
SAS/ACCESS® 9.1.3
Supplement for Oracle
SAS/ACCESS for Relational Databases

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2005.
SAS/ACCESS ® 9.1.3 Supplement for Oracle (SAS/ACCESS for Relational Databases).
Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1.3 Supplement for Oracle (SAS/ACCESS for Relational
Databases)
Copyright © 2005, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-803-7
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, June 2005
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � SAS/ACCESS for Oracle 1
Introduction to the SAS/ACCESS Interface to Oracle 2

LIBNAME Statement Specifics for Oracle 2

Data Set Options for Oracle 4

Pass-Through Facility Specifics for Oracle 6

Autopartitioning Scheme for Oracle 8

Temporary Table Support for Oracle 10

ACCESS Procedure Specifics for Oracle 11

DBLOAD Procedure Specifics for Oracle 13

Maximizing Oracle Performance 15

Passing SAS Functions to Oracle 15

Passing Joins to Oracle 16

Oracle Bulk Loading 17

Locking in the Oracle Interface 19

Naming Conventions for Oracle 20

Data Types for Oracle Servers 20

Appendix 1 � Recommended Reading 25
Recommended Reading 25

Glossary 27

Index 33

iv

1

C H A P T E R

1
SAS/ACCESS for Oracle

Introduction to the SAS/ACCESS Interface to Oracle 2
LIBNAME Statement Specifics for Oracle 2

Arguments 2

Oracle LIBNAME Statement Examples 4

Data Set Options for Oracle 4

Pass-Through Facility Specifics for Oracle 6
Examples 7

Autopartitioning Scheme for Oracle 8

Overview 8

Partitioned Oracle Tables 8

Non-partitioned Oracle Tables 9

Performance Summary 10
Temporary Table Support for Oracle 10

Establishing a Temporary Table 10

Syntax 11

Terminating a Temporary Table 11

Examples 11
ACCESS Procedure Specifics for Oracle 11

Examples 12

DBLOAD Procedure Specifics for Oracle 13

Examples 14

Maximizing Oracle Performance 15
Passing SAS Functions to Oracle 15

Passing Joins to Oracle 16

Oracle Bulk Loading 17

Oracle Bulk Loading: Interactions with Other Options 17

Oracle Bulk Loading: z/OS Specifics 18

Oracle Bulk Loading: Example 18
Locking in the Oracle Interface 19

Naming Conventions for Oracle 20

Data Types for Oracle Servers 20

Character Data 21

Numeric Data 21
Other Data Types 21

Oracle Null and Default Values 22

LIBNAME Statement Data Conversions 22

ACCESS Procedure Data Conversions 23

DBLOAD Procedure Data Conversions 24

2 Introduction to the SAS/ACCESS Interface to Oracle � Chapter 1

Introduction to the SAS/ACCESS Interface to Oracle
This document includes details only about the SAS/ACCESS Interface to Oracle. It

should be used as a supplement to the main SAS/ACCESS documentation,
SAS/ACCESS for Relational Databases: Reference.

LIBNAME Statement Specifics for Oracle
This section describes the LIBNAME statement as supported in the SAS/ACCESS

interface to Oracle. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The Oracle
specific syntax for the LIBNAME statement is as follows:

LIBNAME libref oracle <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

oracle
is the SAS/ACCESS engine name for the interface to Oracle.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. The connection options for the
interface to Oracle are as follows:

USER=<’>Oracle-user-name<’>
specifies an optional Oracle user name. If the user name contains blanks or
national characters, enclose it in quotation marks. If you omit an Oracle user
name and password, the default Oracle user ID OPS$sysid is used, if it is
enabled. USER= must be used with PASSWORD=.

PASSWORD=<’>Oracle-password<’>
specifies an optional Oracle password that is associated with the Oracle user
name. If you omit PASSWORD=, the password for the default Oracle user ID
OPS$sysid is used, if it is enabled. PASSWORD= must be used with USER=.

PATH=<’>Oracle-database-specification<’>
specifies the Oracle driver, node, and database. Aliases are required if you
are using SQL*Net Version 2.0 or later. In some operating environments, you
can enter the information that is required by the PATH= statement before
invoking SAS.

SAS/ACCESS uses the same Oracle path designation that you use to
connect to Oracle directly. See your database administrator to determine the
databases that have been set up in your operating environment, and to
determine the default values if you do not specify a database. On UNIX
systems, the TWO_TASK environment variable is used, if set. If neither the
PATH= nor the TWO_TASK values have been set, the default value is the
local driver.

If you specify the appropriate system options or environment variables for Oracle,
you can often omit the connection options from your LIBNAME statements. See
your Oracle documentation for details.

SAS/ACCESS for Oracle � Arguments 3

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. The following
table describes LIBNAME options that are supported for Oracle, and presents
default values where applicable. See the section about the SAS/ACCESS
LIBNAME statement in SAS/ACCESS for Relational Databases: Reference for
detailed information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for Oracle

Option Default Value

ACCESS= none

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

DBCOMMIT= 1000 when inserting rows; 0 when updating rows,
deleting rows, or appending rows to an existing
table

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

Use this option only when the object is a TABLE,
not a VIEW. Use DBKEY when you do not know
whether the object is a TABLE.

DBLIBINIT= none

DBLIBTERM= none

DBLINK= the local database

DBMAX_TEXT= 1024

DBNULLKEYS= YES

DBPROMPT= NO

DBSLICEPARM= THREADED_APPS,2

DEFER= NO

DIRECT_EXE= none

DIRECT_SQL= YES

INSERTBUFF= 10

LOCKWAIT= YES

MULTI_DATASRC_OPT= NONE

ORACLE_UPD_NOWHERE= YES

PRESERVE_COL_NAMES= NO

PRESERVE_TAB_NAMES= NO

READBUFF= 250

READ_ISOLATION_LEVEL= see “Locking in the Oracle Interface” on page 19

4 Oracle LIBNAME Statement Examples � Chapter 1

Option Default Value

READ_LOCK_TYPE= NOLOCK

REREAD_EXPOSURE= NO

SCHEMA= SAS accesses objects in the default and public
schemas

SHOW_SYNONYMS= NO

SPOOL= YES

UPDATE_ISOLATION_LEVEL= see “Locking in the Oracle Interface” on page 19

UPDATE_LOCK_TYPE= NOLOCK

UPDATEBUFF= 1

UTILCONN_TRANSIENT= NO

Oracle LIBNAME Statement Examples
In the following example, the connection is made using default settings for the

connection options. If you specify the appropriate system options or environment
variables for Oracle, you can often omit the connection options from your LIBNAME
statements. See your Oracle documentation for details.

libname myoralib oracle;

In the following example, the libref MYDBLIB uses the SAS/ACCESS interface to
Oracle to connect to an Oracle database. The SAS/ACCESS connection options are
USER=, PASSWORD=, and PATH=. PATH= specifies an alias for the database
specification (as required by SQL*Net).

libname mydblib oracle user=testuser password=testpass path=hrdept_002;

proc print data=mydblib.employees;
where dept=’CSR010’;

run;

Data Set Options for Oracle

The following table describes all of the data set options that are supported for the
Oracle interface. Default values are provided where applicable. See the section about
data set options in SAS/ACCESS for Relational Databases: Reference for general
information about these options.

Table 1.2 Data Set Options for Oracle

Option Default Value

BL_BADFILE= creates a file in the current directory or with the
default file specifications

BL_CONTROL= creates a file in the current directory or with the
default file specifications

SAS/ACCESS for Oracle � Data Set Options for Oracle 5

Option Default Value

BL_DATAFILE= creates a file in the current directory or with the
default file specifications

BL_DELETE_DATAFILE= YES

BL_DIRECT_PATH= YES

BL_DISCARDFILE= creates a file in the current directory or with the
default file specifications

BL_INDEX_OPTIONS= the current SQL*Loader Index options with
bulk-loading

BL_LOAD_METHOD= When loading an empty table, the default value is
INSERT; when loading a table that contains data, the
default value is APPEND.

BL_LOG= If there is no pre-existing log file, the default action is
to create a log file in the current directory or the
default file specifications. If there is already a log file,
the Oracle bulk loader reuses the file, replacing the
contents with information from the new load.

BL_OPTIONS= ERRORS=1000000

BL_PRESERVE_BLANKS= NO

BL_RECOVERABLE= YES

BL_SQLLDR_PATH= sqldr

BL_SUPPRESS_NULLIF= NO

BULKLOAD= NO

DBCOMMIT= the current LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= the current LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= the current LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBLINK= the current LIBNAME option setting

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBNULLKEYS= the current LIBNAME option setting

DBPROMPT= the current LIBNAME option setting

DBSASTYPE= see “Data Types for Oracle Servers” on page 20

DBSLICE= none

DBSLICEPARM= THREADED_APPS,2

6 Pass-Through Facility Specifics for Oracle � Chapter 1

Option Default Value

DBTYPE= see “LIBNAME Statement Data Conversions” on page
22

ERRLIMIT= 1

INSERTBUFF= the current LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

OR_PARTITION= an Oracle table partition name

OR_UPD_NOWHERE= the current LIBNAME option setting

ORHINTS= no hints

PRESERVE_COL_NAMES= current LIBNAME option setting

READ_ISOLATION_LEVEL= the current LIBNAME option setting

READ_LOCK_TYPE= the current LIBNAME option setting

READBUFF= the current LIBNAME option setting

SASDATEFORMAT= DATETIME20.0

SCHEMA= the current LIBNAME option setting

UPDATE_ISOLATION_LEVEL= the current LIBNAME option setting

UPDATE_LOCK_TYPE= the current LIBNAME option setting

UPDATEBUFF= the current LIBNAME option setting

Pass-Through Facility Specifics for Oracle
See the section about the Pass-Through Facility in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The Pass-Through Facility specifics for Oracle are as follows:
� The dbms-name is oracle.
� The CONNECT statement is optional. If you omit the CONNECT statement, an

implicit connection is made with your OPS$sysid, if it is enabled. When you omit a
CONNECT statement, an implicit connection is performed when the first
EXECUTE statement or CONNECTION TO component is passed to Oracle. In
this case you must use the default DBMS name oracle.

� The interface to Oracle can connect to multiple databases (both local and remote)
and to multiple user IDs. If you use multiple simultaneous connections, you must
use an alias argument to identify each connection. If you do not specify an alias,
the default alias, oracle, is used.

� The database-connection-arguments for the CONNECT statement are as follows:

USER=<’>Oracle-user-name<’>
specifies an optional Oracle user name. If you specify USER=, you must also
specify PASSWORD=.

PASSWORD= <’>Oracle-password<’>
specifies an optional Oracle password that is associated with the Oracle user
name. If you omit an Oracle password, the default Oracle user ID OPS$sysid
is used, if it is enabled. If you specify PASSWORD=, you must also specify
USER=.

SAS/ACCESS for Oracle � Examples 7

ORAPW= is an alias for this option.

Note: If you do not wish to enter your Oracle password in uncoded text,
see PROC PWENCODE for a method to encode it. �

BUFFSIZE=number-of-rows
specifies the number of rows to retrieve from an Oracle table or view with
each fetch. Using this argument can improve the performance of any query to
Oracle.

By setting the value of the BUFFSIZE= argument in your SAS programs,
you can find the optimal number of rows for a given query on a given table.
The default buffer size is 250 rows per fetch. The limit is 32,767 rows per
fetch, although a practical limit for most applications is less, depending on
the available memory.

PRESERVE_COMMENTS
enables you to pass additional information (called hints) to Oracle for
processing. These hints might direct the Oracle query optimizer to choose the
best processing method based on your hint.

You specify PRESERVE_COMMENTS as an argument in the CONNECT
statement. Then you specify the hints in the CONNECTION TO component’s
Oracle SQL query. The hints are entered as comments in the SQL query and
are passed to and processed by Oracle.

PATH=<’>Oracle-database-specification<’>
specifies the Oracle driver, node, and database. Aliases are required if you
are using SQL*Net Version 2.0 or later. In some operating environments, you
can enter the information that is required by the PATH= statement before
invoking SAS.

SAS/ACCESS uses the same Oracle path designation that you use to
connect to Oracle directly. See your database administrator to determine the
path designations that have been set up in your operating environment, and
to determine the default value if you do not specify a path designation. On
UNIX systems, the TWO_TASK environment variable is used, if set. If
neither PATH= nor TWO_TASK have been set, the default value is the local
driver.

Examples
The following example uses the alias DBCON for the DBMS connection (the

connection alias is optional):

proc sql;
connect to oracle as dbcon

(user=testuser password=testpass buffsize=100
path=’myorapath’);

quit;

The following example connects to Oracle and sends it two EXECUTE statements to
process.

proc sql;
connect to oracle (user=testuser password=testpass);
execute (create view whotookorders as

select ordernum, takenby,
firstname, lastname, phone

from orders, employees
where orders.takenby=employees.empid)

8 Autopartitioning Scheme for Oracle � Chapter 1

by oracle;
execute (grant select on whotookorders

to testuser) by oracle;
disconnect from oracle;

quit;

The following example performs a query, shown in highlighted text, on the Oracle
table CUSTOMERS:

proc sql;
connect to oracle (user=testuser password=testpass);
select *

from connection to oracle
(select * from customers

where customer like ’1%’);
disconnect from oracle;

quit;

In this example, the PRESERVE_COMMENTS argument is specified after the
USER= and PASSWORD= arguments. The Oracle SQL query is enclosed in the
required parentheses. The SQL INDX command identifies the index for the Oracle
query optimizer to use in processing the query. Note that multiple hints are separated
with blanks.

proc sql;
connect to oracle as mycon(user=testuser

password=testpass preserve_comments);
select *

from connection to mycon
(select /* +indx(empid) all_rows */

count(*) from employees);
quit;

Autopartitioning Scheme for Oracle
See the section about threaded reads SAS/ACCESS for Relational Databases:

Reference for general information about this feature.

Note: Threaded reads for the Oracle engine are not supported under MVS (z/OS). �

Overview
In the absence of user specified partitioning from the DBSLICE= option, the

SAS/ACCESS interface to Oracle attempts to use its own partitioning techniques. The
partitioning technique it chooses depends on whether the table is physically partitioned
on the Oracle server.

Partitioned Oracle Tables
If you are dealing with a partitioned Oracle table, it is recommended that you allow

the Oracle engine to partition the table for you. The Oracle engine will gather all of the
partition information needed to do a threaded read on the table.

A partitioned Oracle table is a good candidate for a threaded read, because each of
the partitions in the table can be read in parallel without much contention for disk

SAS/ACCESS for Oracle � Non-partitioned Oracle Tables 9

resources. If the Oracle engine determines that the table is partitioned, it makes the
same number of connections to the server as there are partitions. Each connection
retrieves rows from a single partition.

For example, assume a SALES table was created in Oracle as follows:

CREATE TABLE SALES (acct_no NUMBER(5),
acct_name CHAR(30), amount_of_sale NUMBER(6), qtr_no INTEGER)

PARTITION BY RANGE (qtr_no)
(PARTITION sales1 VALUES LESS THAN (2) TABLESPACE ts0,
PARTITION sales2 VALUES LESS THAN (2) TABLESPACE ts1,
PARTITION sales3 VALUES LESS THAN (2) TABLESPACE ts2,
PARTITION sales4 VALUES LESS THAN (2) TABLESPACE ts3)

Performing a threaded read on this table causes SAS to make four separate
connections to the Oracle server. Each connection reads from each of the partitions.
Turning SASTRACE on shows you the SQL that is generated for each connection:

libname x oracle user=testuser path=oraserver;
data new;
set x.SALES (DBSLICEPARM=ALL);
run;

ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES2)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES3)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES1)
ORACLE: SELECT "ACCT_NO","ACCT_NAME", "AMOUNT_OF_SALE", "QTR_NO" FROM SALES
partition (SALES4)

The number of threads used to read the table in parallel is determined by the second
parameter of the DBSLICEPARM= option. The number of connections made to the
Oracle server for retrieving rows from the table is determined by the number of
partitions on the table.

Non-partitioned Oracle Tables
If the table is not partitioned, and the DBSLICE= option is not specified, Oracle

resorts to the MOD function discussed in the section on threaded reads in
SAS/ACCESS for Relational Databases: Reference. With this technique, the engine
makes N connections, and each connection retrieves rows based on a WHERE clause as
follows:

WHERE ABS(MOD(ModColumn,N))=R

� ModColumn is a column in the table which is of type integer and is not used in
any user specified WHERE clauses. (The engine selects this column. If you do not
think this is the ideal partitioning column, you can use DBSLICE= to override this
default behavior.)

� R varies from 0 to (N-1) for each of the N WHERE clauses.
� N defaults to 2, and N can be overridden with the second parameter in

DBSLICEPARM=.

The Oracle engine selects the ModColumn to use in this technique. Any numeric
column with zero scale value can qualify as the ModColumn. However, if a primary key

10 Performance Summary � Chapter 1

column is present, it is preferred over all others. Generally, values in the primary key
column are in a serial order and will yield an equal number of rows for each connection.

An example illustrates this point:

create table employee (empno number(10) primary key,
empname varchar2(20), hiredate date,
salary number(8,2), gender char(1));

Performing a threaded read on this table causes Oracle to make two separate
connections to the Oracle server. SAS tracing shows the SQL generated for each
connection:

data new;
set x.EMPLOYEE(DBSLICPARM=ALL);
run;
ORACLE: SELECT "EMPNO", "EMPNAME", "HIREDATE", "SALARY", "GENDER"
FROM EMPLOYEE WHERE ABS(MOD("EMPNO",2))=0
ORACLE: SELECT "EMPNO", "EMPNAME", "HIREDATE", "SALARY", "GENDER"
FROM EMPLOYEE WHERE ABS(MOD("EMPNO",2))=1

EMPNO, the primary key, is selected as the MOD column.
The success of MOD depends on the distribution of the values within the selected

ModColumn and the value of N. Ideally, the rows will be distributed evenly among the
threads.

Performance Summary

There are times you might not see an improvement in performance with the MOD
technique. It is possible that the engine might not be able to find a column that
qualifies as a good MOD column. In these situations, you can explicitly specify
DBSLICE= to force a threaded read and improve performance.

It is a good policy to let the engine autopartition and intervene with DBSLICE= only
when necessary.

Temporary Table Support for Oracle

See the section on the temporary table support in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

Establishing a Temporary Table

A temporary table in Oracle persists just like a regular table, but contains either
session specific or transaction specific data. Whether the data is session or transaction
specific is determined by what is specified with the ON COMMIT keyword when you
create the temporary table.

In the SAS context, you must use the LIBNAME option CONNECTION=SHARED in
order for the data in a temporary table to persist over procedure and DATA step
boundaries. Without this option, the temporary table will persist but the data within it
will not.

SAS/ACCESS for Oracle � ACCESS Procedure Specifics for Oracle 11

If you have a SAS data set and you want to join it with an Oracle table to generate a
report, the join normally occurs in SAS. However, using a temporary table you can also
have the join occur on the Oracle server.

Syntax
The syntax to create a temporary table whose data is transaction specific (default) is

as follows:

CREATE GLOBAL TEMPORARY TABLE table name ON COMMIT DELETE
ROWS

The syntax to create a temporary table whose data is session specific is as follows:

CREATE GLOBAL TEMPORARY TABLE table name ON COMMIT PRESERVE
ROWS

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
singe connection.

Examples
In the following example, a temporary table, TEMPTRANS, is created in Oracle to

match the TRANS SAS data set (using the Pass-Through Facility):

proc sql;
connect to oracle (user=scott pw=tiger path=oraclev9);
execute (create global temporary table TEMPTRANS

(empid number, salary number)) by oracle;
quit;

libname ora oracle user=scott pw=tiger path=oracle9 connection=shared;

/* load the data from the TRANS table into the Oracle temporary table */
proc append base=ora.TEMPTRANS set TRANS;
run;

proc sql;
/* do the join on the DBMS server */

select lastname, firstname, salary from ora.EMPLOYEES T1, ora.TEMPTRANS T2
where T1.empno=T2.empno;

quit;

ACCESS Procedure Specifics for Oracle

See the section about the ACCESS procedure in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

12 Examples � Chapter 1

The Oracle interface supports all of the ACCESS procedure statements. The
ACCESS procedure specifics for Oracle are as follows:

� The PROC ACCESS step DBMS= value is Oracle.
� The database-description-statements used by PROC ACCESS are as follows:

USER=<’>Oracle-user-name<’>
specifies an optional Oracle user name. If you omit an Oracle password and
user name, the default Oracle user ID OPS$sysid is used if it is enabled. If
you specify USER=, you must also specify ORAPW=.

ORAPW= <’>Oracle-password<’>
specifies an optional Oracle password that is associated with the Oracle user
name. If you omit ORAPW=, the password for the default Oracle user ID
OPS$sysid is used, if it is enabled. If you specify ORAPW=, you must also
specify USER=.

PATH=<’>Oracle-database-specification<’>
specifies the Oracle driver, node, and database. Aliases are required if you
are using SQL*Net Version 2.0 or later. In some operating environments, you
can enter the information that is required by the PATH= statement before
invoking SAS.

SAS/ACCESS uses the same Oracle path designation that you use to
connect to Oracle directly. See your database administrator to determine the
path designations that have been set up in your operating environment, and
to determine the default value if you do not specify a path designation. On
UNIX systems, the TWO_TASK environment variable is used, if set. If
neither PATH= nor TWO_TASK have been set, the default value is the local
driver.

� The PROC ACCESS step TABLE= statement is as follows:

TABLE= <’><Oracle-table-name><’>;
specifies the name of the Oracle table or Oracle view on which the access
descriptor is based. This statement is required. The Oracle-table-name
argument can be up to 30 characters long and must be a valid Oracle table
name. If the table name contains blanks or national characters, enclose it in
quotation marks.

Examples
The following example creates an access descriptor and a view descriptor based on

Oracle data.

options linesize=80;

libname adlib ’SAS-data-library’;
libname vlib ’SAS-data-library’;

proc access dbms=oracle;

/* create access descriptor */

create adlib.customer.access;
user=testuser;
orapw=testpass;
table=customers;
path=’myorapath’;

SAS/ACCESS for Oracle � DBLOAD Procedure Specifics for Oracle 13

assign=yes;
rename customer=custnum;
format firstorder date9.;
list all;

/* create view descriptor */

create vlib.usacust.view;
select customer state zipcode name

firstorder;
subset where customer like ’1%’;

run;

The following example creates another view descriptor that is based on the
ADLIB.CUSTOMER access descriptor. The view is then printed.

/* create socust view */

proc access dbms=oracle accdesc=adlib.customer;
create vlib.socust.view;
select customer state name contact;
subset where state in (’NC’, ’VA’, ’TX’);

run;

/* print socust view */

proc print data=vlib.socust;
title ’Customers in Southern States’;
run;

DBLOAD Procedure Specifics for Oracle
See the section about the DBLOAD procedure in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The Oracle interface supports all of the DBLOAD procedure statements. The

DBLOAD procedure specifics for Oracle are as follows:
� The PROC DBLOAD step DBMS= value is Oracle.
� The database-description-statements used by PROC DBLOAD are as follows:

USER=<’>Oracle-user-name<’>
specifies an optional Oracle user name. If you omit an Oracle password and
user name, the default Oracle user ID OPS$sysid is used if it is enabled. If
you specify USER=, you must also specify ORAPW=.

ORAPW= <’>Oracle-password<’>
specifies an optional Oracle password that is associated with the Oracle user
name. If you omit ORAPW=, the password for the default Oracle user ID
OPS$sysid is used, if it is enabled. If you specify ORAPW=, you must also
specify USER=.

PATH=<’>Oracle-database-specification<’>
specifies the Oracle driver, node, and database. Aliases are required if you
are using SQL*Net Version 2.0 or later. In some operating environments, you
can enter the information that is required by the PATH= statement before
invoking SAS.

14 Examples � Chapter 1

SAS/ACCESS uses the same Oracle path designation that you use to
connect to Oracle directly. See your database administrator to determine the
path designations that have been set up in your operating environment, and
to determine the default value if you do not specify a path designation. On
UNIX systems, the TWO_TASK environment variable is used, if set. If
neither PATH= nor TWO_TASK have been set, the default value is the local
driver.

TABLESPACE= <’>Oracle-tablespace-name<’>;
specifies the name of the Oracle tablespace where you want to store the new
table. The Oracle-tablespace-name argument can be up to 18 characters long
and must be a valid Oracle tablespace name. If the name contains blanks or
national characters, enclose the entire name in quotation marks.

If TABLESPACE= is omitted, the table is created in your default
tablespace that is defined by the Oracle database administrator at your site.

� The PROC DBLOAD step TABLE= statement is as follows:

TABLE= <’><Oracle-table-name><’>;
specifies the name of the Oracle table or Oracle view on which the access
descriptor is based. This statement is required. The Oracle-table-name
argument can be up to 30 characters long and must be a valid Oracle table
name. If the table name contains blanks or national characters, enclose the
name in quotation marks.

Examples
The following example creates a new Oracle table, EXCHANGE, from the

DLIB.RATEOFEX data file. An access descriptor, ADLIB.EXCHANGE, based on the
new table, is also created. The PATH= statement uses an alias to connect to a remote
Oracle7 Server database.

The SQL statement in the second DBLOAD procedure sends an SQL GRANT
statement to Oracle. You must be granted Oracle privileges to create new Oracle tables
or to grant privileges to other users. The SQL statement is in a separate procedure
because you cannot create a DBMS table and reference it within the same DBLOAD
step. The new table is not created until the RUN statement is processed at the end of
the first DBLOAD step.

Note: The DLIB.RATEOFEX data set is included in the sample data shipped with
your software. �

libname adlib ’SAS-data-library’;
libname dlib ’SAS-data-library’;

proc dbload dbms=oracle data=dlib.rateofex;
user=testuser;
orapw=testpass;
path=’myorapath’;
table=exchange;
accdesc=adlib.exchange;
rename fgnindol=fgnindolar 4=dolrsinfgn;
nulls updated=n fgnindol=n 4=n country=n;
load;

run;

proc dbload dbms=oracle;

SAS/ACCESS for Oracle � Passing SAS Functions to Oracle 15

user=testuser;
orapw=testpass;
path=’myorapath’;
sql grant select on testuser.exchange to pham;

run;

The next example uses the APPEND option to append rows from the INVDATA data
set to an existing Oracle table named INVOICE.

proc dbload dbms=oracle data=invdata append;
user=testuser;
orapw=testpass;
path=’myorapath’;
table=invoice;
load;

run;

Note: This example uses a previously created data set, INVDATA. �

Maximizing Oracle Performance
There are several measures you can take to optimize performance when using the

SAS/ACCESS interface to Oracle. See the section about performance considerations in
SAS/ACCESS for Relational Databases: Reference for general information about
improving performance when using SAS/ACCESS engines.

The SAS/ACCESS interface to Oracle has several options that you can use to further
improve performance. See the INSERTBUFF=, UPDATEBUFF= and READBUFF=
LIBNAME options for tips on multi-row processing. See “Oracle Bulk Loading” on page
17 for instructions on using Oracle’s SQL*Loader to increase performance when loading
rows of data into Oracle tables.

Note: If you choose the transactional inserting of rows (specify BULKLOAD=NO),
you can improve performance by inserting multiple rows at a time. This performance
enhancement is comparable to using the Oracle SQL*Loader Conventional Path Load.
For more information about inserting multiple rows, see the INSERTBUFF= option. �

Passing SAS Functions to Oracle
The interface to Oracle passes the following SAS functions to Oracle for processing.

Where the Oracle function name is different than the SAS function name, the Oracle
name appears in parentheses. See the section about optimizing SQL usage in
SAS/ACCESS for Relational Databases: Reference for information.

ABS

ARCOS (ACOS)

ARSIN (ASIN)

ATAN

CEIL

COS

16 Passing Joins to Oracle � Chapter 1

COSH

DATETIME
(SYSDATE)

EXP

FLOOR

LOG

LOG10 (LOG)

LOG2 (LOG)

LOWCASE
(LOWER)

SIGN

SIN

SINH

SOUNDEX

SQRT

STRIP (TRIM)

TAN

TANH

TRIMN (RTRIM)

TRANSLATE

UPCASE (UPPER)

SUM

COUNT

AVE

MIN

MAX

Passing Joins to Oracle

In order for a join to pass to Oracle, each of the following components of the
LIBNAME statements must match exactly:

user ID

password

path

See the section about performance considerations in SAS/ACCESS for Relational
Databases: Reference for more information about when and how SAS/ACCESS passes
joins to the DBMS.

SAS/ACCESS for Oracle � Oracle Bulk Loading: Interactions with Other Options 17

Oracle Bulk Loading
The SAS/ACCESS interface to Oracle can call the Oracle SQL*Loader (SQLLDR)

when you set the data set option BULKLOAD=YES. The support for Oracle’s bulk
loader provides superior load performance, enabling you to rapidly move data from a
SAS file into an Oracle table. In future releases, SAS/ACCESS software will continue to
make use of powerful Oracle tools to improve its loading performance.

The bulk loading data set options for Oracle are listed below. See the section about
data set options in SAS/ACCESS for Relational Databases: Reference for additional
information about these options. Note that they all begin with BL_ (for BULKLOAD):

BL_BADFILE=

BL_CONTROL=

BL_DATAFILE=

BL_DELETE_DATAFILE=

BL_DIRECT_PATH=

BL_DISCARDFILE=

BL_INDEX_OPTIONS=

BL_LOAD_METHOD=

BL_LOG=

BL_OPTIONS=

BL_PARFILE=

BL_PRESERVE_BLANKS=

BL_RECOVERABLE=

BL_SQLLDR_PATH=

BL_SUPPRESS_NULLIF=

BULKLOAD=
BULKLOAD= invokes Oracle’s bulk loader, enabling the Oracle engine to move data

from a SAS file into an Oracle table using SQL*Loader (SQLLDR).

Note: SQL*Loader Direct path load has a number of limitations. Please refer to the
Oracle utilities manual for details.

When using bulk load, you should consult the SQL*Loader log file (rather than the
SAS log) for information about the load. �

Oracle Bulk Loading: Interactions with Other Options
When BULKLOAD=YES, the following is true:
� The DBCOMMIT=, DBFORCE=, ERRLIMIT=, and INSERTBUFF= options are

ignored.
� If NULLCHAR=SAS, and the NULLCHARVAL value is blank, then the

SQL*Loader attempts to insert a NULL instead of a NULLCHARVAL value.
� If NULLCHAR=NO, and the NULLCHARVAL value is blank, then the

SQL*Loader attempts to insert a NULL even if the DBMS does not allow NULL.
To avoid this result, set BL_PRESERVE_BLANKS=YES or set NULLCHARVAL

to a non-blank value (and then replace the non-blank value with blanks after
processing, if necessary).

18 Oracle Bulk Loading: z/OS Specifics � Chapter 1

Oracle Bulk Loading: z/OS Specifics
When you are using bulk loading in the z/OS operating environment, the files used

by the SQL*Loader must conform to z/OS data set standards. The data sets can be
either sequential data sets or partitioned data sets. Each of the file names supplied to
the SQL*Loader are subject to extension and FNA processing.

If you do not specify file names using data set options, then default names in the
form of userid.SAS.data-set-extension apply. The userid is the TSO prefix when running
under TSO, and it is the PROFILE PREFIX in batch. The data-set-extensions are:

BAD for the bad file
CTL for the control file
DAT for the data file
DSC for the discard file
LOG for the log file

If you want to specify file names using data set options, then you must use one of the
following forms:

/DD/ddname
/DD/ddname(membername)
Name

For detailed information about these forms, refer to the SQL*Loader chapter in the
Oracle user’s guide for z/OS.

The SQL*Loader is executed by the Oracle engine by issuing a host-system command
from within your SAS session. The data set where the SQLLDR executable resides
must be available to your TSO session or allocated to your batch job. Check with your
system administrator if you do not know the name or availability of the data set that
contains the SQLLDR executable.

On z/OS, the bad file and the discard file are, by default, not created in the same
format as the data file. This makes it difficult to load the contents of these files after
making corrections. Refer to the section on SQL*Loader file attributes in the
SQL*Loader section in the Oracle user’s guide for z/OS for information about
overcoming this limitation.

Oracle Bulk Loading: Example
The following example shows how to create a SAS data set and use it to create and

load to a large Oracle table, FLIGHTS98. This load uses the SQL*Loader direct path
method because you specified BULKLOAD=YES. BL_OPTIONS= passes the specified
SQL*Loader options to SQL*Loader when it is invoked. In this example, the ERRORS=
option enables you to have 899 errors in the load before the load terminates, and the
LOAD= option loads the first 5,000 rows of the input data set, SASFLT.FLT98.

options yearcutoff=1925; /* included for Year 2000 compliance */

libname sasflt ’SAS-Data-Library’;
libname ora_air oracle user=testuser password=testpass

path=’ora8_flt’ schema=statsdiv;

data sasflt.flt98;
input flight $3. +5 dates date7. +3 depart time5. +2 orig $3.

SAS/ACCESS for Oracle � Locking in the Oracle Interface 19

+3 dest $3. +7 miles +6 boarded +6 capacity;
format dates date9. depart time5.;
informat dates date7. depart time5.;
datalines;

114 01JAN98 7:10 LGA LAX 2475 172 210
202 01JAN98 10:43 LGA ORD 740 151 210
219 01JAN98 9:31 LGA LON 3442 198 250

<...10,000 more observations...>

proc sql;
create table ora_air.flights98
(BULKLOAD=YES BL_OPTIONS=’ERRORS=899,LOAD=5000’) as

select * from sasflt.flt98;
quit;

During a load, certain SQL*Loader files are created, such as the data, log, and
control files. Unless otherwise specified, they are given a default name and written to
the current directory. For this example, the default names would be
bl_flights98.dat, bl_flights98.log, and bl_flights98.ctl.

Locking in the Oracle Interface
The SAS/ACCESS interface to Oracle supports the following locking options as both

LIBNAME and data set options. See the section about the LIBNAME statement in
SAS/ACCESS for Relational Databases: Reference for additional information about
these options.

READ_LOCK_TYPE= NOLOCK | ROW | TABLE
The default value is NOLOCK. The valid values for this option are as follows:

� NOLOCK — table locking is not used during the reading of tables and views.
� ROW — the Oracle ROW SHARE table lock is used during the reading of

tables and views.
� TABLE — the Oracle SHARE table lock is used during the reading of tables

and views.

Note: If you set READ_LOCK_TYPE= to either TABLE or ROW, you must also
set the CONNECTION= option to UNIQUE. If not, an error occurs. �

UPDATE_LOCK_TYPE= NOLOCK | ROW | TABLE
The default value is NOLOCK. The valid values for this option are as follows:

� ROW — the Oracle ROW SHARE table lock is used during the reading of
tables and views for update.

� TABLE — the Oracle EXCLUSIVE table lock is used during the reading of
tables and views for update.

� NOLOCK — table locking is not used during the reading of tables and views
for update.

� If OR_UPD_NOWHERE=YES, updates are performed using serializable
transactions.

� If OR_UPD_NOWHERE=NO, updates are performed using an extra
WHERE clause to ensure that the row has not been updated since it
was first read. Updates might fail under these conditions, because other
users might modify a row after the row was read for update.

20 Naming Conventions for Oracle � Chapter 1

READ_ISOLATION_LEVEL= READCOMMITTED | SERIALIZABLE
Oracle supports the READCOMMITTED and SERIALIZABLE read isolation
levels, as defined in the following table. The SPOOL= option overrides the
READ_ISOLATION_LEVEL= option. The READ_ISOLATION_LEVEL= option
should be rarely needed because the SAS/ACCESS engine chooses the appropriate
isolation level based on other locking options.

Table 1.3 Isolation Levels for Oracle

Isolation Level Definition

SERIALIZABLE Does not allow dirty reads, non-repeatable reads, or phantom reads.

READCOMMITED Does not allow dirty reads; does allow non-repeatable reads and
phantom reads

UPDATE_ISOLATION_LEVEL= READCOMMITTED | SERIALIZABLE
Oracle supports the READCOMMITTED and SERIALIZABLE isolation levels, as
defined in the preceding table, for updates.

This option should be rarely needed because the SAS/ACCESS engine chooses
the appropriate isolation level based on other locking options.

Naming Conventions for Oracle

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how the interface to Oracle handles case-sensitivity, spaces, and special characters. See
the section about the LIBNAME statement in SAS/ACCESS for Relational Databases:
Reference for information about these options.

Oracle objects that can be named include tables, views, columns, and indexes. For
the Oracle7 Server, objects also include database triggers, procedures, and stored
functions. Use the following Oracle naming conventions:

� A name must start with a letter. However, if the name appears within double
quotation marks, it may start with any character.

� A name must be from 1 to 30 characters long, except for database names, which
are limited to 8 characters, and link names, which are limited to 128 characters.

� A name may contain the letters A through Z, the digits 0 through 9, the
underscore (_), $, and #. If the name appears within double quotation marks, it
may contain any characters, except double quotation marks.

� A name is not case-sensitive. For example, CUSTOMER is the same as customer.
However, if the name of the object appears within double quotation marks when it
is used, then it is case-sensitive.

� A name cannot be an Oracle reserved word.

� A name cannot be the same name as another Oracle object in the same schema.

Data Types for Oracle Servers

Every column in a table has a name and a data type. The data type tells Oracle how
much physical storage to set aside for the column and the form in which the data is
stored.

SAS/ACCESS for Oracle � Other Data Types 21

Note: The SAS/ACCESS interface to Oracle does not support the following Oracle
data types: MLSLABEL and ROWID. �

Character Data
CHAR (n)

contains fixed-length character string data with a length of n, where n must be at
least 1 and cannot exceed 255 characters. (The limit is 2,000 characters with an
Oracle8 Server.) Note that the Oracle7 Server CHAR data type is not equivalent
to the Oracle Version 6 CHAR data type. The Oracle7 Server CHAR data type is
new with the Oracle7 Server and uses blank-padded comparison semantics.

LONG
contains varying-length character string data that is similar to type VARCHAR2.
Type LONG is character data of variable length with a maximum length of 2
gigabytes. You can define only one LONG column per table. Available memory
considerations might also limit the size of a LONG data type.

VARCHAR2(n)
contains character string data with a length of n, where n must be at least 1 and
cannot exceed 2000 characters. (The limit is 4,000 characters with an Oracle8
Server.) The VARCHAR2 data type is equivalent to the Oracle Version 6 CHAR
data type except for the difference in maximum lengths. The VARCHAR2 data
type uses nonpadded comparison semantics.

Numeric Data
NUMBER(p,s)

specifies a fixed-point number with an implicit decimal point, where p is the total
number of digits (precision) and can range from 1 to 38, and s is the number of
digits to the right of the decimal point (scale) and can range from -84 to 127.

NUMBER(p)
specifies an integer of precision p that can range from 1 to 38 and a scale of 0.

NUMBER
specifies a floating-point number with a precision of 38. A floating-point value can
either specify a decimal point anywhere from the first to the last digit or omit the
decimal point. A scale value does not apply to floating-point numbers since there
is no restriction on the number of digits that can appear after the decimal point.

Other Data Types
DATE

contains date values. Valid dates are from January 1, 4712 BC to December 31,
4712 AD. The default format is DD-MON-YY, for example ’05-OCT-98’.

LONG RAW
contains raw binary data of variable length up to 2 gigabytes. Values entered into
columns of this type must be inserted as character strings in hexadecimal notation.

RAW(n)
contains raw binary data where n must be at least 1 and cannot exceed 255 bytes.
(In Oracle Version 8, the limit is 2,000 bytes.) Values entered into columns of this
type must be inserted as character strings in hexadecimal notation. You must
specify n for this data type.

22 Oracle Null and Default Values � Chapter 1

Note: For compatibility with other DBMSs, Oracle supports the syntax for a wide
variety of numeric data types, including DECIMAL, INTEGER, REAL,
DOUBLE-PRECISION, and SMALLINT. All forms of numeric data types are actually
stored in the same internal Oracle NUMBER format. The additional numeric data
types are variations of precision and scale. A null scale implies a floating-point number,
and a non-null scale implies a fixed-point number. �

Oracle Null and Default Values
Oracle has a special value called NULL. An Oracle NULL value means an absence of

information and is analogous to a SAS missing value. When SAS/ACCESS reads an
Oracle NULL value, it interprets it as a SAS missing value.

By default, Oracle columns accept NULL values. However, you can define columns so
that they cannot contain NULL data. NOT NULL tells Oracle not to add a row to the
table unless the row has a value for that column. When creating an Oracle table with
SAS/ACCESS, you can use the DBNULL= data set option to indicate whether NULL is
a valid value for specified columns.

For more information about how SAS handles NULL values, see in SAS/ACCESS
for Relational Databases: Reference.

Note: To control how SAS missing character values are handled by Oracle, use the
NULLCHAR= and NULLCHARVAL= data set options. �

LIBNAME Statement Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to Oracle data types during input operations when you use the LIBNAME
statement.

Table 1.4 LIBNAME Statement: Default SAS Formats for Oracle Data Types

Oracle Data Type Default SAS Format

CHAR(n) $n.

VARCHAR2(n) $n.

NUMBER none (BEST. on OS/390)

NUMBER(p) w.(BEST. on OS/390)

NUMBER(p, s) w.d

DATE DATETIME20.

LONG $1024.

RAW(n) $HEXw.

LONG RAW $HEX2048.

Oracle data types that are omitted from this table are not supported by SAS/ACCESS.
If Oracle data falls outside valid SAS data ranges, the values are usually counted as

missing.

Note: SAS automatically converts Oracle NUMBER types to SAS number formats
by using an algorithm that determines the correct scale and precision. When the scale
and precision cannot be determined, SAS/ACCESS allows the procedure or application
to determine the format.

SAS/ACCESS for Oracle � ACCESS Procedure Data Conversions 23

You can also convert numeric data to character data by using the Pass-Through
facility with the Oracle TO_CHAR function. See your Oracle documentation for more
details. �

The following table shows the default Oracle data types that SAS/ACCESS assigns to
SAS variable formats during output operations when you use the LIBNAME statement.

Table 1.5 LIBNAME Statement: Default Oracle Data Types for SAS Formats

SAS Variable Format Oracle Data Type

$w. VARCHAR2(n)***

w. with SAS format name of NULL NUMBER(p)

w.d with SAS format name of NULL NUMBER(p,s)

all other numerics * NUMBER (NUMBER(38,10) on OS/390)

datetimew.d DATE

datew. DATE

time. ** DATE

* Includes all SAS numeric formats, such as BINARY8 and E10.0.
** Includes all SAS time formats, such as TODw,d and HHMMw,d.
***If the SAS char variable format is greater than $4000, the default Oracle data type is LONG.

If you use Oracle7 and the CHAR variable format is between $2000. and $4000. then use the
DBTYPE= option to change the default VARCHAR2 type to LONG.

To override these data types, use the DBTYPE= data set option during output
processing.

ACCESS Procedure Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to Oracle data types when you use the ACCESS procedure.

Table 1.6 PROC ACCESS: Default SAS Formats for Oracle Data Types

Oracle Data Type Default SAS Format

CHAR(n) $n. (n <= 200) $200. (n > 200)

VARCHAR2(n) $n. (n <= 200) $200. (n > 200)

FLOAT BEST22.

NUMBER BEST22.

NUMBER(p) w.

NUMBER(p, s) w.d

DATE DATETIME16.

LONG $200.

24 DBLOAD Procedure Data Conversions � Chapter 1

Oracle Data Type Default SAS Format

RAW(n) $n. (n < 200) $200. (n > 200)

LONG RAW $200.

Oracle data types that are omitted from this table are not supported by SAS/ACCESS.
If Oracle data falls outside valid SAS data ranges, the values are usually counted as
missing.

The following table shows the correlation between the Oracle NUMBER data types
and the default SAS formats that are created from that data type.

Table 1.7 Default SAS Formats for Oracle NUMBER Data Types

Oracle NUMBER Data Type Rules Default SAS Format

NUMBER(p) 0 < p <= 32 (p + 1).0

NUMBER(p,s) p > 0, s < 0, |s| < p (p + |s| + 1).0

NUMBER(p,s) p > 0, s < 0, |s| >= p (p + |s| + 1).0

NUMBER(p,s) p > 0, s > 0, s < p (p + 2).s

NUMBER(p,s) p > 0, s > 0, s >= p (s + 3).s

NUMBER(p) p > 32 BEST22. SAS selects format

NUMBER p, s unspecified BEST22. SAS selects format

Note: The general form of an Oracle number is NUMBER(p,s) where p is the
precision and s is the scale of the number. Oracle defines precision as the total number
of digits, with a valid range of -84 to 127. However, a negative scale means that the
number is rounded to the specified number of places to the left of the decimal. For
example, if the number 1,234.56 is specified as data type NUMBER(8,-2), it is rounded
to the nearest hundred and stored as 1,200. �

DBLOAD Procedure Data Conversions
The following table shows the default Oracle data types that SAS/ACCESS assigns to

SAS variable formats when you use the DBLOAD procedure.

Table 1.8 PROC DBLOAD: Default Oracle Data Types for SAS Formats

SAS Variable Format Oracle Data Type

$w. CHAR(n)

w. NUMBER(p)

w.d NUMBER(p,s)

all other numerics * NUMBER

datetimew.d DATE

datew. DATE

time. ** NUMBER

* Includes all SAS numeric formats, such as BINARY8 and E10.0.
** Includes all SAS time formats, such as TODw,d and HHMMw,d.

25

A P P E N D I X

1
Recommended Reading

Recommended Reading 25

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS for Relational Databases: Reference
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

26

27

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit process.

28 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries. In SAS/ACCESS software,
the default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS may or may not be able to use the
indexes of the DBMS to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indices to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

Glossary 29

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS data library.

member name
a name that is given to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

Pass-Through Facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The Pass-Through Facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the
CONNECTION TO component. SAS/ACCESS software is required in order to use
the Pass-Through Facility.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

30 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that whenever a data value in one table is
changed, the appropriate change is also made to any related values in other tables or
in the same table. Referential integrity is also used to ensure that related data is not
deleted or changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

Glossary 31

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

view descriptor
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

32

Index 33

Index

A
abstract data

Oracle data types 21

access descriptors

Oracle data, based on (example) 19

ACCESS procedure

Oracle specifics 11, 23

autopartitioning

Oracle specifics 8

B
BL_ bulk loading options

Oracle interface 17

BUFFSIZE= option, SQL CONNECT state-
ment 7

bulk loading

Oracle 17, 18

BULKLOAD= option, LIBNAME statement

Oracle interface 17, 18

C
CHAR data type

Oracle 21

character data

Oracle data types 21

CONNECT statement, SQL procedure

options, Oracle 6

D
data set options

Oracle interface 4

data types

Oracle servers 20

date and time data

Oracle data types 21

DATE data type

Oracle 21

DBLOAD procedure

Oracle specifics 13, 24

J
joins

passing to Oracle 16

L
LIBNAME statement

Oracle specifics 2, 22
locking data, handling

Oracle interface 19
LONG data type 21
LONG RAW data type 21

M
MOD function

nonpartitioned Oracle tables 9

N
naming conventions

Oracle interface 20
NULL values

Oracle 22
NUMBER data type 21
numeric data

Oracle data types 21

O
Oracle, interface to 2

ACCESS procedure 11, 23
autopartitioning scheme 8
bulk loading 17, 18
data set options 4
data types 20
DBLOAD procedure 13, 24
LIBNAME statement 2, 22
locking in 19
naming conventions 20
Pass-Through Facility 6
passing joins to 16
passing SAS functions to 15

Oracle SQL*Loader 17
OS/390 operating environment 18

ORAPW= option
PROC ACCESS statement 12
PROC DBLOAD statement 13

OS/390, interface to
Oracle bulk loading 18

P
partitioning

Oracle tables 8
Pass-Through Facility

Oracle interface 6
PASSWORD= option, LIBNAME statement

Oracle interface 2
PASSWORD= option, SQL CONNECT statement

Oracle interface 6
PATH= option

LIBNAME statement 2
PROC ACCESS statement 12
PROC DBLOAD statement 13
SQL CONNECT statement 7

performance
Oracle, SAS/ACCESS for 20
Oracle partitioned tables 10

PRESERVE_COL_NAMES= option
Oracle interface 20

PRESERVE_COMMENTS option, SQL CON-
NECT statement 7

PRESERVE_TAB_NAMES= option, LIBNAME
statement

Oracle interface 20

R
RAW data type 21
READ_ISOLATION_LEVEL= option

Oracle interface 20
READ_LOCK_TYPE= option

Oracle interface 19

S
SAS/ACCESS data set options

Oracle interface 4

34 Index

SAS SQL functions

passing to Oracle 15

T
TABLE= option, DBLOAD procedure

Oracle 14

TABLE= statement, ACCESS procedure

Oracle interface 19

TABLESPACE= option, PROC DBLOAD state-
ment 14

threaded reads
Oracle interface 8

U
UPDATE_ISOLATION_LEVEL= option

Oracle interface 20
UPDATE_LOCK_TYPE= option

Oracle interface 19

USER= option
PROC ACCESS statement 12
PROC DBLOAD statement 13
SQL CONNECT statement 6

USER= option, LIBNAME statement
Oracle interface 2

V
VARCHAR2 data type 21
view descriptors

Oracle data, based on (example) 19

Your Turn

If you have comments or suggestions about SAS/ACCESS 9.1.3 Supplement for Oracle
(SAS/ACCESS for Relational Databases), please send them to us on a photocopy of this
page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	Contents

	SAS/ACCESS for Oracle
	Introduction to the SAS/ACCESS Interface to Oracle
	LIBNAME Statement Specifics for Oracle
	Arguments
	Oracle LIBNAME Statement Examples

	Data Set Options for Oracle
	Pass-Through Facility Specifics for Oracle
	Examples

	Autopartitioning Scheme for Oracle
	Overview
	Partitioned Oracle Tables
	Non-partitioned Oracle Tables
	Performance Summary

	Temporary Table Support for Oracle
	Establishing a Temporary Table
	Syntax
	Terminating a Temporary Table
	Examples

	ACCESS Procedure Specifics for Oracle
	Examples

	DBLOAD Procedure Specifics for Oracle
	Examples

	Maximizing Oracle Performance
	Passing SAS Functions to Oracle
	Passing Joins to Oracle
	Oracle Bulk Loading
	Oracle Bulk Loading: Interactions with Other Options
	Oracle Bulk Loading: z/OS Specifics
	Oracle Bulk Loading: Example

	Locking in the Oracle Interface
	Naming Conventions for Oracle
	Data Types for Oracle Servers
	Character Data
	Numeric Data
	Other Data Types
	Oracle Null and Default Values
	LIBNAME Statement Data Conversions
	ACCESS Procedure Data Conversions
	DBLOAD Procedure Data Conversions

	Recommended Reading
	Recommended Reading

	Glossary
	Index

