
Data Security Technologies
in SAS® 9.1.3

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
Data Security Technologies in SAS ® 9.1.3. Cary, NC: SAS Institute Inc.

Data Security Technologies in SAS® 9.1.3
Copyright © 2005, SAS Institute Inc., Cary, NC, USA
ISBN 1–59047–719–7
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, February 2005
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview of Data Security Technologies v

Details about Data Security Technologies v

SAS/SECURE SSL Add-In Package v

SSH Functionality vi

P A R T 1 Data Security Technologies in SAS 9.1.3 1

Chapter 1 � Technologies for Data Security 3
Data Security Technologies: Overview 3

Providers of Data Security Technologies 4

Data Encryption Algorithms 8

Data Security Technologies: Comparison 9

Data Security Technologies: Implementation 10

Chapter 2 � SAS System Options for Data Security 11

Chapter 3 � Data Security Technologies: Examples 21
SAS/SECURE for SAS/CONNECT: Example 21

SASProprietary for SAS/SHARE: Example 22

SSL for a SAS/CONNECT UNIX Spawner: Example 23

SSL for a SAS/CONNECT Windows Spawner: Example 24

SSL for SAS/SHARE under UNIX: Example 26

SSL for SAS/SHARE under Windows: Examples 27

SAS/SECURE for the IOM Bridge: Examples 28

SSH Tunnel for SAS/CONNECT: Example 30

SSH Tunnel for SAS/SHARE: Example 30

P A R T 2 Installing and Configuring SSL 33

Appendix 1 � Installing and Configuring SSL under UNIX 35
SSL under UNIX: System and Software Requirements 35

Setting Up Digital Certificates for SSL under UNIX 36

Converting between PEM and DER File Formats for SSL 40

Appendix 2 � Installing and Configuring SSL under Windows 41
SSL under Windows: System and Software Requirements 41

Setting Up Digital Certificates for SSL under Windows 41

Converting between PEM and DER File Formats for SSL 45

Glossary 47

Index 51

iv

v

What’s New

Overview of Data Security Technologies

Data Security Technologies in SAS describes the technologies used by SAS to protect
the confidentiality of data that is exchanged in client/server data transfers.

Details about Data Security Technologies

Data Security Technologies in SAS consolidates the information that was previously
contained in multiple SAS documents. The data security technologies that are used by
SAS are provided by the following:

� SASProprietary

� SAS/SECURE

� SSL (Secure Sockets Layer)

� SSH (Secure Shell)

Note:

Transport Layer Security (TLS) is the successor to SSL V3.0. The Internet
Engineering Task Force (IETF) adopted SSL V3.0 as the de facto standard, modified it,
renamed it TLS V1.0, and adopted it as a standard.

SAS/SECURE SSL Add-In Package

In order to use the SAS 9.1.3 SSL software, you must review the licensing terms and
download the appropriate SAS/SECURE SSL Add-In Package from the SAS download
Web site.

vi What’s New

SSH Functionality

Although SAS 9.1.3 software does not include a programming interface to SSH
functionality, SAS does support the tunneling feature of SSH that enables a SAS client
to make an encrypted connection to a SAS server.

1

P A R T1

Data Security Technologies in SAS 9.1.3

Chapter 1.Technologies for Data Security 3

Chapter 2.SAS System Options for Data Security 11

Chapter 3.Data Security Technologies: Examples 21

2

3

C H A P T E R

1
Technologies for Data Security

Data Security Technologies: Overview 3
Providers of Data Security Technologies 4

SASProprietary 4

SASProprietary Overview 4

SASProprietary System Requirements 4

SASProprietary Installation and Configuration 4
SAS/SECURE 4

SAS/SECURE Overview 4

SAS/SECURE System Requirements 4

Export Restrictions for SAS/SECURE 5

SAS/SECURE Installation and Configuration 5

Secure Sockets Layer (SSL) 5
Secure Sockets Layer (SSL) Overview 5

SSL System Requirements 6

SSL Concepts 6

SSL Installation and Configuration 7

SSH (Secure Shell) 7
SSH (Secure Shell) Overview 7

SSH System Requirements 7

SSH Tunneling Process 7

SSH Tunneling: Process for Installation and Setup 8

Data Encryption Algorithms 8
Data Security Technologies: Comparison 9

Data Security Technologies: Implementation 10

Data Security Technologies: Overview

As e-business grows, there is a great need to ensure the confidentiality of business
transactions over a network between an enterprise and its consumers, between
enterprises, and within an enterprise. Data security technologies refers to the
foundation SAS products and third-party strategies for protecting data and credentials
(user IDs and passwords) that are exchanged in a networked environment.
Fundamental to these technologies is the use of proven, industry-standard encryption
algorithms for data protection.

Encryption is the transformation of intelligible data (plaintext) into an unintelligible
form (ciphertext) by means of a mathematical process. The ciphertext is translated
back to plaintext when the appropriate key that is necessary for decrypting (unlocking)
the ciphertext is applied. Although encryption increases the protection of data, it does
not prevent unauthorized access to data.

4 Providers of Data Security Technologies � Chapter 1

Authentication is the act of verifying the identity of an entity (such as a user).
Authentication is used to confirm the authority of an entity to access protected
resources. For details about authentication, see the documentation for your enterprise.

Providers of Data Security Technologies
� “SASProprietary” on page 4
� “SAS/SECURE” on page 4
� “Secure Sockets Layer (SSL)” on page 5
� “SSH (Secure Shell)” on page 7

SASProprietary

SASProprietary Overview
SASProprietary is a fixed encoding algorithm that is included with Base SAS

software. It requires no additional SAS product licenses. The SAS proprietary algorithm
is strong enough to protect your data from casual viewing. SASProprietary provides a
medium level of security. SAS/SECURE and SSL provide a high level of security.

SASProprietary System Requirements
SAS 9.1.3 supports SASProprietary under the following operating environments:
� OpenVMS Alpha
� UNIX
� Windows
� z/OS

SASProprietary Installation and Configuration
SASProprietary is part of Base SAS. Separate installation is not required.
For an example of configuring and using SASProprietary in your environment, see

“SASProprietary for SAS/SHARE: Example” on page 22.

SAS/SECURE

SAS/SECURE Overview
SAS/SECURE software is an add-on product that provides encryption algorithms in

addition to the SASProprietary algorithm. SAS/SECURE requires a license, and it must
be installed on each computer that runs a client and a server that will use the
encryption algorithms. Although SAS/SECURE increases data security, it cannot
completely prevent unauthorized access to your data.

SAS/SECURE System Requirements
SAS 9.1.3 supports SAS/SECURE under the following operating environments:
� UNIX

Technologies for Data Security � Secure Sockets Layer (SSL) 5

� Compaq Tru64 UNIX
� HP UX on Itanium 64-bit platform
� HP UX on a 64-bit platform
� Linux for Intel Architecture on a 32-bit platform
� Solaris on a 64-bit platform

� Windows
� z/OS

Export Restrictions for SAS/SECURE
SAS/SECURE 9.1.3 is available to most commercial and government users inside and

outside the U.S. However, some countries (for example, Russia, China, and France)
have import restrictions on products that contain encryption, and the U.S. prohibits the
export of encryption software to specific embargoed or restricted destinations.

SAS/SECURE for UNIX and z/OS includes the following encryption algorithms:
� RC2 using 128-bit or 40-bit keys
� RC4 using 128-bit or 40-bit keys
� DES using 56-bit keys
� TripleDES using 168-bit keys

SAS/SECURE for Windows uses the encryption algorithms that are available in
Microsoft CryptoAPI. The level of the SAS/SECURE encryption algorithms under
Windows depends on the level of the encryption support in Microsoft CryptoAPI under
Windows. For this reason, SAS/SECURE for Windows has very few export restrictions.

SAS/SECURE Installation and Configuration
SAS/SECURE must be installed on the SAS server computer, the client computer, and

possibly other computers, depending on the SAS software that requires encryption. For
installation details, see the SAS documentation for the software that uses encryption.

For examples of configuring and using SAS/SECURE in your environment, see
Chapter 3, “Data Security Technologies: Examples,” on page 21.

Secure Sockets Layer (SSL)

Secure Sockets Layer (SSL) Overview
SSL is an abbreviation for Secure Sockets Layer, which is a protocol that provides

network security and privacy. Developed by Netscape Communications, SSL uses
encryption algorithms that include RC2, RC4, DES, TripleDES, IDEA, MD5, and others.

In addition to providing encryption services, SSL performs client and server
authentication, and it uses message authentication codes to ensure data integrity. SSL
is supported by both Netscape Navigator and Internet Explorer. Many Web sites use
the protocol to protect confidential user information, such as credit card numbers. By
convention, URLs that require an SSL connection begin with https: instead of http:.
The SSL protocol is application independent and allows protocols such as HTTP, FTP,
and Telnet to be transparently layered above it. SSL is optimized for HTTP. SSL
includes software that was developed by the OpenSSL Project for use in the OpenSSL
Toolkit. For more information see www.OpenSSL.org.

Note: Transport Layer Security (TLS) is the successor to SSL V3.0. The Internet
Engineering Task Force (IETF) took SSL V3.0, which was the de facto standard,
modified it, renamed it TLS V1.0, and adopted it as a standard. �

6 Secure Sockets Layer (SSL) � Chapter 1

SSL System Requirements
SAS 9 and later releases support SSL V2.0, SSL V3.0 and TLS V1.0 under the

following operating environments:
� UNIX
� Windows

CAUTION:
SAS/SECURE SSL is packaged as an add-in product. In order to use the SAS/SECURE
SSL software, you must review the licensing terms and download the appropriate
Add-in Package from www.sas.com/apps/demosdownloads/setupintro.jsp. Select
SAS/SECURE Software � SSL Add-in. �

The SAS/SECURE SSL software is not included on the SAS software CD because
some countries do not allow the importation of encryption software. Therefore, SAS/
SECURE SSL is provided as an add-in that can be downloaded from the WWW to
customers who can import encryption software.

SSL Concepts
Concepts that are fundamental to understanding SSL follow:

Certification Authorities (CAs)
Cryptography products provide security services by using digital certificates,
public-key cryptography, private-key cryptography, and digital signatures.
Certification authorities (CAs) create and maintain digital certificates, which also
help preserve confidentiality.

Various commercial CAs, such as VeriSign and Thawte, provide competitive
services for the e-commerce market. You can also develop your own CA by using
products from companies such as RSA Security and Microsoft or from the Open
Source Toolkit OpenSSL. From a trusted CA, members of an enterprise can obtain
digital certificates to facilitate their e-business needs. The CA provides a variety of
ongoing services to the business client that include handling digital certificate
requests, issuing digital certificates, and revoking digital certificates.

Public and Private Keys
Public-key cryptography uses a public and a private key pair. The public key can
be known by anyone, therefore, anyone can send a confidential message. The
private key is confidential and known only to the owner of the key pair, therefore,
only the owner can read the encrypted message. The public key is used primarily
for encryption, but it can also be used to verify digital signatures. The private key
is used primarily for decryption, but it can also be used to generate a digital
signature.

Digital Signatures
A digital signature affixed to an electronic document or to a network data packet
is like a personal signature that concludes a hand-written letter or that validates a
credit card transaction. Digital signatures are a safeguard against fraud. A
unique digital signature results from using a private key to encrypt a message
digest. Receipt of a document that contains a digital signature enables the
receiver to verify the source of the document. Electronic documents can be verified
if you know where the document came from, who sent it, and when it was sent.
Another form of verification comes from MACs, which ensure that a document has
not been changed since it was signed.

Digital Certificates
Digital certificates are electronic documents that ensure the binding of a public
key to an individual or an organization. Digital certificates provide protection from
fraud.

Technologies for Data Security � SSH (Secure Shell) 7

Usually, a digital certificate contains a public key, a user’s name, and an
expiration date. It also contains the name of the Certification Authority (CA) that
issued the digital certificate and a digital signature that is generated by the CA.
The CA’s validation of an individual or an organization allows that individual or
organization to be accepted at sites that trust the CA.

SSL Installation and Configuration
The instructions that you use to install and configure SSL at your site depend on

whether you use UNIX or Windows. For complete details, see Appendix 1, “Installing
and Configuring SSL under UNIX,” on page 35 or Appendix 2, “Installing and
Configuring SSL under Windows,” on page 41.

For examples of configuring and using SSL in your environment, see Chapter 3,
“Data Security Technologies: Examples,” on page 21.

SSH (Secure Shell)

SSH (Secure Shell) Overview
SSH is an abbreviation for Secure Shell, which is a protocol that enables users to

access a remote computer via a secure connection. SSH is available through various
commercial products and as freeware. OpenSSH is a free version of the SSH protocol
suite of network connectivity tools.

Although SAS software does not include a programming interface to SSH
functionality, SAS does support the tunneling feature of SSH that enables a SAS client
to make an encrypted connection to a SAS server. Port forwarding is another term for
tunneling. The SSH client and SSH server act as agents between the SAS client and
the SAS server, tunneling information via the SAS client’s port to the SAS server’s port.

SSH System Requirements
SSH runs under UNIX and Windows operating environments. OpenSSH supports

SSH protocol versions 1.3, 1.5, and 2.0.
For additional resources, see
� www.openssh.com

� www.ssh.com

� ssh(1) UNIX manual page.

SSH Tunneling Process
An inbound request from a SAS client to a SAS server is shown as follows:

8 Data Encryption Algorithms � Chapter 1

Figure 1.1 SSH Tunneling Process

SAS Client SAS Server

SSH Server

4321

5555

Client Computer Server Computer

SSH Tunnel

1

2

3

SSH Client

1 The SAS client passes its request to the SSH client’s port 5555.
2 The SSH client forwards the SAS client’s request to the SSH server via an

encrypted tunnel.
3 The SSH server forwards the SAS client’s request to the SAS server via port 4321.

Outbound, the SAS server’s reply to the SAS client’s request flows from the SAS
server to the SSH server. The SSH server forwards the reply to the SSH client, which
passes it to the SAS client.

SSH Tunneling: Process for Installation and Setup
SSH software must be installed on the client and server computers. Exact details

about installing SSH software at the client and the server depend on the particular
brand and version of the software that is used. See the installation instructions for
your SSH software.

The process for setting up an SSH tunnel consists of the following steps:
� SSH tunneling software is installed on the client and server computers. Details

about tunnel configuration depend on the specific SSH product that is used.
� The components of the tunnel are set up. The components are a “listen” port, a

destination computer, and a destination port. The SAS client will access the listen
port, which gets forwarded to the destination port on the destination computer.
SSH establishes an encrypted tunnel that indirectly connects the SAS client to the
SAS server.

� The SAS server is started.
� The SSH client is started as an “agent” between the SAS client and the SAS server.

For examples of setting up and using a tunnel, see “SSH Tunnel for SAS/CONNECT:
Example” on page 30 and “SSH Tunnel for SAS/SHARE: Example” on page 30.

Data Encryption Algorithms
The following encryption algorithms are used by the data security technologies:

RC2
is a block cipher that encrypts data in blocks of 64 bits. A block cipher is an
encryption algorithm that divides a message into blocks and encrypts each block.

Technologies for Data Security � Data Security Technologies: Comparison 9

The RC2 key size ranges from 8 to 256 bits. SAS/SECURE uses a configurable key
size of 40 or 128 bits. (The NETENCRYPTKEYLEN= system option is used to
configure the key length.) The RC2 algorithm expands a single message to a
maximum of 8 bytes. RC2 is a proprietary algorithm developed by RSA Data
Security, Inc.

Note: RC2 is supported in SAS/SECURE and SSL. �

RC4
is a stream cipher. A stream cipher is an encryption algorithm that encrypts data
1 byte at a time. The RC4 key size ranges from 8 to 2048 bits. SAS/SECURE uses
a configurable key size of 40 or 128 bits. (The NETENCRYPTKEYLEN= system
option is used to configure the key length.) RC4 is a proprietary algorithm
developed by RSA Data Security, Inc.

Note: RC4 is supported in SAS/SECURE and SSL. �

DES (Data Encryption Standard)
is a block cipher that encrypts data in blocks of 64 bits by using a 56-bit key. The
algorithm expands a single message to a maximum of 8 bytes. DES was originally
developed by IBM but is now published as a U.S. Government Federal Information
Processing Standard (FIPS 46-3).

Note: DES is supported in SAS/SECURE and SSL. �

TripleDES
is a block cipher that encrypts data in blocks of 64 bits. TripleDES executes the
DES algorithm on a data block three times in succession by using a single, 56-bit
key. This has the effect of encrypting the data by using a 168-bit key. TripleDES
expands a single message to a maximum of 8 bytes. TripleDES is defined in the
American National Standards Institute (ANSI) X9.52 specification.

Note: TripleDES is supported in SAS/SECURE and SSL. �

SASProprietary
is a cipher that provides basic fixed encoding encryption services under all
operating environments that are supported by SAS. Included in Base SAS,
SASProprietary does not require additional SAS product licenses. The algorithm
expands a single message to approximately one-third by using a 32-bit key.

Note: SASProprietary is supported only by the SASProprietary encryption
provider. �

IDEA (International Data Encryption Algorithm)
is a 64-bit iterative block cipher that uses a 128-bit key.

Note: IDEA is supported only in SSL. �

MD5 (Message Digest)
is used for digital signature applications in which a large message must be
securely compressed before being signed with a private key. The MD2, MD4, and
MD5 family of algorithms share common structures, however, each design is
unique. MD2 was optimized for 8-bit computers; MD4 and MD5 were designed for
32-bit computers. MD5 produces a 128-bit message digest from a message of
arbitrary length.

Note: MD5 is supported only in SSL. �

Data Security Technologies: Comparison
A comparison of the features of the data security technologies follow:

10 Data Security Technologies: Implementation � Chapter 1

Table 1.1 Summary of SASProprietary, SAS/SECURE, SSL, and SSH Features

Features SASProprietary SAS/SECURE SSL SSH

License required No Yes No No

Encryption and
authentication

Encryption only Encryption only Encryption
and
authentication

Encryption
only

Encryption level Medium High High High

Algorithms supported SASProprietary
fixed encoding

RC2, RC4, DES,
TripleDES

RC2, RC4,
DES,
TripleDES,
IDEA, MD5,
and others

Product
dependent

Installation required No (part of Base
SAS)

Yes Yes Yes

Operating
environments
supported

UNIX

Windows

z/OS

OpenVMS Alpha

UNIX

Windows

z/OS

UNIX

Windows

UNIX

Windows

SAS version support 8 and later 8 and later 9 and later 8.2 and later

Data Security Technologies: Implementation

The implementation of the installed data security technology depends on the
environment that you work in. If you work in a SAS enterprise intelligence
infrastructure, data security might be transparent to you because it has already been
configured into your site’s overall security plan. After the data security technology has
been installed, the site system administrator configures the encryption method (level of
encryption) to be used in all client/server data exchanges. All enterprise activity uses
the chosen level of encryption, by default. For an example, see “SAS/SECURE for the
IOM Bridge: Examples” on page 28.

If you work in a SAS session on a client computer that exchanges data with a SAS
server, you will specify SAS system options that implement data security for the
duration of the SAS session. If you connect a SAS/CONNECT client to a spawner, you
will specify encryption options in the spawner start-up command. For details about
SAS system options, see Chapter 2, “SAS System Options for Data Security,” on page
11. For examples, see Chapter 3, “Data Security Technologies: Examples,” on page 21.

11

C H A P T E R

2
SAS System Options for Data
Security

NETENCRYPT System Option 11
NETENCRYPTALGORITHM= System Option 12

NETENCRYPTKEYLEN= System Option 14

SSLCALISTLOC= System Option 14

SSLCERTISS= System Option 15

SSLCERTLOC= System Option 16
SSLCERTSERIAL= System Option 16

SSLCERTSUBJ= System Option 17

SSLCLIENTAUTH System Option 17

SSLCRLCHECK System Option 18

SSLCRLLOC= System Option 19

SSLPVTKEYLOC= System Option 19
SSLPVTKEYPASS= System Option 20

NETENCRYPT System Option

Specifies whether client/server data transfers are encrypted.

Client: Optional
Server: Optional
Default: NONETENCRYPT
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
See also: NETENCRYPTALGORITHM
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
NETENCRYPT | NONETENCRYPT

Syntax Description

NETENCRYPT
specifies that encryption is required.

12 NETENCRYPTALGORITHM= System Option � Chapter 2

NONETENCRYPT
specifies that encryption is not required, but is optional.

Details
The default for this option specifies that encryption is used if the
NETENCRYPTALGORITHM option is set and if both the client and the server are
capable of encryption. If encryption algorithms are specified but either the client or the
server is incapable of encryption, then encryption is not performed.

Encryption might not be supported at the client or at the server if
� You are using a release of SAS (prior to Version 8) that does not support encryption.
� Your site (the client or the server) does not have a security software product

installed.
� You specified encryption algorithms that are incompatible in SAS sessions on the

client and the server.

NETENCRYPTALGORITHM= System Option

Specifies the algorithm(s) to be used for encrypted client/server data transfers.

Client: Optional
Server: Required
Alias: NETENCRALG=
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
See also: NETENCRYPT
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
NETENCRYPTALGORITHM=algorithm | (“algorithm-1”... “algorithm-n”)

Syntax Description

algorithm | (“algorithm–1”... “algorithm-n”)
specifies the algorithm(s) that can be used for encrypting data that is transferred
between a client and a server across a network. When you specify two or more
encryption algorithms, use a space or a comma to separate them, and enclose the
algorithms in parentheses.

The following algorithms may be used:
� RC2
� RC4
� DES
� TripleDES
� SASProprietary
� SSL.

SAS System Options for Data Security � NETENCRYPTALGORITHM= System Option 13

Details

The NETENCRYPTALGORITHM= option must be specified in the server session.
Use this option to specify one or more encryption algorithms that you want to use to

protect the data that is transferred across the network. If more than one algorithm is
specified, the client session negotiates the first specified algorithm with the server
session. If the server session does not support that algorithm, the second algorithm is
negotiated, and so on.

If either the client or the server session specifies the NETENCRYPT option (which
makes encryption mandatory) but a common encryption algorithm cannot be negotiated,
the client cannot connect to the server.

If the NETENCRYPTALGORITHM= option is specified in the server session only,
then the server’s values are used to negotiate the algorithm selection. If the client
session supports only one of multiple algorithms that are specified in the server session,
the client can connect to the server.

There is an interaction between either NETENCRYPT or NONETENCRYPT and
NETENCRYPTALGORITHM.

Table 2.1 Client/Server Connection Outcomes

Server Settings Client Settings Connection Outcome

NONETENCRYPT

NETENCRALG=alg

No settings If the client is capable of encryption,
the client/server connection will be
encrypted. Otherwise, the connection
will not be encrypted.

NETENCRYPT

NETENCRALG=alg

No settings If the client is capable of encryption,
the client/server connection will be
encrypted. Otherwise, the client/
server connection will fail.

No settings NONETENCRYPT

NETENCRALG=alg

A client/server connection will not be
encrypted.

No settings NETENCRYPT

NETENCRALG=alg

A client/server connection will fail.

NETENCRYPT or NONETENCRYPT

NETENCRALG=alg–1

NETENCRALG=alg-2 Regardless of whether NETENCRYPT
or NONETENCRYPT is specified, a
client/server connection will fail.

Example

In the following example, the client and the server specify different values for the
NETENCRYPTALGORITHM= option.

The client specifies two algorithms in the following OPTIONS statement:

options netencryptalgorithm=(rc2 tripledes);

The server specifies three algorithms and requires encryption in the following
OPTIONS statement:

options netencrypt netencryptalgorithm=(ssl des tripledes);

The client and the server negotiate an algorithm that they share in common,
TripleDES, for encrypting data transfers.

14 NETENCRYPTKEYLEN= System Option � Chapter 2

NETENCRYPTKEYLEN= System Option

Specifies the key length to use for encrypted client/server data transfers.

Client: Optional
Server: Optional
Alias: NETENCRKEY=
Default: 0
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
NETENCRYPTKEYLEN= 0 | 40 | 128

Syntax Description

0
specifies that the maximum key length that is supported at both the client and the
server is used.

40
specifies a key length of 40 bits for the RC2 and RC4 algorithms.

128
specifies a key length of 128 bits for the RC2 and RC4 algorithms. If either the client
or the server does not support 128-bit encryption, the client cannot connect to the
server.

Details
The NETENCRYPTKEYLEN= option supports only the RC2 and RC4 algorithms. The
DES, TripleDES, or SSL algorithms are not supported.

Using longer keys consumes more CPU cycles. If you do not need a high level of
encryption, set NETENCRYPTKEYLEN=40 to decrease CPU usage.

SSLCALISTLOC= System Option

Specifies the location of digital certificates for trusted certification authorities (CA).

Client: Required
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: UNIX

SAS System Options for Data Security � SSLCERTISS= System Option 15

Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCALISTLOC=“file–path”

Syntax Description

“file-path”
specifies the location of a file that contains the digital certificates for the trusted
certification authority (CA).

Details
The SSLCALISTLOC= option identifies the certification authority that SSL should
trust. This option is required at the client because at least one CA must be trusted in
order to validate a server’s digital certificate. This option is required at the server only
if the SSLCLIENTAUTH option is also specified at the server.

SSLCERTISS= System Option

Specifies the name of the issuer of the digital certificate that SSL should use.

Client: Optional
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCERTISS=“issuer-of-digital-certificate”

Syntax Description

“issuer-of-digital-certificate”
specifies the name of the issuer of the digital certificate that should be used by SSL.

Details
The SSLCERTISS= option is used with the SSLCERTSERIAL= option to uniquely
identify a digital certificate from the Microsoft Certificate Store.

16 SSLCERTLOC= System Option � Chapter 2

SSLCERTLOC= System Option

Specifies the location of the digital certificate that is used for authentication.

Client: Optional
Server: Required
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: UNIX
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCERTLOC=“file-path”

Syntax Description

“file-path”
specifies the location of a file that contains a digital certificate.

Details
The SSLCERTLOC= option is required for a server. It is required at the client only if
the SSLCLIENTAUTH option is specified at the server.

SSLCERTSERIAL= System Option

Specifies the serial number of the digital certificate that SSL should use.

Client: Optional
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCERTSERIAL=“serial-number”

Syntax Description

SAS System Options for Data Security � SSLCLIENTAUTH System Option 17

“serial-number”
specifies the serial number of the digital certificate that should be used by SSL.

Details
The SSLCERTSERIAL= option is used with the SSLCERTISS= option to uniquely
identify a digital certificate from the Microsoft Certificate Store.

SSLCERTSUBJ= System Option

Specifies the subject name of the digital certificate that SSL should use.

Client: Optional
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCERTSUBJ=“subject-name”

Syntax Description

“subject-name”
specifies the subject name of the digital certificate that SSL should use.

Details
The SSLCERTSUBJ= option is used to search for a digital certificate from the Microsoft
Certificate Store.

SSLCLIENTAUTH System Option

Specifies whether a server should perform client authentication.

Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environments: UNIX, Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

18 SSLCRLCHECK System Option � Chapter 2

Syntax
SSLCLIENTAUTH | NOSSLCLIENTAUTH

Syntax Description

SSLCLIENTAUTH
specifies that the server should perform client authentication.

NOSSLCLIENTAUTH
specifies that the server should not perform client authentication.

Details
Server authentication is always performed, but the SSLCLIENTAUTH option enables a
user to control client authentication. This option is valid only when used on a server.

SSLCRLCHECK System Option
Specifies whether a Certificate Revocation List (CRL) is checked when a digital certificate is
validated.

Client: Optional
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environments: UNIX, Windows
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLCRLCHECK|NOSSLCRLCHECK

Syntax Description

SSLCRLCHECK
specifies that CRLs are checked when digital certificates are validated.

NOSSLCRLCHECK
specifies that CRLs are not checked when digital certificates are validated.

Details
A Certificate Revocation List (CRL) is published by a Certification Authority (CA) and
contains a list of revoked digital certificates. The list contains only the revoked digital
certificates that were issued by a specific CA.

SAS System Options for Data Security � SSLPVTKEYLOC= System Option 19

The SSLCRLCHECK option is required at the server only if the SSLCLIENTAUTH
option is also specified at the server. Because clients check server digital certificates,
this option is relevant for the client.

SSLCRLLOC= System Option

Specifies the location of a Certificate Revocation List (CRL).

Client: Optional

Server: Optional

Operating Environment: UNIX

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax
SSLCRLLOC=“file-path”

Syntax Description

“file-path”
specifies the location of a file that contains a Certificate Revocation List (CRL).

Details
The SSLCRLLOC= option is required only when the SSLCRLCHECK option is specified.

SSLPVTKEYLOC= System Option

Specifies the location of the private key that corresponds to the digital certificate.

Client: Optional

Server: Optional

Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation

Operating Environment: UNIX

Category: Communications: Networking and Encryption

PROC OPTIONS Group= Communications

Syntax
SSLPVTKEYLOC=“file-path”

20 SSLPVTKEYPASS= System Option � Chapter 2

Syntax Description

“file-path”
specifies the location of the file that contains the private key that corresponds to the
digital certificate that was specified by using the SSLCERTLOC= option.

Details
The SSLPVTKEYLOC= option is required at the server only if the SSLCERTLOC=
option is also specified at the server.

SSLPVTKEYPASS= System Option

Specifies the password that SSL requires for decrypting the private key.

Client: Optional
Server: Optional
Valid in: configuration file, OPTIONS statement, SAS System Options window, SAS
invocation
Operating Environment: UNIX
Category: Communications: Networking and Encryption
PROC OPTIONS Group= Communications

Syntax
SSLPVTKEYPASS=“password”

Syntax Description

“password”
specifies the password that SSL requires in order to decrypt the private key. The
private key is stored in the file that is specified by using the SSLPVTKEYLOC=
option.

Details
The SSLPVTKEYPASS= option is required only when the private key is encrypted.
OpenSSL performs key encryption.

Note: No SAS system option is available to encrypt private keys. �

21

C H A P T E R

3
Data Security Technologies:
Examples

SAS/SECURE for SAS/CONNECT: Example 21
SAS/CONNECT Client under UNIX 21

SAS/CONNECT Server under UNIX 22

SASProprietary for SAS/SHARE: Example 22

SAS/SHARE Client 22

SAS/SHARE Server 22
SSL for a SAS/CONNECT UNIX Spawner: Example 23

Startup of a UNIX Spawner on a SAS/CONNECT Server 23

Connection of a SAS/CONNECT Client to a UNIX Spawner 24

SSL for a SAS/CONNECT Windows Spawner: Example 24

Startup of a Windows Spawner on a Single-User SAS/CONNECT Server 24

Connection of a SAS/CONNECT Client to a Windows Spawner on a SAS/CONNECT Server 25
SSL for SAS/SHARE under UNIX: Example 26

Startup of a Multi-User SAS/SHARE Server 26

SAS/SHARE Client Access of a SAS/SHARE Server 26

SSL for SAS/SHARE under Windows: Examples 27

Startup of a Multi-User SAS/SHARE Server 27
SAS/SHARE Client Access of a SAS/SHARE Server 27

SAS/SECURE for the IOM Bridge: Examples 28

IOM Bridge Encryption Configuration 28

IOM Bridge for SAS Clients: Metadata Configuration 28

IOM Bridge for COM: Configuration in Code 29
IOM Bridge for Java: Configuration in Code 29

SSH Tunnel for SAS/CONNECT: Example 30

Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server 30

Connection of a SAS/CONNECT Client to a UNIX Spawner on a SAS/CONNECT Server 30

SSH Tunnel for SAS/SHARE: Example 30

Start-up of a Multi-User SAS/SHARE Server 30
SAS/SHARE Client Access of a SAS/SHARE Server 31

SAS/SECURE for SAS/CONNECT: Example

SAS/CONNECT Client under UNIX
The following statements configure the client. The NETENCRYPTALGORITHM=

option specifies the use of the RC4 algorithm.

options netencryptalgorithm=rc4;
options remote=unxnode comamid=tcp;

22 SAS/CONNECT Server under UNIX � Chapter 3

signon;

SAS/CONNECT Server under UNIX
The following command starts a spawner on the computer that runs the server. The

-NETENCRYPT option specifies that encryption is required for all clients that connect
to the spawner. The -NETENCRYPTALGORITHM option specifies the use of the RC4
algorithm for encrypting all network data. The -SASCMD option specifies the SAS
start-up command.

sastcpd -service spawner -netencrypt -netencryptalgorithm rc4 -sascmd mystartup

The spawner executes a UNIX shell script that executes the commands to start SAS.

#!/bin/ksh
#________________
mystartup
#________________
. ~/.profile
sas dmr -noterminal -comamid tcp $*

SASProprietary for SAS/SHARE: Example

SAS/SHARE Client
In this example, the NETENCRYPTALGORITHM= option is set to SASProprietary

to specify the use of the proprietary algorithm to encrypt the data between the client
and the server. The NETENCRYPTALGORITHM= option must be set before the
LIBNAME statement establishes the connection to the server.

options netencryptalgorithm=sasproprietary;
options comamid=tcp;
libname sasdata ’edc.prog2.sasdata’ server=rmthost.share1;

SAS/SHARE Server
This example shows how to set the options for encryption services on a SAS/SHARE

server. The NETENCRYPT option specifies that encryption is required by any client
that accesses this server. The NETENCRYPTALGORITHM= option specifies that the
SASProprietary algorithm be used for encryption of all data that is exchanged with
connecting clients.

options netencrypt netencryptalgorithm=sasproprietary;
options comamid=tcp;
proc server id=share1;
run;

Data Security Technologies: Examples � Startup of a UNIX Spawner on a SAS/CONNECT Server 23

SSL for a SAS/CONNECT UNIX Spawner: Example

Startup of a UNIX Spawner on a SAS/CONNECT Server
After digital certificates are generated for the CA, the server, and the client, and a

CA trust list for the client is created, you can start a UNIX spawner program that runs
on a server that SAS/CONNECT clients connect to.

For example:

% sastcpd -service unxspawn -netencryptalgorithm ssl
-sslcertloc /users/server/certificates/server.pem
-sslpvtkeyloc /users/server/certificates/serverkey.pem
-sslpvtkeypass starbuck1
-sslcalistloc /users/server/certificates/sas.pem
-sascmd /users/server/command.ksh

The following table explains the SAS commands that are used to start a spawner on
a SAS/CONNECT single-user server.

Table 3.1 SAS Commands for Spawner Start-Up Tasks

SAS Command Function

sastcpd starts the spawner

-service unxspawn specifies the spawner service (configured in the
services file)

-netencryptalgorithm ssl specifies the SSL encryption algorithm

-sslcertloc /users/server/certificates/server.pem specifies the file path for the location of the
server’s certificate

-sslpvtkeyloc /users/server/certificates/
serverkey.pem

specifies the file path for the location of the
server’s private key

-sslpvtkeypass password specifies the password to access the server’s
private key

-sslcalistloc /users/server/certificates/sas.pem specifies the CA trust list

-sascmd /users/server/command.ksh specifies the name of an executable file that
starts a SAS session when you sign on without a
script file.

An example of an executable file follows:

#!/bin/ksh
#----------------------------------
mystartup
#----------------------------------

. ~/.profile
sas -dmr -noterminal $*
#------------------------------

For complete information about starting a UNIX spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

24 Connection of a SAS/CONNECT Client to a UNIX Spawner � Chapter 3

Connection of a SAS/CONNECT Client to a UNIX Spawner
After a UNIX spawner is started on a SAS/CONNECT server, a SAS/CONNECT

client can connect to it.
The following example shows how to connect a client to a spawner that is running on

a SAS/CONNECT server:

options netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
signon machine.spawner user=_prompt_;

The following explains the SAS options that are used to connect to a SAS/CONNECT
server.

Table 3.2 Client Access to a SAS/CONNECT Server

SAS Options Client Access Tasks

NETENCRYPTALGORITHM=ssl specifies the encryption algorithm

SSLCALISTLOC=cacerts.pem specifies the CA trust list

SIGNON=server-ID.service specifies the server and service to connect to

USER=_PROMPT_ prompts for the user ID and password to be used
for authenticating the client to the server

The server-ID and the server’s Common Name, which was specified in the server’s
digital certificate, must be identical.

For complete information about connecting to a UNIX spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

SSL for a SAS/CONNECT Windows Spawner: Example

Startup of a Windows Spawner on a Single-User SAS/CONNECT Server
After digital certificates for the CA, the server, and the client have been generated

and imported into the appropriate Certificate Store, you can start a spawner program
that runs on a server that SAS/CONNECT clients connect to.

An example of how to start a Windows spawner on a SAS/CONNECT server follows:

spawner -security -netencryptalgorithm ssl -sslcertsubj "apex.pc.com"
-sascmd mysas.bat

The following table shows the SAS commands that are used to start a spawner on a
SAS/CONNECT single-user server.

Table 3.3 SAS Commands for Spawner Start-Up Tasks

SAS Command Function

spawner starts the spawner

-security specifies the requirement that a client provide a
user name and password to access the spawner

Data Security Technologies: Examples � Connection of a SAS/CONNECT Client to a Windows Spawner on a SAS/CONNECT Server 25

SAS Command Function

-netencryptalgorithm ssl specifies the SSL encryption algorithm

-sslcertsubj "apex.pc.com" specifies the subject name that is used to search
for a certificate from the Microsoft Certificate
Store

-sascmd mysas.bat specifies the name of an executable file that
starts a SAS session when you sign on without a
script file

In order for the Windows spawner to locate the appropriate server digital certificate
in the Microsoft Certificate Store, you must specify the -SSLCERTSUBJ system option
in the script that is specified by the -SASCMD option. -SSLCERTSUBJ specifies the
subject name of the digital certificate that SSL should use. The subject that is assigned
to the -SSLCERTSUBJ option and the computer that is specified in the client signon
must be identical.

If the Windows spawner is started as a service, the -SERVPASS and -SERVUSER
options must also be specified in the Windows spawner start-up command in order for
SSL to locate the appropriate CA digital certificate.

For complete information about starting a Windows spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a Windows Spawner on a SAS/
CONNECT Server

After a spawner has been started on a SAS/CONNECT server, a SAS/CONNECT
client can connect to it.

An example of how to make a client connection to a Windows spawner that is
running on a SAS/CONNECT server follows:

options comamid=tcp netencryptalgorithm=ssl;
%let machine=apex.pc.com;
signon machine user=_prompt_;

The computer that is specified in the client signon and the subject (the -SSLCERTSUBJ
option) that is specified at the server must be identical.

The following shows the SAS options that are used to connect to a Windows spawner
that runs on a SAS/CONNECT server.

Table 3.4 Client Access to a SAS/CONNECT Server

SAS Options Function

COMAMID=tcp specifies the TCP/IP access method

NETENCRYPTALGORITHM=ssl specifies the encryption algorithm

SIGNON=server-ID specifies which server to connect to

USER=_PROMPT_ prompts for the user ID and password to be used
for authenticating the client to the server

The server-ID and the server’s Common Name, which was specified in the server’s
digital certificate, must be identical.

26 SSL for SAS/SHARE under UNIX: Example � Chapter 3

SSL for SAS/SHARE under UNIX: Example

Startup of a Multi-User SAS/SHARE Server
After certificates for the CA, the server, and the client have been generated, and a

CA trust list for the client has been created, you can start a SAS/SHARE server.
An example of starting a secured SAS/SHARE server follows:

%let tcpsec=_secure_;
options netencryptalgorithm=ssl;
options sslcertloc="/users/johndoe/certificates/server.pem";
options sslpvtkeyloc="/users/johndoe/certificates/serverkey.pem";
options sslpvtkeypass="password";
proc server id=shrserv;
run;

The following lists the SAS option or statement that is used for each task to start a
server.

Table 3.5 Server Start-Up Tasks

Server Start-Up Tasks SAS Options and Statements

Secure the server TCPSEC= _SECURE_

Specify SSL as the encryption algorithm NETENCRALG=SSL

Specify the filepath for the location of the
server’s certificate

SSLCERTLOC=server.pem

Specify the filepath for the location of the
server’s private key

SSLPVTKEYLOC=serverkey.pem

Specify the password to access server’s
private key

SSLPVTKEYPASS="password"

Start the server PROC SERVER ID=shrserv;

Note: As an alternative to using the SSLPVTKEYPASS= option to protect the
private key, you might prefer that the private key remain unencrypted, and use the file
system permissions to prevent read and write access to the file that contains the private
key. To store the private key without encrypting it, use the –NODES option when
requesting the certificate. �

SAS/SHARE Client Access of a SAS/SHARE Server
After a SAS/SHARE server has been started, the client can access it.
An example of how to make a client connection to a secured SAS/SHARE server

follows:

options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
libname a ’.’ server=machine.shrserv user=_prompt_;

The following lists the SAS options that are used to access a SAS/SHARE server
from a client.

Data Security Technologies: Examples � SAS/SHARE Client Access of a SAS/SHARE Server 27

Table 3.6 Tasks for Accessing a SAS/SHARE Server from a Client

Client Access Tasks SAS Options

Specify the CA trust list SSLCALISTLOC=cacerts.pem

Specify the machine and server to connect to SERVER=machine.shrserv

Prompt for the user ID and password to be used
for authenticating the client to the server

USER=_PROMPT_

The server-ID and the server’s Common Name, which was specified in the server’s
certificate, must be identical.

SSL for SAS/SHARE under Windows: Examples

Startup of a Multi-User SAS/SHARE Server
After certificates for the CA, the server, and the client have been generated, and

imported into the appropriate certificate store, you can start a SAS/SHARE server.
An example of how to start a secured SAS/SHARE server follows:

%let tcpsec=_secure_;
options comamid=tcp netencryptalgorithm=ssl;
options sslcertiss="Glenn’s CA";
options sslcertserial="0a1dcfa3000000000015";
proc server id=shrserv;
run;

The following contains a list of tasks for starting a server and the SAS option or
statement that is used for each task.

Table 3.7 Server Start-Up Tasks

Server Start-Up Tasks SAS Options and Statements

Secure the server TCPSEC= _SECURE_

Specify the TCP/IP access method COMAMID=tcp

Specify SSL as the encryption algorithm NETENCRALG=SSL

Specify the name of the issuer of the digital
certificate that SSL should use.

SSLCERTISS="Glenn’s CA"

Specify the serial number of the digital
certificate that SSL should use.

SSLCERTSERIAL="0a1dcfa3000000000015"

Start the server PROC SERVER ID=shrserv;

SAS/SHARE Client Access of a SAS/SHARE Server
After a SAS/SHARE server has been started, the client can access it.
An example of how to make a client connection to a secured SAS/SHARE server

follows:

28 SAS/SECURE for the IOM Bridge: Examples � Chapter 3

options comamid=tcp;
%let machine=apex.server.com;
libname a ’.’ server=machine.shrserv user=_prompt_;

The following contains a list of tasks for accessing a server from a client and the SAS
option that is used for each task.

Table 3.8 Tasks for Accessing a SAS/SHARE Server from a Client

Client Access Tasks SAS Options

Specify the TCP/IP access method COMAMID=tcp

Specify the machine and server to connect to SERVER=machine.shrserv

Prompt for the user ID and password to be used
for authenticating the client to the server

USER=_PROMPT_

The server-ID and the server’s Common Name, which was specified in the server’s
certificate, must be identical.

SAS/SECURE for the IOM Bridge: Examples

IOM Bridge Encryption Configuration
The IOM Bridge for SAS clients can use SAS/SECURE to encrypt network data

between SAS and its clients.
SAS/SECURE must be installed at the SAS server and at the SAS client. SAS clients

include COM clients and Java clients.
You can configure encryption properties in either metadata or in code.
� “IOM Bridge for SAS Clients: Metadata Configuration” on page 28
� “IOM Bridge for COM: Configuration in Code” on page 29
� “IOM Bridge for Java: Configuration in Code” on page 29

IOM Bridge for SAS Clients: Metadata Configuration
In order to connect a SAS client to a SAS server, the CreateObjectByLogicalName

function must obtain encryption information from metadata that is stored in the
metadata repository. SAS Management Console can be used to configure encryption
properties into the metadata repository, as follows:

Required encryption level
In SAS Management Console, follow this path:

<Connection> � Options � Encryption � Required Encryption Level

Valid values for required encryption levels are:

None
No encryption

Credentials
Only user credentials (ID and password) are encrypted. This is the default.

Everything

Data Security Technologies: Examples � IOM Bridge for Java: Configuration in Code 29

All client/server transfers, including credentials, are encrypted.

Server encryption algorithm
In SAS Management Console, follow this path:

<Connection> � Options � Advanced Options � Encryption �
Server � Encryption Algorithms

Valid values for server encryption algorithms are: RC2, RC4, DES,
TRIPLEDES, and SASPROPRIETARY (the default).

For complete details about using SAS Management Console to configure the IOM
Bridge, visit supportexp.unx.sas.com/rnd/itech/doc9/admin_oma/sasserver/
iombridge.

IOM Bridge for COM: Configuration in Code
When using the CreateObjectByServer function to connect a Windows client to a SAS

server, specify the following properties in your client code in the ServerDef object:
� BridgeEncryptionLevel
� BridgeEncryptionAlgorithm

An example follows:

obServerDef.BridgeEncryptionLevel=EncryptAll;
obServerDef.BridgeEncryptionAlgorithm="TripleDes";

EncryptAll
causes all data, including credentials (user IDs and passwords), to be encrypted in
client/server transfers.

TripleDes
is the specific encryption algorithm to be applied to data transfers.

For a complete list of encryption values, see the SAS Object Manager class reference
(sasoman.chm).

IOM Bridge for Java: Configuration in Code
When using the BridgeServer object to connect a Java client to a SAS server, use the

following functions to specify your encryption settings:
� setEncryptionContent
� setEncryptionAlgorithms
� setEncryptionPolicy

An example follows:

obBridgeServer.setEncryptionContent(BridgeServer.ENCRYPTION_CONTENT_ALL);
obBridgeServer.setEncryptionAlgorithms(BridgeServer.ENCRYPTION_ALGORITHM_TRIPLEDES);
obBridgeServer.setEncryptionPolicy(BridgeServer.ENCRYPTION_POLICY_REQUIRED);

ENCRYPTION_CONTENT_ALL
causes all data, including credentials (user ID and password), to be encrypted in
client/server transfers.

ENCRYPTION_ALGORITHM_TripleDes

30 SSH Tunnel for SAS/CONNECT: Example � Chapter 3

is the specific encryption algorithm to be applied to data transfers.

ENCRYPTION_POLICY_REQUIRED
specifies that encryption is required. If the server does not support encryption, the
connection fails.

For a complete list of encryption values, see the Java reference for
com.sas.services.connection at www.support.sas.com.

SSH Tunnel for SAS/CONNECT: Example

Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server
An example follows of code for starting a UNIX spawner program that runs on a

server that SAS/CONNECT clients connect to:

sastcpd -service 4321

The UNIX spawner is started and is listening on destination port 4321. For complete
details about starting a UNIX spawner, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a UNIX Spawner on a SAS/
CONNECT Server

After the UNIX spawner has been started on a SAS/CONNECT server, a SAS/
CONNECT client can connect to it.

An example of code for setting up an SSH tunnel using OpenSSH and making a client
connection to the UNIX spawner that is running on a SAS/CONNECT server follows:

ssh -N -L 5555:SSH-client-computer:4321 SSH-server-computer

The SSH command is entered in the command line. The SSH software is started on
the computer on which the SSH client will run. The SSH client’s listen port is defined
as 5555. The SAS/CONNECT client will access the SSH client’s listen port that is
tunneled to the UNIX spawner, which runs on destination port 4321.

%let sshhost=SSH-client-computer 5555;
signon sshhost;

In SAS, the macro variable SSHHOST is assigned to the SSH client computer and its
listen port 5555. A signon is specified to a SAS/CONNECT client at listen port 5555.
The SSH client forwards the request from port 5555 through an encrypted tunnel to the
SSH server, which forwards the request to the UNIX spawner that is listening on
destination port 4321.

SSH Tunnel for SAS/SHARE: Example

Start-up of a Multi-User SAS/SHARE Server
An example of code for starting a SAS/SHARE server follows:

Data Security Technologies: Examples � SAS/SHARE Client Access of a SAS/SHARE Server 31

proc server id=_4321; run;

A SAS/SHARE server is started and is ready to receive requests on destination port
4321.

SAS/SHARE Client Access of a SAS/SHARE Server
An example follows of code for setting up an SSH tunnel and making a client

connection to a SAS/SHARE server:

ssh -N -L 5555:SSH-client-computer:4321 SSH-server-computer

The SSH command is entered in the command line. The SSH software is started on
the computer on which the SSH client will run. The SSH client’s listen port is defined
as 5555. The SAS/SHARE client will access the SSH client’s listen port that gets
tunneled to the SAS/SHARE server, which runs on destination port 4321.

%let sshhost=SSH-client-computer 5555;
libname orion ’.’ server=sshhost;

In SAS, the macro variable SSHHOST is assigned to the SSH client computer and its
listen port 5555. A LIBNAME statement is specified to access the library that is located
on the SAS/SHARE server. The SSH client forwards the request from port 5555
through an encrypted tunnel to the SSH server, which forwards the request to
destination port 4321 on the SAS/SHARE server.

32

33

P A R T2

Installing and Configuring SSL

Appendix 1.Installing and Configuring SSL under UNIX 35

Appendix 2.Installing and Configuring SSL under Windows 41

34

35

A P P E N D I X

1
Installing and Configuring SSL
under UNIX

SSL under UNIX: System and Software Requirements 35
Setting Up Digital Certificates for SSL under UNIX 36

Step 1. Download and Build SSL 36

Step 2. Create a Digital Certificate Request 36

Step 3. Generate a Digital Certificate from the Request 37

Step 4. View Digital Certificates 39
Step 5. End OpenSSL 39

Step 6. Create a CA Trust List for the SSL Client Application 39

Converting between PEM and DER File Formats for SSL 40

SSL under UNIX: System and Software Requirements
The system and software requirements for using SSL under UNIX operating

environments are:

� A computer that runs UNIX.
� Internet access and a Web browser such as Netscape Navigator or Internet

Explorer.

� The TCP/IP communications access method.
� Access to the OpenSSL utility at www.openssl.org/source if you plan to use the

OpenSSL CA.

� Knowledge of your site’s security policy, practices, and technology. The properties
of the digital certificates that you request are based on the security policies that
have been adopted at your site.

36 Setting Up Digital Certificates for SSL under UNIX � Appendix 1

Setting Up Digital Certificates for SSL under UNIX
Perform the following tasks to set up and use SSL:
1 Download and build SSL
2 Create a digital certificate request
3 Generate a digital certificate from the request
4 View digital certificates
5 End OpenSSL
6 Create a CA trust list for the SSL client application.

Step 1. Download and Build SSL
If you want to use OpenSSL as your trusted Certification Authority (CA), follow the

instructions for downloading and building OpenSSL that are given at
www.openssl.org/source. For complete documentation about the OpenSSL utility,
visit www.openssl.org/docs/apps/openssl.html.

Information about alternative CAs and their Web sites follows:
� For VeriSign, see www.verisign.com
� For Thawte, see www.thawte.com

Step 2. Create a Digital Certificate Request
The tasks that you perform to request a digital certificate for the CA, the server, and

the client are similar; however, the values that you specify will be different.
In this example, Proton, Inc. is the organization that is applying to become a CA by

using OpenSSL. After Proton, Inc. becomes a CA, it can serve as a CA for issuing
digital certificates to clients (users) and servers on its network.

Perform the following tasks:
1 Select the apps subdirectory of the directory where OpenSSL was built.
2 Initialize OpenSSL.

$ openssl

3 Issue the appropriate command to request a digital certificate.

Table A1.1 Open SSL Commands for Requesting a Digital Certificate

Request Certificate
for

OpenSSL Command

CA req -config ./openssl.cnf -new -out sas.req -keyout saskey.pem -nodes

Server req -config ./openssl.cnf -new -out server.req -keyout serverkey.pem

Client req -config ./openssl.cnf -new -out client.req -keyout clientkey.pem

Table A1.2 Arguments and Values Used in OpenSSL Commands

OpenSSL Arguments and
Values

Functions

req requests a certificate

-config ./openssl.cnf specifies the storage location for the configuration details
for the OpenSSL program

Installing and Configuring SSL under UNIX � Step 3. Generate a Digital Certificate from the Request 37

OpenSSL Arguments and
Values

Functions

-new identifies the request as new

-out sas.req specifies the storage location for the certificate request

-keyout saskey.pem specifies the storage location for the private key

-nodes prevents the private key from being encrypted

4 Informational messages are displayed and prompts for additional information
appear according to the specific request.

To accept a default value, press the Return key. To change a default value, type
the appropriate information and press the Return key.

Note: Unless the -NODES option is used in the OpenSSL command when
creating a digital certificate request, OpenSSL will prompt you for a password
before allowing access to the private key. �

The following is an example of a request for a digital certificate:
OpenSSL> req -config ./openssl.cnf -new -out sas.req -keyout saskey.pem -nodes
Using configuration from ./openssl.cnf
Generating a 1024 bit RSA private key
............................++++++
..++++++
writing new private key to ’saskey.pem’

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [North Carolina]:
Locality Name (city) [Cary]:
Organization Name (company) [Proton Inc.]:
Organizational Unit Name (department) [IDB]:
Common Name (YOUR name) []: proton.com
Email Address []:Joe.Bass@proton.com
Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
OpenSSL>

The request for a digital certificate is complete.

Note: For the server, the Common Name must be the name of the computer that the
server runs on; for example, apex.serv.com. �

Step 3. Generate a Digital Certificate from the Request
Perform the following tasks to generate a digital certificate for a CA, a server, and a

client.

38 Step 3. Generate a Digital Certificate from the Request � Appendix 1

1 Issue the appropriate command to generate a digital certificate from the digital
certificate request.

Table A1.3 OpenSSL Commands for Generating Digital Certificates under UNIX

Generate Certificate for OpenSSL Command

CA x509 req -in sas.req -signkey saskey.pem -out sas.pem

Server ca -config ./openssl.cnf -in server.req -out server.pem

Client ca -config ./openssl.cnf -in client.req -out client.pem

The functions performed by the OpenSSL arguments and values follow.

Table A1.4 Arguments and Values Used in OpenSSL Commands under UNIX

OpenSSL Arguments and Values Functions

x509 identifies the certificate display and signing
utility

req specifies that a certificate be generated from
the request

ca identifies the Certification Authority utility

-config ./openssl.cnf specifies the storage location for the
configuration details for the OpenSSL utility

-in filename.req specifies the storage location for the input for
the certificate request

-out filename.pem specifies the storage location for the certificate

-signkey saskey.pem specifies the private key that will be used to
sign the certificate that is generated by the
certificate request

2 Informational messages are displayed and prompts for additional information
appear according to the specific request.

To accept a default value, press the Return key. To change a default value, type
the appropriate information, and press the Return key.

Sample dialog for creating a server digital certificate follows:

Note: The password is for the CA’s private key. �
Using configuration from ./openssl.cnf
Enter PEM pass phrase: password
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:’US’
stateOrProvinceName :PRINTABLE:’NC’
localityName :PRINTABLE:’Cary’
organizationName :PRINTABLE:’Proton, Inc.’
organizationalUnitName:PRINTABLE:’IDB’
commonName :PRINTABLE:’proton.com’
Certificate is to be certified until Oct 16 17:48:27 2003 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y

Installing and Configuring SSL under UNIX � Step 6. Create a CA Trust List for the SSL Client Application 39

Write out database with 1 new entries Data Base Updated

The subject’s Distinguished Name is obtained from the digital certificate request.
A root CA digital certificate is self-signed, which means that the digital

certificate is signed with the private key that corresponds to the public key that is
in the digital certificate. Except for root CAs, digital certificates are usually signed
with a private key that corresponds to a public key that belongs to someone else,
usually the CA.

The generation of a digital certificate is complete.

Step 4. View Digital Certificates
To view a digital certificate, issue the following command:

openssl> x509 -text -in filename.pem

A digital certificate contains data that was collected to generate the digital certificate
timestamps, a digital signature, and other information. However, because the generated
digital certificate is encoded (usually in PEM format), it is unreadable.

Step 5. End OpenSSL
To end OpenSSL, type quit at the prompt.

Step 6. Create a CA Trust List for the SSL Client Application
After generating a digital certificate for the CA, the server, and the client (optional),

you must identify for the OpenSSL client application one or more CAs that are to be
trusted. This list is called a trust list.

If there is only one CA to trust, in the client application, specify the name of the file
that contains the OpenSSL CA digital certificate.

If multiple CAs are to be trusted, create a new file and copy-and-paste into it the
contents of all the digital certificates for CAs to be trusted by the client application.

Use the following template to create a CA trust list:

Certificate for OpenSSL CA

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

Certificate for Keon CA

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

Certificate for Microsoft CA

40 Converting between PEM and DER File Formats for SSL � Appendix 1

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

Because the digital certificate is encoded, it is unreadable. Therefore, the content of
the digital certificate in this example is represented as <PEM encoded certificate> .
The content of each digital certificate is delimited with a -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- pair. All text outside the
delimiters is ignored. Therefore, you might want to use undelimited lines for
descriptive comments. In the preceding template, the file that is used contains the
content of digital certificates for the CAs: OpenSSL, Keon, and Microsoft.

Note: If you are including a digital certificate that is stored in DER format, you
must first convert it to PEM format. For more information, see “Converting between
PEM and DER File Formats for SSL” on page 45. �

Converting between PEM and DER File Formats for SSL

By default, OpenSSL files are created in PEM (Privacy Enhanced Mail) format. SSL
files that are created in Windows operating environments are created in DER
(Distinguished Encoding Rules) format.

Under Windows, you can import a file that is created in either PEM or DER format.
However, a digital certificate that is created in DER format must be converted to PEM
format before it can be included in a trust list under UNIX.

An example of converting a server digital certificate from PEM input format to DER
output format follows:

OpenSSL> x509 -inform PEM -outform DER -in server.pem -out server.der

An example of converting a server digital certificate from DER input format to PEM
output format follows:

OpenSSL> x509 -inform DER -outform PEM -in server.der -out server.pem

41

A P P E N D I X

2
Installing and Configuring SSL
under Windows

SSL under Windows: System and Software Requirements 41
Setting Up Digital Certificates for SSL under Windows 41

Step 1. Configure SSL 42

Step 2. Request a Digital Certificate 42

Request a Digital Certificate from the Microsoft Certification Authority 42

Request a Digital Certificate from a Certification Authority That Is Not Microsoft 43
Import a Digital Certificate to a Certificate Store 43

Converting between PEM and DER File Formats for SSL 45

SSL under Windows: System and Software Requirements

The system and software requirements for using SSL under the Windows operating
environment are:

� A computer that runs Windows 2000 (or later).

� Depending on your configuration, it might be useful to have access to the Internet
and a Web browser such as Netscape Navigator or Internet Explorer.

� The TCP/IP communications access method.

� Microsoft Certificate Services add-on software.

� If you will run your own CA, the Microsoft Certification Authority application
(which is accessible from your Web browser).

� For SAS/CONNECT, in order for a SAS/CONNECT client session to connect to a
SAS/CONNECT server session via a Windows spawner using SSL encryption,
ensure that the client session runs on a computer that has a Trusted CA
Certificate.

The Windows spawner must run on a computer that has a Trusted CA
Certificate and a Personal Certificate.

� Knowledge of your site’s security policy, practices, and technology. The properties
of the digital certificates that you request will depend on the security policies that
have been adopted at your site.

Setting Up Digital Certificates for SSL under Windows

Perform the following tasks to set up digital certificates for SSL:

� Configure SSL

� Request a digital certificate.

42 Step 1. Configure SSL � Appendix 2

Step 1. Configure SSL
Complete information about configuring your Windows operating environment for

SSL is contained in the Windows installation documentation and at
www.microsoft.com.

The following keywords might be helpful when searching the Microsoft Web site:
� digital certificate services
� digital certificate authority
� digital certificate request
� site security planning.

Step 2. Request a Digital Certificate
The method of requesting a digital certificate depends on the CA that you use:
� the Microsoft Certification Authority
� a certification authority that is not Microsoft.

Request a Digital Certificate from the Microsoft Certification Authority
Perform the following tasks to request digital certificates that are issued by the

Microsoft Certification Authority:
1 System administrator: If you are running your own CA, use Microsoft Certificate

Services to create an active Certification Authority (CA).
2 User:

a Use the Certificate Request wizard to request a digital certificate from an
active enterprise CA. The Certificate Request wizard lists all digital
certificate types that the user can install.

b Select a digital certificate type.
c Select security options.
d Submit the request to an active CA that is configured to issue the digital

certificate.
After the CA issues the requested digital certificate, the digital certificate

is automatically installed in the Certificate Store. The installed digital
certificate is highlighted, as shown in Display A2.1 on page 43.

Installing and Configuring SSL under Windows � Step 2. Request a Digital Certificate 43

Display A2.1 Digital Certificate Installation in the Certificate Store

Request a Digital Certificate from a Certification Authority That Is Not
Microsoft

Users, perform the following tasks to request digital certificates that are not issued
by the Microsoft CA:

1 Request a digital certificate from a CA.

2 Import the digital certificate to a Certificate Store by using the Certificate
Manager Import wizard application from a Web browser.

A digital certificate can be generated by using the Certificate Request wizard or
any third-party application that generates digital certificates.

Note: The Windows operating environment can import digital certificates that
were generated in the UNIX operating environment. To convert from UNIX (PEM
format) to Windows (DER format) before importing, see “Converting between PEM
and DER File Formats for SSL” on page 45. �

For details about importing existing digital certificates, see “Import a Digital
Certificate to a Certificate Store” on page 43.

Import a Digital Certificate to a Certificate Store
Digital certificates that were issued by a Certification Authority that is not Microsoft

can be imported to an appropriate Certificate Store, as follows:

Certificate Type Certificate Storage Location

Client Personal Certificate Store

Server Personal Certificate Store

CA (self-signed) Trusted Root Certification Authorities

Perform the following tasks to import a digital certificate to a Certificate Store:

44 Step 2. Request a Digital Certificate � Appendix 2

1 Access the Certificate Manager Import wizard application from your Web browser.
From the Tools drop-down menu, select
Internet Options � Content tab � Certificates button

Specify the digital certificate to import to a Certificate Store by selecting the
Personal tab in the Certificates window, as shown in Display A2.2 on page 44.

Display A2.2 Digital Certificate Selections for a Personal Certificate Store

2 Click Import... and follow the instructions to import digital certificates.
Repeat this task in order to import the necessary digital certificates for the CA,

the server, and the client, as appropriate.
3 After you have completed the selections for your personal Certificate Store, select

the appropriate tab to view your selections.
4 To view the details about a digital certificate, select the digital certificate and click

View . Typical results are shown in Display A2.3 on page 45.

Installing and Configuring SSL under Windows � Converting between PEM and DER File Formats for SSL 45

Display A2.3 Digital Certificate Details Tab

Converting between PEM and DER File Formats for SSL

By default, OpenSSL files are created in PEM (Privacy Enhanced Mail) format. SSL
files that are created in Windows operating environments are created in DER
(Distinguished Encoding Rules) format.

Under Windows, you can import a file that is created in either PEM or DER format.
However, a digital certificate that is created in DER format must be converted to PEM
format before it can be included in a trust list under UNIX.

An example of converting a server digital certificate from PEM input format to DER
output format follows:

OpenSSL> x509 -inform PEM -outform DER -in server.pem -out server.der

An example of converting a server digital certificate from DER input format to PEM
output format follows:

OpenSSL> x509 -inform DER -outform PEM -in server.der -out server.pem

46

47

Glossary

authentication
the process of verifying the identity of a person or process within the guidelines of a
specific security policy.

block cipher
a type of encryption algorithm that divides a message into blocks and encrypts each
block. See also stream cipher.

Certificate Revocation List
See CRL (Certificate Revocation List).

Certification Authority
a commercial or private organization that provides security services to the
e-commerce market. A Certification Authority creates and maintains digital
certificates, which help to preserve the confidentiality of an identity. Microsoft,
VeriSign, and Thawte are examples of commercial Certification Authorities.

ciphertext
unintelligible data. See also encryption.

CRL (Certificate Revocation List)
a list of revoked digital certificates. CRLs are published by Certification Authorities
(CAs), and a CRL contains only the revoked digital certificates that were issued by a
specific CA.

cryptography
the science of encoding and decoding information to protect its confidentiality. See
also encryption.

data security technologies
software features that protect data that is exchanged in client/server data transfers
across a network.

DER (Distinguished Encoding Rules)
a format that is used for creating SSL files in Windows operating environments.

digital certificate
an electronic document that binds a public key to an individual or an organization. A
digital certificate usually contains a public key, a user’s name, an expiration date,
and the name of a Certification Authority.

digital signature

48 Glossary

a digital code that is appended to a message. The digital signature is used to verify
to a recipient that the message was sent by a particular business, organization, or
individual, and that the message has not been changed en route. The message can be
any kind of file that is transmitted electronically.

encryption
the act of transforming intelligible data (plaintext) into an unintelligible form
(ciphertext) by means of a mathematical process.

PEM (Privacy Enhanced Mail)
a format that is used for creating OpenSSL files.

plaintext
intelligible data. See also encryption, ciphertext.

port forwarding
See SSH tunnel.

private key
a number that is known only to its owner. The owner uses the private key to read
(decrypt) an encrypted message. See also public key, encryption.

public key
a number that is associated with a specific entity such as an individual or an
organization. A public key can be known by everyone who needs to have trusted
interactions with that entity. A public key is always associated with a single private
key, and can be used to verify digital signatures that were generated using that
private key.

public-key cryptography
the science that uses public and private key pairs to protect confidential information.
The public key can be known by anyone. The private key is known only to the owner
of the key pair. The public key is used primarily for encryption, but it can also be
used to verify digital signatures. The private key is used primarily for decryption,
but it can also be used to generate a digital signature.

SAS/SECURE
an add-on product that uses the RC2, RC4, DES, and TripleDES encryption
algorithms. SAS/SECURE requires a license, and it must be installed on each
computer that runs a client and a server that will use the encryption algorithms.
SAS/SECURE provides a high level of security.

SASProprietary algorithm
a fixed encoding algorithm that is included with Base SAS software. The
SASProprietary algorithm requires no additional SAS product licenses. It provides a
medium level of security.

Secure Shell (SSH)
a protocol that enables users to access a remote computer via a secure connection.
SSH is available through various commercial products and as freeware. OpenSSH is
a free version of the SSH protocol suite of network connectivity tools. See also SSH
tunnel.

Secure Sockets Layer
See SSL (Secure Sockets Layer).

SSH (Secure Shell)
See Secure Shell (SSH).

SSH tunnel
a secure, encrypted connection between the SSH client, which runs on the same
computer as a SAS client, and an SSH server, which runs on the same computer as a

Glossary 49

SAS server. The SSH client and server act as agents between the SAS client and the
SAS server, tunneling information via the SAS client’s port to the SAS server’s port.
Port forwarding is another term for tunneling. See also Secure Shell (SSH).

SSL (Secure Sockets Layer)
a protocol that provides network security and privacy. Developed by Netscape
Communications, SSL uses encryption algorithms that include RC2, RC4, DES,
TripleDES, IDEA, MD5, and others. SSL provides a high level of security.

stream cipher
a type of encryption algorithm that encrypts data one byte at a time. See also block
cipher.

TLS (Transport Layer Security)
the successor to Secure Sockets Layer (SSL) V3.0. The Internet Engineering Task
Force (IETF) adopted SSL V3.0 as the de facto standard, made some modifications,
and renamed it TLS. TLS is virtually SSLV3.1. See also SSL (Secure Sockets Layer).

trust list
a file created by a user that contains the digital certificates for Certification
Authorities, if more than one Certification Authority is used.

50

Index 51

Index

A
authentication 4

client authentication 18
digital certificate for 16

B
block cipher 8

C
Certificate Revocation List (CRL) 18

location of 19
Certificate Store

importing digital certificate to 43
certification authorities (CAs) 6

digital certificate location 15
trust lists 39

client authentication 18
COM

SAS/SECURE for IOM Bridge example 29
CryptoAPI 5

D
data security technologies 3

comparing features 9
encryption providers 4
examples 21
implementing 10

data transfers
encrypting 11
encryption algorithm 12
key length for encryption 14

decryption
private keys 20

DER (Distinguished Encoding Rules) format 40
Windows 45

DES (Data Encryption Standard) 9
SAS/SECURE and 5

digital certificates 6
Certificate Revocation List (CRL) 18
converting between PEM and DER for-

mats 40, 45
importing to Certificate Store 43
location, for authentication 16

location for certification authorities 15
name of issuer 15
OpenSSL under UNIX 36
private key location 20
requesting from Microsoft Certification Author-

ity 42
serial number of 17
SSL under UNIX 36
SSL under Windows 41
subject name of 17
viewing 39

digital signatures 6

E
encryption 3

data transfers 11
decrypting private keys 20
key length for data transfers 14
SAS/CONNECT example 21
SAS/SECURE for IOM Bridge example 28
SAS/SHARE example 22

encryption algorithms 8
data transfers 12
DES 9
IDEA 9
MD5 9
RC2 8
RC4 9
SAS/SECURE 5
SASProprietary 9
TripleDES 9

encryption providers 4
comparing 9
SAS/SECURE 4
SASProprietary 4
SSL 5

I
IDEA (International Data Encryption Algo-

rithm) 9
implementation 10
IOM Bridge

SAS/SECURE examples 28

J
Java

SAS/SECURE for IOM Bridge example 29

K
key length

encrypting data transfers 14

M
MD5 (Message Digest) algorithm 9
metadata configuration

SAS/SECURE for IOM Bridge example 28
Microsoft Certification Authority

requesting digital certificate from 42
Microsoft CryptoAPI 5

N
NETENCRYPT system option 11
NETENCRYPTALGORITHM= system op-

tion 12
NETENCRYPTKEYLEN= system option 14

O
OpenSSL

arguments and values under UNIX 36, 38
converting between PEM and DER for-

mats 40, 45
digital certificates 36
ending 39
SSL under UNIX 36

P
passwords

decrypting private keys 20
PEM (Privacy Enhanced Mail) format 40
private keys 6

location of 20
password for decrypting 20

52 Index

public keys 6

R
RC2 algorithm 8

key length for data transfers 14

SAS/SECURE and 5
RC4 algorithm 9

key length for data transfers 14
SAS/SECURE and 5

S
SAS/CONNECT

encryption example 21
SAS/SECURE example 21

server example 22

UNIX spawner example 23
Windows spawner example 24

SAS/SECURE
comparison 9

configuration 5

DES 5
encryption algorithms 5

encryption services 4
export restrictions 5

installation 5

IOM Bridge examples 28
RC2 algorithm 5

RC4 algorithm 5
SAS/CONNECT example 21

system requirements 4

TripleDES 5
UNIX and 4

Windows and 5
z/OS and 5

SAS/SHARE

encryption example 22
SASProprietary example 22

SSL under UNIX example 26
SSL under Windows examples 27

SASProprietary

comparison 9

configuration 4
encryption algorithm 9

encryption services 4

installation 4

SAS/SHARE example 22

system requirements 4

serial numbers

digital certificates 17

servers

client authentication 18
SAS/CONNECT example 22

software requirements

SSL under UNIX 35

SSL under Windows 41

spawners

SAS/CONNECT UNIX example 23

SAS/CONNECT Windows example 24

SSL (Secure Sockets Layer)

certification authorities (CAs) 6
comparison 9

configuration 7

digital certificates 6

digital signatures 6

encryption services 5

installation 7

private key decryption 20

public and private keys 6

SAS/SHARE under UNIX example 26
SAS/SHARE under Windows examples 27

system requirements 6

trusted certification authorities 15

under UNIX 35

under Windows 41

SSLCALISTLOC= system option 15

SSLCERTISS= system option 15

SSLCERTLOC= system option 16
SSLCERTSERIAL= system option 17

SSLCERTSUBJ= system option 17

SSLCLIENTAUTH system option 18

SSLCRLCHECK system option 18

SSLCRLLOC= system option 19

SSLPVTKEYLOC= system option 20

SSLPVTKEYPASS= system option 20

stream cipher 9

system requirements
SAS/SECURE 4

SASProprietary 4
SSL 6

SSL under UNIX 35
SSL under Windows 41

T
TripleDES algorithm 9

SAS/SECURE and 5

trust lists
SSL under UNIX 39

U
UNIX

converting between PEM and DER for-
mats 40

digital certificates 36
SAS/CONNECT spawner example 23

SAS/SECURE and 4
SSL for SAS/SHARE example 26

SSL system and software requirements 35
SSL under 35

W
Windows

converting between PEM and DER for-
mats 45

digital certificates 41
SAS/CONNECT spawner example 24

SAS/SECURE and 5
SSL for SAS/SHARE examples 27

SSL system and software requirements 41
SSL under 41

Z
z/OS

SAS/SECURE and 5

Your Turn

If you have comments or suggestions about Data Security Technologies in SAS ® 9.1.3,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview of Data Security Technologies
	Details about Data Security Technologies
	Note:

	SAS/SECURE SSL Add-In Package
	SSH Functionality

	Data Security Technologies in SAS 9.1.3
	Technologies for Data Security
	Data Security Technologies: Overview
	Providers of Data Security Technologies
	SASProprietary
	SAS/SECURE
	Secure Sockets Layer (SSL)
	SSH (Secure Shell)

	Data Encryption Algorithms
	Data Security Technologies: Comparison
	Data Security Technologies: Implementation

	SAS System Options for Data Security
	Data Security Technologies: Examples
	SAS/SECURE for SAS/CONNECT: Example
	SAS/CONNECT Client under UNIX
	SAS/CONNECT Server under UNIX

	SASProprietary for SAS/SHARE: Example
	SAS/SHARE Client
	SAS/SHARE Server

	SSL for a SAS/CONNECT UNIX Spawner: Example
	Startup of a UNIX Spawner on a SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a UNIX Spawner

	SSL for a SAS/CONNECT Windows Spawner: Example
	Startup of a Windows Spawner on a Single-User SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a Windows Spawner on a SAS/ CONNECT Server

	SSL for SAS/SHARE under UNIX: Example
	Startup of a Multi-User SAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	SSL for SAS/SHARE under Windows: Examples
	Startup of a Multi-User SAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	SAS/SECURE for the IOM Bridge: Examples
	IOM Bridge Encryption Configuration
	IOM Bridge for SAS Clients: Metadata Configuration
	IOM Bridge for COM: Configuration in Code
	IOM Bridge for Java: Configuration in Code

	SSH Tunnel for SAS/CONNECT: Example
	Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a UNIX Spawner on a SAS/ CONNECT Server

	SSH Tunnel for SAS/SHARE: Example
	Start-up of a Multi-User SAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	Installing and Configuring SSL
	Installing and Configuring SSL under UNIX
	SSL under UNIX: System and Software Requirements
	Setting Up Digital Certificates for SSL under UNIX
	Step 1. Download and Build SSL
	Step 2. Create a Digital Certificate Request
	Step 3. Generate a Digital Certificate from the Request
	Step 4. View Digital Certificates
	Step 5. End OpenSSL
	Step 6. Create a CA Trust List for the SSL Client Application

	Converting between PEM and DER File Formats for SSL

	Installing and Configuring SSL under Windows
	SSL under Windows: System and Software Requirements
	Setting Up Digital Certificates for SSL under Windows
	Step 1. Configure SSL
	Step 2. Request a Digital Certificate

	Converting between PEM and DER File Formats for SSL

	Glossary
	Index

