
SAS/ACCESS® 9.1.3 
for Relational Databases
Reference
Fifth Edition

SAS® Documentation



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2007.
SAS/ACCESS ® 9.1.3 for Relational Databases: Reference, Fifth Edition. Cary, NC: SAS
Institute Inc.

SAS/ACCESS® 9.1.3 for Relational Databases: Reference, Fifth Edition
Copyright © 2007, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-584-2
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, December 2007
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.



Contents

What’s New vii

Overview vii

All Supported SAS/ACCESS Interfaces to Relational Databases vii

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts viii

SAS/ACCESS Interface to DB2 under z/OS ix

SAS/ACCESS Interface to HP Neoview ix

SAS/ACCESS Interface to Informix ix

SAS/ACCESS Interface to Microsoft SQL Server x

SAS/ACCESS Interface to MySQL x

SAS/ACCESS Interface to Netezza x

SAS/ACCESS Interface to ODBC x

SAS/ACCESS Interface to OLE DB xi

SAS/ACCESS Interface to Oracle xi

SAS/ACCESS Interface to Sybase xi

SAS/ACCESS Interface to Teradata xii

Documentation Enhancements xii

P A R T 1 Concepts 1

Chapter 1 � Overview of the SAS/ACCESS Interface to Relational Databases 3
About This Document 3

Methods for Accessing Relational Database Data 3

Selecting a SAS/ACCESS Method 4

SAS Views of DBMS Data 6

Chapter 2 � SAS Names and Support for DBMS Names 7
Introduction to SAS/ACCESS Naming 7

SAS Naming Conventions 8

SAS/ACCESS Default Naming Behaviors 9

Renaming DBMS Data 10

Options That Affect SAS/ACCESS Naming Behavior 11

Naming Behavior When Retrieving DBMS Data 12

Naming Behavior When Creating DBMS Objects 12

SAS/ACCESS Naming Examples 13

Chapter 3 � Data Integrity and Security 21
Introduction to Data Integrity and Security 21

DBMS Security 21

SAS Security 22

Potential Result Set Differences When Processing Null Data 27

Chapter 4 � Performance Considerations 31



iv

Increasing Throughput of the SAS Server 31

Limiting Retrieval 31

Repeatedly Accessing Data 33

Sorting DBMS Data 33

Temporary Table Support for SAS/ACCESS 34

Chapter 5 � Optimizing Your SQL Usage 37
Overview of Optimizing Your SQL Usage 37

Passing Functions to the DBMS Using PROC SQL 38

Passing Joins to the DBMS 38

Passing the DELETE Statement to Empty a Table 40

When Passing Joins to the DBMS Will Fail 40

Passing DISTINCT and UNION Processing to the DBMS 42

Optimizing the Passing of WHERE Clauses to the DBMS 42

Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options 43

Chapter 6 � Threaded Reads 47
Overview of Threaded Reads in SAS/ACCESS 47

Underlying Technology of Threaded Reads 48

SAS/ACCESS Interfaces and Threaded Reads 48

Scope of Threaded Reads 49

Options That Affect Threaded Reads 49

Generating Trace Information for Threaded Reads 50

Performance Impact of Threaded Reads 53

Autopartitioning Techniques in SAS/ACCESS 53

Data Ordering in SAS/ACCESS 54

Two-Pass Processing for SAS Threaded Applications 54

When Threaded Reads Will Not Occur 55

Summary of Threaded Reads 55

Chapter 7 � How SAS/ACCESS Works 57
Introduction to How SAS/ACCESS Works 57

How the SAS/ACCESS LIBNAME Statement Works 58

How the Pass-Through Facility Works 59

How the ACCESS Procedure Works 60

How the DBLOAD Procedure Works 62

P A R T 2 General Reference 63

Chapter 8 � SAS/ACCESS Features by Host 65
Introduction 65

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts: Supported Features 65

SAS/ACCESS Interface to DB2 under z/OS: Supported Features 66

SAS/ACCESS Interface to HP Neoview: Supported Features 66

SAS/ACCESS Interface to Informix: Supported Features 67

SAS/ACCESS Interface to Microsoft SQL Server: Supported Features 67



v

SAS/ACCESS Interface to MySQL: Supported Features 68
SAS/ACCESS Interface to Netezza: Supported Features 68
SAS/ACCESS Interface to ODBC: Supported Features 69
SAS/ACCESS Interface to OLE DB: Supported Features 70
SAS/ACCESS Interface to Oracle: Supported Features 70
SAS/ACCESS Interface to Sybase: Supported Features 71
SAS/ACCESS Interface to Teradata: Supported Features 72

Chapter 9 � The LIBNAME Statement for Relational Databases 73
Overview of the LIBNAME Statement for Relational Databases 73
Assigning a Libref Interactively 74
LIBNAME Options for Relational Databases 78

Chapter 10 � Data Set Options for Relational Databases 157
Overview of Data Set Options for Relational Databases 157

Chapter 11 � Macro Variables and System Options for Relational Databases 269
Introduction to Macro Variables and System Options for Relational Databases 269
Macro Variables for Relational Databases 269
System Options for Relational Databases 271

Chapter 12 � The Pass-Through Facility for Relational Databases 285
Overview of the SQL Procedure’s Interactions with SAS/ACCESS 285
Syntax for the Pass-Through Facility for Relational Databases 286

P A R T 3 Converting SAS/ACCESS Descriptors to PROC SQL Views 297

Chapter 13 � The CV2VIEW Procedure 299
Overview of the CV2VIEW Procedure 299
Procedure Syntax 300
CV2VIEW Procedure Examples 304

P A R T 4 Appendixes 309

Appendix 1 � The ACCESS Procedure for Relational Databases 311
Overview of the ACCESS Procedure for Relational Databases 311
Procedure Syntax 313
Using Descriptors with the ACCESS Procedure 325
Examples of Using the ACCESS Procedure 327

Appendix 2 � The DBLOAD Procedure for Relational Databases 329
Overview of the DBLOAD Procedure for Relational Databases 329
Procedure Syntax 331
Example of Using the DBLOAD Procedure 342

Appendix 3 � Recommended Reading 343
Recommended Reading 343

Glossary 345

Index 351



vi



vii

What’s New

Overview
SAS/ACCESS Interfaces for Relational Databases has the following changes and

enhancements:
� Beginning with SAS 9.1.3 Service Pack 4, SAS/ACCESS Interface for HP Neoview

and SAS/ACCESS Interface for Netezza are new, including documentation
enhancements.

� Beginning with SAS 9.1.3, SAS/ACCESS supports additional hosts for existing
DBMSs.

� Beginning with SAS 9.1.2, SAS/ACCESS Interface for MySQL databases is new.

� Beginning with SAS 9.0, you can use threaded reads to complete jobs in
substantially less time than if each task is handled sequentially.

� The new CV2VIEW procedure converts SAS/ACCESS view descriptors into SQL
views.

All Supported SAS/ACCESS Interfaces to Relational Databases

� You can use the CHANGE statement to rename SAS/ACCESS tables“Renaming
SAS/ACCESS Tables” on page 10.

� The CV2VIEW procedure converts SAS/ACCESS view and access descriptors to
the SAS 9.0 format. It can also convert a view descriptor to a SAS 9.0 SQL view.
As SAS/ACCESS moves forward with LIBNAME enhancements and tighter
integration with the SAS Open Metadata Repository, SAS/ACCESS views no
longer is the method of choice.

� The DBMASTER= data set option designates which table is the master table when
you are processing a join that involves tables from two different types of databases.

� DBMS metadata can now be accurately maintained within the SAS Open
Metadata Repository.

� You can now encode the DBMS password that appears in SAS source code so that
it does not appear as text in SAS programs.



viii What’s New

� You can use the DIRECT_EXE= LIBNAME option to pass an SQL statement
directly to a database by using explicit pass-through when you use PROC SQL
with a libref.

� The new SQL MULTI_DATASRC_OPT= LIBNAME option and the DBMASTER=
data set option optimize the performance of the SQL procedure. For more detailed
information, see the passing joins to the DBMS, determining when joins will fail,
and optimizing WHERE clauses topics.

� You can use the MULTI_DATASRC_OPT= LIBNAME option instead of the
DBKEY= data set option to improve performance when you process a join between
two data sources.

� The SASTRACE= system option now provides improved debugging capabilities.

� With temporary table support, DBMS temporary tables can persist from one SAS
step to the next. It involves establishing a SAS connection to the DBMS that
persists across SAS procedures and DATA steps.

� Threaded reads divide resource-intensive tasks into multiple independent units of
work and execute those units in parallel.

� SAS/ACCESS supports these hosts:

AIX (RS/6000) for MySQL (beginning with SAS 9.1.3 Service Pack 2)

HP for Itanium for Sybase (beginning with SAS 9.1.3 Service Pack 2) and
Teradata (beginning with SAS 9.1.3 Service Pack 3)

Linux for Intel for MySQL (beginning with SAS 9.1.3 Service Pack 1) and
Teradata (beginning with SAS 9.1.3)

Linux for Itanium for DB2, Informix, Microsoft SQL Server, MySQL, ODBC,
Oracle, and Sybase, beginning with SAS 9.1.3 Service Pack 1

64-bit Solaris systems are supported for Teradata (beginning with SAS 9.1.3
Service Pack 4)

64-bit Windows for Oracle and DB2—in addition to 64-bit UNIX, which was
provided in SAS 8.2

� Beginning with SAS 9.0, support for these items is discontinued:

SAS/ACCESS Interface to CA-OpenIngres

SAS/ACCESS Interface to Oracle Rdb under OpenVMS Alpha

OS/2, OpenVMS VAX, MIPS ABI, Intel ABI, UNIX MP-RAS, and CMS
operating environments

CV2ODBC procedure

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts

The following options are new:

� The DBSLICE= data set option specifies user-supplied WHERE clauses to
partition a DBMS query into component queries for threaded reads.

� The data set and LIBNAME options control the scope of DBMS-threaded reads
and the number of threads.

� The IGNORE_READ_ONLY_COLUMNS= data set and LIBNAME options specify
whether to ignore or include columns whose data types are read-only when
generating an SQL statement for inserts or updates.

� The SQL_FUNCTIONS= LIBNAME option specifies that the SQL functions that
match the functions that SAS supports are passed to the DBMS for processing.



What’s New ix

SAS/ACCESS Interface to DB2 under z/OS
Note: z/OS is the successor to the OS/390 operating system. SAS/ACCESS 9.1 (and

later) for z/OS is supported on both OS/390 and z/OS operating systems. Throughout
this document, any reference to z/OS also applies to OS/390, unless otherwise stated. �

SAS/ACCESS Interface to DB2 under z/OS features stored procedure support that
includes passing input parameters, retrieving output parameters into SAS macro
variables, and retrieving result sets into SAS tables.

The following options are new:
� The BL_DB2CURSOR= data set option specifies a string that contains a valid DB2

SELECT statement that points to either local or remote objects (tables or views).
After your database administrator populates the communication database with the
appropriate entries, you can select data from a remote location to load DB2 tables
directly from other DB2 and non-DB2 objects.

� The BL_DB2LDCT3= data set option specifies a string in the LOAD utility control
statement, following the field specification.

� The DBSLICE= data set option specifies user-supplied WHERE clauses to
partition a DBMS query into component queries for threaded reads.

� The DBSLICEPARM= data set and LIBNAME options control the scope of DBMS
threaded reads and the number of threads.

� The DEGREE= LIBNAME option determines whether DB2 uses parallelism.
� The REMOTE_DBTYPE= LIBNAME option ensures that the SQL that some SAS

procedures use to access the DB2 catalog tables is generated properly, based on
the database server type.

� The TRAP151= data set option removes columns that cannot be updated from a
FOR UPDATE OF clause so that column update can continue.

SAS/ACCESS Interface to HP Neoview
SAS/ACCESS Interface to HP Neoview is a new database engine that runs on specific

UNIX and Windows“SAS/ACCESS Interface to HP Neoview: Supported Features” on
page 66 platforms. SAS/ACCESS Interface to HP Neoview provides direct, transparent
access to HP Neoview databases through LIBNAME statements or the Pass-Through
Facility. You can use various LIBNAME statement options and data set options that
the LIBNAME engine supports to control the data that is returned to SAS.

SAS/ACCESS Interface to Informix
The following options are new:
� The DBSLICE= data set option specifies user-supplied WHERE clauses to

partition a DBMS query into component queries for threaded reads.
� The DBSLICEPARM= data set and LIBNAME options control the scope of DBMS

threaded reads and the number of threads.



x What’s New

SAS/ACCESS Interface to Microsoft SQL Server
The following options are new:
� The DBSLICE= data set option specifies user-supplied WHERE clauses to

partition a DBMS query into component queries for threaded reads.
� The DBSLICEPARM= data set and LIBNAME options control the scope of DBMS

threaded reads and the number of threads.
� The ERRLIMIT= LIBNAME option specifies the number of errors that are allowed

while using the Fastload utility before SAS stops loading data to Teradata.
� The IGNORE_READ_ONLY_COLUMNS= data set and LIBNAME options specify

whether to ignore or include columns where data types are read-only when
generating an SQL statement for inserts or updates.

SAS/ACCESS Interface to MySQL
Beginning with SAS 9.1.3 Service Pack 4, you can use the INSERTBUFF= data set

and LIBNAME options to specify the number of rows in a single insert operation.
Beginning with SAS 9.1.2, SAS/ACCESS Interface to MySQL is new. MySQL

software is an open-source SQL database server that runs on 32–bit Windows systems,
64–bit HP systems, and 64–bit Solaris systems. SAS/ACCESS Interface to MySQL
provides direct transparent access to MySQL databases through LIBNAME statements
or the Pass-Through Facility. To control data that is returned to SAS, you can use
various LIBNAME and data set options that the LIBNAME engine supports.

SAS/ACCESS Interface to Netezza
Beginning with SAS 9.1.3 Service Pack 4, SAS/ACCESS Interface to Netezza is a

new database engine that runs on specific UNIX and Windows“SAS/ACCESS Interface
to Netezza: Supported Features” on page 68 platforms. SAS/ACCESS Interface to
Netezza provides direct, transparent access to Netezza databases through LIBNAME
statements or the Pass-Through Facility. To control data that is returned to SAS, you
can use various LIBNAME and data set options that the LIBNAME engine supports.

SAS/ACCESS Interface to ODBC
The following feature and options are new:
� ODBC 3.x standard API is supported.
� The DBSLICE= data set option specifies user-supplied WHERE clauses to

partition a DBMS query into component queries for threaded reads.
� The DBSLICEPARM= data set and LIBNAME options control the scope of DBMS

threaded reads and the number of threads.
� The IGNORE_READ_ONLY_COLUMNS= data set and LIBNAME options specify

whether to ignore or include columns whose data types are read-only when
generating an SQL statement for inserts or updates.

� The SQL_FUNCTIONS= LIBNAME option specifies that the SQL functions that
match the functions that SAS supports by SAS are passed to the DBMS.



What’s New xi

SAS/ACCESS Interface to OLE DB
The following options are new:
� The IGNORE_READ_ONLY_COLUMNS= data set and LIBNAME options specify

whether to ignore or include columns whose data types are read-only when
generating an SQL statement for inserts or updates.

� The INSERTBUFF= LIBNAME option specifies the number of rows in a single
insert operation.

� The SQL_FUNCTIONS= LIBNAME option specifies that the SQL functions that
match the functions that SAS supports are passed to the DBMS.

SAS/ACCESS Interface to Oracle
The following options are new:
� You can use the BL_INDEX_OPTIONS= data set option to specify SQL*Loader

Index options with bulk loading. You can boost performance by specifying the
SORTED INDEXES index option.

� The BL_PARFILE= data set option creates a file that contains the SQL*Loader
command line options.

� You can use the BL_RECOVERABLE= data set option to specify whether the load
process is recoverable. It enhances the performance of the bulk load.

� To improve performance, you can use the BL_SUPPRESS_NULLIF= data set
option to specify whether to suppress the NULLIF clause for specified columns
when a table is created.

� The DBSLICE= data set option specifies user-supplied WHERE clauses to
partition a DBMS query into component queries for threaded reads.

� The DBSLICEPARM= data set and LIBNAME options control the scope of DBMS
threaded reads and the number of threads.

� You can use the OR_PARTITION= data set option to read, update, and delete data
from a specific partition in a partitioned table, as well as insert and bulk-load data
into a specific partition in a partitioned table. It also boosts performance.

� In addition to being a LIBNAME option, OR_UPD_NOWHERE= is now also a
data set option.

SAS/ACCESS Interface to Sybase
The following options are new:
� The DBSLICE= data set option specifies user-supplied WHERE clauses to

partition a DBMS query into component queries for threaded reads.
� The DBSLICEPARM= data set and LIBNAME options control the scope of DBMS

threaded reads and the number of threads.



xii What’s New

SAS/ACCESS Interface to Teradata
The following features and options are new:
� The DBSLICE= data set option specifies user-supplied WHERE clauses to

partition a DBMS query into component queries for threaded reads.
� The DBSLICEPARM= data set and LIBNAME options control the scope of DBMS

threaded reads and the number of threads.
� The ERRLIMIT= LIBNAME option specifies the number of errors that are allowed

while using the Fastload utility before SAS stops loading data to Teradata.
� The LOGDB= LIBNAME option specifies the name of an alternate database where

the restart log tables from the Teradata FastExport utility should be created.
� You can extract data faster with the Teradata FastExport utility.
� SAS/ACCESS Interface to Teradata supports the MultiLoad bulk-load facility.

MultiLoad greatly accelerates insertion of data into both empty and existing
Teradata tables. The SAS/ACCESS MultiLoad facility is similar to the native
Teradata MultiLoad. You invoke the MultiLoad facility with the MULTILOAD=
data set option. MULTILOAD= works together with several other new MultiLoad
data set options.

� Beginning with SAS 9.1.3 Service Pack 4, when processing WHERE statements
that contain literal values for TIME or TIMESTAMP, the SAS engine passes the
values to Teradata exactly as they were entered, without rounding or truncation.

� Beginning with SAS 9.1, specifying OBS=n causes SAS/ACCESS Interface to
Teradata to append SAMPLE n to the SQL that Teradata generates.

Documentation Enhancements
Two new supplements are available:
� SAS/ACCESS Supplement for Netezza (SAS/ACCESS for Relational Databases)

� SAS/ACCESS Supplement for HP Neoview (SAS/ACCESS for Relational
Databases)

These supplements explain how SAS/ACCESS software is customized to
accommodate the particular requirements and capabilities of each respective DBMS.
When you use them with the separately available SAS/ACCESS for Relational
Databases: Reference, they provide comprehensive guides for using SAS/ACCESS
features and options for the DBMSs. These titles are available from SAS OnlineDoc
9.1.3 on the Web and are available for purchase from the SAS Publications Catalog.

In addition, the DISTRIBUTE_ON= data set option is new in SAS/ACCESS
Supplement for Netezza (SAS/ACCESS for Relational Databases) and SAS/ACCESS
for Relational Databases: Reference.



1

P A R T1

Concepts

Chapter 1. . . . . . . . . .Overview of the SAS/ACCESS Interface to Relational
Databases 3

Chapter 2. . . . . . . . . .SAS Names and Support for DBMS Names 7

Chapter 3. . . . . . . . . .Data Integrity and Security 21

Chapter 4. . . . . . . . . .Performance Considerations 31

Chapter 5. . . . . . . . . .Optimizing Your SQL Usage 37

Chapter 6. . . . . . . . . .Threaded Reads 47

Chapter 7. . . . . . . . . .How SAS/ACCESS Works 57



2



3

C H A P T E R

1
Overview of the SAS/ACCESS
Interface to Relational
Databases

About This Document 3
Methods for Accessing Relational Database Data 3

Selecting a SAS/ACCESS Method 4

Methods for Accessing DBMS Tables and Views 4

SAS/ACCESS LIBNAME Statement Advantages
4

Pass-Through Facility Advantages 5

SAS/ACCESS Features for Common Tasks 5

SAS Views of DBMS Data 6

About This Document

This document provides conceptual, reference, and usage information for the
SAS/ACCESS Interface to relational database management systems (DBMSs). The
information in this document applies generally to all of the relational database
management systems that are supported by SAS/ACCESS software. Because the
availability and behavior of SAS/ACCESS features vary from one interface to another,
you should use this general document in conjunction with the documentation for your
SAS/ACCESS interface. There is an individual document for each supported DBMS,
and those documents are sold separately.

This document is intended for applications programmers and end users who meet the
following conditions:

� familiar with the basics of their DBMS and its SQL (Structured Query Language)

� know how to use their operating environment

� can use basic SAS commands and statements.

Database administrators might also want to read this document to understand how the
interface is implemented and administered.

Methods for Accessing Relational Database Data

The SAS/ACCESS interface to relational databases is a family of interfaces (each of
which is licensed separately) that enable you to interact with data in other vendors’
databases from within SAS. SAS/ACCESS provides the following methods for accessing
relational DBMS data:

� The LIBNAME statement enables you to assign SAS librefs to DBMS objects such
as schemas and databases. After a database is associated with a libref, you can



4 Selecting a SAS/ACCESS Method � Chapter 1

use a SAS two-level name to specify any table or view in the database and then
work with the table or view as you would with a SAS data set.

� The Pass-Through Facility enables you to interact with a data source using its
native SQL syntax without leaving your SAS session. The SQL statements are
passed directly to the data source for processing.

� The ACCESS and DBLOAD procedures support indirect access to DBMS data.
These procedures are no longer the recommended method for accessing DBMS
data, but they continue to be supported for the database systems and
environments on which they were available for SAS Version 6.

See “Selecting a SAS/ACCESS Method” on page 4 for information about when to use
each method.

Note: Not all SAS/ACCESS interfaces support all of these features. To determine
the features that are available in your environment, see the about features by host
section. �

Selecting a SAS/ACCESS Method

Methods for Accessing DBMS Tables and Views
In SAS/ACCESS, there are often several ways to complete a task. For example, you

can access DBMS tables and views by using the LIBNAME statement or the
Pass-Through Facility. The advantages and limitations of these features are described
below. Before processing complex or data-intensive operations, you might want to test
several of these features to determine the most efficient feature for your particular task.

SAS/ACCESS LIBNAME Statement Advantages

It is generally recommended that you use the SAS/ACCESS LIBNAME statement to
access your DBMS data because this is usually the fastest and most direct method. An
exception to this is when you need to use non-ANSI standard SQL. ANSI standard SQL
is required when you use the SAS/ACCESS library engine in the SQL procedure. The
Pass-Through Facility, however, accepts all the extensions to SQL that are provided by
your DBMS.

The SAS/ACCESS LIBNAME statement has the following advantages:
� Significantly fewer lines of SAS code are required to perform operations on your

DBMS. For example, a single LIBNAME statement establishes a connection to
your DBMS, enables you to specify how your data is processed, and enables you to
easily view your DBMS tables in SAS.

� You do not need to know the SQL language of your DBMS in order to access and
manipulate data on your DBMS. You can use SAS procedures, such as PROC SQL,
or DATA step programming on any libref that references DBMS data. You can
read, insert, update, delete, and append data, as well as create and drop DBMS
tables by using SAS syntax.

� The LIBNAME statement provides more control over DBMS operations such as
locking, spooling, and data type conversion through the use of LIBNAME and data
set options.



Overview of the SAS/ACCESS Interface to Relational Databases � SAS/ACCESS Features for Common Tasks 5

� The engine can optimize the processing of joins and WHERE clauses by passing
these operations directly to the DBMS. This takes advantage of your DBMS’s
indexing and other processing capabilities. For more information, see “Overview of
Optimizing Your SQL Usage” on page 37.

� The engine can pass some functions directly to the DBMS for processing.

Pass-Through Facility Advantages
The Pass-Through Facility has the following advantages:

� Pass-Through Facility statements enable the DBMS to optimize queries,
particularly when you join tables. The DBMS optimizer can take advantage of
indexes on DBMS columns to process a query more quickly and efficiently.

� Pass-Through Facility statements enable the DBMS to optimize queries when the
queries have summary functions (such as AVG and COUNT), GROUP BY clauses,
or columns created by expressions (such as the COMPUTED function). The DBMS
optimizer can use indexes on DBMS columns to process the queries more quickly.

� On some DBMSs, you can use Pass-Through Facility statements with SAS/AF
applications to handle the transaction processing of the DBMS data. Using a
SAS/AF application gives you complete control of COMMIT and ROLLBACK
transactions. Pass-Through Facility statements give you better access to DBMS
return codes.

� The Pass-Through Facility accepts all the extensions to ANSI SQL that are
provided by your DBMS.

SAS/ACCESS Features for Common Tasks
The following table contains a list of tasks and the features that you can use to

accomplish them.

Table 1.1 SAS/ACCESS Features for Common Tasks

Task SAS/ACCESS Features

LIBNAME statement*

Pass-Through Facility

Read DBMS
tables or views

View descriptors**

LIBNAME statement*

DBLOAD procedure

Create DBMS
objects, such as
tables

Pass-Through Facility’s EXECUTE statement

LIBNAME statement*

View descriptors**

Update, delete,
or insert rows
into DBMS
tables Pass-Through Facility’s EXECUTE statement

DBLOAD procedure with APPEND option

LIBNAME statement and APPEND procedure*

Append data to
DBMS tables

Pass-Through Facility’s EXECUTE statement



6 SAS Views of DBMS Data � Chapter 1

Task SAS/ACCESS Features

LIBNAME statement and SAS Explorer window*

LIBNAME statement and DATASETS procedure*

LIBNAME statement and CONTENTS procedure*

List DBMS
tables

LIBNAME statement and SQL procedure dictionary tables*

LIBNAME statement and SQL procedure’s DROP TABLE statement*

LIBNAME statement and DATASETS procedure’s DELETE statement*

DBLOAD procedure with SQL DROP TABLE statement

Delete DBMS
tables or views

Pass-Through Facility’s EXECUTE statement

* LIBNAME statement refers to the SAS/ACCESS LIBNAME statement.
** View descriptors refer to view descriptors that are created in the ACCESS procedure.

SAS Views of DBMS Data
SAS/ACCESS enables you to create a SAS view of data that exists in a relational

database management system. A SAS data view defines a virtual data set that is
named and stored for later use. A view contains no data, but rather describes data that
is stored elsewhere. There are three types of SAS data views:

� DATA step views are stored, compiled DATA step programs.
� SQL views are stored query expressions that read data values from their

underlying files, which can include SAS data files, SAS/ACCESS views, DATA step
views, other SQL views, or relational database data.

� SAS/ACCESS views (also called view descriptors) describe data that is stored in
DBMS tables. This is no longer a recommended method for accessing relational
DBMS data. Use the CV2VIEW procedure to convert existing view descriptors into
SQL views.

You can use all types of views as inputs into DATA steps and procedures. You can
specify views in queries as if they were tables. A view derives its data from the tables
or views that are listed in its FROM clause. The data accessed by a view is a subset or
superset of the data in its underlying table(s) or view(s).

SQL views and SAS/ACCESS views can be used to update their underlying data if
the view is based on only one DBMS table or is based on a DBMS view that is based on
only one DBMS table, and if the view has no calculated fields. DATA step views cannot
be used to update their underlying data; they can only read the data.

Your options for creating a SAS view of DBMS data are determined by the
SAS/ACCESS feature that you are using to access the DBMS data. The following table
lists the recommended methods for creating SAS views.

Table 1.2 Creating SAS Views

Feature You Use to Access DBMS Data SAS View Technology You Can Use

SAS/ACCESS LIBNAME statement SQL view or DATA step view of the DBMS table

SQL Procedure Pass-Through Facility SQL view with CONNECTION TO component



7

C H A P T E R

2
SAS Names and Support for
DBMS Names

Introduction to SAS/ACCESS Naming 7
SAS Naming Conventions 8

Length of Name 8

Case-sensitivity 8

SAS Name Literals 9

SAS/ACCESS Default Naming Behaviors 9
Modification and Truncation 9

ACCESS Procedure 9

DBLOAD Procedure 10

Renaming DBMS Data 10

Renaming SAS/ACCESS Tables 10

Renaming SAS/ACCESS Columns 11
Renaming SAS/ACCESS Variables 11

Options That Affect SAS/ACCESS Naming Behavior 11

Naming Behavior When Retrieving DBMS Data 12

Naming Behavior When Creating DBMS Objects 12

SAS/ACCESS Naming Examples 13
Replacing Unsupported Characters 13

Preserving Column Names 14

Preserving Table Names 15

Using DQUOTE=ANSI 17

Using Name Literals 18
Using DBMS Data to Create a DBMS Table 19

Using a SAS Data Set to Create a DBMS Table 20

Introduction to SAS/ACCESS Naming

Because some DBMSs allow case-sensitive names and names with special characters,
you must show special consideration when you use the names of DBMS objects (such as
tables and columns) with SAS/ACCESS features. This section presents SAS/ACCESS
naming conventions, default naming behaviors, options that can modify naming
behavior, and usage examples. See the documentation for your SAS/ACCESS interface
for information about how SAS handles your DBMS names.



8 SAS Naming Conventions � Chapter 2

SAS Naming Conventions

Length of Name
SAS naming conventions allow long names for SAS data sets and SAS variables. For

example, MYDB.TEMP_EMPLOYEES_QTR4_2000 is a valid two-level SAS name for a
data set.

The names of the following SAS language elements can be up to 32 characters in
length:

� members of SAS libraries, including SAS data sets, data views, catalogs, catalog
entries, and indexes

� variables in a SAS data set

� macros and macro variables.

The following SAS language elements have a maximum length of eight characters:

� librefs and filerefs

� SAS engine names

� names of SAS/ACCESS access descriptors and view descriptors

� variable names in SAS/ACCESS access descriptors and view descriptors.

For a complete description of SAS naming conventions, see the SAS Language
Reference: Dictionary.

Case-sensitivity
When SAS encounters mixed-case or case-sensitive names in SAS code, it stores and

displays the names as they are specified. If the SAS variables Flight and dates are
defined in mixed case, for example,

input Flight $3. +3 dates date9.;

then SAS displays the variable names as defined. Note how the column headings
appear as defined:

Output 2.1 Mixed-Case Names Displayed in Output

SAS System

Obs Flight dates

1 114 01MAR2000
2 202 01MAR2000
3 204 01MAR2000

Although SAS stores variable names as they are defined, it recognizes variables for
processing without regard to case. For example, SAS processes these variables as
FLIGHT and DATES. Likewise, renaming the Flight variable to "flight" or "FLIGHT"
would result in the same processing.



SAS Names and Support for DBMS Names � ACCESS Procedure 9

SAS Name Literals
A SAS name literal is a name token that is expressed as a quoted string, followed by

the letter n. Name literals enable you to use special characters or blanks that are not
otherwise allowed in SAS names when you specify a SAS data set or variable. Name
literals are especially useful for expressing database column and tables names that
contain special characters.

Examples of name literals are

data mydblib.’My Staff Table’n;

and

data Budget_for_1999;

input ’$ Amount Budgeted’n ’Amount Spent’n;

Name literals are subject to certain restrictions:
� You can use a name literal only for SAS variable and data set names, statement

labels, and DBMS column and table names.
� You can use name literals only in a DATA step or in the SQL procedure.
� If a name literal contains any characters that are not allowed when

VALIDVARNAME=V7, then you must set the system option to
VALIDVARNAME=ANY. For details about using the VALIDVARNAME= system
option, see “VALIDVARNAME= System Option” on page 282.

SAS/ACCESS Default Naming Behaviors

Modification and Truncation
When SAS/ACCESS reads DBMS column names that contain characters that are not

standard in SAS names, the default behavior is to replace an unsupported character
with an underscore (_). For example, the DBMS column name Amount Budgeted$
becomes the SAS variable name Amount_Budgeted_.

Note: Nonstandard names include those with blank spaces or special characters
(such as @, #, %) that are not allowed in SAS names. �

When SAS/ACCESS encounters a DBMS name that exceeds 32 characters, it
truncates the name.

After it has modified or truncated a DBMS column name, SAS appends a number to
the variable name, if necessary, to preserve uniqueness. For example, DBMS column
names MY$DEPT, My$Dept, and my$dept become SAS variable names MY_DEPT,
MY_Dept0, and my_dept1.

ACCESS Procedure
If you attempt to use long names in the ACCESS procedure, you get an error

message advising you that long names are not supported. Long member names, such as
access descriptor and view descriptor names, are truncated to eight characters. Long
DBMS column names are truncated to 8-character SAS variable names within the SAS
access descriptor. You can use the RENAME statement to specify 8-character SAS
variable names, or you can accept the default truncated SAS variable names that are
assigned by the ACCESS procedure.



10 DBLOAD Procedure � Chapter 2

The ACCESS procedure converts DBMS object names to uppercase characters unless
they are enclosed in quotation marks. Any DBMS objects that are given lowercase
names when they are created, or whose names contain special or national characters,
must be enclosed in quotation marks.

DBLOAD Procedure
You can use long member names, such as the name of a SAS data set that you want

to load into a DBMS table, in the DBLOAD procedure DATA= option. However, if you
attempt to use long SAS variable names, you get an error message advising you that
long variable names are not supported in the DBLOAD procedure. You can use the
RENAME statement to rename the 8-character SAS variable names to long DBMS
column names when you load the data into a DBMS table. You can also use the SAS
data set option RENAME to rename the columns after they are loaded into the DBMS.

Most DBLOAD procedure statements convert lowercase characters in user-specified
values and default values to uppercase. If your host or database is case sensitive and
you want to specify a value that includes lowercase alphabetic characters (for example,
a user ID or password), enclose the entire value in quotation marks. You must also put
quotation marks around any value that contains special characters or national
characters.

The only exception is the DBLOAD SQL statement. The DBLOAD SQL statement is
passed to the DBMS exactly as you type it, with case preserved.

Renaming DBMS Data

Renaming SAS/ACCESS Tables
You can rename DBMS tables and views using the CHANGE statement, as shown in

the following example:

proc datasets lib=x;
change oldtable=newtable;

quit;

You can rename tables using this method for the following engines:

DB2 UNIX/PC

DB2 z/OS

HP Neoview

Informix

MySQL

Microsoft SQL
Server

Netezza

ODBC

OLE DB



SAS Names and Support for DBMS Names � Options That Affect SAS/ACCESS Naming Behavior 11

Oracle

Sybase

Teradata

Note: If you change a table name, any view dependent on that table will no longer
work, unless the view references the new table name. �

Renaming SAS/ACCESS Columns
You can use the RENAME statement to rename the 8-character default SAS variable

names to long DBMS column names when you load the data into a DBMS table. You
can also use the SAS data set option RENAME= to rename the columns after they are
loaded into the DBMS.

Renaming SAS/ACCESS Variables
You can use the RENAME statement to specify 8-character SAS variable names such

as access descriptors and view descriptors.

Options That Affect SAS/ACCESS Naming Behavior

To change how SAS handles case-sensitive or nonstandard DBMS table and column
names, specify one or more of the following options.

PRESERVE_COL_NAMES=YES
is a SAS/ACCESS LIBNAME and data set option that applies only to creating
DBMS tables. When set to YES, this option preserves spaces, special characters,
and mixed case in DBMS column names. See “PRESERVE_COL_NAMES=
LIBNAME Option” on page 130 for more information about this option.

PRESERVE_TAB_NAMES=YES
is a SAS/ACCESS LIBNAME option. When set to YES, this option preserves
blank spaces, special characters, and mixed case in DBMS table names. See
“PRESERVE_TAB_NAMES= LIBNAME Option” on page 132 for more information
about this option.

Note: Specify the alias PRESERVE_NAMES=YES | NO if you plan to specify
both the PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options in
your LIBNAME statement. Using this alias saves time when you are coding. �

DQUOTE=ANSI
is a PROC SQL option. This option specifies whether PROC SQL treats values
within double quotation marks as a character string or as a column name or table
name. When you specify DQUOTE=ANSI, your SAS code can refer to DBMS
names that contain characters and spaces that are not allowed by SAS naming
conventions. Specifying DQUOTE=ANSI enables you to preserve special
characters in table and column names in your SQL statements by enclosing the
names in double quotation marks.

To preserve table names, you must also specify PRESERVE_TAB_NAMES=YES.
To preserve column names when you create a table, you must also specify
PRESERVE_COL_NAMES=YES.



12 Naming Behavior When Retrieving DBMS Data � Chapter 2

VALIDVARNAME=ANY
is a global system option that can override the SAS naming conventions. See
“VALIDVARNAME= System Option” on page 282 for information about this option.

The availability of these options and their default settings are DBMS-specific, so
consult the SAS/ACCESS documentation for your DBMS to learn how the SAS/ACCESS
engine for your DBMS processes names.

Naming Behavior When Retrieving DBMS Data
The following two tables illustrate how SAS/ACCESS processes DBMS names when

retrieving data from a DBMS. This information applies generally to all the interfaces.
In some cases, however, it is not necessary to specify these options because the option
default values are DBMS-specific. See the documentation for your SAS/ACCESS
interface for details.

Table 2.1 DBMS Column Names to SAS Variable Names When Reading DBMS Data

DBMS Column Name Desired SAS Variable Name Options

Case-sensitive DBMS column name,
such as Flight

Case-sensitive SAS variable name,
such as Flight

No options are necessary

DBMS column name with
characters that are not valid in SAS
names, such as My$Flight

Case-sensitive SAS variable name
where an underscore replaces the
invalid characters, such as
My_Flight

No options are necessary

DBMS column name with
characters that are not valid in SAS
names, such as My$Flight

Nonstandard, case-sensitive SAS
variable name, such as My$Flight

PROC SQL DQUOTE=ANSI or, in a
DATA or PROC step, use a SAS
name literal such as ’My$Flight’n
and VALIDVARNAME=ANY

Table 2.2 DBMS Table Names to SAS Data Set Names When Reading DBMS Data

DBMS Table Name Desired SAS Data Set Name Options

Default DBMS table name, such as
STAFF

Default SAS data set or member
name (uppercase), such as STAFF

PRESERVE_TAB_NAMES=NO

Case-sensitive DBMS table name,
such as Staff

Case-sensitive SAS data set, such as
Staff

PRESERVE_TAB_NAMES=YES

DBMS table name with characters
that are not valid in SAS names,
such as All$Staff

Nonstandard, case-sensitive SAS
data set name, such as All$Staff

PROC SQLDQUOTE=ANSI and
PRESERVE_TAB_NAMES=YES or,
in a DATA step or PROC, use a SAS
name literal such as ’All$Staff’n and
PRESERVE_TAB_NAMES=YES

Naming Behavior When Creating DBMS Objects
The following two tables illustrate how SAS/ACCESS handles variable names when

creating DBMS objects such as tables and views. This information applies generally to



SAS Names and Support for DBMS Names � Replacing Unsupported Characters 13

all the interfaces. In some cases, however, it is not necessary to specify these options
because the option default values are DBMS-specific. See the documentation for your
DBMS for details.

Table 2.3 SAS Variable Names to DBMS Column Names When Creating Tables

SAS Variable Name as Input Desired DBMS Column Name Options

Any SAS variable name, such as
Miles

Default DBMS column name
(normalized to follow the DBMS’s
naming conventions), such as MILES

PRESERVE_COL_NAMES=NO

A case-sensitive SAS variable name,
such as Miles

Case-sensitive DBMS column name,
such as Miles

PRESERVE_COL_NAMES=YES

A SAS variable name with
characters that are not valid in a
normalized SAS name, such as
Miles-to-Go

Case-sensitive DBMS column name
that matches the SAS name, such as
Miles-to-Go

PROC SQL DQUOTE=ANSI and
PRESERVE_COL_NAMES=YES or,
in a DATA or PROC step, use a
SAS name literal and
PRESERVE_COL_NAMES=YES
and VALIDVARNAME=ANY

Table 2.4 SAS Data Set Names to DBMS Table Names

SAS Data Set Name as Input Desired DBMS Table Name Options

Any SAS data set name, such as
Payroll

Default DBMS table name
(normalized to follow the DBMS’s
naming conventions), such as
PAYROLL

PRESERVE_TAB_NAMES=NO

A case-sensitive SAS data set name,
such as Payroll

Case-sensitive DBMS table name,
such as Payroll

PRESERVE_TAB_NAMES=YES

A case-sensitive SAS data set name
with characters that are not valid in
a normalized SAS name, such as
Payroll-for-QC

Case-sensitive DBMS table name
that matches the SAS name, such as
Payroll-for-QC

PROC SQL DQUOTE=ANSI and
PRESERVE_TAB_NAMES=YES or,
in a DATA or PROC step, use a SAS
name literal and
PRESERVE_TAB_NAMES=YES

SAS/ACCESS Naming Examples

Replacing Unsupported Characters
In the following example, a view, myview, is created from the Oracle table mytable.

proc sql;
connect to oracle (user=testuser password=testpass);
create view myview as

select * from connection to oracle
(select "Amount Budgeted$", "Amount Spent$"

from mytable);
quit;



14 Preserving Column Names � Chapter 2

proc contents data=myview;
run;

In the output produced by PROC CONTENTS, the Oracle column names (that were
processed by the SQL view of MYTABLE) are renamed to different SAS variable names:
Amount Budgeted$ becomes Amount_Budgeted_ and Amount Spent$ becomes
Amount_Spent_.

Preserving Column Names
The following example uses the Oracle table PAYROLL to create a new Oracle table,

PAY1, and then prints the table. Both the PRESERVE_COL_NAMES=YES and the
PROC SQL DQUOTE=ANSI options are used to preserve the case and nonstandard
characters in the column names. You do not need to quote the column aliases in order
to preserve the mixed case. You only need double quotation marks when the column
name has nonstandard characters or blanks.

By default, most SAS/ACCESS interfaces use DBMS-specific rules to set the case of
table and column names. Therefore, even though the new Oracle table name pay1 is
created in lowercase in this example, Oracle stores the name in uppercase as PAY1. If
you want the table name to be stored as "pay1", you must set
PRESERVE_TAB_NAMES=NO.

options linesize=120 pagesize=60 nodate;

libname mydblib oracle user=testuser password=testpass path=’ora8_servr’
schema=hrdept preserve_col_names=yes;

proc sql dquote=ansi;
create table mydblib.pay1 as

select idnum as "ID #", sex, jobcode, salary,
birth as BirthDate, hired as HiredDate

from mydblib.payroll
order by birth;

title "Payroll Table with Revised Column Names";
select * from mydblib.pay1;
quit;

SAS recognizes the JOBCODE, SEX, and SALARY column names, whether you
specify them in your SAS code as lowercase, mixed case, or uppercase. In the Oracle
table PAYROLL, the SEX, JOBCODE, and SALARY columns were created in uppercase;
therefore, they retain this case in the new table (unless you rename them). A partial
output from the example is shown:



SAS Names and Support for DBMS Names � Preserving Table Names 15

Output 2.2 DBMS Table Created with Nonstandard and Standard Column Names

Payroll Table with Revised Column Names

ID # SEX JOBCODE SALARY BirthDate HiredDate
------------------------------------------------------------------------
1118 M PT3 11379 16JAN1944:00:00:00 18DEC1980:00:00:00
1065 M ME2 35090 26JAN1944:00:00:00 07JAN1987:00:00:00
1409 M ME3 41551 19APR1950:00:00:00 22OCT1981:00:00:00
1401 M TA3 38822 13DEC1950:00:00:00 17NOV1985:00:00:00
1890 M PT2 91908 20JUL1951:00:00:00 25NOV1979:00:00:00

Preserving Table Names
The following example uses PROC PRINT to print the DBMS table PAYROLL. The

DBMS table was created in uppercase and since PRESERVE_TAB_NAMES=YES, the
table name must be specified in uppercase. (If you set the
PRESERVE_TAB_NAMES=NO, you can specify the DBMS table name in lowercase.) A
partial output follows the example.

options nodate linesize=64;
libname mydblib oracle user=testuser password=testpass

path=’ora8_servr’ preserve_tab_names=yes;

proc print data=mydblib.PAYROLL;
title ’PAYROLL Table’;

run;

Output 2.3 DBMS Table with a Case-sensitive Name

PAYROLL Table
Obs IDNUM SEX JOBCODE SALARY BIRTH
1 1919 M TA2 34376 12SEP1960:00:00:00
2 1653 F ME2 35108 15OCT1964:00:00:00
3 1400 M ME1 29769 05NOV1967:00:00:00
4 1350 F FA3 32886 31AUG1965:00:00:00
5 1401 M TA3 38822 13DEC1950:00:00:00

The following example submits a SAS/ACCESS LIBNAME statement and then opens
the SAS Explorer window, which lists the Oracle tables and views that are referenced
by the MYDBLIB libref. Notice that 16 members are listed and that all of the member
names are in the case (initial capitalization) that is set by the Explorer window. The
table names are capitalized because PRESERVE_TAB_NAMES= defaulted to NO.

libname mydblib oracle user=testuser pass=testpass;



16 Preserving Table Names � Chapter 2

Display 2.1 SAS Explorer Window Listing DBMS Objects

If you submit a SAS/ACCESS LIBNAME statement with
PRESERVE_TAB_NAMES=YES and then open the SAS Explorer window, you see a
different listing of the Oracle tables and views referenced by the MYDBLIB libref.

libname mydblib oracle user=testuser password=testpass
preserve_tab_names=yes;

Display 2.2 SAS Explorer Window Listing Case-Sensitive DBMS Objects

Notice that there are 18 members listed, including one that is in lowercase and one that
has a name separated by a blank space. Because PRESERVE_TAB_NAMES=YES, SAS
displays the tables names in the exact case in which they were created.



SAS Names and Support for DBMS Names � Using DQUOTE=ANSI 17

Using DQUOTE=ANSI
The following example creates a DBMS table with a blank space in its name. Double

quotation marks are used to specify the table name, International Delays. Both of the
preserve names LIBNAME options are also set by using the alias
PRESERVE_NAMES=. Because PRESERVE_NAMES=YES, the schema airport is now
case-sensitive for Oracle.

options linesize=64 nodate;

libname mydblib oracle user=testuser password=testpass path=’airdata’
schema=airport preserve_names=yes;

proc sql dquote=ansi;
create table mydblib."International Delays" as

select int.flight as "FLIGHT NUMBER", int.dates,
del.orig as ORIGIN,
int.dest as DESTINATION, del.delay

from mydblib.INTERNAT as int,
mydblib.DELAY as del

where int.dest=del.dest and int.dest=’LON’;
quit;

proc sql dquote=ansi outobs=10;
title "International Delays";

select * from mydblib."International Delays";

Notice that you use single quotation marks to specify the data value for London
(int.dest=’LON’) in the WHERE clause. Because of the preserve name LIBNAME
options, using double quotation marks would cause SAS to interpret this data value as
a column name.

Output 2.4 DBMS Table with Nonstandard Column Names

International Delays

FLIGHT
NUMBER DATES ORIGIN DESTINATION DELAY
-----------------------------------------------------------
219 01MAR1998:00:00:00 LGA LON 18
219 02MAR1998:00:00:00 LGA LON 18
219 03MAR1998:00:00:00 LGA LON 18
219 04MAR1998:00:00:00 LGA LON 18
219 05MAR1998:00:00:00 LGA LON 18
219 06MAR1998:00:00:00 LGA LON 18
219 07MAR1998:00:00:00 LGA LON 18
219 01MAR1998:00:00:00 LGA LON 18
219 02MAR1998:00:00:00 LGA LON 18
219 03MAR1998:00:00:00 LGA LON 18

If you query a DBMS table and use a label to change the FLIGHT NUMBER column
name to a standard SAS name (Flight_Number), a label (enclosed in single quotation
marks) changes the name only in the output. Because this column name and the table
name, International Delays, each have a space in their names, you have to enclose the
names in double quotation marks. A partial output follows the example.



18 Using Name Literals � Chapter 2

options linesize=64 nodate;

libname mydblib oracle user=testuser password=testpass path=’airdata’
schema=airport preserve_names=yes;

proc sql dquote=ansi outobs=5;
title "Query from International Delays";

select "FLIGHT NUMBER" label=’Flight_Number’, dates, delay
from mydblib."International Delays";

Output 2.5 Query Renaming a Nonstandard Column to a Standard SAS Name

Query from International Delays

Flight_
Number DATES DELAY
--------------------------------------
219 01MAR1998:00:00:00 18
219 02MAR1998:00:00:00 18
219 03MAR1998:00:00:00 18
219 04MAR1998:00:00:00 18
219 05MAR1998:00:00:00 18

You can preserve special characters by specifying DQUOTE=ANSI and using double
quotation marks around the SAS names in your SELECT statement.

proc sql dquote=ansi;
connect to oracle (user=testuser password=testpass);
create view myview as
select "Amount Budgeted$", "Amount Spent$"
from connection to oracle

(select "Amount Budgeted$", "Amount Spent$"
from mytable);

quit;
proc contents data=myview;
run;

Output from this example would show that Amount Budgeted$ remains Amount
Budgeted$ and Amount Spent$ remains Amount Spent$.

Using Name Literals
The following example creates a table using name literals. You must specify the SAS

option VALIDVARNAME=ANY in order to use name literals. Use PROC SQL to print
the new DBMS table because name literals work only with PROC SQL and the DATA
step. PRESERVE_COLUMN_NAMES=YES is required only because the table is being
created with nonstandard SAS column names.

options ls=64 validvarname=any nodate;

libname mydblib oracle user=testuser password=testpass path=’ora8servr’
preserve_col_names=yes preserve_tab_names=yes ;

data mydblib.’Sample Table’n;
’EmpID#’n=12345;
Lname=’Chen’;



SAS Names and Support for DBMS Names � Using DBMS Data to Create a DBMS Table 19

’Salary in $’n=63000;

proc sql;
title "Sample Table";
select * from mydblib.’Sample Table’n;

Output 2.6 DBMS Table to Test Column Names

Sample Table

Salary
EmpID# Lname in $

-------------------------
12345 Chen 63000

Using DBMS Data to Create a DBMS Table

The following example uses PROC SQL to create a DBMS table based on data from
other DBMS tables. You preserve the case-sensitivity of the aliased column names by
using PRESERVE_COL_NAMES=YES. A partial output is displayed after the code.

libname mydblib oracle user=testuser password=testpass
path=’hrdata99’ schema=personnel preserve_col_names=yes;

proc sql;
create table mydblib.gtforty as

select lname as LAST_NAME,
fname as FIRST_NAME,
salary as ANNUAL_SALARY

from mydblib.staff a,
mydblib.payroll b

where (a.idnum eq b.idnum) and
(salary gt 40000)

order by lname;

proc print noobs;
title ’Employees with Salaries over $40,000’;

run;

Output 2.7 Updating DBMS Data

Employees with Salaries over $40,000

ANNUAL_
LAST_NAME FIRST_NAME SALARY

BANADYGA JUSTIN 88606
BAREFOOT JOSEPH 43025
BRADY CHRISTINE 68767
BRANCACCIO JOSEPH 66517
CARTER-COHEN KAREN 40260
CASTON FRANKLIN 41690
COHEN LEE 91376
FERNANDEZ KATRINA 51081



20 Using a SAS Data Set to Create a DBMS Table � Chapter 2

Using a SAS Data Set to Create a DBMS Table
The following example uses a SAS data step to create a DBMS table,

College-Hires-1999, from a temporary SAS data set that has case-sensitive names. It
creates the temporary data set and then defines the LIBNAME statement. Because it
uses a DATA step to create the DBMS table, it must specify the table name as a name
literal and specify the PRESERVE_TAB_NAMES= and PRESERVE_COL_NAMES=
options (in this case, by using the alias PRESERVE_NAMES=).

options validvarname=any nodate;

data College_Hires_1999;
input IDnum $4. +3 Lastname $11. +2

Firstname $10. +2 City $15. +2
State $2.;

datalines;
3413 Schwartz Robert New Canaan CT
3523 Janssen Heike Stamford CT
3565 Gomez Luis Darien CT
;

libname mydblib oracle user=testuser password=testpass
path=’hrdata99’ schema=hrdept preserve_names=yes;

data mydblib.’College-Hires-1999’n;
set College_Hires_1999;

proc print;
title ’College Hires in 1999’;

run;

Output 2.8 DBMS Table with Case-Sensitive Table and Column Names

College Hires in 1999

Obs IDnum Lastname Firstname City State

1 3413 Schwartz Robert New Canaan CT
2 3523 Janssen Heike Stamford CT
3 3565 Gomez Luis Darien CT



21

C H A P T E R

3
Data Integrity and Security

Introduction to Data Integrity and Security 21
DBMS Security 21

Privileges 21

Triggers 22

SAS Security 22

Securing Data 22
Assigning SAS Passwords 22

Protecting Connection Information 24

Extracting DBMS Data to a SAS Data Set 24

Defining Views and Schemas 25

Controlling DBMS Connections 25

Locking, Transactions, and Currency Control 26
Customizing DBMS Connect and Disconnect Exits 27

Potential Result Set Differences When Processing Null Data 27

Introduction to Data Integrity and Security

This section briefly describes DBMS security issues and then presents measures you
can take on the SAS side of the interface to help protect DBMS data from accidental
update or deletion. This section also provides information about how SAS handles null
values that help you achieve consistent results.

DBMS Security

Privileges

The database administrator (DBA) controls who has privileges to access or update
DBMS objects. The DBA also controls who can create objects, and creators of the
objects control who can access the objects. A user cannot use DBMS facilities to access
DBMS objects through SAS/ACCESS software unless the user has the appropriate
DBMS privileges or authority on those objects. You can grant privileges on the DBMS
side by using the Pass-Through Facility to EXECUTE an SQL statement, or by issuing
a GRANT statement from the DBLOAD procedure SQL statement.



22 Triggers � Chapter 3

On the DBMS, you should give users only the privileges they must have. Privileges
are granted on whole tables or views. A user must explicitly be granted privileges on
the DBMS tables or views that underlie a view in order to use that view.

Note: See your DBMS documentation for more information about ensuring security
on the DBMS side of the interface. �

Triggers
If your DBMS supports triggers, you can use them to enforce security authorizations

or business-specific security considerations. When and how triggers are executed is
determined by when the SQL statement is executed and how often the trigger is
executed. Triggers can be executed before an SQL statement is executed, after an SQL
statement is executed, or for each row of an SQL statement. Also, triggers can be
defined for DELETE, INSERT, and UPDATE statement execution.

Enabling triggers can provide more specific security for delete, insert, and update
operations. SAS/ACCESS abides by all constraints and actions that are specified by a
trigger. For more information, see the documentation for your DBMS.

SAS Security

Securing Data
SAS preserves the data security provided by your DBMS and operating

system; SAS/ACCESS does not override the security of your DBMS. To secure DBMS
data from accidental update or deletion, you can take steps on the SAS side of the
interface such as the following:

� specifying the SAS/ACCESS LIBNAME option DBPROMPT= to avoid saving
connection information in your code

� creating SQL views and protecting them from unauthorized access by applying
passwords.

These and other approaches are discussed in detail in the following sections.

Assigning SAS Passwords
By using SAS passwords, you can protect SQL views, SAS data sets, and descriptor

files from unauthorized access. The following table summarizes the levels of protection
that SAS passwords provide. Note that you can assign multiple levels of protection.



Data Integrity and Security � Assigning SAS Passwords 23

Table 3.1 Password Protection Levels and Their Effects

File Type READ= WRITE= ALTER=

PROC SQL
view of
DBMS data

Protects the underlying
data from being read or
updated through the
view; does not protect
against replacement of
the view

Protects the underlying
data from being updated
through the view; does not
protect against
replacement of the view

Protects the view from
being modified, deleted, or
replaced

Access
descriptor

No effect on descriptor No effect on descriptor Protects the descriptor
from being read or edited

View
descriptor

Protects the underlying
data from being read or
updated through the
view

Protects the underlying
data from being updated
through the view

Protects the descriptor
from being read or edited

You can use the following methods to assign, change, or delete a SAS password:
� the global SETPASSWORD command, which opens a dialog box
� the DATASETS procedure’s MODIFY statement.

The syntax for using PROC DATASETS to assign a password to an access descriptor,
a view descriptor, or a SAS data file is as follows:

PROC DATASETS LIBRARY=libref MEMTYPE=member-type;
MODIFY member-name (password-level = password-modification);

RUN;

The password-level argument can have one or more of the following values: READ=,
WRITE=, ALTER=, or PW=. PW= assigns read, write, and alter privileges to a
descriptor or data file. The password-modification argument enables you to assign a
new password or to change or delete an existing password. For example, this PROC
DATASETS statement assigns the password MONEY with the ALTER level of
protection to the access descriptor ADLIB.SALARIES:

proc datasets library=adlib memtype=access;
modify salaries (alter=money);

run;

In this case, users are prompted for the password whenever they try to browse or
update the access descriptor or try to create view descriptors that are based on
ADLIB.SALARIES.

In the next example, the PROC DATASETS statement assigns the passwords MYPW
and MYDEPT with READ and ALTER levels of protection to the view descriptor
VLIB.JOBC204:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw alter=mydept);

run;

In this case, users are prompted for the SAS password when they try to read the DBMS
data or try to browse or update the view descriptor VLIB.JOBC204. You need both
levels to protect the data and descriptor from being read. However, a user could still
update the data accessed by VLIB.JOBC204, for example, by using a PROC SQL
UPDATE. Assign a WRITE level of protection to prevent data updates.

Note: When you assign multiple levels of passwords, use a different password for
each level to ensure that you grant only the access privileges that you intend. �



24 Protecting Connection Information � Chapter 3

To delete a password, put a slash after the password:

proc datasets library=vlib memtype=view;
modify jobc204 (read=mypw/ alter=mydept/);

run;

Protecting Connection Information

In addition to directly controlling access to data, you can protect the data indirectly
by protecting the connection information that SAS/ACCESS uses to reach the DBMS.
Generally, this is achieved by not saving connection information in your code.

One way to protect connection information is by storing user name, password, and
other connection options in a local environment variable. Access to the DBMS is denied
unless the correct user and password information is stored in a local environment
variable. See the documentation for your DBMS to determine whether this alternative
is supported.

Another way to protect connection information is by requiring users to manually
enter it at connection time. When you specify DBPROMPT=YES in a SAS/ACCESS
LIBNAME statement, each user has to provide DBMS connection information in a
dynamic, interactive manner. This is demonstrated in the following statement, which
causes a dialog box to prompt the user to enter connection information, such as a
username and password:

libname myoralib oracle dbprompt=yes defer=no;

The dialog box that appears contains the DBMS connection options that are valid for
the SAS/ACCESS engine that is being used; in this case, Oracle.

Using the DBPROMPT= option on the LIBNAME statement offers several
advantages. DBMS account passwords are protected because they do not need to be
stored in a SAS program or descriptor file. Also, when a password or username
changes, the SAS program does not need to be modified. Another advantage is that the
same SAS program can be used by any valid username and password combination that
is specified during execution. You can also use connection options in this interactive
manner when you want to run a program on a production server instead of testing a
server without making modifications to your code. By using the prompt window, the
new server name can be specified dynamically.

Note: The DBPROMPT= option is not available in the SAS/ACCESS interface to
DB2 under z/OS. �

Extracting DBMS Data to a SAS Data Set

If you are the owner of a DBMS table and do not want anyone else to read the data,
you can extract the data (or a subset of the data) and not distribute information about
either the access descriptor or view descriptor.

Note: You might need to take additional steps to restrict LIBNAME or
Pass-Through access to the extracted data set. �

If you extract data from a view that has a SAS password assigned to it, the new SAS
data file is automatically assigned the same password. If a view does not have a
password, you can assign a password to the extracted SAS data file by using the
MODIFY statement in the DATASETS procedure. See the Base SAS Procedures Guide
for more information.



Data Integrity and Security � Controlling DBMS Connections 25

Defining Views and Schemas
If you want to provide access to some but not all fields in a DBMS table, create a

SAS view that prohibits access to the sensitive data by specifying that particular
columns be dropped. Columns that are dropped from views do not affect the underlying
DBMS table and can be reselected for later use.

Some SAS/ACCESS engines support LIBNAME options that restrict or qualify the
scope, or schema, of the tables in the libref. For example, the DB2 engine supports the
AUTHID= and LOCATION= options, and the Oracle engine supports the SCHEMA=
and DBLINK= options. See the SAS/ACCESS documentation for your DBMS to
determine which options are available to you.

The following example uses the SAS/ACCESS interface to Oracle:

libname myoralib oracle user=testuser password=testpass
path=’myoraserver’ schema=testgroup;

proc datasets lib=myoralib;
run;

In this example, the MYORALIB libref is associated with the Oracle schema named
TESTGROUP. The DATASETS procedure lists only the tables and views that are
accessible to the TESTGROUP schema. Any reference to a table that uses the libref
MYORALIB is passed to the Oracle server as a qualified table name; for example, if the
SAS program reads a table by specifying the SAS data set MYORALIB.TESTTABLE,
the SAS/ACCESS engine passes the following query to the server:

select * from "testgroup.testtable"

Controlling DBMS Connections
Because the overhead of executing a connection to a DBMS server can be

resource-intensive, SAS/ACCESS supports the CONNECTION= and DEFER= options
to control when a DBMS connection is made, and how many connections are executed
within the context of your SAS/ACCESS application. For most SAS/ACCESS engines, a
connection to a DBMS begins one transaction, or work unit, and all statements issued
in the connection execute within the context of the active transaction.

The CONNECTION= LIBNAME option enables you to specify how many connections
are executed when the library is used and which operations on tables are shared within
a connection. By default, the value is CONNECTION=SHAREDREAD, which means
that a SAS/ACCESS engine executes a shared read DBMS connection when the library
is assigned. Every time a table in the library is read, the read-only connection is used.
However, if an application attempts to update data using the libref, a separate
connection is issued, and the update occurs in the new connection. As a result, there is
one connection for read-only transactions and a separate connection for each update
transaction.

In the following example, the SAS/ACCESS engine issues a connection to the DBMS
when the libref is assigned. The PRINT procedure reads the table by using the first
connection. When the PROC SQL updates the table, the update is performed with a
second connection to the DBMS.

libname myoralib oracle user=testuser password=testpass
path=’myoraserver’;

proc print data=myoralib.mytable;
run;



26 Locking, Transactions, and Currency Control � Chapter 3

proc sql;
update myoralib.mytable set acctnum=123

where acctnum=456;
quit;

The following example uses the SAS/ACCESS interface to DB2 under z/OS. The
LIBNAME statement executes a connection by way of the DB2 Call Attach Facility to
the DB2 DBMS server:

libname mydb2lib db2 authid=testuser;

If you want to assign more than one SAS libref to your DBMS server and if you do
not plan to update the DBMS tables, SAS/ACCESS enables you to optimize how the
engine performs connections. Your SAS librefs can share a single read-only connection
to the DBMS if you use the CONNECTION=GLOBALREAD option. The following
example shows you how to use the CONNECTION= option with the ACCESS= option to
control your connection and to specify read-only data access.

libname mydblib1 db2 authid=testuser
connection=globalread access=readonly;

If you do not want the connection to occur when the library is assigned, you can
delay the connection to the DBMS by using the DEFER= option. When you specify
DEFER=YES on the LIBNAME statement, for example,

libname mydb2lib db2 authid=testuser defer=yes;

the SAS/ACCESS engine connects to the DBMS the first time a DBMS object is
referenced in a SAS program.

Note: If you use DEFER=YES to assign librefs to your DBMS tables and views in
an AUTOEXEC program, the processing of the AUTOEXEC file is faster because the
connections to the DBMS are not made every time SAS is invoked. �

Locking, Transactions, and Currency Control
SAS/ACCESS provides options that enable you to control some of the row-, page-, or

table-locking operations that are performed by the DBMS and the SAS/ACCESS engine
as your programs are executed. For example, by default, the SAS/ACCESS Oracle
engine does not lock any data when it reads rows from Oracle tables. However, you can
override this behavior by using the locking options that are supported in the SAS/
ACCESS interface to Oracle.

If you want to lock the data pages of a table while SAS reads the data to prevent
other processes from updating the table, you can use the READLOCK_TYPE= option,
as in the following example.

libname myoralib oracle user=testuser pass=testpass
path=’myoraserver’ readlock_type=table;

data work.mydata;
set myoralib.mytable(where=(colnum > 123));

run;

In this example, the SAS/ACCESS Oracle engine obtains a TABLE SHARE lock on the
table so that the data cannot be updated by other processes while your SAS program is
reading it.

In the following example, Oracle acquires row-level locks on rows read for update in
the tables in the libref.



Data Integrity and Security � Potential Result Set Differences When Processing Null Data 27

libname myoralib oracle user=testuser password=testpass
path=’myoraserver’ updatelock_type=row;

Note: Each SAS/ACCESS interface supports specific options; see the SAS/ACCESS
documentation for your DBMS to determine which options it supports. �

Customizing DBMS Connect and Disconnect Exits
You can specify DBMS commands or stored procedures to be executed immediately

after a DBMS connection or before a DBMS disconnect by using the DBCONINIT= and
DBCONTERM= LIBNAME options. See the following example:

libname myoralib oracle user=testuser password=testpass
path=’myoraserver’ dbconinit="EXEC MY_PROCEDURE";

proc sql;
update myoralib.mytable set acctnum=123

where acctnum=567;
quit;

When the libref is assigned, the SAS/ACCESS engine connects to the DBMS and
passes a command to the DBMS to execute the stored procedure MY_PROCEDURE. By
default, a new connection to the DBMS is made for every table that is opened for
updating. This means that MY_PROCEDURE is executed again after a connection is
made to update the table MYTABLE.

To execute a DBMS command or stored procedure only after the first connection in a
library assignment, you can use the DBLIBINIT= option. Similarly, the DBLIBTERM=
option enables you to specify a command to be executed before the disconnection of only
the first library connection, as in the following example:

libname myoralib oracle user=testuser password=testpass
dblibinit="EXEC MY_INIT" dblibterm="EXEC MY_TERM";

Potential Result Set Differences When Processing Null Data
When your data contains null values or when internal processing generates

intermediate data sets that contain null values, you might get different result sets
depending on whether the processing is done by SAS or by the DBMS. Although in
many cases this does not present a problem, it is important to understand how these
differences occur.

Most relational database systems have a special value called null, which means an
absence of information and is analogous to a SAS missing value. SAS/ACCESS
translates SAS missing values to DBMS null values when creating DBMS tables from
within SAS and, conversely, translates DBMS null values to SAS missing values when
reading DBMS data into SAS.

There is, however, an important difference in the behavior of DBMS null values and
SAS missing values:

� A DBMS null value is interpreted as the absence of data, so you cannot sort a
DBMS null value or evaluate it with standard comparison operators.

� A SAS missing value is interpreted as its internal floating-point representation
because SAS supports 28 missing values (where a period (.) is the most common
missing value). Because SAS supports multiple missing values, you can sort a SAS
missing value and evaluate it with standard comparison operators.



28 Potential Result Set Differences When Processing Null Data � Chapter 3

This means that SAS and the DBMS interpret null values differently, which has
significant implications when SAS/ACCESS passes queries to a DBMS for processing.
This can be an issue in the following situations:

� when filtering data (for example, in a WHERE clause, a HAVING clause, or an
outer join ON clause). SAS interprets null values as missing; many DBMS exclude
null values from consideration. For example, if you have null values in a DBMS
column that is used in a WHERE clause, your results might differ depending on
whether the WHERE clause is processed in SAS or is passed to the DBMS for
processing. This is because the DBMS removes null values from consideration in a
WHERE clause, but SAS does not.

� when using certain functions. For example, if you use the MIN aggregate function
on a DBMS column that contains null values, the DBMS does not consider the null
values. However, SAS interprets the null values as missing and this affects the
result.

� when submitting outer joins where internal processing generates nulls for
intermediate result sets.

� when sorting data. SAS sorts null values low; most DBMSs sort null values high.
(See “Sorting DBMS Data” on page 33 for more information.)

For example, create a simple data set that consists of one observation and one
variable.

libname myoralib oracle user=testuser password=testpass;
data myoralib.table;
x=.; /*create a missing value */
run;

Then, print the data set using a WHERE clause, which SAS/ACCESS passes to the
DBMS for processing.

proc print data=myoralib.table;
where x<0;

run;

The log indicates that no observations were selected by the WHERE clause, because
Oracle interprets the missing value as the absence of data, and does not evaluate it
with the less-than (<) comparison operator.

When there is the potential for inconsistency, consider using one of the following
strategies:

� Use the LIBNAME option DIRECT_SQL= to control whether the processing is
done by SAS or by the DBMS.

� Use the Pass-Through Facility to ensure that the processing is done by the DBMS.
� Add the "is not null" expression to WHERE clauses and ON clauses to ensure that

you get the same result regardless of whether SAS or the DBMS does the
processing.

Note: Use the data set option NULLCHAR= to specify how the DBMS interprets
missing SAS character values when updating DBMS data or inserting rows into a
DBMS table. �



Data Integrity and Security � Potential Result Set Differences When Processing Null Data 29

You can use the first of these strategies to force SAS to process the data in the
example below:

libname myoralib oracle user=testuser password=testpass
direct_sql=nowhere; /* forces SAS to process WHERE clauses */

data myoralib.table;
x=.; /*create a missing value */
run;

Then, print the data set using a WHERE clause:

proc print data=myoralib.table;
where x<0;

run;

This time, the log indicates that one observation was read from the data set, because
SAS evaluates the missing value as satisfying the less-than-zero condition in the
WHERE clause.



30



31

C H A P T E R

4
Performance Considerations

Increasing Throughput of the SAS Server 31
Limiting Retrieval 31

Column Selection 31

The KEEP= and DROP= Options 32

Repeatedly Accessing Data 33

Sorting DBMS Data 33
Temporary Table Support for SAS/ACCESS 34

Overview 34

General Temporary Table Use 36

Pushing Heterogeneous Joins 36

Pushing Updates 36

Increasing Throughput of the SAS Server

When you invoke SAS as a server that responds to multiple clients, you can use the
DBSRVTP= system option to improve the performance of the clients. The DBSRVTP=
option tells the SAS server whether to put a hold (or block) on the originating client
while making performance-critical calls to the database. By holding or blocking the
originating client, the SAS/ACCESS server remains available for other clients; they do
not have to wait for the originating client to complete its call to the database.

Limiting Retrieval

Column Selection

Limiting the number of rows that are returned to SAS from the DBMS is an
important performance consideration. Because the less data that is requested by the
SAS job, the faster the job runs.

Where possible, specify selection criteria in order to limit the number of rows that
the DBMS returns to SAS. Use the SAS WHERE clause to retrieve a subset of the
DBMS data.

Likewise, select only the DBMS columns that your program needs. Selecting
unnecessary columns slows your job.



32 The KEEP= and DROP= Options � Chapter 4

The KEEP= and DROP= Options
Just as with a SAS data set you can use the DROP= and KEEP= data set options to

prevent retrieving unneeded columns from your DBMS table.
In this example, the KEEP= data set option causes the SAS/ACCESS engine to select

only the SALARY and DEPT columns when it reads the MYDBLIB.EMPLOYEES table.

libname mydblib db2 user=testid password=testpass database=testdb;

proc sql;
select *

from mydblib.employees(keep=salary dept)
where dept=’ACC024’;

quit;

The generated SQL that is processed by the DBMS is similar to the following:

SELECT "SALARY", "DEPT" FROM EMPLOYEES
WHERE(DEPT="ACC024")

Without the KEEP option, the SQL processed by the DBMS would be similar to the
following:

SELECT * FROM EMPLOYEES WHERE(DEPT="ACC024")

This would result in all of the columns from the EMPLOYEES table being read in to
SAS.

The DROP= data set option is a parallel option that specifies columns to omit from
the output table. Keep in mind that the DROP= and KEEP= data set options are not
interchangeable with the DROP and KEEP statements. Use of the DROP and KEEP
statements when selecting data from a DBMS can result in retrieval of all column into
SAS, which can seriously impact performance.

For example, the following would result in all of the columns from the EMPLOYEES
table being retrieved into SAS. The KEEP statement would be applied when creating
the output data set.

libname mydblib db2 user=testid password=testpass database=testdb;

data temp;
set mydblib.employees;
keep salary;

run;

The following is an example of how to use the KEEP data set option to retrieve only
the SALARY column:

data temp;
set mydblib.employees(keep=salary);

run;



Performance Considerations � Sorting DBMS Data 33

Repeatedly Accessing Data

CAUTION:
If you need to access the most current DBMS data, then access it directly from the database
every time. Do not follow the extraction suggestions that are presented in this section. �

It is sometimes more efficient to extract (copy) DBMS data to a SAS data file than to
repeatedly read the data by using a SAS view. SAS data files are organized to provide
optimal performance with PROC and DATA steps. Programs that use SAS data files are
often more efficient than SAS programs that read DBMS data directly.

Consider extracting data when you are working with a large DBMS table and you
plan to use the same DBMS data in several procedures or DATA steps during the same
SAS session.

Note: You can extract DBMS data to a SAS data file by using the OUT= option, a
DATA step, or ACCESS procedures. �

Sorting DBMS Data

Sorting DBMS data can be resource-intensive, whether you use the SORT procedure,
a BY statement, or an ORDER BY clause on a DBMS data source; or, in the SQL
procedure’s SELECT statement. Sort data only when it is needed for your program.
The following list contains guidelines for sorting data:

� If you specify a BY statement in a DATA or PROC step that references a DBMS
data source, you associate the BY variable (in a DATA or PROC step) with an
indexed DBMS column. This is recommended for performance reasons. If you
reference DBMS data in a SAS program and the program includes a BY statement
for a variable that corresponds to a column in the DBMS table, the SAS/ACCESS
LIBNAME engine automatically generates an ORDER BY clause for that variable.
The ORDER BY clause causes the DBMS to sort the data before the DATA or
PROC step uses the data in a SAS program. If the DBMS table is very large, this
sorting can adversely affect your performance. Use a BY variable that is based on
an indexed DBMS column in order to reduce this negative impact.

� The outermost BY or ORDER BY clause overrides any embedded BY or ORDER
BY clauses, including those specified by the DBCONDITION= option, those
specified in a WHERE clause, and those in the selection criteria in a view
descriptor. In the following example, the EXEC_EMPLOYEES data set includes a
BY statement that sorts the data by the variable SENIORITY. However, when that
data set is used in the following PROC SQL query, the data is ordered by the
SALARY column and not by SENIORITY.

libname mydblib oracle user=testuser password=testpass;
data exec_employees;

set mydblib.staff (keep=lname fname idnum);
by seniority;
where salary >= 150000;

run;

proc sql;
select * from exec_employees

order by salary;



34 Temporary Table Support for SAS/ACCESS � Chapter 4

� Do not use PROC SORT to sort data from SAS back into the DBMS, because this
impedes performance and has no effect on the order of the data.

� The database does not guarantee sort stability when you use PROC SORT. Sort
stability means that the ordering of the observations in the BY statement is
exactly the same every time the sort is run against static data. If you absolutely
require sort stability, you must place your database data into a SAS data set, and
then use PROC SORT.

� When you use PROC SORT, be aware that the sort rules for SAS and for your
DBMS might be different. Use the Base SAS system option SORTPGM to specify
which rules (host, SAS, or DBMS) are applied:

SORTPGM=BEST
sorts data according to the DBMS sort rules, then the host sort rules, and
then the SAS sort rules. (Sorting uses the first available and pertinent
sorting algorithm in this list.) This is the default.

SORTPGM=HOST
sorts data according to host rules and then SAS rules. (Sorting uses the first
available and pertinent sorting algorithm in this list.)

SORTPGM=SAS
sorts data by SAS rules.

Temporary Table Support for SAS/ACCESS

Overview
DBMS temporary table support in SAS consists of the ability to retain DBMS

temporary tables from one SAS step to the next. This ability is a result of establishing
a SAS connection to the DBMS that persists across multiple SAS procedures and DATA
steps.

Temporary table support for SAS 9.1 is available on the following DBMSs:

DB2 UNIX/PC

DB2 z/OS

HP Neoview



Performance Considerations � Overview 35

Informix

Netezza

ODBC

OLE DB

Oracle

Sybase

Teradata

The value of DBMS temporary table support in SAS is increased performance
potential. By pushing processing to the DBMS in certain situations, an overall
performance gain can be achieved. The following processes outline, in general, how to
use DBMS temporary tables in SAS 9.1.



36 General Temporary Table Use � Chapter 4

General Temporary Table Use
To use temporary tables on the DBMS, complete the following steps:
1 Establish a global connection to the DBMS that persists across SAS procedure and

DATA step boundaries.
2 Create a DBMS temporary table and load it with data.
3 Use the DBMS temporary table with SAS.

Note: Closing the global connection causes the DBMS temporary table to close as
well. �

Pushing Heterogeneous Joins
To push heterogeneous joins to the DBMS, complete the following steps:

1 Establish a global connection to the DBMS that persists across SAS procedure and
DATA step boundaries.

2 Create a DBMS temporary table and load it with data.
3 Perform a join on the DBMS using the DBMS temporary and DBMS permanent

tables.
4 Process the result of the join with SAS.

Pushing Updates
To push updates (process transactions) to the DBMS, complete the following steps:
1 Establish a global connection to the DBMS that will persist across SAS procedure

and DATA step boundaries.
2 Create a DBMS temporary table and load it with data.
3 Issue SQL that uses values in the temporary table to process against the

production table.
4 Process the updated DBMS tables with SAS.

Note: These processing scenarios are purposefully generic; however they apply to
each DBMS that supports temporary tables. Refer to the SAS/ACCESS section for your
database for complete details. �



37

C H A P T E R

5
Optimizing Your SQL Usage

Overview of Optimizing Your SQL Usage 37
Passing Functions to the DBMS Using PROC SQL 38

Passing Joins to the DBMS 38

Passing the DELETE Statement to Empty a Table 40

When Passing Joins to the DBMS Will Fail 40

Passing DISTINCT and UNION Processing to the DBMS 42
Optimizing the Passing of WHERE Clauses to the DBMS 42

Passing Functions to the DBMS Using WHERE Clauses 43

Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options 43

Overview of Optimizing Your SQL Usage

SAS/ACCESS takes advantage of DBMS capabilities by passing certain SQL
operations to the DBMS whenever possible. This can reduce data movement, which can
improve performance. The performance impact can be significant when you access large
DBMS tables and the SQL that is passed to the DBMS subsets the table to reduce the
amount of rows. SAS/ACCESS sends operations to the DBMS for processing in the
following situations:

� When operations use the Pass-Through Facility. When you use the Pass-Through
Facility, you submit DBMS-specific SQL statements that are sent directly to the
DBMS for execution. For example, when you submit Transact-SQL statements to
be passed to a Sybase database.

� When SAS/ACCESS can translate the operations into the SQL of the DBMS.
When you use the SAS/ACCESS LIBNAME statement and PROC SQL, you
submit SAS statements that SAS/ACCESS can translate into the SQL of the
DBMS and then pass to the DBMS for processing.

By using the automatic translation abilities, you can often achieve the performance
benefits of the Pass-Through Facility without needing to write DBMS-specific SQL code.
The following sections describe the SAS SQL operations that SAS/ACCESS can pass to
the DBMS for processing. See “Optimizing the Passing of WHERE Clauses to the
DBMS” on page 42 for information about passing WHERE clauses to the DBMS.

Note: There are certain conditions that prevent operations from being passed to the
DBMS. For example, when you use an INTO clause or any data set option, operations
are processed in SAS instead of being passed to the DBMS. Re-merges, union joins, and
truncated comparisons also prevent operations from being passed to the DBMS.

Additionally, it is important to note that when you join tables across multiple tables,
implicit pass-through utilizes the first connection. Consequently, LIBNAME options
from subsequent connections are ignored.



38 Passing Functions to the DBMS Using PROC SQL � Chapter 5

You can use the SASTRACE= system option to determine whether an operation is
processed by SAS or is passed to the DBMS for processing. �

To prevent operations from being passed to the DBMS, use the LIBNAME option
DIRECT_SQL=.

Passing Functions to the DBMS Using PROC SQL
When you use the SAS/ACCESS LIBNAME statement, the SAS SQL aggregate

functions MIN, MAX, AVG, MEAN, FREQ, N, SUM, and COUNT are passed to the
DBMS because they are SQL ANSI-defined aggregate functions.

For example, the following query of the Oracle table EMP is passed to the DBMS for
processing:

libname myoralib oracle user=testuser password=testpass;
proc sql;

select count(*) from myoralib.emp;
quit;

This code causes Oracle to process the following query:

select COUNT(*) from EMP

SAS/ACCESS can also translate other SAS functions into DBMS-specific functions so
they can be passed to the DBMS.

In the following example, the SAS function UPCASE is translated into the Oracle
function UPPER:

libname myoralib oracle user=testuser password=testpass;
proc sql;

select customer from myoralib.customers
where upcase(country)="USA";

quit;

The translated query that is processed in Oracle is

select customer from customers where upper(country)=’USA’

The functions that are passed are different for each DBMS. See the documentation
for your SAS/ACCESS interface to determine which functions it translates.

Passing Joins to the DBMS

When you perform a join across tables in a single DBMS, SAS/ACCESS can often pass
the join to the DBMS for processing. Before implementing a join, PROC SQL checks to
see whether the DBMS can do the join. A comparison is made using the SAS/ACCESS
LIBNAME statement for the tables. Certain criteria must be met for the join to proceed.

If it can, PROC SQL passes the join to the DBMS, which performs the join and
returns only the results to SAS. If the DBMS cannot do the join, PROC SQL processes
the join.



Optimizing Your SQL Usage � Passing Joins to the DBMS 39

The following types of joins are eligible for passing to the DBMS:

� for all DBMSs, inner joins between two or more tables.

� for DBMSs that support ANSI outer join syntax, outer joins between two or more
DBMS tables.

� for ODBC and Microsoft SQL Server, outer joins between two or more tables.
However, the outer joins must not be mixed with inner joins in a query.

� For DBMSs that support nonstandard outer join syntax (ORACLE, Sybase and
INFORMIX), outer joins between two or more tables, with the following
restrictions:

Full outer joins are not supported.

Only a comparison operator is allowed in an ON clause. For Sybase, the only
valid comparison operator is ’=’.

For ORACLE and Sybase, both operands in an ON clause must reference a
column name. If an operand is a literal, it cannot be passed to the DBMS.
Since these DBMSs do not support this, all ON clauses are transformed into
WHERE clauses before attempting to pass the join to the DBMS. This can
result in queries not being passed to the DBMS if they include additional
WHERE clauses or contain complex join conditions.

For INFORMIX, the outer joins cannot consist of more than two tables and
cannot contain a WHERE clause.

For Sybase: If there are multiple joins or joins with additional WHERE clauses,
it might be advisable to have the join processed internally by PROC SQL
rather than passing it to the DBMS. This is because Sybase evaluates
multi-joins with WHERE clauses differently than SAS. To allow PROC SQL
to process the join internally use the SAS/ACCESS DIRECT_SQL= option.

Note: If PROC SQL cannot successfully pass down a complete query to the
DBMS, it might re-attempt passing down a subquery. The SQL that is passed to
the DBMS can be analyzed by turning on SAS tracing options. The SAS trace
information displays the exact queries being passed to the DBMS for processing.
�

In the following example, two large DBMS tables (TABLE1 and TABLE2) each have
a column named DeptNo. Retrieve the rows from an inner join of these tables where
the DeptNo value in TABLE1 equals the DeptNo value in TABLE2. The join between
two tables in the DBLIB library (which references an Oracle database) is detected by
PROC SQL and passed by SAS/ACCESS directly to the DBMS. The DBMS processes
the inner join between the two tables and returns only the resulting rows to SAS.

libname dblib oracle user=testuser password=testpass;
proc sql;

select tab1.deptno, tab1.dname from
dblib.table1 tab1,
dblib.table2 tab2
where tab1.deptno = tab2.deptno;

quit;

The query is passed to the DBMS, generating the following Oracle code:

select table1."deptno", table1."dname" from TABLE1, TABLE2
where TABLE1."deptno" = TABLE2."deptno"



40 Passing the DELETE Statement to Empty a Table � Chapter 5

In the following example, an outer join between two Oracle tables, TABLE1 and
TABLE2, is passed to the DBMS for processing.

libname myoralib oracle user=testuser password=testpass;
proc sql;

select * from myoralib.table1 right join myoralib.table2
on table1.x = table2.x
where table2.x > 1;

quit;

The query is passed to the DBMS, generating the following Oracle code:

select table1."X", table2."X" from TABLE1, TABLE2
where TABLE1."X" (+)= TABLE2."X"
and (TABLE2."X" > 1)

Passing the DELETE Statement to Empty a Table
When you use the SAS/ACCESS LIBNAME statement with the DIRECT_EXE option

set to DELETE, the SAS SQL DELETE statement gets passed to the DBMS for
execution as long as it does not contain a WHERE clause. The DBMS deletes all the
rows, but does not delete the table itself.

The following example illustrates how a DELETE statement gets passed to Oracle
for the table EMP to be emptied:

libname myoralib oracle user=testuser password=testpass direct_exe=delete;
proc sql;

delete from myoralib.emp;
quit;

This code causes Oracle to execute the following:

delete from emp

When Passing Joins to the DBMS Will Fail

SAS/ACCESS will, by default, attempt to pass certain types of SQL statements
directly to the DBMS for processing. Most notable are SQL join statements that
otherwise would be processed as individual queries to each data source that belonged to
the join. In that instance, the join would then be performed internally by PROC SQL.
Passing the join to the DBMS for direct processing can result in significant performance
gains.

However, there are several reasons why a join statement under PROC SQL might
not be passed to the DBMS for processing. In general, the success of the join depends
upon the nature of the SQL that was coded and the DBMS’s acceptance of the
generated syntax. It is also greatly influenced by the use of option settings. The
following are the primary reasons why join statements might fail to be passed:

� The generated SQL syntax is not accepted by the DBMS.

PROC SQL attempts to pass the SQL join query directly to the DBMS for
processing. The DBMS can reject the syntax for any number of reasons. In this
event, PROC SQL attempts to open both tables individually and perform the join
internally.



Optimizing Your SQL Usage � When Passing Joins to the DBMS Will Fail 41

� The SQL query involves multiple librefs that do not share connection
characteristics.

If the librefs are specified using different servers, user IDs, or any other
connection options, PROC SQL does not attempt to pass the statement to the
DBMS for direct processing.

� The use of data set options in the query.
The specification of any data set option on a table that is referenced in the SQL

query prohibits the statement from passing to the DBMS for direct processing.
� The use of certain LIBNAME options.

The specification of LIBNAME options that request member level controls, such
as table locks (“READ_LOCK_TYPE= LIBNAME Option” on page 138 or
“UPDATE_LOCK_TYPE= LIBNAME Option” on page 151), will prohibit the
statement from successfully passing to the DBMS for direct processing.

� The “DIRECT_SQL= LIBNAME Option” on page 114 option setting.
The DIRECT_SQL= option default setting is YES. PROC SQL attempts to pass

SQL joins directly to the DBMS for processing. Other settings for the
DIRECT_SQL= option influence the nature of the SQL statements that PROC
SQL tries to pass down to the DBMS, or even if it tries to pass anything at all.

DIRECT_SQL=YES
PROC SQL automatically attempts to pass the SQL join query to the DBMS.
This is the default setting for this option. The join attempt could fail due to a
DBMS return code. If this happens, PROC SQL attempts to open both tables
individually and perform the join internally.

DIRECT_SQL=NO
PROC SQL does not attempt to pass SQL join queries to the DBMS. Other
SQL statements can be passed, however. If the “MULTI_DATASRC_OPT=
LIBNAME Option” on page 126 is in effect, the generated SQL can also be
passed.

DIRECT_SQL=NONE
PROC SQL does not attempt to pass any SQL directly to the DBMS for
processing.

DIRECT_SQL=NOWHERE
PROC SQL attempts to pass SQL to the DBMS including SQL joins. However,
it does not pass any WHERE clauses associated with the SQL statement.
This causes any join that is attempted with direct processing to fail.

DIRECT_SQL=NOFUNCTIONS
PROC SQL does not pass any statements in which any function is present to
the DBMS. Normally PROC SQL attempts to pass down any functions coded
in the SQL to the DBMS, provided the DBMS supports the given function.

DIRECT_SQL=NOGENSQL
PROC SQL does not attempt to pass SQL join queries to the DBMS. Other
SQL statements can be passed down, however. If the
MULTI_DATASRC_OPT= option is in effect, the generated SQL can be
passed.

DIRECT_SQL=NOMULTOUTJOINS
PROC SQL does not attempt to pass any multiple outer joins to the DBMS
for direct processing. Other SQL statements can be passed, however,
including portions of a multiple outer join.

� The use of SAS functions on the SELECT clause can prevent joins from being
passed.



42 Passing DISTINCT and UNION Processing to the DBMS � Chapter 5

Passing DISTINCT and UNION Processing to the DBMS
When you use the SAS/ACCESS LIBNAME statement to access DBMS data, the

DISTINCT and UNION operators are processed in the DBMS rather than in SAS. For
example, when PROC SQL detects a DISTINCT operator, it passes the operator to the
DBMS to check for duplicate rows. The DBMS then returns only the unique rows to
SAS.

In the following example, the Oracle table CUSTBASE is queried for unique values
in the STATE column.

libname myoralib oracle user=testuser password=testpass;
proc sql;

select distinct state from myoralib.custbase;
quit;

The DISTINCT operator is passed to Oracle, generating the following Oracle code.

select distinct custbase."STATE" from CUSTBASE

Oracle passes the results from this query back to SAS.

Optimizing the Passing of WHERE Clauses to the DBMS
Use the following general guidelines for writing efficient WHERE clauses:
� Avoid the NOT operator if you can use an equivalent form.

Inefficient: where zipcode not>8000

Efficient: where zipcode<=8000

� Avoid the >= and <= operators if you can use the BETWEEN predicate.
Inefficient: where ZIPCODE>=70000 and ZIPCODE<=80000

Efficient: where ZIPCODE between 70000 and 80000

� Avoid LIKE predicates that begin with % or _ .
Inefficient: where COUNTRY like ’%INA’

Efficient: where COUNTRY like ’A%INA’

� Avoid arithmetic expressions in a predicate.
Inefficient: where SALARY>12*4000.00

Efficient: where SALARY>48000.00

� Use DBKEY=, DBINDEX=, and MULTI_DATASRC_OPT= when appropriate. See
“Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options” on page
43 for details about these options.

Whenever possible, SAS/ACCESS passes WHERE clauses to the DBMS, because the
DBMS processes them more efficiently than SAS does. SAS translates the WHERE
clauses into generated SQL code. The performance impact can be particularly
significant when you are accessing large DBMS tables. The following section describes
how and when functions are passed to the DBMS. For information about passing
processing to the DBMS when you are using PROC SQL, see “Overview of Optimizing
Your SQL Usage” on page 37.

Note: If you have NULL values in a DBMS column that is used in a WHERE clause,
be aware that your results might differ depending on whether the WHERE clause is
processed in SAS or is passed to the DBMS for processing. This is because DBMSs tend
to remove NULL values from consideration in a WHERE clause, while SAS does not. �



Optimizing Your SQL Usage � Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options 43

To prevent WHERE clauses from being passed to the DBMS, use the LIBNAME
option DIRECT_SQL= NOWHERE.

Passing Functions to the DBMS Using WHERE Clauses
When you use the SAS/ACCESS LIBNAME statement, SAS/ACCESS translates

several SAS functions in WHERE clauses into DBMS-specific functions so they can be
passed to the DBMS.

In the following SAS code, SAS can translate the FLOOR function into a DBMS
function and pass the WHERE clause to the DBMS.

libname myoralib oracle user=testuser password=testpass;
proc print data=myoralib.personnel;

where floor(hourlywage)+floor(tips)<10;
run;

The generated SQL that the DBMS processes would be similar to this code:

SELECT "HOURLYWAGE", "TIPS" FROM PERSONNEL
WHERE ((FLOOR("HOURLYWAGE") + FLOOR("TIPS")) < 10)

If the WHERE clause contains a function that SAS cannot translate into a DBMS
function, SAS retrieves all the rows from the DBMS and then applies the WHERE
clause.

The functions that are passed are different for each DBMS. See the documentation
for your SAS/ACCESS interface to determine which functions it translates.

Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options

When you code a join operation in SAS and the join cannot be passed directly to a
DBMS for processing, the join is performed by SAS. Normally, this processing involves
individual queries to each data source that belonged to the join and the join being
performed internally by SAS. When you join a large DBMS table and a small SAS data
set or DBMS table, using the DBKEY= , DBINDEX=, and MULTI_DATASRC_OPT=
options might enhance performance. You can use them to retrieve a subset of the
DBMS data into SAS for the join.

When MULTI_DATASRC_OPT=IN_CLAUSE is specified for DBMS data sources in a
PROC SQL join operation, the procedure retrieves the unique values of the join column
from the smaller table to construct an IN clause. This IN clause is used when SAS
retrieves the data from the larger DBMS table. The join is performed in SAS. If a SAS
data set is used, no matter how large, it is always in the IN_CLAUSE. For better
performance, it is recommended that the SAS data set be smaller than the DBMS table,
otherwise processing can be extremely slow.

MULTI_DATASRC_OPT= generates a SELECT COUNT to determine the size of data
sets that are not SAS data sets. If you know the size of your data set, you can use
DBMASTER to designate the larger table.

MULTI_DATASRC_OPT= might provide performance improvements over DBKEY=.
If both options are specified, DBKEY= overrides MULTI_DATASRC_OPT=.

MULTI_DATASRC_OPT= is used only when SAS processes a join with PROC SQL. It
is not used for SAS datastep processing. For certain joins operations, such as those
involving additional subsetting applying to the query, PROC SQL might determine that
it is more efficient to process the join internally. In these situations, it does not use the
MULTI_DATASRC_OPT= optimization even when specified. If PROC SQL determines



44 Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options � Chapter 5

it can pass the join directly to the DBMS, it does not also use this option even though it
is specified.

In this example, the MULTI_DATASRC_OPT= option is used to improve the
performance of an SQL join statement. MULTI_DATASRC_OPT= instructs PROC SQL
to pass the WHERE clause to the SAS/ACCESS engine with an IN clause built from the
SAS table. The engine then passes this optimized query to the DBMS server. The IN
clause is built from the unique values of the SAS DeptNo variable. As a result, only
rows that match the WHERE clause are retrieved from the DBMS. Without this option,
PROC SQL retrieves all the rows from the Dept table and applies the WHERE clause
during PROC SQL processing in SAS. Processing can be both CPU-intensive and
I/O-intensive if the Oracle Dept table is large.

data keyvalues;
deptno=30;
output;
deptno=10;
output;

run;

libname dblib oracle user=testuser password=testpass
path=’myorapath’ multi_datasrc_opt=in_clause;

proc sql;
select bigtab.deptno, bigtab.loc
from dblib.dept bigtab,

keyvalues smallds
where bigtab.deptno=smallds.deptno;

quit;

The SQL statement that is created by SAS/ACCESS and passed to the DBMS is
similar to the following

SELECT "DEPTNO", "LOC" FROM DEPT WHERE (("DEPTNO" IN (10,30)))

Using DBKEY or DBINDEX decreases performance when the SAS data set is too
large. These options cause each value in the transaction data set to generate a new
result set (or open cursor) from the DBMS table. For example, if your SAS data set has
100 observations with unique key values, you request 100 result sets from the DBMS,
which might be very expensive. You must determine whether use of these options is
appropriate, or whether you can achieve better performance by reading the entire
DBMS table (or by creating a subset of the table).

DBINDEX= and DBKEY= are mutually exclusive. If you specify them together,
DBKEY= overrides DBINDEX=. Both of these options are ignored if you specify the
SAS/ACCESS data set option DBCONDITION= or the SAS data set option WHERE=.

DBKEY= does not require that any database indexes be defined; nor does it check
the DBMS system tables. This option instructs SAS to use the specified DBMS column
name or names in the WHERE clause that is passed to the DBMS in the join.



Optimizing Your SQL Usage � Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options 45

The DBKEY= option can also be used in a SAS DATA step, with the KEY= option in
the SET statement, to improve the performance of joins. You specify a value of
KEY=DBKEY in this situation. The following DATA step creates a new data file by
joining the data file KEYVALUES with the DBMS table MYTABLE. The variable
DEPTNO is used with the DBKEY= option to cause a WHERE clause to be issued by
SAS/ACCESS.

data sasuser.new;
set sasuser.keyvalues;
set dblib.mytable(dbkey=deptno) key=dbkey;

run;

Note: When you use DBKEY= with the DATA step MODIFY statement, there is no
implied ordering of the data that is returned from the database. If the master DBMS
table contains records with duplicate key values, using DBKEY= can alter the outcome
of the DATA step. Because SAS regenerates result sets (open cursors) during
transaction processing, the changes you make during processing have an impact on the
results of subsequent queries. Before you use DBKEY= in this context, determine
whether your master DBMS file has duplicate values for keys. Remember that the
REPLACE, OUTPUT, and REMOVE statements can cause duplicate values to appear
in the master table. �

The DBKEY= option does not require or check for the existence of indexes created on
the DBMS table. Therefore, the DBMS system tables are not accessed when you use
this option. The DBKEY= option is preferred over the DBINDEX= option for this
reason. If you perform a join and use PROC SQL, you must ensure that the columns
that are specified through the DBKEY= option match the columns that are specified in
the SAS data set.

CAUTION:
Before you use the DBINDEX= option, take extreme care to evaluate some characteristics
of the DBMS data. The number of rows in the table, the number of rows returned in
the query, and the distribution of index values in the table are among the factors to
consider. Some experimentation might be necessary to discover the optimum
settings. �

You can use the DBINDEX= option instead of the DBKEY= option if you know that
the DBMS table has one or more indexes that use the column(s) that the join is
performed on. Use DBINDEX=index-name if you know the name of the index, or use
DBINDEX=YES if you do not know the name of the index. Use this option as a data set
option, and not a LIBNAME option, because index lookup can potentially be an
expensive operation.

DBINDEX= requires that the join table must have a database index that is defined
on the columns involved in the join. If there is no index, then all processing of the join
takes place in SAS, where all rows from each table are read into SAS and SAS performs
the join.

Note: The data set options NULLCHAR= and NULLCHARVAL= determine how SAS
missing character values are handled during DBINDEX= and DBKEY= processing. �



46



47

C H A P T E R

6
Threaded Reads

Overview of Threaded Reads in SAS/ACCESS 47
Underlying Technology of Threaded Reads 48

SAS/ACCESS Interfaces and Threaded Reads 48

Scope of Threaded Reads 49

Options That Affect Threaded Reads 49

Generating Trace Information for Threaded Reads 50
Performance Impact of Threaded Reads 53

Autopartitioning Techniques in SAS/ACCESS 53

Data Ordering in SAS/ACCESS 54

Two-Pass Processing for SAS Threaded Applications 54

When Threaded Reads Will Not Occur 55

Summary of Threaded Reads 55

Overview of Threaded Reads in SAS/ACCESS

In Version 8 and earlier, SAS opened a single connection to the DBMS to read a
table. SAS statements requesting data were converted to an SQL statement and passed
to the DBMS. The DBMS processed the SQL statement, produced a result set consisting
of table rows and columns, and transferred the result set back to SAS on the single
connection.

With a threaded read, the table read time can be reduced by retrieving the result set
on multiple connections between SAS and the DBMS. SAS is able to create multiple
threads, and a read connection is established between the DBMS and each SAS thread.
The result set is partitioned across the connections, and rows are passed to SAS
simultaneously (in parallel) across the connections, improving performance.



48 Underlying Technology of Threaded Reads � Chapter 6

Underlying Technology of Threaded Reads
To perform a threaded read, SAS first creates threads, which are standard operating

system tasks controlled by SAS, within the SAS session. Next, SAS establishes a
DBMS connection on each thread. SAS then causes the DBMS to partition the result
set and reads one partition per thread. To cause the partitioning, SAS appends a
WHERE clause to the SQL so that a single SQL statement becomes multiple SQL
statements, one for each thread. For example:

proc reg SIMPLE
data=dblib.salesdata (keep=salesnumber maxsales);

var _ALL_;
run;

Previous versions of SAS opened a single connection and issued:

SELECT salesnumber,maxsales FROM SALESDATA;

Assuming that SalesData has an integer column EmployeeNum, SAS 9.1, might open
two connections, issuing the following statements:

SELECT salesnumber,maxsales FROM salesdata WHERE (EMPLOYEENUM mod 2)=0;

and

SELECT salesnumber,maxsales FROM SALESDATA WHERE (EMPLOYEENUM mod 2)=1;

For more information about MOD, see “Autopartitioning Techniques in SAS/
ACCESS” on page 53

Note: Might is an important word here. Most, but not all, SAS/ACCESS interfaces
support threaded reads in SAS 9.1. The partitioning WHERE clauses that SAS
generates vary. SAS cannot always generate partitioning WHERE clauses. In that case,
the SAS user can supply them. There also might be other means used to partition the
data, instead of the WHERE clauses. �

SAS/ACCESS Interfaces and Threaded Reads
Here are the SAS/ACCESS interfaces that support threaded reads for SAS 9.1. More

interfaces are expected to support threaded reads in future releases.

DB2 under UNIX
and PC Hosts

DB2 under z/OS

Informix

Microsoft SQL
Server

ODBC

Oracle*

Sybase

Teradata**



Threaded Reads � Options That Affect Threaded Reads 49

*Threaded reads for the Oracle engine are not supported under MVS (z/OS).
**Teradata on OS/390, z/OS, and UNIX supports only FastExport threaded reads; see

the Teradata specific documentation for details.
Threaded reads work across all UNIX and Windows platforms where you run SAS.

There are special considerations for z/OS; see the Oracle-specific and Teradata-specific
sections about threaded reads for details.

Scope of Threaded Reads
SAS steps called threaded applications are automatically eligible for a threaded read.

Threaded applications are bottom-to-top fully threaded SAS procedures that perform
data reads, numerical algorithms, and data analysis in threads. Only some SAS
procedures are threaded applications. Here is a basic example of PROC REG, a SAS
threaded application:

libname lib oracle user=scott password=tiger;
proc reg simple
data=lib.salesdata (keep=salesnumber maxsales);
var _all_;
run;

For DBMSs, many more SAS steps can become eligible for a threaded read,
specifically, steps with a read-only table. A libref has the form Lib.DbTable, where Lib
is a SAS libref that "points" to DBMS data, and DbTable is a DBMS table. Here are
sample read-only tables for which threaded reads can be turned on:

libname lib oracle user=scott password=tiger;
proc print data=lib.dbtable;
run;

data local;
set lib.families;
where gender="F";
run;

An eligible SAS step can require user assistance in order to actually perform
threaded reads. If SAS is unable to automatically generate a partitioning WHERE
clause or to otherwise perform threaded reads, then the user can code an option that
supplies partitioning. To determine whether SAS can automatically generate a
partitioning WHERE clause, use SASTRACE= system option“SASTRACE= System
Option” on page 272 and SASTRACELOC= system option“SASTRACELOC= System
Option” on page 281.

Threaded reads can be turned off altogether. This eliminates additional DBMS
activity associated with SAS threaded reads, such as additional DBMS connections and
multiple SQL statements.

Threaded reads are not supported for the Pass-Through Facility, in which you code
your own DBMS-specific SQL that is passed directly to the DBMS for processing.

Options That Affect Threaded Reads
SAS/ACCESS provides two options precisely for threaded reads from DBMSs:

“DBSLICE= Data Set Option” on page 217 and “DBSLICEPARM= Data Set Option” on
page 219.



50 Generating Trace Information for Threaded Reads � Chapter 6

DBSLICE= is a data set option, applicable only to a table reference. It permits you to
code your own WHERE clauses to partition table data across threads, and is useful
when you are familiar with your table data. For instance, if your DBMS table has a
CHAR(1) column Gender, and your clients are approximately half female, Gender
equally partitions the table into two parts. Therefore, here is a possible DBSLICE=
example:

proc print data=lib.dbtable (dbslice=("gender=’f’" "gender=’m’"));
where dbcol>1000;
run;

SAS creates two threads and about half of the data is delivered in parallel on each
connection.

When applying DBSLICEPARM=ALL instead of DBSLICE=, SAS attempts to
"autopartition" the table for you. With the default DBSLICEPARM=THREADED_APPS
setting, threaded reads are automatically attempted only for SAS threaded applications
(SAS procedures that thread I/O and numeric operations). DBSLICEPARM=ALL
extends threaded reads to more SAS procedures, specifically steps that only read tables.
Or, DBSLICEPARM=NONE turns it off entirely. It can be specified as a data set option,
LIBNAME option, or as a global SAS option.

The first argument to DBSLICEPARM= is required and extends or restricts threaded
reads. The second, optional argument is not commonly used and limits the number of
DBMS connections. The following examples demonstrate the different uses of
DBSLICEPARM=:

� UNIX or Windows SAS invocation option that turns on threaded reads for all
read-only libref.

--dbsliceparm ALL

� Global SAS option that turns off threaded reads.

option dbsliceparm=NONE;

� LIBNAME option that restricts threaded reads to just SAS threaded applications.

libname lib oracle user=scott password=tiger dbsliceparm=THREADED_APPS;

� Table option that turns on threaded reads (with a maximum of three connections,
in the example below)

proc print data=lib.dbtable(dbsliceparm=(ALL,3));
where dbcol>1000;
run;

DBSLICE= and DBSLICEPARM= apply only to DBMS table reads. THREADS= and
CPUCOUNT= are additional SAS options that apply to threaded applications. For more
information about these options, see the SAS Language Reference: Dictionary.

Generating Trace Information for Threaded Reads

A threaded read is a complex feature. A SAS step can be eligible for a threaded read,
but not have it applied. Performance effect is not always easy to predict. Use the
SASTRACE option to see if threaded reads occurred and to help assess performance.
The following examples demonstrate usage scenarios with SAS/ACCESS to Oracle.
Keep in mind that trace output is in English only and changes from release to release.



Threaded Reads � Generating Trace Information for Threaded Reads 51

/*Turn on SAS tracing */
options sastrace=’’,,t,’’ sastraceloc=saslog nostsuffix;

/* Run a SAS job */

data work.locemp;
set trlib.MYEMPS(DBBSLICEPARM=(ALL,3));
where STATE in (’GA’, ’SC’, ’NC’) and ISTENURE=0;
run;

The above job produces the following trace messages:

406 data work.locemp;
407 set trlib.MYEMPS(DBSLICEPARM=(ALL, 3));
408 where STATE in (’GA’, ’SC’, ’NC’) and ISTENURE=0;
409 run;

ORACLE: DBSLICEPARM option set and 3 threads were requested
ORACLE: No application input on number of threads.

ORACLE: Thread 2 contains 47619 obs.
ORACLE: Thread 3 contains 47619 obs.
ORACLE: Thread 1 contains 47619 obs.
ORACLE: Threaded read enabled. Number of threads created: 3

If you want to see the SQL that is executed during the threaded read, you can set
tracing to sastrace=’,,t,d’ and run the job again. This time, the output contains the
threading information as well as all of the SQL statements processed by Oracle:

ORACLE_9: Prepared:
SELECT * FROM MYEMPS 418 data work.locemp;

419 set trlib.MYEMPS(DBSLICEPARM=(ALL, 3));
420 where STATE in (’GA’, ’SC’, ’NC’) and ISTENURE=0;
421 run;

ORACLE: DBSLICEPARM option set and 3 threads were requested
ORACLE: No application input on number of threads.

ORACLE_10: Executed:
SELECT "HIREDATE", "SALARY", "GENDER", "ISTENURE", "STATE", "EMPNUM", "NUMCLASSES"

FROM MYEMPS WHERE ( ( ("STATE" IN ( ’GA’ , ’NC’ , ’SC’ ) ) ) AND
("ISTENURE" = 0 ) ) AND ABS(MOD("EMPNUM",3))=0

ORACLE_11: Executed:
SELECT "HIREDATE", "SALARY", "GENDER", "ISTENURE", "STATE", "EMPNUM", "NUMCLASSES"

FROM MYEMPS WHERE ( ( ("STATE" IN ( ’GA’ , ’NC’ , ’SC’ ) ) ) AND
("ISTENURE" = 0 ) ) AND ABS(MOD("EMPNUM",3))=1

ORACLE_12: Executed:
SELECT "HIREDATE", "SALARY", "GENDER", "ISTENURE", "STATE", "EMPNUM", "NUMCLASSES"

FROM MYEMPS WHERE ( ( ("STATE" IN ( ’GA’ , ’NC’ , ’SC’ ) ) ) AND
("ISTENURE" = 0 ) ) AND (ABS(MOD("EMPNUM",3))=2 OR "EMPNUM" IS NULL)



52 Generating Trace Information for Threaded Reads � Chapter 6

ORACLE: Thread 2 contains 47619 obs.
ORACLE: Thread 1 contains 47619 obs.
ORACLE: Thread 3 contains 47619 obs.
ORACLE: Threaded read enabled. Number of threads created: 3

Notice that the Oracle engine used the EMPNUM column as a partitioning column.
If a threaded read cannot be done either because all of the candidates for

autopartitioning are in the WHERE clause or because the table does not contain a
column that fits the criteria, you see a warning in your log. For example, the data set
below uses a WHERE clause that contains all of the possible autopartitioning columns:

data work.locemp;
set trlib.MYEMPS (DBLISCEPARM=ALL);
where EMPNUM<=30 and ISTENURE=0 and SALARY<=35000 and NUMCLASSES>2;
run;

You receive the following warnings:

ORACLE: No application input on number of threads.
ORACLE: WARNING: Unable to find a partition column for use w/ MOD()
ORACLE: The engine cannot automatically generate the partitioning WHERE clauses.
ORACLE: Using only one read connection.
ORACLE: Threading is disabled due to an error. Application reverts to non-threading

I/O’s.

If the SAS job contains any options that are invalid when the engine tries to perform
threading, you also receive a warning.

libname trlib oracle user=orauser pw=orapw path=oraserver DBSLICEPARM=(ALL);

proc print data=trlib.MYEMPS (OBS=10);
where EMPNUM<=30;
run;

This produces the following message:

ORACLE: Threading is disabled due to the ORDER BY clause or the FIRSTOBS/OBS option.
ORACLE: Using only one read connection.

To produce timing information, add an ’s’ in the last slot of sastrace. For example:

options sastrace=’,,t,s’ sastraceloc=saslog nostsuffix;

data work.locemp;
set trlib.MYEMPS (DBSLICEPARM=ALL);
where EMPNUM<=10000;
run;

This produces the following:

ORACLE: No application input on number of threads.
ORACLE: Thread 1 contains 5000 obs.
ORACLE: Thread 2 contains 5000 obs.

Thread 0 fetched 5000 rows
DBMS Threaded Read Total Time: 1234 mS
DBMS Threaded Read User CPU: 46 mS
DBMS Threaded Read System CPU: 0 mS



Threaded Reads � Autopartitioning Techniques in SAS/ACCESS 53

Thread 1 fetched 5000 rows
DBMS Threaded Read Total Time: 469 mS
DBMS Threaded Read User CPU: 15 mS
DBMS Threaded Read System CPU: 15 mS
ORACLE: Threaded read enabled. Number of threads created: 2
NOTE: There were 10000 observations read from the data set TRLIB.MYEMPS.

WHERE EMPNUM<=10000;

Summary Statistics for ORACLE are: Total SQL prepare seconds were: 0.001675
Total seconds used by the ORACLE ACCESS engine were 7.545805

For more information regarding tracing, please see the SASTRACE documentation.

Performance Impact of Threaded Reads
Threaded reads only increase performance when the DBMS result set is large.

Performance is optimal when the partitions are similar in size. Threaded reads should
reduce the elapsed time of your SAS step, but unusual cases can slow the SAS step.
They generally increase the workload on your DBMS.

For instance, threaded reads for DB2 under z/OS involve a tradeoff, generally
reducing job elapsed time but increasing DB2 workload and CPU utilization. See the
auto partitioning documentation for DB2 under z/OS for details.

SAS automatically tries to autopartition table references for SAS in threaded
applications. To determine whether autopartitioning is occurring and to assess its
performance, complete the following tasks:

� Turn on SAS tracing to determine whether SAS is autopartitioning and to view
the SQL associated with each thread.

� Know your DBMS algorithm for autopartitioning.
� Turn threaded reads on and off, and compare the elapsed times.

To optimally tune threaded reads, follow these guidelines:
� Use it only when pulling large result sets into SAS from the DBMS.
� Use DBSLICE= to partition if SAS autopartitioning does not occur.
� Override autopartitioning with DBSLICE= if you can manually provide

substantially better partitioning. The best partitioning equally distributes the
result set across the threads.

� Consult the DBMS-specific section of this documentation for information and tips
concerning your specific DBMS.

Threaded reads are most effective on new, faster computer hardware running SAS,
and with a powerful parallel edition of the DBMS. For example, if SAS runs on a fast
uniprocessor or on a multiprocessor machine and your DBMS runs on a high-end SMP
server, you receive substantial performance gains. However you receive minimal gains
or even performance degradation when running SAS on an old desktop model with a
nonparallel DBMS edition running on old hardware.

Autopartitioning Techniques in SAS/ACCESS
SAS/ACCESS products share an autopartitioning scheme based on the MOD

function. Some products support additional techniques. For example, if your Oracle
tables are physically partitioned in the DBMS, the SAS/ACCESS interface to Oracle



54 Data Ordering in SAS/ACCESS � Chapter 6

automatically partitions in accordance with Oracle physical partitions rather than
using MOD. The SAS/ACCESS interface to Teradata uses FastExporting, if available,
which enables the FastExport utility to direct the partitioning.

MOD is a mathematical function that produces the remainder of a division operation.
Your DBMS table must contain a column to which SAS can apply the MOD function —
a numeric column constrained to integral values. DBMS integer and small integer
columns suit this purpose. Integral decimal (numeric) type columns can work as well.
On each thread, SAS appends a WHERE clause to your SQL that uses the MOD
function with the numeric column to create a subset of the result set. Combined, these
subsets add up to exactly the result set for your original single SQL statement.

For example, assume that your original SAS-produced SQL is SELECT CHR1, CHR2
FROM DBTAB and that table Dbtab contains integer column IntCol. SAS creates two
threads and issues:

SELECT CHR1, CHR2 FROM DBTAB WHERE (MOD(INTCOL,2)=0)

and

SELECT CHR1, CHR2 FROM DBTAB WHERE (MOD(INTCOL,2)=1)

Rows with an even value for IntCol are retrieved by the first thread. Rows with an odd
value for IntCol are retrieved by the second thread. Distribution of rows across the two
threads is optimal if IntCol has a 50/50 distribution of even and odd values.

SAS modifies the SQL for columns containing negative integers, for nullable
columns, and to combine SAS WHERE clauses with the partitioning WHERE clauses.
SAS can also run more than two threads. You use the second parameter of the
DBSLICEPARM= option to increase the number of threads.

The success of this technique depends on the distribution of the values in the chosen
integral column. Without knowledge of the distribution, your SAS/ACCESS product
attempts to pick the best possible column. For example, indexed columns are given
preference for some DBMSs. However, column selection is more or less a guess, and the
SAS guess might cause poor distribution of the result set across the threads. If no
suitable numeric column is found, MOD cannot be used at all, and threaded reads do
not occur if your SAS/ACCESS product has no other partitioning technique. For these
reasons, you should explore autopartitioning particulars for your DBMS and judiciously
utilize DBSLICE= to augment autopartitioning. For details about autopartitioning, see
the documentation for your DBMS.

Data Ordering in SAS/ACCESS

The order in which table rows are delivered to SAS varies each time a step is rerun
with threaded reads. Most DBMS editions, especially increasingly popular parallel
editions, do not guarantee consistent ordering.

Two-Pass Processing for SAS Threaded Applications

Two-pass processing occurs when a SAS threaded application“Scope of Threaded
Reads” on page 49 requests that data be made available for multiple pass reading (that
is, more than one pass through the data set). In the context of DBMS engines, this
requires that as the data is read from the database, temporary spool files are written
containing the read data. There is one temporary spool file per thread, and each spool



Threaded Reads � Summary of Threaded Reads 55

file contains all the data read on that thread. If three threads are specified for threaded
reads, then three temporary spool files are written.

As the application requests subsequent passes of the data, the data is read from the
temporary spool files, not re-read from the database. The temporary spool files can be
written on different disks, reducing any disk read contention, and enhancing
performance. To accomplish this, the SAS option UTILLOC= is used to define different
disk devices and directory paths when creating temporary spool files. There are several
different ways to specify this option:

� In the SAS config file, add the line:

--utilloc("C:\path" "D:\path" "E:\path")

� Specify the UTILLOC= option on the SAS command line:
on Windows:

sas --utilloc(c:\path d:\path e:\path)

on UNIX:

sas --utilloc ’(\path \path2 \path3)’

For more information about the UTILLOC= SAS option, see the SAS Language
Reference: Dictionary.

When Threaded Reads Will Not Occur
Threading does not occur
� when a BY statement is used in a PROC or DATA step
� when the OBS or the FIRSTOBS option is in a PROC or DATA step
� when the KEY or the DBKEY option is used PROC or DATA step
� if no column in the table exists to which SAS can apply the MOD function. For

more information, see Autopartioning Techniques in SAS“Autopartitioning
Techniques in SAS/ACCESS” on page 53.

� if all columns within a table to which SAS can apply the MOD function are in
WHERE clauses.

For more information, see Autopartioning Techniques in SAS“Autopartitioning
Techniques in SAS/ACCESS” on page 53.

� if the NOTHREADS system option is set
� if DBSLICEPARM=NONE

Summary of Threaded Reads
For large reads of table data, SAS 9.1 threaded reads can speed up SAS jobs. They

are particularly useful when you understand the autopartitioning technique specific to
your DBMS and use DBSLICE= to manually partition only when appropriate. Look for
enhancements in future SAS releases.



56



57

C H A P T E R

7
How SAS/ACCESS Works

Introduction to How SAS/ACCESS Works 57
Installation Requirements

57

SAS/ACCESS Interfaces 58

How the SAS/ACCESS LIBNAME Statement Works 58

Accessing Data From a DBMS Object 58
Processing Queries, Joins, and Data Functions 59

How the Pass-Through Facility Works 59

How the ACCESS Procedure Works 60

Overview of the ACCESS Procedure 60

Reading Data 60

Updating Data 61
How the DBLOAD Procedure Works 62

Introduction to How SAS/ACCESS Works
Note: Not all features are supported by all SAS/ACCESS interfaces. See the

documentation for your SAS/ACCESS interface to determine which features are
supported in your environment. �

Installation Requirements

Before you use any SAS/ACCESS features, you must install Base SAS, the
SAS/ACCESS interface for the DBMS that you are accessing, and any required DBMS
client software. See the SAS installation instructions and DBMS client installation
instructions for more information.



58 SAS/ACCESS Interfaces � Chapter 7

SAS/ACCESS Interfaces
Each SAS/ACCESS interface consists of one or more data access engines that

translate read and write requests from SAS into appropriate calls for a specific DBMS.
The following image depicts the relationship between a SAS/ACCESS interface and a
relational DBMS.

Figure 7.1 How SAS Connects to the DBMS

SAS/ACCESS software

Engine

Interface 
view engine

Pass-Through 
Facility

DBMS 
communication 

nodule

ACCESS 
procedure*

DBLOAD 
procedure*

Vendor 
client 

libraries

Vendor 
relational  

DBMS

Client** Client** Server**

*  The ACCESS procedure and the DBLOAD procedure are not supported by all SAS/ACCESS interfaces.
** In some cases, both client and server software can reside on the same machine.

You can invoke a SAS/ACCESS relational DBMS interface by using either a LIBNAME
statement or a PROC SQL statement. (You can also use the ACCESS and DBLOAD
procedures with some of the SAS/ACCESS relational interfaces. However, these
procedures are no longer the recommended way to access relational database data.)

How the SAS/ACCESS LIBNAME Statement Works

Accessing Data From a DBMS Object
SAS/ACCESS enables you to read, update, insert, and delete data from a DBMS

object as if it were a SAS data set. The process is as follows:
1 You invoke a SAS/ACCESS interface by specifying a DBMS engine name and the

appropriate connection options in a LIBNAME statement.
2 You enter SAS requests as you would when accessing a SAS data set.
3 SAS/ACCESS generates DBMS-specific SQL statements that are equivalent to the

SAS requests that you enter.
4 SAS/ACCESS submits the generated SQL to the DBMS.



How SAS/ACCESS Works � How the Pass-Through Facility Works 59

The SAS/ACCESS engine defines which operations are supported on a table and calls
code that translates database operations such as open, get, put, or delete into
DBMS-specific SQL syntax. SAS/ACCESS engines use an established set of routines
with calls that are tailored to each DBMS.

Processing Queries, Joins, and Data Functions

To enhance performance, SAS/ACCESS can also transparently pass a growing
number of queries, joins, and data functions to the DBMS for processing (instead of
retrieving the data from the DBMS and then doing the processing in SAS). For
example, an important use of this feature is the handling of PROC SQL queries that
access DBMS data. Here’s how it works:

1 PROC SQL examines each query to determine whether it might be profitable to
send all or part of the query to the DBMS for processing.

2 A special query textualizer in PROC SQL translates queries (or query fragments)
into DBMS-specific SQL syntax.

3 The query textualizer submits the translated query to the SAS/ACCESS engine for
approval.

4 If SAS/ACCESS approves the translation, it sends an approval message to PROC
SQL and the query (or query fragment) gets processed by the DBMS, which
returns the results to SAS. Any queries or query fragments that can not be passed
to the DBMS are processed in SAS.

See the chapter on performance considerations for detailed information about tasks that
SAS/ACCESS can pass to the DBMS.

How the Pass-Through Facility Works

When you read and update DBMS data with the Pass-Through Facility, SAS/ACCESS
passes SQL statements directly to the DBMS for processing. Here are the steps:

1 Invoke PROC SQL and submit a PROC SQL CONNECT statement that includes a
DBMS name and the appropriate connection options to establish a connection with
a specified database.

2 Use a CONNECTION TO component in a PROC SQL SELECT statement to read
data from a DBMS table or view. In the SELECT statement (that is, the
PROC SQL query) that you write, use the SQL that is native to your
DBMS. SAS/ACCESS passes the SQL statements directly to the DBMS for
processing. If the SQL syntax that you enter is correct, the DBMS processes the
statement and returns any results to SAS. If the DBMS does not recognize the
syntax that you enter, it returns an error that appears in the SAS log. The
SELECT statement can be stored as a PROC SQL view. For example:

proc sql;
connect to oracle (user=scott password=tiger);
create view budget2000 as select amount_b,amount_s

from connection to oracle
(select Budgeted, Spent from annual_budget);

quit;



60 How the ACCESS Procedure Works � Chapter 7

3 Use a PROC SQL EXECUTE statement to pass any dynamic, non-query SQL
statements (such as INSERT, DELETE, and UPDATE) to the database. As with
the CONNECTION TO component, all EXECUTE statements are passed to the
DBMS exactly as you submit them. INSERT statements must contain literal
values. For example:

proc sql;
connect to oracle(user=scott password=tiger);
execute (create view whotookorders as select ordernum, takenby,
firstname, lastname,phone from orders, employees
where orders.takenby=employees.empid) by oracle;

execute (grant select on whotookorders to testuser) by oracle;
disconnect from oracle;

quit;

4 Terminate the connection with the DISCONNECT statement.

See Chapter 12, “The Pass-Through Facility for Relational Databases,” on page 285
for more details.

How the ACCESS Procedure Works

Overview of the ACCESS Procedure
When you use the ACCESS procedure to create an access descriptor, the

SAS/ACCESS interface view engine requests the DBMS to execute a SQL SELECT
statement to the data dictionary tables in your DBMS dynamically (by using
DBMS-specific call routines or interface software). The ACCESS procedure then issues
the equivalent of a DESCRIBE statement to gather information about the columns in
the specified table. The access descriptor’s information about the table and its columns
is then copied into the view descriptor when it is created. Therefore, it is not necessary
for SAS to call the DBMS when it creates a view descriptor.

The process is as follows:
1 When you supply the connection information to PROC ACCESS, the SAS/ACCESS

interface calls the DBMS to connect to the database.
2 SAS constructs a SELECT * FROM table-name statement and passes it to the

DBMS to retrieve information about the table from the DBMS data dictionary. This
SELECT statement is based on the information you supplied to PROC ACCESS. It
enables SAS to determine whether the table exists and can be accessed.

3 The SAS/ACCESS interface calls the DBMS to get table description information,
such as the column names, data types (including width, precision, and scale), and
whether the columns accept null values.

4 SAS closes the connection with the DBMS.

Reading Data
When you use a view descriptor in a DATA step or procedure to read DBMS data, the

SAS/ACCESS interface view engine requests the DBMS to execute a SQL SELECT
statement. The interface view engine follows these steps:

1 Using the connection information that is contained in the created view descriptor,
the SAS/ACCESS interface calls the DBMS to connect to the database.



How SAS/ACCESS Works � Updating Data 61

2 SAS constructs a SELECT statement that is based on the information stored in
the view descriptor (table name and selected columns and their characteristics)
and passes this information to the DBMS.

3 SAS retrieves the data from the DBMS table and passes it back to the SAS
procedures as if it were observations in a SAS data set.

4 SAS closes the connection with the DBMS.

For example, if you execute the following SAS program using a view descriptor, the
previous steps are executed once for the PRINT procedure and then a second time for
the GCHART procedure. (The data used for the two procedures is not necessarily the
same because the table might have been updated by another user between procedure
executions.)

proc print data=vlib.allemp;
run;

proc gchart data=vlib.allemp;
vbar jobcode;

run;

Updating Data
You use a view descriptor, DATA step, or procedure to update DBMS data in much

the same way as when reading data. Any of the following steps might also occur:
� Using the connection information that is contained in the specified access

descriptor, the SAS/ACCESS interface calls the DBMS to connect to the database.
� When rows are added to a table, SAS constructs a SQL INSERT statement and

passes it to the DBMS. When you reference a view descriptor, you can use the
ADD command in FSEDIT and FSVIEW, the APPEND procedure, or an INSERT
statement in PROC SQL to add data to a DBMS table. (You can also use the
Pass-Through Facility’s EXECUTE statement to add, delete, or modify DBMS data
directly. Literal values must be used when inserting data with the Pass-Through
Facility.)

� When rows are deleted from a DBMS table, SAS constructs a SQL DELETE
statement and passes it to the DBMS. When you reference a view descriptor, you
can use the DELETE command in FSEDIT and FSVIEW or a DELETE statement
in PROC SQL to delete rows from a DBMS table.

� When data in the rows is modified, SAS constructs a SQL UPDATE statement and
passes it to the DBMS. When you reference a view descriptor, you can use
FSEDIT, the MODIFY command in FSVIEW, or an INSERT statement in PROC
SQL to update data in a DBMS table. You can also reference a view descriptor in
the DATA step’s UPDATE, MODIFY, and REPLACE statements.

� SAS closes the connection with the DBMS.



62 How the DBLOAD Procedure Works � Chapter 7

How the DBLOAD Procedure Works
When you use the DBLOAD procedure to create a DBMS table, the procedure issues

dynamic SQL statements to create the table and insert data from a SAS data file,
DATA step view, PROC SQL view, or view descriptor into the table.

The SAS/ACCESS interface view engine completes the following steps:
1 When you supply the connection information to PROC DBLOAD, the

SAS/ACCESS interface calls the DBMS to connect to the database.
2 SAS uses the information that is provided by the DBLOAD procedure to construct

a SELECT * FROM table-name statement, and passes the information to the
DBMS to determine if the table already exists. PROC DBLOAD continues only if a
table with that name does not exist, unless you use the DBLOAD APPEND option.

3 SAS uses the information that is provided by the DBLOAD procedure to construct
a SQL CREATE TABLE statement and passes it to the DBMS.

4 SAS constructs a SQL INSERT statement for the current observation and passes
it to the DBMS. New INSERT statements are constructed and then executed
repeatedly until all of the observations from the input SAS data set are passed to
the DBMS. Some DBMSs have a bulkcopy capability that allows a group of
observations to be inserted at once. See your DBMS documentation to determine if
your DBMS has this capability.

5 Additional nonquery SQL statements specified in the DBLOAD procedure are
executed as submitted by the user. The DBMS returns an error message if a
statement does not execute successfully.

6 SAS closes the connection with the DBMS.



63

P A R T2

General Reference

Chapter 8. . . . . . . . . .SAS/ACCESS Features by Host 65

Chapter 9. . . . . . . . . .The LIBNAME Statement for Relational Databases 73

Chapter 10. . . . . . . . .Data Set Options for Relational Databases 157

Chapter 11. . . . . . . . .Macro Variables and System Options for Relational
Databases 269

Chapter 12. . . . . . . . .The Pass-Through Facility for Relational Databases 285



64



65

C H A P T E R

8
SAS/ACCESS Features by Host

Introduction 65
SAS/ACCESS Interface to DB2 under UNIX and PC Hosts: Supported Features 65

SAS/ACCESS Interface to DB2 under z/OS: Supported Features 66

SAS/ACCESS Interface to HP Neoview: Supported Features 66

SAS/ACCESS Interface to Informix: Supported Features 67

SAS/ACCESS Interface to Microsoft SQL Server: Supported Features 67
SAS/ACCESS Interface to MySQL: Supported Features 68

SAS/ACCESS Interface to Netezza: Supported Features 68

SAS/ACCESS Interface to ODBC: Supported Features 69

SAS/ACCESS Interface to OLE DB: Supported Features 70

SAS/ACCESS Interface to Oracle: Supported Features 70

SAS/ACCESS Interface to Sybase: Supported Features 71
SAS/ACCESS Interface to Teradata: Supported Features 72

Introduction

This section lists by host environment the features that are supported in each
SAS/ACCESS relational interface.

SAS/ACCESS Interface to DB2 under UNIX and PC Hosts: Supported
Features

The following table lists the features that are supported in the SAS/ACCESS
Interface to DB2 under UNIX and PC hosts. To find out which versions of your DBMS
are supported, refer to your System Requirements manual.

Table 8.1 Features by Host Environment for DB2 under UNIX and PC Hosts

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X X X

HP-UX X X X X



66 SAS/ACCESS Interface to DB2 under z/OS: Supported Features � Chapter 8

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Microsoft
Windows
NT & 2000

X X X X

Linux for
Intel

X X X X

Linux for
Itanium

X X X X

Solaris for
SPARC
(64–bit)

X X X X

Solaris for
x64

X X X X

SAS/ACCESS Interface to DB2 under z/OS: Supported Features

The following table lists the features that are supported in the SAS/ACCESS
Interface to DB2 under z/OS. To find out which versions of your DBMS are supported,
refer to your System Requirements manual.

Table 8.2 Features by Host Environment for DB2 under z/OS

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

z/OS X X X X X

SAS/ACCESS Interface to HP Neoview: Supported Features

The following table lists the features that SAS/ACCESS Interface to HP Neoview
supports. To find out which versions of your DBMS are supported, see your System
Requirements manual.

Table 8.3 Features by Host Environment for HP Neoview

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

HP-UX for
Itanium

X X

Linux for
Intel

X X



SAS/ACCESS Features by Host � SAS/ACCESS Interface to Microsoft SQL Server: Supported Features 67

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Microsoft
Windows
for Intel

X X

Solaris on
SPARC
(64–bit)

X X

SAS/ACCESS Interface to Informix: Supported Features
The following table lists the features that are supported in the SAS/ACCESS

Interface to Informix. To find out which versions of your DBMS are supported, refer to
your System Requirements manual.

Table 8.4 Features by Host Environment for Informix

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X

HP-UX X X

HP-UX for
Itanium

X X

Linux for
Itanium

X X

Solaris for
SPARC
(64–bit)

X X

SAS/ACCESS Interface to Microsoft SQL Server: Supported Features
The following table lists the features that are supported in the SAS/ACCESS

Interface to Microsoft SQL Server. To find out which versions of your DBMS are
supported, refer to your System Requirements manual.

Table 8.5 Features by Host Environment for Microsoft SQL Server

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X X

HP-UX X X X



68 SAS/ACCESS Interface to MySQL: Supported Features � Chapter 8

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Linux for
Itanium

X X X

Solaris for
SPARC
(64–bit)

X X X

SAS/ACCESS Interface to MySQL: Supported Features

The following table lists the features that are supported in the SAS/ACCESS
Interface to MySQL. To find out which versions of your DBMS are supported, refer to
your System Requirements manual.

Table 8.6 Features by Host Environment for MySQL

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X

HP-UX X X

Linux for
Intel

X X

Linux for
Itanium

X X

Microsoft
Windows
NT and
2000

X X

Solaris for
SPARC
(64–bit)

X X

Solaris for
x64

X X

SAS/ACCESS Interface to Netezza: Supported Features

The following table lists the features that SAS/ACCESS Interface to Netezza
supports. To find out which versions of your DBMS are supported, see your System
Requirements manual.



SAS/ACCESS Features by Host � SAS/ACCESS Interface to ODBC: Supported Features 69

Table 8.7 Features by Host Environment for Netezza

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X X

HP-UX X X X

HP-UX for
Itanium

X X X

Linux for
Intel

X X X

Microsoft
Windows
for Intel

X X X

Solaris on
SPARC
(64–bit)

X X X

For information about these features, see “Methods for Accessing Relational
Database Data” on page 3 and the LIBNAME option BULKLOAD=“BULKLOAD=
LIBNAME Option” on page 84.

SAS/ACCESS Interface to ODBC: Supported Features
The following table lists the features that are supported in the SAS/ACCESS

Interface to ODBC. To find out which versions of your DBMS are supported, refer to
your System Requirements manual.

Table 8.8 Features by Host Environment for ODBC

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X X

HP-UX X X X

HP-UX for
Itanium

X X X

HP-UX X X X

Linux for
Intel

X X
X

Linux for
Itanium

X X
X

Microsoft
Windows
NT & 2000

X X X X*



70 SAS/ACCESS Interface to OLE DB: Supported Features � Chapter 8

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Solaris for
SPARC
(64–bit)

X X X

Solaris for
x64

X X X

* Bulk load support is available only with the SQL Server driver on Windows platforms.

SAS/ACCESS Interface to OLE DB: Supported Features
The following table lists the features that are supported in the SAS/ACCESS

Interface to OLE DB. To find out which versions of your DBMS are supported, refer to
your System Requirements manual.

Table 8.9 Features by Host Environment for OLE DB

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Microsoft
Windows
NT & 2000

X X X

SAS/ACCESS Interface to Oracle: Supported Features
The following table lists the features that are supported in the SAS/ACCESS

Interface to Oracle. To find out which versions of your DBMS are supported, refer to
your System Requirements manual.

Table 8.10 Features by Host Environment for Oracle

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

HP-UX X X X X X

Linux for
Intel

X X X X X

Linux for
Itanium

X X X X X

Microsoft
Windows
NT & 2000

X X X X X

OpenVMS
Alpha

X X X X X



SAS/ACCESS Features by Host � SAS/ACCESS Interface to Sybase: Supported Features 71

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

Solaris for
SPARC
(64–bit)

X X X X X

Solaris for
x64

X X X X X

z/OS X X X X X

SAS/ACCESS Interface to Sybase: Supported Features
The following table lists the features that are supported in the SAS/ACCESS

Interface to Sybase. To find out which versions of your DBMS are supported, refer to
your System Requirements manual.

Table 8.11 Features by Host Environment for Sybase

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X X X X

HP-UX X X X X X

HP-UX for
Itanium

X X X X X

Microsoft
Windows
NT & 2000

X X X X X

Linux for
Intel

X X X X X

Linux for
Itanium

X X X X X

Solaris for
SPARC
(64–bit)

X X X X X

Solaris for
x64

X X X X X



72 SAS/ACCESS Interface to Teradata: Supported Features � Chapter 8

SAS/ACCESS Interface to Teradata: Supported Features
The following table lists the features that are supported in the SAS/ACCESS

Interface to Teradata. To find out which versions of your DBMS are supported, refer to
your System Requirements manual.

Table 8.12 Features by Host Environment for Teradata

SAS/ACCESS
LIBNAME
Statement

Pass-Through
Facility

ACCESS
Procedure

DBLOAD
Procedure

Bulk-Load
Support

AIX (RS/
6000)

X X X

HP-UX X X X

HP-UX for
Itanium

X X X

Linux for
Intel

X X X

Microsoft
Windows
NT & 2000

X X X

Solaris for
SPARC
(64–bit)

X X X

Solaris for
x64

X X X

z/OS X X X



73

C H A P T E R

9
The LIBNAME Statement for
Relational Databases

Overview of the LIBNAME Statement for Relational Databases 73
Assigning Librefs 73

Sorting Data 73

Using SAS Functions 74

Assigning a Libref Interactively 74

LIBNAME Options for Relational Databases 78

Overview of the LIBNAME Statement for Relational Databases

Assigning Librefs
The SAS/ACCESS LIBNAME statement extends the SAS global LIBNAME

statement to enable you to assign a libref to a relational DBMS. This feature lets you
reference a DBMS object directly in a DATA step or SAS procedure. You can use this
direct reference to read from and write to a DBMS object as if it were a SAS data set.
You can associate a SAS libref with a relational DBMS database, schema, server, or
group of tables and views.

Sorting Data
When you use the SAS/ACCESS LIBNAME statement to associate a libref with

relational DBMS data, you might observe some behavior that differs from that of
normal SAS librefs. Because these librefs refer to database objects such as tables and
views, they are stored in the format of your DBMS. This format differs from the format
of normal SAS data sets. This is helpful to remember when you access and work with
DBMS data.

For example, you can sort the observations in a normal SAS data set and store the
output to another data set. However, in a relational DBMS, sorting data often has no
effect on how it is stored. Because you cannot depend on your data to be sorted in the
DBMS, you must sort the data at the time of query. Furthermore, when you sort DBMS
data, the results can vary depending on whether your DBMS places data with NULL
values at the beginning or the end of the result set. The NULL values are translated in
SAS to missing values.



74 Using SAS Functions � Chapter 9

Using SAS Functions
When you use librefs that refer to DBMS data with SAS functions, some functions

might return a value that differs from what is returned when you use functions with
normal SAS data sets. For example, the PATHNAME function might return a blank
value. For a normal SAS libref, a blank value means that the libref is not valid.
However, for a libref associated with a DBMS object, a blank value means only that
there is no pathname associated with the libref.

Usage of some functions might also vary. For example, the LIBNAME function can
accept an optional SAS-data-library argument. When you use the LIBNAME function to
assign or de-assign a libref that refers to DBMS data, you omit this argument. For full
details about how to use SAS functions, see the SAS Language Reference: Dictionary.

Assigning a Libref Interactively
An easy way to associate a libref with a relational DBMS is to use the New Library

window. One method to open this window is to issue the DMLIBASSIGN command
from your SAS session’s command box or command line. The window can also be
opened by clicking the file cabinet icon in the SAS Explorer toolbar. In the display
below, the user Samantha assigns a libref MYORADB to an Oracle database referred to
by the SQL*Net alias ORAHRDEPT. The LIBNAME option, SCHEMA=, enables
Samantha to access database objects that are owned by another user.

Display 9.1 New Library Window

The following list describes how to use the features of the New Library window:
� Name: enter the libref that you want to assign to a SAS library or a relational

DBMS.
� Engine: click the down arrow to select a name from the pull-down listing.
� Enable at startup: click this if you want the specified libref to be assigned

automatically when you open a SAS session.
� Library Information: these fields represent the SAS/ACCESS connection

options and vary according to the SAS/ACCESS engine that you specify. Enter the
appropriate information for your site’s DBMS. You can use the Options field to
enter SAS/ACCESS LIBNAME options. Use blanks to separate multiple options.

� OK : click this button to assign the libref, or click Cancel to exit the window
without assigning a libref.



The LIBNAME Statement for Relational Databases � LIBNAME Statement Syntax for Relational Databases 75

LIBNAME Statement Syntax for Relational Databases

Associates a SAS libref with a DBMS database, schema, server, or group of tables and views

Valid: Anywhere

Syntax
u LIBNAME libref engine-name

<SAS/ACCESS-connection-options>
<SAS/ACCESS-LIBNAME-options>;

v LIBNAME libref CLEAR|_ALL_ CLEAR;

w LIBNAME libref LIST|_ALL_ LIST;

Arguments
The SAS/ACCESS LIBNAME statement takes the following arguments:

libref
is any SAS name that serves as an alias to associate SAS with a database, schema,
server, or group of tables and views. Like the global SAS LIBNAME statement, the
SAS/ACCESS LIBNAME statement creates shortcuts or nicknames for data storage
locations. While a SAS libref is an alias for a virtual or physical directory, a
SAS/ACCESS libref is an alias for the DBMS database, schema, or server where
your tables and views are stored.

engine-name
is the SAS/ACCESS engine name for your DBMS, such as oracle or db2. The engine
name is required. Because the SAS/ACCESS LIBNAME statement associates a libref
with a SAS/ACCESS engine that supports connections to a particular DBMS, it
requires a DBMS-specific engine name.

See the documentation for your SAS/ACCESS interface to find your engine’s name.

SAS/ACCESS-connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS; these arguments are different for each
database. Here is an example of connecting to an Oracle database. Your connection
options are USER=, PASSWORD=, and PATH=:

libname myoralib oracle user=testuser password=testpass path=’voyager’;

If the connection options contain characters that are not allowed in SAS names,
enclose the values of the arguments in quotation marks. On some DBMSs, if you
specify the appropriate system options or environment variables for your database,
you can omit the connection options.

See the documentation for your SAS/ACCESS interface for detailed information
about your connection options.

SAS/ACCESS-LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. For example, you
can use the PRESERVE_COL_NAMES= option to specify whether to preserve spaces,
special characters, and mixed case in DBMS column names when creating tables.
The availability and default behavior of many of these options are DBMS-specific.



76 LIBNAME Statement Syntax for Relational Databases � Chapter 9

See the documentation for your SAS/ACCESS interface for a list of the LIBNAME
options that are available for your DBMS.

See “LIBNAME Options for Relational Databases” on page 78 for detailed
information about all of the LIBNAME options.

CLEAR
disassociates one or more currently assigned librefs.

Specify libref to disassociate a single libref. Specify _ALL_ to disassociate all
currently assigned librefs.

_ALL_
specifies that the CLEAR or LIST argument applies to all currently-assigned librefs.

LIST
writes the attributes of one or more SAS/ACCESS libraries or SAS data libraries to
the SAS log.

Specify libref to list the attributes of a single SAS/ACCESS library or SAS library.
Specify _ALL_ to list the attributes of all libraries that have librefs in your current
session.

Details

u Using Data from a DBMS You can use a LIBNAME statement to read from and
write to a DBMS table or view as if it were a SAS data set.

For example, in MYDBLIB.EMPLOYEES_Q2, MYDBLIB is a SAS libref that points
to a particular group of DBMS objects, and EMPLOYEES_Q2 is a DBMS table name.
When you specify MYDBLIB.EMPLOYEES_Q2 in a DATA step or procedure, you
dynamically access the DBMS table. SAS supports reading, updating, creating, and
deleting DBMS tables dynamically.

v Disassociating a Libref from a SAS Library To disassociate or clear a libref from a
DBMS, use a LIBNAME statement. Specify the libref (for example, MYDBLIB) and the
CLEAR option as follows:

libname mydblib CLEAR;

You can clear a single specified libref or all current librefs.
The database engine disconnects from the database and closes any free threads or

resources that are associated with that libref’s connection.

w Writing SAS Library Attributes to the SAS Log Use a LIBNAME statement to write
the attributes of one or more SAS/ACCESS libraries or SAS data libraries to the SAS
log. Specify libref to list the attributes of a single SAS/ACCESS library or SAS library,
as follows:

libname mydblib LIST;

Specify _ALL_ to list the attributes of all libraries that have librefs in your current
session.

SQL Views with Embedded LIBNAME Statements
With SAS software, you can embed LIBNAME statements in the definition of an SQL
view. This means that you can store, in an SQL view, a LIBNAME statement that
contains all the information required to connect to a DBMS. Whenever the SQL view is
read, PROC SQL uses the embedded LIBNAME statement to assign a libref. After the
view has been processed, PROC SQL de-assigns the libref.



The LIBNAME Statement for Relational Databases � LIBNAME Statement Syntax for Relational Databases 77

In the following example, an SQL view of the Oracle table DEPT is created.
Whenever this view is used in a SAS program, the library ORALIB is assigned. The
library ORALIB uses the connection information (user name, password, and data
source) that is provided in the embedded LIBNAME statement.

proc sql;
create view sasuser.myview as

select dname from oralib.dept
using libname oralib oracle

user=scott pw=tiger datasrc=orsrv;
quit;

Note: The USING LIBNAME syntax is used to embed LIBNAME statements in
SQL views. For more information about the USING LIBNAME syntax, see the PROC
SQL topic in the Base SAS Procedures Guide. �

Assigning a Libref with a SAS/ACCESS LIBNAME Statement

The following statement creates a libref, MYDBLIB, that uses the SAS/ACCESS
interface for DB2:

libname mydblib db2 ssid=db2a authid=testid server=os390svr;

The following statement associates the SAS libref MYDBLIB with an Oracle
database that uses the SQL*Net alias AIRDB_REMOTE. You specify the SCHEMA=
option on the SAS/ACCESS LIBNAME statement to connect to the Oracle schema in
which the database resides. In this example, Oracle schemas reside in a database.

libname mydblib oracle user=testuser password=testpass
path=airdb_remote schema=hrdept;

The AIRDB_REMOTE database contains a number of DBMS objects, including
several tables, such as STAFF. After you assign the libref, you can reference the Oracle
table like a SAS data set and use it as a data source in any DATA step or SAS
procedure. In the following SQL procedure statement, MYDBLIB.STAFF is the
two-level SAS name for the STAFF table in the Oracle database AIRDB_REMOTE:

proc sql;
select idnum, lname

from mydblib.staff
where state=’NY’
order by lname;

quit;

You can use the DBMS data to create a SAS data set:

data newds;
set mydblib.staff(keep=idnum lname fname);

run;

You can also use the libref and data set with any other SAS procedure. This
statement prints the information in the STAFF table:

proc print data=mydblib.staff;
run;

This statement lists the database objects in the MYDBLIB library:

proc datasets library=mydblib;
quit;



78 LIBNAME Options for Relational Databases � Chapter 9

Using the Prompting Window When Specifying LIBNAME Options

The following statement uses the DBPROMPT= option to cause the DBMS
connection prompting window to appear and prompt you for connection information:

libname mydblib oracle dbprompt=yes;

When you use this option, you enter connection information into the fields in the
prompting window rather than on the LIBNAME statement.

You can add the DEFER=NO option to make the prompting window appear at the
time that the libref is assigned rather than when the table is opened:

libname mydblib oracle dbprompt=yes defer=no;

Assigning a Libref to a Remote DBMS

SAS/CONNECT (single-user) and SAS/SHARE (multiple user) software give you
access to data by means of remote library services (RLS). You can use RLS to access
your data on a remote machine as if it were local. For example, it permits a graphical
interface to reside on the local machine while the data remains on the remote machine.

This access is given to data stored in many kinds of SAS files, such as external
databases (through the SAS/ACCESS LIBNAME statement and views created with it)
and SAS data views (views created with PROC SQL, the DATA step, and SAS/ACCESS
software). You can use RLS to access SAS data sets, SAS views, and relational DBMS
data that are defined by SAS/ACCESS LIBNAME statements. For more information,
see the discussion about remote library services in the SAS/SHARE User’s Guide.

You can use RLS to update relational DBMS tables that are referenced with the
SAS/ACCESS LIBNAME statement.

In the following example, the SAS/ACCESS LIBNAME statement makes a
connection to a DB2 database that resides on the remote SAS/SHARE server
REMOS390. This LIBNAME statement is submitted in a local SAS session. The
SAS/ACCESS engine name is specified in the remote option RENGINE=. The DB2
connection option and any LIBNAME options are specified in the remote option
ROPTIONS=. Options are separated by a blank space. RLSDB2.EMPLOYEES is a SAS
data set that references the DB2 table EMPLOYEES.

libname rlsdb2 rengine=db2 server=remos390
roptions="ssid=db2a authid=testid";

proc print data=rlsdb2.employees;
run;

See Also
“Overview of the LIBNAME Statement for Relational Databases” on page 73

LIBNAME Options for Relational Databases
11OCT2007: Added “Alias” label for all options having aliases. —Kat Turk
When you specify an option in the LIBNAME statement, it applies to all objects

(such as tables and views) in the database that the libref represents. For information



The LIBNAME Statement for Relational Databases � AUTHID= LIBNAME Option 79

about options that you specify on individual SAS data sets, see the chapter about data
set options.

Many LIBNAME options are also available for use with the Pass-Through Facility.
See the section on the Pass-Through Facility in the documentation for your
SAS/ACCESS interface to determine which LIBNAME options are available in the
Pass-Through Facility for your DBMS.

For a list of the LIBNAME options available in your SAS/ACCESS interface, see the
documentation for your SAS/ACCESS interface.

Note: When a like-named option is specified in both the LIBNAME statement and
after a data set name, SAS uses the value that is specified on the data set name. �

ACCESS= LIBNAME Option

Determines the access level with which a libref connection is opened

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: none

Syntax
ACCESS=READONLY

Syntax Description

READONLY
specifies that tables and views can be read but not updated.

Details
Using this option prevents writing to the DBMS. If this option is omitted, tables and
views can be read and updated if you have the necessary DBMS privileges.

AUTHID= LIBNAME Option

Lets you qualify your table names with an authorization ID, user ID, or group ID

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 z/OS

Alias: SCHEMA=

Default value: none



80 AUTOCOMMIT= LIBNAME Option � Chapter 9

Syntax
AUTHID=authorization-ID

Syntax Description

authorization-ID
cannot exceed eight characters.

Details
When you specify the AUTHID= option, every table that is referenced by the libref is
qualified as authid.tablename before any SQL code is passed to the DBMS. If you do not
specify a value for AUTHID=, the table name is not qualified before it is passed to the
DBMS. After the DBMS receives the table name, it automatically qualifies it with your
user ID. You can override the LIBNAME AUTHID= option by using the AUTHID= data
set option. This option is not validated until you access a table.

See Also
To apply this option to an individual data set, see the data set option “AUTHID=

Data Set Option” on page 158.

AUTOCOMMIT= LIBNAME Option

Indicates whether updates are committed immediately after they are submitted

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.
DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, MySQL, Netezza,
ODBC, OLE DB, Sybase

Default value: DBMS-specific, see details below

Syntax
AUTOCOMMIT= YES | NO

Syntax Description

YES
specifies that all updates, deletes, and inserts are committed (that is, saved to a
table) immediately after they are submitted, and no rollback is possible.

NO
specifies that the SAS/ACCESS engine automatically performs the commit when it
reaches the DBCOMMIT= value, or the default number of rows if DBCOMMIT is not
set.



The LIBNAME Statement for Relational Databases � BL_KEEPIDENTITY= LIBNAME Option 81

Details
If you are using the SAS/ACCESS LIBNAME statement, the default is NO if the data
source provider supports transactions and the connection is used for updating data. For
read-only connections and the Pass-Through Facility, the default is YES.

Informix and MySQL Details: The default is YES.
Netezza Details: The default is YES for PROC PRINT but NO for updates and for the

main LIBNAME connection.

See Also
To apply this option to an individual data set, see the data set option

“AUTOCOMMIT= Data Set Option” on page 158.

BL_KEEPIDENTITY= LIBNAME Option

Determines whether the identity column that is created during bulk loading is populated with
values generated by Microsoft SQL Server or with values provided by the user

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: OLE DB
Default value: NO

Syntax
BL_KEEPIDENTITY= YES | NO

Syntax Description

YES
specifies that the user must provide values for the identity column.

NO
specifies that Microsoft SQL Server generates values for an identity column in the
table.

Details
This option is valid only when you use the Microsoft SQL Server provider.

See Also
To apply this option to an individual data set, see the data set option

“BL_KEEPIDENTITY= Data Set Option” on page 179.



82 BL_KEEPNULLS= LIBNAME Option � Chapter 9

BL_KEEPNULLS= LIBNAME Option

Indicates how NULL values in Microsoft SQL Server columns that accept NULL are handled during
bulk loading

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: OLE DB

Default value: YES

Syntax
BL_KEEPNULLS= YES | NO

Syntax Description

YES
specifies that Microsoft SQL Server preserves NULL values inserted by the OLE DB
interface.

NO
specifies that Microsoft SQL Server replaces NULL values that are inserted by the
OLE DB interface with a default value (as specified in the DEFAULT constraint).

Details
This option only affects values in Microsoft SQL Server columns that accept NULL

and have a DEFAULT constraint.

See Also
To apply this option to an individual data set, see the data set option

“BL_KEEPNULLS= Data Set Option” on page 180.

BL_LOG= LIBNAME Option

Specifies the name of the error file to which all errors are written when BULKLOAD=YES

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: Microsoft SQL Server, ODBC

Default value: none

Syntax
BL_LOG=filename



The LIBNAME Statement for Relational Databases � BL_OPTIONS= LIBNAME Option 83

Details
This option is valid only for connections to Microsoft SQL Server. If BL_LOG= is not
specified, errors are not recorded during bulk loading.

See Also
To apply this option to an individual data set, see the data set option “BL_LOG=

Data Set Option” on page 182.

BL_OPTIONS= LIBNAME Option

Passes options to the DBMS bulk load facility, affecting how it loads and processes data

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: ODBC, OLE DB
Default value: not specified

Syntax
BL_OPTIONS=’option <…, option>’

Details
You can use BL_OPTIONS= to pass options to the DBMS bulk load facility when it is

invoked, thereby affecting how data is loaded and processed. You must separate
multiple options with commas and enclose the entire string of options in quotation
marks.

By default, no options are specified. This option takes the same values as the -h
HINT option of the Microsoft BCP utility. Refer to the Microsoft SQL Server
documentation for more information about bulk copy options.

This option is valid only when you are using the Microsoft SQL Server driver or the
Microsoft SQL Server provider on Windows platforms.

ODBC Details: The supported hints are ORDER, ROWS_PER_BATCH,
KILOBYTES_PER_BATCH, TABLOCK, and CHECK_CONSTRAINTS. If you specify
UPDATE_LOCK_TYPE=TABLE, the TABLOCK hint is automatically added.

See Also
To apply this option to an individual data set, see the data set option

“BL_OPTIONS= Data Set Option” on page 183.



84 BULKLOAD= LIBNAME Option � Chapter 9

BULKLOAD= LIBNAME Option

Determines whether SAS uses a DBMS facility to insert data into a DBMS table

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: ODBC, OLE DB, Teradata

Default value: NO

Syntax

BULKLOAD=YES | NO

Syntax Description

YES
calls a DBMS-specific bulk load facility in order to insert or append rows to a DBMS
table.

NO
does not call the DBMS bulk load facility.

Details

See the SAS/ACCESS documentation for your DBMS for additional DBMS-specific
details.

See Also

To apply this option to an individual data set, see the data set option “BULKLOAD=
Data Set Option” on page 194.

CAST= LIBNAME Option

Specifies whether data conversions should be performed on the Teradata DBMS server or by SAS

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: Teradata

Default value: none

Syntax

CAST=YES | NO



The LIBNAME Statement for Relational Databases � CAST= LIBNAME Option 85

Syntax Description

YES
forces data conversions (casting) to be done on the Teradata DBMS server and
overrides any data overhead percentage limit.

NO
forces data conversions to be done by SAS and overrides any data overhead
percentage limit.

Details
Internally, SAS numbers and dates are floating point values. Teradata has varying
formats for numbers, including integers, floating point values, and decimal values.
Number conversion must occur when you are reading Teradata numbers that are not
floating point (Teradata FLOAT). SAS/ACCESS can use the Teradata CAST= function to
cause Teradata to perform numeric conversions. The parallelism of Teradata makes it
well suited to perform this work. This is especially true when running SAS on z/OS
(MVS) where CPU activity can be costly.

CAST= can cause more data to be transferred from Teradata to SAS, as a result of
the option forcing the Teradata type into a larger SAS type. For example, the CAST=
transfer of a Teradata BYTEINT to SAS floating point adds seven overhead bytes to
each row transferred.

The following Teradata types are candidates for casting:
� INTEGER
� BYTEINT
� SMALLINT
� DECIMAL
� DATE.

SAS/ACCESS limits data expansion for CAST= to 20 percent in order to trade rapid
data conversion by Teradata for extra data transmission. If casting does not exceed a 20
percent data increase, all candidate columns are cast. If the increase exceeds this limit,
then SAS attempts to cast Teradata DECIMAL types only. If casting only DECIMAL
types still exceeds the increase limit, data conversions are done by SAS.

You can alter the casting rules by using either the CAST= or
“CAST_OVERHEAD_MAXPERCENT= LIBNAME Option” on page 86 option. With
CAST_OVERHEAD_MAXPERCENT=, you can change the 20 percent overhead limit.
With CAST=, you can override the percentage rules:

� CAST=YES forces Teradata to cast all candidate columns
� CAST=NO cancels all Teradata casting

CAST= only applies when you are reading Teradata tables into SAS. It does not
apply when you are writing Teradata tables from SAS.

Also, CAST= only applies to SQL that SAS generates for you. If you supply your own
SQL with the explicit SQL feature of PROC SQL, you must code your own casting
clauses to force data conversions to occur in Teradata instead of SAS.



86 CAST_OVERHEAD_MAXPERCENT= LIBNAME Option � Chapter 9

Examples

The following example demonstrates the use of the CAST= option in a LIBNAME
statement to force casting for all tables referenced:

libname mydblib teradata user=testuser pw=testpass cast=yes;
proc print data=mydblib.emp;
where empno<1000;
run;

proc print data=mydblib.sal;
where salary>50000;
run;

The following example demonstrates the use of the CAST= option in a table reference
in order to turn off casting for that table:

proc print data=mydblib.emp (cast=no);
where empno<1000;
run;

See Also
“CAST= Data Set Option” on page 195

CAST_OVERHEAD_MAXPERCENT= LIBNAME Option

Specifies the overhead limit for data conversions to be performed in Teradata instead of SAS

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: Teradata

Default value: 20 percent

Syntax
CAST_OVERHEAD_MAXPERCENT=<n>

Syntax Description

<n>
Any positive numeric value. The engine default is 20.

Details
Teradata INTEGER, BYTEINT, SMALLINT, and DATE columns require conversion
when read in to SAS. Conversions can be performed either by Teradata or by SAS.
When performed in Teradata, using Teradata’s CAST operator, the row size transmitted
to SAS can increase. CAST_OVERHEAD_MAXPERCENT= limits the allowable
increase, also called conversion overhead.



The LIBNAME Statement for Relational Databases � CELLPROP= LIBNAME Option 87

Examples

The following example demonstrates the use of CAST_OVERHEAD_MAXPERCENT=
to increase the allowable overhead to 40 percent:

proc print data=mydblib.emp (cast_overhead_maxpercent=40);
where empno<1000;
run;

See Also
“CAST= LIBNAME Option” on page 84 for more information about conversions,

conversion overhead, and casting.

CELLPROP= LIBNAME Option

Modifies the metadata and content of a result data set that is defined through an MDX command

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: OLE DB

Default value: VALUE

Syntax
CELLPROP=VALUE | FORMATTED_VALUE

Syntax Description

VALUE
specifies that the SAS/ACCESS engine tries to return actual data values. If all of the
values in a column are numeric, then that column is defined as NUMERIC.

FORMATTED_VALUE
specifies that the SAS/ACCESS engine returns formatted data values. All of the
columns are defined as CHARACTER.

Details
When an MDX command is issued, the resulting data set might have columns that
contain one or more types of data values — the actual value of the cell or the formatted
value of the cell.

For example, if you issue an MDX command and the resulting data set contains a
column named SALARY, the column could contain data values of two types. It could
contain numeric values, such as 50000, or it could contain formatted values, such as
$50,000. Setting the CELLPROP= option determines how the values are defined and
the value of the column.

It is possible for a column in a result set to contain both NUMERIC and
CHARACTER data values. For example, a data set might return the data values of
50000, 60000, and UNKNOWN. SAS data sets cannot contain both types of data. In this



88 COMMAND_TIMEOUT= LIBNAME Option � Chapter 9

situation, even if you specify CELLPROP=VALUE, the SAS/ACCESS engine defines the
column as CHARACTER and returns formatted values for that column.

For more information about MDX commands, see the SAS/ACCESS documentation
for OLE DB.

COMMAND_TIMEOUT= LIBNAME Option

Specifies the number of seconds to wait before a data source command times out

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: OLE DB
Default value: 0

Syntax
COMMAND_TIMEOUT=number-of-seconds

Syntax Description

number-of-seconds
is an integer greater than or equal to 0.

Details
The default value is 0, which means there is no time-out.

See Also
To apply this option to an individual data set, see the data set option

“COMMAND_TIMEOUT= Data Set Option” on page 198.

CONNECTION= LIBNAME Option

Specifies whether operations on a single libref share a connection to the DBMS, and whether
operations on multiple librefs share a connection to the DBMS

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, MySQL, Microsoft SQL
Server, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS-specific

Syntax
CONNECTION= SHAREDREAD | UNIQUE | SHARED | GLOBALREAD | GLOBAL



The LIBNAME Statement for Relational Databases � CONNECTION= LIBNAME Option 89

Syntax Description
Not all values are valid for all SAS/ACCESS interfaces. See details below.

SHAREDREAD
specifies that all READ operations that access DBMS tables in a single libref share a
single connection. A separate connection is established for every table that is opened
for update or output operations.

Where available, this is usually the default value because it offers the best
performance and it guarantees data integrity.

UNIQUE
specifies that a separate connection is established every time a DBMS table is
accessed by your SAS application.

Use UNIQUE if you want each use of a table to have its own connection.

SHARED (valid for DB2 UNIX/PC, DB2 z/OS, HP Neoview, Microsoft SQL Server,
Netezza, ODBC, Oracle)

specifies that all operations that access DBMS tables in a single libref share a single
connection.

Use this option with caution. When a single SHARED connection is used for
multiple table opens, a commit or rollback performed on one table being updated also
applies to all other tables opened for update. Even if a table is just opened for READ,
its READ cursor might get resynchronized as a result of this commit or rollback. If
the cursor is resynchronized, there is no guarantee that the new solution table will
match the original solution table that was being read.

Use SHARED to eliminate the deadlock that can occur when you create and load a
DBMS table from an existing table that resides in the same database or tablespace.
This only happens in certain output processing situations and is the only
recommended use for CONNECTION=SHARED.

Note: The CONNECTION= option only influences the connections used for
opening tables with a libref. Setting CONNECTION=SHARED has no influence on
utility connections or explicit pass-through connections. �

GLOBALREAD
specifies that all READ operations that access DBMS tables in multiple librefs share
a single connection if the following is true:

� the participating librefs are created by LIBNAME statements that specify
identical values for the CONNECTION=, CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, DBLIBINIT=, and DBLIBTERM= options

� the participating librefs are created by LIBNAME statements that specify
identical values for any DBMS connection options.

A separate connection is established for each table that is opened for update or
output operations.

GLOBAL (valid for DB2 UNIX/PC, DB2 z/OS, HP Neoview, Microsoft SQL Server,
Netezza, ODBC, Oracle)

specifies that all operations that access DBMS tables in multiple librefs share a
single connection if the following is true:

� all of the participating librefs are created by LIBNAME statements that specify
identical values for the CONNECTION=, CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, DBLIBINIT=, and DBLIBTERM= options

� all of the participating librefs are created by LIBNAME statements that specify
identical values for any DBMS connection options.

One connection is shared for all tables that are referenced by any of the librefs for
which CONNECTION=GLOBAL is specified.



90 CONNECTION= LIBNAME Option � Chapter 9

Use this option with caution. When a GLOBAL connection is used for multiple
table opens, a commit/rollback performed on one table being updated also applies to
all other tables opened for update. Even if a table is just opened for READ, its READ
cursor might get resynchronized as a result of this commit/rollback. If the cursor is
resynchronized, there is no guarantee that the new solution table will match the
original solution table that was being read.

Details
For most SAS/ACCESS interfaces, there must be a connection, also known as an attach,
to the DBMS server before any data can be accessed. Typically, each DBMS connection
has one transaction, or work unit, that is active in the connection. This transaction is
affected by any SQL commits or rollbacks that the engine performs within the
connection while executing the SAS application.

You can use the CONNECTION= option to control the number of connections, and
therefore the transactions, that your SAS/ACCESS interface executes and supports for
each LIBNAME statement.

GLOBALREAD is the default value for CONNECTION= when you specify
CONNECTION_GROUP=.

This option is supported by the SAS/ACCESS interfaces that support single
connections or multiple, simultaneous connections to the DBMS.

Microsoft SQL Server and ODBC Details: If the data source supports only one active
open cursor per connection, the default value is CONNECTION=UNIQUE; otherwise,
the default value is CONNECTION=SHAREDREAD.

MySQL & Netezza Details: The default value is UNIQUE.
Teradata Details: for channel-attached systems (MVS), the default is SHAREDREAD;

for network attached systems (UNIX and PC platforms), the default is UNIQUE

Examples

In the following SHAREDREAD example, MYDBLIB makes the first connection to
the DBMS. This connection is used to print the data from MYDBLIB.TAB. MYDBLIB2
makes the second connection to the DBMS. A third connection is used to update
MYDBLIB.TAB. The third connection is closed at the end of the PROC SQL UPDATE
statement. The first and second connections are closed with the CLEAR option.

libname mydblib oracle user=testuser /* connection 1 */
pw=testpass path=’myorapath’
connection=sharedread;

libname mydblib2 oracle user=testuser /* connection 2 */
pw=testpass path=’myorapath’
connection=sharedread;

proc print data=mydblib.tab ...
proc sql; /* connection 3 */

update mydblib.tab ...

libname mydblib clear;
libname mydblib2 clear;

In the following GLOBALREAD example, the two librefs, MYDBLIB and
MYDBLIB2, share the same connection for read access because
CONNECTION=GLOBALREAD and the connection options are identical. The first



The LIBNAME Statement for Relational Databases � CONNECTION= LIBNAME Option 91

connection is used to print the data from MYDBLIB.TAB while a second connection is
made for updating MYDBLIB.TAB. The second connection is closed at the end of the
step. Note that the first connection is closed with the final LIBNAME statement.

libname mydblib oracle user=testuser /* connection 1 */
pw=testpass path=’myorapath’
connection=globalread;

libname mydblib2 oracle user=testuser
pw=testpass path=’myorapath’
connection=globalread;

proc print data=mydblib.tab ...
proc sql; /* connection 2 */

update mydblib.tab ...

libname mydblib clear; /* does not close connection 1 */
libname mydblib2 clear; /* closes connection 1 */

In the following UNIQUE example, the libref, MYDBLIB, does not establish a
connection. A connection is established in order to print the data from MYDBLIB.TAB.
That connection is closed at the end of the print procedure. Another connection is
established to updated MYDBLIB.TAB. That connection is closed at the end of the
PROC SQL. The CLEAR option in the LIBNAME statement at the end of this example
does not close any connections.

libname mydblib oracle user=testuser
pw=testpass path=’myorapath’
connection=unique;

proc print data=mydblib.tab ...
proc sql;

update mydblib.tab ...

libname mydblib clear;

The following example is a GLOBAL example for DB2 under z/OS. Both PROC
DATASETS invocations appropriately report “no members in directory” because
SESSION.B, as a temporary table, has no entry in the system catalog
SYSIBM.SYSTABLES. However, the DATA _NULL_ step and SELECT * from PROC
SQL step both return the expected rows. For DB2 under z/OS, when
SCHEMA=SESSION the database first looks for a temporary table before attempting to
access any physical schema named SESSION.

libname x db2 connection=global schema=SESSION;
proc datasets lib=x;
quit;

/*
* DBMS-specific code to create a temporary table impervious
* to commits, and then populate the table directly in the
* DBMS from another table.
*/
proc sql;
connect to db2(connection=global schema=SESSION);
execute ( DECLARE GLOBAL TEMPORARY TABLE SESSION.B LIKE SASDXS.A



92 CONNECTION= LIBNAME Option � Chapter 9

ON COMMIT PRESERVE ROWS
) by db2;

execute ( insert into SESSION.B select * from SASDXS.A
) by db2;

quit;

/*
* Get at the temp table through the global libref.
*/
data _null_;
set x.b;
put _all_;
run;

/*
* Get at the temp table through the global connection.
*/
proc sql;
connect to db2 (connection=global schema=SESSION);
select * from connection to db2
( select * from SESSION.B );
quit;

proc datasets lib=x;
quit;

In the following SHARED example, DB2DATA.NEW is created in the database TEST.
Because the table DB2DATA.OLD exists in the same database. The option
CONNECTION=SHARED enables the DB2 engine to share the connection both for
reading the old table and for creating and loading the new table.

libname db2data db2 connection=shared;
data db2data.new (in = ’database test’);

set db2data.old;
run;

In the following GLOBAL example, two different librefs share one connection.

libname db2lib db2 connection=global;
libname db2data db2 connection=global;
data db2lib.new(in=’database test’);

set db2data.old;
run;

If you did not use the CONNECTION= option in the above two examples, you would
deadlock in DB2 and get the following error:

ERROR: Error attempting to CREATE a DBMS table.
ERROR: DB2 execute error DSNT408I SQLCODE = --911,
ERROR: THE CURRENT UNIT OF WORK HAS BEEN ROLLED

BACK DUE TO DEADLOCK.



The LIBNAME Statement for Relational Databases � CONNECTION_GROUP= LIBNAME Option 93

See Also

“DEFER= LIBNAME Option” on page 111

“ACCESS= LIBNAME Option” on page 79

“CONNECTION_GROUP= LIBNAME Option” on page 93

CONNECTION_GROUP= LIBNAME Option

Causes operations on multiple librefs to share a connection to the DBMS. Also causes operations
on multiple Pass-Through Facility CONNECT statements to share a connection to the DBMS

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: none

Syntax
CONNECTION_GROUP= connection-group-name

Syntax Description

connection-group-name
is the name of a connection group.

Details
This option causes a DBMS connection to be shared by all READ operations on multiple
librefs if the following is true:

� all of the participating librefs are created by LIBNAME statements that specify
the same value for CONNECTION_GROUP=

� all of the participating librefs are created by LIBNAME statements that specify
identical DBMS connection options.

To share a connection for all operations against multiple librefs, specify
CONNECTION= GLOBAL on all participating LIBNAME statements. Not all
SAS/ACCESS interfaces support CONNECTION=GLOBAL.

Note: If you specify CONNECTION=GLOBAL or CONNECTION=GLOBALREAD,
operations on multiple librefs can share a connection even if you omit
CONNECTION_GROUP=. �

Informix Details: This option lets multiple librefs or multiple Pass-Through Facility
CONNECT statements share a connection to the DBMS. It overcomes the Release 8.2
limitation that prevents users from accessing scratch tables across step boundaries
because new connections had to be established with every procedure.



94 CONNECTION_TIMEOUT= LIBNAME Option � Chapter 9

Example

In the following example, the MYDBLIB libref shares a connection with MYDBLIB2
by specifying CONNECTION_GROUP=MYGROUP and by specifying identical
connection options. The libref MYDBLIB3 makes a second connection to another
connection group called ABC. The first connection is used to print the data from
MYDBLIB.TAB, and is also used for updating MYDBLIB.TAB. The third connection is
closed at the end of the step. Note that the first connection is closed by the final
LIBNAME statement for that connection. Similarly, the second connection is closed by
the final LIBNAME statement for that connection.

libname mydblib oracle user=testuser /* connection 1 */
pw=testpass
connection_group=mygroup;

libname mydblib2 oracle user=testuser
pw=testpass
connection_group=mygroup;

libname mydblib3 oracle user=testuser /* connection 2 */
pw=testpass
connection_group=abc;

proc print data=mydblib.tab ...
proc sql; /* connection 1 */

update mydblib.tab ...

libname mydblib clear; /* does not close connection 1*/
libname mydblib2 clear; /* closes connection 1 */
libname mydblib3 clear; /* closes connection 2 */

CONNECTION_TIMEOUT= LIBNAME Option

Specifies the number of seconds to wait before a connection times out

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: HP Neoview
Alias: CON_TIMEOUT=
Default value: 0

Syntax
CONNECTION_TIMEOUT=number-of-seconds



The LIBNAME Statement for Relational Databases � CURSOR_TYPE= LIBNAME Option 95

Syntax Description

number-of-seconds
A number greater than or equal to 0. It represents the number of seconds that
SAS/ACCESS Interface to HP Neoview waits for any operation on the connection to
complete before returning to SAS. If the value is 0, which is the default, no timeout
occurs.

CURSOR_TYPE= LIBNAME Option

Specifies the cursor type for read-only and updatable cursors

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.

DBMS support: DB2 UNIX/PC, Microsoft SQL Server, ODBC, OLE DB

Default value: DBMS-specific

Syntax
CURSOR_TYPE= DYNAMIC | FORWARD_ONLY | KEYSET_DRIVEN | STATIC

Syntax Description

DYNAMIC
specifies that the cursor reflects all of the changes that are made to the rows in a
result set as you move the cursor. The data values and the membership of rows in
the cursor can change dynamically on each fetch. This is the default for the DB2
UNIX/PC, ODBC, and Microsoft SQL Server interfaces.

FORWARD_ONLY
specifies that the cursor functions like a DYNAMIC cursor except that it only
supports fetching the rows sequentially. (This value is not valid in OLE DB.)

KEYSET_DRIVEN
specifies that the cursor determines which rows belong to the result set when the
cursor is opened. However, changes that are made to these rows are reflected as you
scroll around the cursor.

STATIC
specifies that the cursor builds the complete result set when the cursor is opened. No
changes that are made to the rows in the result set after the cursor is opened are
reflected in the cursor. Static cursors are read-only.

Details
Not all drivers support all cursor types. An error is returned if the specified cursor type
is not supported.

The driver is allowed to modify the default without an error.



96 DBCOMMIT= LIBNAME Option � Chapter 9

OLE DB Details: By default, this option is not set and the provider uses a default.
See your provider documentation for more information. See OLE DB programmer
reference documentation for details about these properties. The OLE DB properties
applied to an open row set are as follows:

CURSOR_TYPE= OLE DB Properties Applied

DYNAMIC DBPROP_OTHERINSERT=TRUE,
DBPROP_OTHERUPDATEDELETE=TRUE

KEYSET_DRIVEN DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELET=TRUE

STATIC DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELETE=FALSE

See Also
To apply this option to an individual data set, see the data set option

“CURSOR_TYPE= Data Set Option” on page 198.

DBCOMMIT= LIBNAME Option

Causes an automatic COMMIT (a permanent writing of data to the DBMS) after a specified number
of rows have been processed

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: 1000 when inserting rows into a DBMS table; 0 when updating a DBMS
table

Syntax
DBCOMMIT=n

Syntax Description

n
is an integer greater than or equal to 0.

Details
DBCOMMIT= affects update, delete, and insert processing. The number of rows that are
processed includes rows that are not processed successfully. If you set DBCOMMIT=0, a
commit is issued only once (after the procedure or DATA step completes).



The LIBNAME Statement for Relational Databases � DBCONINIT= LIBNAME Option 97

If the DBCOMMIT= option is explicitly set, SAS/ACCESS fails any update that has a
WHERE clause.

Note: If you specify both DBCOMMIT= and ERRLIMIT=, and these options collide
during processing, then the COMMIT is issued first and the ROLLBACK is issued
second. Because the COMMIT (caused by the DBCOMMIT= option) is issued prior to
the ROLLBACK (caused by the ERRLIMIT= option), the DBCOMMIT= option is said to
override the ERRLIMIT= option in this situation. �

DB2 under UNIX and PC Hosts Details: When BULKLOAD=YES, the default is
10000.

See Also
To apply this option to an individual data set, see the data set option “DBCOMMIT=

Data Set Option” on page 199.

DBCONINIT= LIBNAME Option

Specifies a user-defined initialization command to be executed immediately after every connection
to the DBMS that is within the scope of the LIBNAME statement or libref

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: none

Syntax
DBCONINIT=<’>DBMS-user-command<’>

Syntax Description

DBMS-user-command
is any valid command that can be executed by the SAS/ACCESS engine and that
does not return a result set or output parameters.

Details
The initialization command that you select can be a stored procedure or any DBMS
SQL statement that might provide additional control over the interaction between your
SAS/ACCESS interface and the DBMS.

The command executes immediately after each DBMS connection is successfully
established. If the command fails, then a disconnect occurs and the libref is not
assigned. You must specify the command as a single, quoted string.

Note: The initialization command might execute more than once, because one
LIBNAME statement might have multiple connections; for example, one for reading
and one for updating. �



98 DBCONTERM= LIBNAME Option � Chapter 9

Examples

In the following example, the DBCONINIT= option causes the DBMS to apply the
SET statement to every connection that uses the MYDBLIB libref.

libname mydblib db2
dbconinit="SET CURRENT SQLID=’myauthid’";

proc sql;
select * from mydblib.customers;

insert into mydblib.customers
values(’33129804’, ’VA’, ’22809’, ’USA’,

’540/545-1400’, ’BENNETT SUPPLIES’, ’M. JONES’,
’2199 LAUREL ST’, ’ELKTON’, ’22APR97’d);

update mydblib.invoices
set amtbill = amtbill*1.10
where country = ’USA’;

quit;

In the following example, a stored procedure is passed to DBCONINIT=.

libname mydblib oracle user=testuser pass=testpass
dbconinit="begin dept_test(1001,25)";

end;

The SAS/ACCESS engine retrieves the stored procedure and executes it.

See Also
“DBCONTERM= LIBNAME Option” on page 98

DBCONTERM= LIBNAME Option

Specifies a user-defined termination command to be executed before every disconnect from the
DBMS that is within the scope of the LIBNAME statement or libref

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: none

Syntax
DBCONTERM=<’>DBMS-user-command<’>



The LIBNAME Statement for Relational Databases � DBCREATE_TABLE_OPTS= LIBNAME Option 99

Syntax Description

DBMS-user-command
is any valid command that can be executed by the SAS/ACCESS engine and that
does not return a result set or output parameters.

Details
The termination command that you select can be a stored procedure or any DBMS SQL
statement that might provide additional control over the interaction between the
SAS/ACCESS engine and the DBMS. The command executes immediately before SAS
terminates each connection to the DBMS. If the command fails, then SAS provides a
warning message but the library deassignment and disconnect still occur. You must
specify the command as a single, quoted string.

Note: The termination command might execute more than once, because one
LIBNAME statement might have multiple connections; for example, one for reading
and one for updating. �

Examples

In the following example, the DBMS drops the Q1_SALES table before SAS
disconnects from the DBMS.

libname mydblib db2 user=testuser using=testpass
db=invoice bconterm=’drop table q1_sales’;

In the following example, the stored procedure, SALESTAB_STORED_PROC, is
executed each time SAS connects to the DBMS, and the BONUSES table is dropped
when SAS terminates each connection.

libname mydblib db2 user=testuser
using=testpass db=sales
dbconinit=’exec salestab_stored_proc’
dbconterm=’drop table bonuses’;

See Also
“DBCONINIT= LIBNAME Option” on page 97

DBCREATE_TABLE_OPTS= LIBNAME Option
Specifies DBMS-specific syntax to be added to the CREATE TABLE statement

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: none

Syntax
DBCREATE_TABLE_OPTS=’DBMS-SQL-clauses’



100 DBGEN_NAME= LIBNAME Option � Chapter 9

DBMS-SQL-clauses
are one or more DBMS-specific clauses that can be appended to the end of an SQL
CREATE TABLE statement.

Details
You can use DBCREATE_TABLE_OPTS= to add DBMS-specific clauses to the end of
the SQL CREATE TABLE statement. The SAS/ACCESS engine passes the SQL
CREATE TABLE statement and its clauses to the DBMS, which executes the statement
and creates the DBMS table. DBCREATE_TABLE_OPTS= applies only when you are
creating a DBMS table by specifying a libref associated with DBMS data.

See Also
To apply this option to an individual data set, see the data set option

“DBCREATE_TABLE_OPTS= Data Set Option” on page 201.

DBGEN_NAME= LIBNAME Option

Specifies how SAS automatically renames DBMS columns that contain characters that SAS does
not allow, such as $, to valid SAS variable names

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS

Syntax
DBGEN_NAME= DBMS | SAS

Syntax Description

DBMS
specifies that the DBMS columns are renamed to valid SAS variable names.
Disallowed characters are converted to underscores. If a column is converted to a
name that already exists, then a sequence number is appended to the end of the new
name.

SAS
specifies that DBMS columns are renamed to the format _COLn, where n is the
column number (starting with zero).

Details
SAS retains column names when it reads data from tables, unless a column name
contains characters that SAS does not allow, such as $. SAS allows alphanumeric
characters and the underscore (_).



The LIBNAME Statement for Relational Databases � DBINDEX= LIBNAME Option 101

For example, if you specify DBGEN_NAME=SAS, a DBMS column named Dept$Amt
is renamed to _COLn. If you specify DBGEN_NAME=DBMS, the Dept$Amt column is
renamed to Dept_Amt.

This option is intended primarily for National Language Support, notably for the
conversion of kanji to English characters. English characters that are converted from
kanji are often those that are not allowed in SAS.

Note: The various SAS/ACCESS interfaces each handled name collisions differently
in SAS Version 6. Some interfaces appended to the end of the name; other interfaces
replaced the last character(s) in the name. Some interfaces used a single sequence
number, other interfaces used unique counters. If you specify VALIDVARNAME=V6 ;
then name collisions must be handled the same as they were in SAS Version 6. �

See Also
To apply this option to an individual data set, see the data set option

“DBGEN_NAME= Data Set Option” on page 204

DBINDEX= LIBNAME Option

Improves performance when processing a join that involves a large DBMS table and a small SAS
data set

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, HP Neoview, Informix, Microsoft SQL Server, MySQL,
Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS-specific

Syntax
DBINDEX= YES | NO

Syntax Description

YES
specifies that SAS uses columns in the WHERE clause that have defined DBMS
indexes.

NO
specifies that SAS does not use indexes that are defined on DBMS columns.

Details
When you are processing a join that involves a large DBMS table and a relatively small
SAS data set, you might be able to use DBINDEX= to improve performance.

CAUTION:
Improper use of this option can degrade performance. See “Using the DBINDEX=,
DBKEY=, and MULTI_DATASRC_OPT= Options” on page 43 for detailed
information about using this option. �



102 DBLIBINIT= LIBNAME Option � Chapter 9

See Also
To apply this option to an individual data set, see the data set option “DBINDEX=

Data Set Option” on page 205.

DBLIBINIT= LIBNAME Option

Specifies a user-defined initialization command to be executed once within the scope of the
LIBNAME statement or libref that established the first connection to the DBMS

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: none

Syntax
DBLIBINIT= <’>DBMS-user-command<’>

Syntax Description

DBMS-user-command
is any DBMS command that can be executed by the SAS/ACCESS engine and that
does not return a result set or output parameters.

Details
The initialization command that you select can be a script, stored procedure, or any
DBMS SQL statement that might provide additional control over the interaction
between your SAS/ACCESS interface and the DBMS.

The command executes immediately after the first DBMS connection is successfully
established. If the command fails, then a disconnect occurs and the libref is not
assigned. You must specify the command as a single, quoted string, unless it is an
environment variable.

DBLIBINIT= fails if either CONNECTION=UNIQUE or DEFER=YES, or if both of
these LIBNAME options are specified.

When multiple LIBNAME statements share a connection, the initialization command
executes only for the first LIBNAME statement, immediately after the DBMS
connection is established. (Multiple LIBNAME statements that use
CONNECTION=GLOBALREAD and identical values for CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, DBLIBINIT=, and DBLIBTERM= options and any
DBMS connection options can share the same connection to the DBMS.)

Example

In the following example, CONNECTION=GLOBALREAD is specified in both
LIBNAME statements, but the DBLIBINIT commands are different. Therefore, the
second LIBNAME statement fails to share the same physical connection.



The LIBNAME Statement for Relational Databases � DBLIBTERM= LIBNAME Option 103

libname mydblib oracle user=testuser pass=testpass
connection=globalread dblibinit=’Test’;

libname mydblib2 oracle user=testuser pass=testpass
connection=globalread dblibinit=’NoTest’;

See Also

“DBLIBTERM= LIBNAME Option” on page 103

DBLIBTERM= LIBNAME Option

Specifies a user-defined termination command to be executed once, before the DBMS that is
associated with the first connection made by the LIBNAME statement or libref disconnects

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: none

Syntax

DBLIBTERM= <’>DBMS-user-command<’>

Syntax Description

DBMS-user-command
is any DBMS command that can be executed by the SAS/ACCESS engine and that
does not return a result set or output parameters.

Details

The termination command that you select can be a script, stored procedure, or any
DBMS SQL statement that might provide additional control over the interaction
between the SAS/ACCESS engine and the DBMS. The command executes immediately
before SAS terminates the last connection to the DBMS. If the command fails, then
SAS provides a warning message but the library deassignment and disconnect still
occurs. You must specify the command as a single, quoted string.

DBLIBTERM= fails if either CONNECTION=UNIQUE or DEFER=YES or both of
these LIBNAME options are specified.

When two LIBNAME statements share the same physical connection, the
termination command is executed only once. (Multiple LIBNAME statements that use
CONNECTION=GLOBALREAD and identical values for CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, DBLIBINIT=, and DBLIBTERM= options and any
DBMS connection options can share the same connection to the DBMS.)



104 DBLINK= LIBNAME Option � Chapter 9

Example

In the following example, CONNECTION=GLOBALREAD is specified on both
LIBNAME statements, but the DBLIBTERM commands are different. Therefore, the
second LIBNAME statement fails to share the same physical connection.

libname mydblib oracle user=testuser pass=testpass
connection=globalread dblibterm=’Test’;

libname mydblib2 oracle user=testuser pass=testpass
connection=globalread dblibterm=’NoTest’;

See Also
“DBLIBINIT= LIBNAME Option” on page 102

DBLINK= LIBNAME Option

Specifies a link from your local database to database objects on another server (in the Oracle
interface); specifies a link from your default database to another database on the server to which
you are connected (in the Sybase interface)

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Oracle, Sybase
Default value: none

Syntax
DBLINK=database-link

Details
Oracle Details: A link is a database object that is used to identify an object stored in a
remote database. A link contains stored path information and may also contain user
name and password information for connecting to the remote database. If you specify a
link, SAS uses the link to access remote objects. If you omit DBLINK=, SAS accesses
objects in the local database.

Sybase Details: You can use this option to link to another database within the same
server to which you are connected. If you omit DBLINK=, SAS can access only objects
that are in your default database.

See Also
To apply this option to an individual data set, see the data set option “DBMASTER=

Data Set Option” on page 210.



The LIBNAME Statement for Relational Databases � DBNULLKEYS= LIBNAME Option 105

DBMAX_TEXT= LIBNAME Option

Determines the length of any very long DBMS character data type that is read into SAS or written
from SAS when using a SAS/ACCESS engine

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, MySQL, Netezza,
ODBC, OLE DB, Oracle, Sybase

Default value: 1024

Syntax
DBMAX_TEXT=<integer>

Syntax Description

integer
is an integer between 1 and 32,767.

Details
This option applies to reading, appending, and updating rows in an existing table. It
does not apply when you are creating a table.

Examples of a DBMS data type are the Sybase TEXT data type or the Oracle LONG
RAW data type.

See Also
To apply this option to an individual data set, see the data set option

“DBMAX_TEXT= Data Set Option” on page 211.

DBNULLKEYS= LIBNAME Option

Controls the format of the WHERE clause when you use the DBKEY= data set option

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
Netezza, ODBC, OLE DB, Oracle

Default value: DBMS-specific

Syntax
DBNULLKEYS= YES | NO



106 DBPROMPT= LIBNAME Option � Chapter 9

Details
If there might be NULL values in the transaction table or the master table for the
columns that you specify in the DBKEY= option, use DBNULLKEYS=YES. This is the
default for most interfaces. When you specify DBNULLKEYS=YES and specify a
column that is not defined as NOT NULL in the DBKEY= data set option, SAS
generates a WHERE clause that can find NULL values. For example, if you specify
DBKEY=COLUMN and COLUMN is not defined as NOT NULL, SAS generates a
WHERE clause with the following syntax:

WHERE ((COLUMN = ?) OR ((COLUMN IS NULL) AND (? IS NULL)))

This syntax enables SAS to prepare the statement once and use it for any value (NULL
or NOT NULL) in the column. Note that this syntax has the potential to be much less
efficient than the shorter form of the WHERE clause (presented below). When you
specify DBNULLKEYS=NO or specify a column that is defined as NOT NULL in the
DBKEY= option, SAS generates a simple WHERE clause.

If you know that there are no NULL values in the transaction table or the master
table for the columns that you specify in the DBKEY= option, then you can use
DBNULLKEYS=NO. This is the default for the interface to Informix. If you specify
DBNULLKEYS=NO and specify DBKEY=COLUMN, SAS generates a shorter form of
the WHERE clause (regardless of whether or not the column specified in DBKEY= is
defined as NOT NULL):

WHERE (COLUMN = ?)

See Also
To apply this option to an individual data set, see the data set option

“DBNULLKEYS= Data Set Option” on page 213.

DBPROMPT= LIBNAME Option

Specifies whether SAS displays a window that prompts the user to enter DBMS connection
information prior to connecting to the DBMS in interactive mode

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, HP Neoview, Informix, Microsoft SQL Server, MySQL,
Netezza, ODBC, Oracle, Sybase, Teradata

Default value: NO

Syntax
DBPROMPT=YES | NO

Syntax Description

YES
specifies that SAS displays a window that interactively prompts you for the DBMS
connection options the first time the libref is used.



The LIBNAME Statement for Relational Databases � DBPROMPT= LIBNAME Option 107

NO
specifies that SAS does not display the prompting window.

Details
If you specify DBPROMPT=YES, it is not necessary to provide connection options with
the LIBNAME statement. If you specify connection options with the LIBNAME
statement and you specify DBPROMPT=YES, then the connection option values are
displayed in the window (except for the password value. This value appears as a series
of asterisks). All of these values can be overridden interactively.

The DBPROMPT= option interacts with the DEFER= option to determine when the
prompt window appears. If DEFER=NO, the DBPROMPT window opens when the
LIBNAME statement is executed. If DEFER=YES, the DBPROMPT window opens the
first time a table or view is opened. The DEFER= option normally defaults to NO but
defaults to YES if DBPROMPT=YES. You can override this default by explicitly setting
DEFER=NO.

The DBPROMPT window usually opens only once for each time that the LIBNAME
statement is specified. It might open multiple times if DEFER=YES and the connection
fails when SAS tries to open a table. In these cases, the DBPROMPT window opens
until a successful connection occurs or until you click Cancel .

The maximum password length for most of the SAS/ACCESS LIBNAME interfaces is
32 characters.

Oracle Details: You can enter 30 characters for the USERNAME and PASSWORD
and up to 70 characters for the PATH, depending on your platform.

Teradata Details: You can enter up to 30 characters for the USERNAME and
PASSWORD.

Examples

In the following example, the DBPROMPT window does not open when the
LIBNAME statement is submitted because DEFER=YES. The DBPROMPT window
opens when the PRINT procedure is processed, a connection is made, and the table is
opened.

libname mydblib oracle dbprompt=yes
defer=yes;

proc print data=mydblib.staff;
run;

In the following example, the DBPROMPT window opens while the LIBNAME
statement is processing. The DBPROMPT window does not open in subsequent
statements because the DBPROMPT window opens only once per LIBNAME statement.

libname mydblib oracle dbprompt=yes
defer=no;



108 DBSASLABEL= LIBNAME Option � Chapter 9

In the following example, values provided in the LIBNAME statement are pulled into
the DBPROMPT window. The values testuser and ABC_server appear in the
DBPROMPT window and can be edited and confirmed by the user. The password value
appears in the DBPROMPT window as a series of asterisks; it can also be edited by the
user.

libname mydblib oracle
user=testuser pw=testpass
path=’ABC_server’ dbprompt=yes defer=no;

See Also
To apply this option to a view descriptor, see the data set option “DBPROMPT= Data

Set Option” on page 214.

DBSASLABEL= LIBNAME Option
Specifies the column labels an engine uses

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, Informix, Microsoft SQL Server, MySQL,
ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: COMPAT

Syntax
DBSASLABEL=COMPAT | NONE

Syntax Description

COMPAT
specifies that the labels returned should be compatible with what the application
normally receives—meaning that engines exhibit their normal behavior.

NONE
specifies that the engine does not return a column label. The engine returns blanks
for the column labels.

Details
By default, the SAS/ACCESS interface for your DBMS generates column labels from
the column names, rather than from the real column labels.

This option enables the user to override this default behavior. It is useful in the
PROC SQL context where column labels instead of column aliases are used as headers.

Examples

The following example demonstrates how DBSASLABEL= is used as a LIBNAME
option to return blank column labels so that PROC SQL can use the column aliases as
the column headers.



The LIBNAME Statement for Relational Databases � DBSLICEPARM= LIBNAME Option 109

libname x oracle user=scott pw=tiger;
proc sql;

select deptno as Department ID, loc as Location from mylib.dept(dbsaslabel=none);

Without the DBSASLABEL= option set to NONE, the aliases would be ignored, and
DEPTNO and LOC would be used as column headers in the result set.

DBSLICEPARM= LIBNAME Option

Controls the scope of DBMS threaded reads and the number of threads

Valid in: the SAS/ACCESS LIBNAME statement (Also available as a SAS configuration
option, SAS invocation option, global SAS option, or data set option)
DBMS support: DB2 UNIX/PC, DB2 z/OS, Informix, Microsoft SQL Server, ODBC, Oracle,
Sybase, Teradata
Default value: THREADED_APPS,2 (DB2 z/OS, Oracle, Teradata) THREADED_APPS,2
or 3 (DB2 UNIX/PC, Informix, Microsoft SQL Server, ODBC, Sybase)

Syntax
DBSLICEPARM=NONE | THREADED_APPS |ALL

DBSLICEPARM=( NONE | THREADED_APPS |ALL <, max-threads>)

Syntax Description
Two syntax diagrams are shown here in order to highlight the simpler version. In

most cases, the simpler version suffices.

NONE
disables DBMS threaded read. SAS reads tables on a single DBMS connection, as it
did with SAS Version 8 and earlier.

THREADED_APPS
Makes fully threaded SAS procedures (threaded applications) eligible for threaded
reads.

ALL
Makes all read-only librefs eligible for threaded reads. This includes SAS threaded
applications, as well as the SAS DATA step and numerous SAS procedures.

max-threads
positive integer value that specifies the maximum number of connections per table
read. A partition or portion of the data is read on each connection. The combined
rows across all partitions are the same irrespective of the number of connections.
Changes to the number of connections do not change the result set. Increasing the
number of connections instead redistributes the same result set across more
connections.

There are diminishing returns when increasing the number of connections. With
each additional connection, more burden is placed on the DBMS, and a smaller
percentage of time saved on the SAS step. Therefore, you should consult your
DBMS-specific documentation concerning partitioned reads before using this
parameter.



110 DBSLICEPARM= LIBNAME Option � Chapter 9

Details
DBSLICEPARM= can be used in numerous locations, and the usual rules of option
precedence apply. Table option has the highest precedence, then LIBNAME option, and
so on. SAS configuration file option has the lowest precedence as DBSLICEPARM= in
any of the other locations overrides that configuration setting.

DBSLICEPARM=ALL and DBSLICEPARM=THREADED_APPS make SAS programs
eligible for threaded reads. To determine whether threaded reads are actually
generated, turn on SAS tracing and run a program, as shown in the following example:

options sastrace=’’,,t’’ sastraceloc=saslog nostsuffix;
proc print data=lib.dbtable(dbsliceparm=(ALL));

where dbcol>1000;
run;

If you want to directly control the threading behavior, use the DBSLICE= data set
option.

For DB2 UNIX/PC, Informix, Microsoft SQL Server, ODBC, and Sybase, the default
thread number is dependent on whether an application passes in the number of threads
(CPUCOUNT=) and whether the data type of the column selected for the data
partitioning purpose is binary.

Examples

The following code demonstrates how to use DBSLICEPARM= in a PC SAS
configuration file entry to turn off threaded reads for all SAS users:

--dbsliceparm NONE

The following code demonstrates how to use DBSLICEPARM= as an z/OS invocation
option to turn on threaded reads for read-only references to DBMS tables throughout a
SAS job:

sas o(dbsliceparm=ALL)

The following code demonstrates how to use DBSLICEPARM= as a SAS global
option, most likely as one of the first statements in your SAS code, to increase
maximum threads to three for SAS threaded apps:

option dbsliceparm=(threaded_apps,3);

The following code demonstrates how to use DBSLICEPARM= as a LIBNAME option
to turn on threaded reads for read-only table references that use this particular libref:

libname dblib oracle user=scott password=tiger dbsliceparm=ALL;

The following code demonstrates how to use DBSLICEPARM= as a table level option
to turn on threaded reads for this particular table, requesting up to four connections:

proc reg SIMPLE;
data=dblib.customers (dbsliceparm=(all,4));
var age weight;
where years_active>1;

run;

See Also
“DBSLICEPARM= Data Set Option” on page 219



The LIBNAME Statement for Relational Databases � DEGREE= LIBNAME Option 111

DEFER= LIBNAME Option

Specifies when the connection to the DBMS occurs

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: NO

Syntax
DEFER= NO | YES

Syntax Description

NO
specifies that the connection to the DBMS occurs when the libref is assigned by a
LIBNAME statement.

YES
specifies that the connection to the DBMS occurs when a table in the DBMS is
opened.

Details
The default value of NO is overridden if DBPROMPT=YES.

The DEFER= option is ignored when CONNECTION=UNIQUE, because a
connection is performed every time a table is opened.

Microsoft SQL Server, Netezza, and ODBC Details: When you set DEFER=YES, you
must also set the PRESERVE_TAB_NAMES= and PRESERVE_COL_NAMES= options
to their desired values. Normally, SAS queries the data source to determine the correct
defaults for these options during LIBNAME assignment, but setting DEFER=YES
postpones the connection. Because these values must be set at the time of LIBNAME
assignment, you must assign them explicitly when you set DEFER=YES.

See Also
“CONNECTION= LIBNAME Option” on page 88

DEGREE= LIBNAME Option

Determines whether DB2 uses parallelism

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 z/OS
Default value: ANY



112 DELETE_MULT_ROWS= LIBNAME Option � Chapter 9

Syntax
DEGREE= ANY | 1

Syntax Description

ANY
enables DB2 to use parallelism, and issues the SET CURRENT DEGREE =’xxx’ for
all DB2 threads that use that libref.

1
explicitly disables the use of parallelism.

Details
When DEGREE=ANY, DB2 has the option of using parallelism, when it is appropriate.

Setting DEGREE=1 prevents DB2 from performing parallel operations. Instead, DB2
is restricted to performing one task that, while perhaps slower, uses less system
resources.

DELETE_MULT_ROWS= LIBNAME Option

Indicates whether to allow SAS to delete multiple rows from a data source, such as a DBMS table

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB

Default value: NO

Syntax
DELETE_MULT_ROWS=YES | NO

Syntax Description

YES
specifies that SAS/ACCESS processing continues if multiple rows are deleted. This
might produce unexpected results.

NO
specifies that SAS/ACCESS processing does not continue if multiple rows are deleted.

Details
Some providers do not handle the following DBMS SQL statement well and, therefore,
delete more than the current row:

DELETE ... WHERE CURRENT OF CURSOR



The LIBNAME Statement for Relational Databases � DIRECT_EXE= LIBNAME Option 113

DIRECT_EXE= LIBNAME Option

Lets you pass an SQL delete statement directly to a DBMS via implicit pass-through.

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: none

Syntax
DIRECT_EXE=DELETE

Syntax Description

DELETE
specifies that an SQL delete statement is passed directly to the DBMS for processing.

Details
Performance is greatly increased by using DIRECT_EXE=. The SQL delete statement
is passed directly to the DBMS, instead of SAS reading the entire result set and
deleting one row at a time.

Examples

The following example demonstrates the use of DIRECT_EXE= to empty a table from
a database.

libname x oracle user=scott password=tiger
path=oraclev8 schema=dbitest

direct_exe=delete; /* create an oracle table of 5 rows */data x.dbi_dft;
do col1=1 to 5;
output;
end;
run;

options sastrace=",,,d" sastraceloc=saslog nostsuffix;
proc sql;
delete * from x.dbi_dft;
quit;

By turning trace on, you should see something similar to the following:

Output 9.1 SAS Log Output

ORACLE_9: Executed:
delete from dbi_dft



114 DIRECT_SQL= LIBNAME Option � Chapter 9

DIRECT_SQL= LIBNAME Option

Lets you specify whether generated SQL is passed to the DBMS for processing

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: YES

Syntax
DIRECT_SQL= YES | NO | NONE | NOGENSQL | NOWHERE |NOFUNCTIONS

|NOMULTOUTJOINS

Syntax Description

YES
specifies that generated SQL from PROC SQL is passed directly to the DBMS for
processing.

NO
specifies that generated SQL from PROC SQL is not passed to the DBMS for
processing. This is the same as specifying the value NOGENSQL.

NONE
specifies that generated SQL is not passed to the DBMS for processing. This includes
SQL that is generated from PROC SQL, SAS functions that can be converted into
DBMS functions, joins, and WHERE clauses.

NOGENSQL
prevents PROC SQL from generating SQL to be passed to the DBMS for processing.

NOWHERE
prevents WHERE clauses from being passed to the DBMS for processing. This
includes SAS WHERE clauses and PROC SQL generated or PROC SQL specified
WHERE clauses.

NOFUNCTIONS
prevents SQL statements from being passed to the DBMS for processing when they
contain functions.

NOMULTOUTJOINS
specifies that PROC SQL does not attempt to pass any multiple outer joins to the
DBMS for processing. Other join statements may be passed down however, including
portions of a multiple outer join.

Details
By default, processing is passed to the DBMS whenever possible, because the database
might be able to process the functionality more efficiently than SAS does. In some
instances, however, you might not want the DBMS to process the SQL. For example,
the presence of null values in the DBMS data might cause different results depending
on whether the processing takes place in SAS or in the DBMS. If you do not want the



The LIBNAME Statement for Relational Databases � ENABLE_BULK= LIBNAME Option 115

DBMS to handle the SQL, use DIRECT_SQL= to force SAS to handle some or all of the
SQL processing.

If you specify DIRECT_SQL=NOGENSQL, then PROC SQL does not generate DBMS
SQL. This means that SAS functions, joins, and DISTINCT processing that occur within
PROC SQL are not passed to the DBMS for processing. (SAS functions outside PROC
SQL can still be passed to the DBMS.) However, if PROC SQL contains a WHERE
clause, the WHERE clause is passed to the DBMS, if possible. Unless you specify
DIRECT_SQL=NOWHERE, SAS attempts to pass all WHERE clauses to the DBMS.

If you specify more than one value for this option, separate the values with spaces
and enclose the list of values in parentheses. For example, you could specify
DIRECT_SQL=(NOFUNCTIONS, NOWHERE).

DIRECT_SQL= overrides the LIBNAME option “SQL_FUNCTIONS= LIBNAME
Option” on page 146. If you specify SQL_FUNCTIONS=ALL and DIRECT_SQL=NONE,
no functions are passed.

Examples

The following example prevents a join between two tables from being processed by
the DBMS, by setting DIRECT_SQL=NOGENSQL. Instead, SAS processes the join.

proc sql;
create view work.v as

select tab1.deptno, dname from
mydblib.table1 tab1,
mydblib.table2 tab2

where tab1.deptno=tab2.deptno
using libname mydblib oracle user=testuser

password=testpass path=myserver direct_sql=nogensql;

The following example prevents a SAS function from being processed by the DBMS.

libname mydblib oracle user=testuser password=testpass direct_sql=nofunctions;
proc print data=mydblib.tab1;

where lastname=soundex (’Paul’);

ENABLE_BULK= LIBNAME Option

Enables the connection to process bulk copy when you load data into a Sybase table

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Sybase
Default value: YES

Syntax
ENABLE_BULK=YES | NO



116 ERRLIMIT= LIBNAME Option � Chapter 9

Syntax Description

NO
disables the bulk copy ability for the libref.

YES
enables the connection to perform a bulk copy of SAS data into Sybase.

Details
Bulk copy groups rows so that they are inserted as a unit into the Sybase table. Using
bulk copy can improve performance.

If you use both the LIBNAME option, ENABLE_BULK=, and the data set option,
BULKLOAD=, the values of the two options must be the same or an error is returned.
However, since the default value of ENABLE_BULK= is YES, you do not have to
specify ENABLE_BULK= in order to use the BULKLOAD= data set option.

Note: In Version 7 and previous releases, this option was called BULKCOPY=. In
Version 8 and later, an error is returned if you specify BULKCOPY=. �

ERRLIMIT= LIBNAME Option
Specifies the number of errors that are allowed while using the Fastload utility before SAS stops
loading data to Teradata.

Valid in: DATA and PROC steps (wherever Fastload is used)
DBMS support: Teradata
Default value: 1 million

Syntax
ERRLIMIT=integer

Syntax Description

integer
positive integer that represents the number of errors after which SAS stops loading
data.

Details
SAS stops loading data when the specified number of errors is reached and Fastload is
paused. When Fastload is paused, the table being loaded cannot be used. Since restart
capability for Fastload is not yet supported, the error tables must be manually deleted
before the table can be loaded again.

Example
In the following example, SAS stops processing and pauses Fastload at the occurrence
of the tenth error.



The LIBNAME Statement for Relational Databases � IGNORE_ READ_ONLY_COLUMNS= LIBNAME Option 117

libname mydblib teradata user=terauser pw=XXXXXX ERRLIMIT=10;

data mydblib.trfload(bulkload=yes dbtype=(i=’int check (i > 11)’) );
do

i=1 to 50000;output;
end;

run;

IGNORE_ READ_ONLY_COLUMNS= LIBNAME Option

Specifies whether to ignore or include columns whose data types are read-only when generating
an SQL statement for inserts or updates

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE
DB

Default value: NO

Syntax
IGNORE_READ_ONLY_COLUMNS=YES | NO

Syntax Description

YES
specifies that the SAS/ACCESS engine ignores columns whose data types are
read-only when you are generating insert and update SQL statements

NO
specifies that the SAS/ACCESS engine does not ignore columns whose data types are
read-only when you are generating insert and update SQL statements

Details
Several databases include data types that can be read-only, such as Microsoft SQL
Server’s timestamp data type. Several databases also have properties that allow certain
data types to be read-only, such as Microsoft SQL Server’s identity property.

When the IGNORE_READ_ONLY_COLUMNS option is set to NO (default) and a
DBMS table contains a read-only column, an error is returned indicating that the data
could not be modified for that column.

Example
For the following example, a database that contains the table Products is created with
two columns: ID and PRODUCT_NAME. The ID column is defined by a read-only data
type and PRODUCT_NAME is a character column.

CREATE TABLE products (id int IDENTITY PRIMARY KEY, product_name varchar(40))



118 IN= LIBNAME Option � Chapter 9

Assume you have a SAS data set that contains the name of your products, and you
would like to insert the data into the Products table:

data work.products;
id=1;
product_name=’screwdriver’;
output;
id=2;
product_name=’hammer’;
output;
id=3;
product_name=’saw’;
output;
id=4;
product_name=’shovel’;
output;

run;

With IGNORE_READ_ONLY_COLUMNS=NO (the default), an error is returned by
the database because in this example, the ID column cannot be updated. However, if
you set the option to YES and execute a PROC APPEND, the append succeeds, and the
SQL statement that is generated does not contain the ID column.

libname x odbc uid=dbitest pwd=dbigrp1 dsn=lupinss
ignore_read_only_columns=yes;

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;
proc append base=x.PRODUCTS data=work.products;
run;

See Also
To apply this option to an individual data set, see the data set option

“IGNORE_READ_ONLY_COLUMNS= Data Set Option” on page 224.

IN= LIBNAME Option

Lets you specify the database and tablespace in which you want to create a new table

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS

Default value: none

Syntax
IN=’database-name.tablespace-name’| ’DATABASE database-name’



The LIBNAME Statement for Relational Databases � INSERT_SQL= LIBNAME Option 119

Syntax Description

database-name.tablespace-name
specifies the names of the database and tablespace, which are separated by a period.
Enclose the entire specification in single quotation marks.

DATABASE database-name
specifies only the database name. Specify the word DATABASE, then a space, then
the database name. Enclose the entire specification in single quotation marks.

Details
The IN= option is relevant only when you are creating a new table. If you omit this
option, the default is to create the table in the default database, implicitly creating a
simple tablespace.

See Also
To apply this option to an individual data set, see the data set option “IN= Data Set

Option” on page 225.

INSERT_SQL= LIBNAME Option

Determines the method that is used to insert rows into a data source

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Microsoft SQL Server, ODBC, OLE DB
Default value: DBMS-specific, see details below

Syntax
INSERT_SQL=YES | NO

Syntax Description

YES
specifies that SAS/ACCESS uses the data source’s SQL insert method to insert new
rows into a table.

NO
specifies that SAS/ACCESS uses an alternate (DBMS-specific) method to insert new
rows into a table.

Details
Flat-file databases (such as dBASE, FoxPro, and text files) generally have improved
insert performance when INSERT_SQL=NO. Other databases might have inferior
insert performance (or might fail) with this setting, so you should experiment to
determine the optimal setting for your situation.



120 INSERTBUFF= LIBNAME Option � Chapter 9

Microsoft SQL Server Details: The Microsoft SQL Server default is YES. When
INSERT_SQL=NO, the SQLSetPos (SQL_ADD) function inserts rows in groups that are
the size of the INSERTBUFF= option value. The SQLSetPos (SQL_ADD) function does
not work unless it is supported by your driver.

ODBC Details: The ODBC default is YES, except for Microsoft Access, which has a
default of NO. When INSERT_SQL=NO, the SQLSetPos (SQL_ADD) function inserts
rows in groups that are the size of the INSERTBUFF= option value. The SQLSetPos
(SQL_ADD) function does not work unless it is supported by your driver.

OLE DB Details: By default, the OLE DB interface attempts to use the most efficient
row insertion method for each data source. You can use the INSERT_SQL option to
override the default in the event that it is not optimal for your situation. The OLE DB
alternate method (used when this option is set to NO) uses the OLE DB
IRowsetChange interface.

See Also
To apply this option to an individual data set, see the data set option “INSERT_SQL=

Data Set Option” on page 226.

INSERTBUFF= LIBNAME Option

Specifies the number of rows in a single insert operation

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, MySQL, Netezza,
ODBC, OLE DB, Oracle
Default value: DBMS-specific

Syntax
INSERTBUFF=positive-integer

Syntax Description

positive-integer
specifies the number of rows to insert. SAS allows the maximum that is allowed by
the DBMS.

Details
The optimal value for this option varies with factors such as network type and available
memory. You might need to experiment with different values in order to determine the
best value for your site.

The SAS application messages that indicate the success or failure of an insert
operation represent information for only a single insert, even when multiple inserts are
performed. Therefore, when you assign a value that is greater than INSERTBUFF=1,
these messages might be incorrect.

If you specify the DBCOMMIT= option with a value that is less than the value of
INSERTBUFF=, then DBCOMMIT= overrides INSERTBUFF=.



The LIBNAME Statement for Relational Databases � INTERFACE= LIBNAME Option 121

Note: When you insert rows by using the VIEWTABLE window or the FSVIEW or
FSEDIT procedure, use INSERTBUFF=1 to prevent the DBMS interface from trying to
insert multiple rows. These features do not support inserting more than one row at a
time. �

Note: Additional driver-specific restrictions might apply. �

DB2 UNIX/PC Details: You must specify INSERT_SQL=YES in order to use this
option. If one row in the insert buffer fails, all rows in the insert buffer fail. The default
is calculated based upon the row length of your data.

Microsoft SQL Server Details: You must specify INSERT_SQL=YES in order to use
this option. The default is 1.

MySQL Details: The default is 0. Any value greater than 0 turns on the
INSERTBUFF= option. The engine then calculates how many rows it can insert at one
time, based on the row size. If one row in the insert buffer fails, all rows in the insert
buffer might fail, depending on your storage type.

HP Neoview and Netezza Details: The default is automatically calculated based on
row length.

ODBC Details: The default is 1.
OLE DB Details: The default is 1.
Oracle Details: The default is 10.

See Also

To apply this option to an individual data set, see the data set option
“INSERTBUFF= Data Set Option” on page 227.

INTERFACE= LIBNAME Option

Specifies the name and location of the interfaces file that is searched when you connect to the
Sybase server

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: Sybase

Default value: none

Syntax

INTERFACE=<’>filename<’>

Details

The interfaces file contains names and access information for the available servers on
the network. If you omit a filename, the default action for your operating system occurs.
INTERFACE= is not used in some operating environments. Contact your database
administrator to see whether this statement applies to your computing environment.



122 KEYSET_SIZE= LIBNAME Option � Chapter 9

KEYSET_SIZE= LIBNAME Option

Specifies the number of rows that are keyset driven

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.

DBMS support: Microsoft SQL Server, ODBC

Default value: 0

Syntax
KEYSET_SIZE=number-of-rows

Syntax Description

number-of-rows
is an integer with a value between 0 and the number of rows in the cursor.

Details
This option is valid only when CURSOR_TYPE=KEYSET_DRIVEN. See
“CURSOR_TYPE= LIBNAME Option” on page 95 for more information about
keyset-driven cursors.

If KEYSET_SIZE=0, then the entire cursor is keyset driven. If a value greater than 0
is specified for KEYSET_SIZE=, then the value chosen indicates the number of rows
within the cursor that will functions as a keyset-driven cursor. When you scroll beyond
the bounds that are specified by KEYSET_SIZE=, then the cursor becomes dynamic and
new rows might be included in the cursor. This becomes the new keyset and the cursor
functions as a keyset-driven cursor again. Whenever the specified value is between 1
and the number of rows in the cursor, the cursor is considered to be a mixed cursor. The
reason is part of the cursor functions as a keyset-driven cursor, and part of the cursor
functions as a dynamic cursor.

See Also
To apply this option to an individual data set, see the data set option

“KEYSET_SIZE= Data Set Option” on page 228.

LOCATION= LIBNAME Option

Lets you further qualify exactly where a table resides

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 z/OS

Default value: none



The LIBNAME Statement for Relational Databases � LOCKTABLE= LIBNAME Option 123

Syntax
LOCATION=location

Details
The location name maps to the location in the SYSIBM.SYSLOCATIONS catalog in the
communication database.

In the DB2 interface, the location is converted to the first level of a three-level table
name: location.authid.table. The connection to the remote DB2 subsystem is done
implicitly by DB2’s Distributed Data Facility (DDF) when DB2 receives a three-level
table name in an SQL statement.

If you omit this option, SAS accesses the data from the local DB2 database unless
you have specified a value for the SERVER= option. This option is not validated until
you access a DB2 table. If you specify LOCATION=, you must also specify the
AUTHID= option.

See Also

� To apply this option to an individual data set, see the data set option
“LOCATION= Data Set Option” on page 229

� For information about accessing a database server on Linux, UNIX, or Windows
using a libref, see the REMOTE_DBTYPE= LIBNAME option.

LOCKTABLE= LIBNAME Option
Places exclusive or shared locks on tables

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Informix
Default value: no locking

Syntax
LOCKTABLE= EXCLUSIVE | SHARE

Syntax Description

EXCLUSIVE
specifies that other users are prevented from accessing each table that you open in
the libref.

SHARE
specifies that other users or processes can read data from the tables, but they cannot
update the data.

Details
You can lock tables only if you are the owner or have been granted the necessary
privilege.



124 LOCKTIME= LIBNAME Option � Chapter 9

See Also
To apply this option to an individual data set, see the data set option “LOCKTABLE=

Data Set Option” on page 230.

LOCKTIME= LIBNAME Option

Specifies the number of seconds to wait until rows are available for locking

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Informix
Default value: none

Syntax
LOCKTIME=positive-integer

Details
You must specify LOCKWAIT=YES for LOCKTIME= to have an effect. If you omit the
LOCKTIME= option and use LOCKWAIT=YES, SAS suspends your process indefinitely
until a lock can be obtained.

See Also
“LOCKWAIT= LIBNAME Option” on page 124

LOCKWAIT= LIBNAME Option

Specifies whether to wait indefinitely until rows are available for locking

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Informix, Oracle
Default value: DBMS-specific

Syntax
LOCKWAIT= YES | NO

Syntax Description

YES
specifies that SAS waits until rows are available for locking.



The LIBNAME Statement for Relational Databases � LOGDB= LIBNAME Option 125

NO
specifies that SAS does not wait and returns an error to indicate that the lock is not
available.

LOGDB= LIBNAME Option

Redirects the log tables created by Teradata’s FastExport utility to an alternate database

Valid in: DATA and PROC steps (wherever Fastload is used)
DBMS support: Teradata
Default value: Default Teradata database for the libref

Syntax
LOGDB=<database-name>

Syntax Description

database-name
the name of the Teradata database.

Details
This option enables the restart log tables that are used by Teradata’s FastExport utility
to be created in an alternate database. You must have necessary permissions to create
tables in the specified database. Only restart tables are created in the specified
database. Restart capability of FastExport is not yet supported.

Example

In the following example, PROC PRINT invokes Teradata’s FastExport utility if it is
installed. The LOGDB= option in the LIBNAME statement causes the restart log tables
that are created by Teradata’s FastExport to be created in the database ALTDB.

libname mydblib teradata user=testuser pw=testpass logdb=altdb;
proc print data=mydblib.mytable(dbsliceparm=all);
run;



126 MAX_CONNECTS= LIBNAME Option � Chapter 9

MAX_CONNECTS= LIBNAME Option

Specifies the maximum number of simultaneous connections that Sybase allows

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Sybase
Default value: 25

Syntax
MAX_CONNECTS=numeric-value

Details
If you omit MAX_CONNECTS=, the default for the maximum number of connections is
25. Note that increasing the number of connections has a direct impact on memory.

MULTI_DATASRC_OPT= LIBNAME Option

Used in place of DBKEY to improve performance when processing a join between two data sources

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: NONE

Syntax
MULTI_DATASRC_OPT=NONE |IN_CLAUSE

Syntax Description

NONE
turns off the functionality of the option.

IN_CLAUSE
specifies that an IN clause containing the values read from a smaller table are used
to retrieve the matching values in a larger table based on a key column designated in
an equi-join.



The LIBNAME Statement for Relational Databases � MULTI_DATASRC_OPT= LIBNAME Option 127

Details
When processing a join between a SAS data set and a DBMS table, the SAS data set
should be smaller than the DBMS table for optimal performance. However, in the event
that the SAS data set is larger than that DBMS table, the SAS data set is still used in
the IN clause.

When SAS is processing a join between two DBMS tables, SELECT COUNT (*) is
issued to determine which table is smaller and if it qualifies for an IN clause. You can
use “DBMASTER= Data Set Option” on page 210 to prevent the SELECT COUNT (*)
from being issued.

Currently, the IN clause has a limit of 4,500 unique values.
Oracle Details: Oracle can handle an IN clause of only 1,000 values. Therefore, it

divides larger IN clauses into multiple, smaller IN clauses. The results are combined
into a single result set. For example if an IN clause contained 4,000 values, Oracle
produces four IN clauses that each contain 1,000 values. A single result is produced, as
if all 4,000 values were processed as a whole.

OLE DB Details: OLE DB restricts the number of values allowed in an IN clause to
255.

Setting DBKEY= automatically overrides MULTI_DATASRC_OPT=.
DIRECT_SQL= can impact this option as well. If DIRECT_SQL=NONE or

NOWHERE, the IN clause cannot be built and passed to the DBMS, regardless of the
value of MULTI_DATASRC_OPT=. These setting for DIRECT_SQL= prevent a WHERE
clause from being passed.

Examples

The following example builds and passes an IN clause from the SAS table to the
DBMS table, retrieving only the necessary data to process the join:

proc sql;
create view work.v as
select tab2.deptno, tab2.dname from
work.sastable tab1, dblib.table2 tab2
where tab12.deptno = tab2.deptno
using libname dblib oracle user=testuser password=testpass
multi_datasrc_opt=in_clause;

quit;

The following example prevents the building and passing of the IN clause to the
DBMS. This action requires all rows from the DBMS table to be brought into SAS for
processing the join:

libname dblib oracle user=testuser password=testpass multi_datasrc_opt=none;
proc sql;

select tab2.deptno, tab2.dname from
work.table1 tab1,
dblib.table2 tab2

where tab1.deptno=tab2.deptno;
quit;

See Also
“DBMASTER= Data Set Option” on page 210



128 OR_UPD_NOWHERE= LIBNAME Option � Chapter 9

OR_UPD_NOWHERE= LIBNAME Option

Specifies whether SAS uses an extra WHERE clause when updating rows with no locking

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Oracle
Alias: ORACLE_73_OR_ABOVE=
Default value: YES

Syntax
OR_UPD_NOWHERE= YES | NO

Syntax Description

YES
specifies that SAS does not use an additional WHERE clause to determine whether
each row has changed since it was read. Instead, SAS uses the SERIALIZABLE
isolation level (available with Oracle 7.3 and above) for update locking. If a row
changes after the serializable transaction starts, the update on that row fails.

NO
specifies that SAS uses an additional WHERE clause to determine whether each row
has changed since it was read. If a row has changed since being read, the update fails.

Details
Use this option when you are updating rows without locking
(UPDATE_LOCK_TYPE=NOLOCK).

By default (OR_UPD_NOWHERE=YES), updates are performed in serializable
transactions so you can avoid extra WHERE clause processing and potential WHERE
clause floating point precision problems.

Note: Due to the published Oracle bug 440366, sometimes an update on a row fails
even if the row has not changed. Oracle offers the following solution: When creating a
table, increase the number of INITRANS to at least 3 for the table. �

See Also
To apply this option to an individual data set or a view descriptor, see the data set

option “OR_UPD_NOWHERE= Data Set Option” on page 249.



The LIBNAME Statement for Relational Databases � PREFETCH= LIBNAME Option 129

PACKETSIZE= LIBNAME Option

Lets you specify the packet size for Sybase to use

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: Sybase

Default value: current server setting

Syntax
PACKETSIZE=numeric-value

Syntax Description

numeric-value
is any multiple of 512, up to the limit of the maximum network packet size setting on
your server.

Details
If you omit PACKETSIZE=, the default is the current server setting. You can query the
default network packet value in ISQL by using the Sybase sp_configure command.

PREFETCH= LIBNAME Option

Enables the PreFetch facility on tables that are accessed by the libref defined with the LIBNAME
statement

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: Teradata
Default value: not enabled

Syntax
PREFETCH=‘unique_storename, [#sessions,algorithm]’

Syntax Description

unique_storename
is a unique name that you specify. This value names the Teradata macro that
PreFetch creates to store selected SQL statements in the first run of a job. During
subsequent runs of the job, SAS/ACCESS presubmits the stored SQL statements in
parallel to the Teradata DBMS.



130 PRESERVE_COL_NAMES= LIBNAME Option � Chapter 9

#sessions
controls the number of statements that PreFetch submits in parallel to Teradata. A
valid value is 1 through 9. If you do not specify a #sessions value, the default is 3.

algorithm
specifies the algorithm that PreFetch uses to order the selected SQL statements.
Currently, the only valid value is SEQUENTIAL.

Details
Before using PreFetch, see the PreFetch description in the SAS/ACCESS
documentation for Teradata for a complete discussion. Review when and how the option
enhances read performance of a job that is run more than once.

PRESERVE_COL_NAMES= LIBNAME Option

Preserves spaces, special characters, and case-sensitivity in DBMS column names when you
create DBMS tables

Valid in: the SAS/ACCESS LIBNAME statement (when you create DBMS tables)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Teradata
Default value: DBMS-specific

Syntax
PRESERVE_COL_NAMES= NO | YES

Syntax Description

NO
specifies that column names used in DBMS table creation are derived from SAS
variable names by using the SAS variable name normalization rules. See the
VALIDVARNAME system option for more information. However, the database
applies its DBMS-specific normalization rules to the SAS variable names when
creating the DBMS column names.

The use of N-Literals to create column names that use database keywords or
special symbols other than the underscore character might be illegal when DBMS
normalization rules are applied. To include nonstandard SAS symbols or database
keywords, specify PRESERVE_COL_NAMES=YES.

NO is the default for most DBMS interfaces.

YES
specifies that column names that are used in table creation are passed to the DBMS
with special characters and the exact, case-sensitive spelling of the name preserved.



The LIBNAME Statement for Relational Databases � PRESERVE_COL_NAMES= LIBNAME Option 131

Details
This option applies only when you use SAS/ACCESS to create a new DBMS table. When
you create a table, you assign the column names by using one of the following methods:

� To control the case of the DBMS column names, specify variables using the desired
case and set PRESERVE_COL_NAMES=YES. If you use special symbols or blanks,
you must set VALIDVARNAME= to ANY and use N-Literals. See the section about
names in SAS/ACCESS for Relational Databases: Reference and the section about
system options in SAS Language Reference: Dictionary for further information.

� To enable the DBMS to normalize the column names according to its naming
conventions, specify variables using any case and set
PRESERVE_COLUMN_NAMES= NO.

Note: When you use SAS/ACCESS to read from, insert rows into, or modify data in
an existing DBMS table, SAS identifies the database column names by their spelling.
Therefore, when the database column exists, the case of the variable does not matter. �

See the topic about naming in the documentation for your SAS/ACCESS interface for
additional details.

Specify the alias PRESERVE_NAMES= if you plan to specify both the
PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options in your
LIBNAME statement. Using this alias saves you some time when coding.

To use column names in your SAS program that are not valid SAS names, you must
use one of the following techniques:

� Use the DQUOTE= option in PROC SQL and then reference your columns using
double quotation marks. For example:

proc sql dquote=ansi;
select "Total$Cost" from mydblib.mytable;

� Specify the global system option VALIDVARNAME=ANY and use name literals in
the SAS language. For example:

proc print data=mydblib.mytable;
format ’Total$Cost’n 22.2;

Note that if you are creating a table in PROC SQL, you must also include the
PRESERVE_COL_NAMES=YES option in your LIBNAME statement. For example:

libname mydblib oracle user=testuser password=testpass
preserve_col_names=yes;

proc sql dquote=ansi;
create table mydblib.mytable ("my$column" int);

PRESERVE_COL_NAMES= does not apply to the Pass-Through Facility.

See Also
To apply this option to an individual data set, see the PRESERVE_COL_NAMES=

data set option“PRESERVE_COL_NAMES= Data Set Option” on page 251 naming in
your DBMS interface.



132 PRESERVE_TAB_NAMES= LIBNAME Option � Chapter 9

PRESERVE_TAB_NAMES= LIBNAME Option

Preserves spaces, special characters, and case-sensitivity in DBMS table names

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza ODBC, OLE DB, Oracle, Teradata
Default value: DBMS-specific

Syntax
PRESERVE_TAB_NAMES= NO | YES

Syntax Description

NO
specifies that when you create DBMS tables or refer to an existing table, the table
names are derived from SAS member names by using SAS member name
normalization. However, the database applies DBMS-specific normalization rules to
the SAS member names. Therefore, the table names are created or referenced in the
database following the DBMS-specific normalization rules.

When you use SAS to read a list of table names (for example, in the SAS Explorer
window), the tables, whose names do not conform to the SAS member name
normalization rules, do not appear in the output. In SAS line mode, the number of
tables that do not display from PROC DATASET due to this restriction is noted as a
note:

Note: "Due to the PRESERVE_TAB_NAMES=NO LIBNAME option setting, 12
table(s) have not been displayed." �

You do not get this warning when using SAS Explorer.
SAS Explorer displays DBMS table names in capitalized form when

PRESERVE_TAB_NAMES=NO. This is now how the tables are represented in the
DBMS.

NO is the default for most DBMS interfaces.

YES
specifies that table names are read from and passed to the DBMS with special
characters, and the exact, case-sensitive spelling of the name is preserved.

Details
See the topic on naming in the documentation for your SAS/ACCESS interface for
additional details.

To use table names in your SAS program that are not valid SAS names, use one of
the following techniques:

� Use the PROC SQL option DQUOTE= and place double quotation marks around
the table name. The libref must specify PRESERVE_TAB_NAMES=YES. For
example:

libname mydblib oracle user=testuser password=testpass
preserve_tab_names=yes;



The LIBNAME Statement for Relational Databases � QUALIFIER= LIBNAME Option 133

proc sql dquote=ansi;
select * from mydblib."my table";

� Use name literals in the SAS language. The libref must specify
PRESERVE_TAB_NAMES=YES. For example:

libname mydblib oracle user=testuser password=testpass preserve_tab_names=yes;
proc print data=mydblib.’my table’n;
run;

Specify the alias PRESERVE_NAMES= to save time if you are specifying both
PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= in your LIBNAME
statement.

Oracle Details: Unless you specify PRESERVE_TAB_NAMES=YES, the table name
that you enter for SCHEMA= or for the DBINDEX= data set option is converted to
uppercase.

Example

If you use PROC DATASETS to read the table names in an Oracle database that
contains three tables, My_Table, MY_TABLE, and MY TABLE. The results differ
depending on the setting of PRESERVE_TAB_NAMES.

If the libref specifies PRESERVE_TAB_NAMES=NO, then the PROC DATASETS
output is one table name, MY_TABLE. This is the only table name that is in Oracle
normalized form (uppercase letters and a valid symbol, the underscore). My_Table is
not displayed because it is not in Oracle - MY TABLE is not displayed because it is not
in SAS member normalized form (the embedded space is a nonstandard SAS character).

If the libref specifies PRESERVE_TAB_NAMES=YES, then the PROC DATASETS
output includes all three table names, My_Table, MY_TABLE, and MY TABLE.

See Also
To apply this option to an individual data set, see the PRESERVE_TAB_NAMES=

data set option“PRESERVE_COL_NAMES= LIBNAME Option” on page 130naming in
your DBMS interface.

QUALIFIER= LIBNAME Option

Lets you identify database objects, such as tables and views, using the specified qualifier

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: Microsoft SQL Server, MySQL, Netezza, ODBC, OLE DB

Default value: none

Syntax
QUALIFIER=<qualifier-name>



134 QUALIFY_ROWS= LIBNAME Option � Chapter 9

Details
If this option is omitted, the default is the default DBMS qualifier name, if any.
QUALIFIER= can be used for any DBMS that allows three-part identifier names, such
as qualifier.schema.object.

MySQL Details: The MySQL interface does not support three-part identifier names,
so a two-part name is used (such as qualifier.object).

Examples

In the following LIBNAME statement, the QUALIFIER= option causes any reference
in SAS to mydblib.employee to be interpreted by ODBC as mydept.scott.employee.

libname mydblib odbc dsn=myoracle
password=testpass schema=scott
qualifier=mydept;

In the following example, the QUALIFIER= option causes any reference in SAS to
mydblib.employee to be interpreted by OLE DB as pcdivision.raoul.employee.

libname mydblib oledb provider=SQLOLEDB
properties=("user id"=dbajorge "data source"=SQLSERVR)
schema=raoul qualifier=pcdivision;

proc print data=mydblib.employee;
run;

See Also
To apply this option to an individual data set, see the data set option “QUALIFIER=

Data Set Option” on page 253.

QUALIFY_ROWS= LIBNAME Option

Uniquely qualifies all member values in a result set

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: OLE DB

Default value: NO

Syntax
QUALIFY_ROWS= YES | NO

Syntax Description

YES
specifies that when the OLE DB interface flattens the result set of an MDX
command, the values in each column are uniquely identified using a hierarchical
naming scheme.



The LIBNAME Statement for Relational Databases � QUERY_TIMEOUT= LIBNAME Option 135

NO
specifies that when the OLE DB interface flattens the result set of an MDX command,
the values in each column are not qualified, which means they might not be unique.

Details
For example, when this option is set to NO, a GEOGRAPHY column might have a value
of PORTLAND for Portland, Oregon, and the same value of PORTLAND for Portland,
Maine. When you set this option to YES, the two values might become
[USA].[Oregon].[Portland] and [USA].[Maine].[Portland], respectively.

Note: Depending on the size of the result set, QUALIFY_ROWS=YES can have a
significant, negative impact on performance. The reason is that because it forces the
OLE DB interface to search through various schemas to gather the information needed
to created unique qualified names. �

For more information about MDX commands, see the SAS/ACCESS documentation
for OLE DB.

QUERY_TIMEOUT= LIBNAME Option

Specifies the number of seconds of inactivity to wait before canceling a query

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.
DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, Netezza, ODBC
Default value: 0

Syntax
QUERY_TIMEOUT=number-of-seconds

Details
The default value of 0 indicates that there is no time limit for a query. This option is
useful when you are testing a query or if you suspect that a query might contain an
endless loop.

See Also
To apply this option to an individual data set, see the data set option

“QUERY_TIMEOUT= Data Set Option” on page 253.



136 QUOTE_CHAR= LIBNAME Option � Chapter 9

QUOTE_CHAR= LIBNAME Option

Specifies which quotation mark character to use when delimiting identifiers

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB
Default value: none

Syntax
QUOTE_CHAR=character

Syntax Description

character
is the quotation mark character to use when delimiting identifiers, such as the
double quotation mark (").

Details
The provider usually specifies the delimiting character. However, when there is a
difference between what the provider allows for this character and what the DBMS
allows, the QUOTE_CHAR= option overrides the character returned by the provider.

Microsoft SQL Server Details: QUOTE_CHAR= overrides the Microsoft SQL Server
default.

ODBC Details: This option is mainly for the ODBC interface to Sybase and should be
used in conjunction with the DBCONINIT and DBLIBINIT LIBNAME options.

QUOTE_CHAR= overrides the ODBC default because some drivers return a blank
for the identifier delimiter even though the DBMS uses a quotation mark (for example,
ODBC to Sybase).

Examples

If you would like your quotation character to be a single quotation mark, then specify
the following:

libname x odbc dsn=mydsn pwd=mypassword quote_char="’";

If you would like your quotation character to be a double quotation mark, then
specify the following:

libname x odbc dsn=mydsn pwd=mypassword quote_char=’"’;



The LIBNAME Statement for Relational Databases � READ_ISOLATION_LEVEL= LIBNAME Option 137

QUOTED_IDENTIFIER= LIBNAME Option

Lets you specify table and column names with embedded spaces and special characters

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Sybase
Default value: NO

Syntax
QUOTED_IDENTIFIER=YES|NO

Details
This option is used in place of the PRESERVE_TAB_NAMES and
PRESERVE_COL_NAMES options, which have no effect on the Sybase interface, due to
Sybase’s default to case-sensitivity.

READ_ISOLATION_LEVEL= LIBNAME Option

Defines the degree of isolation of the current application process from other concurrently running
application processes

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.
DBMS support: DB2 UNIX/PC, DB2 z/OS, Informix, Microsoft SQL Server, ODBC, OLE
DB, Oracle, Sybase, Teradata
Default value: DBMS-specific

Syntax
READ_ISOLATION_LEVEL=DBMS-specific value

Syntax Description
See the documentation for your SAS/ACCESS interface for the values for your DBMS.

Details
The degree of isolation defines

� the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

� the degree to which update activity of other concurrently executing application
processes can affect the current application.

This option is ignored in the interfaces to DB2 under UNIX and PC Hosts and ODBC
if READ_LOCK_TYPE= is not set to ROW.



138 READ_LOCK_TYPE= LIBNAME Option � Chapter 9

For DBMS-specific details, see locking in the documentation for your SAS/ACCESS
interface.

See Also
To apply this option to an individual data set, see the data set option

“READ_ISOLATION_LEVEL= Data Set Option” on page 254.

READ_LOCK_TYPE= LIBNAME Option

Specifies how data in a DBMS table is locked during a READ transaction

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 UNIX/PC, DB2 z/OS, Microsoft SQL Server, ODBC, OLE DB,
Oracle, Sybase, Teradata

Default value: DBMS-specific

Syntax

READ_LOCK_TYPE= ROW | PAGE | TABLE | NOLOCK |VIEW

Syntax Description

ROW
locks a row if any of its columns are accessed. If you are using the interface to ODBC
or DB2 under UNIX and PC hosts, READ_LOCK_TYPE=ROW indicates that locking
is based on the READ_ISOLATION_LEVEL= option. (This value is valid in the
DB2 under UNIX and PC hosts, Microsoft SQL Server, ODBC, and Oracle interfaces.)

PAGE
locks a page of data, which is a DBMS-specific number of bytes. (This value is valid
in the Sybase interface.)

TABLE
locks the entire DBMS table. If you specify READ_LOCK_TYPE=TABLE, you must
also specify CONNECTION= UNIQUE, or you receive an error message. Setting
CONNECTION=UNIQUE ensures that your table lock is not lost, for example, due to
another table closing and committing rows in the same connection. (This value is
valid in the DB2 under z/OS, DB2 under UNIX and PC hosts, ODBC, Oracle,
Microsoft SQL Server, and Teradata interfaces.)

NOLOCK
does not lock the DBMS table, pages, or rows during a read transaction. (This value
is valid in the Oracle and Sybase interfaces, and in the ODBC and Microsoft SQL
Server interfaces when using the Microsoft SQL Server driver.)

VIEW
locks the entire DBMS view. (This value is valid in the Teradata interface.)



The LIBNAME Statement for Relational Databases � READ_MODE_WAIT= LIBNAME Option 139

Details
If you omit READ_LOCK_TYPE=, the default is the DBMS’ default action. You can set
a lock for one DBMS table by using the data set option or for a group of DBMS tables
by using the LIBNAME option.

For DBMS-specific details, see locking in the documentation for your SAS/ACCESS
interface.

See the documentation for your SAS/ACCESS interface for additional details.

Example

In the following example, the libref MYDBLIB uses the SAS/ACCESS interface to
Oracle to connect to an Oracle database. USER=, PASSWORD=, and PATH= are
SAS/ACCESS connection options. The LIBNAME options specify that row-level locking
is used when data is read or updated:

libname mydblib oracle user=testuser password=testpass
path=myorapth read_lock_type=row update_lock_type=row;

See Also
To apply this option to an individual data set, see the data set option

“READ_LOCK_TYPE= Data Set Option” on page 254.

READ_MODE_WAIT= LIBNAME Option

Specifies during SAS/ACCESS read operations whether Teradata should wait to acquire a lock or
should fail the request when the DBMS resource is already locked by a different user

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Teradata
Default value: none

Syntax
READ_MODE_WAIT= YES|NO

Syntax Description

YES
specifies for Teradata to wait to acquire the lock, so SAS/ACCESS waits indefinitely
until it can acquire the lock.

NO
specifies for Teradata to fail the lock request if the specified DBMS resource is locked.

Details
If you specify READ_MODE_WAIT=NO and if a different user holds a restrictive lock,
then the executing SAS step fails. SAS/ACCESS continues processing the job by



140 READBUFF= LIBNAME Option � Chapter 9

executing the next step. For more information, see the SAS/ACCESS documentation for
Teradata.

If you specify READ_MODE_WAIT=YES, SAS/ACCESS waits indefinitely until it can
acquire the lock.

A restrictive lock means that another user is holding a lock that prevents you from
obtaining your desired lock. Until the other user releases the restrictive lock, you
cannot obtain your lock. For example, another user’s table level WRITE lock prevents
you from obtaining a READ lock on the table.

See Also
To apply this option to an individual data set, see the data set option

“READ_MODE_WAIT= Data Set Option” on page 255.

READBUFF= LIBNAME Option

Specifies the number of rows of DBMS data to read into the buffer

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.

DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE
DB, Oracle, Sybase

Default value: DBMS-specific

Syntax
READBUFF=integer

Syntax Description

integer
is the positive number of rows to hold in memory. SAS allows the maximum number
that is allowed by the DBMS.

Details
This option improves performance by specifying a number of rows that can be held in
memory for input into SAS. Buffering data reads can decrease network activities and
increase performance. However, because SAS stores the rows in memory, higher values
for READBUFF= use more memory. In addition, if too many rows are selected at once,
then the rows that are returned to the SAS application might be out of date. For
example, if someone else modifies the rows, you do not see the changes.

When READBUFF=1, only one row is retrieved at a time. The higher the value for
READBUFF=, the more rows the DBMS engine retrieves in one fetch operation.

DB2 UNIX/PC Details: If you do not specify this option, the buffer size is
automatically calculated based upon the row length of your data and the
SQLExtendedFetch API call is used (this is the default). ROWSET_SIZE= is an alias
for this option.



The LIBNAME Statement for Relational Databases � REMOTE_DBTYPE= LIBNAME Option 141

Microsoft SQL Server and ODBC Details: If you do not specify this option, the
SQLFetch API call is used and no internal SAS buffering is performed (this is the
default). Setting READBUFF=1 or greater causes the SQLExtendedFetch API call to be
used. ROWSET_SIZE= is an alias for this option.

HP Neoview and Netezza Details: The default is automatically calculated based on
row length.

OLE DB Details: The default is 1. ROWSET_SIZE= is an alias for this option.
Oracle Details: The default is 250.
Sybase Details: The default is 100.

See Also
To apply this option to an individual data set, see the data set option “READBUFF=

Data Set Option” on page 256.

REMOTE_DBTYPE= LIBNAME Option

Specifies whether the libref points to a database server on z/OS or to one on Linux, UNIX, or
Windows (LUW)

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: DB2 z/OS

Default value: ZOS

Syntax
REMOTE_DBTYPE= LUW | ZOS

Syntax Description

LUW
specifies that the database server that is accessed through the libref resides on
Linux, UNIX, or Windows.

ZOS
specifies that the database server that is accessed through the libref runs on z/OS
(default).

Details
Specifying REMOTE_DBTYPE= in the LIBNAME statement ensures that the SQL that
is used by some SAS procedures to access the DB2 catalog tables is generated properly,
and that it is based upon the database server type.

This option also enables special catalog calls (such as DBMS::Indexes) to function
properly when the target database does not reside on a mainframe computer.

REMOTE_DBTYPE= is used in conjunction with the SERVER= CONNECT
statement option or the LOCATION= LIBNAME option. If neither option is used, then
REMOTE_DBTYPE= is ignored.



142 REREAD_EXPOSURE= LIBNAME Option � Chapter 9

Example

The following is an example of using REMOTE_DBTYPE= with the SERVER= option.

libname mylib db2 ssid=db2a server=db2_udb remote_dbtype=luw;
proc datasets lib=mylib;

quit;

This SAS code, by specifying REMOTE_DBTYPE=LUW, enables the catalog call to
work properly for this remote connection.

proc sql;
connect to db2 (ssid=db2a server=db2_udb remote_dbtype=luw);

select * from connection to db2
select * from connection to db2

(DBMS::PrimaryKeys ("", "JOSMITH", ""));
quit;

See Also
For more information about the other options that work in conjunction with

REMOTE_DBTYPE=, see the LOCATION= LIBNAME option and the SERVER=
CONNECT statement option.

REREAD_EXPOSURE= LIBNAME Option

Specifies whether the SAS/ACCESS engine functions like a random access engine for the scope of
the LIBNAME statement

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: NO

Syntax
REREAD_EXPOSURE= NO | YES

Syntax Description

NO
specifies that the SAS/ACCESS engine functions as an RMOD engine, which means
that your data is protected by the normal data protection that SAS provides.

YES
specifies that the SAS/ACCESS engine functions like a random access engine when
rereading a row so that you cannot guarantee that the same row is returned. For
example, if you read row 5 and someone else deletes it, then the next time you read



The LIBNAME Statement for Relational Databases � SCHEMA= LIBNAME Option 143

row 5, you will read a different row. You have the potential for data integrity
exposures within the scope of your SAS session.

Details
CAUTION:

Using REREAD_EXPOSURE= could cause data integrity exposures �

Netezza, ODBC, and OLE DB Details: To avoid data integrity problems, it is advisable
to set UPDATE_ISOLATION_LEVEL=S (serializable) if you set
REREAD_EXPOSURE=YES.

Oracle Details: To avoid data integrity problems, it is advisable to set
UPDATE_LOCK_TYPE= TABLE if you set REREAD_EXPOSURE=YES.

SCHEMA= LIBNAME Option

Lets you read database objects, such as tables and views, in the specified schema

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS-specific

Syntax
SCHEMA=schema-name

Details
If this option is omitted, you connect to the default schema for your DBMS.

The values for SCHEMA= are usually case-sensitive, so use care when you specify
this option.

Oracle Details: Specify a schema name to be used when referring to database objects.
SAS can access another user’s database objects by using a specified schema name. If
PRESERVE_TAB_NAMES=NO, SAS converts the SCHEMA= value to uppercase
because all values in the Oracle data dictionary are uppercase unless quoted.

Teradata Details: If you omit this option, a libref points to your default Teradata
database, which often has the same name as your user name. You can use this option to
point to a different database. You can use this option to view or modify a different
user’s DBMS tables or views if you have the required Teradata privileges. (For
example, to read another user’s tables, you must have the Teradata privilege SELECT
for that user’s tables.) The Teradata alias for SCHEMA= is DATABASE=. For more
information about changing the default database, see the DATABASE statement in
your Teradata documentation.



144 SHOW_SYNONYMS= LIBNAME Option � Chapter 9

Examples

In the following LIBNAME statement example, the SCHEMA= option causes any
reference in SAS to mydb.employee to be interpreted by DB2 as scott.employee.

libname mydb db2 SCHEMA=SCOTT;

To access an Oracle object in another schema, use the SCHEMA= option as in the
following example. The schema name is typically a person’s user name or ID.

libname mydblib oracle user=testuser
password=testpass path=’hrdept_002’ schema=john;

In the following example, the Oracle SCHEDULE table resides in the AIRPORTS
schema, and is specified as AIRPORTS.SCHEDULE. To access this table in PROC
PRINT and still use the libref (CARGO) in the SAS/ACCESS LIBNAME statement, you
specify the schema in the SCHEMA= option. Then you put the libref.table in the
procedure’s DATA statement.

libname cargo oracle schema=airports user=testuser password=testpass
path="myorapath";

proc print data=cargo.schedule;
run;

In the Teradata interface example that follows, the user testuser prints the emp
table, which is located in the otheruser database.

libname mydblib teradata user=testuser pw=testpass schema=otheruser;
proc print data=mydblib.emp;
run;

See Also
To apply this option to an individual data set, see the data set option “SCHEMA=

Data Set Option” on page 259.

SHOW_SYNONYMS= LIBNAME Option

Specifies whether PROC DATASETS shows only tables and views for the current user (or schema if
the SCHEMA= option is specified)

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Oracle
Default value: NO

Syntax
SHOW_SYNONYMS= <YES | NO>



The LIBNAME Statement for Relational Databases � SPOOL= LIBNAME Option 145

Syntax Description

YES
specifies that PROC DATASETS shows only the synonyms that represent the tables
and views for the current user (or schema if the SCHEMA= option is specified).

NO
specifies that PROC DATASETS shows only tables and views for the current user (or
schema if the SCHEMA= option is specified).

Details
Instead of submitting PROC DATASETS, you can click the libref for the SAS Explorer
window to get this same information.

SPOOL= LIBNAME Option

Specifies whether SAS creates a utility spool file during read transactions that read data more
than once

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: YES

Syntax
SPOOL= YES | NO | DBMS

Syntax Description

YES
specifies that SAS creates a utility spool file into which it writes the rows that are
read the first time. For subsequent passes through the data, the rows are read from
the utility spool file rather than being re-read from the DBMS table. This guarantees
that the row set is the same for every pass through the data.

NO
specifies that the required rows for all passes of the data are read from the DBMS
table. No spool file is written. There is no guarantee that the row set is the same for
each pass through the data.

DBMS
is valid for Oracle only. The required rows for all passes of the data are read from
the DBMS table. Additional enforcements are made on the DBMS server side to
ensure that the row set is the same for every pass through the data. This setting
causes the SAS/ACCESS interface to Oracle to satisfy the two-pass requirement by
starting a read-only transaction. SPOOL=YES and SPOOL=DBMS have comparable
performance results for Oracle; however, SPOOL=DBMS does not use any disk space.



146 SQL_FUNCTIONS= LIBNAME Option � Chapter 9

When SPOOL is set to DBMS, the CONNECTION option must be set to UNIQUE. If
not, an error occurs.

Details
In some cases, SAS processes data in more than one pass through the same set of rows.
Spooling is the process of writing rows that have been retrieved during the first pass of
a data read to a spool file. In the second pass, rows can be reread without performing
I/O to the DBMS a second time. When data must be read more than once, spooling
improves performance. Spooling also guarantees that the data remains the same
between passes, as most SAS/ACCESS interfaces do not support member-level locking.

MySQL Details: Do not use SPOOL=NO with the MySQL interface.
Teradata Details: SPOOL=NO requires SAS/ACCESS to issue identical SELECT

statements to Teradata twice. Additionally, because the Teradata table can be modified
between passes, SPOOL=NO can cause data integrity problems. Use SPOOL=NO with
discretion.

SQL_FUNCTIONS= LIBNAME Option

Specifies that the functions that match those supported by SAS should be passed to the DBMS

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, HP Neoview, MySQL, Netezza, ODBC, OLE DB
Default value: NONE

Syntax
SQL_FUNCTIONS=ALL

Syntax Description

ALL
specifies that functions that match those that are supported by SAS should be passed
to the DBMS.

Details
DB2 UNIX/PC, HP Neoview, Netezza, and ODBC Details: When SQL_FUNCTIONS= is
set to ALL, only the functions that the DBMS drivers support are passed. Only a
fraction of the functions might be available, based on your provider:

DATE

DATEPART

DATETIME

TIME

TIMEPART

TODAY



The LIBNAME Statement for Relational Databases � SQL_FUNCTIONS= LIBNAME Option 147

DAY

HOUR

MINUTE

MONTH

QRT

SECOND

WEEKDAY

YEAR

BYTE

COMPRESS

INDEX

LENGTH

REPEAT

SOUNDEX

SUBSTR

TRANWRD

TRIMN

MOD

OLE DB Details: When SQL_FUNCTIONS= is set to ALL, the following functions
are passed to the DBMS, regardless of whether they are supported by the driver:

LOWCASE

UPCASE

ABS

ARCOS

ARSIN

ATAN

CEIL

COS

EXP

FLOOR

LOG

LOG10

SIGN

SIN

SQRT

TAN

DATE



148 SQL_FUNCTIONS= LIBNAME Option � Chapter 9

DATEPART

DATETIME

TIME

TIMEPART

TODAY

DAY

HOUR

MINUTE

MONTH

QRT

SECOND

WEEKDAY

YEAR

BYTE

COMPRESS

INDEX

LENGTH

REPEAT

SOUNDEX

SUBSTR

TRANWRD

TRIMN

MOD

Use of this option can cause unexpected results, especially if used for NULL
processing and date/time/timestamp handling. For example, the following SAS code
executed without SQL_FUNCTIONS= enabled returns the SAS date 15308:

proc sql;
select distinct DATE () from x.test;

quit;

However, the same code with SQL_FUNCTIONS=ALL, returns 2001-1-29, which is an
ODBC date format. Care should be exercised when using this option.



The LIBNAME Statement for Relational Databases � TRACE= LIBNAME Option 149

STRINGDATES= LIBNAME Option

Specifies whether to read date and time values from the database as character strings or as
numeric date values

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE
DB
Default value: NO

Syntax
STRINGDATES= YES | NO

Syntax Description

YES
specifies that SAS reads date and time values as character strings.

NO
specifies that SAS reads date and time values as numeric date values.

Details
STRINGDATES=NO is used for Version 6 compatibility.

TRACE= LIBNAME Option

Specifies whether to turn on tracing information that is used in debugging

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.
DBMS support: HP Neoview, Microsoft SQL Server, Netezza, ODBC
Default value: NO

Syntax
TRACE= YES | NO

Syntax Description

YES
specifies that tracing is turned on, and the DBMS driver manager writes each
function call to the trace file that is specified by TRACEFILE=.



150 TRACEFILE= LIBNAME Option � Chapter 9

NO
specifies that tracing is not turned on.

Details
This option is not supported on UNIX platforms.

See Also
“TRACEFILE= LIBNAME Option” on page 150

TRACEFILE= LIBNAME Option

Specifies the filename to which the DBMS driver manager writes trace information

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.
DBMS support: HP Neoview, Microsoft SQL Server, Netezza, ODBC
Default value: none

Syntax
TRACEFILE= filename | <’>path-and-filename<’>

Details
TRACEFILE= is used only when TRACE=YES. If you specify a filename without a
path, the SAS trace file is stored with your data files. If you specify a directory, enclose
the fully qualified filename in single quotation marks.

If you do not specify the TRACEFILE= option, output is directed to a default file.
This option is not supported on UNIX platforms.

See Also
“TRACE= LIBNAME Option” on page 149

UPDATE_ISOLATION_LEVEL= LIBNAME Option

Defines the degree of isolation of the current application process from other concurrently running
application processes

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, Microsoft SQL Server, ODBC, OLE DB,
Oracle, Sybase, Teradata
Default value: DBMS-specific



The LIBNAME Statement for Relational Databases � UPDATE_LOCK_TYPE= LIBNAME Option 151

Syntax
UPDATE_ISOLATION_LEVEL= DBMS-specific-value

Syntax Description
The values for this option are DBMS-specific. See the documentation for your

SAS/ACCESS interface.

Details
The degree of isolation defines the following

� the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

� the degree to which update activity of other concurrently executing application
processes can affect the current application.

This option is ignored in the interfaces to DB2 under UNIX and PC Hosts and ODBC
if UPDATE_LOCK_TYPE= is not set to ROW.

For DBMS-specific details, see locking in the documentation for your SAS/ACCESS
interface.

See Also
To apply this option to an individual data set, see the data set option

“UPDATE_ISOLATION_LEVEL= Data Set Option” on page 264.

UPDATE_LOCK_TYPE= LIBNAME Option

Specifies how data in a DBMS table is locked during an update transaction

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: DB2 UNIX/PC, DB2 z/OS, Microsoft SQL Server, ODBC, OLE DB,
Oracle, Sybase, Teradata
Default value: DBMS-specific

Syntax
UPDATE_LOCK_TYPE= ROW | PAGE | TABLE | NOLOCK |VIEW

Syntax Description

ROW
locks a row if any of its columns are going to be updated. (This value is valid in the
DB2 under UNIX and PC hosts, Microsoft SQL Server, ODBC, OLE DB, and Oracle
interfaces.)

PAGE
locks a page of data, which is a DBMS-specific number of bytes. (This value is valid
in the Sybase interface.)



152 UPDATE_MODE_WAIT= LIBNAME Option � Chapter 9

TABLE
locks the entire DBMS table. (This value is valid in the DB2 under z/OS, DB2 under
UNIX and PC hosts, ODBC, Oracle, Microsoft SQL Server, and Teradata interfaces.)

NOLOCK
does not lock the DBMS table, page, or any rows when reading them for update. (This
value is valid in the Microsoft SQL Server, ODBC, Oracle, and Sybase interfaces.)

VIEW
locks the entire DBMS view. (This value is valid in the Teradata interface.)

Details
You can set a lock for one DBMS table by using the data set option or for a group of
DBMS tables by using the LIBNAME option.

For DBMS-specific details, see locking in the documentation for your SAS/ACCESS
interface.

See the documentation for your SAS/ACCESS interface for additional details.

See Also
To apply this option to an individual data set, see the data set option

“UPDATE_LOCK_TYPE= Data Set Option” on page 265.

UPDATE_MODE_WAIT= LIBNAME Option

Specifies during SAS/ACCESS update operations whether Teradata should wait to acquire a lock or
fail the request when the DBMS resource is locked by a different user

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: Teradata
Default value: none

Syntax
UPDATE_MODE_WAIT= YES|NO

Syntax Description

YES
specifies for Teradata to wait to acquire the lock, so SAS/ACCESS waits indefinitely
until it can acquire the lock.

NO
specifies for Teradata to fail the lock request if the specified DBMS resource is locked.

Details
If you specify UPDATE_MODE_WAIT=NO and if a different user holds a restrictive
lock, then the executing SAS step fails. SAS/ACCESS continues processing the job by
executing the next step.



The LIBNAME Statement for Relational Databases � UPDATE_MULT_ROWS= LIBNAME Option 153

A restrictive lock means that a different user is holding a lock that prevents you from
obtaining your desired lock. Until the other user releases the restrictive lock, you
cannot obtain your lock. For example, another user’s table level WRITE lock prevents
you from obtaining a READ lock on the table.

Use SAS/ACCESS locking options only when Teradata’s standard locking is
undesirable.

For more information, see the documentation for the Teradata interface.

See Also
To apply this option to an individual data set, see the data set option

“UPDATE_MODE_WAIT= Data Set Option” on page 266.

UPDATE_MULT_ROWS= LIBNAME Option

Indicates whether to allow SAS to update multiple rows from a data source, such as a DBMS table

Valid in: the SAS/ACCESS LIBNAME statement
DBMS support: HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE DB
Default value: NO

Syntax
UPDATE_MULT_ROWS= YES | NO

Syntax Description

YES
specifies that SAS/ACCESS processing continues if multiple rows are updated. This
might produce unexpected results.

NO
specifies that SAS/ACCESS processing does not continue if multiple rows are
updated.

Details
Some providers do not handle the following DBMS SQL statement well, and therefore
update more than the current row with this statement:

UPDATE ... WHERE CURRENT OF CURSOR

UPDATE_MULT_ROWS= enables SAS/ACCESS to continue if multiple rows were
updated.



154 UPDATE_SQL= LIBNAME Option � Chapter 9

UPDATE_SQL= LIBNAME Option

Determines the method that is used to update and delete rows in a data source

Valid in: SAS/ACCESS LIBNAME statement

DBMS support: Microsoft SQL Server, ODBC

Default value: YES (except for the Oracle drivers from Microsoft and Oracle)

Syntax
UPDATE_SQL=YES | NO

Syntax Description

YES
specifies that SAS/ACCESS uses Current-of-Cursor SQL to update or delete rows in
a table.

NO
specifies that SAS/ACCESS uses the SQLSetPos() application programming interface
(API) to update or delete rows in a table.

Details
This is the update/delete equivalent of the INSERT_SQL= option. The default for the
Oracle drivers from Microsoft and Oracle is NO because these drivers do not support
Current-Of-Cursor operations.

See Also
To apply this option to an individual data set, see the data set option

“UPDATE_SQL= Data Set Option” on page 267.

UPDATEBUFF= LIBNAME Option

Specifies the number of rows that are processed in a single DBMS update or delete operation

Valid in: the SAS/ACCESS LIBNAME statement

DBMS support: Oracle

Default value: 1

Syntax
UPDATEBUFF=positive-integer



The LIBNAME Statement for Relational Databases � USE_ODBC_CL= LIBNAME Option 155

Syntax Description

positive-integer
is the number of rows in an operation. SAS allows the maximum that the DBMS
allows.

Details
When updating with the VIEWTABLE window or the FSVIEW procedure, use
UPDATEBUFF=1 to prevent the DBMS interface from trying to update multiple rows.
By default, these features update only observation at a time (since by default they use
record-level locking, they lock only the observation that is currently being edited).

See Also
To apply this option to an individual data set, see the data set option

“UPDATEBUFF= Data Set Option” on page 268.

USE_ODBC_CL= LIBNAME Option

Indicates whether the Driver Manager uses the ODBC Cursor Library

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.

DBMS support: Microsoft SQL Server, Netezza, ODBC

Default value: NO

Syntax
USE_ODBC_CL= YES | NO

Syntax Description

YES
specifies that the Driver Manager uses the ODBC Cursor Library. The ODBC Cursor
Library supports block scrollable cursors and positioned update and delete
statements.

NO
specifies that the Driver Manager uses the scrolling capabilities of the driver.

Details
For more information about the ODBC Cursor Library, see your vendor-specific
documentation.



156 UTILCONN_TRANSIENT= LIBNAME Option � Chapter 9

UTILCONN_TRANSIENT= LIBNAME Option

Enables utility connections to be maintained or dropped, as needed

Valid in: the SAS/ACCESS LIBNAME statement and some DBMS-specific connection
options. Please refer to your DBMS for details.
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS-specific (see the details in this section)

Syntax
UTILCONN_TRANSIENT= NO | YES

Syntax Description

NO
specifies that a utility connection is maintained for the lifetime of the libref.

YES
specifies that a utility connection is automatically dropped as soon as it is no longer
in use.

Details
For engines that can lock system resources as a result of operations such DELETE or
RENAME, or as a result of queries on system tables or table indices, a utility
connection is used. The utility connection prevents the COMMIT statements that are
issued to unlock system resources from being submitted on the same connection that is
being used for table processing. Keeping the COMMIT statements off of the table
processing connection alleviates the problems they can cause such as invalidating
cursors and committing pending updates on the tables being processed.

Because a utility connection exists for each LIBNAME statement, the number of
connection to a DBMS can get large as multiple librefs are assigned across multiple
SAS sessions. Setting UTILCONN_TRANSIENT= to YES keeps these connections from
existing when they are not being used, thus reducing the number of current connections
to the DBMS at any given point in time.

UTILCONN_TRANSIENT= has no effect on engines that do not support utility
connections.

DB2 under z/OS Details: The default is YES.
DB2 under UNIX and PC Hosts, Informix, HP Neoview, Microsoft SQL Server,

Netezza, ODBC, MySQL, OLEDB, Oracle, Sybase, and Teradata Details: The default is
NO.



157

C H A P T E R

10
Data Set Options for Relational
Databases

Overview of Data Set Options for Relational Databases 157

Overview of Data Set Options for Relational Databases

You can specify SAS/ACCESS data set options on a SAS data set when you access
DBMS data with the SAS/ACCESS LIBNAME statement . A data set option applies
only to the data set on which it is specified, and it remains in effect for the duration of
the DATA step or procedure. (See “LIBNAME Options for Relational Databases” on
page 78 for options that can be assigned to a group of relational DBMS tables or views.)

For example, SAS/ACCESS data set options can be used as follows:

libname myoralib oracle;
proc print myoralib.mytable(data-set-option=value)

You can also use SAS/ACCESS data set options on a SAS data set when you access
DBMS data using access descriptors, see “Using Descriptors with the ACCESS
Procedure” on page 325. For example:

proc print mylib.myviewd(data-set-option=value)

Most data set options cannot be used on a PROC SQL DROP (table or view) statement.
You can use the CNTLLEV=, DROP=, FIRSTOBS=, IN=, KEEP=, OBS=, RENAME=,

and WHERE= SAS data set options when you access DBMS data. The REPLACE= SAS
data set option is not supported by SAS/ACCESS interfaces. For information about
using SAS data set options, see the SAS Language Reference: Dictionary.

The information in this section explains all the applicable data set option. The
information includes DBMS support and the corresponding LIBNAME options, and
refers you to the documentation for your SAS/ACCESS interface when appropriate. The
documentation for your SAS/ACCESS interface lists the data set options that are
available for your DBMS and provides their default values.

Note: Specifying data set options in PROC SQL might reduce performance, because
it prevents operations from being passed to the DBMS for processing. For more
information, see “Overview of Optimizing Your SQL Usage” on page 37. �



158 AUTHID= Data Set Option � Chapter 10

AUTHID= Data Set Option

Lets you qualify the specified table with an authorization ID, user ID, or group ID

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 z/OS

Alias: SCHEMA=

Default value: LIBNAME setting

Syntax
AUTHID=authorization-ID

Syntax Description

authorization-ID
is limited to eight characters.

Details
If you specify a value for the AUTHID= option, the table name is qualified as
authid.tablename before any SQL code is passed to the DBMS. If AUTHID= is not
specified, the table name is not qualified before it is passed to the DBMS, and the
DBMS uses your user ID as the qualifier. If you specify AUTHID= in a SAS/SHARE
LIBNAME statement, the ID of the active server is the default ID.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “AUTHID= LIBNAME Option” on page 79.

AUTOCOMMIT= Data Set Option

Specifies whether to enable the DBMS autocommit capability

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: MySQL, Sybase

Default value: LIBNAME setting

Syntax
AUTOCOMMIT=YES | NO



Data Set Options for Relational Databases � BL_BADFILE= Data Set Option 159

Syntax Description

YES
specifies that all updates, inserts, and deletes are committed immediately after they
are executed and no rollback is possible.

NO
specifies that SAS performs the commit after processing the number of row that are
specified by using DBCOMMIT=, or the default number of rows if DBCOMMIT= is
not specified.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “AUTOCOMMIT= LIBNAME Option” on page 80.

BL_BADFILE= Data Set Option

Identifies a file that contains records that were rejected during a bulk load

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: Oracle
Default value: creates a data file in the current directory or with the default file
specifications

Syntax
BL_BADFILE= path-and-filename

Syntax Description

path-and-filename
is an SQL*Loader file to which rejected rows of data are written. On most platforms,
the default filename takes the form BL_<table>_<unique-ID>.bad, where

table is the table name
unique-ID is a number that is used to prevent collisions in the event of two or

more simultaneous bulk loads of a particular table. The SAS/ACCESS engine
generates the number.

Details
If you do not specify this option and a BAD file does not exist, a file is created in the
current directory (or with the default file specifications). If you do not specify this
option and a BAD file already exists, the Oracle bulk loader reuses the file, replacing
the contents with rejected rows from the new load.

Records can be rejected by either the SQL*Loader or by Oracle. For example, the
SQL*Loader can reject a record that contains invalid input, and Oracle can reject a



160 BL_CODEPAGE= Data Set Option � Chapter 10

record because it does not contain a unique key. If no records are rejected, the BAD file
is not created.

On most operating systems, the BAD file is created in the same format as the DATA
file, so the rejected records can be loaded after corrections have been made.

Operating Environment Information: On z/OS operating systems, the BAD file is
created with default DCB attributes. For information about how to overcome this, see
the section about SQL*Loader file attributes in the SQL*Loader chapter in the Oracle
user’s guide for z/OS. �

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_CODEPAGE= Data Set Option

Identifies the codepage that the DBMS engine uses to convert SAS character data to the current
database codepage during a bulk load

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC
Default value: the current window’s codepage ID.

Syntax
BL_CODEPAGE= numeric-codepage-ID

Syntax Description

numeric-codepage-ID
is a numeric value that represents a character set that is used to interpret multibyte
character data and determine the character values.

Details
The value for this option must never be 0. If you do not wish any codepage

conversions to take place, use the BL_OPTIONS= option to specify ’FORCEIN’.
Codepage conversions only occur for DB2 character data types.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.



Data Set Options for Relational Databases � BL_CONTROL= Data Set Option 161

BL_CONTROL= Data Set Option

Identifies a file containing SQLLDR control statements that describe the data to be included in a
bulk load

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle
Default value: creates a control file in the current directory or with the default file
specifications

Syntax
BL_CONTROL= path-and-control-filename

Syntax Description

path-and-control-filename
is an SQL*Loader file to which SQLLDR control statements are written. On most
platforms, the default filename takes the form BL_<table>_<unique-ID>.ctl, where

table is the table name
unique-ID is a number used to prevent collisions in the event of two or more

simultaneous bulk loads of a particular table. The SAS/ACCESS engine
generates the number.

Details
If you do not specify this option and a control file does not exist, a file is created in

the current directory (or with the default file specifications). If you do not specify this
option and a control file already exists, the interface to Oracle reuses the file, replacing
the contents with the new control statements.

The SAS/ACCESS interface for Oracle creates the control file by using information
from the input data and SAS/ACCESS options. The file contains Data Definition
Language (DDL) definitions that specify the location of the data and how the data
corresponds to the database table. It is used to specify exactly how the loader should
interpret the data that you are loading from the DATA file (.DAT file).

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.



162 BL_COPY_LOCATION= Data Set Option � Chapter 10

BL_COPY_LOCATION= Data Set Option

Specifies the directory to which DB2 saves a copy of the loaded data. This option is only valid
when used in conjunction with BL_RECOVERABLE=YES.

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC
Default value: none

Syntax
BL_COPY_LOCATION=pathname

BL_DATAFILE= Data Set Option

Identifies the file that contains the data to be loaded or appended into a DBMS table during a bulk
load

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, Netezza, Oracle
Default value: creates a data file in the current directory or with the default file
specifications

Syntax
BL_DATAFILE= path-and-data-filename

Syntax Description

path-and-data-filename
is a file that contains the rows of data to be loaded. On most platforms, the default
filename takes the form BL_<table>_<unique-ID>.ext, where:

table is the table name
unique-ID is a number used to prevent collisions in the event of two or more

simultaneous bulk loads of a particular table. The SAS/ACCESS engine
generates the number.

ext is the file extension (.DAT or .IXF) for the data file.

Details
To specify this option, you must first specify YES for the BULKLOAD= data set

option“BULKLOAD= Data Set Option” on page 194.



Data Set Options for Relational Databases � BL_DB2DEVT_PERM= Data Set Option 163

The SAS/ACCESS engine creates this data file from the input SAS data set before
calling the bulk loader. The data file contains SAS data that is ready to load into the
DBMS.

By default, the data file is deleted after the load is completed. To override this
behavior, specify BL_DELETE_DATAFILE=NO.

Netezza Details: You can use this option only when BL_USE_PIPE=“BL_USE_PIPE=
Data Set Option” on page 191NO.

Oracle Details: If you do not specify this option and a data file does not exist, the file
is created in the current directory or with the default file specifications. If you do not
specify this option and a data file already exists, SAS/ACCESS reuses the file, replacing
the contents with the new data. SAS/ACCESS Interface to Oracle on z/OS is the
exception: The data file is never reused because the interface causes bulk load to fail
instead of reusing a data file.

BL_DB2CURSOR= Data Set Option

Specifies a string that contains a valid DB2 SELECT statement that points to either local or remote
objects (tables or views).

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 z/OS

Default value: none

Syntax
BL_DB2CURSOR= ’SELECT * from filename’

Details
This option is used only if you specify it. You can use it to select load DB2 tables
directly from other DB2 and non-DB2 objects. However, before you can select data from
a remote location, your database administrator must first populate the communication
database with the appropriate entries.

BL_DB2DEVT_PERM= Data Set Option

Specifies the unit address or generic device type that is used for permanent data sets that the
LOAD utility creates—also SYSIN, SYSREC, and SYSPRINT when SAS allocates them

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 z/OS

Default value: SYSDA



164 BL_DB2DEVT_TEMP= Data Set Option � Chapter 10

Syntax
BL_DB2DEVT_PERM= unit-specification

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2DEVT_TEMP= Data Set Option

Specifies the unit address or generic device type that is used for temporary data sets that the
LOAD utility creates (PNCH, COPY1, COPY2, RCPY1, RCPY2, WORK1, WORK2)

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: SYSDA

Syntax
BL_DB2DEVT_TEMP= unit-specification

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.



Data Set Options for Relational Databases � BL_DB2ERR= Data Set Option 165

BL_DB2DISC= Data Set Option

Specifies the SYSDISC data set name for the LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: a generated data set name

Syntax
BL_DB2DISC= data-set-name

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2ERR= Data Set Option

Specifies the SYSERR data set name for the LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: a generated data set name

Syntax
BL_DB2ERR= data-set-name

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.



166 BL_DB2IN= Data Set Option � Chapter 10

BL_DB2IN= Data Set Option

Specifies the SYSIN data set name for the LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: a generated data set name

Syntax
BL_DB2IN= data-set-name

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2LDCT1= Data Set Option

Specifies a string in the LOAD utility control statement, between LOAD DATA and INTO TABLE

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: nothing

Syntax
BL_DB2LDCT1=’string’

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.



Data Set Options for Relational Databases � BL_DB2LDEXT= Data Set Option 167

BL_DB2LDCT2= Data Set Option

Specifies a string in the LOAD utility control statement, between INTO TABLE table-name and
(field-specification)

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 z/OS

Default value: nothing

Syntax
BL_DB2LDCT2= ’string’

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2LDEXT= Data Set Option

Specifies the mode of execution for the DB2 LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 z/OS

Default value: GENRUN

Syntax
BL_DB2LDEXT= GENRUN | GENONLY | USERUN

Syntax Description

GENRUN
generates the control file (SYSIN) and the data file (SYSREC) and invokes the utility
with them.

GENONLY
generates the control file (SYSIN) and the data file (SYSREC) but does not invoke
the utility. Use this method when you need to edit the control file or verify the
generated control statement or data before you run the utility.



168 BL_DB2MAP= Data Set Option � Chapter 10

USERUN
uses existing control and data files, and runs the utility with them. The existing files
can be from a previous run or from previously run batch utility jobs. Use this
execution method when you are restarting an invocation of the utility.

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2MAP= Data Set Option

Specifies the SYSMAP data set name for the LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 z/OS
Default value: a generated data set name

Syntax
BL_DB2MAP= data-set-name

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2PRINT= Data Set Option

Specifies the SYSPRINT data set name for the LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 z/OS
Default value: a generated data set name

Syntax
BL_DB2PRINT= data-set-name



Data Set Options for Relational Databases � BL_DB2REC= Data Set Option 169

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2PRNLOG= Data Set Option

Determines whether the SYSPRINT output is written to the SAS log

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: YES

Syntax
BL_DB2PRNLOG= YES | NO

Syntax Description

YES
specifies that the SYSPRINT output is written to the SAS log.

NO
specifies that the SYSPRINT output is not written to the SAS log.

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2REC= Data Set Option

Specifies the SYSREC data set name for the LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: a generated data set name



170 BL_DB2RECSP= Data Set Option � Chapter 10

Syntax
BL_DB2REC= data-set-name

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2RECSP= Data Set Option

Determines the number of cylinders to specify as the primary allocation for the SYSREC data set
when it is created

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: 10

Syntax
BL_DB2RECSP= primary-allocation

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2RSTRT= Data Set Option

Tells the LOAD utility whether the current load is a restart and, for a restart, indicates where to
begin

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: NO

Syntax
BL_DB2RSTRT= NO | CURRENT | PHASE



Data Set Options for Relational Databases � BL_DB2SPC_PERM= Data Set Option 171

Syntax Description

NO
specifies a new invocation of the LOAD utility, not a restart.

CURRENT
specifies to restart at the last commit point.

PHASE
specifies to restart at the beginning of the current phase.

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2SPC_PERM= Data Set Option

Determines the number of cylinders to specify as the primary allocation for the permanent data
sets that are created by the LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: 10

Syntax
BL_DB2SPC_PERM= primary-allocation

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.



172 BL_DB2SPC_TEMP= Data Set Option � Chapter 10

BL_DB2SPC_TEMP= Data Set Option
Determines the number of cylinders to specify as the primary allocation for the temporary data
sets that are created by the LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: 10

Syntax
BL_DB2SPC_TEMP= primary-allocation

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2TBLXST= Data Set Option
Indicates whether the LOAD utility runs against an existing table

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS Support: DB2 z/OS
Default value: NO

Syntax
BL_DB2TBLXST= YES | NO

Syntax Description

YES
specifies that the LOAD utility runs against an existing table. This is not a
replacement operation. See details below.

NO
specifies that the LOAD utility does not run against an existing table.

Details
For details about this option, see the bulk load topic in the documentation for the
interface to DB2 under z/OS.



Data Set Options for Relational Databases � BL_DELETE_DATAFILE= Data Set Option 173

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DB2UTID= Data Set Option

Specifies a unique identifier for a given run of the DB2 LOAD utility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS Support: DB2 z/OS

Default value: user ID and second level DSN qualifier

Syntax
BL_DB2UTID= utility-ID

Details
For details about this option, see

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DELETE_DATAFILE= Data Set Option

Deletes the data file that is created for the DBMS bulk-load facility

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, Netezza, Oracle

Alias: BL_DELETE_FILES= (Oracle)

Default value: YES

Syntax
BL_DELETE_DATAFILE=YES | NO

Syntax Description

YES
deletes the data file that the SAS/ACCESS engine creates for the DBMS bulk-load
facility.



174 BL_DELIMITER= Data Set Option � Chapter 10

NO
saves the data file from deletion.

Details
To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”

on page 194.
DB2 UNIX/PC Details: Setting BL_DELETE_DATAFILE= to YES deletes the

temporary data file that is created after the load is completed. Only the data file is
deleted.

Netezza Details: You can use this option only when BL_USE_PIPE=“BL_USE_PIPE=
Data Set Option” on page 191NO.

BL_DELIMITER= Data Set Option

Specifies override of the default delimiter character for separating columns of data during data
transfer or retrieval during bulk load or bulk unload

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Netezza
Default value: | (the pipe symbol)

Syntax
BL_DELIMITER=’<any single character>’

Details
To specify this option, you must first specify YES for the BULKLOAD= data set

option“BULKLOAD= Data Set Option” on page 194.
Here is when you might want to use this option:
� to override the default delimiter character that SAS/ACCESS Interface to Netezza

uses to separate columns of data that it transfers to or retrieves from Netezza
during bulk load or bulk unload

� if your character data contains the pipe symbol (|) to avoid any problems while
parsing the data stream



Data Set Options for Relational Databases � BL_DIRECT_PATH= Data Set Option 175

Example

Data in this example contains the pipe symbol:

data work.testdel;
col1=’my|data’;col2=12;
run;

This example shows how you can override this default when BULKLOAD=YES:

/* Using a comma to delimit data */
proc append base=netlib.mydat(BULKLOAD=YES BL_DELIMITER=’,’)
data=work.testdel;
run;

See Also

BL_DATAFILE= data set option“BL_DATAFILE= Data Set Option” on page 162

BL_DELETE_DATAFILE= data set option“BL_DELETE_DATAFILE= Data Set
Option” on page 173

BL_OPTIONS= data set option“BL_OPTIONS= Data Set Option” on page 183

BL_USE_PIPE= data set option“BL_USE_PIPE= Data Set Option” on page 191

BULKUNLOAD= data set option“BULKUNLOAD= Data Set Option” on page 195

BL_DIRECT_PATH= Data Set Option

Sets the Oracle SQL*Loader DIRECT option

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Default value: YES

Syntax
BL_DIRECT_PATH= YES | NO

Syntax Description

YES
sets the Oracle SQL*Loader option DIRECT to TRUE, enabling the SQL*Loader to
use Direct Path Load to insert rows into a table.

NO
sets the Oracle SQL*Loader option DIRECT to FALSE, enabling the SQL*Loader to
use Conventional Path Load to insert rows into a table.



176 BL_DISCARDFILE= Data Set Option � Chapter 10

Details
The Conventional Path Load reads in multiple data records and places them in a

binary array. When the array is full, it is passed to Oracle for insertion, and Oracle
uses the SQL interface with the array option.

The Direct Path Load creates data blocks that are already in the Oracle database
block format. The blocks are then written directly into the database. This method is
significantly faster, but there are restrictions. For more information about the
SQL*Loader Direct and Conventional Path loads, see your Oracle utilities
documentation for SQL*Loader.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_DISCARDFILE= Data Set Option

Identifies the file that contains the records that were filtered out of a bulk load because they did
not match the criteria specified in the CONTROL file

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Default value: creates a file in the current directory or with the default file specifications

Syntax
BL_DISCARDFILE= path-and-discard-filename

Syntax Description

path-and-discard-filename
is an SQL*Loader discard file containing rows that did not meet the specified
criteria. On most platforms, the default filename takes the form
BL_<table>_<unique-ID>.dsc, where

table is the table name

unique-ID is a number used to prevent collisions in the event of two or more
simultaneous bulk loads of a particular table. The SAS/ACCESS engine
generates the number.

Details
SQL*Loader creates the file of discarded rows only if there are discarded rows and if

a discard file is requested. If you do not specify this option and a discard file does not
exist, a discard file is created in the current directory or with the default file
specifications. If you do not specify this option and a discard file already exists, the
Oracle bulk loader reuses the existing file and replaces the contents with discarded
rows from the new load.

On most operating systems, the discard file has the same format as the data file, so
the discarded records can be loaded after corrections are made.



Data Set Options for Relational Databases � BL_INDEX_OPTIONS= Data Set Option 177

Operating Environment Information: On z/OS operating systems, the discard file is
created with default DCB attributes. For information about how to overcome this, see
the section about SQL*Loader file attributes in the SQL*Loader chapter in the Oracle
user’s guide for z/OS. �

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

See Also
See “BL_BADFILE= Data Set Option” on page 159 to set the name and location of

the file that contains rejected rows.

BL_INDEX_OPTIONS= Data Set Option
Lets you specify SQL*Loader Index options with bulk loading

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle
Alias: SQLLDR_INDEX_OPTION=
Default value: none

Syntax
BL_INDEX_OPTIONS=any valid SQL*Loader Index optionsegment-name

Syntax Description

any valid SQL*Loader Index option
The value specified for this option must be a valid SQL*Loader index option, such as
one of the following. Otherwise, an error occurs.

SINGLEROW Use this option when loading either a direct path with APPEND
on systems with limited memory or a small number of records
into a large table. It inserts each index entry directly into the
index, one record at a time.

By default, DQL*Loader does not use this option to append
records to a table.

SORTED
INDEXES

This clause applies when you are loading a direct path. It tells
the SQL*Loader that the incoming data has already been sorted
on the specified indexes, allowing SQL*Loader to optimize
performance. It allows the SQL*Loader to optimize index creation
by eliminating the sort phase for this data when using the
direct-path load method.

Details
You can now pass in SQL*Loader index options when bulk loading. For details about

these options, see the Oracle utilities documentation.



178 BL_INDEXING_MODE= Data Set Option � Chapter 10

Example

The following example shows how you can use this option.

proc sql;
connect to oracle ( user=scott pw=tiger path=alien);
execute ( drop table blidxopts) by oracle;
execute ( create table blidxopts ( empno number, empname varchar2(20))) by
oracle;
execute ( drop index blidxopts_idx) by oracle;
execute ( create index blidxopts_idx on blidxopts ( empno ) ) by oracle;

quit;

libname x oracle user=scott pw=tiger path=alien;

data new;
empno=1; empname=’one’;
output;
empno=2; empname=’two’;
output;
run;

proc append base= x.blidxopts( bulkload=yes bl_index_options=’sorted indexes
( blidxopts_idx)’ ) data= new;
run;

BL_INDEXING_MODE= Data Set Option

Used to indicate which scheme the DB2 load utility should use with respect to index maintenance

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC

Default value: AUTOSELECT

Syntax
BL_INDEXING_MODE= AUTOSELECT | REBUILD | INCREMENTAL |

DEFERRED

Syntax Description

AUTOSELECT
The load utility automatically decides between REBUILD or INCREMENTAL mode.
This is the default.



Data Set Options for Relational Databases � BL_KEEPIDENTITY= Data Set Option 179

REBUILD
All indexes are rebuilt.

INCREMENTAL
Indexes are extended with new data

DEFERRED
The load utility does not attempt index creation if this mode is specified. Indexes are
marked as needing a refresh.

See Also

For more information about the usage of these values, see the DB2 Data Movement
Utilities Guide and Reference.

BL_KEEPIDENTITY= Data Set Option

Determines whether the identity column that is created during a bulk load is populated with values
generated by Microsoft SQL Server or with values provided by the user

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: OLE DB

Default value: LIBNAME setting

Syntax

BL_KEEPIDENTITY=YES | NO

Syntax Description

YES
specifies that the user must provide values for the identity column.

NO
specifies that the Microsoft SQL Server generates values for an identity column in
the table.

Details

This option is only valid when you use the Microsoft SQL Server provider.

See Also

To assign this option to a group of relational DBMS tables or views, see the
LIBNAME option “BL_KEEPIDENTITY= LIBNAME Option” on page 81.



180 BL_KEEPNULLS= Data Set Option � Chapter 10

BL_KEEPNULLS= Data Set Option

Indicates how NULL values in Microsoft SQL Server columns that accept NULL are handled during
a bulk load

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: OLE DB
Default value: LIBNAME setting

Syntax
BL_KEEPNULLS= YES | NO

Syntax Description

YES
preserves NULL values inserted by the OLE DB interface.

NO
replaces NULL values that are inserted by the OLE DB interface with a default
value (as specified in the DEFAULT constraint).

Details
This option affects only values in Microsoft SQL Server columns that accept NULL

and that have a DEFAULT constraint.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “BL_KEEPNULLS= LIBNAME Option” on page 82.

BL_LOAD_METHOD= Data Set Option

Specifies the method by which data is loaded into an Oracle table during bulk loading

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle
Default value: INSERT when loading an empty table; APPEND when loading a table that
contains data

Syntax
BL_LOAD_METHOD= INSERT | APPEND | REPLACE | TRUNCATE



Data Set Options for Relational Databases � BL_LOAD_REPLACE= Data Set Option 181

Syntax Description

INSERT
requires the DBMS table to be empty before loading.

APPEND
appends rows to an existing DBMS table.

REPLACE
deletes all rows in the existing DBMS table and then loads new rows from the data
file.

TRUNCATE
uses the SQL truncate command to achieve the best possible performance. The
DBMS table’s referential integrity constraints must first be disabled.

Details

The REPLACE and TRUNCATE values apply only when you are loading data into a
table that already contains data. In this case, you can use REPLACE and TRUNCATE
to override the default value of APPEND. See your Oracle utilities documentation for
information about using the TRUNCATE and REPLACE load methods.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_LOAD_REPLACE= Data Set Option

Specifies whether DB2 appends or replaces rows during bulk loading

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC

Default value: NO

Syntax

BL_LOAD_REPLACE= NO | YES

Syntax Description

NO
the CLI LOAD interface appends new rows of data to the DB2 table.

YES
the CLI LOAD interface replaces the existing data in the table.



182 BL_LOG= Data Set Option � Chapter 10

BL_LOG= Data Set Option

Identifies a log file that contains information such as statistics and error information for a bulk load

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, Oracle, Teradata

Default value: DBMS-specific

Syntax
BL_LOG= path-and-log-filename

Syntax Description

path-and-log-filename
is a file to which information about the loading process is written.

Details
When the DBMS bulk-load facility is invoked, it creates a log file. The contents of the

log file are DBMS-specific. The BL_ prefix distinguishes this log file from the one
created by the SAS log. If BL_LOG= is specified with the same path and filename as an
existing log, the new log replaces the existing log.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194. See the documentation for your SAS/ACCESS interface for additional
details.

Oracle Details: When the SQL*Loader is invoked, it creates a log file. This file
contains a detailed summary of the load, including a description of any errors. If
SQL*Loader cannot create a log file, execution of the bulk load terminates. If a log file
does not exist, the default action is to create a log file in the current directory or with
the default file specifications. If a log file already exists, the Oracle bulk loader reuses
the file, replacing the contents with information from the new load. On most platforms,
the default filename takes the form BL_<table>_<unique-ID>.log, where

table is the table name

unique-ID is a number used to prevent collisions in the event of two or more
simultaneous bulk loads of a particular table. The SAS/ACCESS engine generates
the number.

DB2 UNIX/PC Details: If BL_LOG= is not specified, the log file is deleted
automatically after a successful operation. See for more information.

Teradata Details: See the bulk load topic in the documentation for the Teradata
interface for more information.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “BL_LOG= LIBNAME Option” on page 82.



Data Set Options for Relational Databases � BL_OPTIONS= Data Set Option 183

BL_METHOD= Data Set Option

Specifies which bulk loading method to use for DB2

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC
Default value: None

Syntax
BL_METHOD=CLILOAD

Syntax Description

CLILOAD
activates the CLI LOAD interface to the LOAD utility. BULKLOAD=YES must also
be specified in order to use the CLI LOAD interface.

BL_OPTIONS= Data Set Option

Passes options to the DBMS bulk-load facility, affecting how it loads and processes data

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, Netezza, OLE DB, Oracle
Default value: DBMS-specific

Syntax
BL_OPTIONS=’<option…,option>’

Syntax Description

option
specifies an option from the available options that are specific to each SAS/ACCESS
interface. See details below.

Details
To specify this option, you must first specify YES for the BULKLOAD= data set
option“BULKLOAD= Data Set Option” on page 194.

You can use BL_OPTIONS= to pass options to the DBMS bulk-load facility when it is
invoked, thereby affecting how data is loaded and processed. You must separate



184 BL_PARFILE= Data Set Option � Chapter 10

multiple options with commas and enclose the entire string of options in single
quotation marks.

DB2 under UNIX and PC Hosts Details: This option passes DB2 file-type modifiers to
DB2 LOAD or IMPORT commands to affect how data is loaded and processed. Not all
DB2 file type modifiers are appropriate for all situations. You can specify one or more
DB2 file type modifiers with .IXF files. For a list of file type modifiers, see the
description of the LOAD and IMPORT utilities in the IBM ® DB2 Universal Database
Data Movement Utilities Guide and Reference.

Netezza Details: Any text that you enter for this option is appended to the USING
clause of the CREATE EXTERNAL TABLE statement—namely, any
external_table_options in the Netezza Database Users’s Guide.

OLE DB Details: By default, no options are specified. This option is valid only when
you are using the Microsoft SQL Server provider. This option takes the same values as
the -h HINT option of the Microsoft BCP utility. For example, the ORDER= option sets
the sort order of data in the data file; you can use it to improve performance if the file is
sorted according to the clustered index on the table. See the Microsoft SQL Server
documentation for a complete list of supported bulk copy options.

Oracle Details: You can use this option to specify the SQL*Loader options ERRORS=
and LOAD=. The ERRORS= option specifies the number of insert errors that
terminates the load. The default value of ERRORS=1000000 overrides the default value
for the Oracle SQL*Loader ERRORS= option, which is 50. LOAD= specifies the
maximum number of logical records to load. If the LOAD= option is not specified, all
rows are loaded. See your Oracle utilities documentation for a complete list of
SQL*Loader options that you can specify in BL_OPTIONS=.

Example
In the following Oracle example, BL_OPTIONS= specifies the number of errors that are
permitted during a load of 2,000 rows of data. Notice that the entire listing of options is
enclosed in quotation marks.

bl_options=’ERRORS=999,LOAD=2000’

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “BL_OPTIONS= LIBNAME Option” on page 83.

BL_PARFILE= Data Set Option

Creates a file that contains the SQL*Loader command line options

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Default value: none

Syntax
BL_PARFILE=<parse-file>



Data Set Options for Relational Databases � BL_PARFILE= Data Set Option 185

Syntax Description

parse-file
the name you give the file that contains the SQL*Loader command line options. The
name can also specify the path. If no path is specified, the file is created in the
current directory.

Details
This option prompts the SQL*Loader to use the PARFILE= option. You can use this

SQL*Loader option to specify SQL*Loader command line options in a file instead of as
command line options. For example the SQL*Loader can be invoked by specifying user
ID and control options as follows:

sqlldr userid=scott/tiger control=example.ctl

However, you can invoke it using the PARFILE = option as follows:

sqlldr parfile=example.par

Example.par now contains the USERID= and CONTROL= options. One of the biggest
advantages of using the BL_PARFILE= option is security, since the user ID and
password are stored in a separate file.

The permissions on the file default to the operating system defaults. It is advisable
to create this file in a protected directory so that the contents of the file are not
accessible to unauthorized users.

You can display the contents of the parse file in the SAS log by using the option
SASTRACE=",,,d". However, the password is blocked out and replaced with xxxx.

Note: The parse file is deleted at the end of SQL*Loader processing. �

Example
The following example demonstrates how SQL*Loader invocation is different when the
BL_PARFILE= option is specified.

libname x oracle user=scott pw=tiger;
/* SQL*Loader is invoked as follows without BL_PARFILE= */
sqlldr userid=scott/tiger@oraclev9 control=bl_bltst_0.ctl log=bl_bltst_0.log
bad=bl_bltst_0.bad discard=bl_bltst_0.dsc */

data x.bltst ( bulkload=yes);
c1=1;
run;
/* Note in the DATA step below, which uses BL_PARFILE=, how SQL*Loader is invoked */

sqlldr parfile=test.par
/* In this case all the options are written to the test.par file. */

data x.bltst2 ( bulkload=yes bl_parfile=’test.par’);
c1=1;
run;



186 BL_PRESERVE_BLANKS= Data Set Option � Chapter 10

BL_PRESERVE_BLANKS= Data Set Option

Determines how the SQL*Loader handles requests to insert blank spaces into CHAR/VARCHAR2
columns with the NOT NULL constraint

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Default value: NO

Syntax
BL_PRESERVE_BLANKS=YES | NO

Syntax Description

YES
specifies that blank values are inserted as blank spaces.

CAUTION:
When this option is set to YES, any trailing blank spaces are also inserted. For

this reason, use this option with caution. It is recommended that you only set this
option to YES for CHAR columns. It is not recommended that you set this option
to YES for VARCHAR2 columns, because trailing blank spaces are significant in
VARCHAR2 columns. �

NO
specifies that blank values are inserted as NULL values.

Details

Operating Environment Information: This option is not supported on z/OS. �

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_RECOVERABLE= Data Set Option

Determines whether the LOAD process is recoverable

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, Oracle

Default value: DBMS-specific (see details in this section)



Data Set Options for Relational Databases � BL_REMOTE_FILE= Data Set Option 187

Syntax
BL_RECOVERABLE=YES | NO

Syntax Description

YES
specifies that the LOAD process is recoverable. For DB2, YES also specifies that the
copy location for the data should be specified by BL_COPY_LOCATION=.

NO
specifies that the LOAD process is not recoverable. For Oracle, NO adds the
UNRECOVERABLE keyword before the LOAD keyword in the control file.

Details for Oracle
DB2 for UNIX and PC Hosts Details: The default value is NO.
Oracle Details: The default value is YES. Specify NO to improve direct load

performance.

CAUTION:
Be aware that an unrecoverable load does not log loaded data into the redo log file and so
Media recovery is disabled for the loaded table. For more information about the
implications of using the UNRECOVERABLE parameter in Oracle, see your Oracle utilities
manual. �

Example

This Oracle example shows how to use BL_RECOVERABLE= to specify that the load
is unrecoverable.

data x.recover_no (bulkload=yes bl_recoverable=no); c1=1; run;

BL_REMOTE_FILE= Data Set Option

Specifies the base filename and location of DB2 LOAD temporary files

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC
Default value: none

Syntax
BL_REMOTE_FILE=pathname-and-base-filename



188 BL_SERVER_DATAFILE= Data Set Option � Chapter 10

Syntax Description

pathname-and-base-filename
is the full pathname and base filename to which DB2 appends extensions (such as
.log, .msg, and .dat files) to create temporary files during load operations. By default,
the base filename takes the form BL_<table>_<unique-ID>, where

table is the table name
unique-ID is a number used to prevent collisions in the event of two or more

simultaneous bulk loads of a particular table. The SAS/ACCESS engine
generates the number.

Details
When you specify this option, the DB2 LOAD command is used (instead of the IMPORT
command). See the bulk load topic in the SAS/ACCESS documentation for DB2 under
UNIX and PC hosts for more information about these commands.

For pathname, specify a location on a DB2 server that is accessed exclusively by a
single DB2 server instance, and for which the instance owner has read and write
permissions. Make sure that each LOAD command is associated with a unique
pathname-and-base-filename value.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

Note: Do NOT use BL_REMOTE_FILE= unless you have SAS Release 6.1 or later
for both the DB2 client and server. Using the LOAD facility with a DB2 client or server
before Release 6.1 might cause the tablespace to become unusable in the event of a load
error. This might affect tables other than the table being loaded. �

BL_SERVER_DATAFILE= Data Set Option

Specifies the name and location of the data file as seen by the DB2 server instance

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC
Default value: same as BL_DATAFILE

Syntax
BL_SERVER_DATAFILE=path-and-data-filename



Data Set Options for Relational Databases � BL_SQLLDR_PATH= Data Set Option 189

Syntax Description

pathname-and-data-filename
is the fully-qualified pathname and filename of the data file to be loaded, as seen by
the DB2 server instance. By default, the base filename takes the form
BL_<table>_<unique-ID>, where

table is the table name

unique-ID is a number used to prevent collisions in the event of two or more
simultaneous bulk loads of a particular table. The SAS/ACCESS engine
generates the number.

Details
If the path to the data file from the DB2 server instance is different from the path to

the data file from the client, you must use BL_SERVER_DATAFILE= to specify the
path from the DB2 server.

By enabling the DB2 server instance to directly access the data file specified by
BL_DATAFILE=, this option facilitates use of the DB2 LOAD command. See the bulk
load topic in the SAS/ACCESS documentation for DB2 under UNIX and PC hosts for
more information about the LOAD command.

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194 and specify a value for “BL_REMOTE_FILE= Data Set Option” on page 187.

See Also
To specify the path from the client, see “BL_DATAFILE= Data Set Option” on page

162.

BL_SQLLDR_PATH= Data Set Option

Specifies the location of the SQLLDR executable file

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Default value: SQLLDR

Syntax
BL_SQLLDR_PATH=pathname

Syntax Description

pathname
is the full pathname to the SQLLDR executable file so that the SAS/ACCESS
interface for Oracle can invoke SQL*Loader.



190 BL_SUPPRESS_NULLIF= Data Set Option � Chapter 10

Details
Normally there is no need to specify this option because the environment is set up to

find the Oracle SQL*Loader automatically.

Operating Environment Information: This option is ignored on z/OS. �

To specify this option, you must first specify YES for “BULKLOAD= Data Set Option”
on page 194.

BL_SUPPRESS_NULLIF= Data Set Option

Indicates whether to suppress the NULLIF clause for the specified columns when a table is created
in order to increase performance

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Default value: NO

Syntax
BL_SUPPRESS_NULLIF=<_ALL_=YES | NO > | ( <column-name-1=YES | NO >

<column-name-n=YES | NO >…)

Syntax Description

YES
column-name-1=YES indicates that the NULLIF clause should be suppressed for the
specified column in the table.

NO
column-name-1=NO indicates that the NULLIF clause should not be suppressed for
the specified column in the table.

_ALL_
specifies that the YES or NO applies to all columns in the table.

Details
If you specify more than one column name, the names must be separated with spaces.

The BL_SUPPRESS_NULLIF= option processes values from left to right. If you
specify a column name twice or use the _ALL_ value, the last value overrides the first
value that you specified for the column.

Example

This example uses the BL_SUPPRESS_NULLIF= option in the DATA step to
suppress the NULLIF clause for columns C1 and C5 in the table.



Data Set Options for Relational Databases � BL_USE_PIPE= Data Set Option 191

data x.suppressnullif2_yes (bulkload=yes BL_SUPPRESS_NULLIF=(c1=yes c5=yes));
run;

The next example uses the BL_SUPPRESS_NULLIF= option in the DATA step to
suppress the NULLIF clause for all columns in the table.

libname x oracle user=dbitest pw=tiger path=lupin_o9010;

%let num=1000000; /* 1 million rows */

data x.testlmn ( bulkload=yes
BL_SUPPRESS_NULLIF=( _all_ =yes )
rename=(year=yearx) );

set x.big1mil (obs= &num ) ;
run;

BL_USE_PIPE= Data Set Option

Specifies a named pipe for data transfer

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Netezza

Default value: YES

Syntax

BL_USE_PIPE=YES | NO

Syntax Description

YES
specifies that a named pipe is used to transfer data between SAS/ACCESS Interface
to Netezza and the Netezza client interface when BULKLOAD=YES or
BULKUNLOAD=YES.

NO
specifies that a flat file is used to transfer data when BULKLOAD=YES or
BULKUNLOAD=YES. You can specify the file in BL_DATAFILE.

Details
To specify this option, you must first specify YES for the BULKLOAD= data set
option“BULKLOAD= Data Set Option” on page 194.

By default, SAS/ACCESS Interface to Netezza uses a named pipe interface to
transfer large amounts of data between SAS and Netezza when using bulk load or bulk
unload. If you prefer to use a flat data file that you can save for later use or
examination, specify BL_USE_PIPE=NO.



192 BL_WARNING_COUNT= Data Set Option � Chapter 10

BL_WARNING_COUNT= Data Set Option

Specifies the maximum number of row warnings to allow before the load fails

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC

Default value: 2147483646

Syntax

BL_WARNING_COUNT=warning-count

Details

Use this option to limit the maximum number of rows that generate warnings.
Consult the log file for information about why the rows generated warnings.

To specify this option, you must first specify a value for “BL_REMOTE_FILE= Data
Set Option” on page 187 and specify YES for “BULKLOAD= Data Set Option” on page
194.

BUFFERS= Data Set Option

Specifies the number of shared memory buffers to be used for transferring data from SAS to
Teradata.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

DBMS support: Teradata

Default value: 2

Syntax

BUFFERS=number-of-shared-memory-buffers

Syntax Description

number-of-shared-memory-buffers
a numeric value between 1 and 8 that specifies the number of buffers used for
transferring data from SAS to Teradata.



Data Set Options for Relational Databases � BULK_BUFFER= Data Set Option 193

Details
BUFFERS= specifies the number of data buffers to use for transferring data from

SAS to Teradata. When using MULTILOAD=, data is transferred from SAS to Teradata
using shared memory segments. The default shared memory buffer size is 64K. The
default number of shared memory buffers used for the transfer is 2.

Use BUFFERS= to vary the number of buffers for data transfer from 1 to 8. Use the
MBUFFSIZE=data set option to vary the size of the shared memory buffers from the
size of each data row up to 1MB.

See Also
For more information about specifying the size of shared memory buffers, see

MBUFFSIZE=.

BULK_BUFFER= Data Set Option

Specifies the number of bulk rows that the SAS/ACCESS engine can buffer for output

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Sybase
Default value: 100

Syntax
BULK_BUFFER=numeric-value

Syntax Description

numeric-value
is the maximum number of rows that are allowed. This value depends on the amount
of memory that is available to your system.

Details
This option improves performance by specifying the number of rows that can be held in
memory for efficient retrieval from the DBMS. A higher number signifies that more
rows can be held in memory and accessed quickly during output operations.



194 BULKLOAD= Data Set Option � Chapter 10

BULKLOAD= Data Set Option

Loads rows of data as one unit

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, Netezza, ODBC, Oracle, Sybase, Teradata

Alias: BL_DB2LDUTIL= (DB2 z/OS)

Default value: NO

Syntax

BULKLOAD=YES | NO

Syntax Description

YES
calls a DBMS-specific bulk-load facility in order to insert or append rows to a DBMS
table.

NO
uses the dynamic SAS/ACCESS engine to insert or append data to a DBMS table.

Details

Using BULKLOAD=YES is the fastest way to insert rows into a DBMS table.
See SAS/ACCESS documentation for your DBMS interface for details.
DB2 UNIX/PC Details: See DB2 UNIX/PC bulk loading.
DB2 z/OS Details: See DB2 z/OS bulk loading.
Netezza Details: See Netezza bulk loading
ODBC Details: See ODBC bulk loading.
Oracle Details: See Oracle bulk loading.
Sybase Details: When BULKLOAD=NO, insertions are processed and rolled back as

expected according to DBCOMMIT= and ERRLIMIT= values. If the ERRLIMIT= value
is encountered, all uncommitted rows are rolled back. The commit intervals are
determined by the DBCOMMIT= data set option.

When BULKLOAD=YES, the first error encountered causes the remaining rows
(including the erroneous row) in the buffer to be rejected. No other errors within the
same buffer are detected, even if the ERRLIMIT= value is greater than one. In
addition, all rows before the error are committed, even if DBCOMMIT= is set larger
than the number of the erroneous row.

See Also

To assign this option to a group of relational DBMS tables or views, see the
LIBNAME option BULKLOAD= LIBNAME option“BULKLOAD= LIBNAME Option” on
page 84.



Data Set Options for Relational Databases � CAST= Data Set Option 195

BULKUNLOAD= Data Set Option

Rapidly retrieves (fetches) large number of rows from a data set

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Netezza
Default value: NO

Syntax
BULKUNLOAD=YES | NO

Syntax Description

YES
calls the Netezza Remote External Table interface to retrieve data from the Netezza
Performance Server.

NO
uses standard Netezza result sets to retrieve data from the DBMS.

Details
Using BULKUNLOAD=YES is the fastest way to retrieve large numbers of rows from a
Netezza table. See Netezza bulk unloading for more information.

See Also

BL_DATAFILE= data set option“BL_DATAFILE= Data Set Option” on page 162
BL_DELETE_DATAFILE= data set option“BL_DELETE_DATAFILE= Data Set

Option” on page 173
BL_DELIMITER= data set option“BL_DELIMITER= Data Set Option” on page 174
BL_USE_PIPE= data set option“BL_USE_PIPE= Data Set Option” on page 191
BULKLOAD= data set option“BULKLOAD= Data Set Option” on page 194

CAST= Data Set Option

Specifies whether data conversions should be performed on the Teradata DBMS server or by SAS

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata
Default value: none



196 CAST= Data Set Option � Chapter 10

Syntax
CAST=YES | NO

Syntax Description

YES
forces data conversions (casting) to be done on the Teradata DBMS server and
overrides any data overhead percentage limit.

NO
forces data conversions to be done by SAS and overrides any data overhead
percentage limit.

Details
Internally, SAS numbers and dates are floating point values. Teradata has varying
formats for numbers, including integers, floating point values, and decimal values.
Number conversion must occur when you are reading Teradata numbers that are not
floating point (Teradata FLOAT). SAS/ACCESS can use the Teradata CAST= function to
cause Teradata to perform numeric conversions. The parallelism of Teradata makes it
well suited to perform this work. This is especially true if you are running SAS on z/OS
(MVS) where CPU activity can be costly.

CAST= can cause more data to be transferred from Teradata to SAS, as a result of
the option forcing the Teradata type into a larger SAS type. For example, the CAST=
transfer of a Teradata BYTEINT to SAS floating point adds seven overhead bytes to
each row transferred.

The following Teradata types are candidates for casting:
� INTEGER
� BYTEINT
� SMALLINT
� DECIMAL
� DATE.

SAS/ACCESS limits data expansion for CAST= to 20 percent in order to trade rapid
data conversion by Teradata for extra data transmission. If casting does not exceed a 20
percent data increase, all candidate columns are cast. If the increase exceeds this limit,
then SAS attempts to cast Teradata DECIMAL types only. If casting only DECIMAL
types still exceeds the increase limit, data conversions are done by SAS.

You can alter the casting rules by using either CAST= or
“CAST_OVERHEAD_MAXPERCENT= LIBNAME Option” on page 86. With
CAST_OVERHEAD_MAXPERCENT=, you can change the 20 percent overhead limit.
With CAST=, you can override the percentage rules:

� CAST=YES forces Teradata to cast all candidate columns
� CAST=NO cancels all Teradata casting

CAST= only applies when you are reading Teradata tables into SAS. It does not
apply when you are writing Teradata tables from SAS.

Also, CAST= only applies to SQL that SAS generates for you. If you supply your own
SQL with the explicit SQL feature of PROC SQL, you must code your own casting
clauses to force data conversions in Teradata instead of SAS.

See Also
“CAST= LIBNAME Option” on page 84



Data Set Options for Relational Databases � CAST_OVERHEAD_MAXPERCENT= Data Set Option 197

CAST_OVERHEAD_MAXPERCENT= Data Set Option

Specifies the overhead limit for data conversions to be performed in Teradata instead of SAS

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata
Default value: 20 percent

Syntax
CAST_OVERHEAD_MAXPERCENT=<n>

Syntax Description

<n>
Any positive numeric value. The engine default is 20.

Details
Teradata INTEGER, BYTEINT, SMALLINT, and DATE columns require conversion
when read in to SAS. Conversions can be performed either by Teradata or by SAS.
When performed in Teradata, using Teradata’s CAST operator, the row size transmitted
to SAS can increase. CAST_OVERHEAD_MAXPERCENT= limits the allowable
increase, also called conversion overhead.

Examples

The following example demonstrates the use of CAST_OVERHEAD_MAXPERCENT=
to increase the allowable overhead to 40 percent:

proc print data=mydblib.emp (cast_overhead_maxpercent=40);
where empno<1000;
run;

See Also
“CAST= LIBNAME Option” on page 84 for more information about conversions,

conversion overhead, and casting.



198 COMMAND_TIMEOUT= Data Set Option � Chapter 10

COMMAND_TIMEOUT= Data Set Option

Specifies the number of seconds to wait before a command times out

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: OLE DB
Default value: LIBNAME setting

Syntax
COMMAND_TIMEOUT=number-of-seconds

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “COMMAND_TIMEOUT= LIBNAME Option” on page 88.

CURSOR_TYPE= Data Set Option

Specifies the cursor type for read only and updatable cursors

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, Microsoft SQL Server, ODBC, OLE DB
Default value: LIBNAME setting

Syntax
CURSOR_TYPE=DYNAMIC|KEYSET_DRIVEN|FORWARD_ONLY|STATIC

Syntax Description

DYNAMIC
specifies that the cursor reflects all of the changes that are made to the rows in a
result set as you move the cursor. The data values and the membership of rows in
the cursor can change dynamically on each fetch.

KEYSET_DRIVEN
specifies that the cursor determines which rows belong to the result set when the
cursor is opened. However, changes that are made to these rows are reflected as you
move the cursor.

FORWARD_ONLY
specifies that the cursor works like a DYNAMIC cursor except that it only supports
fetching the rows sequentially. (This is not valid in OLE DB.)



Data Set Options for Relational Databases � DBCOMMIT= Data Set Option 199

STATIC
specifies that the cursor builds the complete result set when the cursor is opened. No
changes made to the rows in the result set after the cursor is opened are reflected in
the cursor. Static cursors are read-only.

Details

The driver is allowed to modify the default without an error. Not all database drivers
support all cursor types. An error is returned if the specified cursor type is not
supported.

OLE DB Details: By default, this option is not set and the provider uses a default.
See your provider documentation for more information. See OLE DB programmer
reference documentation for details about these properties. The OLE DB properties
applied to an open row set are as follows:

CURSOR_TYPE= OLE DB Properties Applied

DYNAMIC
DBPROP_OTHERINSERT=TRUE,
DBPROP_OTHERUPDATEDELETE=TRUE

KEYSET_DRIVEN
DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELETE=TRUE

STATIC
DBPROP_OTHERINSERT=FALSE,
DBPROP_OTHERUPDATEDELETE=FALSE

See Also

To assign this option to a group of relational DBMS tables or views, see the
LIBNAME option “CURSOR_TYPE= LIBNAME Option” on page 95.

DBCOMMIT= Data Set Option

Causes an automatic COMMIT (a permanent writing of data to the DBMS) after a specified number
of rows have been processed

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Alias: CHECKPOINT= (Teradata)

Default value: the current LIBNAME setting

Syntax

DBCOMMIT=n



200 DBCONDITION= Data Set Option � Chapter 10

Syntax Description

n
is an integer greater than or equal to 0.

Details
DBCOMMIT= affects update, delete, and insert processing. The number of rows
processed includes rows that are not processed successfully. When DBCOMMIT=0, a
commit is issued only once (after the procedure or DATA step completes).

If the DBCOMMIT= option is explicitly set, SAS/ACCESS fails any update that has a
WHERE clause.

Note: If you specify both DBCOMMIT= and ERRLIMIT= and these options collide
during processing, COMMIT is issued first and ROLLBACK is issued second. Because
the COMMIT that the DBCOMMIT= option caused is issued before the ROLLBACK
that the ERRLIMIT= option caused, the DBCOMMIT= option is said to override the
ERRLIMIT= option. �

DB2 under UNIX and PC Hosts Details: When BULKLOAD=YES, the default is
10000.

Teradata Details: See the FastLoad capability description in the SAS/ACCESS
documentation for Teradata for the default behavior of this option.

DBCOMMIT= and ERRLIMIT= are disabled for MultiLoad in order to prevent any
conflict with ML_CHECKPOINT=.

Example

In the following example, a commit is issued after every 10 rows are processed:

data oracle.dept(dbcommit=10);
set myoralib.staff;

run;

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “DBCOMMIT= LIBNAME Option” on page 96.

DBCONDITION= Data Set Option
Specifies criteria for subsetting and ordering DBMS data

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: none

Syntax
DBCONDITION="DBMS-SQL-query-clause"



Data Set Options for Relational Databases � DBCREATE_TABLE_OPTS= Data Set Option 201

Syntax Description

DBMS-SQL-query-clause
is a DBMS-specific SQL query clause, such as WHERE, GROUP BY, HAVING, or
ORDER BY.

Details
You can use this option to specify selection criteria in the form of DBMS-specific SQL
query clauses, which the SAS/ACCESS engine passes directly to the DBMS for
processing. When selection criteria are passed directly to the DBMS for processing,
performance is often enhanced. The DBMS checks the criteria for syntax errors when it
receives the SQL query.

The DBKEY= and DBINDEX= options are ignored when you use DBCONDITION=.

Example

In the following example, the function that is passed to the DBMS with the
DBCONDITION= option causes the DBMS to return to SAS only the rows that satisfy
the condition.

proc sql;
create view smithnames as

select lastname from myoralib.employees
(dbcondition="where soundex(lastname) = soundex(’SMYTHE’)" )
using libname myoralib oracle user=testuser pw=testpass path=dbmssrv;

select lastname from smithnames;

DBCREATE_TABLE_OPTS= Data Set Option

Specifies DBMS-specific syntax to be added to the CREATE TABLE statement

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: none

Syntax
DBCREATE_TABLE_OPTS=’DBMS-SQL-clauses’



202 DBFORCE= Data Set Option � Chapter 10

Syntax Description

DBMS-SQL-clauses
are one or more DBMS-specific clauses that can be appended to the end of an SQL
CREATE TABLE statement.

Details
You can use this option to add DBMS-specific clauses to the end of the SQL CREATE
TABLE statement. The SAS/ACCESS engine passes the SQL CREATE TABLE
statement and its clauses to the DBMS, which executes the statement and creates the
DBMS table. This option applies only when you are creating a DBMS table by
specifying a libref associated with DBMS data.

Example

In the following example, the DB2 table TEMP is created with the value of the
DBCREATE_TABLE_OPTS= option appended to the CREATE TABLE statement.

libname mydblib db2 user=testuser
pwd=testpass dsn=sample;

data mydblib.temp (DBCREATE_TABLE_OPTS=’PARTITIONING
KEY (X) USING HASHING’);

x=1; output;
x=2; output;
run;

Given this data set option, the following DB2 SQL statement is passed by the
SAS/ACCESS interface to DB2 in order to create the DB2 table:

CREATE TABLE TEMP (X DOUBLE) PARTITIONING
KEY (X) USING HASHING

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “DBCREATE_TABLE_OPTS= LIBNAME Option” on page 99.

DBFORCE= Data Set Option

Specifies whether to force the truncation of data during insert processing

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: NO



Data Set Options for Relational Databases � DBFORCE= Data Set Option 203

Syntax
DBFORCE=YES | NO

Syntax Description

YES
specifies that the rows which contain data values that exceed the length of the
DBMS column are inserted, and the data values are truncated to fit the DBMS
column length.

NO
specifies that the rows which contain data values that exceed the DBMS column
length are not inserted.

Details
This option determines how the SAS/ACCESS engine handles rows that contain data
values that exceed the length of the DBMS column.

The SAS data set option FORCE= overrides this option when it is used with PROC
APPEND or the PROC SQL UPDATE statement. The PROC SQL UPDATE statement
does not provide a warning before truncating the data.

Example

In the following example, two librefs are associated with Oracle databases; the
default databases and schemas are used and therefore are not specified. In the DATA
step, MYDBLIB.DEPT is created from the Oracle data referenced by
MYORALIB.STAFF. The LASTNAME variable is a character variable of length 20 in
MYORALIB.STAFF. During the creation of MYDBLIB.DEPT, the LASTNAME variable
is stored as a column of type character and length 10 by using DBFORCE=YES.

libname myoralib oracle user=tester1 password=tst1;
libname mydblib oracle user=lee password=dataman;

data mydblib.dept(dbtype=(lastname=’char(10)’)
dbforce=yes);

set myoralib.staff;
run;

See Also
“DBTYPE= Data Set Option” on page 221



204 DBGEN_NAME= Data Set Option � Chapter 10

DBGEN_NAME= Data Set Option
Specifies how SAS renames columns automatically when they contain characters that SAS does
not allow

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS

Syntax
DBGEN_NAME=DBMS | SAS

Syntax Description

DBMS
specifies that disallowed characters are converted to underscores.

SAS
specifies that DBMS columns that contain disallowed characters are converted into
valid SAS variable names, using the format _COLn, where n is the column number
(starting with zero). If a name is converted to a name that already exists, a sequence
number is appended to the end of the new name.

Details
SAS retains column names when reading data from DBMS tables, unless a column
name contains characters that SAS does not allow, such as $ or @. SAS allows
alphanumeric characters and the underscore (_).

This option is intended primarily for National Language Support, notably converting
kanji to English characters. English characters converted from kanji are often those
that are not allowed in SAS.

Note: Each of the various SAS/ACCESS interfaces handled name collisions
differently in SAS Version 6. Some interfaces appended to the end of the name, some
replaced the one or more of the last characters in the name, some used a single
sequence number, and others used unique counters. If you specify VALIDVARNAME=
V6, name collisions are handled the same as in SAS Version 6. �

Examples

If you specify DBGEN_NAME=SAS, a DBMS column named DEPT$AMT is renamed
to _COLn where n is the column number.

If you specify DBGEN_NAME=DBMS,a DBMS column named DEPT$AMT is
renamed to DEPT_AMT.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “DBGEN_NAME= LIBNAME Option” on page 100.



Data Set Options for Relational Databases � DBINDEX= Data Set Option 205

DBINDEX= Data Set Option

Detects and verifies that indexes exist on a DBMS table. If they do exist and are of the correct
type, a join query that is passed to the DBMS might improve performance

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, HP Neoview, Informix, Microsoft SQL Server, MySQL,
Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: DBMS specific

Syntax
DBINDEX=YES | NO | <’>index-name<’>

Syntax Description

YES
triggers the SAS/ACCESS engine to search for all indexes on a table and return them
to SAS for evaluation. If a usable index is found, then the join WHERE clause is
passed to the DBMS for processing. A usable index is expected to have at least the
same attributes as the join column.

NO
no automated index search is performed.

index-name
verifies the index name that is specified for the index columns on the DBMS table.
This requires the same type of call as when DBINDEX=YES is used.

Details
When processing a join that involves a large DBMS table and a relatively small SAS
data set, you might be able to use DBINDEX= to improve performance.

CAUTION:
Improper use of this option can impair performance. See Using the DBINDEX=,

DBKEY=, and MULTI_DATASRC_OPT= Options“Using the DBINDEX=, DBKEY=,
and MULTI_DATASRC_OPT= Options” on page 43 for detailed information about
using this option. �

Queries must be issued to the necessary DBMS control or system tables to extract
index information about a specific table or validate the index that you specified.

You can enter the DBINDEX= option as a LIBNAME option, SAS data set option, or
an option with PROC SQL. Here is the order in which the engine processes it option:

1 DATA step or PROC SQL specification.

2 LIBNAME statement specification.

Note: If you specify the DBKEY= data set option“DBKEY= Data Set Option” on
page 207, takes precedence over DBINDEX=. �



206 DBINDEX= Data Set Option � Chapter 10

Example

The following SAS data set is used in these examples:

data s1;
a=1; y=’aaaaa’; output;
a=2; y=’bbbbb’; output;
a=5; y=’ccccc’; output;

run;

The following example demonstrates the use of DBINDEX= in the LIBNAME
statement:

libname mydblib oracle user=myuser password=userpwd dbindex=yes;

proc sql;
select * from s1 aa, x.dbtab bb where aa.a=bb.a;
select * from s1 aa, mydblib.dbtab bb where aa.a=bb.a;

The DBINDEX= values for table dbtab are retrieved from the DBMS and compared
with the join values. In this case, a match was found so the join is passed down to the
DBMS using the index. If the index a was not found, the join would take place in SAS.

The following example demonstrates the use of DBINDEX= in the SAS DATA step:

data a;
s1;
set x.dbtab(dbindex=yes) key=a;
set mydblib.dbtab(dbindex=yes) key=a;
run;

The key is validated against the list from the DBMS. If a is an index, then a pass down
occurs. Otherwise the join takes place in SAS.

The following example demonstrates the use of DBINDEX= in PROC SQL:

proc sql;
select * from s1 aa, x.dbtab(dbindex=yes) bb where aa.a=bb.a;
select * from s1 aa, mylib.dbtab(dbindex=yes) bb where aa.a=bb.a;
/*or*/
select * from s1 aa, x.dbtab(dbindex=a) bb where aa.a=bb.a;
select * from s1 aa, mylib.dbtab(dbindex=a) bb where aa.a=bb.a;

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “DBINDEX= LIBNAME Option” on page 101.



Data Set Options for Relational Databases � DBKEY= Data Set Option 207

DBKEY= Data Set Option

Specifies a key column to optimize DBMS retrieval. Can improve performance when you are
processing a join that involves a large DBMS table and a small SAS data set or DBMS table

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: none

Syntax
DBKEY=(<’>column-1<’><… <’>column-n<’>>)

Syntax Description

column
used by SAS to build an internal WHERE clause to search for matches in the DBMS
table based on the key column. For example:

select * from sas.a, dbms.b(dbkey=x) where a.x=b.x;

In this example, DBKEY= specifies column x, which matches the key column
designated in the WHERE clause. However, if the DBKEY= column does NOT match
the key column in the WHERE clause, then DBKEY= is not used.

Examples

The following example uses DBKEY= with the MODIFY statement in a DATA step:

libname invty db2;
data invty.stock;

set addinv;
modify invty.stock(dbkey=partno) key=dbkey;
INSTOCK=instock+nwstock;
RECDATE=today();
if _iorc_=0 then replace;

run;



208 DBLABEL= Data Set Option � Chapter 10

To use more than one value for DBKEY=, you must include the second value as a join
on the WHERE clause. In the following example, the PROC SQL brings the entire
DBMS table into SAS and then proceeds with processing:

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;

proc sql;
create table work.barbkey as
select keyvalues.empid, employees.hiredate, employees.jobcode

from mydblib.employees(dbkey=(empid jobcode))
inner join work.keyvalues on employees.empid = keyvalues.empid;

quit;

Details
When processing a join that involves a large DBMS table and a relatively small SAS
data set, you might be able to use DBKEY= to improve performance.

When you specify DBKEY=, it is strongly recommended that an index exists for the
key column in the underlying DBMS table. Performance can be severely degraded
without an index.

CAUTION:
Improper use of this option can decrease performance. See “Using the DBINDEX=,

DBKEY=, and MULTI_DATASRC_OPT= Options” on page 43 for detailed
information about using this option. �

DBLABEL= Data Set Option

Specifies whether to use SAS variable labels or SAS variable names as the DBMS column names
during output processing

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: NO

Syntax
DBLABEL=YES | NO

Syntax Description

YES
specifies that SAS variable labels are used as DBMS column names during output
processing.

NO
specifies that SAS variable names are used as DBMS column names.



Data Set Options for Relational Databases � DBLINK= Data Set Option 209

Details
This option is valid only for creating DBMS tables.

Example

In the following example, a SAS data set, NEW, is created with one variable C1. This
variable is assigned a label of DEPTNUM. In the second DATA step, the
MYDBLIB.MYDEPT table is created by using DEPTNUM as the DBMS column name.
Setting DBLABEL=YES enables the label to be used as the column name.

data new;
label c1=’deptnum’;
c1=001;

run;

data mydblib.mydept(dblabel=yes);
set new;

run;

proc print data=mydblib.mydept;
run;

DBLINK= Data Set Option

Specifies a link from your default database to another database on the server to which you are
connected in the Sybase interface; and specifies a link from your local database to database
objects on another server in the Oracle interface

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle, Sybase

Default value: LIBNAME setting

Syntax
DBLINK=database-link

Details
This option operates differently in each DBMS.

Oracle Details: A link is a database object that identifies an object that is stored in a
remote database. A link contains stored path information and can also contain user
name and password information for connecting to the remote database. If you specify a
link, SAS uses the link to access remote objects. If you omit DBLINK=, SAS accesses
objects in the local database.

Sybase Details: You can use this option to link to another database within the same
server to which you are connected. If you omit DBLINK=, SAS can access objects only
in your default database.



210 DBMASTER= Data Set Option � Chapter 10

Example

In this example, SAS sends MYORADB.EMPLOYEES to Oracle as
EMPLOYEES@SALES.HQ.ACME.COM.

proc print data=myoradb.employees(dblink=’sales.hq.acme.com’);
run;

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “DBLINK= LIBNAME Option” on page 104.

DBMASTER= Data Set Option

Designates which table is the larger table when you are processing a join that involves tables
from two different types of databases

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: none

Syntax
DBMASTER=YES

Syntax Description

YES
designates which of two tables references in a join operation is the larger table.

Example

In the following example, a table from an Oracle database and a table from a DB2
database are joined. DBMASTER= is set to YES to indicate that the Oracle table is the
larger table. The DB2 table is the smaller table.

libname mydblib oracle user=testuser /*database 1 */
pw=testpass path=’myorapath’

libname mydblib2 db2 user=testuser /*database 2 */
pw=testpass path=’mydb2path’;

proc sql;



Data Set Options for Relational Databases � DBMAX_TEXT= Data Set Option 211

select * from mydblib.bigtab(dbmaster=yes), mydblib2.smalltab
bigtab.x=smalltab.x;

Details
You can use this option with the MULTI_DATASRC_OPT= option to specify which table
reference in a join is the larger table. This can improve performance by eliminating the
processing normally performed to determine this information. However, this option is
ignored when outer joins are processed.

See Also
“MULTI_DATASRC_OPT= LIBNAME Option” on page 126

DBMAX_TEXT= Data Set Option

Determines the length of any very long DBMS character data type that is read into SAS or written
from SAS when you are using a SAS/ACCESS engine

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, MySQL, Netezza,
ODBC, OLE DB, Oracle, Sybase

Default value: 1024

Syntax
DBMAX_TEXT= integer

Syntax Description

integer
is a number between 1 and 32,767.

Details
This option applies to appending and updating rows in an existing table. It does not
apply when creating a table.

DBMAX_TEXT= is usually used with a very long DBMS character data type, such as
the Sybase TEXT data type or the Oracle LONG RAW data type.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “DBMAX_TEXT= LIBNAME Option” on page 105.



212 DBNULL= Data Set Option � Chapter 10

DBNULL= Data Set Option

Indicates whether NULL is a valid value for the specified columns when a table is created

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS-specific

Syntax
DBNULL=<_ALL=YES | NO > | ( <column-name-1=YES | NO >

<…<column-name-n=YES | NO >>)

Syntax Description

_ALL_
specifies that the YES or NO applies to all columns in the table. (This is valid in the
interfaces to Informix, Oracle, Sybase, and Teradata only.)

YES
specifies that the NULL value is valid for the specified columns in the DBMS table.

NO
specifies that the NULL value is not valid for the specified columns in the DBMS
table.

Details
This option is valid only for creating DBMS tables. If you specify more than one column
name, the names must be separated with spaces.

The DBNULL= option processes values from left to right. If you specify a column
name twice or if you use the _ALL_ value, the last value overrides the first value that
you specified for the column.

Examples

In the following example, by using the DBNULL= option, the EMPID and JOBCODE
columns in the new MYDBLIB.MYDEPT2 table are prevented from accepting NULL
values. If the EMPLOYEES table contains NULL values in the EMPID or JOBCODE
columns, the DATA step fails.

data mydblib.mydept2(dbnull=(empid=no jobcode=no));
set mydblib.employees;

run;

In the following example, all columns in the new MYDBLIB.MYDEPT3 table except
for the JOBCODE column are prevented from accepting NULL values. If the
EMPLOYEES table contains NULL values in any column other than the JOBCODE
column, the DATA step fails.



Data Set Options for Relational Databases � DBNULLKEYS= Data Set Option 213

data mydblib.mydept3(dbnull=(_ALL_=no jobcode=YES));
set mydblib.employees;

run;

See Also

“NULLCHAR= Data Set Option” on page 244

“NULLCHARVAL= Data Set Option” on page 245

DBNULLKEYS= Data Set Option

Controls the format of the WHERE clause with regard to NULL values when you use the DBKEY=
data set option

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
Netezza, ODBC, OLE DB, Oracle

Default value: LIBNAME setting

Syntax
DBNULLKEYS= YES | NO

Details
If there might be NULL values in the transaction table or the master table for the
columns that you specify in the DBKEY= option, then use DBNULLKEYS=YES. When
you specify DBNULLKEYS=YES and also a column that is not defined as NOT NULL
in the DBKEY= data set option, SAS generates a WHERE clause to find NULL values.
For example, if you specify DBKEY=COLUMN and COLUMN is not defined as NOT
NULL, SAS generates a WHERE clause with the following syntax:

WHERE ((COLUMN = ?) OR ((COLUMN IS NULL) AND (? IS NULL)))

With this syntax, SAS can prepare the statement once and use it for any value
(NULL or NOT NULL) in the column. Note that this syntax has the potential to be
much less efficient than the shorter form of the WHERE clause that is shown below.
When you specify DBNULLKEYS=NO or specify a column that is defined as NOT
NULL in the DBKEY= option, SAS generates a simple WHERE clause.

If you know that there are no NULL values in the transaction table or the master
table for the columns you specify in the DBKEY= option, you can use
DBNULLKEYS=NO. If you specify DBNULLKEYS=NO and specify DBKEY=COLUMN,
SAS generates a shorter form of the WHERE clause. It generates this clause regardless
of whether or not the column specified in DBKEY= is defined as NOT NULL.

WHERE (COLUMN = ?)



214 DBPROMPT= Data Set Option � Chapter 10

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “DBNULLKEYS= LIBNAME Option” on page 105.

DBPROMPT= Data Set Option

Specifies whether SAS displays a window that prompts you to enter DBMS connection information

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview, MySQL, Netezza, Oracle, Sybase
Default value: NO

Syntax
DBPROMPT=YES | NO

Syntax Description

YES
displays the prompting window.

NO
does not display the prompting window.

Details
This data set option is supported only for view descriptors.

Oracle Details: In the Oracele interface, you can enter 30 characters each for
USERNAME and PASSWORD and up to 70 characters for PATH, depending on your
platform and terminal type.

Examples

In the following example, connection information is specified in the ACCESS
procedure. The DBPROMPT= data set option defaults to NO during the PRINT
procedure because it is not specified.

proc access dbms=oracle;
create alib.mydesc.access;
user=testuser;
password=testpass;
table=dept;
create vlib.myview.view;
select all;

run;



Data Set Options for Relational Databases � DBSASLABEL= Data Set Option 215

proc print data=vlib.myview;
run;

In the following example, the DBPROMPT window opens during connection to the
DBMS. Values that were previously specified during the creation of MYVIEW are pulled
into the DBPROMPT window fields. You must edit or accept the connection information
in the DBPROMPT window to proceed. The password value appears as a series of
asterisks; you can edit it.

proc print data=vlib.myview(dbprompt=yes);
run;

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “DBPROMPT= LIBNAME Option” on page 106.

DBSASLABEL= Data Set Option

Specifies how the engine returns column labels

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: COMPAT

Syntax
DBSASLABEL=COMPAT | NONE

Syntax Description

COMPAT
specifies that the labels returned should be compatible with what the application
normally receives. In other words, engines exhibit their normal behavior.

NONE
specifies that the engine does not return a column label. The engine returns blanks
for the column labels.

Details
By default, the SAS/ACCESS interface for your DBMS generates column labels from
the column names, rather than from the real column labels.

This option enables the user to override this default behavior. It is useful in the
PROC SQL context where column labels instead of column aliases are used as headers.



216 DBSASTYPE= Data Set Option � Chapter 10

Examples

The following example demonstrates how DBSASLABEL= is used to return blank
column labels so PROC SQL can use the column aliases as the column headings.

proc sql;
select deptno as Department ID, loc as Location
from mylib.dept(dbsaslabel=none);

Without the DBSASLABEL= option set to NONE, the aliases would be ignored and
DEPTNO and LOC would be used as column headings in the result set.

DBSASTYPE= Data Set Option

Specifies data types to override the default SAS data types during input processing

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, HP Neoview, Informix, Microsoft SQL Server, SQL,
Netezza, ODBC, OLE DB, Oracle
Default value: DBMS-specific

Syntax
DBSASTYPE=(column-name-1=<’>SAS-data-type<’><…column-name-n=<’>SAS-data-

type<’>>)

Syntax Description

column-name
specifies a DBMS column name.

SAS-data-type
specifies a SAS data type. SAS data types include the following: CHAR(n),
NUMERIC, DATETIME, DATE, TIME. See the documentation for your
SAS/ACCESS interface for details.

Details
By default, the SAS/ACCESS interface for your DBMS converts each DBMS data type
to a SAS data type during input processing. When you need a different data type, you
can use this option to override the default and assign a SAS data type to each specified
DBMS column. Some conversions might not be supported; if a conversion is not
supported, SAS prints an error to the log.

Examples

In the following example, DBSASTYPE= specifies a data type to use for the column
MYCOLUMN when SAS is printing ODBC data. If the data in this DBMS column is



Data Set Options for Relational Databases � DBSLICE= Data Set Option 217

stored in a format that SAS does not support, such as SQL_DOUBLE(20), this enables
SAS to print the values.

proc print data=mylib.mytable
(dbsastype=(mycolumn=’CHAR(20)’));

run;

In the following example, the data stored in the DBMS FIBERSIZE column has a
data type that provides more precision than what SAS could accurately support, such
as DECIMAL(20). If you used only PROC PRINT on the DBMS table, the data might be
rounded or displayed as a missing value. Instead, you could use DBSASTYPE= to
convert the column to a character field of the length 21. Because the DBMS performs
the conversion before the data is brought into SAS, there is no loss of precision.

proc print data=mylib.specprod
(dbsastype=(fibersize=’CHAR(21)’));

run;

The following example, uses DBSASTYPE= to append one table to another when the
data types are not comparable. If the EMPID variable in the SAS data set is defined as
CHAR(20) and the EMPID column in the DBMS table is defined as DECIMAL(20), you
can use DBSASTYPE= to make them match:

proc append base=dblib.hrdata (dbsastype=(empid=’CHAR(20)’))
data=saslib.personnel;

run;

DBSASTYPE= specifies to SAS that the EMPID is defined as a character field of
length 20. When a row is inserted from the SAS data set into a DBMS table, the DBMS
performs a conversion of the character field to the DBMS data type DECIMAL(20).

DBSLICE= Data Set Option

Specifies user-supplied WHERE clauses to partition a DBMS query for threaded reads

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
ODBC, Oracle, Sybase, Teradata
Default value: none

Syntax
DBSLICE=("WHERE-clause-1" " WHERE-clause-2" < ... "WHERE-clause-n">)

DBSLICE=(<server=>"WHERE-clause-1" <server=>" WHERE-clause-2" < …
<server=>"WHERE-clause-n">)

Syntax Description
Two syntax diagrams are shown here to highlight the simpler version. In many

cases, the first, simpler syntax is sufficient. The optional server= form is valid only for
ODBC and DB2 under UNIX and PC hosts.



218 DBSLICE= Data Set Option � Chapter 10

WHERE-clause
The WHERE clauses in the syntax signifies DBMS-valid WHERE clauses that
partition the data. The clauses should not cause any omissions or duplications of
rows in the results set. For example, if EMPNUM can be null, the following
DBSLICE= specification omits rows, creating an incorrect result set:

DBSLICE=("EMPNUM<1000" "EMPNUM>=1000")

A correct form is:

DBSLICE=("EMPNUM<1000" "EMPNUM>=1000" "EMPNUM IS NULL")

In the following example, DBSLICE= creates an incorrect set by duplicating
SALES with value zero:

DBSLICE=(‘‘SALES<=0 or SALES=NULL’’ ‘‘SALES>=0’’)

server
identifies a particular server node in a DB2 partitioned database or in a Microsoft
SQL Server partitioned view. Used for the best possible read performance, this
enables your SAS thread to directly connect to the node containing the data partition
corresponding to your WHERE clause.

Details
If your table reference is eligible for threaded reads (that is, if it is a read-only
LIBNAME table reference), DBSLICE= forces a threaded read to occur, partitioning the
table with the WHERE clauses you supply. Use DBSLICE= when SAS is unable to
generate threaded reads automatically, or if you can provide better partitioning.

DBSLICE= is appropriate for experienced programmers familiar with the layout of
their DBMS tables. A well-tuned DBSLICE= specification usually outperforms SAS
automatic partitioning. For example, a well-tuned DBSLICE= specification might better
distribute data across threads by taking advantage of a column that SAS/ACCESS
cannot use when it automatically generates partitioning WHERE clauses.

DBSLICE= delivers optimal performance for DB2 under UNIX and for Microsoft SQL
Server. Conversely, DBSLICE= can degrade performance compared to automatic
partitioning. For example, Teradata invokes the FastExport Utility for automatic
partitioning. If this is overridden with DBSLICE=, WHERE clauses are generated
instead. Even with well planned WHERE clauses, performance is degraded because
FastExport is innately faster.

CAUTION:
When using DBSLICE=, you are responsible for data integrity. If your WHERE clauses omit
rows from the result set or retrieves the same row on more than one thread, your input
DBMS result set is incorrect and your SAS program generates incorrect results. �

Examples

In the following example, DBSLICE= partitions on the GENDER column can have
only the values m, M, f, and F. This DBSLICE= clause does not work for all DBMSs due
to the use of UPPER and single quotation marks (some DBMSs require double
quotation marks around character literals). Two threads are created.

proc reg SIMPLE
data=lib.customers(DBSLICE="UPPER(GENDER)=’M’" "UPPER(GENDER)=’F’"));
var age weight;
where years_active>1;
run;



Data Set Options for Relational Databases � DBSLICEPARM= Data Set Option 219

The following example partitions on the non-NULL column CHILDREN, the number
of children in a family. Three threads are created.

data local;
set lib.families(DBSLICE=("CHILDREN<2" "CHILDREN>2" "CHILDREN=2"));
where religion="P";
run;

DBSLICEPARM= Data Set Option

Controls the scope of DBMS threaded reads and the number of DBMS connections

Valid in: DATA and PROC Steps (when accessing DBMS data using SAS/ACCESS
software) (also available as a SAS configuration file option, SAS invocation option,
global SAS option, and LIBNAME option)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
ODBC, Oracle, Sybase, Teradata
Default value: THREADED_APPS,2 (DB2 z/OS, Oracle, and Teradata)
THREADED_APPS,2 or 3 (DB2 UNIX/PC, Informix, Microsoft SQL Server, ODBC, and
Sybase)

Syntax
DBSLICEPARM=( NONE | THREADED_APPS | ALL <, max-threads>)

Syntax Description
Two syntax diagrams are shown here in order to highlight the simpler version. In

most cases, the simpler version suffices.

NONE
disables DBMS threaded reads. SAS reads tables on a single DBMS connection, as it
did with SAS Version 8 and earlier.

THREADED_APPS
makes fully threaded SAS procedures (threaded applications) eligible for threaded
reads.

ALL
makes all read-only librefs eligible for threaded reads. This includes SAS threaded
applications, as well as the SAS DATA step and numerous SAS procedures.

max-threads
specifies with a positive integer value the maximum number of connections per table
read. A partition or portion of the data is read on each connection. The combined
rows across all partitions are the same irrespective of the number of connections.
That is, changes to the number of connections do not change the result set.
Increasing the number of connections instead redistributes the same result set across
more connections.

There are diminishing returns when increasing the number of connections. With
each additional connection, more burden is placed on the DBMS, and a smaller
percentage of time is saved in SAS. Therefore, you should consult your
DBMS-specific documentation for threaded reads before using this parameter.



220 DBSLICEPARM= Data Set Option � Chapter 10

Details

DBSLICEPARM= can be used in numerous locations, and the usual rules of option
precedence apply. A table option has the highest precedence, then a LIBNAME option,
and so on. A SAS configuration file option has the lowest precedence because
DBSLICEPARM= in any of the other locations overrides that configuration setting.

DBSLICEPARM=ALL and DBSLICEPARM=THREADED_APPS make SAS programs
eligible for threaded reads. To determine whether threaded reads are actually
generated, turn on SAS tracing and run a program, as shown in the following example:

options sastrace=’’,,,d’’ sastraceloc=saslog nostsuffix;
proc print data=lib.dbtable(dbsliceparm=(ALL));

where dbcol>1000;
run;

If you want to directly control the threading behavior, use the DBSLICE= data set
option.

For DB2 UNIX/PC, Informix, Microsoft SQL Server, ODBC, and Sybase, the default
thread number depends on whether an application passes in the number of threads
(CPUCOUNT=) and whether the data type of the column that is selected for the data
partitioning purpose is binary.

Examples

This code demonstrates how you can use DBSLICEPARM= in a PC SAS
configuration file entry to turn off threaded reads for all SAS users:

--dbsliceparm NONE

Here is how you can use DBSLICEPARM= as a z/OS invocation option to turn on
threaded reads for read-only references to DBMS tables throughout a SAS job:

sas o(dbsliceparm=ALL)

You can use this code to set DBSLICEPARM= as a SAS global option to increase
maximum threads to three for SAS threaded applications. It would most likely be one
of the first statements in your SAS code:

option dbsliceparm=(threaded_apps,3);

The following code demonstrates how to use DBSLICEPARM= as a LIBNAME option
to turn on threaded reads for read-only table references that use this particular libref:

libname dblib oracle user=scott password=tiger dbsliceparm=ALL;

The following code demonstrates how to use DBSLICEPARM= as a table level option
to turn on threaded reads for this particular table, requesting up to four connections:

proc reg SIMPLE;
data=dblib.customers (dbsliceparm=(all,4));
var age weight;
where years_active>1;

run;

See Also

“DBSLICEPARM= LIBNAME Option” on page 109



Data Set Options for Relational Databases � DBTYPE= Data Set Option 221

DBTYPE= Data Set Option

Specifies a data type to use instead of the default DBMS data type when SAS creates a DBMS table

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS-specific

Syntax
DBTYPE=(column-name-1=<’>DBMS-type<’>

<…column-name-n=<’>DBMS-type<’>>)

Syntax Description

column-name
specifies a DBMS column name.

DBMS-type
specifies a DBMS data type. See the documentation for your SAS/ACCESS interface
for the default data types for your DBMS.

Details
By default, the SAS/ACCESS interface for your DBMS converts each SAS data type to a
predetermined DBMS data type when outputting data to your DBMS. When you need a
different data type, use DBTYPE= to override the default data type chosen by the
SAS/ACCESS engine.

Teradata Details: In Teradata, you can use DBTYPE= to specify data attributes for a
column. See your Teradata CREATE TABLE documentation for information about the
data type attributes that you can specify. If you specify DBNULL=NO for a column, do
not also use DBTYPE= to specify NOT NULL for that column. If you do, ’NOT NULL’
is inserted twice in the column definition. This causes Teradata to generate an error
message.

Examples

In the following example, DBTYPE= specifies the data types that are used when you
create columns in the DBMS table.

data mydblib.newdept(dbtype=(deptno=’number(10,2)’ city=’char(25)’));
set mydblib.dept;

run;

The following example creates a new Teradata table, NEWDEPT, specifying the
Teradata data types for the DEPTNO and CITY columns.

data mydblib.newdept(dbtype=(deptno=’byteint’ city=’char(25)’));
set dept;



222 DISTRIBUTE_ON= Data Set Option � Chapter 10

run;

The following example creates a new Teradata table, NEWEMPLOYEES, and
specifies a data type and attributes for the EMPNO column. The example encloses the
Teradata type and attribute information in double quotation marks. Single quotation
marks conflict with those that are required by the Teradata FORMAT attribute. If you
use single quotation marks, SAS returns syntax error messages.

data mydblib.newemployees(dbtype= (empno="SMALLINT FORMAT ’9(5)’
CHECK (empno >= 100 AND empno <= 2000)"));

set mydblib.employees;
run;

See Also
“DBFORCE= Data Set Option” on page 202

DISTRIBUTE_ON= Data Set Option
Specifies a column name to use in the DISTRIBUTE ON clause of the CREATE TABLE statement

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Netezza
Alias: DISTRIBUTE=
Default value: none

Syntax
DISTRIBUTE_ON=’column-1 <... ,column-n>’ | RANDOM

Syntax Description

column
specifies a DBMS column name.

RANDOM
specifies that the Netezza Performance Server distributes data evenly across all
SPUs (round-robin distribution).

Details
You can use this option to specify a column name to use in the DISTRIBUTE ON=
clause of the CREATE TABLE statement. Each table in the database must have a
distribution key that consists of one to four columns. If you do not specify this option,
Netezza selects a distribution key.

Examples

This example uses DISTRIBUTE_ON= to create a distribution key on a single
column.



Data Set Options for Relational Databases � ERRLIMIT= Data Set Option 223

proc sql;
create table netlib.customtab(DISTRIBUTE_ON=’partno’)

as select partno, customer, orderdat from saslib.orders;
quit;

To create a distribution key on more than one column, separate the columns with
commas.

data netlib.mytab(DISTRIBUTE_ON=’col1,col2’);
col1=1;col2=12345;col4=’mytest’;col5=98.45;
run;

This next example shows how to use the RANDOM keyword.

data netlib.foo(distribute_on=random);
mycol1=1;mycol2=’test’;
run;

ERRLIMIT= Data Set Option
Specifies the number of errors that are allowed before SAS stops processing and issues a rollback

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: 1

Syntax
ERRLIMIT=integer

Syntax Description

integer
is a positive integer that represents the number of errors after which SAS stops
processing and issues a rollback.

Details
SAS calls the DBMS to issue a rollback after a specified number of errors occurs during
the processing of inserts, deletes, updates, and appends. If ERRLIMIT= is set to 0, SAS
processes all rows, regardless of the number of errors that occur. The SAS log displays
the total number of rows processed and the number of failed rows, if applicable.

The DBCOMMIT= option overrides the ERRLIMIT= option. If you specify a value for
DBCOMMIT= other than zero, then rollbacks that the ERRLIMIT= option affects might
not include records that are processed unsuccessfully because DBCOMMIT= already
committed them.

Note: A significant performance impact can result if you use this option from a SAS
client session in SAS/SHARE or SAS/CONNECT environment to create or populate a
newly created table. To prevent this, use the default setting, ERRLIMIT=1. �



224 IGNORE_READ_ONLY_COLUMNS= Data Set Option � Chapter 10

Teradata Details: DBCOMMIT= and ERRLIMIT= are disabled for MultiLoad in
order to prevent any conflict with ML_CHECKPOINT=.

Example

In the following example, SAS stops processing and issues a rollback to the DBMS at
the occurrence of the tenth error. The MYDBLIB libref was assigned in a prior
LIBNAME statement.

data mydblib.employee3 (errlimit=10);
set mydblib.employees;
where salary > 40000;

run;

IGNORE_READ_ONLY_COLUMNS= Data Set Option

Specifies whether to ignore or include columns whose data types are read-only when generating
an SQL statement for inserts or updates

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE
DB
Default value: NO

Syntax
IGNORE_READ_ONLY_COLUMNS=YES | NO

Syntax Description

YES
specifies that the SAS/ACCESS engine ignores columns whose data types are
read-only when you are generating insert and update SQL statements

NO
specifies that the SAS/ACCESS engine does not ignore columns whose data types are
read-only when you are generating insert and update SQL statements

Details
Several databases include data types that can be read-only, such as Microsoft SQL
Server’s timestamp data type. Several databases also have properties that allow certain
data types to be read-only, such as Microsoft SQL Server’s identity property.

When IGNORE_READ_ONLY_COLUMN=NO (the default) and a DBMS table
contains a column that is read-only, an error is returned that the data could not be
modified for that column.



Data Set Options for Relational Databases � IN= Data Set Option 225

Examples

For the following example, a database that contains the table Products is created
with two columns: ID and PRODUCT_NAME. The ID column is defined by a read-only
data type and PRODUCT_NAME is a character column.

CREATE TABLE products (id int IDENTITY PRIMARY KEY, product_name varchar(40))

If you have a SAS data set that contains the name of your products, you can insert
the data from the SAS data set into the Products table:

data work.products;
id=1;
product_name=’screwdriver’;
output;
id=2;
product_name=’hammer’;
output;
id=3;
product_name=’saw’;
output;
id=4;
product_name=’shovel’;
output;

run;

When IGNORE_READ_ONLY_COLUMNS=NO (the default), the database returns
an error because the ID column cannot be updated. However, if you set the option to
YES and execute a PROC APPEND, the append succeeds and the generated SQL
statement does not contain the ID column.

libname x odbc uid=dbitest pwd=dbigrp1 dsn=lupinss
ignore_read_only_columns=yes;

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;
proc append base=x.PRODUCTS data=work.products;
run;

See Also
To apply this option to an individual data set, see the LIBNAME option “IGNORE_

READ_ONLY_COLUMNS= LIBNAME Option” on page 117.

IN= Data Set Option

Lets you specify the database or tablespace in which you want to create a new table

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS

Default value: LIBNAME setting



226 INSERT_SQL= Data Set Option � Chapter 10

Syntax
IN=’database-name.tablespace-name’|’DATABASE database-name’

Syntax Description

database-name.tablespace-name
specifies the names of the database and tablespace, which are separated by a period.

DATABASE database-name
specifies only the database name. In this case, you specify the word DATABASE,
then a space and the database name. Enclose the entire specification in single
quotation marks.

Details
The IN= option is relevant only when you are creating a new table. If you omit this
option, the default is to create the table in the default database or tablespace.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “IN= LIBNAME Option” on page 118.

INSERT_SQL= Data Set Option

Determines the method that is used to insert rows into a data source

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Microsoft SQL Server, ODBC, OLE DB

Default value: LIBNAME setting

Syntax
INSERT_SQL=YES | NO

Syntax Description

YES
specifies that the SAS/ACCESS engine uses the data source’s SQL insert method to
insert new rows into a table.

NO
specifies that the SAS/ACCESS engine uses an alternate (DBMS-specific) method to
add new rows to a table.



Data Set Options for Relational Databases � INSERTBUFF= Data Set Option 227

Details
Flat-file databases such as dBase, FoxPro, and text files have generally improved insert
performance when INSERT_SQL=NO. Other databases might have inferior insert
performance or might fail with this setting. Therefore, you should experiment to
determine the optimal setting for your situation.

ODBC Details: The ODBC default is YES, except for Microsoft Access which has a
default of NO. When INSERT_SQL=NO, the SQLSetPos (SQL_ADD) function inserts
rows in groups that are the size of the INSERTBUFF= option value. The SQLSetPos
(SQL_ADD) function does not work unless it is supported by your ODBC driver.

OLE DB Details: By default, the OLE DB interface attempts to use the most efficient
row insertion method for each data source. You can use the INSERT_SQL option to
override the default in the event that it is not optimal for your situation. The OLE DB
alternate method (used when this option is set to NO) uses the OLE DB
IRowsetChange interface.

SQL Server Details: The SQL Server default is YES. When INSERT_SQL=NO, the
SQLSetPos (SQL_ADD) function inserts rows in groups that are the size of the
INSERTBUFF= option value. The SQLSetPos (SQL_ADD) function does not work
unless it is supported by your ODBC driver.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “INSERT_SQL= LIBNAME Option” on page 119.

INSERTBUFF= Data Set Option

Specifies the number of rows in a single DBMS insert

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, MySQL, Netezza,
ODBC, OLE DB, Oracle
Default value: LIBNAME setting

Syntax
INSERTBUFF=positive-integer

Syntax Description

positive-integer
specifies the number of rows to insert.

Details
SAS allows the maximum number of rows that is allowed by the DBMS. The optimal
value for this option varies with factors such as network type and available memory.
You might need to experiment with different values to determine the best value for your
site.



228 KEYSET_SIZE= Data Set Option � Chapter 10

When you assign a value that is greater than INSERTBUFF=1, the SAS application
notes that indicate the success or failure of the insert operation might be incorrect.
This is because these notes represent information for only a single insert, even when
multiple inserts are performed.

If the DBCOMMIT= option is specified with a value that is less than the value of
INSERTBUFF=, then DBCOMMIT= overrides INSERTBUFF=.

Note: When you insert rows with the VIEWTABLE window or the FSEDIT or
FSVIEW procedure, use INSERTBUFF=1 to prevent the DBMS interface from trying to
insert multiple rows. These features do not support inserting more than one row at a
time. �

Note: Additional driver-specific restrictions might apply. �

DB2 under UNIX and PC Hosts Details: You must specify INSERT_SQL=YES in
order to use this option. If one row in the insert buffer fails, all rows in the insert
buffer fail.

Microsoft SQL Server Details: You must specify INSERT_SQL=YES in order to use
this option.

MySQL Details: The default is 0. Any value greater than 0 turns on the
INSERTBUFF= option. The engine then calculates how many rows it can insert at one
time, based on the row size. If one row in the insert buffer fails, all rows in the insert
buffer might fail, depending on your storage type.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “INSERTBUFF= LIBNAME Option” on page 120.

KEYSET_SIZE= Data Set Option

Specifies the number of rows in the cursor that are keyset driven

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Microsoft SQL Server, ODBC
Default value: LIBNAME setting

Syntax
KEYSET_SIZE=number-of-rows

Syntax Description

number-of-rows
is a positive integer from 0 through the number of rows in the cursor.

Details
This option is valid only when CURSOR_TYPE=KEYSET_DRIVEN.



Data Set Options for Relational Databases � LOCATION= Data Set Option 229

If KEYSET_SIZE=0, then the entire cursor is keyset driven. If a value greater than 0
is specified for KEYSET_SIZE=, then the value chosen indicates the number of rows,
within the cursor, that function as a keyset-driven cursor. When you scroll beyond the
bounds that are specified by KEYSET_SIZE=, then the cursor becomes dynamic and
new rows might be included in the cursor; this becomes the new keyset and the cursor
functions as a keyset-driven cursor again. Whenever the value specified is between 1
and the number of rows in the cursor, the cursor is considered to be a mixed cursor.
Part of the cursor functions as a keyset-driven cursor and part of the cursor functions
as a dynamic cursor.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “KEYSET_SIZE= LIBNAME Option” on page 122.

LOCATION= Data Set Option

Lets you further specify exactly where a table resides

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 z/OS
Default value: LIBNAME setting

Syntax
LOCATION=location-name

Details
The location name maps to the location in the SYSIBM.SYSLOCATIONS catalog in the
communication database.

In the DBMS engine, the location is converted to the first level of a three-level table
name: location-name.AUTHID.TABLE. The connection to the remote DBMS subsystem
is done implicitly by the DBMS when it receives a three-level name in an SQL
statement.

If you specify LOCATION=, you must also specify the AUTHID= option.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “LOCATION= LIBNAME Option” on page 122.



230 LOCKTABLE= Data Set Option � Chapter 10

LOCKTABLE= Data Set Option

Places exclusive or shared locks on tables

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Informix
Default value: LIBNAME setting

Syntax
LOCKTABLE=EXCLUSIVE | SHARE

Syntax Description

EXCLUSIVE
locks a table exclusively, preventing other users from accessing any table that you
open in the libref.

SHARE
locks a table in shared mode, allowing other users or processes to read data from the
tables, but preventing users from updating data.

Details
You can lock tables only if you are the owner or have been granted the necessary
privilege. If you omit LOCKTABLE=, no locking occurs.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “LOCKTABLE= LIBNAME Option” on page 123.

MBUFFSIZE= Data Set Option

Specifies the size of the shared memory buffers to be used for transferring data from SAS to
Teradata.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata
Default value: 64K

Syntax
MBUFFSIZE=size-of-shared-memory-buffers



Data Set Options for Relational Databases � ML_CHECKPOINT= Data Set Option 231

Syntax Description

size-of-shared-memory-buffers
a numeric value (between the size of a row being loaded and 1MB) that specifies the
buffer size.

Details
MBUFFSIZE= specifies the size of data buffers used for transferring data from SAS

to Teradata. Two data set options are available for tuning the number and size of data
buffers used for transferring data from SAS to Teradata.

When using MULTILOAD=, data is transferred from SAS to Teradata using shared
memory segments. The default shared memory buffer size is 64K. The default number
of shared memory buffers used for the transfer is 2.

Use the MBUFFSIZE= data set option to vary the size of the shared memory buffers
from the size of each data row up to 1MB.

Use BUFFERS= to vary the number of buffers for data transfer from 1 to 8.

See Also
See BUFFERS= for information about changing the number of shared memory

buffers.

ML_CHECKPOINT= Data Set Option

Specifies the interval between checkpoint operations, in minutes.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata
Default value: 0

Syntax
ML_CHECKPOINT=checkpoint-rate

Syntax Description

checkpoint-rate
a numeric value that specifies the interval between checkpoint operations, in minutes.

Details
ML_CHECKPOINT=0 is the default; no checkpoints are taken if the default is used. If
ML_CHECKPOINT= is between 1 and 59 inclusive, checkpoints are taken at the



232 ML_ERROR1= Data Set Option � Chapter 10

specified intervals, in minutes. If the value of ML_CHECKPOINT= is greater than or
equal to 60, then a checkpoint operation occurs after a multiple of the specified rows are
loaded.

ML_CHECKPOINT= functions very much like CHECKPOINT in the native Teradata
MultiLoad utility, but it differs from the DBCOMMIT= data set option. Note that
DBCOMMIT= is disabled for MultiLoad to prevent any conflict.

For more information about using checkpoints for MultiLoad, see Teradata
MultiLoad utility documentation.

See Also
For more information about using checkpoints and restarting MultiLoad jobs, see

MULTILOAD=.

ML_ERROR1= Data Set Option

Specifies the name of a temporary table that MultiLoad uses to track errors that were generated
during the acquisition phase of a bulk-load operation.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata
Default value: none

Syntax
ML_ERROR1=temporary-table-name

Syntax Description

temporary-table-name
specifies the name of a temporary table that MultiLoad uses to track errors that were
generated during the acquisition phase of a bulk-load operation.

Details
The Teradata MultiLoad utility uses four different temporary tables when performing
the bulk-load operation. MultiLoad uses a log table to track restart information, two
error tables to track errors, and a work table to hold data before the insert operation is
made.



Data Set Options for Relational Databases � ML_ERROR2= Data Set Option 233

By default, the SAS/ACCESS MultiLoad facility generates names for these
temporary tables:

Restart table SAS_ML_RS_randnum

Acquisition error table SAS_ML_ET_randnum

Application error table SAS_ML_UT_randnum

Work table SAS_ML_WT_randnum

In the table names, randnum represents a random number.
Use this option to specify the name of a table to use for storing the errors that were

generated during the acquisition phase of the MultiLoad bulk-load operation. Upon
restarting the job, ML_ERROR1 is used to specify the name of the table that is used for
storing errors generated during a previously failed MultiLoad job.

For more information about the temporary table names that MultiLoad uses, see
Teradata documentation on the MultiLoad utility.

Note: Do not use ML_ERROR1 with the ML_LOG= data set option. ML_LOG=
provides a common prefix for all temporary tables that the Teradata MultiLoad utility
uses. �

See Also
To specify a common prefix for all of the temporary tables that are used by the

Teradata MultiLoad utility, see ML_LOG=.

ML_ERROR2= Data Set Option

Specifies the name of a temporary table that MultiLoad uses to track errors that were generated
during the application phase of a bulk-load operation.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata
Default value: none

Syntax
ML_ERROR2=temporary-table-name

Syntax Description

temporary-table-name
specifies the name of a temporary table that MultiLoad uses to track errors that were
generated during the application phase of a bulk-load operation.



234 ML_LOG= Data Set Option � Chapter 10

Details

The Teradata MultiLoad utility uses four different temporary tables when performing
the bulk-load operation. MultiLoad uses a log table to track restart information, two
error tables to track errors, and a work table to hold data before the insert operation is
made.

By default, the SAS/ACCESS MultiLoad facility generates names for these
temporary tables:

Restart table SAS_ML_RS_randnum

Acquisition error table SAS_ML_ET_randnum

Application error table SAS_ML_UT_randnum

Work table SAS_ML_WT_randnum

In these table names, randnum represents a random number.
Use this option to specify the name of a table to use for storing the errors that were

generated during the application phase of the MultiLoad bulk-load operation. When
you restart the job, use ML_ERROR2 to specify the name of the table for storing errors
that were generated during a previously failed MultiLoad job.

For more information about the temporary table names that MultiLoad uses, see
Teradata documentation on the MultiLoad utility.

Note: Do not use ML_ERROR2 with the ML_LOG= data set option. ML_LOG=
provides a common prefix for all of the temporary tables that are used by the Teradata
MultiLoad utility. �

See Also

To specify a common prefix for all temporary tables that the Teradata MultiLoad
utility uses, see ML_LOG=

ML_LOG= Data Set Option

Specifies a prefix for the names of the temporary tables that MultiLoad uses during a bulk-load
operation.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

DBMS support: Teradata

Default value: none

Syntax

ML_LOG=prefix-for-MultiLoad-temporary-tables



Data Set Options for Relational Databases � ML_LOG= Data Set Option 235

Syntax Description

prefix-for-MultiLoad-temporary-tables
specifies the prefix to use when naming Teradata tables that the Teradata MultiLoad
utility uses during a bulk-load operation.

Details
The Teradata MultiLoad utility uses four different temporary tables when performing
the bulk-load operation. MultiLoad uses a log table to track restart information, two
error tables to track errors, and a work table to hold data before the insert operation is
made. By default, the SAS/ACCESS MultiLoad facility generates names for these
temporary tables:

Restart table SAS_ML_RS_randnum

Acquisition error table SAS_ML_ET_randnum

Application error table SAS_ML_UT_randnum

Work table SAS_ML_WT_randnum

In these table names, randnum represents a random number.
To specify a different name for the tables listed above, use the ML_RESTART= ,

ML_ERROR1=, ML_ERROR2=, and ML_WORK= data set options
, respectively.
You can use the ML_LOG= data set option to specify a prefix for the temporary table

names that MultiLoad uses. For example, if you use ML_LOG=MY_ERRORS, these table
names are generated:

Restart table MY_ERRORS_RS

Acquisition error table MY_ERRORS_ET

Application error table MY_ERRORS_UT

Work table MY_ERRORS_WT

ML_LOG= can also be used in a restart step to specify the same prefix that was used
by a previous MultiLoad job that used ML_LOG= and failed.

For more information about the temporary table names that MultiLoad uses, see
Teradata documentation on the MultiLoad utility.

Note: ML_LOG= is not to be used with data set options ML_RESTART= ,
ML_ERROR1=, ML_ERROR2=, and ML_WORK=, which provide specific names to the
temporary files. �



236 ML_RESTART= Data Set Option � Chapter 10

ML_RESTART= Data Set Option

Specifies the name of a temporary table that is used by MultiLoad to track checkpoint information.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)
DBMS support: Teradata
Default value: none

Syntax
ML_RESTART=temporary-table-name

Syntax Description

temporary-table-name
specifies the name of the temporary table that is used by the Teradata MultiLoad
utility to track checkpoint information.

Details
The Teradata MultiLoad utility uses four different temporary tables when performing
the bulk-load operation. MultiLoad uses a log table to track restart information, two
error tables to track errors, and a work table to hold data before the insert operation is
made.

By default, the SAS/ACCESS MultiLoad facility generates names for these
temporary tables:

Restart table SAS_ML_RS_randnum

Acquisition error table SAS_ML_ET_randnum

Application error table SAS_ML_UT_randnum

Work table SAS_ML_WT_randnum

In these table names, randnum represents a random number.
Use ML_RESTART= to specify the name of a table to store checkpoint information.

Upon restart, ML_RESTART= is used to specify the name of the log table that was used
for storing checkpoint information in the earlier failed run.

For more information about the temporary table names that the Teradata MultiLoad
utility uses, see Teradata documentation on the MultiLoad utility.

Note: Do not use ML_RESTART= with the ML_LOG= data set option. ML_LOG=
provides a common prefix for all temporary tables that the Teradata MultiLoad utility
uses. �

See Also
To specify a common prefix for all temporary tables that the Teradata MultiLoad

utility uses, see ML_LOG=.



Data Set Options for Relational Databases � ML_WORK= Data Set Option 237

ML_WORK= Data Set Option

Specifies the name of a temporary table that MultiLoad uses to store intermediate data.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

DBMS support: Teradata

Default value: none

Syntax
ML_WORK=temporary-table-name

Syntax Description

temporary-table-name
specifies the name of a temporary table that MultiLoad uses to store intermediate
data that is received by the MultiLoad utility during a bulk-load operation.

Details
The Teradata MultiLoad utility uses four different temporary tables when performing
the bulk-load operation. MultiLoad uses a log table to track restart information, two
error tables to track errors, and a work table to hold data before the insert operation is
made.

By default, the SAS/ACCESS MultiLoad facility generates names for these
temporary tables:

Restart table SAS_ML_RS_randnum

Acquisition error table SAS_ML_ET_randnum

Application error table SAS_ML_UT_randnum

Work table SAS_ML_WT_randnum

In these table names,randnum represents a random number.
Use this option to specify the name of the table to use for storing the intermediate

data that the MultiLoad utility received during a bulk-load operation. When you restart
the job, use ML_WORK= to specify the name of the table for storing intermediate data
during a previously failed MultiLoad job.

For more information about the temporary table names that MultiLoad uses, see
Teradata documentation on the MultiLoad utility.

Note: Do not use ML_WORK= with the ML_LOG= data set option. ML_LOG=
provides a common prefix for all temporary tables that the Teradata MultiLoad utility
uses. �



238 MULTILOAD= Data Set Option � Chapter 10

See Also
To specify a common prefix for all temporary tables that the Teradata MultiLoad

utility uses, see ML_LOG=.

MULTILOAD= Data Set Option

Specifies whether Teradata insert and append operations should make use of the Teradata
MultiLoad utility.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

DBMS support: Teradata

Default value: NO

Syntax
MULTILOAD=YES | NO

Syntax Description

YES
uses the Teradata MultiLoad utility, if available, to load Teradata tables.

NO
sends inserts to Teradata tables one row at a time.

Details

Bulk Loading
The SAS/ACCESS MultiLoad facility provides a bulk-loading method of loading both
empty and existing Teradata tables. Unlike FastLoad, MultiLoad can append data to
existing tables.

Data Buffers
Two data set options are available for tuning the number and the size of data buffers

that are used for transferring data from SAS to Teradata. Data is transferred from SAS
to Teradata using shared memory. The default shared memory buffer size is 64K. The
default number of shared memory buffers used for the transfer is 2. The BUFFERS=
data set option can be used to vary the number of buffers for data transfer from 1 to 8.
The MBUFFSIZE= data set option can be used to vary the size of the shared memory
buffers from the size of each data row up to 1MB.

Temporary Tables
The Teradata MultiLoad utility uses four different temporary tables when performing

the bulk-load operation. MultiLoad uses a log table to track restart information, two
error tables to track errors, and a work table to hold data before the insert operation is
made.



Data Set Options for Relational Databases � MULTILOAD= Data Set Option 239

By default, the SAS/ACCESS MultiLoad facility generates names for these
temporary tables:

Restart table SAS_ML_RS_randnum

Acquisition error table SAS_ML_ET_randnum

Application error table SAS_ML_UT_randnum

Work table SAS_ML_WT_randnum

In these table names, randnum represents a random number.
To specify a different name for the tables listed above, use the ML_RESTART= ,

ML_ERROR1=, ML_ERROR2=, and ML_WORK= data set options, respectively.
You can use the ML_LOG= data set option to specify a prefix for the temporary table

names that MultiLoad uses. For example, if you use ML_LOG=MY_ERRORS, these table
names are generated:

Restart table MY_ERRORS_RS

Acquisition error table MY_ERRORS_ET

Application error table MY_ERRORS_UT

Work table MY_ERRORS_WT

Here is the order that is used for naming the temporary tables that MultiLoad uses:

1 If ML_LOG= is specified, the specified prefix is used when naming temporary
tables for MultiLoad.

2 If you do not specify ML_LOG=, the values that you specified for ML_ERROR1,
ML_ERROR2, ML_WORK, ML_RESTART are used.

3 If you do not specify any table naming options, temporary table names are
generated by default.

Note: ML_LOG cannot be used with any of these options: ML_ERROR1,
ML_ERROR2, ML_WORK, and ML_RESTART. �

Restarting MultiLoad
The MultiLoad bulk-load operation (or MultiLoad job) works in two phases: the first

phase is called an acquisition phase, during which data is transferred from SAS to
Teradata work tables. The second phase is called the application phase, during which
data is applied to the target table.

If the MultiLoad job fails during the acquisition phase, you can restart the job from
the last successful checkpoint. The exact observation from which the MultiLoad job
must be restarted is displayed in the SAS log. If the MultiLoad job fails in the
application phase—when data is loaded onto the target tables from the
worktable—restart the MultiLoad job outside of SAS. The MultiLoad restart script
displays in the SAS log. You can run the generated MultiLoad script outside of SAS to
complete the load.

The ML_CHECKPOINT= data set option allows the user to specify the checkpoint
rate. Specify a value for ML_CHECKPOINT= if restart capability is desired. If
checkpoint tracking is not used and the MultiLoad fails in the acquisition phase, the



240 MULTILOAD= Data Set Option � Chapter 10

load needs to be restarted from the beginning. ML_CHECKPOINT=0 is the default; no
checkpoints are taken if the default is used.

If ML_CHECKPOINT is between 1 and 59 inclusive, checkpoints are taken at the
specified interval in minutes. If ML_CHECKPOINT is greater than or equal to 60, then
a checkpoint operation occurs after a multiple of the specified rows are loaded.

Note: ML_CHECKPOINT= functions very much like the Teradata MultiLoad
utility’s checkpoint, differs from the DBCOMMIT= data set option. �

The following restrictions apply when restarting a failed MultiLoad job:
� The failed MultiLoad job must have specified a checkpoint rate other than zero

using the ML_CHECKPOINT= data set option. Otherwise, restarting begins from
the first record of the source data.

Note, however, that checkpoints are relevant only to the acquisition phase of
MultiLoad. Even if ML_CHECKPOINT=0 is specified, a checkpoint takes place at
the end of the acquisition phase. If the job fails after that (in the application
phase) you must restart the job outside of SAS using the MultiLoad script written
to the SAS log.

For example, the following MultiLoad job takes a checkpoint every 1000 records.

libname trlib teradata user=testuser pw=XXXXXX server=dbc;

/* Create data to MultiLoad */
data work.testdata;

do x=1 to 50000;
output;

end;
end;

data trlib.mlfloat(MultiLoad=yes ML_CHECKPOINT=1000);
set work.testdata;
run;

� You must restart the failed MultiLoad job as an append process because the target
table already exists. It is also necessary to identify the work tables, restart table,
and the error tables used in the original job.

For example, suppose that the DATA step shown above failed with the following
error message in the SAS log:

ERROR: MultiLoad failed with DBS error 2644 after a checkpoint was
taken for 13000 records.
Correct error and restart as an append process with dataset options

ML_RESTART=SAS_ML_RS_1436199780, ML_ERROR1=SAS_ML_ET_1436199780,
ML_ERROR2=SAS_ML_UT_1436199780, and ML_WORK=SAS_ML_WT_1436199780.

If the first run used FIRSTOBS=n, then use the value (7278+n-1) for FIRSTOBS
in the restart.

Otherwise use FIRSTOBS=7278.
Note that sometimes, the FIRSTOBS value used on the restart may be an earlier
position than the last checkpoint because restart is block-oriented and not
record-oriented.

After fixing the error, the job must be restarted as an append process and must
specify the same work, error, and restart tables used in the earlier run. A
FIRSTOBS= value is used on the source table to specify the record from which to
restart.
/* Restart a MultiLoad job that failed in the acquisition phase

after correcting the error */



Data Set Options for Relational Databases � MULTILOAD= Data Set Option 241

proc append data=work.testdata(FIRSTOBS=7278)
base=trmlib.mlfloat(MultiLoad=YES ML_RESTART=SAS_ML_RS_1436199780

ML_ERROR1=SAS_ML_ET_1436199780 ML_ERROR2=SAS_ML_UT_1436199780
ML_WORK=SAS_ML_WT_1436199780 ML_CHECKPOINT=1000);

run;

� If you used ML_LOG= in the run that failed, you can specify the same value for
ML_LOG= on restart. Therefore, you need not specify four data set options to
identify the temporary tables that MultiLoad uses.

For example, assume that this is how the original run used ML_LOG=:
data trlib.mlfloat(MultiLoad=yes ML_CHECKPOINT=1000 ML_LOG=MY_ERRORS);
set work.testdata;

run;

Assume that the DATA step shown above fails with the following error. The
restart capability only needs data set option ML_LOG= to identify all the
necessary tables.
ERROR: MultiLoad failed with DBS error 2644 after a checkpoint
was taken for 13000 records. Correct error and restart as an append process
with dataset options

ML_RESTART=SAS_ML_RS_1436199780, ML_ERROR1=SAS_ML_ET_1436199780,
ML_ERROR2=SAS_ML_UT_1436199780, and ML_WORK=SAS_ML_WT_1436199780.

If the first run used FIRSTOBS=n, then use the value (7278+n-1) for FIRSTOBS
in the restart.

Otherwise use FIRSTOBS=7278.
Note that sometimes, the FIRSTOBS value used on the restart may be an earlier
position than the last checkpoint because restart is block-oriented and not
record-oriented.

proc append data=work.testdata(FIRSTOBS=7278)
base=trlib.mlfloat(MultiLoad=YES ML_LOG=MY_ERRORS ML_CHECKPOINT=1000);

run;

� If the MultiLoad process fails in the application phase, SAS has already
transferred all data to be loaded to Teradata. Restarting a MultiLoad job must be
performed outside of SAS using the script written in the SAS log. See Teradata
MultiLoad documentation for instructions on how to run MultiLoad scripts. Here
is an example of a script that was written in the SAS log:

=-=-= MultiLoad restart script starts here =-=-=
.LOGTABLE MY_ERRORS_RS;
.LOGON boom/mloaduser,********;
.begin import mload tables "mlfloat" CHECKPOINT 0 WORKTABLES

MY_ERRORS_WT ERRORTABLES
MY_ERRORS_ET MY_ERRORS_UT

/*TIFY HIGH EXIT SASMLNE.DLL TEXT ’2180*/;
.layout saslayout indicators;
.FIELD "x" * FLOAT;
.DML Label SASDML;
insert into "mlfloat".*;
.IMPORT INFILE DUMMY
/*SMOD SASMLAM.DLL ’2180 2180 2180 */
FORMAT UNFORMAT LAYOUT SASLAYOUT
APPLY SASDML;
.END MLOAD;



242 MULTILOAD= Data Set Option � Chapter 10

.LOGOFF;
=-=-= MultiLoad restart script ends here =-=-=
ERROR: MultiLoad failed with DBS error 2644 in the application phase.
Run the MultiLoad restartscript listed above outside of SAS
to restart the job.

� If the original run used a value for FIRSTOBS= for the source data, use the
formula from the SAS log error message to calculate the value for FIRSTOBS=
upon restart. These examples show how to do this.

/* Create data to MultiLoad */
data work.testdata;

do x=1 to 50000;
output;

end;
run;

libname trlib teradata user=testuser pw=testpass server=boom;

/* Load 40,000 rows to the Teradata table */
data trlib.mlfloat(MultiLoad=yes ML_CHECKPOINT=1000 ML_LOG=MY_ERRORS);
set work.testdata(FIRSTOBS=10001);
run;

Suppose that the DATA step shown above failed with this error message:

ERROR: MultiLoad failed with DBS error 2644 after a checkpoint
was taken for 13000 records.
Correct the error and restart the load as an append process with
data set option ML_LOG=MY_ERRORS.
If the first run used FIRSTOBS=n, then use the value (7278+n-1)
for FIRSTOBS in the restart.

Otherwise use FIRSTOBS=7278.
Note that sometimes, the FIRSTOBS value specified on the restart
may be an earlier position than the last checkpoint
because MultiLoad restart is block-oriented and not
record-oriented.

The FIRSTOBS for the restart step can be calculated using the formula
provided, that is, FIRSTOBS=7278+100001-1=17278. Use FIRSTOBS=17278 on
the source data.

proc append data=work.testdata(FIRSTOBS=17278)
base=trlib.mlfloat(MultiLoad=YES ML_LOG=MY_ERRORS ML_CHECKPOINT=1000);

run;

Note:
� DBCOMMIT= is disabled for MultiLoad in order to prevent any conflict with

ML_CHECKPOINT=.
� ERRLIMIT= is not available for MultiLoad because the number of errors are

known only at the end of each load phase.
� For restart to work correctly, the data source must return data in the same

order. If the order of data that is read varies from one run to another and the
load job fails in the application phase, delete temporary tables and restart
the load as a new process. If the job fails in the application phase, restart the
job outside of SAS as usual since the data needed to complete the load has
already been transferred.



Data Set Options for Relational Databases � MULTILOAD= Data Set Option 243

� The restart capability in MultiLoad is block-oriented, and not record-oriented.
This means that while a checkpoint has been taken at, for example, 5000
records, it might be necessary to restart from an earlier record; for example,
record 4000. This is because the block of data containing record 5001 might
have started at record 4000. The exact record where restart should take place
is displayed in the SAS log.

�

Examples

The following example uses MultiLoad to load SAS data to an alternate database.
Note that it specifies database=mloaduser in the LIBNAME statement.

libname trlib teradata user=testuser pw=testpass server=dbc database=mloaduser;
/*MultiLoad 20000 observations into alternate database mloaduser */

data trlib.trmload14(DBCREATE_TABLE_OPTS="PRIMARY INDEX(IDNUM)" MultiLoad=yes
ML_LOG=TRMLOAD14 ML_CHECKPOINT=5000);

set permdata.BIG1MIL(drop=year obs=20000);
run;

This example extracts data from one table using FastExport and loads data into
another table using MultiLoad.

libname trlib teradata user=testuser pw=testpass server=dbc;

/* Create data to load */
data trlib.trodd(DBCREATE_TABLE_OPTS="PRIMARY INDEX(IDNUM)" MultiLoad=yes);
set permdata.BIG1MIL(drop=year obs=10000);

where mod(IDNUM,2)=1;
run;

/* FastExport from one table and MultiLoad into another */
proc append data=trlib.treven(dbsliceparm=all) base=trlib.trall(MultiLOAD=YES);
run;

See Also

� See SLEEP= for information about specifying how long to wait before retrying a
logon operation.

� See TENACITY= for information about specifying how many hours to continue to
retry a logon operation.



244 NULLCHAR= Data Set Option � Chapter 10

NULLCHAR= Data Set Option

Indicates how missing SAS character values are handled during insert, update, DBINDEX=, and
DBKEY= processing

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata

Default value: SAS

Syntax

NULLCHAR= SAS | YES | NO

Syntax Description

SAS
indicates that missing character values in SAS data sets are treated as NULL values
if the DBMS allows NULLs. Otherwise, they are treated as the NULLCHARVAL=
value.

YES
indicates that missing character values in SAS data sets are treated as NULL values
if the DBMS allows NULLs. Otherwise, an error is returned.

NO
indicates that missing character values in SAS data sets are treated as the
NULLCHARVAL= value (regardless of whether the DBMS allows NULLs for the
column).

Details

This option affects insert and update processing and also applies when you use the
DBINDEX= and DBKEY= options.

This option works in conjunction with the NULLCHARVAL= data set option, which
determines what is inserted when NULL values are not allowed.

All missing SAS numeric values (represented in SAS as ’.’) are treated by the DBMS
as NULLs.

Oracle Details: See the topic on bulk loading in the documentation for the interface
to Oracle for interactions between NULLCHAR and BULKLOAD=.

See Also

“NULLCHARVAL= Data Set Option” on page 245

“DBNULL= Data Set Option” on page 212



Data Set Options for Relational Databases � OR_PARTITION= Data Set Option 245

NULLCHARVAL= Data Set Option

Defines the character string that replaces missing SAS character values during insert, update,
DBINDEX=, and DBKEY= processing

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC,DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: a blank character

Syntax
NULLCHARVAL=’character-string’

Details
This option aff

ects insert and update processing and also applies when you use the DBINDEX= and
DBKEY= options.

This option works with the NULLCHAR= option, which determines whether a
missing SAS character value is treated as a NULL value.

If NULLCHARVAL= is longer than the maximum column width, one of the following
occurs:

� The string is truncated if DBFORCE=YES.
� The operation fails if DBFORCE=NO.

See Also

“NULLCHAR= Data Set Option” on page 244
“DBFORCE= Data Set Option” on page 202
“DBNULL= Data Set Option” on page 212

OR_PARTITION= Data Set Option

Allows reading, updating, and deleting from a particular partition in a partitioned table, also
inserting and bulk loading into a particular partition in a partitioned table

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle
Default value: none

Syntax
OR_PARTITION =name of a partition in a partitioned Oracle table



246 OR_PARTITION= Data Set Option � Chapter 10

Syntax Description

name of a partition in a partitioned Oracle table
The name of the partition must be valid or an error occurs.

Details
Use this option in cases where you are working with only one particular partition at a
time in a partitioned table. Specifying this option boost performances because you are
limiting your access to only one partition of a table instead of the entire table.

This option is appropriate when reading, updating, and deleting from a partitioned
table, also when inserting into a partitioned table or bulk loading to a table. You can
use it to boost performance.

Example

The following example shows one way you can use this option.

libname x oracle user=scott pw=tiger path=oraclev9;

proc delete data=x.orparttest; run;
data x.ORparttest ( dbtype=(NUM=’int’)

DBCREATE_TABLE_OPTS=’partition by range (NUM)
(partition p1 values less than (11),
partition p2 values less than (21),
partition p3 values less than (31),
partition p4 values less than (41),
partition p5 values less than (51),
partition p6 values less than (61),
partition p7 values less than (71),
partition p8 values less than (81)
)’ );

do i=1 to 80;
NUM=i;

output;
end;
run;

options sastrace=",,t,d" sastraceloc=saslog nostsuffix;

/* input */
proc print data=x.orparttest ( or_partition=p4 );
run;

/* update */
proc sql;

/* update should fail with 14402, 00000, "updating partition key column would
cause a partition change"
// *Cause: An UPDATE statement attempted to change the value of a partition
// key column causing migration of the row to another partition
// *Action: Do not attempt to update a partition key column or make sure that



Data Set Options for Relational Databases � OR_PARTITION= Data Set Option 247

// the new partition key is within the range containing the old
// partition key.
*/
update x.orparttest ( or_partition=p4 ) set num=100;

update x.orparttest ( or_partition=p4 ) set num=35;

select * from x.orparttest ( or_partition=p4 );
select * from x.orparttest ( or_partition=p8 );

/* delete */
delete from x.orparttest ( or_partition=p4 );

select * from x.orparttest;
quit;

/* load to an existing table */
data new; do i=31 to 39; num=i; output;end;
run;
data new2; do i=1 to 9; num=i; output;end;
run;

proc append base= x.orparttest ( or_partition=p4 ) data= new;
run;

/* insert should fail 14401, 00000, "inserted partition key is outside
specified partition"
// *Cause: the concatenated partition key of an inserted record is outside
// the ranges of the two concatenated partition bound lists that
// delimit the partition named in the INSERT statement
// *Action: do not insert the key or insert it in another partition
*/
proc append base= x.orparttest ( or_partition=p4 ) data= new2;
run;

/* load to an existing table */
proc append base= x.orparttest ( or_partition=p4 bulkload=yes
bl_load_method=truncate ) data= new;
run;

/* insert should fail 14401 */
proc append base= x.orparttest ( or_partition=p4 bulkload=yes
bl_load_method=truncate ) data= new2;
run;



248 OR_PARTITION= Data Set Option � Chapter 10

Below are a series of sample scenarios that illustrate how you can use this option.
The first shows how to create the ORPARTTEST table, on which all remaining
examples depend.

libname x oracle user=scott pw=tiger path=oraclev9;
proc delete data=x.orparttest; run;
data x.ORparttest ( dbtype=(NUM=’int’)

DBCREATE_TABLE_OPTS=’partition by range (NUM)
(partition p1 values less than (11),
partition p2 values less than (21),
partition p3 values less than (31),
partition p4 values less than (41),
partition p5 values less than (51),
partition p6 values less than (61),
partition p7 values less than (71),
partition p8 values less than (81)
)’ );

do i=1 to 80;
NUM=i; output;

end;
run;

Only the P4 partition is read in the following example.

proc print data=x.orparttest ( or_partition-p4 );
run;

Rows that belong to only the single P4 partition are updated in the following example.

proc sql;
update x.orparttest ( or_partition=p4 ) set num=35;
quit;

The above example also illustrates how a particular partition can be updated.
However, updates and even inserts to the partition key column are done in such a way
that it must be migrated to a different partition in the table. Therefore, the following
example fails because the value 100 does not belong to the P4 partition.

proc sql;
update x.orparttest ( or_partition=p4 ) set num=100;
quit;

All rows in the P4 partition are deleted in the following example.

proc sql;
delete from x.orparttest ( or_partition=p4 );
quit;

In this next example, rows are added to the P4 partition in the table.

data new;
do i=31 to 39; num=i; output;end;

run;
proc append base= x.orparttest ( or_partition=p4 );

data= new;
run;



Data Set Options for Relational Databases � OR_UPD_NOWHERE= Data Set Option 249

The following example also adds rows to the P4 partition but uses the SQL*Loader
instead.

proc append base= x.orparttest ( or_partition=p4 bulkload=yes );
data= new;

run;

OR_UPD_NOWHERE= Data Set Option

Specifies whether SAS uses an extra WHERE clause when updating rows with no locking

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Alias: ORACLE_73_OR_ABOVE=

Default value: LIBNAME setting

Syntax

OR_UPD_NOWHERE =YES | NO

Syntax Description

YES
SAS does not use an additional WHERE clause to determine whether each row has
changed since it was read. Instead, SAS uses the SERIALIZABLE isolation level
(available with Oracle 7.3 and later) for update locking. If a row changes after the
serializable transaction starts, the update on that row fails.

NO
SAS uses an additional WHERE clause to determine whether each row has changed
since it was read. If a row has changed since being read, the update fails.

Details

Use this option when you are updating rows without locking
(UPDATE_LOCK_TYPE=NOLOCK).

By default (OR_UPD_NOWHERE=YES), updates are performed in serializable
transactions so you can avoid extra WHERE clause processing and potential WHERE
clause floating point precision problems.

Specify OR_UPD_NOWHERE=NO for compatibility when you are updating a SAS
Version 6 view descriptor.

Note: Due to the published Oracle bug 440366, sometimes an update on a row fails
even if the row has not changed. Oracle offers the following solution: When creating a
table, increase the number of INITRANS to at least 3 for the table. �



250 ORHINTS= Data Set Option � Chapter 10

Example

In the following example, you create a small Oracle table called TEST and then
update the TEST table once using the default setting (OR_UPD_NOWHERE=YES) and
once specifying OR_UPD_NOWHERE=NO.

libname oralib oracle user=testuser pw=testpass update_lock_type=no;

data oralib.test;
c1=1;
c2=2;
c3=3;
run;

options sastrace=",,,d" sastraceloc=saslog;

proc sql;
update oralib.test set c2=22;
update oralib.test(or_upd_nowhere=no) set c2=222;

quit;

This code uses the SASTRACELOC= and SASTRACE= options to send the output to
the SAS log.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “OR_UPD_NOWHERE= LIBNAME Option” on page 128.

ORHINTS= Data Set Option

Specifies Oracle hints to pass to Oracle from a SAS statement or SQL procedure

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Oracle

Default value: none

Syntax
ORHINTS =’Oracle-hint’

Syntax Description

Oracle-hint
specifies an Oracle hint for SAS/ACCESS to pass to the DBMS as part of an SQL
query.



Data Set Options for Relational Databases � PRESERVE_COL_NAMES= Data Set Option 251

Details
If you specify an Oracle hint, SAS passes the hint to Oracle. If you omit ORHINTS=,
SAS does not send any hints to Oracle.

Examples

The following example runs a SAS procedure on DBMS data and SAS converts the
procedure to one or more SQL queries. You can use this option to specify an Oracle hint
for SAS to pass as part of the SQL query.

libname mydblib oracle user=testuser password=testpass path=’myorapath’;

proc print data=mydblib.payroll(orhints=’/*+ ALL_ROWS */’);
run;

In the following example, SAS sends the Oracle hint ’/*+ ALL_ROWS */’ to Oracle
as part of the following statement:

SELECT /*+ ALL_ROWS */ * FROM PAYROLL

PRESERVE_COL_NAMES= Data Set Option

Preserves spaces, special characters, and case sensitivity in DBMS column names when you
create DBMS tables.

Valid in: DATA and PROC steps (when creating DBMS tables using SAS/ACCESS
software).
DBMS support: DB2 UNIX/PC, DB2 z/OS, HP Neoview, Informix, Microsoft SQL Server,
MySQL, Netezza, ODBC, OLE DB, Oracle, Teradata

Alias: PRESERVE_NAMES= (see Details)

Default value: LIBNAME setting

Syntax
PRESERVE_COL_NAMES=NO | YES

Syntax Description

NO
specifies that column names that are used in DBMS table creation are derived from
SAS variable names by using the SAS variable name normalization rules. (See the
VALIDVARNAME= system option for more information.) However, the database
applies its DBMS-specific normalization rules to the SAS variable names when it
creates the DBMS column names.

The use of name literals to create column names that use database keywords or
special symbols other than the underscore character might be illegal when DBMS
normalization rules are applied. To include nonstandard SAS symbols or database
keywords, specify PRESERVE_COL_NAMES=YES.



252 PRESERVE_COL_NAMES= Data Set Option � Chapter 10

YES
specifies that column names that are used in table creation are passed to the DBMS
with special characters and the exact, case-sensitive spelling of the name preserved.

Details
This option applies only when you use SAS/ACCESS to create a new DBMS table. When
you create a table, you assign the column names by using one of the following methods:

� To control the case of the DBMS column names, specify variables with the desired
case and set PRESERVE_COL_NAMES=YES. If you use special symbols or blanks,
you must set VALIDVARNAME=ANY and use name literals. For more information,
see the section about names in SAS/ACCESS for Relational Databases: Reference
and the section about system options in SAS Language Reference: Dictionary.

� To enable the DBMS to normalize the column names according to its naming
conventions, specify variables with any case and set
PRESERVE_COLUMN_NAMES=NO.

Note: When you use SAS/ACCESS to read from, insert rows into, or modify data in
an existing DBMS table, SAS identifies the database column names by their spelling.
Therefore, when the database column exists, the case of the variable does not matter. �

For more information, see the topic about naming in the documentation for your
SAS/ACCESS interface.

To save some time when coding, specify the PRESERVE_NAMES= alias if you plan
to specify both the PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options
in your LIBNAME statement.

To use column names in your SAS program that are not valid SAS names, you must
use one of the following techniques:

� Use the DQUOTE= option in PROC SQL and then reference your columns using
double quotation marks. For example:

proc sql dquote=ansi;
select "Total$Cost" from mydblib.mytable;

� Specify the global system option VALIDVARNAME= ANY and use name literals in
the SAS language. For example:

proc print data=mydblib.mytable;
format ’Total$Cost’n 22.2;

Note that if you are creating a table in PROC SQL, you must also include the
PRESERVE_COL_NAMES=YES option. For example:

libname mydblib oracle user=testuser password=testpass;
proc sql dquote=ansi;
create table mydblib.mytable (preserve_col_names=yes) ("my$column" int);

PRESERVE_COL_NAMES= does not apply to the Pass-Through Facility.

See Also
To assign this option to a group of relational DBMS tables or views, see

“PRESERVE_COL_NAMES= LIBNAME Option” on page 130 naming in your interface.



Data Set Options for Relational Databases � QUERY_TIMEOUT= Data Set Option 253

QUALIFIER= Data Set Option
Specifies the qualifier to use when you are reading database objects, such as DBMS tables and
views

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: HP Neoview, MySQL, Microsoft SQL Server, Netezza, ODBC, OLE DB
Default value: LIBNAME setting

Syntax
QUALIFIER=<qualifier-name>

Details
If this option is omitted, the default qualifier name, if any, is used for the data source.
QUALIFIER= can be used for any data source, such as a DBMS object, that allows
three-part identifier names: qualifier.schema.object.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “QUALIFIER= LIBNAME Option” on page 133.

QUERY_TIMEOUT= Data Set Option
Specifies the number of seconds of inactivity to wait before canceling a query

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, Netezza, ODBC
Default value: LIBNAME setting

Syntax
QUERY_TIMEOUT=number-of-seconds

Details
QUERY_TIMEOUT= 0 indicates that there is no time limit for a query. This option is
useful when you are testing a query, you suspect that a query might contain an endless
loop, or the data is locked by another user.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “QUERY_TIMEOUT= LIBNAME Option” on page 135.



254 READ_ISOLATION_LEVEL= Data Set Option � Chapter 10

READ_ISOLATION_LEVEL= Data Set Option

Specifies which level of read isolation locking to use when you are reading data

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, Microsoft SQL Server, ODBC, OLE DB, Oracle,
Sybase, Teradata
Default value: DBMS-specific

Syntax
READ_ISOLATION_LEVEL=DBMS-specific-value

Syntax Description

dbms-specific-value
See the documentation for your SAS/ACCESS interface for the values for your DBMS.

Details
In the interfaces to ODBC and DB2 under UNIX and PC hosts, this option is ignored if
READ_LOCK_TYPE= is not set to ROW.

The degree of isolation defines the following:
� the degree to which rows that are read and updated by the current application are

available to other concurrently executing applications
� the degree to which update activity of other concurrently executing application

processes can affect the current application.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “READ_ISOLATION_LEVEL= LIBNAME Option” on page 137.

READ_LOCK_TYPE= Data Set Option

Specifies how data in a DBMS table is locked during a read transaction

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, DB2 z/OS, Microsoft SQL Server, ODBC, OLE DB, Oracle,
Sybase, Teradata
Default value: DBMS-specific

Syntax
READ_LOCK_TYPE=ROW | PAGE | TABLE | NOLOCK | VIEW



Data Set Options for Relational Databases � READ_MODE_WAIT= Data Set Option 255

Syntax Description
Not all values are valid for every interface. See details below.

ROW
locks a row if any of its columns are accessed. (This value is valid in the DB2 under
UNIX and PC hosts, Microsoft SQL Server, ODBC, and Oracle interfaces.)

PAGE
locks a page of data, which is a DBMS-specific number of bytes. (This value is valid
in the Sybase interface.)

TABLE
locks the entire DBMS table. If you specify READ_LOCK_TYPE=TABLE, you must
also specify the LIBNAME option CONNECTION=UNIQUE, or you receive an error
message. Setting CONNECTION=UNIQUE ensures that your table lock is not lost,
for example, due to another table closing and committing rows in the same
connection. (This value is valid in the DB2 under z/OS, DB2 under UNIX and PC
hosts, ODBC, Oracle, Microsoft SQL Server, and Teradata interfaces.)

NOLOCK
does not lock the DBMS table, pages, or any rows during a read transaction. (This
value is valid in the Oracle and Sybase interfaces and in the ODBC and Microsoft
SQL Server interfaces when you use the Microsoft SQL Server driver.)

VIEW
locks the entire DBMS view. (This value is valid in the Teradata interface.)

Details
If you omit READ_LOCK_TYPE=, you get either the default action for the DBMS that
you are using, or a lock for the DBMS that was set with the LIBNAME statement.

See the documentation for your SAS/ACCESS interface for additional details.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “READ_LOCK_TYPE= LIBNAME Option” on page 138.

READ_MODE_WAIT= Data Set Option

Specifies during SAS/ACCESS read operations whether Teradata waits to acquire a lock or fails
your request when the DBMS resource is locked by a different user

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: Teradata

Default value: LIBNAME setting

Syntax
READ_MODE_WAIT= YES|NO



256 READBUFF= Data Set Option � Chapter 10

Syntax Description

YES
specifies that Teradata waits to acquire the lock, and SAS/ACCESS waits indefinitely
until it can acquire the lock.

NO
specifies that Teradata fails the lock request if the specified DBMS resource is locked.

Details
If you specify READ_MODE_WAIT=NO, and a different user holds a restrictive lock,
then the executing SAS step fails. SAS/ACCESS continues to process the job by
executing the next step. If you specify READ_MODE_WAIT=YES, SAS/ACCESS waits
indefinitely until it can acquire the lock.

A restrictive lock means that another user is holding a lock that prevents you from
obtaining your desired lock. Until the other user releases the restrictive lock, you
cannot obtain your lock. For example, another user’s table-level WRITE lock prevents
you from obtaining a READ lock on the table.

For more information, see the SAS/ACCESS documentation for Teradata.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “READ_MODE_WAIT= LIBNAME Option” on page 139.

READBUFF= Data Set Option

Specifies the number of rows of DBMS data to read into the buffer

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, Netezza, ODBC, OLE
DB, Oracle, Sybase

Alias: ROWSET_SIZE= (DB2 UNIX/PC, HP Neoview, Microsoft SQL Server, Netezza,
ODBC, OLE DB)

Default value: LIBNAME setting

Syntax
READBUFF=integer

Syntax Description

integer
is the maximum value that is allowed by the DBMS.



Data Set Options for Relational Databases � SASDATEFMT= Data Set Option 257

Details
This option improves performance by specifying a number of rows that can be held in
memory for input into SAS. Buffering data reads can decrease network activities and
increase performance. However, because SAS stores the rows in memory, higher values
for READBUFF= use more memory. In addition, if too many rows are selected at once,
then the rows that are returned to the SAS application might be out of date.

When READBUFF=1, only one row is retrieved at a time. The higher the value for
READBUFF=, the more rows the SAS/ACCESS engine retrieves in one fetch operation.

DB2 UNIX/PC Details: By default, the SQLFetch API call is used and no internal
SAS buffering is performed. Setting READBUFF=1 or greater causes the
SQLExtendedFetch API call to be used.

HP Neoview, Microsoft SQL Server, Netezza, and ODBC Details: By default, the
SQLFetch API call is used and no internal SAS buffering is performed. Setting
READBUFF=1 or greater causes the SQLExtendedFetch API call to be used.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “READBUFF= LIBNAME Option” on page 140.

SASDATEFMT= Data Set Option

Changes the SAS date format of a DBMS column

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, HP Neoview, Informix, Microsoft SQL Server, MySQL,
Netezza, ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: DBMS-specific

Syntax
SASDATEFMT=(DBMS-date-col-1=’SAS-date-format’

<… DBMS-date-col-n=’SAS-date-format’>)

Syntax Description

DBMS-date-col
specifies the name of a date column in a DBMS table.

SAS-date-format
specifies a SAS date format that has an equivalent (like-named) informat. For
example, DATETIME21.2 is both a SAS format and a SAS informat, so it is a valid
value for the SAS-date-format argument.

Details
If the SAS column date format does not match the date format of the corresponding
DBMS column, convert the SAS date values to the appropriate DBMS date values. Use



258 SASDATEFMT= Data Set Option � Chapter 10

the SASDATEFMT= option to convert date values from the default SAS date format to
another SAS date format that you specify.

Use the SASDATEFMT= option to prevent date type mismatches in the following
circumstances:

� during input operations to convert DBMS date values to the correct SAS DATE,
TIME, or DATETIME values

� during output operations to convert SAS DATE, TIME, or DATETIME values to
the correct DBMS date values.

The column names specified in this option must be DATE, DATETIME, or TIME
columns; columns of any other type are ignored.

The format specified must be a valid date format; output with any other format is
unpredictable.

If the SAS date format and the DBMS date format match, this option is not needed.
The default SAS date format is DBMS-specific and is determined by the data type of

the DBMS column. See the documentation for your SAS/ACCESS interface.

Note: For non-English date types, SAS automatically converts the data to the SAS
type of NUMBER. The SASDATEFMT= option does not currently handle these date
types. However, you can use a PROC SQL view to convert the DBMS data to a SAS
date format as you retrieve the data or use a format statement in other contexts. �

Oracle details: It is recommended that “DBSASTYPE= Data Set Option” on page 216
be used instead of SASDATEFMT=.

Examples

In the following example, the APPEND procedure adds SAS data from the
SASLIB.DELAY data set to the Oracle table that is accessed by MYDBLIB.INTERNAT.
Using SASDATEFMT=, the default SAS format for the Oracle column DATES is
changed to the DATE9. format. Data output from SASLIB.DELAY into the DATES
column in MYDBLIB.INTERNAT now converts from the DATE9. format to the Oracle
format assigned to that type.

libname mydblib oracle user=testuser password=testpass;
libname saslib ’your-SAS-library’;

proc append base=mydblib.internat(sasdatefmt=(dates=’date9.’))force
data=saslib.delay;

run;

In the following example, SASDATEFMT= converts DATE1, a SAS DATETIME
value, to a Teradata date column named DATE1.

libname x teradata user=testuser password=testpass;

proc sql noerrorstop;
create table x.dateinfo ( date1 date );
insert into x.dateinfo
( sasdatefmt=( date1=’datetime21.’) )
values ( ’31dec2000:01:02:30’dt );



Data Set Options for Relational Databases � SCHEMA= Data Set Option 259

In the following example, SASDATEFMT= converts DATE1, a Teradata date column,
to a SAS DATETIME type named DATE1.

libname x teradata user=testuser password=testpass;

data sas_local;
format date1 datetime21.;
set x.dateinfo( sasdatefmt=( date1=’datetime21.’) );
run;

SCHEMA= Data Set Option

Lets you read a data source, such as a DBMS table and view, in the specified schema

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: DB2 UNIX/PC, HP Neoview, Informix, Microsoft SQL Server, Netezza,
ODBC, OLE DB, Oracle, Sybase, Teradata
Default value: LIBNAME setting

Syntax
SCHEMA=schema-name

Syntax Description

schema-name
is the name assigned to a logical classification of objects in a relational database.

Details
For this option to work, you must have appropriate privileges to the schema that is

specified.
The values for SCHEMA= are usually case-sensitive, so be careful when you specify

this option.
Oracle Details: If PRESERVE_TAB_NAMES=NO, SAS converts the SCHEMA= value

to uppercase because all values in the Oracle data dictionary are converted to
uppercase unless quoted.

Teradata Details: If you omit this option, a libref points to your default Teradata
database, which often has the same name as your user name. You can use this option to
point to a different database. You can use this option to view or modify a different
user’s DBMS tables or views if you have the required Teradata privileges. (For
example, to read another user’s tables, you must have the Teradata privilege SELECT
for that user’s tables.) For more information about changing the default database, see
the DATABASE statement in your Teradata documentation.



260 SEGMENT_NAME= Data Set Option � Chapter 10

Examples

In the following example, SCHEMA= causes MYDB.TEMP_EMPS to be interpreted
by DB2 as SCOTT.TEMP_EMPS.

proc print data=mydb.temp_emps
schema=SCOTT;

run;

In the following example, SAS sends any reference to Employees as Scott.Employees.

libname mydblib oracle user=testuser password=testpass path="myorapath";

proc print data=employees (schema=scott);
run;

In the following example, user TESTUSER prints the contents of the Employees
table, which is located in the Donna database.

libname mydblib teradata user=testuser pw=testpass;

proc print data=mydblib.employees(schema=donna);
run;

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “SCHEMA= LIBNAME Option” on page 143.

SEGMENT_NAME= Data Set Option

Lets you control the segment in which you create a table

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Sybase
Default value: none

Syntax
SEGMENT_NAME=segment-name

Syntax Description

segment-name
specifies the name of the segment in which to create a table.



Data Set Options for Relational Databases � TENACITY= Data Set Option 261

SLEEP= Data Set Option

Specifies the number of minutes that MultiLoad waits before it retries logging in to Teradata.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

DBMS support: Teradata

Default value: 6

Syntax
SLEEP=number-of-minutes

Syntax Description

number-of-minutes
the number of minutes that MultiLoad waits before it retries logging on to Teradata.

Details
Use the SLEEP= data set option to indicate to MultiLoad how long to wait before it
retries logging on to Teradata when the maximum number of utilities are already
running. (The maximum number of Teradata utilities that can run concurrently varies
from 5 to 15, depending upon the database server setting.) The default value for
SLEEP= is 6 minutes. The value specified for SLEEP must be greater than 0.

SLEEP= is used in conjunction with TENACITY=, which specifies the time in hours
that MultiLoad must continue to retry the logon operation. SLEEP= and TENACITY=
function very much like the SLEEP and TENACITY run-time options of the native
Teradata MultiLoad utility.

See Also
See TENACITY= for information about specifying how long to continue to retry a

logon operation.

TENACITY= Data Set Option

Specifies how many hours MultiLoad continues to retry logging on to Teradata if the maximum
number of Teradata utilities are already running.

Valid in: DATA and PROC steps (when creating and appending to DBMS tables using
SAS/ACCESS software)

DBMS support: Teradata

Default value: 4



262 TENACITY= Data Set Option � Chapter 10

Syntax
TENACITY=number-of-hours

Syntax Description

number-of-hours
the number of hours to continue to retry logging on to Teradata.

Details
Use the TENACITY= data set option to indicate to MultiLoad how long to continue
retrying a logon operation when the maximum number of utilities are already running.
(The maximum number of Teradata utilities that can run concurrently varies from 5 to
15, depending upon the database server setting.) The default value for TENACITY= is
four hours. The value specified for TENACITY must be greater than zero.

Use TENACITY= with SLEEP=, which specifies the number of minutes that
MultiLoad waits before it retries logging on to Teradata. SLEEP= and TENACITY=
function very much like the SLEEP and TENACITY run-time options of the native
Teradata MultiLoad utility.

The following message is written to the SAS log if the time period that TENACITY=
specifies is exceeded.

ERROR: MultiLoad failed unexpectedly with returncode 12

Note: Check the MultiLoad log for more information about the cause of the
MultiLoad failure. SAS does not receive any informational messages from Teradata in
either of these situations:

� when the currently run MultiLoad process waits because the maximum number of
utilities are already running

� if MultiLoad is terminated because the time limit that TENACITY= specifies has
been exceeded

The native Teradata MultiLoad utility sends messages associated with SLEEP and
TENACITY only to the MultiLoad log. So nothing is written to the SAS log. �

See Also
See SLEEP= for information about specifying how long to wait before retrying a

logon operation.



Data Set Options for Relational Databases � TRAP151= Data Set Option 263

TRAP151= Data Set Option

Enables columns that cannot be updated to be removed from a FOR UPDATE OF clause so
updating of columns can proceed as normal

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 z/OS

Default value: NO

Syntax

TRAP151=YES | NO

Syntax Description

YES
removes the non-updatable column that is designated in the error-151 and
reprepares the statement for processing. This process is repeated until all columns
that cannot be updated are removed, and all remaining columns can be updated.

NO
disables TRAP151=. TRAP151= is disabled by default. It is not necessary to specify
NO.

Examples

In the following example, DB2DBUG is turned on so that you can see what occurs
when TRAP151=YES:

Output 10.1 SAS Log for TRAP151=YES

proc fsedit data=x.v4(trap151=yes);
run;
SELECT * FROM V4 FOR FETCH ONLY
SELECT * FROM V4 FOR FETCH ONLY
SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","X","Y","B","Z","C"
DB2 SQL Error, sqlca->sqlcode=-151
WARNING: SQLCODE -151: repreparing SELECT as:

SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","Y","B","Z","C"
DB2 SQL Error, sqlca->sqlcode=-151
WARNING: SQLCODE -151: repreparing SELECT as:

SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","B","Z","C"
DB2 SQL Error, sqlca->sqlcode=-151
WARNING: SQLCODE -151: repreparing SELECT as:

SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","B","C"
COMMIT WORK
NOTE: The PROCEDURE FSEDIT used 0.13 CPU seconds and 14367K.



264 UPDATE_ISOLATION_LEVEL= Data Set Option � Chapter 10

The following example features the same code with TRAP151 turned off:

Output 10.2 SAS Log for TRAP151=NO

proc fsedit data=x.v4(trap151=no);
run;
SELECT * FROM V4 FOR FETCH ONLY
SELECT * FROM V4 FOR FETCH ONLY
SELECT "A","X","Y","B","Z","C" FROM V4 FOR UPDATE OF "A","X","Y","B","Z","C"
DB2 SQL Error, sqlca->sqlcode=-151
ERROR: DB2 prepare error; DSNT4081 SQLCODE= ---151, ERROR;

THE UPDATE STATEMENT IS INVALID BECAUSE THE CATALOG DESCRIPTION OF COLUMN C
INDICATES THAT IT CANNOT BE UPDATED.

COMMIT WORK
NOTE: The SAS System stopped processing this step because of errors.
NOTE: The PROCEDURE FSEDIT used 0.08 CPU seconds and 14367K.

UPDATE_ISOLATION_LEVEL= Data Set Option

Defines the degree of isolation of the current application process from other concurrently running
application processes

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, Microsoft SQL Server, MySQL, ODBC, OLE
DB, Oracle, Sybase, Teradata

Default value: LIBNAME setting

Syntax
UPDATE_ISOLATION_LEVEL=DBMS-specific-value

Syntax Description

dbms-specific-value
See the documentation for your SAS/ACCESS interface for the values for your DBMS.

Details
The degree of isolation identifies the following:

� the degree to which rows that are read and updated by the current application are
available to other concurrently executing applications

� the degree to which update activity of other concurrently executing application
processes can affect the current application.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “UPDATE_ISOLATION_LEVEL= LIBNAME Option” on page 150.



Data Set Options for Relational Databases � UPDATE_LOCK_TYPE= Data Set Option 265

UPDATE_LOCK_TYPE= Data Set Option

Specifies how data in a DBMS table is locked during an update transaction

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)

DBMS support: DB2 UNIX/PC, DB2 z/OS, Microsoft SQL Server, ODBC, OLE DB, Oracle,
Sybase, Teradata

Default value: LIBNAME setting

Syntax

UPDATE_LOCK_TYPE=ROW | PAGE | TABLE | NOLOCK | VIEW

Syntax Description

Not all values are valid for every interface. See details below.

ROW
locks a row if any of its columns are going to be updated. (This is valid in the DB2
under UNIX and PC hosts, Microsoft SQL Server, ODBC, OLE DB, and Oracle
interfaces.)

PAGE
locks a page of data, which is a DBMS-specific number of bytes. (This is valid in the
Sybase interface.)

TABLE
locks the entire DBMS table. (This is valid in the DB2 under z/OS, DB2 under UNIX
and PC hosts, ODBC, Oracle, Microsoft SQL Server, and Teradata interfaces.)

NOLOCK
does not lock the DBMS table, page, or any rows when reading them for update.
(This is valid in the Microsoft SQL Server, ODBC, Oracle, and Sybase interfaces.)

VIEW
locks the entire DBMS view. (This is valid in the Teradata interface.)

Details

If you omit UPDATE_LOCK_TYPE=, you get either the default action for the DBMS
that you are using, or a lock for the DBMS that was set with the LIBNAME statement.
You can set a lock for one DBMS table by using the data set option or for a group of
DBMS tables by using the LIBNAME option.

For more information, see the documentation for your SAS/ACCESS interface.

See Also

To assign this option to a group of relational DBMS tables or views, see the
LIBNAME option “UPDATE_LOCK_TYPE= LIBNAME Option” on page 151.



266 UPDATE_MODE_WAIT= Data Set Option � Chapter 10

UPDATE_MODE_WAIT= Data Set Option

Specifies during SAS/ACCESS update operations whether the DBMS waits to acquire a lock or fails
your request when the DBMS resource is locked by a different user

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Teradata
Default value: LIBNAME setting

Syntax
UPDATE_MODE_WAIT= YES|NO

Syntax Description

YES
specifies that Teradata waits to acquire the lock, so SAS/ACCESS waits indefinitely
until it can acquire the lock.

NO
specifies that Teradata fails the lock request if the specified DBMS resource is locked.

Details
If you specify UPDATE_MODE_WAIT=NO and if a different user holds a restrictive
lock, then your SAS step fails and SAS/ACCESS continues the job by processing the
next step. If you specify UPDATE_MODE_WAIT=YES, SAS/ACCESS waits indefinitely
until it can acquire the lock.

A restrictive lock means that a different user is holding a lock that prevents you from
obtaining your desired lock. Until the other user releases the restrictive lock, you
cannot obtain your lock. For example, another user’s table-level WRITE lock prevents
you from obtaining a READ lock on the table.

Use SAS/ACCESS locking options only when Teradata’s standard locking is
undesirable.

For more information, see the documentation for the interface to Teradata.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “UPDATE_MODE_WAIT= LIBNAME Option” on page 152.



Data Set Options for Relational Databases � UPDATE_SQL= Data Set Option 267

UPDATE_SQL= Data Set Option

Determines the method that is used to update and delete rows in a data source

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Microsoft SQL Server, ODBC
Default value: LIBNAME setting

Syntax
UPDATE_SQL=YES | NO

Syntax Description

YES
specifies that SAS/ACCESS uses Current-of-Cursor SQL to update or delete rows in
a table.

NO
specifies that SAS/ACCESS uses the SQLSetPos() API to update or delete rows in a
table.

Details
This is the update and delete equivalent of the INSERT_SQL= option.

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “UPDATE_SQL= LIBNAME Option” on page 154.



268 UPDATEBUFF= Data Set Option � Chapter 10

UPDATEBUFF= Data Set Option

Specifies the number of rows that are processed in a single DBMS update or delete operation

Valid in: DATA and PROC steps (when accessing DBMS data using SAS/ACCESS
software)
DBMS support: Oracle
Default value: LIBNAME setting

Syntax
UPDATEBUFF=positive-integer

Syntax Description

positive-integer
is the maximum value that is allowed by the DBMS.

Details
When updating with the VIEWTABLE window or PROC FSVIEW, use
UPDATEBUFF=1 to prevent the DBMS interface from trying to update multiple rows.
By default, these features update only one observation at a time (since by default they
use record-level locking, they lock only the observation that is currently being edited).

See Also
To assign this option to a group of relational DBMS tables or views, see the

LIBNAME option “UPDATEBUFF= LIBNAME Option” on page 154.



269

C H A P T E R

11
Macro Variables and System
Options for Relational Databases

Introduction to Macro Variables and System Options for Relational Databases 269
Macro Variables for Relational Databases 269

System Options for Relational Databases 271

Introduction to Macro Variables and System Options for Relational
Databases

This section describes the system options and macro variables that are available to
use with SAS/ACCESS software. It describes only those components of the macro
facility that depend on the SAS/ACCESS engines. Most features of the SAS macro
facility are portable. For more information, refer to the SAS Macro Language:
Reference and the SAS Help for the macro facility.

Macro Variables for Relational Databases

SYSDBMSG, SYSDBRC, SQLXMSG, and SQLXRC are automatic SAS macro
variables. TheSAS/ACCESS engine and your DBMS determine their values. Initially,
SYSDBMSG and SQLXMSG are blank, and SYSDBRC and SQLXRC are set to 0.

SAS/ACCESS generates several return codes and error messages while it processes
your programs. This information is available to you through these SAS macro variables:

SYSDBMSG
contains DBMS-specific error messages that are generated when you use
SAS/ACCESS software to access your DBMS data.

SYSDBRC
contains DBMS-specific error codes that are generated when you use SAS/ACCESS
software to access your DBMS data. Error codes that are returned are text, not
numbers.

You can use these variables anywhere while you are accessing DBMS data. Only one
set of macro variables is provided. It is possible that, if tables from two different
DBMSs are accessed, it might not be clear from which DBMS the error message
originated. To address this problem, the name of the DBMS is inserted at the beginning
of the SYSDBMSG macro variable message or value. The contents of the SYSDBMSG
and SYSDBRC macro variables can be printed in the SAS log by using the %PUT
macro. They are reset after each SAS/ACCESS LIBNAME statement, DATA step, or
procedure is executed. In the following statement, %SUPERQ masks special characters



270 Macro Variables for Relational Databases � Chapter 11

such as &, %, and any unbalanced parentheses or quotation marks that might exist in
the text stored in the SYSDBMSG macro.

%put %superq(SYSDBMSG)

These special characters can cause unpredictable results if you use this statement:

%put &SYSDBMSG

It is more advantageous to use %SUPERQ.
If you try to connect to Oracle and use the incorrect password, you receive the

messages shown in this output.

Output 11.1 SAS Log for an Oracle Error

2? libname mydblib oracle user=pierre pass=paris path="orav7";

ERROR: Oracle error trying to establish connection. Oracle error is
ORA-01017: invalid username/password; logon denied

ERROR: Error in the LIBNAME or FILENAME statement.
3? %put %superq(sysdbmsg);

Oracle: ORA-01017: invalid username/passsword; logon denied
4? %put &sysdbrc;

-1017
5?

You can also use SYMGET to retrieve error messages:

msg=symget("SYSDBMSG");

For example:

data_null_;
msg=symget("SYSDBMSG");
put msg;
run;

The Pass-Through Facility generates return codes and error messages that are
available to you through these SAS macro variables:

SQLXMSG
contains DBMS-specific error messages.

SQLXRC
contains DBMS-specific error codes.

You can use SQLXMSG and SQLXRC only through explicit pass-through with the
Pass-Through Facility. See Return Codes“Return Codes” on page 286.

You can print the contents of SQLXMSG and SQLXRC in the SAS log by using the
%PUT macro. SQLXMSG is reset to a blank string, and SQLXRC is reset to 0 when
any Pass-Through Facility statement is executed.



Macro Variables and System Options for Relational Databases � DBSRVTP= System Option 271

System Options for Relational Databases
DBSRVTP= and DBSLICEPARM= are SAS system options for databases.

SASTRACE=, SASTRACELOC=, and VALIDVARNAME= are SAS system options that
have applications specific to SAS/ACCESS.

Note: The SAS system option REPLACE= is not supported by the SAS/ACCESS
interfaces. �

DBSRVTP= System Option

Specifies whether SAS/ACCESS engines put a hold (or block) on the originating client while
making performance-critical calls to the database. This option applies when SAS is invoked as a
server responding to multiple clients

Valid in: SAS invocation
Default value: NONE

Syntax
DBSRVTP= ’ALL’ | ’NONE’ |’(engine-name(s)’ )

Syntax Description

ALL
indicates that SAS does not use any blocking operations for all underlying SAS/
ACCESS products that support this option.

NONE
indicates that SAS uses standard blocking operations for all SAS/ACCESS products.

engine-name(s)
indicates that SAS does not use any blocking operations for the specified SAS/
ACCESS interface(s). You can specify one or more of the following engine names. If
you specify more than one name, separate them with blank spaces and enclose the
list in parentheses.

db2 (only supported under UNIX and PC hosts)
informix
odbc (indicates that SAS uses nonblocking operations for the SAS/ACCESS

interfaces to ODBC and Microsoft SQL Server).
oledb
Oracle
sybase
teradata (not supported on OS/390)

Details
This option can be used to help throughput of the SAS server by supporting multiple
simultaneous execution streams, if the server uses certain SAS/ACCESS interfaces.



272 SASTRACE= System Option � Chapter 11

Better throughput is accomplished when the underlying SAS/ACCESS engine does not
hold or block the originating client, such that any one client using a SAS/ACCESS
product does not keep the SAS server from responding to other clients’ requests.
SAS/SHARE software and SAS Integration Technologies are two ways of invoking SAS
as a server.

This option is a system invocation option, which means the value is set when SAS is
invoked. Because the DBSRVTP= option uses multiple native threads, enabling this
option uses the underlying DBMS’s threading support. Some databases handle
threading better than others, so you might want to invoke DBSRVTP= for some DBMSs
and not others. Refer to your documentation for your DBMS for more information.

The option accepts a string where values are the engine name of a SAS/ACCESS
product, ALL, or NONE. If multiple values are specified, enclose the values in quotation
marks and parentheses, and separate the values with a space.

This option is applicable on all Windows platforms, AIX, SLX, and MVS (Oracle
only). On some of these hosts, SAS can be invoked with the -SETJMP system option.
Setting -SETJMP disables the DBSRVTP= option.

Examples

The following examples invoke SAS from the UNIX command line:

sas -dbsrvtp all

sas -dbsrvtp ’(oracle db2)’

sas -dbsrvtp teradata

sas -dbsrvtp ’(SYBASE informix odbc oledb)’

sas -dbsrvtp none

SASTRACE= System Option

Generates trace information from a DBMS engine

Valid in: OPTIONS statement, configuration file, SAS invocation
Default value: NONE

Syntax
SASTRACE= ’,,,d’ | ’,,d,’ | ’d,’ | ’,,,s’ | ’,,,sa’ | ’,,t,’



Macro Variables and System Options for Relational Databases � SASTRACE= System Option 273

Syntax Description

’,,,d’
specifies that all SQL statements sent to the DBMS are sent to the log. These
statements include the following:

SELECT

CREATE

DROP

INSERT

UPDATE

DELETE

SYSTEM CATALOG

COMMIT

ROLLBACK
For those engines that do not generate SQL statements, the API calls, including

all parameters, are sent to the log.

’,,d,’
specifies that all routine calls are sent to the log. When this option is selected, all
function enters and exits, as well as pertinent parameters and return codes, are
traced. The information, however, varies from engine to engine.

This option is most useful if you are having a problem and need to send a SAS log
to technical support for troubleshooting.

’d,’
specifies that all DBMS calls, such as API and Client calls, connection information,
column bindings, column error information, and row processing are sent to the log.
However, this information varies from engine to engine.

This option is most useful if you are having a problem and need to send a SAS log
to technical support for troubleshooting.

’,,,s’
specifies that a summary of timing information for calls made to the DBMS is sent to
the log.

’,,,sa’
specifies that timing information for each call made to the DBMS, along with a
summary, is sent to the log.

’,,t,’
specifies that all threading information is sent to the log. This information includes:

� the number of threads spawned
� the number of observations each thread contains
� the exit code of the thread, should it fail.



274 SASTRACE= System Option � Chapter 11

SAS/ACCESS Specific Details
The SASTRACE= options have behavior that is specific to SAS/ACCESS software.
SASTRACE= is a very powerful tool to use when you want to see the commands that
are sent to your DBMS by the SAS/ACCESS engine. SASTRACE= output is
DBMS-specific. However, most SAS/ACCESS engines show statements like SELECT or
COMMIT as the DBMS processes them for the SAS application. The following details
can help you manage SASTRACE= output in your DBMS:

� When using SASTRACE= on PC platforms, you must also specify
SASTRACELOC=.

� In order to turn SAS tracing off, you can specify the following option:

options sastrace=off;

� Log output is much easier to read if you specify NOSTSUFFIX.

Note: NOSTSUFFIX is not supported on MVS. �
The following code is entered without specifying the option, and the resulting

log is longer and harder to decipher.

options sastrace=’,,,d’ sastraceloc=saslog;
proc print data=mydblib.snow_birthdays;
run;

The resulting log is as follows:

0 1349792597 sastb_next 2930 PRINT
ORACLE_5: Prepared: 1 1349792597 sastb_next 2930 PRINT
SELECT * FROM scott.SNOW_BIRTHDAYS 2 1349792597 sastb_next 2930 PRINT
3 1349792597 sastb_next 2930 PRINT
16 proce print data=mydblib.snow_birthdays; run;

4 1349792597 sastb_next 2930 PRINT
ORACLE_6: Executed: 5 1349792597 sastb_next 2930 PRINT
Prepared statement ORACLE_5 6 1349792597 sastb_next 2930 PRINT
7 1349792597 sastb_next 2930 PRINT

However, by using NOSTSUFFIX, the log file becomes much easier to read:

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;
proc print data=mydblib.snow_birthdays;
run;

The resulting log is as follows:

ORACLE_1: Prepared:
SELECT * FROM scott.SNOW_BIRTHDAYS

12 proc print data=mydblib.snow_birthdays; run;

ORACLE_2: Executed:
Prepared statement ORACLE_1



Macro Variables and System Options for Relational Databases � SASTRACE= System Option 275

Examples

The examples in this section are based on the following data set, and are shown
using NOSTSUFFIX and SASTRACELOC=SASLOG.

data work.winter_birthdays;
input empid birthdat date9. lastname $18.;
format birthdat date9.;

datalines;
678999 28DEC1966 PAVEO JULIANA 3451
456788 12JAN1977 SHIPTON TIFFANY 3468
890123 20FEB1973 THORSTAD EDVARD 3329
;
run;

Example 1: SQL Trace ’,,,d’

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
option.

Output 11.2 SAS Log Output from the SASTRACE= ’,,,d’ System Option

30 data work.winter_birthdays;

31 input empid birthdat date9. lastname $18.;

32 format birthdat date9.;

33 datalines;

NOTE: The data set WORK.WINTER_BIRTHDAYS has 3 observations and 3 variables.

NOTE: DATA statement used (Total process time):

real time 0.03 seconds

cpu time 0.04 seconds

37 ;

38 run;

39 options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;

40 libname mydblib oracle user=scott password=XXXXX schema=bday_data;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name:

41 proc delete data=mydblib.snow_birthdays; run;

ORACLE_1: Prepared:

SELECT * FROM SNOW_BIRTHDAYS



276 SASTRACE= System Option � Chapter 11

ORACLE_2: Executed:

DROP TABLE SNOW_BIRTHDAYS

NOTE: Deleting MYDBLIB.SNOW_BIRTHDAYS (memtype=DATA).

NOTE: PROCEDURE DELETE used (Total process time):

real time 0.26 seconds

cpu time 0.12 seconds

42 data mydblib.snow_birthdays;

43 set work.winter_birthdays;

44 run;

ORACLE_3: Prepared:

SELECT * FROM SNOW_BIRTHDAYS

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

ORACLE_4: Executed:

CREATE TABLE SNOW_BIRTHDAYS(empid NUMBER ,birthdat DATE,lastname VARCHAR2 (18))

ORACLE_5: Prepared:

INSERT INTO SNOW_BIRTHDAYS (empid,birthdat,lastname) VALUES

(:empid,TO_DATE(:birthdat,’DDMONYYYY’,’NLS_DATE_LANGUAGE=American’),:lastname)

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

ORACLE_6: Executed:

Prepared statement ORACLE_5

ORACLE: *-*-*-*-*-*-* COMMIT *-*-*-*-*-*-*

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

ORACLE: *-*-*-*-*-*-* COMMIT *-*-*-*-*-*-*

NOTE: DATA statement used (Total process time):

real time 0.47 seconds

cpu time 0.13 seconds

ORACLE_7: Prepared:

SELECT * FROM SNOW_BIRTHDAYS

45 proc print data=mydblib.snow_birthdays; run;

ORACLE_8: Executed:

Prepared statement ORACLE_7

NOTE: There were 3 observations read from the data set MYDBLIB.SNOW_BIRTHDAYS.

NOTE: PROCEDURE PRINT used (Total process time):

real time 0.04 seconds

cpu time 0.04 seconds

46

47 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 2: Log Trace ’,,d’

options sastrace=’,,d,’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
option.



Macro Variables and System Options for Relational Databases � SASTRACE= System Option 277

Output 11.3 SAS Log Output from the SASTRACE= ’,,d,’ System Option

84 options sastrace=’,,d,’ sastraceloc=saslog nostsuffix;

ACCESS ENGINE: Entering DBICON

ACCESS ENGINE: Number of connections is 1

ORACLE: orcon()

ACCESS ENGINE: Successful physical conn id 1

ACCESS ENGINE: Exiting DBICON, Physical Connect id = 1, with rc=0X00000000

85 libname mydblib oracle user=dbitest password=XXXXX schema=bday_data;

ACCESS ENGINE: CONNECTION= SHAREDREAD

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name: lupin

86 data mydblib.snow_birthdays;

87 set work.winter_birthdays;

88 run;

ACCESS ENGINE: Entering yoeopen

ACCESS ENGINE: Entering dbiopen

ORACLE: oropen()

ACCESS ENGINE: Successful dbiopen, open id 0, connect id 1

ACCESS ENGINE: Exit dbiopen with rc=0X00000000

ORACLE: orqall()

ORACLE: orprep()

ACCESS ENGINE: Entering dbiclose

ORACLE: orclose()

ACCESS ENGINE: DBICLOSE open_id 0, connect_id 1

ACCESS ENGINE: Exiting dbiclos with rc=0X00000000

ACCESS ENGINE: Access Mode is XO_OUTPUT

ACCESS ENGINE: Access Mode is XO_SEQ

ACCESS ENGINE: Shr flag is XHSHRMEM

ACCESS ENGINE: Entering DBICON

ACCESS ENGINE: CONNECTION= SHAREDREAD

ACCESS ENGINE: Number of connections is 2

ORACLE: orcon()

ACCESS ENGINE: Successful physical conn id 2

ACCESS ENGINE: Exiting DBICON, Physical Connect id = 2, with rc=0X00000000

ACCESS ENGINE: Entering dbiopen

ORACLE: oropen()

ACCESS ENGINE: Successful dbiopen, open id 0, connect id 2

ACCESS ENGINE: Exit dbiopen with rc=0X00000000

ACCESS ENGINE: Exit yoeopen with SUCCESS.

ACCESS ENGINE: Begin yoeinfo

ACCESS ENGINE: Exit yoeinfo with SUCCESS.

ORACLE: orovar()

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

ORACLE: oroload()

ACCESS ENGINE: Entering dbrload with SQL Statement set to

CREATE TABLE SNOW_BIRTHDAYS(empid NUMBER ,birthdat DATE,lastname VARCHAR2 (18))

ORACLE: orexec()

ORACLE: orexec() END

ORACLE: orins()

ORACLE: orubuf()

ORACLE: orubuf()

ORACLE: SAS date : 28DEC1966

ORACLE: orins()

ORACLE: SAS date : 12JAN1977

ORACLE: orins()

ORACLE: SAS date : 20FEB1973

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

ORACLE: orforc()

ORACLE: orflush()

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

ACCESS ENGINE: Enter yoeclos

ACCESS ENGINE: Entering dbiclose

ORACLE: orclose()

ORACLE: orforc()

ORACLE: orflush()



278 SASTRACE= System Option � Chapter 11

ACCESS ENGINE: DBICLOSE open_id 0, connect_id 2

ACCESS ENGINE: Exiting dbiclos with rc=0X00000000

ACCESS ENGINE: Entering DBIDCON

ORACLE: ordcon

ACCESS ENGINE: Physical disconnect on id = 2

ACCESS ENGINE: Exiting DBIDCON with rc=0X00000000, rc2=0X00000000

ACCESS ENGINE: Exit yoeclos with rc=0x00000000

NOTE: DATA statement used (Total process time):

real time 0.21 seconds

cpu time 0.06 seconds

ACCESS ENGINE: Entering DBIDCON

ORACLE: ordcon

ACCESS ENGINE: Physical disconnect on id = 1

ACCESS ENGINE: Exiting DBIDCON with rc=0X00000000, rc2=0X00000000

89 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 3: DBMS Trace ’d,’

options sastrace=’d,’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
option.

Output 11.4 SAS Log Output from the SASTRACE= ’d,’ System Option

ORACLE: PHYSICAL connect successful.

ORACLE: USER=scott

ORACLE: PATH=lupin

ORACLE: SCHEMA=bday_data

110 libname mydblib oracle user=dbitest password=XXXXX path=lupin schema=bday_data;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name: lupin

111 data mydblib.snow_birthdays;

112 set work.winter_birthdays;

113 run;

ORACLE: PHYSICAL connect successful.

ORACLE: USER=scott

ORACLE: PATH=lupin

ORACLE: SCHEMA=bday_data

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

ORACLE: INSERTBUFF option value set to 10.

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

ORACLE: Rows processed: 3

ORACLE: Rows failed : 0

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

ORACLE: Successfully disconnected.

ORACLE: USER=scott

ORACLE: PATH=lupin

NOTE: DATA statement used (Total process time):

real time 0.21 seconds

cpu time 0.04 seconds



Macro Variables and System Options for Relational Databases � SASTRACE= System Option 279

ORACLE: Successfully disconnected.

ORACLE: USER=scott

ORACLE: PATH=lupin

114 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 4: Time Trace ’,,,s’

options sastrace=’,,,s’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
option.

Output 11.5 SAS Log Output from the SASTRACE= ’,,,s’ System Option

118 options sastrace=’,,,s’ sastraceloc=saslog nostsuffix;

119 libname mydblib oracle user=dbitest password=XXXXX schema=bday_data;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name: lupin

120 data mydblib.snow_birthdays;

121 set work.winter_birthdays;

122 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

Summary Statistics for ORACLE are:

Total SQL execution seconds were: 0.127079

Total SQL prepare seconds were: 0.004404

Total SQL row insert seconds were: 0.004735

Total seconds used by the ORACLE ACCESS engine were 0.141860

NOTE: DATA statement used (Total process time):

real time 0.21 seconds

cpu time 0.04 seconds

123 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.



280 SASTRACE= System Option � Chapter 11

Example 5: Time All Trace ’,,,sa’

options sastrace=’,,,sa’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays;
set work.winter_birthdays;

run;

libname mydblib clear;

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
option.

Output 11.6 SAS Log Output from the SASTRACE= ’,,,sa’ System Option

146 options sastrace=’,,,sa’ sastraceloc=saslog nostsuffix;

147

148 libname mydblib oracle user=dbitest password=XXXXX path=lupin schema=dbitest insertbuff=1;

NOTE: Libref MYDBLIB was successfully assigned as follows:

Engine: ORACLE

Physical Name: lupin

149 data mydblib.snow_birthdays;

150 set work.winter_birthdays;

151 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

ORACLE: The insert time in seconds is 0.004120

ORACLE: The insert time in seconds is 0.001056

ORACLE: The insert time in seconds is 0.000988

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

Summary Statistics for ORACLE are:

Total SQL execution seconds were: 0.130448

Total SQL prepare seconds were: 0.004525

Total SQL row insert seconds were: 0.006158

Total seconds used by the ORACLE ACCESS engine were 0.147355

NOTE: DATA statement used (Total process time):

real time 0.20 seconds

cpu time 0.00 seconds

152

153 libname mydblib clear;

NOTE: Libref MYDBLIB has been deassigned.

Example 6: Threaded Trace ’,,t,’

options sastrace=’,,t,’ sastraceloc=saslog nostsuffix;
libname mydblib oracle user=scott password=tiger schema=bday_data;

data mydblib.snow_birthdays(DBTYPE=(empid’number(10’);
set work.winter_birthdays;

run;

proc print data=mydblib.snow_birthdays(dbsliceparm=(all,3));
run;



Macro Variables and System Options for Relational Databases � SASTRACELOC= System Option 281

The output is written to the SAS log, as specified by the SASTRACELOC=SASLOG
option.

Output 11.7 SAS Log Output from the SASTRACE= ’,,t,’ System Option

165 options sastrace=’,,t,’ sastraceloc=saslog nostsuffix;

166 data mydblib.snow_birthdays(DBTYPE=(empid=’number(10)’));

167 set work.winter_birthdays;

168 run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS tables.

NOTE: There were 3 observations read from the data set WORK.WINTER_BIRTHDAYS.

NOTE: The data set MYDBLIB.SNOW_BIRTHDAYS has 3 observations and 3 variables.

NOTE: DATA statement used (Total process time):

real time 0.21 seconds

cpu time 0.06 seconds

169 proc print data=mydblib.snow_birthdays(dbsliceparm=(all,3));

170 run;

ORACLE: DBSLICEPARM option set and 3 threads were requested

ORACLE: No application input on number of threads.

ORACLE: Thread 1 contains 1 obs.

ORACLE: Thread 2 contains 0 obs.

ORACLE: Thread 3 contains 2 obs.

ORACLE: Threaded read enabled. Number of threads created: 3

NOTE: There were 3 observations read from the data set MYDBLIB.SNOW_BIRTHDAYS.

NOTE: PROCEDURE PRINT used (Total process time):

real time 1.12 seconds

cpu time 0.17 seconds

For more information about tracing threaded reads, refer to “Generating Trace
Information for Threaded Reads” on page 50.

Note: The SASTRACE= options can also be used in conjunction with each other. For
example, SASTRACE=’,,d,d’. �

SASTRACELOC= System Option

Prints SASTRACE information to a specified location

Valid in: OPTIONS statement, configuration file, SAS invocation

Default value: stdout

Syntax
SASTRACELOC=stdout | SASLOG | FILE ’path-and-filename’

Details
SASTRACELOC= enables you to specify where to put the trace messages that are
generated by SASTRACE=. By default, the output goes to the default output location
for your operating environment. You can send the output to a SAS log by specifying
SASTRACELOC=SASLOG.



282 VALIDVARNAME= System Option � Chapter 11

Note: This option and its values might differ for each host. �

Example

The following example on a PC platform writes the trace information to the
TRACE.LOG file in the work directory on the C drive.

options sastrace=’,,,d’ sastraceloc=file ’c:\work\trace.log’;

VALIDVARNAME= System Option

Controls the type of SAS variable names that can be used or created during a SAS session

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Default value: V7

Syntax
VALIDVARNAME= V7 | V6 | UPCASE | ANY

SAS/ACCESS Specific Details
VALIDVARNAME= enables you to control which rules apply for SAS variable names.
For more information about the VALIDVARNAME= system option, see the SAS
Language Reference: Dictionary. The settings are as follows:

VALIDVARNAME=V7
indicates that a DBMS column name is changed to a valid SAS name by using the
following rules:

� Up to 32 mixed-case alphanumeric characters are allowed.

� Names must begin with an alphabetic character or an underscore.

� Invalid characters are changed to underscores.

� Any column name that is not unique when it is normalized is made unique by
appending a counter (0,1,2,...) to the name.

This is the default value for SAS Version 7 and later.

VALIDVARNAME=V6
indicates that only those variable names that are considered valid in Version 6 are
considered valid SAS variable names. When V6 is specified in Pass-Through
Facility code, the DBMS engine truncates column names to eight characters as it
did in Version 6. If required, numbers are appended to the end of the truncated
name to make it unique.

VALIDVARNAME=UPCASE
indicates that a DBMS column name is changed to a valid SAS name as described
in VALIDVARNAME=V7 except that variable names are in uppercase.



Macro Variables and System Options for Relational Databases � VALIDVARNAME= System Option 283

VALIDVARNAME=ANY
allows any characters in DBMS column names to appear as valid characters in
SAS variable names. Symbols, such as the equal sign (=) and the asterisk (*), must
be contained in a ’variable-name’n construct. You must use ANY whenever you
want to read DBMS column names that do not follow the SAS naming conventions.

Example

The following example shows how the Pass-Through Facility works with
VALIDVARNAME=V6.

options validvarname=v6;
proc sql;

connect to oracle (user=testuser pass=testpass);
create view myview as
select amount_b, amount_s

from connection to oracle
(select "Amount Budgeted$", "Amount Spent$"

from mytable);
quit;

proc contents data=myview;
run;

The output from this example would show that "Amount Budgeted$" becomes
AMOUNT_B and "Amount Spent$" becomes AMOUNT_S.

See Also
“SAS Names and Support for DBMS Names” in SAS/ACCESS for Relational

Databases: Reference



284



285

C H A P T E R

12
The Pass-Through Facility for
Relational Databases

Overview of the SQL Procedure’s Interactions with SAS/ACCESS 285
Overview of the Pass-Through Facility 285

Syntax for the Pass-Through Facility for Relational Databases 286

Return Codes 286

Overview of the SQL Procedure’s Interactions with SAS/ACCESS
The SQL procedure implements structured query language (SQL) for SAS software.

See the Base SAS Procedures Guide for information about PROC SQL. SAS/ACCESS
software for relational databases interacts with PROC SQL in the following ways:

� You can assign a libref to a DBMS using the SAS/ACCESS LIBNAME statement
and then reference the new libref in a PROC SQL statement to query, update, or
delete DBMS data. See the Chapter 9, “The LIBNAME Statement for Relational
Databases,” on page 73 for more information about this feature.

� You can embed LIBNAME information in a PROC SQL view and then
automatically connect to the DBMS every time the PROC SQL view is processed.
See “SQL Views with Embedded LIBNAME Statements” on page 76 for more
information.

� You can send DBMS-specific SQL statements directly to a DBMS using an
extension to PROC SQL called the Pass-Through Facility. See “Syntax for the
Pass-Through Facility for Relational Databases” on page 286 for the syntax for
this feature.

Overview of the Pass-Through Facility
The Pass-Through Facility uses SAS/ACCESS to connect to a DBMS and to send

statements directly to the DBMS for execution. This facility is an alternative to the
SAS/ACCESS LIBNAME statement. It enables you to use the SQL syntax of your
DBMS, and it supports any non-ANSI standard SQL that is supported by your DBMS.

Note: Not all SAS/ACCESS interfaces support this feature. See Chapter 8, “SAS/
ACCESS Features by Host,” on page 65 to determine whether this feature is available
in your environment. �

The Pass-Through Facility enables you to complete the following tasks:
� establish and terminate connections with a DBMS using the facilities CONNECT

and DISCONNECT statements
� send dynamic, non-query, DBMS-specific SQL statements to a DBMS using the

facility’s EXECUTE statement



286 Syntax for the Pass-Through Facility for Relational Databases � Chapter 12

� retrieve data directly from a DBMS using the facilities CONNECTION TO
component in the FROM clause of a PROC SQL SELECT statement.

You can use Pass-Through Facility statements in a PROC SQL query or you can
store them in an SQL view. When you create an SQL view, any arguments that you
specify in the CONNECT statement are stored with the view. Therefore, when the view
is used in a SAS program, SAS can establish the appropriate connection to the DBMS.

Syntax for the Pass-Through Facility for Relational Databases
This section presents the syntax for the Pass-Through Facility statements and the

CONNECTION TO component. For DBMS-specific details, see the documentation for
your SAS/ACCESS interface.

PROC SQL <option(s)>;

CONNECT TO dbms-name <AS alias> <(<database-connection-arguments>
<connect-statement-arguments> )>;

DISCONNECT FROM dbms-name | alias;

EXECUTE (dbms-specific-SQL-statement) BY dbms-name | alias;

SELECT column-list FROM CONNECTION TO dbms-name | alias (dbms-query)

Return Codes
As you use the PROC SQL statements that are available in the Pass-Through

Facility, any error return codes and error messages are written to the SAS log. These
codes and messages are available to you through the following two SAS macro variables:

SQLXRC
contains the DBMS return code that identifies the DBMS error.

SQLXMSG
contains descriptive information about the DBMS error that is generated by the
DBMS.

The contents of the SQLXRC and SQLXMSG macro variables are printed in the SAS
log using the %PUT macro. They are reset after each Pass-Through Facility statement
has been executed.

See “Macro Variables for Relational Databases” on page 269 for more information
about these return codes.

CONNECT Statement
Establishes a connection with the DBMS

Valid in: PROC SQL steps (when accessing DBMS data using SAS/ACCESS software)

Syntax
CONNECT TO dbms-name <AS alias> <(<database-connection-arguments>

<connect-statement-arguments> )>;



The Pass-Through Facility for Relational Databases � CONNECT Statement 287

The CONNECT statement establishes a connection with the DBMS. You establish a
connection to send DBMS-specific SQL statements to the DBMS or to retrieve DBMS
data. The connection remains in effect until you issue a DISCONNECT statement or
terminate the SQL procedure.

To connect to a DBMS using the Pass-Through Facility, complete the following steps:
1 Initiate a PROC SQL step.
2 Use the Pass-Through Facility’s CONNECT statement, identify the DBMS (such

as Oracle or DB2), and (optionally) assign an alias.
3 Specify any attributes for the connection (such as multiple, shared, unique).
4 Specify any arguments that are needed to connect to the database.

The CONNECT statement is optional for some DBMSs. However, if it is not
specified, the default values for all of the database connection arguments are used.

Any return code or message that is generated by the DBMS is available in the macro
variables SQLXRC and SQLXMSG after the statement executes. See “Macro Variables
for Relational Databases” on page 269 for more information about these macro variables.

Arguments
You use the following arguments with the CONNECT statement:

dbms-name
identifies the database management system to which you want to connect. You
must specify the DBMS name for your SAS/ACCESS interface. You can also
specify an optional alias.

alias
specifies for the connection an optional alias that has 1 to 32 characters. If you
specify an alias, the keyword AS must appear before the alias. If an alias is not
specified, the DBMS name is used as the name of the Pass-Through connection.

database-connection-arguments
specifies the DBMS-specific arguments that are needed by PROC SQL to connect
to the DBMS. These arguments are optional for most databases, but if they are
included, they must be enclosed in parentheses. See the documentation for your
SAS/ACCESS interface for information about these arguments.

connect-statement-arguments
specifies arguments that indicate whether you can make multiple connections,
shared or unique connections, and so on, to the database. These arguments enable
the Pass-Through Facility to use some of the LIBNAME statement’s connection
management features. These arguments are optional, but if they are included,
they must be enclosed in parentheses.

CONNECTION= SHARED | GLOBAL
indicates whether multiple CONNECT statements for a DBMS can use the
same connection.

The CONNECTION= option enables you to control the number of
connections, and therefore transactions, that your SAS/ACCESS engine
executes and supports for each Pass-Through CONNECT statement.

When CONNECTION=GLOBAL, multiple CONNECT statements that use
identical values for CONNECTION=, CONNECTION_GROUP=,
DBCONINIT=, DBCONTERM=, and any database connection arguments can
share the same connection to the DBMS.



288 CONNECT Statement � Chapter 12

When CONNECTION=SHARED, the CONNECT statement makes one
connection to the DBMS. Only Pass-Through statements that use this alias
share the connection. SHARED is the default value for CONNECTION=.

In the following example, the two CONNECT statements share the same
connection to the DBMS because CONNECTION=GLOBAL. Only the first
CONNECT statement actually makes the connection to the DBMS, while the
last DISCONNECT statement is the only statement that disconnects from
the DBMS.

proc sql;

/*...SQL Pass-Through statements referring to mydbone...*/

connect to oracle as mydbone
(user=testuser pw=testpass

path=’myorapath’
connection=global);

/*...SQL Pass-Through statements referring to mydbtwo...*/

connect to oracle as mydbtwo
(user=testuser pw=testpass

path=’myorapath’
connection=global);

disconnect from mydbone;
disconnect from mydbtwo;
quit;

CONNECTION_GROUP=connection-group-name
specifies a connection that can be shared among several CONNECT
statements in the Pass-Through Facility.

Default value: none
By specifying the name of a connection group, you can share one DBMS

connection among several CONNECT statements. The connection to the
DBMS can be shared only if each CONNECT statement specifies the same
CONNECTION_GROUP= value and specifies identical DBMS connection
arguments.

When CONNECTION_GROUP= is specified, it implies that the value of
the CONNECTION= option is GLOBAL.

DBCONINIT=<’>DBMS-user-command<’>
specifies a user-defined initialization command to be executed immediately
after the connection to the DBMS.

You can specify any DBMS command that can be passed by the
SAS/ACCESS engine to the DBMS and that does not return a result set or
output parameters. The command executes immediately after the DBMS
connection is established successfully. If the command fails, a disconnect
occurs, and the CONNECT statement fails. You must specify the command as
a single, quoted string, unless it is an environment variable.

DBCONTERM=’DBMS-user-command’
specifies a user-defined termination command to be executed before the
disconnect from the DBMS that occurs with the DISCONNECT statement.

Default value: none
The termination command that you select can be a script, stored procedure,

or any DBMS SQL language statement to provide additional control over the



The Pass-Through Facility for Relational Databases � CONNECT Statement 289

interaction between the SAS/ACCESS engine and the DBMS. You can specify
any valid DBMS command that can be passed by the SAS/ACCESS engine to
the DBMS and that does not return a result set or output parameters. The
command executes immediately before SAS terminates each connection to the
DBMS. If the command fails, SAS provides a warning message but the
disconnect still occurs. You must specify the command as a quoted string.

DBGEN_NAME= DBMS | SAS
specifies whether to automatically rename DBMS columns containing
characters that SAS does not allow, such as $, to valid SAS variable names.
See “DBGEN_NAME= LIBNAME Option” on page 100 for further
information.

DBMAX_TEXT=integer
determines the length of any very long DBMS character data type that is
read into SAS or written from SAS when using a SAS/ACCESS engine. This
option applies to reading, appending, and updating rows in an existing table.
It does not apply when you are creating a table.

Examples of a long DBMS data type are the SYBASE TEXT data type or
the Oracle LONG RAW data type.

DBPROMPT=YES | NO
specifies whether SAS displays a window that prompts the user to enter
DBMS connection information before connecting to the DBMS.

Default value: NO
If you specify DBPROMPT=YES, SAS displays a window that interactively

prompts you for the DBMS connection arguments when the CONNECT
statement is executed. Therefore, it is not necessary to provide connection
arguments with the CONNECT statement. If you do specify connection
arguments with the CONNECT statement and you specify
DBPROMPT=YES, the connection argument values are displayed in the
window. These values can be overridden interactively.

If you specify DBPROMPT=NO, SAS does not display the prompting
window.

The DBPROMPT= option interacts with the DEFER= option to determine
when the prompt window appears. If DEFER=NO, the DBPROMPT window
opens when the CONNECT statement is executed. If DEFER=YES, the
DBPROMPT window opens the first time a Pass-Through statement is
executed. The DEFER= option normally defaults to NO, but defaults to YES
if DBPROMPT=YES. You can override this default by explicitly setting
DEFER=NO.

DEFER=NO | YES
determines when the connection to the DBMS occurs.

Default value: NO
If DEFER=YES, the connection to the DBMS occurs when the first

Pass-Through statement is executed. If DEFER=NO, the connection to the
DBMS occurs when the CONNECT statement occurs.

VALIDVARNAME=V6
indicates that only those variable names considered valid SAS variable
names in Version 6 of SAS software are considered valid. Specify this
connection argument if you want Pass-Through to operate in Version 6
compatibility mode.

By default DBMS column names are changed to valid SAS names by using
the following rules:

� Up to 32 mixed-case alphanumeric characters are allowed.



290 CONNECT Statement � Chapter 12

� Names must begin with an alphabetic character or an underscore.

� Characters that are not permitted are changed to underscores.

� Any column name that is not unique when it is normalized is made
unique by appending a counter (0,1,2,...) to the name.

When VALIDVARNAME=V6 is specified, the SAS/ACCESS engine for the
DBMS truncates column names to eight characters, as it did in Version 6. If
required, numbers are appended to the ends of the truncated names to make
them unique. Setting this option overrides the value of the SAS system option
VALIDVARNAME= during (and only during) the Pass-Through connection.

The following example shows how the Pass-Through Facility uses
VALIDVARNAME=V6 as a connection argument. Using this option causes
the output to show the DBMS column "Amount Budgeted$" as AMOUNT_B
and "Amount Spent$" as AMOUNT_S.

proc sql;
connect to oracle (user=gloria password=teacher

validvarname=v6)
create view budget2000 as
select amount_b, amount_s
from connection to oracle

(select "Amount Budgeted$", "Amount Spent$"
from annual_budget);

quit;
proc contents data=budget2000;
run;

For this example, if you omit VALIDVARNAME=V6 as a connection
argument, you must add it in an OPTIONS= statement in order for PROC
CONTENTS to work:

options validvarname=v6;
proc contents data=budget2000;
run;

Thus, using it as a connection argument saves you coding later.

Note: In addition to the arguments listed here, several other LIBNAME
options are available for use with the CONNECT statement. See the section about
the Pass-Through Facility in the documentation for your SAS/ACCESS interface to
determine which LIBNAME options are available in the Pass-Through Facility for
your DBMS. When used with the Pass-Through Facility CONNECT statement,
these options have the same effect as they do in a LIBNAME statement. �

CONNECT Statement Example

The following example connects to a Sybase server and assigns the alias SYBCON1
to it. Sybase is a case-sensitive database. Therefore, the database objects are in
uppercase, as they were created.

proc sql;
connect to sybase as sybcon1

(server=SERVER1 database=PERSONNEL
user=testuser password=testpass
connection=global);

%put &sqlxmsg &sqlxrc;



The Pass-Through Facility for Relational Databases � DISCONNECT Statement 291

Note: You might be able to omit the CONNECT statement and implicitly connect to
a database using default settings. See the documentation for your SAS/ACCESS
interface for more information. �

DISCONNECT Statement

Terminates the connection to the DBMS

Valid in: PROC SQL steps (when accessing DBMS data using SAS/ACCESS software)

Syntax
DISCONNECT FROM dbms-name | alias

The DISCONNECT statement ends the connection with the DBMS. If the
DISCONNECT statement is omitted, an implicit DISCONNECT is performed when
PROC SQL terminates. The SQL procedure continues to execute until you submit a
QUIT statement, another SAS procedure, or a DATA step.

Any return code or message that is generated by the DBMS is available in the macro
variables SQLXRC and SQLXMSG after the statement executes. See “Macro Variables
for Relational Databases” on page 269 for more information about these macro variables.

Arguments
Use one of the following arguments with the DISCONNECT statement:

dbms-name
specifies the database management system from which you want to disconnect.
You must specify the DBMS name for your SAS/ACCESS interface, or use an alias
in the DISCONNECT statement.

Note: If you used the CONNECT statement to connect to the DBMS, the
DISCONNECT statement’s DBMS name or alias must match the name or alias
specified in the CONNECT statement. �

alias
specifies an alias that was defined in the CONNECT statement.

Example

To exit the Pass-Through Facility, use the facilities DISCONNECT statement and
then QUIT the PROC SQL statement. The following example disconnects the user from
a DB2 database with the alias DBCON1 and terminates the SQL procedure:

proc sql;
connect to db2 as dbcon1 (ssid=db2a);
...more SAS statements...
disconnect from dbcon1;
quit;



292 EXECUTE Statement � Chapter 12

EXECUTE Statement

Sends DBMS-specific, non-query SQL statements to the DBMS

Valid in: PROC SQL steps (when accessing DBMS data using SAS/ACCESS software)

Syntax
EXECUTE (dbms-specific-sql-statement) BY dbms-name | alias;

The EXECUTE statement sends dynamic non-query, DBMS-specific SQL statements
to the DBMS and processes those statements.

In some SAS/ACCESS interfaces, you can issue an EXECUTE statement directly
without first explicitly connecting to a DBMS (see
“CONNECT Statement” on page 286). If you omit the CONNECT statement, an implicit
connection is performed (by using default values for all database connection arguments)
when the first EXECUTE statement is passed to the DBMS. See the documentation for
your SAS/ACCESS interface for details.

The EXECUTE statement cannot be stored as part of an Pass-Through Facility query
in a PROC SQL view.

Arguments
(dbms-specific-sql-statement)

a dynamic non-query, DBMS-specific SQL statement. This argument is required
and must be enclosed in parentheses. However, the SQL statement cannot contain
a semicolon because a semicolon represents the end of a statement in SAS. The
SQL statement might be case-sensitive, depending on your DBMS, and it is passed
to the DBMS exactly as you type it.

On some DBMSs, this argument can be a DBMS stored procedure. However,
stored procedures with output parameters are not supported in the Pass-Through
Facility. Furthermore, if the stored procedure contains more than one query, only
the first query is processed.

Any return code or message that is generated by the DBMS is available in the
macro variables SQLXRC and SQLXMSG after the statement executes. See
“Macro Variables for Relational Databases” on page 269 for more information
about these macro variables.

dbms-name
identifies the database management system to which you direct the DBMS-specific
SQL statement. The keyword BY must appear before the dbms-name argument.
You must specify either the DBMS name for your SAS/ACCESS interface or an
alias.

alias
specifies an alias that was defined in the CONNECT statement. (You cannot use
an alias if the CONNECT statement was omitted.)

Useful Statements to Include in EXECUTE Statements
You can pass the following statements to the DBMS by using the Pass-Through
Facility’s EXECUTE statement.



The Pass-Through Facility for Relational Databases � CONNECTION TO Component 293

CREATE
creates a DBMS table, view, index, or other DBMS object, depending on how the
statement is specified.

DELETE
deletes rows from a DBMS table.

DROP
deletes a DBMS table, view, or other DBMS object, depending on how the
statement is specified.

GRANT
gives users the authority to access or modify objects such as tables or views.

INSERT
adds rows to a DBMS table.

REVOKE
revokes the access or modification privileges that were given to users by the
GRANT statement.

UPDATE
modifies the data in one column of a row in a DBMS table.

For more information and restrictions on these and other SQL statements, see the
SQL documentation for your DBMS.

CONNECTION TO Component

Retrieves and uses DBMS data in a PROC SQL query or view

Valid in: PROC SQL step SELECT statements (when accessing DBMS data using
SAS/ACCESS software)

Syntax
CONNECTION TO dbms-name | alias (dbms-query)

The CONNECTION TO component specifies the DBMS connection that you want to
use or that you want to create (if you have omitted the CONNECT statement).
CONNECTION TO then enables you to retrieve DBMS data directly through a PROC
SQL query.

You use the CONNECTION TO component in the FROM clause of a PROC SQL
SELECT statement:

PROC SQL;

SELECT column-list
FROM CONNECTION TO dbms-name (dbms-query)

other optional PROC SQL clauses
QUIT;

CONNECTION TO can be used in any FROM clause, including those in nested
queries (that is, subqueries).



294 CONNECTION TO Component � Chapter 12

You can store a Pass-Through Facility query in an SQL view and then use that view
in SAS programs. When you create an SQL view, any options that you specify in the
corresponding CONNECT statement are stored too. Thus, when the SQL view is used
in a SAS program, SAS can establish the appropriate connection to the DBMS.

On many relational databases, you can issue a CONNECTION TO component in a
PROC SQL SELECT statement directly without first connecting to a DBMS (see
“CONNECT Statement” on page 286). If you omit the CONNECT statement, an
implicit connection is performed when the first PROC SQL SELECT statement that
contains a CONNECTION TO component is passed to the DBMS. Default values are
used for all DBMS connection arguments. See the documentation for your
SAS/ACCESS interface for details.

Because relational databases and SAS have different naming conventions, some
DBMS column names might be changed when you retrieve DBMS data through the
CONNECTION TO component. See Chapter 2, “SAS Names and Support for DBMS
Names,” on page 7 for more information.

Arguments
dbms-name

identifies the database management system to which you direct the DBMS-specific
SQL statement. See the documentation for your SAS/ACCESS interface for the
name for your DBMS.

alias
specifies an alias, if one was defined in the CONNECT statement.

(dbms-query)
specifies the query that you are sending to the DBMS. The query can use any
DBMS-specific SQL statement or syntax that is valid for the DBMS. However, the
query cannot contain a semicolon because a semicolon represents the end of a
statement in SAS.

You must specify a query argument in the CONNECTION TO component, and
the query must be enclosed in parentheses. The query is passed to the DBMS
exactly as you type it. Therefore, if your DBMS is case-sensitive, you must use the
correct case for DBMS object names.

On some DBMSs, the dbms-query argument can be a DBMS stored procedure.
However, stored procedures with output parameters are not supported in the
Pass-Through Facility. Furthermore, if the stored procedure contains more than
one query, only the first query is processed.

Example

After you connect (explicitly using the CONNECT statement or implicitly using
default settings) to a DBMS, you can send a DBMS-specific SQL query to the DBMS
using the facilities CONNECTION TO component. You issue a SELECT statement to
indicate which columns you want to retrieve, identify your DBMS (such as Oracle or
DB2), and issue your query using the SQL syntax of your DBMS.

The following example sends an Oracle SQL query, shown by highlighting, to the
Oracle database for processing. The results from the Oracle SQL query serve as a
virtual table for the PROC SQL FROM clause. In this example, MYCON is a connection
alias.

proc sql;
connect to oracle as mycon (user=testuser



The Pass-Through Facility for Relational Databases � CONNECTION TO Component 295

password=testpass path=’myorapath’);
%put &sqlxmsg;

select *
from connection to mycon
(select empid, lastname, firstname,

hiredate, salary
from employees where

hiredate>=’31-DEC-88’);
%put &sqlxmsg;

disconnect from mycon;
quit;

The SAS %PUT macro displays the &SQLXMSG macro variable for error codes and
information from the DBMS. See “Macro Variables for Relational Databases” on page
269 for more information.

The following example gives the query a name and stores it as the SQL view
samples.HIRES88:

libname samples ’SAS-data-library’;

proc sql;
connect to oracle as mycon (user=testuser

password=testpass path=’myorapath’);
%put &sqlxmsg;

create view samples.hires88 as
select *

from connection to mycon
(select empid, lastname, firstname,
hiredate, salary
from employees where

hiredate>=’31-DEC-88’);
%put &sqlxmsg;

disconnect from mycon;

quit;



296



297

P A R T3

Converting SAS/ACCESS Descriptors to PROC
SQL Views

Chapter 13. . . . . . . . .The CV2VIEW Procedure 299



298



299

C H A P T E R

13
The CV2VIEW Procedure

Overview of the CV2VIEW Procedure 299
Procedure Syntax 300

PROC CV2VIEW Statement 300

FROM_VIEW= Statement 300

FROM_LIBREF= Statement 301

REPLACE= Statement 301
SAVEAS= Statement 302

SUBMIT Statement 302

TO_VIEW= Statement 303

TO_LIBREF= Statement 303

TYPE= Statement 304

CV2VIEW Procedure Examples 304
Example 1: Converting an Individual View Descriptor 304

Example 2: Converting a Library of View Descriptors for a Single DBMS 306

Example 3: Converting a Library of View Descriptors for All Supported DBMSs 307

Overview of the CV2VIEW Procedure

The CV2VIEW procedure converts SAS/ACCESS view descriptors and access
descriptors into SQL views. We recommend that you consider converting your
descriptors for the following reasons:

� Descriptors are no longer the recommended method for accessing relational
database data. By converting to SQL views, you can use the LIBNAME statement,
which is the preferred method. The LIBNAME statement provides greater control
over DBMS operations such as locking, spooling, and data type conversions. The
LIBNAME statement can also handle long field names, whereas descriptors cannot.

� SQL views are platform-independent. SAS/ACCESS descriptors are not.

The CV2VIEW procedure in SAS 9.1 can convert both of these descriptors:

� 64-bit SAS/ACCESS view descriptors that were created in either 64-bit SAS
Version 8 or 64-bit SAS 9.1

� 32-bit SAS/ACCESS access descriptors that were created in 32-bit SAS Version 6
and Version 8

If the descriptor that you want to convert is READ, WRITE, or ALTER protected,
then those values are applied to the output SQL view. For security reasons, these
values do not appear if you save the generated SQL to a file. The PASSWORD portion
of the LIBNAME statement is also not visible. This prevents the generated SQL
statements from being manually submitted without modification.



300 Procedure Syntax � Chapter 13

Procedure Syntax

The syntax for the CV2VIEW procedure is as follows:

PROC CV2VIEW DBMS= dbms-name | ALL;

FROM_VIEW= libref.input-descriptor;

FROM_LIBREF= input-library;

TO_VIEW= libref.output-view;

TO_LIBREF= output-library;

TYPE= SQL | VIEW | ACCESS;

SAVEAS= external-filename;

SUBMIT;

REPLACE ALL | VIEW | FILE;

PROC CV2VIEW Statement

PROC CV2VIEW DBMS= dbms-name | ALL;

Arguments

dbms-name
specifies the name of a supported database from which you want to obtain
descriptors. Valid values for dbms-name are DB2, Oracle, and SYBASE.

ALL
specifies that you want the descriptors from all supported databases.

FROM_VIEW= Statement

Specifies the name of the view descriptor or access descriptor that you want to convert

Requirement: You must specify either the FROM_VIEW= statement or the
FROM_LIBREF= statement.

Requirement: The FROM_VIEW= and TO_VIEW= statements are always used together.

Restriction: If you specify DBMS=ALL, then you cannot use the FROM_VIEW=
statement.

FROM_VIEW=libref.input-descriptor;



The CV2VIEW Procedure � REPLACE= Statement 301

Arguments

libref
specifies the libref that contains the view descriptor or access descriptor that you
want to convert.

input-descriptor
specifies the view descriptor or access descriptor that you want to convert.

FROM_LIBREF= Statement

Specifies the library that contains the view descriptors or access descriptors that you want to
convert

Requirement: You must specify either the FROM_VIEW= statement or the
FROM_LIBREF= statement.

Requirement: The FROM_LIBREF= and TO_LIBREF= statements are always used
together.

FROM_LIBREF= input-library;

Argument

input-library
specifies a previously assigned library that contains the view descriptors or access
descriptors that you want to convert. All descriptors that are in the specified library
and that access data in the specified DBMS are converted into SQL views. If you
specify DBMS=ALL, then all descriptors that are in the specified library and that
access any supported DBMS are converted.

REPLACE= Statement

Specifies whether existing views and files are replaced

REPLACE= ALL | FILE | VIEW ;

Arguments

ALL
replaces the TO_VIEW= file if it already exists and replaces the SAVEAS= file if it
already exists.



302 SAVEAS= Statement � Chapter 13

FILE
replaces the SAVEAS= file if it already exists. If the file already exists, and if
REPLACE=FILE or REPLACE=ALL are not specified, the generated PROC SQL
code is appended to the file.

VIEW
replaces the TO_VIEW= file if it already exists.

SAVEAS= Statement

Saves the generated PROC SQL statements to a file

Interaction: If you specify the SAVEAS= statement, the generated SQL is not
automatically submitted, so you must use the SUBMIT statement.

SAVEAS=external-filename;

Argument

external-filename
lets you save the PROC SQL statements that are generated by PROC CV2VIEW to
an external file. You can modify this file and submit it on another platform.

Details

PROC CV2VIEW inserts comments in the generated SQL to replace any statements
that contain passwords. For example, if a view descriptor is READ, WRITE, or ALTER
protected, then the output view has the same level of security. However, the file that
contains the SQL statements does not show the password values. This is also the case
for the password in the LIBNAME statement.

SUBMIT Statement

Causes PROC CV2VIEW to submit the generated PROC SQL statements when you specify the
SAVEAS= statement

Tip: If you do not use the SAVEAS= statement, PROC CV2VIEW automatically submits
the generated SQL, so you do not need to specify the SUBMIT statement.

SUBMIT;



The CV2VIEW Procedure � TO_LIBREF= Statement 303

TO_VIEW= Statement
Specifies the name of the new (converted) SQL view

Requirement: You must specify either the TO_VIEW= statement or the TO_LIBREF=
statement.
Requirement: The FROM_VIEW= and TO_VIEW= statements are always used together.
Restriction: If you specify DBMS=ALL, then you cannot use the TO_VIEW= statement.
Interaction: Use the REPLACE= statement to control whether the output file is
overwritten or appended if it already exists.

TO_VIEW=libref.output-view;

Arguments

libref
specifies the libref where you want to store the new SQL view.

output-view
specifies the name for the new SQL view that you want to create.

TO_LIBREF= Statement
Specifies the library that contains the new (converted) SQL views

Requirement: You must specify either the TO_VIEW= statement or the TO_LIBREF=
statement.
Requirement: The FROM_LIBREF= and TO_LIBREF= statements are always used
together.
Interaction: Use the REPLACE= statement if a file with the name of one of your output
views already exists. If a file with the name of one of your output views already exists
and you do not specify the REPLACE statement, PROC CV2VIEW does not convert
that view.

TO_LIBREF= output-library;

Argument

output-library
specifies the name of a previously assigned library where you want to store the new
SQL views.

Details
The names of the input view descriptors or access descriptors are used as the output

view names. In order to individually name your output views, use the FROM_VIEW=
statement and the TO_VIEW= statement.



304 TYPE= Statement � Chapter 13

TYPE= Statement

Specifies what type of conversion should occur

TYPE= SQL | VIEW | ACCESS;

Arguments

SQL
specifies that PROC CV2VIEW converts descriptors to SQL views. This is the default
behavior.

VIEW
specifies that PROC CV2VIEW converts descriptors to native view descriptor format.
This is most useful in the 32-bit to 64-bit case. This does not convert view descriptors
across different operating systems.

ACCESS
specifies that PROC CV2VIEW converts access descriptors to native access descriptor
format. This is most useful in the 32-bit to 64-bit case. This does not convert access
descriptors across different operating systems.

Details
When TYPE=VIEW or TYPE=ACCESS, SAVEAS=, SUBMIT, and REPLACE= or

REPLACE_FILE= are not valid options.

CV2VIEW Procedure Examples

Example 1: Converting an Individual View Descriptor

In this example, PROC CV2VIEW converts the MYVIEW view descriptor to the SQL
view NEWVIEW. The MYVIEW view descriptor is ALTER, READ, and WRITE
protected. The PROC SQL statements that are generated by PROC CV2VIEW are
submitted and saved to an external file named SQL.SAS.

libname input ’/username/descriptors/’;
libname output ’/username/sqlviews/’;

proc cv2view dbms=oracle;
from_view = input.myview (alter=apwd);
to_view = output.newview;
saveas = ’/username/vsql/sql.sas’;
submit;
replace file;
run;



The CV2VIEW Procedure � Example 1: Converting an Individual View Descriptor 305

PROC CV2VIEW generates the following PROC SQL statements.

/* SOURCE DESCRIPTOR: MYVIEW */
PROC SQL DQUOTE=ANSI;
CREATE VIEW OUTPUT.NEWVIEW
(

/* READ= */
/* WRITE= */
/* ALTER= */
LABEL=EMPLINFO
)
AS SELECT

"EMPLOYEE " AS EMPLOYEE INFORMAT= 5.0 FORMAT= 5.0
LABEL= ’EMPLOYEE ’ ,

"LASTNAME " AS LASTNAME INFORMAT= $10. FORMAT= $10.
LABEL= ’LASTNAME ’ ,

"SEX " AS SEX INFORMAT= $6. FORMAT= $6.
LABEL= ’SEX ’ ,

"STATUS " AS STATUS INFORMAT= $9. FORMAT= $9.
LABEL= ’STATUS ’ ,

"DEPARTMENT" AS DEPARTME INFORMAT= 7.0 FORMAT= 7.0
LABEL= ’DEPARTMENT’ ,

"CITYSTATE " AS CITYSTAT INFORMAT= $15. FORMAT= $15.
LABEL= ’CITYSTATE ’

FROM _CVLIB_."EMPLINFO"
USING LIBNAME _CVLIB_
Oracle

/* PW= */
USER=ordevxx PATH=OracleV8 PRESERVE_TAB_NAMES=YES;
QUIT;

The REPLACE FILE statement causes an existing file named SQL.SAS to be
overwritten. Without this statement the text would be appended to SQL.SAS if the user
has the appropriate privileges.

The LABEL value of EMPLINFO is the name of the underlying database table that is
referenced by the view descriptor.

If the underlying DBMS is Oracle or DB2, the CV2VIEW procedure adds the
PRESERVE_TAB_NAMES= option to the embedded LIBNAME statement. You can then
use CV2VIEW to access those tables with mixed-case or embedded-blank table names.

Note: This SQL syntax fails if you try to submit it because the PW field of the
LIBNAME statement is replaced with a comment in order to protect the password. The
ALTER, READ, and WRITE protection is commented out for the same reason. You can
add the passwords to the code and then submit the SQL to re-create the view. �



306 Example 2: Converting a Library of View Descriptors for a Single DBMS � Chapter 13

Example 2: Converting a Library of View Descriptors for a Single DBMS

In this example, PROC CV2VIEW converts all of the Oracle view descriptors in the
input library into SQL views. If an error occurs during the conversion of a view
descriptor, the procedure moves to the next view. The PROC SQL statements that are
generated by PROC CV2VIEW are both submitted and saved to an external file named
SQL.SAS.

libname input ’/username/descriptors/’;
libname output ’/username/sqlviews/’;
proc cv2view dbms=oracle;
from_libref = input;
to_libref = output;
saveas = ’/username/vsql/manyview.sas’;
submit;
run;

PROC CV2VIEW generates the following PROC SQL statements for one of the views.

/* SOURCE DESCRIPTOR: PPCV2R */
PROC SQL DQUOTE=ANSI;

CREATE VIEW OUTPUT.PPCV2R
(
LABEL=EMPLOYEES
)
AS SELECT

"EMPID " AS EMPID INFORMAT= BEST22. FORMAT= BEST22.
LABEL= ’EMPID ’ ,

"HIREDATE " AS HIREDATE INFORMAT= DATETIME16. FORMAT= DATETIME16.
LABEL= ’HIREDATE ’ ,

"JOBCODE " AS JOBCODE INFORMAT= BEST22. FORMAT= BEST22.
LABEL= ’JOBCODE ’ ,

"SEX " AS SEX INFORMAT= $1. FORMAT= $1.
LABEL= ’SEX ’

FROM _CVLIB_."EMPLOYEES" (
SASDATEFMT = ( "HIREDATE"= DATETIME16. ) )

USING LIBNAME _CVLIB_
Oracle
/* PW= */
USER=ordevxx PATH=OracleV8 PRESERVE_TAB_NAMES=YES;
QUIT;

The SAVEAS= statement causes all of the generated SQL for all of the Oracle view
descriptors to be stored in the MANYVIEW.SAS file.

If the underlying DBMS is Oracle or DB2, the CV2VIEW procedure adds the
PRESERVE_TAB_NAMES= option to the embedded LIBNAME statement. You can then
use CV2VIEW to access those tables with mixed-case or embedded-blank table names.



The CV2VIEW Procedure � Example 3: Converting a Library of View Descriptors for All Supported DBMSs 307

Example 3: Converting a Library of View Descriptors for All Supported
DBMSs

In this example, PROC CV2VIEW converts all of the view descriptors that are in the
input library and that access data in any supported DBMS. If an error occurs during the
conversion of a view descriptor, then the procedure moves to the next view. The PROC
SQL statements that are generated by PROC CV2VIEW are automatically submitted
but are not saved to an external file (because the SAVEAS= statement is not used).

libname input ’/username/descriptors/’;
libname output ’/username/sqlviews/’;

proc cv2view dbms=all;
from_libref = input;
to_libref = output;
run;



308



309

P A R T4

Appendixes

Appendix 1. . . . . . . . .The ACCESS Procedure for Relational Databases 311

Appendix 2. . . . . . . . .The DBLOAD Procedure for Relational Databases 329

Appendix 3. . . . . . . . .Recommended Reading 343



310



311

A P P E N D I X

1
The ACCESS Procedure for
Relational Databases

Overview of the ACCESS Procedure for Relational Databases 311
Accessing DBMS Data 311

About ACCESS Procedure Statements 312

Procedure Syntax 313

PROC ACCESS Statement 314

Database Connection Statements 314
ASSIGN Statement 315

CREATE Statement 315

DROP Statement 317

FORMAT Statement 317

LIST Statement 318

QUIT Statement 319
RENAME Statement 319

RESET Statement 320

SELECT Statement 321

SUBSET Statement 322

TABLE= Statement 323
UNIQUE Statement 323

UPDATE Statement 324

Using Descriptors with the ACCESS Procedure 325

What Are Descriptors? 325

Access Descriptors 325
View Descriptors 326

Accessing Data Sets and Descriptors 326

Examples of Using the ACCESS Procedure 327

Example 1: Updating an Access Descriptor 327

Example 2: Creating a View Descriptor 328

Overview of the ACCESS Procedure for Relational Databases

Accessing DBMS Data
The ACCESS procedure is still supported for the database systems and environments

on which it was available in Version 6. However, it is no longer the recommended
method for accessing relational DBMS data. It is recommended that you access your
DBMS data more directly, using the LIBNAME statement or Pass-Through Facility .



312 About ACCESS Procedure Statements � Appendix 1

Note: Not all SAS/ACCESS interfaces support this feature. See Chapter 8, “SAS/
ACCESS Features by Host,” on page 65 to determine whether this feature is available
in your environment. �

This section provides general reference information for the ACCESS procedure; see
the SAS/ACCESS documentation for your DBMS for DBMS-specific details.

The ACCESS procedure, along with the DBLOAD procedure and an interface view
engine, creates an interface between SAS and data in other vendors’ databases. You can
use the ACCESS procedure to create and update descriptors.

About ACCESS Procedure Statements
The ACCESS procedure has several types of statements:
� Database connection statements are used to connect to your DBMS. For details, see

the SAS/ACCESS documentation for your DBMS.
� Creating and updating statements are CREATE and UPDATE.
� Table and editing statements include ASSIGN, DROP, FORMAT, LIST, QUIT,

RENAME, RESET, SELECT, SUBSET, TABLE, and UNIQUE.

The following table summarizes the PROC ACCESS options and statements that are
required to accomplish common tasks.

Table A1.1 Statement Sequence for Accomplishing Tasks with the ACCESS Procedure

To do this… Use these statements and options

Create an access
descriptor

PROC ACCESS statement-options;
CREATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

RUN;

Create an access
descriptor and a view
descriptor

PROC ACCESS statement-options;
CREATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

Create a view descriptor
from an existing access
descriptor

PROC ACCESS statement-options, including
ACCDESC=libref.access-descriptor;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

Update an access
descriptor

PROC ACCESS statement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

RUN;



The ACCESS Procedure for Relational Databases � Procedure Syntax 313

To do this… Use these statements and options

Update an access
descriptor and a view
descriptor

PROC ACCESS statement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

UPDATE libref.member-name.VIEW;
editing-statements;

RUN;

Update an access
descriptor and create a
view descriptor

PROC ACCESS statement-options;
UPDATE libref.member-name.ACCESS;

database-connection-statements;
editing-statements;

CREATE libref.member-name.VIEW;
SELECT column-list;

editing-statements;

RUN;

Update a view descriptor
from an existing access
descriptor

PROC ACCESS statement-options, including
ACCDESC=libref.access-descriptor;

UPDATE libref.member-name.VIEW;
editing-statements;

RUN;

Create a SAS data set
from a view descriptor

PROC ACCESS statement-options, including DBMS=dbms-name;
VIEWDESC=libref.member; OUT=libref.member;

RUN;

Procedure Syntax
The general syntax for the ACCESS procedure is presented here. See the

SAS/ACCESS documentation for your DBMS for DBMS-specific details.

PROC ACCESS<options>;

database-connection-statements;

CREATE libref.member-name.ACCESS | VIEW <password-option>;

UPDATE libref.member-name.ACCESS | VIEW <password-option>;

TABLE= <’>table-name<’>;

ASSIGN <=>YES | NO | Y | N;

DROP <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;

FORMAT <’>column-identifier-1<’> <=> SAS-format-name-1
<…<’>column-identifier-n<’> <=> SAS-format-name-n>;

LIST <ALL | VIEW |<’>column-identifier<’>>;

QUIT;



314 PROC ACCESS Statement � Appendix 1

RENAME <’>column-identifier-1<’> <=> SAS-variable-name-1
<…<’>column-identifier-n<’> <=> SAS-variable-name-n>;

RESET ALL |<’>column-identifier-1< ’> <…<’>column-identifier-n<’>>;

SELECT ALL |<’>column-identifier-1<’> <…<’>column-identifier-n<’>>;

SUBSET selection-criteria;

UNIQUE <=> YES | NO | Y | N;

RUN;

PROC ACCESS Statement

PROC ACCESS <options>;

Options

ACCDESC=libref.access-descriptor
specifies an access descriptor. ACCDESC= is used with the DBMS= option to create
or update a view descriptor that is based on the specified access descriptor. You can
use a SAS data set option on the ACCDESC= option to specify any passwords that
have been assigned to the access descriptor.

Note: The ODBC interface does not support this option. �

DBMS=database-management-system
specifies which database management system you want to use. This DBMS-specific
option is required. See the SAS/ACCESS documentation for your DBMS.

OUT=libref.member-name
specifies the SAS data file to which DBMS data is output.

VIEWDESC=libref.view-descriptor
specifies a view descriptor through which you extract the DBMS data.

Database Connection Statements

Provide DBMS-specific connection information

database-connection-statements;

Database connection statements are used to connect to your DBMS. For the
statements to use with your DBMS, see the documentation for your SAS/ACCESS
interface.



The ACCESS Procedure for Relational Databases � CREATE Statement 315

ASSIGN Statement

Indicates whether SAS variable names and formats are generated

Applies to: access descriptor
Interacts with: FORMAT, RENAME, RESET, UNIQUE
Default: NO

ASSIGN <=>YES | NO | Y | N;

YES
generates unique SAS variable names from the first eight characters of the DBMS
column names. If you specify YES, you cannot specify the RENAME, FORMAT,
RESET, or UNIQUE statements when you create view descriptors that are based on
the access descriptor.

NO
lets you modify SAS variable names and formats when you create an access descriptor
and when you create view descriptors that are based on this access descriptor.

Details
The ASSIGN statement indicates how SAS variable names and formats are assigned:
� SAS automatically generates SAS variable names.
� You can change SAS variable names and formats in the view descriptors that are

created from the access descriptor.

Each time the SAS/ACCESS interface encounters a CREATE statement to create an
access descriptor, the ASSIGN statement is reset to the default NO value.

When you create an access descriptor, use the RENAME statement to change SAS
variable names and the FORMAT statement to change SAS formats.

When you specify YES, SAS generates names according to these rules:
� You can change the SAS variable names only in the access descriptor.
� SAS variable names that are saved in an access descriptor are always used when

view descriptors are created from the access descriptor. You cannot change them
in the view descriptors.

� The ACCESS procedure allows names only up to eight characters.

CREATE Statement

Creates a SAS/ACCESS descriptor file

Applies to: access descriptor or view descriptor

CREATE libref.member-name.ACCESS | VIEW <password-option>;



316 CREATE Statement � Appendix 1

libref.member-name
identifies the libref of the SAS library where you want to store the descriptor and
identifies the descriptor name.

ACCESS
specifies an access descriptor.

VIEW
specifies a view descriptor.

password-option
specifies a password.

Details
The CREATE statement is required. It names the access descriptor or view

descriptor that you are creating. Use a three-level name:

� The first level identifies the libref of the SAS library where you want to store the
descriptor.

� The second level is the descriptor name,

� The third level specifies the type of SAS file (specify ACCESS for an access
descriptor or VIEW for a view descriptor).

See Statement Sequence for Accomplishing Tasks with the ACCESS ProcedureTable
A1.1 on page 312 for the appropriate sequence of statements for creating access and
view descriptors.

Example
The following example creates an access descriptor AdLib.Employ on the Oracle table

Employees, and a view descriptor Vlib.Emp1204 based on AdLib.Employ, in the same
PROC ACCESS step.

proc access dbms=oracle;

/* create access descriptor */

create adlib.employ.access;
database=’qa:[dubois]textile’;
table=employees;
assign=no;
list all;

/* create view descriptor */

create vlib.emp1204.view;
select empid lastname hiredate salary dept
gender birthdate;
format empid 6.

salary dollar12.2
jobcode 5.
hiredate datetime9.
birthdate datetime9.;

subset where jobcode=1204;
run;



The ACCESS Procedure for Relational Databases � FORMAT Statement 317

DROP Statement

Drops a column so that it cannot be selected in a view descriptor

Applies to: access and view descriptors
Interacts with: RESET, SELECT

DROP <’>column-identifier-1<’> <…<’>column-identifier-n<’>>;

column-identifier
specifies the column name or the positional equivalent from the LIST statement,
which is the number that represents the column’s place in the access descriptor. For
example, to drop the third and fifth columns, submit the following statement:

drop 3 5;

Details
The DROP statement drops one or more specified columns from a descriptor. You can

drop a column when creating or updating an access descriptor; you can also drop a
column when updating a view descriptor. If you drop a column when creating an access
descriptor, you cannot select that column when creating a view descriptor that is based
on the access descriptor. The underlying DBMS table is unaffected by this statement.

To display a column that was previously dropped, specify that column name in the
RESET statement. However, doing so also resets all the column’s attributes (such as
SAS variable name, format, and so on) to their default values.

FORMAT Statement

Changes a SAS format for a DBMS column

Applies to: access descriptor or view descriptor
Interacts with: ASSIGN, DROP, RESET

FORMAT <’>column-identifier-1<’> <=>SAS-format-name-1
<…<’>column-identifier-n<’> <=> SAS-format-name-n>;

column-identifier
specifies the column name or the positional equivalent from the LIST statement,
which is the number that represents the column’s place in the access descriptor. If
the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks.

SAS-format-name
specifies the SAS format to be used.



318 LIST Statement � Appendix 1

Details
The FORMAT statement changes SAS variable formats from their default formats.

The default SAS variable format is based on the data type of the DBMS column. See
the SAS/ACCESS documentation for your DBMS for information about default formats
that SAS assigns to your DBMS data types.

You can use the FORMAT statement with a view descriptor only if the ASSIGN
statement that was used when creating the access descriptor was specified with the NO
value. When you use the FORMAT statement with access descriptors, the FORMAT
statement also reselects columns that were previously dropped with the DROP
statement.

For example, to associate the DATE9. format with the BIRTHDATE column and with
the second column in the access descriptor, submit the following statement:

format 2=date9. birthdate=date9.;

The equal sign (=) is optional. For example, you can use the FORMAT statement to
specify new SAS variable formats for four DBMS table columns:

format productid 4.
weight e16.9
fibersize e20.13
width e16.9;

LIST Statement

Lists columns in the descriptor and gives information about them

Applies to: access descriptor or view descriptor

Default: ALL

LIST <ALL | VIEW |<’>column-identifier<’>>;

ALL
lists all the DBMS columns in the table, the positional equivalents, the SAS variable
names, and the SAS variable formats that are available for a descriptor.

VIEW
lists all the DBMS columns that are selected for a view descriptor, their positional
equivalents, their SAS names and formats, and any subsetting clauses.

column-identifier
lists information about a specified DBMS column, including its name, positional
equivalent, SAS variable name and format, and whether it has been selected. If the
column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks.

The column-identifier argument can be either the column name or the positional
equivalent, which is the number that represents the column’s place in the descriptor.
For example, to list information about the fifth column in the descriptor, submit the
following statement:

list 5;



The ACCESS Procedure for Relational Databases � RENAME Statement 319

Details
The LIST statement lists columns in the descriptor, along with information about the

columns. The LIST statement can be used only when creating an access descriptor or a
view descriptor. The LIST information is written to your SAS log.

Note: To review the contents of an existing view descriptor, use the CONTENTS
procedure. �

When you use LIST for an access descriptor, *NON-DISPLAY* appears next to the
column description for any column that has been dropped; *UNSUPPORTED* appears
next to any column whose data type is not supported by your DBMS interface view
engine. When you use LIST for a view descriptor, *SELECTED* appears next to the
column description for columns that you have selected for the view.

Specify LIST last in your PROC ACCESS code in order to see the entire descriptor. If
you create or update multiple descriptors, specify LIST before each CREATE or
UPDATE statement to list information about all descriptors that you are creating or
updating.

QUIT Statement

Terminates the procedure

Applies to: access descriptor or view descriptor

QUIT;

Details
The QUIT statement terminates the ACCESS procedure without any further

descriptor creation. Changes made since the last CREATE, UPDATE, or RUN
statement are not saved; changes are saved only when a new CREATE, UPDATE, or
RUN statement is submitted.

RENAME Statement

Modifies the SAS variable name

Applies to: access descriptor or view descriptor

Interacts with: ASSIGN, RESET

RENAME <’>column-identifier-1<’> <=> SAS-variable-name-1
<…<’>column-identifier-n<’> <=> SAS-variable-name-n>;



320 RESET Statement � Appendix 1

column-identifier
specifies the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the descriptor.
If the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks. The equal sign (=) is optional.

SAS-variable-name
specifies a SAS variable name.

Details
The RENAME statement sets or modifies the SAS variable name that is associated

with a DBMS column.
Two factors affect the use of the RENAME statement: whether you specify the

ASSIGN statement when you are creating an access descriptor, and the kind of
descriptor you are creating.

� If you omit the ASSIGN statement or specify it with a NO value, the renamed SAS
variable names that you specify in the access descriptor are retained when an
ACCESS procedure executes. For example, if you rename the CUSTOMER column
to CUSTNUM when you create an access descriptor, the column is still named
CUSTNUM when you select it in a view descriptor unless you specify another
RESET statement or RENAME statement.

When you create a view descriptor that is based on this access descriptor, you
can specify the RESET statement or another RENAME statement to rename the
variable. However, the new name applies only in that view. When you create other
view descriptors, the SAS variable names are derived from the access descriptor.

� If you specify the YES value in the ASSIGN statement, you can use the RENAME
statement to change SAS variable names only while creating an access descriptor.
Remember that SAS variable names and formats that are saved in an access
descriptor are always used when creating view descriptors that are based on the
access descriptor.

For example, to rename the SAS variable names that are associated with the seventh
column and the nine-character FIRSTNAME column in a descriptor, submit the
following statement:

rename
7 birthdy ’firstname’=fname;

Note: When you are creating a view descriptor, the RENAME statement
automatically selects the renamed column for the view. That is, if you rename the SAS
variable associated with a DBMS column, you do not have to issue a SELECT
statement for that column. �

RESET Statement

Resets DBMS columns to their default settings

Applies to: access descriptor or view descriptor

Interacts with: ASSIGN, DROP, FORMAT, RENAME, SELECT



The ACCESS Procedure for Relational Databases � SELECT Statement 321

RESET ALL |<’>column-identifier-1<’> <…<’>column-identifier-n<’>>;

ALL
resets all columns in an access descriptor to their default names and formats and
reselects any dropped columns. ALL deselects all columns in a view descriptor so
that no columns are selected for the view.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, which is the number that represents the column’s place in the access
descriptor. If the column name contains lowercase characters, special characters, or
national characters, enclose the name in quotation marks. For example, to reset the
SAS variable name and format associated with the third column, submit the
following statement:

reset
3;

For access descriptors, the specified column is reset to its default name and format
settings. For view descriptors, the specified column is no longer selected for the view.

Details
The RESET statement resets column attributes to their default values. This

statement has different effects on access and view descriptors.
For access descriptors, the RESET statement resets the specified column names to

the default names that are generated by the ACCESS procedure. The RESET
statement also changes the current SAS variable format to the default SAS format. Any
previously-dropped columns that are specified in the RESET statement become
available.

Note: When creating an access descriptor, if you omit the ASSIGN statement or set
it to NO, the default SAS variable names are blanks. If you set ASSIGN=YES, default
names are the first eight characters of each DBMS column name. �

For view descriptors, the RESET statement clears (deselects) any columns that were
included in the SELECT statement. When you create a view descriptor that is based on
an access descriptor that is created without an ASSIGN statement or with
ASSIGN=NO, resetting and then reselecting (within the same procedure execution) a
SAS variable changes the SAS variable names and formats to their default values.
When you create a view descriptor that is based on an access descriptor created with
ASSIGN=YES, the RESET statement does not have this effect.

SELECT Statement

Selects DBMS columns for the view descriptor

Applies to: view descriptor

Interacts with: RESET

SELECT ALL |<’>column-identifier-1<’> <…<’>column-identifier-n <’>>;



322 SUBSET Statement � Appendix 1

ALL
includes in the view descriptor all the columns that were defined in the access
descriptor and that were not dropped.

column-identifier
can be either the DBMS column name or the positional equivalent from the LIST
statement, The positional equivalent is the number that represents the where the
column is located in the access descriptor on which the view is based. For example,
to select the first three columns, submit the following statement:

select 1 2 3;

If the column name contains lowercase characters, special characters, or national
characters, enclose the name in quotation marks.

Details
The SELECT statement is required. The SELECT statement specifies which DBMS

columns in an access descriptor to include in a view descriptor.
SELECT statements are cumulative within a view creation. That is, if you submit

the following two SELECT statements, columns 1, 5, and 6 are selected:

select 1;
select 5 6;

To clear your current selections when creating a view descriptor, use the RESET ALL
statement.

SUBSET Statement

Adds or modifies selection criteria for a view descriptor

Applies to: view descriptor

SUBSET selection-criteria;

selection-criteria
one or more DBMS-specific SQL expressions that are accepted by your DBMS, such
as WHERE, ORDER BY, HAVING, and GROUP BY. Use DBMS column names, not
SAS variable names, in your selection criteria.

Details
You can use the SUBSET statement to specify selection criteria when you create a

view descriptor. This statement is optional; if you omit it, the view retrieves all the
data (that is, all the rows) in the DBMS table.

For example, for a view descriptor that retrieves rows from a DBMS table, you could
submit the following SUBSET statement:

subset where firstorder is not null;



The ACCESS Procedure for Relational Databases � UNIQUE Statement 323

If you have multiple selection criteria, enter them all in one SUBSET statement, as
in the following example:

subset where firstorder is not null
and country = ’USA’
order by country;

Unlike other ACCESS procedure statements, the SUBSET statement is
ccase-sensitive. The SQL statement is sent to the DBMS exactly as you type it.
Therefore, you must use the correct case for any DBMS object names. See the
SAS/ACCESS documentation for your DBMS for details.

SAS does not check the SUBSET statement for errors. The statement is verified only
when the view descriptor is used in a SAS program.

If you specify more than one SUBSET statement per view descriptor, the last
SUBSET overwrites the earlier SUBSETs. To delete the selection criteria, submit a
SUBSET statement without any arguments.

TABLE= Statement

Identifies the DBMS table on which the access descriptor is based

Applies to: access descriptor

TABLE= <’>table-name<’>;

table-name
a valid DBMS table name. If it contains lowercase characters, special characters, or
national characters, you must enclose it in quotation marks. See the SAS/ACCESS
documentation for your DBMS for details on the TABLE= statement.

Details
This statement is required with the CREATE statement and optional with the

UPDATE statement.

UNIQUE Statement

Generates SAS variable names based on DBMS column names

Applies to: view descriptor

Interacts with: ASSIGN

UNIQUE <=> YES | NO | Y | N;



324 UPDATE Statement � Appendix 1

YES
causes the SAS/ACCESS interface to append numbers to any duplicate SAS variable
names, thus making each variable name unique.

NO
causes the SAS/ACCESS interface to continue to allow duplicate SAS variable names
to exist. You must resolve these duplicate names before saving (and thereby creating)
the view descriptor.

Details
The UNIQUE statement specifies whether the SAS/ACCESS interface should

generate unique SAS variable names for DBMS columns for which SAS variable names
have not been entered.

The UNIQUE statement is affected by whether you specified the ASSIGN statement
when you created the access descriptor on which the view is based:

� If you specified the ASSIGN=YES statement, you cannot specify UNIQUE when
creating a view descriptor. YES causes SAS to generate unique names, so UNIQUE
is not necessary.

� If you omitted the ASSIGN statement or specified ASSIGN=NO, you must resolve
any duplicate SAS variable names in the view descriptor. You can use UNIQUE to
generate unique names automatically, or you can use the RENAME statement to
resolve duplicate names yourself. See “RENAME Statement” on page 319 for
information.

If duplicate SAS variable names exist in the access descriptor on which you are
creating a view descriptor, you can specify UNIQUE to resolve the duplication.

Note: It is recommended that you use the UNIQUE statement and specify
UNIQUE=YES. If you omit the UNIQUE statement or specify UNIQUE=NO and SAS
encounters duplicate SAS variable names in a view descriptor, your job fails. �

The equal sign (=) is optional in the UNIQUE statement.

UPDATE Statement

Updates a SAS/ACCESS descriptor file

Applies to: access descriptor or view descriptor

UPDATE libref.member-name.ACCESS | VIEW <password-option>;

libref.member-name
identifies the libref of the SAS library where you want to store the descriptor and
identifies the descriptor name.

ACCESS
specifies an access descriptor.

VIEW
specifies a view descriptor.



The ACCESS Procedure for Relational Databases � Access Descriptors 325

password-option
specifies a password.

Details
The UPDATE statement identifies an existing access descriptor or view descriptor

that you want to update. UPDATE is normally used to update database connection
information, such as user IDs and passwords. If your descriptor requires many changes,
it might be easier to use the CREATE statement to overwrite the old descriptor with a
new one.

Note: Altering a DBMS table might invalidate descriptor files that are based on the
DBMS table, or it might cause these files to be out of date. If you re-create a table, add
a new column to a table, or delete an existing column from a table, use the UPDATE
statement to modify your descriptors so that they use the new information. �

Rules that apply to the CREATE statement also apply to the UPDATE statement.
For example, the SUBSET statement is valid only for updating view descriptors.

Note: The following statements are not supported when using the UPDATE
statement: ASSIGN, RESET, SELECT, and UNIQUE. �

See Table A1.1 on page 312 for the appropriate sequence of statements for updating
descriptors.

Using Descriptors with the ACCESS Procedure

What Are Descriptors?
Descriptors work with the ACCESS procedure by providing information about DBMS

objects to SAS, enabling you to access and update DBMS data from within a SAS
session or program.

There are two types of descriptors, access descriptors and view descriptors. Access
descriptors provide SAS with information about the structure and attributes of a DBMS
table or view. An access descriptor, in turn, is used to create one or more view
descriptors, or SAS data views, of the DBMS data.

Access Descriptors
Typically, each DBMS table or view has a single access descriptor that provides

connection information, data type information, and names for databases, tables, and
columns.

You use an access descriptor to create one or more view descriptors. When creating a
view descriptor, you select the columns and specify criteria for the rows you want to
retrieve. The figure below illustrates the descriptor creation process. Note that an
access descriptor, which contains the metadata of the DBMS table, must be created
before view descriptors can be created.



326 View Descriptors � Appendix 1

Figure 14.1 Creating an Access Descriptor and View Descriptors for a DBMS Table

DBMS
Table or View

Access
Descriptor File

View Descriptor Files

. . .

View Descriptors
You use a view descriptor in a SAS program much as you would any SAS data set.

For example, you can specify a view descriptor in the DATA= statement of a SAS
procedure or in the SET statement of a DATA step.

You can also use a view descriptor to copy DBMS data into a SAS data file, which is
called extracting the data. When you need to use DBMS data in several procedures or
DATA steps, you might use fewer resources by extracting the data into a SAS data file
instead of repeatedly accessing the data directly.

Note: The SAS/ACCESS interface view engine usually tries to pass WHERE
conditions to the DBMS for processing. In most cases it is more efficient for a DBMS to
process WHERE conditions than for SAS to do the processing. �

Accessing Data Sets and Descriptors
SAS let you control access to SAS data sets and access descriptors by associating one

or more SAS passwords with them. When you create an access descriptor, the
connection information that you provide is stored in the access descriptor and in any
view descriptors based on that access descriptor. The password is stored in an
encrypted form. When these descriptors are accessed, the connection information that
was stored is also used to access the DBMS table or view. To ensure data security, you
might want to change the protection on the descriptors to prevent others from seeing
the connection information stored in the descriptors.

When you create or update view descriptors, you can use a SAS data set option after
the ACCDESC= option to specify the access descriptor password, if one exists. In this



The ACCESS Procedure for Relational Databases � Example 1: Updating an Access Descriptor 327

case, you are not assigning a password to the view descriptor that is being created or
updated. Instead, using the password grants you permission to use the access
descriptor to create or update the view descriptor. Here is an example:

proc access dbms=sybase accdesc=adlib.customer
(alter=rouge);

create vlib.customer.view;
select all;

run;

By specifying the ALTER level of password, you can read the AdLib.Customer access
descriptor and create the Vlib.Customer view descriptor.

Examples of Using the ACCESS Procedure

Example 1: Updating an Access Descriptor

The following example updates an access descriptor AdLib.Employ on the Oracle
table Employees. The original access descriptor includes all of the columns in the table.
The updated access descriptor omits the Salary and BirthDate columns.

proc access dbms=oracle ad=adlaib.employ;

/* update access descriptor */

update adlib.employ.access;
drop salary birthdate;
list all;

run;

You can use the LIST statement to write all variables to the SAS log so that you can see
the complete access descriptor before you update it.



328 Example 2: Creating a View Descriptor � Appendix 1

Example 2: Creating a View Descriptor

The following example re-creates a view descriptor, VLIB.EMP1204, which is based
on an access descriptor, ADLIB.EMPLOY, which was previously updated.

proc access dbms=oracle;

/* re-create view descriptor */

create vlib.emp1204.view;
select empid hiredate dept jobcode gender

lastname firstname middlename phone;
format empid 6.

jobcode 5.
hiredate datetime9.;

subset where jobcode=1204;
run;

Because SELECT and RESET are not supported when UPDATE is used, the view
descriptor Vlib.Emp1204 must be re-created to omit the Salary and BirthDate columns.



329

A P P E N D I X

2
The DBLOAD Procedure for
Relational Databases

Overview of the DBLOAD Procedure for Relational Databases 329
Sending Data from SAS to a DBMS 329

Properties of the DBLOAD Procedure 330

About DBLOAD Procedure Statements 330

Procedure Syntax 331

PROC DBLOAD Statement 332
Database Connection Statements 333

ACCDESC= Statement 333

COMMIT= Statement 334

DELETE Statement 334

ERRLIMIT= Statement 334

LABEL Statement 335
LIMIT= Statement 335

LIST Statement 336

LOAD Statement 336

NULLS Statement 337

QUIT Statement 338
RENAME Statement 338

RESET Statement 339

SQL Statement 340

TABLE= Statement 340

TYPE Statement 341
WHERE Statement 341

Example of Using the DBLOAD Procedure 342

Example 1: Appending a Data Set to a DBMS Table 342

Overview of the DBLOAD Procedure for Relational Databases

Sending Data from SAS to a DBMS
The DBLOAD procedure is still supported for the database systems and environments

on which it was available in Version 6. However, it is no longer the recommended
method for sending data from SAS to a DBMS. It is recommended that you access your
DBMS data more directly, using the LIBNAME statement or the Pass-Through Facility.



330 Properties of the DBLOAD Procedure � Appendix 2

Note: Not all SAS/ACCESS interfaces support this feature. See Chapter 8, “SAS/
ACCESS Features by Host,” on page 65 to determine whether this feature is available
in your environment. �

Properties of the DBLOAD Procedure
This section provides general reference information for the DBLOAD procedure; see

the SAS/ACCESS documentation for your DBMS for DBMS-specific details.
The DBLOAD procedure, along with the ACCESS procedure and an interface view

engine, creates an interface between SAS and data in other vendors’ databases.
The DBLOAD procedure enables you to create and load a DBMS table, append rows

to an existing table, and submit non-query DBMS-specific SQL statements to the DBMS
for processing. The procedure constructs DBMS-specific SQL statements to create and
load, or append, to a DBMS table by using one of the following:

� a SAS data file
� an SQL view or DATA step view
� a view descriptor that was created with the SAS/ACCESS interface to your DBMS

or with another SAS/ACCESS interface product
� another DBMS table referenced by a SAS libref that was created with the

SAS/ACCESS LIBNAME statement.

The DBLOAD procedure associates each SAS variable with a DBMS column and
assigns a default name and data type to each column. It also specifies whether each
column accepts NULL values. You can use the default information or change it as
necessary. When you are finished customizing the columns, the procedure creates the
DBMS table and loads or appends the input data.

About DBLOAD Procedure Statements
There are several types of DBLOAD statements:
� Database connection statements are used to connect to your DBMS. See the

SAS/ACCESS documentation for your DBMS for details.
� Creating and loading statements are LOAD and RUN.
� Table and editing statements are used to specify how a table is populated.

The following table summarizes the PROC DBLOAD options and statements
required to accomplish common tasks.



The DBLOAD Procedure for Relational Databases � Procedure Syntax 331

Table A2.1 Statement Sequence for Accomplishing Common Tasks with the DBLOAD Procedure

To do this... Use these options and statements

Create and load a DBMS table PROC DBLOAD
statement-options;
database-connection-options;

TABLE= <’>table-name<’>;
LOAD;
RUN;

Submit a dynamic, non-query DBMS-SQL
statement to DBMS (without creating a
table)

PROC DBLOAD
statement-options;
database-connection-options;

SQL DBMS-specific-SQL-statements;
RUN;

Note: LOAD must appear before RUN to create and load a table or append data to a
table. �

Procedure Syntax
The general syntax for the DBLOAD procedure is presented here; see the

SAS/ACCESS documentation for your DBMS for DBMS-specific details.

PROC DBLOAD <options>;

database connection statements;

TABLE= <’>table-name<’>;

ACCDESC= <libref.>access-descriptor;

COMMIT= commit-frequency;

DELETE variable-identifier-1
<…variable-identifier-n>;

ERRLIMIT= error-limit;

LABEL;

LIMIT= load-limit;

LIST <ALL | COLUMN | variable-identifier>;

NULLS variable-identifier-1 = Y | N
<…variable-identifier-n = Y | N>;

QUIT;

RENAME variable-identifier-1 = <’>column-name-1< ’>
<…variable-identifier-n = <’>column-name-n<’>>;

RESET ALL | variable-identifier-1 <…variable-identifier-n>;

SQL DBMS-specific-SQL-statement;

TYPE variable-identifier-1 = ’column-type-1’ <…variable-identifier-n = ’column-type-n’>;



332 PROC DBLOAD Statement � Appendix 2

WHERE SAS-where-expression;

LOAD;

RUN;

PROC DBLOAD Statement

PROC DBLOAD <options>;

Options

DBMS=database-management-system
specifies which database management system you want to access. This DBMS-specific
option is required. See the SAS/ACCESS documentation for your DBMS.

DATA=<libref.>SAS-data-set
specifies the input data set. You can retrieve input data from a SAS data file, an SQL
view, a DATA step view, a SAS/ACCESS view descriptor, or another DBMS table to
which a SAS/ACCESS libref points. If the SAS data set is permanent, you must use
its two-level name, libref.SAS-data-set. If you omit the DATA= option, the default is
the last SAS data set that was created.

APPEND
appends data to an existing DBMS table that you identify by using the TABLE=
statement. When you specify APPEND, the input data specified with the DATA=
option is inserted into the existing DBMS table. Your input data can be in the form
of a SAS data set, SQL view, or SAS/ACCESS view (view descriptor).

CAUTION:
When you use APPEND, you must ensure that your input data corresponds exactly to the
columns in the DBMS table. If your input data does not include values for all columns
in the DBMS table, you might corrupt your DBMS table by inserting data into the wrong
columns. Use the COMMIT, ERRLIMIT, and LIMIT statements to help safeguard against
data corruption. Use the DELETE and RENAME statements to drop and rename SAS input
variables that do not have corresponding DBMS columns. �

All PROC DBLOAD statements and options can be used with APPEND, except for
the NULLS and TYPE statements, which have no effect when used with APPEND.
The LOAD statement is required.



The DBLOAD Procedure for Relational Databases � ACCDESC= Statement 333

The following example appends new employee data from the SAS data set
NEWEMP to the DBMS table EMPLOYEES. The COMMIT statement causes a
DBMS commit to be issued after every 100 rows are inserted. The ERRLIMIT
statement causes processing to stop after five errors occur.

proc dbload dbms=oracle data=newemp append;
user=testuser;
password=testpass;
path=’myorapath’;
table=employees;
commit=100;
errlimit=5;
load;

run;

Note: By omitting the APPEND option from the DBLOAD statement, you can use
the PROC DBLOAD SQL statements to create a DBMS table and append to it in the
same PROC DBLOAD step. �

Database Connection Statements

Provide DBMS connection information

database-connection-statements

These statements are used to connect to your DBMS and vary depending on which
SAS/ACCESS interface you are using. See the documentation for your SAS/ACCESS
interface for details. Examples include USER=, PASSWORD=, and DATABASE=.

ACCDESC= Statement

Creates an access descriptor based on the new DBMS table

ACCDESC=< libref.>access-descriptor;

Details
The ACCDESC= statement creates an access descriptor based on the DBMS table

that you are creating and loading. If you specify ACCDESC=, the access descriptor is
automatically created after the new table is created and loaded. You must specify an
access descriptor if it does not already exist.



334 COMMIT= Statement � Appendix 2

COMMIT= Statement
Issues a commit or saves rows after a specified number of inserts

Default: 1000

COMMIT=commit-frequency;

Details
The COMMIT= statement issues a commit (that is, generates a DBMS-specific SQL

COMMIT statement) after the specified number of rows has been inserted.
Using this statement might improve performance by releasing DBMS resources each

time the specified number of rows has been inserted.
If you omit the COMMIT= statement, a commit is issued (or a group of rows is saved)

after each 1,000 rows are inserted and after the last row is inserted.
The commit-frequency argument must be a non-negative integer.

DELETE Statement
Does not load specified variables into the new table

DELETE variable-identifier-1 <…variable-identifier-n>;

Details
The DELETE statement drops the specified SAS variables before the DBMS table is

created. The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to drop
the third variable, submit the following statement:

delete 3;

When you drop a variable, the positional equivalents of the variables do not change.
For example, if you drop the second variable, the third variable is still referenced by the
number 3, not 2. If you drop more than one variable, separate the identifiers with
spaces, not commas.

ERRLIMIT= Statement
Stops the loading of data after a specified number of errors

Default: 100; see the SAS/ACCESS documentation for your DBMS for possible exceptions



The DBLOAD Procedure for Relational Databases � LIMIT= Statement 335

ERRLIMIT=error-limit;

Details
The ERRLIMIT= statement stops the loading of data after the specified number of

DBMS SQL errors has occurred. Errors include observations that fail to be inserted and
commits that fail to execute. The ERRLIMIT= statement defaults to 10 when used with
APPEND.

The error-limit argument must be a non-negative integer. To allow an unlimited
number of DBMS SQL errors to occur, specify ERRLIMIT=0. If the SQL CREATE
TABLE statement that is generated by the procedure fails, the procedure terminates.

LABEL Statement
Causes DBMS column names to default to SAS labels

Interacts with: RESET
Default: DBMS column names default to SAS variable names

LABEL;

Details
The LABEL statement causes the DBMS column names to default to the SAS variable

labels when the new table is created. If a SAS variable has no label, the variable name
is used. If the label is too long to be a valid DBMS column name, the label is truncated.

You must use the RESET statement after the LABEL statement for the LABEL
statement to take effect.

LIMIT= Statement
Limits the number of observations that are loaded

Default: 5000

LIMIT=load-limit;

Details
The LIMIT= statement places a limit on the number of observations that can be

loaded into the new DBMS table. The load-limit argument must be a non-negative
integer. To load all the observations from your input data set, specify LIMIT=0.



336 LIST Statement � Appendix 2

LIST Statement

Lists information about the variables to be loaded

Default: ALL

LIST <ALL | FIELD | variable-identifier>;

Details
The LIST statement lists information about some or all of the SAS variables to be

loaded into the new DBMS table. By default, the list is sent to the SAS log.
The LIST statement can take the following arguments:

ALL
lists information about all variables in the input SAS data set, despite whether
those variables are selected for the load.

FIELD
lists information about only the input SAS variables that are selected for the load.

variable-identifier
lists information about only the specified variable. The variable-identifier
argument can be either the SAS variable name or the positional equivalent. The
positional equivalent is the number that represents the variable’s position in the
data set. For example, if you want to list information for the column associated
with the third SAS variable, submit the following statement:

list 3;

You can specify LIST as many times as you want while creating a DBMS table;
specify LIST before the LOAD statement to see the entire table.

LOAD Statement

Creates and loads the new DBMS table

Valid: in the DBLOAD procedure (required statement for loading or appending data)

LOAD;

Details
The LOAD statement informs the DBLOAD procedure to execute the action that you

request, including loading or appending data. This statement is required to create and
load a new DBMS table or to append data to an existing table.



The DBLOAD Procedure for Relational Databases � NULLS Statement 337

When you create and load a DBMS table, you must place statements or groups of
statements in a certain order after the PROC DBLOAD statement and its options, as
listed in Table A2.1 on page 331 .

Example
The following example creates the SummerTemps table in Oracle based on the

DLib.TempEmps data file.

proc dbload dbms=oracle data=dlib.tempemps;
user=testuser; password=testpass;
path=’testpath’;
table=summertemps;
rename firstnam=firstname

middlena=middlename;
type hiredate ’date’

empid ’number(6,0)’
familyid ’number(6,0)’;

nulls 1=n;
list;
load;

run;

NULLS Statement

Specifies whether DBMS columns accept NULL values

Default: Y

NULLS variable-identifier-1 = Y | N <…variable-identifier-n = Y | N>;

Details
Note: Some DBMSs have three valid values for this statement, Y, N, and D. See the

SAS/ACCESS documentation for your DBMS for further details. �

The NULLS statement specifies whether the DBMS columns that are associated with
the listed input SAS variables allow NULL values. Specify Y to accept NULL values.
Specify N to reject NULL values and to require data in that column.

If you specify N for a numeric column, no observations that contain missing values in
the corresponding SAS variable are loaded into the table. A message is written to the
SAS log, and the current error count increases by one for each observation that is not
loaded. See “ERRLIMIT= Statement” on page 334 for more information.

If a character column contains blanks (the SAS missing value) and you have specified
N for the DBMS column, then blanks are inserted. If you specify Y, NULL values are
inserted.

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want the



338 QUIT Statement � Appendix 2

column that is associated with the third SAS variable to accept NULL values, submit
the following statement:

nulls 3=y;

If you omit the NULLS statement, the DBMS default action occurs. You can list as
many variables as you want in one NULLS statement. If you have previously defined a
column as NULLS=N, you can use the NULLS statement to redefine it to accept NULL
values.

QUIT Statement

Terminates the procedure

Valid: in the DBLOAD procedure (control statement)

QUIT;

Details
The QUIT statement terminates the DBLOAD procedure without further processing.

RENAME Statement

Renames DBMS columns

Interacts with: DELETE, LABEL, RESET

RENAME variable-identifier-1 = <’>column-name-1<’> <…variable-identifier-n =
<’>column-name-n<’>>;

Details
The RENAME statement changes the names of the DBMS columns that are

associated with the listed SAS variables. If you omit the RENAME statement, all the
DBMS column names default to the corresponding SAS variable names (unless the
LABEL statement is specified).

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to rename
the column associated with the third SAS variable, submit the following statement:

rename 3=employeename;



The DBLOAD Procedure for Relational Databases � RESET Statement 339

Note: The column-name argument must be a valid DBMS column name. If the
column name includes lowercase characters, special characters, or national characters,
you must enclose the column name in single or double quotation marks. If no quotation
marks are used, the DBMS column name is created in uppercase. To preserve case, use
the following syntax: rename 3=’"employeename"’ �

The RENAME statement enables you to include variables that you have previously
deleted. For example, suppose you submit the following statements:

delete 3;
rename 3=empname;

The DELETE statement drops the third variable. The RENAME statement includes
the third variable and assigns the name EMPNAME and the default column type to it.

You can list as many variables as you want in one RENAME statement. The
RENAME statement overrides the LABEL statement for columns that are renamed.
COLUMN is an alias for the RENAME statement.

RESET Statement

Resets column names and data types to their default values

Interacts with: DELETE, LABEL, RENAME, TYPE

RESET ALL | variable-identifier-1 <…variable-identifier-n>;

Details
The RESET statement resets columns that are associated with the listed SAS

variables to default values for the DBMS column name, column data type, and ability to
accept NULL values. If you specify ALL, all columns are reset to their default values,
and any dropped columns are restored with their default values. Here are the default
values:

column name
defaults to the SAS variable name, or to the SAS variable label (if you have used
the LABEL statement).

column type
is generated from the SAS variable format.

nulls
uses the DBMS default value.

The variable-identifier argument can be either the SAS variable name or the
positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to reset
the column associated with the third SAS variable, submit the following statement:

reset 3;

You must use the RESET statement after the LABEL statement for the LABEL
statement to take effect.



340 SQL Statement � Appendix 2

SQL Statement

Submits a DBMS-specific SQL statement to the DBMS

SQL DBMS-specific-SQL-statement;

Details
The SQL statement submits a dynamic, non-query, DBMS-specific SQL statement to

the DBMS. You can use the DBLOAD statement to submit these DBMS-specific SQL
statements despite whether you create and load a DBMS table.

You must enter the keyword SQL before each DBMS-specific SQL statement that you
submit. The SQL-statement argument can be any valid dynamic DBMS-specific SQL
statement except the SELECT statement. However, you can enter a SELECT statement
as a substatement within another statement, such as in a CREATE VIEW statement.
You must use DBMS-specific SQL object names and syntax in the DBLOAD SQL
statement.

You cannot create a DBMS table and reference it in your DBMS-specific SQL
statements within the same PROC DBLOAD step. The new table is not created until
the RUN statement is processed.

To submit dynamic, non-query DBMS-specific SQL statements to the DBMS without
creating a DBMS table, you use the DBMS= option, any database connection
statements, and the SQL statement.

Example
The following PROC DBLOAD example grants UPDATE privileges to user MARURI

on the DB2 SasDemo.Orders table.

proc dbload dbms=db2;
in sample;
sql grant update on sasdemo.orders to maruri;

run;

TABLE= Statement

Names the DBMS table to be created and loaded

TABLE= <’>DBMS-specific-syntax<’>;

Details
When you create and load or append to a DBMS table, the TABLE= statement is

required. It must follow other database connection statements such as DATABASE= or
USER=. The TABLE= statement specifies the name of the DBMS table to be created
and loaded into a DBMS database. The table name must be a valid table name for the



The DBLOAD Procedure for Relational Databases � WHERE Statement 341

DBMS. (See the SAS/ACCESS documentation for your DBMS for the syntax.) If your
table name contains lowercase characters, special characters, or national characters, it
must be enclosed in quotation marks.

In addition, you must specify a table name that does not already exist. If a table by
that name exists, an error message is written to the SAS log, and the table specified in
this statement is not loaded.

When you are submitting dynamic DBMS-specific SQL statements to the DBMS
without creating and loading a table, do not use this statement.

TYPE Statement

Changes default DBMS data types in the new table

TYPE variable-identifier-1 = ’column-type-1’ <…variable-identifier-n = ’column-type-n’>;

Details
The TYPE statement changes the default DBMS column data types that are

associated with the corresponding SAS variables.
The variable-identifier argument can be either the SAS variable name or the

positional equivalent from the LIST statement. The positional equivalent is the number
that represents the variable’s place in the data set. For example, if you want to change
the data type of the DBMS column associated with the third SAS variable, submit the
following statement:

type 3=’char(17)’;

The argument column-type must be a valid data type for the DBMS and must be
enclosed in quotation marks.

If you omit the TYPE statement, the column data types are generated with default
DBMS data types that are based on the SAS variable formats. You can change as many
data types as you want in one TYPE statement. See the documentation for your
SAS/ACCESS interface for a complete list of the default conversion data types for the
DBLOAD procedure.

WHERE Statement

Loads a subset of data into the new table

WHERE SAS-where-expression;

Details
The WHERE statement causes a subset of observations to be loaded into the new

DBMS table. The SAS-where-expression must be a valid SAS WHERE statement that



342 Example of Using the DBLOAD Procedure � Appendix 2

uses SAS variable names (not DBMS column names) as defined in the input data set.
The following example loads only the observations in which the SAS variable
COUNTRY has the value BRAZIL:

where country=’Brazil’;

For more information about the syntax of the SAS WHERE statement, see SAS
Language Reference: Dictionary.

Example of Using the DBLOAD Procedure

Example 1: Appending a Data Set to a DBMS Table

The following example appends new employee data from the SAS data set NewEmp
to the DBMS table Employees. The COMMIT statement causes a DBMS commit to be
issued after every 100 rows are inserted. The ERRLIMIT statement causes processing
to stop after 10 errors occur.

proc dbload dbms=oracle data=newemp append;
user=testuser;
password=testpass;
path=’myorapath’;
table=employees;
commit=100;
errlimit=10;
load;

run;

Note: By omitting the APPEND option from the DBLOAD statement, you can use
the PROC DBLOAD SQL statements to create a DBMS table and append to it in the
same PROC DBLOAD step. �



343

A P P E N D I X

3
Recommended Reading

Recommended Reading 343

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS Supplement for DB2 under UNIX and PC Hosts
� SAS/ACCESS Supplement for DB2 under z/OS
� SAS/ACCESS Supplement for HP Neoview (SAS/ACCESS for Relational

Databases)
� SAS/ACCESS Supplement for Informix
� SAS/ACCESS Supplement for Microsoft SQL Server
� SAS/ACCESS Supplement for MySQL
� SAS/ACCESS Supplement for Netezza (SAS/ACCESS for Relational Databases)
� SAS/ACCESS Supplement for ODBC
� SAS/ACCESS Supplement for OLE DB
� SAS/ACCESS Supplement for Oracle
� SAS/ACCESS Supplement for Sybase
� SAS/ACCESS Supplement for Teradata
� SAS/ACCESS Interface to PC Files: Reference
� Base SAS Procedures Guide
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.



344



345

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit process.



346 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries. In SAS/ACCESS software,
the default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS may or may not be able to use the
indexes of the DBMS to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indices to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.



Glossary 347

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS data library.

member name
a name that is given to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

Pass-Through Facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The Pass-Through Facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the
CONNECTION TO component. SAS/ACCESS software is required in order to use
the Pass-Through Facility.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.



348 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that whenever a data value in one table is
changed, the appropriate change is also made to any related values in other tables or
in the same table. Referential integrity is also used to ensure that related data is not
deleted or changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.



Glossary 349

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

view descriptor
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.



350



351

Index

A
ACCDESC= option

PROC ACCESS statement 314, 326
ACCDESC= statement

DBLOAD procedure 333
access descriptors

ACCESS procedure with 325
converting into SQL views 299, 300, 304
creating 316, 333
data set and descriptor access 326
identifying DBMS table for 323
listing columns in, with information 318
resetting columns to default settings 321
updating 324, 327

ACCESS= LIBNAME option 79
access methods

relational DBMS data 3
selecting 4

ACCESS procedure, relational databases 313
accessing DBMS data 311
descriptors with 325
examples 327
names and 9
overview 60, 311
syntax 313

accessing DBMS data
ACCESS procedure 311
methods for 3
repeated accessing 33

acquisition error tables 232, 233
aggregate functions

passing to DBMS 38
AIX (RS/6000) 65

Informix 67
Microsoft SQL Server 67
MySQL 68
ODBC 69
Sybase 71
Teradata 72

ALL option
LIST statement 318
PROC CV2VIEW statement 300
RESET statement 321
SELECT statement 322

APPEND option
PROC DBLOAD statement 332

ASSIGN statement
ACCESS procedure 315

AUTHID= data set option 158

AUTHID= LIBNAME option 80
authorization ID 158
autocommit capability 159
AUTOCOMMIT= data set option 159
AUTOCOMMIT= LIBNAME option 80
automatic COMMIT 200
autopartitioning 50

DBSLICE= option 54

B
BL_BADFILE= data set option 159
BL_CODEPAGE= data set option 160
BL_CONTROL= data set option 161
BL_COPY_LOCATION= data set option 162
BL_DATAFILE= data set option 162
BL_DB2CURSOR= data set option 163
BL_DB2DEVT_PERM= data set option 164
BL_DB2DEVT_TEMP= data set option 164
BL_DB2DISC= data set option 165
BL_DB2ERR= data set option 165
BL_DB2IN= data set option 166
BL_DB2LDCT1= data set option 166
BL_DB2LDCT2= data set option 167
BL_DB2LDTEXT= data set option 167
BL_DB2MAP= data set option 168
BL_DB2PRINT= data set option 169
BL_DB2PRNLOG= data set option 169
BL_DB2REC= data set option 170
BL_DB2RECSP= data set option 170
BL_DB2RSTRT= data set option 171
BL_DB2SPC_PERM= data set option 171
BL_DB2SPC_TEMP= data set option 172
BL_DB2TBLXST= data set option 172
BL_DB2UTID= data set option 173
BL_DELETE_DATAFILE= data set option 173
BL_DIRECT_PATH= data set option 175
BL_DISCARDFILE= data set option 176
BL_INDEXING_MODE= data set option 178
BL_INDEX_OPTIONS= data set option 177
BL_KEEPIDENTITY= data set option 179
BL_KEEPIDENTITY= LIBNAME option 81
BL_KEEPNULLS= data set option 180
BL_KEEPNULLS= LIBNAME option 82
BL_LOAD_METHOD= data set option 181
BL_LOAD_REPLACE= data set option 181
BL_LOG= data set option 182
BL_LOG= LIBNAME option 83
BL_METHOD= data set option 183



352 Index

BL_OPTIONS= data set option 183
BL_OPTIONS= LIBNAME option 83
BL_PARFILE= data set option 185
BL_PRESERVE_BLANKS= data set option 186
BL_RECOVERABLE= data set option 187
BL_REMOTE_FILE= data set option 188
BL_SERVER_DATAFILE= data set option 189
BL_SQLLDR_PATH= data set option 189
BL_SUPPRESS_NULLIF= data set option 190
BL_WARNING_COUNT= data set option 192
buffering bulk rows 193
buffers

reading DBMS data 140
reading rows of DBMS data 256

BUFFERS= data set option 192
bulk loading 183

appending vs. replacing rows 181
codepage for converting character data 160
data file as seen by DB2 server instance 189
data file for 162
DB2 method 183
DB2 SELECT statement 163
file containing SQLLDR control statements 161
filtered out records 176
generic device type for permanent data sets 164
identity column 179
loading rows of data as one unit 194
log file for 182
MultiLoad 238
NULL values in Microsoft SQL Server columns 180
Oracle method 181
rejected records 159
saving copy of loaded data 162
SQL*Loader Index options 177
unit address for permanent data sets 164
warning count 192

bulk rows
buffering for output 193

BULK_BUFFER= data set option 193
BULKLOAD= data set option 194
BULKLOAD= LIBNAME option 84
BYTEINT data type 85

C
case sensitivity 8

DBMS column names 252
CAST= data set option 196
CAST= LIBNAME option 85
CAST_OVERHEAD_MAXPERCENT= data set op-

tion 197
CAST_OVERHEAD_MAXPERCENT= LIBNAME op-

tion 86
CELLPROP= LIBNAME option 87
character data

codepage for converting during bulk load 160
length of 211

checkpoints
interval between 231
restart table 236

codepage 160
column labels

returned by engine 215
column names

preserving 14

columns
limiting retrieval 31
NULL as valid value 212
renaming because of disallowed characters 204

command timeout 198
COMMAND_TIMEOUT= data set option 198
COMMAND_TIMEOUT= LIBNAME option 88
COMMIT, automatic 200
COMMIT= statement

DBLOAD procedure 334
Compaq Tru64

Informix 67
ODBC 69
Oracle 70
Sybase 71

connect exits
customizing 27

CONNECT statement
SQL procedure 287

connection information
protecting 24

CONNECTION= LIBNAME option 89
CONNECTION TO component 293
CONNECTION_GROUP= LIBNAME option 93
CREATE statement

ACCESS procedure 316
SQL procedure 293

CREATE TABLE statement
SQL procedure 202

CREATE TABLE statement (SQL) 62
currency control 26
cursor type 198
CURSOR_TYPE= data set option 198
CURSOR_TYPE= LIBNAME option 95
CV2VIEW procedure 300

examples 304
overview 299
syntax 300

cylinders
LOAD utility 171, 172

D
data buffers

MultiLoad 238
transferring data to Teradata 192, 231

data conversions
overhead limit 197
Teradata DBMS server vs. SAS 196

DATA= option
PROC DBLOAD statement 332

data security 21
privileges 21
protecting connection information 24
SAS security 22
triggers 22

data set options 157
data set tables

updating 153
data sets

appending to DBMS table 342
controlling access to 326
creating DBMS tables 20
extracting DBMS data to 24

data sources
schemas 259



Index 353

DATA step
DBKEY= option with 45

DATA step views 6
data types

DBMS columns 339, 341
overriding SAS defaults 216
specifying 221

database administrator (DBA) 21
database links 209
database tables

large 55
DATASETS procedure

passwords for access descriptors 23
reading Oracle table names 133

DATE data type
casting 85

DB2
appending vs. replacing rows during bulk loading 181
bulk loading data file as seen by server instance 189
saving copy of loaded data 162

DB2 LOAD
base filename and location of temporary files 188

DB2 load utility
index maintenance 178

DB2 LOAD utility
execution mode 167
unique identifier for a given run 173

DB2 SELECT statement 163
DB2 server data file 189
DB2 under UNIX and PC hosts

features 65
DB2 under z/OS

features 66
DBA (database administrator) 21
DBCOMMIT= data set option 200
DBCOMMIT= LIBNAME option 96
DBCONDITION= data set option 201
DBCONINIT= LIBNAME option 97
DBCONTERM= LIBNAME option 99
DBCREATE_TABLE_OPTS= data set option 202
DBCREATE_TABLE_OPTS= LIBNAME option 100
DBCREATE_TABLE_OPTS= option 202
DBFORCE= data set option 203
DBGEN_NAME= data set option 204
DBGEN_NAME= LIBNAME option 100
DBINDEX= data set option 45, 205

passing joins to DBMS 43
replacing missing values 245

DBINDEX= LIBNAME option 101
DBKEY= data set option 43, 207

replacing missing values 245
DBLABEL= data set option 208
DBLIBINIT= LIBNAME option 102
DBLIBTERM= LIBNAME option 103
DBLINK= data set option 209
DBLINK= LIBNAME option 104
DBLOAD procedure, relational databases 331

example 342
how it works 62
names and 10
overview 329
sending data from SAS to DBMS 329
syntax 331

DBMASTER= data set option 210
DBMAX_TEXT= data set option 211
DBMAX_TEXT= LIBNAME option 105

DBMS
assigning libref to remote DBMS 78
passing DISTINCT processing to 42
passing functions to 38
passing functions to, with WHERE clauses 43
passing joins to 38, 40
passing UNION processing to 42
submitting SQL statements to 340

DBMS, SQL statements with
connecting to DBMS 287
disconnecting from 291
sending non-query SQL statements 292
specifying DBMS connection 293

DBMS autocommit capability 159
DBMS bulk-load facility

deleting the data file 173
DBMS columns

basing variable names on column names 324
changing column formats 317
names defaulting to labels 335
naming during output 208
null values accepted in 337
preserving names 251
renaming 11, 338, 339
resetting to default settings 321
selecting 322

DBMS connections
controlling 25

DBMS data
access methods 3
accessing/extracting 311
extracting to data set 24
pushing updates 36
renaming 10
repeatedly accessing 33
SAS views of 6
sorting 33
subsetting and ordering 201

DBMS data types
changing default 341
resetting to default 339

DBMS engine
codepage for converting character data 160

DBMS objects
naming 12

DBMS= option
PROC ACCESS statement 314
PROC DBLOAD statement 332

DBMS tables
access descriptors based on 333
appending SAS data sets to 342
committing or saving after inserts 334
creating and loading 336, 340
creating with data sets 20
creating with DBMS data 19
dropping variables before creating 334
limiting observations loaded to 335
loading data subsets into 341
naming 340
preserving column names 251
preserving names 15
renaming 10
verifying indexes 205

DBMS variables
renaming 11

DBNULL= data set option 212



354 Index

DBNULLKEYS= data set option 213
DBNULLKEYS= LIBNAME option 106
DBPROMPT= data set option 214
DBPROMPT= LIBNAME option 106
DBSASLABEL= data set option 215
DBSASLABEL= LIBNAME option 108
DBSASTYPE= data set option 216
DBSLICE= data set option 49, 217
DBSLICEPARM= data set option 49, 54, 219
DBSLICEPARM= LIBNAME option 109
DBSRVTP= system option 271, 272
DBTYPE= data set option 221
DECIMAL data type

casting 85
DEFER= LIBNAME option 111
DEGREE= LIBNAME option 112
DELETE statement

DBLOAD procedure 334
passing to empty a table 40
SQL procedure 61, 293

DELETE_MULT_ROWS= LIBNAME option 112
descriptor files

ACCESS procedure with 325
converting into SQL views 300, 304
creating descriptor files 316
defined 325
listing columns in, with information 318
resetting columns to default settings 321
updating 324

DIRECT option
SQL*Loader 175

DIRECT_EXE= LIBNAME option 113
DIRECT_SQL= LIBNAME option 114
disconnect exits

customizing 27
DISCONNECT statement

SQL procedure 291
DISTINCT operator

pass processing to DBMS 42
DQUOTE= option

SQL procedure 11, 17
DROP= data set option

limiting retrieval 32
DROP statement

ACCESS procedure 317
SQL procedure 293

E
ENABLE_BULK= LIBNAME option 116
ERRLIMIT= data set option 223
ERRLIMIT= LIBNAME option 116
ERRLIMIT= statement

DBLOAD procedure 335
error limits with rollbacks 223
error tracking

acquisition error tables 232, 233
EXECUTE statement

SQL procedure 60, 292
extracting DBMS data 24

ACCESS procedure 311

F
FORMAT statement

ACCESS procedure 317

FROM_LIBREF= statement
CV2VIEW procedure 301

FROM_VIEW= statement
CV2VIEW procedure 301

functions
LIBNAME statement and 74
passing to DBMS with WHERE clauses 43

G
GRANT statement

SQL procedure 293
group ID 158

H
heterogeneous joins

pushing to DBMS 36
HP-UX

DB2 under UNIX and PC hosts 65
Informix 67
Microsoft SQL Server 67
MySQL 68
ODBC 69
Oracle 70
Sybase 71
Teradata 72

HP-UX for Itanium Processor Family Architecture
Informix 67
ODBC 69
Sybase 71
Teradata 72

I
identity column 179
IGNORE_READ_ONLY_COLUMNS= data set option 224
IGNORE_READ_ONLY_COLUMNS= LIBNAME op-

tion 117
IN= data set option 226
IN= LIBNAME option 119
indexes 44

checking with the DBKEY= option 45
maintenance, DB2 load utility 178

Informix
features 67

input processing
overriding default SAS data types 216

insert processing
forcing truncation of data 203

INSERT statement
SQL procedure 61, 62, 293

INSERTBUFF= data set option 227
INSERTBUFF= LIBNAME option 120
inserting data

appending data sets to DBMS tables 342
limiting observations loaded 335
loading data subsets into DBMS tables 341
saving DBMS table after inserts 334

INSERT_SQL= data set option 226
INSERT_SQL= LIBNAME option 119
installing SAS/ACCESS 57
INTEGER data type

casting 85
INTERFACE= LIBNAME option 121
isolation levels 264



Index 355

J
joins

determining larger table 210
passing to DBMS 38, 40, 43
processing 59
pushing heterogeneous joins 36

K
KEEP= data set option

limiting retrieval 32
key column for DBMS retrieval 207
KEYSET_SIZE= data set option 228
KEYSET_SIZE= LIBNAME option 122

L
LABEL statement

DBLOAD procedure 335
labels

DBMS column names defaulting to 335
LIBNAME statement, relational databases 58, 73

accessing data from DBMS objects 58
arguments 75
assigning librefs 73, 77
assigning librefs interactively 74
data from a DBMS 76
disassociating librefs 76
functions and 74
options 78
prompting window 78
sorting data 73
SQL views embedded with 76
syntax 75
writing library attributes to log 76

libraries
disassociating librefs 76
writing attributes to log 76

librefs
assigning 77
assigning interactively 74
assigning to remote DBMS 78
disassociating 76

LIMIT= statement
DBLOAD procedure 335

links
database links 209

Linux for Intel Architecture
DB2 under UNIX and PC hosts 65
MySQL 68
ODBC 69
Oracle 70
Sybase 71
Teradata 72

Linux for Itanium-based Systems
DB2 under UNIX and PC hosts 65
Informix 67
Microsoft SQL Server 67
MySQL 68
ODBC 69
Oracle 70
Sybase 71

LIST statement
ACCESS procedure 318
DBLOAD procedure 336

LOAD process
recoverability of 187

LOAD statement
DBLOAD procedure 336

LOAD utility
restarts 171
running against existing tables 172
SYSDISC data set name 165
SYSERR data set name for 165
SYSIN data set name 166
SYSMAP data set name 168
SYSPRINT data set name 169
SYSREC data set name 170
temporary data sets 164

LOCATION= data set option 229
LOCATION= LIBNAME option 123
locking 26, 256, 266

DBMS resources 152
during read isolation 254
during read transactions 138, 255
during update transaction 265
shared locks 230

LOCKTABLE= data set option 230
LOCKTABLE= LIBNAME option 123
LOCKTIME= LIBNAME option 124
LOCKWAIT= LIBNAME option 124
log

SQL statements 273
writing library attributes to 76

log files
for bulk loading 182

LOGDB= LIBNAME option 125

M
macro variables 269
MAX_CONNECTS= LIBNAME option 126
MBUFFSIZE= data set option 231
Microsoft SQL Server

features 67
NULL values during bulk loading 180

missing values 27
replacing character values 245

ML_CHECKPOINT= data set option 231
ML_ERROR1= data set option 232
ML_ERROR2= data set option 233
ML_LOG= data set option 235
ML_RESTART= data set option 236
ML_WORK= data set option 237
MOD function 53
MULTI_DATASCR_OPT= option

LIBNAME statement 43
MULTI_DATASRC_OPT= LIBNAME option 126
MultiLoad

acquisition error tables 232, 233
bulk loading 238
data buffers 238
enabling/disabling 238
examples 243
prefix for temporary table names 235
restart table 236
restarting 239
retries for logging in to Teradata 261, 262
storing intermediate data 237
temporary tables 238
work table 237



356 Index

MULTILOAD= data set option 238
MySQL

features 68

N
name literals 9, 18
names

ACCESS procedure and 9
case sensitivity 8
creating DBMS objects 12
DBLOAD procedure and 10
DBMS columns 338, 339
DBMS tables 340
length of 8
modification 9
options affecting 11
replacing unsupported characters 13
retrieving DBMS data 12
SAS 8
SAS/ACCESS 7
truncation 9

NULL
as valid value when tables are created 212

null values 27
accepted in DBMS columns 337

NULL values
in Microsoft SQL Server columns 180

NULLCHAR= data set option 45, 244
NULLCHARVAL= data set option 45, 245
NULLIF clause

suppressing 190
NULLS statement

DBLOAD procedure 337

O
observations 335
ODBC

features 69
OLE DB

features 70
OpenVMS Alpha 70
optimizing SQL usage 37
Oracle

bulk loading method 181
database links 209
features 70
hints 250

ordering
DBMS data 201

ORHINTS= data set option 250
OR_PARTITION= data set option 246
OR_UPD_NOWHERE= data set option 249
OR_UPD_NOWHERE= LIBNAME option 128
OUT= option

PROC ACCESS statement 314

P
PACKETSIZE= LIBNAME option 129
partitioning

queries for threaded reads 217
Pass-Through Facility 285

advantages of 5
how it works 59

macro variables and 270
relational databases 286
syntax 286

passwords
assigning 22
data set and descriptor access 326

performance
limiting retrieval 31
processing queries, joins, and data functions 59
reducing table read time 47
repeatedly accessing data 33
SAS data files 43
SAS server throughput 31
sorting DBMS data 33
SQL usage 37
temporary table support 34
threaded reads 50

PREFETCH= LIBNAME option 129
PRESERVE_COL_NAMES= data set option 251
PRESERVE_COL_NAMES= LIBNAME option 130
PRESERVE_COL_NAMES= option

SAS/ACCESS LIBNAME statement 11
PRESERVE_TAB_NAMES= LIBNAME option 132
PRESERVE_TAB_NAMES= option

SAS/ACCESS LIBNAME statement 11
privileges

DBMS security 21
prompting window 78
prompts

DBMS connections and 214
pushing heterogeneous joins 36
pushing updates 36

Q
QUALIFIER= data set option 253
QUALIFIER= LIBNAME option 134
QUALIFY_ROWS= LIBNAME option 134
queries

partitioning for threaded reads 217
QUERY_TIMEOUT= data set option 253
QUERY_TIMEOUT= LIBNAME option 135
QUIT statement

ACCESS procedure 319
DBLOAD procedure 338

QUOTE_CHAR= LIBNAME option 136
QUOTED_IDENTIFIER= LIBNAME option 137

R
READBUFF= data set option 256
READBUFF= LIBNAME option 140
READ_ISOLATION_LEVEL= data set option 254
READ_ISOLATION_LEVEL= LIBNAME option 137
READ_LOCK_TYPE= data set option 255
READ_LOCK_TYPE= LIBNAME option 138
READ_MODE_WAIT= data set option 256
READ_MODE_WAIT= LIBNAME option 139
relational databases

data set options for 157
Pass-Through Facility 286

remote DBMS
assigning libref to 78

REMOTE_DBTYPE= LIBNAME option 141
RENAME statement

ACCESS procedure 320



Index 357

DBLOAD procedure 338
renaming

columns, because of disallowed characters 204
DBMS columns 338
DBMS data 10
SAS variables 320

REPLACE= data set option 157
REPLACE= statement

CV2VIEW procedure 301
REREAD_EXPOSURE= LIBNAME option 142
RESET statement

ACCESS procedure 321
DBLOAD procedure 339

restart table 236
retrieving DBMS data

ACCESS procedure 311
return codes

PROC SQL statement 286
REVOKE statement

SQL procedure 293
rollbacks

error limits and 223
row warnings 192
rows

number in single DBMS insert 227
number in single insert operation 120
reading into buffers 256

S
SAS/ACCESS

features 5
interactions with SQL procedure 285
task table 5

SAS/ACCESS engine
buffering bulk rows for output 193

SAS/ACCESS LIBNAME statement
advantages of 4

SAS/ACCESS views 6
SAS data views 6

creating 6
SAS server

increasing throughput 31
SASDATEFMT= data set option 257
SASTRACE= system option 273
SASTRACELOC= system option 49, 53, 281
SAVEAS= statement

CV2VIEW procedure 302
SCHEMA= data set option 259
SCHEMA= LIBNAME option 143
schemas

data security 25
SEGMENT_NAME= data set option 260
SELECT statement

ACCESS procedure 322
SQL procedure 60

SHOW_SYNONYMS= LIBNAME option 145
SLEEP= data set option 261
SMALLINT data type

casting 85
Solaris 2

DB2 under UNIX and PC hosts 65
Informix 67
Microsoft SQL Server 67
MySQL 68
ODBC 69

Oracle 70
Sybase 71
Teradata 72

sorting data 73
data ordering in SAS/ACCESS 54
DBMS data 33
subsetting and ordering DBMS data 201

spool files
UTILLOC= system option with 55

SPOOL= LIBNAME option 145
SQL operations

optimizing 37
SQL procedure

creating DBMS tables 19
interactions with SAS/ACCESS 285
passing functions to DBMS 38
passing joins to DBMS 38

SQL statement
DBLOAD procedure 340

SQL views 6
converting descriptors to 299, 300, 304
embedded LIBNAME statements in 76

SQL_FUNCTIONS= LIBNAME option 146
SQLLDR control statements

file containing 161
SQLLDR executable file

location specification 189
SQL*Loader

blank spaces in CHAR/VARCHAR2 columns 186
command line options 185
DIRECT option 175
discarded rows file 176
index options for bulk loading 177

SQLXMSG macro 270
SQLXRC macro 270
STRINGDATES= LIBNAME option 149
SUBMIT statement

CV2VIEW procedure 303
SUBSET statement

ACCESS procedure 322
subsetting

DBMS data 201
SUPERQ macro 270
Sybase

database links 209
features 71

SYSDBMSG macro variable 269
SYSDBRC macro variable 269
SYSDISC data set name 165
SYSIN data set name 166
SYSMAP data set name 168
SYSPRINT data set name 169
SYSPRINT output 169
SYSREC data set

number of cylinders 170
SYSREC data set name 170

T
TABLE= statement

ACCESS procedure 323
DBLOAD procedure 340

tables
emptying with DELETE statement 40
temporary tables 34



358 Index

temporary tables 34
acquisition error tables 232, 233
MultiLoad 238
prefix for names of 235
restart table 236
work table 237

TENACITY= data set option 262
Teradata

buffers and transferring data to 192, 231
features 72
locking DBMS resources 152
MultiLoad retries for logging in to 261, 262

threaded reads 47, 281
controlling scope of 219
data set options 49
partitioning queries for 217
scope 49
trace information 50
two-pass processing 54

TO_LIBREF= statement
CV2VIEW procedure 303

TO_VIEW= statement
CV2VIEW procedure 303

TRACE= LIBNAME option 149
TRACEFILE= LIBNAME option 150
tracking errors

acquisition error tables 232, 233
transaction control 26
TRAP151= data set option 263
triggers 22
truncation

forcing during insert processing 203
two-pass processing

threaded reads 54
TYPE statement

DBLOAD procedure 341
CV2VIEW procedure 304

U
UNION operator

pass processing to DBMS 42
UNIQUE statement

ACCESS procedure 324
UPDATE statement

ACCESS procedure 324
SQL procedure 61, 293

UPDATEBUFF= data set option 155, 268
UPDATEBUFF= LIBNAME option 155
UPDATE_ISOLATION_LEVEL= data set option 264
UPDATE_ISOLATION_LEVEL= LIBNAME option 151
UPDATE_LOCK_TYPE= data set option 265
UPDATE_LOCK_TYPE= LIBNAME option 151
UPDATE_MODE_WAIT= data set option 266
UPDATE_MODE_WAIT= LIBNAME option 152
UPDATE_MULT_ROWS= LIBNAME option 153
updates

pushing 36
UPDATE_SQL= data set option 267
UPDATE_SQL= LIBNAME option 154
updating

access descriptors 324, 327
method for updating rows 267
non-updatable columns 263
reading data 61

specifying number of rows 268
USE_ODBC_CL= LIBNAME option 155
user IDs 158
UTILCONN_TRANSIENT= LIBNAME option 156
UTILLOC= system option 55

V
VALIDVARNAME= system option 131, 282

naming and 12
variable labels

as DBMS column names 208
variable names

as DBMS column names 208
valid names 282

variable names and formats 282
basing on DBMS column names 324
changing from default 317
generating 315
modifying variable names 320

variables
dropping before creating a table 334
listing information about, before loading 336
macro variables 269

view descriptors
ACCESS procedure with 325
converting into SQL views 299, 300, 304
creating 316, 328
dropping columns to make unselectable 317
listing columns in, with information 318
resetting columns to default settings 321
selecting DBMS columns 322
selection criteria, adding or modifying 322
updating 324

VIEWDESC= option
PROC ACCESS statement 314

views
data security 25

W
WHERE clause

NULL values and format of 213
WHERE clauses

partitioning queries for threaded reads 217
passing functions to DBMS with 43

WHERE statement
DBLOAD procedure 341

Windows NT and 2000
DB2 under UNIX and PC hosts 65
MySQL 68
ODBC 69
OLE DB 70
Oracle 70
Sybase 71
Teradata 72

work table 237

Z
z/OS

DB2 under z/OS 66
Oracle 70
Teradata 72



Your Turn

We want your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.









SAS® Publishing gives you the tools to flourish 
in any environment with SAS!
Whether you are new to the workforce or an experienced professional, you need to distinguish yourself in this rapidly 
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set 
yourself apart.

SAS® Press Series
Need to learn the basics? Struggling with a programming problem? You’ll fi nd the expert answers that you 
need in example-rich books from the SAS Press Series. Written by experienced SAS professionals from 
around the world, these books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every 
continent all turn to the one source for accurate, timely, and reliable information—SAS documentation. We 
currently produce the following types of reference documentation: online help that is built into the software, 
tutorials that are integrated into the product, reference documentation delivered in HTML and PDF—free on 
the Web, and hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Learning Edition 4.1
Get a workplace advantage, perform analytics in less time, and prepare for the SAS Base Programming 
exam and SAS Advanced Programming exam with SAS® Learning Edition 4.1. This inexpensive, intuitive 
personal learning version of SAS includes Base SAS® 9.1.3, SAS/STAT®, SAS/GRAPH®, SAS/QC®, SAS/ETS®, 
and SAS® Enterprise Guide® 4.1. Whether you are a professor, student, or business professional, this is a 
great way to learn SAS.

s u p p o r t . s a s . c o m / L E

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. 
Other brand and product names are trademarks of their respective companies. © 2007 SAS Institute Inc. All rights reserved. 428713_1US.0307




	Table of Contents
	What’s New
	Overview
	All Supported SAS/ACCESS Interfaces to Relational Databases
	SAS/ACCESS Interface to DB2 under UNIX and PC Hosts
	SAS/ACCESS Interface to DB2 under z/OS
	SAS/ACCESS Interface to HP Neoview
	SAS/ACCESS Interface to Informix
	SAS/ACCESS Interface to Microsoft SQL Server
	SAS/ACCESS Interface to MySQL
	SAS/ACCESS Interface to Netezza
	SAS/ACCESS Interface to ODBC
	SAS/ACCESS Interface to OLE DB
	SAS/ACCESS Interface to Oracle
	SAS/ACCESS Interface to Sybase
	SAS/ACCESS Interface to Teradata
	Documentation Enhancements

	Concepts
	Overview of the SAS/ACCESS Interface to Relational Databases
	About This Document
	Methods for Accessing Relational Database Data
	Selecting a SAS/ACCESS Method
	Methods for Accessing DBMS Tables and Views
	SAS/ACCESS LIBNAME Statement Advantages
	Pass-Through Facility Advantages
	SAS/ACCESS Features for Common Tasks

	SAS Views of DBMS Data

	SAS Names and Support for DBMS Names
	Introduction to SAS/ACCESS Naming
	SAS Naming Conventions
	Length of Name
	Case-sensitivity
	SAS Name Literals

	SAS/ACCESS Default Naming Behaviors
	Modification and Truncation
	ACCESS Procedure
	DBLOAD Procedure

	Renaming DBMS Data
	Renaming SAS/ACCESS Tables
	Renaming SAS/ACCESS Columns
	Renaming SAS/ACCESS Variables

	Options That Affect SAS/ACCESS Naming Behavior
	Naming Behavior When Retrieving DBMS Data
	Naming Behavior When Creating DBMS Objects
	SAS/ACCESS Naming Examples
	Replacing Unsupported Characters
	Preserving Column Names
	Preserving Table Names
	Using DQUOTE=ANSI
	Using Name Literals
	Using DBMS Data to Create a DBMS Table
	Using a SAS Data Set to Create a DBMS Table


	Data Integrity and Security
	Introduction to Data Integrity and Security
	DBMS Security
	Privileges
	Triggers

	SAS Security
	Securing Data
	Assigning SAS Passwords
	Protecting Connection Information
	Extracting DBMS Data to a SAS Data Set
	Defining Views and Schemas
	Controlling DBMS Connections
	Locking, Transactions, and Currency Control
	Customizing DBMS Connect and Disconnect Exits

	Potential Result Set Differences When Processing Null Data

	Performance Considerations
	Increasing Throughput of the SAS Server
	Limiting Retrieval
	Column Selection
	The KEEP= and DROP= Options

	Repeatedly Accessing Data
	Sorting DBMS Data
	Temporary Table Support for SAS/ACCESS
	Overview
	General Temporary Table Use
	Pushing Heterogeneous Joins
	Pushing Updates


	Optimizing Your SQL Usage
	Overview of Optimizing Your SQL Usage
	Passing Functions to the DBMS Using PROC SQL
	Passing Joins to the DBMS
	Passing the DELETE Statement to Empty a Table
	When Passing Joins to the DBMS Will Fail
	Passing DISTINCT and UNION Processing to the DBMS
	Optimizing the Passing of WHERE Clauses to the DBMS
	Passing Functions to the DBMS Using WHERE Clauses

	Using the DBINDEX=, DBKEY=, and MULTI_DATASRC_OPT= Options

	Threaded Reads
	Overview of Threaded Reads in SAS/ACCESS
	Underlying Technology of Threaded Reads
	SAS/ACCESS Interfaces and Threaded Reads
	Scope of Threaded Reads
	Options That Affect Threaded Reads
	Generating Trace Information for Threaded Reads
	Performance Impact of Threaded Reads
	Autopartitioning Techniques in SAS/ACCESS
	Data Ordering in SAS/ACCESS
	Two-Pass Processing for SAS Threaded Applications
	When Threaded Reads Will Not Occur
	Summary of Threaded Reads

	How SAS/ACCESS Works
	Introduction to How SAS/ACCESS Works
	Installation Requirements
	SAS/ACCESS Interfaces

	How the SAS/ACCESS LIBNAME Statement Works
	Accessing Data From a DBMS Object
	Processing Queries, Joins, and Data Functions

	How the Pass-Through Facility Works
	How the ACCESS Procedure Works
	Overview of the ACCESS Procedure
	Reading Data
	Updating Data

	How the DBLOAD Procedure Works

	General Reference
	SAS/ACCESS Features by Host
	Introduction
	SAS/ACCESS Interface to DB2 under UNIX and PC Hosts: Supported
	Features
	SAS/ACCESS Interface to DB2 under z/OS: Supported Features
	SAS/ACCESS Interface to HP Neoview: Supported Features
	SAS/ACCESS Interface to Informix: Supported Features
	SAS/ACCESS Interface to Microsoft SQL Server: Supported Features
	SAS/ACCESS Interface to MySQL: Supported Features
	SAS/ACCESS Interface to Netezza: Supported Features
	SAS/ACCESS Interface to ODBC: Supported Features
	SAS/ACCESS Interface to OLE DB: Supported Features
	SAS/ACCESS Interface to Oracle: Supported Features
	SAS/ACCESS Interface to Sybase: Supported Features
	SAS/ACCESS Interface to Teradata: Supported Features

	The LIBNAME Statement for Relational Databases
	Overview of the LIBNAME Statement for Relational Databases
	Assigning Librefs
	Sorting Data
	Using SAS Functions

	Assigning a Libref Interactively
	LIBNAME Options for Relational Databases

	Data Set Options for Relational Databases
	Overview of Data Set Options for Relational Databases

	Macro Variables and System Options for Relational Databases
	Introduction to Macro Variables and System Options for Relational Databases
	Macro Variables for Relational Databases
	System Options for Relational Databases

	The Pass-Through Facility for Relational Databases
	Overview of the SQL Procedure’s Interactions with SAS/ACCESS
	Overview of the Pass-Through Facility

	Syntax for the Pass-Through Facility for Relational Databases
	Return Codes


	Converting SAS/ACCESS Descriptors to PROC SQL Views
	The CV2VIEW Procedure
	Overview of the CV2VIEW Procedure
	Procedure Syntax
	CV2VIEW Procedure Examples

	Appendixes
	The ACCESS Procedure for Relational Databases
	Overview of the ACCESS Procedure for Relational Databases
	Accessing DBMS Data
	About ACCESS Procedure Statements

	Procedure Syntax
	Using Descriptors with the ACCESS Procedure
	What Are Descriptors?
	Access Descriptors
	View Descriptors
	Accessing Data Sets and Descriptors

	Examples of Using the ACCESS Procedure

	The DBLOAD Procedure for Relational Databases
	Overview of the DBLOAD Procedure for Relational Databases
	Sending Data from SAS to a DBMS
	Properties of the DBLOAD Procedure
	About DBLOAD Procedure Statements

	Procedure Syntax
	Example of Using the DBLOAD Procedure

	Recommended Reading
	Recommended Reading

	Glossary
	Index



