
SAS/ACCESS® 9.1.3
Supplement for MySQL
SAS/ACCESS for Relational Databases

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006.
SAS/ACCESS ® 9.1.3 Supplement for MySQL (SAS/ACCESS for Relational Databases).
Cary, NC: SAS Institute Inc.

SAS/ACCESS® 9.1.3 Supplement for MySQL (SAS/ACCESS for Relational
Databases)
Copyright © 2006, SAS Institute Inc., Cary, NC, USA
ISBN-13: 978-1–59047-924-7
ISBN-10: 1-59047-924-6
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, February 2006
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1 � SAS/ACCESS for MySQL 1
Introduction to the SAS/ACCESS Interface to MySQL 1

LIBNAME Statement Specifics for MySQL 1

Data Set Options for MySQL 3

Pass-Through Facility Specifics for MySQL 4

Autocommit and Table Types 6

Understanding MySQL Update and Delete Rules 6

Passing SAS Functions to MySQL 7

Passing Joins to MySQL 8

Naming Conventions for MySQL 8

Case Sensitivity for MySQL 9

Data Types for MySQL Servers 9

Appendix 1 � Recommended Reading 15
Recommended Reading 15

Glossary 17

Index 23

iv

1

C H A P T E R

1
SAS/ACCESS for MySQL

Introduction to the SAS/ACCESS Interface to MySQL 1
LIBNAME Statement Specifics for MySQL 1

Arguments 2

MySQL LIBNAME Statement Examples 3

Data Set Options for MySQL 3

Pass-Through Facility Specifics for MySQL 4
Examples 5

Autocommit and Table Types 6

Understanding MySQL Update and Delete Rules 6

Passing SAS Functions to MySQL 7

Passing Joins to MySQL 8

Naming Conventions for MySQL 8
Case Sensitivity for MySQL 9

Data Types for MySQL Servers 9

Overview 9

Character Data 10

Numeric Data 10
Other Data Types 11

LIBNAME Statement Data Conversions 12

Introduction to the SAS/ACCESS Interface to MySQL

This document includes details about only the SAS/ACCESS Interface to MySQL. It
should be used as a supplement to the main SAS/ACCESS documentation,
SAS/ACCESS for Relational Databases: Reference.

LIBNAME Statement Specifics for MySQL

This section describes the LIBNAME statements as supported in the SAS/ACCESS
interface to MySQL. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The MySQL
specific syntax for the LIBNAME statement is as follows:

LIBNAME libref mysql <connection-options><LIBNAME-options>;

2 Arguments � Chapter 1

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables.

mysql
is the SAS/ACCESS engine name for the interface to MySQL.

connection-options
provide connection information for the connection to the DBMS. The connection
options for the interface to MySQL are:

USER=<’>username<’>
specifies the MySQL user login ID. If this argument is not specified, the
current user is assumed. If the user name contains spaces or
non-alphanumeric characters, you must enclose the user name in quotation
marks.

PASSWORD=<’>password<’>
specifies the MySQL password that is associated with the MySQL login ID. If
the password contains spaces or non-alphanumeric characters, you must
enclose the password in quotation marks.

DATABASE=<’>database<’>
specifies the MySQL database to which you want to connect. If the database
name contains spaces or non-alphanumeric characters, you must enclose the
database name in quotation marks.

SERVER=<’>server<’>
specifies the server name or IP address of the MySQL server. If the server
name contains spaces or non-alphanumeric characters, you must enclose the
server name in quotation marks.

PORT=port
specifies the port used to connect to the specified MySQL server.

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine naming behavior. The following table
describes LIBNAME options that are supported for MySQL and presents default
values where applicable. See the section about the SAS/ACCESS LIBNAME
statement in SAS/ACCESS for Relational Databases: Reference for detailed
information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for MySQL

Option Default Value

ACCESS= NONE

AUTOCOMMIT= YES

CONNECTION= SHAREDREAD

CONNECTION_GROUP= NONE

DBCOMMIT= 1000 when inserting rows; 0 when
updating rows, deleting rows, or
appending rows to an existing table

SAS/ACCESS for MySQL � Data Set Options for MySQL 3

Option Default Value

DBCONINIT= NONE

DBCONTERM= NONE

DBCREATE_TABLE_OPTS= NONE

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= NONE

DBLIBTERM= NONE

DBMAX_TEXT= 1024

DBPROMPT= NO

DBSASLABEL= COMPAT

DEFER= NO

DIRECT_EXE= NONE

DIRECT_SQL= YES

INSERTBUFF= 0

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= NO

PRESERVE_TAB_NAMES= NO

QUALIFIER= NONE

REREAD_EXPOSURE= NO

SPOOL= YES

SQL_FUNCTIONS= NONE

UTILCONN_TRANSIENT= NO

MySQL LIBNAME Statement Examples

In the following example, the libref MYSQLLIB uses the SAS/ACCESS interface to
MySQL to connect to a MySQL database. The SAS/ACCESS connection options are
USER=, PASSWORD=, DATABASE=, SERVER=, and PORT=.

libname mysqllib mysql user=testuser password=testpass database=mysqldb
server=mysqlserv port=9876;

proc print data=mysqllib.employees;
where dept=’CSR010’;

run;

Data Set Options for MySQL

The following table describes all data set options that are supported for the MySQL
interface. Default values are provided where applicable. See the section about data set

4 Pass-Through Facility Specifics for MySQL � Chapter 1

options in SAS/ACCESS for Relational Databases: Reference for general information
about these options.

Table 1.2 Data Set Options for MySQL

Option Default Value

AUTOCOMMIT= the current LIBNAME option setting

DBCOMMIT= the current LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= the current LIBNAME option setting

DBGEN_NAME= DBMS

DBINDEX= the current LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBPROMPT= the current LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= See “Data Types for MySQL Servers” on
page 9.

DBTYPE= See “LIBNAME Statement Data
Conversions” on page 12.

INSERTBUFF= 0

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= current LIBNAME option setting

QUALIFIER= the current LIBNAME option setting

SASDATEFORMAT= DATETIME20.0

UPDATE_ISOLATION_LEVEL= the current LIBNAME option setting

Pass-Through Facility Specifics for MySQL
See the section about the Pass-Through Facility in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The Pass-Through Facility specifics for MySQL are as follows:
� The dbms-name is mysql.
� The database-connection-arguments for the CONNECT statement are as follows:

USER=<’>MySQL-login-ID<’>
specifies an optional MySQL login ID. If USER= is not specified, the current
user is assumed. If you specify USER=, you also must specify PASSWORD=.

PASSWORD=<’>MySQL-password<’>

SAS/ACCESS for MySQL � Examples 5

specifies the MySQL password that is associated with the MySQL login ID. If
you specify PASSWORD=, you also must specify USER=.

DATABASE=<’>database-name<’>
specifies the MySQL database.

SERVER=<’>server-name<’>
specifies the name or IP address of the MySQL server to which to connect. If
server-name is omitted or set to localhost, a connection to the local host is
established.

PORT=port
specifies the port on the server that is used for the TCP/IP connection.

Examples
The following example uses the alias DBCON for the DBMS connection (the

connection alias is optional):

proc sql;
connect to mysql as dbcon

(user=testuser password=testpass server=mysqlserv
database=mysqldb port=9876);

quit;

The following example connects to MySQL and sends it two EXECUTE statements to
process:

proc sql;
connect to mysql (user=testuser password=testpass server=mysqlserv

database=mysqldb port=9876);
execute (create table whotookorders as

select ordernum, takenby,
firstname, lastname, phone

from orders, employees
where orders.takenby=employees.empid)

by mysql;
execute (grant select on whotookorders

to testuser) by mysql;
disconnect from mysql;

quit;

The following example performs a query, shown in highlighted text, on the MySQL
table CUSTOMERS:

proc sql;
connect to mysql (user=testuser password=testpass server=mysqlserv

database=mysqldb port=9876);
select *

from connection to mysql
(select * from customers
where customer like ’1%’);

disconnect from mysql;
quit;

6 Autocommit and Table Types � Chapter 1

Autocommit and Table Types
MySQL supports several table types, two of which are MyISAM (the default) and

INNODB. A single database can contain tables of different types. The behavior of a
table is determined by its table type. For example, by definition, a table created of
MyISAM type does not support transactions. Consequently, all DML statements
(updates, deletes, inserts) are automatically committed. If you need transactional
support, specify a table type of INNODB in the DBCREATE_TABLE_OPTS LIBNAME
option. This table type allows for updates, deletes, and inserts to be rolled back if an
error occurs; or updates, deletes, and inserts to be committed if the SAS DATA step or
procedure completes successfully.

By default, the MYSQL libname engine sets AUTOCOMMIT=YES regardless of the table
type. If you are using tables of the type INNODB, set the LIBNAME option
AUTOCOMMIT=NO to improve performance. To control how often COMMITS are
executed, set the DBCOMMIT option.

Note: The DBCOMMIT option can affect SAS/ACCESS performance. Experiment
with a value that best fits your table size and performance needs before using it for
production jobs. Transactional tables require significantly more memory and disk space
requirements. �

Understanding MySQL Update and Delete Rules
To avoid data integrity problems when updating or deleting data, you need a primary

key defined on your table. Refer to the MySQL documentation for more information
regarding table types and transactions.

The following example uses AUTOCOMMIT=NO and DBTYPE to create the primary
key, and DBCREATE_TABLE_OPTS to determine the MySQL table type.

libname invty mysql user=dbitest server=d6687 database=test autocommit=no
reread_exposure=no;

proc sql;
drop table invty.STOCK23;
quit;

/* Create DBMS table with primary key and of type INNODB*/
data invty.STOCK23(drop=PARTNO DBTYPE=(RECDATE="date not null,

primary key(RECDATE)") DBCREATE_TABLE_OPTS="type = innodb");
input PARTNO $ DESCX $ INSTOCK @17

RECDATE date7. @25 PRICE;
format RECDATE date7.;
datalines;

K89R seal 34 27jul95 245.00
M447 sander 98 20jun95 45.88
LK43 filter 121 19may96 10.99
MN21 brace 43 10aug96 27.87
BC85 clamp 80 16aug96 9.55
KJ66 cutter 6 20mar96 24.50
UYN7 rod 211 18jun96 19.77
JD03 switch 383 09jan97 13.99
BV1I timer 26 03jan97 34.50
;

SAS/ACCESS for MySQL � Passing SAS Functions to MySQL 7

proc sql;
update invty.STOCK23 set price=price*1.1 where INSTOCK > 50;
quit;

Passing SAS Functions to MySQL
The interface to MySQL passes the following SAS functions to MySQL for processing

when the is set to ALL. Where the MySQL function name differs from the SAS function
name, the MySQL name appears in parentheses. See “Passing Functions to the DBMS
using PROC SQL” in SAS/ACCESS for Relational Databases: Reference for information.

ABS

ARCOS (ACOS)

ARSIN (ASIN)

ATAN

BYTE

CEIL (CEILING)

COMPRESS

COS

COT

DATE

DATETIME

DAY

EXP

FLOOR

HOUR

INDEX

LOWCASE (LCASE)

LENGTH

LOG

LOG10

MINUTE

MOD

MONTH

QTR

REPEAT

SECOND

SIGN

SIN

8 Passing Joins to MySQL � Chapter 1

SOUNDEX

SQRT

SUBSTR

TAN

TIME

TODAY

TRIM (TRIMN)

UPCASE (UCASE)

WEEKDAY

YEAR

Passing Joins to MySQL
In order for a multiple libref join to pass to MySQL, all of the following components

of the LIBNAME statements must match exactly:

user

password

database

server

See “Passing Joins to the DBMS” in SAS/ACCESS for Relational Databases:
Reference for more information about when and how SAS/ACCESS passes joins to the
DBMS.

Naming Conventions for MySQL
MySQL database identifiers that can be named include databases, tables, and

columns. The MySQL documentation contains extensive on naming conventions. The
following are some of the naming conventions that you must use.

� All identifier names must be from 1 to 64 characters long, except for aliases, which
may be 255 characters.

� Database names must be unique. For each user within a database, names of
database objects must be unique across all users (for example, if a database
contains a department table created by user A, no other user can create a
department table in the same database).

Note: MySQL does not recognize the notion of schema. Consequently, tables
are automatically visible to all users with appropriate privileges. Column names
and index names must be unique within a table. �

� Database names can use any character that is allowed in a directory name except
for periods and backward and forward slashes.

� Table names may use any character allowed in a filename except for periods and
forward slashes.

� Column and alias names allow all characters.

SAS/ACCESS for MySQL � Overview 9

� A name cannot be a MySQL reserved word unless the name is enclosed in
quotation marks. See the MySQL documentation for more information about
reserved words.

� Embedded spaces and other special characters are not permitted unless the name
is enclosed in quotation marks.

� Embedded quotation marks are not permitted.
� Case sensitivity is set when a server is installed. By default, the names of

database objects are case-sensitive on UNIX and not case-sensitive on Windows.
For example, the names CUSTOMER and customer are different on a case-sensitive
server.

Note: By default, column and table names are not quoted in the SAS/ACCESS
interface to MySQL. To quote the table and column names, you must use the LIBNAME
statement PRESERVE_TAB_NAMES=. �

Case Sensitivity for MySQL
In MySQL, databases and tables correspond to directories and files within those

directories. Consequently, the case sensitivity of the underlying operating system
determines the case sensitivity of database and table names. This means database and
table names are case-insensitive in Windows, and case-sensitive in most varieties of
UNIX.

In SAS, names can be entered in either uppercase or lowercase. MySQL recommends
that you adopt a consistent convention of either all uppercase or all lowercase
tablenames, especially on UNIX hosts. This can be easily implemented by starting your
server with -O lower_case_table_names=1. Please see the MySQL documentation for
more details.

If your server is on a case-sensitive platform, and you choose to allow case sensitivity,
be aware that when you reference MYSQL objects through the SAS/ACCESS interface,
objects are case-sensitive and require no quotation marks. Furthermore, in the
pass-through facility, all MySQL object names are case-sensitive. The names are passed
to MySQL exactly as they are typed.

For more information about case sensitivity and MySQL names, see Naming
Conventions for MySQL.

Data Types for MySQL Servers

Overview
Every column in a table has a name and a data type. The data type tells MySQL

how much physical storage to set aside for the column and the form in which the data
is stored.

10 Character Data � Chapter 1

Character Data
BLOB

contains binary data of variable length up to 64 kilobytes. Variables entered into
columns of this type must be inserted as character strings.

CHAR (n)
contains fixed-length character string data with a length of n, where n must be at
least 1 and cannot exceed 255 characters.

ENUM (“value1”, “value2”, “value3”,...)
contains a character value that can be chosen from the list of allowed values. You
can specify up to 65535 ENUM values. If the column contains a string not
specified in the value list, the column value is set to “0”.

LONGBLOB
contains binary data of variable length up to 4 gigabytes. Variables entered into
columns of this type must be inserted as character strings. Available memory
considerations might limit the size of a LONGBLOB data type.

LONGTEXT
contains text data of variable length up to 4 gigabytes. Available memory
considerations might limit the size of a LONGTEXT data type.

MEDIUMBLOB
contains binary data of variable length up to 16 megabytes. Variables entered into
columns of this type must be inserted as character strings.

MEDIUMTEXT
contains text data of variable length up to 16 megabytes.

SET (“value1”, “value2”, “value3”,...)
contains zero or more character values that must be chosen from the list of
allowed values. You can specify up to 64 SET values.

TEXT
contains text data of variable length up to 64 kilobytes.

TINYBLOB
contains binary data of variable length up to 256 bytes. Variables entered into
columns of this type must be inserted as character strings.

TINYTEXT
contains text data of variable length up to 256 bytes.

VARCHAR (n)
contains character string data with a length of n, where n is a value from 1 to 255.

Numeric Data
BIGINT (n)

specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for BIGINT can range from
-9223372036854775808 to 9223372036854775808.

DECIMAL (length, decimals)
specifies a fixed-point decimal number, where length is the total number of digits
(precision), and decimals is the number of digits to the right of the decimal point
(scale).

SAS/ACCESS for MySQL � Other Data Types 11

DOUBLE (length, decimals)
specifies a double-precision decimal number, where length is the total number of
digits (precision), and decimals is the number of digits to the right of the decimal
point (scale). Values can range from approximately –1.8E308 to –2.2E-308 and
2.2E-308 to 1.8E308 (if UNSIGNED is specified).

FLOAT (length, decimals)
specifies a floating-point decimal number, where length is the total number of
digits (precision) and decimals is the number of digits to the right of the decimal
point (scale). Values can range from approximately –3.4E38 to –1.17E-38 and
1.17E-38 to 3.4E38 (if UNSIGNED is specified).

INT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for INT can range from –2147483648 to
2147483647.

MEDIUMINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for MEDIUMINT can range from –8388608
to 8388607.

SMALLINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for SMALLINT can range from –32768 to
32767.

TINYINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for TINYINT can range from -128 to 127.

Other Data Types

DATE
contains date values. Valid dates are from January 1, 1000, to December 31, 9999.
The default format is YYYY-MM-DD, for example, 1961–06–13.

DATETIME
contains date and time values. Valid values are from 00:00:00 on January 1, 1000,
to 23:59:59 on December 31, 9999. The default format is YYYY-MM-DD
HH:MM:SS, for example, 1992–09–20 18:20:27.

TIME
contains time values. Valid times are –838 hours, 59 minutes, 59 seconds to 838
hours, 59 minutes, 59 seconds. The default format is HH:MM:SS, for example,
12:17:23.

TIMESTAMP
contains date and time values used to mark data operations. Valid values are from
00:00:00 on January 1, 1970, to 2037. The default format is YYYY-MM-DD
HH:MM:SS, for example, 1995–08–09 15:12:27.

12 LIBNAME Statement Data Conversions � Chapter 1

LIBNAME Statement Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to MySQL data types during input operations when you use the LIBNAME
statement.

Table 1.3 LIBNAME Statement: Default SAS Formats for MySQL Data Types

MySQL Column Type SAS Data Type Default SAS Format

CHAR(n) character $n.

VARCHAR(n) character $n.

TINYTEXT character $n.

TEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

MEDIUMTEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

LONGTEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

TINYBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

BLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

MEDIUMBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

LONGBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

ENUM character $n.

SET character $n.

TINYINT numeric 4.0

SMALLINT numeric 6.0

MEDIUMINT numeric 8.0

INT numeric 11.0

BIGINT numeric 20.

DECIMAL numeric m.n

FLOAT numeric

DOUBLE numeric

DATE numeric DATE

TIME numeric TIME

SAS/ACCESS for MySQL � LIBNAME Statement Data Conversions 13

MySQL Column Type SAS Data Type Default SAS Format

DATETIME numeric DATETIME

TIMESTAMP numeric DATETIME

The following table shows the default MySQL data types that SAS/ACCESS assigns
to SAS variable formats during output operations when you use the LIBNAME
statement.

Table 1.4 LIBNAME Statement: Default MySQL Data Types for SAS Variable
Formats

SAS Variable Format MySQL Data Type

m.n* DECIMAL ([m-1],n)**

n (where n <= 2) TINYINT

n (where n <= 4) SMALLINT

n (where n <=6) MEDIUMINT

n (where n <= 17) BIGINT

other numerics DOUBLE

$n (where n <= 255) VARCHAR(n)

$n (where n > 255) TEXT

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in MySQL data types is equivalent to w in SAS formats.
** DECIMAL types are created as (m-1, n). SAS includes space to write the value, the decimal

point, and a minus sign (if necessary) in its calculation for precision These must be removed
when converting to MySQL.

14

15

A P P E N D I X

1
Recommended Reading

Recommended Reading 15

Recommended Reading

Here is the recommended reading list for this title:
� SAS/ACCESS Supplement for DB2 under z/OS (SAS/ACCESS for Relational

Databases)

� SAS/ACCESS Supplement for DB2 under UNIX and PC Hosts (SAS/ACCESS for
Relational Databases)

� SAS/ACCESS Supplement for Informix (SAS/ACCESS for Relational Databases)

� SAS/ACCESS Supplement for Microsoft SQL Server (SAS/ACCESS for Relational
Databases)

� SAS/ACCESS Supplement for ODBC (SAS/ACCESS for Relational Databases)

� SAS/ACCESS Supplement for OLE DB (SAS/ACCESS for Relational Databases)
� SAS/ACCESS Supplement for Oracle (SAS/ACCESS for Relational Databases)

� SAS/ACCESS Supplement for SYBASE (SAS/ACCESS for Relational Databases)

� SAS/ACCESS Supplement for Teradata

� SAS Language Reference: Concepts

� SAS Language Reference: Dictionary
� Base SAS Procedures Guide

� SAS Companion that is specific to your operating environment

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

16

17

Glossary

This glossary defines SAS software terms that are used in this document as well as
terms that relate specifically to SAS/ACCESS software.

access descriptor
a SAS/ACCESS file that describes data that is managed by a data management
system. After creating an access descriptor, you can use it as the basis for creating
one or more view descriptors. See also view and view descriptor.

browsing data
the process of viewing the contents of a file. Depending on how the file is accessed,
you can view SAS data either one observation (row) at a time or as a group in a
tabular format. You cannot update data that you are browsing.

bulk load
to load large amounts of data into a database object, using methods that are specific
to a particular DBMS. Bulk loading enables you to rapidly and efficiently add
multiple rows of data to a table as a single unit.

client
(1) a computer or application that requests services, data, or other resources from a
server. (2) in the X Window System, an application program that interacts with the X
server and can perform tasks such as terminal emulation or window management.
For example, SAS is a client because it requests windows to be created, results to be
displayed, and so on.

column
in relational databases, a vertical component of a table. Each column has a unique
name, contains data of a specific type, and has certain attributes. A column is
analogous to a variable in SAS terminology.

column function
an operation that is performed for each value in the column that is named as an
argument of the function. For example, AVG(SALARY) is a column function.

commit
the process that ends a transaction and makes permanent any changes to the
database that the user made during the transaction. When the commit process
occurs, locks on the database are released so that other applications can access the
changed data. The SQL COMMIT statement initiates the commit process.

18 Glossary

DATA step view
a type of SAS data set that consists of a stored DATA step program. Like other SAS
data views, a DATA step view contains a definition of data that is stored elsewhere;
the view does not contain the physical data. The view’s input data can come from one
or more sources, including external files and other SAS data sets. Because a DATA
step view only reads (opens for input) other files, you cannot update the view’s
underlying data.

data type
a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

data value
in SAS, a unit of character or numeric information in a SAS data set. A data value
represents one variable in an observation.

database
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

database management system (DBMS)
an organized collection of related data. A database usually contains named files,
named objects, or other named entities such as tables, views, and indexes

editing data
the process of viewing the contents of a file with the intent and the ability to change
those contents. Depending on how the file is accessed, you can view the data either
one observation at a time or in a tabular format.

engine
a component of SAS software that reads from or writes to a file. Each engine enables
SAS to access files that are in a particular format. There are several types of engines.

file
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries.

format
a collection of related records that are treated as a unit. SAS files are processed and
controlled by SAS and are stored in SAS data libraries. In SAS/ACCESS software,
the default formats vary according to the interface product.

index
(1) in SAS software, a component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS indexes
is to optimize WHERE-clause processing and to facilitate BY-group processing. (2) in
other software vendors’ databases, a named object that directs the DBMS to the
storage location of a particular data value for a particular column. Some DBMSs
have additional specifications. These indexes are also used to optimize the processing
of WHERE clauses and joins. Depending on the SAS interface to a database product
and how selection criteria are specified, SAS may or may not be able to use the
indexes of the DBMS to speed data retrieval.

Depending on how selection criteria are specified, SAS might use DBMS indices to
speed data retrieval.

informat
a pattern or set of instructions that SAS uses to determine how data values in an
input file should be interpreted. SAS provides a set of standard informats and also
enables you to define your own informats.

Glossary 19

interface view engine
a SAS engine that is used by SAS/ACCESS software to retrieve data from files that
have been formatted by another vendor’s software. Each SAS/ACCESS interface has
its own interface view engine, which reads the interface product data and returns the
data in a form that SAS can understand (that is, in a SAS data set). SAS
automatically uses an interface view engine; the engine name is stored in
SAS/ACCESS descriptor files so that you do not need to specify the engine name in a
LIBNAME statement.

libref
a name that is temporarily associated with a SAS data library. The complete name of
a SAS file consists of two words, separated by a period. The libref, which is the first
word, indicates the library. The second word is the name of the specific SAS file. For
example, in VLIB.NEWBDAY, the libref VLIB tells SAS which library contains the
file NEWBDAY. You assign a libref with a LIBNAME statement or with an operating
system command.

member
a SAS file in a SAS data library.

member name
a name that is given to a SAS file in a SAS data library.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, DATA, CATALOG, PROGRAM, and VIEW.

missing value
in SAS, a term that describes the contents of a variable that contains no data for a
particular row or observation. By default, SAS prints or displays a missing numeric
value as a single period, and it prints or displays a missing character value as a
blank space.

observation
a row in a SAS data set. All of the data values in an observation are associated with
a single entity such as a customer or a state. Each observation contains one data
value for each variable. In a database product table, an observation is analogous to a
row. Unlike rows in a database product table or file, observations in a SAS data file
have an inherent order.

Pass-Through Facility
a group of SQL procedure statements that send and receive data directly between a
relational database management system and SAS. The Pass-Through Facility
includes the CONNECT, DISCONNECT, and EXECUTE statements, and the
CONNECTION TO component. SAS/ACCESS software is required in order to use
the Pass-Through Facility.

PROC SQL view
a SAS data set (of type VIEW) that is created by the SQL procedure. A PROC SQL
view contains no data. Instead, it stores information that enables it to read data
values from other files, which can include SAS data files, SAS/ACCESS views, DATA
step views, or other PROC SQL views. A PROC SQL view’s output can be either a
subset or a superset of one or more files.

query
a set of instructions that requests particular information from one or more data
sources.

20 Glossary

referential integrity
a set of rules that a DBMS uses to ensure that whenever a data value in one table is
changed, the appropriate change is also made to any related values in other tables or
in the same table. Referential integrity is also used to ensure that related data is not
deleted or changed accidentally.

relational database management system
a database management system that organizes and accesses data according to
relationships between data items. Oracle and DB2 are examples of relational
database management systems.

rollback
in most databases, the process that restores the database to its state when changes
were last committed, voiding any recent changes. The SQL ROLLBACK statement
initiates the rollback processes. See also commit.

row
in relational database management systems, the horizontal component of a table. A
row is analogous to a SAS observation.

SAS data file
a type of SAS data set that contains data values as well as descriptor information
that is associated with the data. The descriptor information includes information
such as the data types and lengths of the variables, as well as the name of the engine
that was used to create the data. A PROC SQL table is a SAS data file. SAS data
files are of member type DATA.

SAS data library
a collection of one or more SAS files that are recognized by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS data view
a file whose contents are in one of the native SAS file formats. There are two types of
SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS
data views contain only the descriptor information plus other information that is
required for retrieving data values from other SAS data sets or from files whose
contents are in other software vendors’ file formats.

SAS/ACCESS views
See view descriptor and SAS data view.

server
in a network, a computer that is reserved for servicing other computers in the
network. Servers can provide several different types of services, such as file services
and communication services. Servers can also enable users to access shared
resources such as disks, data, and modems.

Structured Query Language (SQL)
the standardized, high-level query language that is used in relational database
management systems to create and manipulate database management system
objects. SAS implements SQL through the SQL procedure.

Glossary 21

table
a two-dimensional representation of data, in which the data values are arranged in
rows and columns.

trigger
a type of user-defined stored procedure that is executed whenever a user issues a
data-modification command such as INSERT, DELETE, or UPDATE for a specified
table or column. Triggers can be used to implement referential integrity or to
maintain business constraints.

variable
a column in a SAS data set. A variable is a set of data values that describe a given
characteristic across all observations.

view
a definition of a virtual data set. The definition is named and stored for later use. A
view contains no data; it merely describes or defines data that is stored elsewhere.
SAS data views can be created by the ACCESS and SQL procedures.

view descriptor
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

wildcard
a file created by SAS/ACCESS software that defines part or all of the database
management system (DBMS) data or PC file data that is described by an access
descriptor. The access descriptor describes the data in a single DBMS table, DBMS
view, or PC file.

22

Index 23

Index

C
case sensitivity

MySQL 9
character data

MySQL 10

D
data conversions

MySQL 12
data set options

MySQL 3
data types

MySQL 9

F
functions

passing to MySQL 7

J
joins

passing to MySQL 8

L
LIBNAME statement

MySQL 1
MySQL data conversions 12

M
MySQL interface 1

autocommit and table types 6
case sensitivity 9
character data 10
data set options 3
data types 9
LIBNAME statement 1
LIBNAME statement data conversions 12
naming conventions 8
numeric data 10
Pass-Through Facility 4
passing functions to 7
passing joins to 8
update and delete rules 6

N
naming conventions

MySQL 8
numeric data

MySQL 10

P
Pass-Through Facility

MySQL 4

S
SAS/ACCESS

MySQL interface 1

Your Turn

If you have comments or suggestions about SAS/ACCESS 9.1.3 Supplement for MySQL
(SAS/ACCESS for Relational Databases), please send them to us on a photocopy of this
page, or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

s

SAS Publishing gives you the tools to
flourish in any environment with SAS®!

Whether you are new to the workforce or an experienced professional, you
need a way to distinguish yourself in this rapidly changing and competitive
job market. SAS Publishing provides you with a wide range of resources,
from software to online training to publications to set yourself apart.

Build Your SAS Skills with SAS Learning Edition
SAS Learning Edition is your personal learning version of the world’s leading business
intelligence and analytic software. It provides a unique opportunity to gain hands-on experience
and learn how SAS gives you the power to perform.

s u p p o r t . s a s . c o m / L E

Personalize Your Training with SAS Self-Paced e-Learning
You are in complete control of your learning environment with SAS Self-Paced e-Learning!
Gain immediate 24/7 access to SAS training directly from your desktop, using only a standard
Web browser. If you do not have SAS installed, you can use SAS Learning Edition for all Base
SAS e-learning.

s u p p o r t . s a s . c o m / s e l f p a c e d

Expand Your Knowledge with Books from SAS Publishing
SAS Press offers user-friendly books for all skill levels, covering such topics as univariate and
multivariate statistics, linear models, mixed models, fixed effects regression and more. View our
complete catalog and get free access to the latest reference documentation by visiting us online.

s u p p o r t . s a s . c o m / p u b s

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2005 SAS Institute Inc. All rights reserved. 345193US.0805

	Table of Contents
	Contents

	SAS/ACCESS for MySQL
	Introduction to the SAS/ACCESS Interface to MySQL
	LIBNAME Statement Specifics for MySQL
	Arguments
	MySQL LIBNAME Statement Examples

	Data Set Options for MySQL
	Pass-Through Facility Specifics for MySQL
	Examples

	Autocommit and Table Types
	Understanding MySQL Update and Delete Rules
	Passing SAS Functions to MySQL
	Passing Joins to MySQL
	Naming Conventions for MySQL
	Case Sensitivity for MySQL
	Data Types for MySQL Servers
	Overview
	Character Data
	Numeric Data
	Other Data Types
	LIBNAME Statement Data Conversions

	Recommended Reading
	Recommended Reading

	Glossary
	Index

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 153
 402
 339

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2 2.0c
 Quite Imposing 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 153
 402
 339

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2 2.0c
 Quite Imposing 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 153
 402
 339

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2 2.0c
 Quite Imposing 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 8
 same as current

 8
 1
 153
 402
 339

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2 2.0c
 Quite Imposing 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 8
 same as current

 8
 1
 153
 402
 339

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposing2
 Quite Imposing 2 2.0c
 Quite Imposing 2
 1

 1

 HistoryList_V1
 qi2base

