
Getting Started with
SAS/AF® and Frames

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006.
Getting Started with SAS/AF® and Frames. Cary, NC: SAS Institute Inc.

Getting Started with SAS/AF® and Frames
Copyright © 2006, SAS Institute Inc., Cary, NC, USA
ISBN-13: 978–1-59047-844-8
ISBN-10: 1-59047-844-4
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, June 2006
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

P A R T 1 The SAS/AF Development Environment 1

Chapter 1 � Introduction to SAS/AF Software 3
Overview of SAS/AF Software 3

Purpose of This Document 3

Getting More Information 4

Software Requirements 4

Chapter 2 � The Building Blocks of Frame Applications 5
Components, Controls, and Models 5

The SAS/AF Development Environment 6

A Simple Methodology for Frame Development 9

Using Models 9

Chapter 3 � Adding SCL Programs to Frames 11
SAS Component Language (SCL) 11

The Fundamentals of Frame SCL 13

Dot Notation and SCL 14

Controlling the Execution of SCL Programs 16

Calling Other Frames 16

Saving Frame SCL Programs 17

Compiling Applications 17

Testing Applications 18

Chapter 4 � Build a Frame Application 19
Overview of the Frame Application 19

Build the Display_data Frame 20

Build the Create_report Frame 29

Build the Start_menu Frame 36

P A R T 2 Appendixes 41

Appendix 1 � Defining Attachments 43
Understanding Attachments 43

Define Attachments That Resize the Table Viewer 48

Test the Table Viewer Attachments 50

Define Attachments That Move the Close Window Button 51

Appendix 2 � Deploying Applications 55
Launching an Application 55

Appendix 3 � Defining a Subclass 59

iv

Subclassing 59

Create a Close Window Button Subclass 59

Overriding Attributes 60

Add the Close Window Button Class to the Components Window 61

Test the New Close Window Button 62

Glossary 63

Index 67

1

P A R T1

The SAS/AF Development Environment

Chapter 1.Introduction to SAS/AF Software 3

Chapter 2.The Building Blocks of Frame Applications 5

Chapter 3.Adding SCL Programs to Frames 11

Chapter 4.Build a Frame Application 19

2

3

C H A P T E R

1
Introduction to SAS/AF Software

Overview of SAS/AF Software 3
Purpose of This Document 3

Getting More Information 4

Help 4

Documentation Available on the Web 4

Software Requirements 4
Mainframe Support 4

Overview of SAS/AF Software
SAS/AF software is a set of tools for developing applications. Central to the SAS/AF

development environment is the frame. You can think of a frame as an application
window that contains the interface (the fields and buttons) of your application. With
SAS/AF frame application development, you can build much of your application
visually, using drag-and-drop components. And because SAS/AF applications are stored
in SAS catalogs, they are portable to all SAS software platforms.

Purpose of This Document
This document is an introduction to the SAS/AF development environment. It guides

you through the basic skills that you need to build a simple frame application. It also
gives you a foundation with which you can transition to the larger reference manuals
that fully cover SAS/AF software.

Although this document is intended for new users of SAS/AF, you should be familiar
with basic SAS concepts such as libraries, catalogs, and catalog entries. You do not
need object-oriented programming experience to benefit from this document, but
familiarity with object-oriented concepts will certainly help.

Although specific to SAS/AF in SAS®9, the overall processes that are presented in
this document also apply to versions of SAS/AF software starting with SAS 8.1.

4 Getting More Information � Chapter 1

Getting More Information

Help
Help is always available when you are using the SAS/AF development environment.

To access help, select Help � SAS Help and Documentation, navigate to SAS
Products and then navigate to SAS/AF.

You can also get help on most windows and dialog boxes inside SAS/AF by pressing
the F1 key when the window or dialog box is the active window, or by selecting Help �
Using This Window.

To access Help on a component in the Components window, right-click on the
component, and then select Help on Class.

Documentation Available on the Web
SAS documentation, available in HTML or PDF, is available on the Web at

http://support.sas.com/documentation/onlinedoc/.
The following books offer more information about developing applications using

SAS/AF software:
� SAS Guide to Applications Development, Second Edition

� SAS Component Language 9.1: Reference

� SAS/AF 9.1 Procedure Guide

The text of all three of these books is also available in the SAS/AF help.

Software Requirements

To build the frame applications in this document, you must have SAS/AF software
installed, and you must have a monitor that is capable of displaying graphics. To run
the frame applications in this document, you must have Base SAS software.

Mainframe Support
SAS/AF does not support frame application development on a mainframe. However,

you can build a frame application on another platform and then port that application to
a mainframe platform (see “Native Controls” on page 5).

5

C H A P T E R

2
The Building Blocks of Frame
Applications

Components, Controls, and Models 5
Native Controls 5

The SAS/AF Development Environment 6

The Frame 6

The Components Window 7

The Properties Window 7
The Source Window 8

A Simple Methodology for Frame Development 9

Using Models 9

Components, Controls, and Models

Components are pieces of software that you can use to build applications. SAS/AF
provides several components that enable you to build graphical user interfaces and then
link those interfaces to data. There are two basic types of components: controls and
models.

Controls constitute the graphical user interface, and include interface elements that
you have seen in Web forms like Check Boxes, List Boxes, and Entry Fields. There are
also controls that are specific to SAS/AF such as the Table Viewer (which displays SAS
table data).

Models are another type of component. In contrast to the controls that are displayed
to the user in the interface, models work behind the scenes to distribute data to
controls. For example, to get a List Box to display a list of SAS libraries, you would
attach a Library List model to the List Box.

Controls are sometimes called visual components, and models are sometimes called
non-visual components. Controls and models are also generically called objects,
especially in the context of object-oriented programming.

Native Controls
The controls that are supplied by SAS always appear as native controls on a

platform, even if you ported your application to that platform. This means that if you
wrote an application on Solaris, and then ported it to Windows XP, the application
would look exactly like other Windows XP applications.

However, if you run a graphical user interface application on a character-based
display (usually on mainframes), the controls (for example, the entry fields and list
boxes) are represented as characters, which means the controls will look different from
the examples in this document.

6 The SAS/AF Development Environment � Chapter 2

The SAS/AF Development Environment
The SAS/AF development environment (also called the build environment) has four

main windows:
� the frame (contained in a Build window)
� the Components window
� the programming source code (in a Source window)
� the Properties window

Display 2.1 Main Windows of the SAS/AF Development Environment

Frame

Components
window

Source
window

Properties
window

The Frame
A frame is where you build the graphical user interface to your application. Frames

are displayed in Build windows. When you save a frame, it is stored as a Frame entry
in a SAS catalog. One application can use several frames, and you can have several
frames open at the same time.

The Building Blocks of Frame Applications � The Properties Window 7

Display 2.2 A Simple Frame at Build Time

The Components Window
The Components window lists commonly used components (controls and models)

that you can drag onto a frame. By default the Components window appears when you
open or create a frame. Alternatively, you can select a type of control and then
double-click on the frame where you want to place it.

Display 2.3 The Components Window (Abbreviated)

To access Help on a component in the Components window, right-click on the
component, and then select Help on Class.

The Properties Window
The Properties window displays all of the properties of all the components on a

frame (including the frame itself). From the Properties window you can view and edit
properties.

8 The Source Window � Chapter 2

Properties are the defining characteristics of a component. Properties are the
attributes, methods, events, and event handlers that are defined on a component.
Although events and event handlers are important for more complex applications, the
example later in this document focuses mainly on attributes and uses only one method.

Attributes define information about a component, such as its name, height, and
width. Methods define what a component can do, such as selecting or deselecting all the
items in a List Box.

You use the Properties window to manipulate properties at build time, and you use
programming code to manipulate properties at run time.

With a frame open, you can open the Properties window by selecting View �

Properties Window. You can also open the Properties window by right-clicking a
component and selecting Properties.

You can open only one Properties window, and that window is shared between all
open frames. The Properties window can only be opened when a frame is open.

Display 2.4 The Properties Window

The Source Window
Source windows contain a text editor for creating and editing programming code.

You can have several Source windows open at the same time. The programming
language that is used in SAS/AF is examined in Chapter 3, “Adding SCL Programs to
Frames,” on page 11.

The Building Blocks of Frame Applications � Using Models 9

Display 2.5 A Source Window

A Simple Methodology for Frame Development
The four main SAS/AF windows structure your work flow. Building a frame

application typically consists of the following steps:
1 Create a frame and add components to it.
2 Modify the properties of the components, if necessary.
3 Add programming code, if necessary.
4 Save, compile if necessary, and test the frame.
5 Repeat steps 2 through 4 until your application works as desired.

Using Models
As previously explained, models access and distribute data to controls which then

display that data. A simple example of how models and controls work together is
populating a List Box with color choices. This is something you might do to let a user
select the colors for a pie chart. You could add by hand to the List Box each of the
standard SAS colors: Black, Blue, Brown, Cyan, Gray, Green, Magenta, Orange, Pink,
Red, White, Yellow. Or you could associate a Color List model with the List Box, and
have the List Box populated for you.

10 Using Models � Chapter 2

Figure 2.1 A Color List Model Supplying a List Box with Available Colors

Color List Model

Just as people can only communicate through a common language, certain models
only work with certain controls. The following table lists the controls and models that
SAS/AF software provides, and which controls and models can be used together. Within
each row of the table, any control on the left can be used with any model on the right.

Controls Models

Combo Box

Dual Selector

List Box

Radio Box

Spin Box

Catalog Entry List

Catalog List

Color List

Data Set List

External File List

Library List

LIST Entry List

SAS File List

SLIST Entry List

Variable List

Variable Values List

Form Viewer

Table Viewer

SAS Data Set

SCL List

For models and controls that are designed to work with each other, all you need to do is
connect them and they automatically communicate with each other. To connect models
and controls at build time, simply drag a model onto a control when you are designing
the frame, and SAS/AF sets the connection for you. You can also connect a model and a
control manually, by setting the control’s model attribute in the Properties window.

The example later in this document uses the following models: Catalog Entry List,
Library List, and the Variable Values List.

11

C H A P T E R

3
Adding SCL Programs to Frames

SAS Component Language (SCL) 11
Frame SCL 12

When Frame SCL Is Not Required 12

When Frame SCL Is Required 13

The Fundamentals of Frame SCL 13

SCL Labeled Sections 13
SCL Variables 14

SCL Routines and Functions 14

Dot Notation and SCL 14

Controlling the Execution of SCL Programs 16

Calling Other Frames 16

Saving Frame SCL Programs 17
Compiling Applications 17

Testing Applications 18

SAS Component Language (SCL)
SAS Component Language (SCL) is the programming language that controls SAS/AF

applications (including frames and the controls on frames).
SCL programs are stored in SCL entries, separately from frames. Because of this

separation, SCL entries can be accessed by more than one frame, which means that an
SCL program or function can be written once and used many times.

SCL is an object-oriented programming language that was designed to facilitate the
development of interactive SAS applications. SCL enables you to perform the following
tasks:

� calculate and validate field values that are based on user input
� change the attributes of components on a frame at run time
� execute methods of components on a frame
� link to other SAS catalog entries, including other SCL entries and frames
� submit SAS programs
� read from and write to SAS tables, SAS catalog entries, and external files

This document does not cover all of these topics. For complete reference information
about SCL, refer to SAS Component Language: Reference (the complete text of which is
also in the SAS/AF help).

12 Frame SCL � Chapter 3

Frame SCL
Frame SCL is an SCL entry that is associated with a particular frame (and is the

only type of SCL that is used in the example later in this document). Frame SCL is
typically used to control a frame and the components on that frame.

For example, in the following diagram, the SCL code that is marked A is the
initialization code for the frame, and executes before the frame is displayed. This code
specifies that the model that is associated with the List Box look in the SASHELP
library for tables. The code that is marked B is executed when a selection is made from
the List Box. When a table is selected, the table is displayed in the Table Viewer.

Display 3.1 Frame SCL Controls a Frame

B

A

You can view and edit the frame SCL for any frame that you have open and active by
selecting View � Frame SCL, or by selecting Frame SCL from the frame’s pop-up
menu.

Although you can open and edit frame SCL just as you can an SCL program that is
not associated with a frame, you should only compile frame SCL from its associated
frame (see “Compiling Applications” on page 17 for more information).

When Frame SCL Is Not Required
A frame does not require an SCL program. Some components that you can add to a

frame are designed to perform tasks without additional SCL code. For example, you can
add a Push Button control to a frame and set its commandOnClick attribute to end;
(with the semicolon). The result is that when a user clicks the button, the END
command executes, closing the frame that the button is on. Instead of compiling a
frame that has no SCL code (which will produce an error), just save it.

Adding SCL Programs to Frames � SCL Labeled Sections 13

When Frame SCL Is Required
Frame SCL is required if you need to do any of the following:

� link to other SCL entries or frames.

� submit SAS programs.

� modify a component’s properties at run time. For example, changing the
appearance of a control after a user enters input.

� execute a method on a component.

� validate the selections that a user makes.

The Fundamentals of Frame SCL
Typical frame SCL code consists of the following:

� labeled sections

� SCL variable declarations

� routines and functions

SCL Labeled Sections

An SCL labeled section is a set of programming statements that execute as a unit. A
section in SCL begins with a label and ends with a RETURN statement.

Sections that are labeled with the name of a control on the associated frame execute
when the user interacts with that control. For example, if you have a Push Button
named exitButton on your frame, and you want to use it to confirm that the user wants
to exit the application, you might have a labeled section similar to the following in your
frame SCL:

exitButton:
dcl list message={’Are you sure you want to exit?’};
response=messagebox(message, ’!’, ’YN’, ’Confirm Exit’, ’N’, ’’);
if response=’YES’ then call execcmd(’end;’);
message=dellist(message);

return;

The code in the exitButton section executes when that exitButton is clicked, resulting in
a dialog box to confirm the exit.

Display 3.2 The exitButton Confirmation Dialog Box

Section labels do not have to match the casing of the name of the control to which
they are associated.

14 SCL Variables � Chapter 3

Frame SCL uses reserved sections for program initialization and termination (there
is also a main processing section, but that is not covered in this document). The INIT
section executes once before the frame is displayed to the user, and is typically used to
initialize variables and open SAS tables. The TERM section executes once before the
frame is closed, and is typically used to close tables and delete variables that are no
longer needed. You should always delete lists when they are no longer needed.

Here are example INIT and TERM sections:

INIT:
dcl num variable1 rc; /* Declares two numeric variables. */
dcl list myList={}; /* Declares an empty list. */

return;

TERM:
rc=dellist(myList); /* Deletes the list myList. */

return;

SCL Variables
Each variable that is used in SCL is of a specific data type. The following SCL data

types are used in the example application later in this document:

Character declared with the keyword CHAR

Numeric declared with the keyword NUM

List declared with the keyword LIST

All variables should be declared using a DECLARE statement. DECLARE
statements do not have to exist in labeled sections. You can declare several variables
with one DECLARE statement. You can also use the abbreviation DCL.

CHAR, NUM, and LIST are reserved keywords that indicate the data type of the
variables.

CHAR(n) is a notation that enables you to define the length of a character variable,
where n is the length in characters, a value up to 32767. By default, character
variables are 200 characters long. Consider the following code:

DECLARE NUM n1 n2, /* Two numeric variables. */
CHAR c1, /* A character variable with length 200. */
CHAR(10) c2, /* A character variable with length 10. */
LIST myList={}; /* An empty SCL list. */

SCL Routines and Functions
SCL provides a rich set of routines and functions that, for example, enable you to

inspect and manipulate SAS catalogs, SAS tables, and the controls on a frame. For
detailed information about these functions, refer to SAS Component Language:
Reference (available in hard copy or in the SAS/AF help).

SCL also supports nearly all of the functions of the Base SAS language. For details
about the Base SAS functions, see SAS Language Reference: Dictionary.

Dot Notation and SCL
To improve code readability and to reduce the amount of coding that is necessary,

SCL supports dot notation, a syntax for accessing component properties (attributes and

Adding SCL Programs to Frames � Dot Notation and SCL 15

methods). Using dot notation also enables the compiler to check your syntax at compile
time.

In dot notation, the object (the List Box or Table Viewer) is separated from the
property (the attribute or method) by a period, which is called a dot. The syntax follows
this format:

object.property;

Dot notation is used to set or query attributes, for example:

/* Setting the text color. */
textEntry1.textColor=’green’;

/* Querying the text color. */
/* The textEntry1 textColor attribute is */
/* returned to the variable ’color’. */

dcl char(10) color;
color = textEntry1.textColor;

Dot notation is also used to call methods. For example, the following code deselects all
the items in listbox1:

listbox1._deselectAll();

Sometimes you must provide a method with values. These values are called
arguments. For example, the following code selects a row of a Table Viewer using the
_selectRow method when a Push Button is clicked. The method requires an argument
that specifies the row to select, in this case row 5.

init:
/* Set the table to view. */
sasdataset1.table=’sashelp.class’;

return;

pushbutton1:
/* Select row 5. */
dcl list row={5};
tableviewer1._selectRow(row);
if row then row=dellist(row);

return;

The frame with the selected row:

Sometimes the arguments that you supply to methods are changed in the process of
running the method. The following code determines if item #3 in listbox1 is selected. If
the specified row was selected, the variable selected is set to 1. If the specified row
was not selected, the variable selected is set to 0.

16 Controlling the Execution of SCL Programs � Chapter 3

dcl num selected,
num row = 3;

listbox1._isSelected(row, selected);

Controlling the Execution of SCL Programs
A great deal of control is possible using simple conditional statements. To control

application execution in an SCL program, use an IF/THEN conditional statement and a
DO group. For example, the following code uses an IF/THEN conditional statement
with a DO group to clear values that are entered on a frame when the
clearValuesButton is clicked (but only if the frameProtected variable is set to No):

clearValuesButton:
if frameProtected = ’No’

then
do;

textEntryName.text = ’’;
textEntrySalary.text = .;
textEntry.text = ’’;

end;
return;

/* ...SCL statements... */
return;

For additional information about controlling application flow (the DO WHILE, DO
UNTIL, GO TO, and the SELECT and WHEN statements), see SAS Component
Language: Reference.

Calling Other Frames
You can use SCL to access one frame from another frame. In fact, your applications

can consist of as many frames as you like. For example, the following SCL statement in
the frame SCL for Frame1, runs the frame named Frame2 from the current catalog:

call display(’Frame2.frame’);

The SCL code for Frame1 transfers control to Frame2 and then waits for Frame2 to
close. While Frame2 is open, the controls on Frame1 are not accessible. When Frame2
is closed, control returns to the Frame1 SCL, and continues execution, starting with the
the first statement following the CALL DISPLAY.

For example, assume that a frame contains a Push Button control named Rates.
When a user clicks the Rates button, a frame named loanRates is opened that displays
rate tables. The frame SCL for the Rates button would look something like this:

RATES:
call display(’loanRates.frame’);

return;

Adding SCL Programs to Frames � Compiling Applications 17

Saving Frame SCL Programs
Saving frames and frame SCL is normally a straightforward process: you simply

select File � Save. However, because of the dependencies between a frame and its
frame SCL, you must ensure that the frame properly references its SCL entry.

Normally, except for the SCL entry type extension “.scl”, frame SCL has the same
name as the frame with which it is associated. For example, the frame myFrame.frame
would by default have frame SCL named myFrame.scl.

If you change the name of a frame that already has associated SCL, you must also
remember to change the name of the SCL entry to match the name of the FRAME
entry. You must then recompile the frame.

Compiling Applications
If you add SCL code to a frame, you must compile the frame before you can run it.

Compiling is the process of translating your SCL code into a language that can be
executed.

To compile a frame in the build environment, make the frame active, and then select
Build � Compile.

If the frame and SCL code compile successfully, you should see a “Code generated”
message in the Log window (and no warnings or errors). For example:

NOTE: Compiling MYFRAME.FRAME (SASUSER.EXAMPLE.MYFRAME.SCL).
NOTE: Code generated for MYFRAME.FRAME. Code size=4095.

To view the Log window, select View � Log.
But as you know, typing code can occasionally lead to a mistake. As an example,

assume that while typing in some code, you add an extra ’x’ to the SCL section name
columnsListbox. When you attempt to compile the frame, the Log window shows that
the compiler has issued a warning about a potential error:

NOTE: Compiling MYFRAME.FRAME (SASUSER.EXAMPLE.MYFRAME.SCL).
WARNING: [Line 43] Label columnsListboxx is Defined but not referenced
NOTE: Code generated for MYFRAME.FRAME. Code size=4095.

Although the code compiles with only a warning (notice the words “Code generated”
in the last line of the message), the frame will not function properly. Because of the
mistake, the code for the columnsListbox will never be executed because the SCL label
(with two x’s) does not match the control name (with one x).

In general, if a frame compiles with a warning, you might be able to run it, but it
could have run-time errors that make it unusable. You should review and understand
the cause of all warnings. When appropriate, the cause of warnings should be fixed.

As discussed above, compiling a frame compiles the frame SCL for that frame. You
can also compile frame SCL that was opened from its frame and maintain the frame/
SCL association.

If you compile frame SCL independently of its frame, the compiled code is not
associated with the frame, and the frame will not call the proper code when a user
interacts with a control. Only frames with frame SCL code must be compiled.

18 Testing Applications � Chapter 3

Testing Applications

SAS/AF software provides a testing mode that is available from within the build
environment. To test your frame, make it the active window, and then select Build �
Test.

To test your application outside the build environment (that is, without having the
frame open), open a SAS Explorer window, right-click on the frame, and select Run. If
the frame has not been previously compiled, you will receive an error. You can compile
the frame from the SAS Explorer window by right-clicking on the frame, and then
selecting Compile.

The only limitation of the Build � Test menu command is that it does not process
SUBMIT statements in SCL code. If you attempt to test a frame that has a SUBMIT
block using Build � Test, the SUBMIT block will fail at run time. Frame applications
that are tested outside the build environment (from the SAS Explorer window) perform
with complete functionality.

19

C H A P T E R

4
Build a Frame Application

Overview of the Frame Application 19
Build the Display_data Frame 20

Create the Display_data Frame 20

Build the User Interface for the Display_data Frame 21

Move and Resize the Controls 22

Align the Controls 22
Set the Attribute Values for the Display_data Controls 22

Set the First Attribute 22

Set the Control Names 23

Set the Attributes That Control the Interface 24

Set Attribute Values for Multiple Controls 24

Attach Models to the Display_data Frame Controls 25
Add SCL Code to the Display_data Frame 25

Compile the Display_data Frame 27

Test the Display_data Frame 27

Test the WHERE Subsetting 28

Removing the Frame Command Line 29
Build the Create_report Frame 29

Build the Graphical User Interface for the Create_report Frame 30

Set Attribute Values for the Create_report Controls 31

Attach Models to the Create_report Frame Controls 32

Add SCL Code to the Create_report Frame 33
Compile the Create_report Frame 35

Test the Create_report Frame 35

Build the Start_menu Frame 36

Build the Graphical User Interface for the Start_menu Frame 36

Set the Attribute Values for the Start_menu Controls 37

Add SCL Code to the Start_menu Frame 38
Test the Start_menu Frame 38

Test the Entire Application 38

Overview of the Frame Application

In this example you build a data viewing application that consists of three frames,
each of which has frame SCL. Two of the frames display data, while the third is the
navigation system that ties the frames together.

You build the first two frames individually, and then you compile and test them.
When you complete the third and final frame you will compile it, and then test the
entire application.

20 Build the Display_data Frame � Chapter 4

Build the Display_data Frame

The Display_data frame enables users to select and display a SAS table as columnar
data. The frame also enables users to subset the displayed data by column, and by
using a WHERE expression.

Display 4.1 Finished Display_data Frame

Create the Display_data Frame
Create the Display_data frame by entering the following command at the SAS

command line:

build sasuser.example.Display_data.frame

The SAS command line is usually in the upper-left corner of the main SAS window.

Display 4.2 SAS Command Line

The empty frame appears and the Components window is displayed.

Build a Frame Application � Build the User Interface for the Display_data Frame 21

Build the User Interface for the Display_data Frame
To create the graphical user interface for the frame, drag the following controls from

the Components window onto the frame and position them as you see in Display 4.3 on
page 21:

� one Text Label Control (this is for the title at the top of the frame)
� three List Box Controls
� one Table Viewer Control
� three Push Button Controls

Alternatively, you can select each type of control and then double-click on the frame
where you want to place it.

On some UNIX platforms, you might need to press two buttons on your mouse to
activate a drag action (consult your host documentation).

If you run out of room while dropping controls on the frame, make the frame bigger
by resizing it the way you would resize any other window. You can make it smaller
later, after positioning the controls.

After dragging all the controls to the frame, you should now have a frame that
resembles the following:

Display 4.3 Preliminary Display_data Frame

If you accidentally drop one control inside another so that the larger control
completely surrounds the smaller, you might not be able to select the smaller control.
To access the smaller control, select the larger control and move it out of the way so
that you can select and move the smaller control to its proper position.

22 Move and Resize the Controls � Chapter 4

Move and Resize the Controls
After you place the controls on the frame, position them as the controls in Display

4.1 on page 20 by clicking on a control and then placing the mouse pointer on a portion
of the light gray border around the control. When the pointer changes into a hand, you
can drag the control to a new position.

At this point, the only control that you need to resize is the Table Viewer. To resize a
control, select the control and then place the mouse pointer on the dark handles around
the control. When the pointer changes into an arrow, you can resize the control.

Figure 4.1 Mouse Pointers for Moving and Resizing Controls

Extend CornerExtend SideMove

You can also resize controls with pixel-level accuracy using attributes. Resizing
controls using attributes is as simple as entering height and width values. Using
attributes to size controls is examined later in this document (see “Set the Attributes
That Control the Interface” on page 24).

The remaining controls will be resized using attributes later in this example.

Align the Controls
Although you might have aligned the controls by hand already, there are layout tools

available that can help you do the job precisely.
To align the left edges of the three List Box controls, select all three controls by

either holding the SHIFT key and clicking each List Box, or by using the mouse to draw
a box around all three (controls are selected when their borders turn thick and gray).
Now select Layout � Align � Lefts.

You can drag controls that are selected as a group.
Align the remainder of the components so that your frame resembles Display 4.1 on

page 20.

Set the Attribute Values for the Display_data Controls
To change the appearance and the behavior of the controls at build time, you must

set their attributes by using the Properties window. The procedure for setting
attributes at build time is the same for all attributes.

Set the First Attribute
The first attribute to set is the text of the banner at the top of the frame (which

currently says Label). To set the Textlabel1 label attribute, follow these steps:

Build a Frame Application � Set the Attribute Values for the Display_data Controls 23

1 Open the Properties window by right-clicking in the frame and selecting
Properties. Notice in the Properties window that all the components are listed on
the left.

2 Select Textlabel1 on the left side of the Properties window.
The attributes for the Textlabel1 control are listed on the right.

3 Scroll up the list of attributes until you see the label attribute.
4 Click inside the Value column on the label row.
5 Type Sales Data and press ENTER.

Notice in the frame that the Textlabel1 control now displays Sales Data.

Display 4.4 The Properties Window While Setting the Textlabel1 label Attribute

Editing the attributes of the
Textlabel1 component

To set the font of the label, follow these steps:
1 Scroll to the font attribute.
2 Click inside the Value column where it says (list).
3 Click on the ellipsis button.

The Font dialog box appears.
4 Change the font to Arial, Regular, 16.
5 Click OK.

In the frame, resize Textlabel1 to make it display the text correctly.

Set the Control Names
Because remembering the generic name for each control might be difficult (Listbox2

doesn’t have much meaning), you should rename the controls. Recall that the names of
controls are used as section labels in frame SCL code (which will be added later).

In the Properties window, set the name attribute of each control as follows:
� Listbox1 to LibrariesListbox
� Listbox2 to TablesListbox
� Listbox3 to ColumnsListbox
� Pushbutton1 to SubsetButton
� Pushbutton2 to ClearButton
� Pushbutton3 to CloseButton

24 Set Attribute Values for Multiple Controls � Chapter 4

Set the Attributes That Control the Interface
To set the text that a user sees in the interface, set the following:
� LibrariesListbox title attribute to Select library:
� TablesListbox title attribute to Select table:
� ColumnsListbox title attribute to Select columns:
� ClearButton label attribute to Clear Subset

On the SubsetButton, set the following to add text and an icon:
� buttonStyle attribute to Icon with Text Under
� icon attribute to 715
� height attribute to 40
� label attribute to Subset with WHERE

Although you might want to set the width of the SubsetButton at this point, wait until
the next section.

To customize the CloseButton, set the following:
� commandOnClick attribute to end;

Note the semicolon at the end of the command.
� height attribute to 30
� label attribute to Close Window
� width attribute to 80

So that users can select more than one item from the ColumnsListbox, set its
selectionMode attribute to Multiple Selections.

Set Attribute Values for Multiple Controls
Attributes that are common between two or more controls can be set simultaneously,

which can save time. To set the width of the three List Boxes and the SubsetButton,
select all three list boxes and the SubsetButton. To select multiple controls on a frame,
either hold down the SHIFT key while you click each control, or drag the mouse pointer
across each control.

When all four of the components are selected, the Properties window displays only
the attributes that the components have in common. Set the width of all four
components to 107.

Display 4.5 Displaying Shared Attributes

Editing the
attributes of
several
components

Notice on the frame that all four components have changed widths.
You might need to move or align the controls so that they do not overlap.

Build a Frame Application � Add SCL Code to the Display_data Frame 25

Attach Models to the Display_data Frame Controls
Notice that the List Boxes all display a generic list of four items. This is because

they, and the Table Viewer on the right side of the frame, have no access to data. To
provide all the controls with data, you need to associate them with models. Dropping a
model onto a control sets the model attribute on the control, which is all you need to do
to associate a control and a model.

To associate the correct model with the proper control, drag the indicated model onto
the control on the frame:

� a Library List Model onto the List Box labeled Select Library (LibrariesListbox)
� a Data Set List Model onto the List Box labeled Select Table (TablesListbox)
� a Variable List Model onto the List Box labeled Select Columns (ColumnsListbox)
� a SAS Data Set Model onto the Table Viewer (Tableviewer1)

You should now see a list of libraries in the LibrariesListbox. By default the Library
List model references the currently defined SAS libraries, even at build time. This is
why the first List Box displays the current libraries. The other controls don’t display
any data because, although they are associated with models, those models have not
been told where to look for data. You add SCL code to define those data sources in the
next section.

Display 4.6 Display_data Frame after Attaching Models and Setting Attributes

Add SCL Code to the Display_data Frame
To add the SCL code, making the frame fully functional, open the frame SCL for the

Display_data frame (right-click anywhere in the frame and select Frame SCL). Insert
the following code:

/* This is the frame SCL for the Display_data frame. */
/* */

26 Add SCL Code to the Display_data Frame � Chapter 4

/* The user selects a library from the LibrariesListbox. */
/* The TablesListbox is then populated. */
/* The user selects a table from the TablesListbox. */
/* The ColumnsListbox and Tableviewer1 are then populated. */

dcl num rc; /* Numerical variable used as a return code. */
dcl char(30) displayTable; /* A character variable. */
dcl list emptyList={}; /* Creates an empty list. */

/* Executes before the frame is displayed to the user. */
Init:

/* Disable the SubsetButton and the ClearSubset buttons */
/* by setting the ’enabled’ attribute on each. */
/* There is nothing yet to subset or clear. */
subsetButton.enabled=’no’;
clearButton.enabled=’no’;

/*Set how the table is displayed in TablesListBox. */
datasetlist1.levelCount=1;

return;

/*Executes when a selection is made from the LibrariesListbox. */
LibrariesListbox:

if LibrariesListbox.selectedItem ne ’ ’ then
do;

/* Set the Data Set List model to point to the library selected. */
/* Because the Data Set List model is associated with the */
/* TablesListbox, the TablesListbox is populated. */
datasetList1.library=librariesListbox.selectedItem;
variableList1.dataSet=’ ’;
sasdataset1.table=’ ’;

/* Enable the SubsetButton now that there is data to subset. */
subsetButton.enabled=’yes’;

end;
return;

/* Executes when a selection is made from the TablesListbox. */
TablesListbox:

if TablesListbox.selectedItem ne ’ ’ then
do;

/* Concatenate the selected library and the selected table */
/* and give the result to the sasdataset model, the model */
/* supplying the Table Viewer with data. */
displayTable=librariesListbox.selectedItem || ’.’ ||

TablesListbox.selectedItem;
sasdataset1.table=displayTable;
variableList1.dataSet=displayTable;
SubsetButton.enabled=’yes’;

end;
return;

/* Executes when a selection is made from the ColumnsListbox. */
ColumnsListbox:

Build a Frame Application � Test the Display_data Frame 27

if listlen(columnsListbox.selectedItems) gt 0 then
/* Copy the list of selected columns to the sasdataset1 model, */
/* the model supplying the Table Viewer with data. */
sasdataset1.columnOrder=copylist(ColumnsListbox.selectedItems);

return;

/* Executes when the ’Subset with WHERE’ button is pressed. */
SubsetButton:

if sasdataset1.table ne ’ ’ then
/* Call the WHERE subset window. */
rc = sasdataset1._setWhere(0, ’y’);

/* If a WHERE expression is in effect, enable the ’Clear Subset’ button. */
if rc=0 then ClearButton.enabled =’yes’;

return;

/* Executes when the ’Clear Subset’ button is pressed. */
ClearButton:

if sasdataset1.table ne ’ ’ then
sasdataset1._setWhere(emptyList); /* Clear the WHERE expression. */
ClearButton.enabled =’no’; /* Disable the ’Clear Subset’ button. */

return;

term:
/* Delete the list when quitting. */
rc=dellist(emptyList);

return;

Save the code by selecting File � Save, and then close the frame SCL window.
Because the frame entry was already named Display_data.frame, the SCL entry that

is associated with the frame is automatically named Display_data.scl. If you change the
name of the frame later, the frame assumes that the frame SCL name was also
changed, so you must either change the name of the SCL entry to match the frame, or
edit the frame’s SCLEntry attribute to reference the original SCL entry.

Compile the Display_data Frame
With the graphical user interface and the SCL finished, you can now compile the

Display_data frame. To compile the frame, make sure it is the active window, and then
select Build � Compile.

If the frame and frame SCL compiled successfully, you should see in the Log window
a message similar to the following:

NOTE: Compiling DISPLAY_DATA.FRAME (SASUSER.EXAMPLE.DISPLAY_DATA.SCL).
NOTE: Code generated for DISPLAY_DATA.FRAME. Code size=4095.

To view the Log window, select View � Log.
You should correct all errors and warnings before testing the frame (see “Compiling

Applications” on page 17).

Test the Display_data Frame
To test the Display_data frame, make sure it is the active window, and then select

Build � Test.

28 Test the Display_data Frame � Chapter 4

After the running frame appears, test it by selecting a library, and then a table. For
example, select the Sashelp library and the CLASS table. The table data should appear
in the Table Viewer.

Display 4.7 The Completed Display_data Frame

Test the WHERE Subsetting

Test the subset capabilities by clicking the Subset with WHERE button. The WHERE
Expression builder appears.

Display 4.8 The WHERE Expression Builder Window

Build a Frame Application � Build the Create_report Frame 29

Assuming you’re viewing the SASHELP.CLASS table, follow these steps to build a
simple WHERE expression to display only the females in the SASHELP.CLASS table:

1 Click Sex in the Available Columns list.

2 From the operators list, select EQ.

3 Click <LOOKUP distinct values> in the Available Columns list.

4 Select F.

5 Click OK.

The CLASS data is displayed with only the rows that contain SEX=’F’.

Display 4.9 Results of WHERE SEX=’F’ Subset

Clear the WHERE subsetting by clicking the Clear Subset button.
Close the frame by clicking the Close Window button.

Removing the Frame Command Line
You might have noticed the command prompt at the top of the frame (Command

===>). By default all frames have a command line where users can type SAS commands.
To remove the command line at the top of a frame, set the bannerType attribute on the
frame to None. The frame is listed in the Properties window as _FRAME_.

After setting the bannerType attribute, recompile, and then test the frame again.
Close all Display_data frames when you are finished testing.

Build the Create_report Frame

The second frame to build is the Create_report frame. This frame enables users to
define the criteria for and then generate a report based on data in a SAS table.

30 Build the Graphical User Interface for the Create_report Frame � Chapter 4

Display 4.10 Finished Create_report Frame

Build the Graphical User Interface for the Create_report Frame
Create the Create_report frame by entering the following command at the SAS

command line:

build sasuser.example.Create_report.frame

To create the graphical user interface for the frame, drag the following controls onto
the frame and position them as you see in Display 4.10 on page 30:

� one Text Label Control
� one Combo Box Control
� two Radio Box Controls
� two Push Button Controls
� one External File Viewer Control

After dragging all the controls to the frame, your frame should resemble this:

Build a Frame Application � Set Attribute Values for the Create_report Controls 31

Display 4.11 Preliminary Create_report Frame

Set Attribute Values for the Create_report Controls
Rename the controls so that they have meaningful names in the Properties window.

These control names will be used as section labels in the SCL code that is added later.
In the Properties window, set the name attribute of each control as follows:
� Combobox1 to YearCombobox

� Radiobox1 to QuarterRadiobox
� Radiobox2 to CountryRadiobox

� Pushbutton1 to CreateRptButton

� Pushbutton2 to CloseButton

� Externalfileviewer1 to ReportViewer

To set the text of the banner at the top of the frame, set the following:
� Textlabel1 font attribute to Arial, Regular, 16

� Textlabel1 label attribute to Sales Reports

Resize the Textlabel1 control to make the larger text display correctly.
To set the text for the controls that define the report criteria, set the following:
� YearCombobox borderStyle attribute to Simple

� YearCombobox borderTitle attribute to Year

� QuarterRadiobox borderTitle attribute to Quarter

� CountryRadiobox borderTitle attribute to Country

To add text and an icon to the CreateRptButton, set the following:
� buttonStyle attribute to Icon with Text to Right

� icon attribute to 296
� label attribute to Create Report

Resize the CreateRptButton to make the icon and label display correctly.
To customize the CloseButton, set the following:

32 Attach Models to the Create_report Frame Controls � Chapter 4

� commandOnClick attribute to end;
Note the semicolon at the end of the command.

� height attribute to 30

� label attribute to Close Window
� width attribute to 80

To prevent the command line from appearing on the frame, set the frame bannerType
attribute to None.

Lastly, set the items attribute on the YearCombobox so that the years 1993 and 1994
are available to the user. Follow these steps:

1 Scroll to the YearCombobox items attribute.
2 Click in the Value column.
3 Click the ellipsis button in the Value column.

The List Editor appears.
4 Add the values 1993 and 1994.
5 Exit the List Editor by clicking OK.

Display 4.12 The List Editor

Lastly, enlarge the External File Viewer so that it is sized similarly to Display 4.10
on page 30.

Attach Models to the Create_report Frame Controls
To associate the controls on the frame with the proper models, follow these steps:
� Drop a Variable Values List Model onto the QuarterRadiobox.

This Variable Values List Model is automatically named Variablevalueslist1.
In the Properties window, set the following attributes on Variablevalueslist1:

Build a Frame Application � Add SCL Code to the Create_report Frame 33

� dataset attribute to sashelp.prdsale
� variable attribute to Quarter

� Drop a Variable Values List Model onto the CountryRadiobox.
This Variable Values List Model is automatically named Variablevalueslist2.
In the Properties window, set the following attributes on Variablevalueslist2:
� dataset attribute to sashelp.prdsale
� variable attribute to Country

The two Radio Box controls should now have values in them.
Resize the controls on the frame if necessary. Sometimes the initial layout of the

controls is not conducive to the data they present (for example, Radio Boxes that are too
short for the data they contain). Expand the Radio Boxes vertically to make them
resemble Display 4.10 on page 30.

Add SCL Code to the Create_report Frame
Add the following code to the Create_report frame SCL. After adding the code, save it

and then close the frame SCL window.

/* This is the frame SCL for the Create_report frame. */
/* */
/* The user selects a year, a quarter, and a country, */
/* and then clicks the CreateRptButton. Data that */
/* matches the user selections is pulled from */
/* SASHELP.PRDSALE, written to a file, and then */
/* displayed in the External File Viewer. */

dcl num rc; /* Numerical variable used as a return code. */
dcl list messageList={}; /* Creates an empty list. */

dcl char(7) countryName,
char(1) quarterValue,
char(4) yearValue,
char(2) command; /* Declare character variables. */

INIT:
/* Define a warning message. */
rc=insertc(messageList, ’To create the report, please ’ ||

’select values for year, quarter, and country.’);

/* Assign a fileref to an external file. */
rc=filename(’out’, ’ ’, ’temp’);

/* Turn off ’End of file’ message. */
ReportViewer._showEndOfFile(’no’);

return;

/* Executes when you click on the CreateRptButton */
CreateRptButton:

/* If a fileref is already assigned to ReportViewer, clear the fileref. */
if ReportViewer.fileref ne ’ ’ then ReportViewer.fileref=’ ’;

/* Initialize variables with user selections. */

34 Add SCL Code to the Create_report Frame � Chapter 4

countryName = CountryRadiobox.selectedItem;
yearValue = YearCombobox.selectedItem;
quarterValue = left(QuarterRadiobox.selectedItem);

/* If all criteria have been selected, create a report . */
if countryName ne ’ ’ and

yearValue ne ’ ’ and
quarterValue ne ’ ’ then

do;
submit continue;

/* Redirect SAS output to the temp file. */
proc printto print=out new;

/* Suppress printing the PROC title. */
ods noproctitle;

/* Set options to control procedure output. */
options nodate nonumber nocenter;

/* Create a summary report of the PRDSALE table using */
/* selected values for Country, Year, and Quarter. */
proc means data = sashelp.prdsale nonobs sum;

where country = ’&countryName’ and
year = &yearValue and
quarter = &quarterValue;

class product;
var predict actual;
title1 ’Sales Figures for &countryName: ’;
title2 ’Quarter &quarterValue in &yearValue’;

run;

/* Redirect SAS output back to the default location. */
proc printto;
run;

/* Reset options that control procedure output. */
options date number center;

endsubmit;
ReportViewer.fileref = ’out’;

end;

/* If a criteria was not selected, display a warning dialog. */
else command = messagebox(messageList, ’!’, ’O’,

’Application warning message’);
return;

TERM:
/* Delete the SCL list. */
messageList=dellist(messageList);

/* Clear the fileref assigned to ReportViewer. */
reportViewer.fileref=’ ’;

/* Clear the fileref OUT. */

Build a Frame Application � Test the Create_report Frame 35

rc=filename(’out’, ’ ’);
return;

Compile the Create_report Frame
To compile the Create_report frame, make sure it is the active window, and then

select Build � Compile.
If the frame and SCL code compiled successfully, you should see messages similar to

these in the Log window:

NOTE: Compiling CREATE_REPORT.FRAME (SASUSER.EXAMPLE.CREATE_REPORT.SCL).
NOTE: Code generated for CREATE_REPORT.FRAME. Code size=4095.

To view the Log window, select View � Log.
You should correct all warnings and errors.

Test the Create_report Frame
Although you tested the previous frame, Display_data, with the Build � Test menu

command, the Create_report frame is different because its frame SCL code contains a
SUBMIT block.

The command that is run to execute a frame when you select Build � Test is not
capable of running SUBMIT blocks. If you try to test the Create_report frame using the
Build � Test menu command, the program will generate a run-time error the moment
you click the Create Report button. Instead, you must test this frame from outside
the SAS/AF build environment.

To run the Create_report frame from a SAS Explorer window, follow these steps:
1 Close the Create_report frame.
2 Click the Explorer tab (in the lower-left corner of the main SAS window).
3 Navigate to the Create_report frame (inside SASUSER.Example).
4 Right-click the Create_report frame, and then select Run.

When the frame is running, test it by selecting a Year, a Quarter, and a Country, and
then clicking the Create Report button.

36 Build the Start_menu Frame � Chapter 4

Display 4.13 Completed Create_report Frame

If you look in the Log window while the report is being created, you can see the
SUBMIT block commands running.

Close all the Create_report frames after you have finished testing.

Build the Start_menu Frame

The final frame to build is the navigation system for the other two frames. When
complete, the Start_menu frame enables a user to call either the Display_report frame
or the Create_report frame with the click of a button.

Display 4.14 Finished Start_menu Frame

Build the Graphical User Interface for the Start_menu Frame
Create the Start_menu frame by entering the following command at the SAS

command line:

Build a Frame Application � Set the Attribute Values for the Start_menu Controls 37

build sasuser.example.Start_menu.frame

Resize the frame so that it is about half the default size.
Drag the following controls to the frame:
� one Text Label Control
� three Push Button Controls

You should now have a frame that looks something like this:

Display 4.15 Preliminary Start_menu Frame

Set the Attribute Values for the Start_menu Controls
For the Textlabel1 object, set the following:
� label attribute to Sales Viewer
� font attribute to Arial, Regular, 14

Resize the Textlabel1 control so that the text displays properly.
For Pushbutton1, set the following:
� buttonStyle attribute to Icon with Text Under
� icon attribute to 212
� iconStyle attribute to Large Icons
� height attribute to 60
� label attribute to Display Sales Data
� name attribute to DisplayDataButton
� width attribute to 120

For Pushbutton2, set the following:
� buttonStyle attribute to Icon with Text Under
� height attribute to 60
� icon attribute to 335
� iconStyle attribute to Large Icons
� label attribute to Create Sales Report
� name attribute to CreateRptButton

38 Add SCL Code to the Start_menu Frame � Chapter 4

� width attribute to 120

For Pushbutton3, set the following:
� label attribute to Exit Application
� name attribute to ExitButton
� width attribute to 100

Lastly, set the bannerType attribute of the frame to None.
Arrange the controls so that they resemble Display 4.14 on page 36.

Add SCL Code to the Start_menu Frame
Add the following code to the Start_menu frame SCL. When complete, save the SCL

and then close the Frame SCL window.

DisplayDataButton:
call display(’Display_data.frame’);

return;

CreateRptButton:
call display(’Create_report.frame’);

return;

ExitButton:
/* This code displays a confirmation dialog box */
/* when a user clicks the ExitButton. */

/* Create a list that contains the text of the message. */
dcl list message={’Are you sure you want to exit?’, ’Be honest.’};

/*Use the SCL MESSAGEBOX function to display a YES/NO dialog box. */
response=messagebox(message, ’!’, ’YN’, ’Confirm Exit’);
if response=’YES’ then call execcmd(’end;’);

/*Delete the list ’message’. */
message=dellist(message);

return;

Test the Start_menu Frame
Test the Start_menu frame by selecting Build � Test. Ensure that the Display

Sales Data and Create Sales Report buttons call the appropriate frame, and that
the Exit Application button performs as expected.

Test the Entire Application
To test the entire application, each frame must be compiled individually. And

because the Create_report frame uses a SUBMIT statement, you must test the
application from outside the build environment (recall the limitation of the testing
environment in “Testing Applications” on page 18).

To test the entire application, follow these steps:
1 Close the Start_menu frame (and any other open frames).
2 Run the Start_menu frame from a SAS Explorer window.

Build a Frame Application � Test the Entire Application 39

3 Test the functionality of each control on each frame.

If you encounter a frame or control that does not function properly, exit the
application, compile the offending frame, and then test, diagnose, and fix the problem
separately from the larger application.

40

41

P A R T2

Appendixes

Appendix 1.Defining Attachments 43

Appendix 2.Deploying Applications 55

Appendix 3.Defining a Subclass 59

42

43

A P P E N D I X

1
Defining Attachments

Understanding Attachments 43
Control Representation in Attach Mode 45

Attachment Points 45

Attachment Direction and Type 46

Moving Controls That Are Attached 47

Deleting and Altering Attachments 47
For More Information about Attachments 47

Define Attachments That Resize the Table Viewer 48

Test the Table Viewer Attachments 50

Define Attachments That Move the Close Window Button 51

Understanding Attachments
Attachments control the spatial relationships between the graphical user interface

elements on a window when the window is resized. For example, with the appropriate
attachments defined, you can make a control expand when the user enlarges the
window, enabling the user to see more data. With a few simple attachments you can
greatly increase the utility of an application.

This appendix is a brief introduction to attachments. It guides you through the
process of defining attachments so that when a user enlarges the Display_data frame,
the Table Viewer on that frame will also grow larger so that more data is visible.

44 Understanding Attachments � Appendix 1

Display A1.1 Default Width of Display_data Frame

Display A1.2 Expanded Display_data Frame with Attachments Defined

Defining Attachments � Attachment Points 45

Control Representation in Attach Mode

When you define attachments, the controls on a frame are represented by wire
outlines. Compare the regular, build time TestFrame to the frame while defining
attachments.

Display A1.3 TestFrame at Build Time (left) and in Attach Mode (right)

Attachment Points

You define attachments between a control and the edge of the frame, or between the
edge or center of two controls.

An attachment to the edge of a control causes that edge to move when the other end
of the attachment (the anchor) is moved. An attachment to the center of a control
causes the entire control to move when the anchor for that attachment is moved.
Attachments are represented as arrows in the graphical user interface.

In the following display the top Push Button control is attached from its right edge to
the right edge of the frame. The lower Push Button control is attached from its center
to the right edge of the frame.

Display A1.4 TestFrame with Edge and Center Attachments

Anchors

Edge
Attachment

Center
Attachment

As you can see in the following display, when the frame is enlarged horizontally at run
time, the top Push Button (Button1) expands to the right (the edge attachment), and
the bottom Push Button (Button2) moves with the right edge of the frame (the center
attachment).

46 Attachment Direction and Type � Appendix 1

Display A1.5 TestFrame at Run Time Before and After Expansion

Attachment Direction and Type
When you start defining attachments, the Define Attachment dialog box appears so

that you can select the direction and type of attachment.

Display A1.6 The Define Attachment Dialog Box

The direction of the attachment governs which control changes when the anchor of
the attachment is moved. The control that the attachment arrow points to responds to
the moving of the anchor. Remember that an attachment can be anchored to the edge
or center of another control, or to the edge of the frame. The left arrow direction is the
default attachment direction, and it is the only direction that is used in the example
later in this appendix.

Attachment Directions

Icon Direction Description

Bidirectional Both controls respond to resizing or
moving either control. In effect, both
ends of the attachment are anchors.

Single Direction

(Right)

The control that the arrow points to
responds to a move of the anchor.

Single Direction

(Left)

The control that the arrow points to
responds to a move of the anchor.

The type of attachment defines the distance between the anchor and the arrow either in
terms of pixels between the points (an absolute attachment type), or as a percentage of

Defining Attachments � For More Information about Attachments 47

space between the points (a relative attachment type). The absolute attachment type is
the default attachment type, and it is the only type of attachment that is used in the
example later in this appendix.

Attachment Types

Icon Type Description

Absolute Maintains a fixed number of pixels
between attachment points

Relative Maintains a percentage of space between
attachment points

Delete Used to delete attachments (see “Deleting
and Altering Attachments” on page 47)

Moving Controls That Are Attached
Before you define any attachments, you should adjust the size of the frame and

arrange the controls as you want them to be displayed at run time. Once defined,
attachments are honored at build time, and if you move an anchor (on a control or a
frame), any attached controls are moved or resized according to the attachments.

However, you can select and move multiple controls at build time while not in attach
mode without having attachments honored.

In attach mode you can both move and resize individual controls without
attachments being honored. The alignment tools are not available in attach mode.

Deleting and Altering Attachments
You cannot alter the direction or type of an attachment after it has been created. To

change an attachment you must delete it and then create a new attachment.
To delete an attachment, follow these these steps after you are in attach mode:
1 Select the delete type (the attachment direction is unimportant).

2 Click inside the control where the attachment is pointing to the control. Do not
click on the attachment line itself—doing so will not delete the attachment.

For More Information about Attachments
There are many other ways to control screen geometry using attachments. For more

information, see SAS Guide to Applications Development, available as a printed book, at
http://support.sas.com, and in the SAS System help.

48 Define Attachments That Resize the Table Viewer � Appendix 1

Define Attachments That Resize the Table Viewer

This example assumes you have completed at least the Display_data frame that was
presented earlier in this document (see “Build the Display_data Frame” on page 20).

To make the Table Viewer on the Display_data frame expand and contract according
to the size of the frame, define two attachments by following these steps:

1 With no control selected, select Layout � Attach � Define Attachment.

The frame changes into attach mode, the Define Attachment dialog box appears,
and the mouse cursor changes.

Display A1.7 The Display_data Frame in Attach Mode

2 In the Define Attachment dialog box, select the direction and type as indicated
(both of these selections are the defaults, so they should already be selected):

3 Attach the bottom edge of the Table Viewer to the bottom edge of the frame by
placing the mouse cursor inside the lower edge of the Table Viewer. Then click and
drag to the bottom edge of the frame, just above the scroll bar, and then release
the mouse button.

Defining Attachments � Define Attachments That Resize the Table Viewer 49

Figure A1.1 Creating an Attachment to the Table Viewer

4 Make a second attachment from the right edge of the Table Viewer to the right
edge of the frame.

There should now be two attachments that point to the Table Viewer control. If
your attachments do not resemble the attachments below, delete the attachments
that you created and start over (see “Deleting and Altering Attachments” on page
47).

Display A1.8 The Two Completed Table Viewer Attachments

5 Click OK in the Define Attachment dialog box.

50 Test the Table Viewer Attachments � Appendix 1

The frame returns to the regular, build-time view.

Test the Table Viewer Attachments
To test the attachments, save the frame and then test it by selecting Build � Test.
Resize the run-time frame horizontally and then also vertically.

Display A1.9 Display_data Frame Expanded Horizontally

Defining Attachments � Define Attachments That Move the Close Window Button 51

Display A1.10 Display_data Frame Expanded Vertically (with Overlapping Controls)

Clearly, from the previous image of the Display_data frame, something is needed to
prevent the Close Window button from overlapping the Table Viewer. The solution is to
define attachments for the Close Window button so that it moves as the frame is resized.

Define Attachments That Move the Close Window Button

To fix the problem of the Table Viewer being overlapped, you must define two
attachments that move the Close Window button as the frame size is changed.

Attachments to the center of a control cause that control to move when the
attachment anchor is moved. This is in contrast to the Table Viewer attachments,
which are defined on the edges of the Table Viewer, and cause it to expand or contract,
but remain in the same location on the frame.

To define two attachments on the Close Window button, follow these steps:

1 With no control selected, select Layout � Attach � Define Attachment.

2 In the Define Attachment dialog box, select the direction and type as indicated
(both of these selections are the defaults, so they should already be selected):

52 Define Attachments That Move the Close Window Button � Appendix 1

3 Attach the center of the Close Window button to the bottom edge of the frame by
placing the mouse pointer in the center of the Close Window button. Then click
and drag to the bottom edge of the frame, just above the scroll bar, and then
release the mouse button.

Figure A1.2 Creating an Attachment to the Close Window Button

Note that the attachment arrow points to the center (not the edge) of the Close
Window button.

4 Make a second attachment from the center of the Close Window button to the
right edge of the frame.

Display A1.11 The Four Completed Attachments

Defining Attachments � Define Attachments That Move the Close Window Button 53

Save and test the frame again. As you enlarge the frame, the Table Viewer should
resize and the Close Window button should move.

54

55

A P P E N D I X

2
Deploying Applications

Launching an Application 55
Edit a Copy of the SAS CFG File 55

Create a Shortcut to SAS That References Startmenu.CFG 56

Launching an Application
After you create an application, you can deploy it in such a way that a user can

launch it directly, without first having to launch SAS, find the frame, and run it. You
can also configure a SAS/AF application to launch as a kiosk-like application, running
in the foreground without menus, a title bar, or any of the SAS display manager
windows (Program Editor, Log, or Output). When you exit your application, the SAS
session automatically ends.

This appendix guides you through the process of modifying a copy of the SAS
configuration file and using the INITCMD system option to create an icon that launches
the Start_menu frame from the desktop.

These instructions apply to a standard SAS®9 installation on the Windows XP
operating system. Consult your SAS host companion for information about the specifics
of your operating system.

Edit a Copy of the SAS CFG File
A SAS configuration file contains instructions that are executed each time you start a

SAS session. To alter a configuration file so that the Start_menu application is
executed, follow these steps:

1 Find the SAS CFG file.
Assuming a standard SAS installation on Windows, the CFG file can be located

at C:\Program Files\SAS\SAS 9.2\SASV9.CFG. Users of versions other than 9.2
should look in the corresponding directory.

2 Duplicate the CFG file, and name the new version Startmenu.CFG.
3 Open the Startmenu.CFG file and add to the bottom of the file, after all other

lines, the following options:

-awscontrol notitle
-noawsmenu
-initcmd "af c=sasuser.example.Start_menu.frame;

toolclose;
command close;
wstatusln off;
wwindowbar off;"

56 Create a Shortcut to SAS That References Startmenu.CFG � Appendix 2

4 Save and close the CFG file.

Note that the list of commands in the INITCMD option is enclosed in quotation marks.
The following tables describe the SAS system options and SAS commands that are

used in the INITCMD option.

SAS System Options

Option Description

awscontrol notitle Turns off the system menu, and the minimize and maximize
buttons in the main SAS window

noawsmenu Turns off the menu bar in the main SAS window

initcmd Specifies commands to execute during the start of a SAS
session, and suppresses the Log, Output, Program Editor,
Enhanced Editor, and Explorer windows when executing a
SAS/AF application

SAS Commands

Command Description

af c=sasuser.example.start_menu.frame Executes the SAS/AF Start_menu frame

toolclose Turns off the application toolbar

command close Turns off the command bar

wstatusln off Turns off the status line (normally at the bottom
of the SAS window)

wwindowbar off Turns off the window bar (normally at the
bottom of the main SAS window)

Now you need to create a shortcut that references the Startmenu.CFG file while
launching SAS.

Create a Shortcut to SAS That References Startmenu.CFG
To create a Windows shortcut that references the Startmenu.CFG file while starting

SAS, follow these steps (changing the paths appropriately for your installation):
1 Find the SAS executable.

Assuming a standard SAS installation on Windows, the SAS executable can be
located at C:\Program Files\SAS\SAS 9.2\sas.exe.

2 Create a new shortcut to the SAS executable, naming it StartMenu.
3 Right-click the StartMenu icon, and then select Properties.
4 Edit the Target of the shortcut to reference Startmenu.CFG by pasting the

following text at the end of the existing Target:

-config ’C:\Program Files\SAS\SAS 9.2\Startmenu.CFG’

The complete Target line should look something like this. It is split over two lines
here, but your Target should be on one line:

Deploying Applications � Create a Shortcut to SAS That References Startmenu.CFG 57

"C:\Program Files\SAS\SAS 9.2\sas.exe"
-config ’C:\Program Files\SAS\SAS 9.2\Startmenu.CFG’

5 Click OK.

Display A2.1 The StartMenu Shortcut Properties

Test the StartMenu shortcut. The Start_menu frame should launch, and the main
SAS window should be full screen, with no title, menus, or toolbars. For more
information about other start-up options, refer to your host companion and the Base
SAS help.

58

59

A P P E N D I X

3
Defining a Subclass

Subclassing 59
Create a Close Window Button Subclass 59

Overriding Attributes 60

Add the Close Window Button Class to the Components Window 61

Test the New Close Window Button 62

Subclassing
Instead of defining the same five attributes every time you need a button to close a

frame, you can create a button that has all the attributes you need already defined. You
do this by creating a subclass.

A subclass is derived from another class, called a parent class. The subclass inherits
all the attributes and methods of that parent. This means that if you change the value
of an attribute or the way a method works on the parent, the same change is
propagated to the subclass.

You can also define on the subclass new values for attributes that the subclass
inherits. These new values override the values that were inherited from the parent
class. For example, if the parent class has a width attribute that is set to 50, you can
change that value to 100 on the subclass.

This appendix guides you through the process of creating a subclass of the Push
Button class. The new subclass overrides the values for the following attributes:

� commandOnClick
� height
� label
� name
� width

After making the Close Window Button subclass, you can drag and drop it onto a
frame and the button will function without any further configuration. Besides
eliminating repetitive work, subclassing helps to ensure conformity: you won’t be able
to make the mistake of labeling one button “Close Window” and another “Exit”.

Create a Close Window Button Subclass
To create a Close Window Button subclass, follow these steps:
1 Create the new class by entering the following command at the SAS command line:

build sasuser.button.closeWindowButton.class

60 Overriding Attributes � Appendix 3

The Class Editor appears.

2 Replace the provided description, CLOSEWINDOWBUTTON.CLASS, with Close
Window Button. This description will be used as the class name in the
Components window.

3 For the parent class, enter sashelp.classes.pushbutton_c.class, and press ENTER.

Notice how the properties on the left side of the Class Editor are now available.

Overriding Attributes

To customize the class and make it look and behave like the Close Window buttons
that are currently on the Display_data and Create_report frames, you must change five
attributes. Changing an attribute value on a class at build time to a value other than
the default is called overriding an attribute. The first attribute to override is the width
attribute.

To override the width attribute, follow these steps:

1 Click on the Attributes for the class in the Class Properties list (on the left side of
the Class Editor).

2 Scroll to the width attribute (in the list of attributes on the right side of the Class
Editor).

3 Override the width attribute by right-clicking on the width attribute row and
selecting Override.

Defining a Subclass � Add the Close Window Button Class to the Components Window 61

An O appears in the State column for the width attribute, indicating that the
attribute is overridden.

4 In the Initial Value column for width, enter 85.

The default width of all new Close Window Buttons will be 85 pixels.

Using the same general procedure, override the following four attributes on the Close
Window Button class and set them to the indicated value:

� commandOnClick: end;

Note the semicolon at the end of the command.

� height: 30

� label: Close Window

� name: CloseWindowButton

When you are finished, close the Class Editor by clicking Yes in the confirmation dialog
box to save your changes.

Add the Close Window Button Class to the Components Window
Now that you have a new Close Window Button class, you need to make it accessible

at build time so that you can drag it to and drop it onto a frame. To make the new
button subclass appear in the Components window, follow these steps:

1 Create a frame or open an existing frame.
The Components window appears.

62 Test the New Close Window Button � Appendix 3

2 Right-click in the Components window and select Add Classes.
3 Enter sasuser.button.closeWindowButton.class or navigate to the class and select it.

The class appears at the top of the Components window. The class will remain
in the Components window, even between SAS sessions, until you remove it.

4 Close the frame without saving it.

You can also drag a class from a SAS Explorer window to a frame. Doing so means
you do not have to add the class to the Components window.

Test the New Close Window Button
To test the new Close Window Button, delete the existing Close Window button on

the Display_data frame, and then add the new Close Window Button to the frame.
Because you set all the attributes on the Close Window Button subclass, the button will
work without any additional configuration (although you will have to redefine the
attachments to the Close Window Button).

If you want to change something about the Close Window Button, in most cases you
only have to make a change to the class, and the change is propagated to all the
instances of the Close Window Button in all frames that use it.

A complete discussion of object-oriented development is beyond the scope of this
appendix, but creating this simple subclass demonstrates how useful subclassing can
be. For more information about object-oriented development in SAS/AF, see SAS Guide
to Applications Development (available as a book or in the SAS/AF help).

63

Glossary

active window
the window to which keyboard input is directed. Only one window can be active at a
time.

argument
a value that is provided or returned when calling a method.

attachment
a way to control the position, size, and movement of controls on a frame.

attribute
a characteristic of a component such as its name, color, size, or the data it references.
See also Property.

banner
the command prompt in the upper-left corner of a frame. Controlled by the
bannerType attribute on the Frame class.

build environment
the tools and windows in SAS/AF that are used to construct frame applications.

build time
the period when a program is in the process of being built; when it is not executing.

catalog
See SAS catalog.

catalog entry
See SAS catalog entry.

class
a template for an object. A class defines all of an object’s characteristics (attributes)
and the operations (methods) that the object can perform. See also object.

compile
to translate SCL code and frame objects into a form that can be executed.

component
a control or a model.

control

64 Glossary

a type of component that is visual in nature; as opposed to a model, which has no
visual representation. For example, Check Boxes, List Boxes, and Push Buttons.
Controls are also sometimes called visual components. See also model.

dot notation
a syntax for accessing the properties of a component. In dot notation, the object is
separated from the property by a period, which is called a dot. For example, the
following syntax would call the _deselectAll method on the listbox1 object:
listbox1._deselectAll()

frame
an area that contains controls; analogous to a window.

frame entry
the SAS catalog entry type for a frame.

frame SCL
SCL that is associated with a specific frame.

handle
a graphic representation on the edge of a frame or a control that designates areas
that are used to resize or move the frame or control.

INIT
a reserved SCL label that indicates the initialization code of an SCL program.

initialization
the first stage of frame execution before a frame is displayed. Typically used to
declare and set variables and define data sources.

label
See SCL label.

labeled section
one or more SCL statements that are identified by an SCL label. See SCL label.

mainframe
a high-performance computer made for multi-user, processor-intensive computing.
Typically used by businesses and for scientific research.

method
an action that is defined for a class. For example, the action of deselecting all items
is defined as the _deselectAll method on the List Box class.

model
a type of component that provides attributes and methods for querying and
modifying data sources. For example, a SAS Data Set model contains methods for
reading and manipulating SAS tables.

native control
the presentation of a control such that it appears to have been built specifically for a
platform. For example, a control built on a UNIX system and then ported to
Windows XP will be indistinguishable from other Windows XP controls.

object
a specific instantiation of a class. For example, when you drag a List Box control (a
class) onto a frame, you create the listbox1 object. The terms object and instance are
often used interchangeably.

parent class
the class from which another class is derived.

PROC

Glossary 65

See SAS procedure.

procedure
See SAS procedure.

property
any of the characteristics of a component that collectively determine the component’s
appearance and behavior. Both attributes and methods are types of properties.

run time
the period when a program is executing.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain several different types of catalog
entries. See also SAS catalog entry.

SAS catalog entry
a storage unit within a SAS catalog. Each entry has an entry type that identifies its
purpose to SAS.

SAS Component Language (SCL)
See SCL (SAS Component Language).

SAS procedure
a program that is accessed with a PROC statement. SAS procedures can be used to
produce reports, manage files, or analyze data. Many procedures are included with
the Base SAS software.

SCL (SAS Component Language)
a programming language that is provided with SAS/AF software. You can use SCL to
develop interactive applications that manipulate SAS data sets and external files.

SCL label
a word that indicates the beginning of a section of SCL code.

subclass
a class that is derived from another class. The subclass inherits the attributes and
methods of its parent class, and can also possess its own unique attributes and
methods. Technically, almost all SAS/AF classes are subclasses because they are
derived from other classes.

subclassing
the process of deriving a new class from an existing class. See also subclass.

SUBMIT
a command that causes SAS to compile and execute a program.

TERM
a reserved SCL label that indicates the code that is run when an SCL program ends.

WHERE expression
one or more criteria for retrieving data.

66

Index 67

Index

A
aligning controls 22
applications

compiling 17
launching 55

attachments 43
altering 47
anchors 45
deleting 47
direction 46
moving controls that are attached 47
points of attachment 45
representation of controls 45
type 46

attributes 8
overriding 60
setting 22
setting for multiple controls 24

B
Build window 6

C
command line

removing from frames 29
compiling

applications 17
components 5

selecting 7
viewing 7

Components window 7
controls 5

aligning 22
moving 22
native 5
resizing 22

D
development environment 6
development methodology 9
dot notation 14
drag action

activating on UNIX platforms 21

F
Frame

window 6

frame SCL 12

editing 12

viewing 12

frames

opening programmatically 16

removing command line from 29

renaming 27

SCL programs for 13

SCL requirements 13

source code 12

H
help

accessing in SAS application 4

I
INITCMD system option 55

L
List Editor 32

M
mainframe support 4

methodology

for frame development 9

methods 8

models 5

using with controls 9

moving controls 22

N
native controls 5

O
overlapping controls 21

P
properties 8
Properties window 7

R
renaming

frames 27
SCL 27

requirements 4
resizing controls 22

S
SAS/AF software 3

accessing help 4
mainframe support 4
software requirements 4
Web documentation 4

SAS command line
location of 20

SAS Component Language (SCL)
See SCL (SAS Component Language)

SCL entry
renaming 27

SCL (SAS Component Language) 11
calling frames 16
compiling 17
constructing a program 13
controlling execution of 16
data types 14
dot notation 14
functions 14
labeled sections 13
requirements for programs 12, 13
routines 14
saving 17
Source window 8
testing 18
variables 14

software requirements 4
Source window 8

68 Index

subclassing 59 T
testing

SCL programs 18

W
WHERE subsetting

testing 28

Your Turn

If you have comments or suggestions about Getting Started with SAS/AF® and Frames,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2005 SAS Institute Inc. All rights reserved. 383404US.0406

SAS Publishing gives you the tools to
flourish in any environment with SAS®!

Whether you are new to the workforce or an experienced professional, you need to distinguish yourself

in this rapidly changing and competitive job market. SAS Publishing provides you with a wide range of

resources— including publications, online training and software —to help you set yourself apart.

Expand Your Knowledge with Books from SAS Publishing
SAS Press offers user-friendly books for all skill levels, covering such topics as univariate and multivariate
statistics, linear models, mixed models, fixed effects regression and more. View our complete catalog and get free
access to the latest reference documentation by visiting us online.

s u p p o r t . s a s . c o m / p u b s

SAS Self-Paced e-Learning Puts Training at Your Fingertips
You are in complete control of your learning environment with SAS Self-Paced e-Learning! Gain immediate
24/7 access to SAS training directly from your desktop, using only a standard Web browser. If you do not have
SAS installed, you can use SAS Learning Edition for all Base SAS e-learning.

s u p p o r t . s a s . c o m / s e l f p a c e d

Build Your SAS Skills with SAS Learning Edition
SAS skills are in demand, and hands-on knowledge is vital. SAS users at all levels, from novice to advanced,
will appreciate this inexpensive, intuitive and easy-to-use personal learning version of SAS. With SAS Learning
Edition, you have a unique opportunity to gain SAS software experience and propel your career in new and
exciting directions.

s u p p o r t . s a s . c o m / L E

	Table of Contents
	Contents

	The SAS/AF Development Environment
	Introduction to SAS/AF Software
	Overview of SAS/AF Software
	Purpose of This Document
	Getting More Information
	Help
	Documentation Available on the Web

	Software Requirements
	Mainframe Support

	The Building Blocks of Frame Applications
	Components, Controls, and Models
	Native Controls

	The SAS/AF Development Environment
	The Frame
	The Components Window
	The Properties Window
	The Source Window

	A Simple Methodology for Frame Development
	Using Models

	Adding SCL Programs to Frames
	SAS Component Language (SCL)
	Frame SCL
	When Frame SCL Is Not Required
	When Frame SCL Is Required

	The Fundamentals of Frame SCL
	SCL Labeled Sections
	SCL Variables
	SCL Routines and Functions

	Dot Notation and SCL
	Controlling the Execution of SCL Programs
	Calling Other Frames
	Saving Frame SCL Programs
	Compiling Applications
	Testing Applications

	Build a Frame Application
	Overview of the Frame Application
	Build the Display_data Frame
	Create the Display_data Frame
	Build the User Interface for the Display_data Frame
	Move and Resize the Controls
	Align the Controls
	Set the Attribute Values for the Display_data Controls
	Set Attribute Values for Multiple Controls
	Attach Models to the Display_data Frame Controls
	Add SCL Code to the Display_data Frame
	Compile the Display_data Frame
	Test the Display_data Frame

	Build the Create_report Frame
	Build the Graphical User Interface for the Create_report Frame
	Set Attribute Values for the Create_report Controls
	Attach Models to the Create_report Frame Controls
	Add SCL Code to the Create_report Frame
	Compile the Create_report Frame
	Test the Create_report Frame

	Build the Start_menu Frame
	Build the Graphical User Interface for the Start_menu Frame
	Set the Attribute Values for the Start_menu Controls
	Add SCL Code to the Start_menu Frame
	Test the Start_menu Frame
	Test the Entire Application

	Appendixes
	Defining Attachments
	Understanding Attachments
	Control Representation in Attach Mode
	Attachment Points
	Attachment Direction and Type
	Moving Controls That Are Attached
	Deleting and Altering Attachments
	For More Information about Attachments

	Define Attachments That Resize the Table Viewer
	Test the Table Viewer Attachments
	Define Attachments That Move the Close Window Button

	Deploying Applications
	Launching an Application
	Edit a Copy of the SAS CFG File
	Create a Shortcut to SAS That References Startmenu.CFG

	Defining a Subclass
	Subclassing
	Create a Close Window Button Subclass
	Overriding Attributes
	Add the Close Window Button Class to the Components Window
	Test the New Close Window Button

	Glossary
	Index

