
Base SAS®
Guide to Information Maps

SAS® Publishing

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006.
Base SAS ® Guide to Information Maps. Cary, NC: SAS Institute Inc.

Base SAS® Guide to Information Maps
Copyright © 2006, SAS Institute Inc., Cary, NC, USA
ISBN 13: 978-1-59047-866-0
ISBN 10: 1-59047-866-5
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, February 2006
2nd printing, October 2006
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � Overview of SAS Information Maps 1
What Is a SAS Information Map? 1

Why Are SAS Information Maps Important? 2

Chapter 2 � The INFOMAPS Procedure 3
Overview: INFOMAPS Procedure 3

Syntax: INFOMAPS Procedure 4

Examples: INFOMAPS Procedure 26

Chapter 3 � Using the SAS Information Maps LIBNAME Engine 31
What Does the Information Maps Engine Do? 31

Understanding How the Information Maps Engine Works 31

Advantages of Using the Information Maps Engine 35

Operating Systems Supported by the Information Maps Engine 35

What Is Required to Use the Information Maps Engine? 35

What Is Supported? 36

What Metadata Is Used by the Information Maps Engine? 36

Chapter 4 � LIBNAME Statement for the Information Maps Engine 39
Using the LIBNAME Statement 39

LIBNAME Statement Syntax 39

Chapter 5 � SAS Data Set Options for the Information Maps Engine 43
Using Data Set Options 43

Chapter 6 � Examples of Using the Information Maps Engine 47
Example 1: Submitting a LIBNAME Statement Using the Defaults 47

Example 2: Submitting a LIBNAME Statement Using All the Statement Options 47

Chapter 7 � Best Practices for Using the INFOMAPS Procedure or the Information Maps
Engine 49
Best Practices for Using the INFOMAPS Procedure 49

Best Practices for Using the Information Maps Engine 49

Chapter 8 � Example: Using the INFOMAPS Procedure and the Information Maps
Engine 53
About This Example 53

Step 1: Set the Metadata System Options and a Macro Variable 53

Step 2: Register Data Using the METALIB Procedure 54

Step 3: Create an Information Map Using the INFOMAPS Procedure 55

Step 4: Retrieve the Data Associated with the Information Map Using the Information
Maps Engine 59

Step 5: View the Data Items and Filters Using the CONTENTS Procedure 60

Step 6: Print the Data from the Information Map 61

iv

Step 7: Analyze the Data in SAS and Produce an ODS Report 62

Appendix 1 � Recommended Reading 65
Recommended Reading 65

Glossary 67

Index 73

1

C H A P T E R

1
Overview of SAS Information
Maps

What Is a SAS Information Map? 1
Why Are SAS Information Maps Important? 2

What Is a SAS Information Map?
A SAS Information Map is business metadata about your data. Information maps

are user-friendly metadata definitions of data sources and enable your business users to
query data in order to meet specific business needs. Metadata is information about the
structure and content of data and the applications that process and manipulate that
data. Note that an information map does not contain any physical data.

An information map contains data items and filters. A data item can refer to a
physical data field or a calculation. A filter contains criteria for subsetting data. Data
items and filters are used for building queries.

Depending on the data source, an information map might have many data items and
filters. Folders can be used to organize the data items and filters in order to make it
easy for business users to find what they want within the information map.

The following figure shows you what an information map looks like from within SAS
Information Map Studio, an application that provides a graphical user interface for
creating and viewing information maps.

2 Why Are SAS Information Maps Important? � Chapter 1

Why Are SAS Information Maps Important?
Information maps provide a business metadata layer that enables business users to

ask questions and get answers themselves. This frees IT resources from one-time
reporting requests and reduces the need to provide training in programming and
database structures.

Information maps enable business users to easily access enterprise-wide data by
providing the following benefits:

� Users are shielded from the complexities of the physical data.
� Data storage is transparent to users, regardless of whether the data is relational

or multidimensional or whether the data is in a SAS data set or in a third-party
database management system.

� Business formulas and calculations are predefined, which makes them usable on a
consistent basis.

� Users can easily query data for answers to business questions without having to
know query languages.

3

C H A P T E R

2
The INFOMAPS Procedure

Overview: INFOMAPS Procedure 3
Operating Systems Supported by the INFOMAPS Procedure 4

Syntax: INFOMAPS Procedure 4

PROC INFOMAPS Statement 5

DELETE INFOMAP Statement 7

EXPORT Statement 7
IMPORT Statement 8

INSERT DATAITEM Statement 9

INSERT DATASOURCE Statement 15

INSERT FILTER Statement 18

INSERT FOLDER Statement 19

INSERT RELATIONSHIP Statement 21
LIST Statement 21

OPEN INFOMAP Statement 23

SAVE Statement 25

Examples: INFOMAPS Procedure 26

Example 1: Creating a Basic Information Map 26
Example 2: Using Folders in an Information Map 27

Example 3: Aggregating a Data Item 29

Overview: INFOMAPS Procedure
The INFOMAPS procedure enables you to create information maps

programmatically. You can also use the procedure to modify an existing information
map by adding new data sources or new data items. For this release, however, you
cannot change the definitions of any existing data item, filter, data source, folder, or
relationship within an information map.

Information maps provide a layer of metadata that describes physical data in terms
that business users can understand. Information maps enable you to give descriptive
labels and detailed descriptions to assist business users. For example, you can create
data items with names such as "Age Group" or "Sales Revenue from Internet Orders".

Information maps can contain data items and filters. Data items refer to physical
data. A data item can refer to a single column from a physical table or can contain an
expression that utilizes zero or more columns. A data item is classified as either a
category item or a measure item. You can organize data items into folders and
subfolders to help users find the information they need.

In addition to using the INFOMAPS procedure to create information maps, you can
also use the interactive client application, SAS Information Map Studio, to create,
update, and manage information maps. When you have created or modified an
information map, you can access it using the Information Maps engine and retrieve the

4 Operating Systems Supported by the INFOMAPS Procedure � Chapter 2

data that the information map describes. For information, see Chapter 3, “Using the
SAS Information Maps LIBNAME Engine,” on page 31.

For information about defining metadata, installing and setting up a standard SAS
Metadata Server, or changing the standard configuration options for the SAS Metadata
Server, see the SAS Intelligence Platform: System Administration Guide.

Operating Systems Supported by the INFOMAPS Procedure
The following operating systems are supported:
� Windows (32–bit)

� Solaris (64–bit)

� UNIX (HP-UX, AIX 64–bit)

Syntax: INFOMAPS Procedure
PROC INFOMAPS

METAPASS="password"
METAPORT=port-number
METAREPOSITORY="repository-name"
METASERVER="address"
METAUSER="user-ID"
<MAPPATH="repository-path">;

DELETE INFOMAP information-map-name
<MAPPATH="repository-path">;

EXPORT <INFOMAP information-map-name>
<FILE=fileref |"physical-path">
<MAPPATH="repository-path">;

IMPORT FILE=fileref |"physical-path";
INSERT DATAITEM

COLUMN=datasource-ID.column-name | EXPRESSION="expression-text"
<AGGREGATION=aggregate-function>
<AGGREGATIONS_DROP_LIST=(aggregate-function-list)>
<CLASSIFICATION=CATEGORY | MEASURE>
<DESCRIPTION="descriptive-text">
<FOLDER=folder-name | "folder-path">
<FORMAT="format-name">
<ID="dataitem-ID">
<NAME="name">
<TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP>;

INSERT DATASOURCE
SASSERVER | SERVER=server-name
TABLE=library.table <COLUMNS=(column–1 column–2 ... column-n) | _ALL_ >
<ID=datasource-ID>;

INSERT DATASOURCE
SASSERVER | SERVER=server-name
CUBE=<schema.>cube <_ALL_>

<ID=datasource-ID>;

INSERT FILTER filter-name
CONDITION="conditional-expression"
<DESCRIPTION="descriptive-text">

The INFOMAPS Procedure � PROC INFOMAPS Statement 5

<FOLDER=folder-name| "folder-path">;

INSERT FOLDER folder-name
<PARENT=parent-folder-name>
<DESCRIPTION="descriptive-text">;

INSERT RELATIONSHIP left-table INNER | LEFT | RIGHT | FULL
JOIN right-table ON "conditional-expression";

LIST <DATAITEMS | DATASOURCES | FILTERS | _ALL_> ;

OPEN INFOMAP information-map-name
<CREATE_TARGET_FOLDER=YES | NO>
<INIT_CAP=YES | NO>
<MAPPATH="repository-path">
<REPLACE_UNDERSCORES=YES | NO>
<USE_LABELS=YES | NO>;

SAVE <INFOMAP information-map-name>
<MAPPATH="repository-path">;

PROC INFOMAPS Statement

Connects to the specified metadata server.

PROC INFOMAPS
METAPASS="password"
METAPORT=port-number
METAREPOSITORY="repository-name"
METASERVER="address"
METAUSER="user-ID"
<MAPPATH="repository-path">;

Required Arguments

METAPASS="password"
specifies the password that corresponds to the user ID that connects to the metadata
server. For example, metapass="My Password" or metapass="MyPassword". If the
password is not all uppercase or does not contain a blank space (or spaces), enclosing
the identifier in quotation marks is optional.

If this option is not specified, the value is obtained from the METAPASS= system
option. See the METAPASS= system option in the SAS Language Reference:
Dictionary.

Alias: PASSWORD= | PW=

METAPORT=port-number
specifies the TCP port that the metadata server is listening to for connections. For
example, metaport=8561.

If this option is not specified, the value is obtained from the METAPORT= system
option. See the METAPORT= system option in the SAS Language Reference:
Dictionary.

Alias: PORT=

6 PROC INFOMAPS Statement � Chapter 2

METAREPOSITORY="repository-name"
specifies a name that is assigned to a particular metadata repository to use on the
metadata server. For example, metarepository="myrepos". Because the repository
name is not case-sensitive, you can omit the quotation marks if the name does not
contain a blank space (or spaces).

If this option is not specified, the value is obtained from the METAREPOSITORY=
system option. See the METAREPOSITORY= system option in the SAS Language
Reference: Dictionary.

Alias: REPOSITORY= | REPOS= | REPNAME=

METASERVER="address"
specifies the network IP (Internet Protocol) address of the computer that hosts the
metadata server. For example, metaserver="myip.us.mycompany.com".

If this option is not specified, the value is obtained from the METASERVER=
system option. See the METASERVER= system option in the SAS Language
Reference: Dictionary.

Alias: SERVER= | HOST=

METAUSER="user-ID"
specifies the user ID to connect to the metadata server. For example,
metauser="myUserID". The user ID is not case-sensitive. If the user ID does not
contain a blank space (or spaces) or special characters, enclosing the identifier in
quotation marks is optional.

If this option is not specified, the value is obtained from the METAUSER= system
option. See the METAUSER= system option in the SAS Language Reference:
Dictionary.

Alias: USER= | USERID= | ID=

Restriction: In the metadata server, you must have at least one login definition
that contains a user ID that corresponds to the user ID that you specify here. For
information about login definitions, see the User Manager Help for logins in the
SAS Management Console.

Restriction: If your metadata server runs in a Windows environment, then you
must fully qualify the user ID by including the domain or machine name that you
specified when your login object was created in the SAS Metadata Repository. For
example: metauser="Windows-domain-name\user-ID".

Option

MAPPATH="repository-path"
specifies the path to the location within the metadata repository of the information
map to create, open, or delete. After the connection is made, the path is stored so
that you do not need to specify it again on subsequent statements such as OPEN,
SAVE, DELETE, or EXPORT. However, if do you specify a path on a subsequent
statement, then that path overrides the stored path.

Alias: PATH=

Restriction: By default, SAS Web Report Studio looks for information maps in the
directory /BIP Tree/ReportStudio/Maps. If you are creating an information
map for use with SAS Web Report Studio, you must store it in that directory
unless a system administrator has changed the directory to something other than
the default.

The INFOMAPS Procedure � EXPORT Statement 7

Examples

proc infomaps metauser="myUserID"
metapass="myPassword"
metaserver="myip.us.mycompany.com"
metaport=8561
metarepository="Foundation";

DELETE INFOMAP Statement

Deletes an information map from the metadata repository.

DELETE INFOMAP information-map-name
<MAPPATH="repository-path">;

Required Arguments

information-map-name
specifies the name of the information map to delete.

Option

MAPPATH="repository-path"
specifies the path to the location within the metadata repository of the information
map to delete. The path is required unless a path has been specified in the PROC
INFOMAPS statement. The repository path from the DELETE statement overrides
the path from the PROC INFOMAPS statement.

Examples

delete infomap "my testmap"
mappath="/BIP Tree/ReportStudio/Maps";

delete infomap "myMap";

EXPORT Statement

Exports an information map in its XML representation.

EXPORT <INFOMAP information-map-name>
<FILE=fileref | "physical-path">
<MAPPATH="repository-path">;

8 IMPORT Statement � Chapter 2

Options

INFOMAP information-map-name
specifies the name of the information map to export. If the name does not contain a
blank space (or spaces), or special characters, or is case sensitive, enclosing the
identifier in quotation marks is optional. If you do not specify a name, the current
active information map is exported.

FILE=fileref | "physical-path"
specifies an external file to which to export an XML representation of the information
map. If the external file already exists, it is replaced.

If the FILE= option is not specified, the information is sent to the SAS log.

Requirement: If you use an external text editor to modify the XML file after it has
been exported, then the editor must encode the file using the Unicode UTF-8
format in order for SAS Information Map Studio to import it correctly.

MAPPATH="repository-path"
specifies the path to the location within the metadata repository of the information
map to export. The MAPPATH option is ignored if no information map name is
specified.

If you do not specify a path, the default is the repository path specified in the
OPEN INFOMAP statement, if a path is specified there. If not, the default is the
repository path specified in the PROC INFOMAPS statement. Exporting fails if the
repository path is not specified in the EXPORT statement or in an OPEN INFOMAP
or PROC INFOMAPS statement.

Examples
/* Export an information map to a physical path. */
/* Note that the sample paths are operating system-specific. */
export infomap "my testmap" file="c:\test\test.xml"

mappath="/BIP Tree/ReportStudio/Maps";

/* Export an information map to a fileref. */
filename xmlfile "c:\test\test.xml";
export infomap "my testmap" file=xmlfile

mappath="/BIP Tree/ReportStudio/Maps";

IMPORT Statement

Imports an information map from an external XML file.

IMPORT FILE=fileref |"physical-path";

Required Arguments

FILE=fileref |"physical-path"
specifies the fileref or physical path of an XML file from which an information map is
imported.

The INFOMAPS Procedure � INSERT DATAITEM Statement 9

Requirement: If you use an external text editor to modify the XML file before
importing it, then the editor must encode the file using the Unicode UTF-8 format
for SAS Information Map Studio to import it correctly.

Details
After importing an information map, you must issue a SAVE statement to save it. If

you specify a name on the SAVE statement, then that name overrides the name
specified in the XML file. If you save it with the same name and in the same location as
an existing information map, then the imported information map replaces the existing
information map in the metadata repository.

The location where the imported information map is saved is determined according to
the following order of precedence:

1 The MAPPATH specified on the SAVE statement
2 The MAPPATH specified on the OPEN INFOMAP statement
3 The MAPPATH specified on the PROC INFOMAPS statement

The IMPORT statement always opens a new information map. Any changes made to an
open information map are lost if those changes are not saved before importing.

Examples
/* Create a new information map from an external file. */
import file="c:\test\test.xml";
save;

INSERT DATAITEM Statement

Inserts a data item for the specified column or expression into the information map that is
currently open.

INSERT DATAITEM
COLUMN=datasource-ID.column-name | EXPRESSION="expression-text"
<AGGREGATION=aggregate-function>
<AGGREGATIONS_DROP_LIST=(aggregate-function-list)>
<CLASSIFICATION=CATEGORY | MEASURE>
<DESCRIPTION="descriptive-text">
<FOLDER=folder-name | "folder-path">
<FORMAT="format-name">
<ID="dataitem-ID">
<NAME="name">
<TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP>;

10 INSERT DATAITEM Statement � Chapter 2

Required Arguments

COLUMN=datasource-ID.column-name
specifies a physical column. The datasource-ID is the ID of a data source in the
current information map. It must match the ID of the table that contains the
physical column, as shown in the following example:

insert datasource sasserver="SASMain"
table="Common".WORLDPOP2002
id="PopulationData";

insert dataitem column="PopulationData".Projected_Population_millions_;

The column-name is the SAS name of a column defined in the relational table
associated with data source ID. The INFOMAPS procedure inserts a data item for
this column into the information map.
Restriction: This option applies only to a relational data source.
Interaction: If you specify the COLUMN= option, then you cannot specify the

EXPRESSION= option.

EXPRESSION="expression-text"
specifies the combination of data elements, literals, functions, and mathematical
operators that are used to derive the value of a data item when the information map
is used in a query.

Note: If you are using the Information Maps engine to access an information map
containing character type data items created with the EXPRESSION= option, you
should be aware of the EXPCOLUMNLEN= option of the LIBNAME statement. By
default, the Information Maps engine sets the data length for columns of these data
items to 32 characters. You can use the EXPCOLUMNLEN= option to change the
default length. For more information on the EXPCOLUMNLEN= option, see “Other
LIBNAME Statement Options for the Information Maps Engine” on page 41 and
“EXPCOLUMNLEN= Data Set Option” on page 43. �
Requirement: If you specify the EXPRESSION= option, then you must also specify

the TYPE= option.
Requirement: Relational data: Any reference to physical or business data in a

relational table must be enclosed in double angle brackets <<...>>. Everything
between double angle brackets is maintained just as it is; that is, case and blank
spaces are maintained.

If you are referring to a physical column, then you must qualify the column
with the source ID. For example, <<Transaction.Sales_Tax>>. If you are
referring, in an expression, to a data item in the current information map, then
you do not need to qualify the data item ID—though you can use the qualifier
root, for example, <<root.MODEL_ID>>.

Requirement: OLAP data: Expressions for OLAP data items must resolve to a
valid, one-dimensional MDX set. Use double angle brackets <<...>> to enclose
references to an OLAP measure, OLAP dimension, OLAP hierarchy, or an OLAP
level. Use single sets of square brackets [...] to enclose a reference to an OLAP
member. For example:

<<Measures.new_business_value_sum>>,
<<campaigns>>,
<<campaigns.campaigns>>,
[campaigns].[All campaigns].[ADVT]

The INFOMAPS Procedure � INSERT DATAITEM Statement 11

Interaction: If you specify the EXPRESSION= option, then you cannot specify the
COLUMN= option.

Tip: If you are using INSERT DATAITEM to insert a non-calculated data item from
a physical column, it is preferable for performance reasons to use the COLUMN=
option instead of the EXPRESSION= option.

Options

AGGREGATION=aggregate-function
specifies the default aggregate function that the information map user sees.

Restriction: AGGREGATION applies only to a relational data item that is a
measure.

Restriction: If you do not specify an aggregate function, it defaults to the SUM
function. If SUM is not available, then it defaults to COUNT. If neither the
COUNT nor SUM function is available, it defaults to the first of the available
supported aggregation functions.

Restriction: If you create a measure data item and include an existing measure
data item or a known aggregate in the expression of the new measure data item,
then the only aggregate functions available to the new measure data item are
InternalAggregation or InternalAggregationAdditive.

AGGREGATIONS_DROP_LIST=(aggregate-function-list)
removes one or more functions from the list of aggregate functions available to a data
item.

Default: All available aggregate functions for the data item are selected.

Restriction: This option applies only to a relational data item that is a measure.

Requirement: Separate multiple aggregate functions with a blank space. For
example:

AGGREGATIONS_DROP_LIST=(Freq FreqDistinct CSSDistinct)

Available aggregate functions are shown in the following table. For more
information about these aggregate functions (except for InternalAggregation and
InternalAggregationAdditive), see "Summarizing Data: Using Aggregate
Functions" in the SAS SQL Query Window User’s Guide, which you can find at
support.sas.com/documentation/onlinedoc/91pdf/.

Table 2.1 Aggregate Functions

Function Definition

AVG, MEAN average or mean of values

AvgDistinct, MeanDistinct average or mean of distinct values

COUNT, FREQ, N number of non-missing values

CountDistinct, FreqDistinct,
NDistinct

number of distinct non-missing values

CountPlusNMISS
number of distinct non-missing values plus the number of
distinct missing values

CSS corrected sum of squares

CSSDistinct corrected sum of squares of distinct values

12 INSERT DATAITEM Statement � Chapter 2

Function Definition

CV coefficient of variation (percent)

CVDistinct coefficient of variation (percent) of distinct values

InternalAggregation defined in an expression

InternalAggregationAdditive defined in an expression (additive)

MAX largest value

MIN smallest value

NMISS number of missing values

NMISSDistinct number of distinct missing values

PRT probability of a greater absolute value of Student’s t

PRTDistinct
probability of a greater absolute value of Student’s t of
distinct values

RANGE range of values

RANGEDistinct range of distinct values

STD standard deviation

STDDistinct standard deviation of distinct values

STDERR standard error of the mean

STDERRDistinct standard error of the mean of distinct values

SUM sum of values

SumDistinct sum of distinct values

T
Student’s t value for testing the hypothesis that the
population mean is zero

TDistinct
Student’s t value for testing the hypothesis that the
population mean of distinct values is zero

USS uncorrected sum of squares

USSDistinct uncorrected sum of squares for distinct values

VAR variance

VarDistinct variance of distinct values

CLASSIFICATION=CATEGORY | MEASURE
specifies the usage type of the data item to be created. If you do not specify the
CLASSIFICATION= option, the INFOMAPS procedure assigns a default
classification based on:

� the contents of the expression if the EXPRESSION= option is used
� the data type of the physical column if the COLUMN= option is used

In general, if a data item is created from a physical column, then CATEGORY is the
default classification unless the physical column is of type NUMERIC and is not a
key. Data items inserted with the EXPRESSION= option also default to CATEGORY.
However, if the expression contains an aggregation, the default classification is
MEASURE instead.

DESCRIPTION="descriptive-text"
specifies the description for the data item, which can be viewed by the information
map consumer.

The INFOMAPS Procedure � INSERT DATAITEM Statement 13

Alias: DESC=
Restriction: The description must be enclosed in quotation marks. Also, note that

when used in SAS programs, descriptions are limited to 256 characters.

FOLDER=folder-name | "folder-path"
specifies the folder in the information map into which to insert the data item. If the
folder is in the root directory of the information map, then you can specify the folder
by name. For example, FOLDER=CUSTOMERS. If the folder name does not contain a
blank space (or spaces) or non-alphanumeric characters, enclosing the identifier in
quotation marks is optional.

Restriction: If you do not enclose the folder name in quotation marks, the name
that you specify is changed to uppercase and will match only a folder whose name
is uppercase.

Restriction: If the folder is not in the root directory, then you must specify the path
to the folder beginning with the initial slash and enclose the path in quotation
marks. For example, FOLDER="/CUSTOMERS/Europe".

Restriction: The following characters are not valid in a folder name:

� / \
� null characters
� non-blank nonprintable characters

Restriction: A name can contain blank spaces, but cannot consist only of blank
spaces.

FORMAT="format-name"
specifies the SAS format of the data item.

If you do not specify a SAS format, the INFOMAPS procedure may set a default
format for the data item based on the following factors:

� the classification of the data item
� whether there is a format defined in the physical resource referenced in the

data item expression
� the actual data type of the physical resource referenced

Restriction: The format name must be enclosed in quotation marks.
Restriction: This argument applies only to relational data items and OLAP

measures.

ID="dataitem-ID"
specifies the ID assigned to the data item being inserted. The ID is a value that you
can use in an expression to uniquely identify the associated data item in the current
information map. If you do not specify the ID= option, the INFOMAPS procedure
generates an ID. The value that is generated for a data item depends on how the
data item is inserted:

� If the NAME= option is specified, the data item name is used as the seed for
generating the ID.

� If the NAME= option is not specified, how the ID is generated depends on
whether the data item is inserted from a physical column or from the
EXPRESSION= option.

� If the data item is inserted from a physical column in one of the following
ways:

INSERT DATAITEM with the COLUMN= option specified

INSERT DATASOURCE with either the _ALL_ or the COLUMNS=
option specified

14 INSERT DATAITEM Statement � Chapter 2

then the ID is generated from either the SAS name or label of the physical
column. The settings of the USE_LABELS, REPLACE_UNDERSCORES,
and INIT_CAP options determine the exact value and casing of the ID.

� If the data item is inserted with the EXPRESSION= option, then the
INFOMAPS procedure assigns a unique ID of the form

"DataItem"<number>

(where <number> is an internally maintained counter for ID generation.
This counter is also used for generating IDs for other business data,
including filters and data sources).

The INSERT DATAITEM statement prints a note displaying the ID of the data
item if the ID has a different value from the data item name. You can use the LIST
statement to view the IDs of all the data items in the current information map.
Restriction: Nulls and non-blank nonprintable characters are not valid in an ID.

The following characters

. < > [] { } \ / ^ @ ~

will be replaced with an underscore (_).
Restriction: The first 32 characters of an ID must be unique. An ID that differs

only by case from another ID in the current information map is not considered
unique. If the ID specified is not unique, the INFOMAPS procedure terminates
the data-item insertion and prints an error message in the SAS log.

Tip: An ID must be unique across an information map. You will receive an error
message if you specify an ID that is the same as an existing ID (data item, data
source, filter, or other).

NAME="name"
specifies the name assigned to the data item in the information map. A name is
optional, descriptive text that makes it easier for business users to understand what
the data is about. A data item’s name is for display purposes only—you use a data
item’s ID to refer to it in code rather than its name. If you do not specify a name, the
name defaults to the column name or column label (based on the setting of the
USE_LABELS option from the OPEN INFOMAP statement) if the COLUMN= option
is used; otherwise, the INFOMAPS procedure provides a default name.

If you specify a name but do not specify an ID, the INFOMAPS procedure uses the
name to generate a unique ID.

Note: In the XML format of an information map, the data item name is encoded
with a <label> tag. �
Restriction: There is no limit on the length of the name of a relational data item.

OLAP data item names can be at most 30 characters.
Restriction: A name can contain blank spaces, but cannot consist only of blank

spaces. Nulls and non-blank nonprintable characters are not valid characters in a
name. A name can contain the following special characters:

. < > [] { } \ / ^ @ ~

but they will be replaced with an underscore (_) in the ID that is generated from
the name. Square brackets [...] are not valid in an OLAP data item name.

TYPE=NUMERIC | CHARACTER | DATE | TIME | TIMESTAMP
specifies the data type of the data item’s expression.
Restriction: For OLAP data, the only valid types are NUMERIC and CHARACTER.
Interaction: If you specify the EXPRESSION= option, then you must specify the

TYPE= option. If you specify the COLUMN= option, then you do not have to

The INFOMAPS Procedure � INSERT DATASOURCE Statement 15

specify the TYPE= option. In this case, the INFOMAPS procedure derives the type
from the type of the column.

Examples

/* Use the COLUMN= option to insert a data item for a physical column. */
insert dataitem column="TRANSACTION".Sales_Amount
name="Average Sale"
desc="Average amount of sale per transaction"
id="Average_Sale"
folder="Measures" classification=measure format="Comma8.2"
aggregation=AvgDistinct;

/* Use the EXPRESSION= option to insert a calculated data item. */
insert dataitem
expression="<<TRANSACTION.Sales_Amount>>+<<TRANSACTION.Sales_Tax>>"
name="Total Sales Amount Plus Tax"
id="Total_with_Tax"
type=numeric
desc="Total with Tax" classification=measure format="Comma8.2";

/* Insert a data item for an OLAP member. */
insert dataitem
expression="<<customer_age.customer_age.age_group_1>>.MEMBERS"
name="Customer_Age_Group_1"
type=char
desc="First age group" classification=category;

/* Insert a data item for an OLAP hierarchy. */
insert dataitem
expression="<<customer_age.customer_age>>.Hierarchy"
name="Customer Age"
id="Customer_Age"
type=char;

INSERT DATASOURCE Statement

Makes available to the current information map the data from either a table or cube. The
information map must have been opened with an OPEN INFOMAP statement.

INSERT DATASOURCE
SASSERVER | SERVER=server-name
TABLE=library.table <COLUMNS=(column–1 column–2 ... column-n) | _ALL_ >
<ID=datasource-ID>;

or:

INSERT DATASOURCE
SASSERVER | SERVER=server-name
CUBE=<schema.>cube <_ALL_>

<ID=datasource-ID>;

16 INSERT DATASOURCE Statement � Chapter 2

Required Arguments

SASSERVER | SERVER=server-name
identifies the SAS server. The server can be either a SAS application server for
relational data (SAS libraries) or a SAS OLAP Server for cube data. The type of
server being accessed is identified by the TABLE= option or the CUBE= option.

TABLE=library.table
identifies a relational table as a data source for the current information map.

A table must be:

� registered in the currently connected metadata repository or a parent repository
of the current metadata repository.

� associated with a SAS library that is registered in the SAS application server
specified by the SASSERVER= option.

In order for an information map to use a table, the table must have a unique name
in its SAS library (for a SAS table) or database schema (for a table from a different
DBMS) in the metadata repository. If multiple tables in a SAS library or database
schema have the same name, then you must perform one of the following tasks
before you can use any of the tables with an information map:

� From either SAS Data Integration Studio or the Data Library Manager in SAS
Management Console, you can rename a table by changing the value of the
Name field on the General tab in the properties window for the table.

� From SAS Data Integration Studio, delete the duplicate tables.

Restriction: Although you can access either relational data or cube data, you
cannot access both within the same information map.

Restriction: You can use multiple INSERT DATASOURCE statements to add
multiple relational tables to the same information map. However, when accessing
multiple tables, all tables must be accessed from the same SAS Workspace Server.

CUBE=<schema.>cube
identifies an OLAP cube as a data source for the current information map.

A cube must be:

� registered in the currently connected metadata repository or a parent repository
of the current metadata repository.

� associated with a schema that is registered in the SAS OLAP Server specified
by the SASSERVER= option.

Restriction: Although you can access either relational data or cube data, you
cannot access both within the same information map.

Restriction: You can insert only one OLAP cube into an information map.

Options

ALL
specifies to insert a data item for each physical column or hierarchy as defined in the
specified table or cube.

Interaction: If you specify the _ALL_ option, then you cannot specify the
COLUMNS= option.

The INFOMAPS Procedure � INSERT DATASOURCE Statement 17

COLUMNS=(column-1 column-2 ... column-n)
specifies one or more physical column names as defined in the specified table. The
INFOMAPS procedure inserts a data item into the information map for each of these
named columns.

The column list can be a single SAS column name or a list of SAS column names
separated by at least one blank space and enclosed in parentheses.

Restriction: This option applies only to a relational data source.

Requirement: If you specify the COLUMNS= option, then you must specify it
immediately after the TABLE= option.

Interaction: If you specify the COLUMNS= option, then you cannot specify the
ALL option.

ID="datasource-ID"
specifies the ID assigned to the data source. The ID is a value that you can use in an
expression to uniquely identify the associated data source in the current information
map.

If you do not specify the ID= option, the INFOMAPS procedure generates an ID
for the data source based on the specified table or cube name. If the generated ID is
different from the table or cube name, then the INFOMAPS procedure prints a note
in the SAS log with the generated ID. You can use the LIST statement to display
data source IDs.

Restriction: Nulls and non-blank nonprintable characters are not valid in an ID.
The following characters

. < > [] { } \ / ^ @ ~

will be replaced with an underscore (_).

Tip: An ID must be unique across an information map. You will receive an error
message if you specify an ID that is the same as an existing ID (data item, data
source, filter, or other).

Details
The inserted data sources are logical representations of the data that you can use to

query the physical data. If you are familiar with SAS Information Map Studio, using an
INSERT DATASOURCE statement in a program is equivalent to choosing Insert
Table or Insert Cube from the menu bar in SAS Information Map Studio.

You can insert multiple tables as data sources into an information map. To refer to a
table data source in an expression, you must use its ID. By default, the ID of a table
data source is the same as the table name. If a table data source already exists in the
current information map that has the same name as the table that you are attempting
to insert, then the INFOMAPS procedure renames the new table to ensure a unique
data source name and ID. To view a list of all the data sources in the current
information map, use the LIST DATASOURCES statement. Note that even though the
table data source name and its ID have the same value by default, you can use the ID=
option to specify a different ID, or you can use SAS Information Map Studio to change
the table name after the information map is saved.

Examples
/* Insert all the columns from a relational data source. */
insert datasource sasserver="SASMain"

table="Basic Data".CUSTOMER _ALL_ ;

18 INSERT FILTER Statement � Chapter 2

/* Insert only 3 columns from a relational data source. */
insert datasource sasserver="SASMain"

table="OrionTables".CUSTOMER_DIM
columns=("Customer_id" "Customer_name" "Customer_age") ;

/* Insert an OLAP data source. */
insert datasource sasserver="SASMain"

cube="SAS Main - OLAP Schema".class
id="Sample_Data";

INSERT FILTER Statement

Inserts a filter into the current information map. A filter provides criteria for subsetting a result
set. For relational databases, a filter is a WHERE clause.

INSERT FILTER filter-name
CONDITION="conditional-expression"
<DESCRIPTION="descriptive-text">
<FOLDER=folder-name| "folder-path">;

Required Arguments

filter-name
specifies the name of a filter to insert into the current information map.
Restriction: Nulls and non-blank nonprintable characters are not valid characters

for a filter.

CONDITION="conditional-expression"
specifies a conditional expression that is used to filter the data.
Requirement: The conditional expression must be enclosed in quotation marks and

must immediately follow the filter name.
Requirement: Relational data: Any reference to physical or business data in a

relational table must be enclosed in double angle brackets <<...>>. Everything
between double angle brackets is maintained just as it is; that is, case and blanks
are maintained.

If you are referring to a physical column, then you must qualify the column
with the source ID. For example, <<Transaction.Sales_Tax>>. If you are
referring, in an expression, to a data item in the current information map, then
you do not need to qualify the data item ID—though you can use the qualifier
root, for example, <<root.MODEL_ID>>.

Requirement: OLAP data: Expressions for OLAP data items must resolve to a
valid, one-dimensional MDX set. Use double angle brackets <<...>> to enclose
references to an OLAP measure, OLAP dimension, OLAP hierarchy, or an OLAP
level. Use single sets of square brackets [...] to enclose a reference to an OLAP
member.

The INFOMAPS Procedure � INSERT FOLDER Statement 19

Options

DESCRIPTION="descriptive-text"
specifies the description of the filter to be inserted.

Alias: DESC=

FOLDER=folder-name | "folder-path"
specifies the folder in the information map into which to insert the filter. If the folder
is in the root directory of the information map, then you can specify the folder by
name. For example, FOLDER=CUSTOMERS. If the folder name does not contain a blank
space (or spaces) or non-alphanumeric characters, enclosing the identifier in
quotation marks is optional.

Restriction: If you do not enclose the folder name in quotation marks, the name
that you specify is changed to uppercase and will match only a folder whose name
is uppercase.

Restriction: If the folder is not in the root directory, then you must specify the path
to the folder beginning with the initial slash and enclose the path in quotation
marks. For example, FOLDER="/CUSTOMERS/Europe".

Restriction: The following characters are not valid in a folder name:

� / \

� null characters

� non-blank nonprintable characters

Restriction: A name can contain blank spaces, but cannot consist only of blank
spaces.

Examples
/* Insert a relational table filter. */
insert filter MyFilter condition=’<<Geography.Country>> = "CANADA" ’;

/* Insert an MDX filter. */
insert filter dates1
condition="<<Dates_FirstChild>> <>

[cust_dates].[All cust_dates].[1996].[1996/06].[24JUN96]";

/* Insert an MDX filter. */
insert filter dates2
condition="<<Dates_Dates>>=[cust_dates].[All cust_dates].[1998].[1998/02],

[cust_dates].[All cust_dates].[1998].[1998/02].[03FEB98]";

INSERT FOLDER Statement

Inserts a map folder into the current information map.

INSERT FOLDER folder-name
<PARENT=parent-folder-name>
<DESCRIPTION="descriptive-text">;

20 INSERT FOLDER Statement � Chapter 2

Required Arguments

folder-name
specifies the name of the map folder to insert into the current information map.
Restriction: If you do not enclose the folder name in quotation marks, the name

that you specify is changed to uppercase in the information map.
Tip: When referring to the folder, remember that case is important. A good practice

is to always enclose folder names in quotation marks so that the folder name in
your code matches the folder name in the information map.

Options

PARENT=parent-folder-name
specifies the parent folder of the folder that you are inserting into the information
map. By specifying the parent folder, you specify where in the information map to
insert the folder. If the parent folder is in the root directory of the information map,
then you can specify the parent folder by name. For example, PARENT=CUSTOMERS. If
the parent folder name does not contain a blank space (or spaces) or
non-alphanumeric characters, enclosing the identifier in quotation marks is optional.
Restriction: If you do not enclose the parent folder name in quotation marks, the

name that you specify is changed to uppercase and will match only a folder whose
name is uppercase.

Restriction: If the parent folder is not in the root directory, then you must specify
the path to the folder beginning with the initial slash and enclose the path in
quotation marks. For example, PARENT="/CUSTOMERS/Europe".

Restriction: The following characters are not valid in a parent folder name:
� / \
� null characters
� non-blank nonprintable characters

Restriction: A parent folder name can contain blank spaces, but cannot consist
only of blank spaces.

DESCRIPTION="desc"
specifies the description of the folder to be created.
Alias: DESC=

Examples
insert folder "measures";
insert folder "subMeasures" parent="measures";
insert folder "subsubMeasures" parent="/measures/subMeasures";

The INFOMAPS Procedure � LIST Statement 21

INSERT RELATIONSHIP Statement

Inserts a join into the current information map. RELATION is an alias for RELATIONSHIP.

INSERT RELATIONSHIP left-table INNER | LEFT | RIGHT | FULL
JOIN right-table ON "conditional-expression";

Required Arguments

left-table
specifies the data source ID of the first table in the relationship.

right-table
specifies the data source ID of the second table in the relationship.

"conditional-expression"
specifies the columns to be joined to create a single relationship between two tables.
Requirement: The conditional expression must be enclosed in quotation marks.
Requirement: The columns referenced in the conditional expression must be

qualified with the associated data source ID and must be enclosed in double angle
brackets <<...>>.

Details
INSERT RELATIONSHIP applies only to relational tables. If there already exists a

join between the specified tables, the new join replaces the old one.
When specifying a table, you must specify the data source ID associated with the

table. IDs are case sensitive. You can use the LIST DATASOURCES statement to see
the IDs of data sources in your information map.

Examples
insert relationship "CUSTOMER" inner join "TRANSACTION"

on "(<<CUSTOMER.Cust_ID>>=<<TRANSACTION.Cust_ID>>)";

LIST Statement

Lists the definitions of business data in the current information map. The definitions are printed to
the SAS log or to the computer console.

LIST <DATAITEMS | DATASOURCES | FILTERS | _ALL_> ;

Options

DATAITEMS
lists the properties of all the data items defined in the current information map. The
properties include the name, ID, folder path, description, expression text, and
expression type of each data item.

22 LIST Statement � Chapter 2

DATASOURCES
lists the properties of all the data sources defined in the current information map.
The properties include data source (library.physical-table), data source ID, table or
cube name, and description.

FILTERS
lists the properties of all the filters defined in the current information map. The
properties include the name, folder path, description, and the conditional expression
text of each filter.

ALL
lists the properties of all the data items, filters, and data sources defined in the
current information map.
Default: _ALL_ is the default if you do not specify an option.

Examples
open infomap "MAILORDERCUBE";
list;
run;

The INFOMAPS Procedure � OPEN INFOMAP Statement 23

Output 2.1 Output from the LIST Statement That Is Displayed in the Log Window

15 open infomap "MAILORDERCUBE";
16 list;
Data source: SASMain - OLAP Schema.MAILORDERCUBE
ID: MAILORDERCUBE
Table/Cube name: MAILORDERCUBE
Description:

Data item name: COST_N
ID: COST_N
Folder: /
Description: OLAP measure COST_N
Expression: <<Measures.COST_N>>
Expression type: NUMERIC

Data item name: GEOGRAPHIC
ID: GEOGRAPHIC
Folder: /
Description: OLAP hierarchy GEOGRAPHIC
Expression: <<GEOGRAPHIC.GEOGRAPHIC>>
Expression type: CHARACTER

Data item name: PRODUCTLINE
ID: PRODUCTLINE
Folder: /
Description: OLAP hierarchy PRODUCTLINE
Expression: <<PRODUCTLINE.PRODUCTLINE>>
Expression type: CHARACTER

Data item name: SALES_COST
ID: SALES_COST
Folder: /
Description: OLAP measure SALES_COST
Expression: <<Measures.SALES_COST>>
Expression type: NUMERIC

Data item name: TIME
ID: TIME
Folder: /
Description: OLAP hierarchy TIME
Expression: <<TIME.TIME>>
Expression type: CHARACTER

17 run;

OPEN INFOMAP Statement

Opens the named information map, or creates the information map if it does not exist.

OPEN INFOMAP information-map-name
<CREATE_TARGET_FOLDER=YES | NO>
<INIT_CAP=YES | NO>
<MAPPATH="repository-path">
<REPLACE_UNDERSCORES=YES | NO>
<USE_LABELS=YES | NO>;

24 OPEN INFOMAP Statement � Chapter 2

Required Arguments

information-map-name
specifies the name of the information map to open or create.
Restriction: Information map names can be at most 60 characters. The name is

truncated to 60 characters if it exceeds that limit. However, note that SAS names
are restricted to 32 characters.

Restriction: The following characters are not valid:
� < > []{ } \ / ^ @ ~
� null characters
� non-blank nonprintable characters

Restriction: A name can contain blank spaces, but cannot consist only of blank
spaces or begin with a space.

Options

CREATE_TARGET_FOLDER=YES | NO
specifies whether to automatically create a folder. Specifying YES automatically
creates a folder when you insert data items subsequently using an INSERT
DATASOURCE statement with the _ALL_ option specified. The name of the folder is
the name of the table specified in the INSERT DATASOURCE statement. The data
items that are inserted as a result of the INSERT DATASOURCE statement are
inserted into the folder that is created automatically.
Default: YES
Featured in: Example 2 on page 27.

INIT_CAP=YES | NO
specifies whether to capitalize the first letter of each word in the data item name.
Specifying YES capitalizes the first letter of each word in the names of data items
that you insert subsequently using one or more of the following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified.

� INSERT DATAITEM with the COLUMN= option specified.

Default: YES
Tip: When you specify INIT_CAP=YES, the option replaces multiple consecutive

blank spaces within a data item name with a single blank space, and it removes
trailing blank spaces.

MAPPATH="repository-path"
specifies the path to the location within the metadata repository of the information
map to open or create. The path is required unless a path has been specified in the
PROC INFOMAPS statement. The repository path from the OPEN INFOMAP
statement overrides the path from the PROC INFOMAPS statement.

The INFOMAPS Procedure � SAVE Statement 25

REPLACE_UNDERSCORES=YES | NO
specifies whether to replace each underscore (_) character in the data item name
with a blank space. Specifying YES replaces underscores in the names of data items
that you insert subsequently using one or more of the following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified.

� INSERT DATAITEM with the COLUMN= option specified.

Default: YES

USE_LABELS=YES | NO
specifies whether to create the data item name using the column label (if available)
instead of the column name. Specifying YES uses the column label instead of the
column name for data items that you insert subsequently using one or more of the
following statements:

� INSERT DATASOURCE with either the _ALL_ or the COLUMNS= option
specified.

� INSERT DATAITEM with the COLUMN= option specified.

Default: YES
Restriction: This option applies only to a relational data source.

Details
When you open an existing information map, the INFOMAPS procedure creates a

copy of it in memory that can be modified. When you open an information map that
does not yet exist, the INFOMAPS procedure allocates space in memory for its creation.
In either case, you must save the information map with a SAVE statement for the
in-memory copy to be written to the metadata repository.

Only one information map can be open at a time. If you submit one OPEN
INFOMAP statement, you must save the open information map with a SAVE statement
before submitting another OPEN INFOMAP or IMPORT statement. If you do not save
the in-memory copy, it is not written to the metadata repository and is simply lost.

Examples
open infomap "my testmap"

mappath="/BIP Tree/ReportStudio/Maps";

SAVE Statement

Saves the current information map.

SAVE <INFOMAP information-map-name>
<MAPPATH="repository-path">;

26 Examples: INFOMAPS Procedure � Chapter 2

Options

INFOMAP information-map-name
specifies the name to use for saving the current information map. If the information
map name does not contain a blank space (or spaces), special characters, or if you do
not want to retain the case, enclosing the identifier in quotation marks is optional.
Default: If you do not specify a name, the default is the name of the current

information map.

MAPPATH="repository-path"
specifies the path to the location within the metadata repository where the
information map is to be saved.
Default: If you do not specify a path, the default is the repository path specified in

the previous OPEN INFOMAP statement, if a path is specified there. If not, the
default is the path specified in the previous PROC INFOMAPS statement.

Requirement: Enclose the path in quotation marks.

Examples
save infomap "myMap";
save mappath="/BIP Tree/ReportStudio/Maps";
save infomap "myMap" mappath="/BIP Tree/ReportStudio/Maps";

Examples: INFOMAPS Procedure

Example 1: Creating a Basic Information Map
The following example shows you how to use the INFOMAPS procedure to create an

information map. Note that the program begins by attempting to delete the very
information map that is being created. This ensures that the program does not create
duplicate data items in an already existing information map. If the information map
does not exit, the INFOMAPS procedure issues a warning message.

proc infomaps metauser="myUserID"
metapass="myPassword"
metaserver="myip.us.mycompany.com"
metaport=8561
metarepository="Foundation";

/* Delete the information map to avoid duplicate data items. */
delete infomap "xmp_simple" mappath="/BIP Tree/ReportStudio/Maps";

/* Open a new information map. The path specified is where, by */
/* default, it will be saved when a SAVE statement is issued. */
/* The information map exists only in memory and not in the */
/* metadata repository until the SAVE statement is issued. */

The INFOMAPS Procedure � Example 2: Using Folders in an Information Map 27

open infomap "xmp_simple"
mappath="/BIP Tree/ReportStudio/Maps";

/* Note that an OPEN INFOMAP statement must precede the */
/* INSERT DATASOURCE statement. */

/* Make the specified table on the specified server accessible. */
insert datasource sasserver="SASMain"

table="Sample Data".CLASS _all_ ;

/* If no name is specified on the SAVE statement, then the information */
/* map that is currently open is saved with the name with which it was */
/* opened. If no path is specified, then it is saved in the path */
/* specified in the OPEN statement or, secondarily, it is saved in */
/* the path that is specified in the PROC INFOMAPS statement. */
save;
run;

The following window shows the resulting information map opened in SAS
Information Map Studio. Note that the folder CLASS was created automatically
because the default is YES for the CREATE_TARGET_FOLDER option of the OPEN
INFOMAP statement.

Example 2: Using Folders in an Information Map
The following example shows:
� The automatic creation of folders inside an information map. By default, a folder

is created automatically when the _ALL_ option is specified on an INSERT
DATASOURCE statement. In this example, two folders are created automatically
to contain all the data items in two separate tables.

� The explicit creation of a folder, with the INSERT FOLDER statement, and the
insertion of a data item into the folder with an INSERT DATAITEM statement.

proc infomaps metauser="myUserID"
metapass="myPassword"

28 Example 2: Using Folders in an Information Map � Chapter 2

metaserver="myip.us.mycompany.com"
metaport=8561
metarepository="Foundation";

/* By default, CREATE_TARGET_FOLDER creates a folder automatically for */
/* every subsequent INSERT DATASOURCE statement when _ALL_ is specified. */
/* Specify CREATE_TARGET_FOLDER=NO if you do not want a folder created. */
open infomap "Folder_example"

mappath="/BIP Tree/ReportStudio/Maps"

/* A folder named "CLASS" will be created for all items in this table. */
insert datasource sasserver="SASMain"

table="Sample Data".CLASS _all_;

/* A folder named "CUSTOMER" will be created for all items in this table. */
insert datasource server="SASMain"

table="Basic Data".CUSTOMER _all_;

/* Make the table "Orion Star".CUSTOMER_DIM accessible to the */
/* information map. No folder is created automatically because */
/* _ALL_ is not specified with the INSERT DATASOURCE statement. */
insert datasource sasserver="SASMain"

table="Orion Star".CUSTOMER_DIM;

/* Create a folder named "Orion Star". */
insert folder "Orion Star";

/* Insert the data item "Customer Last Name" into the folder */
/* in the information map. */
insert dataitem

column="CUSTOMER_DIM".Customer_LastName
folder="Orion Star";

save;
run;

The following window shows the resulting information map opened in SAS
Information Map Studio.

The INFOMAPS Procedure � Example 3: Aggregating a Data Item 29

Example 3: Aggregating a Data Item

The following example shows the aggregation of data item values using the
AGGREGATION= option on the INSERT DATAITEM statement.

proc infomaps metauser="myUserID"
metapass="myPassword"
metaserver="myip.us.mycompany.com"
metaport=8561
metarepository="Foundation";

open infomap "expression9"
mappath="/BIP Tree/ReportStudio/Maps";

/* Make the table "Orion Star".CUSTOMER_DIM accessible */
/* to the information map. */
insert datasource sasserver="SASMain"

table="Orion Star".CUSTOMER_DIM;

/* Specify the aggregation function using the AGGREGATION= option. */
insert dataitem

column="CUSTOMER_DIM".Customer_Age
classification=measure
aggregation=avg;

save;
run;

The following window shows the results of running a query in SAS Information Map
Studio using the information map that was created with the INFOMAPS procedure.
You can see that the query generated from the information map calculates an average,
which is displayed in the Results window.

30

31

C H A P T E R

3
Using the SAS Information Maps
LIBNAME Engine

What Does the Information Maps Engine Do? 31
Understanding How the Information Maps Engine Works 31

Advantages of Using the Information Maps Engine 35

Operating Systems Supported by the Information Maps Engine 35

What Is Required to Use the Information Maps Engine? 35

What Is Supported? 36
What Metadata Is Used by the Information Maps Engine? 36

What Does the Information Maps Engine Do?

An information map is a collection of data items and filters that describe and provide
a view of physical data that business users understand. Information maps are defined
in specific metadata repositories. The Information Maps engine enables you to retrieve
data that is described by an information map. The engine provides a read-only way to
access data generated from an information map and to bring it into a SAS session.
Once you retrieve the data, you can run almost any SAS procedure against it.

Note that the Information Maps engine is only able to read information maps, it
cannot write to or update them; nor can it modify the underlying data. If you want to
add data items to an existing information map, you can use the INFOMAPS procedure.
For more information, see Chapter 2, “The INFOMAPS Procedure,” on page 3. If you
have SAS Information Map Studio, you can use that client application to interactively
create or update information maps.

Understanding How the Information Maps Engine Works

An engine is a component of SAS software that reads from or writes to a file. Each
engine enables SAS to access files that are in a particular format. There are several
types of SAS engines.

The Information Maps engine works like other SAS data access engines. That is, you
execute a LIBNAME statement to assign a libref and to specify an engine. You then use
that libref throughout the SAS session where a libref is valid.

However, instead of the libref being associated with the physical location of a SAS
data library, the libref is associated with a set of information maps. The information
maps contain metadata that the engine uses to provide data access to users.

The following example shows a LIBNAME statement for the Information Maps
engine and the output you see when you execute the statement:

32 Understanding How the Information Maps Engine Works � Chapter 3

libname mylib infomaps metauser=myUserID
metapass=myPassword
metaserver=myip.us.mycompany.com
metaport=8561
mappath="/BIP Tree/ReportStudio/Maps"
metarepository=Foundation;

Output 3.1 Output from the LIBNAME Statement That Is Displayed in the Log Window

1 libname mylib infomaps metauser=myUserID
2 metapass=XXXXXXXXXX
3 metaserver=myip.us.mycompany.com
4 metaport=8561
5 mappath="/BIP Tree/ReportStudio/Maps"
6 metarepository=Foundation;
NOTE: Libref MYLIB was successfully assigned as follows:

Engine: INFOMAPS
Physical Name: /BIP Tree/ReportStudio/Maps

The DATASETS procedure can be used to display a list of available information maps.

Note: The list of available information maps will include only those that are
supported by the engine. For example, there might be OLAP-based information maps
available in the MAPPATH location. However, these information maps are not
supported by the Information Maps engine, so they will not be displayed by the
DATASETS procedure. �

The CONTENTS procedure can be used to view the data items and filters in an
information map. The PRINT procedure can be used to print all of the data that the
information map contains. If the map contains filters, they can be used to restrict the
returned data. Here is an example:

/* Run the Information Maps engine to retrieve the data. */
libname mylib infomaps metauser=myUserID

metapass=myPassword
metaport=8561
metaserver="myip.us.mycompany.com"
metarepository="Foundation"
mappath="/BIP Tree/ReportStudio/Maps";

/* Display a list of available information maps. */
proc datasets lib=mylib;
run;

/* Allow mixed-case letters and blank spaces in information map names. */
option validvarname=any;

/* View the data items, including any filters, in the information map. */
proc contents data=mylib.InfoMaps_Demo;
run;

/* Print 5 observations from the data that the information map references. */
proc print data=mylib.InfoMaps_Demo

(obs=5 filter=(’Status is Current’n and ’Cary HQ’n));
run;

Using the SAS Information Maps LIBNAME Engine � Understanding How the Information Maps Engine Works 33

Output 3.2 Output from the DATASETS, CONTENTS, and PRINT Procedures That Is Displayed in the Log Window

1 /* Run the Information Maps engine to retrieve the data. */

2 libname mylib infomaps metauser=myUserID

3 metapass=XXXXXXXXXX

4 metaport=8561

5 metaserver="myip.us.mycompany.com"

6 metarepository="Foundation"

7 mappath="/BIP Tree/ReportStudio/Maps";

NOTE: Libref MYLIB was successfully assigned as follows:

Engine: INFOMAPS

Physical Name: /BIP Tree/ReportStudio/Maps

8

9 /* Display a list of available information maps. */

10 proc datasets lib=mylib;

Directory

Libref MYLIB

Engine INFOMAPS

Physical Name /BIP Tree/ReportStudio/Maps

Member

Name Type

1 InfoMaps_Demo DATA

11

12 run;

13

14 /* Allow mixed-case letters and blank spaces in information map names. */

15 option validvarname=any;

WARNING: Only Base procedures and SAS/STAT procedures have been tested for use with

VALIDVARNAME=ANY. Other use of this option is considered experimental and may cause

undetected errors.

16

17 /* View the data items, including any filters, in the information map. */

NOTE: PROCEDURE DATASETS used (Total process time):

real time 13.71 seconds

cpu time 0.86 seconds

18 proc contents data=mylib.InfoMaps_Demo;

19 run;

NOTE: PROCEDURE CONTENTS used (Total process time):

real time 4.03 seconds

cpu time 0.11 seconds

20

21 /* Print 5 observations from the data that the information map references. */

22 proc print data=mylib.InfoMaps_Demo

23 (obs=5 filter=(’Status is Current’n and ’Cary HQ’n));

24 run;

NOTE: There were 5 observations read from the data set MYLIB.InfoMaps_Demo.

NOTE: PROCEDURE PRINT used (Total process time):

real time 12.21 seconds

cpu time 0.71 seconds

34 Understanding How the Information Maps Engine Works � Chapter 3

Output 3.3 Output from the CONTENTS and PRINT Procedures That Is Displayed in the Output Window, Part 1 of 2

The CONTENTS Procedure

Data Set Name MYLIB.InfoMaps_Demo Observations .

Member Type DATA Variables 9

Engine INFOMAPS Indexes 0

Created . Observation Length 0

Last Modified . Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label Filters 4

Data Representation Default

Encoding Default

Alphabetic List of Variables and Attributes

Variable Type Len Format Label

7 Annual Salary Num 8 DOLLAR12. /Salary Info/Annual Salary; Physical column SALARY

5 Dept_code Char 32 /Department Code;

3 Division Char 40 /Division; Physical column DIVISION

9 Enddate Num 8 DATE9. /Salary Info/Enddate; Physical column ENDDATE

4 Identification Number Num 8 SSN11. /Identification Number; Physical column IDNUM

1 Jobcode Char 8 /Jobcode; Physical column JOBCODE

2 Location Char 8 /Location; Physical column LOCATION

8 Monthly Salary Num 8 DOLLAR12. /Salary Info/Monthly Salary;

6 Title Char 20 $F20. /Title; Physical column TITLE

Information Maps

Filter

FilterName Type FilterDesc

Status is Current Unp

Education and Publications Unp Employees in Education and Publications

Host Systems Development Unp Employees in Host Systems Development

Cary HQ Unp Located in Cary, North Carolina HQ

Note: In the output from the CONTENTS procedure, the Label column gives you
the folder path, the data item name, and the data item description. You can use this
information to determine what each variable points to in the information map. �

Using the SAS Information Maps LIBNAME Engine � What Is Required to Use the Information Maps Engine? 35

Output 3.4 Output from the CONTENTS and PRINT Procedures That Is Displayed in the Output Window, Part 2 of 2

The SAS System

Identification Dept_

Obs Jobcode Location Division Number Code

1 ACT001 Cary FINANCE 333-44-5555 ACT

2 APP001 Cary SOFTWARE DEVELOPMENT 733-86-6750 APP

3 APP002 Cary SOFTWARE DEVELOPMENT 506-08-3698 APP

4 APP002 Cary SOFTWARE DEVELOPMENT 716-63-6663 APP

5 APP002 Cary SOFTWARE DEVELOPMENT 763-06-5513 APP

Annual Monthly

Obs Title Salary Salary Enddate

1 TAX ACCOUNTANT I $37,000 $3,083 .

2 EXEC ASST II $43,500 $3,625 .

3 MEMBER OF APPL STAFF $24,000 $2,000 .

4 MEMBER OF APPL STAFF $29,000 $2,417 .

5 MEMBER OF APPL STAFF $30,000 $2,500 .

For information about improving the performance of the Information Maps engine,
see “Best Practices for Using the Information Maps Engine” on page 49.

Advantages of Using the Information Maps Engine

Using the Information Maps engine provides the following advantages:

� The engine is the only way to access data generated from an information map for
Base SAS software.

� The engine provides a single point of access to many information maps.

� The engine enables you to take advantage of information maps, which provide you
with the benefits described in “Why Are SAS Information Maps Important?” on
page 2.

Operating Systems Supported by the Information Maps Engine

The following operating systems are supported:

� Windows (32–bit)

� Solaris (64–bit)

� UNIX (HP-UX, AIX 64–bit)

What Is Required to Use the Information Maps Engine?

To use the Information Maps engine, the following are required:

� access to the SAS Open Metadata Architecture

� access to the metadata repository that contains the metadata definition for the
physical data and information maps

� information maps that are defined in a metadata repository

� access to the SAS Workspace Server where the physical data is located

36 What Is Supported? � Chapter 3

What Is Supported?
The Information Maps engine is only able to read information maps and their data

sources. If you want to update an information map directly, you can use the
INFOMAPS procedure or SAS Information Map Studio.

The engine supports accessing metadata in a metadata repository to process the
information map. Using the engine and SAS code, you can:

� read data that is generated from an information map (input processing)

� create a new data set by using an information map (output processing)

Note: The new data set is created in Base SAS software, not on the data
server. �

The Information Maps engine does not support the following:

� The engine does not pass WHERE clauses to the SAS server for processing.
Therefore, all the data generated from the information map is passed back to the
SAS client and the SAS client applies the WHERE clause to restrict the data for
the result set.

The Information Maps engine performance can be degraded when a large
number of observations for WHERE clauses have to be processed by SAS. Note
that information map filters are available for restricting the query. (A filter
contains criteria for subsetting data in an information map.)

� The engine does not sort data in the result set for BY-group processing. BY-group
processing requires that the result set be sorted; however, the engine has no
control over sorting the data. This means that you will have to manually sort the
data in the result set that is supplied by the engine before you use it with a
BY-group statement.

For example:

libname mylib infomaps ... ;

proc sort data=mylib.results_set out=work.sorted;
by sorted_var;

run;

proc print data=work.sorted;
by sorted_var;

run;

The one exception is the SQL procedure. You can use BY-group processing with
the Information Maps engine’s result set because the SQL procedure automatically
sorts the result set before it applies the BY-group statement.

� The engine does not support OLAP data.

� The engine does not support updating or deleting an information map, nor does it
support updating the underlying data.

� The engine does not provide explicit SQL Pass-Through support.

What Metadata Is Used by the Information Maps Engine?
In addition to the metadata for the information map, the Information Maps engine

accesses metadata about the underlying physical data. This information can include the
data type, the data size, the format, and the label.

Using the SAS Information Maps LIBNAME Engine � What Metadata Is Used by the Information Maps Engine? 37

The Information Maps engine uses metadata that is stored in a specific metadata
repository on the metadata server. The metadata server provides metadata
management services to one or more client applications. A metadata repository is a
collection of related metadata objects, such as the metadata for a set of information
maps that are maintained by an application.

There are several methods to create metadata in a metadata repository. For example,
from the SAS Management Console, you can use a Library wizard to create the
metadata objects in a metadata repository that are necessary for the engine to construct
a LIBNAME statement. SAS Data Integration Studio enables you to define the table
that you want to be a member in a library and any options that you want associated
with that table. You provide information to SAS Data Integration Studio, and SAS Data
Integration Studio generates corresponding metadata.

38

39

C H A P T E R

4
LIBNAME Statement for the
Information Maps Engine

Using the LIBNAME Statement 39
LIBNAME Statement Syntax 39

Required Arguments 39

LIBNAME Statement Options for Connecting to the SAS Metadata Server 40

Other LIBNAME Statement Options for the Information Maps Engine 41

Using the LIBNAME Statement
The LIBNAME statement for the Information Maps engine associates a SAS libref

with information maps that are stored in a metadata repository. The engine reads
information maps and uses their metadata to access underlying data.

You must have a metadata repository available on the metadata server that contains
metadata that defines the information maps to be accessed. For the necessary
repository identifiers and metadata object names and identifiers, see the documentation
for your application.

The metadata server, which is a multi-user server that stores metadata from one or
more metadata repositories, must be running in order to execute the LIBNAME
statement for the engine.

For information about defining metadata, installing and setting up a standard SAS
Metadata Server, or changing the standard configuration options for the SAS Metadata
Server, see the SAS Intelligence Platform: System Administration Guide.

LIBNAME Statement Syntax
LIBNAME libref INFOMAPS <options>;

Required Arguments
libref

is a valid SAS name that serves as a shortcut to associate with the information
maps that are in the metadata repository. This name must conform to the rules
for SAS names. A libref cannot exceed eight characters.

40 LIBNAME Statement Options for Connecting to the SAS Metadata Server � Chapter 4

INFOMAPS
is the engine name for the SAS Information Maps LIBNAME engine.

CAUTION:
The engine nickname (INFOMAPS) is not defined by default in SAS 9.1.3. If your
system administrator has not set up the nickname, you can specify the actual
engine name sasioime when you use the LIBNAME statement syntax. �

LIBNAME Statement Options for Connecting to the SAS Metadata
Server

The following LIBNAME statement options establish a connection to the metadata
server and identify the information maps in the metadata repository.

MAPPATH="repository-path"
specifies the path to the location of the information maps within the metadata
repository. The path is hierarchical and the separator character is a slash (/). This
is a required option for the Information Maps engine.

For example, mappath="/BIP Tree/ReportStudio/Maps". If the path does not
contain a blank space (or spaces), enclosing the identifier in quotation marks is
optional.
Alias: PATH=

METAPASS="password"
specifies the password that corresponds to the user ID that connects to the
metadata server. For example, metapass="My Password" or
metapass=MyPassword. If the password is not encoded or does not contain a blank
space (or spaces), enclosing the identifier in quotation marks is optional.

If this option is not specified, the value is obtained from the METAPASS=
system option. See the METAPASS= system option in the SAS Language
Reference: Dictionary.
Alias: PASSWORD= | PW=

METAPORT=port-number
specifies the TCP port that the metadata server is listening to for connections. For
example, metaport=8561. Enclosing the identifier in quotation marks is optional.

If this option is not specified, the value is obtained from the METAPORT=
system option. See the METAPORT= system option in the SAS Language
Reference: Dictionary.
Alias: PORT=

METAREPOSITORY="repository-name"
specifies a name that is assigned to a particular metadata repository to use on the
metadata server. For example, metarepository="My Repository" or
metarepository=myrepos. If the repository name does not contain a blank space
(or spaces), enclosing the identifier in quotation marks is optional.

If this option is not specified, the value is obtained from the
METAREPOSITORY= system option. See the METAREPOSITORY= system option
in the SAS Language Reference: Dictionary.
Alias: REPOSITORY= | REPOS= | REPNAME=
Restriction: If you supply a list of repositories, only the first repository name in

the list is accepted by the engine.

METASERVER="address"
specifies the network IP (Internet Protocol) address of the computer that hosts the
metadata server. For example, metaserver="myip.us.mycompany.com" or

LIBNAME Statement for the Information Maps Engine � Other LIBNAME Statement Options for the Information Maps Engine 41

metaserver=myip.us.mycompany.com. Enclosing the identifier in quotation
marks is optional. This is a required option for the Information Maps engine,
because there is no default IP address.

If this option is not specified, the value is obtained from the METASERVER=
system option. See the METASERVER= system option in the SAS Language
Reference: Dictionary.

Alias: SERVER= | HOST= | IPADDR=

METAUSER="user-ID"
specifies the user ID to connect to the metadata server. For example,
metauser="My UserID" or metauser=myUserID. If the user ID does not contain a
blank space (or spaces), enclosing the identifier in quotation mark is optional.

If this option is not specified, the value is obtained from the METAUSER=
system option. See the METAUSER= system option in the SAS Language
Reference: Dictionary.

Alias: USER= | USERID= | ID=

Restriction: In the metadata server, you must have at least one login definition
that contains a user ID that corresponds to the user ID that you specify here.
For information about login definitions, see the User Manager Help for logins in
the SAS Management Console.

Restriction: If your metadata server runs in a Windows environment, then you
must fully qualify the user ID by using the domain or machine name that you
specified when your login object was created in a SAS Metadata Repository. For
example: metauser="Windows-domain-name\user-ID".

Other LIBNAME Statement Options for the Information Maps Engine
The following LIBNAME statement options for the Information Maps engine are

global options that exist for the lifetime of the libref.

EXPCOLUMNLEN=integer
specifies the length of the SAS character column when a data item defined with
expressions is encountered.

The EXPCOLUMNLEN= option doubles as a data set option. This means that
this option value can be changed during a DATA step when the Information Maps
engine is used. This changed value is in effect only during the execution of the
DATA step. Once the DATA step is completed, the value will revert to the setting
at the time of libref creation. For more information, see the “EXPCOLUMNLEN=
Data Set Option” on page 43.

Default: 32

PRESERVE_TAB_NAMES=YES | NO

YES
specifies that information map names are read with special characters, and
that the exact, case-sensitive spelling of the name is preserved.

Note: To access information maps with special characters or blank spaces,
you have to use SAS name literals. For more information about SAS name
literals, see "Rules for Words and Names in the SAS Language" and
"Avoiding Errors When Using Name Literals" in the SAS Language
Reference: Concepts. �

42 Other LIBNAME Statement Options for the Information Maps Engine � Chapter 4

NO
specifies that when you refer to an information map, the information map
name is derived from SAS member names by using SAS member-name
normalization. When you use SAS to read a list of information map names
(for example, in the SAS Explorer window), the information maps whose
names do not conform to the SAS member-name normalization rules do not
appear in the output. In SAS command-line mode, the number of information
maps is not displayed by the DATASETS procedure. The restriction appears
as a note:

NOTE: Due to the PRESERVE_TAB_NAMES=NO LIBNAME option setting,
12 information map(s) have not been displayed.

You do not get this note when using the SAS Explorer window.
The SAS Explorer window displays information map names in capitalized

form when PRESERVE_TAB_NAMES=NO. These information map names
follow the SAS member-name normalization rules and might not represent
the exact table name in the information map.

Default: YES

READBUFF=integer
specifies the positive number of rows to hold in memory. This option improves
performance by specifying a number of rows that can be held in memory for input
into SAS. Buffering data reads can decrease network activities and increase
performance. However, because SAS stores the rows in memory, higher values for
READBUFF= use more memory. In addition, if too many rows are selected at
once, then the rows that are returned to the SAS application might be out of date.
For example, if someone else modifies the rows, you do not see the changes. When
READBUFF=1, only one row is retrieved at a time.

The READBUFF= option doubles as a data set option. This means that this
option value can be changed during a DATA step when the Information Maps
engine is used. This changed value is in effect only during the execution of the
DATA step. Once the DATA step is completed, the value will revert to the setting
at the time of libref creation. For more information, see the “READBUFF= Data
Set Option” on page 45.
Alias: BUFFSIZE=
Default: 1000

SPOOL=YES | NO

YES
specifies that SAS creates a spool file into which it writes the rows of data
that are read for the first time. For subsequent passes through the data,
rows are read from the spool file, rather than being reread from the original
data source(s). This guarantees that each pass through the data processes
the same information.

NO
specifies that the required rows for all passes through the data are read from
the original data source(s). No spool file is written. There is no guarantee
that each pass through the data processes the same information.

Default: NO

43

C H A P T E R

5
SAS Data Set Options for the
Information Maps Engine

Using Data Set Options 43
EXPCOLUMNLEN= Data Set Option 43

FILTER= Data Set Option 44

READBUFF= Data Set Option 45

Using Data Set Options
Data set options specify actions that apply only to the SAS data set with which they

appear. Specify a data set option in parentheses after a SAS data set name. To specify
several data set options, separate them with spaces. For example:

(option-1=value-1<...option-n=value-n>)

For more information about SAS data set options, see the SAS Language Reference:
Dictionary.

The following data set options for the Information Maps engine exist for the lifetime
of the DATA step and override the LIBNAME option values when the option can be
specified in both places.

EXPCOLUMNLEN= Data Set Option

Overrides the default length of the SAS character column when a data item defined with
expressions is encountered

Valid in: DATA Step
Category: Data Set Control
Restriction: Use with character column only

Default: 32

Syntax
EXPCOLUMNLEN=integer

44 FILTER= Data Set Option � Chapter 5

integer
specifies the length of the SAS column when expressions are used. Valid values are 1
to a maximum SAS column size.

Details
When character data items are defined with expressions in an information map, the
length of the resulting SAS column cannot be readily determined by the Information
Maps engine. Use the EXPCOLUMNLEN= option to assign a value to the length of the
column. This value can be tuned based on an understanding of the results of the
expression and of the data involved.

See Also

EXPCOLUMNLEN= option in “Other LIBNAME Statement Options for the
Information Maps Engine” on page 41

FILTER= Data Set Option

Determines the criteria in a query (such as an SQL WHERE clause) for subsetting a result set

Valid in: DATA Step

Category: Data Set Control
Restriction: Use only with information map filters

Restriction: Prompted filters are not available

Syntax
FILTER=(filter-name <AND filter-name-n>)

Syntax Description

filter-name
specifies the name of a filter that is defined in the information map.

filter-name-n
specifies multiple filters that are defined in the information map. The AND Boolean
operator is required.

Details
A filter is criteria in a query for subsetting a result set. An example of a filter is
gender="Male". You can get a list of the filters for an information map by using the
CONTENTS procedure with a libref that is created by the Information Maps engine
and by using the information map name.

SAS Data Set Options for the Information Maps Engine � READBUFF= Data Set Option 45

READBUFF= Data Set Option

Specifies the number of rows to hold in memory for input into SAS

Valid in: DATA Step and LIBNAME Statement
Category: Data Set Control
Alias: BUFFSIZE=
Default: 1000

Syntax
READBUFF=integer

Syntax Description

integer
specifies the positive number of rows to hold in memory.

Details
This option improves performance by specifying a number of rows that can be held in
memory for input into SAS. Buffering data reads can decrease network activities and
increase performance. However, because SAS stores the rows in memory, higher values
for the READBUFF= option use more memory. In addition, if too many rows are
selected at once, then the rows that are returned to the SAS application might be out of
date. For example, if someone else modifies the rows, you do not see the changes. When
READBUFF=1, only one row is retrieved at a time.

The higher the value for the READBUFF= option, the more rows the engine retrieves
in one fetch operation. The effect can be greater performance, but the expense is using
more memory.

See Also

READBUFF= option in “Other LIBNAME Statement Options for the Information
Maps Engine” on page 41

46

47

C H A P T E R

6
Examples of Using the
Information Maps Engine

Example 1: Submitting a LIBNAME Statement Using the Defaults 47
Example 2: Submitting a LIBNAME Statement Using All the Statement Options 47

Example 1: Submitting a LIBNAME Statement Using the Defaults
This example shows you a LIBNAME statement that uses the defaults for the

Information Maps engine. Note that the SAS Metadata Server connection information
is obtained from the metadata server system options, which this example assumes have
been set previously by a SAS configuration file or with the OPTIONS statement.

libname mylib infomaps
mappath="/BIP Tree/ReportStudio/Maps";

Output 6.1 Output from the LIBNAME Statement That Is Displayed in the Log
Window

1 libname mylib infomaps
2 mappath="/BIP Tree/ReportStudio/Maps"
NOTE: Libref MYLIB was successfully assigned as follows:

Engine: INFOMAPS
Physical Name: /BIP Tree/ReportStudio/Maps

Example 2: Submitting a LIBNAME Statement Using All the Statement
Options

This example shows you a LIBNAME statement that uses all of the engine’s
LIBNAME statement options in order to connect to the metadata server.

libname mylib infomaps metauser=myUserID
metapass=myPassword
metaserver=myip.us.mycompany.com
metaport=8561
mappath="/BIP Tree/ReportStudio/Maps"
metarepository=Foundation;

48 Example 2: Submitting a LIBNAME Statement Using All the Statement Options � Chapter 6

Output 6.2 Output from the LIBNAME Statement That Is Displayed in the Log Window

1 libname mylib infomaps metauser=myUserID
2 metapass=XXXXXXXXXX
3 metaserver=myip.us.mycompany.com
4 metaport=8561
5 mappath="/BIP Tree/ReportStudio/Maps"
6 metarepository=Foundation;
NOTE: Libref MYLIB was successfully assigned as follows:

Engine: INFOMAPS
Physical Name: /BIP Tree/ReportStudio/Maps

49

C H A P T E R

7 Best Practices for Using the
INFOMAPS Procedure or the
Information Maps Engine

Best Practices for Using the INFOMAPS Procedure 49
Best Practices for Using the Information Maps Engine 49

Improving the Performance of the Information Maps Engine 49

Creating Information Maps that Work Well with the Information Maps Engine 50

Following SAS Naming Restrictions 50

Using Calculated Data Items 50
Working with Natural Language Names in SAS 50

Increasing Memory Usage for the Information Maps Engine 51

Best Practices for Using the INFOMAPS Procedure
To improve the performance of the INFOMAPS procedure, consider the following:
� Use the COLUMN= option for the INSERT DATAITEM statement, unless you

have a calculated data item. For more information about the INSERT DATAITEM
statement and the COLUMN= option, see “INSERT DATAITEM Statement” on
page 9.

� For an information map to use a table, the table must have a unique name in its
SAS library (for a SAS table) or database schema (for a table from a different
DBMS) in the metadata repository. If multiple tables in a SAS library or database
schema have the same name, then you must perform one of the following tasks
before you can use any of the tables with an information map:
� From either SAS Data Integration Studio or the Data Library Manager in SAS

Management Console, you can rename a table by changing the value of the
Name field on the General tab in the properties window for the table.

� From SAS Data Integration Studio, delete the duplicate tables.

Best Practices for Using the Information Maps Engine

Improving the Performance of the Information Maps Engine
To improve the performance of the Information Maps engine, consider the following:
� Use filters to reduce the amount of data that the engine has to return. Select only

the data items that you need.
� Be careful when creating information maps for the engine to use. Consider the

quality of the data and heterogeneous joins.

50 Creating Information Maps that Work Well with the Information Maps Engine � Chapter 7

� If you use static data (that is, data you know will not change during the time you
are using it), retrieve the data once with the Information Maps engine and then
save the data to a data set that is local to your SAS session. You will save time by
not having to access the static data (which could be on another server) multiple
times.

� If the data is on your local machine or if you have clients on your local machine
that can get to the data, then you will get the best performance from the engine. If
the data or the clients are not on your local machine, then a message appears in
the SAS log indicating that performance will not be optimal. Here is what the
message looks like:

NOTE: The Information Maps LIBNAME Engine is retrieving data via
a remote connection. Performance is not optimized.

Creating Information Maps that Work Well with the Information Maps
Engine

Following SAS Naming Restrictions
Information maps that work well with the Information Maps engine meet the

following restrictions:
� Names have a maximum length of 32 characters in Base SAS software.
� Descriptions have a maximum length of 256 characters in Base SAS software.

Note that when you are using the Information Maps engine, the information map’s
path, the data item name, and the description for the information map are all
combined into one description. If this combined description is more than 256
characters, then it will be truncated.

Note: Clients that rely on the Information Maps engine, such as SAS Enterprise
Guide and SAS Add-In for Microsoft Office, are affected by these name and description
length constraints. �

For more information about names in the SAS language, see "Rules for Words and
Names in the SAS Language" in the SAS Language Reference: Concepts.

Using Calculated Data Items
Calculated data items in information maps used by the Information Maps engine or

by clients that rely on the engine, such as SAS Enterprise Guide and SAS Add-In for
Microsoft Office, should be created using the physical data in the expression whenever
possible. Data items that are based on expressions that include either business data or
summarization functions cannot be used in detailed queries. Thus, the Information
Maps engine cannot use them either.

Working with Natural Language Names in SAS
Information map names, data item names, and filter names can be stored as natural

language names in the metadata. Natural language names have blank spaces
separating the words in the name or include symbols in the name. To be able to use
natural language names in SAS, you need to do the following:

� Make sure that the PRESERVE_TAB_NAMES option is set to YES (the default) if
you are using information maps with natural language names and want them to
be accessible to the Information Maps engine. For more information about the
PRESERVE_TAB_NAMES option, see “Other LIBNAME Statement Options for
the Information Maps Engine” on page 41.

Best Practices for Using the INFOMAPS Procedure or the Information Maps Engine � Increasing Memory Usage for the

Information Maps Engine 51

� To specify a name that contains any characters, including blank spaces or
mixed-case letters, use the VALIDVARNAME=ANY option. This SAS system
option controls the type of SAS variable names that can be created and processed
during a SAS session. For more information on the VALIDVARNAME system
option, see the SAS Language Reference: Dictionary.

� To specify a name that contains blank spaces or symbols, enclose the name within
a SAS name literal. For more information on SAS name literals, see "Rules for
Words and Names in the SAS Language" and "Avoiding Errors When Using Name
Literals" in the SAS Language Reference: Concepts.

In the following example, a natural language name is used with the Information
Maps engine:

libname x infomaps <connection options>;

option validvarname=any;
proc print data=x.’Results (Yearly)’n;
run;

The VALIDVARNAME=ANY option allows the information map name to include
blank spaces, as well as the parentheses symbols. The SAS name literal surrounds the
information map name in the PRINT procedure statement to allow the name Results
(Yearly) to remain intact and contain the symbols that are otherwise not allowed in
SAS.

Increasing Memory Usage for the Information Maps Engine
It is important that your middle-tier components be configured for efficiency and

performance. This includes making sure that your Java Virtual Machine (JVM) is
properly tuned and has the relevant memory settings specified correctly. The JVM’s
garbage collector should be configured appropriately.

For detailed information about improving the performance of your middle-tier
components, see the "Best Practices for Configuring Your Middle Tier" chapter in the
SAS Intelligence Platform: Web Application Administration Guide.

52

53

C H A P T E R

8 Example: Using the INFOMAPS
Procedure and the Information
Maps Engine

About This Example 53
Step 1: Set the Metadata System Options and a Macro Variable 53

Step 2: Register Data Using the METALIB Procedure 54

Step 3: Create an Information Map Using the INFOMAPS Procedure 55

Step 4: Retrieve the Data Associated with the Information Map Using the Information Maps Engine 59

Step 5: View the Data Items and Filters Using the CONTENTS Procedure 60
Step 6: Print the Data from the Information Map 61

Step 7: Analyze the Data in SAS and Produce an ODS Report 62

About This Example

The example in this chapter shows you how to use the INFOMAPS procedure to
create a new information map and then use the Information Maps engine to retrieve
the data associated with the new information map. Once you have the data, you can
use Base SAS software to analyze it.

For the example, suppose that the management team in the Human Resources (HR)
department in your company wants to analyze some of the employees’ salary data. The
HR managers are looking for a report with statistical breakdowns that can be updated
on a regular basis. Based on the output of this report, they want to be able to create
additional Web-based reports on the same information.

You are part of the IT team, so you know that the analyses are updated and modified
constantly (to meet the changing demands of the company). You would like to set up
the environment programmatically to support the request from the HR management
team. You decide to build the statistical report on top of an information map, so the
information map can be used later in SAS Web Report Studio.

Step 1: Set the Metadata System Options and a Macro Variable

To get started with this example, you need to set the metadata system options and a
macro variable with your site-specific data. This is a good programming technique that
makes it easy for you to customize SAS code for your environment.

The following code sets the metadata system options and a macro variable:

/* Set the metadata system options. */
options metauser="marcel"

metapass=AA358mk
metaport=8561
metaserver="server21.us.anycompany.com"

54 Step 2: Register Data Using the METALIB Procedure � Chapter 8

metarepository=Foundation;

/* Assign a macro variable to the path for the information map */
/* to avoid having to set the path multiple times. */
%LET infomap_path=/BIP Tree/ReportStudio/Maps;

Output 8.1 Output from the Metadata System Options and the Macro Variable That Is Displayed in the Log Window

1 /* Set the metadata system options. */

2 options metauser="marcel"

3 metapass=XXXXXXX

4 metaport=8561

5 metaserver="server21.us.anycompany.com"

6 metarepository=Foundation;

7

8 /* Assign a macro variable to the path for the information map */

9 /* to avoid having to set the path multiple times. */

10 %LET infomap_path=/BIP Tree/ReportStudio/Maps;

For more information about macro variables or the %LET statement, see the SAS
Macro Language: Reference.

Step 2: Register Data Using the METALIB Procedure

This example uses three tables in the C:\Program Files\SAS\SAS
9.1\core\sample directory. (The tables might be in a different directory, depending on
where SAS is installed at your location). For this example, you will be using the
empinfo, jobcodes, and salary tables.

Note: This example assumes that you have used SAS Management Console to
create a library called HR that points to the three SAS tables. For more information
about creating libraries using SAS Management Console, see the SAS Management
Console: User’s Guide. �

To register the tables in a SAS Metadata Repository, you need to use the METALIB
procedure. The METALIB procedure synchronizes table definitions in a metadata
repository with current information from the physical library data source. For more
information about the METALIB procedure, see the SAS Open Metadata Interface:
Reference.

The following code registers the tables using the METALIB procedure:

/* Use the library object defined in a SAS Metadata Repository */
/* to obtain all accessible table metadata from the data source */
/* to create table metadata in the metadata repository. */
proc metalib;

omr (library="HR");
select("empinfo" "jobcodes" "salary");

/* Create a summary report of the metadata changes. */
report;

run;

Note: If you run the METALIB procedure code more than once, your output will be
different than what is shown. �

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Step 3: Create an Information Map Using the

INFOMAPS Procedure 55

Output 8.2 Output from the METALIB Procedure That Is Displayed in the Log Window

12 /* Use the library object defined in a SAS Metadata Repository */

13 /* to obtain all accessible table metadata from the data source */

14 /* to create table metadata in the metadata repository. */

15 p

15 ! roc metalib;

16 omr (library="HR");

17 select("empinfo" "jobcodes" "salary");

18

19 /* Create a summary report of the metadata changes. */

20 report;

21 run;

NOTE: A total of 3 tables were analyzed for library "HR".

NOTE: Metadata for 0 tables was updated.

NOTE: Metadata for 3 tables was added.

NOTE: Metadata for 0 tables matched the data sources.

NOTE: 0 tables listed in the SELECT or EXCLUDE statement were not found in either the metadata

or the data source.

NOTE: 0 other tables were not processed due to error or UPDATE_RULE.

NOTE: PROCEDURE METALIB used (Total process time):

real time 2.03 seconds

cpu time 0.48 seconds

Output 8.3 Output from the METALIB Procedure That Is Displayed in the Output Window

The METALIB Procedure

Summary Report for Library HR

Repository Foundation

Metadata Summary Statistics

Total tables analyzed 3

Tables Updated 0

Tables Added 3

Tables matching data source 0

Tables not found 0

Other tables not processed 0

Tables Added

Metadata Name Metadata ID SAS Name

EMPINFO A511TK91.BC0007ES EMPINFO

JOBCODES A511TK91.BC0007ET JOBCODES

SALARY A511TK91.BC0007EU SALARY

For information about defining metadata, installing and setting up a standard SAS
Metadata Server, or changing the standard configuration options for the SAS Metadata
Server, see the SAS Intelligence Platform: System Administration Guide.

Step 3: Create an Information Map Using the INFOMAPS Procedure

Once the tables are registered in the metadata repository, you can create a new
information map. The INFOMAPS procedure inserts multiple data sources and data
items, inserts relationships to join the tables, inserts four filters, and then saves the
new information map.

56 Step 3: Create an Information Map Using the INFOMAPS Procedure � Chapter 8

The following code creates the new information map:

/* Create a new information map using the INFOMAPS procedure. */
proc infomaps mappath="&infomap_path";

/* Delete the information map to avoid duplicate data items. */
delete infomap "InfoMaps_Demo";

/* Open a new information map. */
open infomap "InfoMaps_Demo";

/* Insert a data source and three data items using the COLUMNS= option. */
insert datasource sasserver="SASMain"

table="Infomap_sample_code".empinfo
columns=("JobCode" "LOCATION" "DIVISION")
id="Empinfo";

/* Insert a data item based on a physical column. Because the ID= option */
/* is not specified, a note with its ID value will print in the SAS log. */
insert dataitem column="Empinfo".idnum classification=category;

/* Insert a data item with an expression. */
insert dataitem expression="SUBSTRN(<<root.Jobcode>>, 1, 3)"

type=character
name="Department Code"
id="Dept_code";

/* Insert a second data source, plus a data item into the */
/* current information map. */
insert datasource sasserver="SASMain"

table="Infomap_sample_code".jobcodes
columns=("TITLE")
id="Jobcodes";

/* Insert a third data source into the current information map. */
insert datasource sasserver="SASMain"

table="Infomap_sample_code".salary
id="Salary";

/* Add joins between the tables. */
insert relationship "Empinfo" inner join "Jobcodes"

on "(<<Empinfo.JOBCODE>>=<<Jobcodes.JOBCODE>>)";

insert relationship "Empinfo" inner join "Salary"
on "(<<Empinfo.IDNUM>>=<<Salary.IDNUM>>)";

/* Insert a folder and more business items. */
insert folder "Salary Info";
insert dataitem column="Salary".salary

name="Annual Salary" folder="Salary Info";

insert dataitem expression="<<Salary.SALARY>>/12" type=numeric
name="Monthly Salary" folder="Salary Info";

insert dataitem column="Salary".enddate folder="Salary Info";

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Step 3: Create an Information Map Using the

INFOMAPS Procedure 57

/* Insert filters. */
insert filter "Status is Current"

condition="<<root.Enddate>> IS NULL" folder="Salary Info";

insert filter "Education and Publications"
condition="SUBSTRN<<root.Jobcode>>, 1, 3) IN (’EDU’,’PUB’)"
desc=’Employees in Education and Publications’;

insert filter "Host Systems Development"
condition=’ <<root.Division>>="HOST SYSTEMS DEVELOPMENT" ’
desc=’Employees in Host Systems Development’;

insert filter "Cary HQ"
condition=’ <<root.Location>>="Cary" ’
desc=’Located in Cary, North Carolina HQ’;

/* List all of the filters defined in the current information map. */
list filters;

/* Save the information map. */
save;

Note: If you run the INFOMAPS procedure code more than once, your output will
be different than what is shown. �

58 Step 3: Create an Information Map Using the INFOMAPS Procedure � Chapter 8

Output 8.4 Output from the INFOMAPS Procedure That Is Displayed in the Log Window, Part 1 of 2

23 /* Create a new information map using the INFOMAPS procedure. */

24 proc infomaps mappath="&infomap_path";

25

26 /* Delete the information map to avoid duplicate data items. */

27 delete infomap "InfoMaps_Demo";

WARNING: The specified map "InfoMaps_Demo" to delete does not exist in "/BIP

Tree/ReportStudio/Maps".

28

29 /* Open a new information map. */

30 open infomap "InfoMaps_Demo";

31

32 /* Insert a data source and three data items using the COLUMNS= option. */

33 insert datasource sasserver="SASMain"

34 table="Infomap_sample_code".empinfo

35 columns=("JobCode" "LOCATION" "DIVISION")

36 id="Empinfo";

37

38 /* Insert a data item based on a physical column. Because the ID= option */

39 /* is not specified, a note with its ID value will print in the SAS log. */

40 insert dataitem column="Empinfo".idnum classification=category;

NOTE: A data item was successfully inserted for the physical column Empinfo.IDNUM. Its ID is

"Identification Number".

41

42 /* Insert a data item with an expression. */

43 insert dataitem expression="SUBSTRN(<<root.Jobcode>>, 1, 3)"

44 type=character

45 name="Department Code"

46 id="Dept_code";

47

48 /* Insert a second data source, plus a data item into the */

49 /* current information map. */

50 insert datasource sasserver="SASMain"

51 table="Infomap_sample_code".jobcodes

52 columns=("TITLE")

53 id="Jobcodes";

54

55 /* Insert a third data source into the current information map. */

56 insert datasource sasserver="SASMain"

57 table="Infomap_sample_code".salary

58 id="Salary";

59

60 /* Add joins between the tables. */

61 insert relationship "Empinfo" inner join "Jobcodes"

62 on "(<<Empinfo.JOBCODE>>=<<Jobcodes.JOBCODE>>)";

63

64 insert relationship "Empinfo" inner join "Salary"

65 on "(<<Empinfo.IDNUM>>=<<Salary.IDNUM>>)";

66

67 /* Insert a folder and more business items. */

68 insert folder "Salary Info";

69 insert dataitem column="Salary".salary

70 name="Annual Salary" folder="Salary Info";

71

72 insert dataitem expression="<<Salary.SALARY>>/12" type=numeric

73 name="Monthly Salary" folder="Salary Info";

74

75 insert dataitem column="Salary".enddate folder="Salary Info";

NOTE: A data item was successfully inserted for the physical column Salary.ENDDATE. Its ID is

"Enddate".

76

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Step 4: Retrieve the Data Associated with the

Information Map Using the Information Maps Engine 59

Output 8.5 Output from the INFOMAPS Procedure That Is Displayed in the Log Window, Part 2 of 2

77 /* Insert filters. */

78 insert filter "Status is Current"

79 condition="<<root.Enddate>> IS NULL" folder="Salary Info";

80

81 insert filter "Education and Publications"

82 condition="SUBSTRN(<<root.Jobcode>>, 1, 3) IN (’EDU’,’PUB’)"

83 desc=’Employees in Education and Publications’;

84

85 insert filter "Host Systems Development"

86 condition=’ <<root.Division>>="HOST SYSTEMS DEVELOPMENT" ’

87 desc=’Employees in Host Systems Development’;

88

89 insert filter "Cary HQ"

90 condition=’ <<root.Location>>="Cary" ’

91 desc=’Located in Cary, North Carolina HQ’;

92

93 /* List all of the filters defined in the current information map. */

94 list filters;

Filter name: Cary HQ

ID: Cary HQ

Folder: /

Description: Located in Cary, North Carolina HQ

Expression: <<root.Location>>="Cary"

Filter name: Education and Publications

ID: Education and Publications

Folder: /

Description: Employees in Education and Publications

Expression: SUBSTRN(<<root.Jobcode>>, 1, 3) IN (’EDU’,’PUB’)

Filter name: Host Systems Development

ID: Host Systems Development

Folder: /

Description: Employees in Host Systems Development

Expression: <<root.Division>>="HOST SYSTEMS DEVELOPMENT"

Filter name: Status is Current

ID: Status is Current

Folder: /Salary Info

Description:

Expression: <<root.Enddate>> IS NULL

95

96 /* Save the information map. */

97 save;

NOTE: Information map "InfoMaps_Demo" has been saved in folder "/BIP Tree/ReportStudio/Maps".

Step 4: Retrieve the Data Associated with the Information Map Using
the Information Maps Engine

Now that you have an information map, you can use the Information Maps engine to
access the metadata and then retrieve the underlying data. Once you retrieve the data,
you can run almost any SAS procedure against it.

Note: The Information Maps engine nickname, INFOMAPS, is used in this example.
If your systems administrator has not defined this nickname, you can specify the actual
engine name sasioime when you use the LIBNAME syntax. �

The following code retrieves the data associated with the newly created information
map:

60 Step 5: View the Data Items and Filters Using the CONTENTS Procedure � Chapter 8

/* If the INFOMAPS nickname for the engine is not defined, */
/* then specify the actual engine name SASIOIME when you */
/* use the LIBNAME statement syntax. */

/* Run the Information Maps engine to retrieve the data. */
libname im_samp infomaps mappath="&infomap_path";

/* Allow mixed-case letters and blank spaces in information map names. */
option validvarname=any;

Note: Unlike running the INFOMAPS procedure code more than once, if you run
the Information Maps engine code multiple times, the output should be the same as
what is shown. �

Output 8.6 Output from the Information Maps Engine That Is Displayed in the Log Window

99 /* If the INFOMAPS nickname for the engine is not defined, */

100 /* then specify the actual engine name SASIOIME when you */

101 /* use the LIBNAME statement syntax. */

102

103 /* Run the Information Maps engine to retrieve the data. */

104 libname im_samp infomaps mappath="&infomap_path";

NOTE: Libref IM_SAMP was successfully assigned as follows:

Engine: INFOMAPS

Physical Name: /BIP Tree/ReportStudio/Maps

105

106 /* Allow mixed-case letters and blank spaces in information map names. */

107 option validvarname=any;

WARNING: Only Base procedures and SAS/STAT procedures have been tested for use with

VALIDVARNAME=ANY. Other use of this option is considered experimental and may cause

undetected errors.

Step 5: View the Data Items and Filters Using the CONTENTS Procedure

You can view the data items and filters in the new information map that you just
created. The following code uses the CONTENTS procedure to display information
about the data items:

/* View the data items, including any filters, in the information map. */
proc contents data=im_samp.InfoMaps_Demo;
run;

Output 8.7 Output from the CONTENTS Procedure That Is Displayed in the Log Window

109 /* View the data items, including any filters, in the information map. */

NOTE: PROCEDURE INFOMAPS used (Total process time):

real time 28.25 seconds

cpu time 0.15 seconds

110 proc contents data=im_samp.InfoMaps_Demo;

111 run;

NOTE: PROCEDURE CONTENTS used (Total process time):

real time 1.11 seconds

cpu time 0.06 seconds

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Step 6: Print the Data from the Information

Map 61

Output 8.8 Output from the CONTENTS Procedure That Is Displayed in the Output Window

The CONTENTS Procedure

Data Set Name IM_SAMP.InfoMaps_Demo Observations .

Member Type DATA Variables 9

Engine INFOMAPS Indexes 0

Created . Observation Length 0

Last Modified . Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label Filters 4

Data Representation Default

Encoding Default

Alphabetic List of Variables and Attributes

Variable Type Len Format Label

7 Annual_Salary Num 8 DOLLAR12. /Salary Info/Annual Salary; Physical column SALARY

5 Department_Code Char 32 /Department Code;

3 Division Char 40 /Division; Physical column DIVISION

9 Enddate Num 8 DATE9. /Salary Info/Enddate; Physical column ENDDATE

4 Identification_Number Num 8 SSN11. /Identification Number; Physical column IDNUM

1 Jobcode Char 8 /Jobcode; Physical column JOBCODE

2 Location Char 8 /Location; Physical column LOCATION

8 Monthly_Salary Num 8 DOLLAR12. /Salary Info/Monthly Salary;

6 Title Char 20 $F20. /Title; Physical column TITLE

Information Maps

Filter

FilterName Type FilterDesc

Status is Current Unp

Education and Publications Unp Employees in Education and Publications

Host Systems Development Unp Employees in Host Systems Development

Cary HQ Unp Located in Cary, North Carolina HQ

Step 6: Print the Data from the Information Map
You can use the PRINT procedure to print all of the data that the information map

contains. If the information map contains any filters, they can be used to restrict the
amount of returned data. For the purpose of this example, only the first five
observations are selected.

The following code uses the PRINT procedure to display information about the data
items:

/* Print 5 observations from the data that the information map references. */
proc print data=im_samp.InfoMaps_Demo (obs=5);
run;

62 Step 7: Analyze the Data in SAS and Produce an ODS Report � Chapter 8

Output 8.9 Output from the PRINT Procedure That Is Displayed in the Log Window

113 /* Print 5 observations from the data that the information map references. */

114 proc print data=im_samp.InfoMaps_Demo (obs=5);

115 run;

NOTE: There were 5 observations read from the data set IM_SAMP.InfoMaps_Demo.

NOTE: PROCEDURE PRINT used (Total process time):

real time 0.71 seconds

cpu time 0.11 seconds

Output 8.10 Output from the PRINT Procedure That Is Displayed in the Output Window

The SAS System

Identification_ Department_

Obs Jobcode Location Division Number Code

1 FAC011 Cary FACILITIES 333-88-1850 FAC

2 TS0007 Cary TECHNICAL SUPPORT 333-88-7366 TS0

3 SAM009 Cary SALES & MARKETING 301-97-8691 SAM

4 ACT001 Cary FINANCE 333-44-5555 ACT

5 VID001 Cary VIDEO 333-78-0101 VID

Annual_ Monthly_

Obs Title Salary Salary Enddate

1 LANDSCAPING SUPV $28,000 $2,333 .

2 TECH SUP ANALYST II $32,000 $2,667 .

3 MARKETING ANALYST $52,000 $4,333 .

4 TAX ACCOUNTANT I $37,000 $3,083 .

5 VIDEO PRODUCER $25,400 $2,117 .

Step 7: Analyze the Data in SAS and Produce an ODS Report
You can use the MEANS procedure to analyze the annual salary data that you have

retrieved from the information map. For the purpose of this example, you will use a
DATA step to apply a filter to view only the data for the employees in the Host Systems
Development division. You will then use the MEANS procedure to analyze the annual
salary data for the mean, the minimum, and the maximum salaries for each job code in
the division. And, finally, a report will be produced with ODS (Output Delivery System).

The following code analyzes the data and produces an ODS report:

DATA work.HRinfo;
set im_samp.InfoMaps_Demo(filter=’Host Systems Development’n);

keep jobcode ’Annual Salary’n;
run;

/* Produce an ODS report. */
ods html body=’example-body.htm’;

/* Analyze the annual salary distribution data. */
proc means data=work.HRinfo maxdec=0;

var ’Annual Salary’n;
class jobcode;
title "Annual Salary by Job Code";

run;

Example: Using the INFOMAPS Procedure and the Information Maps Engine � Step 7: Analyze the Data in SAS and Produce an

ODS Report 63

ods html close;

Output 8.11 Output from the DATA Step and the MEANS Procedure That Is Displayed in the Log Window

117 DATA work.HRinfo;

118 set im_samp.InfoMaps_Demo(filter=’Host Systems Development’n);

119 keep jobcode ’Annual Salary’n;

120 run;

NOTE: There were 21 observations read from the data set IM_SAMP.InfoMaps_Demo.

NOTE: The data set WORK.HRINFO has 21 observations and 2 variables.

NOTE: DATA statement used (Total process time):

real time 0.64 seconds

cpu time 0.10 seconds

121

122 /* Produce an ODS report. */

123 ods html body=’example-body.htm’;

NOTE: Writing HTML Body file: example-body.htm

124

125 /* Analyze the annual salary distribution data. */

126 proc means data=work.HRinfo maxdec=0;

127 var ’Annual Salary’n;

128 class jobcode;

129 title "Annual Salary by Job Code";

130 run;

NOTE: There were 21 observations read from the data set WORK.HRINFO.

NOTE: PROCEDURE MEANS used (Total process time):

real time 0.17 seconds

cpu time 0.06 seconds

131

132 ods html close;

64 Step 7: Analyze the Data in SAS and Produce an ODS Report � Chapter 8

Output 8.12 Output from the MEANS Procedure That Is Displayed in the Output Window

Annual Salary by Job Code

The MEANS Procedure

Analysis Variable : Annual Salary /Salary Info/Annual Salary; Physical column SALARY

/Jobcode;

Physical

column N

JOBCODE Obs N Mean Std Dev Minimum Maximum

HSD001 1 1 30000 . 30000 30000

HSD002 4 4 39625 11940 27000 55000

HSD003 1 1 29000 . 29000 29000

HSD004 3 3 47667 20108 31000 70000

HSD005 2 2 57500 3536 55000 60000

HSD006 1 1 120000 . 120000 120000

HSD007 4 4 65750 9777 57000 79000

HSD008 5 5 61000 18990 45000 93500

The report that is produced by ODS should look similar to the following:

Display 8.1 Report That Is Displayed in the Results Viewer

65

A P P E N D I X

1
Recommended Reading

Recommended Reading 65

Recommended Reading

The recommended reading list for this title is:
� The Little SAS Book: A Primer
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� SAS Intelligence Platform: System Administration Guide
� SAS Companion that is specific to your operating environment
� Base SAS Community Web site at support.sas.com/rnd/base

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

66

67

Glossary

aggregate function
a function that summarizes data and produces a statistic such as a sum, an average,
a minimum, or a maximum.

business data
a collective term for data items in an information map. See also data item.

category
a data item whose distinct values are used to group measure data items, using an
applied aggregate function.

classification
an attribute of data items that determines how they will be processed in a query.
Data items can be classified as either categories or measures.

client
a computer or application that requests services, data, or other resources from a
server. See also server.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

cube
a set of data that is organized and structured in a hierarchical, multidimensional
arrangement. A cube includes measures, and it can have numerous dimensions and
levels of data.

data element
a general term that can include physical data (such as table columns, OLAP
hierarchies, and OLAP measures) as well as data items. See also data item.

data item
in an information map, an item that represents either physical data (a table column,
an OLAP hierarchy, or an OLAP measure) or a calculation. Data items are used for
building queries. Data items are usually customized in order to present the physical
data in a form that is relevant and meaningful to a business user.

data set
See SAS data set.

68 Glossary

data source
the physical data (cube or table), as it is defined in a SAS Metadata Repository, that
an information map consumer can query through an information map. The metadata
for the physical data provides SAS Information Map Studio with the information that
it needs in order to access the physical data.

DATA step
a group of statements in a SAS program that begins with a DATA statement and
which ends with either a RUN statement, another DATA statement, a PROC
statement, the end of the job, or the semicolon that immediately follows lines of data.
The DATA step enables you to read raw data or other SAS data sets and to use
programming logic to create a SAS data set, to write a report, or to write to an
external file.

dimension
a group of closely related hierarchies. Hierarchies within a dimension typically
represent different groupings of information that pertains to a single concept. For
example, a Time dimension might consist of two hierarchies: (1) Year, Month, Date,
and (2) Year, Week, Day. See also hierarchy.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular file format.

filter
in an information map, criteria that subset data. When a query is generated from an
information map, the filter is converted to a query-language statement (for example,
an SQL WHERE clause).

format
a pattern that SAS uses to determine how the values of a variable or data item
should be written or displayed. SAS provides a set of standard formats and also
enables you to define your own formats.

hierarchy
an arrangement of members of a dimension into levels that are based on parent-child
relationships. Members of a hierarchy are arranged from more general to more
specific. For example, in a Time dimension, a hierarchy might consist of the members
Year, Quarter, Month, and Day. In a Geography dimension, a hierarchy might consist
of the members Country, State or Province, and City. More than one hierarchy can be
defined for a dimension. Each hierarchy provides a navigational path that enables
users to drill down to increasing levels of detail. See also member, level.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

information map
a collection of data items and filters that describes and presents data in a form that
is relevant and meaningful to a business user. A user of a query and reporting
application such as SAS Web Report Studio can easily build a business report by
using the parts of an information map as the building blocks for queries.

join
(1) the act of combining data from two or more tables in order to produce a single
result set. (2) a specification that describes how you want data from two or more
tables to be combined. The specification can be in the form of Structured Query
Language (SQL) programming code, or it can be done interactively through a
software user interface.

Glossary 69

level
an element of a dimension hierarchy. Levels describe the dimension from the highest
(most summarized) level to the lowest (most detailed) level. For example, possible
levels for a Geography dimension are Country, Region, State or Province, and City.

libref (library reference)
a short name for the full physical name of a SAS library. In the context of the SAS
Metadata Repository, a libref is associated with a SAS library when the library is
defined in the metadata repository.

literal
a number or a character string that indicates a fixed value.

MDX (multidimensional expressions) language
a standardized, high-level language that is used for querying multidimensional data
sources. The MDX language is the multidimensional equivalent of SQL (Structured
Query Language).

measure
(1) a data item or column whose value can be used in computations or analytical
expressions. Typically, these values are numeric. (2) a special dimension that usually
represents numeric data values that are analyzed.

member
in a multidimensional database (or cube), a name that represents a particular data
element within a dimension. For example, September 1996 might be a member of the
Time dimension. A member can be either unique or non-unique. For example, 1997
and 1998 represent unique members in the Year level of a Time dimension. January
represents non-unique members in the Month level, because there can be more than
one January in the Time dimension if the Time dimension contains data for more
than one year.

metadata
data about data. For example, metadata typically describes resources that are shared
by multiple applications within an organization. These resources can include
software, servers, data sources, network connections, and so on. Metadata can also
be used to define application users and to manage users’ access to resources.
Maintaining metadata in a central location is more efficient than specifying and
maintaining the same information separately for each application.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a
network. The specific attributes that a metadata object includes vary depending on
which metadata model is being used.

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains either one
data value or a missing-value indicator for each variable.

OLAP (online analytical processing)
a software technology that enables users to dynamically analyze data that is stored
in cubes.

physical data
data values that are stored on any kind of physical data-storage media, such as disk
or tape.

70 Glossary

port
in a network that uses the TCP/IP protocol, an endpoint of a logical connection
between a client and a server. Each port is represented by a unique number.

procedure
See SAS procedure.

prompted filter
a filter that is associated with a prompt, which enables the user of an information
map to specify filtering criteria when a query is executed.

query
a set of instructions that requests particular information from one or more data
sources.

register
to save metadata about an object to a metadata repository. For example, if you
register a table, you save metadata about that table to a metadata repository.

relationship
the association, between tables in an information map, that generates a database join
in a query.

repository
a location in which data, metadata, or programs are stored, organized, and
maintained, and which is accessible to users either directly or through a network.

result set
the set of rows or records that a server or other application returns in response to a
query.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. See also SAS data set, SAS data view.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data set option
an option that appears in parentheses after a SAS data set name. Data set options
specify actions that apply only to the processing of that SAS data set.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors’ file
formats. SAS data views can be created by the SAS DATA step and by the SAS SQL
procedure.

Glossary 71

SAS Information Map
See information map.

SAS library
a collection of one or more files that are recognized by SAS and that are referenced
and stored as a unit. SAS libraries can be defined in a SAS Metadata Repository to
provide centralized definitions for SAS applications.

SAS Metadata Repository
a repository that is used by the SAS Metadata Server to store and retrieve metadata.
See also SAS Metadata Server.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

SAS procedure
a program that provides specific functionality and that is accessed with a PROC
statement. For example, SAS procedures can be used to produce reports, to manage
files, or to analyze data. Many procedures are included in SAS software.

SAS program
a group of SAS statements that guide SAS through a process or series of processes in
order to read and transform input data and to generate output. The DATA step and
the procedure step, used alone or in combination, form the basis of SAS programs.

SAS system option
an option that affects the processing of an entire SAS program or interactive SAS
session from the time the option is specified until it is changed. Examples of items
that are controlled by SAS system options include the appearance of SAS output, the
handling of some files that are used by SAS, the use of system variables, the
processing of observations in SAS data sets, features of SAS initialization, and the
way SAS interacts with your host operating environment.

SAS Workspace Server
a SAS application server that provides access to Foundation SAS features such as
the SAS programming language and SAS libraries.

schema
a map or model of the overall data structure of a database. An OLAP schema
specifies which group of cubes an OLAP server can access.

server
a computer system that provides data or services to multiple users on a network.
The term ’server’ sometimes refers to the computer system’s hardware and software,
but it often refers only to the software that provides the data or services. In a
network, users might log on to a file server (to store and retrieve data files), a print
server (to use centrally located printers), or a database server (to query or update
databases). In a client/server implementation, a server is a program that waits for
and fulfills requests from client programs for data or services. The client programs
might be running on the same computer or on other computers. See also client.

SQL (Structured Query Language)
a standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system objects.

statement option
a word that you specify in a particular SAS statement and which affects only the
processing that that statement performs.

72 Glossary

system option
See SAS system option.

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations.

XML (Extensible Markup Language)
a markup language that structures information by tagging it for content, meaning, or
use. Structured information contains both content (for example, words or numbers)
and an indication of what role the content plays. For example, content in a section
heading has a different meaning from content in a database table.

73

Index

A
aggregate functions

example 29
removing from list 11
specifying default 11
table of 11

AGGREGATION= option
INSERT DATAITEM statement (INFOMAPS) 11

AGGREGATIONS_DROP_LIST= option
INSERT DATAITEM statement (INFOMAPS) 11

ALL option
INSERT DATASOURCE statement (INFOMAPS) 16
LIST statement (INFOMAPS) 22

analyzing data 62

B
best practices

INFOMAPS procedure 49
Information Maps engine 49

buffering data reads 42, 45
business data definitions 21
BY-group processing 36

C
calculated data items 50
capitalizing data item names 24
CLASSIFICATION= option

INSERT DATAITEM statement (INFOMAPS) 12
COLUMN= argument

INSERT DATAITEM statement (INFOMAPS) 10, 49
column labels

as data item names 25
columns

inserting data items 10
inserting data items for each column 16
length of 41, 44
specifying physical column names 17

COLUMNS= option
INSERT DATASOURCE statement (INFOMAPS) 17

CONDITION= argument
INSERT FILTER statement (INFOMAPS) 18

CONTENTS procedure
viewing data items and filters 32, 60

CREATE_TARGET_FOLDER= option
OPEN INFOMAP statement (INFOMAPS) 24

CUBE= argument
INSERT DATASOURCE statement (INFOMAPS) 16

cubes
as data source 16
inserting data from 16

D
data analysis 62
data items 1, 3

aggregate functions 11, 29
calculated 50
capitalizing names of 24
column labels as names 25
data type of expressions 14
descriptions of 12
folders for 13, 27
format of 13
ID specification 13
inserting 10
inserting for each column or hierarchy 16
listing properties of 21
naming 14, 25
underscores in names 25
usage type of 12
viewing with CONTENTS procedure 32, 60

data reads
buffering 42, 45

data set options
for Information Maps engine 43

data sources
cubes as 16
ID specification 17
inserting 16
listing properties of 22
relational tables as 16

data types
of expressions 14

DATAITEMS option
LIST statement (INFOMAPS) 21

DATASETS procedure
listing available information maps 32

DATASOURCES option
LIST statement (INFOMAPS) 22

DELETE INFOMAP statement
INFOMAPS procedure 7

DESCRIPTION= argument
INSERT FILTER statement (INFOMAPS) 19

74 Index

DESCRIPTION= option
INSERT DATAITEM statement (INFOMAPS) 12
INSERT FOLDER statement (INFOMAPS) 20

E
engine

See Information Maps engine
examples 53

aggregate functions 29
analyzing data 62
creating information maps with INFOMAPS proce-

dure 55
INFOMAPS procedure 26
LIBNAME statement 31, 47
ODS reports 62
printing information map data 61
registering data with METALIB procedure 54
retrieving data 59
setting macro variable 53
setting metadata system options 53
viewing data items and filters 60

EXPCOLUMNLEN= data set option 44
EXPCOLUMNLEN= option

LIBNAME statement 10, 41
EXPORT statement

INFOMAPS procedure 8
exporting information maps 8
EXPRESSION= argument

INSERT DATAITEM statement (INFOMAPS) 10
expressions

column length and 41, 44
data type of 14
inserting data items 10

F
FILE= argument

IMPORT statement (INFOMAPS) 8
FILE= option

EXPORT statement (INFOMAPS) 8
FILTER= data set option 44
filters 1, 3

as WHERE clause 18
conditional expression 18
description of 19
folder for inserting 19
inserting 18
listing properties of 22
restricting returned data 32
viewing with CONTENTS procedure 32, 60

FILTERS option
LIST statement (INFOMAPS) 22

FOLDER= argument
INSERT FILTER statement (INFOMAPS) 19

FOLDER= option
INSERT DATAITEM statement (INFOMAPS) 13

folders 1
creating automatically 24, 27
description of 20
inserting 20, 27
inserting data items 13, 27
inserting filters into 19
parent folders 20

FORMAT= option
INSERT DATAITEM statement (INFOMAPS) 13

formats
data item format 13

H
hierarchies

inserting data items for each hierarchy 16

I
ID= option

INSERT DATAITEM statement (INFOMAPS) 13
INSERT DATASOURCE statement (INFOMAPS) 17

IMPORT statement
INFOMAPS procedure 8

importing information maps 8
INFOMAP option

EXPORT statement (INFOMAPS) 8
SAVE statement (INFOMAPS) 26

INFOMAPS argument
LIBNAME statement 40

INFOMAPS procedure 3
aggregating data items 29
best practices 49
creating information maps 24, 26, 55
DELETE INFOMAP statement 7
examples 26
EXPORT statement 8
folders in information maps 27
IMPORT statement 8
INSERT DATAITEM statement 10
INSERT DATASOURCE statement 16
INSERT FILTER statement 18
INSERT FOLDER statement 20
INSERT RELATIONSHIP statement 21
LIST statement 21
OPEN INFOMAP statement 24
operating systems supported by 4
PROC INFOMAPS statement 5
SAVE statement 26
syntax 5

information maps 1
benefits of 2
business data definitions 21
calculated data items 50
creating 24, 26, 55
deleting from metadata repository 7
exporting in XML 8
folders in 27
importing from XML file 8
inserting data items 10
inserting data sources 16
inserting filters 18
inserting folders 20
inserting joins 21
list of available maps 32
names with special characters 41, 50
naming 24
naming restrictions and 50
opening 24
printing data 32, 61
restricting returned data 32
SAS Information Map Studio and 3
saving 26

Information Maps engine 31
advantages of 35

Index 75

best practices 49
data set options 43
how it works 31
memory usage 51
metadata 36
nickname 40, 59
operating systems supported by 35
performance improvement 49
requirements for 35
retrieving data 59
submitting LIBNAME statement using all options 47
submitting LIBNAME statement using defaults 47
what is supported 36

INIT_CAP= option
OPEN INFOMAP statement (INFOMAPS) 24

input
number of rows to hold in memory 42, 45

INSERT DATAITEM statement
INFOMAPS procedure 10

INSERT DATASOURCE statement
INFOMAPS procedure 16

INSERT FILTER statement
INFOMAPS procedure 18

INSERT FOLDER statement
INFOMAPS procedure 20

INSERT RELATIONSHIP statement
INFOMAPS procedure 21

IP address
of metadata server host 6, 40

J
joins

inserting 21

L
LIBNAME statement, Information Maps engine 39

connection options for metadata server 40
examples 31, 47
global options 41
submitting, using all statement options 47
submitting, using defaults 47
syntax 39

librefs 31, 39
LIST statement

INFOMAPS procedure 21

M
macro variable 53
map folders

See folders
MAPPATH= option 6

DELETE INFOMAP statement (INFOMAPS) 7
EXPORT statement (INFOMAPS) 8
LIBNAME statement 40
OPEN INFOMAP statement (INFOMAPS) 24
PROC INFOMAPS statement 6
SAVE statement (INFOMAPS) 26

MEANS procedure 62
member-name normalization 42
memory

for Information Maps engine 51
number of rows to hold in 42, 45

metadata 1
creating in metadata repository 37
used by Information Maps engine 36

metadata repository 37
creating metadata in 37
deleting information maps from 7
naming 6, 40
path 6

metadata server
connecting to 5, 40
IP address of host 6, 40
LIBNAME statement connection options 40
passwords for 5, 40
TCP port 5
user ID for connecting 6, 41

metadata system options 53
METALIB procedure 54
METAPASS= argument

PROC INFOMAPS statement 5
METAPASS= option

LIBNAME statement 40
METAPORT= argument

PROC INFOMAPS statement 5
METAPORT= option

LIBNAME statement 40
METAREPOSITORY= argument

PROC INFOMAPS statement 6
METAREPOSITORY= option

LIBNAME statement 40
METASERVER= argument

PROC INFOMAPS statement 6
METASERVER= option

LIBNAME statement 40
METAUSER= argument

PROC INFOMAPS statement 6
METAUSER= option

LIBNAME statement 41

N
name literals 41
NAME= option

INSERT DATAITEM statement (INFOMAPS) 14
names

data items 14, 24, 25
information maps 24, 41, 50
metadata repository 6, 40
natural language names 50
nickname for Information Maps engine 40, 59
physical column names 17
restrictions on 50
special characters in information map names 41, 50
tables 49

natural language names 50
nickname for Information Maps engine 40, 59

O
ODS reports 62
OLAP cubes

as data source 16
OPEN INFOMAP statement

INFOMAPS procedure 24
operating systems

INFOMAPS procedure 4
Information Maps engine 35

76 Index

P
parent folders 20
PARENT= option

INSERT FOLDER statement (INFOMAPS) 20
passwords

metadata server 5, 40
path

See also MAPPATH= option
metadata repository 6

performance
Information Maps engine 49

PRESERVE_TAB_NAMES= option
LIBNAME statement 41, 50

PRINT procedure
printing information map data 32, 61

PROC INFOMAPS statement 5
properties

listing 21

Q
queries

for subsetting result sets 44

R
READBUFF= data set option 45
READBUFF= option

LIBNAME statement 42
registering data 54
relational databases

filter as WHERE clause 18
relational tables

as data source 16
inserting joins 21

REPLACE_UNDERSCORES= option
OPEN INFOMAP statement (INFOMAPS) 25

repository
See metadata repository

result sets
subsetting 18, 44

retrieving data 59
rows

number to hold in memory 42, 45

S
SAS Information Map Studio 3, 31
SAS Information Maps

See information maps
SAS server

inserting data sources and 16

SASSERVER= argument

INSERT DATASOURCE statement (INFOMAPS) 16

SAVE statement

INFOMAPS procedure 26

saving information maps 26

special characters

information map names 41, 50

spool file 42

SPOOL= option

LIBNAME statement 42

subsetting result sets 18, 44

system options

setting metadata system options 53

VALIDVARNAME= 51

T
TABLE= argument

INSERT DATASOURCE statement (INFOMAPS) 16

tables

inserting data from 16

naming 49

TCP port 5, 40

TYPE= option

INSERT DATAITEM statement (INFOMAPS) 14

U
underscores

in data item names 25

USE_LABELS= option

OPEN INFOMAP statement (INFOMAPS) 25

user ID

connecting to metadata server 6, 41

V
VALIDVARNAME= system option 51

W
WHERE clauses 36

filters as 18

X
XML files

exporting information maps in 8

importing information maps from 8

Your Turn

If you have comments or suggestions about Base SAS Guide to Information Maps,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

66

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2006 SAS Institute Inc. All rights reserved. 403726US.0806

SAS® Publishing gives you the tools to
flourish in any environment with SAS®!

Whether you are new to the workforce or an experienced professional, you need to distinguish yourself
in this rapidly changing and competitive job market. SAS® Publishing provides you with a wide range of
resources— including publications, online training, and software —to help you set yourself apart.

Expand Your Knowledge with Books from SAS® Publishing
SAS® Press offers user-friendly books for all skill levels, covering such topics as univariate and multivariate
statistics, linear models, mixed models, fi xed effects regression, and more. View our complete catalog and get
free access to the latest reference documentation by visiting us online.

s u p p o r t . s a s . c o m / p u b s

SAS® Self-Paced e-Learning Puts Training at Your Fingertips
You are in complete control of your learning environment with SAS Self-Paced e-Learning! Gain immediate
24/7 access to SAS training directly from your desktop, using only a standard Web browser. If you do not have
SAS installed, you can use SAS® Learning Edition for all Base SAS e-learning.

s u p p o r t . s a s . c o m / s e l f p a c e d

Build Your SAS Skills with SAS® Learning Edition
SAS skills are in demand, and hands-on knowledge is vital. SAS users at all levels, from novice to advanced,
will appreciate this inexpensive, intuitive, and easy-to-use personal learning version of SAS. With SAS Learning
Edition, you have a unique opportunity to gain SAS software experience and propel your career in new and
exciting directions.

s u p p o r t . s a s . c o m / L E

66

	Table of Contents
	Contents

	Overview of SAS Information Maps
	What Is a SAS Information Map?
	Why Are SAS Information Maps Important?

	The INFOMAPS Procedure
	Overview: INFOMAPS Procedure
	Operating Systems Supported by the INFOMAPS Procedure

	Syntax: INFOMAPS Procedure
	Examples: INFOMAPS Procedure

	Using the SAS Information Maps LIBNAME Engine
	What Does the Information Maps Engine Do?
	Understanding How the Information Maps Engine Works
	Advantages of Using the Information Maps Engine
	Operating Systems Supported by the Information Maps Engine
	What Is Required to Use the Information Maps Engine?
	What Is Supported?
	What Metadata Is Used by the Information Maps Engine?

	LIBNAME Statement for the Information Maps Engine
	Using the LIBNAME Statement
	LIBNAME Statement Syntax
	Required Arguments
	LIBNAME Statement Options for Connecting to the SAS Metadata Server
	Other LIBNAME Statement Options for the Information Maps Engine

	SAS Data Set Options for the Information Maps Engine
	Using Data Set Options

	Examples of Using the Information Maps Engine
	Example 1: Submitting a LIBNAME Statement Using the Defaults
	Example 2: Submitting a LIBNAME Statement Using All the Statement Options

	Best Practices for Using the INFOMAPS Procedure or the Information Maps Engine
	Best Practices for Using the INFOMAPS Procedure
	Best Practices for Using the Information Maps Engine
	Improving the Performance of the Information Maps Engine
	Creating Information Maps that Work Well with the Information Maps Engine
	Increasing Memory Usage for the Information Maps Engine

	Example: Using the INFOMAPS Procedure and the Information Maps Engine
	About This Example
	Step 1: Set the Metadata System Options and a Macro Variable
	Step 2: Register Data Using the METALIB Procedure
	Step 3: Create an Information Map Using the INFOMAPS Procedure
	Step 4: Retrieve the Data Associated with the Information Map Using the Information Maps Engine
	Step 5: View the Data Items and Filters Using the CONTENTS Procedure
	Step 6: Print the Data from the Information Map
	Step 7: Analyze the Data in SAS and Produce an ODS Report

	Recommended Reading
	Recommended Reading

	Glossary
	Index

