
SAS/ACCESS® 9.1.3
Supplement for Teradata
SAS/ACCESS for Relational Databases
Second Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006.
SAS/ACCESS ® 9.1.3 Supplement for Teradata (SAS/ACCESS for Relational Databases),
Second Edition. Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1.3 Supplement for Teradata (SAS/ACCESS for Relational
Databases), Second Edition
Copyright © 2006, SAS Institute Inc., Cary, NC, USA
ISBN-13: 978-1-59047-823-3
ISBN-10: 1-59047-823-1
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, February 2006
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � SAS/ACCESS for Teradata 1
Introduction to the SAS/ACCESS Interface to Teradata 2

LIBNAME Statement Specifics for Teradata 3

Data Set Options for Teradata 6

Pass-Through Facility Specifics for Teradata 7

Autopartitioning Scheme for Teradata 9

Passing SAS Functions to Teradata 13

Passing Joins to Teradata 14

Temporary Table Support for Teradata 14

Maximizing Teradata Read Performance 16

Maximizing Teradata Load Performance 20

Teradata Processing Tips for SAS Users 25

Locking in the Teradata Interface 29

Naming Conventions for Teradata 34

Data Types for Teradata 35

Appendix 1 � Recommended Reading 41
Recommended Reading 41

Glossary 43

Index 49

iv

1

C H A P T E R

1
SAS/ACCESS for Teradata

Introduction to the SAS/ACCESS Interface to Teradata 2
The SAS/ACCESS Teradata Client 2

LIBNAME Statement Specifics for Teradata 3

Arguments 3

Teradata LIBNAME Statement Example 6

Data Set Options for Teradata 6
Pass-Through Facility Specifics for Teradata 7

Examples 8

Autopartitioning Scheme for Teradata 9

Overview 10

FastExport and Case Sensitivity 10

FastExport Setup 11
FastExport Usage 11

FastExport and Explicit SQL 12

FastExport Usage Exceptions 12

Threaded Reads with Partitioning WHERE Clauses 12

FastExport Versus Partitioning WHERE Clauses 13
Passing SAS Functions to Teradata 13

Passing Joins to Teradata 14

Temporary Table Support for Teradata 14

Establishing a Temporary Table 14

Terminating a Temporary Table 15
Examples 15

Maximizing Teradata Read Performance 16

About the PreFetch Facility 16

How PreFetch Works 17

The PreFetch Option Arguments 17

When and Why Use PreFetch 17
Possible Unexpected Results 18

PreFetch Processing of Unusual Conditions 18

Using PreFetch as a LIBNAME Option 19

Using Prefetch as a Global Option 19

Maximizing Teradata Load Performance 20
Maximizing Teradata Load Performance with FastLoad 20

FastLoad Supported Features and Restrictions 20

Invoking FastLoad 20

FastLoad Data Set Options 21

Maximizing Teradata Load Performance with MultiLoad 21
MultiLoad Supported Features and Restrictions 21

MultiLoad Setup 22

MultiLoad Data Set Options 22

2 Introduction to the SAS/ACCESS Interface to Teradata � Chapter 1

Examples 24
Teradata Processing Tips for SAS Users 25

Reading from and Inserting to the Same Teradata Table 25

Using a BY Clause to Order Query Results 26

Using TIME and TIMESTAMP 27

Replacing PROC SORT with a BY Clause 28
Reducing Workload on Teradata by Sampling 29

Locking in the Teradata Interface 29

Understanding SAS/ACCESS Locking Options 31

When to Use SAS/ACCESS Locking Options 31

Examples 32

Setting the Isolation Level to ACCESS for Teradata Tables 32
Setting Isolation Level to WRITE to Update a Teradata Table 33

Preventing a Hung SAS Session When Reading and Inserting to the Same Table 33

Naming Conventions for Teradata 34

Teradata Conventions 34

SAS Naming Conventions 34
Naming Objects to Meet Teradata and SAS Conventions 34

Accessing Teradata Objects That Do Not Meet SAS Naming Conventions 34

Example 1: Unusual Teradata Table Name 34

Example 2: Unusual Teradata Column Names 35

Data Types for Teradata 35
Binary String Data 35

Character String Data 35

Date/Time Data 36

Numeric Data 36

Teradata Null Values 37

LIBNAME Statement Data Conversions 37
Data Returned as SAS Binary Data with Default Format $HEX 39

Introduction to the SAS/ACCESS Interface to Teradata

This document includes details only about the SAS/ACCESS Interface to Teradata. It
should be used as a supplement to the main SAS/ACCESS documentation,
SAS/ACCESS for Relational Databases: Reference. For more detailed information on
SAS/ACCESS to Teradata, please refer to the SAS/ACCESS to Teradata white paper
(http://support.sas.com/rnd/warehousing/papers/teradataOct01.pdf).

Note: SAS/ACCESS for Teradata does not support the DBLOAD and ACCESS
procedures. The LIBNAME engine technology enhances and replaces the functionality
of these procedures. Consequently, you must revise SAS jobs that were written for a
different SAS/ACCESS interface and that include DBLOAD or ACCESS procedures
before you can run them with SAS/ACCESS for Teradata. �

The SAS/ACCESS Teradata Client
Teradata is a massively parallel (MPP) RDBMS. A high-end Teradata server supports

many users, simultaneously loading and extracting table data, and processing complex
queries.

Because Teradata customers run many processors at the same time for queries of the
database, users enjoy excellent DBMS server performance. The challenge to client
software, such as SAS, is to leverage Teradata performance by rapidly extracting and

SAS/ACCESS for Teradata � Arguments 3

loading table data. The SAS/ACCESS interface to Teradata meets the challenge by
enabling you to optimize extracts and loads (reads and creates).

This documentation provides information throughout about how to optimize DBMS
operations. SAS/ACCESS can create and update Teradata tables. It supports a
FastLoad interface that rapidly creates new tables. It optimizes table reads, optionally
using FastExport for the highest possible read performance.
SAS/ACCESS also supports MultiLoad, which loads both empty and existing Teradata
tables and greatly accelerates the speed of insertion into Teradata tables.

LIBNAME Statement Specifics for Teradata
This section describes the LIBNAME statement as supported in the SAS/ACCESS

interface to Teradata. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The Teradata
specific syntax for the LIBNAME statement is:

LIBNAME libref teradata <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

teradata
is the SAS/ACCESS engine name for the interface to Teradata.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. The connection options for the
interface to Teradata are as follows:

USER=<’>Teradata-user-name<’>
this is a required connection option that specifies a Teradata user name. If the
name contains blanks or national characters, enclose it in quotation marks.

PASSWORD=<’>Teradata-password<’>
this is a required connection option that specifies a Teradata password. The
password that you specify must be correct for your USER= value.

Note: If you do not wish to enter your Teradata password in clear text on
this statement, see PROC PWENCODE in Base SAS Procedures Guide for a
method to encode it. �

ACCOUNT=<’>account_ID<’>
this is an optional connection option that specifies the account number that
you want to charge for the Teradata session.

DATABASE=<’>database-name<’>
this is an optional connection option that specifies the name of the Teradata
database that you want to access, enabling you to view or modify a different
user’s Teradata DBMS tables or views, if you have the required privileges.
(For example, to read another user’s tables, you must have the Teradata
privilege SELECT for that user’s tables.) If you do not specify DATABASE=,
the libref points to your default Teradata database, which is often named the
same as your user name. If the database value that you specify contains

4 Arguments � Chapter 1

spaces or non-alphanumeric characters, you must enclose it in quotation
marks.

SCHEMA= is an alias for this option. To use this option on an individual
data set, see the SCHEMA= data set option. For more information about
changing the default database, see the DATABASE statement in your
Teradata documentation.

TDPID=<’>dbcname<’>
this is a required connection option if you run more than one Teradata server.
TDPID= operates differently for network-attached and channel-attached
systems, as described below.

Note: SERVER= can be substituted for TDPID= in all circumstances. �
� For NETWORK-ATTACHED systems (PC and UNIX), dbcname specifies

an entry in your (client) HOSTS file that provides an IP address for a
database server connection.

By default, SAS/ACCESS connects to the Teradata server that
corresponds to the dbccop1 entry in your HOSTS file. When you run
only one Teradata server, and your HOSTS file defines the dbccop1 entry
correctly, you do not need to specify TDPID=.

However, if you run more than one Teradata server, you must use the
TDPID= option to specifying a dbcname of eight characters or less.
SAS/ACCESS adds the specified dbcname to the login string that it
submits to Teradata. (Teradata documentation refers to this name as
the tdpid component of the login string.)

After SAS/ACCESS submits a dbcname to Teradata, Teradata
searches your HOSTS file for all entries that begin with the same
dbcname. In order for Teradata to recognize the HOSTS file entry, the
dbcname suffix must be COPx (x is a number). If there is only one entry
that matches the dbcname, x must be 1. If there are multiple entries for
the dbcname, x must begin with 1 and increment sequentially for each
related entry. (See the example HOSTS file entries below).

When there are multiple, matching entries for a dbcname in your
HOSTS file, Teradata does simple load balancing by selecting one of the
Teradata servers specified for login. Teradata distributes your queries
across these servers so that it can return your results as fast as possible.

The TDPID= examples below assume that your HOSTS file contains
the following dbcname entries and IP addresses:

Example 1: TDPID= is not specified.
dbccop1 10.25.20.34

The TDPID= option is not specified, establishing a login to the
Teradata server that runs at 10.25.20.34.

Example 2: TDPID= myserver or SERVER=myserver
myservercop1 130.96.8.207

You specify a login to the Teradata server that runs at 130.96.8.207.

Example 3: TDPID=xyz or SERVER=xyz
xyzcop1 33.44.55.66
or xyzcop2 11.22.33.44

You specify a login to a Teradata server that runs at 11.22.33.44 or to
a Teradata server that runs at 33.44.55.66.

� For CHANNEL-ATTACHED systems (z/OS), TDPID= specifies the
subsystem name, which must be TDPx, where x can be 0-9, A-Z (not
case-sensitive), or $, # or @. If there is only one Teradata server, and

SAS/ACCESS for Teradata � Arguments 5

your z/OS System Administrator has set up the HSISPB and HSHSPB
modules, you do not need to specify TDPID=. For further information,
see your Teradata TDPID documentation for z/OS.

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. The following
table describes the LIBNAME options that are supported for Teradata, and
presents default values where applicable. See the section about the SAS/ACCESS
LIBNAME statement in SAS/ACCESS for Relational Databases: Reference for
detailed information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for Teradata

Option Default Value

ACCESS= none

BULKLOAD= NO

CAST= none

CAST_OVERHEAD_MAXPERCENT= 20 percent

CONNECTION= for channel-attached systems (OS/390), the default is
SHAREDREAD; for network attached systems
(UNIX and PC platforms), the default is UNIQUE

CONNECTION_GROUP= none

DBCOMMIT= 1000 when inserting rows; 0 when updating rows

DATABASE= (see SCHEMA=) none

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

DBLIBTERM= none

DBPROMPT= NO

DBSASLABEL= COMPAT

DBSLICEPARM= THREADED_APPS,2

DEFER= NO

DIRECT_EXE=

DIRECT_SQL= YES

ERRLIMIT= 1 million

LOGDB= Default teradata database for the libref

MULTI_DATASRC_OPT= IN_CLAUSE

PREFETCH= not enabled

PRESERVE_COL_NAMES= YES

6 Teradata LIBNAME Statement Example � Chapter 1

Option Default Value

PRESERVE_TAB_NAMES= YES

READ_ISOLATION_LEVEL= see “Locking in the Teradata Interface” on page 29

READ_LOCK_TYPE= none

READ_MODE_WAIT= none

REREAD_EXPOSURE= NO

SCHEMA= your default Teradata database

SPOOL= YES

UPDATE_ISOLATION_LEVEL= see “Locking in the Teradata Interface” on page 29

UPDATE_LOCK_TYPE= none

UPDATE_MODE_WAIT= none

UTILCONN_TRANSIENT= NO

Teradata LIBNAME Statement Example
In the following example, the connection is made using the USER= and PASSWORD=

connection options. These options are required for Teradata and must be used together.

libname myteralib TERADATA user=testuser password=testpass;

Data Set Options for Teradata
The following table includes all of the SAS/ACCESS data set options that are

supported for the Teradata interface. Default values are provided where applicable. See
the section about data set options in SAS/ACCESS for Relational Databases: Reference
for detailed information about these options.

Table 1.2 SAS/ACCESS Data Set Options for Teradata

Option Default Value

BUFFERS= 2

BULKLOAD= NO

CAST= none

CAST_OVERHEAD_MAXPERCENT= 20 percent

DATABASE= (see SCHEMA=) none

DBCOMMIT= the current LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= the current LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= the current LIBNAME option setting

DBKEY= none

SAS/ACCESS for Teradata � Pass-Through Facility Specifics for Teradata 7

Option Default Value

DBLABEL= NO

DBMASTER= none

DBNULL= none

DBSASLABEL= COMPAT

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2

DBTYPE= see “Data Types for Teradata” on page 35

ERRLIMIT= 1

MBUFFSIZE= 0

ML_CHECKPOINT= 0

ML_ERROR1= none

ML_ERROR2= none

ML_LOG= none

ML_RESTART= none

ML_WORK= none

MULTILOAD= NO

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= YES

READ_ISOLATION_LEVEL= the current LIBNAME option setting

READ_LOCK_TYPE= the current LIBNAME option setting

READ_MODE_WAIT= the current LIBNAME option setting

SASDATEFORMAT= none

SCHEMA= the current LIBNAME option setting

SLEEP= 6

TENACITY= 4

UPDATE_ISOLATION_LEVEL= the current LIBNAME option setting

UPDATE_LOCK_TYPE= the current LIBNAME option setting

UPDATE_MODE_WAIT= the current LIBNAME option setting

Pass-Through Facility Specifics for Teradata

See the section about the Pass-Through Facility in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

The Pass-Through Facility specifics for Teradata are as follows:

� The dbms-name is TERADATA.

� The CONNECT statement is required.

8 Examples � Chapter 1

� The Teradata interface can connect to multiple Teradata servers and to multiple
Teradata databases. However, if you use multiple, simultaneous connections, you
must use an alias argument to identify each connection.

� The CONNECT statement database-connection-arguments are identical to the
LIBNAME connection options.

In addition, the MODE= option is available with the CONNECT statement. By
default, SAS/ACCESS opens Teradata connections in ANSI mode. In contrast,
most Teradata tools, such as BTEQ, run in Teradata mode. If you specify
MODE=TERADATA, Pass-Through connections open in Teradata mode, forcing
Teradata mode rules for all SQL requests that are passed to the Teradata DBMS.
For example, MODE= impacts transaction behavior and case-sensitivity. See your
Teradata SQL reference manual for a complete discussion of ANSI versus Teradata
mode.

� By default, SAS/ACCESS opens Teradata in ANSI mode, so you must use one of
the following techniques when you write PROC SQL steps that use the
Pass-Through Facility:

� Specify an explicit COMMIT statement to close a transaction. You must also
specify an explicit COMMIT statement after any Data Definition Language
(DDL) statement. The examples below demonstrate these rules. For further
information about ANSI mode and DDL statements, see your Teradata SQL
reference manual.

� Specify MODE=TERADATA in your CONNECT statement. When
MODE=TERADATA, you do not specify explicit COMMIT statements as
described above. When MODE=TERADATA, data processing is case
insensitive. This option is available only when you are using the
Pass-Through Facility.

CAUTION:
Do not issue a Teradata DATABASE statement within the EXECUTE statement in

PROC SQL. Add the SCHEMA= option to your CONNECT statement if you must
change the default Teradata database. �

Examples
In the following example, SAS/ACCESS connects to the Teradata DBMS using the

alias dbcon.

proc sql;
connect to teradata as dbcon (user=testuser pass=testpass);

quit;

In the following example, SAS/ACCESS connects to the Teradata DBMS using the
alias tera, drops and then recreates the SALARY table, inserts two rows, and then
disconnects from the Teradata DBMS. Notice that COMMIT must follow each DDL
statement. DROP TABLE and CREATE TABLE are DDL statements. The COMMIT
statement that follows the INSERT statement is required too; otherwise Teradata rolls
back the inserted rows.

proc sql;
connect to teradata as tera (user=testuser password=testpass);
execute (drop table salary) by tera;
execute (commit) by tera;
execute (create table salary (current_salary float, name char(10)))

by tera;

SAS/ACCESS for Teradata � Autopartitioning Scheme for Teradata 9

execute (commit) by tera;
execute (insert into salary values (35335.00, ’Dan J.’)) by tera;
execute (insert into salary values (40300.00, ’Irma L.’)) by tera;
execute (commit) by tera;
disconnect from tera;

quit;

In the following example, SAS/ACCESS connects to the Teradata DBMS using the
alias tera, updates a row, and then disconnects from the Teradata DBMS. The
COMMIT statement causes Teradata to commit the update request. Without the
COMMIT statement, Teradata rolls back the update.

proc sql;
connect to teradata as tera (user=testuser password=testpass);
execute (update salary set current_salary=45000

where (name=’Irma L.’)) by tera;
execute (commit) by tera;
disconnect from tera;

quit;

In the following example, SAS/ACCESS connects to the Teradata database using the
alias tera2, selects all rows in the SALARY table and displays them using PROC SQL,
and then disconnects from the Teradata database. A COMMIT statement is not needed
in this example, because the operations are only reading data; no changes are made to
the database.

proc sql;
connect to teradata as tera2 (user=testuser password=testpass);
select * from connection to tera2 (select * from salary);
disconnect from tera2;

quit;

In the following example, MODE=TERADATA is specified to obtain case insensitive
behavior. Because Teradata Mode is used, SQL COMMIT statements are not required.

/* Create and populate table in Teradata Mode (case insensitive)*/
proc sql;

connect to teradata (user=testuser pass=testpass mode=teradata);
execute(create table casetest(x char(28))) by teradata;
execute(insert into casetest values(’Case Insensitivity Desired’)) by teradata;

quit;
/* Query table in Teradata Mode (for case insensitive match) */
proc sql;

connect to teradata (user=testuser pass=testpass mode=teradata);
select * from connection to teradata (select * from
casetest where x=’case insensitivity desired’);

quit;

Autopartitioning Scheme for Teradata
See the section about threaded reads in SAS/ACCESS for Relational Databases:

Reference for general information about this feature.

10 Overview � Chapter 1

Overview
The FastExport Utility is the fastest means available for reading large Teradata

tables. FastExport is NCR-provided software that delivers data over multiple Teradata
connections, or sessions. If FastExport is available, SAS threaded reads use it. If
unavailable, SAS threaded reads generate partitioning WHERE clauses. Use of the
DBSLICE= option overrides FastExport. If you have FastExport available and want to
use it, do not use DBSLICE=. To use FastExport everywhere possible, use
DBSLICEPARM= with the ALL qualifier.

Note: On OS/390, z/OS, and Unix, only FastExporting is supported. Partitioning
WHERE clauses, either automatically generated or created by using DBSLICE=, are
not supported. �

FastExport and Case Sensitivity
In certain situations, Teradata returns different row results to SAS when using

FastExport, as compared to reading normally without FastExport. The difference arises
only when all of the following conditions are met:

� A WHERE clause is asserted that compares a character column with a character
literal.

� The column definition is NOT CASESPECIFIC.
Unless you specify otherwise, most Teradata native utilities create NOT

CASESPECIFIC character columns. The SAS/ACCESS interface to Teradata, on
the other hand, creates CASESPECIFIC columns. In general, this means that you
will not see result differences with SAS created tables but you might with tables
created by Teradata utilities, which are frequently many of your tables. To
determine how a table is created, look at your column declarations with Teradata’s
SHOW TABLE statement.

� A character literal matches to a column value that differs only in case.
You will see differences in the rows returned if your character column has

mixed-case data that is otherwise identical. For example, ’Top’ and ’top’ are
identical except for case.

Case sensitivity is an issue when SAS generates SQL code that contains a WHERE
clause with one or more character comparisons. It is also an issue when you supply the
Teradata SQL yourself with the explicit SQL feature of PROC SQL. The following are
examples of each scenario, using DBSLICEPARM=ALL to invoke FastExport instead of
the normal SAS read:

/*SAS generates the SQL for you*/
libname trlib teradata user=username password=userpwd dbsliceparm=all;
proc print data=trlib.employees;
where lastname=’lovell’;
run;

/*Use explicit SQL with PROC SQL and supply the SQL yourself, also invoking FastExport*/
proc sql;

connect to teradata(user=username password=userpwd dbsliceparm=all);
select * from connection to teradata

(select * from sales where gender=’f’ and salesamt>1000);
quit;

For more information about case sensitivity, consult your Teradata documentation.

SAS/ACCESS for Teradata � FastExport Usage 11

FastExport Setup
There are three requirements for using FastExport with SAS:
� You must have the Teradata FastExport Utility present on your system. If you do

not have FastExport and want to use it with SAS, contact NCR to obtain the
Utility.

� SAS must be able to locate the FastExport Utility on your system.
� The FastExport Utility must be able to locate the SasAxsm access module, which

is supplied with your SAS/ACCESS interface to Teradata product. SasAxsm is in
the SAS directory tree, in the same location as the sasiotra component.

Assuming you have the Teradata FastExport Utility, perform the following setup,
which varies by system:

� Windows
As needed, modify your Path environment variable to include both the

directories containing Fexp.exe (FastExport) and SasAxsm. Place these directory
specifications last in your path.

� UNIX
As needed, modify your library path environment variable to include the

directory containing sasaxsm.sl (HP) or sasaxsm.so (Solaris and AIX). These
shared objects are delivered in the $SASROOT/sasexe directory. You may copy
these modules where you wish, but ensure that the directory you copy them into is
in the appropriate shared library path environment variable. On Solaris, the
library path variable is LD_LIBRARY_PATH. On HP-UX, it is SHLIB_PATH. On
AIX, it is LIBPATH. Also, make sure that the directory containing the Teradata
FastExport utility (fexp), is included in the PATH environment variable.
FastExport is usually installed in the /usr/bin directory.

� z/OS
No action is needed when invoking FastExport under TSO. When invoking

FastExport with a batch JCL, the SAS source statements must be assigned to a
DD name other than SYSIN. This can be done by passing a parameter such as
SYSIN=SASIN in the JCL where all the SAS source statements are assigned to
the DD name SASIN.

Keep in mind that future releases of SAS might require an updated version of
SasAxsm. Therefore, when upgrading to a new SAS version, you should update the
path for SAS on Windows and the library path for SAS on UNIX.

FastExport Usage
To utilize FastExport, SAS writes a specialized script to a disk that is read by the

FastExport Utility. SAS might also log FastExport log lines to another disk file. These
files are created and deleted by SAS on your behalf, and require no intervention.
Sockets deliver the data from FastExport to SAS, so aside from installing the SasAxsm
access module that enables the data transfer, no action is needed on your part.

On Windows, when the FastExport Utility is active, a DOS window appears
minimized as an icon on your toolbar. You can maximize the DOS window, but do not
close it. After a FastExport operation is complete, SAS closes the window for you.

The following example demonstrates the creation of a SAS data set that is a subset of
a Teradata table, using FastExport to transfer the data:

libname trlib teradata user=username password=userpwd;
data saslocal(keep=EMPID SALARY);

12 FastExport and Explicit SQL � Chapter 1

set trlib.employees(dbsliceparm=all);
run;

FastExport and Explicit SQL
FastExport is also supported for the explicit SQL feature of PROC SQL.
The following example demonstrates the creation of a SAS data set that is a subset of

a Teradata table, using explicit SQL and FastExport to transfer the data.

proc sql;
connect to teradata as pro1 (user=username password=userpwd dbsliceparm=all);
create table saslocal as select * from connection to pro1

(select EMPID, SALARY from employees);
quit;

FastExport for explicit SQL is a Teradata extension only, for optimizing read operations,
and is not covered in the threaded read documentation.

FastExport Usage Exceptions
With the Teradata FastExport Utility and the SAS supplied SasAxsm module in

place, FastExport works automatically for all SAS steps that have threaded reads
enabled, except for one situation. FastExport does not handle single AMP queries. In
this case, SAS/ACCESS simply reverts to a normal single connection read. For
information about FastExport and single AMP queries, refer to your Teradata
documentation.

To determine if FastExport worked, turn on SAS tracing in advance of the step that
attempts to use FastExport. If FastExport is used, you will see the following message
(English only) written to your SAS log:

sasiotra/tryottrm(): SELECT was processed with FastExport.

To turn on SAS tracing, issue the following statement:

options sastrace=’,,,d’ sastraceloc=saslog;

Threaded Reads with Partitioning WHERE Clauses
If FastExport is unavailable, threaded reads use partitioning WHERE clauses. You

can create your own partitioning WHERE clauses using the DBSLICE= option.
Otherwise, SAS/ACCESS to Teradata attempts to generate them on your behalf. Like
other SAS/ACCESS interfaces, this partitioning is based on the MOD function. In order
to generate partitioning WHERE clauses, SAS/ACCESS to Teradata must locate a table
column suitable for applying MOD. The following types are eligible:

� BYTEINT
� SMALLINT
� INTEGER
� DATE
� DECIMAL (integral DECIMAL columns only)

A DECIMAL column is only eligible if the column definition restricts it to integer
values. In other words, the DECIMAL column must be defined with a scale of zero.

If the table you are reading contains more than one column of the above mentioned
types, SAS/ACCESS to Teradata applies some nominal intelligence to select a best

SAS/ACCESS for Teradata � Passing SAS Functions to Teradata 13

choice. Top priority is given to the primary index, if it is MOD-eligible. Otherwise,
preference is given to any column that is defined as NOT NULL. Since this is an
unsophisticated set of selection rules, you might want to supply your own partitioning
using the DBSLICE= option.

To view your table’s column definitions, use Teradata’s SHOW TABLE statement.

Note: Partitioning WHERE clauses, either automatically generated or created by
using DBSLICE=, are not supported on z/OS. �

FastExport Versus Partitioning WHERE Clauses
Partitioning WHERE clauses are innately less efficient than FastExport. The

Teradata DBMS must process separate SQL statements that vary in the WHERE
clause. In contrast, FastExport is optimal because only one SQL statement is
transmitted to the Teradata DBMS. However, older editions of the Teradata DBMS
place severe restrictions on the system-wide number of simultaneous FastExport
operations allowed. Even with newer versions of Teradata, your database administrator
might be concerned about large numbers of FastExport operations.

Threaded reads with partitioning WHERE clauses also place higher workload on
Teradata and might not be appropriate on a widespread basis. Both technologies
expedite throughput between SAS and the Teradata DBMS, but should be used
judiciously. For this reason, only SAS threaded applications are eligible for threaded
read by default. To enable more threaded reads or to turn them off entirely, use the
DBSLICEPARM= option.

Even when FastExport is available, you can force SAS/ACCESS to Teradata to
generate partitioning WHERE clauses on your behalf. This is accomplished with the
DBI argument to the DBSLICEPARM= option (DBSLICEPARM=DBI). This feature is
available primarily to enable comparisons of these techniques. In general, FastExport
should be used if it is available.

FastExport is supported for the explicit SQL feature of PROC SQL. Partitioning of
WHERE clauses is not supported for explicit SQL.

Passing SAS Functions to Teradata
The interface to Teradata passes the following SAS functions to Teradata for

processing. See the section about optimizing SQL usage in SAS/ACCESS for Relational
Databases: Reference for information.

ABS

AVG

EXP

LOG

LOG10

LOWCASE

MAX

MIN

SQRT

STRIP (TRIM)

14 Passing Joins to Teradata � Chapter 1

SUBSTR

TODAY

UPCASE

SUM

COUNT

Passing Joins to Teradata

In order for a multiple libref join to pass to Teradata, all of the following components
of the LIBNAME statements must match exactly:

� user ID

� password

� server

� account

See the section about performance considerations in SAS/ACCESS for Relational
Databases: Reference for more information about when and how SAS/ACCESS passes
joins to the DBMS.

Temporary Table Support for Teradata

See the section on the temporary table support in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

Establishing a Temporary Table
When you specify CONNECTION=GLOBAL, you can reference a temporary table

throughout a SAS session, in both DATA steps and procedures. Due to a limitation of
Teradata, FastLoad and FastExport do not support the use of temporary tables at this
time.

Teradata supports two types of temporary tables, global and volatile. With the use of
global temporary tables, the rows are deleted after the connection is closed but the table
definition itself remains. With volatile temporary tables, the table (and all rows) are
dropped when the connection is closed.

When accessing a volatile table with a LIBNAME statement, it is recommended that
you do not use these options:

� DATABASE= (as a LIBNAME option)

� SCHEMA= (as a LIBNAME option or a data set option)

If you use either DATABASE= or SCHEMA=, then the LIBNAME statement must
specify the option DBMSTEMP=YES to denote that all tables accessed through it, and
all tables that are created by it, will be volatile tables.

DBMSTEMP= will also cause all table names to be not fully qualified for either
SCHEMA= or DATABASE=. In this case, the LIBNAME statement should only be used
to access tables (either permanent or volatile) within the your default database/schema.

SAS/ACCESS for Teradata � Examples 15

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
single connection.

Examples
The following is an example of temporary table use:

/* Global connection for all tables */
libname x teradata user=test pw=test server=boom connection=global;

/* Create global temporary table and store in current database schema */
proc sql;

connect to teradata(user=test pw=test server=boom connection=global);
execute (CREATE GLOBAL TEMPORARY TABLE temp1 (col1 INT)

ON COMMIT PRESERVE ROWS) by teradata;
execute (COMMIT WORK) by teradata;

quit;

/* Insert one row into the temporary table, materializing the table */
proc sql;

connect to teradata(user=test pw=test server=boom connection=global);
execute (INSERT INTO temp1 VALUES(1)) by teradata;
execute (COMMIT WORK) by teradata;

quit;

/* Access the temporary table through the global libref */
data work.new_temp1;
set x.temp1;
run;

/* Access the temporary table through the global connection */
proc sql;

connect to teradata (user=test pw=test server=boom connection=global);
select * from connection to teradata (select * from temp1);

quit;

/* Drop the temporary table */
proc sql;

connect to teradata(user=prboni pw=prboni server=boom connection=global);
execute (DROP TABLE temp1) by teradata;
execute (COMMIT WORK) by teradata;

quit;

The following is an example of volatile table use:

/* Global connection for all tables */
libname x teradata user=test pw=test server=boom connection=global;

/* Create a volatile table */
proc sql;

connect to teradata(user=test pw=test server=boom connection=global);
execute (CREATE VOLATILE TABLE temp1 (col1 INT)

16 Maximizing Teradata Read Performance � Chapter 1

ON COMMIT PRESERVE ROWS) by teradata;
execute (COMMIT WORK) by teradata;

quit;

/* Insert one row into the volatile table */
proc sql;

connect to teradata(user=test pw=test server=boom connection=global);
execute (INSERT INTO temp1 VALUES(1)) by teradata;
execute (COMMIT WORK) by teradata;

quit;

/* Access the temporary table through the global libref */
data _null_;

set x.temp1;
put _all_;

run;

/* Access the volatile table through the global connection*/
proc sql;

connect to teradata (user=test pw=test server=boom connection=global);
select * from connection to teradata (select * from temp1);

quit;

/* Drop the connection, the volatile table is automatically dropped */
libname x clear;

/* to convince yourself it’s gone, try to access it */
libname x teradata user=test pw=test server=boom connection=global;

/* it’s not there */
proc print data=x.temp1;
run;

Maximizing Teradata Read Performance
A major objective of SAS/ACCESS when you are reading DBMS tables is to take

advantage of Teradata’s rate of data transfer. The DBINDEX=, SPOOL= and
PREFETCH= options can help you achieve optimal read performance.

About the PreFetch Facility
PreFetch is a SAS/ACCESS for Teradata facility that speeds up a SAS job by

exploiting the parallel processing capability of Teradata. To obtain benefit from the
facility, your SAS job must run more than once and have the following characteristics:

� use SAS/ACCESS to query Teradata DBMS tables
� should not contain SAS statements that create, update, or delete Teradata DBMS

tables
� run SAS code that changes infrequently or not at all.

In brief, the ideal job is a stable read-only SAS job.
Use of PreFetch is optional. To use the facility, you must explicitly enable it with the

LIBNAME option PREFETCH.

SAS/ACCESS for Teradata � About the PreFetch Facility 17

How PreFetch Works
When reading DBMS tables, SAS/ACCESS submits SQL statements on your behalf

to Teradata. Each SQL statement that is submitted has an execution cost: the amount
of time Teradata spends processing the statement before it returns the requested data
to SAS/ACCESS.

When PreFetch is enabled, the first time you run your SAS job, SAS/ACCESS
identifies and selects statements with a high execution cost. SAS/ACCESS then stores
(caches) the selected SQL statements to one or more Teradata macros that it creates.

On subsequent runs of the job, when PreFetch is enabled, SAS/ACCESS extracts
statements from the cache and submits them to Teradata in advance. The rows selected
by these SQL statements are immediately available to SAS/ACCESS because Teradata
’prefetches’ them. Your SAS job runs faster because PreFetch reduces the wait for SQL
statements with a high execution cost. However, PreFetch improves elapsed time only
on subsequent runs of a SAS job. During the first run, SAS/ACCESS only creates the
SQL cache and stores selected SQL statements; no prefetching is performed.

The PreFetch Option Arguments

unique_storename
As mentioned, when PreFetch is enabled, SAS/ACCESS creates one or more
Teradata macros to store the selected SQL statements that PreFetch caches. You
can easily distinguish a PreFetch macro from other Teradata macros. The
PreFetch Teradata macro contains a comment that is prefaced with the text,

"SAS/ACCESS PreFetch Cache"

The name that the PreFetch facility assigns for the macro is the value that you
enter for the unique_storename argument. The unique_storename must be unique.
Do not specify a name that exists in the Teradata DBMS already for a DBMS
table, view or macro. Also, do not enter a name that exists already in another SAS
job that employs the Prefetch facility.

#sessions
This argument specifies how many cached SQL statements SAS/ACCESS submits
in parallel to Teradata. In general, your SAS job completes faster if you increase
the number of statements that Teradata works on in advance. However, a large
number (too many sessions) can strain client and server resources. A valid value
is 1 through 9. If you do not specify a value for this argument, the default is 3.

In addition to the specified number of sessions, SAS/ACCESS adds an
additional session for submitting SQL statements that are not stored in the
PreFetch cache. Thus, if the default is 3, SAS/ACCESS actually opens up to 4
sessions on the Teradata server.

algorithm
This argument is present to handle future enhancements. Currently PreFetch only
supports one algorithm, SEQUENTIAL.

When and Why Use PreFetch
If you have a read-only SAS job that runs frequently, this is an ideal candidate for

PreFetch; for example, a daily job that extracts data from Teradata tables. To help you
decide when to use PreFetch, consider the following daily jobs:

� Job 1

Reads and collects data from the Teradata DBMS.

18 About the PreFetch Facility � Chapter 1

� Job 2
Contains a WHERE clause that reads in values from an external, variable data

source. As a result, the SQL code that the job submits through a Teradata
LIBNAME statement or through PROC SQL changes from run to run.

In these examples, Job 1 is an excellent candidate for the facility. In contrast, Job 2
is not. Using PreFetch with Job 2 does not return incorrect results, but can impose a
performance penalty. PreFetch uses stored SQL statements. Thus, Job 2 is not a good
candidate because the SQL statements that the job generates with the WHERE clause
change each time the job is run. Consequently, the SQL statements that the job
generates never match the statements that are stored.

The impact of Prefetch on processing performance varies by SAS job. Some jobs
improve elapsed time 5% or less; others improve elapsed time 25% or more.

Possible Unexpected Results
It is unlikely, but possible, to write a SAS job that delivers unexpected or incorrect

results. This can occur if the job contains code that waits on some Teradata or system
event before proceeding. For example, SAS code that pauses the SAS job until another
user updates a given data item in a Teradata table. Or, SAS code that pauses the SAS
job until a given time; for example, 5:00 p.m. In both cases, PreFetch would generate
SQL statements in advance. But, table results from these SQL statements would not
reflect data changes that are made by the scheduled Teradata or system event.

PreFetch Processing of Unusual Conditions
PreFetch is designed to handle unusual conditions gracefully. Some of these unusual

conditions include:

Condition: Your job contains SAS code that creates updates, or deletes Teradata
tables.

PreFetch is designed only for read operations and is disabled when it encounters a
non-read operation. The facility returns a performance benefit up to the point
where the first non-read operation is encountered. After that, SAS/ACCESS
disables the PreFetch facility and continues processing.

Condition: Your SQL cache name (unique_storename value) is identical to the name
of a Teradata table.

PreFetch issues a warning message. SAS/ACCESS disables the PreFetch facility
and continues processing.

Condition: You change your SAS code for a job that has PreFetch enabled.
PreFetch detects that the SQL statements for the job changed and deletes the
cache. SAS/ACCESS disables Prefetch and continues processing. The next time
that you run the job, PreFetch creates a fresh cache.

Condition: Your SAS job encounters a PreFetch cache that was created by a different
SAS job.

PreFetch deletes the cache. SAS/ACCESS disables Prefetch and continues
processing. The next time that you run the job, PreFetch creates a fresh cache.

Condition: You remove the PreFetch option from an existing job.
Prefetch is disabled. Even if the SQL cache (Teradata macro) still exists in your
database, SAS/ACCESS ignores it.

Condition: You accidentally delete the SQL cache (the Teradata macro created by
PreFetch) for a SAS job that has PreFetch enabled.

SAS/ACCESS simply rebuilds the cache on the next run of the job. In subsequent
job runs, PreFetch continues to enhance performance.

SAS/ACCESS for Teradata � Using Prefetch as a Global Option 19

Using PreFetch as a LIBNAME Option
If you specify the PREFETCH= option in a LIBNAME statement, PreFetch applies

the option to tables read by the libref.

Note: If you have more than one LIBNAME in your SAS job, and you specify
PREFETCH= for each LIBNAME, remember to make the SQL cache name for each
LIBNAME unique. �

This example applies PREFETCH= to one of two librefs. During the first job run,
PreFetch stores SQL statements for tables referenced by the libref ONE in a Teradata
macro named PF_STORE1 for reuse later.

libname one teradata user=testuser password=testpass
prefetch=’pf_store1’;
libname two teradata user=larry password=riley;

This example applies PREFETCH= to multiple librefs. During the first job run,
PreFetch stores SQL statements for tables referenced by the libref EMP to a Teradata
macro named EMP_SAS_MACRO and SQL statements for tables referenced by the
libref SALE to a Teradata macro named SALE_SAS_MACRO.

libname emp teradata user=testuser password=testpass
prefetch=’emp_sas_macro’;
libname sale teradata user=larry password=riley
prefetch=’sale_sas_macro’;

Using Prefetch as a Global Option
Unlike other Teradata LIBNAME options, you can also invoke PreFetch globally for a

SAS job. To do this, place the OPTION DEBUG= statement in your SAS program
before all LIBNAME statements and PROC SQL steps. If your job contains multiple
LIBNAME statements, the global PreFetch invocation creates a uniquely named SQL
cache name for each of the librefs.

Note: Do not be confused by the DEBUG= option here. It is merely a mechanism to
deliver the PreFetch capability globally. PreFetch is not for debugging; it is a supported
feature of SAS/ACCESS for Teradata. �

In this example, the first time you run the job with PreFetch enabled, the facility
creates three Teradata macros: UNIQUE_MAC1, UNIQUE_MAC2, and
UNIQUE_MAC3. In subsequent runs of the job, PreFetch extracts SQL statements
from these Teradata macros, enhancing the job performance across all three librefs
referenced by the job.

option debug="PREFETCH(unique_mac,2,SEQUENTIAL)";
libname one teradata user=kamdar password=ellis;
libname two teradata user=kamdar password=ellis

database=larry;
libname three teradata user=kamdar password=ellis

database=wayne;
proc print data=one.kamdar_goods;
run;
proc print data=two.larry_services;
run;
proc print data=three.wayne_miscellaneous;
run;

20 Maximizing Teradata Load Performance � Chapter 1

In this example, PreFetch selects the algorithm, that is, the order of the SQL
statements. (The OPTION DEBUG= statement must be the first statement in your SAS
job.)

option debug=’prefetch(pf_unique_sas,3)’;

In this example, the user specifies for PreFetch to use the SEQUENTIAL algorithm.
(The OPTION DEBUG= statement must be the first statement in your SAS job.)

option debug=’prefetch(sas_pf_store,3,sequential)’;

Maximizing Teradata Load Performance

Maximizing Teradata Load Performance with FastLoad

FastLoad Supported Features and Restrictions

The SAS/ACCESS interface to Teradata supports a bulk-load capability, called
FastLoad, which greatly accelerates insertion of data into empty Teradata tables. For
general information about using FastLoad and error recovery, see Teradata’s FastLoad
documentation.

Note: Implementation of the SAS/ACCESS FastLoad facility will change in a future
release of SAS. Consequently, you might need to change SAS programming statements
and options that you specify to enable this feature in the future. �

The SAS/ACCESS FastLoad facility is similar to the native Teradata FastLoad
Utility. They share the following limitations:

� FastLoad can load only empty tables; it cannot append to a table that already
contains data. If you attempt to use FastLoad when appending to a table that
contains rows, the append step fails.

� Both the Teradata FastLoad Utility and the SAS/ACCESS FastLoad facility log
data errors to tables. Error recovery can be difficult. You must refer to Teradata’s
FastLoad documentation to find the error that corresponds to the code stored in
the error table.

� FastLoad does not load duplicate rows (rows where all corresponding fields contain
identical data) into a Teradata table. If your SAS data set contains duplicate rows,
you can use the normal insert (load) process.

Invoking FastLoad
If you do not specify FastLoad, your Teradata tables are loaded normally (slowly). To

invoke FastLoad in the SAS/ACCESS interface, you can use one of the following:
� the data set option BULKLOAD=YES in a processing step that populates an

empty Teradata table.
� the LIBNAME option BULKLOAD=YES on the destination libref (the Teradata

DBMS library where the intended table(s) is to be created and loaded).
� the FASTLOAD= alias for either of these options.

SAS/ACCESS for Teradata � Maximizing Teradata Load Performance with MultiLoad 21

FastLoad Data Set Options
The following data set options are available for use with the FastLoad facility:

� BL_LOG=
specifies the names of the error tables that are created when you are using the

SAS/ACCESS FastLoad facility. By default, FastLoad errors are logged in
Teradata tables named SAS_FASTLOAD_ERRS1_randnum and
SAS_FASTLOAD_ERRS2_randnum where randnum is a randomly generated
number.

For example, if you specify BL_LOG=my_load_errors, errors are logged in
tables my_load_errors1 and my_load_errors2. If you specify BL_LOG=errtab,
errors are logged in tables name errtab1 and errtab2.

Note: SAS/ACCESS automatically deletes the error tables if no errors are logged.
If there are errors, the tables are retained, and SAS/ACCESS issues a warning
message that includes the names of the error tables. �

� DBCOMMIT=n

causes a Teradata “checkpoint” after each group of n rows are transmitted. The
use of checkpoints slows performance but provides known synchronization points if
there is a failure during the loading process.

Note: If BULKLOAD=YES, and DBCOMMIT= is not explicitly set, then the
default is that checkpoints are not used. �

The Teradata alias for this option is CHECKPOINT=.

See the section about data set options in SAS/ACCESS for Relational Databases:
Referencefor additional information about these options.

Maximizing Teradata Load Performance with MultiLoad

MultiLoad Supported Features and Restrictions

The SAS/ACCESS interface to Teradata supports a bulk-load capability called
MultiLoad that greatly accelerates insertion of data into Teradata tables. For general
information about using MultiLoad with Teradata tables and for information about
error recovery, see Teradata’s MultiLoad documentation. SAS/ACCESS
examples“Examples” on page 24 are available.

Unlike FastLoad, which only loads empty tables, MultiLoad loads both empty and
existing Teradata tables. If you do not specify MultiLoad, your Teradata tables are
loaded normally (inserts are sent one row at a time).

The SAS/ACCESS MultiLoad facility loads both empty and existing Teradata tables.
SAS/ACCESS supports these features:

� Only one target table can be loaded at a time.

� Only insert operations are supported.

The SAS/ACCESS MultiLoad facility is similar to the native Teradata MultiLoad
utility. They share the following limitations:

� Unique secondary indices on the target tables must be dropped prior to the load.

22 Maximizing Teradata Load Performance with MultiLoad � Chapter 1

� Foreign key references on the target table must be dropped prior to the load.
� Join indices on the target table must be dropped prior to the load.
� Duplicate rows are not loaded.

Both the Teradata MultiLoad utility and the SAS/ACCESS MultiLoad facility log
data errors to tables. Error recovery can be difficult, but the ability to restart from the
last checkpoint is possible. You must refer to Teradata’s MultiLoad documentation to
find the error that corresponds to the code stored in the error table.

MultiLoad Setup
The following are requirements for using the MultiLoad bulk-load capability in SAS:
� The native Teradata MultiLoad utility must be present on your system. If you do

not have the Teradata MultiLoad utility and you want to use it with SAS, contact
NCR to obtain the utility.

� SAS must be able to locate the Teradata MultiLoad utility on your system.
� The Teradata MultiLoad utility must be able to locate the SASMlam access

module and the SasMlne exit routine. They are supplied with the SAS/ACCESS
Interface to Teradata software.

� SAS MultiLoad requires Teradata client TTU 8.0 or later.

If it has not been done so already as part of the post-installation configuration process,
refer to the SAS configuration documentation for your system for information about
how to configure SAS to work with MultiLoad.

MultiLoad Data Set Options
Invoke the SAS/ACCESS MultiLoad facility by specifying MULTILOAD=YES. See

the data set option MULTILOAD= for detailed information and examples on loading
data and recovering from errors during the load process.

The following data set options are available for use with the MultiLoad facility:
� ML_LOG= specifies a prefix for the temporary tables used by the Teradata

MultiLoad utility during the load process. The MultiLoad utility uses a log table,
two error tables, and a work table while loading data to the target table. These
tables are named by default as SAS_ML_RS_randnum, SAS_ML_ET_randnum,
SAS_ML_UT_randnum, and SAS_ML_WT_randnum where randnum is a
randomly generated number.

ML_LOG= is used to override the default names used. For example, if you
specify ML_LOG=MY_LOAD the log table is named MY_LOAD_RS. Errors are logged in
tables MY_LOAD_ET and MY_LOAD_UT. The work table is named MY_LOAD_WT.

Note: Note: SAS/ACCESS automatically deletes the error tables if no errors are
logged. If there are errors, the tables are retained, and SAS/ACCESS issues a
warning message that includes the names of the tables in error. �

� ML_RESTART= allows the user to name the log table that MultiLoad will use for
tracking checkpoint information. By default, the log table is named
SAS_ML_RS_randnum where randnum is a random number. When restarting a
failed MultiLoad job, you need to specify the same log table from the earlier run so
that the MultiLoad job can restart correctly. Note that the same error tables and
work table must also be specified upon restarting the job, using ML_ERROR1,
ML_ERROR2, and ML_WORK data set options. ML_RESTART and ML_LOG are
mutually exclusive and cannot be specified together.

� ML_ERROR1= allows the user to name the error table that MultiLoad will use for
tracking errors from the acquisition phase. Please refer to Teradata’s MultiLoad

SAS/ACCESS for Teradata � Maximizing Teradata Load Performance with MultiLoad 23

reference for more information on what is stored in this table. By default, the
acquisition error table is named SAS_ML_ET_randnum where randnum is a
random number.

When restarting a failed MultiLoad job, you need to specify the same
acquisition table from the earlier run so that the MultiLoad job can restart
correctly. Note that the same log table, application error table, and work table
must also be specified upon restarting, using ML_RESTART, ML_ERROR2, and
ML_WORK data set options. ML_ERROR1 and ML_LOG are mutually exclusive
and cannot be specified together.

� ML_ERROR2= allows the user to name the error table that MultiLoad will use for
tracking errors from the application phase. Please refer to Teradata’s MultiLoad
reference for more information on what is stored in this table. By default, the
acquisition error table is named SAS_ML_UT_randnum where randnum is a
random number.

When restarting a failed MultiLoad job, you need to specify the same
application table from the earlier run so that MultiLoad can restart correctly. Note
that the same log table, acquisition error table, and work table must also be
specified upon restarting the job using ML_RESTART, ML_ERROR1, and
ML_WORK data set options.

ML_ERROR2 and ML_LOG are mutually exclusive and cannot be specified
together.

� ML_WORK= allows the user to name the work table that MultiLoad will use for
loading the target table. Please refer to Teradata’s MultiLoad reference for more
information on what is stored in this table. By default, the work table is named
SAS_ML_WT_randnum where randnum is a random number.

When restarting a failed MultiLoad job, you need to specify the same work table
from the earlier run so that the MultiLoad job can restart correctly. Note that the
same log table, acquisition error table and application error table must also be
specified upon restarting the job using ML_RESTART, ML_ERROR1, and
ML_ERROR2 data set options.

ML_WORK and ML_LOG are mutually exclusive and cannot be specified
together.

� ML_CHECKPOINT= specifies the checkpoint rate. ML_CHECKPOINT=0 is the
default; no checkpoints are taken if the default is used. If the value of
ML_CHECKPOINT= is between 1 and 59 inclusive, checkpoints are taken at the
specified interval in minutes. If ML_CHECKPOINT= is greater than or equal to
60, then a checkpoint operation occurs after a multiple of the specified rows are
loaded.

ML_CHECKPOINT= functions very much like the CHECKPOINT in the native
Teradata MultiLoad utility, but it functions very differently from the
DBCOMMIT= data set option. Note that DBCOMMIT= is disabled for MultiLoad
to prevent any conflict.

� SLEEP= specifies the number of minutes that MultiLoad waits before it retries a
logon operation when the maximum number of utilities are already running on the
Teradata database. The default value is 6. SLEEP= functions very much like the
SLEEP run-time option of the native Teradata MultiLoad utility.

� TENACITY= specifies the number of hours that MultiLoad tries to log on when
the maximum number of utilities are already running on the Teradata database.
The default value is 4. TENACITY= functions very much like the TENACITY
run-time option of the native Teradata MultiLoad utility.

� MBUFFSIZE= sets the size of the buffer used for data transfer. The default size of
each buffer used for data transfer is 64K. This size can be increased up to 1MB
using the MBUFSIZE=.

24 Examples � Chapter 1

Note: Be aware that these options are disabled while you are using the SAS/
ACCESS MultiLoad facility:

� The LIBNAME and data set options DBCOMMIT= are disabled because
DBCOMMIT= functions very differently from CHECKPOINT of the native
Teradata MultiLoad utility.

� The data set option ERRLIMIT= is disabled because the number of errors is not
known until all the records have been sent to MultiLoad. The default value of
ERRLIMIT=1 is not honored.

�

Examples
The following example invokes the FastLoad facility.

libname fload teradata user=testuser password=testpass;
data fload.nffloat(bulkload=yes);

do x=1 to 1000000;
output;

end;
run;

The following example uses FastLoad to append SAS data to an empty Teradata
table and specifies the BL_LOG= option to name the error tables Append_Err1 and
Append_Err2. (In practice, applications typically append many rows.)

/* create the empty Teradata table */
proc sql;

connect to teradata as tera(user=testuser password=testpass);
execute (create table performers

(userid int, salary decimal(10,2), job_desc char(50)))
by tera;

execute (commit) by tera;
quit;

/* create the SAS data to be loaded */
data local;

input userid 5. salary 9. job_desc $50.;
datalines;
0433 35993.00 grounds keeper
4432 44339.92 code groomer
3288 59000.00 manager
;

/* append the SAS data and name the Teradata error tables */
libname tera teradata user=testuser password=testpass;

proc append data=local base=tera.performers
(bulkload=yes bl_log=append_err);

run;

The following example invokes the MultiLoad facility.

libname trlib teradata user=testuser pw=testpass server=dbc;

/* MultiLoad a table with 2000 rows */
data trlib.mlfloat(MultiLoad=yes);

SAS/ACCESS for Teradata � Reading from and Inserting to the Same Teradata Table 25

do x=1 to 2000;
output;

end;
run;

/* Append another thousand rows */
data work.testdata;
do x=2001 to 3000;

output;
end;

run;

/* Append the SAS data to the Teradata table */
proc append data=work.testdata base=trlib.mlfload

(MultiLoad=yes);
run;

Teradata Processing Tips for SAS Users

Reading from and Inserting to the Same Teradata Table
If you use SAS/ACCESS to read rows from a Teradata table and then attempt to

insert these rows into the same table, you will hang (suspend) your SAS session.
Behind the scenes, the following happens:

� a SAS/ACCESS connection requests a standard Teradata READ lock for the read
operation.

� a SAS/ACCESS connection then requests a standard Teradata WRITE lock for the
insert operation.

� the WRITE lock request suspends because the read connection already holds a
READ lock on the table. Consequently, your SAS session hangs (is suspended).

In the following example, the following happens:

� SAS/ACCESS creates a read connection to Teradata to fetch the rows selected
(select *) from TRA.SAMETABLE, requiring a standard Teradata READ lock;
Teradata issues a READ lock.

� SAS/ACCESS creates an insert connection to Teradata to insert the rows into
TRA.SAMETABLE, requiring a standard Teradata WRITE lock. But the WRITE
lock request suspends because the table is locked already by the READ lock.

� Your SAS/ACCESS session hangs.

libname tra teradata user=testuser password=testpass;
proc sql;
insert into tra.sametable

select * from tra.sametable;

To avoid the situation described, use the SAS/ACCESS locking options “Locking in
the Teradata Interface” on page 29.

26 Using a BY Clause to Order Query Results � Chapter 1

Using a BY Clause to Order Query Results

SAS/ACCESS returns table results from a query in random order because Teradata
returns the rows to SAS/ACCESS randomly. In contrast, traditional SAS processing
returns SAS data set observations in the same order during every run of your job. If
maintaining row order is important, then you should add a BY clause to your SAS
statements. A BY clause ensures consistent ordering of the table results from Teradata.

In the following examples, a Teradata table, ORD, has columns NAME and
NUMBER. The PROC PRINT statements illustrate consistent and inconsistent ordering
in the display of the ORD table rows.

libname prt teradata user=testuser password=testpass;

proc print data=prt.ORD;
var name number;
run;

If this statement is run several times, it yields inconsistent ordering, meaning that
the ORD rows are likely to be arranged differently each time. This happens because
SAS/ACCESS displays the rows in the order that Teradata returns them; that is,
randomly.

proc print data=prt.ORD;
var name number;
by name;
run;

This statement achieves more consistent ordering because it orders PROC PRINT
output by the NAME value. However, on successive runs of the statement, display of
rows with a different number and an identical name can vary, as depicted in the PROC
PRINT displays below.

Output 1.1 PROC PRINT Display 1

Rita Calvin 2222
Rita Calvin 199

Output 1.2 PROC PRINT Display 2

Rita Calvin 199
Rita Calvin 2222

proc print data=prt.ORD;
var name number;
by name number;
run;

The above statement always yields identical ordering because every column is specified
in the BY clause. Thus, your PROC PRINT output always looks the same.

SAS/ACCESS for Teradata � Using TIME and TIMESTAMP 27

Using TIME and TIMESTAMP
This example creates a Teradata table and assigns the SAS TIME8. format to the

TRXTIME0 column. Teradata creates the TRXTIME0 column as the equivalent
Teradata data type, TIME(0), with the value of 12:30:55.

libname mylib teradata user=testuser password=testpass;

data mylib.trxtimes;
format trxtime0 time8.;
trxtime0 = ’12:30:55’t;

run;

The following example creates a Teradata column that specifies very precise time
values. The format TIME(5) is specified for the TRXTIME5 column. When SAS reads
this column, it assigns the equivalent SAS format TIME14.5.

libname mylib teradata user=testuser password=testpass;

proc sql noerrorstop;
connect to teradata (user=testuser password=testpass);
execute (create table trxtimes (trxtime5 time(5)

)) by teradata;
execute (commit) by teradata;
execute (insert into trxtimes

values (cast(’12:12:12’ as time(5))
)) by teradata;

execute (commit) by teradata;
quit;

/* you can print the value that is read SAS/ACCESS */
proc print data =mylib.trxtimes;
run;

Note: SAS might not preserve more than four digits of fractional precision for
Teradata TIMESTAMP. �

The following example creates a Teradata table and specifies a simple timestamp
column with no digits of precision. Teradata stores the value 2000–01–01 00:00:00. SAS
assigns the default format DATETIME19. to the TRSTAMP0 column generating the
corresponding SAS value of 01JAN2000:00:00:00.

proc sql noerrorstop;
connect to teradata (user=testuser password=testpass);
execute (create table stamps (tstamp0 timestamp(0)

)) by teradata;
execute (commit) by teradata;
execute (insert into stamps

values (cast(’2000--01--01 00:00:00’ as
timestamp(0))

)) by teradata;
execute (commit) by teradata;

quit;

The following example creates a Teradata table and assigns the SAS format
DATETIME23.3 to the TSTAMP3 column, generating the value

28 Replacing PROC SORT with a BY Clause � Chapter 1

13APR1961:12:30:55.123. Teradata creates the TSTAMP3 column as the equivalent
data type TIMESTAMP(3) with the value 1961–04–13 12:30:55.123.

libname mylib teradata user=testuser password=testpass;

data mylib.stamps;
format tstamp3 datetime23.3;
tstamp3 = ’13apr1961:12:30:55.123’dt;
run;

The following example illustrates how the SAS engine passes the literal value for
TIMESTAMP in a WHERE statement to Teradata for processing. Note that the value is
passed without being rounded or truncated so that Teradata can handle the rounding or
truncation during processing. This example would also work in a DATA step.

proc sql ;
select * from trlib.flytime where col1 = ’22Aug1995 12:30:00.557’dt ;
quit;

In SAS Version 8, the interface to Teradata did not create TIME and TIMESTAMP
data types. Instead, the interface generated FLOAT values for SAS times and dates.
The following example shows how to format a column that contains a FLOAT
representation of a SAS datetime into a readable SAS datetime.

libname mylib teradata user=testuser password=testpass;

proc print data=mylib.stampv80;
format stamp080 datetime25.0;
run;

Here, the old Teradata table STAMPV80 contains the FLOAT column, STAMP080,
which stores SAS datetime values. The FORMAT statement displays the FLOAT as a
SAS datetime value.

Replacing PROC SORT with a BY Clause
In general, PROC SORT steps are not useful to output a Teradata table. In

traditional SAS processing, PROC SORT is used to order observations in a SAS data set.
Subsequent SAS steps that use the sorted data set receive and process the observations
in the sorted order. Teradata does not store output rows in the sorted order. Therefore,
do not sort rows with PROC SORT if the destination sorted file is a Teradata table.

The following example illustrates a PROC SORT statement found in typical SAS
processing. This statement cannot be used in SAS/ACCESS for Teradata.

libname sortprt ’.’;
proc sort data=sortprt.salaries;
by income;
proc print data=sortprt.salaries;

The following example removes the PROC SORT statement shown in the previous
example. Instead, it uses a BY clause, along with a VAR clause, with PROC PRINT.
The BY clause returns Teradata rows ordered by the INCOME column.

libname sortprt teradata user=testuser password=testpass;
proc print data=sortprt.salaries;
var income;
by income;

SAS/ACCESS for Teradata � Locking in the Teradata Interface 29

Reducing Workload on Teradata by Sampling
The OBS= option triggers SAS/ACCESS to add a SAMPLE clause to generated SQL.

In the following example, 10 rows are printed from dbc.ChildrenX:

Libname tra teradata user=sasdxs pass=****** database=dbc;
Proc print data=tra.ChildrenX (obs=10);
run;

The SQL passed to Teradata is:

SELECT "Child","Parent" FROM "ChildrenX" SAMPLE 10

Especially against large Teradata tables, small values for OBS= reduce workload and
spool space consumption on Teradata, and your queries complete much sooner. See
SAMPLE in your Teradata documentation for further information.

Locking in the Teradata Interface
The following LIBNAME and data set options enable you to control how the interface

to Teradata handles locking. Use SAS/ACCESS locking options only when Teradata’s
standard locking is undesirable. See the section about the LIBNAME statement in
SAS/ACCESS for Relational Databases: Reference for additional information about
these options. See “Understanding SAS/ACCESS Locking Options” on page 31 and
“When to Use SAS/ACCESS Locking Options” on page 31 for tips on using these
options. Examples are available.

READ_LOCK_TYPE= TABLE | VIEW

UPDATE_LOCK_TYPE= TABLE | VIEW

READ_MODE_WAIT= YES | NO

UPDATE_MODE_WAIT= YES | NO

READ_ISOLATION_LEVEL= ACCESS | READ | WRITE
The valid values for this option, ACCESS, READ, and WRITE, are defined in the
following table.

30 Locking in the Teradata Interface � Chapter 1

Table 1.3 Read Isolation Levels for Teradata

Isolation Level Definition

ACCESS Obtains an ACCESS lock by ignoring other users’ ACCESS, READ,
and WRITE locks. Permits other users to obtain a lock on the table
or view.

Can return inconsistent or unusual results.

READ Obtains a READ lock if no other user holds a WRITE or
EXCLUSIVE lock. Does not prevent other users from reading the
object.

Specify this isolation level whenever possible, it is usually adequate
for most SAS/ACCESS processing.

WRITE Obtains a WRITE lock on the table or view if no other user has a
READ, WRITE, or EXCLUSIVE lock on the resource. You cannot
explicitly release a WRITE lock. It is released only when the table is
closed. Prevents other users from acquiring any lock but ACCESS.

This is unnecessarily restrictive, because it locks the entire table
until the read operation is finished.

UPDATE_ISOLATION_LEVEL= ACCESS | READ | WRITE
The valid values for this option, ACCESS, READ, and WRITE, are defined in the
following table.

Table 1.4 Update Isolation Levels for Teradata

Isolation Level Definition

ACCESS Obtains an ACCESS lock by ignoring other users’ ACCESS, READ,
and WRITE locks. Avoids a potential deadlock but can cause data
corruption if another user is updating the same data.

READ Obtains a READ lock if no other user holds a WRITE or
EXCLUSIVE lock. Prevents other users from being granted a
WRITE or EXCLUSIVE lock.

Locks the entire table or view, allowing other users to acquire
READ locks. Can lead to deadlock situations.

WRITE Obtains a WRITE lock on the table or view if no other user has a
READ, WRITE, or EXCLUSIVE lock on the resource. You cannot
explicitly release a WRITE lock. It is released only when the table is
closed. Prevents other users from acquiring any lock but ACCESS.

Prevents all users, except those with ACCESS locks, from accessing
the table. Prevents the possibility of a deadlock, but limits
concurrent use of the table.

These locking options cause the LIBNAME engine to transmit a locking request to
the DBMS; Teradata performs all the data locking. If you correctly specify a set of
SAS/ACCESS read or update locking options, SAS/ACCESS generates locking modifiers
that override Teradata’s standard locking.

Note: If you specify an incomplete set of locking options, SAS/ACCESS returns an
error message. If you do not use SAS/ACCESS locking options, Teradata’s lock defaults
are in effect. For a complete description of Teradata locking, see the LOCKING
statement in your Teradata SQL Reference manual. �

SAS/ACCESS for Teradata � When to Use SAS/ACCESS Locking Options 31

Understanding SAS/ACCESS Locking Options
SAS/ACCESS locking options modify Teradata’s standard locking. Teradata usually

locks at the row level; SAS/ACCESS lock options lock at the table or view level. The
change in the scope of the lock from row to table affects concurrent access to DBMS
objects. Specifically, READ and WRITE table locks increase the time that other users
must wait to access the table and can decrease overall system performance. The
following measures help minimize these negative effects:

� Apply READ or WRITE locks only when you must apply special locking on
Teradata tables.

SAS/ACCESS locking options can be appropriate for special situations, as
described in “When to Use SAS/ACCESS Locking Options” on page 31. If
SAS/ACCESS locking options do not meet your specialized needs, you can use
additional Teradata locking features using views. See CREATE VIEW in your
Teradata SQL Reference manual for details.

� Limit the span of the locks by using data set locking options instead of LIBNAME
locking options whenever possible. (LIBNAME options affect all the tables
referenced by your libref that you open, while data set options apply only to the
table specified.)

If you specify the following read locking options, SAS/ACCESS generates and
submits to Teradata locking modifiers that contain the values that you specify for the
three read lock options:

� READ_ISOLATION_LEVEL= specifies the level of isolation from other table users
that is required during SAS/ACCESS read operations.

� READ_LOCK_TYPE= specifies and changes the scope of the Teradata lock during
SAS/ACCESS read operations.

� READ_MODE_WAIT= specifies during SAS/ACCESS read operations whether
Teradata should wait to acquire a lock or fail your request when the DBMS
resource is locked by a different user.

If you specify the following update lock options, SAS/ACCESS generates and submits
to Teradata locking modifiers that contain the values that you specify for the three
update lock options:

� UPDATE_ISOLATION_LEVEL= specifies the level of isolation from other table
users that is required as SAS/ACCESS reads Teradata rows in preparation for
updating the rows.

� UPDATE_LOCK_TYPE= specifies and changes the scope of the Teradata lock
during SAS/ACCESS update operations.

� UPDATE_MODE_WAIT= specifies during SAS/ACCESS update operations
whether Teradata should wait to acquire a lock or fail your request when the
DBMS resource is locked by a different user.

When to Use SAS/ACCESS Locking Options
This section describes situations that might require SAS/ACCESS lock options

instead of the standard locking provided by Teradata.

� Use SAS/ACCESS locking options to reduce the isolation level for a read operation.

When you READ lock a table, you can lock out both yourself and other users
from updating or inserting into the table. Conversely, when other users update or
insert into the table, they can lock you out from reading the table. In this

32 Examples � Chapter 1

situation, you want to reduce the isolation level during a read operation. To do
this, you specify the following read SAS/ACCESS lock options and values:

READ_ISOLATION_LEVEL=ACCESS
READ_LOCK_TYPE=TABLE
READ_MODE_WAIT=YES

The effect of the options and settings in this situation is one of the following:
� Specify ACCESS locking, eliminating a lock out of yourself and other users.

Since ACCESS can return inconsistent results to a table reader, specify
ACCESS only if you are casually browsing data, not if you require precise
data.

� Change the scope of the lock from row-level to the entire table.
� Request that Teradata wait if it attempts to secure your lock and finds the

resource already locked.

� Use SAS/ACCESS lock options to avoid contention.
When you read or update a table, contention can occur: the DBMS is waiting for

other users to release their locks on the table that you want to access. This
contention suspends your SAS/ACCESS session. In this situation, to avoid
contention during a read operation, you specify the following SAS/ACCESS read
lock options and values:
READ_ISOLATION_LEVEL=READ
READ_LOCK_TYPE=TABLE
READ_MODE_WAIT=NO

The effect of the options and settings in this situation is one of the following:
� Specify a READ lock.
� Change the scope of the lock. Because SAS/ACCESS does not support row locking

when you obtain the lock requested, you lock the entire table until your read
operation finishes.

� Tell SAS/ACCESS to fail the job step if Teradata cannot immediately obtain the
READ lock.

Examples

Setting the Isolation Level to ACCESS for Teradata Tables
/*Generates a quick survey of unusual customer purchases.*/

libname cust teradata user=testuser password=testpass
READ_ISOLATION_LEVEL=ACCESS
READ_LOCK_TYPE=TABLE
READ_MODE_WAIT=YES
CONNECTION=UNIQUE;

proc print data=cust.purchases(where= (bill<2));
run;
data local;
set cust.purchases (where= (quantity>1000));
run;

In this example, SAS/ACCESS does the following:

SAS/ACCESS for Teradata � Examples 33

� Connects to the Teradata DBMS and specifies the three SAS/ACCESS
LIBNAME read lock options.

� Opens the PURCHASES table and obtains an ACCESS lock if a different
user does not hold an EXCLUSIVE lock on the table.

� Reads and displays table rows with a value less than 2 in the BILL column.
� Closes the PURCHASES table and releases the ACCESS lock.
� Opens the PURCHASES table again and obtains an ACCESS lock if a

different user does not hold an EXCLUSIVE lock on the table.
� Reads table rows with a value greater than 1000 in the QUANTITY column.
� Closes the PURCHASES table and releases the ACCESS lock.

Setting Isolation Level to WRITE to Update a Teradata Table
/*Updates the critical Rebate row.*/

libname cust teradata user=testuser password=testpass;
proc sql;
update cust.purchases(UPDATE_ISOLATION_LEVEL=WRITE

UPDATE_MODE_WAIT=YES
UPDATE_LOCK_TYPE=TABLE)

set rebate=10 where bill>100;
quit;

In this example, SAS/ACCESS does the following:
� Connects to the Teradata DBMS and specifies the three SAS/ACCESS data set

update lock options.
� Opens the PURCHASES table and obtains a WRITE lock if a different user does

not hold a READ, WRITE or EXCLUSIVE lock on the table.
� Updates table rows with BILL greater than 100 and sets the REBATE column to

10.
� Closes the PURCHASES table and releases the WRITE lock.

Preventing a Hung SAS Session When Reading and Inserting to the Same
Table

/* The SAS/ACCESS lock options prevent the session hang */
/* that occurs when reading and inserting into the same table */

libname tra teradata user=testuser password=testpass
connection=unique;

proc sql;
insert into tra.sametable

select * from tra.sametable(read_isolation_level=access
read_mode_wait=yes
read_lock_type=table);

In this example, SAS/ACCESS does the following:
� Creates a read connection to fetch the rows selected (SELECT *) from

TRA.SAMETABLE and specifies an ACCESS lock
(READ_ISOLATION_LEVEL=ACCESS). Teradata grants the ACCESS lock.

� Creates an insert connection to Teradata to process the insert operation to
TRA.SAMETABLE. Because the ACCESS lock that is already on the table permits
access to the table, Teradata grants a WRITE lock.

� Performs the insert operation without hanging (suspending) your SAS session.

34 Naming Conventions for Teradata � Chapter 1

Naming Conventions for Teradata

Teradata Conventions
The data objects that you can name in Teradata include tables, views, columns,

indexes and macros. When naming a Teradata object, use the following conventions:
� A name must start with a letter unless you enclose it in double quotation marks.
� A name must be from 1 to 30 characters long.
� A name can contain the letters A through Z, the digits 0 through 9, the underscore

(_), $, and #. A name in double quotation marks can contain any characters except
double quotation marks.

� A name, even when enclosed in double quotation marks, is not case-sensitive. For
example, CUSTOMER is the same as customer.

� A name cannot be a Teradata reserved word.
� The name must be unique between objects. That is, a view and table in the same

database cannot have the identical name.

SAS Naming Conventions
When naming a SAS object, use the following conventions:
� A name must start with a letter or underscore.
� A name cannot be enclosed in double quotation marks.
� A name must be from 1 to 32 characters long.
� A name can contain the letters A through Z, the digits 0 through 9, and the

underscore (_).
� A name is not case-sensitive. For example, CUSTOMER is the same as customer.
� A name does not need to be unique between object types.

Naming Objects to Meet Teradata and SAS Conventions
To share objects easily between the DBMS and SAS, create names that meet both

SAS and Teradata naming conventions. Make the name follow these conventions:
� start with a letter
� include only letters, digits, and underscores
� have a length of 1 to 30 characters.

Accessing Teradata Objects That Do Not Meet SAS Naming
Conventions

The following are SAS/ACCESS code examples to help you access Teradata objects
(existing Teradata DBMS tables and columns) that have names that do not follow SAS
naming conventions.

Example 1: Unusual Teradata Table Name
libname unusual teradata user=testuser password=testpass;
proc sql dquote=ansi;

SAS/ACCESS for Teradata � Character String Data 35

create view myview as
select * from unusual."More names";

proc print data=myview;run;

Example 2: Unusual Teradata Column Names
SAS/ACCESS automatically converts Teradata column names that are invalid for

SAS, mapping any invalid characters to underscores. It also appends numeric suffixes
to identical names to ensure that column names are unique.

create table unusual_names(Name$ char(20), Name# char(20),
"Other strange name" char(20))

In this example, SAS/ACCESS converts the spaces found in the Teradata column
name, OTHER STRANGE NAME, to Other_strange_name. After the automatic
conversion, SAS programs can then reference the table as usual, for example:

libname unusual teradata user=testuser password=testpass;
proc print data=unusual.unusual_names; run;

Output 1.3 PROC PRINT Display

Name_ Name_0 Other_strange_name

Data Types for Teradata
Every column in a table has a name and data type. The data type tells Teradata how

much physical storage to set aside for the column, as well as the form in which to store
the data.

Note: SAS/ACCESS 9 does not support the following Teradata data types:
GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC. �

Binary String Data
BYTE (n)

specifies a fixed-length column of length n for binary string data. The maximum
for n is 64,000.

VARBYTE (n)
specifies a varying-length column of length n for binary string data. The
maximum for n is 64,000.

Character String Data
CHAR (n)

specifies a fixed-length column of length n for character string data. The
maximum for n is 64,000.

VARCHAR (n)
specifies a varying-length column of length n for character string data. The
maximum for n is 64,000. VARCHAR is also known as CHARACTER VARYING.

36 Date/Time Data � Chapter 1

LONG VARCHAR
specifies a varying-length column, of the maximum length, for character string
data. LONG VARCHAR is equivalent to VARCHAR(32000) or VARCHAR(64000)
depending on which Teradata version your server is running.

Date/Time Data
The date type in Teradata is similar to the SAS date value. It is stored internally as

a numeric value and is displayed in a site-defined format. Date type columns might
contain Teradata values that are out of range for SAS, which handles dates from A.D.
1582 through A.D. 20,000. If SAS/ACCESS encounters an unsupported date, for
example, a date earlier than A.D. 1582, it returns an error message and display the
date as a missing value.

See “Using TIME and TIMESTAMP” on page 27 for examples.
The Teradata date/time types that SAS supports are listed here.

DATE
specifies date values in the default format YYYY-MM-DD. For example, January
25, 1989, is input as 1989-01-25. Values for this type can range from 0001-01-01
through 9999-12-31.

TIME (n)
specifies time values in the format HH:MM:SS.SS. In the time, SS.SS is the
number of seconds ranging from 00 to 59 with the fraction of a second following
the decimal point.

n is a number from 0 to 6 that represents the number of digits (precision) of the
fractional second. For example, TIME(5) is 11:37:58.12345 and TIME(0) is
11:37:58. This type is supported for Teradata Version 2, Release 3 and later.

TIMESTAMP (n)
specifies date/time values in the format YYYY-MM-DD HH:MM:SS.SS. In the
timestamp, SS.SS is the number of seconds ranging from 00 through 59 with the
fraction of a section following the decimal point.

n is a number from 0 to 6 that represents the number of digits (precision) of the
fractional second. For example, TIMESTAMP(5) is 1999-01-01 23:59:59.99999 and
TIMESTAMP(0) is 1999-01-01 23:59:59. This type is supported for Teradata
Version 2, Release 3 and later.

CAUTION:
When processing WHERE statements (using PROC SQL or the DATA step) that

contain literal values for TIME or TIMESTAMP, the SAS engine passes the values to
Teradata exactly as they were entered, without being rounded or truncated. This is
done so that Teradata can handle the rounding or truncation during processing. �

Numeric Data
When reading Teradata data, SAS/ACCESS converts all Teradata numeric data types

to the SAS internal format, floating-point.

BYTEINT
specifies a single-byte signed binary integer. Values can range from -128 to +127.

DECIMAL(n,m)
specifies a packed-decimal number. n is the total number of digits (precision). m is
the number of digits to the right of the decimal point (scale). The range for
precision is 1 through 18. The range for scale is 0 through n.

SAS/ACCESS for Teradata � LIBNAME Statement Data Conversions 37

If m is omitted, 0 is assigned and n can also be omitted. Omitting both n and m
results in the default DECIMAL(5,0). DECIMAL is also known as NUMERIC.

CAUTION:
Because SAS stores numbers in floating-point format, a Teradata DECIMAL

number with very high precision can lose precision. For example, when
SAS/ACCESS running on a UNIX MP-RAS client reads a Teradata column
specified as DECIMAL (18,18), it maintains only 13 digits of precision. This can
cause problems. A large DECIMAL number can cause the WHERE clause that
SAS/ACCESS generates to perform improperly (fail to select the expected rows).
There are other potential problems. For this reason, use carefully large precision
DECIMAL data types for Teradata columns that SAS/ACCESS will access. �

FLOAT
specifies a 64-bit Institute of Electrical and Electronics Engineers (IEEE)
floating-point number in sign-and-magnitude form. Values can range from
approximately 2.226 x 10 -308 to 1.797 x 10308. FLOAT is also known as REAL or
DOUBLE PRECISION.

Note: When the SAS/ACCESS client internal floating point format is IEEE,
Teradata FLOAT numbers convert precisely to SAS numbers. Exact conversion
applies to SAS/ACCESS for Teradata running under UNIX MP-RAS. However, if
you are running SAS/ACCESS for Teradata under z/OS, there can be minor
precision and magnitude discrepancies. �

INTEGER
specifies a large integer. Values can range from −2,147,483,648 through
+2,147,483,647.

SMALLINT
specifies a small integer. Values can range from −32,768 through +32,767.

Teradata Null Values
Teradata has a special value that is called NULL. A Teradata NULL value means an

absence of information and is analogous to a SAS missing value. When SAS/ACCESS
reads a Teradata NULL value, it interprets it as a SAS missing value.

By default, Teradata columns accept NULL values. However, you can define columns
so that they do not contain NULL values. For example, when you create a SALES
table, define the CUSTOMER column as NOT NULL, telling Teradata not to add a row
to the table unless the CUSTOMER column for the row has a value. When creating a
Teradata table with SAS/ACCESS, you can use the DBNULL= data set option to
indicate whether NULL is a valid value for specified columns.

For more information about how SAS handles null values, see “Potential Result Set
Differences When Processing Null Data” in SAS/ACCESS for Relational Databases:
Reference.

Note: To control how SAS missing character values are handled by Teradata, use
the NULLCHAR= and NULLCHARVAL= data set options. �

LIBNAME Statement Data Conversions
When you read a Teradata table with the LIBNAME statement, SAS/ACCESS

assigns default SAS data types and formats to the Teradata table columns. In assigning
the defaults, SAS/ACCESS does not use Teradata’s column format information. The
following table shows the default SAS formats that SAS/ACCESS assigns to Teradata
data types when you use the LIBNAME statement.

38 LIBNAME Statement Data Conversions � Chapter 1

Table 1.5 Default SAS Formats for Teradata

Teradata Data Type Default SAS Format

CHAR(n) $n (n<= 32,767)

CHAR(n) $32767.(n>32,767) 1

VARCHAR(n) $n (n<= 32,767)

VARCHAR(n) $32767.(n> 32,767) 1

LONG VARCHAR(n) $32767. 1

BYTE(n) $HEXn. (n<= 32,767)

BYTE(n)1 $HEX32767.(n> 32,767)

VARBYTE(n) $HEXn. (n<= 32,767)

VARBYTE(n) $HEX32767.(n> 32,767)

INTEGER 11.0

SMALLINT 6.0

BYTEINT 4.0

DECIMAL(n, m)2 (n+2).(m)

FLOAT none

DATE3 DATE9.

TIME(n)4 for n=0, TIME8.

for n>0, TIME9+n.n

TIMESTAMP(n)4 for n=0, DATETIME19.

for n>0, DATETIME20+n.n

1 When reading Teradata data into SAS, DBMS columns that exceed 32,767 bytes are truncated.
The maximum size for a SAS character column is 32,767 bytes.

2 If the DECIMAL number is extremely large, SAS can lose precision. For details, see the topic
“Numeric Data”.

3 See the topic “Date/Time Data” for how SAS/ACCESS handles dates that are outside the valid
SAS date range.

4 TIME and TIMESTAMP are supported for Teradata Version 2, Release 3 and later. The TIME
with TIMEZONE, TIMESTAMP with TIMEZONE, and INTERVAL types are presented as SAS
character strings, and thus are harder to use.

When you create Teradata tables, the default Teradata columns that SAS/ACCESS
creates are based on the type and format of the SAS column. The following table shows
the default Teradata data types that SAS/ACCESS assigns to the SAS formats during
output processing when you use the LIBNAME statement.

Table 1.6 Default Output Teradata Data Types

SAS Data Type SAS Format Teradata Data Type

Character $w.

$CHARw.

$VARYINGw.

CHAR[w]

Character $HEXw. BYTE[w]

SAS/ACCESS for Teradata � Data Returned as SAS Binary Data with Default Format $HEX 39

SAS Data Type SAS Format Teradata Data Type

Numeric A date format DATE

Numeric TIMEw.d TIME(d)1

Numeric DATETIMEw.d TIMESTAMP(d)1

Numeric w.(w≤2) BYTEINT

Numeric w.(3≤w≤4) SMALLINT

Numeric w.(5≤w≤9) INTEGER

Numeric w.(w≥10) FLOAT

Numeric w.d DECIMAL(w-1,d)

Numeric All other numeric formats FLOAT

1 For Teradata Version 2, Release 2 and earlier, FLOAT is the default Teradata output type for SAS
time and datetime values. To display Teradata columns that contain SAS times and datetimes
properly, you must explicitly assign the appropriate SAS time or datetime display format to the
column.

To override any default output type, use the data set option DBTYPE=.

Data Returned as SAS Binary Data with Default Format $HEX
BYTE
VARBYTE
LONGVARBYTE
GRAPHIC
VARGRAPHIC
LONG VARGRAPHIC

40

41

A P P E N D I X

1
Recommended Reading

Recommended Reading 41

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS for Relational Databases: Reference
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Companion for your specific operation environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

42

43

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit process.

44 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries. In SAS/ACCESS software,
the default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS may or may not be able to use the
indexes of the DBMS to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indices to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

Glossary 45

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS data library.

member name
a name that is given to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

Pass-Through Facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The Pass-Through Facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the
CONNECTION TO component. SAS/ACCESS software is required in order to use
the Pass-Through Facility.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

46 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that whenever a data value in one table is
changed, the appropriate change is also made to any related values in other tables or
in the same table. Referential integrity is also used to ensure that related data is not
deleted or changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

Glossary 47

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

view descriptor
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

48

Index 49

Index

A
ACCESS procedure

unsupported in Teradata 2
ACCOUNT= LIBNAME option 3
autopartitioning 9

B
binary string data 35
BL_LOG= data set option 21
bulk loading

load performance and FastLoad 20
load performance and MultiLoad 21

BY clause
ordering query results 26
replacing SORT procedure with 28

BYTE data type 35
BYTEINT data type 36

C
case sensitivity

FastExport 10
CHAR data type 35
character string data 35
CHECKPOINT= data set option

FastLoad and 21
CONNECT statement 7

D
data conversions 37
data set options 6

FastLoad 21
MultiLoad 22

data types 35
DATABASE= LIBNAME option 3
DATE data type 36
date/time data 36
DBCOMMIT= data set option

FastLoad and 21
DBLOAD procedure

unsupported in Teradata 2
DBSLICE= option 12
DECIMAL data type 36

E
explicit SQL

FastExport and 12

F
FastExport 10

case sensitivity and 10

explicit SQL and 12

setup 11

usage 11

usage exceptions 12

versus partitioning WHERE clauses 13

FastLoad

data set options 21

examples 24

features and restrictions 20

invoking 20

load performance and 20

FLOAT data type 37

functions

passing to Teradata 13

I
INTEGER data type 37

L
LIBNAME statement 3

data conversions 37

example 6

LIBNAME options 5

PreFetch as LIBNAME option 19

load performance

examples 24

FastLoad and 20

MultiLoad and 21

locking 29

examples 32

SAS/ACCESS options 31

LONG VARCHAR data type 36

M
MBUFFSIZE= data set option

MultiLoad and 23

ML_CHECKPOINT= data set option 23

ML_ERROR1= data set option 22

ML_ERROR2= data set option 23

ML_LOG= data set option 22

ML_RESTART= data set option 22

ML_WORK= data set option 23

MODE= LIBNAME option 8

MultiLoad

data set options 22

examples 24

features and restrictions 21

load performance and 21

setup 22

N
naming conventions 34

null values 37

numeric data 36

NUMERIC data type 37

P
partitioning WHERE clauses

FastExport versus 13

threaded reads 12

Pass-Through Facility 7

PASSWORD= LIBNAME option 3

performance

read performance 16

PreFetch 16

as global option 19

as LIBNAME option 19

how it works 17

option arguments 17

unexpected results 18

unusual conditions 18

when to use 17

PREFETCH= LIBNAME option 19

50 Index

Q
queries

ordering results with BY clause 26

R
read performance 16

READ_ISOLATION_LEVEL= data set op-
tion 29

READ_LOCK_TYPE= data set option 29

READ_MODE_WAIT= option 29

S
sampling 29

SAS/ACCESS
locking options 31

Teradata client 2

SAS/ACCESS data set options 6

SCHEMA= LIBNAME option 3

SERVER= LIBNAME option 4
SLEEP= data set option

MultiLoad and 23

SMALLINT data type 37

SORT procedure

replacing with BY clause 28

T
tables

reading from and inserting to same table 25

TDPID= LIBNAME option 4

temporary tables 14

establishing 14

examples 15

terminating 15

TENACITY= data set option

MultiLoad and 23

Teradata 2

autopartitioning 9

data set options 6

data types 35

LIBNAME statement 3

load performance 20

locking 29

naming conventions 34

ordering query results 26

Pass-Through Facility 7

passing functions to 13

processing tips 25
read performance 16
reading from and inserting to same table 25
replacing SORT procedure with BY clause 28
sampling 29
SAS/ACCESS client 2
temporary tables 14
TIME and TIMESTAMP 27

threaded reads
partitioning WHERE clauses with 12
Teradata 9

TIME and TIMESTAMP data types 27, 36

U
UPDATE_ISOLATION_LEVEL= data set op-

tion 30
UPDATE_LOCK_TYPE= data set option 29
UPDATE_MODE_WAIT= LIBNAME option 29
USER= LIBNAME option 3

V
VARBYTE data type 35
VARCHAR data type 35

Your Turn

If you have comments or suggestions about SAS/ACCESS 9.1.3 Supplement for
Teradata (SAS/ACCESS for Relational Databases), Second Edition, please send them
to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

s

SAS Publishing gives you the tools to
flourish in any environment with SAS®!

Whether you are new to the workforce or an experienced professional, you
need a way to distinguish yourself in this rapidly changing and competitive
job market. SAS Publishing provides you with a wide range of resources,
from software to online training to publications to set yourself apart.

Build Your SAS Skills with SAS Learning Edition
SAS Learning Edition is your personal learning version of the world’s leading business
intelligence and analytic software. It provides a unique opportunity to gain hands-on experience
and learn how SAS gives you the power to perform.

s u p p o r t . s a s . c o m / L E

Personalize Your Training with SAS Self-Paced e-Learning
You are in complete control of your learning environment with SAS Self-Paced e-Learning!
Gain immediate 24/7 access to SAS training directly from your desktop, using only a standard
Web browser. If you do not have SAS installed, you can use SAS Learning Edition for all Base
SAS e-learning.

s u p p o r t . s a s . c o m / s e l f p a c e d

Expand Your Knowledge with Books from SAS Publishing
SAS Press offers user-friendly books for all skill levels, covering such topics as univariate and
multivariate statistics, linear models, mixed models, fixed effects regression and more. View our
complete catalog and get free access to the latest reference documentation by visiting us online.

s u p p o r t . s a s . c o m / p u b s

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2005 SAS Institute Inc. All rights reserved. 345193US.0805

	Table of Contents
	Contents

	SAS/ACCESS for Teradata
	Introduction to the SAS/ACCESS Interface to Teradata
	The SAS/ACCESS Teradata Client

	LIBNAME Statement Specifics for Teradata
	Arguments
	Teradata LIBNAME Statement Example

	Data Set Options for Teradata
	Pass-Through Facility Specifics for Teradata
	Examples

	Autopartitioning Scheme for Teradata
	Overview
	FastExport and Case Sensitivity
	FastExport Setup
	FastExport Usage
	FastExport and Explicit SQL
	FastExport Usage Exceptions
	Threaded Reads with Partitioning WHERE Clauses
	FastExport Versus Partitioning WHERE Clauses

	Passing SAS Functions to Teradata
	Passing Joins to Teradata
	Temporary Table Support for Teradata
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	Maximizing Teradata Read Performance
	About the PreFetch Facility
	Using PreFetch as a LIBNAME Option
	Using Prefetch as a Global Option

	Maximizing Teradata Load Performance
	Maximizing Teradata Load Performance with FastLoad
	Maximizing Teradata Load Performance with MultiLoad
	Examples

	Teradata Processing Tips for SAS Users
	Reading from and Inserting to the Same Teradata Table
	Using a BY Clause to Order Query Results
	Using TIME and TIMESTAMP
	Replacing PROC SORT with a BY Clause
	Reducing Workload on Teradata by Sampling

	Locking in the Teradata Interface
	Understanding SAS/ACCESS Locking Options
	When to Use SAS/ACCESS Locking Options
	Examples

	Naming Conventions for Teradata
	Teradata Conventions
	SAS Naming Conventions
	Naming Objects to Meet Teradata and SAS Conventions
	Accessing Teradata Objects That Do Not Meet SAS Naming Conventions

	Data Types for Teradata
	Binary String Data
	Character String Data
	Date/Time Data
	Numeric Data
	Teradata Null Values
	LIBNAME Statement Data Conversions
	Data Returned as SAS Binary Data with Default Format $HEX

	Recommended Reading
	Recommended Reading

	Glossary
	Index

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 153
 402
 339

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2 2.0c
 Quite Imposing 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 153
 402
 339

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2 2.0c
 Quite Imposing 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 2
 same as current

 2
 1
 153
 402
 339

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2 2.0c
 Quite Imposing 2
 1

 1

 HistoryList_V1
 qi2base

