
SAS/ACCESS® 9.1.3
Supplement for Netezza
SAS/ACCESS for Relational Databases

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2007.
SAS/ACCESS ® 9.1.3 Supplement for Netezza (SAS/ACCESS for Relational Databases).
Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1.3 Supplement for Netezza (SAS/ACCESS for Relational
Databases)
Copyright © 2002–2007, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59994-277-3
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, August 2007
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � SAS/ACCESS for Netezza 1
Introduction to SAS/ACCESS Interface to Netezza 1

LIBNAME Statement Specifics for Netezza 2

Data Set Options for Netezza 5

Pass-Through Facility Specifics for Netezza 6

Passing SAS Functions to Netezza 8

Passing Joins to Netezza 9

Temporary Table Support for Netezza 10

Netezza Bulk Loading and Unloading 11

Naming Conventions for Netezza 13

Data Types for Netezza 14

Appendix 1 � Recommended Reading 19
Recommended Reading 19

Glossary 21

Index 27

iv

1

C H A P T E R

1
SAS/ACCESS for Netezza

Introduction to SAS/ACCESS Interface to Netezza 1
LIBNAME Statement Specifics for Netezza 2

Overview 2

Arguments 2

Netezza LIBNAME Statement Examples 4

Data Set Options for Netezza 5
Overview 5

Pass-Through Facility Specifics for Netezza 6

Overview 6

CONNECT Statement Examples 6

Special Catalog Queries 7

Passing SAS Functions to Netezza 8
Passing Joins to Netezza 9

Temporary Table Support for Netezza 10

General Information 10

Establishing a Temporary Table 10

Terminating a Temporary Table 10
Examples 10

Netezza Bulk Loading and Unloading 11

Loading 11

Examples 12

Unloading 12
Examples 13

Naming Conventions for Netezza 13

Data Types for Netezza 14

Overview 14

String Data 14

Numeric Data 14
Dates, Times, and Timestamps 15

Netezza Null Values 15

LIBNAME Statement Data Conversions 16

Introduction to SAS/ACCESS Interface to Netezza
This document describes only SAS/ACCESS Interface to Netezza. Use it as a

supplement to the generic SAS/ACCESS documentation, SAS/ACCESS for Relational
Databases: Reference.

2 LIBNAME Statement Specifics for Netezza � Chapter 1

LIBNAME Statement Specifics for Netezza

Overview
This section describes the LIBNAME statement that SAS/ACCESS Interface to

Netezza supports. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. Here is the
Netezza-specific syntax for the LIBNAME statement:

LIBNAME libref netezza <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

netezza
is the SAS/ACCESS engine name for SAS/ACCESS Interface to Netezza.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the DBMS. When you use the LIBNAME
statement, you can connect to the Netezza Performance Server in two ways. Use
only one of the following methods for each connection because they are mutually
exclusive.

� specify SERVER=, DATABASE=, PORT=, USER=, PASSWORD=, and
READ_ONLY=, or

� specify DSN=, USER=, and PORT=

Here is how these connection options are defined.

SERVER=<’>server-name<’>
specifies the server name or IP address of the Netezza Performance Server to
which you want to connect. This server accesses the database that contains
the tables and views that you want to access. If the server name contains
spaces or nonalphanumeric characters, you must enclose it in quotation
marks.

DATABASE=<’>database-name<’>
specifies the name of the database on the Netezza Performance Server that
contains the tables and views that you want to access. If the database name
contains spaces or nonalphanumeric characters, you must enclose it in
quotation marks. You can also specify DATABASE= with the DB= alias.

PORT=port
specifies the port number that is used to connect to the specified Netezza
Performance Server. If you do not specify a port, the default of 5480 is used.

USER=<’>Netezza-user-name<’>
specifies the Netezza user name (also called the user ID) that you use to
connect to your database. If the user name contains spaces or
nonalphanumeric characters, you must enclose it in quotation marks.

SAS/ACCESS for Netezza � Arguments 3

PASSWORD=<’>Netezza-password<’>
specifies the password that is associated with your Netezza user name. If the
password contains spaces or nonalphanumeric characters, you must enclose it
in quotation marks. You can also specify PASSWORD= with the PWD=,
PASS=, and PW= aliases.

READ_ONLY=YES | NO
specifies whether to connect to the Netezza database in read-only mode (YES)
or read-write (NO) mode. If you do not specify anything for READ_ONLY=,
the default of NO is used. You can also specify READ_ONLY with the
READONLY= alias.

DSN=<’>Netezza-data-source<’>
specifies the configured Netezza ODBC datasource to which you want to
connect. Use this option if you have existing Netezza ODBC datasources that
are configured on your client. This method requires additional setup—either
through the ODBC Administrator control panel on Windows platforms or
through the odbc.ini file on UNIX platforms. So it is recommended that you
use this connection method only if you have existing, functioning datasources
that have been defined.

LIBNAME-options
define how SAS processes DBMS objects. Some LIBNAME options can enhance
performance; others determine locking or naming behavior. The following table
describes the LIBNAME options that are supported for Netezza and presents
default values where applicable. See the section about the SAS/ACCESS
LIBNAME statement in SAS/ACCESS for Relational Databases: Reference for
detailed information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for Netezza

Option Default Value

ACCESS= none

AUTOCOMMIT= operation-specific

CONNECTION= UNIQUE

CONNECTION_GROUP= none

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DB_CREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= YES

DBLIBINIT= none

DBLIBTERM= none

DBMAX_TEXT= 1024

DBNULLKEYS= YES

DBPROMPT= NO

DEFER= NO

DELETE_MULT_ROWS=

4 Netezza LIBNAME Statement Examples � Chapter 1

Option Default Value

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_
READ_ONLY_COLUMNS=

NO

INSERTBUFF= automatically calculated based on row length

MULTI_DATASRC_OPT= none

PRESERVE_COL_NAMES=
see Naming Conventions for Netezza“Naming
Conventions for Netezza” on page 13

PRESERVE_TAB_NAMES=
see Naming Conventions for Netezza“Naming
Conventions for Netezza” on page 13

QUALIFIER= none

QUERY_TIMEOUT= 0

QUOTE_CHAR= none

READBUFF= automatically calculated based on row length

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= none

STRINGDATES= NO

TRACE= NO

TRACEFILE= none

UPDATE_MULT_ROWS=

USE_ODBC_CL = NO

UTILCONN_TRANSIENT= NO

Netezza LIBNAME Statement Examples
In this example, SERVER=, DATABASE=, USER=, and PASSWORD= are connection

options.

libname mydblib netezza server=npssrv1 database=test user=netusr1 password=netpwd1;

proc print data=mydblib.customers;
where state=’CA’;

run;

SAS/ACCESS for Netezza � Overview 5

In the next example, DSN=, USER=, and PASSWORD= are connection options. The
NZSQL data source is configured in the ODBC Administrator Control Panel on
Windows platforms or in the odbc.ini file—or a similarly named configuration file—on
UNIX platforms.

libname mydblib netezza dsn=NZSQL user=netusr1 password=netpwd1;

roc print data=mydblib.customers;
where state=’CA’;

run;

Data Set Options for Netezza

Overview
The following table describes the data set options that are supported for Netezza and

provides default values where applicable. See the section about data set options in
SAS/ACCESS for Relational Databases: Reference for detailed information about these
options.

Table 1.2 SAS/ACCESS Data Set Options

Option Default Value

BL_DATAFILE=
When BL_USE_PIPE=NO, creates a file in the
current directory or with the default file
specifications.

BL_DELETE_DATAFILE= YES (only when BL_USE_PIPE=NO)

BL_DELIMITER= | (the pipe symbol)

BL_OPTIONS= none

BL_USE_PIPE= YES

BULKLOAD= NO

BULKUNLOAD= NO

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

6 Pass-Through Facility Specifics for Netezza � Chapter 1

Option Default Value

DBNULL= YES

DBNULLKEYS= LIBNAME option setting

DBPROMPT= LIBNAME option setting

DBSASTYPE=
see Data Types for Netezza“Data Types for
Netezza” on page 14

DBTYPE=
see Data Types for Netezza“Data Types for
Netezza” on page 14

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUALIFIER= LIBNAME option setting

QUERY_TIMEOUT= LIBNAME option setting

READBUFF= LIBNAME option setting

SASDATEFMT= none

SCHEMA= LIBNAME option setting

Pass-Through Facility Specifics for Netezza

Overview
See the Pass-Through Facility section in SAS/ACCESS for Relational Databases:

Reference for general information about this feature.
Here are the Pass-Through Facility specifics for the Netezza interface.

� The dbms-name is NETEZZA.

� The CONNECT statement is required.

� PROC SQL supports multiple connections to Netezza. If you use multiple
simultaneous connections, you must use the alias argument to identify the
different connections. If you do not specify an alias, the default netezza alias is
used.

� The CONNECT statement database-connection-arguments are identical to its
LIBNAME connection-options.

CONNECT Statement Example
This example uses the DBCON alias to connection to the mynpssrv Netezza

Performance Server and execute a query. The connection alias is optional.

SAS/ACCESS for Netezza � Special Catalog Queries 7

proc sql;
connect to netezza as dbcon
(server=mynpssrv database=test user=myuser password=mypwd);

select * from connection to dbcon
(select * from customers where customer like ’1%’);

quit;

Special Catalog Queries
SAS/ACCESS Interface to Netezza supports the following special queries, which you

can use to call the ODBC-style catalog function APIs. Here is the general format of the
special queries.

Netezza::SQLAPI “parameter 1”,”parameter n”

Netezza::
is required to distinguish special queries from regular queries.

SQLAPI
is the specific API that is being called. Both Netezza:: and SQLAPI are case
sensitive.

"parameter n"
is a quoted string that is delimited by commas.

Within the quoted string, two characters are universally recognized: the percent sign
(%) and the underscore (_). The percent sign matches any sequence of zero or more
characters, and the underscore represents any single character. To use either character
as a literal value, you can use the backslash character (\) to escape the match
characters. For example, the following call to SQLTables usually matches table names
such as myatest and my_test:

select * from connection to netezza (NETEZZA::SQLTables "test","","my_test");

Use the escape character to search only for the table, my_test:

select * from connection to netezza (NETEZZA::SQLTables "test","","my_test");

SAS/ACCESS Interface to Netezza supports these special queries:

Netezza::SQLTables <"Catalog", "Schema", "Table-name", "Type">
returns a list of all tables that match the specified arguments. If you do not
specify any arguments, all accessible table names and information are returned.

Netezza::SQLColumns <"Catalog", "Schema", "Table-name", "Column-name">
returns a list of all columns that match the specified arguments. If you do not
specify any argument, all accessible column names and information are returned.

Netezza::SQLPrimaryKeys <"Catalog", "Schema", "Table-name">
returns a list of all columns that compose the primary key that matches the
specified table. A primary key can be composed of one or more columns. If you do
not specify any table name, this special query fails.

Netezza::SQLSpecialColumns <"Identifier-type", "Catalog-name", "Schema-name",
"Table-name", "Scope", "Nullable">

returns a list of the optimal set of columns that uniquely identify a row in the
specified table.

8 Passing SAS Functions to Netezza � Chapter 1

Netezza::SQLStatistics <"Catalog", "Schema", "Table-name">
returns a list of the statistics for the specified table name, with options of
SQL_INDEX_ALL and SQL_ENSURE set in the SQLStatistics API call. If you do
not specify any table name argument, this special query fails.

Netezza::SQLGetTypeInfo
returns information about the data types that the Netezza Performance Server
supports.

Passing SAS Functions to Netezza
SAS/ACCESS Interface to Netezza passes the following SAS functions to the data

source for processing. Where the Netezza function name differs from the SAS function
name, the Netezza name appears in parentheses. See the section about optimizing SQL
usage in SAS/ACCESS for Relational Databases: Reference for information.

ABS
ARCOS (ACOS)
ARSIN (ASIN)
ATAN
ATAN2
AVG
BAND (int4and)
BNOT (int4not)
BLSHIFT (int4shl)
BRSHIFT (int4shr)
BOR (int4or)
BXOR (int4xor)
BYTE (chr)
CEIL
COALESCE
COMPRESS (translate)
COS
COUNT
DAY (date_part)
EXP
FLOOR
HOUR (date_part)
INDEX (position)
LOG (ln)
LOG10 (log)
LOWCASE (lower)
MAX
MIN
MINUTE (date_part)
MOD
MONTH (date_part)

SAS/ACCESS for Netezza � Passing Joins to Netezza 9

REPEAT

SECOND (date_part)

SIGN

SIN

SOUNDEX

SQRT

STRIP (btrim)

SUBSTR

SUM

TAN

TRANWRD (translate)

TRIMN (rtrim)

UPCASE (upper)

YEAR (date_part)

If SQL_FUNCTIONS=ALL, these options are passed down:

DATE (current_date)

DATEPART (cast)

DATETIME (now)

LENGTH

ROUND

TIME (current_time)

TIMEPART (cast)

TODAY (current_date)

TRANSLATE

Passing Joins to Netezza

For a multiple libref join to pass to Netezza, all of these components of the
LIBNAME statements must match exactly:

user ID (USER=)

password (PASSWORD=)

server (SERVER=)

database (DATABASE=)

port (PORT=)

datasource (DSN=, if specified)

catalog (QUALIFIER=, if specified)

SQL functions (SQL_FUNCTIONS=)

See the section about performance considerations in SAS/ACCESS for Relational
Databases: Reference for more information about when and how SAS/ACCESS Interface
to Netezza passes joins to the DBMS.

10 Temporary Table Support for Netezza � Chapter 1

Temporary Table Support for Netezza

General Information

See the section on the temporary table support in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

Establishing a Temporary Table
To make full use of temporary tables, the CONNECTION=GLOBAL connection

option is necessary. This option lets you use a single connection across SAS DATA steps
and SAS procedure boundaries. This connection can also be shared between LIBNAME
statements and the Pass-Through Facility. Because a temporary table exists only
within a single connection, you need to be able to share this single connection among all
steps that reference the temporary table. The temporary table cannot be referenced
from any other connection.

You can currently use only a PROC SQL statement to create a temporary table. To
use both the Pass-Through Facility and librefs to reference a temporary table, you must
specify a LIBNAME statement before the PROC SQL step so that global connection
persists across SAS steps and even across multiple PROC SQL steps. Here is an
example:

proc sql;
connect to netezza (server=nps1 database=test

user=myuser password=mypwd connection=global);
execute (create temporary table temptab1 as select * from permtable) by netezza;

quit;

At this point, you can refer to the temporary table by using either the Temp libref or
the CONNECTION=GLOBAL option with a PROC SQL step.

Terminating a Temporary Table
You can drop a temporary table at any time or allow it to be implicitly dropped when

the connection is terminated. Temporary tables do not persist beyond the scope of a
single connection.

Examples
The following assumptions apply to the examples in this section:

� The DeptInfo table already exists on the DBMS that contains all of your
department information.

� One SAS data set contains join criteria that you want to use to extract specific
rows from the DeptInfo table.

� Another SAS data set contains updates to the DeptInfo table.

SAS/ACCESS for Netezza � Loading 11

These examples use the following librefs and temporary tables.

libname saslib base ’SAS-Data-Library’;
libname dept netezza server=nps1 database=test user=myuser pwd=mypwd connection=global;
libname temp netezza server=nps1 database=test user=myuser pwd=mypwd connection=global;

proc sql;
connect to netezza (server=nps1 database=test user=myuser pwd=mypwd

connection=global);
execute (create temporary table temptab1 (dname char(20), deptno int))

by netezza;
quit;

This first example shows how to use a heterogeneous join with a temporary table to
perform a homogeneous join on the DBMS, insted of reading the DBMS table into SAS
to perform the join. By using the table that was created previously, you can copy SAS
data into the temporary table to perform the join.

proc sql;
connect to netezza (server=nps1 database=test user=myuser pwd=mypwd

connection=global);
insert into temp.temptab1 select * from saslib.joindata;
select * from dept.deptinfo info, temp.temptab1 tab

where info.deptno = tab.deptno;
/* remove the rows for the next example */
execute (delete from temptab1) by netezza;
quit;

In this next example, transaction processing on the DBMS occurs by using a
temporary table instead of using either DBKEY= or
MULTI_DATASRC_OPT=IN_CLAUSE with a SAS data set as the transaction table.

proc sql;
connect to netezza (server=nps1 database=test user=myuser pwd=mypwd

connection=global);
insert into temp.temptab1 select * from saslib.transdat;
execute (update deptinfo d set dname = (select dname from temptab1)

where d.deptno = (select deptno from temptab1)) by netezza;
quit;

Netezza Bulk Loading and Unloading

Loading
Bulk loading is the fastest way to insert large numbers of rows into a Netezza table.

To use the bulk-load facility, specify BULKLOAD=YES. The bulk-load facility uses the
Netezza Remote External Table interface to move data from the client to the Netezza
Performance Server.

Here are the Netezza bulk-load data set options:
BL_DATAFILE=
BL_DATAFILE=
BL_DELIMITER=

12 Unloading � Chapter 1

BL_OPTIONS=
BL_USE_PIPE=
BULKLOAD=

Examples
This first example shows how you can use a SAS data set, SASFLT.FLT98, to create

and load a large Netezza table, FLIGHTS98:

libname sasflt ’SAS-data-library’;
libname net_air netezza user=louis pwd=fromage

server=air2 database=flights;

proc sql;
create table net_air.flights98

(bulkload=YES bl_options=’logdir "c:\temp\netlogs"’)
as select * from sasflt.flt98;

quit;

You can use BL_OPTIONS= to pass Netezza-specific options to the bulk-loading
process. The logdir option specifies the directory for the nzbad and nzlog files to be
generated during the load.

This next example shows how you can append the SAS data set, SASFLT.FLT98, to
the existing Netezza table, ALLFLIGHTS. The BL_USE_PIPE=NO option forces
SAS/ACCESS Interface to Netezza to write data to a flat file, as specified in the
BL_DATAFILE= option. Rather than deleting the data file,
BL_DELETE_DATAFILE=NO causes the engine to leave it after the load has completed.

proc append base=net_air.allflights
(BULKLOAD=YES
BL_DATAFILE=’/tmp/fltdata.dat’
BL_USE_PIPE=NO
BL_DELETE_DATAFILE=NO)

data=sasflt.flt98;
run;

Unloading
Bulk unloading is the fastest way to insert large numbers of rows from a Netezza

table. To use the bulk-unload facility, specify BULKUNLOAD=YES. The bulk-unload
facility uses the Netezza Remote External Table interface to move data from the client
to the Netezza Performance Server into SAS.

Here are the Netezza bulk-unload data set options:
BL_DATAFILE=
BL_DATAFILE=
BL_DELIMITER=
BL_OPTIONS=
BL_USE_PIPE=
BULKLOAD=

SAS/ACCESS for Netezza � Naming Conventions for Netezza 13

Examples

This first example shows how you can read the large Netezza table, FLIGHTS98, to
create and populate a SAS data set, SASFLT.FLT98:

libname sasflt ’SAS-data-library’;
libname net_air netezza user=louis pwd=fromage

server=air2 database=flights;

proc sql;
create table sasflt.flt98

as select * from net_air.flights98
(bulkunload=YES bl_options=’logdir "c:\temp\netlogs"’);

quit;

You can use BL_OPTIONS= to pass Netezza-specific options to the unload process.
The logdir option specifies the directory for the nzbad and nzlog files to be generated
during the unload.

This next example shows how you can append the contents of the Netezza table,
ALLFLIGHTS, to an existing SAS data set, SASFLT.FLT98. The BL_USE_PIPE=NO
option forces SAS/ACCESS Interface to Netezza to read data from a flat file, as specified
in the BL_DATAFILE= option. Rather than deleting the data file,
BL_DELETE_DATAFILE=NO causes the engine to leave it after the unload has
completed.

proc append base=sasflt.flt98
data=net_air.allflights
(BULKUNLOAD=YES
BL_DATAFILE=’/tmp/fltdata.dat’
BL_USE_PIPE=NO
BL_DELETE_DATAFILE=NO);

run;

Naming Conventions for Netezza

Beginning in SAS Version 7, most SAS names can be up to 32 characters long.
SAS/ACCESS Interface to Netezza supports table names and column names that
contain up to 32 characters. If DBMS column names are longer than 32 characters,
they are truncated to 32 characters. If truncating a column name would result in
identical names, SAS generates a unique name by replacing the last character with a
number. DBMS table names must be 32 characters or less because SAS does not
truncate a longer name. If you already have a table name that is greater than 32
characters, it is recommended that you create a table view.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how SAS/ACCESS Interface to Netezza handles case sensitivity. Netezza is not case
sensitive, and all names default to lowercase.

Netezza objects include tables, views, and columns. Follow these naming conventions:

� A name must be from 1 to 128 characters long.

� A name must begin with a letter (A through Z), diacritic marks, or non-Latin
characters (200-377 octal).

� A name cannot begin with an underscore (_). Leading underscores are reserved for
system objects.

14 Data Types for Netezza � Chapter 1

� Names are not case sensitive. For example, CUSTOMER and Customer are the same,
but object names are converted to lowercase when they are stored in the Netezza
database. However, if you enclose a name in quotation marks, it is case sensitive.

� A name cannot be a Netezza reserved word, such as WHERE or VIEW.
� A name cannot be the same as another Netezza object that has the same type.

For more information, see your Netezza Database User’s Guide.

Data Types for Netezza

Overview
Every column in a table has a name and a data type. The data type tells Netezza

how much physical storage to set aside for the column and the form in which the data
is stored.

This information includes information about Netezza data types, null and default
values, and data conversions. For more information about Netezza data types and to
determine which data types are available for your version of Netezza, see your Netezza
Database User’s Guide.

Note: SAS/ACCESS Interface to Netezza does not directly support NCHAR,
NVARCHAR, TIMETZ, or INTERVAL types. Any columns using these types are read
into SAS as character strings. �

String Data

CHAR(n)
specifies a fixed-length column for character string data. The maximum length is
32,768 characters.

VARCHAR(n)
specifies a varying-length column for character string data. The maximum length
is 32,768 characters.

Numeric Data

BIGINT
specifies a big integer. Values in a column of this type can range from
–9223372036854775808 to +9223372036854775807.

SMALLINT
specifies a small integer. Values in a column of this type can range from –32768
through +32767.

INTEGER
specifies a large integer. Values in a column of this type can range from
–2147483648 through +2147483647.

SAS/ACCESS for Netezza � Netezza Null Values 15

BYTEINT
specifies a tiny integer. Values in a column of this type can range from –128 to
+127.

DOUBLE | DOUBLE PRECISION
specifies a floating-point number that is 64 bits long. Values in a column of this
type can range from –1.79769E+308 to –2.225E-307 or +2.225E-307 to
+1.79769E+308, or they can be 0. This data type is stored the same way that SAS
stores its numeric data type. Therefore, numeric columns of this type require the
least processing when SAS accesses them.

REAL
specifies a floating-point number that is 32 bits long. Values in a column of this
type can range from approximately –3.4E38 to –1.17E-38 and +1.17E-38 to
+3.4E38.

DECIMAL | DEC | NUMERIC | NUM
specifies a fixed-point decimal number. The precision and scale of the number
determines the position of the decimal point. The numbers to the right of the
decimal point are the scale, which cannot be negative or greater than the
precision. The maximum precision is 38 digits.

Dates, Times, and Timestamps
SQL date and time data types are collectively called datetime values. The SQL data

types for dates, times, and timestamps are listed here. Be aware that columns of these
data types can contain data values that are out of range for SAS.

DATE
specifies date values. The range is 01-01-0001 to 12-31-9999. The default format
YYYY-MM-DD—for example, 1961–06–13. Netezza supports many other formats
for entering date data. For more information, see your Netezza Database User’s
Guide.

TIME
specifies time values in hours, minutes, and seconds to six decimal positions:
hh:mm:ss[.nnnnnn]. The range is 00:00:00.000000 to 23:59:59.999999. However,
due to the ODBC-style interface that SAS/ACCESS Interface to Netezza uses to
communicate with the Netezza Performance Server, any fractional seconds are lost
in the transfer of data from server to client.

TIMESTAMP
combines a date and time in the default format of yyyy-mm-dd hh:mm:ss[.nnnnnn].
For example, a timestamp for precisely 2:25 p.m. on January 25, 1991, would be
1991-01-25-14.25.00.000000. Values in a column of this type have the same ranges
as described for DATE and TIME.

Netezza Null Values
Netezza has a special value called NULL. A Netezza NULL value means an absence

of information and is analogous to a SAS missing value. When SAS/ACCESS reads a
Netezza NULL value, it interprets it as a SAS missing value.

You can define a column in a Netezza table so that it requires data. To do this in
SQL, you specify a column as NOT NULL, which tells SQL to allow only a row to be
added to a table if a value exists for the field. For example, NOT NULL assigned to the
CUSTOMER field in the SASDEMO.CUSTOMER table does not allow a row to be

16 LIBNAME Statement Data Conversions � Chapter 1

added unless there is a value for CUSTOMER. When creating a Netezza table with
SAS/ACCESS, you can use the DBNULL= data set option to indicate whether NULL is
a valid value for specified columns.

You can also define Netezza columns as NOT NULL DEFAULT. For more information
about using the NOT NULL DEFAULT value, see your Netezza Database User’s Guide.

Knowing whether a Netezza column allows NULLs or whether the host system
supplies a default value for a column that is defined as NOT NULL DEFAULT can help
you write selection criteria and enter values to update a table. Unless a column is
defined as NOT NULL or NOT NULL DEFAULT, it allows NULL values.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” in SAS/ACCESS for Relational Databases:
Reference.

To control how SAS missing character values are handled by the DBMS, use the
NULLCHAR= and NULLCHARVAL= data set options.

LIBNAME Statement Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to Netezza data types during input operations when you use the LIBNAME
statement.

Table 1.3 LIBNAME Statement: Default SAS Formats for Netezza Data Types

Netezza Data Type SAS Data Type Default SAS Format

CHAR(n) character $n.

VARCHAR(n) character $n.

INTEGER numeric 11.

SMALLINT

BYTEINT

numeric

numeric

6.

4.

BIGINT numeric 20.

DECIMAL numeric m.n

NUMERIC numeric m.n

REAL numeric none

DOUBLE numeric none

TIME numeric TIME8.

DATE numeric DATE9.

TIMESTAMP numeric DATETIME25.6

* n in Netezza data types is equivalent to w in SAS formats.

The following table shows the default Netezza data types that SAS/ACCESS assigns
to SAS variable formats during output operations when you use the LIBNAME
statement.

SAS/ACCESS for Netezza � LIBNAME Statement Data Conversions 17

Table 1.4 LIBNAME Statement: Default Netezza Data Types for SAS Variable
Formats

SAS Variable Format Netezza Data Type

m.n DECIMAL (m,n)

other numerics DOUBLE

$n. VARCHAR(n)

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in Netezza data types is equivalent to w in SAS formats.

18

19

A P P E N D I X

1
Recommended Reading

Recommended Reading 19

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS for Relational Databases: Reference
� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide
� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

20

21

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit process.

22 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries. In SAS/ACCESS software,
the default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS may or may not be able to use the
indexes of the DBMS to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indices to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

Glossary 23

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS data library.

member name
a name that is given to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

Pass-Through Facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The Pass-Through Facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the
CONNECTION TO component. SAS/ACCESS software is required in order to use
the Pass-Through Facility.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

24 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that whenever a data value in one table is
changed, the appropriate change is also made to any related values in other tables or
in the same table. Referential integrity is also used to ensure that related data is not
deleted or changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

Glossary 25

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

view descriptor
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

26

27

Index

B
BIGINT data type

Netezza 14
bulk loading

Netezza 11
bulk unloading

Netezza 12
BYTEINT data type

Netezza 15

C
CHAR data type

Netezza 14
CONNECT statement, SQL procedure

Netezza 6

D
data conversions

Netezza 16
data set options

Netezza 5
data types

Netezza 14
DATABASE= option, LIBNAME statement

Netezza 2
DATE data type

Netezza 15
datetime values

Netezza 15
DEC data type

Netezza 15
DECIMAL data type

Netezza 15
DOUBLE data type

Netezza 15
DOUBLE PRECISION data type

Netezza 15
DSN= option, LIBNAME statement

Netezza 3

F
functions

passing to Netezza 8

I
INTEGER data type

Netezza 14

J
joins

passing to Netezza 9

L
LIBNAME statement

Netezza 2

N
naming conventions

Netezza 13
Netezza 1

bulk loading and unloading 11
data set options 5
data types 14
LIBNAME statement 2
naming conventions 13
Pass-Through Facility 6
passing functions to 8
passing joins to 9
special catalog queries 7
temporary table support 10

NULL values
Netezza 15

NUM data type
Netezza 15

numeric data
Netezza 14

NUMERIC data type
Netezza 15

P
Pass-Through Facility

Netezza 6
PASSWORD= option, LIBNAME statement

Netezza 3
PORT= option, LIBNAME statement

Netezza 2

28 Index

Q
queries

Netezza special catalog queries 7

R
READ_ONLY= option, LIBNAME statement

Netezza 3
REAL data type

Netezza 15

S
SERVER= option, LIBNAME statement

Netezza 2
SMALLINT data type

Netezza 14
string data

Netezza 14

T
temporary tables

Netezza 10

TIME data type

Netezza 15

TIMESTAMP data type

Netezza 15

U
USER= option, LIBNAME statement

Netezza 2

V
VARCHAR data type

Netezza 14

Your Turn

We want your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing gives you the tools to flourish
in any environment with SAS!
Whether you are new to the workforce or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart.

SAS® Press Series
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from the SAS Press Series. Written by experienced SAS professionals from
around the world, these books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information—SAS documentation. We
currently produce the following types of reference documentation: online help that is built into the software,
tutorials that are integrated into the product, reference documentation delivered in HTML and PDF—free on
the Web, and hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Learning Edition 4.1
Get a workplace advantage, perform analytics in less time, and prepare for the SAS Base Programming
exam and SAS Advanced Programming exam with SAS® Learning Edition 4.1. This inexpensive, intuitive
personal learning version of SAS includes Base SAS® 9.1.3, SAS/STAT®, SAS/GRAPH®, SAS/QC®, SAS/ETS®,
and SAS® Enterprise Guide® 4.1. Whether you are a professor, student, or business professional, this is a
great way to learn SAS.

s u p p o r t . s a s . c o m / L E

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2006 SAS Institute Inc. All rights reserved. 428713_1US.0307

	Contents
	SAS/ACCESS for Netezza
	Introduction to SAS/ACCESS Interface to Netezza
	LIBNAME Statement Specifics for Netezza
	Overview
	Arguments
	Netezza LIBNAME Statement Examples

	Data Set Options for Netezza
	Overview

	Pass-Through Facility Specifics for Netezza
	Overview
	CONNECT Statement Examples
	Special Catalog Queries

	Passing SAS Functions to Netezza
	Passing Joins to Netezza
	Temporary Table Support for Netezza
	General Information
	Establishing a Temporary Table
	Terminating a Temporary Table
	Examples

	Netezza Bulk Loading and Unloading
	Loading
	Unloading

	Naming Conventions for Netezza
	Data Types for Netezza
	Overview
	String Data
	Numeric Data
	Dates, Times, and Timestamps
	Netezza Null Values
	LIBNAME Statement Data Conversions

	Recommended Reading
	Glossary
	Index

