined
subroutine include the following:

–STDERR– Prediction standard error

–LOWER– Lower confidence limit

–UPPER– Upper confidence limit

The HPFENGINE procedure can also pass data into the user-defined subroutine by
using the following options:

–TIMEID– Time ID

–SEASON– Seasonal index

–ACTUAL– Actual values

As an example, suppose the signature of a user-defined subroutine is defined in the
FCMP procedure as follows:

subroutine userdef1(act[*], pred[*]);

Also suppose this subroutine is mapped to the external model “myexm” by using the
following statement:

spec myexm / exmfunc(’userdef1(_actual_ _predict_ )’);

Then the HPFENGINE procedure will pass the array of actuals to the subrou-
tine userdef1, and the function will compute the forecasts and return them to the
HPFENGINE procedure.

Next, consider the case where a user-defined subroutine requires actuals, time ID
values, and seasonal indices in order to compute and return forecasts and prediction
standard errors. The subroutine might be defined as follows:

subroutine complexsub(act[*], timeid[*],
seasons[*], pred[*], stderr[*]);

It would be mapped to an external model named “myexm” by using the following
statement:

spec myexm / exmfunc(
’complexsub(_actual_ _timeid_ _season_ _predict_ _stderr_)’

);
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This syntax is demonstrated further in Example 4.

LABEL= SAS-label
overrides the label in the model specification and causes the new label to print in the
model selection list in the HPFENGINE procedure. This option is useful if you have
the same model specification listed more than once and want to distinguish between
them in the HPFENGINE procedure output.

As an example, consider the following case of a single external model used twice in
the selection list, with each occurrence mapped to a different external forecast:

spec myexm / exmmap(predict=yhatRALEIGH)
label="External Model: Raleigh Forecasts";

spec myexm / exmmap(predict=yhatATLANTA)
label="External Model: Atlanta Forecasts"

In the model selection list output from the HPFENGINE procedure, the new labels
appear, rather than the label in “myexm” repeated twice.

Examples

Example 16.1. The INPUTMAP Option

Consider the following example. The HPFUCMSPEC procedure is used to define
a UCM spec. The dependent variable is assigned the symbol Y, and the three in-
puts are assigned the symbols X1, X2, and X3, respectively. You ultimately want
to forecast the series contained in the variable OZONE with inputs X1, SUMMER,
and WINTER. The INPUTMAP option in PROC HPFSELECT is used to tell PROC
HPFENGINE that OZONE should replace Y, SUMMER should replace X2, and
WINTER should replace X3. The default behavior occurs for X1.

proc hpfucmspec repository=sasuser.mycat
name=myucm
label="My UCM spec";

dependent symbol=Y;
input symbol=X1;
input symbol=X2;
input symbol=X3;
level;
season length=12 type=trig;

run;

proc hpfselect repository=sasuser.mycat
name=myselect
label="My Selection List";

select criterion=rmse holdout=12;
spec myucm /
inputmap(symbol=Y var=OZONE)
inputmap(symbol=X2 var=SUMMER)
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inputmap(symbol=X3 var=WINTER);
run;

The same result could be achieved by making the symbol in the model specification
match the variables in the HPFENGINE procedure’s DATA= data set.

proc hpfucmspec repository=sasuser.mycat
name=myucm
label="My UCM spec";

dependent symbol=OZONE;
input symbol=X1;
input symbol=SUMMER;
input symbol=WINTER;
level;
season length=12 type=trig;

run;

proc hpfselect repository=sasuser.mycat
name=myselect
label="My Selection List";

select criterion=rmse holdout=12;
spec myucm;

run;

The obvious disadvantage here is that the model specification and data set are tightly
linked.

Example 16.2. The EVENTMAP Option
Events are dynamically added as simple regressors to UCM and ARIMA models by
using the EVENTMAP option in the SPECIFICATIONS statement.

You first create an ARIMA model and create a selection list that directs the
HPFENGINE procedure to choose between this model without an event and this
model with the event. The output is shown in Output 16.2.1.

proc hpfevents data=sashelp.air;;
eventdef summer = (june july august);
eventdata out=eventDB;

run;

proc hpfarimaspec modelrepository=work.repo name=arima;
forecast symbol=air q=(1 12) transform=log;

run;

proc hpfselect modelrepository=work.repo name=select;
spec arima;
spec arima / eventmap(symbol=_none_ event=summer);

run;
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title1 "HPFENGINE dynamically adds event from event database";
proc hpfengine data=sashelp.air modelrepository=work.repo outest=outest1

globalselection=select print=(select estimates) inevent=eventDB;
id date interval=month;
forecast air;

run;

Output 16.2.1. Selection and Estimation Results

HPFENGINE dynamically adds event from event database

The HPFENGINE Procedure

Model Selection Criterion = MAPE

Model Statistic Selected Label

ARIMA 20.048903 No ARIMA: Log( AIR ) ~ Q = (1,12)
ARIMA 19.654381 Yes ARIMA: Log( AIR ) ~ Q = (1,12)

Parameter Estimates

Standard Approx
Component Parameter Estimate Error t Value Pr > |t|

AIR CONSTANT 5.47071 0.04202 130.21 <.0001
AIR MA1_1 -0.80089 0.02337 -34.27 <.0001
AIR MA1_12 -0.27008 0.02374 -11.37 <.0001
SUMMER SCALE 0.15504 0.05859 2.65 0.0091

You calculate the same results but this time explicitly create a model that includes
the input in its specification. Then the event is added to the data set. Note that the
results, shown in Output 16.2.2, are the same as the results of the simpler usage with
EVENTMAP.

data air(keep=date air summer);
set sashelp.air;
summer = 0;
if month(date) eq 6 or

month(date) eq 7 or
month(date) eq 8 then summer = 1;

run;

proc hpfarimaspec modelrepository=work.repo name=arimasummer;
forecast symbol=air q=(1 12) transform=log;
input symbol=summer;

run;

proc hpfselect modelrepository=work.repo name=select;
spec arima arimasummer;

run;

title1 "HPFENGINE uses input present in data set and specified in model";
proc hpfengine data=air modelrepository=work.repo outest=outest2
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globalselection=select print=(select estimates);
id date interval=month;
forecast air;
input summer;

run;

Output 16.2.2. Selection and Estimation Results

HPFENGINE uses input present in data set and specified in model

The HPFENGINE Procedure

Model Selection Criterion = MAPE

Model Statistic Selected

ARIMA 20.048903 No
ARIMASUMMER 19.654381 Yes

Model Selection Criterion = MAPE

Model Label

ARIMA ARIMA: Log( AIR ) ~ Q = (1,12)
ARIMASUMMER ARIMA: Log( AIR ) ~ Q = (1,12) + INPUT: SUMMER

Parameter Estimates

Standard Approx
Component Parameter Estimate Error t Value Pr > |t|

AIR CONSTANT 5.47071 0.04202 130.21 <.0001
AIR MA1_1 -0.80089 0.02337 -34.27 <.0001
AIR MA1_12 -0.27008 0.02374 -11.37 <.0001
summer SCALE 0.15504 0.05859 2.65 0.0091

Example 16.3. The DIAGNOSE Statement
The DIAGNOSE statement allows control of the diagnostics used by PROC
HPFENGINE to subset the model selection list. Two ESM model specifications are
created in this example, one seasonal and one nonseasonal. They are placed together
in a selection list with the seasonality test value allowed to remain at its default in
this first case. The diagnostics in PROC HPFENGINE judge the dependent series
as seasonal and therefore exclude the nonseasonal model from consideration. The
output is shown in Output 16.3.1.

proc hpfesmspec modelrepository=work.repo name=logdouble;
esm method=double transform=log;

run;

proc hpfesmspec modelrepository=work.repo name=logwinters;
esm method=winters transform=log;

run;

proc hpfselect modelrepository=work.repo name=select;
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spec logdouble logwinters;
run;

title1 "Use default seasonality test option";
proc hpfengine data=sashelp.air modelrepository=work.repo outest=outest1

globalselection=select print=all;
id date interval=month;
forecast air;

run;

Output 16.3.1. Seasonality Test Significance Level of 0.01

Use default seasonality test option

The HPFENGINE Procedure

Model Selection Criterion = MAPE

Model Statistic Selected Label

LOGDOUBLE . Removed Log Double Exponential Smoothing
LOGWINTERS 2.7138783 Yes Log Winters Method (Multiplicative)

The same two exponential smoothing models are used in a selection list again, but
this time the seasonality test is disabled. Both models are fit to the series as a result.
The output is shown in Output 16.3.2.

proc hpfselect modelrepository=work.repo name=select;
spec logdouble logwinters;
diagnose seasontest=none;

run;

title1 "Turn off the seasonality test";
proc hpfengine data=sashelp.air modelrepository=work.repo outest=outest1

globalselection=select print=select;
id date interval=month;
forecast air;

run;

Output 16.3.2. No Seasonality Test Performed

Turn off the seasonality test

The HPFENGINE Procedure

Model Selection Criterion = MAPE

Model Statistic Selected Label

LOGDOUBLE 10.167638 No Log Double Exponential Smoothing
LOGWINTERS 2.713878 Yes Log Winters Method (Multiplicative)
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Finally, the seasonality test significance level is set to zero so that the series will not
be judged as seasonal. In Output 16.3.3, note that the nonseasonal model is fit to the
series, but the seasonal model is removed.

proc hpfselect modelrepository=work.repo name=select;
spec logdouble logwinters;
diagnose seasontest=(siglevel=0);

run;

title1 "Set significance level so that series is not judged as seasonal";
proc hpfengine data=sashelp.air modelrepository=work.repo outest=outest1

globalselection=select print=select;
id date interval=month;
forecast air;

run;

Output 16.3.3. All Series Treated as Nonseasonal

Set significance level so that series is not judged as seasonal

The HPFENGINE Procedure

Model Selection Criterion = MAPE

Model Statistic Selected Label

LOGDOUBLE 10.167638 Yes Log Double Exponential Smoothing
LOGWINTERS . Removed Log Winters Method (Multiplicative)

Example 16.4. External Models and User-Defined Subroutines
The EXMFUNC options enables you to associate an external model specification
with a user-defined subroutine. First, define a user subroutine and store it in a catalog.
In this case, you create a simple three-point moving average.

proc fcmp outlib=sasuser.hpfengine.funcs;
subroutine move_avg3(act[*], pred[*]);

actlen = DIM(act);
predlen = DIM(pred);
pred[1] = 0;
pred[2] = act[1]/3.0;
pred[3] = (act[1] + act[2])/3.0;
do i=4 to actlen+1;

pred[i] = (act[i-1] + act[i-2] + act[i-3])/3.0;
end;
do i=actlen+2 to predlen;

pred[i] = (pred[i-1] + pred[i-2] + pred[i-3])/3.0;
end;
endsub;

run;
options cmplib = sasuser.hpfengine;
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Now, just for comparison, use the HPFARIMASPEC procedure to make a model
specification that will produce the same three-point moving average.

proc hpfarimaspec modelrepository=work.repo name=arima;
forecast symbol=y noint p=3

ar=(0.333333333 0.333333333 0.333333333);
estimate noest;

run;

Next, use the HPFEXMSPEC procedure to create an external model specification
and the HPFSELECT procedure to make a selection list with the external model,
referencing the user-defined subroutine, and the ARIMA model.

proc hpfexmspec modelrepository=work.repo name=myexm;
exm;

run;

proc hpfselect modelrepository=work.repo name=select;
diagnose seasontest=none;
spec arima;
spec myexm / exmfunc(’move_avg3(_actual_ _predict_ )’)

label="External Model from move_avg3";
run;

Finally, use the HPFENGINE procedure to forecast a series by using the selection list
just created. As expected, both models produce the same forecast, as indicated by the
same selection fit statistic.

proc hpfengine data=sashelp.air out=_null_ modelrepository=work.repo
globalselection=select print=select;

id date interval=month;
forecast air;

run;

The output is shown in Output 16.4.1.

Output 16.4.1. External Model with User-Defined Subroutine vs. ARIMA Model

The HPFENGINE Procedure

Model Selection Criterion = MAPE

Model Statistic Selected Label

ARIMA 13.455362 No ARIMA: Y ~ P = 3 NOINT
MYEXM 13.455362 Yes External Model from move_avg3
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Example 16.5. Comparing Forecasts from Multiple External
Sources

The EXMMAP option enables you to associate an external model specification with
variables in a data set. This example uses the EXPAND procedure and the ARIMA
procedure to generate data for the external forecasts. In practice this external data
might come from judgmental forecasts or other systems. The external forecasts must
be in the same data set as the series you are modeling.

data temp;
set sashelp.air;
drop i;

* introduce some missing for EXPAND to fill in;
if mod(_n_, 5) eq 0 them air = .;
if mod(_n_+1, 5) eq 0 them air = .;
if mod(_n_+2, 5) eq 0 them air = .;
output;

if date eq ’01dec1960’d then do;
do i=1 to 4;

date = intnx(’month’, ’01dec1960’d, i);
air = .;
output;

end;
end;

run;

proc expand data=temp extrapolate out=expandout(rename=(air=interp));
id date;
convert air;

run;

data temp;
set sashelp.air;
logair = log(air);

run;

proc arima data=temp;
identify var=logair(1,12) noprint;
estimate q=(1)(12) noconstant method=ml noprint;
forecast out=arimaout(rename=(forecast=airline)) lead=4 id=date

interval=month noprint;
quit;

data arimaout;
set arimaout;
airline = exp(airline);

run;

data temp;
keep date interp airline air;
merge expandout arimaout sashelp.air;
by date;

run;

Next, create a smoothing model to add to the selection, demonstrating that you can
compare multiple external forecasts not only with one another but also with other
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statistical models. After the models are defined, they are added to a selection list.
Notice that the same external model can be associated with different external fore-
casts and that the LABEL= option can be used to help differentiate between the two.
Finally, the HPFENGINE procedure is called, and you see that the forecast originally
generated by the ARIMA procedure best fits the historical data.

proc hpfesmspec modelrepository=work.repo name=esm;
esm method=seasonal transform=auto;

run;

proc hpfexmspec modelrepository=work.repo name=exm;
exm;

run;

proc hpfselect modelrepository=work.repo name=select;
spec esm;
spec exm / exmmap(predict=interp) label="Interpolation from PROC EXPAND";
spec exm / exmmap(predict=airline) label="Forecasts from PROC ARIMA";

run;

proc hpfengine data=temp out=_null_ modelrepository=work.repo
globalselection=select print=select lead=4;

id date interval=month;
forecast air;
external interp airline;

run;

The output is shown in Output 16.5.1.

Output 16.5.1. Two External Forecasts and a Smoothing Model

The HPFENGINE Procedure

Variable Information

Name AIR
Label international airline travel (thousands)
First JAN1949
Last DEC1960
Number of Observations Read 148

Model Selection Criterion = MAPE

Model Statistic Selected Label

ESM 3.1909590 No Log Seasonal Exponential Smoothing
EXM 5.5023045 No Interpolation from PROC EXPAND
EXM 2.9239173 Yes Forecasts from PROC ARIMA

Example 16.6. Input to User-Defined Subroutines

To illustrate the different type of data that the HPFENGINE procedure can pass to a
user-defined subroutine, consider the following subroutine definition:
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proc fcmp outlib=sasuser.hpfengine.funcs;
subroutine testsub(timeid[*], act[*], seasons[*], pred[*]);
actlen = DIM(act);
predlen = DIM(pred);
format date monyy.;

* print the input;
do i=1 to 24;

date = timeid[i]; actual=act[i]; season=seasons[i];
put i= date= actual= season=;

end;

* just return mean;
mean = 0.0;
do i=1 to actlen;

mean = mean + act[i];
end;
mean = mean / actlen;

do i=1 to predlen;
pred[i] = mean;

end;

endsub;
run;

Suppose you have an external model specification and invocation of the HPFSELECT
procedure such as the following:

proc hpfselect modelrepository=work.repo name=select;
diagnose seasontest=none;
spec myexm1 / exmfunc(’testsub(_timeid_ _actual_ _season_ _predict_)’);

run;

Then suppose you have the following call to the HPFENGINE procedure to forecast
the series AIR in SASHELP.AIR:

proc hpfengine data=sashelp.air out=_null_ outfor=outfor
modelrepository=work.repo globalselection=select;

id date interval=month;
forecast air;

run;

The output would look like the following:

i=1 date=JAN49 actual=112 season=0
i=2 date=FEB49 actual=118 season=1
i=3 date=MAR49 actual=132 season=2
i=4 date=APR49 actual=129 season=3
i=5 date=MAY49 actual=121 season=4
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i=6 date=JUN49 actual=135 season=5
i=7 date=JUL49 actual=148 season=6
i=8 date=AUG49 actual=148 season=7
i=9 date=SEP49 actual=136 season=8
i=10 date=OCT49 actual=119 season=9
i=11 date=NOV49 actual=104 season=10
i=12 date=DEC49 actual=118 season=11
i=13 date=JAN50 actual=115 season=0
i=14 date=FEB50 actual=126 season=1
i=15 date=MAR50 actual=141 season=2
i=16 date=APR50 actual=135 season=3
i=17 date=MAY50 actual=125 season=4
i=18 date=JUN50 actual=149 season=5
i=19 date=JUL50 actual=170 season=6
i=20 date=AUG50 actual=170 season=7
i=21 date=SEP50 actual=158 season=8
i=22 date=OCT50 actual=133 season=9
i=23 date=NOV50 actual=114 season=10
i=24 date=DEC50 actual=140 season=11

The seasonal cycle length is 12, and thus we see the zero-based seasonal index re-
peating. Though not used in this simple subroutine, all these data are available when
you are computing forecasts.
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Chapter 17
The HPFUCMSPEC Procedure
Overview

The HPFUCMSPEC procedure is used to create a UCM model specification file.
The output of this procedure is an XML file that stores the intended UCM model
specification. This XML specification file can be used for different purposes; for
example, it can be used to populate the model repository used by the HPFENGINE
procedure (see Chapter 10, “The HPFENGINE Procedure”). You can specify any
UCM model that can be analyzed using the UCM procedure; see Chapter 30, “The
UCM Procedure” (SAS/ETS User’s Guide). Moreover, the model specification can
include series transformations such as log or Box-Cox transformations. Apart from
minor modifications to accommodate series transformations, the model specification
syntax of the HPFUCMSPEC procedure is similar to that of the UCM procedure.

Getting Started
The following example shows how to create a UCM model specification file. In
this example the specification for a Basic Structural Model (BSM) with one input is
created.

proc hpfucmspec repository=sasuser.ucm
name=BSM1
label=

"Basic structural model with one input";
forecast symbol=Y transform=log;
input symbol=X;
irregular;
level;
slope variance=0 noest;
season length=12 type=trig;

run;

The options in the PROC HPFUCMSPEC statement are used to specify the location
of the specification file that will be output. Here the REPOSITORY= option speci-
fies that the output file be placed in a catalog SASUSER.UCM, the NAME= option
specifies that the name of the file be BSM1.xml, and the LABEL= option specifies
a label for this catalog member. The other statements in the procedure specify the
UCM model.

The model specification begins with the FORECAST statement that specifies a trans-
formation, such as a log or Box-Cox, for the variable that is to be forecast. In some
cases, the forecast variable is also called the dependent variable or the response vari-
able. Here, the FORECAST statement specifies a log transformation for the series
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being forecast. The SYMBOL= option in the FORECAST statement can be used
to provide a convenient name for the forecast variable. This name is only a place-
holder, and a proper data variable will be associated with this name when this model
specification is used in actual data analysis. Next, the INPUT statement specifies
transformations, such as log or Box-Cox, as well as lagging and differencing, asso-
ciated with the input variable. In this case the input variable enters the model as a
simple regressor. Here again the SYMBOL= option can be used to supply a conve-
nient name for the input variable. If a model contains multiple input variables then
each input variable specification has to be given using a separate INPUT statement.

After the forecast and input series transformations are described, the components in
the model are specified using different component statements. In the above example
the model contains three components: an irregular component, a local linear trend
with fixed slope, and a trigonometric seasonal with season length 12.

Syntax
The HPFUCMSPEC procedure uses the following statements.

PROC HPFUCMSPEC options;
AUTOREG options;
BLOCKSEASON options;
CYCLE options;
DEPLAG options;
FORECAST options ;
INPUT options;
IRREGULAR options;
LEVEL options;
SEASON options;
SLOPE options;

Functional Summary

The statements and options controlling the HPFUCMSPEC procedure are summa-
rized in the following table.

Description Statement Option

Model Repository Options
specify the model repository PROC

HPFUCMSPEC
REPOSITORY=

specify the model specification name PROC
HPFUCMSPEC

NAME=

specify the model specification label PROC
HPFUCMSPEC

LABEL=
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Description Statement Option

Options for Specifying Symbolic Series Names
specify a symbolic name for the response series FORECAST SYMBOL=
specify a symbolic name for the input series INPUT SYMBOL=

Options for Specifying the Model
specify the response series transformation FORECAST TRANSFORM=
specify the input series transformation INPUT TRANSFORM=
specify the input series differencing orders INPUT DIF=
specify the input series lagging order INPUT DELAY=
specify the initial value for the disturbance variance

of the irregular component
IRREGULAR VARIANCE=

fix the value of the disturbance variance of the ir-
regular component to the specified initial value

IRREGULAR NOEST

specify the initial value for the disturbance variance
of the level component

LEVEL VARIANCE=

fix the value of the disturbance variance of the level
component to the specified initial value

LEVEL NOEST

specify the initial value for the disturbance variance
of the slope component

SLOPE VARIANCE=

fix the value of the disturbance variance of the slope
component to the specified initial value

SLOPE NOEST

specify the season length of a seasonal component SEASON LENGTH=
specify the type of a seasonal component SEASON TYPE=
specify the initial value for the disturbance variance

of a seasonal component
SEASON VARIANCE=

fix the value of the disturbance variance of the sea-
sonal component to the specified initial value

SEASON NOEST

specify the block size of a block seasonal compo-
nent

BLOCKSEASON BLOCKSIZE=

specify the number of blocks of a block seasonal
component

BLOCKSEASON NBLOCKS=

specify the relative position of the first observation
within the block of a block seasonal component

BLOCKSEASON OFFSET=

specify the initial value for the disturbance variance
of a block seasonal component

BLOCKSEASON VARIANCE=

fix the value of the disturbance variance of the block
seasonal component to the specified initial value

BLOCKSEASON NOEST

specify the initial value for the period of a cycle
component

CYCLE PERIOD=

specify the initial value for the damping factor of a
cycle component

CYCLE RHO=

specify the initial value for the disturbance variance
of the cycle component

CYCLE VARIANCE=
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Description Statement Option

fix the values of the parameters of the cycle compo-
nent to the specified initial values

CYCLE NOEST=

specify the initial value for the damping factor of
the autoreg component

AUTOREG RHO=

specify the initial value for the disturbance variance
of the autoreg component

AUTOREG VARIANCE=

fix the values of the parameters of the autoreg com-
ponent to the specified initial values

AUTOREG NOEST=

specify the lags of the response series to be included
in the model

DEPLAG LAGS=

specify the initial values for the lag coefficients for
the response lags

DEPLAG PHI=

fix the values of lag coefficients to the specified ini-
tial values

DEPLAG NOEST

PROC HPFUCMSPEC Statement
PROC HPFUCMSPEC options ;

The following options can be used in the PROC HPFUCMSPEC statement:

LABEL= SAS-label
specifies a descriptive label for the model specification to be stored in the SAS
catalog or external file reference. The LABEL= option can also be specified as
SPECLABEL=.

NAME= SAS-name
names the model specification to be stored in the SAS catalog or external file refer-
ence. The NAME= option can also be specified as SPECNAME=.

REPOSITORY= SAS-catalog-name
REPOSITORY= SAS-file-reference

names the SAS catalog or external file reference to contain the model specifica-
tion. The REPOSITORY= option can also be specified as MODELREPOSITORY=,
MODELREP=, or REP=.

AUTOREG Statement
AUTOREG < options > ;

The AUTOREG statement specifies an autoregressive component of the model. An
autoregressive component is a special case of cycle that corresponds to the frequency
of zero or π. It is modeled separately for easier interpretation. A stochastic equation
for an autoregressive component rt can be written as follows:

rt = ρrt−1 + νt, νt ∼ i.i.d. N(0, σ2
ν)
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The damping factor ρ can take any value in the interval (-1, 1), including -1 but
excluding 1. If ρ = 1 the autoregressive component cannot be distinguished from the
random walk level component. If ρ = −1 the autoregressive component corresponds
to a seasonal component with season length 2, or a nonstationary cycle with period 2.
If |ρ| < 1 then the autoregressive component is stationary. The following examples
illustrate the AUTOREG statement:

autoreg;

This statement includes an autoregressive component in the model. The damping
factor ρ and the disturbance variance σ2

ν are estimated from the data.

NOEST=RHO
NOEST= VARIANCE
NOEST= (RHO VARIANCE)

This option fixes the values of ρ and σ2
ν to those specified in RHO= and VARIANCE=

options.

RHO= value
This option is used to supply an initial value for the damping factor ρ during the
parameter estimation process. The value of ρ must be in the interval (-1, 1), including
-1 but excluding 1.

VARIANCE= value
This option is used to supply an initial value for the disturbance variance σ2

ν dur-
ing the parameter estimation process. Any nonnegative value, including zero, is an
acceptable starting value.

BLOCKSEASON Statement

BLOCKSEASON NBLOCKS= integer
BLOCKSIZE= integer < options > ;

The BLOCKSEASON or BLOCKSEASONAL statement is used to specify a sea-
sonal γt that has a special block structure. The seasonal γt is called a block seasonal
of block size m and number of blocks k if its season length, s, can be factored as
s = m ∗ k and its seasonal effects have a block form, that is, the first m seasonal ef-
fects are all equal to some number τ1, the next m effects are all equal to some number
τ2, and so on. This type of seasonal structure can be appropriate in some cases. For
example, consider a series that is recorded on an hourly basis. Further assume that,
in this particular case, the hour of the day effect and the day of the week effect are
additive. In this situation the hour of the week seasonality, having a season length
of 168, can be modeled as a sum of two components. The hour of the day effect is
modeled using a simple seasonal of season length 24, while the day of the week effect
is modeled as a block seasonal that has the days of the week as blocks. This day of
the week block seasonal will have seven blocks, each of size 24. A block seasonal
specification requires, at the minimum, the block size m and the number of blocks
in the seasonal k. These are specified using the BLOCKSIZE= and NBLOCKS=
options, respectively. In addition, you may need to specify the position of the first
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observation of the series using the OFFSET= option, if it is not at the beginning of
one of the blocks. In the example just considered, this will correspond to a situation
where the first series measurement is not at the start of the day. Suppose that the first
measurement of the series corresponds to the hour between 6:00 and 7:00 a.m., which
is the seventh hour within that day or at the seventh position within that block. This
is specified as OFFSET=7.

The other options of this statement are very similar to the options in the SEASONAL
statement. For example, a block seasonal can also be of one of the two types,
DUMMY or TRIGONOMETRIC. There can be more than one block seasonal com-
ponent in the model, each specified using a separate BLOCKSEASON statement. No
two block seasonals in the model can have the same NBLOCKS= and BLOCKSIZE=
specifications. The following example illustrates the use of the BLOCKSEASON
statement to specify the additive, hour of the week seasonal model:

season length=24 type=trig;
blockseason nblocks=7 blocksize=24;

BLOCKSIZE= integer
This option is used to specify the block size, m. This is a required option in this
statement. The block size can be any integer larger than or equal to two. Typical
examples of block sizes are 24, corresponding to the hours of the day when a day is
being used as a block in hourly data, or 60, corresponding to the minutes in an hour
when an hour is being used as a block in data recorded by minutes, etc.

NBLOCKS= integer
This option is used to specify the number of blocks, k. This is a required option in
this statement. The number of blocks can be any integer larger than or equal to two.

NOEST
This option fixes the value of the disturbance variance parameter to the value specified
in the VARIANCE= option.

OFFSET= integer
This option is used to specify the position of the first measurement within the block,
if the first measurement is not at the start of a block. The OFFSET= value must be
between one and the block size. The default value is one. The first measurement
refers to the start of the series.

TYPE= DUMMY | TRIG
This option specifies the type of the seasonal component. The default type is
DUMMY.

VARIANCE= value
This option is used to supply an initial value for the disturbance variance, σ2

ω, in the
γt equation, at the start of the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.
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CYCLE Statement

CYCLE < options > ;

The CYCLE statement is used to specify a cycle component, ψt, in the model. The
stochastic equation governing a cycle component of period p and damping factor ρ is
as follows:

[
ψt

ψ∗
t

]
= ρ

[
cos λ sin λ
− sin λ cos λ

] [
ψt−1

ψ∗
t−1

]
+

[
νt

ν∗
t

]

where νt and ν∗
t are independent, zero mean, Gaussian disturbances with variance σ2

ν

and λ = 2 ∗ π/p is the angular frequency of the cycle. Any p strictly larger than 2
is an admissible value for the period, and the damping factor ρ can be any value in
the interval (0, 1), including 1 but excluding 0. The cycles with the frequency zero
and π, which correspond to the periods equal to infinity and two respectively, can be
specified using the AUTOREG statement. The values of ρ smaller than 1 give rise
to a stationary cycle, while ρ = 1 gives rise to a nonstationary cycle. As a default,
values of ρ, p, and σ2

ν are estimated from the data. However, if necessary, you can fix
the values of some, or all, of these parameters.

There can be multiple cycles in a model, each specified using a separate CYCLE
statement. Currently, you can specify up to 50 cycles in a model.

The following examples illustrate the use of the CYCLE statement:

cycle;
cycle;

These statements request that two cycles be included in the model. The parameters
of each of these cycles is estimated from the data.

cycle rho=1 noest=rho;

This statement requests inclusion of a nonstationary cycle in the model. The cycle
period p and the disturbance variance σ2

ν are estimated from the data. In the following
statement a nonstationary cycle with fixed period of 12 is specified. Moreover, a
starting value is supplied for σ2

ν .

cycle period=12 rho=1 variance=4 noest=(rho period);

NOEST=PERIOD
NOEST=RHO
NOEST=VARIANCE
NOEST= ( < RHO > < PERIOD > < VARIANCE > )

This option fixes the values of the component parameters to those specified in RHO=,
PERIOD=, and VARIANCE= options. This option enables you to fix any combina-
tion of parameter values.
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PERIOD= value
This option is used to supply an initial value for the cycle period during the parameter
estimation process. Period value must be strictly larger than 2.

RHO= value
This option is used to supply an initial value for the damping factor in this component
during the parameter estimation process. Any value in the interval (0, 1), including
one but excluding zero, is an acceptable initial value for the damping factor.

VARIANCE= value
This option is used to supply an initial value for the disturbance variance parameter,
σ2

ν , to be used during the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.

DEPLAG Statement

DEPLAG LAGS= order <PHI= value ... > < NOEST > ;

The DEPLAG statement is used to specify the lags of the forecast variable to be
included as predictors in the model. The following examples illustrate the use of
DEPLAG statement:

deplag lags=2;

If the forecast series is denoted by yt, this statement specifies the inclusion of
φ1yt−1 + φ2yt−2 in the model. The parameters φ1 and φ2 are estimated from the
data. The following statement requests including φ1yt−1 +φ2yt−4 −φ1φ2yt−5 in the
model. The values of φ1 and φ2 are fixed at 0.8 and -1.2.

deplag lags=(1)(4) phi=0.8 -1.2 noest;

The dependent lag parameters are not constrained to lie in any particular region. In
particular, this implies that a UCM that contains only an irregular component and
dependent lags, resulting in a traditional autoregressive model, is not constrained to
be a stationary model. In the DEPLAG statement if an initial value is supplied for
any one of the parameters, the initial values must be supplied for all other parameters
also.

LAGS= order
LAGS= (lag, ..., lag) ... (lag, ..., lag)
LAGS= (lag, ..., lag)<s1> ... (lag, ..., lag)<sk>

This is a required option in this statement. LAGS=(l1, l2, ..., lk ) defines a model
with specified lags of the forecast variable included as predictors. LAGS= order is
equivalent to LAGS=(1, 2, ..., order).
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A concatenation of parenthesized lists specifies a factored model. For example,
LAGS=(1)(12) specifies that the lag values, 1, 12 and 13, corresponding to the fol-
lowing polynomial in the backward shift operator, be included in the model

(1 − φ1,1B)(1 − φ2,1B
12)

Note that, in this case, the coefficient of the thirteenth lag is constrained to be the
product of the coefficients of the first and twelfth lags.

You can also specify a multiplier after a parenthesized list. For example,
LAGS=(1)(1)12 is equivalent to LAGS=(1)(12), and LAGS=(1,2)4(1)12(1,2)24 is
equivalent to LAGS=(4,8)(12)(24,48).

NOEST
This option fixes the values of the parameters to those specified in PHI= options.

PHI= value ...
lists starting values for the coefficients of the lagged forecast variable.

FORECAST Statement

FORECAST options;

The FORECAST statement specifies the symbolic name representing the series to
be forecast as well as an optional transformation to be applied to the series. The
symbolic name is used in later steps to associate actual time series variables with the
model specification when the specification is applied to data.

The following options are used in the FORECAST statement.

(SYMBOL|VAR)= variable
specifies a symbolic name for the forecast series. This symbol specification is op-
tional. If the SYMBOL= option is not specified, Y is used as a default symbol.

TRANSFORM= option
specifies the transformation to be applied to the time series. The following transfor-
mations are provided:

NONE No transformation applied

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

When the TRANSFORM= option is specified, the time series must be strictly posi-
tive.
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INPUT Statement

INPUT options;

The INPUT statements specify the inputs in the model. A separate INPUT statement
is needed for each of the inputs. In this statement you can specify the delay order,
the differencing orders, and the Box-Cox type transformations associated with the
input variable under consideration. The following options are used in the INPUT
statement.

DELAY= order
specifies the delay, or lag, order for the input series.

DIF= order
DIF= ( order1, order2, ... )

specifies the differencing orders for the input series.

PREDEFINED= option
associates a predefined trend or a set of seasonal dummy variables with this transfer
function. The SYMBOL= and PREDEFINED= options are mutually exclusive.

In the following list of options, let t represent the observation count from the start of
the period of fit for the model, and let Xt be the value of the time trend variable at
observation t.

LINEAR A linear trend, with Xt = t − c

QUADRATIC A quadratic trend, with Xt = (t − c)2

CUBIC A cubic trend, with Xt = (t − c)3

INVERSE An inverse trend, with Xt = 1/t

SEASONAL Seasonal dummies. For a seasonal cycle of length s, the seasonal
dummy regressors include Xi,t : 1≤i≤(s − 1), 1≤t≤n for mod-
els that include a level component, and Xi,t : 1≤i≤(s), 1≤t≤n for
models that do not include a level component.

Each element of a seasonal dummy regressor is either zero or one,
based on the following rule:

Xi,t =
{ 1 when i = t

0 otherwise

(SYMBOL|VAR)= variable
specifies a symbolic name for the input series. This symbol specification is optional.
If the SYMBOL= option is not specified then X is used as a default symbol. If there
are multiple INPUT statements then an attempt is made to generate a unique set of
input symbols.

TRANSFORM= option
specifies the transformation to be applied to the time series. The following transfor-
mations are provided:
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NONE No transformation applied

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is
between -5 and 5

When the TRANSFORM= option is specified, the time series must be strictly posi-
tive.

IRREGULAR Statement

IRREGULAR < options > ;

The IRREGULAR statement is used to include an irregular component in the model.
There can be at most one IRREGULAR statement in the model specification. The
irregular component corresponds to the overall random error, εt, in the model; it is
modeled as a sequence of independent, zero mean, Gaussian random variables with
variance σ2

ε . The options in this statement enable you to specify the value of σ2
ε

and to output the forecasts of εt. As a default, σ2
ε is estimated using the data and the

component forecasts are not saved or displayed. A few examples of the IRREGULAR
statement are given next. In the first example the statement is in its simplest form,
resulting in the inclusion of an irregular component with unknown variance.

irregular;

The following statement provides a starting value for σ2
ε , to be used in the nonlinear

parameter estimation process.

irregular variance=4;

NOEST
This option fixes the value of σ2

ε to the value specified in the VARIANCE= option.

VARIANCE= value
This option is used to supply an initial value for σ2

ε during the parameter estimation
process. Any nonnegative value, including zero, is an acceptable starting value.

LEVEL Statement

LEVEL < options > ;

The LEVEL statement is used to include a level component in the model. The level
component, either by itself or together with a slope component, forms the trend com-
ponent, µt, of the model. If the slope component is absent, the resulting trend is a
Random Walk (RW) specified by the following equations:

µt = µt−1 + ηt, ηt ∼ i.i.d. N(0, σ2
η)
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If the slope component is present, signified by the presence of a SLOPE statement
(see “SLOPE Statement”), a Locally Linear Trend (LLT) is obtained. The equations
of LLT are as follows:

µt = µt−1 + βt−1 + ηt, ηt ∼ i.i.d. N(0, σ2
η)

βt = βt−1 + ξt, ξt ∼ i.i.d. N(0, σ2
ξ )

In either case, the options in the LEVEL statement are used to specify the value of σ2
η

and to request forecasts of µt. The SLOPE statement is used for similar purposes in
the case of slope βt. The following examples illustrate the use of LEVEL statement.
Assuming that a SLOPE statement is not added subsequently, a simple Random Walk
trend is specified by the following statement:

level;

The following statements specify a locally linear trend with value of σ2
η fixed at 4.

The value of σ2
ξ , the disturbance variance in the slope equation, will be estimated

from the data.

level variance=4 noest;
slope;

NOEST
This option fixes the value of σ2

η to the value specified in the VARIANCE= option.

VARIANCE= value
This option is used to supply an initial value for σ2

η , the disturbance variance in the
µt equation, at the start of the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.

SEASON Statement

SEASON < options > ;

The SEASON or the SEASONAL statement is used to specify a seasonal component,
γt, in the model. A seasonal component can be one of the two types, DUMMY or
TRIGONOMETRIC. A DUMMY type seasonal with season length s satisfies the
following stochastic equation:

s−1∑
i=0

γt−i = ωt, ωt ∼ i.i.d. N(0, σ2
ω)

The equations for a TRIGONOMETRIC type seasonal are as follows:

γt =
[s/2]∑
j=1

γj,t
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where [s/2] equals s/2 if s is even and equals (s − 1)/2 if it is odd. The sinusoids
γj,t have frequencies λj = 2πj/s and are specified by the matrix equation

[
γj,t

γ∗
j,t

]
=

[
cos λj sin λj

− sin λj cos λj

] [
γj,t−1

γ∗
j,t−1

]
+

[
ωj,t

ω∗
j,t

]

where the disturbances ωj,t and ω∗
j,t are assumed to be independent and, for fixed j,

ωj,t and ω∗
j,t ∼ N(0, σ2

ω). If s is even then the equation for γ∗
s/2,t is not needed and

γs/2,t is given by

γs/2,t = −γs/2,t−1 + ωs/2,t

Note that, whether the seasonal type is DUMMY or TRIGONOMETRIC, there is
only one parameter, the disturbance variance σ2

ω, in the seasonal model.

There can be more than one seasonal component in the model, necessarily with differ-
ent season lengths. Each seasonal component is specified using a separate SEASON
statement. A model with multiple seasonal components can easily become quite com-
plex and may need large amounts of data and computing resources for its estimation
and forecasting. Currently, at most three seasonals can be included in a model. The
following code examples illustrate the use of SEASON statement:

season length=4;

This statement specifies a DUMMY type (default) seasonal component with season
length 4, corresponding to the quarterly seasonality. The disturbance variance σ2

ω is
estimated from the data. The following statement specifies a trigonometric seasonal
with monthly seasonality. It also provides a starting value for σ2

ω.

season length=12 type=trig variance=4;

LENGTH= integer
This option is used to specify the season length, s. The season length can be any
integer larger than or equal to 2, or it can be “s”, indicating a placeholder that will
be substituted later with an appropriate value. The specification of season length is
optional; in its absence it defaults to LENGTH=s. The use of specs with a placeholder
for season lengths is further explained in Example 17.3. Typical examples of season
lengths are 12, corresponding to the monthly seasonality, or 4, corresponding to the
quarterly seasonality.

NOEST
This option fixes the value of the disturbance variance parameter to the value specified
in the VARIANCE= option.

TYPE= DUMMY | TRIG
This option specifies the type of the seasonal component. The default type is
DUMMY.
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VARIANCE= value
This option is used to supply an initial value for the disturbance variance, σ2

ω, in the
γt equation, at the start of the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.

SLOPE Statement

SLOPE < options > ;

The SLOPE statement is used to include a slope component in the model. The slope
component cannot be used without the level component. The level and slope specifi-
cations jointly define the trend component of the model. A SLOPE statement without
the accompanying LEVEL statement is ignored. The equations of the trend, defined
jointly by the level µt and slope βt, are as follows:

µt = µt−1 + βt−1 + ηt, ηt ∼ i.i.d. N(0, σ2
η)

βt = βt−1 + ξt, ξt ∼ i.i.d. N(0, σ2
ξ )

The SLOPE statement is used to specify the value of the disturbance variance, σ2
ξ , in

the slope equation, and to request forecasts of βt. The following examples illustrate
this statement:

level;
slope;

These statements request that a locally linear trend be used in the model. The dis-
turbance variances σ2

η and σ2
ξ are estimated from the data. You can request a locally

linear trend with fixed slope using the following statements:

level;
slope variance=0 noest;

NOEST
This option fixes the value of the disturbance variance, σ2

ξ , to the value specified in
the VARIANCE= option.

VARIANCE= value
This option is used to supply an initial value for the disturbance variance, σ2

ξ , in the
βt equation, at the start of the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.
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Example 17.1. Some Syntax Illustrations

The following code fragments illustrate the HPFUCMSPEC syntax for some of the
commonly needed modeling activities. Suppose that a variety of UCM models are to
be fitted to a data set that contains a sales series as the forecast variable and several
promotional events as predictor series. In all these cases the model repository is kept
the same, sasuser.ucm, and the models are named as model1, model2, ... to ensure
uniqueness. Note that in a given repository, the models must have unique names.
The symbols for the forecast and input variables are sales and promo1, promo2, ...,
respectively.

/* BSM with two inputs */
proc hpfucmspec repository=sasuser.ucm

name=model1;
forecast symbol=sales transform=log;
input symbol=promo1 delay=3;
input symbol=promo2 dif=1;
irregular;
level;
slope variance=0 noest; /* non-varying slope */
season length=12 type=trig;

run;

/* Model with one cycle and Box-Cox transform */
proc hpfucmspec repository=sasuser.ucm

name=model2;
forecast symbol=sales transform=BoxCox(0.8);
irregular;
level;
slope;
cycle rho=1 noest=(rho); /* fixed damping factor */

run;

/* Unsaturated monthly seasonal */
proc hpfucmspec repository=sasuser.ucm

name=model3;
forecast symbol=sales transform=log;
irregular;
level;
slope;
cycle period=12 rho=1 noest=(period rho);
cycle period=6 rho=1 noest=(period rho);
cycle period=4 rho=1 noest=(period rho);

run;
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/* Supply starting values for the parameters */
proc hpfucmspec repository=sasuser.ucm

name=model4;
forecast symbol=sales transform=log;
irregular;
level;
slope variance=10;
cycle period=12 rho=0.9 noest=(period);
cycle period=6 noest=(period);

run;

Example 17.2. How to Include a UCM Model in a Model
Selection List

One of the primary uses of the HPFUCMSPEC procedure is to add candidate UCM
models to a model selection list that can be used by the HPFENGINE procedure (see
Chapter 10, “The HPFENGINE Procedure”). The HPFUCMSPEC procedure is used
to create the UCM model specifications and the HPFSELECT procedure is used to
add the specifications to a model selection list (see Chapter 16, “The HPFSELECT
Procedure”). This example illustrates this scenario.

Here a series that consists of the yearly river flow readings of the Nile, recorded at
Aswan (see Cobb 1978), is studied. The data consists of readings from the years 1871
to 1970. This series is known to have had a shift in the level starting at the year 1899,
and the years 1877 and 1913 are suspected to be outlying points.

The following DATA step statements read the data in a SAS data set and create
dummy inputs for the shift in 1899 and the unusual years 1877 and 1913.

data nile;
input riverFlow @@;
year = intnx( ’year’, ’1jan1871’d, _n_-1 );
format year year4.;
if year >= ’1jan1899’d then Shift1899 = 1.0;
else Shift1899 = 0;
if year = ’1jan1913’d then Event1913 = 1.0;
else Event1913 = 0;
if year = ’1jan1877’d then Event1877 = 1.0;
else Event1877 = 0;

datalines;
1120 1160 963 1210 1160 1160 813 1230 1370 1140
995 935 1110 994 1020 960 1180 799 958 1140
1100 1210 1150 1250 1260 1220 1030 1100 774 840
874 694 940 833 701 916 692 1020 1050 969
831 726 456 824 702 1120 1100 832 764 821
768 845 864 862 698 845 744 796 1040 759
781 865 845 944 984 897 822 1010 771 676
649 846 812 742 801 1040 860 874 848 890
744 749 838 1050 918 986 797 923 975 815
1020 906 901 1170 912 746 919 718 714 740

;
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Three candidate models are specified, m1, m2, and m3. Out of these three models m1
is the simplest, which ignores the background information. Out of the other two mod-
els, m2 uses only the shift in 1899, while m3 uses all the three inputs. The following
syntax shows how to specify these models and how to create a selection list that com-
bines them using the HPFSELECT procedure. In the HPFSELECT procedure note
the use of INPUTMAP option in the SPEC statement. It ties the symbolic variable
names used in the HPFARIMASPEC procedure with the actual variable names in the
data set. If the symbolic names were appropriate to start with, then the INPUTMAP
option need not be used.

*make spec1;
proc hpfucmspec repository=sasuser.mycat

name=m1;
forecast symbol=y;
irregular;
level;

run;

*make spec2;
proc hpfucmspec repository=sasuser.mycat

name=m2;
forecast symbol=y;
irregular;
level;
input symbol=x1;

run;

*make spec3;
proc hpfucmspec repository=sasuser.mycat

name=m3;
forecast symbol=y;
irregular;
level;
input symbol=x1;
input symbol=x2;
input symbol=x3;

run;

*make a selection list that includes m1, m2 and m3;
proc hpfselect repository=sasuser.mycat

name=myselect;

spec m1 / inputmap(symbol=y var=riverFlow);

spec m2 / inputmap(symbol=y var=riverFlow)
inputmap(symbol=x1 var=Shift1899);

spec m3 / inputmap(symbol=y var=riverFlow)
inputmap(symbol=x1 var=Shift1899)
inputmap(symbol=x2 var=Event1877)
inputmap(symbol=x3 var=Event1913);

run;
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This selection list can now be used in the HPFENGINE procedure for various types
of analyses. The following syntax shows how to compare these models based on the
default comparison criterion, Mean Absolute Percentage Error (MAPE). As expected,
the model m3 turns out to be the best of the three compared (see Output 17.2.1).

proc hpfengine data=nile
repository=sasuser.mycat
globalselection=myselect
lead=0
print=(select);

forecast riverFlow;
input Shift1899;
input Event1877;
input Event1913;

run;

Output 17.2.1. Model Selection Based on the MAPE Criterion

Model MAPE Selected

M1 13.096557 No
M2 11.978729 No
M3 10.532463 Yes

Example 17.3. How to Create a Generic Seasonal Model Spec
That Is Suitable for Different Season Lengths

In the case of many seasonal model specifications, it is possible to describe a generic
specification that is applicable in a variety of situations just by changing the sea-
son length specifications at appropriate places. As an example consider the Basic
Structural model, which is very useful for modeling seasonal data. The Basic
Structural model for a monthly series can be specified using the following syntax:

proc hpfucmspec repository=work.specs
name=MonthlyBSM
label=

"Basic Structural Model For A Series With Season Length 12";
forecast symbol=Y transform=log;
irregular;
level;
slope;
season type=trig length=12;

run;

It is easy to see that the same syntax is applicable to a quarterly series if the length
in the SEASON specification is changed from 12 to 4. A generic specification that
allows for late binding of season lengths can be generated by the following syntax:
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proc hpfucmspec repository=work.specs
name=GenericBSM
label=

"Generic Basic Structural Model";
forecast symbol=Y transform= log;
irregular;
level;
slope;
season type=trig length=s;

run;

In this syntax the length in the SEASON specification is changed from 12 to “s”.
This syntax creates a template for the Basic Structural model that is applicable to dif-
ferent season lengths. When the HPFENGINE procedure, which actually uses such
model specifications to estimate the model and produce the forecasts, encounters
such a “generic” specification it automatically creates a proper specification by re-
placing the season length placeholder with the value implied by the ID variable or its
SEASONALITY= option. The following example illustrates the use of this generic
spec. It shows how the same spec can be used for monthly and quarterly series. The
parameter estimates for monthly and quarterly series are given in Output 17.3.1 and
Output 17.3.2, respectively.

/* Create a selection list that contains
the Generic Airline Model */

proc hpfselect repository=work.specs
name=genselect;

spec GenericBSM;
run;

/* Monthly interval */
proc hpfengine data=sashelp.air

repository=work.specs
globalselection=genselect
print=(estimates);

id date interval=month;
forecast air;

run;
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Output 17.3.1. Parameter Estimates for the Monthly Series

The HPFENGINE Procedure

Parameter Estimates

Standard Approx
Component Parameter Estimate Error t Value Pr > |t|

IRREGULAR ERROR VARIANCE 0.0002344 0.0001079 2.17 0.0298
LEVEL ERROR VARIANCE 0.0002983 0.0001057 2.82 0.0048
SLOPE ERROR VARIANCE 9.8572E-13 6.7141E-10 0.00 0.9988
SEASON ERROR VARIANCE 3.55769E-6 1.32347E-6 2.69 0.0072

/* Create a quarterly series illustrating accumulating
the monthly Airline series to quarterly */

proc timeseries data=sashelp.air out=Qair;
id date interval=quarter;
var air / accumulate=total;

run;

/* Quarterly interval */
proc hpfengine data=Qair

repository=work.specs
globalselection=genselect
print=(estimates);

id date interval=quarter;
forecast air;

run;

Output 17.3.2. Parameter Estimates for the Quarterly Series

The HPFENGINE Procedure

Parameter Estimates

Standard Approx
Component Parameter Estimate Error t Value Pr > |t|

IRREGULAR ERROR VARIANCE 6.7903E-11 1.32293E-7 0.00 0.9996
LEVEL ERROR VARIANCE 0.0006273 0.0001762 3.56 0.0004
SLOPE ERROR VARIANCE 1.1511E-11 1.68785E-8 0.00 0.9995
SEASON ERROR VARIANCE 0.00002010 9.68319E-6 2.08 0.0379

References
Cobb, G. W. (1978), “The Problem of the Nile: Conditional Solution to a Change

Point Problem,” Biometrika, 65, 243-251.
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Chapter 18
Forecasting Process Summary
Background

This chapter provides a brief theoretical background on automatic forecasting. An
introductory discussion of automatic forecasting topics can be found in Makridakis,
Wheelwright, and Hyndman (1997), Brockwell and Davis (1996), and Chatfield
(2000). A more detailed discussion of time series analysis and forecasting can be
found in Box, Jenkins, and Reinsel (1994), Hamilton (1994), Fuller (1995), and
Harvey (1994).

This chapter also provides a summary of the SAS High-Performance Forecasting
process. Forecasting steps, data and information flows, and information repositories
are explained in this chapter.

Transactional Data

Transactional data are time-stamped data collected over time at no particular fre-
quency. Some examples of transactional data are

• Internet data

• point-of-sale (POS) data

• inventory data

• call center data

• trading data

Businesses often want to analyze transactional data for trends and seasonal variation.
To analyze transactional data for trends and seasonality, statistics must be computed
for each time period and season of concern. The frequency and the season may vary
with the business problem. Various statistics can be computed on each time period
and season, for example:

• Web visits by hour and by hour of day

• sales per month and by month of year

• inventory draws per week and by week of month

• calls per day and by day of week

• trades per weekday and by weekday of week
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Time Series Data

Time series data are time-stamped data collected over time at a particular frequency.
Some examples of time series data are

• Web visits per hour

• sales per month

• inventory draws per week

• calls per day

• trades per weekday

As can be seen, the frequency associated with the time series varies with the prob-
lem at hand. The frequency or time interval may be hourly, daily, weekly, monthly,
quarterly, yearly, or many other variants of the basic time intervals. The choice of
frequency is an important modeling decision. This decision is especially true for au-
tomatic forecasting. For example, if you want to forecast the next four weeks, it is
best to use weekly data rather than daily data. The forecast horizon in the former case
is 4, while in the latter case it is 28.

Associated with each time series is a seasonal cycle or seasonality. For example, the
length of seasonality for a monthly time series is usually assumed to be 12 because
there are 12 months in a year. Likewise, the seasonality of a daily time series is
usually assumed to be 7. The usual seasonality assumption may not always hold. For
example, if a particular business’ seasonal cycle is 14 days long, the seasonality is
14, not 7.

Time series that consist of mostly zero values (or a single value) are called interrupted
or intermittent time series. These time series are mainly constant-valued except for
relatively few occasions. Intermittent time series must be forecast differently from
non-intermittent time series.

Forecasting Models

A skilled analyst can choose from a number of forecasting models. For automatic
forecasting of large numbers of time series, only the most robust models should be
used. The goal is not to have the analyst manually choose the very best model for
forecasting each time series. The goal is to provide a list of candidate models that will
forecast the large majority of the time series well. In general, when an analyst has a
large number of time series to forecast, the analyst should use automatic forecasting
for the low-valued forecasts; the analyst can then spend a larger portion of his time
dealing with high-valued forecasts or low-valued forecasts that are problematic.

The candidate models that are used here are considered the most robust in the fore-
casting literature and these models have proven their effectiveness over time. These
models consider the local level, local trend, and local seasonal components of the
time series. The term local is used to describe the fact that these components evolve
with time. For example, the local trend component may not be a straight line but a
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trend line whose slope changes with time. In each of these models, there is an error
or random component that models the uncertainty.

The components associated with these models are not only useful for forecasting but
also for describing how the time series evolves over time. The forecasting model
decomposes the series into its various components. For example, the local trend
component describes the trend (up or down) at each point in time, and the final trend
component describes the expected future trend. These forecasting models can also
indicate departures from previous behavior or can be used to cluster time series.

The parameter estimates (weights or component variances) describe how fast the
component is changing with time. Weights or component variances near zero in-
dicate a relative constant component; weights near one or large component variances
indicate a relatively variable component. For example, a seasonal weight near zero
or a component variance near zero represents a stable seasonal component; a sea-
sonal weight near one or a large component variance represents an unstable seasonal
component. Parameter estimates should be optimized for each time series for best
results.

Local Level Models

The local level models are used to forecast time series whose level (or mean) compo-
nent varies with time. These models predict the local level for future periods.

(Series) = (Local Level) + (Error)

Examples of local level models are Simple Exponential Smoothing and Local Level
Unobserved Component Model. This model has one parameter (level), which de-
scribes how the local level evolves. The forecasts for the future periods are simply
the final local level (a constant).

Local Trend Models

The local trend models are used to forecast time series whose level or trend/slope
components vary with time. These models predict the local level and trend for future
periods.

(Series) = (Local Level) + (Local Trend) + (Error)

Examples of local trend models are Double (Brown), Linear (Holt), Damped-Trend
Exponential Smoothing, and Local Trend Unobserved Component Model. The dou-
ble model has one parameter (level/trend weight), the linear model has two parame-
ters (level and trend), and the damped-trend model has three parameters (level, trend,
and damping weights). The damping weight dampens the trend over time. The fore-
casts for the future periods are a combination of the final local level and the final local
trend.

Local Seasonal Models

The local seasonal models are used to forecast time series whose level or seasonal
components vary with time. These models predict the local level and season for
future periods.
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(Series) = (Local Level) + (Local Season) + (Error)

Examples of local seasonal models are Seasonal Exponential Smoothing and the
Local Seasonal Unobserved Component Model. The seasonal model has two pa-
rameters (level and seasonal). The forecasts for the future periods are a combination
of the final local level and the final local season.

Local Models

The local models are used to forecast time series whose level, trend, or seasonal
components vary with time. These models predict the local level, trend, and seasonal
component for future periods.

(Series) = (Local Level) + (Local Trend) + (Local Season) + (Error)

(Series) = ((Local Level) + (Local Trend)) x (Local Season) + (Error)

Examples of local models are the Winters Method (additive or multiplicative) and
the Basic Structural Model. These models have three parameters (level, trend, and
seasonal). The forecasts for the future periods are a combination of the final local
level, the final local trend, and final local season.

ARIMA Models

The Autoregressive Integrated Moving Average Models (ARIMA) are used to fore-
cast time series whose level, trend, or seasonal properties vary with time. These mod-
els predict the future values of the time series by applying non-seasonal or seasonal
polynomial filters to the disturbances. Using different types of polynomial filters
permits the modeling of various properties of the time series.

(Series) = DisturbanceFilter (Error)

Examples of ARIMA models are the Exponentially Weighted Moving Average
(EWMA), moving average processes (MA), integrated moving average processes
(IMA), autoregressive processes (AR), integrated autoregressive processes (IAR),
and autoregressive moving average processes (ARMA).

Causal Models

Causal time series models are used to forecast time series data that are influenced by
causal factors. Input variables (regressor or predictor variables) and calendar events
(indicator, dummy, or intervention variables) are examples of causal factors. These
independent (exogenous) time series causally influence the dependent (response, en-
dogenous) time series and, therefore, can aid the forecasting of the dependent time
series.

Examples of causal time series models are Autoregressive Integrated Moving
Average with eXogenous inputs (ARIMAX), which are also known as transfer func-
tion models or dynamic regression models, and Unobserved Component Models
(UCM), which are also known as state-space models and structural time series mod-
els.

(Series) = TransferFunctionFilter(Causal Factors) + DisturbanceFilter(Error)
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(Series) = (Local Level) + (Local Trend) + (Local Season) + (Causal Factors) +
(Error)

These regression models are dynamic because they take into account the autocorrela-
tion between observations recorded at different times. Dynamic regression includes
and extends multiple linear regression (static regression).

Input variables are typically continuous-valued time series. They represent causal
factors that influence the dependent time series throughout the time range. Examples
of input variables are prices, temperatures, and other economic or natural factors.
Input variables are contained in the time series data set.

Calendar events can be represented by indicator variables that are typically discrete-
valued. They indicate when the causal factor influences the dependent time series.
Typically, zero values indicate the absence of the event and nonzero values indicate
the presence of the event. These dummy regressors can consist of pulses (points),
steps (shifts), ramps, and temporary changes and combinations of these primitive
shapes. The values of the indicator variable depend on the time interval. For example,
if the calendar event is New Year’s Day and the time interval is monthly, a pulse
indicator variable will be nonzero for each January and zero otherwise.

In addition to the causal factors, the causal model can contain components described
in preceding sections: local level, local trend, and local seasonal. Causal models
decompose the time series into causal factors and the local components. This de-
composition is useful for demand analysis (promotional analysis and intervention
analysis).

Transformed Models

With the exception of the Winters Method Multiplicative Model, the preceding fore-
casting models are linear; that is, the components must be added together to re-create
the series. Since time series are not always linear with respect to these components,
transformed versions of the preceding forecasting models must be considered when
using automatic forecasting. Some useful time series transformations are

• Logarithmic

• Square-Root

• Logistic

• Box-Cox

For example, suppose the underlying process that generated the series has one of the
following nonlinear forms:

(Series) = Exp ( (Local Level) + (Local Trend) + (Error) ) exponential growth model

(Series) = (Local Level) x (Local Season) x (Error) multiplicative error model

Transforming the preceding series permits the use of a linear forecasting model:

Log(Series) = (Local Level) + (Local Trend) + (Error) log local trend model
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Log(Series) = Log(Local Level) + Log(Local Seasonal) + Log(Error) log local sea-
sonal model

The preceding transformations can only be applied to positive-valued time series.

Intermittent Demand Models

Intermittent demand models (IDM) or interrupted time series models are used to fore-
cast intermittent time series data. Since intermittent series are mostly constant valued
(usually zero) except on relatively few occasions, it is often easier to predict when the
series departs and how much the series departs from this constant value rather than
the next value. An example of an intermittent demand model is Croston’s Method.

Intermittent demand models decompose the time series into two parts: the interval
series and the size series. The interval series measures the number of time periods
between departures. The size series measures the magnitude of the departures. After
this decomposition, each part is modeled and forecast independently. The interval
forecast predicts when the next departure will occur. The size forecast predicts the
magnitude of the next departure. After the interval and size predictions are computed,
they are combined (predicted magnitude divided by predicted number of periods for
the next departure) to produce a forecast for the average departure from the constant
value for the next time period.

External and User-Defined Models

In addition to the previously described general classes of Exponential Smoothing
Models (ESM), Unobserved Component Models (UCM), Autoregressive Integrated
Moving Average Models (ARIMA), and Intermittent Demand Models (IDM), HPF
allows for external models and user-defined models.

External models are used for forecasts that are provided external to the system. These
external forecasts may have originated from an external statistical model from another
software package, may have been provided by an outside organization (e.g., market-
ing organization, government agency) or may be based on judgment. External models
allow for the evaluation of external forecasts and for tests for unbiasedness.

User-defined models are external models that are implemented with the SAS pro-
gramming language or the C programming language by the user of HPF software.
For these models, users of HPF create their own computational algorithm to generate
the forecasts. They are considered external models because they were not imple-
mented in HPF.

Forecasts
Forecasts are time series predictions made for future periods. They are random vari-
ables and, therefore, have an associated probability distribution. For example, as-
suming a normal distribution, the forecasts for the next three months can be viewed
as three “bell-curves” that are progressively flatter (or wider). The mean or median
of each forecast is called the prediction. The variance of each forecast is called the
prediction error variance and the square root of the variance is called the predic-
tion standard error. The variance is computed from the forecast model parameter
estimates and the model residual variance.
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The forecast for the next future period is called the one-step-ahead forecast. The
forecast for h periods in the future is called the h-step-ahead forecast. The forecast
horizon or forecast lead is the number of periods into the future for which predictions
are made (one-step, two-step,..., h-step). The larger the forecast horizon, the larger
the prediction error variance at the end of the horizon. For example, forecasting daily
data four weeks into the future implies a forecast horizon of 28, whereas forecasting
weekly data four weeks into the future implies a forecast horizon of only 4. The
prediction standard error at the end of the horizon in the former case may be larger
than the prediction standard error in the latter case.

The confidence limits are based on the prediction standard errors and a chosen con-
fidence limit size. A confidence limit size of 0.05 results in 95% confidence limits.
The confidence limits are often computed assuming a normal distribution, but others
could be used. As with the prediction standard errors, the width of the confidence
limits increases with the forecast horizon. Once again, the forecast horizon of 28
will have wide confidence limits at the end of the horizon, representing greater un-
certainty.

The prediction error is the difference between the actual value and the predicted
value when the actual value is known. The prediction errors are used to calculate
the statistics of fit that are describe later. For transformed models, it is important to
understand the difference between the model errors (or residuals) and the prediction
errors. The residuals measure the departure from the model in the transformed met-
ric (Log, Square Root, etc.). The prediction errors measure the departure from the
original series. You should not directly compare the model residuals of a transformed
model and a non-transformed model when evaluating the model fit. You can compare
the prediction errors between any two models because prediction errors are computed
on the same metric.

Taken together, the predictions, prediction standard errors, and confidence limits at
each period in the forecast horizon are the forecasts. Although many people use the
term “forecast” to imply only prediction, a forecast is not one number for each future
time period.

Using a transformed forecasting model requires the following steps:

• The time series data are transformed.

• The transformed time series data are fit using the forecasting model.

• The forecasts are computed using the parameter estimates and the transformed
time series data.

• The forecasts (predictions, prediction standard errors, and confidence limits)
are inverse transformed.

The naive inverse transformation results in median forecasts. To obtain mean fore-
casts requires that the prediction and the prediction error variance both be adjusted
based on the transformation. Additionally, the model residuals will be different from
the prediction errors due to this inverse transformation. If no transformation is used,
the model residual and the prediction error will be the same, and likewise the mean

551



Forecasting Details � Forecasting Process Summary

and median forecast will be the same (assuming a symmetric disturbance distribu-
tion).

For causal models, the future values of the causal factors must be provided in order
to forecast the time series. A causal factor is deterministic if its future values are
known with certainty. A causal factor is controllable if its future values are under the
control of the organization producing the forecasts. A causal factor is stochastic if its
future values are not known with certainty. If the causal factor is stochastic, it must be
forecast as well, and the uncertainty of its forecast (prediction standard errors) must
be incorporated into the uncertainty of the time series forecast.

Forecast Function (Scoring)

For causal models that include controllable causal factors, the predictions can be in-
fluenced by the future decisions made by the organization producing the forecasts.
Changing the future values of the controllable causal factors changes the forecasts.
Organizations want to make decisions that benefit themselves. To help organizations
make better decisions, the future values of the controllable causal factors can be var-
ied to their benefit. The future values of the causal factors can be varied for scenario
analysis (What-If analysis), stochastic optimization, or goal seeking to aid proper
decision-making.

In scenario analysis, the organization sets the future values of the causal factors to
specific values and then evaluates the effect on the forecasts. In stochastic optimiza-
tion, the organization algorithmically varies the future values of the causal factors to
find the optimum of an objective function (profit, revenue, or cost function) based
on the forecasts. In goal seeking, the organization algorithmically varies the future
values of the causal factors in order to determine the values that achieve a certain goal
(profit, revenue, or cost goal) based on the forecasts.

For example, suppose the following:

• An organization desires to predict the demand for a product or service.

• The demand is influenced by its sales price and by its advertising expenditures.

• These data are recorded over time.

The following types of analysis may be used to answer questions about the time series
data:

• Scenario analysis can help answer the question What happens to demand if the
organization increases the sales price and decreases the advertising expendi-
tures?

• Stochastic optimization can help answer the question What is the optimal sales
price and advertising expenditure combination that maximizes profit?

• Goal seeking can help answer the question What are the combinations of sales
price and advertising expenditures that achieve a specified sales target?
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The sales price and advertising expenditures for a given time period may influence
demand in future time periods. Static regression ignores these dynamic effects, which
often leads to poor predictions, which in turn leads to poor decisions. Dynamic re-
gression captures these dynamic effects and provides better predictions, which in turn
facilitates better decisions.

Forecast score files (or forecast functions) summarize the time series model’s param-
eter estimates and the final states (historical time series information). These files
can be used to quickly generate the forecasts required for the iterative nature of sce-
nario analysis, stochastic optimization, and goal-seeking computations. Since most
of the computational effort associated with automatic forecasting is time series anal-
ysis, diagnostics, model selection, and parameter estimation, forecast scoring is rela-
tively effortless. Therefore, forecast scoring makes the iterative nature of large scale
decision-making more tractable.

The results of forecast scoring include the predictions, prediction standard errors, and
the confidence limits. All of these results can be used in decision-making.

Statistics of Fit

The statistics of fit evaluate how well a forecasting model performs by comparing
the actual data to the predictions. For a given forecast model that has been fitted to
the time series data, the model should be checked or evaluated to see how well it fits
or forecasts the data. Commonly used statistics of fit are Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), Akaike Information Criteria
(AIC), and many others. The statistics of fit can be computed from the model residu-
als or the prediction errors.

When the full range of data is used to both fit and evaluate the model, this is referred
to as in-sample evaluation. When the most recent data are excluded for parameter
estimation (holdout) and this holdout sample is used for evaluation, this is referred
to as holdout sample evaluation. Holdout sample analysis is similar to training and
testing of neural networks. A portion of the data is withheld from training (fit) and
the withheld data (holdout) are used to test performance.

When a particular statistic of fit is used for forecast model selection, it is referred to
as the model selection criterion. For example, if the MAPE (an often recommended
choice) is used as a model selection criterion, the forecast model with smallest MAPE
in the evaluation region (in-sample or holdout-sample) is chosen as the best model.

When a particular statistic of fit is used to judge how well the forecasting process is
predicting the future, it is referred to as the performance statistic.
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Automatic Forecasting Process
Automatic forecasting is usually defined as forecasting without the aid of an analyst
skilled in time series analysis techniques or as forecasting when the number of fore-
casts is too numerous for an analyst to investigate. Automatic forecasting is usually
performed on each time series independently. For each time series and for each can-
didate model, the parameter estimates are optimized for best results. This means that
several optimizations may be required for each time series.

Accumulation Step

The accumulation of time-stamped data into time series data is based on a particular
frequency. For example, time-stamped data can be accumulated to form hourly, daily,
weekly, monthly, or yearly time series. Additionally, the method for accumulating the
transactions within each time period is based on a particular statistic. For example,
the sum, mean, median, minimum, maximum, standard deviation, and other statistics
can be used to accumulate the transactions within a particular time period.

For automatic forecasting, accumulation is the most important decision because the
software makes most of the remaining decisions. If weekly forecasts of the average
of the transactions are needed, then the accumulation frequency should be weekly
and the accumulation statistic should be the average.

Accumulating the transactional data on a relatively small time interval may require a
long forecast horizon. For example, if the data are accumulated on an hourly basis
and if it is desired to forecast one month into the future, the forecast horizon is very
long and the width of the confidence limits will be very wide toward the end of the
horizon. In this situation, the forecast content or usefulness of the forecast will be
low.

Interpretation Step

Once the time-stamped data has been accumulated, there may be no data recorded
for certain time periods (resulting in missing values in the accumulated time series).
These missing values can represent unknown values (and so they should remain miss-
ing) or they can represent no activity (in which case they should be set to zero or some
other appropriate value). Some transactional databases set missing data at the begin-
ning or end of the time series to zero values. These zero values should be set to
missing values. Missing values and zero values need to be interpreted before analyz-
ing the time series.

Adjustment Step

Once the time-stamped data has been accumulated and interpreted, the time series
to forecast may require adjustment prior to analysis or pre-forecast adjustment. By
adjusting the time series for known systematic variations or deterministic compo-
nents, the underlying stochastic (unknown) time series process may be more readily
identified and modeled.
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Examples of systematic adjustments are currency-unit conversions, exchange rates,
trading days, and other known systematic variations. Examples of deterministic ad-
justments are advanced bookings and reservations, contractual agreements, and other
known contributions or deterministic components.

After analysis, the statistical forecast of the adjusted time series may require post-
forecast adjustment to return forecasts in the original metric.

Typically the pre-forecast and post-forecast adjustments are operations that are in-
verses of each other. For example, to adjust a time series for exchange rates, it is
often desirable to

1. Divide the time series by the exchange rate.

2. Analyze and forecast the adjusted time series without regard to exchange rates.

3. Adjust the forecasts, multiplying by the exchange rate.

(Division and multiplication are inverse operations of each other.)

For another example, to adjust a time series for advanced bookings, it is often desir-
able to

1. Subtract the advanced bookings from the time series.

2. Analyze and forecast the adjusted time series without regard to advanced book-
ing.

3. Adjust the forecasts, adding the advanced bookings.

(Subtraction and addition are inverse operations of each other.)

Systematic variations or deterministic components are included in the time series
data. Adjustments are data whose effect is excluded prior to statistical analysis.
Causal factors are data whose effect is included with the statistical analysis.

Diagnostic Step

Given the time series data, the time series diagnostics subset the potential list of can-
didate models to those that are judged appropriate to a particular time series. Time se-
ries that have trends (deterministic or stochastic) should be forecast with models that
have a trend component. Time series with seasonal trends (deterministic or stochas-
tic) should be forecast with models that have a seasonal component. Time series that
are nonlinear should be transformed for use with linear models. Time series that are
intermittent should be forecast with intermittent models.

The importance of the diagnostics should not be underestimated. Applying a seasonal
model to a nonseasonal time series, particularly one with a short history, can lead to
over parameterization or false seasonality. Applying a linear model to a nonlinear
time series can lead to underestimation of the growth (or decline). Applying a non-
intermittent model to an intermittent series will result in predictions biased toward
zero.
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If it is known, a priori, that a time series has a particular characteristic, then the diag-
nostics should be overridden and the appropriate model should be used. For example,
if the time series is known to be seasonal, the diagnostics should be overridden to
always choose a seasonal model.

There may be several causal factors that may or may not influence the dependent
time series. The multivariate time series diagnostics determine which of the causal
factors significantly influence the dependent time series. These diagnostics include
cross-correlation analysis and transfer function analysis.

Once again, if it is known, a priori, that a particular causal factor is known to in-
fluence the dependent time series, then the diagnostics should be overridden and the
appropriate model should be used.

Model Selection Step

After the candidate models have been subset by the diagnostics, each model is fit to
the data (with the holdout sample excluded). After model fitting, the one-step-ahead
forecasts are made in the fit region (in-sample) or the multistep-ahead forecasts are
made in the holdout sample region (out-of-sample). The model selection criterion is
used to select the best performing model from the appropriate subset of the candidate
models. As described above, the model selection criteria are statistics of fit.

If the length of the time series is short, holdout sample analysis may not be possible
due to a lack of data. In this situation, the full-range of the data should be used for
fitting and evaluation. Otherwise, holdout sample analysis is recommended.

Parameter Estimation Step

Once the best forecasting model is selected from the candidate models, the selected
model is fit to the full range of the data to obtain the most accurate model parameter
estimates. If you excluded the holdout sample in this step, you would be ignoring
the most recent and influential observations. Most univariate forecasting models are
weighted averages of the past data, with the most recent having the greatest weight.
Once the model is selected, excluding the holdout sample can result in poor forecasts.
Holdout sample analysis is only used for forecast model selection, not for forecasting.

Forecasting Step

Once the model parameters are estimated, forecasts (predictions, prediction standard
errors, prediction errors, and confidence limits) are made using the model param-
eter estimates, the model residual variance, and the full-range of data. If a model
transformation was used, the forecasts are inverse transformed on a mean or median
basis.

When it comes to decision-making based on the forecasts, the analyst must decide
whether to base the decision on the predictions, lower confidence limits, upper con-
fidence limits or the distribution (predictions and prediction standard errors). If there
is a greater penalty for over predicting, the lower confidence limit should be used. If
there is a greater penalty for under predicting, the upper confidence limit should be
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used. Often for inventory control decisions, the distribution (mean and variance) is
important.

Evaluation Step

Once the forecasts are made, the in-sample statistics of fit are computed based on the
one-step-ahead forecasts and the actual data. These statistics can be used to identify
poorly fitting models prior to making business decisions based on these forecasts. If
forecasts do not predict the actual data well, they can be flagged to signal the need
for more detailed investigation by the analyst.

In addition to the statistics of fit, distribution and correlation analysis of the prediction
errors can help evaluate the adequacy of the forecasting model.

Performance Step

The previous steps are used to forecast the future. This ex-post forecast evaluation
judges the performance of the forecasting model. After forecasting future periods,
the actual data becomes available as time passes. For example, suppose that monthly
forecasts are computed for the next three months into the future. After three months
pass, the actual data are available. The forecasts made three months ago can now be
compared to the actual data of the last three months.

The availability of the new data begs the following questions:

• How well are you forecasting?

• Why are you forecasting poorly?

• If you were forecasting well before, what went wrong?

Some useful measures of forecast performance are the statistics of fit described in a
preceding section. When the statistics of fit are used for performance measures, the
statistics are computed from the previous predictions and the newly available actual
data in the forecast horizon. For example, the MAPE can be computed from the
previous predictions and the newly available actual data in the three-month forecast
horizon.

Another useful measure of forecast performance is determining whether the newly
available data fall within the previous forecasts’ confidence limits. For example,
performance could be measured by whether or not the newly available actual data fall
outside the previous forecasts’ confidence limits in the three-month forecast horizon.

If the forecasts were judged to be accurate in the past, a poor performance measure,
such as actual data outside the confidence limits, could also be indicative of a change
in the underlying process. A change in behavior, an unusual event, or other departure
from past patterns may have occurred since the forecasts were made.

Such departures from past trends may be normal, and indicate the need to update
the forecasting model selection for this variable, or they can be a warning of special
circumstances that warrant further investigation.
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Large departures from forecast can sometimes reflect data errors, changes in poli-
cies or data definitions (for example, what exactly is counted as sales), fraud, or a
structural change in the market environment.

Forecast Function (Score File) Generation Step

Once the selected model is fit to the full range of the data, a summary of model pa-
rameter estimates and the final states (historical time series information) are stored in
a forecast score file. Subsequent decision-making processes can the use the forecast
score file for scenario (What-If) analysis, stochastic optimization, or goal seeking.

Automatic Forecasting Data
For forecast scoring, the future values of the controllable causal factors must be spec-
ified by the user (scenario analysis) or iteratively generated by the decision process
(stochastic optimization or goal seeking).

Automatic Forecasting Data Flow

The input and output of the automatic forecasting process is the time-stamped data
set and the forecasts, respectively. The following diagram describes the automatic
forecasting data flow.

Figure 18.1. Automatic Forecasting Data Flow

Forecast Scoring Data Flow

The input and output of the forecast scoring process are the future values of the con-
trollable causal factors and the forecasts, respectively. The following diagram illus-
trates the forecast scoring data flow.
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Figure 18.2. Forecast Scoring Data Flow

Automatic Forecasting Information
To automatically forecast a single time series, the time series must be diagnosed,
selected, or specified to obtain a selected model used for forecasting. These abstract
statistical concepts must be made concrete and persisted in a computer’s storage. In
addition to the time series data, the following information is needed.

Model Specification
A model specification indicates that a specific type of forecasting model be fit to the
historical data and used to produce forecasts. Given a time series and a model speci-
fication, a forecast for the time series is generated by applying the abstract statistical
concepts associated with model specification. A model specification is not dependent
on any specific time series data; a given specification can be used for many different
series.

Associated with a model specification is a list of symbols representing the time series
to which the specification applies. These symbols must be mapped to actual time
series variables in the input data set, or to event specifications, before the model
specification can be used to created a fitted model for forecasting.

The following theoretical time series models are supported: ESM, IDM, ARIMAX,
UCM, EXTERNAL, USER-DEFINED.

Except for the External and User-Defined models, all of the models are implemented
to allow nonlinear transformations (Log, Square Root, Logistic, Box-Cox) of the
dependent and independent time series.
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Exponential Smoothing Models (PROC HPFESMSPEC)

Exponential smoothing models are extrapolation methods that predict future values
based on exponentially weighted past values of the time series.

The following exponential smoothing models are supported:

• Simple Exponential Smoothing (SIMPLE)

• Double Exponential Smoothing (DOUBLE)

• Linear Exponential Smoothing (LINEAR)

• Damped-Trend Exponential Smoothing (DAMPTREND)

• Seasonal Exponential Smoothing (SEASONAL)

• Multiplicative Winters Method (WINTERS)

• Additive Winters Method (ADDWINTERS)

Intermittent Demand Models (PROC HPFIDMSPEC)

Intermittent Demand Models are extrapolation methods that predict future values
based on exponentially weighted past values of intermittent (interrupted) time se-
ries components. These methods use nonseasonal exponential smoothing models to
forecast the intermittent time series components (interval, size, average demand), in-
dependently.

The following intermittent demand models are supported:

• Croston’s Method (CROSTON)

• Average Demand (AVERAGE)

Autoregressive Moving Average with Exogenous Inputs (HPFARIMASPEC)

ARIMAX models implement Box-Jenkins models with or without transfer function
inputs.

The following ARIMA models are supported:

• Simple and Seasonal ARIMA

• Factored and Subset ARIMA

• Preceding models with Simple and Seasonal Transfer Function Inputs

• Preceding models with Factored and Subset Transfer Function Inputs
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Unobserved Component Models with Exogenous Inputs (HPFUCMSPEC)

UCM models implement structural time series models with or without input variables.

The following UCM models are supported:

• Local Level

• Local Slope (or Trend)

• Local Seasons (up to three seasons)

• Local Cycles (no limit to the number of cycles)

• Exogenous Inputs

• Combinations of the preceding components

External Models (HPFEXMSPEC)

EXTERNAL models are forecasts provided by methods external to the system. These
methods may be judgmental inputs or forecasts provided by an external system such
as another forecasting system. These forecasts must be recorded in the input time
series data set.

When only the future predictions are provided, prediction standard errors and confi-
dence limits are computed using the past prediction errors, if available. These addi-
tional forecasting components can be computed assuming nonlinear transformations
(Log, Square Root, Logistic, Box-Cox) and autocorrelation (White Noise, Prediction
Error Autocorrelation, Series Autocorrelation).

Since the system has no knowledge of how the forecasts were computed, there are
no parameter estimates. However, the forecast bias can be computed and a test for
unbiasedness can be made.

User-Defined Models (USERDEFINED)

USERDEFINED models are forecasting methods provided by the user of the sys-
tem. These methods are implemented in the SAS language or the C language. Since
the system has no knowledge of how the forecasts were computed, the forecasts are
treated as if they were EXTERNAL forecasts.

There is usually more than one model specification associated with a model reposi-
tory. A model specification does not depend on a particular time series and a partic-
ular model specification can be assigned to different time series. However, a unique
model specification must be assigned or selected for each time series in order to fore-
cast the time series.

A model specification can also be referenced in one or more model selection lists.

The model specification is stored in an XML format and this format follows the spirit
of the PMML specification. It is stored as a SAS catalog entry or as an external file.

See Chapter 21, “User-Defined Models,” for more information.
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Model Selection List

A model selection list specifies a list of candidate model specifications and how to
choose which model specification is best suited to forecast a particular time series.
Given a time series and an appropriate model selection list, a forecasting model can
be automatically selected for the time series. Since the model selection process is ap-
plied to each series individually, the process may select a different model for different
series and may select a different model for a given time series, with the passage of
time as more data are collected. A model selection list is not dependent on any spe-
cific time series data.

A model selection list consists of the following:

List of Candidate Model Specifications Specifies the list of model specifications
to consider when choosing the model for
forecasting.

Selection Diagnostics Specifies how to subset the list of model
specifications models to those that are
judged appropriate to a particular time se-
ries.

Holdout Sample Size Specifies the size of the holdout sample
region. A holdout sample size of zero in-
dicates that the full range of data is used
to both fit and evaluate the forecast. The
holdout sample size can be an absolute
size or a percentage of the length of the
time series data.

Model Selection Criterion Specifies the statistic of fit to be used
to select the best performing model from
the subset list of the candidate models re-
turned by the selection diagnostics.

Confidence Limit Size Specifies the confidence limit size for
computing lower and upper confidence
limits.

There may be more than one model selection list associated with a model repository.
A model selection list does not depend on a particular time series, and a particular
model selection list can be assigned to different time series. However, a unique model
selection list must be assigned to each time series. If desired, each time series to be
forecast can have its own model selection list; typically, for time series with similar
characteristics, the same model selection list is assigned.

The model selection list is stored in an XML format and this format follows the spirit
of the PMML specification. It is stored as a SAS catalog entry or as an external file.

See Chapter 16, “The HPFSELECT Procedure,” for more information.
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Selected Model Specification

A selected model specification is a model specification that is the result of the diag-
nostic or model selection processes for a particular time series. The selected model
specification is used to forecast this time series.

The file reference of the selected model specification is stored in a SAS data set.

Fitted Model

A fitted model results from applying a model specification to specific time series data.
Given a time series and a (diagnosed, selected, or specified) model specification, the
model parameter estimates can be optimized to fit the time series data. The fitted
model is used to forecast this time series.

The parameter estimates associated with fitted models are stored in a SAS data set.

Forecast Function (Score File)

A forecast model score file encodes the information needed to compute forecasts for
a time series given the future values of the causal factors. Given a time series and a
(diagnosed, selected, or specified) model specification, a fitted time series model is
estimated. Given a fitted model and a time series, a forecast model score file can be
generated that efficiently encapsulates all information needed to forecast the series
when future inputs are provided.

The forecast model score file is stored in an XML format that follows the spirit of the
PMML score file. It is stored as a SAS catalog entry or as an external file.

Forecast model score files can be used for scenario analysis, goal seeking, or stochas-
tic optimization. SAS functions are provided that can reference the forecast model
score files to calculate forecasts from the fitted model given alternative inputs. These
functions can be used in user-written SAS Data Set programs or in SAS analytical
procedures such as PROC MODEL or PROC NLP.

See Chapter 20, “Using Scores,” for examples and additional information.

Automatic Forecasting Information Flow

SAS HPF is designed to support fully automated forecasting. HPF also allows you a
great deal of control over the forecasting process when you which to override steps
in the automatic process. You can control any or all of the forecasting steps, or allow
the system to control all steps.

The degree of automation depends on how much information you specify. For each
time series, the information flow of the automatic forecasting technique is described
in the following diagram:
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Figure 18.3. Automatic Forecasting Information Flow

The more information provided by the user, the less automation is needed. If the
user specifies the forecasts (external forecasts), nothing is required. If the user spec-
ifies the fitted model, only forecasting is required. If the user specifies the selected
model specification, then parameter estimation and forecasting are required. If the
user specifies a model selection list, then model selection, parameter estimation, and
forecasting are required. If the diagnostic specification is specified, then diagnos-
tics, model selection, parameter estimation, and forecasting are required. If the user
specifies nothing, the default diagnostics or model selection list is used.

The more information provided by the user, the less computational effort is needed.
Series diagnostics are the most expensive, followed by model selection, parameter
estimation, and forecasting. Since the information is persisted in the computer’s stor-
age, differing degrees of automation can be used over time. For instance, it may be
desirable to use the diagnostic step every six months, the model selection step ev-
ery three, the parameter estimation step every month, and the forecasting step every
week. This staggering of the degree of automation reduces the processing time by
allowing the most up-to-date information about the time series data to influence the
automatic forecasting process over time.

Forecast Scoring Information Flow

For each time series, the information flow of the forecast scoring technique presented
here is described in the following diagram:
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Figure 18.4. Forecast Scoring Information Flow

A fitted model generates a forecast score file. Using the forecast score file and given
the future values of the controllable causal factors, the forecast scoring process gen-
erates the forecasts.

Automatic Forecasting Repositories
Since there are many time series to forecast, large-scale automatic forecasting re-
quires the efficient management of large amounts of information about each time
series. In addition to the time series data, the following information repositories are
needed.

Event Repository

An event repository stores information about calendar events using a brief description
of each event. Calendar events can be represented by indicator variables that could
be stored in the time series data. However, because the influential calendar events
can vary from series to series, there may be too many to store efficiently and many
calendar events will be redundant, making updates difficult. Therefore, it is better
to store a brief description of the calendar event, to reproduce the indicator variable
in the computer’s memory when needed, and to store the calendar events indepen-
dently of the time series data, to allow the reuse and update of the calendar events.
Additionally, the event repository can be used by more than one time-stamped data
set.

See Chapter 12, “The HPFEVENTS Procedure,” for more information about creating
event definitions and storing them in an event repository.
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Model Specification Repository

A model specification repository stores information about time series models (model
specification) and how to select an appropriate time series model (model selection
list) when given a particular time series. A model specification can be assigned to
each time series. However, because the model specification can vary from series
to series, there may be too many to store efficiently and many model specifications
will be redundant, making updates difficult. Therefore, it is better to store model
specifications independently of the time series data to allow the reuse and update of
the model specification. Additionally, the model specification repository can be used
by more than one time-stamped data set.

The model specification repository contains the following information:

Model Specification File SAS catalog entry or external file that
specifies a time series model to use for
forecasting.

Model Selection List File SAS catalog entry or external file that
specifies how to select a model speci-
fication to use for a particular time se-
ries.

The repository consists of SAS catalogs or external directories (or folders). More
than one catalog can be combined using the SAS Libname Engine.

Creating a Model Specification Repository

You can create model specification files and populate the model specification reposi-
tory using the HPFESMSPEC, HPFIDMSPEC, HPFARIMASPEC, HPFUCMSPEC,
and HPFEXMSPEC procedures. After creating the model specification files, you can
create model selection list files using the HPFSELECT procedure.

The following diagram illustrates the process of adding user-created model specifica-
tion files and model selection list files:
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Figure 18.5. Creating a Model Specification Repository

You can also create the model specification files and model selection files using the
HPFDIAGNOSE procedure. Given the historical time series data and the calen-
dar events, the HPFDIAGNOSE procedure automatically creates model specification
files and model selection files. The following diagram illustrates the series diagnostic
process of automatically creating model specification files and model selection list
files:
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Figure 18.6. Series Diagnostic Process

Fitted Model Repository

A fitted model repository stores information about the selected model specification
and its parameter estimates for each time series. Since each time series has different
parameter estimates, the fitted model repository will often be large. There is one fitted
model repository for each time-stamped data set.

The repository consists of a single SAS data set and associated SAS catalogs or ex-
ternal files that are referenced in the rows of the data set. The forecasting model
repository is generated using the series diagnostics or default model selection lists.

For each time series, the fitted model repository specifies the following:

Model Selection List Name (reference) SAS catalog entry name or external
file name for the model selection list
used to select this model. These lists
are contained in a Model Specification
Repository.

Model Specification Name (reference) SAS catalog entry name or external file
name that specifies the current model
being used for forecasting. These spec-
ifications are contained in the Model
Specification Repository.

Variable Mapping Data set rows that map the time series
data specification variables and events to
model specification symbols.
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Forecasting Model Parameter Estimates Data set rows that contain the model pa-
rameter estimates associated with the cur-
rent model.

Forecast Score Name (reference) [*** need to clarify what this is ***]
SAS catalog entry name or external file
name that specifies the forecast scores as-
sociated with the current model. These
scores are stored in the Forecast Score
Repository.

Forecast Results Repository

A forecast results repository stores information about the forecasts, forecast evalua-
tions, and forecast performance for each time series. The forecast results repository
consists of several data sets. Since each time series has forecasts and statistics of
fit associated with these forecasts, the forecast results repository will often be large.
There is one forecast results repository for each time-stamped data set.

Score Repository

A score repository stores information about how to score each time series. Since each
time series has a different score, the score repository will often be large because it
summarizes information contained in the model specification repository, fitted model
repository, as well as the final states (historical time series data). There is one score
repository for each time-stamped data set.

Automatic Forecasting System Flow

Along with the time series data, the preceding information repositories are needed
for large-scale automatic forecasting. Figure 18.7 shows the system flow for the
automatic forecasting technique when there are many time series.
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Figure 18.7. Automatic Forecasting System Flow

For each historical time series to forecast, the automatic forecasting system works as
follows:

1. The time-stamp data are read from the time-stamped data set and accumulated,
interpreted, and adjusted to form the time series to forecast.

2. The modeling information (model specifications and model selection list) as-
sociated with the time series is read from the model repository.

3. The calendar events associated with each model specification are read from the
event repository.

4. Using the time series, modeling information, and calendar events, the forecast-
ing engine creates or uses (updates) the fitted model.

5. From the fitted model, forecast score files are generated and stored in the score
repository.

6. From the fitted model, forecast results data sets are created and stored.

7. From the fitted model, forecasting results ODS (printed tables and graphs) are
created and rendered.

Forecast Scoring System Flow

For each time series, the automatic forecasting system generates a forecast score file
that can be used in subsequent decision-making processes. Figure 18.8 shows the
system flow for each file using the forecast scoring technique.
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Figure 18.8. Forecast Scoring System Flow

For each time series to score, the forecast scoring process works as follows:

1. The forecast score file is read from the score repository.

2. The future values of the controllable causal factors are provided by the
decision-making process.

3. Using the forecast score file and the future values, the forecast scoring process
generates forecast results.

4. Steps 2 and 3 are repeated as needed by the decision-making process.

The automatic forecasting process that creates the forecast scoring file is significantly
more computationally expensive than the forecast scoring process. The forecast score
file only needs to be created once, whereas the iterative nature of decision-making
processes may require many scores.

Automatic Forecasting Archives
Since automatic forecasting is used to forecast over time, the automatic forecasting
process must be monitored for accuracy (quality control) or forecast performance.
Therefore, the forecasts, generated over time, must be archived to measure forecast
performance. Likewise, the forecast performance must be archived over time.

The automatic forecasting archives are shown in Figure 18.9.
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Figure 18.9. Automatic Forecasting Archives

At each time the forecast is created (shown in the preceding diagram as 1, 2, 3) or
forecast origin, forecasts are created from the time-stamped data observed up to the
forecast origin. The forecasts from the forecast origin through the forecast horizon
are recorded in the forecasting archive. The forecast archive contains the historical
forecasts as well as their forecast origins. The forecast archive can be evaluated to
measure the historical performance.
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This chapter provides computational details on several aspects of the SAS High
Performance Forecasting.

Forecasting Process Summary
This section summarizes the forecasting process. You can use a variety of forecast-
ing models to forecast a series using SAS High Performance Forecasting. The final
choice of model depends on the type of analysis needed and whether any predic-
tor variables will be used in the forecasting or not. The available model types are,
ARIMA models, UCM models, Smoothing models, and Intermittent models. The
ARIMA and UCM models can utilize the predictor variables whereas the Smoothing
and Intermittent models do not involve predictor variables.

Parameter Estimation

Computational details for the Smoothing and Intermittent models are provided in the
sections "Smoothing Models" and "Intermittent Models." The details for ARIMA
and UCM modeling are given in Chapter 11, “The ARIMA Procedure,” (SAS/ETS
User’s Guide) and Chapter 30, “The UCM Procedure,” (SAS/ETS User’s Guide)
, respectively. The results of the parameter estimation process are printed in the
Parameter Estimates table or stored in the OUTEST= data set.

Model Evaluation

Model evaluation is based on the one-step-ahead prediction errors for observations
within the period of evaluation. The one-step-ahead predictions are generated from
the model specification and parameter estimates. The predictions are inverse trans-
formed (median or mean) and adjustments are removed. The prediction errors (the
difference of the dependent series and the predictions) are used to compute the statis-
tics of fit, which are described in section "Statistics of Fit." The results generated
by the evaluation process are printed in the Statistics of Fit table or stored in the
OUTSTAT= data set.

Forecasting

The forecasting process is similar to the model evaluation process described in the
preceding section, except that k-step-ahead predictions are made from the end of
the data through the specified forecast horizon, and prediction standard errors and
confidence limits are calculated. The forecasts and confidence limits are printed in
the Forecast table or stored in the OUTFOR= data set.
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Smoothing Models
This section details the computations performed for the exponential smoothing and
Winters method forecasting models.

Smoothing Model Calculations

The descriptions and properties of various smoothing methods can be found in
Gardner (1985), Chatfield (1978), and Bowerman and O’Connell (1979). The fol-
lowing section summarizes the smoothing model computations.

Given a time series {Yt : 1 ≤ t ≤ n}, the underlying model assumed by the smooth-
ing models has the following (additive seasonal) form:

Yt = µt + βtt + sp(t) + εt

where

µt represents the time-varying mean term.
βt represents the time-varying slope.
sp(t) represents the time-varying seasonal contribution for one of the p

seasons
εt are disturbances.

For smoothing models without trend terms, βt = 0; and for smoothing models with-
out seasonal terms, sp(t) = 0. Each smoothing model is described in the following
sections.

At each time t, the smoothing models estimate the time-varying components de-
scribed above with the smoothing state. After initialization, the smoothing state is
updated for each observation using the smoothing equations. The smoothing state at
the last nonmissing observation is used for predictions.

Smoothing State and Smoothing Equations

Depending on the smoothing model, the smoothing state at time t will consist of the
following:

Lt is a smoothed level that estimates µt.

Tt is a smoothed trend that estimates βt.

St−j , j = 0, . . ., p − 1, are seasonal factors that estimate sp(t).

The smoothing process starts with an initial estimate of the smoothing state, which is
subsequently updated for each observation using the smoothing equations.

The smoothing equations determine how the smoothing state changes as time pro-
gresses. Knowledge of the smoothing state at time t − 1 and that of the time-series
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value at time t uniquely determine the smoothing state at time t. The smoothing
weights determine the contribution of the previous smoothing state to the current
smoothing state. The smoothing equations for each smoothing model are listed in the
following sections.

Smoothing State Initialization

Given a time series {Yt : 1 ≤ t ≤ n}, the smoothing process first computes the
smoothing state for time t = 1. However, this computation requires an initial esti-
mate of the smoothing state at time t = 0, even though no data exists at or before
time t = 0.

An appropriate choice for the initial smoothing state is made by backcasting from
time t = n to t = 1 to obtain a prediction at t = 0. The initialization for the back-
cast is obtained by regression with constant and linear terms and seasonal dummies
(additive or multiplicative) as appropriate for the smoothing model. For models with
linear or seasonal terms, the estimates obtained by the regression are used for initial
smoothed trend and seasonal factors; however, the initial smoothed level for back-
casting is always set to the last observation, Yn.

The smoothing state at time t = 0 obtained from the backcast is used to initialize the
smoothing process from time t = 1 to t = n (refer to Chatfield and Yar 1988).

For models with seasonal terms, the smoothing state is normalized so that the sea-
sonal factors St−j for j = 0, . . ., p − 1 sum to zero for models that assume additive
seasonality and average to one for models (such as Winters method) that assume
multiplicative seasonality.

Missing Values

When a missing value is encountered at time t, the smoothed values are updated
using the error-correction form of the smoothing equations with the one-step-ahead
prediction error, et, set to zero. The missing value is estimated using the one-step-
ahead prediction at time t − 1, that is Ŷt−1(1) (refer to Aldrin 1989). The error-
correction forms of each of the smoothing models are listed in the following sections.

Predictions and Prediction Errors

Predictions are made based on the last known smoothing state. Predictions made at
time t for k steps ahead are denoted Ŷt(k) and the associated prediction errors are
denoted et(k) = Yt+k − Ŷt(k). The prediction equation for each smoothing model
is listed in the following sections.

The one-step-ahead predictions refer to predictions made at time t − 1 for one time
unit into the future, that is, Ŷt−1(1), and the one-step-ahead prediction errors are
more simply denoted et = et−1(1) = Yt − Ŷt−1(1). The one-step-ahead prediction
errors are also the model residuals, and the sum of squares of the one-step-ahead
prediction errors is the objective function used in smoothing weight optimization.

The variance of the prediction errors are used to calculate the confidence limits (refer
to Sweet 1985, McKenzie 1986, Yar and Chatfield 1990, and Chatfield and Yar 1991).
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The equations for the variance of the prediction errors for each smoothing model are
listed in the following sections.

Note: var(εt) is estimated by the mean square of the one-step-ahead prediction er-
rors.

Smoothing Weights
Depending on the smoothing model, the smoothing weights consist of the following:

α is a level smoothing weight.
γ is a trend smoothing weight.
δ is a seasonal smoothing weight.
φ is a trend damping weight.

Larger smoothing weights (less damping) permit the more recent data to have a
greater influence on the predictions. Smaller smoothing weights (more damping)
give less weight to recent data.

Specifying the Smoothing Weights
Typically the smoothing weights are chosen to be from zero to one. (This is intuitive
because the weights associated with the past smoothing state and the value of cur-
rent observation would normally sum to one.) However, each smoothing model (ex-
cept Winters Method – Multiplicative Version) has an ARIMA equivalent. Weights
chosen to be within the ARIMA additive-invertible region will guarantee stable pre-
dictions (refer to Archibald 1990 and Gardner 1985). The ARIMA equivalent and
the additive-invertible region for each smoothing model are listed in the following
sections.

Optimizing the Smoothing Weights
Smoothing weights are determined so as to minimize the sum of squared one-step-
ahead prediction errors. The optimization is initialized by choosing from a predeter-
mined grid the initial smoothing weights that result in the smallest sum of squared,
one-step-ahead prediction errors. The optimization process is highly dependent on
this initialization. It is possible that the optimization process will fail due to the in-
ability to obtain stable initial values for the smoothing weights (refer to Greene 1993
and Judge et al. 1980), and it is possible for the optimization to result in a local
minima.

The optimization process can result in weights to be chosen outside both the zero-
to-one range and the ARIMA additive-invertible region. By restricting weight opti-
mization to additive-invertible region, you can obtain a local minimum with stable
predictions. Likewise, weight optimization can be restricted to the zero-to-one range
or other ranges.

Standard Errors

The standard errors associated with the smoothing weights are calculated from the
Hessian matrix of the sum of squared, one-step-ahead prediction errors with respect
to the smoothing weights used in the optimization process.
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Weights Near Zero or One

Sometimes the optimization process results in weights near zero or one.

For Simple or Double (Brown) Exponential Smoothing, a level weight near zero im-
plies that simple differencing of the time series may be appropriate.

For Linear (Holt) Exponential Smoothing, a level weight near zero implies that the
smoothed trend is constant and that an ARIMA model with deterministic trend may
be a more appropriate model.

For Damped-Trend Linear Exponential Smoothing, a damping weight near one im-
plies that Linear (Holt) Exponential Smoothing may be a more appropriate model.

For Winters Method and Seasonal Exponential Smoothing, a seasonal weight near
one implies that a nonseasonal model may be more appropriate and a seasonal weight
near zero implies that deterministic seasonal factors may be present.

Equations for the Smoothing Models

Simple Exponential Smoothing

The model equation for simple exponential smoothing is

Yt = µt + εt

The smoothing equation is

Lt = αYt + (1 − α)Lt−1

The error-correction form of the smoothing equation is

Lt = Lt−1 + αet

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt

The ARIMA model equivalency to simple exponential smoothing is the
ARIMA(0,1,1) model

(1 − B)Yt = (1 − θB)εt

θ = 1 − α
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The moving-average form of the equation is

Yt = εt +
∞∑

j=1

αεt−j

For simple exponential smoothing, the additive-invertible region is

{0 < α < 2}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)

⎡
⎣1 +

k−1∑
j=1

α2

⎤
⎦ = var(εt)(1 + (k − 1)α2)

Double (Brown) Exponential Smoothing

The model equation for double exponential smoothing is

Yt = µt + βtt + εt

The smoothing equations are

Lt = αYt + (1 − α)Lt−1

Tt = α(Lt − Lt−1) + (1 − α)Tt−1

This method may be equivalently described in terms of two successive applications
of simple exponential smoothing:

S [1]
t = αYt + (1 − α)S [1]

t−1

S [2]
t = αS [1]

t + (1 − α)S [2]
t−1

where S [1]
t are the smoothed values of Yt, and S [2]

t are the smoothed values of S [1]
t .

The prediction equation then takes the form:

Ŷt(k) = (2 + αk/(1 − α))S [1]
t − (1 + αk/(1 − α))S [2]

t

The error-correction form of the smoothing equations is

Lt = Lt−1 + Tt−1 + αet
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Tt = Tt−1 + α2et

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt + ((k − 1) + 1/α)Tt

The ARIMA model equivalency to double exponential smoothing is the
ARIMA(0,2,2) model

(1 − B)2Yt = (1 − θB)2εt

θ = 1 − α

The moving-average form of the equation is

Yt = εt +
∞∑

j=1

(2α + (j − 1)α2)εt−j

For double exponential smoothing, the additive-invertible region is

{0 < α < 2}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)

⎡
⎣1 +

k−1∑
j=1

(2α + (j − 1)α2)2

⎤
⎦

Linear (Holt) Exponential Smoothing

The model equation for linear exponential smoothing is

Yt = µt + βtt + εt

The smoothing equations are

Lt = αYt + (1 − α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)Tt−1
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The error-correction form of the smoothing equations is

Lt = Lt−1 + Tt−1 + αet

Tt = Tt−1 + αγet

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt + kTt

The ARIMA model equivalency to linear exponential smoothing is the
ARIMA(0,2,2) model

(1 − B)2Yt = (1 − θ1B − θ2B
2)εt

θ1 = 2 − α − αγ

θ2 = α − 1

The moving-average form of the equation is

Yt = εt +
∞∑

j=1

(α + jαγ)εt−j

For linear exponential smoothing, the additive-invertible region is

{0 < α < 2}

{0 < γ < 4/α − 2}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)

⎡
⎣1 +

k−1∑
j=1

(α + jαγ)2

⎤
⎦
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Damped-Trend Linear Exponential Smoothing

The model equation for damped-trend linear exponential smoothing is

Yt = µt + βtt + εt

The smoothing equations are

Lt = αYt + (1 − α)(Lt−1 + φTt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)φTt−1

The error-correction form of the smoothing equations is

Lt = Lt−1 + φTt−1 + αet

Tt = φTt−1 + αγet

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt +
k∑

i=1

φiTt

The ARIMA model equivalency to damped-trend linear exponential smoothing is the
ARIMA(1,1,2) model

(1 − φB)(1 − B)Yt = (1 − θ1B − θ2B
2)εt

θ1 = 1 + φ − α − αγφ

θ2 = (α − 1)φ

The moving-average form of the equation (assuming |φ| < 1) is

Yt = εt +
∞∑

j=1

(α + αγφ(φj − 1)/(φ − 1))εt−j

For damped-trend linear exponential smoothing, the additive-invertible region is

{0 < α < 2}
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{0 < φγ < 4/α − 2}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)

⎡
⎣1 +

k−1∑
j=1

(α + αγφ(φj − 1)/(φ − 1))2

⎤
⎦

Seasonal Exponential Smoothing

The model equation for seasonal exponential smoothing is

Yt = µt + sp(t) + εt

The smoothing equations are

Lt = α(Yt − St−p) + (1 − α)Lt−1

St = δ(Yt − Lt) + (1 − δ)St−p

The error-correction form of the smoothing equations is

Lt = Lt−1 + αet

St = St−p + δ(1 − α)et

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = Lt + St−p+k

The ARIMA model equivalency to seasonal exponential smoothing is the
ARIMA(0,1,p+1)(0,1,0)p model

(1 − B)(1 − Bp)Yt = (1 − θ1B − θ2B
p − θ3B

p+1)εt

θ1 = 1 − α

θ2 = 1 − δ(1 − α)

θ3 = (1 − α)(δ − 1)
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The moving-average form of the equation is

Yt = εt +
∞∑

j=1

ψjεt−j

ψj =
{

α for j mod p �=0
α + δ(1 − α) for j mod p = 0

For seasonal exponential smoothing, the additive-invertible region is

{max(−pα, 0) < δ(1 − α) < (2 − α)}

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)

⎡
⎣1 +

k−1∑
j=1

ψ2
j

⎤
⎦

Winters Method – Additive Version

The model equation for the additive version of Winters method is

Yt = µt + βtt + sp(t) + εt

The smoothing equations are

Lt = α(Yt − St−p) + (1 − α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)Tt−1

St = δ(Yt − Lt) + (1 − δ)St−p

The error-correction form of the smoothing equations is

Lt = Lt−1 + Tt−1 + αet

Tt = Tt−1 + αγet

St = St−p + δ(1 − α)et

(Note: For missing values, et = 0.)
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The k-step prediction equation is

Ŷt(k) = Lt + kTt + St−p+k

The ARIMA model equivalency to the additive version of Winters method is the
ARIMA(0,1,p+1)(0,1,0)p model

(1 − B)(1 − Bp)Yt =

[
1 −

p+1∑
i=1

θiB
i

]
εt

θj =

⎧⎪⎨
⎪⎩

1 − α − αγ j = 1
−αγ 2 ≤ j ≤ p − 1
1 − αγ − δ(1 − α) j = p
(1 − α)(δ − 1) j = p + 1

The moving-average form of the equation is

Yt = εt +
∞∑

j=1

ψjεt−j

ψj =
{

α + jαγ for j mod p �=0
α + jαγ + δ(1 − α), for j mod p = 0

For the additive version of Winters method (see Archibald 1990), the additive-
invertible region is

{max(−pα, 0) < δ(1 − α) < (2 − α)}

{0 < αγ < 2 − α − δ(1 − α)(1 − cos(ϑ)}

where ϑ is the smallest nonnegative solution to the equations listed in Archibald
(1990).

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)

⎡
⎣1 +

k−1∑
j=1

ψ2
j

⎤
⎦
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Winters Method – Multiplicative Version

In order to use the multiplicative version of Winters method, the time series and all
predictions must be strictly positive.

The model equation for the multiplicative version of Winters method is

Yt = (µt + βtt)sp(t) + εt

The smoothing equations are

Lt = α(Yt/St−p) + (1 − α)(Lt−1 + Tt−1)

Tt = γ(Lt − Lt−1) + (1 − γ)Tt−1

St = δ(Yt/Lt) + (1 − δ)St−p

The error-correction form of the smoothing equations is

Lt = Lt−1 + Tt−1 + αet/St−p

Tt = Tt−1 + αγet/St−p

St = St−p + δ(1 − α)et/Lt

(Note: For missing values, et = 0.)

The k-step prediction equation is

Ŷt(k) = (Lt + kTt)St−p+k

The multiplicative version of Winters method does not have an ARIMA equivalent;
however, when the seasonal variation is small, the ARIMA additive-invertible region
of the additive version of Winters method described in the preceding section can
approximate the stability region of the multiplicative version.

The variance of the prediction errors is estimated as

var(et(k)) = var(εt)

⎡
⎣ ∞∑

i=0

p−1∑
j=0

(ψj+ipSt+k/St+k−j)2

⎤
⎦

where ψj are as described for the additive version of Winters method, and ψj = 0 for
j ≥ k.
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ARIMA Models
HPF uses the same statistical model technology to identify, fit and forecast ARIMA
models as does SAS/ETS Software. Refer to Chapter 11, “The ARIMA Procedure,”
(SAS/ETS User’s Guide) for details on the methods HPF uses for ARIMA models.
All the SAS/ETS ARIMA output such as the parameter estimates, forecasts, diagnos-
tic measures, etc, is available in HPF. Moreover, you can obtain additional output in
HPF. This includes a wider variety of fit statistics and a model based decomposition
of the response series forecasts in to subcomponents such as transfer functions effects
and the estimated stationary noise component. These subcomponents can be useful
in the interpretation of the model being used.

ARIMA Model Based Series Decomposition

Consider a general ARIMA model that may be fit to a response series Yt:

D(B)Yt = µ +
∑

i

ωi(B)
δi(B)

BkiXi,t +
θ(B)
φ(B)

at

where

t indexes time

B is the backshift operator; that is, BXt = Xt−1

D(B) is the difference operator operating on the response series Yt

µ is the constant term

φ(B) is the autoregressive operator, represented as a polynomial in the
back shift operator: φ(B) = 1 − φ1B − . . . − φpB

p

θ(B) is the moving-average operator, represented as a polynomial in the
back shift operator: θ(B) = 1 − θ1B − . . . − θqB

q

at is the independent disturbance, also called the random error

Xi,t is the ith input time series or a difference of the ith input series at
time t

ki is the pure time delay for the effect of the ith input series

ωi(B) is the numerator polynomial of the transfer function for the ith in-
put series

δi(B) is the denominator polynomial of the transfer function for the ith
input series.

The model expresses the response series, possibly differenced, as a sum of a constant
term, various transfer function effects, and the effect of a stationary ARMA distur-
bance term. Of course, in a given situation many of these effects might be absent.
Denoting the individual transfer function effects by γi and the ARMA disturbance
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term by n, we can decompose the response series in a few different ways. Here we
will consider two alternate decompositions. In the first case Yt is decomposed as

Yt = Lt + µ +
∑

i

γit + nt

where the Lt term includes the contribution from the lagged response values corre-
sponding to the differencing operator D(B), e.g., if D(B) = 1 − B, corresponding
to the differencing of order 1, then Lt = Yt−1. An alternate decomposition of Yt can
be as follows:

Yt =
µ

D(B)
+

∑
i

γit

D(B)
+

nt

D(B)

Note that if the differencing operator D(B) is identity then the Lt term is zero
and these two alternate decompositions are identical, otherwise the terms in the
second decomposition are the “integrated”, with respect to D(B), versions of the
corresponding terms in the first decomposition. In practice many terms in these
decompositions are not observed but are estimated from the data, which results
in similar decompositions of Ŷt, the forecasts of Yt. In the HPFENGINE proce-
dure you can obtain these decompositions of Ŷt by choosing various options in
the PROC HPFENGINE statement: you can output them as a data set using the
OUTCOMPONENT= data set option, print them using the PRINT=COMPONENT
option, or plot them using the PLOT=COMPONENTS option. The type of decompo-
sition is controlled by the COMPONENTS= option in the HPFENGINE statement.
If COMPONENTS=INTEGRATE option is specified then the calculated decomposi-
tion is of the second type, the default decomposition is of the first type. A few points
to note about these decompositions:

• If the response series being modeled is actually log transformed then the result-
ing decompositions are multiplicative rather than additive. In this case, similar
to the series forecasts, the decomposition terms are also inverse transformed. If
the response series is transformed using a transformation other than log, such
as Box-Cox or Square Root, then these decompositions are difficult to interpret
and they do not have such additive or multiplicative properties.

• In the first type of decomposition the components in the decomposition will al-
ways add up, or multiply in the log transformation case, to the series forecasts.
In the integrated version of the decomposition this additive property may not
always hold because there are no natural choices of starting values that can be
used during the integration of these components that guarantee the additivity
of the resulting decomposition.

UCM Models
HPF uses the same statistical model technology to identify, fit and forecast UCM
models as does SAS/ETS Software. Refer to Chapter 30, “The UCM Procedure,”
(SAS/ETS User’s Guide) for details on the methods HPF uses for UCM models.
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Intermittent Models
This section details the computations performed for intermittent forecasting models.

Intermittent Time Series

Intermittent time series have a large number of values that are zero. These types of
series commonly occur in Internet, inventory, sales, and other data where the demand
for a particular item is intermittent. Typically, when the value of the series associ-
ated with a particular time period is nonzero, demand occurs; and, when the value
is zero (or missing), no demand occurs. Since it is entirely possible that the number
of time periods for which no demand occurs is large, many of the series values will
be zero. Typical time series models (for example, smoothing models) are inadequate
in the case of intermittent time series because many of the series values are zero.
Since these models are based on weighted-summations of past values, they bias fore-
casts away from zero. Unlike the smoothing models that provide forecasts for future
time periods, intermittent forecasting models provide recommended stocking levels
or estimated demand per period that are used to satisfy future demand.

Intermittent Series Decomposition and Analysis

An intermittent time series (demand series) can be decomposed into two components:
a demand interval series and a demand size series. Both of these component series
are indexed based on when a demand occurred (demand index) rather than each time
period (time index). The demand interval series is constructed based on the number
of time periods between demands. The demand size series is constructed based on
the size (or value) of the demands excluding zero (or base) demand values. Using
these two component series, the average demand series is computed by dividing the
size component values by the interval component values.

When a demand occurs typically depends on a base value. Typically, the base value
is zero (default), but it can be any constant value and can be automatically determined
based on the characteristics of the demand series.

Given a time series yt, for t = 1 to T , where t is the time index, suppose that there
are N nonzero demands occurring at times t = ti, where ti−1 < ti, for i = 1 to
N . The time series is dissected into the demand interval series and the demand size
series as follows:

(Demand Interval Series) qi = ti − ti−1 for i = 2 to N
(Demand Size Series) di = yti − base for i = 1 to N
(Average Demand Series) ai = di/qi for i = 2 to N

For the beginning of the demand series, q1 is assigned to t1, which assumes that
a demand just occurred prior to the first recorded observation. For the end of the
demand series, qN+1 is assigned to (T + 1 − tN ), which assumes that demand will
occur just after the last recorded observation. The next future demand size, dN+1, is
always set to missing.
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After decomposition, descriptive (summary) statistics can be computed to gain a
greater understanding of the demand series including those statistics based on the
season index.

For statistical analysis and model fitting, qi and ai for i = 2 to N and di for i = 1 to
N are used. For forecasting, qi for i = 1 to N + 1, ai for i = 1 to N , di for i = 1 to
N are used.

Croston’s Method

Croston’s Method models and forecasts each component independently, then com-
bines the two forecasts. The following provides a description of how Croston’s
Method is used in SAS High Performance Forecasting. More detailed information
on this method can be found in Croston (1972) and Willemain, Smart, and Shocker
(1994). The following description of Croston’s Method is based on the perspective
of a person familiar with typical time series modeling techniques such as smoothing
models.

By treating each component of the demand series as a time series based on the de-
mand index, optimal smoothing parameters can be estimated and predictions for
each component can be computed using nonseasonal exponential smoothing meth-
ods (simple, double, linear, damped-trend) as well as their transformed versions (log,
square-root, logistic, Box-Cox).

For example, the following simple smoothing equations are used to generate predic-
tions for demand size and interval components:

(Smoothed demand interval series) Lq
i = Lq

i−1 + αq(qi−1 − Lq
i−1)

(Smoothed demand size series) Ld
i = Ld

i−1 + αd(di−1 − Ld
i−1)

The demand interval parameter, αq, and demand size parameter, αd, and the starting,
intermediate, and final smoothing level states, Lq

i and Ld
i , are estimated from the data

using simple exponential smoothing parameter estimation. For the starting state at
i = 1, Lq

1 = max(q1, L
q
0) where Lq

0 is the final backcast level state. For i > 1,
the one-step-ahead prediction for demand interval qi is q̂i = Lq

i−1. For i > 0, the
one-step-ahead prediction for demand size di is d̂i = Ld

i−1.

Other (transformed) nonseasonal exponential smoothing methods can be used in a
similar fashion. For linear smoothing, Lq

1 = max(q1 − T q
0 , Lq

0) where T q
0 is the final

backcast trend state. For damp-trend smoothing, Lq
1 = max(q1 − φqT

q
0 , Lq

0) where
φq is the damping parameter and T q

0 is the final backcast trend state. For double
smoothing, Lq

1 = max(q1 − T q
0 /αq, L

q
0) where αq is the weight parameter and T q

0 is
the final backcast trend state.

Using these predictions based on the demand index, predictions of the average de-
mand per period can be estimated. Predicted demand per period is also known as
“stocking level,” assuming that disturbances affecting qi are independent of di. (This
assumption is quite significant.)
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(Estimated demand per period) y∗i = d̂i/q̂i

E[y∗i ] = E[di]/E[qi] = E[zi−1]/E[pi−1] = µd/µq

(Variance) V ar(y∗i ) = (d̂i/q̂i)2(V ar(di)/d̂2
i + V ar(qi)/q̂2

i )

where µd, d̄, and sd are the mean, sample average, and standard deviation of the non-
zero demands, and µq, q̄, and sq are the mean, sample average, and standard deviation
of the number of time periods between demands.

For the beginning of the series, the denominator of y∗1 is assigned qi or the starting
smoothing state p0, whichever is greater. For the end of the series, the denominator
of y∗N+1 is assigned qN+1 = (T +1− tN ) or the final smoothing state pN , whichever
is greater.

Once the average demand per period has been estimated, a stocking level can be
recommended:

(Recommended stocking level) ŷt = y∗i when ti =< t < ti+1

(Variance) V ar(ŷt) = V ar(y∗i ) when ti =< t < ti+1

Since the predicted demand per period will be different than typical time series fore-
casts, the usual way of computing statistics of fit should also be different. The statis-
tics of fit are based on the difference between the recommended stocking levels be-
tween demands and the demands:

(Accumulated recommended stocks) st =
∑t

i=0(ŷt − y∗i )
(Estimate − Demand) eti = d̂iqi − di when time ti+1 has demand

Croston’s Method produces the same forecasts as simple exponential smoothing
when demand occurs in every time period, qi = 1 for all i, but different (lower)
prediction error variances. Croston’s Method is recommended for intermittent time
series only.

Average Demand Method

Similar to Croston’s Method, the Average Demand Method is used to forecast in-
termittent time series; however, the Average Demand Method forecasts the average
demand series directly, whereas Croston’s Method forecasts average demand series
indirectly using the inverse decomposition of the demand interval and size series
forecasts.

By treating the average demand series as a time series based on the demand index,
optimal smoothing parameters can be estimated and predictions for average demand
can be computed using nonseasonal exponential smoothing methods (simple, double,
linear, damped-trend) as well as their transformed versions (log, square-root, logistic,
Box-Cox).

For example, the following simple smoothing equations are used to generate predic-
tions for the average demand series:
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(Smoothed Average Demand Series) La
i = La

i−1 + αa(ai−1 − La
i−1)

The average demand level smoothing parameter, αa, and the starting, intermedi-
ate, and final smoothing level states, La

i , are estimated from the data using sim-
ple exponential smoothing parameter estimation. For the starting state at i = 1,
La

1 = max(a1, L
a
0) where La

0 is the final backcast level state. For i > 1, the one-step-
ahead prediction for ai is âi = La

i−1.

Other nonseasonal exponential smoothing methods can be used in a similar fash-
ion. For linear smoothing, La

1 = max(a1 − T a
0 , La

0) where T a
0 is the final backcast

trend state. For damp-trend smoothing, La
1 = max(a1 − φaT

a
0 , La

0) where φa is the
damping parameter and T a

0 is the final backcast trend state. For double smoothing,
La

1 = max(a1 − T a
0 /αa, L

a
0) where αa is the weight parameter and T a

0 is the final
backcast trend state.

Using these predictions based on the demand index, predictions of the average de-
mand per period are provided directly, unlike Croston’s Method where the average
demand is predicted using a ratio of predictions of the demand interval and size com-
ponents.

(Estimated demand per period) y∗i = âi + base
E[y∗i ] = E[ai]

(Variance) see the exponential smoothing models

For the beginning of the series, â1 is derived from the starting level smoothing state
and starting trend smoothing state (if applicable).

Once the average demand per period has been estimated, a stocking level can be
recommended similar to Croston’s Method.

The Average Demand Method produces the same forecasts as exponential smooth-
ing when demand occurs in every time period, qi = 1 for all i, but different (lower)
prediction error variances. The Average Demand Method is recommended for inter-
mittent time series only.

Time-Indexed versus Demand-Indexed Holdout Samples

Holdout samples are typically specified based on the time index, but for intermittent
demand model selection, demand indexed-based holdouts are used for model selec-
tion.

For example, “holdout the last six months data.” For a demand series, the demand
indexed holdout refers to the “demands that have occurred in the last six months.” If
there are four demands in the last six months, the demand indexed holdout is four for
a time indexed holdout of six. If there are no demands in the time indexed holdout,
the demand indexed holdout is zero and in-sample analysis is used.
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Automatic Intermittent Demand Model Selection

The exponential smoothing method to be used to forecast the intermittent demand
series can be specified, or it can be selected automatically using a model selection
criterion and either in-sample or holdout sample analysis. The exponential smoothing
method for each demand series component (interval, size, and average) can be auto-
matically selected as well as the choice between Croston’s Method and the Average
Demand Method.

For Croston’s Method, the exponential smoothing methods used to forecast the de-
mand interval and size components are automatically selected independently. For the
Average Demand Method, the exponential smoothing methods used to forecast the
average demand component are automatically selected, again independently. Based
on the model selection criterion, the selection is based on how well the method fits
(in sample) or predicts (holdout sample) the demand series component by treating
the demand index as a time index. The following equations describe the component
prediction errors associated with each of the demand series components that are used
in component model selection:

(Demand Interval Series) eq
i = qi − q̂i for i = 2 to N

(Demand Size Series) ed
i = di − d̂i for i = 1 to N

(Average Demand Series) ea
i = ai − âi for i = 2 to N

Once the exponential smoothing methods are selected for each demand series com-
ponent, the predictions for either Croston’s Method, (d̂i/q̂i), the Average Demand
Method, âi, or both are computed based on the selected method for each component.

When choosing between Croston’s Method and the Average Demand Method, the
model is selected by considering how well the model predicts average demand with
respect to the time. The following equations describe the average prediction errors
associated with the predicted average demand that are used in model selection:

(Croston’s Method) ec
i = (di/qi) − (d̂i/q̂i) for i = 2 to N

(Average Demand Method) ea
i = ai − âi for i = 2 to N

External Models
External forecasts are forecasts provided by an external source. External forecasts
may originate from a statistical model, from another software package, may have
been provided by an outside organization (e.g. marketing organization

, government agency), or may be given based solely judgment.
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External Forecasts

Given a time series, {yt}T
t=1, where t = 1, . . . , T is the time index and T is the

length of the time series, the external model data source must provide predictions for
the future time periods, {ŷt}T+H

t=T+1, where H

represents the forecast horizon. The external data source may or may not provide in-
sample predictions for past time periods, {ŷt}T

t=1. Additionally, the external source
may or may not provide the prediction standard errors, {Std(ŷt)}T+H

t=1 , lower confi-
dence limits, {Lower(ŷt)}T+H

t=1 , and the upper confidence limits, {Upper(ŷt}T+H
t=1 ,

for the past or future time periods.

External Forecast Prediction Errors

If the external forecast predictions are provided for past time periods, the external
forecast prediction errors, {êt}T

t=1, can be computed, êt = yt − ŷt. If any of these
predictions are not provided by the external source

, the prediction errors are set to missing.

For judgmental forecast with no historical judgments, all prediction errors will be
missing. For this situation, a judgment about the prediction standards errors should
also be provided.

External Forecast Prediction Bias

It is often desirable that forecasts be unbiased. If available, the external forecast
prediction errors are used to compute prediction bias from the external source.

When the external forecast predictions are provided for past time periods, HPF uses
the in-sample prediction errors {êt}T

t=1 to estimate the bias of the forecasts provided
by the external source.

Bias =
T∑

t=1

(yt − ŷt)/T =
T∑

t=1

êt/T

The prediction mean square error can be used to help judge the significance of this
bias.

V ariance =
T∑

t=1

(êt − Bias)2/(T − 1)

Missing values are ignored in the above computations and the denominator term is
reduced for each missing value.
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External Forecast Prediction Standard Errors

The external model data may include estimates of the prediction standard errors and
confidence limits. If these estimates are not supplied with the data for the external
model (which is usually the case for judgmental forecasts), HPF can approximate the

prediction standard errors and the confidence limits using the in-sample prediction
errors.

When the external forecasts do not contain the prediction standard errors, they are
approximated using the external forecast prediction errors. In order to approximate
the external forecast prediction standard errors, the external model residuals, vari-
ance, and autocorrelations must be approximated. (If the prediction standard errors
are provided by the external source, approximation is not requi

red.)

In order to approximate the external model residuals, {ε̂t}T
t=1, the transformation

used to generate the external forecast must be provided as part of the external model
specification. Let zt = f(yt) be the specified transformation; and if there is no
specified functional transformation, zt = yt. The transformation can be used to
approximate the external model residuals, ε̂t = f(yt) − f(ŷt) = zt − ẑt.

Once approximated, the external model residuals can be used to approximate the

external model variance, σ̂2
ε = 1

T

T∑
t=1

ε̂2t , and the external model residual autocorrela-

tion.

The external model residual autocorrelations can be approximated given assumptions
about the autocorrelation structure, ρ(j) where j ≥ 0 represents the time lags.

The following autocorrelation structures can be specified using the METHOD= op-
tion. These options are listed in order of increasing assumed autocorrelation. (In the
following formula, 0 < v < 1 represents the value of the NLAGPCT= option.)

No Autocorrelation (METHOD=NONE)

ρ(j) = 1 for j = 0

ρ(j) = 0 for j > 0

This option generates constant prediction error variances.

White Noise Autocorrelation (METHOD=WN)

This option generates white noise prediction error variances.

Error Autocorrelation (Method=ERRORACF)

ρ(j) = 1 for j = 0

ρ̂(j) = 1
T

T∑
t=j+1

ε̂tε̂t−j/σ̂2
ε for 0 < j < vT

ρ(j) = 0 for j > vT
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Series Autocorrelation (METHOD=ACF)

ρ(j) = 1 for j = 0

ρ̂(j) = 1
T

T∑
t=j+1

ztzt−j/σ̂2
z for 0 < j < vT

ρ(j) = 0 for j > vT

where σ̂2
z = 1

T

T∑
t=1

(zt − z̄)2 and 0 < v < 1.

This option typically generates linear prediction error variances
larger than ERRORACF.

Perfect Autocorrelation (METHOD=PERFECT)

ρ(j) = 1 for j ≥ 0

This option generates linear prediction error variances.

The external model residual variance and the autocorrelations can approximate the
external (transformed) prediction standard errors, {Std(ẑt)}T+H

t=1 , where Std(ẑt) =
σε for t = 1, . . . , T are the one-step-ahead prediction standards errors and

Std(ẑT+h) =

√√√√σ2
ε

h−1∑
j=0

ρ̂(j)2 for h = 1, . . . , H are the multi-step-ahead prediction

standard errors.

If there was no transformation used to generate the external forecasts, Std(ŷt) =
Std(ẑt). Otherwise, the external transformed predictions, {ẑ}T

t=1, and the approx-
imate external transformed prediction standard errors, {Std(ẑt)}T+H

t=1 , are used to
approximate the external prediction standard errors, {Std(ŷt)}T+H

t=1 , by computing
the conditional expectation of the inverse transformation (mean) or computing the
inverse transformation (median).

To summarize, the external forecast prediction standard errors, {Std(ŷt)}T+H
t=1 , can

be approximated from the external forecast prediction errors, {êt}T
t=1, given the fol-

lowing assumptions about the external forecasts provided by the external source:

Functional Transformation (TRANSFORM= option) zt = f(yt)
Autocorrelation Structure (METHOD= option) ρ(j)
Autocorrelation Cutoff (NLAGPCT= option) v

External Forecast Confidence Limits

Since the external forecasts may not contain confidence limits, they must be approx-
imated using the forecast prediction standard errors (which may be provided by the
external model data source or approximated from the in-sample prediction errors).

Lower(ŷt) = ŷt − Std(ŷt)Zα
2

Upper(ŷt) = ŷt + Std(ŷt)Zα
2
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where α is the confidence limit width, (1 − α) is the confidence level, and Zα
2

is the
α
2 quantile of the standard normal distribution.

To summarize, the external forecast confidence limits can be approximated given
only the actual time series, {yt}T

t=1, and the external forecast predictions, {ŷt}T+H
t=T+1.

More information provided about the external forecast prediction standard errors,
{Std(yt)}T+H

t=1 , such as the functional transform, f(), and the autocorrelation struc-
ture, ρ(j) and v, improves the accuracy of these approximations.

Series Transformations
For forecasting models, transforming the time series may aid in improving forecasting
accuracy.

There are four transformations available, for strictly positive series only. Let yt > 0
be the original time series, and let wt be the transformed series. The transformations
are defined as follows:

Log is the logarithmic transformation

wt = ln(yt)

Logistic is the logistic transformation

wt = ln(cyt/(1 − cyt))

where the scaling factor c is

c = (1 − e−6)10−ceil(log10(max(yt)))

and ceil(x) is the smallest integer greater than or equal to x.

Square Root is the square root transformation

wt =
√

yt

Box Cox is the Box-Cox transformation

wt =

⎧⎨
⎩

yλ
t −1
λ , λ �=0

ln(yt), λ = 0

Parameter estimation is performed using the transformed series. The transformed
model predictions and confidence limits are then obtained from the transformed time-
series and these parameter estimates.

The transformed model predictions ŵt are used to obtain either the minimum mean
absolute error (MMAE) or minimum mean squared error (MMSE) predictions ŷt,
depending on the setting of the forecast options. The model is then evaluated based
on the residuals of the original time series and these predictions. The transformed
model confidence limits are inverse-transformed to obtain the forecast confidence
limits.
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Predictions for Transformed Models

Since the transformations described in the previous section are monotonic, applying
the inverse-transformation to the transformed model predictions results in the me-
dian of the conditional probability density function at each point in time. This is the
minimum mean absolute error (MMAE) prediction.

If wt = F(yt) is the transform with inverse-transform yt = F−1(wt), then

median(ŷt) = F−1(E [wt]) = F−1(ŵt)

The minimum mean squared error (MMSE) predictions are the mean of the condi-
tional probability density function at each point in time. Assuming that the prediction
errors are normally distributed with variance σ2

t , the MMSE predictions for each of
the transformations are as follows:

Log is the conditional expectation of inverse-logarithmic transforma-
tion.

ŷt = E[ewt ] = exp
(
ŵt + σ2

t /2
)

Logistic is the conditional expectation of inverse-logistic transformation.

ŷt = E

[
1

c(1 + exp(−wt))

]

where the scaling factor c = (1 − 10−6)10−ceil(log10(max(yt))).

Square Root is the conditional expectation of the inverse-square root transfor-
mation.

ŷt = E
[
w2

t

]
= ŵ2

t + σ2
t

Box Cox is the conditional expectation of the inverse Box-Cox transforma-
tion.

ŷt =

⎧⎨
⎩

E
[
(λwt + 1)1/λ

]
, λ �=0

E [ewt ] = exp(ŵt + 1
2σ2

t ), λ = 0

The expectations of the inverse logistic and Box-Cox ( λ �=0 ) transformations do not
generally have explicit solutions and are computed using numerical integration.
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Series Diagnostic Tests
This section describes the diagnostic tests that are used to determine the kinds of
forecasting models appropriate for a series.

The series diagnostics are a set of heuristics that provide recommendations on
whether or not the forecasting model should contain a log transform, trend terms,
and seasonal terms or whether or not the time series is intermittent. These recom-
mendations are used by the automatic model selection process to restrict the model
search to a subset of the model selection list.

The tests that are used by the series diagnostics will not always produce the correct
classification of the series. They are intended to accelerate the process of searching
for a good forecasting model for the series, but you should not rely on them if finding
the very best model is important to you.

The series diagnostics tests are intended as a heuristic tool only, and no statistical
validity is claimed for them. These tests may be modified and enhanced in future
releases of the SAS High Performance Forecasting. The testing strategy is as follows:

1. Intermittent test. Compute the average time interval between demands. If
the time average time interval is greater than a preset limit, an intermittent
forecasting model is used.

2. Seasonality test. The resultant series is tested for seasonality. A seasonal
dummy model with AR(1) errors is fit and the joint significance of the seasonal
dummy estimates is tested. If the seasonal dummies are significant, the AIC
statistic for this model is compared to the AIC for and AR(1) model without
seasonal dummies. nonseasonal model, a seasonal forecasting model is used.

Statistics of Fit
This section explains the goodness-of-fit statistics reported to measure how well dif-
ferent models fit the data. The statistics of fit for the various forecasting models can
be printed or stored in a data set.

The various statistics of fit reported are as follows. In these formula, n is
the number of nonmissing observations and k is the number of fitted param-
eters in the model. APE = |100 ∗ (yt − ŷt)/yt| is the absolute percent error.
ASPE = |100 ∗ (yt − ŷt)/0.5(yt + ŷt)| is the absolute symmetric percent er-
ror. APPE = |100 ∗ (yt − ŷt)/ŷt| is the absolute predictive percent error.
RAE = |(yt − ŷt)/(yt − yt−1)| is the relative absolute error. The errors are ignored
in the statistical computations when the denominator is zero.

Number of Nonmissing Observations.
The number of nonmissing observations used to fit the model.
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Number of Observations.
The total number of observations used to fit the model, including both missing
and nonmissing observations.

Number of Missing Actuals.
The number of missing actual values.

Number of Missing Predicted Values.
The number of missing predicted values.

Number of Model Parameters.
The number of parameters fit to the data. For combined forecast, this is the number
of forecast components.

Total Sum of Squares (Uncorrected).
The total sum of squares for the series, SST, uncorrected for the mean:

∑n
t=1 y2

t .

Total Sum of Squares (Corrected).
The total sum of squares for the series, SST, corrected for the mean:∑n

t=1 (yt − y)2, where y is the series mean.

Sum of Square Errors.
The sum of the squared prediction errors, SSE. SSE =

∑n
t=1 (yt − ŷt)2, where ŷ

is the one-step predicted value.

Mean Square Error.
The mean squared prediction error, MSE, calculated from the one-step-ahead fore-
casts. MSE = 1

nSSE . This formula enables you to evaluate small holdout sam-
ples.

Root Mean Square Error.
The root mean square error (RMSE),

√
MSE .

Mean Absolute Error.
The mean absolute prediction error, 1

n

∑n
t=1 |yt − ŷt|.

Minimum Absolute Percent Error.
The minimum of the absolute percent errors (MINAPE).

Maximum Absolute Percent Error.
The maximum of the absolute percent errors (MAXAPE).

Mean Absolute Percent Error.
The mean of the absolute percent errors (MAPE).

Median Absolute Percent Error.
The median of the absolute percent errors (MdAPE).

Geometric Mean Absolute Percent Error.
The geometric mean of the absolute percent errors (GMAPE).
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Minimum Absolute Symmetric Percent Error.
The minimum of the absolute symmetric percent errors (MINASPE).

Maximum Absolute Symmetric Percent Error.
The maximum of the absolute symmetric percent errors (MAXASPE).

Mean Absolute Symmetric Percent Error.
The mean of the absolute symmetric percent errors (MASPE).

Median Absolute Symmetric Percent Error.
The median of absolute symmetric percent errors (MdASPE).

Geometric Mean Symmetric Percent Error.
The geometric mean of the absolute symmetric percent errors (GMASPE).

Minimum Absolute Predictive Percent Error.
The minimum of the absolute predictive percent errors (MINAPPE).

Maximum Absolute Predictive Percent Error.
The maximum of the absolute predictive percent errors (MAXAPPE).

Mean Absolute Predictive Percent Error.
The mean of the absolute predictive percent errors (MAPPE).

Median Absolute Predictive Percent Error.
The median absolute predictive percent prediction error (MdAPPE).

Geometric Mean Absolute Predictive Percent Error.
The geometric mean absolute predictive percent prediction error (GMAPPE).

Minimum Relative Absolute Error.
The minimum of the relative absolute errors (MINRAE).

Maximum Relative Absolute Error.
The maximum of the relative absolute errors (MAXRAE).

Mean Relative Absolute Error.
The mean of the relative absolute errors (MRAE).

Median Relative Absolute Error.
The median of the relative absolute errors (MdRAE).

Geometric Relative Absolute Error.
The geometric mean of the relative absolute errors (GMRAE).

R-Square.
The R2 statistic, R2 = 1 − SSE/SST . If the model fits the series badly, the
model error sum of squares, SSE, may be larger than SST and the R2 statistic will
be negative.
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Adjusted R-Square.
The adjusted R2 statistic, 1 − (n−1

n−k )(1 − R2).

Amemiya’s Adjusted R-Square.
Amemiya’s adjusted R2, 1 − (n+k

n−k )(1 − R2).

Random Walk R-Square.
The random walk R2 statistic (Harvey’s R2 statistic using the ran-
dom walk model for comparison), 1 − (n−1

n )SSE/RWSSE , where
RWSSE =

∑n
t=2 (yt − yt−1 − µ)2, and µ = 1

n−1

∑n
t=2 (yt − yt−1).

Akaike’s Information Criterion.
Akaike’s information criterion (AIC), n ln(SSE/n) + 2k.

Schwarz Bayesian Information Criterion.
Schwarz Bayesian information criterion (SBC or BIC),
n ln(SSE/n) + k ln(n).

Amemiya’s Prediction Criterion.
Amemiya’s prediction criterion, 1

nSST (n+k
n−k )(1 − R2) = (n+k

n−k ) 1
nSSE .

Maximum Error.
The largest prediction error.

Minimum Error.
The smallest prediction error.

Maximum Percent Error.
The largest percent prediction error, 100 max((yt − ŷt)/yt). The summation ig-
nores observations where yt = 0.

Minimum Percent Error.
The smallest percent prediction error, 100 min((yt − ŷt)/yt). The summation
ignores observations where yt = 0.

Mean Error.
The mean prediction error, 1

n

∑n
t=1 (yt − ŷt).

Mean Percent Error.
The mean percent prediction error, 100

n

∑n
t=1

(yt−ŷt)
yt

. The summation ignores
observations where yt = 0.
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Chapter 20
Using Scores (Experimental)
Overview

The HPFENGINE procedure can generate forecast score files. The subroutines de-
scribed in this chapter are used in conjunction with these score files to produce fore-
casts.

HPFSCSIG Function

The HPFSCSIG function creates a text string representing a template for the appro-
priate usage of HPFSCSUB given a forecast scoring file.

Syntax

HPFSCSIG( Scoring-XML-fileref, horizon, ReturnType )

Scoring-XML-Fileref is a SAS file reference that contains the forecast scoring infor-
mation.

Horizon is the forecast horizon or lead. This must be a positive integer
value.

ReturnType is one of the following strings: PREDICT, STDERR, LOWER,
or UPPER. This determines whether the score function will
compute and return the forecast value, standard error, lower
confidence limit, or upper confidence limit, respectively.

Details

The syntax of the forecast scoring function is variable and depends on the horizon
and certain details found in the score file. HPFSCSIG aids the user in constructing
subroutine calls with the correct syntax.

Examples

Consider the following case of an ARIMAX model with three inputs. Two of them
are predefined trend curves and the third is specified as controllable in the call to
PROC HPFENGINE. A score file is produced and HPFSCSIG called to provide a
template for the call of HPFSCSUB.

proc hpfarimaspec modelrepository=work.repo specname=ar;
dependent symbol=Y q=1 dif=12;
input predefined=LINEAR;
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input symbol=controlinput;
input predefined=INVERSE;

run;

proc hpfselect modelrepository=work.repo selectname=select;
spec ar;

run;

proc catalog catalog=work.scores kill; run;

proc hpfengine data=air print=(select estimates)
modelrepository=work.repo globalselection=select
outest=engineoutest scorerepository=work.scores;

id date interval=month;
forecast air;
controllable controlinput / extend=avg;
score;

run;

filename score catalog "work.scores.scor0.xml";

data _null_;
sig = hpfscsig(’score’,3, ’predict’);
put sig=;

run;

This function produces the following output on the SAS log:

sig=HPFSCSUB(’XML’,3,’CONTROLINPUT’,?,?,?,’PREDICT’,!,!,!)

In place of XML, the user will provide the pre-assigned SAS fileref. The user will
also replace the question marks (?) with the desired inputs and the output will be
written to variables placed where there are exclamation marks (!).

HPFSCSUB Function

The HPFSCSUB subroutine returns the forecasts, standard errors, or confidence lim-
its given a forecast scoring file and future values of all controllable inputs.

Syntax

HPFSCSUB( Scoring-XML-fileref, horizon, X1, input-1-1, ... , input-1-horizon, Xj,
input-j-1, ... , input-j-horizon, OutputType, output-1, ... , output-horizon )

Scoring-XML-Fileref is a SAS file reference that contains the forecast scoring infor-
mation.

Horizon is the forecast horizon or lead. This must be a positive integer
value.
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Xj indicates that the next horizon values are the future inputs for
controllable variable j.

Input-j-k is a controllable input value for the j-th variable at horizon k.

OutputType one of the following: PREDICT, STDERR, LOWER, UPPER.
Indicates what will be returned in the output variables.

Output-k the subroutine output at horizon k.

Details

The HPFSCSUB subroutine returns the forecasts, standard errors, or confidence lim-
its given a forecast scoring file and future values of all controllable inputs. Because
the syntax is variable and depends on the input score file, HPFSCSIG is normally
used to determine the layout of the subroutine call.

The score might have been computed using and ARIMAX, UCM or another model.
HPFSCSUB automatically determines detects this and computes the requested return
values appropriately.

Examples

This example uses a score file to compute a forecast. The score file is stored in the
scor0 entry within the catalog work.score. Note that even though the model includes
three inputs, only one is designated controllable in the call to PROC HPFENGINE.
Therefore, only future values of the variable controlinput are required to generate
forecasts using the score file.

In the call to PROC HPFENGINE, the controllable input was extended with the mean
of the controlinput series. Therefore the mean is used as input to the forecast score
function so that a valid comparison can be made between the forecast results from
PROC HPFENGINE and HPFSCSUB.

proc hpfarimaspec modelrepository=work.repo specname=ar;
dependent symbol=Y q=1 dif=12;
input predefined=LINEAR;
input symbol=controlinput;
input predefined=INVERSE;

run;

proc hpfselect modelrepository=work.repo selectname=select;
spec ar;

run;

proc catalog catalog=work.scores kill; run;

* generate score;
proc hpfengine data=air modelrepository=work.repo out=engineout

globalselection=select scorerepository=work.scores;
id date interval=month;
forecast air;
controllable controlinput / extend=avg;
score;
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run;

filename score catalog "work.scores.scor0.xml";

proc means data=air mean noprint;
var controlinput;
output out=controlmean mean=mean;

run;

data _null_;
set controlmean;
call symput("mean", mean);

run;

data forecasts;
drop p1 p2 p3;
format date monyy.;
date = ’01jan1961’d;
call HPFSCSUB(’score’,3,’CONTROLINPUT’,&mean,&mean,&mean,

’PREDICT’,p1,p2,p3);
forecast = p1; date = intnx(’month’, date, 0); output;
forecast = p2; date = intnx(’month’, date, 1); output;
forecast = p3; date = intnx(’month’, date, 1); output;

run;

data compare;
merge engineout forecasts;
by date;

run;

proc print data=compare(where=(forecast ne .)) noobs;
run;

The output is

DATE AIR forecast

JAN1961 416.408 416.408
FEB1961 391.715 391.715
MAR1961 419.312 419.312
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Chapter 21
User-Defined Models
Introduction

User-defined forecasting models can be used in SAS High-Performance Forecasting.
The forecasts produced by these models are considered external forecasts because
they are forecasts originating from an external source.

A user-defined forecasting model can be written in the SAS language or the C
language by using the FCMP procedure or the PROTO procedure, respectively.
The HPFENGINE procedure cannot use C language routines directly. The pro-
cedure can only use SAS language routines that may or may not call C language
routines. Creating user-defined routines are more completely described in the
FCMP procedure and the PROTO procedure documentation. For more informa-
tion about the FCMP and PROTO procedures, see the Base SAS Community at
http://support.sas.com/documentation/onlinedoc/base.

The SAS language provides integrated memory management and exception handling
such as operations on missing values. The C language provides flexibility and allows
the integration of existing C language libraries. However, proper memory manage-
ment and exception handling are solely the responsibility of the user. Additionally,
the support for standard C libraries is restricted. If given a choice, it is highly recom-
mended that user-defined functions and subroutines and functions be written in the
SAS language using the FCMP procedure.

In order to use a SAS language function or routine, an external model specification
must be specified as well. In order to use a C or C++ language external function,
it must be called by a SAS language function or subroutine and an external model
specification must be specified as well. External model specifications are specified by
the HPFEXMSPEC procedure. The following diagram describes an example of the
ways user-defined forecasting models can be defined, specified and used to forecast.
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Figure 21.1. User-defined Forecasting Models

The SAS language function or routine can call other SAS language functions or rou-
tines provided that the search path for these functions and routines are provided.
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Defining and Using a SAS Language Function
or Subroutine
The FCMP procedure provides a simple interface to compile functions and subrou-
tines for use by SAS High-Performance Forecasting. The FCMP procedure accepts
a slight variant of the SAS DATA step language. Most features of the SAS program-
ming language can be used in functions and subroutines processed by the FCMP
procedure. For more information about the FCMP procedure, see the Base SAS
Community at http://support.sas.com/documentation/onlinedoc/base.

For example, the following SAS code creates a user-defined forecasting model for a
simple linear trend line called LINEARTREND that is written in the SAS language
and stores this subroutine in the catalog SASUSER.HPFUSER. The user-defined
forecasting model has the following subroutine signature:

SUBROUTINE <SUBROUTINE-NAME> (<ARRAY-NAME>[*], <ARRAY-NAME>[*],
<ARRAY-NAME>[*], <ARRAY-NAME>[*], <ARRAY-NAME>[*]);

where the first array, ACTUAL, contains the time series to be forecast, the second
array, PREDICT, contains the returned predictions, the third array, STD, contains the
returned prediction standard errors, the fourth array, LOWER, contains the returned
lower confidence limits, and the fifth array, UPPER, contains the returned upper con-
fidence limits.

proc fcmp outlib=sasuser.hpfuser.funcs;

subroutine lineartrend( actual[*],
predict[*], std[*], lower[*], upper[*] );

nobs = DIM(actual);

n = 0;
sumx = 0;
sumx2 = 0;
sumxy = 0;
sumy = 0;
sumy2 = 0;
do t = 1 to nobs;

value = actual[t];
if nmiss(value) = 0 then do;

n = n + 1;
sumx = sumx + t;
sumx2 = sumx2 + t*t;
sumxy = sumxy + t*value;
sumy = sumy + value;
sumy2 = sumy2 + value*value;

end;
end;

det = (n*sumx2 - sumx*sumx);
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constant = (sumx2 * sumy - sumx * sumxy) / det;
slope = (-sumx * sumy + n * sumxy) / det;

sume2 = 0;
do t = 1 to nobs;

value = actual[t];
if nmiss(value) = 0 then do;
error = value - predict[t];

ume2 = sume2 + error*error;
end;

end;

stderr = sqrt(sume2 / (n-2));
size = probit(1-0.025/2); /*- 97.5% confidence -*/
width = size*stderr;

length = DIM(predict);

do t = 1 to length;
predict[t] = constant + slope*t;
std[t] = stderr;
lower[t] = predict[t] - width;
upper[t] = predict[t] + width;

end;

endsub;

quit;

In order to use a user-defined forecasting model, an external forecast model spec-
ification must be specified with the same name using the HPFEXMSPEC proce-
dure. For example, the following SAS code creates an external model specifi-
cation called LINEARTREND and stores this model specification in the catalog
SASUSER.MYREPOSITORY. Since the user-defined forecasting model uses two pa-
rameters, CONSTANT and SLOPE, the NPARMS=2 option is specified in the EXM
statement. The number specified in this option is used for computing statistics of fit
(e.g. RMSE, AIC, BIC).

proc hpfexmspec modelrepository=sasuser.myrepository
specname=lineartrend
speclabel="User defined linear trend";
exm nparms=2;

run;

The HPFSELECT procedure can be used to create a model selection list that contains
an external model specification as a possible candidate model. For example, the
following SAS code creates a model selection list called MYSELECT and stores this
model selection list in the catalog SASUSER.MYREPOSITORY.
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proc hpfselect modelrepository=sasuser.myrepository
selectname=myselect
selectlabel="My Select List";
spec lineartrend;

run;

To use the user-defined forecasting model defined by the FCMP procedure
in the HPFENGINE procedure, the CMPLIB option must list the cata-
logs that contain the SAS language functions and routines. For more in-
formation about the FCMP procedure, see the Base SAS Community at
http://support.sas.com/documentation/onlinedoc/base.

options cmplib = sasuser.hpfuser;

At this point,

1. A SAS language subroutine has been defined, LINEARTREND, and stored in
the SAS catalog, SASUSER.HPFUSER;

2. An external model specification, LINEARTREND, has been stored in the
model repository, SASUSER.MYREPOSITORY;

3. A model selection list, MYSELECT, has been stored in the model repository,
SASUSER.MYREPOSITORY;

4. and the search path for the SAS language functions and subroutines has been
set to SASUSER.HPFUSER.

The HPFENGINE procedure can now use the user-defined forecasting routine.

For example, the following SAS code forecasts the monthly time series con-
tained in the SASHELP.AIR data set. This data set contains two variables
DATE and AIR. The MODELREPOSITORY= SASUSER.MYREPOSITORY op-
tion of the PROC HPFENGINE statement specifies the model repository; the
GLOBALSELECTION=MYSELECT options specifies the model selection list; and
the USERDEF statement specifies the external/user-defined forecasting model name,
LINEARTREND, and variable mapping to the subroutine that must match the sub-
routine signature. The keyword –PREDICT– indicates the returned predictions; the
keyword –STDERR– indicates the returned prediction standard errors; the keyword
–LOWER– indicates the returned lower confidence limits; the keyword –UPPER–
indicates the returned upper confidence limits.

proc hpfengine data=sashelp.air out=out outfor=outfor outstat=outstat
modelrepository=sasuser.myrepository globalselection=myselect;

id date interval=month;
forecast air;
userdef lineartrend(air, _PREDICT_, _STDERR_, _LOWER_, _UPPER_ );

run;
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The OUT= data set contains the original data extrapolated by the simple linear trend
model (values returned in the –PREDICT– array) and the OUTFOR= data set con-
tains the forecasts (values returned in the –PREDICT–, –STDERR–, –LOWER–,
and –UPPER– array) and the prediction errors. The OUTSTAT= data set contains
the statistics of fit based on the prediction errors and the NPARMS=2 option of the
external model specification.

Defining and Using a C Language External
Function
The PROTO procedure enables you to register, in batch, external functions written
in the C or C++ programming languages for use in SAS. In order to use an exter-
nal function, it must be called from a SAS language function or subroutine. For
more information about the PROTO procedure, see the Base SAS Community at
http://support.sas.com/documentation/onlinedoc/base.

For example, the following SAS code creates a user-defined forecasting model for a
simple linear trend line called LINEARTREND–C that is written in the C language
and stores this external function in the catalog SASUSER.CHPFUSER.

proc proto package=sasuser.chpfuser.cfuncs;

double lineartrend_c( double * actual,
int actualLength,
double * predict,
double * std,
double * lower,
double * upper,
int predictLength );

externc lineartrend_c;
double lineartrend_c( double * actual,
int actualLength,
double * predict,
double * lower,
double * std,
double * upper,
int predictLength )

nt t, n;
ong sumx, sumx2;
ouble value, sumxy, sumy, sumy2;
ouble det, constant, slope, stderr, size, width;
ouble error, sume2;

n = 0;
sumx = 0;
sumx2 = 0.;
sumxy = 0.;
sumy = 0.;
sumy2 = 0.;
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for ( t = 0; t < actualLength; t ++ ) {
value = actual[t];
n = n + 1;
sumx = sumx + t;
sumx2 = sumx2 + t*t;
sumxy = sumxy + t*value;
sumy = sumy + value;
sumy2 = sumy2 + value*value;
}

det = (n*sumx2 - sumx*sumx);

constant = (sumx2 * sumy - sumx * sumxy) / det;
slope = (-sumx * sumy + n * sumxy) / det;
sume2 = 0;
for ( t = 0; t < actualLength; t ++ ) {
value = actual[t];

rror = value - predict[t];
sume2 = sume2 + error*error;
}

stderr = sqrt(sume2 / (n-2.));
size = 1.96; /*- 97.5% confidence -*/
width = size*stderr;

for ( t = 0; t < predictLength; t ++ ) {
predict[t] = constant + slope*t;
std[t] = stderr;
lower[t] = predict[t] - width;
upper[t] = predict[t] + width;
}

return(0);
}

externcend;

run;

For example, the following SAS code creates a user-defined forecasting model for
a simple linear trend called LINEARTREND and stores this subroutine in the cat-
alog SASUSER.HPFUSER. The catalog SASUSER.CHPFUSER contains functions
or subroutines that are used in LINEARTREND. The user-defined forecasting model
has the following subroutine signature:

SUBROUTINE <SUBROUTINE-NAME> (<ARRAY-NAME>[*], <ARRAY-NAME>[*],
<ARRAY-NAME>[*], <ARRAY-NAME>[*], <ARRAY-NAME>[*]);

where the first array, ACTUAL, contains the time series to be forecast, the sec-
ond array, PREDICT, contains the return predictions, the third array, STD, contains
the returned prediction standard errors, the fourth array, LOWER, contains the re-
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turn lower confidence limits, and the fifth array, UPPER, contains the return up-
per confidence limits. The LINEARTREND subroutine calls the external function
LINEARTREND–C. The DIM function returns the length of the array. For exam-
ple, the DIM(ACTUAL) function returns the length of the time series array; and
the DIM(PREDICT) returns the length of the prediction array. DIM(PREDICT)
DIM(ACTUAL) represents the forecast horizon or lead.

proc fcmp outlib=sasuser.hpfuser.funcs inlib=sasuser.chpfuser;

subroutine lineartrend( actual[*],
predict[*], std[*], lower[*], upper[*] );
ret = lineartrend_c( actual, DIM(actual),
predict, std, lower, upper, DIM(predict));

endsub;
quit;

In order to use a user-defined forecasting model, an external forecast model spec-
ification must be specified with the same name using the HPFEXMSPEC proce-
dure. For example, the following SAS code creates an external model specifi-
cation called LINEARTREND and stores this model specification in the catalog
SASUSER.MYREPOSITORY. Since the user-defined forecasting model uses two pa-
rameters, CONSTANT and SLOPE, the NPARMS=2 option is specified in the EXM
statement. The number specified in this option is used in computing statistics of fit.

proc hpfexmspec modelrepository=sasuser.myrepository
specname=lineartrend
speclabel="User defined linear trend";
exm nparms=2;

run;

The HPFSELECT procedure can be used to create a model selection list that contains
an external model specification as a possible candidate model. For example, the
following SAS code creates a model selection list called MYSELECT and stores this
model selection list in the catalog SASUSER.MYREPOSITORY.

proc hpfselect modelrepository=sasuser.myrepository
selectname=myselect
selectlabel="My Select List";
spec lineartrend;

run;

To use the user-defined forecasting model defined by the FCMP procedure in the
HPFENGINE procedure, the CMPLIB option must list the catalogs that contains
the SAS language functions and routines and C language external functions. For
more information about the FCMP procedure, see the Base SAS Community at
http://support.sas.com/documentation/onlinedoc/base.

options cmplib = (sasuser.hpfuser sasuser.chpfuser);
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At this point,

1. A C language external function has been defined, LINEARTREND–C, and
stored in the SAS catalog, SASUSER.CHPFUSER;

2. A SAS language subroutine has been defined, LINEARTREND, which calls
the external function, LINEARTREND–C, and stored in the SAS catalog,
SASUSER.HPFUSER;

3. An external model specification, LINEARTREND, has been stored in the
model repository, SASUSER.MYREPOSITORY;

4. A model selection list, MYSELECT, has been stored in the model repository,
SASUSER.MYREPOSITORY;

5. and the search path for the SAS language functions and subroutines has been
set to SASUSER.HPFUSER and SASUSER.CHPFUSER.

The HPFENGINE procedure can now use the user-defined forecasting routine.

For example, the following SAS code forecasts the monthly time series con-
tained in the SASHELP.AIR data set. This data set contains two variables
DATE and AIR. The MODELREPOSITORY= SASUSER.MYREPOSITORY op-
tion of the PROC HPFENGINE statement specifies the model repository; the
GLOBALSELECTION=MYSELECT options specifies the model selection list; and
the USERDEF statement specifies the external/user-defined forecasting model name,
LINEARTREND, and variable mapping to the subroutine that must match the sub-
routine signature. The keyword –PREDICT– indicates the returned predictions; the
keyword –STDERR– indicates the returned prediction standard errors; the keyword
–LOWER– indicates the returned lower confidence limits; the keyword –UPPER–
indicates the returned upper confidence limits.

proc hpfengine data=sashelp.air out=out outfor=outfor outstat=outstat
modelrepository=sasuser.myrepository globalselection=myselect;

id date interval=month;
forecast air;
userdef lineartrend(air, _PREDICT_, _STDERR_, _LOWER_, _UPPER_ );

run;

The OUT= data set contains the original data extrapolated by the simple linear trend
model (values returned in the –PREDICT– array) and the OUTFOR= data set con-
tains the forecasts (values returned in the –PREDICT–, –STDERR–, –LOWER–,
and –UPPER– array) and the prediction errors. The OUTSTAT= data set contains
the statistics of fit based on the prediction errors and the NPARMS=2 option of the
external model specification.
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Input Time Series Keywords
The user can specify keywords related to the input time series in the USERDEF
statement of the HPFENGINE procedure. These keywords specify inputs the user-
defined forecasting model. The –TIMEID– keyword specifies that the time ID values
are passed as input arrays to the user-defined forecasting model. The –SEASON–
keyword specifies that the season index values are passed as input arrays to the user-
defined forecasting model.

Returned Forecast Component Keywords
At the very least, a user-defined forecasting function or subroutine must return the
predictions which is specified by the keyword, –PREDICT–, in the USERDEF state-
ment of the HPFENGINE procedure. The prediction standard errors, lower and up-
per confidence limits are optional and are specified by the keywords, –STDERR–,
–LOWER–, and –UPPER–, respectively. The HPFENGINE procedure will compute
the forecasts components that are not returned the user-defined forecasting function
based on the external model specification.
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Chapter 22
Using External Forecasts
Introduction

External forecasts are forecasts provided by an external source. External forecasts
may originate from a statistical model or from another software package, and may
have been provided by an outside organization (e.g., marketing organization or gov-
ernment agency), or may be given based solely on judgment.

To use an external forecast in SAS High-Performance Forecasting, an external model
specification must be specified using the HPFEXMSPEC procedure. The model spec-
ification describes statistical properties of how the forecast was derived. Figure 22.1
describes an example of the ways external forecasts can be specified and used to
forecast.

Figure 22.1. Using External Forecasts
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Specifying and Using an External Model
Specification
The HPFEXMSPEC procedure specifies external models for use by SAS High-
Performance Forecasting. The HPFEXMSPEC procedure allows the user to spec-
ify information about how the forecasts were derived. This information is used to
compute forecast components that are not provided by the user.

For example, the data set SASHELP.AIR contains a monthly time series represented
by two variables: DATE and AIR. The following SAS code creates an external fore-
cast in the log transformed metric and stores the external forecasts in the data set
WORK.EXTERNALFORECAST. In this example, the HPF procedure is used as the
source of the forecasts; but one could imagine that the origin could be any external
source.

proc timeseries data=sashelp.air out=logair(rename=air=logair);
id date interval=month;
var air / transform=log;

run;

proc hpf data=logair out=hpfout outfor=hpfforecast;
id date interval=month;
forecast logair / model=addwinters;

run;

data externalforecast; merge sashelp.air hpfforecast;
drop _NAME_ ACTUAL ERROR;
by date;

run;

The data set WORK.EXTERNALFORECAST contains six variables: DATA, AIR,
PREDICT, STD, LOWER and UPPER.

The HPFEXMSPEC procedure can be used to create an external model specifica-
tion. Continuing the example, the following SAS code creates an external model
specification called MYEXTERNAL and stores this model specification in the model
repository SASUSER.MYMODELS. The TRANSFORM=LOG option specifies that
the external forecasts were generated in the log transformed metric and these fore-
casts need to be inverse-transformed back to the original metric. The NPARMS=3
option specifies the number of parameters used to generate the external forecasts.

proc hpfexmspec modelrepository=sasuser.myrepository specname=myexternal;
exm transform=log nparms=3;

run;

The HPFSELECT procedure can be used to create a model selection list that contains
an external model specification as a possible candidate model. Continuing the exam-
ple, the following SAS code creates a model selection list called MYSELECT and
stores this model selection list in the catalog SASUSER.MYREPOSITORY.
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proc hpfselect modelrepository=sasuser.myrepository
selectname=myselect
selectlabel="My Select List";

spec myexternal;
run;

At this point,

1. External forecasts are contained in the data set WORK.EXTERNALFORECAST.

2. An external model specification, MYEXTERNAL, has been stored in the
model repository, SASUSER.MYREPOSITORY.

3. A model selection list, MYSELECT, has been stored in the model repository,
SASUSER.MYREPOSITORY.

The HPFENGINE procedure can now use both the external model specification and
the external forecasts.

Continuing the example, the following SAS code forecasts the monthly
time series contained in the WORK.EXTERNALFORECAST data set.
The MODELREPOSITORY= SASUSER.MYREPOSITORY option of
the PROC HPFENGINE statement specifies the model repository; the
GLOBALSELECTION=MYSELECT options specifies the model selection
list; and the EXTERNAL statement specifies the external forecasting model name,
LINEARTREND, and variable mapping to the data set variables. The PREDICT=
option specifies the variable containing the predictions; the STDERR= option
specifies the variable containing the prediction standard errors; the LOWER= option
specifies the variable containing the lower confidence limits; the UPPER= option
specifies the variable containing the upper confidence limits.

proc hpfengine data=externalforecast
=engout outfor=engforecast outstat=outstat
elrepository=sasuser.myrepository globalselection=myselect;

id date interval=month;
forecast air;
external air=(predict=predict lower=lower upper=upper stderr=std);

run;

The OUT=ENGOUT data set contains the original data extrapolated by the external
forecasts and the OUTFOR=ENGFORECAST data set contains the forecasts (values
contained in the PREDICT=, STDERR=, LOWER=, and UPPER= data set variables)
and the prediction errors. The OUTSTAT=ENGSTAT data set contains the statistics
of fit based on the prediction errors and the NPARMS=3 option of the external model
specification.
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Holt smoothing model, 581
smoothing models, 581

log
transformations, 598

log test, 600
log transformation,

See transformations
logistic

transformations, 598

M
marker symbols, modifying

examples, ODS Graphics, 201
maximum absolute percent error

statistics of fit, 601
maximum absolute predictive percent error

statistics of fit, 602
maximum absolute symmetric percent error

statistics of fit, 602
maximum relative absolute error

statistics of fit, 602
mean absolute error

statistics of fit, 601
mean absolute percent error

statistics of fit, 601
mean absolute predictive percent error

statistics of fit, 602
mean absolute symmetric percent error

statistics of fit, 602
mean percent error

statistics of fit, 603
mean prediction error

statistics of fit, 603
mean relative absolute error

statistics of fit, 602
mean square error

statistics of fit, 601
median absolute percent error

statistics of fit, 601
median absolute predictive percent error

statistics of fit, 602
median absolute symmetric percent error

statistics of fit, 602
median relative absolute error

statistics of fit, 602
merging series

time series data, 89
merging time series data sets, 89
midpoint dates of

time intervals, 71
minimum absolute percent error

statistics of fit, 601
minimum absolute predictive percent error

statistics of fit, 602
minimum absolute symmetric percent error

statistics of fit, 602
minimum relative absolute error

statistics of fit, 602
missing observations

contrasted with omitted observations, 42
Missing Values
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HPFDIAGNOSE procedure, 316
missing values

contrasted with omitted observations, 42
embedded in time series, 42
interpolation of, 93
smoothing models, 577
time series data and, 41

missing values and
time series data, 41, 42

MMAE, 599
MMSE, 599
model evaluation, 575
MODEL procedure and

differencing, 79
lags, 79

MODEL procedure version
DIF function, 79
LAG function, 79

moving averages
percent change calculations, 81, 82

multiperiod
leads, 83

multiperiod differences
differencing, 79

multiperiod lagging
lags, 79

multiperiod lags and
DIF function, 79
LAG function, 79
summation, 84

multiple destinations
examples, ODS Graphics, 191

N
naming

time intervals, 49, 101
nonmissing observations

statistics of fit, 600
normalizing dates in intervals

INTNX function, 71
normalizing to intervals

date values, 71
number of observations

statistics of fit, 601

O
ODS

and templates, 118
and the NOPRINT option, 125
compatibility with Version 6, 126
default behavior, 117
exclusion list, 121
interactive procedures, 122
ODS Graphics, 143
output formats, 117
output table names, 119
run group processing, 122
selection list, 121, 135
Statistical Graphics Using ODS, 143

suppressing displayed output, 125
templates, 123
trace record, 119
with Results window, 123
with SAS Explorer, 122

ODS destinations
ODS Graphics, 163

ODS examples
creating an output data set, 137
html output, 126, 129
output table names, 131, 137
selecting output, 133

ODS graph names
HPF procedure, 257
HPFENGINE procedure, 384

ODS graph templates
displaying templates, 168
editing templates, 169
graph definitions, 167, 172, 196
graph template language, 167, 172
locating templates, 168
reverting to default templates, 171, 200
saving templates, 170
style definitions, 167, 174
table definitions, 167
template definitions, 167
using customized templates, 171

ODS Graphics, 143
DOCUMENT destination, 153, 163
examples, 181
excluding graphs, 157
getting started, 145
graph names, 156
graph template definitions, 167, 172, 196
graph template language, 167, 172
graphics image files, 162
graphics image files, names, 164
graphics image files, PostScript, 166
graphics image files, types, 163, 164, 180
HTML destination, 153, 163
HTML output, 153, 162, 165
index counter, 164
introductory examples, 145, 150
LATEX destination, 153, 163
LaTeX output, 162, 166
lattice layouts, 214
layout area, 172
ODS destinations, 163
overlaid layouts, 199, 205, 214
PCL destination, 153, 163
PDF destination, 153, 163
PDF output, 166
plot options, 150
PostScript output, 166
PS destination, 153, 163
referring to graphs, 156
requesting graphs, 145, 150
reseting index counter, 164
RTF destination, 153, 163
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RTF output, 152, 166
saving graphics image files, 165
selecting graphs, 157
supported operating environments, 178
supported procedures, 178
viewing graphs, 154

ODS output destinations, 121
definition, 118

ODS output files, 153
ODS output objects

definition, 118
ODS path, 170, 171, 175
ODS path names, 121

fully qualified, 121
partially qualified, 121

ODS Statistical Graphics,
see ODS Graphics

ODS styles, 160
Analysis style, 160
attributes, 174
customizing, 175, 206, 208, 210
Default style, 160, 175
definitions, 174
elements, 174
Journal style, 160, 175
Rtf style, 175, 176
specifying, 160
specifying a default, 175
Statistical style, 160

of interleaved time series
overlay plots, 55, 62

of missing values
interpolation, 93

of time series
overlay plots, 54, 61
sampling frequency, 35, 48, 94
summation, 83
time ranges, 41

of time series data set
standard form, 40
time series cross-sectional form, 43

of time series observations
frequency, 48, 94
periodicity, 35, 48, 94

omitted observations
contrasted with missing values, 42
defined, 42
replacing with missing values, 74

omitted observations in
time series data, 42

optimizations
smoothing weights, 578

OUTEST
HPFDIAGNOSE procedure, 335

Outliers
HPFDIAGNOSE procedure, 325

OUTOUTLIER
HPFDIAGNOSE procedure, 326

output data sets

and the OUTPUT statement, 48
different forms of, 47
in standard form, 48
interleaved form, 47
produced by SAS/ETS procedures, 47

Output Delivery System,
see ODS

OUTPUT statement
SAS/ETS procedures using, 48

overlaid layouts
ODS Graphics, 199, 205, 214

overlay plot of
time series data, 54, 61

overlay plots
of interleaved time series, 55, 62
of time series, 54, 61
–TYPE– variable and, 55, 62

P
parameter estimation, 575
parameters

HPFUCMSPEC procedure, 525–529, 531–534
PCL destination

ODS Graphics, 153, 163
PDF destination

ODS Graphics, 153, 163
PDF output

examples, ODS Graphics, 191
ODS Graphics, 166

percent change calculations
at annual rates, 80
introduced, 80
moving averages, 81, 82
period-to-period, 80
time series data, 80–82
year-over-year, 80
yearly averages, 81

percent change calculations and
DIF function, 80–82
differencing, 80–82
LAG function, 80–82
lags, 80–82

period-to-period
percent change calculations, 80

periodicity
changing by interpolation, 94
of time series observations, 35, 48, 94

periodicity of
time series data, 48, 94

periodicity of time series
time intervals, 48, 94

pitfalls of
DIF function, 77
LAG function, 77

plot axis and
time intervals, 52, 58

plot axis for time series
GPLOT procedure, 52
PLOT procedure, 58
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plot options
ODS Graphics, 150

PLOT procedure
plot axis for time series, 58
plotting time series, 57
reference, 58
time series data, 57

plot reference lines and
time intervals, 52, 58

plots of
interleaved time series, 55, 62

plots, ODS Graphics
contour plots, 191
Cook’s D plots, 183
diagnostics panels, 146, 212
fit plots, 146
histograms, 189
Q-Q plots, 192, 195, 199, 201, 203, 205, 206,

208, 210, 211
residual plots, 146
series plot, 185
series plots, 172
smoothed cycle component plot, 151
studentized residual plots, 184
surface plots, 191

plotting
residual, 56, 64
time series data, 51

plotting time series
GPLOT procedure, 51
PLOT procedure, 57
Time Series Viewer procedure, 51

PostScript
graphics image files, 189

PostScript output
ODS Graphics, 166

predictions
smoothing models, 577

presentations
examples, ODS Graphics, 187

produced by SAS/ETS procedures
output data sets, 47

PS destination
ODS Graphics, 153, 163

Q
Q-Q plots

graph template definitions, 197
plots, ODS Graphics, 192, 195, 199, 201, 203,

205, 206, 208, 210, 211

R
R-square statistic

statistics of fit, 602
random walk R-square

statistics of fit, 603
reading

time series data, 30, 97
reading, with DATA step

time series data, 95, 96
recommended for time series ID

formats, 35
reference

GPLOT procedure, 52
PLOT procedure, 58

referring to graphs
examples, ODS Graphics, 157
ODS Graphics, 156

relative paths, 165
examples, ODS Graphics, 190

replacing with missing values
omitted observations, 74

replaying output
examples, ODS Graphics, 192, 194, 200

represented by different series
cross-sectional dimensions, 43

represented with BY groups
cross-sectional dimensions, 43

requesting graphs
ODS Graphics, 145, 150

reseting index counter
ODS Graphics, 164

residual
plotting, 56, 64

residual plots
plots, ODS Graphics, 146

RETAIN statement
computing lags, 78

RETAIN statement and
differencing, 78
lags, 78

root mean square error
statistics of fit, 601

RTF destination
ODS Graphics, 153, 163

RTF output
examples, ODS Graphics, 187, 191
ODS Graphics, 152, 166

Rtf style
ODS styles, 175, 176

S
sampling frequency

changing by interpolation, 94
of time series, 35, 48, 94
time intervals and, 48

sampling frequency of
time series data, 48, 94

sampling frequency of time series
time intervals, 48, 94

SAS Companion, 154, 165, 178
SAS current folder, 153
SAS data sets

DATA step, 15
SAS data sets and

time series data, 29
SAS language features for

time series data, 29
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SAS Registry, 154, 175
SAS Registry Editor, 175
SAS representation for

date values, 32
datetime values, 33

SAS Results Viewer, 154, 165
SAS/ETS procedures using

OUTPUT statement, 48
saving graphics image files

ODS Graphics, 165
saving templates

examples, ODS Graphics, 199
SBC,

See Schwarz Bayesian information criterion
Schwarz Bayesian information criterion

BIC, 603
SBC, 603
statistics of fit, 603

Season Dummy Test
HPFDIAGNOSE procedure, 322

seasonal exponential smoothing, 584
smoothing models, 584

seasonality test, 600
second difference

DIF function, 79
differencing, 79

selecting graphs
examples, ODS Graphics, 157, 182, 192
ODS Graphics, 157

series diagnostics, 600
series plot

plots, ODS Graphics, 185
series plots

plots, ODS Graphics, 172
shifted

time intervals, 102
shifted intervals,

See time intervals, shifted
simple exponential smoothing, 579

smoothing models, 579
smoothed cycle component plot

plots, ODS Graphics, 151
smoothing equations, 576

smoothing models, 576
smoothing models

calculations, 576
damped-trend exponential smoothing, 583
double exponential smoothing, 580
exponential smoothing, 576
forecasting models, 576
initializations, 577
linear exponential smoothing, 581
missing values, 577
predictions, 577
seasonal exponential smoothing, 584
simple exponential smoothing, 579
smoothing equations, 576
smoothing state, 576
smoothing weights, 578

standard errors, 578
underlying model, 576
Winters Method, 585, 587

smoothing state, 576
smoothing models, 576

smoothing weights, 578
additive-invertible region, 578
boundaries, 578
optimizations, 578
smoothing models, 578
specifications, 578
weights, 578

sorting
time series data, 36

sorting by
ID variables, 36

specifications
smoothing weights, 578

splitting series
time series data, 88

splitting time series data sets, 88
square root

transformations, 598
square root transformation,

See transformations
standard errors

smoothing models, 578
standard form

of time series data set, 40
standard form of

time series data, 40
starting dates of

time intervals, 70, 71
Stationarity Test

HPFDIAGNOSE procedure, 319
Statistical Graphics Using ODS,

see ODS Graphics
Statistical style

ODS styles, 160
statistics of fit, 600

adjusted R-square, 603
Akaike’s information criterion, 603
Amemiya’s prediction criterion, 603
Amemiya’s R-square, 603
corrected sum of squares, 601
error sum of squares, 601
geometric mean absolute percent error, 601
geometric mean absolute predictive percent er-

ror, 602
geometric mean absolute symmetric percent er-

ror, 602
geometric mean relative absolute error, 602
goodness-of-fit statistics, 600
maximum absolute percent error, 601
maximum absolute predictive percent error, 602
maximum absolute symmetric percent error, 602
maximum relative absolute error, 602
mean absolute error, 601
mean absolute percent error, 601
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mean absolute predictive percent error, 602
mean absolute symmetric percent error, 602
mean percent error, 603
mean prediction error, 603
mean relative absolute error, 602
mean square error, 601
median absolute percent error, 601
median absolute predictive percent error, 602
median absolute symmetric percent error, 602
median relative absolute error, 602
minimum absolute percent error, 601
minimum absolute predictive percent error, 602
minimum absolute symmetric percent error, 602
minimum relative absolute error, 602
nonmissing observations, 600
number of observations, 601
R-square statistic, 602
random walk R-square, 603
root mean square error, 601
Schwarz Bayesian information criterion, 603
uncorrected sum of squares, 601

stored in SAS data sets
time series data, 39

studentized residual plots
plots, ODS Graphics, 184

style attributes, modifying
examples, ODS Graphics, 206, 208, 210

style elements, modifying
examples, ODS Graphics, 206, 208, 210

summary of
time intervals, 103

summation
higher order sums, 84
multiperiod lags and, 84
of time series, 83

summation of
time series data, 83, 84

supported operating environments
ODS Graphics, 178

supported procedures
ODS Graphics, 178

surface plots
plots, ODS Graphics, 191

syntax for
date values, 32
datetime values, 33
time intervals, 49
time values, 33

T
Template Editor window, 169, 170, 196
TEMPLATE procedure

examples, ODS Graphics, 195, 201, 203, 205,
212

graph template language, 172
template stores, 167

Sashelp.Tmplmst, 167, 171, 175, 176, 196
Sasuser.Templat, 170, 171, 176
user-defined, 171

templates
displaying contents of template, 123
in SASUSER library, 124
modifying, 124
style templates, 124
table templates, 124
TEMPLATE procedure, 123

Templates window, 168, 169, 175, 196
tick marks, modifying

examples, ODS Graphics, 205
time functions, 65
time intervals

alignment of, 103
calendar calculations and, 75
ceiling of, 72
checking data periodicity, 73
counting, 69, 72
date values, 101
datetime values, 101
ending dates of, 71
examples of, 105
EXPAND procedure and, 94
functions, 111
functions for, 68, 111
ID values for, 70
incrementing dates by, 68, 69
INTCK function and, 69, 72
INTERVAL= option and, 49
intervals, 49
INTNX function and, 68
midpoint dates of, 71
naming, 49, 101
periodicity of time series, 48, 94
plot axis and, 52, 58
plot reference lines and, 52, 58
sampling frequency of time series, 48, 94
shifted, 102
starting dates of, 70, 71
summary of, 103
syntax for, 49
use with SAS/ETS procedures, 50
widths of, 72

time intervals and
calendar calculations, 75
date values, 70
frequency, 48, 94
sampling frequency, 48

time intervals, functions
interval functions, 68

time intervals, shifted
shifted intervals, 102

time ranges
of time series, 41

time ranges of
time series data, 41

time series cross-sectional form
BY groups and, 43
ID variables for, 43
of time series data set, 43
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TSCSREG procedure and, 44
time series cross-sectional form of

time series data set, 43
time series data

changing periodicity, 94
differencing, 76–82
embedded missing values in, 42
giving dates to, 31
GPLOT procedure, 51
ID variable for, 31
interpolation, 94
interpolation of, 93, 94
lagging, 76–82
leads, 82, 83
merging series, 89
missing values and, 41, 42
omitted observations in, 42
overlay plot of, 54, 61
percent change calculations, 80–82
periodicity of, 48, 94
PLOT procedure, 57
plotting, 51
reading, 30, 97
reading, with DATA step, 95, 96
sampling frequency of, 48, 94
SAS data sets and, 29
SAS language features for, 29
sorting, 36
splitting series, 88
standard form of, 40
stored in SAS data sets, 39
summation of, 83, 84
time ranges of, 41
Time Series Viewer, 51
transposing, 89, 90

time series data and
missing values, 41

time series data set
interleaved form of, 44
time series cross-sectional form of, 43

Time Series Reconciliation,
See also HPFRECONCILE procedure

Time Series Viewer
time series data, 51

Time Series Viewer procedure
plotting time series, 51

time values
defined, 33
formats, 110
functions, 111
informats, 105
syntax for, 33

time variables
computing from datetime values, 68
introduced, 65

TIMEPLOT procedure, 65
to higher frequency

interpolation, 94
to lower frequency

interpolation, 94
to standard form

transposing time series, 89, 90
trace record

examples, ODS Graphics, 157, 182, 195
Transfer Function in a UCM

HPFDIAGNOSE procedure, 329
Transfer Function in an ARIMAX Model

HPFDIAGNOSE procedure, 323
transformations

Box Cox, 598
Box Cox transformation, 598
log, 598
log transformation, 598
logistic, 598
square root, 598
square root transformation, 598

TRANSPOSE procedure, 89, 90, 92, 96
TRANSPOSE procedure and

transposing time series, 89
transposing

time series data, 89, 90
transposing time series

cross-sectional dimensions, 90
from interleaved form, 89
from standard form, 92
to standard form, 89, 90
TRANSPOSE procedure and, 89

TSCSREG procedure and
time series cross-sectional form, 44

–TYPE– variable
and interleaved time series, 44, 45
overlay plots, 55, 62

U
UCM models

forecasting models, 589
uncorrected sum of squares

statistics of fit, 601
underlying model

smoothing models, 576
Unobserved Components Model

HPFDIAGNOSE procedure, 329
use with SAS/ETS procedures

time intervals, 50

V
viewing graphs

ODS Graphics, 154

W
weights,

See smoothing weights
widths of

time intervals, 72
windowing environment, 153, 154, 167
Winters Method, 585, 587

Holt-Winters Method, 585
smoothing models, 585, 587
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Y
Year 2000 Compliance

date values, 32
year-over-year

percent change calculations, 80
yearly averages

percent change calculations, 81
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A
ABEL= option

PROC HPFIDMSPEC statement, 462
ACCUMULATE= option

ADJUST statement, 315
ADJUST statement (ENG), 372
CONTROL statement (ENG), 370
FORECAST statement, 307
FORECAST statement (ENG), 363
FORECAST statement (HPF), 232
ID statement, 305
ID statement (ENG), 364
ID statement (HPF), 237
INPUT statement, 308
INPUT statement (ENG), 367
STOCHASTIC statement (ENG), 369

ADJUST statement
HPFDIAGNOSE procedure, 315
HPFENGINE procedure, 371

AFTER= option
EVENTDEF statement (HPFEVENTS), 426

AGGBY statement
HPFRECONCILE procedure, 478

AGGDATA Statement
HPFRECONCILE procedure, 479

AGGDATA=option
PROC HPFRECONCILE statement, 475

AGGREGATE= option
PROC HPFRECONCILE statement, 476

ALIGN= option
ID statement, 305
ID statement (ENG), 365
ID statement (HPF), 238
ID statement (HPFEVENTS), 417
PROC ARIMA statement, 111
PROC DATASOURCE statement, 111
PROC EXPAND statement, 111
PROC FORECAST statement, 111

ALPHA= option
FORECAST statement (HPF), 232
FORECASTOPTIONS statement

(HPFSELECT), 502
PROC HPFDIAGNOSE statement, 299
PROC HPFRECONCILE statement, 476

ANTIALIAS= option
ODS GRAPHICS statement, 179

AR= option

FORECAST statement (HPFARIMASPEC),
277

INPUT statement (HPFARIMASPEC), 279
ARIMAX statement

HPFDIAGNOSE procedure, 310
AUTOREG statement

HPFUCMSPEC procedure, 524
AVERAGE= option

IDM statement (HPF), 242
IDM statement (HPFIDMSPEC), 464

B
BACK= option

PROC HPF statement, 229
PROC HPFDIAGNOSE statement, 299
PROC HPFENGINE statement, 354

BASE= option
IDM statement, 313
IDM statement (HPF), 242
IDM statement (HPFIDMSPEC), 464

BASENAME= option
PROC HPFDIAGNOSE statement, 299

BEFORE= option
EVENTDEF statement (HPFEVENTS), 426

BLOCKSEASON statement
HPFUCMSPEC procedure, 525

BLOCKSIZE= option
BLOCKSEASON statement (HPFUCMSPEC),

526
Bottom-up Reconciliation

HPFRECONCILE procedure, 484
BOUNDS= option

IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 467

BY statement
HPF procedure, 232
HPFDIAGNOSE procedure, 305
HPFENGINE procedure, 362
HPFEVENTS procedure, 417
HPFRECONCILE procedure, 478

C
CLMETHOD= option

PROC HPFRECONCILE statement, 476
COMPONENT= option

UCM statement, 314
CONDENSE option

EVENTDATA statement, 435
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Confidence Limits
Bottom-up Reconciliation (HPFRECONCILE),

485
Top-Down Reconciliation (HPFRECONCILE),

484
CONSTRAINT= option

PROC HPFRECONCILE statement, 475
CONTROL statement

HPFENGINE procedure, 370
CONVERGE= option

ESTIMATE statement (HPFARIMASPEC), 280
CRITERION= option

ARIMAX statement, 311
PROC HPFDIAGNOSE statement, 299
SELECT statement (HPFSELECT), 502

CYCLE statement
HPFUCMSPEC procedure, 527

D
DAMPPARM= option

ESM statement (HPFESMSPEC), 404
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 466

DAMPREST= option
ESM statement (HPFESMSPEC), 404
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 466

DATA Step
IF Statement, 37
WHERE Statement, 37

DATA step
DROP statement, 38
KEEP statement, 38

DATA= option
PROC HPF statement, 229
PROC HPFDIAGNOSE statement, 301
PROC HPFENGINE statement, 354
PROC HPFEVENTS statement, 416

DATE
function, 112

DATEJUL
function, 66

DATEJUL function, 112
DATEPART function, 67, 112
DATETIME

function, 112
DAY

function, 67, 112
DELAY= option

INPUT statement (HPFARIMASPEC), 278
INPUT statement (HPFUCMSPEC), 530

DELTA= option
ESTIMATE statement (HPFARIMASPEC), 280

DEN= option
ARIMAX statement, 311
INPUT statement (HPFARIMASPEC), 279

DEPLAG statement
HPFUCMSPEC procedure, 528

DHMS

function, 67
DHMS function, 112
DIAGNOSE statement

HPFSELECT procedure, 501
DIF

function, 76
DIF function

MODEL procedure, 79
DIF= option

FORECAST statement (HPFARIMASPEC),
276

INPUT statement (HPFARIMASPEC), 278
INPUT statement (HPFUCMSPEC), 530

DIFF= option
TREND statement, 310

DIRECTION= option
PROC HPFRECONCILE statement, 476

DISAGGDATA Statement
HPFRECONCILE procedure, 479

DISAGGDATA=option
PROC HPFRECONCILE statement, 475

DISAGGREGATION= option
PROC HPFRECONCILE statement, 477

DOCUMENT procedure, 193
LIST statement, 193
REPLAY statement, 193

DURATION= option
EVENTDEF statement (HPFEVENTS), 426

E
END= option

ID statement, 305
ID statement (ENG), 365
ID statement (HPF), 238
ID statement (HPFEVENTS), 417
ID statement (HPFRECONCILE), 479

ENG, 349
ERRORCONTROL= option

PROC HPFDIAGNOSE statement, 301
PROC HPFENGINE statement, 361

ERRORTRACE= option
PROC HPFRECONCILE statement, 476

ESM statement
HPFDIAGNOSE procedure, 312
HPFESMSPEC procedure, 401

ESTIMATE statement
HPFARIMASPEC procedure, 279

ESTMETHOD= option
ARIMAX statement, 311

EVENT statement
HPFDIAGNOSE procedure, 307

EVENT= option
PROC HPFENGINE statement, 355

EVENTBY= option
PROC HPFDIAGNOSE statement, 301

EVENTCOMB statement
HPFEVENTS procedure, 433

EVENTDATA statement
HPFEVENTS procedure, 435
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EVENTDEF statement
HPFEVENTS procedure, 418

EVENTDUMMY statement
HPFEVENTS procedure, 435

EVENTGROUP statement
HPFEVENTS procedure, 433

EVENTKEY statement
HPFEVENTS procedure, 430

EVENTMAP option
SPECIFICATIONS statement (HPFSELECT),

504
EXM statement

HPFEXMSPEC procedure, 457
EXMFUNC option

SPECIFICATIONS statement (HPFSELECT),
505

EXMMAP option
SPECIFICATIONS statement (HPFSELECT),

505
EXTEND= option

CONTROL statement (ENG), 370
EXTERNAL statement

HPFENGINE procedure, 372

F
FILE= option

ODS HTML statement, 153
ODS PDF statement, 166, 191
ODS RTF statement, 166

FORECAST statement
HPF procedure, 232
HPFARIMASPEC procedure, 276
HPFDIAGNOSE procedure, 307
HPFENGINE procedure, 363
HPFUCMSPEC procedure, 529

FORECASTOPTIONS statement
HPFSELECT procedure, 502

FORMAT= option
ID statement (ENG), 365
ID statement (HPFEVENTS), 417

G
GLOBALSELECTION= option

PROC HPFENGINE statement, 354
GPATH= option

ODS HTML statement, 165, 179
ODS LATEX statement, 166, 190

H
HMS

function, 67
HMS function, 112
HOLDOUT= option

FORECAST statement (HPF), 232
PROC HPFDIAGNOSE statement, 301
SELECT statement (HPFSELECT), 502

HOLDOUTPCT= option
FORECAST statement (HPF), 233
PROC HPFDIAGNOSE statement, 301

SELECT statement (HPFSELECT), 502
HOLIDAY function, 112
HOUR

function, 112
HPF, 223
HPF procedure, 227

syntax, 227
HPFENGINE procedure, 352

syntax, 352
HPFESMSPEC procedure, 399

syntax, 399
HPFEVENTS procedure, 415

syntax, 415
HPFEXMSPEC, 455
HPFEXMSPEC procedure, 456

syntax, 456
HPFIDMSPEC, 399, 461
HPFIDMSPEC procedure, 461

syntax, 461
HPFRECONCILE procedure

syntax, 473
HPFRECONCILE procedure, PROC

HPFRECONCILE statement
AGGDATA= option, 475
AGGREGATE= option, 476
ALPHA= option, 476
CLMETHOD= option, 476
CONSTRAINT= option, 475
DIRECTION= option, 476
DISAGGDATA= option, 475
DISAGGREGATION= option, 477
ERRORTRACE= option, 476
OUTFOR= option, 475
OUTRECFAIL= option, 475
PREDICTONLY option, 477
RECDIFF option, 476
SIGN= option, 477
STDDIFBD= option, 477
STDMETHOD= option, 477
WEIGHTED option, 478

HPFSELECT, 499
HPFSELECT procedure, 500

syntax, 500

I
ID statement

HPF procedure, 237
HPFDIAGNOSE procedure, 305
HPFENGINE procedure, 363
HPFEVENTS procedure, 417
HPFRECONCILE procedure, 478

IDENTIFYORDER= option
ARIMAX statement, 312

IDM statement
HPF procedure, 240
HPFDIAGNOSE procedure, 313
HPFIDMSPEC procedure, 462

IMAGEFMT= option
ODS GRAPHICS statement, 180
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IMAGENAME= option
ODS GRAPHICS statement, 180

IN= option
EVENTDATA statement, 435

INEST= option
PROC HPFENGINE statement, 355

INEVENT= option
PROC HPFDIAGNOSE statement, 301

INPUT statement
HPFARIMASPEC procedure, 278
HPFDIAGNOSE procedure, 308
HPFENGINE procedure, 367
HPFUCMSPEC procedure, 530

INPUTMAP option
SPECIFICATIONS statement (HPFSELECT),

504
INSELECTNAME= option

PROC HPFDIAGNOSE statement, 301
INTCINDEX function, 112
INTCK

function, 69
INTCK function, 112
INTCYCLE function, 112
INTERMITTENT= option

DIAGNOSE statement (HPFSELECT), 501
FORECAST statement (HPF), 233
IDM statement, 313

INTERVAL= option
ID statement, 305
ID statement (HPF), 239
ID statement (HPFENGINE), 365
ID statement (HPFEVENTS), 417
ID statement (HPFRECONCILE), 479
IDM statement (HPF), 242
IDM statement (HPFIDMSPEC), 464

INTFMT function, 113
INTINDEX function, 113
INTNX

function, 68
INTNX function, 113
INTSEA function, 113
INTTEST function, 113
IRREGULAR option

ID statement (HPFRECONCILE), 478
IRREGULAR statement

HPFUCMSPEC procedure, 531

J
JULDATE function, 67, 113

L
LABEL= option

EVENTCOMB statement (HPFEVENTS), 433,
434

EVENTDEF statement (HPFEVENTS), 430
PROC HPFESMSPEC statement, 401
PROC HPFEXMSPEC statement, 457
PROC HPFSELECT statement, 501

SPECIFICATIONS statement (HPFSELECT),
507

LAG
function, 76

LAG function
MODEL procedure, 79

LAGS= option
DEPLAG statement (HPFUCMSPEC), 528

LEAD= option
PROC HPF statement, 229
PROC HPFENGINE statement, 355
PROC HPFEVENTS statement, 416

LENGTH= option
SEASON statement (HPFUCMSPEC), 533

LEVEL statement
HPFUCMSPEC procedure, 531

LEVELPARM= option
ESM statement (HPFESMSPEC), 404
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 466

LEVELREST= option
ESM statement (HPFESMSPEC), 404
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 466

M
MA= option

FORECAST statement (HPFARIMASPEC),
277

MAXERROR= option
PROC HPF statement, 229
PROC HPFEVENTS statement, 416

MAXIT= option
ESTIMATE statement (HPFARIMASPEC), 280

MAXITER= option
ESTIMATE statement (HPFARIMASPEC), 280

MDY
function, 66

MDY function, 114
MEDIAN option

ESM statement (HPFESMSPEC), 403
EXM statement (HPFEXMSPEC), 458
FORECAST statement (HPF), 233
IDM statement (HPF), 243
IDM statement (HPFIDMSPEC), 466

METHOD= option
ARIMAX statement, 311
ESM statement, 313
ESM statement (HPFESMSPEC), 403
EXM statement (HPFEXMSPEC), 458
IDM statement (HPF), 243
IDM statement (HPFIDMSPEC), 466

METHOD=CLS option
ESTIMATE statement (HPFARIMASPEC), 280

METHOD=ML option
ESTIMATE statement (HPFARIMASPEC), 280

METHOD=ULS option
ESTIMATE statement (HPFARIMASPEC), 280

MINOBS=(SEASON= ) option
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PROC HPFDIAGNOSE statement, 302
MINOBS=(TREND= ) option

PROC HPFDIAGNOSE statement, 302
MINUTE

function, 114
Missing Values

Bottom-up Reconciliation (HPFRECONCILE),
485

Top-Down Reconciliation (HPFRECONCILE),
483

MODEL= option
FORECAST statement (HPF), 233

MONTH
function, 67, 114

MU= option
FORECAST statement (HPFARIMASPEC),

277

N
NAME= option

PROC HPFESMSPEC statement, 401
PROC HPFEXMSPEC statement, 457
PROC HPFIDMSPEC statement, 462
PROC HPFSELECT statement, 501

NBACKCAST= option
FORECAST statement (HPF), 234

NBLOCKS= option
BLOCKSEASON statement (HPFUCMSPEC),

526
NLAGPCT= option

EXM statement (HPFEXMSPEC), 458
NOCONSTANT option

FORECAST statement (HPFARIMASPEC),
277

NOEST option
AUTOREG statement (HPFUCMSPEC), 525
BLOCKSEASON statement (HPFUCMSPEC),

526
CYCLE statement (HPFUCMSPEC), 527
DEPLAG statement (HPFUCMSPEC), 529
ESM statement (HPFESMSPEC), 404
ESTIMATE statement (HPFARIMASPEC), 280
EXM statement (HPFEXMSPEC), 458
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 467
IRREGULAR statement (HPFUCMSPEC), 531
LEVEL statement (HPFUCMSPEC), 532
SEASON statement (HPFUCMSPEC), 533
SLOPE statement (HPFUCMSPEC), 534

NOINT option
FORECAST statement (HPFARIMASPEC),

277
NOISEVAR= option

FORECAST statement (HPFARIMASPEC),
277

NOLS option
ESTIMATE statement (HPFARIMASPEC), 280

NOOUTALL option
PROC HPF statement, 229

NOSTABLE option
ESM statement (HPFESMSPEC), 404
ESTIMATE statement (HPFARIMASPEC), 280
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 466

NOTSORTED option
ID statement (HPF), 239

NPARMS= option
EXM statement (HPFEXMSPEC), 458

NUM= option
ARIMAX statement, 311
INPUT statement (HPFARIMASPEC), 279

NWKDOM
function, 114

NZ= option
INPUT statement (HPFARIMASPEC), 279

O
ODS –ALL– CLOSE statement, 191
ODS DOCUMENT statement, 192
ODS EXCLUDE statement, 121, 157, 184
ODS GRAPHICS statement, 145, 150, 179

ANTIALIAS= option, 179
IMAGEFMT= option, 164, 166, 180, 185
IMAGENAME= option, 164, 180
OFF, 146, 179
ON, 146, 179
options, 179
RESET option, 164, 180

ODS HTML statement, 129, 146
FILE= option, 153
GPATH= option, 165, 179
PATH= option, 165, 179
STYLE= option, 160, 206, 210, 211
URL= suboption, 165

ODS LATEX statement, 166
GPATH= option, 166, 190
PATH= option, 166, 190
STYLE= option, 189
URL= suboption, 190

ODS LISTING statement, 192
ODS MARKUP statement

TAGSET= option, 166
ODS OUTPUT statement, 137, 138

data set options, 138
ODS PATH statement, 124, 171

RESET option, 171
SHOW option, 170

ODS PDF statement, 166
FILE= option, 166, 191
ID= option, 191

ODS RTF statement, 152, 187, 191
FILE= option, 166

ODS SELECT statement, 121, 133, 157, 159, 183
ODS SHOW statement, 124, 133
ODS TRACE statement, 119, 131, 132, 137, 156, 157,

168, 182, 195
listing interleaved with trace record, 131
LISTING option, 119, 131, 158
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OFFSET= option
BLOCKSEASON statement (HPFUCMSPEC),

526
OPERATION= option

ADJUST statement, 315
ADJUST statement (ENG), 371

OUT= option
EVENTDATA statement, 435
PROC HPF statement, 229
PROC HPFENGINE statement, 355
PROC HPFEVENTS statement, 435

OUTCOMPONENT= option
PROC HPFENGINE statement, 355

OUTEST= option
PROC HPF statement, 230
PROC HPFDIAGNOSE statement, 303
PROC HPFENGINE statement, 355

OUTFOR= option
PROC HPF statement, 230
PROC HPFENGINE statement, 355
PROC HPFRECONCILE statement, 475

OUTLIER= option
ARIMAX statement, 311

OUTOUTLIER= option
PROC HPFDIAGNOSE statement, 303

OUTRECFAIL= option
PROC HPFRECONCILE statement, 475

OUTSEASON= option
PROC HPF statement, 230

OUTSTAT= option
PROC HPF statement, 230
PROC HPFENGINE statement, 356

OUTSUM= option
PROC HPF statement, 230

OUTTREND= option
PROC HPF statement, 230

P
P= option

ARIMAX statement, 311
FORECAST statement (HPFARIMASPEC),

276
TRANSFORM statement, 309
TREND statement, 310

PATH= option
ODS HTML statement, 165, 179
ODS LATEX statement, 166, 190

PERIOD= option
CYCLE statement (HPFUCMSPEC), 528
EVENTDEF statement (HPFEVENTS), 430

PERROR= option
ARIMAX statement, 310

PHI= option
DEPLAG statement (HPFUCMSPEC), 529

PLOT
HAXIS=, 52, 58
HREF=, 53, 59, 60
VREF=, 64

PLOT= option

PROC HPF statement, 257
PROC HPFENGINE statement, 383

PREDEFINED= option
INPUT statement (HPFARIMASPEC), 278
INPUT statement (HPFUCMSPEC), 530

PREDICTONLY option
PROC HPFRECONCILE statement, 477

PREFILTER= option
PROC HPFDIAGNOSE statement, 303

PRINT= option
PROC HPF statement, 230
PROC HPFDIAGNOSE statement, 303
PROC HPFENGINE statement, 356

PRINTDETAILS option
PROC HPF statement, 231
PROC HPFENGINE statement, 356

PROC HPF statement, 229
PROC HPFARIMASPEC statement, 276
PROC HPFDIAGNOSE statement, 295, 299
PROC HPFENGINE statement, 354
PROC HPFESMSPEC statement, 400
PROC HPFEVENTS statement, 416
PROC HPFEXMSPEC statement, 456
PROC HPFIDMSPEC statement, 462
PROC HPFRECONCILE statement, 475
PROC HPFSELECT statement, 501
PROC HPFUCMSPEC statement, 524
PULSE= option

EVENTDEF statement (HPFEVENTS), 426

Q
Q= option

ARIMAX statement, 311
FORECAST statement (HPFARIMASPEC),

277
QTR

function, 114

R
RECDIFF= option

PROC HPFRECONCILE statement, 476
REPLACEBACK option

FORECAST statement (HPF), 234
REPLACEMISSING option

FORECAST statement (ENG), 363
FORECAST statement (HPF), 234
STOCHASTIC statement (ENG), 369

REPOSITORY= option
PROC HPFDIAGNOSE statement, 303
PROC HPFENGINE statement, 356
PROC HPFESMSPEC statement, 401
PROC HPFEXMSPEC statement, 457
PROC HPFIDMSPEC statement, 462
PROC HPFSELECT statement, 501

REQUIRED=
INPUT statement (ENG), 367
STOCHASTIC statement (ENG), 369

REQUIRED= option
EVENT statement, 307
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INPUT statement, 308
RESET option

ODS GRAPHICS statement, 180
RHO= option

AUTOREG statement (HPFUCMSPEC), 525
CYCLE statement (HPFUCMSPEC), 528

RULE option
EVENTCOMB statement (HPFEVENTS), 433
EVENTDEF statement (HPFEVENTS), 429

S
SCORE statement

HPFENGINE procedure, 373
SCOREREPOSITORY= option

PROC HPFENGINE statement, 356
SDIFF= option

TREND statement, 310
SEASON statement

HPFUCMSPEC procedure, 532
SEASONALITY= number

PROC HPFENGINE statement, 356
SEASONALITY= option

PROC HPF statement, 231
PROC HPFDIAGNOSE statement, 303

SEASONPARM= option
ESM statement (HPFESMSPEC), 404

SEASONREST= option
ESM statement (HPFESMSPEC), 404

SEASONTEST= option
DIAGNOSE statement (HPFSELECT), 501
FORECAST statement (HPF), 234

SECOND
function, 114

SELECT statement
HPFSELECT procedure, 502

SELECT= option
ESM statement (HPFESMSPEC), 405
FORECAST statement (HPF), 234
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 467

SELECTEVENT= option
PROC HPFDIAGNOSE statement, 304

SELECTINPUT= option
PROC HPFDIAGNOSE statement, 304

SELECTION=
STOCHASTIC statement (ENG), 369

SETMISSINF= option
INPUT statement (ENG), 368

SETMISSING= option
ADJUST statement, 316
ADJUST statement (ENG), 372
CONTROL statement (ENG), 370
EXTERNAL statement (ENG), 373
FORECAST statement, 307
FORECAST statement (ENG), 363
FORECAST statement (HPF), 236
ID statement, 306
ID statement (HPF), 239
ID statement (HPFENGINE), 365

ID statement (HPFEVENTS), 417
INPUT statement, 308
STOCHASTIC statement (ENG), 369

SHIFT= option
EVENTDEF statement (HPFEVENTS), 425

SIGLEVEL= option
ARIMAX statement, 311
PROC HPFDIAGNOSE statement, 304
TRANSFORM statement, 309
TREND statement, 310
UCM statement, 314

SIGMA= option
EXM statement (HPFEXMSPEC), 458

SIGN= option
PROC HPFRECONCILE statement, 477

SINGULAR= option
ESTIMATE statement (HPFARIMASPEC), 280

SIZE= option
IDM statement (HPF), 242
IDM statement (HPFIDMSPEC), 464

SLOPE statement
HPFUCMSPEC procedure, 534

SLOPE= option
EVENTDEF statement (HPFEVENTS), 428

SORTNAMES option
PROC HPF statement, 231
PROC HPFENGINE statement, 357
PROC HPFEVENTS statement, 416

SOURCE statement
TEMPLATE procedure, 168, 175, 198

SPECIFICATIONS statement
HPFSELECT procedure, 504

Standard Errors
Bottom-up Reconciliation (HPFRECONCILE),

485
Top-Down Reconciliation (HPFRECONCILE),

483
START= option

ID statement, 306
ID statement (ENG, 366
ID statement (HPF), 240
ID statement (HPFEVENTS), 418
ID statement (HPFRECONCILE), 479

STARTSUM= option
PROC HPF statement, 231

STDDIFBD= option
PROC HPFRECONCILE statement, 477

STDMETHOD= option
PROC HPFRECONCILE statement, 477

STOCHASTIC statement
HPFENGINE procedure, 368

STYLE= option, 160
ODS HTML statement, 160, 206, 210, 211
ODS LATEX statement, 189

T
TASK= option

PROC HPFENGINE statement (ENG), 357
TCPARM= option

651



Syntax Index

EVENTDEF statement (HPFEVENTS), 429
TEMPLATE procedure, 172

SOURCE statement, 168, 175, 198
TEMPLATE procedure, SOURCE statement

FILE= option, 169
TESTINPUT= option

PROC HPFDIAGNOSE statement, 304
TIME

function, 114
TIMEPART function, 67, 114
TODAY function, 114
Top-Down Reconciliation

HPFRECONCILE procedure, 481
TRANSFORM statement

HPFDIAGNOSE procedure, 308
TRANSFORM= option

ESM statement (HPFESMSPEC), 403
EXM statement (HPFEXMSPEC), 457
FORECAST statement (HPF), 236
FORECAST statement (HPFARIMASPEC),

277
IDM statement (HPF), 243
IDM statement (HPFIDMSPEC), 465
INPUT statement (HPFARIMASPEC), 279
INPUT statement (HPFUCMSPEC), 529, 530

TRANSPOSE procedure, 89
TREND statement

HPFDIAGNOSE procedure, 309
TRENDPARM= option

ESM statement (HPFESMSPEC), 404
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 466

TRENDREST= option
ESM statement (HPFESMSPEC), 404
IDM statement (HPF), 244
IDM statement (HPFIDMSPEC), 466

TRIMMISS= option
ADJUST statement, 316
ADJUST statement (ENG), 372
CONTROL statement (ENG), 371
EXTERNAL statement (ENG), 373
FORECAST statement, 307
FORECAST statement (ENG), 363, 366
ID statement, 306
INPUT statement, 308
INPUT statement (ENG), 368
STOCHASTIC statement (ENG), 369

TYPE= option
BLOCKSEASON statement (HPFUCMSPEC),

526
EVENTDEF statement (HPFEVENTS), 421
SEASON statement (HPFUCMSPEC), 533
TRANSFORM statement, 309

U
UCM statement

HPFDIAGNOSE procedure, 314
URL= suboption

ODS HTML statement, 165

ODS LATEX statement, 190
USE= option

FORECAST statement (HPF), 236

V
VALUE= option

EVENTDEF statement (HPFEVENTS), 425
VAR statement

HPFEVENTS procedure, 435
VARIANCE= option

AUTOREG statement (HPFUCMSPEC), 525
BLOCKSEASON statement (HPFUCMSPEC),

526
CYCLE statement (HPFUCMSPEC), 528
IRREGULAR statement (HPFUCMSPEC), 531
LEVEL statement (HPFUCMSPEC), 532
SEASON statement (HPFUCMSPEC), 534
SLOPE statement (HPFUCMSPEC), 534

W
WEEKDAY

function, 67
WEEKDAY function, 114
WEIGHTED option

PROC HPFRECONCILE statement, 478

Y
YEAR

function, 67, 114
YYQ

function, 66, 114

Z
ZEROMISS= option

ADJUST statement, 316
ADJUST statement (ENG), 372
CONTROL statement (ENG), 371
EXTERNAL statement (ENG), 373
FORECAST statement, 308
FORECAST statement (ENG), 363
FORECAST statement (HPF), 237
ID statement, 306
INPUT statement, 308
INPUT statement (ENG), 368
STOCHASTIC statement (ENG), 370

ZEROMISSING= option
ID statement (ENG), 366
ID statement (PROC HPF), 240
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