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Chapter 1
What’s New in SAS/Genetics 9.0, 9.1,

and 9.1.3
Overview

SAS/Genetics includes several new procedures:

• the experimental HTSNP procedure for selecting a subset of SNPs that identify 9.1
groups of haplotypes that minimize within-group diversity

• the INBREED procedure for estimating covariance and/or inbreeding coeffi- 9.1
cients for pedigrees

New features have been added to the SAS/Genetics procedures:

• ALLELE

• CASECONTROL

• FAMILY

• HAPLOTYPE

• PSMOOTH

including options that accommodate new data formats.

Accommodating New Data Formats
There are several new options available for analyzing data in different formats. 9.1
The GENOCOL and DELIMITER= options have been added to four procedures:
ALLELE, CASECONTROL, FAMILY, and HAPLOTYPE. The GENOCOL option
enables you to use columns containing marker genotypes instead of a pair of columns
containing the two alleles that comprise the genotype. You can specify the delimiter
that is used to separate the two alleles with the DELIMITER= option. In addition, the
experimental options TALL, MARKER=, and INDIV= can be used collectively for
data in a “tall-skinny” format in the ALLELE, CASECONTROL, and HAPLOTYPE
procedures. Data sets in this format contain a marker identifier and individual identi-
fier, along with one variable containing the marker genotypes or two columns contain-
ing marker alleles. See the individual procedures’ Syntax sections for more details
about these new options.
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ALLELE Procedure
The new options ALLELEMIN=, GENOMIN=, and HAPLOMIN= enable you to9.1
specify the minimum estimated frequency for an allele, genotype, or haplotype, re-
spectively, to be included in its corresponding ODS table. By default, any allele,
genotype, or haplotype that occurs at least once in the sample is included in the re-
spective table. These options can be used to reduce the size of the ODS tables, or
alternatively, the GENOMIN= or HAPLOMIN= options can be set to 0 to view all
possible genotypes or haplotypes, not just those that are observed.

Some enhancements have been made in SAS 9.1.3 that improve the performance of
calculating linkage disequilibrium (LD) statistics for a large number of marker pairs.
These include:

• more efficient usage of memory when calculating LD measures

• a new LOGNOTE option to request notes indicating the status of the LD cal-
culations be printed to the log

• a new WITH statement that gives an alternative way of specifying pairs of
markers to analyze for LD and enables the partitioning of these calculations

Beginning in SAS 9.1.3, columns containing counts for alleles, genotypes, and, when
HAPLO=GIVEN, haplotypes are included in the corresponding ODS table in addi-
tion to the relative frequencies that have always been displayed. Cosmetic improve-
ments to the ODS tables in the SAS listing make these tables easier to read.

Also new, the HAPLO=NONEHWD option can be used to request that the CLD test
statistic for biallelic markers be adjusted for Hardy-Weinberg disequilibrium (Weir
1996). This adjustment is also made in the correlation coefficient when requested to
be displayed in the “LD Measures” table.

CASECONTROL Procedure
The new NULLSNPS= option enables you to specify SNPs to be used in calculating9.1
the variance inflation factor for genomic control. By default, if VIF is specified,
the variables in the VAR statement are used, but this new option provides a way of
using particular SNPs, separate from those being tested for association and which
are assumed to have no association with the TRAIT variable, for genomic control
(Bacanu, Devlin, and Roeder 2000).

You can request that approximations of exact p-values for the case-control tests be9.1
reported in place of the asymptotic chi-square p-values (Westfall and Young 1993).
The new PERMS= option indicates the number of permutations to be used for a
Monte Carlo estimate of each exact p-value, and the random seed can be provided in
the new SEED= option.

The OUTSTAT= data set includes two new columns: NumTrait1 and NumTrait2,9.1
where the values 1 and 2 are replaced by the two values of the TRAIT variable.
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These columns contain the number of genotyped individuals with each trait value for
each marker.

Beginning in SAS 9.1.3, the STRATA statement is available for specifying variables
that define strata in the sample. A Cochran-Mantel-Haenszel statistic (Agresti 1990)
is used to adjust for these categorical variables, enabling you to stratify your analysis
on the basis of gender or treatment for example, or to perform a nested or matched
case-control study.

Also new to SAS 9.1.3 is an OR option to have allele odds ratios and their confidence
intervals, with the level specified in the ALPHA= option, included in the output data
set for biallelic markers.

FAMILY Procedure
The new “Family Summary” ODS table displays information about each family in the 9.1
data set at each of the markers. This includes the number of parents genotyped, the
number of affected children, the number of unaffected children, as well as an error
code indicating what type of, if any, Mendelian inconsistencies occur in a nuclear
family’s genotypes at each marker. The new SHOWALL option can be used to display
this information for all families at each marker. By default, only those families with
a genotype error are included in the table for the marker(s) where the error occurs.

The new “Description of Error Codes” ODS table provides descriptions of the nu- 9.1
merical error codes used in the “Family Summary” table.

Approximations of exact p-values can now be requested in place of the asymptotic 9.1
chi-square p-values for the TDT, S-TDT, SDT, and combined S-TDT and SDT using
the PERMS= option. The number specified indicates the number of permutations to
be used in the Monte Carlo procedure for estimating exact p-values. You can provide
the random seed used for the permutations in the new SEED= option.

The multiallelic SDT and multiallelic combined SDT/TDT are now implemented as 9.1
described by Czika and Berry (2002).

Analysis of X-linked markers is facilitated in SAS 9.1.3 by the new XLVAR state-
ment. Markers listed in this statement can be tested for linkage and, under appropri-
ate conditions, association with a binary trait using the X-linked versions of the TDT,
S-TDT, combined S-TDT, and RC-TDT (Horvath, Laird, and Knapp 2000).

With the OUTQ= option, new to SAS 9.1.3 as well, you can create an output data
set containing the pair of allelic transmission scores (Abecasis, Cookson, and Cardon
2000) for each marker allele. These scores can then be used to perform family-based
tests for binary or quantitative traits in nuclear families or even extended pedigrees.
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HAPLOTYPE Procedure
The EST=EM | STEPEM option enables you to specify whether you would like hap-9.1
lotype frequencies to be estimated using the original EM algorithm or the new step-
wise EM algorithm (Clayton 2002b). When EST=STEPEM is specified, a cutoff to
be used for trimming the set of haplotypes before adding an additional locus can be
given in the new STEPTRIM= option.

The ID statement enables variables from the input data set to be included in the OUT=9.1
data set created by PROC HAPLOTYPE in addition to or instead of the –ID– vari-
able, a unique numeric identifier assigned to each individual by the procedure.

The option EST=BAYESIAN is experimental in SAS 9.1.3 and can be used to request
a Bayesian approach to the estimation of haplotype frequencies. Some new options
associated with only this estimation method are BURNIN=, INTERVAL=, THETA=,
and TOTALRUN=, all experimental as well.

HTSNP Procedure
The experimental HTSNP procedure implements search algorithms for identifying9.1
a subset of SNPs called haplotype tag SNPs (htSNPs) (Johnson et al. 2001) that
capture much of the linkage disequilibrium and haplotype diversity among common
haplotypes.

Beginning in SAS 9.1.3, PROC HTSNP contains an option CRITERION= for select-
ing the measure to be used for determining the best set(s) of haplotype-tagging SNPs
(htSNPs). The possible values for this option are PDE (Clayton 2002a), the default
and the measure previously available, and RSQH, which implements the R2

h measure
of Stram et al. (2003). Additionally, the best sets of htSNPs and their criterion mea-
sure are now displayed automatically in the ODS table “Evaluation of htSNPs” so the
OUTSTAT= option is no longer offered.

INBREED Procedure
The INBREED procedure is now included in SAS/Genetics in addition to SAS/STAT9.1
where it originated. This procedure calculates the covariance or inbreeding coeffi-
cients for pedigrees either by treating the population as a single generation or by per-
forming separate analyses on each generation. You can also opt to have inbreeding
and covariance coefficients averaged within each gender category.
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PSMOOTH Procedure
The new option TPM implements the truncated product method (Zaykin et al. 2002) 9.1
for smoothing p-values over windows of markers. The TAU= option, also new, can be
used in conjunction with the TPM option to specify the value of τ at which p-values
are truncated.

The Benjamini and Hochberg (1995) method of adjusting p-values to control the false
discovery rate (FDR) is available in SAS 9.1.3 with the ADJUST=FDR option.
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Chapter 2
Introduction
Overview of SAS/Genetics Software

Statistical analyses of genetic data are now central to medicine, agriculture, evolu-
tionary biology, and forensic science. The inherent variation in genetic data, together
with the substantial increase in the scale of genetic data following the human genome
project, has created a need for reliable computer software to perform these analy-
ses. The procedures offered by SAS/Genetics and described here represent an initial
response of SAS Institute to this need.

Although many of the statistical techniques used in the new procedures are standard,
others have had to be developed to reflect the genetic nature of the data. All the proce-
dures are designed to operate on data sets that have a familiar structure to geneticists,
and that mirror those used in existing software. The syntax for these genetic anal-
yses follows that familiar to SAS users, and the output can be tabular or graphical.
The objective of the procedures is to bring the full power of SAS analyses to bear on
the characterization of fundamental genetic parameters, and most importantly on the
detection of associations between genetic markers and disease status.

Most of the analyses in SAS/Genetics are concerned with detecting patterns of co-
variation in genetic marker data. These data generally consist of pairs of discrete cate-
gories; this pairing derives from the underlying biology, namely the fact that complex
organisms have pairs of chromosomes. Each marker refers to the genetic status of a
locus, each marker type is called an allele, and each pair of alleles in an individual is
called a genotype. A set of alleles present on a single chromosome is called a hap-
lotype. Genetic markers may be single nucleotide polymorphisms (SNPs), which are
sites in the DNA where the nucleotide varies among individuals, usually with only
two alleles possible; microsatellites, which are simple sequence repeats that generate
usually between 2 and 20 categories; and other classes of DNA variation.

Two of the procedures in SAS/Genetics are concerned solely with the analysis of ge-
netic marker data. The ALLELE procedure calculates descriptive statistics such as
the frequency and variance of alleles and genotypes, as well as estimating measures
of marker informativeness, and testing whether genotype frequencies are consistent
with Hardy-Weinberg equilibrium (HWE). This procedure also supports three meth-
ods for calculation of the degree and significance of linkage disequilibrium (LD)
among markers at pairs of loci, where LD refers to the propensity of alleles to co-
segregate. The HAPLOTYPE procedure is used to infer the most likely multilocus
haplotype frequencies in a set of genotypes. Since genetic markers are usually mea-
sured independently of one another, there is no direct way to determine which two
alleles were on the same chromosome. The algorithm implemented in this procedure
converges on the haplotype frequencies that have the highest probability of generat-
ing the observed genotypes. These estimated haplotype frequencies can be used as
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inputs to the HTSNP procedure where haplotype-tagging SNPs (htSNPs) that explain
much of the haplotype diversity in a block or region can be identified.

Many genetic data sets are now used to study the relationship between genetic mark-
ers and complex phenotypes, particularly disease susceptibility. In general terms,
traits can be measured as continuous variables (for example, weight or serum glucose
concentration), as discrete numerical categories (for example, meristic measures or
psychological class), or as affected/unaffected indicator variables. The two proce-
dures CASECONTROL and FAMILY both take simple dichotomous indicators of
disease status and use standard genetic algorithms to compute statistics of associa-
tion between these indicators and the genetic markers. The CASECONTROL pro-
cedure is designed to contrast allele and genotype frequencies between affected and
unaffected populations, using three types of chi-square tests and options for con-
trolling correlation of allele frequencies among members of the same subpopula-
tion. Significant associations may indicate that the marker is linked to a locus that
contributes to disease susceptibility, though population structure in conjunction with
environmental or cultural variables can also lead to associations, and the statistical
results must be interpreted with caution. The FAMILY procedure employs several
transmission/disequilibrium tests of nonrandom association between disease status
and linkage to markers transmitted from heterozygous parents to affected offspring
(TDT) or pairs of affected and unaffected siblings (S-TDT and SDT). A joint anal-
ysis known as the reconstruction-combined TDT (RC-TDT) can also accommodate
missing parental genotypes and families lacking unaffected children under some cir-
cumstances.

The output of these procedures can be further explored by using the PSMOOTH
procedure to adjust p-values from association tests performed on large numbers of
markers obtained in a genome scan, or by creating a graphical representation of the
procedures’ output, namely p-values from tests for LD, HWE, and marker-disease
associations, using the %TPLOT macro.

About This Book
Since SAS/Genetics software is a part of the SAS System, this book assumes that you
are familiar with base SAS software and with the books SAS Language Reference:
Dictionary, SAS Language Reference: Concepts, and the SAS Procedures Guide. It
also assumes that you are familiar with basic SAS System concepts such as creating
SAS data sets with the DATA step and manipulating SAS data sets with the proce-
dures in base SAS software (for example, the PRINT and SORT procedures).

Chapter Organization

This book is organized as follows.

Chapter 2, this chapter, provides an overview of SAS/Genetics software and sum-
marizes related information, products, and services. The next five chapters describe
the SAS procedures that make up SAS/Genetics software. These chapters appear in
alphabetical order by procedure name. They are followed by a chapter documenting
a SAS macro provided with SAS/Genetics software.
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The chapters documenting the SAS/Genetics procedures are organized as follows:

• The Overview section provides a brief description of the analysis provided by
the procedure.

• The Getting Started section provides a quick introduction to the procedure
through a simple example.

• The Syntax section describes the SAS statements and options that control the
procedure.

• The Details section discusses methodology and miscellaneous details.

• The Examples section contains examples using the procedure.

• The References section contains references for the methodology and examples
for the procedure.

Typographical Conventions

This book uses several type styles for presenting information. The following list
explains the meaning of the typographical conventions used in this book:

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However,
you can enter these elements in your own SAS programs
in lowercase, uppercase, or a mixture of the two.

UPPERCASE BOLD is used in the “Syntax” sections’ initial lists of SAS state-
ments and options.

oblique is used for user-supplied values for options in the syntax
definitions. In the text, these values are written in italic.

helvetica is used for the names of variables and data sets when they
appear in the text.

bold is used to refer to matrices and vectors.

italic is used for terms that are defined in the text, for emphasis,
and for references to publications.

monospace is used for example code. In most cases, this book uses
lowercase type for SAS code.

Options Used in Examples

Output of Examples

For each example, the procedure output is numbered consecutively starting with 1,
and each output is given a title. Each page of output produced by a procedure is en-
closed in a box. Most of the output shown in this book is produced with the following
SAS System options:
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options linesize=80 pagesize=200 nonumber nodate;

In some cases, if you run the examples, you will get slightly different output de-
pending on the SAS system options you use and the precision used for floating-point
calculations by your computer. This does not indicate a problem with the software.
In all situations, any differences should be very small.

Graphics Options

The examples that contain graphical output are created with a specific set of options
and symbol statements. The code you see in the examples creates the color graphics
that appear in the online (CD) version of this book. A slightly different set of op-
tions and statements is used to create the black-and-white graphics that appear in the
printed version of the book.

If you run the examples, you may get slightly different results. This may occur be-
cause not all graphic options for color devices translate directly to black-and-white
output formats. For complete information on SAS/GRAPH software and graphics
options, refer to SAS/GRAPH Software: Reference.

The following GOPTIONS statement is used to create the online (color) version of
the graphic output.

filename GSASFILE ’<file-specification>’;

goptions gsfname=GSASFILE gsfmode =replace
fileonly
transparency dev = gif
ftext = swiss lfactor = 1
htext = 4.0pct htitle = 4.5pct
hsize = 5.625in vsize = 3.5in
noborder cback = white
horigin = 0in vorigin = 0in ;

The following GOPTIONS statement is used to create the black-and-white version of
the graphic output, which appears in the printed version of the manual.

filename GSASFILE ’<file-specification>’;

goptions gsfname=GSASFILE gsfmode =replace
gaccess = sasgaedt fileonly
dev = pslepsf
ftext = swiss lfactor = 1
htext = 3.0pct htitle = 3.5pct
hsize = 5.625in vsize = 3.5in
border cback = white
horigin = 0in vorigin = 0in ;

In most of the online examples, the plot symbols are specified as follows:
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symbol1 value=dot color=white height=3.5pct;

The SYMBOLn statements used in online examples order the symbol colors as fol-
lows: white, yellow, cyan, green, orange, blue, and black.

In the examples appearing in the printed manual, symbol statements specify
COLOR=BLACK and order the plot symbols as follows: dot, square, triangle, circle,
plus, x, diamond, and star.

Where to Turn for More Information
This section describes other sources of information about SAS/Genetics software.

Online Help System

You can access online help information about SAS/Genetics software in two ways.
You can select SAS System Help from the Help pull-down menu and then select
SAS/Genetics Software from the list of available topics. Or, you can bring up a
command line and issue the command help Genetics to bring up an index to the
statistical procedures, or issue the command help ALLELE (or another procedure
name) to bring up the help for that particular procedure. Note that the online help
includes syntax and some essential overview and detail material.

SAS Institute Technical Support Services

As with all SAS Institute products, the SAS Institute Technical Support staff is avail-
able to respond to problems and answer technical questions regarding the use of
SAS/Genetics software.

Related SAS Software
Many features not found in SAS/Genetics software are available in other parts of the
SAS System. If you do not find something you need in SAS/Genetics software, try
looking for the feature in the following SAS software products.

Base SAS Software

The features provided by SAS/Genetics software are in addition to the features pro-
vided by Base SAS software. Many data management and reporting capabilities
you will need are part of Base SAS software. Refer to SAS Language Reference:
Concepts, SAS Language Reference: Dictionary, and the SAS Procedures Guide for
documentation of Base SAS software.

SAS DATA Step

The DATA step is your primary tool for reading and processing data in the SAS
System. The DATA step provides a powerful general-purpose programming language
that enables you to perform all kinds of data processing tasks. The DATA step is
documented in SAS Language Reference: Concepts.
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Base SAS Procedures

Base SAS software includes many useful SAS procedures. Base SAS procedures
are documented in the SAS Procedures Guide. The following is a list of Base SAS
procedures you may find useful:

CHART for printing charts and histograms

CONTENTS for displaying the contents of SAS data sets

CORR for computing correlations

FREQ for computing frequency crosstabulations

MEANS for computing descriptive statistics and summarizing or collapsing
data over cross sections

PRINT for printing SAS data sets

SORT for sorting SAS data sets

TABULATE for printing descriptive statistics in tabular format

TRANSPOSE for transposing SAS data sets

UNIVARIATE for computing descriptive statistics

SAS/GRAPH Software

SAS/GRAPH software includes procedures that create two- and three-dimensional
high-resolution color graphics plots and charts. You can generate output that graphs
the relationship of data values to one another, enhance existing graphs, or simply
create graphics output that is not tied to data.

SAS/IML Software

SAS/IML software gives you access to a powerful and flexible programming lan-
guage (Interactive Matrix Language) in a dynamic, interactive environment. The
fundamental object of the language is a data matrix. You can use SAS/IML soft-
ware interactively (at the statement level) to see results immediately, or you can store
statements in a module and execute them later. The programming is dynamic be-
cause necessary activities such as memory allocation and dimensioning of matrices
are done automatically. SAS/IML software is of interest to users of SAS/Genetics
software because it enables you to program your own methods in the SAS System.

SAS/INSIGHT Software

SAS/INSIGHT software is a highly interactive tool for data analysis. You can ex-
plore data through a variety of interactive graphs including bar charts, scatter plots,
box plots, and three-dimensional rotating plots. You can examine distributions and
perform parametric and nonparametric regression, analyze general linear models and
generalized linear models, examine correlation matrices, and perform principal com-
ponent analyses. Any changes you make to your data show immediately in all graphs
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and analyses. You can also configure SAS/INSIGHT software to produce graphs and
analyses tailored to the way you work.

SAS/INSIGHT software may be of interest to users of SAS/Genetics software for
interactive graphical viewing of data, editing data, exploratory data analysis, and
checking distributional assumptions.

SAS/STAT Software

SAS/STAT software includes procedures for a wide range of statistical methodologies
including

• logistic and linear regression

• censored regression

• principal component analysis

• variance component analysis

• cluster analysis

• contingency table analysis

• categorical data analysis: log-linear and conditional logistic models

• general linear models

• linear and nonlinear mixed models

• generalized linear models

• multiple hypothesis testing

SAS/STAT software is of interest to users of SAS/Genetics software because many
statistical methods for analyzing genetics data not included in SAS/Genetics software
are provided in SAS/STAT software.
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Chapter 3
The ALLELE Procedure
Overview

The ALLELE procedure performs preliminary analyses on genetic marker data.
These analyses serve to characterize the markers themselves or the population from
which they were sampled, and can also serve as the basis for joint analyses on mark-
ers and traits. A genetic marker is any heritable unit that obeys the laws of trans-
mission genetics, and the analyses presented here assume the marker genotypes are
determined without error. With an underlying assumption of random sampling, the
analyses rest on the multinomial distribution of marker alleles, and many standard
statistical techniques can be invoked with little modification. The ALLELE proce-
dure uses the notation and concepts described by Weir (1996); this is the reference
for all equations and methods not otherwise cited.

Data are usually collected at the genotypic level but interest is likely to be centered
on the constituent alleles, so the first step is to construct tables of allele and genotype
frequencies. When alleles are independent within individuals, that is when there is
Hardy-Weinberg equilibrium (HWE), analyses can be conducted at the allelic level.
For this reason the ALLELE procedure allows for Hardy-Weinberg testing, although
testing is also recommended as a means for detecting possible errors in data.

PROC ALLELE calculates the PIC, heterozygosity, and allelic diversity measures
that serve to give an indication of marker informativeness. Such measures can be
useful in determining which markers to use for further linkage or association testing
with a trait. High values of these measures are a sign of marker informativeness,
which is a desirable property in linkage and association tests.

Associations between markers may also be of interest. PROC ALLELE provides tests
and various statistics for the association, also called the linkage disequilibrium, be-
tween each pair of markers. These statistics can be formed either by using haplotypes
that are given in the data, by estimating the haplotype frequencies, or by using only
genotypic information.

Getting Started

Example
Suppose you have genotyped 25 individuals at five markers. You want to examine
some basic properties of these markers, such as whether they are in HWE, how many
alleles each has, what genotypes appear in the data, and if there is linkage disequi-
librium between any pairs of markers. You have ten columns of data, with the first
two columns containing the set of alleles at the first marker, the next two columns
containing the set of alleles for the second marker, and so on. There is one row per
each individual. You input your data as follows:
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data markers;
input (a1-a10) ($);
datalines;

B B A B B B A A B B
A A B B A B A B C C
B B A A B B B B A C
A B A B A B A B A B
A A A B A B B B C C
B B A A A B A B C C
A B B B A B A A A B
A B A A A A A A A A
B B A A A A A B B B
A B A B A B B B A C
A A A B A A A B B C
B B A B A B A B A C
A B B B A A A B A C
B B B B A A A A A B
A B A A A B A A C C
A B A A A B A B C C
B B A A A A A B A A
A A A B A A A B A B
A B A A A A B B C C
A A A A A A A A B B
A B B B A A A A C C
A B A B A B A A B B
B B A B A B A A A C
A B A A A B A B A C
A B B B B B A B B B
;

You can now use PROC ALLELE to examine the frequencies of alleles and genotypes
in your data, and see if these frequencies are occurring in proportions you would
expect. The following statements will perform the analysis you want:

proc allele data=markers outstat=ld prefix=Marker
perms=10000 boot=1000 seed=123;

var a1-a10;
run;

proc print data=ld;
run;

This analysis is using 10,000 permutations to approximate an exact p-value for
the HWE test as well as 1,000 bootstrap samples to obtain the confidence inter-
val for the allele frequencies and one-locus Hardy-Weinberg disequilibrium (HWD)
coefficients. The starting seed for the random number generator is 123. The
PREFIX= option requests that the five markers be named Marker1–Marker5. Since
the BOOTSTRAP= option is specified but the ALPHA= option is omitted, a 95%
confidence interval is calculated by default.

All five markers are included in the analysis since the ten variables containing the
alleles for those five markers were specified in the VAR statement.
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The marker data can alternatively be read in as columns of genotypes instead of
columns of alleles using the GENOCOL and DELIMITER= options in the PROC
ALLELE statement, with just one column per each marker. The following DATA
step and SAS code could be used to produce the same output using data in this alter-
native format:

data markers;
input (g1-g5) ($);
datalines;

B/B A/B B/B A/A B/B
A/A B/B A/B A/B C/C
B/B A/A B/B B/B A/C
A/B A/B A/B A/B A/B
A/A A/B A/B B/B C/C
B/B A/A A/B A/B C/C
A/B B/B A/B A/A A/B
A/B A/A A/A A/A A/A
B/B A/A A/A A/B B/B
A/B A/B A/B B/B A/C
A/A A/B A/A A/B B/C
B/B A/B A/B A/B A/C
A/B B/B A/A A/B A/C
B/B B/B A/A A/A A/B
A/B A/A A/B A/A C/C
A/B A/A A/B A/B C/C
B/B A/A A/A A/B A/A
A/A A/B A/A A/B A/B
A/B A/A A/A B/B C/C
A/A A/A A/A A/A B/B
A/B B/B A/A A/A C/C
A/B A/B A/B A/A B/B
B/B A/B A/B A/A A/C
A/B A/A A/B A/B A/C
A/B B/B B/B A/B B/B
;

proc allele data=markers outstat=ld prefix=Marker
perms=10000 boot=1000 seed=123
genocol delimiter=’/’;

var g1-g5;
run;

proc print data=ld;
run;

Note that the DELIMITER= option, which indicates the character or string that sep-
arates the alleles comprising a genotype, could have been omitted in this example
since ’/’ is the default.

The results from the analysis are as follows.
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The ALLELE Procedure

Marker Summary

----------Test for HWE---------
Number Number

of of Hetero- Allelic Chi- Pr > Prob
Locus Indiv Alleles PIC zygosity Diversity Square DF ChiSq Exact

Marker1 25 2 0.3714 0.4800 0.4928 0.0169 1 0.8967 1.0000
Marker2 25 2 0.3685 0.3600 0.4872 1.7041 1 0.1918 0.2262
Marker3 25 2 0.3546 0.4800 0.4608 0.0434 1 0.8350 1.0000
Marker4 25 2 0.3648 0.4800 0.4800 0.0000 1 1.0000 1.0000
Marker5 25 3 0.5817 0.4400 0.6552 9.3537 3 0.0249 0.0106

Figure 3.1. Marker Summary for the ALLELE Procedure

Figure 3.1 displays information about the five markers. From this output, you can
conclude that Marker5 is the only one showing significant departure from HWE.

Allele Frequencies

Standard 95% Confidence
Locus Allele Count Frequency Error Limits

Marker1 A 22 0.4400 0.0711 0.3000 0.5800
B 28 0.5600 0.0711 0.4200 0.7000

Marker2 A 29 0.5800 0.0784 0.4200 0.7400
B 21 0.4200 0.0784 0.2600 0.5800

Marker3 A 32 0.6400 0.0665 0.5200 0.7600
B 18 0.3600 0.0665 0.2400 0.4800

Marker4 A 30 0.6000 0.0693 0.4600 0.7400
B 20 0.4000 0.0693 0.2600 0.5400

Marker5 A 14 0.2800 0.0637 0.1400 0.4200
B 15 0.3000 0.0800 0.1600 0.4600
C 21 0.4200 0.0833 0.2800 0.6000

Figure 3.2. Allele Frequencies for the ALLELE Procedure

Figure 3.2 displays the allele frequencies for each marker with their standard errors
and the lower and upper limits of the 95% confidence interval.
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Genotype Frequencies

HWD Standard 95% Confidence
Locus Genotype Count Frequency Coeff Error Limits

Marker1 A/A 5 0.2000 0.0064 0.0493 -0.0916 0.0956
A/B 12 0.4800 0.0064 0.0493 -0.0916 0.0956
B/B 8 0.3200 0.0064 0.0493 -0.0916 0.0956

Marker2 A/A 10 0.4000 0.0636 0.0477 -0.0336 0.1484
A/B 9 0.3600 0.0636 0.0477 -0.0336 0.1484
B/B 6 0.2400 0.0636 0.0477 -0.0336 0.1484

Marker3 A/A 10 0.4000 -0.0096 0.0457 -0.1044 0.0800
A/B 12 0.4800 -0.0096 0.0457 -0.1044 0.0800
B/B 3 0.1200 -0.0096 0.0457 -0.1044 0.0800

Marker4 A/A 9 0.3600 0.0000 0.0480 -0.0916 0.0864
A/B 12 0.4800 0.0000 0.0480 -0.0916 0.0864
B/B 4 0.1600 0.0000 0.0480 -0.0916 0.0864

Marker5 A/A 2 0.0800 0.0016 0.0405 -0.0756 0.0816
A/B 4 0.1600 0.0040 0.0337 -0.0664 0.0636
A/C 6 0.2400 -0.0024 0.0380 -0.0736 0.0680
B/B 5 0.2000 0.1100 0.0445 0.0144 0.1884
B/C 1 0.0400 0.1060 0.0282 0.0440 0.1564
C/C 7 0.2800 0.1036 0.0453 0.0096 0.1884

Figure 3.3. Genotype Frequencies for the ALLELE Procedure

Figure 3.3 displays the genotype frequencies for each marker with the associated
disequilibrium coefficient, its standard error, and the 95% confidence limits.

Obs Locus1 Locus2 NIndiv Test ChiSq DF ProbChi ProbEx

1 Marker1 Marker1 25 HWE 0.01687 1 0.89667 1.0000
2 Marker1 Marker2 25 LD 1.05799 1 0.30367 0.4882
3 Marker1 Marker3 25 LD 1.42074 1 0.23328 0.8544
4 Marker1 Marker4 25 LD 0.33144 1 0.56481 0.9885
5 Marker1 Marker5 25 LD 2.29785 2 0.31698 0.0940
6 Marker2 Marker2 25 HWE 1.70412 1 0.19175 0.2262
7 Marker2 Marker3 25 LD 0.13798 1 0.71030 0.5096
8 Marker2 Marker4 25 LD 1.34100 1 0.24686 0.6455
9 Marker2 Marker5 25 LD 1.13574 2 0.56673 0.0126
10 Marker3 Marker3 25 HWE 0.04340 1 0.83497 1.0000
11 Marker3 Marker4 25 LD 0.46296 1 0.49624 0.9712
12 Marker3 Marker5 25 LD 0.95899 2 0.61909 0.0261
13 Marker4 Marker4 25 HWE 0.00000 1 1.00000 1.0000
14 Marker4 Marker5 25 LD 6.16071 2 0.04594 0.1281
15 Marker5 Marker5 25 HWE 9.35374 3 0.02494 0.0106

Figure 3.4. Testing for Disequilibrium Using the ALLELE Procedure

Figure 3.4 displays the output data set created using the OUTSTAT= option of the
PROC ALLELE statement. This data set contains the statistics for testing individual
markers for HWE and marker pairs for linkage disequilibrium.
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Syntax
The following statements are available in PROC ALLELE.

PROC ALLELE < options > ;
BY variables ;
VAR variables ;
WITH variables ;

Items within angle brackets (< >) are optional, and statements following the PROC
ALLELE statement can appear in any order. The VAR statement is required. The
syntax of each statement is described in the following section in alphabetical order
after the description of the PROC ALLELE statement.

PROC ALLELE Statement

PROC ALLELE < options > ;

You can specify the following options in the PROC ALLELE statement.

ALLELEMIN=number
AMIN=number

indicates that only alleles with a frequency greater than or equal to number should
be included in the “Allele Frequencies” table. By default, any allele that appears in
a nonmissing genotype in the sample is included in the table. The value of number
must be between 0 and 1.

ALPHA=number
specifies that a confidence level of 100(1−number)% is to be used in forming boot-
strap confidence intervals for estimates of allele frequencies and disequilibrium coef-
ficients. The value of number must be between 0 and 1, and is set to 0.05 by default.

BOOTSTRAP=number
BOOT=number

indicates that bootstrap confidence intervals should be formed for the estimates of
allele frequencies and one-locus disequilibrium coefficients using number random
samples. One thousand samples are usually recommended to form confidence inter-
vals. If this statement is omitted, no confidence limits are reported.

CORRCOEFF
requests that the “Linkage Disequilibrium Measures” table be displayed and contain
the correlation coefficient r, a linkage disequilibrium measure.

DATA=SAS-data-set
names the input SAS data set to be used by PROC ALLELE. The default is to use the
most recently created data set.
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DELIMITER=’string’
indicates the string that is used to separate the two alleles that comprise the genotypes
contained in the variables specified in the VAR statement. This option is ignored if
GENOCOL is not specified.

DELTA
requests that the “Linkage Disequilibrium Measures” table be displayed and contain
the population attributable risk δ, a linkage disequilibrium measure. This option is
ignored if HAPLO=NONE or NONEHWD.

DPRIME
requests that the “Linkage Disequilibrium Measures” table be displayed and contain
Lewontin’s D′, a linkage disequilibrium measure.

GENOCOL
indicates that columns specified in the VAR statement contain genotypes instead of
alleles. When this option is specified, there is one column per marker. The geno-
types must consist of the two alleles separated by a delimiter. For a genotype with
one missing allele, use a blank space to indicate a missing value; if both alleles are
missing, use either a single missing value for the entire genotype, or the delimiter
alone.

GENOMIN=number
GMIN=number

indicates that only genotypes with a frequency greater than or equal to number should
be included in the “Genotype Frequencies” table. By default, any genotype that ap-
pears at least once in the sample is included in the table. The value of number must
be between 0 and 1.

HAPLO=NONE
HAPLO=EST
HAPLO=GIVEN
HAPLO=NONEHWD

indicates whether haplotypes frequencies should not be used, haplotype frequencies
should be estimated, or observed haplotype frequencies in the data should be used.
This option affects all linkage disequilibrium tests and measures. By default or when
HAPLO=NONE or NONEHWD is specified, the composite linkage disequilibrium
(CLD) coefficient is used in place of the usual linkage disequilibrium (LD) coeffi-
cient. In addition, the composite haplotype frequencies are used to form the link-
age disequilibrium measures indicated by the options CORRCOEFF and DPRIME.
When HAPLO=EST, the maximum likelihood estimates of the haplotype frequen-
cies are used to calculate the LD test statistic as well as the LD measures. The
HAPLO=GIVEN option indicates that the haplotypes have been observed, and thus
the observed haplotype frequencies are used in the LD test statistic and measures.

When HAPLO=GIVEN, haplotypes are denoted in the data in the following manner
according to the type of input data used:

• If you omit the experimental TALL option in the PROC ALLELE statement,
then the alleles that comprise all alleles comprising one of an individual’s two
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haplotypes must all be in the first of the two variables listed for each marker,
and alleles of the other haplotype in the second of the two variables listed for
each marker. Similarly, if the GENOCOL option is used, the alleles comprising
one haplotype should all be the first allele listed in each genotype, and alleles
of the other haplotype listed second.

• If you specify the TALL option, then the alleles that comprise one haplotype
for an individual must all be in the first variable in the VAR statement and all
the alleles in the other haplotype must be in the second variable in the VAR
statement. When the GENOCOL option is also specified, the alleles compris-
ing one haplotype should all be the first allele listed in the genotype, and alleles
of the other haplotype listed second.

HAPLOMIN=number
HMIN=number

indicates that only haplotypes with a frequency greater than or equal to number
should be included in the “Linkage Disequilibrium Measures” table. By default,
any haplotype that appears in the sample (or is estimated to appear at least once) is
included in the table. The value of number must be between 0 and 1.

INDIVIDUAL=variableExperimental
INDIV=variable

specifies the individual ID variable when using the experimental TALL option. This
variable may be character or numeric.

LOGNOTE
requests that notes be written to the log indicating the status of the LD calculations.

MARKER=variableExperimental
specifies the marker ID variable when using the experimental TALL option. This
variable contains the names of the markers that are used in all output and may be
character or numeric.

MAXDIST=number
specifies the maximum number of markers apart that a pair of markers can be in order
to perform any linkage disequilibrium calculations. For example, if MAXDIST=1 is
specified, linkage disequilibrium measures and statistics are calculated only for pairs
of markers that are one apart, such as M1 and M2, M2 and M3, and so on. The
number specified must be an integer and is set to 50 markers by default. This option
assumes that markers are specified in the VAR statement in the physical order in
which they appear on a chromosome or across the genome.

NDATA=SAS-data-set
names the input SAS data set containing names, or identifiers, for the markers used
in the output. There must be a NAME variable in this data set, which should contain
the same number of rows as there are markers in the input data set specified in the
DATA= option. When there are fewer rows than there are markers, markers without
a name are named using the PREFIX= option. Likewise, if there is no NDATA=
data set specified, the PREFIX= option is used. Note that this data set is ignored if
the experimental TALL option is specified in the PROC ALLELE statement. In that
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case, the marker variable names are taken from the marker ID variable specified in
the MARKER= option.

NOFREQ
suppresses the display of the “Allele Frequencies” and the “Genotype Frequencies”
tables. See the section “Displayed Output” on page 38 for a detailed description of
these tables.

NOPRINT
suppresses the normal display of results. Note that this option temporarily disables
the Output Delivery System (ODS).

OUTSTAT=SAS-data-set
names the output SAS data set containing the disequilibrium statistics, for both
within-marker and between-marker disequilibria.

PERMS=number
EXACT=number

indicates that Monte Carlo estimates of the exact p-values for the disequilibrium tests
should be calculated using number permutations. Large values of number (10,000 or
more) are usually recommended for accuracy, but long execution times may result,
particularly with large data sets. When this option is omitted, no permutations are
performed and asymptotic p-values are reported. If HAPLO=EST, then only the ex-
act tests for Hardy-Weinberg equilibrium are performed; the exact tests for linkage
disequilibrium cannot be performed since haplotypes are unknown.

PREFIX=prefix
specifies a prefix to use in constructing names for marker variables in all output. For
example, if PREFIX=VAR, the names of the variables are VAR1, VAR2, ..., VARn.
Note that this option is ignored when the NDATA= option is specified, unless there
are fewer names in the NDATA data set than there are markers; it is also ignored if
the experimental TALL option is specified, in which case the marker variable names
are taken from the marker ID variable specified in the MARKER= option. Otherwise,
if this option is omitted, PREFIX=M is the default when variables contain alleles; if
GENOCOL is specified, then the names of the variables specified in the VAR state-
ment are used as the marker names.

PROPDIFF
requests that the “Linkage Disequilibrium Measures” table be displayed and contain
the proportional difference d, a linkage disequilibrium measure. This option is ig-
nored if HAPLO=NONE or NONEHWD.

SEED=number
specifies the initial seed for the random number generator used for permuting the
data in the exact tests and for the bootstrap samples. The value for number must be
an integer; the computer clock time is used if the option is omitted or the integer
specified is less than or equal to 0. For more details about seed values, refer to SAS
Language Reference: Concepts.
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TALLExperimental
indicates that the input data set is of an alternative format. This format contains the
following columns: two containing marker alleles (or one containing marker geno-
types if GENOCOL is specified), one for the marker identifier, and one for the in-
dividual identifier. The experimental MARKER= and INDIV= options must also
be specified for this option to be in effect. Note that when this option is used, the
DATA= data set must first be sorted by any BY variables, then sorted by the marker
ID variable, then the individual ID variable.

YULESQ
requests that the “Linkage Disequilibrium Measures” table be displayed and con-
tain Yule’s Q, a linkage disequilibrium measure. This option is ignored if
HAPLO=NONE or NONEHWD.

BY Statement
BY variables ;

You can specify a BY statement with PROC ALLELE to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in the order of the BY variables.
The variables are one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the ALLELE procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion in SAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in the SAS Procedures Guide.

VAR Statement
VAR variables ;

The VAR statement identifies the variables containing either the marker alleles, or
the marker genotypes if GENOCOL is specified. The following number of variables
should be specified in this statement for a data set containing m markers according to
whether the options GENOCOL and TALL are used:

• When both GENOCOL and TALL are specified, there should be one variable
named containing marker genotypes.
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• When only TALL is specified, there should be two variables named containing
marker alleles.

• When only GENOCOL is specified, there should be m variables named, one
for each marker containing marker genotypes.

• When neither option is specified, there should be 2m variables named, two for
each marker containing marker alleles.

All variables specified must be of the same type, either character or numeric.

WITH Statement
WITH variables ;

The WITH statement has the same syntax as the VAR statement. It contains vari-
ables of alleles, or genotypes if GENOCOL is specified, from markers that you want
to pair with those specified in the VAR statement for linkage disequilibrium calcu-
lations. Each marker from the VAR statement is paired with each marker from the
WITH statement for these two-marker statistics when the WITH statement is speci-
fied. The markers represented by variables in this statement are not included in any
of the single-marker calculations (marker summary statistics, allele frequencies, or
genotype frequencies) and the associated ODS tables. This statement facilitates the
parallelization of the LD calcuations.

When the WITH statement is used, the MAXDIST= option is ignored. It may not be
used for data in the tall format.

Details
Statistical Computations
Frequency Estimates

A marker locus M may have a series of alleles Mu, u = 1, ..., k. A sample of n
individuals may therefore have several different genotypes at the locus, with nuv

copies of type Mu/Mv. The number nu of copies of allele Mu can be found directly
by summation: nu = 2nuu +

∑
v �=u nuv. The sample frequencies are written as

p̃u = nu/(2n) and P̃uv = nuv/n. The P̃uv’s are unbiased maximum likelihood
estimates (MLEs) of the population proportions Puv.

The variance of the sample allele frequency p̃u is calculated as

Var(p̃u) =
1
2n

(pu + Puu − 2p2
u)

and can be estimated by replacing pu and Puu with their sample values p̃u and P̃uu.
The variance of the sample genotype frequency P̃uv is not generally calculated; in-
stead, an MLE of the HWD coefficient duv for alleles Mu and Mv is calculated as

d̂uv =
{

P̃uv − p̃up̃v, u = v

p̃up̃v − 1
2 P̃uv, u �= v
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and the MLE’s variance is estimated using one of the following formulas, depending
on whether the two alleles are the same or different:

Var(d̂uu) =
1
n

[
p̃2

u(1 − p̃u)2 + (1 − 2p̃u)2d̂uu − d̂2
uu

]

Var(d̂uv) =
1
2n

{
p̃up̃v(1 − p̃u)(1 − p̃v) +

∑
w �=u,v

(p̃2
ud̂vw + p̃2

vd̂uw)

−
[
(1 − p̃u − p̃v)2 − 2(p̃u − p̃v)2

]
d̂uv + p̃2

up̃2
v − 2d̂2

uv

}

The standard error, the square root of the variance, is reported for the sample allele
frequencies and the disequilibrium coefficient estimates. When the BOOTSTRAP=
option of the PROC ALLELE statement is specified, bootstrap confidence intervals
are formed by resampling individuals from the data set and are reported for these
estimates, with the 100(1−α)% confidence level given by the ALPHA=α option (or
α = 0.05 by default).

Measures of Marker Informativeness

Polymorphism Information Content

The polymorphism information content (PIC) measures the probability of differenti-
ating the allele transmitted by a given parent to its child given the marker genotype
of father, mother, and child (Botstein et al. 1980). It is computed as

PIC = 1 −
k∑

u=1

p̃2
u −

k−1∑
u=1

k∑
v=u+1

2p̃2
up̃2

v

Heterozygosity

The heterozygosity, sometimes called the observed heterozygosity, is simply the pro-
portion of heterozygous individuals in the data set and is calculated as

Het = 1 −
k∑

u=1

P̃uu

Allelic Diversity

The allelic diversity, sometimes called the expected heterozygosity, is the expected
proportion of heterozygous individuals in the data set when HWE holds and is calcu-
lated as

Div = 1 −
k∑

u=1

p̃2
u



Statistical Computations � 33

Testing for Hardy-Weinberg Equilibrium

Under ideal population conditions, the two alleles an individual receives, one from
each parent, are independent so that Puu = p2

u and Puv = 2pupv, u �= v. The factor
of 2 for heterozygotes recognizes the fact that Mu/Mv and Mv/Mu genotypes are
generally indistinguishable. This statement about allelic independence within loci is
called Hardy-Weinberg equilibrium (HWE). Forces such as selection, mutation, and
migration in a population or nonrandom mating can cause departures from HWE. Two
methods are used here for testing a marker for HWE, both of which can accommodate
any number of alleles. Both methods are testing the hypothesis that Puu = p2

u and
Puv = 2pupv, u �= v for all u, v = 1, ..., k.

Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test can be used to test markers for HWE. The chi-
square statistic

X2
T =

∑
u

(nuu − np̃2
u)2

np̃2
u

+
∑

u

∑
v>u

(nuv − 2np̃up̃v)2

2np̃up̃v

has k(k−1)/2 degrees of freedom (df) where k is the number of alleles at the marker
locus.

Permutation Version of Exact Test

The permutation version of the exact test given by Guo and Thompson (1992) is
based on the conditional probability of genotype counts given allelic counts and the
hypothesis of allelic independence. The probability of the observed genotype counts
under this hypothesis is

T =
n!

(2n)!
2h

∏
u nu!∏

u,v nuv!

where h =
∑

u

∑
v �=u nuv is the number of heterozygous individuals. Significance

levels are calculated by the Monte Carlo permutation procedure. The 2n alleles are
randomly permuted the number of times indicated in the PERMS= option to form
new sets of n genotypes. The significance level is then calculated as the proportion
of times the value of T for each set of permuted data does not exceed the value of T
for the actual data. You can indicate the random seed used to randomly permute the
data in the SEED= option of the PROC ALLELE statement.

Linkage Disequilibrium (LD)

The set of genetic material an individual receives from each parent contains an al-
lele at every locus, and statements can be made about these allelic combinations,
or haplotypes. The probability puv (called the gametic or haplotype frequency) that
an individual receives the haplotype MuNv for marker loci M and N can be com-
pared to the product of the probabilities that each allele is received. The difference
is the linkage, or gametic, disequilibrium (LD) coefficient Duv for those two alleles:
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Duv = puv−pupv. There is a general expectation that the amount of linkage disequi-
librium is inversely related to the distance between the two loci, but there are many
other factors that may affect disequilibrium. There may even be disequilibrium be-
tween alleles at loci that are located on different chromosomes. Note that these tests
and measures are calculated only for pairs of markers at most d markers apart, where
d is the integer specified in the MAXDIST= option of the PROC ALLELE statement
(or 50 by default) when the WITH statement is omitted; otherwise, all pairs of mark-
ers containing one marker from the VAR statement and one from the WITH statement
are examined.

Table 3.1 displays how the HAPLO= option of the PROC ALLELE statement inter-
acts with the linkage disequilibrium calculations. These calculations are discussed in
more detail in the following two sections.

Table 3.1. Interaction of HAPLO= option with LD calculations
HAPLO= LD Test Estimate of
Option Statistic LD Exact Test Haplotype Freq

GIVEN D̃uv
Permutes alleles to form Observed freq, p̃uvnew 2-locus haplotypes

EST D̂uv Not performed Estimated freq, p̂uv

NONE ∆̃uv
Permutes alleles to form Composite freq, p̃∗uvnew 2-locus genotypes

NONEHWD ∆̃uv
Permutes genotypes to form Composite freq, p̃∗uvnew 2-locus genotypes

Tests

When haplotypes are known, the HAPLO=GIVEN option should be included in the
PROC ALLELE statement so that the linkage disequilibrium can be computed di-
rectly by substituting the observed frequencies p̃uv, p̃u, and p̃v into the equation in
the preceding section for Duv. This creates the MLE, D̃uv, of the LD coefficient
between a pair of alleles at different markers. PROC ALLELE calculates an over-
all chi-square statistic to test that all of the Duv’s between two markers are zero as
follows:

X2
T =

k∑
u=1

l∑
v=1

(2n)D̃2
uv

p̃up̃v

which has (k− 1)(l− 1) degrees of freedom for markers with k and l alleles, respec-
tively.

There is also a Monte Carlo estimate of the exact test available when haplotypes are
known. An estimate of the exact p-value for testing the hypothesis in the preceding
paragraph can be calculated by conditioning on the allele counts as with the permuta-
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tion version of the exact test for HWE. The conditional probability of the haplotype
counts is then

T =
∏

u nu!
∏

v nv!
(2n)!

∏
u,v nuv!

and the significance level is obtained again by permuting the alleles at one locus
to form 2n new two-locus haplotypes. You can indicate the number of permutations
that are used in the PERMS= option of the PROC ALLELE statement and the random
seed used to randomly permute the data in the SEED= option of the PROC ALLELE
statement.

When it is requested that haplotype frequencies be estimated with the HAPLO=EST
option, Duv is estimated using D̂uv = p̂uv − p̃up̃v, where p̂uv is the MLE of puv

assuming HWE. The estimate p̂uv is calculated according to the method described by
Weir and Cockerham (1979). Again, a chi-square test statistic can be calculated to
test that all of the Duv’s between a pair of markers are zero as

X2
T =

k∑
u=1

l∑
v=1

nD̂2
uv

p̃up̃v

which has (k− 1)(l− 1) degrees of freedom for markers with k and l alleles, respec-
tively. No exact test is available when haplotype frequencies are estimated.

The HAPLO=NONE and HAPLO=NONEHWD options indicate that haplotypes are
unknown and D̂uv should not be used in the tests for LD between pairs of markers.
Instead of using the estimated haplotype frequencies which assumes HWE, a test
can be formed using the composite linkage disequilibrium (CLD) coefficient ∆uv

that does not require this assumption and uses only allele and two-locus genotype
frequencies. The MLE ∆̃uv of ∆uv can be calculated as described by Weir (1979),
and a chi-square statistic that tests all ∆uv’s between a pair of markers are zero can
be formed as follows:

X2
T =

k∑
u=1

l∑
v=1

n∆̃2
uv

p̃up̃v

which has (k− 1)(l− 1) degrees of freedom for markers with k and l alleles, respec-
tively. This statistic is used when HAPLO=NONE is specified. When each marker
in the pair being analyzed is biallelic, a correction in this test statistic for departures
from HWE can be requested with the HAPLO=NONEHWD option. The 1 df chi-
square statistic is then represented as

X2
T =

n∆̃2
uv

[p̃u(1 − p̃u) + d̂uu][p̃v(1 − p̃v) + d̂vv]

with u = v = 1.
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Permutation versions of exact tests for CLD are given by Zaykin, Zhivotovsky, and
Weir (1995), either assuming HWE or accounting for departures from HWE. The
conditional probability of the two-locus genotypes given the one-locus alleles assum-
ing HWE is

T =
n!

∏
r nr!

∏
u nu!

∏
r,s,u,v 2nrsuvHrsuv

(2n!)2
∏

r,s,u,v nrsuv!

where nrsuv is the count of MrMsNuNv genotypes, nr and nu are the counts of
Mr and Nu alleles, respectively, and Hrsuv represents the number of loci that are
heterozygous for genotype MrMsNuNv (0,1,or 2). An estimate of the exact signif-
icance level is obtained by permuting the alleles at both of the loci and counting a
permuted sample towards the p-value when its probability T is not larger than for the
observed sample.

When departures from HWE are accounted for, the conditional probability of the
two-locus genotypes given the one-locus genotypes is

THWD =

∏
r,s nrs!

∏
u,v nuv!

n!
∏

r,s,u,v nrsuv!

with nrs and nuv as the counts of Mr/Ms and Nu/Nv genotypes, respectively. An
estimate of the exact significance level is obtained by permuting the genotypes at one
of the loci and calculating the probability THWD for each permuted sample. When
HAPLO=NONEHWD is specified, the p-value is reported as the proportion of sam-
ples that have a THWD less than or equal to the one from the original sample. Note:
THWD can be used for multiallelic markers, while the formula for the chi-square
statistic cannot. When HAPLO=NONEHWD, the chi-square statistic and asymptotic
p-value that are reported for a marker with more than 2 alleles do not account for
departures from HWE; however, the estimate of the exact p-value does make this
adjustment as expected.

Measures

PROC ALLELE offers five linkage disequilibrium measures to be calculated for each
pair of alleles Mu and Nv located at loci M and N respectively: the correlation coeffi-
cient r, the population attributable risk δ, Lewontin’s D′, the proportional difference
d, and Yule’s Q. The five measures are discussed in Devlin and Risch (1995). Since
these measures are designed for biallelic markers, the measures are calculated for
each allele at locus M with each allele at locus N, where all other alleles at each loci
are combined to represent one allele. Thus for each allele Mu in turn, p̃1 is used as
the frequency of allele Mu, and p̃2 represents the frequency of “not Mu”; similarly
for each Nv in turn, q̃1 represents the frequency of allele Nv, and q̃2 the frequency
of “not Nv.” All measures have the same numerator, D = p11p22 − p12p21, the LD
coefficient, which can be directly estimated using the observed haplotype frequencies
p̃uv when HAPLO=GIVEN, or estimated using the MLEs of the haplotype frequen-
cies p̂uv assuming HWE when HAPLO=EST. The computations for the measures are
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as follows:

r =
D

(p1p2q1q2)1/2

δ =
D

q1p22

D′ =
D

Dmax
, Dmax =

{
min(p1q2, q1p2), D > 0
min(p1q1, q2p2), D < 0

d =
D

q1q2

Q =
D

p11p22 + p12p21

with estimates of measures calculated by replacing parameters with their appropriate
estimates. Under the options HAPLO=NONE (the default) or HAPLO=NONEHWD,
the numerator D can be replaced by the CLD coefficient ∆, described in the pre-
ceding section, for measures r and D′. This statistic has bounds twice as large as
D so the denominator for D′ must be multiplied by a factor of 2. The denom-
inator of the correlation coefficient r is adjusted for departures from HWE when
HAPLO=NONEHWD in the same manner as the corresponding chi-square statistic,
so that r = ∆uv/{[pu(1− pu) + duu][qv(1− qv) + dvv]}1/2. The measures δ, d, and
Q cannot be calculated for either of these two options.

Missing Values

An individual’s genotype for a marker is considered missing if at least one of the
alleles at the marker is missing. Any missing genotypes are excluded from all cal-
culations, including the linkage disequilibrium statistics for all pairs that include the
marker. However, the individual’s nonmissing genotypes at other markers can be
used as part of the calculations.

If the BOOTSTRAP= option is specified, any individuals with missing genotypes for
all markers are excluded from resampling. All other individuals are included, which
could result in different numbers of individuals with nonmissing genotypes for the
same marker across different samples.

OUTSTAT= Data Set

The OUTSTAT= data set contains the following variables:

• the BY variables, if any

• Locus1 and Locus2, which contain the pair of markers for which the disequi-
librium statistics are calculated

• NIndiv, which contains the number of individuals that have been genotyped at
both the markers listed in Locus1 and Locus2 (that is, the number of individ-
uals that have no missing alleles for the two loci)
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• Test, which indicates which disequilibrium test is performed, HWE for indi-
vidual markers (when Locus1 and Locus2 contain the same value) or LD for
marker pairs

• ChiSq, which contains the chi-square statistic for testing for disequilibrium. If
Locus1 and Locus2 contain the same marker, the test is for HWE within that
locus. Otherwise, it is a test for linkage disequilibrium between the two loci.

• DF, which contains the degrees of freedom for the chi-square test

• ProbChi, which contains the p-value for the chi-square test

• ProbEx, which contains an estimate of the exact p-value for testing the pair of
markers in Locus1 and Locus2 for disequilibrium. This variable is included
in the OUTSTAT= data set only when the PERMS= parameter in the PROC
ALLELE statement is a positive integer and HAPLO=EST is not specified.

Displayed Output

This section describes the displayed output from PROC ALLELE. See the section
“ODS Table Names” on page 39 for details about how this output interfaces with the
Output Delivery System.

Marker Summary

The “Marker Summary” table lists information on each of the markers, including

• NIndiv, the number of individuals genotyped at the marker

• NAllele, the number of alleles at the marker

• PIC, the polymorphism information content (PIC) measure

• Het, the heterozygosity measure

• Div, the allelic diversity measure

as well as the following columns for the test for HWE:

• ChiSq, the chi-square statistic

• DF, the degrees of freedom for the chi-square test

• ProbChiSq, the p-value for the chi-square test

• ProbExact, an estimate of the exact p-value for the HWE test (only if the
PERMS= option is specified in the PROC ALLELE statement)

Allele Frequencies

The “Allele Frequencies” table lists all the observed alleles for each marker, with the
observed allele count and frequency, the standard error of the frequency, and when
the BOOTSTRAP= option is specified, the bootstrap lower and upper limits of the
confidence interval for the frequency based on the confidence level determined by
the ALPHA= option of the PROC ALLELE statement (0.95 by default).
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Genotype Frequencies

The “Genotype Frequencies” table lists all the observed genotypes (denoted by the
two alleles separated by a “/”) for each marker, with the observed genotype count and
frequency, an estimate of the disequilibrium coefficient d, the standard error of the
estimate, and when the BOOTSTRAP= option is specified, the lower and upper limits
of the bootstrap confidence interval for d based on the confidence level determined
by the ALPHA= option of the PROC ALLELE statement (0.95 by default).

Linkage Disequilibrium Measures

The “Linkage Disequilibrium Measures” table lists the frequency of each haplotype
at each marker pair (observed frequency when HAPLO=GIVEN and estimated fre-
quency otherwise), an estimate of the LD coefficient Duv, and whichever linkage dis-
equilibrium measures are included in the PROC ALLELE statement (CORRCOEFF,
DELTA, DPRIME, PROPDIFF, and YULESQ). Haplotypes are represented by the
allele at the marker locus listed in Locus1 and the allele at the marker locus listed
in Locus2 separated by a “-.” Note that this table can be quite large when there are
many markers or markers with many alleles. For a data set with m markers, each hav-
ing ki alleles, i = 1, ...,m, the number of rows in the table is

∑m−1
i=1

∑m
j=i+1 kikj .

The MAXDIST= option of the PROC ALLELE statement or the WITH statement
can be used to keep this table to a manageable size.

ODS Table Names

PROC ALLELE assigns a name to each table it creates, and you must use this name
to reference the table when using the Output Delivery System (ODS). These names
are listed in the following table.

Table 3.2. ODS Tables Created by the ALLELE Procedure

ODS Table Name Description PROC ALLELE option
MarkerSumm Marker summary default
AlleleFreq Allele frequencies default
GenotypeFreq Genotype frequencies default
LDMeasures Linkage disequilibrium measures CORRCOEFF, DELTA, DPRIME,

PROPDIFF, or YULESQ
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Examples

Example 3.1. Using the NDATA= Option with Microsatellites

The following is a subset of data from GAW12 (Wijsman et al. 2001) and contains
17 individuals’ genotypes at 14 microsatellite markers.

data gaw;
input id m1-m14 / m15-m28;
datalines;

1 11 14 6 8 2 5 9 4 6 1 9 9 9 7
3 5 10 1 4 6 5 9 1 1 3 5 6 2

2 2 12 1 4 6 6 3 3 2 1 11 11 4 11
2 2 13 11 2 1 9 9 1 5 6 1 2 5

3 2 10 4 8 4 9 2 7 7 1 9 2 7 10
2 2 7 7 6 8 9 4 5 1 7 2 6 2

4 5 14 7 3 9 13 4 2 2 4 11 5 4 7
4 5 7 6 8 2 9 9 1 6 4 1 8 9

5 12 12 3 8 6 2 1 7 3 5 6 11 6 9
5 2 13 16 7 1 9 4 1 1 7 1 1 2

6 4 7 7 8 7 12 4 2 6 5 5 11 5 11
2 4 15 11 1 1 9 2 6 5 7 6 1 5

7 2 10 6 8 7 1 2 3 6 2 5 8 5 6
5 6 13 10 1 8 9 3 1 6 7 7 2 6

8 2 11 6 2 7 1 2 3 6 6 10 11 11 6
4 2 11 11 4 5 11 2 3 2 1 4 1 2

9 2 7 1 1 3 1 5 7 2 5 5 11 11 11
2 6 11 2 1 6 4 9 5 5 4 2 5 9

10 11 12 2 4 13 3 1 2 4 9 5 10 7 5
4 4 1 6 8 1 6 10 1 1 2 5 1 1

11 11 2 7 8 1 5 4 6 4 7 5 11 11 6
5 4 16 13 7 4 5 6 6 1 1 4 1 1

12 2 12 6 8 2 7 3 2 7 5 2 8 9 6
2 4 7 16 7 1 10 9 5 1 1 4 9 1

13 13 14 8 3 12 13 7 4 3 2 6 10 9 5
4 4 2 14 8 8 3 6 5 1 1 6 6 2

14 7 10 6 5 10 13 8 3 5 5 9 9 11 6
5 4 13 14 1 1 6 9 2 1 5 3 1 2

15 10 11 4 3 9 7 6 3 4 6 10 1 7 9
2 2 2 14 6 1 9 2 1 1 6 7 5 2

16 2 5 2 7 7 2 2 9 2 2 2 6 9 5
2 2 7 1 1 2 6 2 1 1 1 1 9 6

17 11 4 4 4 9 1 7 8 5 3 5 1 11 5
6 5 2 12 1 5 9 9 1 5 7 7 6 1

;

Note that you can input the same data directly using the statement:

infile ’Genmrk22.1’ delimiter="/ ";

in place of the DATALINES statement.
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The actual names of the markers can be used, by creating a data set with the variable
NAME containing these names.

data map;
input name $ location;
datalines;

D22G001 0.50
D22G002 0.79
D22G003 0.88
D22G004 1.02
D22G005 1.24
D22G006 2.20
D22G007 4.27
D22G008 5.85
D22G009 6.70
D22G010 9.36
D22G011 10.87
D22G012 11.67
D22G013 12.66
D22G014 15.89
;

Now an analysis using PROC ALLELE can be performed as follows:

proc allele data=gaw ndata=map nofreq perms=10000 seed=456;
var m1-m28;

run;

This analysis produces summary statistics of the 14 markers and is using 10,000 per-
mutations to approximate an exact p-value for the HWE test. The allele and genotype
frequency output tables are suppressed with the NOFREQ option.

The results from the analysis are as follows. Note the names of the markers that are
used.
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Output 3.1.1. Summary of Microsatellites for the ALLELE Procedure
The ALLELE Procedure

Marker Summary

Number Number
of of Hetero- Allelic

Locus Indiv Alleles PIC zygosity Diversity

D22G001 17 9 0.8384 0.9412 0.8547
D22G002 17 8 0.8296 0.8824 0.8478
D22G003 17 11 0.8749 0.9412 0.8858
D22G004 17 9 0.8259 0.9412 0.8443
D22G005 17 8 0.8272 0.8235 0.8460
D22G006 17 8 0.8257 0.8235 0.8443
D22G007 17 7 0.8012 0.9412 0.8253
D22G008 17 5 0.6665 0.6471 0.7163
D22G009 17 11 0.8788 0.8824 0.8893
D22G010 17 7 0.7572 0.8235 0.7820
D22G011 17 8 0.7274 0.8235 0.7509
D22G012 17 5 0.5661 0.6471 0.6142
D22G013 17 7 0.7965 0.8235 0.8201
D22G014 17 6 0.7507 0.8824 0.7837

Marker Summary

--------------Test for HWE--------------

Chi- Pr > Prob
Locus Square DF ChiSq Exact

D22G001 32.5172 36 0.6350 0.8581
D22G002 28.5222 28 0.4370 0.3868
D22G003 48.2139 55 0.7295 0.7050
D22G004 24.9692 36 0.9166 0.8361
D22G005 20.9416 28 0.8278 0.9413
D22G006 32.0018 28 0.2744 0.1102
D22G007 19.7625 21 0.5363 0.5745
D22G008 11.4619 10 0.3227 0.2525
D22G009 52.1333 55 0.5849 0.3866
D22G010 14.7227 21 0.8366 0.8624
D22G011 19.0400 28 0.8969 0.8898
D22G012 17.3473 10 0.0670 0.5122
D22G013 38.8062 21 0.0104 0.0390
D22G014 17.2802 15 0.3024 0.4651
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Example 3.2. Computing Linkage Disequilibrium Measures
for SNP Data

The following data set contains 44 individuals’ genotypes at five SNPs.

data snps;
input s1-s10;
datalines;

2 2 2 1 2 1 1 1 2 2
2 2 2 2 2 1 1 1 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 . . 1 1 2 2
2 2 2 2 1 2 1 2 2 2
2 2 2 2 . . 2 1 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 . . 2 1 2 2
2 2 2 2 1 1 1 1 2 2
2 2 1 1 2 2 2 1 2 2
2 2 2 1 2 2 2 1 2 2
2 2 2 2 1 1 1 1 2 2
2 2 2 1 2 2 2 2 2 2
2 2 2 2 2 2 1 1 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 1 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 1 1 1 2 2
2 2 2 2 1 1 2 1 2 2
2 2 2 2 2 1 1 1 2 2
2 2 2 2 2 1 2 2 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 2 1 2 2 2 2
2 2 2 2 2 1 2 2 2 2
2 2 2 2 2 2 1 1 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 1 1 2 2
2 2 2 2 2 2 1 1 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 1 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 2 2 . . 2 2
2 2 2 1 2 2 2 1 2 2
2 2 2 2 2 2 2 1 2 2
2 2 2 2 2 1 1 1 2 2
2 2 2 2 2 2 1 1 2 2
2 2 2 2 2 1 2 1 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 1 2 2
2 2 2 2 2 2 2 1 2 2
;
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Now an analysis using PROC ALLELE can be performed as follows:

proc allele data=snps prefix=SNP nofreq haplo=est corrcoeff dprime yulesq;
var s1-s10;

run;

This analysis produces summary statistics of the five SNPs as well as the Linkage
Disequilibrium Measures table, which contains estimated two-locus haplotype fre-
quencies and disequilibrium coefficients, and the linkage disequilibrium measures r,
D′, and Q. The allele and genotype frequency output tables are suppressed with the
NOFREQ option.

The results from the analysis are as follows. Note the names of the markers that are
used.

Output 3.2.1. Summary of SNPs for the ALLELE Procedure
The ALLELE Procedure

Marker Summary

-------Test for HWE-------
Number Number

of of Hetero- Allelic Chi- Pr >
Locus Indiv Alleles PIC zygosity Diversity Square DF ChiSq

SNP1 44 1 0.0000 0.0000 0.0000 0.0000 0 .
SNP2 44 2 0.1190 0.0909 0.1271 3.5627 1 0.0591
SNP3 41 2 0.3283 0.4390 0.4140 0.1493 1 0.6992
SNP4 43 2 0.3728 0.4884 0.4957 0.0093 1 0.9231
SNP5 44 1 0.0000 0.0000 0.0000 0.0000 0 .

There are two SNPs that have only one allele appearing in the data.



References � 45

Output 3.2.2. Linkage Disequilibrium Measures for SNPs Using the ALLELE
Procedure

Linkage Disequilibrium Measures

LD Corr Lewontin’s Yule’s
Locus1 Locus2 Haplotype Frequency Coeff Coeff D’ Q

SNP1 SNP2 2-1 0.0682 -0.0000 . . .
SNP1 SNP2 2-2 0.9318 -0.0000 . . .

SNP1 SNP3 2-1 0.2927 -0.0000 . . .
SNP1 SNP3 2-2 0.7073 -0.0000 . . .

SNP1 SNP4 2-1 0.5465 -0.0000 . . .
SNP1 SNP4 2-2 0.4535 -0.0000 . . .

SNP1 SNP5 2-2 1.0000 0.0000 . . .
---------------------------------------------------------------------------
SNP2 SNP3 1-2 0.0732 0.0214 0.1807 1.0000 1.0000
SNP2 SNP3 2-1 0.2927 0.0214 0.1807 1.0000 1.0000
SNP2 SNP3 2-2 0.6341 -0.0214 -0.1807 -1.0000 -1.0000

SNP2 SNP4 1-1 0.0331 -0.0050 -0.0398 -0.1322 -0.1546
SNP2 SNP4 1-2 0.0367 0.0050 0.0398 0.1322 0.1546
SNP2 SNP4 2-1 0.5134 0.0050 0.0398 0.1322 0.1546
SNP2 SNP4 2-2 0.4168 -0.0050 -0.0398 -0.1322 -0.1546

SNP2 SNP5 1-2 0.0682 -0.0000 . . .
SNP2 SNP5 2-2 0.9318 -0.0000 . . .
---------------------------------------------------------------------------
SNP3 SNP4 1-1 0.2221 0.0608 0.2661 0.4382 0.5529
SNP3 SNP4 1-2 0.0779 -0.0608 -0.2661 -0.4382 -0.5529
SNP3 SNP4 2-1 0.3154 -0.0608 -0.2661 -0.4382 -0.5529
SNP3 SNP4 2-2 0.3846 0.0608 0.2661 0.4382 0.5529

SNP3 SNP5 1-2 0.2927 -0.0000 . . .
SNP3 SNP5 2-2 0.7073 -0.0000 . . .
---------------------------------------------------------------------------
SNP4 SNP5 1-2 0.5465 -0.0000 . . .
SNP4 SNP5 2-2 0.4535 -0.0000 . . .

In the preceding table, the values for the linkage disequilibrium measures are missing
for several haplotypes; this occurs when there is only one allele at one of the markers
contained in the haplotype, and thus the denominators for these measures are zero.
Also note that when the markers are biallelic, the gametic disequilibria have the same
absolute values for all four possible haplotypes.

References
Botstein, D., White, R.L., Skolnick, M., and Davis, R.W. (1980), “Construction

of a Genetic Linkage Map in Man Using Restriction Fragment Length
Polymorphisms,” American Journal of Human Genetics, 32, 314–331.

Devlin, B. and Risch, N. (1995), “A Comparison of Linkage Disequilibrium
Measures for Fine-Scale Mapping,” Genomics, 29, 311–322.

Guo, S.W. and Thompson, E.A. (1992), “Performing the Exact Test of Hardy-
Weinberg Proportion for Multiple Alleles,” Biometrics, 48, 361–372.



46 � Chapter 3. The ALLELE Procedure

Weir, B.S. (1979), “Inferences about Linkage Disequilibrium,” Biometrics, 35,
235–254.

Weir, B.S. (1996), Genetic Data Analysis II, Sunderland, MA: Sinauer Associates,
Inc.

Weir, B.S. and Cockerham, C.C. (1979), “Estimation of Linkage Disequilibrium in
Randomly Mating Populations,” Heredity, 42, 105–111.

Wijsman, E.M., Almasy, L., Amos, C.I., Borecki, I., Falk, C.T., King, T.M.,
Martinez, M.M., Meyers, D., Neuman, R., Olson, J.M., Rich, S., Spence, M.A.,
Thomas, D.C., Vieland, V.J., Witte, J.S., and MacCluer, J.W. (2001), “Analysis of
Complex Genetic Traits: Applications to Asthma and Simulated Data,” Genetic
Epidemiology, 21, S1–S853.

Zaykin, D., Zhivotovsky, L., and Weir, B.S. (1995), “Exact Tests for Association
between Alleles at Arbitrary Numbers of Loci,” Genetica, 96, 169–178.



Chapter 4
The CASECONTROL Procedure

Chapter Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PROC CASECONTROL Statement . . . . . . . . . . . . . . . . . . . . . . 52
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
STRATA Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
TRAIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Statistical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
OUTSTAT= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Example 4.1. Performing Case-Control Tests on Multiallelic Markers . . . . 61
Example 4.2. Analyzing Data in the Tall-Skinny Format . . . . . . . . . . . 64
Example 4.3. Producing Odds Ratios for Various Disease Models . . . . . . 65

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



48 � Chapter 4. The CASECONTROL Procedure



Chapter 4
The CASECONTROL Procedure
Overview

Marker information can be used to help locate the genes that affect susceptibility to a
disease. The CASECONTROL procedure is designed for the interpretation of marker
data when random samples are available from the populations of unrelated individ-
uals who are either affected or unaffected by the disease. Several tests are available
in PROC CASECONTROL that compare marker allele and/or genotype frequencies
in the two populations, with frequency differences indicating an association of the
marker with the disease. Although such an association may point to the proximity of
the marker and disease genes in the genome, it may also reflect population structure,
so care is needed in interpreting the results; association does not necessarily imply
linkage.

The three chi-square tests available for testing case-control genotypic data are the
genotype case-control test, which tests for dominant allele effects on the disease pen-
etrance, and the allele case-control test and linear trend test, which test for additive
allele effects on the disease penetrance. Since the allele case-control test requires
the assumption of Hardy-Weinberg equilibrium (HWE), it may be desirable to run
the ALLELE procedure on the data to perform the HWE test on each marker (see
Chapter 3, “The ALLELE Procedure,” for more information) prior to applying PROC
CASECONTROL.

Getting Started

Example

Here are some sample SNP data on which the three case-control tests can be per-
formed using PROC CASECONTROL:

data cc;
input affected $ m1-m16;
datalines;

N 1 1 2 2 2 2 2 1 2 1 2 2 1 1 2 2
N 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1
N 2 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1
N 2 2 2 1 2 2 1 1 2 2 2 1 1 1 2 2
N 1 1 1 1 2 2 2 1 1 1 1 1 2 1 . .
N 2 1 1 1 2 1 1 1 2 1 2 1 1 1 2 1
N 1 1 1 1 2 2 1 1 2 2 2 2 2 1 2 2
N 2 2 1 1 2 1 2 1 2 2 2 1 1 1 2 1
N 2 1 1 1 2 2 2 1 2 1 . . 1 1 2 1
N 2 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1
N 2 1 2 2 . . 1 1 2 1 1 1 1 1 1 1
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N 2 2 . . 2 1 1 1 2 1 2 1 1 1 2 1
N 2 1 . . 2 2 1 1 2 2 1 1 1 1 2 1
N 2 1 . . 2 2 1 1 2 1 . . 2 1 1 1
N 2 2 . . 2 2 1 1 . . 2 1 1 1 2 1
N 1 1 . . 2 2 1 1 1 1 2 1 1 1 2 1
N 1 1 . . 2 2 1 1 1 1 . . 1 1 2 1
N 2 1 . . 2 2 1 1 1 1 . . 2 1 2 1
A 2 1 2 1 2 1 1 1 1 1 2 1 . . 2 1
A 2 1 2 1 2 2 1 1 2 1 1 1 . . 1 1
A 2 2 2 1 2 2 1 1 2 2 . . . . 2 1
A 2 1 2 2 2 1 1 1 2 1 2 1 . . 2 2
A . . 2 2 2 1 . . 1 1 2 2 . . 2 1
A 1 1 1 1 2 1 1 1 2 1 1 1 . . 2 2
A 2 1 1 1 2 2 1 1 1 1 2 1 . . 2 1
A 2 1 2 2 2 2 1 1 2 2 . . . . 2 2
A 2 1 1 1 2 2 1 1 2 1 2 1 . . 1 1
A 2 1 2 2 2 1 1 1 2 1 2 1 . . 2 2
A 1 1 1 1 2 2 1 1 2 1 2 1 . . 2 2
A 2 1 2 1 2 1 1 1 2 1 2 2 . . 2 1
A 2 2 2 2 1 1 1 1 2 1 2 1 . . 2 2
A 1 1 1 1 2 1 . . 2 1 2 2 . . 2 2
A 1 1 2 1 2 1 1 1 2 1 2 1 . . 2 2
A 2 2 1 1 2 2 1 1 2 1 1 1 . . 2 1
;

The following SAS code can be used to perform the analysis:

proc casecontrol data=cc prefix=Marker;
var m1-m16;
trait affected;

run;

proc print heading=h;
run;

All three case-control tests are performed by default. The output data set created by
default appears as follows:
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Chi
Num Num ChiSq ChiSq Sq

Obs Locus TraitA TraitN Genotype Allele Trend

1 Marker1 15 18 0.272 0.033 0.032
2 Marker2 16 11 3.430 3.260 2.140
3 Marker3 16 17 2.981 2.569 2.925
4 Marker4 14 18 3.556 3.319 3.556
5 Marker5 16 17 3.004 0.535 0.590
6 Marker6 14 14 0.767 0.650 0.710
7 Marker7 0 18 0.000 0.000 0.000
8 Marker8 16 17 4.132 4.061 3.769

df df df Prob Prob Prob
Obs Genotype Allele Trend Genotype Allele Trend

1 2 1 1 0.873 0.857 0.858
2 2 1 1 0.180 0.071 0.144
3 2 1 1 0.225 0.109 0.087
4 1 1 1 0.059 0.069 0.059
5 2 1 1 0.223 0.464 0.443
6 2 1 1 0.682 0.420 0.399
7 0 0 0 . . .
8 2 1 1 0.127 0.044 0.052

Figure 4.1. Statistics for Case-Control Tests

Figure 4.1 displays the statistics for the three tests. The genotype case-control statis-
tic has more degrees of freedom than the other two because it is testing for both
dominance genotypic effects and additive allelic effects, while the other statistics are
testing for the significant additive effects alone. Using the standard significance level
of 0.05, none of the p-values, shown in the last three columns, would be considered
significant since they are all above this significance level. Thus, you would conclude
that none of the markers show a significant association with the binary trait. The p-
values for Marker7 are missing because the genotypes of all the affected individuals
are missing at that marker.

Syntax
The following statements are available in PROC CASECONTROL.

PROC CASECONTROL < options > ;
BY variables ;
STRATA variables ;
TRAIT variable ;
VAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC
CASECONTROL statement can appear in any order. The TRAIT and VAR state-
ments are required. The syntax of each statement is described in the following section
in alphabetical order after the description of the PROC CASECONTROL statement.
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PROC CASECONTROL Statement

PROC CASECONTROL < options > ;

You can specify the following options in the PROC CASECONTROL statement.

ALLELE
requests that the allele case-control test be performed. If none of the three test options
(ALLELE, GENOTYPE, or TREND) are specified, then all three tests are performed
by default.

ALPHA=number
specifies that a confidence level of 100(1−number)% is to be used in forming confi-
dence intervals for odds ratios. The value of number must be between 0 and 1, and is
set to 0.05 by default.

DATA=SAS-data-set
names the input SAS data set to be used by PROC CASECONTROL. The default is
to use the most recently created data set.

DELIMITER=’string’
indicates the string that is used to separate the two alleles that comprise the genotypes
contained in the variables specified in the VAR statement. This option is ignored if
GENOCOL is not specified.

GENOCOL
indicates that columns specified in the VAR statement contain genotypes instead of
alleles. When this option is specified, there is one column per marker. The genotypes
must consist of the two alleles separated by a delimiter.

GENOTYPE
requests that the genotype case-control test be performed. If none of the three test
options (ALLELE, GENOTYPE, or TREND) are specified, then all three tests are
performed by default.

INDIVIDUAL=variableExperimental
INDIV=variable

specifies the individual ID variable when using the experimental TALL option. This
variable may be character or numeric.

MARKER=variableExperimental
specifies the marker ID variable when using the TALL option. This variable contains
the names of the markers that are used in all output and may be character or numeric.

NDATA=SAS-data-set
names the input SAS data set containing names, or identifiers, for the markers used
in the output. There must be a NAME variable in this data set, which should contain
the same number of rows as there are markers in the input data set specified in the
DATA= option. When there are fewer rows than there are markers, markers without
a name are named using the PREFIX= option. Likewise, if there is no NDATA= data
set specified, the PREFIX= option is used. Note that this data set is ignored if the
experimental TALL option is specified in the PROC CASECONTROL statement. In
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that case, the marker variable names are taken from the marker ID variable specified
in the MARKER= option.

NULLSNPS=(variable list)
names the markers to be used in calculating the variance inflation factor for genomic
control that is applied to the chi-square statistic(s) from the trend test. Only biallelic
markers that are listed are used. Note that if GENOCOL is specified, there should
be one variable for each marker listed; otherwise, there should be two variables per
marker. By default, if VIF is specified in the PROC CASECONTROL statement, all
biallelic markers listed in the VAR statement are used. This option must be specified
if both the VIF option and the PERMS= option are used, otherwise the variance
inflation factor is not applied. This option is ignored if the VIF option is not specified
or if the experimental TALL option is used.

OR
requests that odds ratios based on allele counts for biallelic markers be included in
the OUTSTAT= data set, along with (1-α)% confidence limits for the value specified
in the ALPHA= option. Odds ratios are not reported for markers with more than two
alleles.

OUTSTAT=SAS-data-set
names the output SAS data set containing counts for the two trait values, the chi-
square statistics, degrees of freedom, and p-values for the tests performed. When this
option is omitted, an output data set is created by default and named according to the
DATAn convention.

PERMS=number
indicates that Monte Carlo estimates of exact p-values for the case-control tests
should be calculated instead of the p-values from the asymptotic χ2 distribution. In
each of the number permutation samples, the trait values are permuted among the
individuals in the sample. Large values of number (10,000 or more) are usually rec-
ommended for accuracy, but long execution times may result, particularly with large
data sets. When this option is omitted, no permutations are performed and p-values
from the asymptotic χ2 distribution are reported.

PREFIX=prefix
specifies a prefix to use in constructing names for marker variables in all output. For
example, if PREFIX=VAR, the names of the variables are VAR1, VAR2, ..., VARn.
Note that this option is ignored when the NDATA= option is specified, unless there
are fewer names in the NDATA data set than there are markers; it is also ignored if
the experimental TALL option is specified, in which case the marker variable names
are taken from the marker ID variable specified in the MARKER= option. Otherwise,
if this option is omitted, PREFIX=M is the default when variables contain alleles; if
GENOCOL is specified, then the names of the variables specified in the VAR state-
ment are used as the marker names.

SEED=number
specifies the initial seed for the random number generator used for permuting the
data to calculate estimates of exact p-values. This option is ignored if PERMS= is
not specified. The value for number must be an integer; the computer clock time is
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used if the option is omitted or an integer less than or equal to 0 is specified. For
more details about seed values, refer to SAS Language Reference: Concepts.

TALLExperimental
indicates that the input data set is of an alternative format. This tall-skinny format
contains the following columns: two containing marker alleles (or one containing
marker genotypes if GENOCOL is specified), one for the marker identifier, and one
for the individual identifier. The experimental MARKER= and INDIV= options must
also be specified for this option to be in effect. Note that when this option is used, the
DATA= data set must first be sorted by any BY variables, then sorted by the marker
ID variable, then the individual ID variable.

TREND
requests that the linear trend test for allelic effects be performed. If none of the three
test options (ALLELE, GENOTYPE, or TREND) are specified, then all three tests
are performed by default.

VIF
specifies that the variance inflation factor λ should be applied to the trend chi-square
statistic for genomic control. This adjustment is applied only when the trend test is
performed and to markers in the VAR statement that are biallelic.

BY Statement

BY variables ;

You can specify a BY statement with PROC CASECONTROL to obtain separate
analyses on observations in groups defined by the BY variables. When a BY state-
ment appears, the procedure expects the input data set to be sorted in order of the BY
variables. The variables are one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CASECONTROL procedure. The NOTSORTED option does
not mean that the data are unsorted but rather that the data are arranged in
groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion in SAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in the SAS Procedures Guide.
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STRATA Statement
STRATA variables </ options> ;

The STRATA statement names the variables defining strata or representing matched
or nested sets of individuals in a case-control study. Each STRATA variable can
be either character or numeric, and the formatted values of the STRATA variables
determine the levels. Thus, you can also use formats to group values into levels. Refer
to the discussion of the FORMAT procedure in the Base SAS Procedures Guide. At
least one variable must be specified to invoke the stratified analysis. See the section
“Stratified Analysis” on page 58 for more information.

The following options can be specified after a slash (/):

MISSING
treats missing values (‘.’, ‘.A’,...,‘.Z’ for numeric variables and blanks for character
variables) as valid STRATA variable values.

INFO
displays the “Strata Information” table, which includes the stratum number, levels of
the STRATA variables that define the stratum, the total number of individuals, and the
counts for the two trait values that define cases and controls in each stratum. Since
the number of strata can be very large, this table is only displayed on request.

TRAIT Statement
TRAIT variable ;

The TRAIT statement identifies a binary variable indicating which individuals are
cases and which are controls or a binary variable representing a dichotomous trait.
This variable can be character or numeric, but must have only two nonmissing levels.

VAR Statement
VAR variables ;

The VAR statement identifies the variables containing either the marker alleles, or
the marker genotypes if GENOCOL is specified. The following number of variables
should be specified in this statement for a data set containing m markers according to
whether the options GENOCOL and TALL are used:

• When both GENOCOL and TALL are specified, there should be 1 variable
named containing marker genotypes

• When only TALL is specified, there should be 2 variables named containing
marker alleles

• When only GENOCOL is specified, there should be m variables named, one
for each marker containing marker genotypes

• When neither option is specified, there should be 2m variables named, two for
each marker containing marker alleles

All variables specified must be of the same type, either character or numeric.
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Details

Statistical Computations

Biallelic Markers

PROC CASECONTROL offers three statistics to test for an association between a
biallelic marker and a binary variable, typically affection status of a particular dis-
ease. Table 4.1 displays the quantities that are used for the three case-control tests for
biallelic markers (Sasieni 1997).

Table 4.1. Genotype Distribution for Case-Control Sample

Number of M1 alleles
0 1 2 Total

Case r0 r1 r2 R
Control s0 s1 s2 S
Total n0 n1 n2 N

The three statistical methods for testing a marker for association with a disease locus
are Armitage’s trend test (1955), the allele case-control test, and the genotype case-
control test. The trend test and allele case-control test are most useful when there is
an additive allele effect on the disease susceptibility. When Hardy-Weinberg equi-
librium (HWE) holds in the combined sample of cases and controls, these statistics
are approximately equal and have an asymptotic χ2

1 distribution. However, if the as-
sumption of HWE in the combined sample is violated, then the variance for the allele
case-control statistic is incorrect; only the trend test remains valid under this viola-
tion. The statistics for the trend and allele case-control test, respectively, are given by
Sasieni (1997) as

X2
T =

N [N(r1 + 2r2) − R(n1 + 2n2)]2

R(N − R)[N(n1 + 4n2) − (n1 + 2n2)2]

X2
A =

2N [2N(r1 + 2r2) − 2R(n1 + 2n2)]2

(2R)2(N − R)[2N(n1 + 2n2) − (n1 + 2n2)2]

Devlin and Roeder (1999) describe a genomic control method that adjusts the
trend test statistic for correlation between alleles from members of the same sub-
population. Assuming the variance inflation factor λ is constant across the genome,
it can be estimated by λ̂ = max([median(X1, ..., Xm)/0.675]2, 1), where Xi = XT

for the ith biallelic marker, i = 1, ...,m (Devlin and Roeder 1999; Bacanu, Devlin,
and Roeder 2000). The adjusted trend statistic, X2

Ta
= X2

T /λ̂, is approximately
distributed as χ2

1. This variance correction is made to biallelic markers when the
VIF option is specified in the PROC statement. By default, any biallelic markers
that are specified in the VAR statement are used in computing λ̂. Alternatively, the
NULLSNPS= option can be used to specify biallelic markers other than those in the
VAR statement to be used to calculate λ̂. This allows markers that are assumed to
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have no effect on disease susceptibility or to not be in linkage disequilibrium with
a disease-susceptibility locus to be used in calculating the inflation factor (Bacanu,
Devlin, and Roeder 2000).

If dominance effects of alleles are also suspected to contribute to disease susceptibil-
ity, the genotype case-control test can be used. The standard 2×3 contingency table
analysis is used to form the χ2

2 statistic for the genotype case-control test as

X2
G =

2∑
i=0

[
(Nri − Rni)2

NRni
+

(Nsi − Sni)2

NSni

]

which tests for both additive and dominance (nonadditive) allelic effects (Nielsen and
Weir 1999).

When the OR option is specified in the PROC CASECONTROL statement, odds
ratios for biallelic markers are calculated based on the 2x2 table of allele-by-trait
counts. Using the values given in Table 4.1 to form the cell counts a = 2r2 + r1,
b = 2s0 + s1, c = 2r0 + r1, and d = 2s2 + s1, the odds ratio can be estimated as
θ̂ = ab/(cd). The asymptotic (1−α)% confidence limits for the estimated odds ratio
θ̂ are

(θ̂ · exp (−z
√

v), θ̂ · exp (z
√

v))

where

v =
1
a

+
1
b

+
1
c

+
1
d

and z is the 100(1 − α/2) percentile in the standard normal distribution. If any of
the four cell frequencies are zero, the limits are not computed. The order of rows
and columns is determined by the formatted values of the alleles and trait. Also note
that if there are no heterozygous genotypes, 2v is used in place of v in the formula
for the confidence limits so that each individual is counted only once. This provides
the correct limits when combining the heterozygous genotype with a homozygous
genotype to obtain odds ratios for dominant or recessive disease models (see Example
4.3).

Multiallelic Markers

When there are multiple alleles of interest at a marker, the same three tests can be
performed, except that Devlin and Roeder’s genomic control adjustment is not ap-
plied to any markers with more than two alleles. To construct the test statistic for
the multiallelic trend test for a marker with k alleles (Slager and Schaid 2001), the
p × (k − 1) matrix X is created such that each element Xiu represents the number
of times the Mu allele appears in the ith genotype, i = 1, ..., p and u = 1, ..., k − 1,
where p = k(k + 1)/2, the number of possible genotypes. Vectors r and s of length
p contain the genotype counts for the cases and controls respectively, and φ = R/N ,
the proportion of cases in the sample. The multiallelic trend test statistic can then be
expressed as U′[Var(U)]−1U, where the vector U = X′[(1 − φ)r − φs]. Var(U) is
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calculated under the assumption of independent (or unrelated) subjects in the sample
using Var(r) and Var(s). These matrices contain elements σii = Rni(N − ni)/N2

and σij = −Rninj/N
2, where i, j = 1, ..., p (the R is replaced by S for Var(s)).

This statistic has an asymptotic χ2
k−1 distribution.

Another way to test for additive allele effects at the disease or trait locus is the allele
case-control test, executed using a contingency table analysis similar to the genotype
case-control test described in the preceding section, assuming HWE (Nielsen and
Weir 1999). For a marker with k alleles, a 2×k contingency table is formed with one
row for cases, one for controls, and a column for each allele. The χ2

k−1 statistic is
formed by summing (O −E)2/E over all cells in the table, where O is the observed
count for the cell and E is the expected count, the cell’s column total multiplied by
R/N (or S/N ) for a cell in the case (or control) row.

The genotypic case-control test statistic is calculated in a similar manner, with
columns now representing the p observed genotype classes instead of alleles.
Significance of this test statistic using the χ2

p−1 distribution indicates dominance
and/or additive allelic effects on the disease or trait (Nielsen and Weir 1999).

Stratified Analysis

A stratified case-control test can be performed to adjust for categorical covariates,
such as gender or treatment; analyze a sample from a matched or nested case-control
design; or accommodate the analysis of X-linked markers. The generalized Cochran-
Mantel-Haenszel (CMH) test statistic given by Agresti (1990) can be used to test
whether there is an association between the trait and marker alleles or genotypes in
any of the strata, still with the same chi-square distribution and degrees of freedom
as the test statistic from the nonstratified analysis. For the allele and genotype tests,
which are based on contingency tables, the statistic is formed with the following
quantities that use observed cell counts cijh from the ith row (corresponding to one
of the two trait categories), jth out of J columns (corresponding to the jth allele or
genotype), and hth stratum:

ch = (c11h, c12h, . . . , c1,J−1,h)′

eh = (c1+hc+1h, . . . , c1+hc+,J−1,h)′/c++h

Cov(c1jh, c1j′h) =
c1+h(c++h − c1+h)c+jh(δjj′c++h − c+j′h)

c2
++h(c++h − 1)

with covariance matrix Vh of ch comprising these covariance terms for all h and
j, j′ = 1, . . . , J − 1 and δjj′ = 1 when j = j′ and 0 otherwise. Note that cell counts
for i = 2 are omitted from the vectors and matrix since they are completely dependent
on the cell counts from the first row and column totals. For the stratified trend test,
which is based on the Mantel score test of conditional independence (Agresti 1990),
a trend test vector Uh and the covariance matrix Vh = c++hVar(Uh)/(c++h − 1)
are calculated within each stratum with Uh and Var(Uh) defined as in the previous
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section for the multiallelic trend test. All three test statistics can then be represented
as

X2
M = S′V−1S

with a χ2
J−1 distribution under the null hypothesis where J represents the number of

genotypes for the genotype test or the number of alleles for the allele and trend tests,

S =
{ ∑

h(ch − eh), genotype and allele tests∑
h Uh, trend test

and V =
∑

h Vh.

The Mantel-Haenszel estimate of the common odds ratio across strata (Agresti 1990)
for biallelic markers is reported when the STRATA statement is used along with the
OR option in the PROC CASECONTROL statement. For a contingency table with
two columns representing the two alleles at a marker, the estimate in terms of the
observed cell counts is

θ̂MH =
∑

h(c11hc22h/c++h)∑
h(c12hc21h/c++h)

The asymptotic (1 − α)% confidence limits for the estimate of the odds ratio θ̂MH
are again given by Agresti (1990) as

(θ̂MH · exp (−z
√

v), θ̂MH · exp (z
√

v))

now with

v =
∑

h(c11h + c22h)(c11hc22h)/c2
++h

2(
∑

h c11hc22h/c++h)2

+
∑

h[(c11h + c22h)(c12hc21h) + (c12h + c21h)(c11hc22h)]/c2
++h

2(
∑

h c11hc22h/c++h)(
∑

h c12hc21h/c++h)

+
∑

h(c12h + c21h)(c12hc21h)/c2
++h

2(
∑

h c12hc21h/c++h)2

Again, if all of the strata contain no heterozygous genotypes, v is replaced by 2v in
the confidence limits formula.

Permutation Tests

By default, the p-values from the χ2 distribution with the appropriate degrees of free-
dom are reported for all three case-control tests. However, if the PERMS= option is
specified in the PROC CASECONTROL statement, then Monte Carlo estimates of
exact p-values are computed instead using the permutation procedure. For the geno-
type and trend tests, new samples of individuals are formed by permuting the trait
value of the individuals in the sample; permutations for the allele test treat the two
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marker alleles per individual as separate observations each with the same trait, and
the trait value is then permuted across these observations. If there are any STRATA
variables, permutations are performed within each stratum. For p permutations, the
exact p-value is estimated as the proportion of times the chi-square statistic from one
of the p new samples is equal to or exceeds the chi-square statistic from the original
sample (Westfall and Young 1993).

Missing Values

An individual’s genotype for a marker is considered missing if at least one of the
alleles at the marker is missing. Any missing genotypes are excluded from all calcu-
lations. However, the individual’s nonmissing genotypes at other loci can be used as
part of the calculations. If an individual has a missing trait value, then that individual
is excluded from all calculations.

When the STRATA statement is used, missing stratum levels are handled in one of
two ways: when the MISSING option is specified, missing values are treated as
another stratum level; otherwise, individuals with a missing value for any of the
STRATA variables are excluded from the analysis.

OUTSTAT= Data Set

The output data set specified in the OUTSTAT= option of the PROC
CASECONTROL statement contains the following variables for each marker:

• the BY variables, if any

• Locus

• the counts of genotyped individuals for the two values of the TRAIT variable:
NumTrait1 and NumTrait2, where 1 and 2 are replaced by the values of the
TRAIT variable

• the odds ratio AlleleOddsRatio and its confidence limits LowerCL and
UpperCL if the OR option is used

• the chi-square statistic for each test performed: ChiSqAllele,
ChiSqGenotype, and ChiSqTrend

• the degrees of freedom for each test performed: dfAllele, dfGenotype, and
dfTrend

• the p-value for each test performed: ProbAllele, ProbGenotype, and
ProbTrend

Displayed Output

This section describes the displayed output from PROC CASECONTROL. See the
section “ODS Table Names” on page 61 for details about how this output interfaces
with the Output Delivery System.
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Strata Levels

The “Strata Levels” table is displayed by default when the STRATA statement is
used and contains the number of levels and the formatted names of the levels for each
STRATA variable.

Strata Information

The “Strata Information” table is displayed when the INFO option is specified in the
STRATA statement. This table reports each stratum as defined by a unique combi-
nation of levels of the STRATA variables, the total count for each stratum, and the
number of cases and controls as defined by the TRAIT variable in the strata.

ODS Table Names

PROC CASECONTROL assigns a name to each table it creates, and you must use
this name to reference the table when using the Output Delivery System (ODS). These
names are listed in the following table.

Table 4.2. ODS Tables Created by the CASECONTROL Procedure

ODS Table Name Description Statement / Option
StrataLevels Strata levels STRATA
StrataInfo Strata information STRATA / INFO

Examples

Example 4.1. Performing Case-Control Tests on Multiallelic
Markers

The following data are taken from GAW9 (Hodge 1995). A sample of 60 founders
was taken from 200 nuclear families, 30 affected with a disease and 30 unaffected.
Each founder was genotyped at two marker loci.

data founders;
input id disease a1-a4 @@;
datalines;

4 1 6 4 3 7 17 2 4 7 2 7
39 2 6 8 7 7 41 2 4 4 4 7
46 1 8 4 1 5 50 2 4 2 3 7
54 2 4 8 7 6 56 2 7 4 7 7
62 2 4 1 7 3 69 2 6 8 2 7
79 1 6 6 8 7 80 2 6 4 7 3
83 2 8 4 2 7 85 1 5 6 6 2
95 1 3 2 3 7 101 1 4 6 7 7
106 1 2 1 7 2 107 1 1 2 7 7
115 2 4 2 7 5 116 1 4 1 7 3
120 2 1 6 2 7 123 2 4 4 7 2
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130 1 5 2 3 7 133 1 8 6 3 6
134 1 8 4 2 2 139 2 6 4 7 6
142 2 3 6 7 7 151 1 4 6 4 3
152 1 6 7 6 7 153 1 5 1 7 6
154 1 4 6 6 6 168 1 1 4 3 7
178 2 4 1 7 1 187 1 1 8 1 2
189 2 6 4 5 7 190 2 4 4 3 7
195 2 4 4 7 2 207 2 1 6 7 7
216 1 7 4 1 5 222 2 4 2 7 3
225 2 8 7 7 6 234 1 6 4 2 2
244 1 4 4 7 6 249 2 6 8 7 2
263 1 8 2 3 7 267 2 2 2 2 7
276 2 1 6 7 1 284 2 4 8 2 2
286 1 8 8 2 1 289 1 2 6 6 3
290 1 2 4 5 7 294 2 1 8 6 7
297 2 5 4 7 6 313 1 1 7 7 2
337 1 2 6 7 6 366 2 2 2 7 7
368 2 3 1 7 2 381 1 6 4 5 3
384 1 6 2 2 7 396 1 4 5 7 2
;

The multiallelic versions of the association tests are performed since each marker
has more than two alleles. The following code invokes the three case-control tests
to find out whether there is a significant association between either of the markers
and disease status. Note that the same output could be produced by omitting the
three tests, ALLELE, GENOTYPE, and TREND, from the PROC CASECONTROL
statement.

proc casecontrol data=founders genotype allele trend;
trait disease;
var a1-a4;

run;

proc print noobs heading=h;
run;

An output data set is created by default, and the output from the PRINT procedure is
displayed in Output 4.1.1.

Output 4.1.1. Output Data Set from PROC CASECONTROL for Multiallelic
Markers
Num Num ChiSq ChiSq ChiSq df

Locus Trait1 Trait2 Genotype Allele Trend Genotype

M1 30 30 27.333 4.441 5.039 24
M2 30 30 18.077 8.772 13.244 15

df df Prob Prob Prob
Allele Trend Genotype Allele Trend

7 7 0.2892 0.7278 0.6552
7 7 0.2586 0.2694 0.0664
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This analysis finds no significant association between disease status and either of the
markers. Suppose, however, that allele 7 of the second marker had been identified
by previous studies as an allele of interest for this particular disease, and thus there
is concern that its effect is swamped by the other seven alleles. The data set can be
modified so that the second marker is considered a biallelic marker with alleles 7 and
“not 7.”

data marker2;
set founders;
if a3 ne 7 then a3=1;
if a4 ne 7 then a4=1;
keep id a3 a4 disease;

Now all three tests can be performed on the marker in the new data set.

proc casecontrol data=marker2;
trait disease;
var a3 a4;

run;

proc print noobs heading=h;
run;

PROC CASECONTROL performs all three tests by default since none were specified.
The output data set for this analysis is displayed in Output 4.1.2.

Output 4.1.2. Output Data Set from PROC CASECONTROL for a Biallelic Marker

Num Num ChiSq ChiSq ChiSq df
Locus Trait1 Trait2 Genotype Allele Trend Genotype

M1 30 30 12.193 6.599 10.103 2

df df Prob Prob Prob
Allele Trend Genotype Allele Trend

1 1 0.0023 0.0102 0.0015

With just the single allele of interest, there is now a significant association (using a
significance level of α = 0.05) according to all three case-control tests between the
marker (specifically, allele 7) and disease status. Note that the allele and trend tests,
both of which are testing for additive allele effects, produce quite different p-values,
which could be an indication that HWE does not hold for allele 7. This is in fact the
case, which can be checked by running the ALLELE procedure on data set marker2
to test for HWE (see Chapter 3, “The ALLELE Procedure,” for more information).
The excess of heterozygotes forces X2

A to be smaller than X2
T , and only X2

T remains
a valid chi-square statistic under the HWE violation.



64 � Chapter 4. The CASECONTROL Procedure

Example 4.2. Analyzing Data in the Tall-Skinny Format

This example demonstrates how data in the tall-skinny format can be analyzed us-
ing PROC CASECONTROL with the experimental options TALL, MARKER=, and
INDIV=. Here, the same data that were used in the “Getting Started” example are
used, but in this alternative format.

data talldata;
input affected $ id snpname $ allele1 allele2;
datalines;

N 1 Marker1 1 1
N 2 Marker1 1 1
N 3 Marker1 2 1
N 4 Marker1 2 2
N 5 Marker1 1 1
N 6 Marker1 2 1
N 7 Marker1 1 1
N 8 Marker1 2 2
N 9 Marker1 2 1
N 10 Marker1 2 1
N 11 Marker1 2 1
N 12 Marker1 2 2
N 13 Marker1 2 1
N 14 Marker1 2 1
N 15 Marker1 2 2
N 16 Marker1 1 1
N 17 Marker1 1 1
N 18 Marker1 2 1
A 19 Marker1 2 1
A 20 Marker1 2 1
A 21 Marker1 2 2
A 22 Marker1 1 2
A 24 Marker1 1 1
A 25 Marker1 2 1
A 26 Marker1 2 1
A 27 Marker1 2 1
A 28 Marker1 2 1
A 29 Marker1 1 1
A 30 Marker1 2 1
A 31 Marker1 2 2
A 32 Marker1 1 1
A 33 Marker1 1 1
A 34 Marker1 2 2
N 1 Marker2 2 2

... more datalines ...

A 27 Marker8 1 1
A 28 Marker8 2 2
A 29 Marker8 2 2
A 30 Marker8 1 2
A 31 Marker8 2 2
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A 32 Marker8 2 2
A 33 Marker8 2 2
A 34 Marker8 1 2
;

Note how all marker alleles are contained in two columns, and there are identifiers
for the markers and individuals sampled. The data set is first sorted by the marker
ID, then the individual ID. One advantage of this data format is there is no restriction
on the number of markers analyzed since, unlike the columns, there is no limit on the
number of rows in a SAS data set. The following code can be used to analyze this
data:

proc casecontrol data=talldata tall marker=snpname indiv=id;
var allele1 allele2;
trait affected;

run;

proc print;
run;

Applying this code to the data in this format produces the same output shown in the
“Getting Started” example, Figure 4.1.

Example 4.3. Producing Odds Ratios for Various Disease
Models

In addition to the chi-square test statistics between a marker and a disease, you may
be interested in inferences about the odds ratios based on the table of allele-by-disease
counts for each marker. You can use the OR option in the PROC CASECONTROL
statement to have the odds ratios from these tables included in the OUTSTAT= data
set along with confidence limits based on the level specified in the ALPHA= option
(or 0.05 by default).

This data set contains 20 individuals genotyped at five SNPs.

data genotypes;
input (g1-g5) ($) disease;
datalines;

B/B B/A B/A A/A A/A 1
B/B B/B B/A A/A B/B 0
A/B B/B B/A B/A B/B 1
B/B A/B B/A A/A B/B 1
B/B B/B A/B A/B B/B 0
A/A B/B A/A B/A B/B 0
B/B B/B B/A B/A A/B 1
B/B B/B A/A B/A A/B 1
B/B B/B A/A A/A B/B 1
B/B A/A B/B B/A B/B 1
B/B B/A B/B B/A A/B 0
B/B B/B A/A A/A B/B 1
B/B B/A B/B B/B B/B 0
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B/B B/B B/B A/A B/B 1
B/B B/B B/A B/A B/B 0
A/A B/B B/B B/B B/B 1
B/B B/B B/B B/A B/B 1
B/B B/B B/B B/B B/B 1
B/B B/B B/A A/A B/A 0
B/B B/B A/A B/A B/B 1
;

An output data set containing the odds ratios and respective confidence limits can be
produced with the following code.

proc casecontrol data=genotypes genocol or;
var g1-g5;
trait disease;

run;

proc print heading=h;
var Locus NumTrait0 NumTrait1 AlleleOddsRatio LowerCL UpperCL;

run;

Note the GENOCOL option is used since columns contain genotypes, not individual
alleles. The columns listed in the VAR statement of PROC PRINT are shown in
Output 4.3.1. Since the odds ratios are based on the allele counts, an additive disease
model is assumed.

Output 4.3.1. Output Data Set from PROC CASECONTROL Containing Odds
Ratios: Additive Model

Allele
Num Num Odds

Obs Locus Trait0 Trait1 Ratio LowerCL UpperCL

1 g1 7 13 1.27778 0.18724 8.72011
2 g2 7 13 0.91667 0.14597 5.75651
3 g3 7 13 0.87500 0.23620 3.24146
4 g4 7 13 0.83333 0.22242 3.12219
5 g5 7 13 0.91667 0.14597 5.75651

What if you want to look at odds ratios for genotypes assuming a dominant or re-
cessive disease model? You can use PROC FORMAT to group together genotypes,
such as the heterozygous genotype with one of the homozygous genotypes. In the
following code, two formats are created for the genotypes: $DOM–B. for a model
where allele B is dominant (or A is recessive) and $REC–B. for a model where allele
B acts in a recessive manner.

proc format;
value $dom_B ’A/A’=’A/A’

’B/B’=’B/B’
’A/B’=’B/B’
’B/A’=’B/B’
;

value $rec_B ’A/A’=’A/A’
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’B/B’=’B/B’
’A/B’=’A/A’
’B/A’=’A/A’
;

run;

proc casecontrol data=genotypes genocol or;
var g1-g5;
format g1-g5 $dom_b.;
trait disease;

run;

proc print heading=h;
var Locus NumTrait0 NumTrait1 AlleleOddsRatio LowerCL UpperCL;

run;

In this code, the FORMAT statement is used in PROC CASECONTROL to request
odds ratios for a disease model where allele B is dominant; that is, the genotypes
A/B and B/B are grouped into one category. The odds ratios for genotype A/A
versus A/B and B/B are now shown in Output 4.3.2. Similarly, a disease model
with B as the recessive allele could be tested instead using the $REC–B. format in
the FORMAT statement.

Output 4.3.2. Output Data Set from PROC CASECONTROL Containing Odds
Ratios: Dominance Model

Allele
Num Num Odds

Obs Locus Trait0 Trait1 Ratio LowerCL UpperCL

1 g1 7 13 2.000 0.10574 37.8296
2 g2 7 13 0.000 . .
3 g3 7 13 0.375 0.03326 4.2281
4 g4 7 13 0.640 0.08798 4.6554
5 g5 7 13 0.000 . .
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Chapter 5
The FAMILY Procedure
Overview

Family genotype data, though more difficult to collect, often provide a more effec-
tive way of testing markers for association with disease status than case-control data.
Case-control data may uncover significant associations between markers and a dis-
ease that could be caused by factors other than linkage, such as population struc-
ture. Analyzing family data using the FAMILY procedure ensures that any signifi-
cant associations found between a marker and disease status are due to linkage be-
tween the marker and disease locus. This is accomplished by using the transmis-
sion/disequilibrium test (TDT) and several variations of it that can accommodate
different types of family data. One type of family consists of parents, at least one
heterozygous, and an affected child who have all been genotyped. This family struc-
ture is suitable for the original TDT. Families containing at least one affected and
one unaffected sibling from a sibship that have both been genotyped can be analyzed
using the sibling tests: the sib TDT (S-TDT) or the nonparametric sibling disequilib-
rium test (SDT). Both types of families can be jointly analyzed using the combined
versions of the S-TDT and SDT and the reconstruction-combined TDT (RC-TDT).
The RC-TDT can additionally accommodate families with no unaffected children and
missing parental genotypes in certain situations.

When the trait of interest is quantitative, regression and variance component anal-
yses can be used to test for marker associations (Allison 1997; Fulker et al. 1999;
Rabinowitz 1997). These models were extended to accommodate any size nuclear
family with or without parental genotypes (Abecasis, Cardon, and Cookson 2000;
Monks and Kaplan 2000) and then to general pedigrees (Abecasis, Cookson, and
Cardon 2000). The strength of many procedures in SAS/STAT in these areas can be
applied to these statistical tests, though some data manipulation is required to form
the correct inputs. In order to simplify the data preparation steps, PROC FAMILY
can produce an output data set containing the pair of allelic transmission scores at
each marker allele. This data set can be used in the MIXED procedure, for example,
to test for association and linkage between marker genotypes and a quantitative trait
via the method of Abecasis, Cookson, and Cardon (2000).

Getting Started

Example

The following example demonstrates how you can use PROC FAMILY to perform
one of several family-based tests, the TDT. You have collected the following family
genotypic data that you input into a SAS data set:
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data example;
input ped indiv father mother disease (a1-a4)($);
datalines;

1 1 0 0 1 a b a c
1 2 0 0 1 c c a d
1 101 1 2 1 a c a d
1 102 1 2 1 b c a d
1 103 1 2 1 a c c a
1 104 1 2 2 b c a a
2 3 0 0 1 e e f g
2 4 0 0 1 d e g a
2 105 3 4 1 e d f a
2 106 3 4 2 e e g a
3 5 0 0 1 d a a c
3 6 0 0 1 e e c a
3 107 5 6 2 a e a a
4 7 0 0 1 f b a g
4 8 0 0 1 c e h g
4 108 7 8 2 b e a g
4 109 7 8 1 f c g g
4 110 7 8 1 b c a g
4 111 7 8 1 b c a h
5 9 0 0 1 a f d c
5 10 0 0 1 h d c h
5 112 9 10 2 a d d c
5 113 9 10 1 f d d c
6 11 0 0 1 b e c g
6 12 0 0 1 d f a g
6 114 11 12 2 b f c a
6 115 11 12 1 b d g a
7 13 0 0 1 e d c c
7 14 0 0 1 e h d a
7 116 13 14 1 e h c a
7 117 13 14 2 d e c a
7 118 13 14 1 d h c d
7 119 13 14 1 d h c d
;

The first column of the data set contains the pedigree ID, followed by an individual
ID, and the two parental IDs. The fifth column is a variable representing affection
status of a disease. The last four columns of this data set contain the two alleles at
each of two markers for each individual. Since there are no missing parental geno-
types in this data set, the TDT is a reasonable test to perform in order to determine if
either of the two markers is significantly linked to the disease locus whose location
you are trying to pinpoint. Furthermore, close inspection of the data reveals that there
is only one affected child (which corresponds to a value of “2” for the disease affec-
tion variable) per each family. Thus, the TDT is also a valid test for association with
the disease locus. To perform the analysis, you would use the following statements:
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proc family data=example prefix=Marker outstat=stats tdt contcorr;
id ped indiv father mother;
trait disease / affected=2;
var a1-a4;

run;

proc print data=stats;
format ProbTDT pvalue6.5;

run;

This code creates an output data set stats, which contains the chi-square statistic,
degrees of freedom, and p-value for testing each marker for linkage and association
with the disease locus using the TDT. The PREFIX= option in the PROC FAMILY
statement specifies that the two markers be named Marker1 and Marker2 in the out-
put data set. The CONTCORR option indicates that the continuity correction of 0.5
should be used in calculating the chi-square statistic. The AFFECTED= option of the
TRAIT statement specifies which value of the variable disease should be considered
“affected.” Note that the pedigree ID variable is listed in the ID statement; however,
it is not necessary for this data set, since all the individual IDs are unique. The same
results would be obtained if this variable were omitted.

Here is the output data set that is produced:

ChiSq df Prob
Obs Locus TDT TDT TDT

1 Marker1 1.57143 6 0.9546
2 Marker2 5.79861 5 0.3263

Figure 5.1. Statistics for the TDT

Figure 5.1 displays the statistics for the TDT. Since both markers are multiallelic, a
joint test of all alleles at each marker is performed by default. The degrees of freedom
(in the dfTDT column) indicate that there are seven alleles at Marker1 and six alleles
at Marker2, since df= k − 1 where k is the number of marker alleles. The ProbTDT
column shows that neither of the markers is significantly linked and associated with
the disease locus.

Syntax
The following statements are available in PROC FAMILY.

PROC FAMILY < options > ;
BY variables ;
ID variables ;
TRAIT variable </ AFFECTED=value> ;
VAR variables ;
XLVAR variables ;
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Items within angle brackets (< >) are optional, and statements following the PROC
FAMILY statement can appear in any order. The ID and the VAR and/or XLVAR
statements are required. The syntax of each statement is described in the following
section in alphabetical order after the description of the PROC FAMILY statement.

PROC FAMILY Statement

PROC FAMILY < options > ;

You can specify the following options in the PROC FAMILY statement.

COMBINE
specifies that the combined versions of the S-TDT and SDT be performed. Thus,
families containing parental genotypes can be analyzed under certain conditions us-
ing the TDT, and otherwise the specified sibling test is performed. Note that if TDT is
also being performed, the TDT is done independently of any other tests. By default,
the combined versions are not used.

CONTCORR
CC

specifies that a continuity correction of 0.5 should be used for the TDT, S-TDT, and
RC-TDT tests in their asymptotic normal approximations. By default, no correction
is used.

DATA=SAS-data-set
names the input SAS data set to be used by PROC FAMILY. The default is to use the
most recently created data set.

DELIMITER=’string’
indicates the string that is used to separate the two alleles that comprise the genotypes
contained in the variables specified in the VAR statement. This option is ignored if
GENOCOL is not specified.

GENOCOL
indicates that columns specified in the VAR statement contain genotypes instead of
alleles. When this option is specified, there is one column per marker. The genotypes
must consist of the two alleles separated by a delimiter.

MULT=JOINT
MULT=MAX

specifies which multiallelic version of the TDT, S-TDT, SDT, and RC-TDT tests
should be performed. The joint version of the multiallelic tests combines the analy-
ses for each allele at a marker into one overall test statistic, with degrees of freedom
(df) corresponding to the number of alleles at the marker. The max version of the
multiallelic tests determines if there is at least one allele with a significant test statis-
tic, using the maximum 1 df statistic over all alleles with a multiple testing adjustment
made. By default, the joint version of the multiallelic tests is performed. This option
has no effect on biallelic markers.
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NDATA=SAS-data-set
names the input SAS data set containing names, or identifiers, for the markers used
in the output. There must be a NAME variable in this data set, which should contain
the same number of rows as there are markers in the input data set specified in the
DATA= option. When there are fewer rows than there are markers, markers without
a name are named using the PREFIX= option. Likewise, if there is no NDATA= data
set specified, the PREFIX= option is used. If both the VAR and XLVAR statements
are specified, names are first used for the markers in the VAR statement, then for the
X-linked markers.

OUTQ=SAS-data-set
names the output SAS data set containing all the variables from the input data set in
addition to the allelic transmission scores at each marker allele to be used in testing
for association and linkage with a quantitative trait. When this option is used, the
TRAIT statement is not required.

OUTSTAT=SAS-data-set
names the output SAS data set containing the p-values for the tests specified in the
PROC FAMILY statement. When this option is omitted, an output data set is created
by default and named according to the DATAn convention.

PERMS=number
indicates that Monte Carlo estimates of exact p-values for the family-based tests
should be calculated using permutation samples instead of the p-values from the
asymptotic χ2 distribution. Large values of number (10,000 or more) are usually rec-
ommended for accuracy, but long execution times may result, particularly with large
data sets. When this option is omitted, no permutations are performed and p-values
from the asymptotic χ2 distribution are reported.

PREFIX=prefix
specifies a prefix to use in constructing names for marker variables in all output. For
example, if PREFIX=VAR, the names of the variables are VAR1, VAR2, ..., VARn.
Note that this option is ignored when the NDATA= option is specified, unless there
are fewer names in the NDATA data set than there are markers. If this option is
omitted, PREFIX=M is the default when variables contain alleles; if GENOCOL is
specified, then the names of the variables specified in the VAR statement are used as
the marker names.

RCTDT
requests that the reconstruction-combined TDT (RC-TDT) be performed. If none of
the four test options (RCTDT, SDT, STDT, or TDT) are specified, then all four tests
are performed by default. Note that error-checking is always performed on families
with at least one untyped parent in order to determine whether or not reconstruction
of parental genotypes can be attempted.

SDT
requests that the SDT, a nonparametric alternative to the S-TDT, be performed. If
none of the four test options (RCTDT, SDT, STDT, or TDT) are specified, then all
four tests are performed by default. The COMBINE option can be used with this test
to indicate that the combined version of the SDT should be performed.
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SEED=number
specifies the initial seed for the random number generator used for permuting the
data to calculate estimates of exact p-values. This option is ignored if PERMS= is
not specified. The value for number must be an integer; the computer clock time is
used if the option is omitted or an integer less than or equal to 0 is specified. For
more details about seed values, refer to SAS Language Reference: Concepts.

SHOWALL
indicates that all families and markers should be included in the “Family Summary”
table. When this option is omitted, a family is only included in the table for any
marker where there is a genotype error according to a Mendelian inconsistency.

STDT
requests that the sibling TDT (S-TDT), which analyzes data from sibships, be per-
formed. If none of the four test options (RCTDT, SDT, STDT, or TDT) are specified,
then all four tests are performed by default. The COMBINE option can be used with
this test to indicate that the combined version of the S-TDT should be performed.

TDT
requests that the original TDT be performed. If none of the four test options (RCTDT,
SDT, STDT, or TDT) are specified, then all four tests are performed by default.

BY Statement

BY variables ;

You can specify a BY statement with PROC FAMILY to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables. The
variables are one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the FAMILY procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in Base
SAS software).

For more information on the BY statement, refer to the discussion in SAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in the SAS Procedures Guide.
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ID Statement

ID variables ;

The ID statement is required and must contain, in the following order, either:

• the pedigree ID, the individual ID, then the two parental ID variables, or

• the individual ID, then the two parental IDs

Thus if only three variables are specified in the ID statement, it is assumed that the
pedigree identifier has been omitted. The pedigree ID is not necessary if all the
individual identifiers are unique. The individual and two parental ID variables can
be either numeric or character, but all three must be of the same type. The pedigree
variable, if specified, can be either numeric or character regardless of the type of the
other three identifiers.

TRAIT Statement

TRAIT variable </ AFFECTED=value> ;

The TRAIT statement identifies the trait variable and is required when the OUTQ=
option is omitted. This variable must be binary, but may be either character or nu-
meric. By default, the second value of the TRAIT variable that appears in the input
data set is considered to be “affected” for the tests. If you would like to specify
a different value for “affected,” you may do so by adding the /AFFECTED=value
option to the TRAIT statement. For a variable with a numeric format, the number
that corresponds to “affected” should be specified (AFFECTED=1); if the variable
has a character format, the level that corresponds to “affected” should be specified in
quotes (AFFECTED=“a”).

VAR Statement

VAR variables ;

The VAR statement identifies the variables containing either the marker alleles, or the
marker genotypes if GENOCOL is specified. By default, the VAR statement should
contain 2m variable names, where m is the number of markers in the data set. Note
that variables containing alleles for the same marker should be listed consecutively.
When GENOCOL is specified, there should be one variable per marker.

XLVAR Statement

XLVAR variables</ SEX=variable> ;

The XLVAR statement identifies the variables containing either the alleles, or the
genotypes if GENOCOL is specified, at X-linked markers. By default, the XLVAR
statement should contain 2m variable names, where m is the number of X-linked
markers in the data set. Note that variables containing alleles for the same marker
should be listed consecutively. The second allele variable for males in the data set
must be nonmissing but is ignored since males have only one allele at markers on
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the X-chromosome. When GENOCOL is specified, there should be one variable per
marker. When X-linked markers are analyzed, there must be a SEX variable in the
data set indicating whether individuals are male (1 or “M”) or female (2 or “F”).
If this variable is named something other than SEX, the /SEX=variable option must
be added to the XLVAR statement indicating the name of the variable containing
individuals’ sex. See “X-linked Version of Tests” for more information on X-linked
tests.

Details

Statistical Computations

For all tests, it is assumed that the marker has two alleles, M1 and M2. Extensions
to multiallelic markers are made by performing the tests on each allele in turn, with
the current allele being considered to be M1 and all other alleles considered to be
M2. When the CONTCORR option is specified in the PROC FAMILY statement, the
z score statistics of all versions of the TDT, S-TDT, and RC-TDT can be continuity
corrected by subtracting 0.5 from the absolute value of the numerator. The two-sided
p-value for each z score using the normal distribution is equivalent to using the p-
value from the χ2

1 distribution for the square of the z score, and this chi-square form
of the statistic is reported in the output data set.

TDT

The TDT (Spielman, McGinnis, and Ewens 1993) is implemented using a normal
approximation. This test includes families where both parents have been genotyped
for the marker and at least one is heterozygous. If only one parent has been geno-
typed, that parent is heterozygous, and the affected child is not homozygous and does
not have the same genotype as the typed parent, then the TDT can be applied to this
family as well (Curtis and Sham 1995). The TDT tests for equality between the pro-
portion of times a heterozygous parent transmits the M1 allele to an affected child and
the proportion of times a heterozygous parent transmits the M2 allele to an affected
child. The normal approximation to the binomial is used to form the z score statistic

Z =
b − b+c

2√
b+c
4

where b is the number of M1 alleles in all affected children from heterozygous parents
and c is the number of M2 alleles in affected children from heterozygous parents.

Two extensions to a multiallelic TDT are available. The first, which is performed by
default or when MULT=JOINT is specified in the PROC FAMILY statement, com-
bines the TDT for each of k alleles at a marker into one statistic as follows (Spielman
and Ewens 1996):

TJ =
k − 1

k

k∑
v=1

Z2
v
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where Zv is simply the Z defined in the preceding paragraph, with allele Mv treated
as M1 and all other alleles as M2 for each v = 1, ..., k. TJ and the continuity-
corrected form T ′

J have an asymptotic χ2
k−1 distribution, and the corresponding p-

value is reported.

Alternatively, if the MULT=MAX option is specified, either zm or z′m (when the
CONTCORR option is specified) is used, where zm = max1≤v≤k |Zv|. The equiva-
lent one degree of freedom chi-square statistic is reported, and a Bonferroni correc-
tion is applied to its p-value.

Note: The TDT is a valid test of linkage and association only when the data con-
sist of unrelated nuclear families and each family contains only one affected child.
Otherwise, it is a valid test of linkage only.

S-TDT
The z score procedure given by Spielman and Ewens (1998) is used to calculate p-
values for the S-TDT. This test can be applied to families where there are at least
one affected sibling and one unaffected sibling, and not all siblings have the same
genotype. The z score, whose two-sided p-value is approximated using the normal
distribution, is calculated as z = (Y − A)/

√
V . Y represents the total observed

number of M1 alleles in the affected siblings. For t total siblings in the family, a
affected and u unaffected, and r that are M1/M1 and s that are M1/M2, summing
over families gives

A =
∑

(2r + s)a/t

and

V =
∑

au[4r(t − r − s) + s(t − s)]/[t2(t − 1)]

as the expected value and variance of Y respectively.

When the COMBINE option is specified in the PROC FAMILY statement, the S-TDT
and TDT are combined as follows: the TDT is applied to all alleles within a family
that meet the requirements described in the preceding section. The S-TDT is then
applied to the remaining alleles within a family that meet its requirements described
in the preceding paragraph. Using the notation already given for these tests, the z
score for the combined test can then be written as

z =
(Y + b) − (A + b+c

2 )√
V + b+c

4

For multiallelic markers, the same extensions can be made to the S-TDT and com-
bined S-TDT that were made to the TDT (Monks, Kaplan, and Weir 1998); that is,
either a joint test over all alleles (using Tmcomb), or the maximum z score of all the
alleles with the p-value being Bonferroni-corrected.

Note: The S-TDT is a valid test of linkage and association only when the data consist
of unrelated nuclear families and each family contains only one affected and one
unaffected sibling. Otherwise, it is a valid test of linkage only.
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SDT

The SDT (Horvath and Laird 1998) is a sign test used on discordant sibling pairs.
As with the S-TDT, one affected sibling and one unaffected sibling are required to
be in each family, but unlike the S-TDT, the SDT remains a valid test of linkage and
association when the sibship is larger.

The notation from the S-TDT is used, except now the quantities a, u, r, s, and Y are
defined for each sibship/family, so for example, there are a affected siblings in the
family and u unaffected siblings in the family. Treating each allele Mv in turn as M1

and all other alleles as M2, v = 1, ..., k, define for each family in the data the average
number of v alleles among affected siblings and unaffected siblings respectively as

ma
v = Y/a

mu
v = [(2r + s) − Y ] /u

Then dv = ma
v − mu

v for each family, and summing over families gives Sv =∑
sgn(dv), where sgn(dv) = 1 for dv > 0, 0 for dv = 0, and −1 for dv < 0.

The joint multiallelic SDT statistic (mSDT) is then defined by Czika and Berry
(2002) as T = S′W−S where S′ = (S1, ..., Sk)′ and Wvw =

∑
sgn(dv)sgn(dw),

v, w = 1, ..., k, and W− is the Moore-Penrose generalized inverse of W. T has an
asymptotic χ2

k′ distribution where k′ = rank(W), and this distribution is used to ob-
tain p-values for the SDT (Czika and Berry 2002). When there are only two alleles at
the marker, this joint multiallelic version of the SDT reduces to the biallelic version
of the SDT.

This sibship test is also combined with the TDT when the COMBINE option in the
PROC FAMILY statement is specified, creating a test which can potentially use more
of the data (Horvath and Laird 1998; Curtis, Miller, and Sham 1999). In order to
maintain the test’s validity as a test of association in families with more than one
affected and one unaffected sibling, a nonparametric multiallelic TDT is used, which
is in the same S′W−S form as the SDT. This test statistic for the joint test also has an
asymptotic χ2

k′ distribution (Czika and Berry 2002), and the corresponding p-value is
reported.

When the MULT=MAX option is specified in the PROC FAMILY statement, then
the SDT chi-square statistic is simply max1≤v≤k(S2

vW−1
vv ) and has one degree of

freedom. This applies to the SDT when used alone or combined with the TDT. As
with the other tests, a Bonferroni correction is made to the p-value.

RC-TDT

The RC-TDT (Knapp 1999a) takes the combined S-TDT a step further by recon-
structing missing parental genotypes when possible in order to use more families.
The RC-TDT can be applied to families with at least one affected child that meet one
of the following conditions:

• Both parents are typed with at least one heterozygous for M1.
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• One parent is typed, the other can be reconstructed, and at least one parent is
heterozygous for M1.

• Both parents’ genotypes are missing but can be reconstructed, and at least one
parent is heterozygous for M1.

• At least one parental genotype is missing and cannot be reconstructed, but the
conditions for the S-TDT are met.

• One parental genotype is missing and cannot be reconstructed, the other parent
is heterozygous for M1, at least one affected child is heterozygous for M1 and
an allele not in the typed parent (Knapp 1999b).

Reconstruction of parental genotypes is only attempted when there are no genotyping
errors in the family for the marker being tested. As with the S-TDT, a z score is
created using the statistic Y , but Knapp (1999a) calculates a different expected value
e and variance v of Y , which takes into account the bias created by the genotype
reconstruction, to form the z score over all families:

z = (Y − e)/
√

v

For multiallelic markers, the same extensions can be made to the RC-TDT that were
made to the TDT and S-TDT; that is, either a joint test over all alleles, or the maxi-
mum z score of all the alleles with the p-value being Bonferroni-corrected.

Note: The RC-TDT is a valid test of linkage and association only when the data
consist of unrelated nuclear families and each family contains only one affected and
one unaffected sibling. Otherwise, it is a valid test of linkage only.

X-linked Version of Tests

For markers from the X-chromosome that are specified in the XLVAR statement, the
above tests are not applicable since females have two alleles at such markers and
males have only one. Horvath, Laird, and Knapp (2000) present X-linked versions
of the TDT, S-TDT, combined S-TDT, and RC-TDT to accommodate these markers.
For the X-TDT, the only difference in calculating the values b and c is that for X-
linked markers, transmissions only from heterozygous mothers, instead of heterozy-
gous parents, are used. Note that even though the paternal genotype is not directly
used, it must be nonmissing except for when including transmissions to sons in the
family, or for daughters who are heterozygous but with a different genotype than their
mother (not possible for a biallelic marker).

For the XS-TDT, each sibship is divided into two subsibships so that female sibs
and male sibs are analyzed separately. The statistic is then constructed treating the
subsibships independently. For female sibs, the parameters A and V are the same as
those defined for the S-TDT. For males, the X-linked expected value and variance of
the number of Mv alleles in affecteds is calculated across male subsibships as

A =
∑

ac/t



82 � Chapter 5. The FAMILY Procedure

and

V =
∑

auc(t − c)/[t2(t − 1)]

where c is the number of Mv alleles among all males in a subsibship. The X-linked
version of the combined S-TDT is calculated analagously to the combined S-TDT for
autosomal markers using the X-linked versions of the TDT and S-TDT.

The X-linked RC-TDT can be divided into four situations:

• Both parents are typed and the X-TDT can be applied

• Only the maternal genotype is missing

• Only the paternal genotype is missing

• Both parental genotypes are missing

(Note that the first situation also includes the exception above when the maternal
genotype is nonmissing). Horvath, Laird, and Knapp (2000) show, as with the origi-
nal RC-TDT, expected values and variances of the number of M1 alleles in affected
children when reconstructing parental genotypes in each of the last three situations
listed. Using these values, the XRC-TDT can be formed identically to the statistic for
the RC-TDT shown in the preceding section.

Permutation Tests

By default, p-values from the asymptotic χ2 distribution with appropriate degrees
of freedom are reported for all tests. However, if the PERMS= option is specified
in the PROC FAMILY statement, then Monte Carlo estimates of exact p-values are
calculated using the permutation procedure for the TDT, S-TDT, SDT, and combined
S-TDT and SDT. When the TDT is being performed, including when it is performed
in the combined tests, new samples are formed by permuting the alleles that are trans-
mitted to the offspring from the parents and those that are not transmitted (Kaplan,
Martin, and Weir 1997). Each affected child in a nuclear family is assigned a geno-
type comprised of one allele from each parent, with each allele being randomly se-
lected from the pair possessed by an individual parent. When the sibling tests are
used and the parental information is ignored, the permutation procedure involves ran-
domly permuting the affection status of siblings within each sibship (Spielman and
Ewens 1998; Monks, Kaplan, and Weir 1998). For each test, the corresponding test
statistic is calculated for the original sample as well as each of the permuted samples.
The approximation to the exact p-value is then calculated as the number of times
the test statistic from a permuted sample exceeds the test statistic from the original
sample.
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Creating Allelic Transmission Scores

Abecasis, Cookson, and Cardon (2000) define a pair of orthogonal allelic transmis-
sion scores, b and w, the expected genotype and deviate respectively, for each indi-
vidual at each marker. To create these scores, the genotype in terms of allele Mv

must first be defined as gjv = mjv − 1 for individual j where mjv represents the
number of Mv alleles that the genotype comprises. For any founder j, an individual
whose parents are not observed, in the sample, these scores are defined as bjv = gjv

and wjv = 0. Otherwise, let Mj and Fj be the respective indices of the mother and
father of individual j. Then for any nonfounder, assuming scores for an individual’s
ancestors are calculated before his or her own:

bjv =
{

(bMjv + bFjv)/2, bMjv and bFjv are nonmissing∑
k∈Sj

gkv/|Sj |, otherwise

where Sj = {k : Mk = Mj , Fk = Fj , and k genotyped}, and then wjv = gjv −
bjv. These scores are calculated for all alleles at the markers specified in the VAR
statement and are included in the OUTQ= data set.

Missing Values

An individual’s genotype for a marker is considered missing if at least one of the
alleles at the marker is missing. Any missing genotypes are excluded from all calcu-
lations. However, the individual’s nonmissing genotypes at other loci can be used as
part of the calculations. If a child has a missing trait value, then that individual is ex-
cluded from the statistical tests; allelic transmission scores can still be calculated for
such children. Missing trait values of individuals used only as parents do not affect
the analysis. See the following section for information on missing values in the ID
variables.

DATA= Data Set

The DATA= data set has columns representing markers, ID variables, and a trait, and
rows representing the individuals. There must be one binary trait variable listed in
the TRAIT statement; the three ID variables consisting of the individual’s ID and
the two parental IDs, all of the same type, must be listed in the ID statement, and
optionally the pedigree ID if the individual identifiers are not unique. Note that only
individuals with both parents appearing in the data, even if all the parents’ genotypes
are missing, can be used as affected children or in sib-pairs for analysis. However, if
the individual is used only as a parent, then that individual’s parents need not appear
in the data. An individual’s parents must occur in the data set before the individual
does, and full siblings must be in consecutive observations. If a pedigree ID variable
is specified in the ID statement, any individual with a missing value for that variable
is excluded from the analysis, as a parent and as a child. There are two columns
for each marker, representing the two alleles at that marker carried by the individ-
ual. These two columns must be listed consecutively in the VAR statement. These
marker variables must all be of the same type, but can be either character or numeric
variables.
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OUTQ= Data Set
The OUTQ= data set contains all the variables from the input data set, as well as
variables B–marker–allele and W–marker–allele for each allele at the loci specified
in the VAR statement containing the allelic transmission scores.

OUTSTAT= Data Set
When the TRAIT statement is specified, the OUTSTAT= data set is created and con-
tains the following variables:

• the BY variables, if any

• Locus

• X–Linked when there is at least one marker specified in the XLVAR statement.
This variable contains an “X” for X-linked markers and is blank for markers
from the VAR statement.

• the chi-square statistics for each test performed: ChiSqTDT, ChiSqSTDT,
ChiSqSDT, and ChiSqRCTDT

• the degrees of freedom for each test performed: dfTDT, dfSTDT, dfSDT, and
dfRCTDT

• the p-values for each test performed: ProbTDT, ProbSTDT, ProbSDT, and
ProbRCTDT

Displayed Output
This section describes the displayed output from PROC FAMILY. See the section
“ODS Table Names” on page 85 for details about how this output interfaces with the
Output Delivery System.

Family Summary

The “Family Summary” table lists information about the nuclear families, including
the pedigree ID (if listed in the ID statement) and the two parental IDs, then the
following information for each marker locus:

• number of typed parents

• number of affected and unaffected children with nonmissing genotypes (when
TRAIT statement is used)

• number of children with nonmissing genotypes (when TRAIT statement is
omitted)

• error code

Note that when SHOWALL is specified in the PROC FAMILY statement, all families
and all markers are displayed in the table. Otherwise, only families with a Mendelian
genotype error and the marker at which they have the error are included in the table.
The error code is an integer that represents a particular type of genotype error that is
described in the “Description of Error Codes” table.
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Description of Error Codes

The “Description of Error Codes” table provides a description for the error codes
listed in the “Family Summary” table. The descriptions of the family genotype errors
all refer to Mendelian inconsistencies in the child(ren)’s genotypes with the parental
genotypes. Error codes 1 through 5 can occur when neither of the parental genotypes
for that marker are available (the sibship is the family unit). Codes 6 and 7 can occur
for families with exactly one parent genotyped, and error code 8 can occur in families
with both parents genotyped.

Family X-linked Summary

The “Family X-linked Summary” table lists information about the nuclear families at
each of the X-linked markers, including the pedigree ID (if listed in the ID statement)
and the father and mother IDs, then the following information for each marker locus:

• which, if either, of the parents are typed

• number of affected and unaffected sons with nonmissing genotypes

• number of affected and unaffected daughters with nonmissing genotypes

• error code

Note that when SHOWALL is specified in the PROC FAMILY statement, all families
and all X-linked markers are displayed in the table. Otherwise, only families with a
Mendelian genotype error and the marker at which they have the error are included
in the table. The error code is an integer that represents a particular type of genotype
error that is described in the “Description of X-linked Error Codes” table.

Description of X-linked Error Codes

The “Description of X-linked Error Codes” table provides a description for the error
codes listed in the “Family X-linked Summary” table. The descriptions of the family
genotype errors all refer to Mendelian inconsistencies in the child(ren)’s genotypes
with the parental genotypes. Error codes 1 through 4 can occur when neither of the
parental genotypes for that marker are available (the sibship is the family unit); codes
5 and 6 can occur for families with only the maternal genotype missing; codes 7 and
8 occur for families with only the paternal genotype missing; and error code 9 can
occur in families with both parents genotyped. If both parents have the same value
for the SEX variable, an error code of 10 is reported.

ODS Table Names

PROC FAMILY assigns a name to each table it creates, and you must use this name
to reference the table when using the Output Delivery System (ODS). These names
are listed in the following table.
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Table 5.1. ODS Tables Created by the FAMILY Procedure

ODS Table Name Description PROC FAMILY
Option

Statement

FamilySummary Family summary SHOWALL or at least
one family with a
genotype error

VAR

ErrorCodeDesc Description of error codes SHOWALL or at least
one family with a
genotype error

VAR

FamilyXLSummary Family X-linked summary SHOWALL or at least
one family with a
genotype error

XLVAR

XLErrorCodeDesc Description of X-linked er-
ror codes

SHOWALL or at least
one family with a
genotype error

XLVAR

Examples

Example 5.1. Performing Tests with Missing Parental Data

The following data are from GAW9 (Hodge 1995) and contain 20 nuclear families
that are genotyped at two markers. The data have been modified so that each mother’s
genotype is missing.

data gaw;
input ped id f_id m_id sex disease m11 m12 m21 m22;
datalines;

1 1 0 0 1 1 7 8 7 2
1 2 0 0 2 1 . . . .
1 401 1 2 1 1 7 2 7 6
1 402 1 2 1 1 8 2 7 6
1 403 1 2 1 1 7 2 2 7
1 404 1 2 2 2 8 2 7 7
2 3 0 0 1 1 4 4 1 3
2 4 0 0 2 1 . . . .
2 405 3 4 2 1 4 6 1 7
2 406 3 4 2 2 4 4 3 7
3 5 0 0 1 1 6 7 7 2
3 6 0 0 2 1 . . . .
3 407 5 6 2 2 7 4 7 7
4 7 0 0 1 1 1 8 7 3
4 8 0 0 2 1 . . . .
4 408 7 8 2 2 8 4 7 3
4 409 7 8 1 1 1 2 3 3
4 410 7 8 2 1 8 2 7 3
4 411 7 8 1 1 8 2 7 5
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5 9 0 0 1 1 7 1 6 2
5 10 0 0 2 1 . . . .
5 412 9 10 2 2 7 6 6 2
5 413 9 10 1 1 1 6 6 2
6 11 0 0 1 1 8 4 2 3
6 12 0 0 2 1 . . . .
6 414 11 12 1 2 8 1 2 7
6 415 11 12 1 1 8 6 3 7
7 13 0 0 1 1 4 6 2 2
7 14 0 0 2 1 . . . .
7 416 13 14 1 1 4 5 2 7
7 417 13 14 2 2 6 4 2 7
7 418 13 14 2 1 6 5 2 6
7 419 13 14 1 1 6 5 2 6
8 15 0 0 1 1 6 8 2 7
8 16 0 0 2 1 . . . .
8 420 15 16 2 1 6 2 7 7
8 421 15 16 2 1 8 6 2 7
8 422 15 16 2 2 6 6 7 7
8 423 15 16 2 1 6 6 7 7
9 17 0 0 1 2 4 7 2 7
9 18 0 0 2 1 . . . .
9 424 17 18 2 2 4 5 7 2
9 425 17 18 2 1 7 4 2 7
9 426 17 18 1 1 4 5 2 2
10 19 0 0 1 1 6 4 2 7
10 20 0 0 2 1 . . . .
10 427 19 20 2 2 4 4 7 2
11 21 0 0 1 1 4 7 7 7
11 22 0 0 2 1 . . . .
11 428 21 22 1 1 7 6 7 2
11 429 21 22 2 2 7 4 7 2
11 430 21 22 2 1 7 6 7 3
12 23 0 0 1 1 7 6 7 5
12 24 0 0 2 1 . . . .
12 431 23 24 1 2 6 4 7 7
13 25 0 0 1 1 4 1 2 8
13 26 0 0 2 1 . . . .
13 432 25 26 1 1 4 8 2 6
13 433 25 26 1 2 1 8 8 6
13 434 25 26 1 1 1 4 2 6
14 27 0 0 1 1 7 6 3 2
14 28 0 0 2 1 . . . .
14 435 27 28 1 1 6 2 3 3
14 436 27 28 1 1 7 4 3 7
14 437 27 28 1 1 6 2 2 7
14 438 27 28 1 1 7 4 2 7
14 439 27 28 2 2 6 2 2 7
14 440 27 28 1 1 6 4 3 7
15 29 0 0 1 1 2 4 7 4
15 30 0 0 2 1 . . . .
15 441 29 30 1 1 4 2 7 7
15 442 29 30 2 2 4 8 4 7
15 443 29 30 2 1 4 2 7 5
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15 444 29 30 2 1 4 2 7 5
15 445 29 30 1 1 2 8 7 5
;

Since there are missing parental data, the original TDT may not be the best test to
perform on this data set. The following analysis uses the S-TDT, SDT, and RC-TDT
to test markers for linkage with the disease locus.

proc family data=gaw prefix=Marker sdt stdt rctdt;
id id f_id m_id;
var m11 m12 m21 m22;
trait disease / affected=2;

run;

proc print;
run;

The output data set, which is created by default, is displayed in Output 5.1.1.

Output 5.1.1. Output Data Set from PROC FAMILY
ChiSq ChiSq ChiSq df df df Prob Prob Prob

Obs Locus STDT SDT RCTDT STDT SDT RCTDT STDT SDT RCTDT

1 Marker1 5.6179 4.0083 4.7398 6 7 6 0.467 0.779 0.578
2 Marker2 12.6191 10.7500 11.9388 7 8 7 0.082 0.216 0.103

Since only one parent is missing genotype information in each nuclear family, the
TDT might be applicable to some of the families. The COMBINE option can be
specified to use the TDT in the appropriate families, and the S-TDT or SDT for all
other families. This option does not apply to the RC-TDT, so that test is omitted from
this analysis.

proc family data=gaw prefix=Marker tdt sdt stdt combine;
id id f_id m_id;
var m11 m12 m21 m22;
trait disease / affected=2;

run;

proc print;
run;

The output data set is displayed in Output 5.1.2.

Output 5.1.2. Output Data Set from PROC FAMILY Using COMBINE Option
ChiSq ChiSq ChiSq df df df Prob Prob Prob

Obs Locus TDT STDT SDT TDT STDT SDT TDT STDT SDT

1 Marker1 4.44444 6.3692 4.2380 5 6 7 0.487 0.383 0.752
2 Marker2 2.00000 11.6489 10.7500 3 7 8 0.572 0.113 0.216
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Note that the test statistics for the TDT and the S-TDT and SDT are not the same;
this implies that not all families meet the requirements for the TDT. In this case, the
S-TDT, SDT, and RC-TDT use more of the data than the TDT alone. However, since
there is only one affected child in each nuclear family, the TDT is a valid test of
association; since there is at least one occasion when there is more than one unaf-
fected child in a nuclear family, the S-TDT and RC-TDT are not valid for testing for
association of the marker with the disease locus (the SDT is always a valid test of
association when the data consist of unrelated nuclear families). Both of these con-
siderations, the amount of information that can be used and the validity for testing
association, should be taken into account when deciding which test(s) to perform.

Another type of analysis can be performed using the MULT=MAX option in the
PROC FAMILY statement. This option indicates that instead of doing a joint test
over all the alleles at each marker, perform a test to see if any of the alleles at a
marker are significantly linked with the disease locus. This analysis is invoked with
the following code, using only the SDT and RC-TDT:

proc family data=gaw prefix=Marker sdt rctdt combine mult=max;
id id f_id m_id;
var m11 m12 m21 m22;
trait disease / affected=2;

run;

proc print;
run;

The output data set produced by this code is displayed in Output 5.1.3.

Output 5.1.3. Output Data Set from PROC FAMILY Using MULT=MAX Option
ChiSq ChiSq df df Prob Prob

Obs Locus SDT RCTDT SDT RCTDT SDT RCTDT

1 Marker1 2.66667 2.90050 1 1 0.7173 0.6199
2 Marker2 3.57143 3.86422 1 1 0.4703 0.3946

The chi-square statistics for the tests always have one degree of freedom when the
MULT=MAX option is used. Note, however, that the p-values are not the cor-
responding right-tailed probabilities for a χ2

1 statistic; this is because the p-values
are Bonferroni-corrected in order to account for taking the maximum of several chi-
square statistics.

Example 5.2. Checking for Genotyping Errors

This example demonstrates the different kinds of family genotype errors (that is,
Mendelian inconsistencies within a nuclear family) that can be detected by PROC
FAMILY, and the output that displays this information. Here is a sample data set that
contains genotype errors:
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data ped_samp;
input id p1 p2 a1 a2 dis;
datalines;
1 0 0 1 1 0
2 0 0 2 3 0
3 1 2 1 2 0
4 1 2 4 5 1

101 0 0 . . 0
102 0 0 2 3 0
103 101 102 4 5 1
104 101 102 2 4 1
201 0 0 . . 0
202 0 0 1 4 0
203 201 202 1 5 1
204 201 202 1 6 0
205 201 202 1 7 1
301 0 0 . . 0
302 0 0 . . 0
303 301 302 1 2 1
304 301 302 1 3 0
305 301 302 1 4 0
401 0 0 . . 0
402 0 0 . . 0
403 401 402 1 1 1
404 401 402 2 2 1
405 401 402 3 3 0
501 0 0 . . 0
502 0 0 . . 0
503 501 502 1 1 0
504 501 502 2 2 0
505 501 502 1 3 1
601 0 0 . . 0
602 0 0 . . 0
603 601 602 1 1 1
604 601 602 1 4 0
605 601 602 2 3 0
701 0 0 . . 0
702 0 0 . . 0
703 701 702 1 2 0
704 701 702 2 3 1
705 701 702 1 4 0
707 701 702 2 5 1
801 0 0 1 3 0
802 0 0 . . 0
804 801 802 1 4 1
805 801 802 3 2 1
;

In addition to the usual output data set that is created, the SHOWALL option requests
that all families be included in the “Family Summary” table. Since there are families
with genotype errors, this table would have been created by default, but only the
families in error would be displayed in it.



Example 5.2. Checking for Genotyping Errors � 91

proc family data=ped_samp showall;
id id p1 p2;
trait dis;
var a1 a2;

run;

proc print;
run;

The “Family Summary” table shown in Output 5.2.1 includes an error code, which
is explained in the “Description of Error Codes” table in Output 5.2.2. The statistics
shown in Output 5.2.3 are based only on the last family since all the other families
have some sort of genotype error and thus are excluded from the analyses. The anal-
ysis would need to be performed again after genotyping errors have been corrected.

Output 5.2.1. Summary of Family/Marker Information
The FAMILY Procedure

Family Summary

Number Typed
of Children

Typed ------------ Error
Parent1 Parent2 Locus Parents Aff Unaff Code

1 2 M1 2 1 1 8
101 102 M1 1 2 0 6
201 202 M1 1 2 1 7
301 302 M1 0 1 2 5
401 402 M1 0 2 1 4
501 502 M1 0 1 2 3
601 602 M1 0 1 2 2
701 702 M1 0 2 2 1
801 802 M1 1 2 0 0

Output 5.2.2. Description of Error Codes
Description of Error Codes

Code Description

0 No errors
1 More than 4 alleles
2 1 homozygous genotype and more than 3 alleles
3 2 homozygous genotypes and more than 2 alleles
4 More than 2 homozygous genotypes
5 An allele occurs in more than 2 heterozygous genotypes
6 At least one genotype does not contain a parental allele
7 More than 2 alleles from missing parent
8 At least one genotype incompatible with parental genotypes
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Output 5.2.3. Output Data Set from PROC FAMILY
Chi Chi

Chi Sq Chi Sq df df df df Prob Prob Prob Prob
Obs Locus SqTDT STDT SqSDT RCTDT TDT STDT SDT RCTDT TDT STDT SDT RCTDT

1 M1 0 0 0 0 1 0 0 1 1 . . 1

Example 5.3. Using Allelic Transmission Scores for
Association Tests

Abecasis, Cookson, and Cardon (2000) show how the allelic transmission scores,
which are included in the OUTQ= data set, can be used to form various family-
based tests for both discrete and quantitative traits. For example, the statistic for the
Rabinowitz TDT for quantitative traits (1997) can be calculated using the deviates
w and weights based on the quantitative trait of interest. The following data set and
SAS code demonstrate how this test statistic can be computed from these quantities.

data fam_q;
input ped ind father mother qtrt a1-a10;
datalines;

1 1 0 0 30.79 1 1 1 1 2 2 2 2 1 2
2 1 0 0 15.80 1 1 1 1 2 2 2 2 2 2
2 2 0 0 23.98 1 1 1 1 2 2 1 2 2 2
2 3 1 2 22.73 1 1 1 1 2 2 2 2 2 2
3 1 0 0 18.60 1 2 1 2 2 2 1 2 1 2
3 2 0 0 18.80 1 1 1 1 2 2 2 2 1 2
3 3 1 2 25.63 1 2 1 1 2 2 1 2 1 2
4 1 0 0 17.40 1 1 1 1 2 2 1 2 2 2
4 2 0 0 28.35 1 2 1 2 2 2 1 2 1 2
4 3 1 2 18.61 1 2 1 2 2 2 2 2 1 2
5 1 0 0 19.83 1 1 1 1 2 2 2 2 2 2
5 2 0 0 24.09 1 1 1 1 1 1 2 1 2 2
5 3 1 2 22.40 1 1 1 1 1 2 2 2 2 2
6 1 0 0 28.46 1 1 1 1 2 2 2 2 2 2
6 2 0 0 27.72 1 2 1 2 1 2 2 2 1 2
6 3 1 2 13.76 1 1 1 1 2 2 2 2 2 2
7 1 0 0 16.08 1 2 1 2 2 2 1 2 1 2
7 2 0 0 30.79 1 1 1 2 2 2 1 2 1 2
7 3 1 2 16.23 1 2 2 2 2 2 1 2 1 2
8 1 0 0 25.03 1 2 1 2 2 2 1 2 1 2
9 1 0 0 28.74 1 1 1 1 2 1 2 2 2 2
10 1 0 0 23.02 1 2 1 2 2 2 1 2 1 2
10 2 0 0 26.35 1 2 1 2 2 2 1 2 1 2
10 3 1 2 19.01 1 1 1 2 2 2 2 2 2 2
11 1 0 0 21.52 1 1 1 1 2 2 2 1 2 1
11 2 0 0 22.14 1 1 1 1 2 2 2 1 1 2
12 1 0 0 12.33 1 1 1 1 2 2 2 2 2 2
12 2 0 0 8.66 1 1 1 1 2 2 2 2 2 2
12 3 1 2 11.88 1 1 1 1 2 2 2 2 2 2
13 1 0 0 15.65 2 2 1 1 2 2 1 2 1 1
13 2 0 0 15.14 1 2 1 2 2 2 1 2 1 2
14 1 0 0 25.32 1 1 1 1 2 2 2 2 2 1
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14 2 0 0 23.38 1 2 1 2 2 2 1 2 2 2
15 1 0 0 24.31 1 1 1 1 2 2 2 2 2 2
15 2 0 0 29.97 2 1 1 1 2 2 2 2 2 2
15 3 1 2 22.76 1 1 1 1 2 2 2 2 2 2
;

This data set contains five biallelic markers and a quantitative trait along with the
pedigree identifiers for trios consisting of genotyped parents and a single offspring.
Note in the following code for PROC FAMILY that there is no TRAIT statement
since there is no dichotomous trait, but that the OUTQ= option is used in the PROC
FAMILY statement to identify a data set containing the allelic transmission scores.
The deviates that are used for creating the Rabinowitz test statistic are contained in
the variables that begin with “W–”. PROC MEANS is used to obtain the sample
mean of the quantitative trait qtrt among the offspring. A test statistic for each of the
five markers is then calculated using the formulas given in Rabinowitz (1997) that
is shown in a general form using the deviates w in Abecasis, Cookson, and Cardon
(2000).

proc family data=fam_q outq=w(drop=a1-a2 b:);
var a1-a10;
id ped ind father mother;

run;

proc means data=w noprint;
var qtrt;
output out=stats(keep=qbar) mean=qbar;
where ind > 2;

run;

data _null_;
set stats;
call symput(’qbar’,trim(left(qbar)));

run;

data rab_test;
set w end=last;
where ind > 2;
array w{10} w:;
array num{5};
array var{5};
array t{5};
array pvalt{5};
a = qtrt - %sysevalf(&qbar);
do i=1 to 5;
aw = w{2*i-1} * a;
num{i} + aw;
var{i} + (aw*aw);
if last then do;
t{i}=num{i}/sqrt(var{i});
pvalt{i}=2*(1-probnorm(abs(t{i})));
if i=5 then output;
end;
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end;
keep t1-t5 pvalt1-pvalt5;

run;

proc print data=rab_test noobs;
title ’Test Statistics and P-Values for 5 Markers’;

run;

The data set containing the test statistic and corresponding p-value for each marker
is displayed in Output 5.3.1. From this output, you can conclude that there are no
markers significantly linked and associated with the QTL for this quantitative trait.

Output 5.3.1. Rabinowitz Test Statistics
Test Statistics and P-Values for 5 Markers

t1 t2 t3 t4 t5 pvalt1 pvalt2 pvalt3 pvalt4 pvalt5

-0.53461 0.72887 1 0.17060 0.95693 0.59292 0.46608 0.31731 0.86454 0.33860
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Chapter 6
The HAPLOTYPE Procedure
Overview

A haplotype is a combination of alleles at multiple loci on a single chromosome. A
pair of haplotypes constitutes the multilocus genotype. Haplotype information has to
be inferred as data are usually collected at the genotypic, not haplotype pair, level.
For homozygous markers, there is no problem. If one locus has alleles A and a, and
a second locus has alleles B and b, the observed genotype AABB must contain two
haplotypes of type AB; genotype AaBB must contain haplotypes AB and aB, and
so on. Haplotypes and their frequencies can be obtained directly. When both loci
are heterozygous, however, there is ambiguity; a variety of combinations of haplo-
types can generate the genotype, and it is not possible to determine directly which
two haplotypes constitute any individual genotype. For example, the genotype AaBb
may be of type AB/ab with haplotypes AB and ab, or of type Ab/aB with haplo-
types Ab and aB. The HAPLOTYPE procedure uses the expectation-maximization
(EM) algorithm to generate maximum likelihood estimates of haplotype frequen-
cies given a multilocus sample of genetic marker genotypes under the assumption
of Hardy-Weinberg equilibrium (HWE). These estimates can then in turn be used to
assign the probability that each individual possesses a particular haplotype pair. A
Bayesian approach for haplotype frequency estimation is also implemented in PROC
HAPLOTYPE.

Estimation of haplotype frequencies is important for several applications in genetic
data analysis. One application is determining whether there is linkage disequilibrium
(LD), or association, between loci. PROC HAPLOTYPE performs a likelihood ra-
tio test to test the hypothesis of no LD between marker loci. Another application
is association testing of disease susceptibility. Since sites that affect disease status
are embedded in haplotypes, it has been postulated that the power of case-control
studies might be increased by testing for haplotype rather than allele or genotype as-
sociations. One reason is that haplotypes might include two or more causative sites
whose combined effect is measurable, particularly if they show synergistic interac-
tion. Another is that fewer tests need be performed, although if there are a large
number of haplotypes, this advantage is offset by the increased degrees of freedom of
each test. PROC HAPLOTYPE can use case-control data to calculate test statistics
for the hypothesis of no association between alleles comprising the haplotypes and
disease status; such tests are carried out over all haplotypes at the loci specified, or
for individual haplotypes.
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Getting Started

Example

Assume you have a random sample with 25 individuals genotyped at four markers.
You want to infer the gametic phases of the genotypes and estimate their frequencies.
There are eight columns of data, with the first two columns containing the pair of
alleles at the first marker, and the next two columns containing the pair of alleles for
the second marker, and so on. Each row represents an individual. The data can be
read into a SAS data set as follows:

data markers;
input (m1-m8) ($);
datalines;

B B A B B B A A
A A B B A B A B
B B A A B B B B
A B A B A B A B
A A A B A B B B
B B A A A B A B
A B B B A B A A
A B A A A A A A
B B A A A A A B
A B A B A B B B
A B A B A B A A
B B A B A B A A
A B A A A B A B
A B B B B B A B
A A A B A A A B
B B A B A B A B
A B B B A A A B
B B B B A A A A
A B A A A B A A
A B A A A B A B
B B A A A A A B
A A A B A A A B
A B A A A A B B
A A A A A A A A
A B B B A A A A
;

You can now use PROC HAPLOTYPE to infer the possible haplotypes and estimate
the four-locus haplotype frequencies in this sample. The following statements will
perform these calculations:

proc haplotype data=markers out=hapout init=random prefix=SNP;
var m1-m8;

run;

proc print data=hapout noobs round;
run;
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This analysis uses the EM algorithm to estimate the haplotype frequencies from the
sample. The standard errors and a confidence interval are estimated, by default, un-
der a binomial assumption for each haplotype frequency estimate. A more precise
estimate of the standard error can be obtained through the jackknife process by speci-
fying the option SE=JACKKNIFE in the PROC HAPLOTYPE statement, but it takes
considerably more computations (see the “Methods for Estimating Standard Error”
section on page 111 for more information). The option INIT=RANDOM indicates
that initial haplotype frequencies are randomly generated, using a random seed cre-
ated by the system clock since the SEED= option is omitted. The default confidence
level 0.95 is used since the ALPHA= option of the PROC HAPLOTYPE statement
was omitted. Also by default, the convergence criterion of 0.00001 must be satisfied
for one iteration, and the maximum number of iterations is set to 100. The PREFIX=
option requests that the four markers, indicated by the eight allele variables in the
VAR statement, be named SNP1-SNP4.

The results from the procedure are as follows.

The HAPLOTYPE Procedure

Analysis Information

Loci Used SNP1 SNP2 SNP3 SNP4
Number of Individuals 25
Number of Starts 1
Convergence Criterion 0.00001
Iterations Checked for Conv. 1
Maximum Number of Iterations 100
Number of Iterations Used 15
Log Likelihood -95.94742
Initialization Method Random
Random Number Seed 51220
Standard Error Method Binomial
Haplotype Frequency Cutoff 0

Figure 6.1. Analysis Information for the HAPLOTYPE Procedure

Figure 6.1 displays information on several of the settings used to perform the
HAPLOTYPE procedure as well as information on the EM algorithm. Note that you
can obtain from this table the random seed that was generated by the system clock if
you need to replicate this analysis.
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Haplotype Frequencies

Standard 95% Confidence
Number Haplotype Freq Error Limits

1 A-A-A-A 0.14302 0.05001 0.04500 0.24105
2 A-A-A-B 0.07527 0.03769 0.00140 0.14914
3 A-A-B-A 0.00000 0.00000 0.00000 0.00000
4 A-A-B-B 0.00000 0.00010 0.00000 0.00020
5 A-B-A-A 0.09307 0.04151 0.01173 0.17442
6 A-B-A-B 0.05335 0.03210 0.00000 0.11627
7 A-B-B-A 0.00002 0.00061 0.00000 0.00122
8 A-B-B-B 0.07526 0.03769 0.00140 0.14913
9 B-A-A-A 0.08638 0.04013 0.00772 0.16504
10 B-A-A-B 0.08792 0.04046 0.00863 0.16722
11 B-A-B-A 0.07921 0.03858 0.00359 0.15482
12 B-A-B-B 0.10819 0.04437 0.02122 0.19517
13 B-B-A-A 0.10098 0.04304 0.01662 0.18534
14 B-B-A-B 0.00000 0.00001 0.00000 0.00002
15 B-B-B-A 0.09732 0.04234 0.01433 0.18030
16 B-B-B-B 0.00000 0.00001 0.00000 0.00002

Figure 6.2. Haplotype Frequencies from the HAPLOTYPE Procedure

Figure 6.2 displays the possible haplotypes in the sample and their estimated fre-
quencies with standard errors and the lower and upper limits of the 95% confidence
interval.
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_ID_ m1 m2 m3 m4 m5 m6 m7 m8 HAPLOTYPE1 HAPLOTYPE2 PROB

1 B B A B B B A A B-A-B-A B-B-B-A 1.00
2 A A B B A B A B A-B-A-A A-B-B-B 1.00
2 A A B B A B A B A-B-A-B A-B-B-A 0.00
3 B B A A B B B B B-A-B-B B-A-B-B 1.00
4 A B A B A B A B A-A-A-B B-B-B-A 0.26
4 A B A B A B A B A-B-A-A B-A-B-B 0.36
4 A B A B A B A B A-B-A-B B-A-B-A 0.15
4 A B A B A B A B A-B-B-A B-A-A-B 0.00
4 A B A B A B A B A-B-B-B B-A-A-A 0.23
5 A A A B A B B B A-A-A-B A-B-B-B 1.00
6 B B A A A B A B B-A-A-A B-A-B-B 0.57
6 B B A A A B A B B-A-A-B B-A-B-A 0.43
7 A B B B A B A A A-B-A-A B-B-B-A 1.00
7 A B B B A B A A A-B-B-A B-B-A-A 0.00
8 A B A A A A A A A-A-A-A B-A-A-A 1.00
9 B B A A A A A B B-A-A-A B-A-A-B 1.00
10 A B A B A B B B A-B-A-B B-A-B-B 0.47
10 A B A B A B B B A-B-B-B B-A-A-B 0.53
11 A B A B A B A A A-A-A-A B-B-B-A 0.65
11 A B A B A B A A A-B-A-A B-A-B-A 0.35
11 A B A B A B A A A-B-B-A B-A-A-A 0.00
12 B B A B A B A A B-A-A-A B-B-B-A 0.51
12 B B A B A B A A B-A-B-A B-B-A-A 0.49
13 A B A A A B A B A-A-A-A B-A-B-B 0.72
13 A B A A A B A B A-A-A-B B-A-B-A 0.28
14 A B B B B B A B A-B-B-B B-B-B-A 1.00
15 A A A B A A A B A-A-A-A A-B-A-B 0.52
15 A A A B A A A B A-A-A-B A-B-A-A 0.48
16 B B A B A B A B B-A-A-B B-B-B-A 0.44
16 B B A B A B A B B-A-B-B B-B-A-A 0.56
17 A B B B A A A B A-B-A-B B-B-A-A 1.00
18 B B B B A A A A B-B-A-A B-B-A-A 1.00
19 A B A A A B A A A-A-A-A B-A-B-A 1.00
20 A B A A A B A B A-A-A-A B-A-B-B 0.72
20 A B A A A B A B A-A-A-B B-A-B-A 0.28
21 B B A A A A A B B-A-A-A B-A-A-B 1.00
22 A A A B A A A B A-A-A-A A-B-A-B 0.52
22 A A A B A A A B A-A-A-B A-B-A-A 0.48
23 A B A A A A B B A-A-A-B B-A-A-B 1.00
24 A A A A A A A A A-A-A-A A-A-A-A 1.00
25 A B B B A A A A A-B-A-A B-B-A-A 1.00

Figure 6.3. Output Data Set from the HAPLOTYPE Procedure

Figure 6.3 displays each individual’s genotype with each of the possible haplotype
pairs that can comprise the genotype, and the probability the genotype can be resolved
into each of the possible haplotype pairs.
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Syntax
The following statements are available in PROC HAPLOTYPE.

PROC HAPLOTYPE < options > ;
BY variables ;
ID variables ;
TRAIT variable ;
VAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC
HAPLOTYPE statement can appear in any order. Only the VAR statement is re-
quired. The syntax for each statement is described in the following section in alpha-
betical order after the description of the PROC HAPLOTYPE statement.

PROC HAPLOTYPE Statement

PROC HAPLOTYPE < options > ;

You can specify the following options in the PROC HAPLOTYPE statement.

ALPHA=number
specifies that a confidence level of 100(1−number)% is to be used in forming the
confidence intervals for estimates of haplotype frequencies. The value of number
must be between 0 and 1, inclusive, and 0.05 is used as the default value if it is not
specified.

BURNIN=numberExperimental
indicates that number iterations are discarded as burn-in when EST=BAYESIAN is
specified. The value of number cannot be greater than the value specified in the
TOTALRUN= option and must be greater than 0. The default is min(5000, t/2)
where t is the number of total runs.

CONV=number
specifies the convergence criterion for iterations of the EM algorithm, where 0 <
number ≤ 1. The iteration process is stopped when the ratio of the change in the log
likelihoods to the former log likelihood is less than or equal to number for the number
of consecutive iterations specified in the NLAG= option (or 1 by default), or after the
number of iterations specified in the MAXITER= option has been performed. The
default value is 0.00001.

CUTOFF=number
specifies a lower bound on a haplotype’s estimated frequency in order for that haplo-
type to be included in the “Haplotype Frequencies” table. The value of number must
be between 0 and 1, inclusive. By default, all possible haplotypes from the sample
are included in the table.
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DATA=SAS-data-set
names the input SAS data set to be used by PROC HAPLOTYPE. The default is to
use the most recently created data set.

DELIMITER=’string’
indicates the string that is used to separate the two alleles that comprise the genotypes
contained in the variables specified in the VAR statement. This option is ignored if
GENOCOL is not specified.

EST=BAYESIAN
EST=EM
EST=STEPEM

indicates the method to be used for estimating haplotype frequencies. By default
or when EST=EM is specified, the EM algorithm is used. When EST=STEPEM, the
stepwise EM algorithm is used to calculate estimates of haplotype frequencies. When
EST=BAYESIAN, a Bayesian method is used for estimating haplotype frequencies.

GENOCOL
indicates that columns specified in the VAR statement contain genotypes instead of
alleles. When this option is specified, there is one column per marker. The genotypes
must consist of the two alleles separated by a delimiter.

INDIVIDUAL=variable
INDIV=variable

specifies the individual ID variable when using the experimental TALL option. This
variable may be character or numeric.

INIT=LINKEQ
INIT=RANDOM
INIT=UNIFORM

indicates the method of initializing haplotype frequencies to be used in the EM al-
gorithm. INIT=LINKEQ initializes haplotype frequencies assuming linkage equilib-
rium by calculating the product of the frequencies of the alleles that comprise the
haplotype. INIT=RANDOM initializes haplotype frequencies with random values
from a Uniform(0,1) distribution, and INIT=UNIFORM assigns equal frequency to
all haplotypes. By default, INIT=LINKEQ.

INTERVAL=number Experimental
indicates that the non-burn-in iterations of the Bayesian estimation method when
EST=BAYESIAN is specified are thinned by only recording the result from every
number iterations. The value of number must be greater than 0, and the default is 1
(every iteration is used).

ITPRINT
requests that the “Iteration History” table be displayed. This option is ignored if the
NOPRINT option is specified.

LD
requests that haplotype frequencies be calculated under the assumption of no LD, in
addition to being calculated using the EM algorithm. When this option is specified,
the “Test for Allelic Associations” table is displayed, which contains statistics for the
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likelihood ratio test for allelic associations. This option is ignored if the NOPRINT
option is specified.

MARKER=variable
specifies the marker ID variable when using the experimental TALL option. This
variable contains the names of the markers that are used in all output and may be
character or numeric.

MAXITER=number
specifies the maximum number of iterations to be used in the EM algorithm. The
number must be a nonnegative integer. Iterations are carried out until convergence
is reached according to the convergence criterion, or number iterations have been
performed. The default is MAXITER=100.

NDATA=SAS-data-set
names the input SAS data set containing names, or identifiers, for the markers used
in the output. There must be a NAME variable in this data set, which should contain
the same number of rows as there are markers in the input data set specified in the
DATA= option. When there are fewer rows than there are markers, markers without
a name are named using the PREFIX= option. Likewise, if there is no NDATA= data
set specified, the PREFIX= option is used. Note that this data set is ignored if the
experimental TALL option is specified in the PROC HAPLOTYPE statement. In that
case, the marker variable names are taken from the marker ID variable specified in
the MARKER= option.

NLAG=number
specifies the number of consecutive iterations that must meet the convergence crite-
rion specified in the CONV= option (0.00001 by default) for the iteration process of
the EM algorithm to stop. The number must be a positive integer. If this option is
omitted, one iteration must satisfy the convergence criterion by default.

NOPRINT
suppresses the display of the “Analysis Information,” “Iteration History,” “Haplotype
Frequencies,” and “Test for Allelic Associations” tables. Either the OUT= option, the
TRAIT statement, or both must be used with the NOPRINT option.

NSTART=number
specifies the number of different starts used for the EM algorithm. When this option is
specified, PROC HAPLOTYPE starts the iterations with different random initial val-
ues number−2 times as well as once with uniform frequencies for all the haplotypes
and once using haplotype frequencies assuming linkage equilibrium (independence).
Results on the analysis using the initial values that produce the best log likelihood
are then reported. The number must be a positive integer. If this option is omitted or
NSTART=1, only one start with initial frequencies generated according to the INIT=
option is used.

OUT=SAS-data-set
names the output SAS data set containing the probabilities of each genotype being
resolved into all of the possible haplotype pairs.
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OUTCUT=number
specifies a lower bound on a haplotype pair’s estimated probability given the in-
dividual’s genotype in order for that haplotype pair to be included in the OUT=
data set. The value of number must be between 0 and 1, inclusive. By default,
number = 0.00001. In order to be able to view all possible haplotype pairs for an
individual’s genotype, OUTCUT=0 can be specified.

OUTID
indicates that the variable –ID– created by PROC HAPLOTYPE should be included
in the OUT= data set in addition to the variable(s) listed in the ID statement. When
the ID statement is omitted, this variable is automatically included. This option is
ignored when the TALL option is used.

PREFIX=prefix
specifies a prefix to use in constructing names for marker variables in all output. For
example, if PREFIX=VAR, the names of the variables are VAR1, VAR2, ..., VARn.
Note that this option is ignored when the NDATA= option is specified, unless there
are fewer names in the NDATA data set than there are markers; it is also ignored if
the experimental TALL option is specified, in which case the marker variable names
are taken from the marker ID variable specified in the MARKER= option. Otherwise,
if this option is omitted, PREFIX=M is the default when variables contain alleles; if
GENOCOL is specified, then the names of the variables specified in the VAR state-
ment are used as the marker names.

SE=BINOMIAL
SE=JACKKNIFE

specifies the standard error estimation method when the EM or stepwise EM algo-
rithm is used for estimating haplotype frequencies. There are two methods available:
the BINOMIAL option, which gives a standard error estimator from a binomial dis-
tribution and is the default method, and the JACKKNIFE option, which requests that
the jackknife procedure be used to estimate the standard error.

SEED=number
specifies the initial seed for the random number generator used for creating the initial
haplotype frequencies when INIT=RANDOM and/or to permute the data when the
PERMUTATION= option of the TRAIT statement is specified. The value for number
must be an integer; the computer clock time is used if the option is omitted or an
integer less than or equal to 0 is specified. For more details about seed values, refer
to SAS Language Reference: Concepts.

STEPTRIM=number
indicates the cutoff to be used for the stepwise EM algorithm when trimming the
haplotype table, where 0 < number < 1. This option is only implemented when
EST=STEPEM is specified. By default, this number is set to min(0.001, 1/(2n))
where n is the number of individuals in the data set.

TALL
indicates that the input data set is of an alternative format. This format contains the
following columns: two containing marker alleles (or one containing marker geno-
types if GENOCOL is specified), one for the marker identifier, and one for the in-
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dividual identifier. The experimental MARKER= and INDIV= options must also
be specified for this option to be in effect. Note that when this option is used, the
DATA= data set must first be sorted by any BY variables, then sorted by the marker
ID variable, then the individual ID variable.

THETA=numberExperimental
requests that number be used as the scaled mutation rate θ when EST=BAYESIAN
instead of the default, which is θ = 1/

∑2n−1
i=1 1/i for a sample of n individuals. This

value must be positive.

TOTALRUN=numberExperimental
TOT=number

indicates the total number of iterations to use when EST=BAYESIAN, including the
burn-in. The value of number must be greater than 0, and the default is 10,000.

BY Statement
BY variables ;

You can specify a BY statement with PROC HAPLOTYPE to obtain separate anal-
yses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables. The variables are one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the HAPLOTYPE procedure. The NOTSORTED option does
not mean that the data are unsorted but rather that the data are arranged in
groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion in SAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in the SAS Procedures Guide.

ID Statement
ID variables ;

The ID statement identifies the variable(s) from the DATA= data set to be included
in the OUT= data set. When this statement is omitted, PROC HAPLOTYPE creates
in the OUT= data set the variable –ID– that contains a unique numeric identifier for
each individual. When the TALL option is used, this statement is ignored and the
INDIVIDUAL variable is automatically included in the OUT= data set along with
the trait variable if the TRAIT statement is specified.
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TRAIT Statement

TRAIT variable < / options > ;

The TRAIT statement identifies the binary variable that indicates which individuals
are cases and which are controls, or represents a dichotomous trait. This variable can
be character or numeric, but must have only two nonmissing levels. When this state-
ment is used and the original or stepwise EM algorithm are implemented to estimate
haplotype frequencies, the “Test for Marker-Trait Association” table is included in
the output.

There are two options you can specify in the TRAIT statement:

PERMS= number
PERMUTATION=number

specifies the number of permutations to be used to calculate the empirical p-value
of the haplotype case-control tests. This number must be a positive integer. By
default, no permutations are used and the p-value is calculated using the chi-square
test statistic. Note that this option can greatly increase the computation time.

TESTALL
specifies that each individual haplotype should be tested for association with the
TRAIT variable. When this option is included in the TRAIT statement, the “Tests
for Haplotype-Trait Association” table is included in the output.

VAR Statement

VAR variables ;

The VAR statement identifies the variables containing either the marker alleles, or
the marker genotypes if GENOCOL is specified. The following number of variables
should be specified in this statement for a data set containing m markers according to
whether the options GENOCOL and TALL are used:

• When both GENOCOL and TALL are specified, there should be one variable
named containing marker genotypes.

• When only TALL is specified, there should be two variables named containing
marker alleles.

• When only GENOCOL is specified, there should be m variables named, one
for each marker containing marker genotypes.

• When neither option is specified, there should be 2m variables named, two for
each marker containing marker alleles.

All variables specified must be of the same type, either character or numeric.
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Details

Statistical Computations

The EM Algorithm

The EM algorithm (Excoffier and Slatkin 1995; Hawley and Kidd 1995; Long,
Williams, and Urbanek 1995) iteratively furnishes the maximum likelihood estimates
(MLEs) of m-locus haplotype frequencies, for any integer m > 1, when a direct solu-
tion for the MLE is not readily feasible. The EM algorithm assumes HWE; it has been
argued (Fallin and Schork 2000) that positive increases in the Hardy-Weinberg dis-
equilibrium coefficient (toward excess heterozygosity) may increase the error of the
EM estimates, but negative increases (toward excess homozygosity) do not demon-
strate a similar increase in the error. The iterations start with assigning initial values
to the haplotype frequencies. When the INIT=RANDOM option is included in the
PROC HAPLOTYPE statement, uniformly distributed random values are assigned to
all haplotype frequencies; when INIT=UNIFORM, each haplotype is given an ini-
tial frequency of 1/h, where h is the number of possible haplotypes in the sample.
Otherwise, the product of the frequencies of the alleles that comprise the haplotype
is used as the initial frequency for the haplotype. Different starting values can lead to
different solutions since a maximum that is found could be a local maximum and not
the global maximum. You can try different starting values for the EM algorithm by
specifying a number greater than 1 in the NSTART= option to get better estimates.
The expectation and maximization steps (E-step and M-step, respectively) are then
carried out until the convergence criterion is met or the number of iterations exceeds
the number specified in the MAXITER= option of the PROC HAPLOTYPE state-
ment.

For a sample of n individuals, suppose the ith individual has genotype Gi. The
probability of this genotype in the population is Pi, so the log likelihood is

log L =
n∑

i=1

log Pi

which is calculated after each iteration’s E-step of the EM algorithm, described in the
following paragraphs.

Let hj be the jth possible haplotype and fj its frequency in the population. For geno-
type Gi, the set Hi is the collection of pairs of haplotypes, hj and its “complement”
hci

j , that constitute that genotype. The haplotype frequencies fj used in the E-step for
iteration 0 of the EM algorithm are given by the initial values; all subsequent itera-
tions use the haplotype frequencies calculated by the M-step of the previous iteration.
The E-step sets the genotype frequencies to be products of these frequencies:

Pi =
∑
j∈Hi

fjf
ci
j
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When Gi has m heterozygous loci, there are 2m−1 terms in this sum. The number of
times haplotype hj occurs in the sum is written as mij , which is 2 if Gi is completely
homozygous, and either 1 or 0 otherwise.

The M-step sets new haplotype frequencies from the genotype frequencies:

fj =
1
2n

n∑
i=1

mijfjf
ci
j

Pi

The EM algorithm increases the likelihood after each iteration, and multiple starting
points can generally lead to the global maximum.

When the option EST=STEPEM is specified in the PROC HAPLOTYPE statement,
a stepwise version of the EM algorithm is performed. A common difficulty in hap-
lotype analysis is that the number of possible haplotypes grows exponentially with
the number of loci, as does the computation time, which makes the EM algorithm
infeasible for a large number of loci. However, the most common haplotypes can still
be estimated by trimming the haplotype table using a given cutoff (Clayton 2002).
The two-locus haplotype frequencies are first estimated, and those below the cutoff
are discarded from the table. The remaining haplotypes are expanded to the next
locus by forming all possible three-locus haplotypes, and the EM algorithm is then
invoked for this haplotype table. The trimming and expanding process is performed
repeatedly, adding one locus at a time, until all loci are considered.

Once the EM or stepwise EM algorithm has arrived at the MLEs of the haplotype
frequencies, each individual i’s probability of having a particular haplotype pair
(hj , h

ci
j ) given the individual’s genotype Gi is calculated as

Pr{hj , h
ci
j |Gi} =

fjf
ci
j

Pi

for each j ∈ Hi. These probabilities are displayed in the OUT= data set.

Methods for Estimating Standard Error

Typically, an estimate of the variance of a haplotype frequency is obtained by invert-
ing the estimated information matrix from the distribution of genotype frequencies.
However, it often turns out that in a large multilocus system, a certain proportion
of haplotypes have ML frequencies equal or close to zero which makes the sample
information matrix nearly singular (Excoffier and Slatkin 1995). Therefore, two ap-
proximation methods are used to estimate the variances, as proposed by Hawley and
Kidd (1995).

The binomial method estimates the standard error by calculating the square root of
the binomial variance, as if the haplotype frequencies are obtained by direct counting:

VarB(fj) =
fj(1 − fj)

2n − 1
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The jackknife method is a simulation-based method that can be used to estimate the
standard errors of haplotype frequencies. Each individual is in turn removed from
the sample, and all the haplotype frequencies are recalculated from this “delete-1”
sample. Let Tn−1,i be the haplotype frequency estimator from the ith “delete-1”
sample; then the jackknife variance estimator has the following formula:

VarJ(fj) =
n − 1

n

n∑
i=1

(
Tn−1,i −

1
n

n∑
j=1

Tn−1,j

)2

and the square root of this variance estimate is the estimate of standard error. The
jackknife is less dependent on the model assumptions; however, it requires computing
the statistic n times.

Confidence intervals with confidence level 1 − α for the haplotype frequency esti-
mates from the final iteration are then calculated using the following formula:

fj ± z1−α/2

√
Var(fj)

where z1−α/2 is the value from the standard normal distribution that has a right-tail
probability of α/2.

Testing for Allelic Associations

When the LD option is specified in the PROC HAPLOTYPE statement, haplotype
frequencies are calculated using the EM algorithm as well as by assuming no allelic
associations among loci, that is, no LD. Under the null hypothesis of no LD, hap-
lotype frequencies are simply the product of the individual allele frequencies. The
log likelihood under the null hypothesis, log L0, is calculated based on these hap-
lotype frequencies with degrees of freedom df0 =

∑m
i=1(ki − 1), where m is the

number of loci and ki is the number of alleles for the ith locus (Zhao, Curtis, and
Sham 2000). Under the alternative hypothesis, the log likelihood, log L1 is calcu-
lated from the EM estimates of the haplotype frequencies with degrees of freedom
df1 = number of haplotypes−1. A likelihood ratio test is used to test this hypothesis
as follows:

2(log L1 − log L0) ∼ χ2
ν

where ν = df1 − df0 is the difference between the number of degrees of freedom
under the null hypothesis and the alternative.

Testing for Trait Associations

When the TRAIT statement is included in PROC HAPLOTYPE, case-control tests
are performed to test for association between the dichotomous trait (often, an indica-
tor of individuals with or without a disease) and the marker loci using haplotypes. In
addition to an omnibus test that is performed over all haplotypes, when the TESTALL
option is specified in the TRAIT statement, a test for association between each indi-
vidual haplotype and the trait is performed. Note that the individual haplotype tests
should only be performed if the omnibus test statistic is significant.
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Chi-Square Tests

The test performed over all haplotypes is based on the log likelihoods: under the
null hypothesis, the log likelihood over all the individuals in the sample, regardless
of the value of their trait variable, is calculated as described in the section “The EM
Algorithm” on page 110; the log likelihood is also calculated separately for the two
sets of individuals within the sample as determined by the trait value under the alter-
native hypothesis of marker-trait association. A likelihood ratio test (LRT) statistic
can then be formed as follows:

X2 = 2(log L1 + log L2 − log L0)

where log L0, log L1, and log L2 are the log likelihoods under the null hypothesis, for
individuals with the first trait value, and for individuals with the second trait value,
respectively (Zhao, Curtis, and Sham 2000). Defining degrees of freedom for each
log likelihood similarly, this statistic has an asymptotic chi-square distribution with
(df1 + df2 − df0) degrees of freedom.

An association between individual haplotypes and the trait can also be tested. To do
so, the following contingency table is formed:

Table 6.1. Haplotype-Trait Counts

Hap 1 Hap 2 Total
Trait 1 c11 c12 t1
Trait 2 c21 c22 t2
Total h1 h2 T

where T = 2n = t1 + t2 = h1 + h2, the total number of haplotypes in the sample,
“Hap 1” refers to the current haplotype being tested, “Hap 2” refers to all other hap-
lotypes, and cij is the pseudo-observed count of individuals with trait i and haplotype
j (note that these counts are not necessarily integers since haplotypes are not actually
observed; they are calculated based on the estimated haplotype frequencies). The
column totals hj are not calculated in the usual fashion, the sum of the cells in each
column; rather, h1 and h2 are calculated as T ∗ fj and T −T ∗ fj respectively, where
fj is the estimated frequency of “Hap 1” in the overall sample.

The usual contingency table chi-square test statistic has a 1 df chi-square distribution:

∑
i=1,2

∑
j=1,2

(cij − tihj/T )2

tihj/T

Permutation Tests

Since the assumption of a chi-square distribution in the preceding section may not
hold, estimates of exact p-values via Monte Carlo methods are recommended. New
samples are formed by randomly permuting the trait values, and either of the chi-
square test statistics shown in the previous section can be calculated for each of these
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samples. The number of new samples created is determined by the number given in
the PERMS= option of the TRAIT statement. The exact p-value approximation is
then calculated as m/p, where m is the number of samples with a test statistic greater
than or equal to the test statistic in the actual sample and p is the total number of
permutation samples. This method is used to obtain empirical p-values for both the
overall and the individual haplotype tests (Zhao, Curtis, and Sham 2000; Fallin et al.
2001).

Bayesian Estimation of Haplotype Frequencies

The Bayesian algorithm for haplotype reconstruction incorporates coalescent theory
in a Markov chain Monte Carlo (MCMC) technique (Stephens, Smith, and Donnelly
2001; Lin et al. 2002). The algorithm starts with some random phase assignment for
each multilocus genotype and then uses a Gibbs sampler to assign a haplotype pair to
a randomly picked phase-unknown genotype. The algorithm implemented in PROC
HAPLOTYPE is from Lin et al. (2002), which has several variations from that of
Stephens, Smith, and Donnelly (2001).

Initially, gamete pairs are randomly assigned to each genotype, and the assignment
set is denoted as H = (H1, ...,Hn). An individual i is then randomly picked and
its two current haplotypes are removed from H . The remaining assignment set is
denoted H−i. Let Y be the positions where the diplotypic sequence of individual i is
ambiguous and hj(Y ) be the partial sequence of the jth haplotype at Y . From H−i,
a list of partial haplotypes h(Y ) = [h1(Y ), ..., hm(Y )] is made, with corresponding
counts [r1, ..., rm] sampled from H−i.

The next step is to reassign a haplotype pair to individual i and add to H−i. The
probability vector, p = (p1, ..., pm), of sampling each partial haplotype hj(Y ) from
h(Y ) is calculated as follows: let di(Y ) be the partial genotype of individual i at Y .
For j = 1, . . . ,m, check whether di(Y ) can comprise hj(Y ) plus a complementary
haplotype h′

j(Y ) (note that h′
j(Y ) can bear missing alleles if di(Y ) is incomplete).

If not, set pj = 0; if so, with all hk(Y ) in h(Y ) that are compatible with h′
j(Y ), set

pj =
∑

k[rjrk + (rj + rk)θ/M ], where θ = 1/
∑2n−1

i=1 1/i by default (or this value
can be set in the THETA= option), n is the number of individuals in the sample, and
M is the number of distinct haplotypes possible in the population. If no such hk(Y )
can be found, set pj = rj(θ/M).

With probability 2k(θ/M)2/[
∑

j pj +2k(θ/M)2], k being the number of ambiguous
sites in individual i, randomly reconstruct phases for individual i. Missing alleles
are assigned proportional to allele frequencies at each site. Otherwise, with probabil-
ity pj/

∑
j′ pj′ , assign hj(Y ) to individual i and the corresponding complementary

haplotype. The new assignment is then added back to H−i.

These steps are repeated t times where t is the value is specified in the TOTALRUN=
option. The first b times are discarded as burn-in when BURNIN=b. The results
are then thinned by recording every rth assignment specified by the INTERVAL=r
option so that (t − b)/r iterations are used for the estimates.

The probability of each individual i having a particular haplotype pair (hj , h
ci
j ) given

the individual’s genotype Gi for each j ∈ Hi is given in the OUT= data set as the pro-
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portion of iterations after burn-in that are recorded that have that particular haplotype
pair assigned to the individual.

Missing Values

An individual’s m-locus genotype is considered to be partially missing if any, but not
all, of the alleles are missing. Genotypes with all missing alleles are dropped from
calculations for haplotype frequencies, though these individuals can still be used as
described in the following paragraph. Also, if there are any markers with all missing
values in a BY group (or the entire data set if there is no BY statement), no cal-
culations are performed for that BY group. Partially missing genotypes are used in
the EM algorithm and the jackknife procedure. In calculating the allele frequencies,
missing alleles are dropped and the frequency of an allele u at a marker is obtained
as the number of u alleles in the data divided by the total number of nonmissing al-
leles at the marker in the data. In the E-step of the EM algorithm, the frequency of
a partially missing genotype is updated for every possible genotype. In the M-step,
haplotypes resulting from a missing genotype may bear some missing alleles. Such a
haplotype is not considered as a new haplotype, but rather all existing haplotypes that
have alleles identical to the nonmissing alleles of this haplotype are updated. Dealing
with missing genotypes involves looping through all possible genotypes in the E-step
and all possible haplotypes in the M-step. The stepwise EM algorithm performs a
series of two-step processes involving EM estimation followed by trimming the set
of haplotypes. Thus, in the EM estimation step, missing values are handled as de-
scribed for the EM algorithm. Depending on the input data set, missing genotypes
can increase the computation time substantially for either estimation method.

When the TRAIT statement is specified, any observation with a missing trait value is
dropped from calculations used in the tests for marker-trait association and haplotype-
trait associations. However, observations with missing trait values are included in
calculating the frequencies shown in the “Haplotype Frequencies” table, which are
then used in the OUT= data set. The combined frequencies listed in the “Tests for
Haplotype-Trait Association” table may therefore be different than these frequencies
in this situation. Also, if an individual has all-missing alleles but a nonmissing trait
value, the individual is included in the permutations of the trait value when PERMS=
is specified in the TRAIT statement.

OUT= Data Set

The OUT= data set contains the following variables: the BY variables (if any), –ID–
that identifies the individual and/or any variables listed in the ID statement, the pair
of alleles at each marker analyzed, HAPLOTYPE1 and HAPLOTYPE2 that contain
the pair of haplotypes of which each genotype can be comprised, and PROB contain-
ing the probability of each individual’s genotype being resolved into that haplotype
pair. Note that when GENOCOL or the experimental option TALL is specified, the
pair of alleles at a marker are contained in a single column separated by the delimiter
‘/’ or the character given in the DELIMITER= option.
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Displayed Output

This section describes the displayed output from PROC HAPLOTYPE. See the “ODS
Table Names” section on page 117 for details about how this output interfaces with
the Output Delivery System.

Analysis Information

The “Analysis Information” table lists information on the following settings used in
PROC HAPLOTYPE for all of the estimation methods:

• Loci Used, the loci used to form haplotypes

• Number of Individuals

• Random Number Seed, the value specified in the SEED= option or generated
by the system clock

• Haplotype Frequency Cutoff, the value specified in the CUTOFF= option or
the default (0)

When EST=EM or EST=STEPEM is specified in the PROC HAPLOTYPE statement,
the following information is also included in the table:

• Number of Starts, the value specified in the NSTART= option or the default (1)

• Convergence Criterion, the value specified in the CONV= option or the default
(0.00001)

• Iterations Checked for Conv., the value specified in the NLAG= option or the
default (1)

• Maximum Number of Iterations, the value specified in the MAXITER= option
or the default (100)

• Number of Iterations Used, as determined by the CONV= or MAXITER= op-
tion

• Log Likelihood, from the last iteration performed

• Initialization Method, the method specified in the INIT= option or “Linkage
Equilibrium” by default

• Standard Error Method, the method specified in the SE= option or “Binomial”
by default

If EST=BAYESIAN is specified in the PROC HAPLOTYPE statement, then these
rows are included in the table:

• Scaled Mutation Rate, the θ parameter used in the algorithm

• Recorded Iterations, the number of iterations of the algorithm actually
recorded, which is (total runs − burn-in)/interval
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Iteration History

The “Iteration History” table displays the log likelihood and the ratio of change for
each iteration of the EM algorithm.

Haplotype Frequencies

The “Haplotype Frequencies” table lists all the possible m-locus haplotypes in the
sample (where 2m variables are specified in the VAR statement), with an estimate
of the haplotype frequency, the standard error of the frequency, and the lower and
upper limits of the confidence interval for the frequency based on the confidence level
determined by the ALPHA= option of the PROC HAPLOTYPE statement (0.95 by
default). When the LD option is specified in the PROC HAPLOTYPE statement and
EST=EM or STEPEM, haplotype frequency estimates are calculated both under the
null hypothesis of no allelic association by taking the product of allele frequencies,
and under the alternative, which allows for associations, using the EM algorithm.

Test for Allelic Associations

The “Test for Allelic Associations” table displays the degrees of freedom and log
likelihood calculated using the EM algorithm for the null hypothesis of no associa-
tion and the alternative hypothesis of associations between markers. The chi-square
statistic and its p-value are also shown for the test of these hypotheses.

Test for Marker-Trait Association

The “Test for Marker-Trait Association” table displays the number of observations,
degrees of freedom, and log likelihood for both trait values as well as the combined
sample when EST=EM or STEPEM. The chi-square test statistic and its correspond-
ing p-value from performing the case-control test, testing the hypothesis of no asso-
ciation between the trait and the marker loci used in PROC HAPLOTYPE, are also
given. When the PERMS= option is included in the TRAIT statement, estimates of
exact p-values are provided as well.

Tests for Haplotype-Trait Association

The “Tests for Haplotype-Trait Association” table displays statistics from case-
control tests performed on each individual haplotype when the TESTALL option is
included in the TRAIT statement and EST=EM or STEPEM. A significant p-value
indicates that there is an association between the haplotype and the trait. When the
PERMS= option is also given in the TRAIT statement, estimates of exact p-values
are provided as well.

ODS Table Names

PROC HAPLOTYPE assigns a name to each table it creates, and you must use this
name to reference the table when using the Output Delivery System (ODS). These
names are listed in the following table.
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Table 6.2. ODS Tables Created by the HAPLOTYPE Procedure

ODS Table Name Description Statement or Option
AnalysisInfo Analysis information default
IterationHistory Iteration history ITPRINT

EST=EM or STEPEM
ConvergenceStatus Convergence status EST=EM or STEPEM
HaplotypeFreq Haplotype frequencies default
LDTest Test for allelic associations LD and EST=EM or STEPEM
CCTest Test for marker-trait association EST=EM or STEPEM

TRAIT statement
HapTraitTest Tests for haplotype-trait association EST=EM or STEPEM

TRAIT / TESTALL

Examples

Example 6.1. Estimating Three-Locus Haplotype Frequencies

Here is an example of 227 individuals genotyped at three markers, data which were
created based on genotype frequency tables from the Lab of Statistical Genetics at
Rockefeller University (2001). Note that when reading in the data, there are four
individuals’ genotypes per line, except for the last line of the DATA step, which
contains three individuals’ genotypes. The SAS data set that is created contains one
individual per row with six columns representing the two alleles at each of three
marker loci.

data ehdata;
input m1-m6 @@;
datalines;

1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3
1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3
1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3
1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 3 3
1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3
1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3
1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 1 2 1 2
1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2
1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2
1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2
1 1 1 2 1 3 1 1 1 2 1 3 1 1 1 2 2 3 1 1 1 2 2 3
1 1 1 2 2 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 3
1 1 1 2 3 3 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1
1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 2 2 1 2
1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 2 2 1 1 2 2 2 2
1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 1 3 1 1 2 2 1 3
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
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1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3
1 1 2 2 3 3 1 1 2 2 3 3 1 2 1 1 1 1 1 2 1 1 1 1
1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1
1 2 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 3
1 2 1 1 1 3 1 2 1 1 2 3 1 2 1 1 2 3 1 2 1 1 2 3
1 2 1 1 2 3 1 2 1 1 2 3 1 2 1 1 2 3 1 2 1 1 3 3
1 2 1 1 3 3 1 2 1 1 3 3 1 2 1 2 1 1 1 2 1 2 1 1
1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1
1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 3
1 2 1 2 1 3 1 2 1 2 1 3 1 2 1 2 2 3 1 2 1 2 2 3
1 2 1 2 2 3 1 2 1 2 2 3 1 2 1 2 3 3 1 2 1 2 3 3
1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1
1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1
1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 2 2 2 1 2
1 2 2 2 1 2 1 2 2 2 1 3 1 2 2 2 1 3 1 2 2 2 2 3
1 2 2 2 2 3 1 2 2 2 2 3 1 2 2 2 3 3 1 2 2 2 3 3
1 2 2 2 3 3 1 2 2 2 3 3 1 2 2 2 3 3 1 2 2 2 3 3
1 2 2 2 3 3 1 2 2 2 3 3 2 2 1 1 1 1 2 2 1 1 1 2
2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2
2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2
2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 3
2 2 1 1 1 3 2 2 1 1 2 3 2 2 1 1 2 3 2 2 1 1 2 3
2 2 1 1 2 3 2 2 1 1 2 3 2 2 1 1 2 3 2 2 1 1 2 3
2 2 1 1 2 3 2 2 1 1 2 3 2 2 1 1 3 3 2 2 1 1 3 3
2 2 1 1 3 3 2 2 1 1 3 3 2 2 1 2 1 1 2 2 1 2 1 1
2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2
2 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2
2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 1 3 2 2 1 2 1 3
2 2 1 2 1 3 2 2 1 2 1 3 2 2 1 2 1 3 2 2 1 2 1 3
2 2 1 2 2 3 2 2 1 2 2 3 2 2 1 2 2 3 2 2 1 2 2 3
2 2 1 2 2 3 2 2 1 2 2 3 2 2 1 2 2 3 2 2 1 2 3 3
2 2 1 2 3 3 2 2 1 2 3 3 2 2 2 2 1 1 2 2 2 2 1 1
2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1
2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 2
2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 3 2 2 2 2 2 3
2 2 2 2 2 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3
2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3
2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3
;

The haplotype frequencies can be estimated using the EM algorithm and their stan-
dard errors estimated using the jackknife method by implementing the following
code:

proc haplotype data=ehdata se=jackknife maxiter=20 itprint nlag=4;
var m1-m6;

run;

This produces the following ODS output:
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Output 6.1.1. Analysis Information for the HAPLOTYPE Procedure

The HAPLOTYPE Procedure

Analysis Information

Loci Used M1 M2 M3
Number of Individuals 227
Number of Starts 1
Convergence Criterion 0.00001
Iterations Checked for Conv. 4
Maximum Number of Iterations 20
Number of Iterations Used 11
Log Likelihood -934.97918
Initialization Method Linkage Equilibrium
Standard Error Method Jackknife
Haplotype Frequency Cutoff 0

Output 6.1.1 displays information on several of the settings used to perform the
HAPLOTYPE procedure on the ehdata data set. Note that though the MAXITER=
option was set to 20 iterations, convergence according to the criterion of 0.00001
was reached for four consecutive iterations prior to the 20th iteration, at which point
the estimation process stopped. To obtain more precise frequency estimates, a lower
convergence criterion can be used.

Output 6.1.2. Iteration History for the HAPLOTYPE Procedure

Iteration History

Ratio
Iter LogLike Changed

0 -953.89697
1 -937.92181 0.01675
2 -935.91870 0.00214
3 -935.35775 0.00060
4 -935.13050 0.00024
5 -935.03710 0.00010
6 -935.00051 0.00004
7 -934.98679 0.00001
8 -934.98180 0.00001
9 -934.98002 0.00000

10 -934.97940 0.00000
11 -934.97918 0.00000

Output 6.1.3. Convergence Status for the HAPLOTYPE Procedure

Algorithm converged.
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Because the ITPRINT option was specified in the PROC HAPLOTYPE statement,
the iteration history of the EM algorithm is included in the ODS output. Output 6.1.2
contains the table displaying this information. By default, the “Convergence Status”
table is displayed (Output 6.1.3), which only consists of one line indicating whether
convergence was met.

Output 6.1.4. Haplotype Frequencies from the HAPLOTYPE Procedure

Haplotype Frequencies

Standard 95% Confidence
Number Haplotype Freq Error Limits

1 1-1-1 0.09170 0.01505 0.06221 0.12119
2 1-1-2 0.02080 0.00952 0.00214 0.03946
3 1-1-3 0.11509 0.01766 0.08048 0.14971
4 1-2-1 0.07904 0.01696 0.04580 0.11228
5 1-2-2 0.06768 0.01546 0.03738 0.09799
6 1-2-3 0.12788 0.02094 0.08685 0.16891
7 2-1-1 0.05521 0.01227 0.03115 0.07926
8 2-1-2 0.11700 0.01782 0.08207 0.15193
9 2-1-3 0.07376 0.01495 0.04446 0.10307
10 2-2-1 0.11766 0.01831 0.08177 0.15355
11 2-2-2 0.03020 0.00899 0.01257 0.04782
12 2-2-3 0.10397 0.01833 0.06805 0.13989

Output 6.1.4 displays the 12 possible three-locus haplotypes in the data and their
estimated haplotype frequencies, standard errors, and bounds for the 95% confidence
intervals for the estimates.

To see how the CUTOFF= option affects the “Haplotype Frequencies” table, suppose
you want to view only the haplotypes with an estimated frequency of at least 0.10.
The following code creates such a table:

proc haplotype data=ehdata se=jackknife cutoff=0.10 nlag=4;
var m1-m6;

run;

Now, the “Haplotype Frequencies” table is displayed as:



122 � Chapter 6. The HAPLOTYPE Procedure

Output 6.1.5. Haplotype Frequencies from the HAPLOTYPE Procedure Using the
CUTOFF= Option

The HAPLOTYPE Procedure

Haplotype Frequencies

Standard 95% Confidence
Number Haplotype Freq Error Limits

1 1-1-3 0.11509 0.01766 0.08048 0.14971
2 1-2-3 0.12788 0.02094 0.08685 0.16891
3 2-1-2 0.11700 0.01782 0.08207 0.15193
4 2-2-1 0.11766 0.01831 0.08177 0.15355
5 2-2-3 0.10397 0.01833 0.06805 0.13989

Output 6.1.5 displays only the five 3-locus haplotypes with estimated frequencies of
at least 0.10. This option is especially useful for keeping the “Haplotype Frequencies”
table to a manageable size when many marker loci or loci with several alleles are
used, and many of the haplotypes have estimated frequencies very near zero. Using
CUTOFF=1 suppresses the “Haplotype Frequencies” table.

Example 6.2. Using Multiple Runs of the EM Algorithm

Continuing the example from the section “Getting Started” on page 100, suppose you
are concerned that the likelihood reached a local and not a global maximum. You can
request that PROC HAPLOTYPE use several different sets of initial haplotype fre-
quencies to ensure that you find a global maximum of the likelihood. The following
code invokes the EM algorithm using five different sets of initial values, including
the set used in the Getting Started example:

proc haplotype data=markers prefix=SNP init=random seed=51220
nstart=5;

var m1-m8;
run;

The NSTART=5 option requests that the EM algorithm be run three times using ran-
domly generated initial frequencies, including once using the seed 51220 that was
previously used, once using uniform initial frequencies, and once using haplotype
frequencies given by the product of the allele frequencies. The following two tables
are from the run that produced the best log likelihood:
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Output 6.2.1. Output from PROC HAPLOTYPE

The HAPLOTYPE Procedure

Analysis Information

Loci Used SNP1 SNP2 SNP3 SNP4
Number of Individuals 25
Number of Starts 5
Convergence Criterion 0.00001
Iterations Checked for Conv. 1
Maximum Number of Iterations 100
Number of Iterations Used 19
Log Likelihood -95.94742
Initialization Method Random
Random Number Seed 499887544
Standard Error Method Binomial
Haplotype Frequency Cutoff 0

Output 6.2.1. (continued)

Haplotype Frequencies

Standard 95% Confidence
Number Haplotype Freq Error Limits

1 A-A-A-A 0.14324 0.05005 0.04515 0.24133
2 A-A-A-B 0.07507 0.03764 0.00129 0.14885
3 A-A-B-A 0.00000 0.00001 0.00000 0.00001
4 A-A-B-B 0.00000 0.00010 0.00000 0.00019
5 A-B-A-A 0.09295 0.04148 0.01165 0.17425
6 A-B-A-B 0.05349 0.03214 0.00000 0.11649
7 A-B-B-A 0.00001 0.00052 0.00000 0.00103
8 A-B-B-B 0.07523 0.03768 0.00138 0.14909
9 B-A-A-A 0.08644 0.04014 0.00776 0.16512
10 B-A-A-B 0.08784 0.04044 0.00859 0.16710
11 B-A-B-A 0.07904 0.03854 0.00350 0.15459
12 B-A-B-B 0.10836 0.04441 0.02133 0.19540
13 B-B-A-A 0.10097 0.04304 0.01661 0.18533
14 B-B-A-B 0.00000 0.00000 0.00000 0.00000
15 B-B-B-A 0.09735 0.04235 0.01435 0.18035
16 B-B-B-B 0.00000 0.00000 0.00000 0.00000

Example 6.3. Testing for Linkage Disequilibrium

Again looking at the data from the Lab of Statistical Genetics at Rockefeller
University (2001), if you request the test for linkage disequilibrium by specifying the
LD option in the PROC HAPLOTYPE statement, the “Test for Allelic Associations”
table containing the test statistics is included in the output.

proc haplotype data=ehdata ld;
var m1-m6;

run;
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The “Haplotype Frequencies” table now contains an extra column of the haplotype
frequencies under the null hypothesis.

Output 6.3.1. Haplotype Frequencies Under the Null and Alternative Hypotheses

The HAPLOTYPE Procedure

Haplotype Frequencies

Standard 95% Confidence
Number Haplotype H0 Freq H1 Freq Error Limits

1 1-1-1 0.08172 0.09124 0.01353 0.06472 0.11775
2 1-1-2 0.05605 0.02124 0.00677 0.00796 0.03452
3 1-1-3 0.10006 0.11501 0.01499 0.08563 0.14439
4 1-2-1 0.09084 0.07952 0.01271 0.05461 0.10443
5 1-2-2 0.06231 0.06726 0.01177 0.04419 0.09032
6 1-2-3 0.11122 0.12794 0.01569 0.09718 0.15870
7 2-1-1 0.08100 0.05540 0.01075 0.03433 0.07647
8 2-1-2 0.05556 0.11690 0.01510 0.08732 0.14649
9 2-1-3 0.09918 0.07378 0.01228 0.04971 0.09785
10 2-2-1 0.09005 0.11746 0.01513 0.08781 0.14711
11 2-2-2 0.06176 0.03028 0.00805 0.01450 0.04606
12 2-2-3 0.11025 0.10398 0.01434 0.07587 0.13209

Note that since the INIT= option was omitted from the PROC HAPLOTYPE state-
ment, the initial haplotype frequencies used in the EM algorithm are identical to the
frequencies that appear in the H0 FREQ column in Output 6.3.1. The frequencies
in the H1 FREQ column are those calculated from the final iteration of the EM al-
gorithm, and these frequencies’ standard errors and confidence limits are included in
the table as well.

Output 6.3.2. Testing for Linkage Disequilibrium Using the LD Option

Test for Allelic Associations

Chi- Pr >
Hypothesis DF LogLike Square ChiSq

H0: No Association 4 -953.89697
H1: Allelic Associations 11 -934.98180 37.8303 <.0001

Output 6.3.2 displays the log likelihood under the null hypothesis assuming indepen-
dence among all the loci and the alternative, which allows for associations between
markers. The empirical chi-square test statistic of the likelihood ratio test is calcu-
lated as X2 = 2[−934.98180 − (−953.89697)] = 37.8303 with degrees of freedom
ν = 11 − 4 = 7 that gives a p-value < 0.0001. The test indicates significant linkage
disequilibrium among the three loci, as shown in the online documentation from the
Lab of Statistical Genetics at Rockefeller University (2001).
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Example 6.4. Testing for Marker-Trait Associations

To demonstrate how the TRAIT statement can be utilized, a subset of data from
GAW12 (Wijsman et al. 2001) is read into a SAS data set as follows:

data gaw;
input status $ a1-a24;
datalines;

U 8 4 4 4 2 7 3 2 1 4 10 2 6 6 1 2 1 1 7 7 8 7 8 8
U 5 9 3 5 3 4 2 3 4 3 14 10 3 6 7 7 1 4 5 12 3 3 1 2
A 8 2 5 1 6 3 3 5 3 4 5 3 3 1 5 3 3 4 7 7 7 3 7 7
U 7 8 5 3 8 4 5 3 3 4 13 8 1 3 4 5 4 4 10 7 1 2 2 2
U 9 2 2 5 7 6 9 3 2 4 3 2 5 2 1 2 2 4 5 7 4 3 1 12
U 2 7 1 4 6 7 8 4 4 3 10 5 5 2 4 3 3 1 8 11 2 3 7 7
U 7 7 6 6 1 4 9 5 3 1 14 6 5 3 1 3 3 1 12 1 3 7 7 7
U 4 4 3 7 3 2 8 9 3 1 9 10 6 4 5 3 1 4 10 8 8 5 8 2
A 8 9 6 5 6 4 3 4 4 1 9 1 7 7 2 5 4 1 1 1 5 1 10 2
U 9 5 6 1 2 6 3 3 3 2 8 7 1 5 3 8 1 3 1 8 3 5 1 4
U 8 1 1 5 8 6 3 3 4 3 1 10 3 1 2 3 4 4 5 10 4 5 7 9
A 7 2 3 4 1 3 2 3 3 3 7 1 7 7 2 3 3 4 5 1 5 5 7 9
U 9 3 1 1 2 3 9 8 3 1 13 13 7 1 2 2 3 4 10 3 1 1 10 1
U 2 9 6 1 3 4 3 2 4 3 2 1 4 3 8 1 4 3 9 5 4 2 1 10
U 2 1 1 4 4 7 5 8 3 4 10 13 5 4 4 4 4 3 12 2 3 7 2 12
U 7 7 6 6 3 3 9 3 4 3 14 14 2 1 2 2 1 4 9 1 5 8 4 10
U 1 3 6 5 5 4 9 4 3 4 13 1 2 3 1 2 1 3 1 3 5 3 2 1
U 9 2 6 6 3 4 3 4 2 4 14 9 5 2 4 4 1 1 12 7 5 5 11 7
U 3 3 5 5 8 4 6 5 4 3 2 13 7 1 1 2 3 2 10 7 3 4 7 10
U 4 3 4 5 7 7 8 8 3 3 8 13 3 4 3 2 4 1 1 12 1 3 10 7
U 3 8 1 1 3 8 8 3 4 4 13 12 1 4 5 7 1 4 1 8 3 2 3 3
U 7 8 5 7 7 3 3 3 4 3 14 5 5 1 8 5 4 4 12 12 5 5 10 10
A 7 2 5 4 1 3 3 9 4 3 13 9 2 3 6 5 4 4 1 10 5 2 1 10
U 7 2 4 5 6 1 1 2 4 4 10 8 4 5 5 4 1 1 6 9 2 7 2 12
U 3 3 4 2 7 3 8 3 4 4 14 12 3 2 5 4 3 3 9 3 2 1 12 12
A 2 3 4 1 4 3 3 3 4 4 6 14 1 1 2 2 1 3 3 1 2 8 2 7
U 5 9 3 1 7 4 3 4 2 4 9 8 5 7 3 1 1 3 9 9 2 5 1 9
U 8 5 6 5 3 7 4 4 4 3 10 9 7 5 2 8 4 1 7 8 2 7 12 1
U 9 8 5 5 7 3 6 5 1 3 13 5 2 2 8 7 3 3 9 12 1 3 4 1
A 7 8 5 2 3 5 3 9 3 3 12 5 1 1 1 2 1 4 7 2 5 3 6 1
A 5 4 1 1 3 7 4 5 3 3 14 13 7 3 3 1 4 3 1 8 3 3 2 9
U 8 9 3 2 7 3 8 9 4 1 1 12 5 4 4 6 3 4 2 7 5 2 3 10
A 9 2 3 5 3 3 2 3 2 3 14 13 6 1 3 1 4 3 3 2 3 1 1 7
A 2 5 7 5 6 7 9 4 3 4 14 13 5 1 2 3 4 4 2 10 3 1 12 12
U 7 2 3 1 1 3 4 4 3 4 2 8 5 3 4 6 3 3 10 12 8 3 2 1
A 7 5 1 5 3 3 9 2 3 3 10 6 1 7 2 4 4 4 10 9 1 8 7 3
U 3 2 5 5 4 3 3 5 1 3 1 1 5 2 1 2 3 3 10 3 3 3 10 4
A 3 2 5 5 8 5 3 7 4 3 2 14 5 5 3 3 3 4 11 1 6 2 1 10
A 2 7 5 5 3 2 9 4 3 3 1 7 7 5 4 7 4 1 12 7 2 3 12 9
A 5 7 2 3 7 3 3 3 3 4 9 2 4 1 2 7 1 4 6 1 2 1 7 7
U 7 4 3 4 5 3 3 8 3 3 2 8 4 6 7 7 4 1 3 1 2 4 12 1
U 7 8 5 4 4 7 9 9 4 3 5 13 7 1 4 4 4 4 9 8 8 3 3 10
U 2 8 4 5 3 7 3 4 3 3 8 14 6 4 6 2 3 4 7 1 3 3 3 10
U 6 8 1 3 6 7 5 4 3 4 1 12 3 7 8 4 3 4 12 12 4 7 12 6
A 8 7 3 1 3 6 4 4 3 3 4 10 6 5 8 1 1 4 1 10 2 2 5 2
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U 2 8 6 6 4 8 4 3 4 3 9 1 1 1 2 3 4 4 2 6 2 3 9 7
U 9 8 4 3 7 3 8 4 4 3 8 8 6 6 4 5 3 4 5 5 1 8 10 1
U 9 3 5 1 8 6 5 3 3 2 13 2 3 5 8 2 1 3 1 10 3 3 10 12
U 2 9 1 6 7 4 9 9 4 1 8 1 3 2 5 8 4 4 3 1 3 3 12 7
U 8 8 6 2 3 2 2 4 3 4 6 12 3 1 7 2 4 4 5 9 2 3 1 10
;

This data set contains twelve markers. Suppose you are interested in testing three of
the marker loci at a time for association with the trait (status in this case: “A” for
affected or “U” for unaffected with a particular disease) over all of their haplotypes.
That is, assuming the markers are numbered in the order they appear on the chromo-
some, haplotypes at marker loci 1 through 3 are analyzed, then haplotypes at marker
loci 4 through 6 are analyzed, and so on. These tests may be performed in addition to,
or in place of, single-marker case-control tests (see Chapter 4 for more information).
In order to reduce the amount of SAS code needed for this analysis, a SAS macro can
be used as follows:

%macro hap_trait;
%do firsta=1 %to 19 %by 6;
%let lasta=%eval(&firsta+5);
%let firstm=%eval((&firsta+1)/2);
%let lastm=%eval(&lasta/2);
title "Markers &firstm through &lastm";

proc haplotype data=gaw noprint;
var a&firsta-a&lasta;
trait status;

run;

%end;
%mend;
%hap_trait

Since the NOPRINT option is specified, this code produces only the “Test for Marker-
Trait Association” table each of the four times PROC HAPLOTYPE is invoked.
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Output 6.4.1. Testing for Marker-Trait Associations Using Haplotypes

Markers 1 through 3

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 U 36 156 -245.18487
2 A 14 68 -69.90500

Combined 50 181 -355.16139 80.1430 0.0005

Markers 4 through 6

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 U 36 140 -236.78471
2 A 14 62 -78.22280

Combined 50 162 -349.30084 68.5867 0.0033

Markers 7 through 9

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 U 36 119 -242.53993
2 A 14 56 -68.34854

Combined 50 139 -348.95917 76.1414 0.0001

Markers 10 through 12

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 U 36 180 -268.92245
2 A 14 75 -85.15400

Combined 50 233 -395.70275 83.2526 <.0001

Output 6.4.1 displays the four tables that are created by this macro. The first cor-
responds to testing the three-locus haplotypes at the first three marker loci with the
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TRAIT variable, the second to the second set of three markers, and so on. From the
LRTs that are performed and summarized in the output, it can be concluded that out
of the four sets of marker loci tested, the haplotypes at markers 10, 11, and 12 show
the most significant association with the trait variable status. The chi-square statis-
tic for testing the haplotypes at these markers for association with disease status is
calculated as 83.2526 = 2(−268.92245 − 85.15400 + 395.70275) with degrees of
freedom 22 = 180 + 75 − 233, which has a p-value < 0.0001.

Suppose you would like to further explore the association between these three mark-
ers and the trait. You can also perform tests of association between each individual
haplotype at these marker loci and disease status using the following code:

ods output haplotype.haptraittest=outhap;
proc haplotype data=gaw noprint;

var a19-a24;
trait status / testall perms=100;

run;

proc print data=outhap(obs=20) noobs;
title ’The HAPLOTYPE Procedure’;
title2 ’ ’;
title3 ’Tests for Haplotype-Trait Association’;

run;
ods output close;

The TESTALL option indicates that a test for trait association should be performed on
each haplotype using a chi-square test statistic, which is performed by default. In ad-
dition, since the PERMS=100 option is included, an empirical p-value is calculated.
Due to the number of alleles at each marker in this example, this option increases the
computation time substantially, even with this small number of permutations.
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Output 6.4.2. Using the TESTALL Option on Markers 10-12

The HAPLOTYPE Procedure

Tests for Haplotype-Trait Association

Combined Prob Prob
Number Haplotype Trait1Freq Trait2Freq Freq ChiSq ChiSq Exact

1 1-1-2 0.00000 0.03571 0.00000 0 1.0000 1.0000
2 1-1-7 0.00000 0.00000 0.01000 1.0101 0.3149 0.2800
3 1-1-10 0.00000 0.00000 0.01950 1.9883 0.1585 0.2900
4 1-2-1 0.00000 0.01786 0.03000 2.3686 0.1238 0.1300
5 1-2-2 0.00000 0.05357 0.01000 6.0967 0.0135 0.0300
6 1-2-3 0.00000 0.00000 0.00000 0.001666 0.9674 0.5900
7 1-2-5 0.00000 0.00000 0.01000 1.0101 0.3149 0.2300
8 1-2-7 0.00000 0.05357 0.00000 0 1.0000 1.0000
9 1-2-10 0.00000 0.01786 0.00000 0 1.0000 1.0000
10 1-2-12 0.00000 0.00000 0.00000 0 1.0000 1.0000
11 1-3-1 0.00694 0.00000 0.00000 0 1.0000 1.0000
12 1-3-2 0.00000 0.01786 0.01000 0.9019 0.3423 0.4600
13 1-3-3 0.02777 0.00000 0.02000 0.7934 0.3731 0.7200
14 1-3-4 0.00000 0.00000 0.00000 0 1.0000 1.0000
15 1-3-7 0.04167 0.00000 0.02045 2.2035 0.1377 0.1100
16 1-3-9 0.00000 0.01786 0.00000 0 1.0000 1.0000
17 1-3-10 0.00000 0.00000 0.00000 7.8011E-8 0.9998 0.9200
18 1-3-12 0.01389 0.00000 0.01006 0.3905 0.5320 0.9100
19 1-4-1 0.01389 0.00000 0.00000 0 1.0000 1.0000
20 1-4-12 0.00000 0.00000 0.00000 0 1.0000 1.0000

Output 6.4.2 displays the table “Test for Haplotype-Trait Association” as a SAS data
set using the ODS system in order to show only the first 20 rows. The table contains
haplotypes at markers 10, 11, and 12 and their estimated frequencies among individu-
als with the first trait value, individuals with the second trait value, and all individuals.
The chi-square statistic testing whether the frequencies between the two trait groups
are significantly different is also shown, along with its 1 df p-value. Note that none of
the haplotypes shown here have an association with disease status significant at the
0.05 level according to the approximations of exact p-values.

Example 6.5. Creating a Data Set for a Regression Model

Another approach to testing haplotypes for association with a phenotype uses a re-
gression model, which can be more powerful than the omnibus chi-square test per-
formed in PROC HAPLOTYPE (Schaid et al. 2002; Zaykin et al. 2002). The output
data set produced by PROC HAPLOTYPE can easily be transformed into one that can
be used by one of the regression procedures offered by SAS/STAT. This approach can
be used for quantitative traits as well as binary or ordinal traits.

Here is an example data set that can be analyzed using PROC HAPLOTYPE:
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data alleles;
input (a1-a6) ($) disease;
datalines;

A a B B c C 1
A A B b c C 1
a A B b c c 0
A A B B c C 1
A A b B c C 1
A A B b C c 0
A a b B C c 1
A A b B C c 1
A a B B c c 1
a a B b c c 0
A A B B C C 1
A A B B c c 1
a A b b c c 0
A A B B c c 1
A A b b c c 0
A A b B c C 0
A A B b c C 1
A a b B c c 1
A a B B c C 1
A A b b C C 0
A A B B C C 1
A A b B C c 1
A A b B c C 1
a A B b C c 0
A a B B C C 0
A A B B C c 1
A A B b C c 0
A A B B c C 1
a A B b C C 1
A a B b C c 1
A A B b c C 1
A a B B c c 1
A A B b C c 1
a A B b C c 1
A A B b C C 1
A a B B C C 1
a A B b C c 0
a A b B C C 0
A A B b c C 1
a A B b c c 0
A A B B C C 0
A A B B c c 1
A a B B C c 1
;

An output data set containing individuals’ probabilities of having particular haplotype
pairs can be created, with the ID statement and OUTID option indicating that this data
set include the disease variable from the input data set and a unique identifier for
each individual assigned by PROC HAPLOTYPE, respectively. An omnibus test for
association between the three markers and disease status is also performed.
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proc haplotype data=alleles out=out outid;
var a1-a6;
trait disease;
id disease;

run;

This code executes the omnibus marker-trait association test whose p-value is given
by the chi-square distribution.

Output 6.5.1. Testing for an Overall Marker-Trait Association

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 1 29 7 -68.11558
2 0 14 7 -37.28544

Combined 43 7 -115.48338 20.1647 0.0052

Output 6.5.1 shows that there is a significant overall association between the markers
and the trait, disease status. However, the more powerful score test for regression can
be used to perform a test for additive effects of the marker haplotypes.

data out1;
set out;
haplotype=tranwrd(haplotype1,’-’,’_’);

data out2;
set out;
haplotype=tranwrd(haplotype2,’-’,’_’);

data outnew;
set out1 out2;

proc sort data=outnew;
by haplotype;

run;

data outnew2;
set outnew;
lagh=lag(haplotype);
if haplotype ne lagh then num+1;
hapname=compress("H"||num,’ ’);

proc sort data=outnew2;
by _id_ hapname;

run;
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data outt;
set outnew2;
by _id_ haplotype;
if first.haplotype then totprob=prob/2;
else totprob+prob/2;
if last.haplotype;

proc transpose data=outt out=outreg(drop=_NAME_) ;
id hapname;
idlabel haplotype;
var totprob;
by _id_ disease;

run;

data htr;
set outreg;
array h{8};
do i=1 to 8;
if h{i}=. then h{i}=0;
end;
keep _id_ disease h1-h8;

proc print data=htr noobs round label;
run;

proc logistic data=htr descending;
model disease = h1-h8 / selection=stepwise;

run;

This SAS code produces a data set htr from the output data set of PROC
HAPLOTYPE that contains the variables needed to be able to perform a regression
analysis. There is now one column for each possible haplotype in the sample, with
each column containing the haplotype’s frequency, or probability, within an individ-
ual.
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Output 6.5.2. Regression Data Set

_ID_ disease A_B_C A_B_c a_B_C a_B_c A_b_C A_b_c a_b_c a_b_C

1 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00
2 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
3 0 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
4 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
5 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
6 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
7 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
8 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
9 1 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00
10 0 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00
11 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
13 0 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00
14 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
16 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
17 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
18 1 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
19 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00
20 0 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
21 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
23 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
24 0 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
25 0 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
26 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
27 0 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
28 1 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
29 1 0.01 0.00 0.49 0.00 0.49 0.00 0.00 0.01
30 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
31 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
32 1 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00
33 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
34 1 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
35 1 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00
36 1 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
37 0 0.22 0.00 0.13 0.15 0.15 0.13 0.22 0.00
38 0 0.01 0.00 0.49 0.00 0.49 0.00 0.00 0.01
39 1 0.27 0.23 0.00 0.00 0.23 0.27 0.00 0.00
40 0 0.00 0.27 0.00 0.23 0.00 0.23 0.27 0.00
41 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
42 1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
43 1 0.29 0.21 0.21 0.29 0.00 0.00 0.00 0.00

The data set shown in Output 6.5.2 can now be used in one of the regression proce-
dures offered by SAS/STAT. In this example, since the trait is binary, the LOGISTIC
procedure can be used to perform a regression on the variable disease. The REG
procedure could be used in a similar manner to analyze a quantitative trait.
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Output 6.5.3. PROC LOGISTIC Output

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6.1962 1 0.0128
Score 6.3995 1 0.0114
Wald 4.9675 1 0.0258

Output 6.5.3. (continued)

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.1986 0.4058 8.7224 0.0031
H8 1 -6.3249 2.8378 4.9675 0.0258

Output 6.5.3 shows two of the tables produced by PROC LOGISTIC. The first one
displays the test of the global null hypothesis, β = 0. You can see that the score test
indicates a significant association between the haplotypes at the three markers and
disease status. In particular, the second table shows that as a result of the stepwise
selection, the haplotype H8 (a-b-c) has a statistically significant effect on disease sta-
tus. This is an example of how a regression analysis can be used to detect association
in a similar manner to the LRT implemented by PROC HAPLOTYPE.

Example 6.6. Using the Tall-Skinny Data Format

This example uses the data from the example Testing for Marker-Trait Associations,
with the data now in the tall-skinny format. When this format is used, BY groups can
be created in order to estimate haplotype frequencies in nonoverlapping windows of
marker loci instead of using a macro as shown in the other example; here four sets of
three loci are examined, but in general, loci with the same value of the BY variable
are included in the same analysis, so sets of varying sizes can be used as well.



Example 6.6. Using the Tall-Skinny Data Format � 135

data gaw_tall;
input hap_win markername $ id status $ allele1 allele2;
datalines;

1 marker1 1 U 8 4
1 marker1 2 U 5 9
1 marker1 3 A 8 2
1 marker1 4 U 7 8
1 marker1 5 U 9 2
1 marker1 6 U 2 7
1 marker1 7 U 7 7

...

4 marker12 42 U 3 10
4 marker12 43 U 3 10
4 marker12 44 U 12 6
4 marker12 45 A 5 2
4 marker12 46 U 9 7
4 marker12 47 U 10 1
4 marker12 48 U 10 12
4 marker12 49 U 12 7
4 marker12 50 U 1 10
;

Using the experimental options TALL, MARKER=, and INDIV=, along with the
BY statement to indicate the BY variable representing haplotype windows, the same
analysis shown in Testing for Marker-Trait Associations can be carried out on the 50
individuals typed at 12 markers, where sets of three loci at a time are tested for an
association with the trait.

proc haplotype data=gaw_tall tall marker=markername indiv=id noprint;
var allele1 allele2;
by hap_win;
trait status;

run;

This produces the following ODS output, with Output 6.6.1 mirroring the re-
sults shown in Output 6.4.1 and hap–win=1 corresponding to the first three loci
(‘Marker1’ through ‘Marker3’), and so on.
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Output 6.6.1. Marker-Association Tests over Haplotype Windows

---------------------------------- hap_win=1 -----------------------------------

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 U 36 156 -245.18487
2 A 14 68 -69.90500

Combined 50 181 -355.16139 80.1430 0.0005

---------------------------------- hap_win=2 -----------------------------------

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 U 36 140 -236.78471
2 A 14 62 -78.22280

Combined 50 162 -349.30084 68.5867 0.0033

---------------------------------- hap_win=3 -----------------------------------

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 U 36 119 -242.53993
2 A 14 56 -68.34854

Combined 50 139 -348.95917 76.1414 0.0001

---------------------------------- hap_win=4 -----------------------------------

The HAPLOTYPE Procedure

Test for Marker-Trait Association

Trait Trait Num Chi- Pr >
Number Value Obs DF LogLike Square ChiSq

1 U 36 180 -268.92245
2 A 14 75 -85.15400

Combined 50 233 -395.70275 83.2526 <.0001



References � 137

References
Clayton, D. (2002), “SNPHAP: A Program for Estimating Frequencies of Large

Haplotypes of SNPs,” [http://www-gene.cimr.cam.ac.uk/clayton/software/snphap.txt].

Excoffier, L. and Slatkin, M. (1995), “Maximum-Likelihood Estimation of
Molecular Haplotype Frequencies in a Diploid Population,” Molecular Biology
and Evolution, 12, 921–927.

Fallin, D., Cohen, A., Essioux, L., Chumakov, I., Blumenfeld, M., Cohen, D., and
Schork, N.J. (2001), “Genetic Analysis of Case/Control Data Using Estimated
Haplotype Frequencies: Application to APOE Locus Variation and Alzheimer’s
Disease,” Genome Research, 11, 143–151.

Fallin, D. and Schork, N.J. (2000), “Accuracy of Haplotype Frequency Estimation
for Biallelic Loci, via the Expectation-Maximization Algorithm for Unphased
Diploid Genotype Data,” American Journal of Human Genetics, 67, 947–959.

Hawley, M.E. and Kidd, K.K. (1995), “HAPLO: A Program Using the EM Algorithm
to Estimate the Frequencies of Multi-site Haplotypes,” Journal of Heredity, 86,
409–411.

Lab of Statistical Genetics at Rockefeller University (2001), “User’s Guide to the EH
Program,” [http://linkage.rockefeller.edu/ott/eh.htm].

Lin, S., Cutler, D.J., Zwick, M.E., Chakravarti, A. (2002), “Haplotype Inference
in Random Population Samples,” American Journal of Human Genetics, 71,
1129–1137.

Long, J.C., Williams, R.C., and Urbanek, M. (1995), “An E-M Algorithm and Testing
Strategy for Multiple-Locus Haplotypes,” American Journal of Human Genetics,
56, 799–810.

Schaid, D.J., Rowland, C.M., Tines, D.E., Jacobson, R.M., and Poland, G.A. (2002),
“Score Tests for Association between Traits and Haplotypes when Linkage Phase
is Ambiguous,” American Journal of Human Genetics, 70, 425–434.

Stephens, M., Smith, N.J., Donnelly, P. (2001), “A New Statistical Method for
Haplotype Reconstruction from Population Data,” American Journal of Human
Genetics, 68, 978–989.

Wijsman, E.M., Almasy, L., Amos, C.I., Borecki, I., Falk, C.T., King, T.M.,
Martinez, M.M., Meyers, D., Neuman, R., Olson, J.M., Rich, S., Spence, M.A.,
Thomas, D.C., Vieland, V.J., Witte, J.S., and MacCluer, J.W. (2001), “Analysis of
Complex Genetic Traits: Applications to Asthma and Simulated Data,” Genetic
Epidemiology, 21, S1–S853.

Zaykin, D.V., Westfall, P.H., Young, S.S., Karnoub, M.A., Wagner, M.J., and Ehm,
M.G. (2002), “Testing Association of Statistically Inferred Haplotypes with
Discrete and Continuous Traits in Samples of Unrelated Individuals,” Human
Heredity, 53, 79–91.

Zhao, J.H., Curtis, D., and Sham, P.C. (2000), “Model-Free Analysis and Permutation
Tests for Allelic Associations,” Human Heredity, 50, 133–139.



138 � Chapter 6. The HAPLOTYPE Procedure



Chapter 7
The HTSNP Procedure

(Experimental)

Chapter Contents

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
PROC HTSNP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Statistical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Example 7.1. Using the HAPLOTYPE and HTSNP Procedures Together . . 150

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



140 � Chapter 7. The HTSNP Procedure (Experimental)



Chapter 7
The HTSNP Procedure

(Experimental)
Overview

Single nucleotide polymorphism (SNP) is the most abundant form of genetic varia-
tion and accounts for about 90% of human DNA polymorphism. There is roughly
one SNP per 1 kilobase in the human genome. Studies of human haplotype varia-
tions using SNPs over large genomic regions suggest the presence of discrete blocks
with limited haplotype diversity punctuated by recombination hot spots. The intra-
block linkage disequilibrium (LD) decreases only gradually with distance, while the
interblock LD decays much more rapidly. Within each block, because of high LD,
some allele(s) may always be coexistent with a particular allele at another locus such
that (1) little haplotype diversity exists in the block, and (2) not all SNPs will be
essential in characterizing the haplotype structure in the block. Therefore, the most
common haplotypes could usually be captured by a small subset of SNPs, termed
haplotype tagging SNPs (htSNPs) by Johnson et al. (2001).

The selection of such a SNP subset that distinguishes all haplotypes, however, is
known as the minimum test set problem and is NP-complete. The search space of
choosing k SNPs out of M is

(
M
k

)
= M !

k!(M−k)! , for which enumerating all possible k-
SNP combinations becomes impractical even for moderate numbers of M and k. The
HTSNP procedure implements some heuristic algorithms for fast identification of an
optimal subset of SNPs without mining through all possible combinations. An ex-
haustive search algorithm throughout the

(
M
k

)
search space is also provided in PROC

HTSNP.

Getting Started

Example

The following haplotypes from markers at the CTLA4 locus (Johnson et al. 2001) can
be read into a SAS data set as follows:

data ctla4;
input (m1-m12)($) freq;
datalines;

C T A A G C C A C C A G 0.333
T T A G G C C G C T G G 0.224
T C A G G C C G C T G G 0.058
T T A A G C C G C T G G 0.020
C T A A G T C A C C A G 0.080
C T A G G T C A C C A G 0.017
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C T A G G C C A C C A G 0.045
T T A G G C C A C C A G 0.018
C T G G A C T A T C G A 0.086
C T G G A C C A T C G A 0.054
C T G G A C C A C C G A 0.021
;

You can now use PROC HTSNP to search a subset of markers that explains most of
the haplotype diversity in this sample. The following statements perform the search:

proc htsnp data=ctla4 size=5 method=im
cutoff=0.05 seed=244 conv=0.99;

var m1-m12;
freq freq;

run;

The iterative maximization algorithm is selected as the search method with the
METHOD=IM option. The SIZE=5 option indicates that only subsets containing
exactly five SNPs are considered in the search. All haplotypes in the data set with a
frequency below 0.05 are excluded from the search process since the CUTOFF=0.05
option was specified. The search continues until the convergence criterion of 0.99 is
met as specified in the CONV= option. The iterative maximization algorithm ran-
domly selects an initial set of markers, so using different seeds may produce different
results.

The results from the procedure are as follows:
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The HTSNP Procedure

Marker Summary

Locus Allele Frequency Diversity

m1 C 0.6653 0.4454
T 0.3347 0.4454

m2 C 0.0607 0.1140
T 0.9393 0.1140

m3 A 0.8316 0.2801
G 0.1684 0.2801

m4 A 0.4529 0.4956
G 0.5471 0.4956

m5 A 0.1684 0.2801
G 0.8316 0.2801

m6 C 0.8985 0.1823
T 0.1015 0.1823

m7 C 0.9100 0.1637
T 0.0900 0.1637

m8 A 0.6841 0.4322
G 0.3159 0.4322

m9 C 0.8536 0.2500
T 0.1464 0.2500

m10 C 0.6841 0.4322
T 0.3159 0.4322

m11 A 0.5157 0.4995
G 0.4843 0.4995

m12 A 0.1684 0.2801
G 0.8316 0.2801

Figure 7.1. Marker Summary for PROC HTSNP

Figure 7.1 displays the summary of the marker loci for this sample. This includes the
frequency of each allele and the gene diversity at each marker.

htSNP Evaluation

Rank HTSNP1 HTSNP2 HTSNP3 HTSNP4 HTSNP5 PDE

1 m2 m3 m6 m7 m8 1.0000

Figure 7.2. htSNP Evaluation

Figure 7.2 displays the ODS table containing the set of five SNPs that were selected as
the htSNPs; these five markers correspond to those selected by Johnson et al. (2001).
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Syntax
The following statements are available in PROC HTSNP.

PROC HTSNP < options > ;
BY variables ;
FREQ variable ;
VAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC
HTSNP statement can appear in any order. Only the VAR statement is required. The
syntax for each statement is described in the following section in alphabetical order
after the description of the PROC HTSNP statement.

PROC HTSNP Statement

PROC HTSNP < options > ;

You can specify the following options in the PROC HTSNP statement.

BEST=number
specifies the number of the best selections displayed in the “htSNP Evaluation” table
during an exhaustive or simulated annealing search process when METHOD=EX or
SA, respectively, is specified. The number must be a positive integer. By default,
only one best selection is reported. Note that sets of SNPs with the same value of
the criterion measure as the last displayed set(s) are not necessarily all shown since
number indicates the number of sets actually displayed. If number is greater than
the number of possible sets when METHOD=EX or greater than the number of sets
examined when METHOD=SA, there are fewer than number sets displayed.

CONV=number
specifies the convergence criterion for search of htSNPs, where 0 < number ≤ 1. The
search process is stopped when the haplotype criterion is greater than or equal to num-
ber specified in the CONV= option. The default value is 0.90. When METHOD=SA
or METHOD=EX is specified, the CONV= option is ignored and the searching con-
tinues until the annealing schedule is finished or the whole search space is traversed.

CRITERION= PDE | RSQH
CRIT= PDE | RSQH

indicates the criterion to use for evaluating candidate sets of htSNPs. By default or
when CRITERION=PDE is specified, the proportion of diversity explained (PDE)
is used (Clayton 2002). When CRITERION=RSQH, Stram et al.’s R2

h is used to
measure haplotype richness (2003). See the section “Evaluating Sets of htSNPs” on
page 147 for more information about these measures.

CUTOFF=number
specifies a lower bound on a haplotype’s frequency in order for that haplotype to be
included candidate sets of htSNPs in the search process. The value of number must
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be between 0 and 1. By default, all haplotypes from the sample are included in the
search process.

DATA=SAS-data-set
names the input SAS data set to be used by PROC HTSNP. The default is to use the
most recently created data set.

MAXSIZE=number
specifies the maximum number of markers to be included in the subset for incremen-
tal search by default or when METHOD=INCR is specified. The number must be a
positive integer that is less than or equal to the number of markers specified in the
VAR statement. Searching is carried out until convergence is reached according to
the convergence criterion, or number of markers have been included in the subset.

METHOD=INCR | INCREMENTAL
METHOD=DECR | DECREMENTAL
METHOD=EX | EXHAUSTIVE
METHOD=IM | ITERMAX
METHOD=SA | SIMANNEAL

indicates the method used for core marker set selection. By default or when
METHOD=INCR is specified, the incremental search algorithm is used. When
METHOD=DECR, the decremental algorithm is used. When METHOD=EX, the ex-
haustive search algorithm is used. When METHOD=IM, the iterative maximization
algorithm is used. When METHOD=SA, the simulated annealing search algorithm is
used. See the section “Search Algorithms” on page 148 for more information about
these methods.

NOSUMMARY
NOSUMM

suppresses the display of the “Marker Summary” table.

SCHEDULE=number
specifies the number of reconfigurations used in each annealing step when
METHOD=SA. The value for number must be a positive integer. The default value
is 100 × (number of variables specified in the VAR statement).

SEED=number
specifies the initial seed for the random number generator used for the sampling of
markers. The value for number must be an integer; the computer clock time is used
if the option is omitted or an integer less than or equal to 0 is specified. For more
details about seed values, refer to SAS Language Reference: Concepts.

SIZE=number
specifies the size of the subset of markers to select. The value for number must be
a positive integer that is less than or equal to the number of markers specified in
the VAR statement. The SIZE= option must be specified for an exhaustive search,
iterative maximization search, and simulated annealing search.

STEP=number
specifies the steps used for simulated annealing search when METHOD=SA. The
value for number must be a positive integer. The default value is 1.



146 � Chapter 7. The HTSNP Procedure (Experimental)

TEMPERATURE=number
T=number

specifies the temperature used for the simulated annealing search when
METHOD=SA is specified. The value for number must be a positive number.
The default value is 1.

TFACTOR=number
specifies the factor by which the temperature is reduced for each annealing step dur-
ing simulated annealing search when METHOD=SA. The value for number must
satisfy 0 < number < 1. The default value is 0.90.

BY Statement

BY variables ;

You can specify a BY statement with PROC HTSNP to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables. The
variables are one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the HTSNP procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion in SAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in the Base SAS Procedures Guide.

FREQ Statement

FREQ variable ;

The FREQ statement identifies the variable that indicates the frequency for each hap-
lotype. If there is no FREQ statement, the frequency of each distinct haplotype is
calculated by dividing its count by the total haplotype count. When a frequency
value is missing or negative, the corresponding haplotype is ignored.
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VAR Statement
VAR variables ;

The VAR statement identifies the variables, one for each marker, containing the
marker alleles that construct the haplotypes. Two or more variables must be spec-
ified.

Details
Statistical Computations
Diversity

Let f1, . . . , fn represent the proportional frequencies of the n unique M -locus hap-
lotypes in the input data set. The locus or allelic diversity D1, . . . , DM for the M
individual loci and the overall haplotype diversity D can be calculated as

Dm =
n∑

i=1

n∑
j=1

fifj I(him �= hjm)

D =
M∑

m=1

Dm

where him is the allele of the ith haplotype observed at the mth locus and the indicator
function I() equals 1 when true and 0 otherwise (Clayton 2002).

Based on a selected subset of k SNPs, the n observed haplotypes can be partitioned
into T distinct groups. Let Tt represent the set of haplotypes in group t = 1, . . . , T
where each set contains all haplotypes that have identical alleles at the k selected loci.
The residual diversity is calculated by Clayton (2002) by summing the within-group
diversity over the T groups, again both for the individual loci and over all haplotypes:

Rm =
T∑

t=1

∑
i∈Tt

∑
j∈Tt

fifj I(him �= hjm)

R =
M∑

m=1

Rm

where m = 1, . . . ,M . Note that Rm = 0 if locus m is one of the k selected SNPs.

Evaluating Sets of htSNPs
One of two criteria for finding the optimal set of htSNPs can be selected with the
CRITERION= option. Using the diversity measures previously defined, the propor-
tion of diversity explained (PDE) by a candidate SNP set can be calculated to evaluate
the goodness of the set (Clayton 2002):

PDE = 1 − R

D
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The higher (that is, closer to 1) the value of PDE is, the better the set of htSNPs is for
explaining the diversity among the haplotypes.

Alternatively, the approach of Stram et al. (2003) is implemented when
CRITERION=RSQH. For these computations, define δh(Hi) to be the actual
number of copies of haplotype h that an individual with the M -locus haplotype
pair Hi (usually unknown) and genotype Gi carries. Assuming Hardy-Weinberg
equilibrium, this can be estimated as

E[δh(Hi)|Gi] =

∑
j∈Hi

δh(hj , h
ci
j )fjf

ci
j∑

j∈Hi
fjf ci

j

where Hi is the set of haplotype pairs, hj and its complement hci
j , compatible with

genotype Gi. Then R2
h can be defined as follows for each haplotype h:

R2
h =

Var{E[δh(Hi)|Gi]}
2fh(1 − fh)

=
∑

i{[E(δh(Hi)|Gi)]2 Pr(Gi)} − 4f2
h

2fh(1 − fh)

with Gi representing each possible k-locus genotype at the selected SNPs and
Pr(Gi) =

∑
j∈Hi

fjf
ci
j . The set of k SNPs with the highest (that is, closest to

1) value of minh R2
h is selected as the best set of htSNPs, for it optimizes the pre-

dictability of the common haplotypes (Stram et al. 2003).

Search Algorithms
Incremental Search

The incremental search algorithm starts with finding a first marker that has maximum
locus richness and then goes through the remaining markers to find the next one that
brings in the greatest increase in the criterion measure, PDE or R2

h. The selected
markers are kept and the search process is continued using the remaining ones, one
marker being added at a time, until a convergence criterion is met.

Decremental Search

The decremental search operates in an opposite manner from the incremental search.
Starting with all M markers, one marker that causes the smallest loss in the criterion
measure is excluded each time and the rest of the markers are kept. The exclusion
process is continued until the criterion measure falls below a predefined criterion; the
last set with the measure above the criterion is reported.

Iterative Maximization Search

The iterative maximization search (Gouesnard et al. 2001) is a fast algorithm for
choosing an optimal k-subset from M accessions. The algorithm starts from a ran-
dom selection of k markers for which all the core collections of size k − 1 are tested.
The subset with the highest criterion measure is retained. Among the other M − k
markers, one that brings the greatest increase in the goodness criterion is selected and
a new k-locus set is obtained. Exclusion and inclusion of one marker in the new k-
locus set is repeated until convergence. Each iteration needs to evaluate the criterion
measure k times for k − 1 markers and M − k times for k markers.



Displayed Output � 149

Simulated Annealing Search

Simulation annealing (Kirkpatrick, Gelatt, and Vecchi 1983) has been adopted in
many combinatorial optimization problems. The global optimum could be approxi-
mated with simulated annealing using a proper annealing schedule. Starting from a
selection of k markers (the selection could be a random one or obtained from a previ-
ously mentioned algorithm), one marker is randomly swapped with another from the
unselected markers. The change of haplotype goodness is evaluated using an energy
function for the marker exchange. Acceptance of the exchange is judged with the
Metropolis criterion (Metropolis et al. 1953), and

Pr{new point is accepted} =
{

1, ∆ ≤ 0
exp(−∆/T ), ∆ > 0

where ∆ is the change of energy function and T is the annealing temperature.

Exhaustive Search

An exhaustive search of k markers from M involves traversal of all
(
M
k

)
possible

selections once and only once. The traversal is implemented in lexicographical order
(Nijenhuis and Herbert 1978). Let Si = (s1, s2, ..., sk) denote a selection i, where
1 ≤ sij ≤ M is the index of the jth element in selection i. Lexicographical traversal
of all k subsets then starts with (1, 2, ..., k − 1, k), (1, 2, ..., k − 1, k + 1), and ends
with (M − k + 1,M − k + 2, . . . ,M − 1,M).

Missing Values

An M -locus haplotype is considered to be partially missing if any, but not all, of the
alleles are missing. A haplotype that is all-missing is dropped for any analysis.

Displayed Output

This section describes the displayed output from PROC HTSNP. See the “ODS Table
Names” section on page 150 for details about how this output interfaces with the
Output Delivery System.

Marker Summary

The “Marker Summary” table lists the following information for each marker allele:

• Locus, the name of the marker locus

• Allele, the allele

• Frequency, the frequency of the allele

• Diversity, the gene diversity of the marker

HTSNP Evaluation

The “htSNP Evaluation” table displays the best set(s) of htSNPs according to the
criterion specified in the CRITERION= option.
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ODS Table Names

PROC HTSNP assigns a name to each table it creates, and you must use this name to
reference the table when using the Output Delivery System (ODS). These names are
listed in the following table.

Table 7.1. ODS Tables Created by the HTSNP Procedure

ODS Table Name Description Statement or Option
MarkerSummary Marker Summary default
HTSNPEvaluation htSNP Evaluation default

Example

Example 7.1. Using the HAPLOTYPE and HTSNP Procedures
Together

Before using PROC HTSNP, you may need to first run PROC HAPLOTYPE (see
Chapter 6 for more details) if you have data with unknown phase in order to esti-
mate the haplotype frequencies. This example demonstrates how output from PROC
HAPLOTYPE can be manipulated to be in the appropriate form for an input data set
for PROC HTSNP.

The following data set contains 150 individuals with genotypes at 13 SNPs that were
simulated to mimic the frequencies of SNPs in the CASP8 gene (Johnson et al. 2001).

data casp8;
input id (m1-m13) ($);
datalines;

1 T/T T/T A/G G/G C/G A/G A/G G/C C/C G/G A/A A/G A/C
2 G/T T/T A/G T/G C/G G/G G/G C/C C/C G/G A/A A/G C/C

... more datalines ...

148 T/T T/T A/G G/G C/C A/G A/G G/C C/C G/G A/A A/A A/C
149 T/T T/T G/G G/G C/G G/G G/G C/C C/C G/G A/A A/G C/C
150 T/T T/T A/A G/G C/C A/A A/G G/G C/C G/G A/A A/A A/A
;

The following code can be used to first estimate haplotype frequencies using the EM
algorithm, then to identify the haplotype tag SNPs.

ods output haplotypefreq=freqout(keep=haplotype freq);

proc haplotype data=casp8 genocol cutoff=0.0075;
var m1-m13;
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run;

data hapfreq;
set freqout;
array m{13} $ 1;
do i = 1 to 13;
m{i} = substr(haplotype, 2*i-1, 1);
end;
drop haplotype i;

run;

proc htsnp data=hapfreq size=4 method=sa best=5 cutoff=0.05
seed=123 nosumm;

var m1-m13;
freq freq;

run;

The ODS statement is used to create a data set from the “Haplotype Frequencies”
ODS table, which is displayed in its table form as follows:

Output 7.1.1. ODS Table Containing Haplotype Frequencies
The HAPLOTYPE Procedure

Haplotype Frequencies

Standard 95% Confidence
Number Haplotype Freq Error Limits

1 G-T-A-T-C-G-G-C-C-G-A-A-C 0.01988 0.00807 0.00406 0.03570
2 T-C-G-G-C-G-G-C-C-G-A-A-C 0.09173 0.01669 0.05902 0.12445
3 T-T-A-G-C-A-A-G-C-G-A-A-A 0.16666 0.02155 0.12442 0.20890
4 T-T-A-G-C-A-G-G-C-G-A-A-A 0.05667 0.01337 0.03046 0.08287
5 T-T-A-G-C-A-G-G-C-G-G-A-A 0.03663 0.01086 0.01534 0.05793
6 T-T-G-G-C-A-G-G-C-G-A-A-A 0.01579 0.00721 0.00166 0.02992
7 T-T-G-G-C-G-G-C-C-G-A-A-C 0.40576 0.02840 0.35011 0.46142
8 T-T-G-G-C-G-G-G-T-C-A-A-A 0.02667 0.00932 0.00841 0.04493
9 T-T-G-G-C-G-G-G-T-G-A-A-A 0.00861 0.00534 0.00000 0.01908
10 T-T-G-G-G-G-G-C-C-G-A-G-C 0.16250 0.02133 0.12069 0.20432

With this table in the form of a SAS data set, the DATA step code above can be used
to convert it into an input data set for PROC HTSNP, using the estimated frequencies
from PROC HAPLOTYPE as the FREQ variable. In this example, the simulated
annealing search method is specified for finding the best sets of size four. The “htSNP
Evaluation” table that is created by PROC HTSNP is displayed to show the best five
sets of SNPs that were selected.
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Output 7.1.2. Candidate Sets of htSNPs from PROC HTSNP
The HTSNP Procedure

htSNP Evaluation

Rank HTSNP1 HTSNP2 HTSNP3 HTSNP4 PDE

1 m2 m5 m7 m13 1.0000
1 m2 m7 m8 m12 1.0000
1 m2 m5 m7 m8 1.0000
1 m2 m7 m12 m13 1.0000
1 m2 m5 m6 m7 1.0000

Note that the last selection shown in Output 7.1.2 matches the set of htSNPs found
by Johnson et al. (2001).
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Chapter 8
The INBREED Procedure
Overview

The INBREED procedure calculates the covariance or inbreeding coefficients for a
pedigree. PROC INBREED is unique in that it handles very large populations.

The INBREED procedure has two modes of operation. One mode carries out analysis
on the assumption that all the individuals belong to the same generation. The other
mode divides the population into nonoverlapping generations and analyzes each gen-
eration separately, assuming that the parents of individuals in the current generation
are defined in the previous generation.

PROC INBREED also computes averages of the covariance or inbreeding coefficients
within sex categories if the sex of individuals is known.

Getting Started
This section demonstrates how you can use the INBREED procedure to calculate the
inbreeding or covariance coefficients for a pedigree, how you can control the analysis
mode if the population consists of nonoverlapping generations, and how you can
obtain averages within sex categories.

For you to use PROC INBREED effectively, your input data set must have a definite
format. The following sections first introduce this format for a fictitious population
and then demonstrate how you can analyze this population using the INBREED pro-
cedure.

The Format of the Input Data Set

The SAS data set used as input to the INBREED procedure must contain an observa-
tion for each individual. Each observation must include one variable identifying the
individual and two variables identifying the individual’s parents. Optionally, an ob-
servation can contain a known covariance coefficient and a character variable defining
the gender of the individual.

For example, consider the following data:

data Population;
input Individual $ Parent1 $ Parent2 $

Covariance Sex $ Generation;
datalines;
MARK GEORGE LISA . M 1
KELLY SCOTT LISA . F 1
MIKE GEORGE AMY . M 1
. MARK KELLY 0.50 . 1
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DAVID MARK KELLY . M 2
MERLE MIKE JANE . F 2
JIM MARK KELLY 0.50 M 2
MARK MIKE KELLY . M 2
;

It is important to order the pedigree observations so that individuals are defined before
they are used as parents of other individuals. The family relationships between indi-
viduals cannot be ascertained correctly unless you observe this ordering. Also, older
individuals must precede younger ones. For example, ‘MARK’ appears as the first
parent of ‘DAVID’ at observation 5; therefore, his observation needs to be defined
prior to observation 5. Indeed, this is the case (see observation 1). Also, ‘DAVID’ is
older than ‘JIM’, whose observation appears after the observation for ‘DAVID’, as is
appropriate.

In populations with distinct, nonoverlapping generations, the older generation (par-
ents) must precede the younger generation. For example, the individuals defined in
Generation=1 appear as parents of individuals defined in Generation=2.

PROC INBREED produces warning messages when a parent cannot be found. For
example, ‘JANE’ appears as the second parent of the individual ‘MERLE’ even
though there are no previous observations defining her own parents. If the popu-
lation is treated as an overlapping population, that is, if the generation grouping is
ignored, then the procedure inserts an observation for ‘JANE’ with missing parents
just before the sixth observation, which defines ‘MERLE’ as follows:

JANE . . . F 2
MERLE MIKE JANE . F 2

However, if generation grouping is taken into consideration, then ‘JANE’ is defined
as the last observation in Generation=1, as follows:

MIKE GEORGE AMY . M 1
JANE . . . F 1

In this latter case, however, the observation for ‘JANE’ is inserted after the compu-
tations are reported for the first generation. Therefore, she does not appear in the
covariance/inbreeding matrix, even though her observation is used in computations
for the second generation (see the example on page 158).

If the data for an individual are duplicated, only the first occurrence of the data is used
by the procedure, and a warning message is displayed to note the duplication. For
example, individual ‘MARK’ is defined twice, at observations 1 and 8. If generation
grouping is ignored, then this is an error and observation 8 is skipped. However, if the
population is processed with respect to two distinct generations, then ‘MARK’ refers
to two different individuals, one in Generation=1 and the other in Generation=2.

If a covariance is to be assigned between two individuals, then those individuals must
be defined prior to the assignment observation. For example, a covariance of 0.50
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can be assigned between ‘MARK’ and ‘KELLY’ since they are previously defined.
Note that assignment statements must have different formats depending on whether
the population is processed with respect to generations (see the “DATA= Data Set”
section on page 164 for further information). For example, while observation 4 is
valid for nonoverlapping generations, it is invalid for a processing mode that ignores
generation grouping. In this latter case, observation 7 indicates a valid assignment,
and observation 4 is skipped.

The latest covariance specification between any given two individuals overrides the
previous one between the same individuals.

Performing the Analysis

To compute the covariance coefficients for the overlapping generation mode, use the
following statements:

proc inbreed data=Population covar matrix init=0.25;
run;

Here, the DATA= option names the SAS data set to be analyzed, and the COVAR
and MATRIX options tell the procedure to output the covariance coefficients matrix.
If you omit the COVAR option, the inbreeding coefficients are output instead of the
covariance coefficients.

Note that the PROC INBREED statement also contains the INIT= option. This option
gives an initial covariance between any individual and unknown individuals. For
example, the covariance between any individual and ‘JANE’ would be 0.25, since
‘JANE’ is unknown, except when ‘JANE’ appears as a parent (see Figure 8.1).
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The INBREED Procedure

Covariance Coefficients

Individual Parent1 Parent2 GEORGE LISA MARK SCOTT KELLY

GEORGE 1.1250 0.2500 0.6875 0.2500 0.2500
LISA 0.2500 1.1250 0.6875 0.2500 0.6875
MARK GEORGE LISA 0.6875 0.6875 1.1250 0.2500 0.5000
SCOTT 0.2500 0.2500 0.2500 1.1250 0.6875
KELLY SCOTT LISA 0.2500 0.6875 0.5000 0.6875 1.1250
AMY 0.2500 0.2500 0.2500 0.2500 0.2500
MIKE GEORGE AMY 0.6875 0.2500 0.4688 0.2500 0.2500
DAVID MARK KELLY 0.4688 0.6875 0.8125 0.4688 0.8125
JANE 0.2500 0.2500 0.2500 0.2500 0.2500
MERLE MIKE JANE 0.4688 0.2500 0.3594 0.2500 0.2500
JIM MARK KELLY 0.4688 0.6875 0.8125 0.4688 0.8125

Covariance Coefficients

Individual Parent1 Parent2 AMY MIKE DAVID JANE MERLE

GEORGE 0.2500 0.6875 0.4688 0.2500 0.4688
LISA 0.2500 0.2500 0.6875 0.2500 0.2500
MARK GEORGE LISA 0.2500 0.4688 0.8125 0.2500 0.3594
SCOTT 0.2500 0.2500 0.4688 0.2500 0.2500
KELLY SCOTT LISA 0.2500 0.2500 0.8125 0.2500 0.2500
AMY 1.1250 0.6875 0.2500 0.2500 0.4688
MIKE GEORGE AMY 0.6875 1.1250 0.3594 0.2500 0.6875
DAVID MARK KELLY 0.2500 0.3594 1.2500 0.2500 0.3047
JANE 0.2500 0.2500 0.2500 1.1250 0.6875
MERLE MIKE JANE 0.4688 0.6875 0.3047 0.6875 1.1250
JIM MARK KELLY 0.2500 0.3594 0.8125 0.2500 0.3047

Covariance Coefficients

Individual Parent1 Parent2 JIM

GEORGE 0.4688
LISA 0.6875
MARK GEORGE LISA 0.8125
SCOTT 0.4688
KELLY SCOTT LISA 0.8125
AMY 0.2500
MIKE GEORGE AMY 0.3594
DAVID MARK KELLY 0.8125
JANE 0.2500
MERLE MIKE JANE 0.3047
JIM MARK KELLY 1.2500

Number of Individuals 11

Figure 8.1. Analysis for an Overlapping Population

In the previous example, PROC INBREED treats the population as a single gener-
ation. However, you may want to process the population with respect to distinct,
nonoverlapping generations. To accomplish this, you need to identify the generation
variable in a CLASS statement, as shown by the following statements.

proc inbreed data=Population covar matrix init=0.25;
class Generation;

run;
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Note that, in this case, the covariance matrix is displayed separately for each genera-
tion (see Figure 8.2).

The INBREED Procedure

Generation = 1

Covariance Coefficients

Individual Parent1 Parent2 MARK KELLY MIKE

MARK GEORGE LISA 1.1250 0.5000 0.4688
KELLY SCOTT LISA 0.5000 1.1250 0.2500
MIKE GEORGE AMY 0.4688 0.2500 1.1250

Number of Individuals 3

The INBREED Procedure

Generation = 2

Covariance Coefficients

Individual Parent1 Parent2 DAVID MERLE JIM MARK

DAVID MARK KELLY 1.2500 0.3047 0.8125 0.5859
MERLE MIKE JANE 0.3047 1.1250 0.3047 0.4688
JIM MARK KELLY 0.8125 0.3047 1.2500 0.5859
MARK MIKE KELLY 0.5859 0.4688 0.5859 1.1250

Number of Individuals 4

Figure 8.2. Analysis for a Nonoverlapping Population

You may also want to see covariance coefficient averages within sex categories. This
is accomplished by indicating the variable defining the gender of individuals in a
GENDER statement and by adding the AVERAGE option to the PROC INBREED
statement. For example, the following statements produce the covariance coefficient
averages shown in Figure 8.3.

proc inbreed data=Population covar average init=0.25;
class Generation;
gender Sex;

run;
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The INBREED Procedure

Generation = 1

Averages of Covariance Coefficient Matrix in Generation 1

On Diagonal Below Diagonal

Male X Male 1.1250 0.4688
Male X Female . 0.3750
Female X Female 1.1250 0.0000
Over Sex 1.1250 0.4063

Number of Males 2
Number of Females 1
Number of Individuals 3

The INBREED Procedure

Generation = 2

Averages of Covariance Coefficient Matrix in Generation 2

On Diagonal Below Diagonal

Male X Male 1.2083 0.6615
Male X Female . 0.3594
Female X Female 1.1250 0.0000
Over Sex 1.1875 0.5104

Number of Males 3
Number of Females 1
Number of Individuals 4

Figure 8.3. Averages within Sex Categories for a Nonoverlapping Generation

Syntax
The following statements are available in PROC INBREED.

PROC INBREED < options > ;
BY variables ;
CLASS variable ;
GENDER variable ;
MATINGS individual-list1 / mate-list <, . . . > ;
VAR variables ;

The PROC INBREED statement is required. Items within angle brackets (< >) are
optional. The syntax of each statement is described in the following sections.
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PROC INBREED Statement

PROC INBREED < options > ;

You can specify the following options in the PROC INBREED statement.

AVERAGE
A

produces a table of averages of coefficients for each pedigree of offspring. The
AVERAGE option is used together with the GENDER statement to average the in-
breeding/covariance coefficients within sex categories.

COVAR
C

specifies that all coefficients output consist of covariance coefficients rather than in-
breeding coefficients.

DATA=SAS-data-set
names the SAS data set to be used by PROC INBREED. If you omit the DATA=
option, the most recently created SAS data set is used.

IND
I

displays the individuals’ inbreeding coefficients (diagonal of the inbreeding coeffi-
cients matrix) for each pedigree of offspring. If you also specify the COVAR option,
the individuals’ covariance coefficients (diagonal of the covariance coefficients ma-
trix) are displayed.

INDL
displays individuals’ coefficients for only the last generation of a multiparous popu-
lation.

INIT=cov
specifies the covariance value cov if any of the parents are unknown; a value of 0 is
assumed if you do not specify the INIT= option.

MATRIX
M

displays the inbreeding coefficient matrix for each pedigree of offspring. If you also
specify the COVAR option, the covariance matrices are displayed instead of inbreed-
ing coefficients matrices.

MATRIXL
displays coefficients for only the last generation of a multiparous population.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS).

For more information on ODS, see Chapter 15, “Using the Output Delivery System.”
(SAS/STAT User’s Guide)

OUTCOV=SAS-data-set
names an output data set to contain the inbreeding coefficients. When the COVAR
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option is also specified, covariance estimates are output to the OUTCOV= data set
instead of inbreeding coefficients.

BY Statement

BY variables ;

You can specify a BY statement with PROC INBREED to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input DATA= data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

• Use the SORT procedure with a similar BY statement to sort the data.

• Use the BY statement options NOTSORTED or DESCENDING in the
BY statement for the INBREED procedure. As a cautionary note, the
NOTSORTED option does not mean that the data are unsorted but rather that
the data are arranged in groups (according to values of the BY variables), and
these groups are not necessarily in alphabetical or increasing numeric order.

• Use the DATASETS procedure (in base SAS software) to create an index on
the BY variables.

For more information on the BY statement, see the discussion in SAS Language
Reference: Concepts.

CLASS Statement

CLASS variable ;

To analyze the population within nonoverlapping generations, you must specify the
variable that identifies generations in a CLASS statement. Values of the generation
variable, called generation numbers, must be integers, but generations are assumed
to occur in the order of their input in the input data set rather than in numerical order
of the generation numbers. The name of an individual needs to be unique only within
its generation.

When the MATRIXL option or the INDL option is specified, each generation requires
a unique generation number in order for the specified option to work correctly. If
generation numbers are not unique, all the generations with a generation number that
is the same as the last generation’s are output.
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GENDER Statement
GENDER variable ;

The GENDER statement specifies a variable that indicates the sex of the individuals.
Values of the sex variable must be character beginning with ‘M’ or ‘F’, for male or
female. The GENDER statement is needed only when you specify the AVERAGE op-
tion to average the inbreeding/covariance coefficients within sex categories or when
you want to include a gender variable in the OUTCOV= data set.

PROC INBREED makes the following assumptions regarding the gender of individ-
uals:

• The first parent is always assumed to be the male. See the “VAR Statement”
section on page 163.

• The second parent is always assumed to be the female. See the “VAR
Statement” section on page 163.

• If the gender of an individual is missing or invalid, this individual is assumed
to be a female unless the population is overlapping and this individual appears
as the first parent in a later observation.

Any contradictions to these rules are reported in the SAS log.

MATINGS Statement
MATINGS individual-list1 / mate-list1 <, . . . ,individual-listn / mate-listn >;

You can specify the MATINGS statement with PROC INBREED to specify selected
matings of individuals. Each individual given in individual-list is mated with each
individual given in mate-list. You can write multiple mating specifications if you
separate them by commas or asterisks. The procedure reports the inbreeding coeffi-
cients or covariances for each pair of mates. For example, you can use the following
statement to specify the mating of an individual named ‘DAVID’ with an individual
named ‘JANE’:

matings david / jane;

VAR Statement
VAR individual parent1 parent2 < covariance > ;

The VAR statement specifies three or four variables: the first variable contains an
individual’s name, the second variable contains the name of the individual’s first par-
ent, and the third variable contains the name of the individual’s second parent. An
optional fourth variable assigns a known value to the covariance of the individual’s
first and second parents in the current generation.

The first three variables in the VAR statement can be either numeric or character;
however, only the first 12 characters of a character variable are recognized by the
procedure. The fourth variable, if specified, must be numeric.
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If you omit the VAR statement, then the procedure uses the first three unaddressed
variables as the names of the individual and its parents. (Unaddressed variables are
those that are not referenced in any other PROC INBREED statement.) If the in-
put data set contains an unaddressed fourth variable, then it becomes the covariance
variable.

Details

Missing Values

A missing value for a parent implies that the parent is unknown. Unknown parents
are assumed to be unrelated and not inbred unless you specify the INIT= option (see
the INIT= option on page 161).

When the value of the variable identifying the individual is missing, the observation
is not added to the list of individuals. However, for a multiparous population, an
observation with a missing individual is valid and is used for assigning covariances.

Missing covariance values are determined from the INIT=cov option, if specified.
Observations with missing generation variables are excluded.

If the gender of an individual is missing, it is determined from the order in which it is
listed on the first observation defining its progeny for an overlapping population. If it
appears as the first parent, it is set to ‘M’; otherwise, it is set to ‘F’. When the gender
of an individual cannot be determined, it is assigned a default value of ‘F’.

DATA= Data Set

Each observation in the input data set should contain necessary information such as
the identification of an individual and the first and second parents of an individual.
In addition, if a CLASS statement is specified, each observation should contain the
generation identification; and, if a GENDER statement is specified, each observation
should contain the gender of an individual. Optionally, each observation may also
contain the covariance between the first and the second parents. Depending on how
many statements are specified with the procedure, there should be enough variables
in the input data set containing this information.

If you omit the VAR statement, then the procedure uses the first three unaddressed
variables in the input data set as the names of the individual and his or her parents.
Unaddressed variables in the input data set are those variables that are not refer-
enced by the procedure in any other statements, such as CLASS, GENDER, or BY
statements. If the input data set contains an unaddressed fourth variable, then the
procedure uses it as the covariance variable.

If the individuals given by the variables associated with the first and second parents
are not in the population, they are added to the population. However, if they are in
the population, they must be defined prior to the observation that gives their progeny.

When there is a CLASS statement, the functions of defining new individuals and
assigning covariances must be separated. This is necessary because the parents of
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any given individual are defined in the previous generation, while covariances are
assigned between individuals in the current generation.

Therefore, there could be two types of observations for a multiparous population:

• one to define new individuals in the current generation whose parents have been
defined in the previous generation, as in the following, where the missing value
is for the covariance variable:

MARK GEORGE LISA . M 1
KELLY SCOTT LISA . F 1

• one to assign covariances between two individuals in the current generation,
as in the following, where the individual’s name is missing, ‘MARK’ and
‘KELLY’ are in the current generation, and the covariance coefficient between
these two individuals is 0.50:

. MARK KELLY 0.50 . 1

Note that the observations defining individuals must precede the observation assign-
ing a covariance value between them. For example, if a covariance is to be assigned
between ‘MARK’ and ‘KELLY’, then both of them should be defined prior to the
assignment observation.

Computational Details

This section describes the rules that the INBREED procedure uses to compute the
covariance and inbreeding coefficients. Each computational rule is explained by an
example referring to the fictitious population introduced in the “Getting Started” sec-
tion on page 155.

Coancestry (or Kinship Coefficient)

To calculate the inbreeding coefficient and the covariance coefficients, use the degree
of relationship by descent between the two parents, which is called coancestry or
kinship coefficient (Falconer and Mackay 1996, p.85), or coefficient of parentage
(Kempthorne 1957, p.73). Denote the coancestry between individuals X and Y by
fXY. For information on how to calculate the coancestries among a population, see
the section “Calculation of Coancestry.”

Covariance Coefficient (or Coefficient of Relationship)

The covariance coefficient between individuals X and Y is defined by

Cov(X,Y) = 2fXY

where fXY is the coancestry between X and Y. The covariance coefficient is some-
times called the coefficient of relationship or the theoretical correlation (Falconer
and Mackay 1996, p.153; Crow and Kimura 1970, p.134). If a covariance coefficient
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cannot be calculated from the individuals in the population, it is assigned to an initial
value. The initial value is set to 0 if the INIT= option is not specified or to cov if
INIT=cov. Therefore, the corresponding initial coancestry is set to 0 if the INIT=
option is not specified or to 1

2cov if INIT=cov.

Inbreeding Coefficients

The inbreeding coefficient of an individual is the probability that the pair of alle-
les carried by the gametes that produced it are identical by descent (Falconer and
Mackay 1996, Chapter 5; Kempthorne 1957, Chapter 5). For individual X, denote its
inbreeding coefficient by FX. The inbreeding coefficient of an individual is equal to
the coancestry between its parents. For example, if X has parents A and B, then the
inbreeding coefficient of X is

FX = fAB

Calculation of Coancestry

Given individuals X and Y, assume that X has parents A and B and that Y has parents
C and D. For nonoverlapping generations, the basic rule to calculate the coancestry
between X and Y is given by the following formula (Falconer and Mackay 1996,
p.86):

fXY =
1
4

(
fAC + fAD + fBC + fBD

)

And the inbreeding coefficient for an offspring of X and Y, called Z, is the coancestry
between X and Y:

FZ = fXY

JIM              DAVID   MARK             MERLE

SCOTT         LISA             GEORGE              AMY

MARK          KELLY                    MIKE     JANE
Generation 1

Generation 2

Figure 8.4. Inbreeding Relationship for Nonoverlapping Population

For example, in Figure 8.4, ‘JIM’ and ‘MARK’ from Generation 2 are progenies of
‘MARK’ and ‘KELLY’ and of ‘MIKE’ and ‘KELLY’ from Generation 1, respec-
tively. The coancestry between ‘JIM’ and ‘MARK’ is



Computational Details � 167

fJIM,MARK =
1
4

(
fMARK,MIKE + fMARK, KELLY+

fKELLY, MIKE + fKELLY, KELLY
)

From the covariance matrix for Generation=1 in Figure 8.2 (page 159) and the rela-
tionship that coancestry is half of the covariance coefficient,

fJIM, MARK =
1
4

(
0.4688

2
+

0.5
2

+
0.25
2

+
1.125

2

)
= 0.29298

For overlapping generations, if X is older than Y, then the basic rule (on page 166)
can be simplified to

FZ = fXY =
1
2

(
fXC + fXD

)

That is, the coancestry between X and Y is the average of coancestries between older
X with younger Y’s parents. For example, in Figure 8.5, the coancestry between
‘KELLY’ and ‘DAVID’ is

fKELLY,DAVID =
1
2

(
fKELLY,MARK + fKELLY, KELLY

)

KELLY

GEORGE

LISA

MARK

SCOTT

AMY

MIKE

DAVID

JANE

MERLE

JIM

Figure 8.5. Inbreeding Relationship for Overlapping Population

This is so because ‘KELLY’ is defined before ‘DAVID’; therefore, ‘KELLY’ is not
younger than ‘DAVID’, and the parents of ‘DAVID’ are ‘MARK’ and ‘KELLY’. The
covariance coefficient values Cov(KELLY,MARK) and Cov(KELLY,KELLY) from
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the matrix in Figure 8.1 on page 158 yield that the coancestry between ‘KELLY’ and
‘DAVID’ is

fKELLY, DAVID =
1
2

(
0.5
2

+
1.125

2

)
= 0.40625

The numerical values for some initial coancestries must be known in order to use
these rule. Either the parents of the first generation have to be unrelated, with f = 0
if the INIT= option is not specified in the PROC statement, or their coancestries
must have an initial value of 1

2cov, where cov is set by the INIT= option. Then
the subsequent coancestries among their progenies and the inbreeding coefficients of
their progenies in the rest of the generations are calculated using these initial values.

Special rules need to be considered in the calculations of coancestries for the follow-
ing cases.

Self-Mating

The coancestry for an individual X with itself, fXX, is the inbreeding coefficient of
a progeny that is produced by self-mating. The relationship between the inbreeding
coefficient and the coancestry for self-mating is

fXX =
1
2

(
1 + FX

)

The inbreeding coefficient FX can be replaced by the coancestry between X’s parents
A and B, fAB, if A and B are in the population:

fXX =
1
2

(
1 + fAB

)

If X’s parents are not in the population, then FX is replaced by the initial value 1
2cov

if cov is set by the INIT= option, or FX is replaced by 0 if the INIT= option is not
specified. For example, the coancestry of ‘JIM’ with himself is

fJIM,JIM =
1
2

(
1 + fMARK, KELLY

)

where ‘MARK’ and ‘KELLY’ are the parents of ‘JIM’. Since the covariance coeffi-
cient Cov(MARK,KELLY) is 0.5 in Figure 8.1 on page 158 and also in the covariance
matrix for GENDER=1 in Figure 8.2 on page 159, the coancestry of ‘JIM’ with him-
self is

fJIM,JIM =
1
2

(
1 +

0.5
2

)
= 0.625

When INIT=0.25, then the coancestry of ‘JANE’ with herself is

fJANE,JANE =
1
2

(
1 +

0.25
2

)
= 0.5625

because ‘JANE’ is not an offspring in the population.
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Offspring and Parent Mating

Assuming that X’s parents are A and B, the coancestry between X and A is

fXA =
1
2

(
fAB + fAA

)

The inbreeding coefficient for an offspring of X and A, denoted by Z, is

FZ = fXA =
1
2

(
fAB + fAA

)

For example, ‘MARK’ is an offspring of ‘GEORGE’ and ‘LISA’, so the coancestry
between ‘MARK’ and ‘LISA’ is

fMARK, LISA =
1
2

(
fLISA,GEORGE + fLISA, LISA

)

From the covariance coefficient matrix in Figure 8.1 on page 158,
fLISA,GEORGE = 0.25/2 = 0.125, fLISA,LISA = 1.125/2 = 0.5625, so
that

fMARK, LISA =
1
2

(0.125 + 0.5625) = 0.34375

Thus, the inbreeding coefficient for an offspring of ‘MARK’ and ‘LISA’ is 0.34375.

Full Sibs Mating

This is a special case for the basic rule given at the beginning of the section
“Calculation of Coancestry” on page 166. If X and Y are full sibs with same par-
ents A and B, then the coancestry between X and Y is

fXY =
1
4

(
2fAB + fAA + fBB

)

and the inbreeding coefficient for an offspring of A and B, denoted by Z, is

FZ = fXY =
1
4

(
2fAB + fAA + fBB

)

For example, ‘DAVID’ and ‘JIM’ are full sibs with parents ‘MARK’ and ‘KELLY’,
so the coancestry between ‘DAVID’ and ‘JIM’ is

fDAVID, JIM =
1
4

(
2fMARK,KELLY + fMARK, MARK + fKELLY, KELLY

)

Since the coancestry is half of the covariance coefficient, from the covariance matrix
in Figure 8.1 on page 158,

fDAVID,JIM =
1
4

(
2 × 0.5

2
+

1.125
2

+
1.125

2

)
= 0.40625
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Unknown or Missing Parents

When individuals or their parents are unknown in the population, their coancestries
are assigned by the value 1

2cov if cov is set by the INIT= option or by the value 0 if
the INIT= option is not specified. That is, if either A or B is unknown, then

fAB =
1
2

cov

For example, ‘JANE’ is not in the population, and since ‘JANE’ is assumed to be
defined just before the observation at which ‘JANE’ appears as a parent (that is, be-
tween observations 4 and 5), then ‘JANE’ is not older than ‘SCOTT’. The coancestry
between ‘JANE’ and ‘SCOTT’ is then obtained by using the simplified basic rule (see
page 167):

fSCOTT,JANE =
1
2

(
fSCOTT,· + fSCOTT,·

)

Here, dots (·) indicate JANE’s unknown parents. Therefore, fSCOTT,· is replaced by
1
2cov, where cov is set by the INIT= option. If INIT=0.25, then

fSCOTT,JANE =
1
2

(
0.25
2

+
0.25
2

)
= 0.125

For a more detailed discussion on the calculation of coancestries, inbreeding coeffi-
cients, and covariance coefficients, refer to Falconer and Mackay (1996), Kempthorne
(1957), and Crow and Kimura (1970).

OUTCOV= Data Set

The OUTCOV= data set has the following variables:

• a list of BY variables, if there is a BY statement

• the generation variable, if there is a CLASS statement

• the gender variable, if there is a GENDER statement

• –Type– , a variable indicating the type of observation. The valid values of
the –Type– variable are ‘COV’ for covariance estimates and ‘INBREED’ for
inbreeding coefficients.

• –Panel– , a variable indicating the panel number used when populations de-
limited by BY groups contain different numbers of individuals. If there are n
individuals in the first BY group and if any subsequent BY group contains a
larger population, then its covariance/inbreeding matrix is divided into panels,
with each panel containing n columns of data. If you put these panels side by
side in increasing –Panel– number order, then you can reconstruct the covari-
ance or inbreeding matrix.
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• –Col– , a variable used to name columns of the inbreeding or covariance ma-
trix. The values of this variable start with ‘COL’, followed by a number indi-
cating the column number. The names of the individuals corresponding to any
given column i can be found by reading the individual’s name across the row
that has a –Col– value of ‘COLi’. When the inbreeding or covariance matrix
is divided into panels, all the rows repeat for the first n columns, all the rows
repeat for the next n columns, and so on.

• the variable containing the names of the individuals, that is, the first variable
listed in the VAR statement

• the variable containing the names of the first parents, that is, the second variable
listed in the VAR statement

• the variable containing the names of the second parents, that is, the third vari-
able listed in the VAR statement

• a list of covariance variables Col1-Coln, where n is the maximum number of
individuals in the first population

The functions of the variables –Panel– and –Col– can best be demonstrated by an
example. Assume that there are three individuals in the first BY group and that, in the
current BY group (Byvar=2), there are five individuals with the following covariance
matrix.

COV 1 2 3 4 5
1 Cov(1,1) Cov(1,2) Cov(1,3) Cov(1,4) Cov(1,5)
2 Cov(2,1) Cov(2,2) Cov(2,3) Cov(2,4) Cov(2,5)
3 Cov(3,1) Cov(3,2) Cov(3,3) Cov(3,4) Cov(3,5)
4 Cov(4,1) Cov(4,2) Cov(4,3) Cov(4,4) Cov(4,5)
5 Cov(5,1) Cov(5,2) Cov(5,3) Cov(5,4) Cov(5,5)

Panel 1 Panel 2

Then the OUTCOV= data set appears as follows.

Byvar –Panel– –Col– Individual Parent Parent2 Col1 Col2 Col3
2 1 COL1 1 Cov(1,1) Cov(1,2) Cov(1,3)
2 1 COL2 2 Cov(2,1) Cov(2,2) Cov(2,3)
2 1 COL3 3 Cov(3,1) Cov(3,2) Cov(3,3)
2 1 4 Cov(4,1) Cov(4,2) Cov(4,3)
2 1 5 Cov(5,1) Cov(5,2) Cov(5,3)
2 2 1 Cov(1,4) Cov(1,5) .
2 2 2 Cov(2,4) Cov(2,5) .
2 2 3 Cov(3,4) Cov(3,5) .
2 2 COL1 4 Cov(4,4) Cov(4,5) .
2 2 COL2 5 Cov(5,4) Cov(5,5) .
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Notice that the first three columns go to the first panel (–Panel–=1), and the remain-
ing two go to the second panel (–Panel–=2). Therefore, in the first panel, ‘COL1’,
‘COL2’, and ‘COL3’ correspond to individuals 1, 2, and 3, respectively, while in the
second panel, ‘COL1’ and ‘COL2’ correspond to individuals 4 and 5, respectively.

Displayed Output

The INBREED procedure can output either covariance coefficients or inbreeding co-
efficients. Note that the following items can be produced for each generation if gen-
erations do not overlap.

The output produced by PROC INBREED can be any or all of the following items:

• a matrix of coefficients

• coefficients of the individuals

• coefficients for selected matings

ODS Table Names

PROC INBREED assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table.

For more information on ODS, see Chapter 15, “Using the Output Delivery System.”
(SAS/STAT User’s Guide)

Table 8.1. ODS Tables Produced by PROC INBREED

ODS Table Name Description Statement Option
AvgCovCoef Averages of covariance

coefficient matrix
GENDER COVAR and AVERAGE

AvgInbreedingCoef Averages of inbreeding
coefficient matrix

GENDER AVERAGE

CovarianceCoefficient Covariance coefficient
table

PROC COVAR and MATRIX

InbreedingCoefficient Inbreeding coefficient
table

PROC MATRIX

IndividualCovCoef Covariance coefficients
of individuals

PROC IND and COVAR

IndividualInbreedingCoef Inbreeding coefficients
of individuals

PROC IND

MatingCovCoef Covariance coefficients
of matings

MATINGS COVAR

MatingInbreedingCoef Inbreeding coefficients
of matings

MATINGS

NumberOfObservations Number of observations PROC
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Examples

Example 8.1. Monoecious Population Analysis
The following example shows a covariance analysis within nonoverlapping genera-
tions for a monoecious population. Parents of generation 1 are unknown and therefore
assumed to be unrelated. The result appears in Output 8.1.1.

data Monoecious;
input Generation Individual Parent1 Parent2 Covariance @@;
datalines;

1 1 . . . 1 2 . . . 1 3 . . .
2 1 1 1 . 2 2 1 2 . 2 3 2 3 .
3 1 1 2 . 3 2 1 3 . 3 3 2 1 .
3 4 1 3 . 3 . 2 3 0.50 3 . 4 3 1.135
;

title ’Inbreeding within Nonoverlapping Generations’;
proc inbreed ind covar matrix data=Monoecious;

class Generation;
run;

Output 8.1.1. Monoecious Population Analysis
Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 1

Covariance Coefficients

Individual Parent1 Parent2 1 2 3

1 1.0000 . .
2 . 1.0000 .
3 . . 1.0000

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 1

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1.0000
2 1.0000
3 1.0000

Number of Individuals 3
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Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 2

Covariance Coefficients

Individual Parent1 Parent2 1 2 3

1 1 1 1.5000 0.5000 .
2 1 2 0.5000 1.0000 0.2500
3 2 3 . 0.2500 1.0000

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 2

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1 1 1.5000
2 1 2 1.0000
3 2 3 1.0000

Number of Individuals 3
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Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 3

Covariance Coefficients

Individual Parent1 Parent2 1 2 3 4

1 1 2 1.2500 0.5625 0.8750 0.5625
2 1 3 0.5625 1.0000 1.1349 0.6250
3 2 1 0.8750 1.1349 1.2500 1.1349
4 1 3 0.5625 0.6250 1.1349 1.0000

Inbreeding within Nonoverlapping Generations

The INBREED Procedure

Generation = 3

Covariance Coefficients of Individuals

Individual Parent1 Parent2 Coefficient

1 1 2 1.2500
2 1 3 1.0000
3 2 1 1.2500
4 1 3 1.0000

Number of Individuals 4

Note that, since the parents of the first generation are unknown, off-diagonal elements
of the covariance matrix are all 0s and on-diagonal elements are all 1s. If there is an
INIT=cov value, then the off-diagonal elements would be equal to cov, while on-
diagonal elements would be equal to 1 + cov/2.

In the third generation, individuals 2 and 4 are full siblings, so they belong to the same
family. Since PROC INBREED computes covariance coefficients between families,
the second and fourth columns of inbreeding coefficients are the same, except that
their intersections with the second and fourth rows are reordered. Notice that, even
though there is an observation to assign a covariance of 0.50 between individuals 2
and 3 in the third generation, the covariance between 2 and 3 is set to 1.135, the same
value assigned between 4 and 3. This is because families get the same covariances,
and later specifications override previous ones.
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Example 8.2. Pedigree Analysis

In the following example, an inbreeding analysis is performed for a complicated pedi-
gree. This analysis includes computing selective matings of some individuals and
inbreeding coefficients of all individuals. Also, inbreeding coefficients are averaged
within sex categories. The result appears in Output 8.2.1.

data Swine;
input Swine_Number $ Sire $ Dam $ Sex $;
datalines;

3504 2200 2501 M
3514 2521 3112 F
3519 2521 2501 F
2501 2200 3112 M
2789 3504 3514 F
3501 2521 3514 M
3712 3504 3514 F
3121 2200 3501 F
;

title ’Least Related Matings’;
proc inbreed data=Swine ind average;

var Swine_Number Sire Dam;
matings 2501 / 3501 3504 ,

3712 / 3121;
gender Sex;

run;

Note the following from Output 8.2.1:

• Observation 4, which defines Swine–Number=2501, should precede the first
and third observations where the progeny for 2501 are given. PROC INBREED
ignores observation 4 since it is given out of order. As a result, the parents of
2501 are missing or unknown.

• The first column in the “Inbreeding Averages” table corresponds to the aver-
ages taken over the on-diagonal elements of the inbreeding coefficients matrix,
and the second column gives averages over the off-diagonal elements.
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Output 8.2.1. Pedigree Analysis
Least Related Matings

The INBREED Procedure

Inbreeding Coefficients of Individuals

Swine_
Number Sire Dam Coefficient

2200 .
2501 .
3504 2200 2501 .
2521 .
3112 .
3514 2521 3112 .
3519 2521 2501 .
2789 3504 3514 .
3501 2521 3514 0.2500
3712 3504 3514 .
3121 2200 3501 .

Least Related Matings

The INBREED Procedure

Inbreeding Coefficients of Matings

Sire Dam Coefficient

2501 3501 .
2501 3504 0.2500
3712 3121 0.1563

Averages of Inbreeding Coefficient Matrix

Inbreeding Coancestry

Male X Male 0.0625 0.1042
Male X Female . 0.1362
Female X Female 0.0000 0.1324
Over Sex 0.0227 0.1313

Number of Males 4
Number of Females 7
Number of Individuals 11

Example 8.3. Pedigree Analysis with BY Groups

This example demonstrates the structure of the OUTCOV= data set created by PROC
INBREED. Note that the first BY group has three individuals, while the second has
five. Therefore, the covariance matrix for the second BY group is broken up into two
panels, as shown in Output 8.3.1.

data Swine;
input Group Swine_Number $ Sire $ Dam $ Sex $;
datalines;
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1 2789 3504 3514 F
2 2501 2200 3112 .
2 3504 2501 3782 M
;

proc inbreed data=Swine covar noprint outcov=Covariance
init=0.4;

var Swine_Number Sire Dam;
gender Sex;
by Group;

run;

title ’Printout of OUTCOV= data set’;
proc print data=Covariance;

format Col1-Col3 4.2;
run;

Output 8.3.1. Pedigree Analysis with BY Groups
Printout of OUTCOV= data set

Swine_
OBS Group Sex _TYPE_ _PANEL_ _COL_ Number Sire Dam COL1 COL2 COL3

1 1 M COV 1 COL1 3504 1.20 0.40 0.80
2 1 F COV 1 COL2 3514 0.40 1.20 0.80
3 1 F COV 1 COL3 2789 3504 3514 0.80 0.80 1.20
4 2 M COV 1 COL1 2200 1.20 0.40 0.80
5 2 F COV 1 COL2 3112 0.40 1.20 0.80
6 2 M COV 1 COL3 2501 2200 3112 0.80 0.80 1.20
7 2 F COV 1 3782 0.40 0.40 0.40
8 2 M COV 1 3504 2501 3782 0.60 0.60 0.80
9 2 M COV 2 2200 0.40 0.60 .
10 2 F COV 2 3112 0.40 0.60 .
11 2 M COV 2 2501 2200 3112 0.40 0.80 .
12 2 F COV 2 COL1 3782 1.20 0.80 .
13 2 M COV 2 COL2 3504 2501 3782 0.80 1.20 .

References
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Chapter 9
The PSMOOTH Procedure
Overview

In the search for complex disease genes, linkage and/or association tests are often per-
formed on markers from a genome-wide scan or SNPs from a finely scaled map. This
means hundreds or even thousands of hypotheses are being simultaneously tested.
Plotting the negative log p-values of all the marker tests will reveal many peaks that
indicate significant test results, some of which are false positives. In order to reduce
the number of false positives or improve power, smoothing methods can be applied
that take into account p-values from neighboring, and possibly correlated, markers.
That is, the peak length can be used to indicate significance in addition to the peak
height. The PSMOOTH procedure offers smoothing methods that implement Simes’
method (1986), Fisher’s method (1932), and/or the truncated product method (TPM)
(2002) for multiple hypothesis testing. These methods modify the p-value from each
marker test using a function of its original p-value and the p-values of the tests on
the nearest markers. Since the number of hypothesis tests being performed is not re-
duced, adjustments to correct the smoothed p-values for multiple testing are available
as well.

PROC PSMOOTH can take any data set containing any number of columns of p-
values as an input data set, including the output data sets from the CASECONTROL
and FAMILY procedures (see Chapter 4 and Chapter 5 for more information).

Getting Started

Example

Suppose you want to test 16 markers for association with a disease using the genotype
case-control and trend tests in PROC CASECONTROL. You are concerned about the
multiple hypothesis testing issue, and so you also want to run PROC PSMOOTH on
the output data set from PROC CASECONTROL in order to eliminate the number of
false positives found using the individual p-values from the marker-trait association
tests.

data in;
input affected (m1-m16) ($);
datalines;

1 1/2 2/2 2/2 2/2 1/1 2/2 1/2 1/2 1/1 1/2 1/2 2/2 2/2 2/2 2/2 1/2
1 1/2 1/1 1/2 1/2 1/1 1/1 1/2 1/1 1/2 1/2 1/1 2/2 1/1 1/2 1/1 1/2
1 1/1 2/2 1/2 1/2 1/1 1/2 1/1 1/2 1/2 2/2 2/2 1/2 1/2 1/2 2/2 1/2
1 1/1 1/2 2/2 1/2 1/2 1/1 1/2 1/2 1/2 1/1 1/1 1/2 2/2 1/2 1/1 1/1
1 1/2 1/1 1/1 1/2 2/2 1/1 1/1 1/2 1/1 2/2 1/2 2/2 2/2 2/2 1/2 1/1
1 1/2 1/1 1/2 2/2 2/2 1/1 1/1 1/2 1/2 1/2 2/2 2/2 1/1 2/2 2/2 1/1
1 1/1 1/2 1/2 1/1 1/2 1/1 1/1 1/2 2/2 1/2 2/2 2/2 1/2 2/2 2/2 1/1
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1 1/2 2/2 2/2 2/2 1/2 1/2 2/2 1/2 1/2 2/2 1/2 1/2 1/1 2/2 1/2 1/2
1 1/1 2/2 1/2 1/1 1/2 2/2 1/2 1/1 1/2 2/2 2/2 2/2 1/2 2/2 2/2 1/2
1 2/2 1/2 2/2 1/1 1/2 1/1 1/1 2/2 1/2 1/1 2/2 2/2 2/2 2/2 1/2 1/1
1 1/2 1/2 2/2 2/2 1/2 2/2 1/2 1/1 1/2 1/2 1/1 1/1 2/2 1/1 1/1 1/2
1 1/1 1/1 1/2 1/2 2/2 2/2 1/2 1/2 1/1 1/2 1/1 2/2 1/1 1/1 1/2 2/2
1 1/2 1/2 1/2 1/1 2/2 1/2 1/2 2/2 1/2 1/1 1/2 1/2 1/1 1/2 1/2 1/2
1 1/2 2/2 1/1 1/2 1/2 1/2 1/2 1/1 1/1 2/2 1/2 2/2 2/2 2/2 1/1 1/2
1 1/2 1/1 2/2 1/1 2/2 1/1 1/2 1/2 1/2 1/2 1/2 2/2 1/1 2/2 1/1 1/1
1 1/1 1/1 1/1 1/2 2/2 2/2 1/2 1/1 1/2 1/2 2/2 2/2 2/2 2/2 1/1 1/1
1 1/2 1/1 1/1 1/2 1/2 1/1 2/2 1/1 1/2 1/2 2/2 2/2 1/2 2/2 1/2 1/1
1 2/2 1/1 1/2 1/1 1/2 1/1 2/2 2/2 1/1 1/2 1/2 2/2 2/2 2/2 2/2 1/2
1 2/2 2/2 2/2 1/2 1/2 2/2 2/2 2/2 2/2 1/1 1/2 2/2 1/2 1/1 1/1 1/1
1 2/2 1/1 1/2 1/2 1/2 1/1 1/2 1/2 1/2 1/2 1/2 1/2 2/2 2/2 2/2 1/2
1 1/1 2/2 1/2 1/2 1/2 1/2 1/2 1/1 1/2 1/2 2/2 1/1 2/2 2/2 1/1 1/1
1 1/2 1/2 1/2 1/1 1/1 1/2 1/1 1/1 1/1 1/1 1/2 2/2 2/2 2/2 1/1 2/2
1 1/2 2/2 2/2 2/2 1/2 2/2 1/1 1/1 1/2 1/1 1/1 2/2 2/2 1/2 2/2 2/2
1 2/2 1/2 1/2 1/2 2/2 2/2 2/2 1/2 1/2 2/2 1/2 2/2 2/2 1/2 1/2 1/1
1 2/2 2/2 1/1 1/2 2/2 2/2 1/1 1/2 1/1 1/2 1/2 1/2 2/2 2/2 1/2 1/2
0 1/1 1/2 2/2 1/2 1/1 2/2 1/2 1/2 1/2 1/2 1/1 2/2 1/2 1/1 1/2 1/2
0 1/2 1/2 2/2 1/1 1/2 1/1 2/2 2/2 1/1 2/2 1/1 1/1 1/2 1/2 1/1 1/1
0 1/2 1/2 1/1 1/1 1/2 1/2 2/2 1/2 2/2 1/1 1/2 2/2 1/1 1/1 1/1 1/1
0 1/2 1/2 2/2 1/2 1/2 1/2 1/2 2/2 1/2 1/2 2/2 1/1 2/2 1/1 2/2 2/2
0 1/2 2/2 1/1 1/1 2/2 1/2 1/2 1/2 1/2 1/1 2/2 1/1 1/2 1/1 1/2 1/2
0 1/1 1/2 1/1 2/2 1/2 2/2 2/2 2/2 1/2 2/2 1/2 2/2 2/2 1/1 1/2 1/2
0 1/1 1/2 1/2 2/2 2/2 1/2 2/2 1/1 1/2 2/2 1/2 2/2 1/2 1/1 1/1 1/2
0 1/2 1/1 2/2 1/1 1/1 1/1 2/2 2/2 1/2 1/2 2/2 1/2 1/2 1/1 2/2 2/2
0 1/1 1/2 1/2 2/2 2/2 1/2 1/1 1/2 1/2 1/2 2/2 1/1 1/2 2/2 2/2 2/2
0 2/2 2/2 1/2 1/1 1/1 2/2 1/2 1/1 2/2 2/2 1/1 1/1 2/2 1/1 1/1 2/2
0 1/2 1/2 2/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/2 1/1 1/2 1/1 1/1 1/2
0 1/2 1/2 1/2 1/1 2/2 2/2 1/2 2/2 1/1 1/2 1/1 2/2 1/2 1/1 1/2 1/1
0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/1 2/2 1/2 1/1 1/1 1/1 2/2 1/2
0 1/1 2/2 2/2 1/1 1/1 1/2 2/2 1/2 1/2 1/2 1/1 1/2 1/1 1/2 1/1 2/2
0 2/2 1/2 1/2 1/2 1/2 1/2 1/2 1/1 1/1 1/1 1/1 1/1 1/2 1/1 1/1 2/2
0 1/2 1/1 1/1 1/1 1/2 1/2 1/1 1/1 1/2 1/2 1/1 1/2 1/1 1/1 2/2 1/2
0 1/1 2/2 1/1 1/2 1/1 1/1 1/1 1/2 1/1 2/2 1/1 1/1 1/2 2/2 1/2 1/2
0 1/1 1/2 1/2 1/2 1/2 2/2 1/2 1/2 2/2 1/2 1/2 1/1 1/1 1/2 1/2 2/2
0 1/2 1/2 2/2 1/1 2/2 1/1 1/2 1/1 1/2 1/2 2/2 1/2 1/2 1/2 1/2 2/2
0 2/2 1/1 1/1 1/2 1/1 2/2 1/2 1/1 1/2 2/2 1/2 1/2 1/2 2/2 2/2 1/2
0 1/1 1/2 2/2 1/1 1/1 1/1 1/2 1/2 2/2 2/2 2/2 1/1 1/2 1/2 2/2 2/2
0 1/1 1/2 1/1 1/1 1/2 1/1 1/2 2/2 1/2 2/2 1/2 1/1 2/2 2/2 1/2 1/2
0 1/2 1/2 1/2 2/2 1/2 1/2 1/2 1/1 1/2 1/2 1/2 1/1 1/1 1/2 1/2 1/2
0 1/1 1/1 1/1 1/2 1/1 1/2 1/1 1/2 2/2 1/1 1/2 2/2 1/1 1/1 2/2 1/1
0 2/2 1/1 1/2 1/1 1/2 1/2 1/2 2/2 1/1 1/2 1/1 1/1 1/1 2/2 1/1 1/2
;

Note that the columns marker1-marker16 contain genotypes at each of the markers,
so the GENOCOL option must be used in PROC CASECONTROL to correctly read
in the data.

proc casecontrol data=in outstat=cc_tests genotype trend genocol;
trait affected;
var m1-m16;

run;

proc psmooth data=cc_tests simes fisher tpm bw=2 adjust=sidak
out=adj_p;

var ProbGenotype ProbTrend;
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id Locus;
run;

proc print data=adj_p heading=h;
run;

This code modifies the p-values contained in the output data set from PROC
CASECONTROL, first by smoothing the p-values using Simes’ method, Fisher’s
method, and the TPM with a bandwidth of 2, then by applying Sidak’s multiple test-
ing adjustment to the smoothed p-values.

Prob Prob Prob
Prob Genotype_ Genotype_ Genotype_

Obs Locus Genotype S2 F2 T2

1 m1 0.61481 0.84871 0.96719 0.83858
2 m2 0.03711 0.92355 0.97753 0.91260
3 m3 0.57096 0.96252 0.98449 0.95280
4 m4 0.34059 0.96252 0.80318 0.95280
5 m5 0.35600 0.99999 0.99858 0.98348
6 m6 0.12375 0.99999 0.99861 0.98348
7 m7 0.41529 1.00000 0.99962 0.98348
8 m8 0.57360 1.00000 0.99997 0.98348
9 m9 0.47332 1.00000 1.00000 0.98348
10 m10 0.59452 0.05946 0.41423 0.25944
11 m11 0.44085 0.05946 0.02931 0.01550
12 m12 0.00076 0.05946 0.00036 0.00017
13 m13 0.00911 0.05946 0.00052 0.00017
14 m14 0.00160 0.05946 0.00008 0.00002
15 m15 0.94287 0.09744 0.00570 0.00138
16 m16 0.04264 0.07395 0.05720 0.01902

Prob Prob Prob Prob
Obs Trend Trend_S2 Trend_F2 Trend_T2

1 0.32699 1.00000 1.00000 0.91474
2 0.84733 1.00000 1.00000 0.96248
3 0.57628 1.00000 0.99986 0.98348
4 0.23932 1.00000 1.00000 0.98348
5 0.16135 0.99998 0.99979 0.98348
6 0.85742 0.99981 0.99807 0.98348
7 0.29694 0.99994 0.99961 0.98348
8 0.33141 0.99994 0.99999 0.98348
9 0.36231 0.99925 0.99902 0.98348
10 0.31242 0.01520 0.06303 0.11769
11 0.35299 0.01520 0.01179 0.01454
12 0.00019 0.01345 0.00005 0.00005
13 0.03301 0.01345 0.00011 0.00005
14 0.00034 0.01345 0.00001 0.00000
15 0.86176 0.02144 0.00153 0.00044
16 0.01207 0.01612 0.00519 0.00223

Figure 9.1. PROC PSMOOTH Output Data Set

Figure 9.1 displays the original and modified p-values.
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Syntax
The following statements are available in PROC PSMOOTH.

PROC PSMOOTH < options > ;
BY variables ;
ID variables ;
VAR variables ;

Items within angle brackets (< >) are optional, and statements following the PROC
PSMOOTH statement can appear in any order. The VAR statement is required. The
syntax of each statement is described in the following section in alphabetical order
after the description of the PROC PSMOOTH statement.

PROC PSMOOTH Statement

PROC PSMOOTH < options > ;

You can specify the following options in the PROC PSMOOTH statement.

ADJUST=NONE
ADJUST=BON | BONFERRONI
ADJUST=FDR
ADJUST=SIDAK

indicates which adjustment for multiple testing to apply to the set(s) of p-values in
the output data set. This adjustment is applied after any smoothing has occurred.
ADJUST=NONE is the default.

BANDWIDTH=number list
BW=number list

gives the values for the bandwidths to use in combining p-values. A bandwidth of w
indicates that w p-values on each side of the original p-value are included in the com-
bining method to create a sliding window of size 2w+1. The number list can contain
any combination of the following forms, with each form separated by a comma:

w1, w2, ..., wn a list of several values

w1 to w2 a sequence where w1 is the starting value, w2 is the ending value,
and the increment is 1.

w1 to w2 by i a sequence where w1 is the starting value, w2 is the ending value,
and the increment is i.

All numbers in the number list must be integers, and any negative numbers are ig-
nored. An example of a valid number list is

bandwidth = 1,2, 5 to 15 by 5, 18
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which would perform the combining of p-values using bandwidths 1, 2, 5, 10, 15,
and 18, which create sliding windows of size 3, 5, 11, 21, 31, and 37, respectively.

DATA=SAS-data-set
names the input SAS data set to be used by PROC PSMOOTH. If this option is omit-
ted, the SAS system option –LAST– is used, which by default is the most recently
created data set.

FISHER
requests that Fisher’s method for combining p-values from multiple hypotheses be
applied to the original p-values.

NEGLOG
requests that all p-values, original and combined, be transformed to their negative log
(base e) in the output data set; that is, for each p-value, − log(p-value) is reported in
the OUT= data set. This option is useful for graphing purposes.

NEGLOG10
requests that all p-values, original and combined, be transformed to their negative log
(base 10) in the output data set; that is, for each p-value, − log10(p-value) is reported
in the OUT= data set. This option is useful for graphing purposes.

OUT=SAS-data-set
names the output SAS data set containing the original p-values and the new combined
p-values. When this option is omitted, an output data set is created by default and
named according to the DATAn convention.

SIMES
requests that Simes’ method for combining p-values from multiple hypotheses be
applied to the original p-values.

TAU=number
indicates the value of τ to be used in the TPM. The significance level for the tests can
be used as the value for number, though this is not the only possibility. The value of
number must be greater than 0 and less than or equal to 1. By default, number is set
to 0.05. This option is ignored if the TPM option is not specified.

TPM
requests that the TPM for combining p-values from multiple hypotheses be applied
to the original p-values.

BY Statement

BY variables ;

You can specify a BY statement with PROC PSMOOTH to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables. The variables are one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:
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• Sort the data using the SORT procedure with a similar BY statement.

• Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the PSMOOTH procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

• Create an index on the BY variables using the DATASETS procedure (in Base
SAS software).

For more information on the BY statement, refer to the discussion in SAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in the SAS Procedures Guide.

ID Statement

ID variables ;

The ID statement identifies the variables from the DATA= data set that should be
included in the OUT= data set.

VAR Statement

VAR variables ;

The VAR statement identifies the variables containing the original p-values on which
the combining methods should be performed.

Details

Statistical Computations

Methods for Smoothing p-Values

PROC PSMOOTH offers three methods for combining p-values over specified sizes
of sliding windows. For each value w listed in the BANDWIDTH= option of the
PROC PSMOOTH statement, a sliding window of size 2w + 1 is used; that is, the
p-values for each set of 2w + 1 consecutive markers are considered in turn, for each
value w. The approach described by Zaykin et al. (2002) is implemented, where the
original p-value at the center of the sliding window is replaced by a function of the
original p-value and the p-values from the w nearest markers on each side to create a
new sequence of p-values. Note that for markers less than w from the beginning or
end of the data set (or BY group if any variables are specified in the BY statement),
the number of hypotheses tested, L, is adjusted accordingly. The three methods for
combining p-values from multiple hypotheses are Simes’ method, Fisher’s method,
and the TPM described in the following three sections. Plotting the new p-values
versus the original p-values reveals the smoothing effect this technique has.
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Simes’ Method

Simes’ method for combining p-values (1986) is performed as follows when the
SIMES option is specified in the PROC PSMOOTH statement: let pj be the original
p-value at the center of the current sliding window, which contains pj−w, ..., pj+w.
From these L = 2w + 1 p-values, the ordered p-values, p(1), ..., p(L) are formed.
Then the new value for pj is min1≤i≤L(Lp(i)/i).

This method controls the type I error rate even when hypotheses are positively corre-
lated (Sarkar and Chang 1997), which is expected for nearby markers. Thus if depen-
dencies are suspected among tests that are performed, this method is recommended
due to its conservativeness.

Fisher’s Method

When the FISHER option is issued in the PROC PSMOOTH statement, Fisher’s
method for combining p-values (1932) is applied by replacing the p-value at the cen-
ter of the current sliding window pj by the p-value of the statistic t, where

t = −2
j+w∑

i=j−w

log(pi)

which has a χ2
2L distribution under the null hypothesis of all L = 2w + 1 hypotheses

being true.

CAUTION: t has a χ2 distribution only under the assumption that the tests performed
are mutually independent. When this assumption is violated, the probability of type
I error may exceed the significance level α.

TPM

The TPM is a variation of Fisher’s method that leads to a different alternative hy-
pothesis when τ , the value specified in the TAU= option, is less than 1 (Zaykin et
al. 2002). With the TPM, rejection of the null hypothesis implies there is at least
one false null hypothesis among those with p-values ≤ τ . To calculate a combined
p-value using the TPM for the p-value at the center of the sliding window, pj , the
quantity u must first be calculated as

u =
j+w∏

i=j−w

p
I(pi≤τ)
i

Then the formula for the new value for the p-value at the center of the sliding window
of L markers is

L∑
k=1

(
L

k

)
(1 − τ)L−k

(
u

k−1∑
s=0

(k log τ − log u)s

s!
I(u ≤ τk) + τkI(u > τk)

)
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When TAU=1 is specified, the TPM and Fisher’s method are equivalent and the pre-
vious formula simplifies to

u

L−1∑
s=0

(− log u)s

s!

Multiple Testing Adjustments for p-Values

While the smoothing methods take into account the p-values from neighboring mark-
ers, the number of hypothesis tests performed does not change. Therefore, the
Bonferroni, false discovery rate (FDR), and Sidak methods are offered by PROC
PSMOOTH to adjust the smoothed p-values for multiple testing. The number of tests
performed, R, is the number of valid observations in the current BY group if any
variables are specified in the BY statement, or the number of valid observations in
the entire data set if there are no variables specified in the BY statement. Note that
these adjustments are not applied to the original column(s) of p-values; if you would
like to adjust the original p-values for multiple testing, you must include a bandwidth
of 0 in the BANDWIDTH= option of the PROC PSMOOTH statement along with
one of the smoothing methods (SIMES, FISHER, or TPM).

For R tests, the p-value pi results in an adjusted p-value of si according to these
methods:

Bonferroni adjustment: si = min(Rpi, 1.0), i = 1, ..., R

Sidak adjustment (Sidak 1967): si = 1 − (1 − pi)R, i = 1, ..., R

FDR adjustment (Benjamini and Hochberg 1995):

s(R) = p(R)

s(R−1) = min
(
s(R), [R/(R − 1)]p(R−1)

)
s(R−2) = min

(
s(R−1), [R/(R − 2)]p(R−2)

)
...

where the R p-values have been ordered as p(1) ≤ p(2) ≤ · · · ≤ p(R). The Bonferroni
and Sidak methods are conservative for controlling the family-wise error rate; how-
ever, often in the association mapping of a complex trait, it is desirable to control the
FDR instead (Sabatti, Service, and Friemer 2003).

Missing Values

Missing values in a sliding window, even at the center of the window, are simply
ignored, and the number of hypotheses L is reduced accordingly. Thus the smoothing
methods can be applied to any window that contains at least one nonmissing value.
Any p-values in the input data set that fall outside the interval [0,1] are treated as
missing.
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OUT= Data Set

The output data set specified in the OUT= option of the PROC PSMOOTH state-
ment contains any BY variables and ID variables. Then for each variable in the
VAR statement, the original column is included along with a column for each method
and bandwidth specified in the PROC PSMOOTH statement. These variable names
are formed by adding the suffixes “–Sw”, “–Fw”, and “–Tw” for Simes’ method,
Fisher’s method, and the TPM respectively and a bandwidth of size w. For example,
if the options BANDWIDTH=1,4 and SIMES, FISHER, and TPM are all specified
in the PROC PSMOOTH statement, and RawP is the variable specified in the VAR
statement, the OUT= data set includes RawP, RawP–S1, RawP–F1, RawP–T1,
RawP–S4, RawP–F4, and RawP–T4. If the NEGLOG or NEGLOG10 option
is specified in the PROC PSMOOTH statement, then these columns all contain the
negative logs (base e or base 10, respectively) of the p-values.

Example

Example 9.1. Displaying Plot of PROC PSMOOTH Output Data
Set

Data other than the output data sets from the CASECONTROL and FAMILY proce-
dures can be used in PROC PSMOOTH; here is an example of how to use p-values
from another source.

data tests;
input Marker Pvalue @@;
datalines;

1 0.72841 2 0.40271
3 0.32147 4 0.91616
5 0.27377 6 0.48943
7 0.40131 8 0.25555
9 0.57585 10 0.20925
11 0.01531 12 0.23306
13 0.69397 14 0.33040
15 0.97265 16 0.53639
17 0.88397 18 0.03188
19 0.13570 20 0.79138
21 0.99467 22 0.37831
23 0.86459 24 0.97092
25 0.19372 26 0.85339
27 0.32078 28 0.31806
29 0.00655 30 0.82401
31 0.65339 32 0.36115
33 0.92704 34 0.49558
35 0.64842 36 0.43606
37 0.67060 38 0.87520
39 0.78006 40 0.27252
41 0.28561 42 0.80495
43 0.98159 44 0.97030
45 0.53831 46 0.78712
47 0.88493 48 0.36260
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49 0.53310 50 0.65709
51 0.26527 52 0.46860
53 0.55465 54 0.54956
55 0.44477 56 0.04933
57 0.12016 58 0.76181
59 0.80158 60 0.18244
61 0.01382 62 0.15100
63 0.04713 64 0.52655
65 0.59368 66 0.94420
67 0.60104 68 0.32848
69 0.90195 70 0.21374
71 0.95471 72 0.14145
73 0.95215 74 0.70330
75 0.19921 76 0.99086
77 0.75736 78 0.23761
79 0.87260 80 0.91472
81 0.33650 82 0.26160
83 0.41948 84 0.62817
85 0.48721 86 0.67093
87 0.53089 88 0.13623
89 0.44344 90 0.41172
;

The following code will apply Simes’ method for multiple hypothesis testing in order
to adjust the p-values.

proc psmooth data=tests out=pnew simes bandwidth=3 to 9 by 2 neglog;
var Pvalue;
id Marker;

run;

symbol1 v=none i=join;
symbol2 v=none i=join line=5;
symbol3 v=none i=join line=4;
symbol4 v=none i=join line=3;
symbol5 v=none i=join line=2;
legend1 label=none;

proc gplot data=pnew;
plot (Pvalue Pvalue_S3 Pvalue_S5 Pvalue_S7 Pvalue_S9)*Marker

/overlay vref=3.0 legend=legend1;
run;

The NEGLOG option is used in the PROC PSMOOTH statement to facilitate plotting
the p-values using the GPLOT procedure of SAS/GRAPH. The plot demonstrates the
effect of the different window sizes that are implemented.
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Output 9.1.1. Line Plot of Negative Log p-Values

Note how the plots become progressively smoother as the window size increases.
Points above the horizontal reference line in Output 9.1.1 represent significant p-
values at the 0.05 level. While six of the markers have significant p-values before
adjustment, only the method using a bandwidth of 3 finds any significant markers,
all in the 26–32 region. This may be an indication that the other five markers are
significant only by chance; that is, they may be false positives.
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Chapter 10
The TPLOT Macro
Overview

The %TPLOT macro creates a triangular plot that graphically displays genetic marker
test results. The plot has colors and shapes representing p-value ranges for tests of
the following quantities: linkage disequilibrium between pairs of markers, Hardy-
Weinberg equilibrium (HWE) for individual markers, and associations between
markers and a dichotomous trait (such as disease status). This is a convenient way of
combining information contained in output data sets from two separate SAS/Genetics
procedures and summarizing it in an easily interpretable plot. Thus, insights can be
gleaned by simply studying a plot rather than by having to search through many rows
of data or writing code to attempt to summarize the results.

The %TPLOT macro is a part of the SAS Autocall library, and is automati-
cally available for use in your SAS program provided that the SAS system option
MAUTOSOURCE is in effect. For more information about autocall libraries, refer to
SAS Macro Language: Reference, Version 8, 2000.

Syntax
The %TPLOT macro has the following form:

%TPLOT (SAS-data-set , SAS-data-set , variable [ , option ] )

The first argument, SAS-data-set, specifies the name of the SAS data set that is the
output data set from the ALLELE procedure (see Chapter 3), containing the linkage
disequilibrium test and HWE test p-values. A user-created data set may be used
instead, but is required to contain the variables Locus1 and Locus2 and a variable
ProbChi containing the p-values from the disequilibrium tests. The order in which
the Locus1 and Locus2 variables are sorted is the order in which the values are
displayed on the vertical and horizontal axes, respectively.

The second argument, SAS-data-set, specifies the name of the SAS data set that con-
tains the p-values for the marker-trait association tests. This data set can be the out-
put data set from the CASECONTROL procedure, the FAMILY procedure, or the
PSMOOTH procedure, or it can be created by the user. A user-created data set must
contain a Locus variable for the values on the axes and a variable containing p-
values that is specified in the third argument, discussed in the following paragraph.
The Locus variable must be in the same sorted order as the Locus1 variable in the
data set named in the first argument.

The third argument, variable, names the variable that contains the marker-trait asso-
ciation p-values in the SAS data set that is specified in the second argument.
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The first three arguments are required. The following option can be used with the
%TPLOT macro. The option must follow the three required arguments.

ALPHA= number
specifies the significance level for the marker-trait association test. This level is used
as a cut-off for the p-value range corresponding to the symbol shape on the plot. This
number must be between 0 and 1. The default is ALPHA=0.05.

Results

Plot

Running the %TPLOT macro creates a window displaying a graphical representation
of the marker test results.

Here is an example of the TPLOT results window:

Figure 10.1. Results Window for TPLOT Macro

This plot contains a grid of points with symbols that represent the p-values for various
marker tests. Colors and shapes of the data points are used to symbolize p-value
ranges. The Show Info About Points button in the toolbar enables the p-values to be
displayed. While holding down the left-hand mouse button on any point in the plot,
the pop-up menu will display for off-diagonal points, the two markers being tested
for linkage disequilibrium and the p-value of the test; it displays the marker and its
p-values for the HWE test and marker-trait association test for points on the diagonal,
as shown in Figure 10.1.

Disequilibrium Tests

The p-values from the linkage disequilibrium tests between all pairs of markers (or
all markers within a certain range of each other) are represented by the color of the
squares on the off-diagonal of the plot. For the points on the diagonal, the results
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from the Hardy-Weinberg equilibrium test are displayed instead of the linkage dise-
quilibrium tests since the same marker locus is on the horizontal and vertical axes.

The three ranges of p-values that correspond to different colored symbols in the plot
are

Red [0, 0.01]

Orange (0.01, 0.05]

Yellow (0.05, 1]

The disequilibrium test p-values that are plotted can be provided by the output data
set from PROC ALLELE, or by a user-created data set meeting the requirements
described in the “Syntax” section on page 195.

Marker-Trait Association Tests

Points on the diagonal also display p-values from marker-trait association tests, using
the shape of the symbol to correspond to two categories of p-values, significant and
not significant. The significance level is set to 0.05 by default, but can be modified
using the ALPHA= option in the %TPLOT macro. Thus, for a significance level of
α, the following shapes represent the following ranges:

Plus [0, α]

Triangle (α, 1]

Note that the square shape of the off-diagonal points does not represent a marker-
trait association p-value since there are two different marker loci represented on the
horizontal and vertical axes. These p-values can be provided by the output data set
of PROC CASECONTROL, PROC FAMILY, or PROC PSMOOTH. Alternatively,
a user-created data set that meets the conditions described in the “Syntax” section
(page 195) can be used.

Menu Bar

The results window contains the following pull-down menus:

File
Close closes the results window.
Print Setup opens the printer setup utility.
Print prints the plot as it is currently shown.
Exit exits the current SAS session.

Edit
Copy copies the plot to the clipboard.
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Format
Rescale Axes when selected, changes the scale of the axes to fit the entire plot

in the window.

These menus are also available by clicking the right-hand mouse button anywhere in
the TPLOT results window.

Toolbar

A toolbar is displayed at the top of the TPLOT results window. Use the toolbar to
display information about points on the plot or to modify the plot’s appearance. Tool
tips are displayed when you place your mouse pointer over an icon in the toolbar.

Figure 10.2. Toolbar for the %TPLOT Results Window

Tool icons from left to right are as follows:

1. Print - prints the plot.

2. Copy - copies the plot to the clipboard.

3. Select a Node or Point - activates a point on the plot.

4. Show Info About Points - displays a text box with information about the se-
lected point.

5. Scroll Data - scrolls across data points within the plot. Use this tool when the
plot is not able to display all of the points in a single frame.

6. Move Graph - moves the plot within the window.

7. Zoom In/Out - reduces or increases the size of the plot.

8. Reset - returns the plot to its default settings.

9. What’s This? - displays the help for the results window.

Example
Here is an example of the code that can be used to create the triangular plot of p-values
for the data set pop22. This data set is in the proper form for a PROC ALLELE input
data set, containing columns of alleles for 150 markers.

proc allele data=pop22 outstat=ldstats noprint maxdist=150;
var a1-a300;

run;

proc casecontrol data=pop22 outstat=assocstats genotype;
trait affected;
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var a1-a300;
run;

proc psmooth data=assocstats out=sm_assocstats bw=5 simes;
id Locus;
var ProbGenotype;

run;

%tplot(ldstats, sm_assocstats, ProbGenotype_S5);

Note that the output data set from PROC CASECONTROL can be used in place of
the output data set from PROC PSMOOTH if you wish to use unadjusted p-values.
This code creates the following plot in the TPLOT window:

Figure 10.3. Results Window for TPLOT Macro

Figure 10.3 displays the bottom left-hand corner of the plot. The pop-up window is
displayed by selecting Show Info About Points from the toolbar then holding the
left-hand mouse button over the point shown. The orange color of this point indicates
that the p-value for testing that there is no linkage disequilibrium between M9 and
M14 is between 0.01 and 0.05. The pop-up window provides the exact value of this
p-value.

Other parts of the plot can be viewed by selecting Scroll Data from the toolbar.
Alternatively, the entire plot can be viewed in the window by selecting Format
→Rescale Axes from the menu bar. This creates the following view of the plot:



200 � Chapter 10. The TPLOT Macro

Figure 10.4. Results Window for TPLOT Macro

The view shown in Figure 10.4 displays all the data points at once.
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ODS table names, 61
output data set, 60
stratified analysis, 58
trend test, 56

coefficient
of relationship (INBREED), 167

correlated tests,
See dependent tests

covariance coefficients,
See INBREED procedure

D
DATA step, 15
DATA= Data Set

FAMILY procedure, 83
decremental search

HTSNP procedure, 148
dependent tests

PSMOOTH procedure, 189
displayed output

HAPLOTYPE procedure, 116
HTSNP procedure, 149

E
EM algorithm

HAPLOTYPE procedure, 110
exhaustive search

HTSNP procedure, 149

F
FAMILY procedure

allelic transmission scores, 82, 92
DATA= Data Set, 83
displayed output, 84
Mendelian inconsistencies, 84, 85
missing values, 83
ODS table names, 85
output data set, 84
OUTQ data set, 83
permutation tests, 82
RC-TDT, 80
SDT, 80
S-TDT, 79
TDT, 78
X-linked analysis, 81

FDR adjustment
PSMOOTH procedure, 190

Fisher’s method
PSMOOTH procedure, 189

full sibs mating
INBREED procedure, 171
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G
generation (INBREED)

nonoverlapping, 157, 160, 161
number, 164
overlapping, 157, 159
variable, 164

genomic control
CASECONTROL procedure, 56

genotype case-control test
CASECONTROL procedure, 57

genotype frequencies
ALLELE procedure, 31, 38

H
haplotype diversity

HTSNP procedure, 147
haplotype frequencies

HAPLOTYPE procedure, 110
HAPLOTYPE procedure

bayesian estimation, 114
case-control tests, 109, 112, 125
displayed output, 116
EM algorithm, 110
haplotype frequencies, 110
haplotype trend regression (HTR), 129
jackknife method, 111
linkage disequilibrium, 112, 123
missing values, 115
ODS table names, 117
OUT= Data Set, 115
permutation tests, 113
score test, 129
standard error estimation, 107, 111

haplotype trend regression (HTR)
HAPLOTYPE procedure, 129

haplotypes
ALLELE procedure, 33, 43

Hardy-Weinberg equilibrium
ALLELE procedure, 33

help system, 15
heterozygosity

ALLELE procedure, 32
HTSNP procedure

decremental search, 148
displayed output, 149
exhaustive search, 149
haplotype diversity, 147
incremental search, 148
iterative maximization search, 149
missing values, 149
ODS table names, 151
simulated annealing search, 149

I
INBREED procedure

coancestry, computing, 168
coefficient of relationship, computing, 167
covariance coefficients, 157, 159, 161, 163, 165,

167

covariance coefficients matrix, output, 163
first parent, 165
full sibs mating, 171
generation number, 164
generation variable, 164
generation, nonoverlapping, 157, 160, 161
generation, overlapping, 157, 159
inbreeding coefficients, 157, 159, 163, 165, 167
inbreeding coefficients matrix, output, 163
individuals, outputting coefficients, 163
individuals, specifying, 161, 165
initial covariance value, 166
initial covariance value, assigning, 163
initial covariance value, specifying, 159
kinship coefficient, 167
last generation’s coefficients, output, 163
mating, offspring and parent, 170, 171
mating, self, 170
matings, output, 165
monoecious population analysis, example, 175
offspring, 163, 169
ordering observations, 158
OUTCOV= data set, 164, 172
output table names, 174
panels, 172, 179
pedigree analysis, 157, 158
pedigree analysis, example, 178, 179
population, monoecious, 175
population, multiparous, 163, 166
population, nonoverlapping, 164
population, overlapping, 158, 159, 169
progeny, 166, 168, 170, 178
second parent, 165
selective matings, output, 165
specifying gender, 161
theoretical correlation, 167
unknown or missing parents, 171, 172
variables, unaddressed, 165, 166

incremental search
HTSNP procedure, 148

initial covariance value
assigning (INBREED), 163
INBREED procedure, 166
specifying (INBREED), 159

iterative maximization search
HTSNP procedure, 149

J
jackknife method

HAPLOTYPE procedure, 111

L
linkage disequilibrium

ALLELE procedure, 33, 39, 43
HAPLOTYPE procedure, 112, 123

M
marker informativeness

ALLELE procedure, 32
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mating
offspring and parent (INBREED), 170, 171
self (INBREED), 170

Mendelian inconsistencies
FAMILY procedure, 84, 85

missing values
ALLELE procedure, 37
CASECONTROL procedure, 60
FAMILY procedure, 83
HAPLOTYPE procedure, 115
HTSNP procedure, 149
PSMOOTH procedure, 190

monoecious population analysis
example (INBREED), 175

multiple testing adjustments
PSMOOTH procedure, 190

O
odds ratios

CASECONTROL procedure, 57
ODS table names

HAPLOTYPE procedure, 117
HTSNP procedure, 151

offspring
INBREED procedure, 163, 169

ordering observations
INBREED procedure, 158

OUT= Data Set
HAPLOTYPE procedure, 115

output data set
CASECONTROL procedure, 60
FAMILY procedure, 84
PSMOOTH procedure, 191

output data sets
OUTCOV= data set (INBREED), 164, 172

output table names
INBREED procedure, 174

OUTQ data set
FAMILY procedure, 83

OUTSTAT= Data Set
ALLELE procedure, 37

P
panels

INBREED procedure, 172, 179
pedigree analysis

example (INBREED), 178, 179
INBREED procedure, 157, 158

permutation tests
FAMILY procedure, 82
HAPLOTYPE procedure, 113

PIC
ALLELE procedure, 32

population (INBREED)
monoecious, 175
multiparous, 163, 166
nonoverlapping, 164
overlapping, 158, 159, 169

progeny

INBREED procedure, 166, 168, 170, 178
PSMOOTH procedure

Bonferroni adjustment, 190
dependent tests, 189
FDR adjustment, 190
Fisher’s method, 189
missing values, 190
multiple testing adjustments, 190
output data set, 191
Sidak adjustment, 190
Simes’ method, 189
truncated product method (TPM), 189

R
RC-TDT

FAMILY procedure, 80

S
SAS data set

DATA step, 15
SAS/GRAPH software, 16
SAS/IML software, 16
SAS/INSIGHT software, 16
SAS/STAT software, 17
score test

HAPLOTYPE procedure, 129
SDT

FAMILY procedure, 80
Sidak adjustment

PSMOOTH procedure, 190
Simes’ method

PSMOOTH procedure, 189
simulated annealing search

HTSNP procedure, 149
standard error estimation

HAPLOTYPE procedure, 107, 111
S-TDT

FAMILY procedure, 79
stratified analysis

CASECONTROL procedure, 58

T
TDT

FAMILY procedure, 78
theoretical correlation

INBREED procedure, 167
TPLOT Results Window, 198
trend test

CASECONTROL procedure, 56
truncated product method (TPM)

PSMOOTH procedure, 189

U
unknown or missing parents

INBREED procedure, 171, 172

V
variables, unaddressed

INBREED procedure, 165, 166
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X
X-linked analysis

FAMILY procedure, 81
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A
ADJUST= option

PROC PSMOOTH statement, 186, 190
ALLELE option

PROC CASECONTROL statement, 52, 56
ALLELE procedure, 26

syntax, 26
ALLELE procedure, BY statement, 30
ALLELE procedure, PROC ALLELE statement, 26

ALLELEMIN= option, 26
ALPHA= option, 26
BOOTSTRAP= option, 26
CORRCOEFF option, 26
DATA= option, 26
DELIMITER= option, 27
DELTA option, 27
DPRIME option, 27
EXACT= option, 29
GENOCOL option, 27
GENOMIN= option, 27
HAPLO= option, 27, 34
HAPLOMIN= option, 28
INDIV= option, 28
LOGNOTE option, 28
MARKER= option, 28
MAXDIST= option, 28
NDATA= option, 28, 40
NOFREQ option, 29
NOPRINT option, 29
OUTSTAT= option, 29
PERMS= option, 29
PREFIX= option, 29
PROPDIFF option, 29
SEED= option, 29
TALL option, 29
YULESQ option, 30

ALLELE procedure, PROC HAPLOTYPE statement
GENOCOL option, 105

ALLELE procedure, VAR statement, 30
ALLELE procedure, WITH statement, 31
ALLELEMIN= option

PROC ALLELE statement, 26
ALPHA= option

PROC ALLELE statement, 26
PROC CASECONTROL statement, 52
PROC HAPLOTYPE statement, 104
TPLOT macro, 198

AVERAGE option

PROC INBREED statement, 163

B
BANDWIDTH= option

PROC PSMOOTH statement, 186
BEST= option

PROC HTSNP statement, 144
BOOTSTRAP= option

PROC ALLELE statement, 26
BURNIN= option

PROC HAPLOTYPE statement, 104
BY statement

ALLELE procedure, 30
CASECONTROL procedure, 54
FAMILY procedure, 76
HAPLOTYPE procedure, 108
HTSNP procedure, 146
INBREED procedure, 164
PSMOOTH procedure, 187

C
CASE CONTROL, 49
CASE CONTROL Procedure, 49
CASECONTROL, 49
CASECONTROL Procedure, 49
CASECONTROL procedure, 51

syntax, 51
CASECONTROL procedure, BY statement, 54
CASECONTROL procedure, PROC

CASECONTROL statement, 52
ALLELE option, 52, 56
ALPHA= option, 52
DATA= option, 52
DELIMITER= option, 52
GENOCOL option, 52
GENOTYPE option, 52
INDIV= option, 52
MARKER= option, 52
NDATA= option, 52
NULLSNPS= option, 53
OR option, 53, 57, 65
OUTSTAT= option, 53
PERMS= option, 53
PREFIX= option, 53
SEED= option, 53
TALL option, 54
TREND option, 54, 56
VIF option, 54, 56
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CASECONTROL procedure, STRATA statement, 55
CASECONTROL procedure, TRAIT statement, 55
CASECONTROL procedure, VAR statement, 55
CLASS statement

INBREED procedure, 164
COMBINE option

PROC FAMILY statement, 74
CONTCORR option

PROC FAMILY statement, 74
CONV= option

PROC HAPLOTYPE statement, 104
PROC HTSNP statement, 144

CORRCOEFF option
PROC ALLELE statement, 26

COVAR option
PROC INBREED statement, 163

CRITERION= option
PROC HTSNP statement, 144

CUTOFF= option
PROC HAPLOTYPE statement, 104, 121
PROC HTSNP statement, 144

D
DATA= option

PROC ALLELE statement, 26
PROC CASECONTROL statement, 52
PROC FAMILY statement, 74
PROC HAPLOTYPE statement, 105
PROC HTSNP statement, 145
PROC INBREED statement, 163
PROC PSMOOTH statement, 187

DELIMITER= option
PROC ALLELE statement, 27
PROC CASECONTROL statement, 52
PROC FAMILY statement, 74
PROC HAPLOTYPE statement, 105

DELTA option
PROC ALLELE statement, 27

DPRIME option
PROC ALLELE statement, 27

E
EST= option

PROC HAPLOTYPE statement, 105
EXACT= option

PROC ALLELE statement, 29

F
FAMILY procedure, 73

syntax, 73
FAMILY procedure, BY statement, 76
FAMILY procedure, ID statement, 77
FAMILY procedure, PROC FAMILY statement, 74

COMBINE option, 74
CONTCORR option, 74
DATA= option, 74
DELIMITER= option, 74
GENOCOL option, 74
MULT= option, 74

NDATA= option, 75
OUTQ= option, 75
OUTSTAT= option, 75
PERMS= option, 75, 82
PREFIX= option, 75
RCTDT option, 75, 80
SDT option, 75, 80
SEED= option, 76
SHOWALL option, 76
STDT option, 76, 79
TDT option, 76, 78

FAMILY procedure, TRAIT statement, 77
FAMILY procedure, VAR statement, 77
FAMILY procedure, XLVAR statement, 77
FISHER option

PROC PSMOOTH statement, 187, 189
FREQ statement

HTSNP procedure, 146

G
GENDER statement, INBREED procedure, 165
GENOCOL option

PROC ALLELE statement, 27
PROC CASECONTROL statement, 52
PROC FAMILY statement, 74
PROC HAPLOTYPE statement, 105

GENOMIN= option
PROC ALLELE statement, 27, 28

GENOTYPE option
PROC CASECONTROL statement, 52

H
HAPLO= option

PROC ALLELE statement, 27, 34
HAPLOTYPE procedure, 104

syntax, 104
HAPLOTYPE procedure, BY statement, 108
HAPLOTYPE procedure, ID statement, 108, 130
HAPLOTYPE procedure, PROC HAPLOTYPE state-

ment, 104
ALPHA= option, 104
BURNIN= option, 104
CONV= option, 104
CUTOFF= option, 104, 121
DATA= option, 105
DELIMITER= option, 105
EST= option, 105
INDIV= option, 105
INIT= option, 105
INTERVAL= option, 105
ITPRINT option, 105, 120
LD option, 105, 112, 123
MARKER= option, 106
MAXITER= option, 106
NDATA= option, 106
NLAG= option, 106
NOPRINT option, 106
NSTART= option, 106, 122
OUT= option, 103, 106
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OUTCUT= option, 107
OUTID option, 107, 130
PREFIX= option, 107
SE= option, 107
SEED= option, 107
STEPTRIM= option, 107
TALL option, 107
THETA= option, 108
TOTALRUN= option, 108

HAPLOTYPE procedure, TRAIT statement, 109, 125
PERMS= option, 109
TESTALL option, 109

HAPLOTYPE procedure, VAR statement, 109
HTSNP procedure, 144

syntax, 144
HTSNP procedure, BY statement, 146
HTSNP procedure, FREQ statement, 146
HTSNP procedure, PROC HTSNP statement, 144

BEST= option, 144
CONV= option, 144
CRITERION= option, 144
CUTOFF= option, 144
DATA= option, 145
MAXSIZE= option, 145
METHOD= option, 145
NOSUMMARY option, 145
SCHEDULE= option, 145
SEED= option, 145
SIZE= option, 145
STEP= option, 145
TEMPERATURE= option, 145
TFACTOR= option, 146

HTSNP procedure, VAR statement, 147

I
ID statement

FAMILY procedure, 77
HAPLOTYPE procedure, 108, 130
PSMOOTH procedure, 188

INBREED procedure
syntax, 162

INBREED procedure, BY statement, 164
INBREED procedure, CLASS statement, 164
INBREED procedure, GENDER statement, 165
INBREED procedure, MATINGS statement, 165
INBREED procedure, PROC INBREED statement,

163
AVERAGE option, 163
COVAR option, 163
DATA= option, 163
IND option, 163
INDL option, 163
INIT= option, 163
MATRIX option, 163
MATRIXL option, 163
NOPRINT option, 163
OUTCOV= option, 163

INBREED procedure, VAR statement, 165
IND option

PROC INBREED statement, 163
INDIV= option

PROC ALLELE statement, 28
PROC CASECONTROL statement, 52
PROC HAPLOTYPE statement, 105

INDL option
PROC INBREED statement, 163

INIT= option
PROC HAPLOTYPE statement, 105
PROC INBREED statement, 163

INTERVAL= option
PROC HAPLOTYPE statement, 105

ITPRINT option
PROC HAPLOTYPE statement, 105, 120

L
LD option

PROC HAPLOTYPE statement, 105, 112, 123
LOGNOTE option

PROC ALLELE statement, 28

M
MARKER= option

PROC ALLELE statement, 28
PROC CASECONTROL statement, 52
PROC HAPLOTYPE statement, 106

MATINGS statement, INBREED procedure, 165
MATRIX option

PROC INBREED statement, 163
MATRIXL option

PROC INBREED statement, 163
MAXDIST= option

PROC ALLELE statement, 28
MAXITER= option

PROC HAPLOTYPE statement, 106
MAXSIZE= option

PROC HTSNP statement, 145
METHOD= option

PROC HTSNP statement, 145
MULT= option

PROC FAMILY statement, 74

N
NDATA= option

PROC ALLELE statement, 28, 40
PROC CASECONTROL statement, 52
PROC FAMILY statement, 75
PROC HAPLOTYPE statement, 106

NEGLOG option
PROC PSMOOTH statement, 187

NEGLOG10 option
PROC PSMOOTH statement, 187

NLAG= option
PROC HAPLOTYPE statement, 106

NOFREQ option
PROC ALLELE statement, 29

NOPRINT option
PROC ALLELE statement, 29
PROC HAPLOTYPE statement, 106
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PROC INBREED statement, 163
NOSUMMARY option

PROC HTSNP statement, 145
NSTART= option

PROC HAPLOTYPE statement, 106, 122
NULLSNPS= option

PROC CASECONTROL statement, 53, 56

O
OR option

PROC CASECONTROL statement, 53, 57, 65
OUT= option

PROC HAPLOTYPE statement, 103, 106
PROC PSMOOTH statement, 187

OUTCOV= option
PROC INBREED statement, 163

OUTCUT= option
PROC HAPLOTYPE statement, 107

OUTID option
PROC HAPLOTYPE statement, 107, 130

OUTQ= option
PROC FAMILY statement, 75

OUTSTAT= option
PROC ALLELE statement, 29
PROC CASECONTROL statement, 53
PROC FAMILY statement, 75

P
PERMS= option

PROC ALLELE statement, 29
PROC CASECONTROL statement, 53
PROC FAMILY statement, 75
PROC FAMILY statement (FAMILY), 82
TRAIT statement (HAPLOTYPE), 109

PREFIX= option
PROC ALLELE statement, 29
PROC CASECONTROL statement, 53
PROC FAMILY statement, 75
PROC HAPLOTYPE statement, 107

PROC ALLELE statement,
See ALLELE procedure

PROC CASECONTROL statement,
See CASECONTROL procedure

PROC FAMILY statement,
See FAMILY procedure

PROC HAPLOTYPE statement,
See HAPLOTYPE procedure

PROC HTSNP statement,
See HTSNP procedure

PROC INBREED statement,
See INBREED procedure

PROC PSMOOTH statement,
See PSMOOTH procedure

PROPDIFF option
PROC ALLELE statement, 29

PSMOOTH procedure, 186
syntax, 186

PSMOOTH procedure, BY statement, 187
PSMOOTH procedure, ID statement, 188

PSMOOTH procedure, PROC PSMOOTH statement,
186

ADJUST= option, 186, 190
BANDWIDTH= option, 186
DATA= option, 187
FISHER option, 187, 189
NEGLOG option, 187
NEGLOG10 option, 187
OUT= option, 187
SIMES option, 187, 189
TAU= option, 187
TPM option, 187, 189

PSMOOTH procedure, VAR statement, 188

R
RCTDT option

PROC FAMILY statement, 75
PROC FAMILY statement (FAMILY), 80

S
SCHEDULE= option

PROC HTSNP statement, 145
SDT option

PROC FAMILY statement, 75
PROC FAMILY statement (FAMILY), 80

SE= option
PROC HAPLOTYPE statement, 107

SEED= option
PROC ALLELE statement, 29
PROC CASECONTROL statement, 53
PROC FAMILY statement, 76
PROC HAPLOTYPE statement, 107
PROC HTSNP statement, 145

SHOWALL option
PROC FAMILY statement, 76

SIMES option
PROC PSMOOTH statement, 187, 189

SIZE= option
PROC HTSNP statement, 145

STDT option
PROC FAMILY statement, 76, 79

STEP= option
PROC HTSNP statement, 145

STEPTRIM= option
PROC HAPLOTYPE statement, 107

STRATA statement
CASECONTROL procedure, 55

T
TALL option

PROC ALLELE statement, 29
PROC CASECONTROL statement, 54
PROC HAPLOTYPE statement, 107

TAU= option
PROC PSMOOTH statement, 187

TDT option
PROC FAMILY statement, 76, 78

TEMPERATURE= option
PROC HTSNP statement, 145



TESTALL option
TRAIT statement (HAPLOTYPE), 109

TFACTOR= option
PROC HTSNP statement, 146

THETA= option
PROC HAPLOTYPE statement, 108

TOTALRUN= option
PROC HAPLOTYPE statement, 108

TPLOT, 197
TPLOT macro, 197

ALPHA= option, 198
syntax, 197

TPLOT Procedure, 197
TPM option

PROC PSMOOTH statement, 187, 189
TRAIT statement

CASECONTROL procedure, 55
FAMILY procedure, 77
HAPLOTYPE procedure, 109, 125

TREND option
PROC CASECONTROL statement, 54, 56

V
VAR statement

ALLELE procedure, 30
CASECONTROL procedure, 55
FAMILY procedure, 77
HAPLOTYPE procedure, 109
HTSNP procedure, 147
INBREED procedure, 165
PSMOOTH procedure, 188

VIF option
PROC CASECONTROL statement, 54, 56

W
WITH statement

ALLELE procedure, 31

X
XLVAR statement

FAMILY procedure, 77

Y
YULESQ option

PROC ALLELE statement, 30
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